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Summary

Automated identification of biomedical specimens such as malaria parasites from

red blood cells would enable the undertaking of timely preventive measures which

could potentially save millions of lives.

However, current automated systems lack robustness as they only work well

under fixed operating conditions of the microscope, such as the choice of objective

lens, aperture size, z–focus and intensity, but perform poorly when one or more

of these settings change. Clumping of cells, when placed on slides, also adversely

affects the system accuracy since the entire clump may be erroneously considered

as a single specimen.

A robust scheme is developed for automatically identifying biomedical speci-

mens from light microscope images. Contributions are made to the areas of edge

detection, segmentation and classification.

A novel edge detection method is proposed which, unlike existing methods,

v



Summary vi

accurately identifies regions of interest (ROI) in the images under different lu-

minance, contrast and noise levels. This is achieved by developing a new edge

similarity measure that incorporates a regularization term. Directional finite im-

pulse response (FIR) hyperbolic tangent (HBT) filters are also proposed as edge

detectors and Chapter 2 shows that they achieve better noise tolerance and edge

localization compared to Canny’s Gaussian first derivative (GFD) filter.

A novel multi-scale edge detection method is proposed which ensures accurate

detection of edges under noisy conditions. It is henceforth called the multi-scale

min-product method (MMPM) as it uses a point-wise operation involving the min

and product operators, in that sequence, to accurately detect step edges while

significantly reducing false edges due to noise. Unlike existing multi-scale methods,

a wider range of edge filters can be applied in MMPM. The problem of edge drift

over successive scales is also avoided by directly applying edge filters of multiple

widths on the original image.

The boundary edges enable the identification of the ROIs but each ROI may be

a clump comprising two or more specimens. Therefore, a novel binary clump split-

ting method using is developed using a set of concavity-based rules to accurately

split each clump into constituent specimens. The proposed method accurately

splits clumps with specimens of diverse sizes and shapes at different degrees of

overlap.

A novel texture classification method is presented that is invariant to specimen

orientation, scale and contrast. Orientation invariance is achieved by expressing

each specimen in an alternate Cartesian space defined by the major and minor axes

of the largest ellipse within the specimen. Scale invariance is achieved by mapping
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the elliptical regions of arbitrary size, to a fixed unit circular region from which a

polar map is subsequently constructed.

Edge maps are then extracted from the polar map by applying the edge similar-

ity measure proposed in chapter 2 so that the resultant texture features obtained

from these maps are invariant to contrast. The texture features comprise both

local and global norm-1 energy measures since they enable improved classification

accuracy.

The techniques proposed in this thesis are validated through experiments and

compared against existing methods. They have been successfully applied to light

microscope images of airborne spores and cytological specimens. The robustness of

the edge detection techniques is also shown by successfully testing them on natural

and magnetic resonance (MR) images.
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Chapter 1
Introduction

1.1 Motivations

Fast and accurate identification of biomedical specimens from light microscope

(LM) images is an essential step in a wide variety of application domains where

the specimens of interest could be asthma-causing allergenic spores [6, 15, 23, 29,

54, 58, 78, 85] or malaria infected red blood cells [82, 87] among others [27]. An

early assessment of these specimens enables us to undertake preventive measures

which could potentially save millions of lives. The practice of identifying specimens

of interest from microscope images even extends to non-biological samples such as

the detection of defects in wafers and the analysis of gun shot residues [6].

Manual methods of detecting and characterizing biomedical cell specimens from

microscope images can be time consuming due to the large amount of data involved.

For example, approximately 5 000 to 50 000 red blood cells need to be inspected for

the presence of malaria parasite in order to determine the extent of infection with

sufficient accuracy. Similarly, it takes about four to five hours for an experienced

1
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technician to determine the total number of allergenic spores on a single microscope

slide. The results obtained from manual methods are also inconsistent as they

depend on the person’s experience and state of mind.

The need for fast and reliable analysis necessitates the development of reliable

automated methods for identifying biomedical specimens. It also reduces the need

for manpower and enables research personnel to focus on more critical areas of

research such as analyzing the output results from the automated system. These

results can be generated in large quantities and stored in an image or data file

format to be re-examined by different scientists as a form of quality control.

1.2 System Overview

The system comprises the image analysis software, 3–axis motorized microscope

and an image acquisition module comprising a 570×760 3–CCD color video camera

and frame grabber as shown in Fig. 1.1. The image analysis software represents

the brains of the entire system as it controls the image acquisition and motorized

motion of the slides apart from its central role of detecting and characterizing the

biomedical specimens.

Figure 1.1: Block diagram of automated system.
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The motorized stage is automated and enables the movement of the microscope

stage along the x and y axis as well as the vertical z -focus setting. The image

analysis software controls the motion of the motorized stage via the stage control

unit. The software reads the x, y and z settings of the motorized stage via the stage

control and then instructs the stage control to move the stage to a new x, y and z

setting. More importantly, it obtains digitized images from the frame grabber and

subsequently processes these images in order to generate the output results.

The processing work basically entails the segmentation of the biomedical spec-

imens from the images followed by the classification of each specimen into its

corresponding group based on the specimen features. The definition of the term

“group” depends on the problem domain. For example, it denotes the specimen

genus/species for spore images or the stage of infection of the specimens for images

of malaria infected red blood cells.

1.3 Limitations of Current Methods

Efforts to implement automated systems have not been successful since they lack

robustness. Existing methods work well under fixed operating conditions of the

microscope such as the choice of objective lens, aperture size, z–focus and intensity

but perform poorly when one or more of these settings change.

1.3.1 Staining and fluorescence microscopy

Fluorescence microscopy has been used to detect specimens of interest which flu-

oresce in contrast to the background [27, 78]. However, a shortcoming of this
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approach is that it does not segment dead specimens since they lack an enzyme

required for fluorescing. Staining has also been applied in order to improve the

contrast of specimens of interest in the digitized images [1, 23]. However, these

methods are only able to discriminate a specific type or family of specimens from

the entire range studied.

1.3.2 Contrast and luminance

Automated intensity threshold methods that detect foreground specimens from

the background image using fixed threshold values, are sensitive to luminance [6].

The aforementioned methods fail when the image luminance varies and this can be

easily caused by a small adjustment to the voltage setting of the lamp since both

voltage and luminance share a power law relationship [39]. An increase in voltage

results in higher image luminance and vice versa. A reduction in luminance is also

observed due to deterioration in the light source over time where the light intensity

remains more or less constant over an operation time of 12 hours [6].

It is also observed that a reduction in luminance, due to the aforementioned

factors, also causes a decrease in image contrast, which is defined as the difference

in luminance between the light and dark areas in an image [34]. This is due to

the narrowing of the dynamic range in gray level values of the microscope image.

Therefore it is impractical to expect a constant contrast especially when using dif-

ferent microscope systems. However, current cell segmentation methods, based on

edge detection, are sensitive to image contrast since the underlying inner prod-

ucts between a predefined edge filter and the local neighborhoods in an image,

emphasizes stronger edges and suppresses weaker ones.
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Frei and Chen [31] have proposed a contrast invariant method for detecting

edges. It is termed an angle-based (AN) method since it is based on the com-

putation of the cosine of the projection angles between local neighborhoods and

pre-defined edge filters. A problem with this technique is its sensitivity to lumi-

nance since it inhibits edges in regions of low luminance or, conversely, enhance

them.

Current texture classification methods [89, 98, 57, 58] using filtering methods

such as Laws’ [55] and wavelet decomposition [16, 62] are sensitive to luminance

and contrast since (1) features extracted from the low frequency (approximation)

sub-band of these methods contain the luminance information. (2) as in the case of

current edge detection methods, the underlying spatial convolution operation, in

filtering methods, emphasizes texture patterns of stronger contrast and suppresses

those of weaker contrast. Methods [89, 54, 57, 58] based on the gray level co-

occurrence matrix (GLCM) [35] are also sensitive to luminance and contrast since

the matrix carries this information in the form of co-occurrences between pairs of

gray levels a displacement d apart.

1.3.3 Clumping of specimens

Clumping together of specimens in the slide sample also adversely affects the sys-

tem accuracy since the entire clump may be erroneously segmented as a single spec-

imen. This poses a problem if the aim is to accurately label the constituent speci-

mens in every clump. Various methods such as binary erosion [2, 69, 86, 88], water-

shed [5], model based [14, 26, 40, 94] and concavity analysis [8, 9, 21, 41, 59, 91, 93]

have been applied to split such clumps into the constituent specimens but they all
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suffer from specific shortcomings.

Erosion-based methods [2, 69, 86, 88] may completely erode a constituent spec-

imen in a clump before a split occurs. Watershed techniques [5] tend to over-

split clumps. Model-based methods [14, 26, 40, 94] are computationally expensive

and require initialization of the model parameters. Concavity analysis methods

[8, 9, 21, 41, 59, 91, 93] offer an intuitive way of clump splitting and have been

applied to the examination of cervical cancer cells [93], plant cells [21], chromo-

somes [59], and crushed aggregates [91], to name a few. However, tests conducted

by Wang [91] and experimental results presented in Section 4.8 of this thesis show

that these methods are ad hoc and applicable for objects of specific sizes and

shapes.

1.3.4 Orientation and scale

Existing methods are based on explicit or implicit assumption that the microscope

images are acquired at the same scale and that the specimens have the same ori-

entation. The scale of microscope images varies depending on the choice of the

objective lenses used where each magnification ratio, i.e., 10×, 20×, 40× and 60×

corresponds to a particular scale. The specimens are also oriented in an arbitrary

fashion when viewed under a LM. Garćıa-Sevilla [33] has shown that the classi-

fication accuracy of features extracted from classical methods such as the gray

level co-occurrence matrix (GLCM) [35] and wavelet transform [13] are sensitive

to scale.

Various methods have been proposed to reduce the sensitivity of analysis to

orientation and scale. Combining the detail sub-bands in wavelet decomposition
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[73, 98] or using a set of rotated wavelet filters and multi-channel Gabor filters

[28] are attempts to reduce orientation sensitivity but the performance of these

methods degrades when the number of texture classes/groups increases since they

are derived from standard filtering methods which are sensitive to orientation.

Muneeswaran et al. [66] exploited the scale invariance property of fractal analysis

to characterize textural regions. However, empirical studies show that the fractal

dimension is often different at different scales of natural textures, although it may

be constant for a range of scales [11]. Circular auto-regressive [44] and the log-

polar Gabor filters [56] are computationally intensive especially when the number

of classes or size of textural regions increases. More recently, a method combining

log-polar transform and shift invariant wavelet packet transform reported by Pun

and Lee [76] gave promising results when tested on a set of 25 distinct Brodatz

textures with different scale and orientation [10].

The studies mentioned above used rectangular sample regions. Similarly, Lang-

ford et al. [54] identified pollen specimens from scanning electron microscope

(SEM) images by selecting a rectangular region of approximately 10% of the entire

pollen area. Such a small region was representative of the textural pattern since

it was manually selected but this is not the case for an automated texture classifi-

cation scheme where a priori information is not available. The use of rectangular

sample regions may not be the best choice for biomedical cell specimens such as

air-borne spores [52] and red blood cells where most cells can be approximated by

a general elliptical form with a suitable choice of eccentricity and size.
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1.3.5 Noise

The presence of noise introduced during image acquisition adversely affects the

segmentation of cells via edge detection. Image smoothing has been used as a pre-

processing step [12, 63] to reduce noise but this can sometimes lead to excessive

blurring such that weak edges go undetected [53].

Multi-scale edge detection methods [60, 62, 68, 80, 83, 96] promise accurate

detection of edges for a range of scales despite noisy conditions. Rosenfeld et al.

pioneered this effort by demonstrating that edges can be enhanced while suppress-

ing noise by taking the direct point-wise products of the image sub-band decom-

positions [80]. Mallat et al. extended this idea by distinguishing edges from noise

and characterizing various edge profiles from the Lipschitz regularity of these edges

across scale space [60, 62].

Several other methods have also been developed for detecting edges based on

their scale space behavior in the wavelet domain [4, 68, 83, 92, 96, 97]. These

methods will henceforth be called the multi-scale wavelet product based method

or MWPM since they involve the direct point-wise multiplication of wavelet coef-

ficients at several adjacent scales. Xu et al. [92] applied MWPM to filter noise

from images. Subsequently, Sadler and Swami applied this method to step edge

detection [83] while Zhang et al. [96, 97] imposed an adaptive threshold on the

point-wise products of the wavelet coefficients in order to identify important edge

features.

However, MWPM results in the drift of edge maxima from the finer to coarser

scales when the low pass filter as used in Mallat’s wavelet decomposition method,
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has an even number of coefficients. This adversely affects the detection of speci-

men boundaries. Current multi-scale methods resort to the “band-aid” solution of

restricting the product operation to the first two or three sub-band decomposition

levels. Another drawback of MWPM is that the choice of edge detection filter is

restricted to the quadratic spline filter.

1.4 Objectives

The primary objective of this thesis is the development of robust methods for the

detection and classification of biomedical specimens from LM images. The methods

are to be robust with regards to the following aspects:

1. Luminance and Contrast

2. Noise

3. Clumping

4. Orientation

5. Scale

6. Focus1

1The thesis is based on the premise that the LM images are captured under optimal focus

setting prior to the detection and classification of the biomedical cell specimens.
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1.5 Thesis Contributions

With the aim of developing robust cell detection and classification methods, key

contributions are made in the following areas.

1.5.1 Edge detection: Regularized similarity measure from

hyperbolic tangent filters with finite impulse response

A novel edge similarity measure is proposed for detecting cell boundaries [47]. It is

robust under different luminance and contrast levels and incorporates a regulariza-

tion term which offers a good compromise between contrast invariance and noise

suppression. Hyperbolic tangent (HBT) filters with finite impulse response (FIR)

[47, 48] are also proposed as edge detectors as they give better noise tolerance

and edge localization for narrow filter widths compared to Canny’s Gaussian first

derivative (GFD) [12]. The proposed method also shows better edge localization

compared to the phase congruency (PC) [46] method.

1.5.2 Edge detection: Multi-scale min-product method

The multi-scale min-product method (MMPM) is proposed as it yields accurate

boundary detection in the presence of noise. Unlike existing multi-scale methods,

a wider range of edge filters can be used in MMPM. The edge drift problem over

successive scales is avoided by directly applying edge filters of multiple widths

to the original image. Canny’s criteria on edge detection performance are also

effectively extended, from its traditional definition in the fixed scale domain to

the multi-scale domain. This multi-scale criteria enables us to objective evaluate
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filter performance in the multi-scale domain. It will be shown that the proposed

MMPM method gives a better overall edge detection performance compared to

the classical multi-scale product method (MPM). In addition, the superior signal

to noise ratio (SNR) performances of the ramp (RMP) and HBT [47, 48] filters

over the difference of box (DOB) [75] and GFD [12] filters are also reported in this

thesis.

1.5.3 Robust rule-based approach to clump splitting

Detected cells may overlap with one another to form clumps. A robust rule-based

approach (RBA) to clump splitting is proposed [50, 51]. The novel concavity-based

rule set accurately splits each clump into the constituent cells. The rule set ensures

that (1) valid concavities are effectively distinguished from minor boundary irreg-

ularities, (2) concavity regions at the ends of split lines are suitable oriented with

respect to each other and (3) false splitting of objects with natural concavities is

significantly reduced. It is shown that, unlike current concavity analysis methods,

RBA accurately splits objects of diverse sizes, shapes and extent of overlap. Ex-

perimental results show that the proposed approach is more robust and accurate

compared to classical concavity analysis methods [8, 9, 21, 41, 59, 91, 93].

1.5.4 Texture classification: Local and global energy mea-

sures from non-linear polar map filtering

A novel texture classification routine that is invariant to cell orientation, scale and

contrast is proposed. Orientation invariance is achieved by expressing each cell
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region in a Cartesian space defined by the major and minor axes of the largest el-

liptical region within the cell. Scale invariance is achieved by mapping the elliptical

region to a unit circle before constructing the polar map. The non-linear filtering

method, from Chapter 2, is then applied to the polar map so that the texture

features extracted from the filter output are invariant to contrast. The implemen-

tation of both local and global energy measures achieves improved accuracy. It is

shown that the proposed method consistently achieves an accuracy of over 90% in

classifying six species of pollen, fungal and fern spores when orientation, scale or

contrast is altered. In contrast, the classification accuracy of methods based on

linear filtering can dip below 50% when subjected to the same test.

1.6 Thesis Organization

Fig. 1.2 shows an overview of the proposed methodology. In the next four chapters,

the thesis develops the rationale and provides a detailed discussion and validation

of the various aspects in this methodology

Figure 1.2: Overview of image analysis software for robust detection and classifi-

cation of biomedical cell specimens from light microscope images.

In Chapter 2, the classical edge detection measures are described followed by
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a detailed description of the proposed hyperbolic tangent (HBT) filter and edge

similarity measure with the regularization term. The experimental results of this

method is presented and compared against current edge detection methods.

In Chapter 3, the multi-scale min-product method (MMPM) is presented and

the performance criteria for multi-scale edge detection is also defined. This cri-

teria is then applied to compare the edge detection performance of MMPM and

MWPM. The performance of the difference of box (DOB) [38] and HBT filters is

also compared against Canny’s filter [12].

In Chapter 4, current clump splitting methods are briefly reviewed before the

rule-based robust clump splitting method is proposed. The rules are designed for

accurate splitting of clumps comprising objects of diverse sizes and shapes. The

performance of the method is evaluated on unseen data and also compared against

other methods. Each clump splitting rule is also carefully validated.

In Chapter 5, a rotation, scale and contrast invariant method for texture clas-

sification is proposed. Experimental results in Section 5.8 establish these invariant

properties and validate the choice of texture based features used based on a data-set

of air-borne allergens from six species of fungal, fern and pollen spores.

Finally, the conclusions and recommendations for future work in this area of

research is presented in Chapter 6.



Chapter 2
A Luminance and Contrast-Invariant

Edge-Similarity Measure

A novel similarity measure, which is robust to luminance and contrast, is presented

for edge-detection. It incorporates a regularization term and employs directional

FIR edge filters with hyperbolic tangent profiles to ensure improved noise perfor-

mance and edge localization compared to classical methods.

2.1 Rationale

The accurate detection of edges is often not achieved due to the sensitivity of

commonly used methods to image contrast, noise and, to some extent, uneven

illumination. Despite the importance of developing edge detection methods that

are robust under these conditions, reported research [46, 48, 47, 53, 65, 81] which

is suitable for use with light microscope images is limited.

Classical gradient magnitude (GM) methods [12, 63, 67] are usually dependent

on edge strength; hence, weaker edges such as those at texture boundaries may not

be detected. Frei and Chen [31] have proposed an alternative method of detecting

14
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valid edges regardless of their magnitude. Their approach is termed as an angle-

based (AN) method in this thesis since it is based on the computation of the

cosine of the projection angles between neighborhoods and predefined edge filters.

A problem with this technique is its sensitivity to noise and uneven illumination.

Methods based on local thresholding of image gradients are also sensitive to uneven

illumination since they tend to inhibit edges in regions of low luminance [77] or,

conversely, enhance them [43]. In general, edge detection methods that are robust

under different contrast levels tend to be more affected by noise.

The spatial profile of the edge filter is another factor that influences the edge

detection performance. Canny’s Gaussian first derivative (GFD) filter [12] may be

regarded as an optimal step-edge detector. However, it is derived for an ideal step

edge model [12], when in fact, the images of interest in this thesis have blurred

profiles arising from the digital image acquisition process.

Morrone et al. [65] and later Kovesi [46] described a technique in which images

are represented in the frequency domain and edges occur at points of maximum

phase congruency. Such phase congruency (PC) methods are invariant to changes

in illumination and contrast. Although they exhibit better contrast invariance than

GM methods, they give poorer edge localization in that false edges are detected in

the vicinity of sharp transitions. This is due to the multiple zero crossings in the

spatial profile of the log polar Gabor filter.

More recently, Desolneux et al. [18] proposed a contrast-invariant edge detec-

tion method based on the Helmholtz principle. It is a parameter-free method that

defines edges as geometric structures with large deviations from randomness. The

detection of a given edge is sensitive to the size of the windowed region while edge
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localization is inferior to that of Cannys edge detector.

A robust edge detection algorithm is proposed. It is more robust than the

GM and AN methods under different illumination, contrast and noise levels, and

results in better localizations of sharp transitions in an image compared to PC

methods. It is based on a measure of edge similarity between image neighborhoods

and the use of directional finite impulse response (FIR) edge filters with hyperbolic

tangent (HBT) profiles. A balance between the conflicting requirements of contrast

invariance and noise tolerance is obtained by using a regularization term in the

similarity measure.

2.2 Classical Edge Detection Scheme

Here, the classical GM and AN methods and their shortcomings is briefly discussed.

Both methods are based on the measure of similarity between local image neigh-

borhood and a predefined set of directional edge filters. An image neighborhood

that is similar to one of these edge filters has a high similarity value. However,

the methods differ in their definition of the similarity measure used. In the GM

method, a normalized similarity measure Ĉi is defined as

Ĉi =
Ci

max {|Ci|, 1 ≤ i ≤ N}
(2.1)

where

Ci = 〈bi, g〉 (2.2)

is the inner product of bi and g, which are the (2W + 1)2×1 column representations

of the (2W + 1) × (2W + 1) image neighborhood centered at pixel i and the 2–D

edge filter, respectively. N is the total number of image pixels whereas W is the
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width of the edge filter. The drawback of this method is its sensitivity to edge

strength since weak edges tend to be suppressed in the presence of significantly

stronger edges in the image. Therefore, it may be difficult to determine suitable

thresholds to accurately detect both strong and weak edges in an image.

Frei and Chen [31] introduced an angle-based method [48] that detects edges

based on the similarity of the image neighborhoods to a predefined filter irrespective

of the edge strength. The measure of similarity at each pixel i is the cosine of the

projection angle, Pi , between bi and g [31]:

Pi =
〈bi, g〉

‖bi‖‖g‖
(2.3)

A larger magnitude of Pi means higher similarity between bi and g. A consequence

of (2.3) is an undesirable dependence on the mean value (average luminance), µi,

of bi since Pi (bi) 6= Pi (bi − µi). Therefore, larger values of Pi will be obtained

for edges in the darker regions of an image (where µi is low) compared to those in

the lighter regions (where µi is high).

The edge detection performances of both the GM and AN methods are also

dependent on the choice of edge filter, which would require a trade-off to be made

between noise suppression and edge localization. The AN method in [31] performs

poorly in the presence of noise due to the use of the highly localized 3 × 3 Sobel

filter. Similarly, the GFD filter in Canny’s GM method offers good edge localization

but has higher noise sensitivity compared to filters such as the difference-of-boxes

(DOB) [75] for the same filter width. The GFD filter therefore requires smoothing

as a pre-processing step to minimize noise but this blurring may lead to weak edges

being difficult to detect [53].
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2.3 Edge Detection via HBT Filter

Petrou and Kittler [71] observe that image edges resemble ramp profiles rather than

ideal step edges due to the process of digital image acquisition, and so they use the

ramp profile with additive noise as the edge model to derive their edge filter. This

is obtained by optimizing a performance measure that combines Canny’s criteria

[12] of accurate edge detection, edge localization and minimization of false edge

responses. Here, their observation is confirmed by obtaining an optimal estimate

(in the least-squares sense) of image edges by using principal component analysis

(PCA). However, unlike their approach, the edge detectors proposed in this the-

sis are required to resemble the actual profiles of image edges since the emphasis

here is on optimizing two of Canny’s criteria—accurate edge detection, ED, and

localization, EL—without explicitly including the third criterion on suppression of

false edge responses, SF, due to noise. Section 2.3.4 will show that such responses

to noise can be distinguished from valid edges since the separation between adja-

cent noise maxima in the filter response exceeds the narrow spatial widths of the

proposed edge filters [17]. The criteria ED and EL are defined as

ED =

∫ +W

−W
S(−x)fW (x)dx

n0

√

∫ +W

−W
f 2

W (x)dx
(2.4)

EL =

∫ +W

−W
S ′(−x)f ′

W (x)dx

n0

√

∫

+W

−W
f ′2

W (x)dx
(2.5)

where S(x) is the natural edge model in an image centered at x = 0, fW (x) is the

finite impulse response of the edge filter bounded by [−W, W ], f ′

W its derivative

and n0 is the standard deviation of the Gaussian white noise. From the Schwarz

inequality, the upper bounds of both ED and EL are reached when fW (x) = S(−x),

i.e., they are maximized if the filter resembles the natural edges in an image [12].
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2.3.1 Similarity to natural edges

Here, the method of obtaining 2–D edge filters is described such that the edge filters

optimally approximate these natural edges, in the least squares sense [48, 47]. A

sliding window first extracts all (2W +1)×(2W +1) (W = 2) local neighborhoods in

the image. PCA is then applied to this set of neighborhoods to generate (2W +1)2

eigenvectors {ei, 1 ≤ i ≤ n2}, each of size (2W + 1) × (2W + 1). A neighborhood

bi can be expressed as bi = m +
∑n2

j=1
uijej , where the average over all local

neighborhoods is m = 1

N

∑N
i=1

bi and uij is the projection of bi − m onto the jth

eigenvector ej.

Eigenvector e1 corresponds to the largest eigenvalue λ1, where λ1, · · ·λn2 are

in decreasing order of magnitude. This eigenvector behaves as a low pass filter

where ui1e1 approximates the average luminance µi of bi − m given by µi =

1

n2

∑n2

j=1
(bi(j) − m(j)). The local gray level variation in bi is therefore given by

si = bi −m − µi =

n2
∑

j=2

uijej (2.6)

In the set of eigenvectors {ej : 2 ≤ j ≤ n2} in (2.6), e2 is the basis function that

yields the best mean square error approximation for si as ui2e2 since it gives the

smallest mean square error, Jmin,

Jmin =
1

N

N
∑

i=1

‖si − ui2e2‖
2 (2.7)

over all local neighborhoods compared to the other eigenvectors.

PCA is a successive approximation scheme that ensures that the approximation

error si −ui2e2 is best approximated by using e3, the subsequent error si −ui2e2 −

ui3e3 is best approximated by e4, and so on. Figs. 2.1(a) and (c) show the 5 × 5

eigenvectors e2 and e3 extracted from the Lena image. The eigenvector pair have
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(a) (b)

(c) (d)

Figure 2.1: Least-squares estimates of PCA eigenvectors using FIR HBT filters.

(a) and (c): PCA eigenvectors of second and third largest eigenvalues, (b) and (d):

Corresponding least-squares estimates using a linear combination of FIR HBT

filters

similar profiles but are orthogonal. The number of zero crossings in the 5 × 5

eigenvectors increases from eigenvector pair e2−e3 to e6−e7 and beyond, indicating

that the eigenvectors corresponding to smaller values of eigenvalues capture higher

frequency information of the local neighborhoods and hence are more susceptible

to noise. The two eigenvectors e2 and e3 are considered for edge detection since

they most accurately approximate the gray level variation in local neighborhoods.

From Fig. 2.1, it is noteworthy that both e2 and e3 have blurred step edge

profiles and can be approximated by ê2 and ê3 (Figs. 2.1(b) and 2.1(d)) given by

ê2 = α21g + α22g
T , ê3 = α31g + α32g

T , where {α} are weights, gT is orthogonal to
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g, and g has an HBT profile (within its region of support)

fW (x, y) =















1−e−σW (x+y)

1+e−σW (x+y) |x|, |y| ≤ W,

0 otherwise

(2.8)

The region of support for fW is limited by W to ensure edge localization (W = 2

in Fig. 2.1).

The orthogonal FIR filter pair, g and gT , is obtained by sampling fW at integer

locations (xd, yd) within [−W, W ]. The parameter σW defines the steepness of the

profile at the zero crossing and its relationship to the filter support W is described

in Section 2.3. The weights αij are determined by projecting both e2 and e3 onto g

and gT , i.e., αij = 〈ei, gj〉/〈gj, gj〉. In this example, the weights α21, α22, α31 and

α32 have values −0.98, −0.18, 0.18 and −0.98, respectively. The error εi defined

by εi = ‖ei − êi‖/‖ei‖ is only 10.3% for e2 and 11.5% for e3. This indicates that

the eigenvectors e2 and e3 obtained from the set of local image neighborhoods can

be accurately approximated by the orthogonal pair g and gT .

2.3.2 Properties of HBT filters

Here, the influence of σW on the spatial and frequency characteristics of the con-

tinuous FIR HBT filters is discussed by using the 1–D filter representation

fW (x) =















1−e−σW x

1+e−σW x |x| ≤ W,

0 otherwise

(2.9)

since the 1–D case may be extended in a straightforward manner to 2–D. The

filter fW is odd-symmetric with a single zero-crossing at the origin with the slope

at the zero crossing point given by σW /2. The spatial profile of filter fW is plotted

in Fig. 2.2(a) for W = 2. The filter resembles a ramp for σ2 ≤ 0.5, a blurred edge
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(a) (b)

Figure 2.2: Spatial and frequency properties of HBT filter. (a) 1–D continuous

spatial profile of HBT filters f2 (σ = 0.5 (dark gray), 1.0 (medium gray) and 2.0

(light gray)). (b) Frequency responses of 1–D discrete FIR filters after normaliza-

tion by their respective maximum values (σ = 0.5 (dark gray), 1.0 (medium gray)

and 2.0 (light gray)) and Gaussian filter (s = 1.0 (dashed lines)).

for larger values of σ2, and approaches a DOB filter for σW > 5.0.

Fig. 2.2(b) compares the frequency responses of 1–D FIR HBT filters with that

of Canny’s GFD filter, f(x) = xe−x2/2s2
(with s = 1.0 to limit the truncation at

the tail ends of the Gaussian function). Both filters are discretized by sampling

them at xd = {−2,−1, 0, 1, 2}. It is clearly seen that the family of FIR HBT filters

has a narrower bandwidth, indicating better noise reduction compared to Canny’s

GFD.

2.3.3 Tuning of HBT filter parameters

The parameter value of σW is determined for a given filter width W such that

the HBT filter pair can best approximate the natural step edges in an image and

therefore ensure that the filter pair meets the objectives of good SNR and accurate

edge localization [12, 17]. This is done by selecting σW for a given W such that its
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corresponding approximation error ε is the smallest. For the eigenvectors extracted

from the Lena image, the relationship between εtotal (= ε2 + ε3) and σW for W =

1, 2, 3 are shown in Fig. 2.3(a). The optimal values of σ1, σ2 and σ3 are 2.5, 1.0

and 0.7, respectively. Table 2.1 lists the optimal values obtained for five images

from the USC-SIPI image database [84].

(a) (b)

Figure 2.3: Influence of σW on (a) εtotal and (b) CW for W = 1 (light gray), 2

(medium gray) and 3 (dark gray).

2.3.4 Average distance between adjacent noise maxima,

CW

Canny’s third criterion, SF, aims to limit the detection of false edges due to noise

in the vicinity of a valid step edge. Ideally, it requires the mean distance between

adjacent noise maxima to approximate the width of the filter response to a single

step edge, i.e., 2W , although a fraction of this may suffice. Demigny and Kamle

[17] define Canny’s third criterion in the discrete domain as

CW =
2π

arccos(−ρ)
(2.10)
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Table 2.1: Optimal σW , W = 1, 2 and 3 for standard images from USC-SIPI Image

Database.

No. Images σ1 σ2 σ3

1 Aerial 2.3 1.1 0.8

2 Airplane(F-16) 3.1 1.2 0.8

3 Baboon 2.0 1.4 1.0

4 Couple 3.1 1.4 1.0

5 House 3.4 1.2 0.8

6 Stream and Bridge 2.6 1.4 0.9

7 Level Step Wedges 2.3 1.4 0.9

8 Man 2.5 1.2 0.8

9 Moon Surface 2.2 1.1 0.8

10 Boat 3.2 1.4 0.4

where CW is the average distance between adjacent noise maxima for filter width

W and ρ is expressed as

ρ =

∑k=+∞

k=−∞
(gW (k) − gW (k − 1))(gW (k) − gW (k + 1))
∑k=+∞

k=−∞
(gW (k) − gW (k − 1))2

(2.11)

Fig. 2.3(b) shows the relationship between CW and σW for filter widths W =

1, 2, 3. The maximum values of C1 (≈ 3.4) and C2 (≈ 4.8) are greater than the

corresponding values of 2W (2.0 and 4.0, respectively) while C3 (≈ 4.8) is slightly

smaller than 6.0. This shows that compact filters with widths up to W = 3

effectively prevent the detection of false edges in the vicinity of the true edge.
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2.4 Edge Detection Scheme Incorporating New

Similarity Measure

The undesirable sensitivity to illumination in the AN method [31] may be amelio-

rated by modifying their edge-similarity measure Pi in (2.3) to

P ′

i =
〈bi − bi, g〉

‖bi − bi‖‖g‖
(2.12)

where bi is the average of bi. The use of P ′

i ensures that the detection scheme is

invariant to the average luminance and contrast of the neighborhood. However,

some smooth regions may yield a high P ′

i if they approximate the form of the

attenuated spatial profile of the edge filter and, thereby, lead to erroneous edge

points. Therefore, a modified AN method is presented in this thesis where it is

robust under different illumination, contrast and noise levels. The aim here is to

(a) detect meaningful edges regardless of illumination, and (b) significantly reduce

the sensitivity to noise while preserving responses to true edges.

The proposed method utilizes the following cosine measure Ri with a regular-

ization parameter γ and an empirically determined constant c:

Ri =
〈bi − bi + cγ, g〉

‖bi − bi + cγ‖‖g‖
(2.13)

An estimate, γ̂, of γ may be obtained by using the median absolute deviation

(MAD) [19] of the (2W + 1) × (2W + 1) image neighborhoods

γ̂ =
median(Yi : 1 ≤ i ≤ N)

0.6745
where (2.14)

Yi =

√

√

√

√

1

n2

n2
∑

j=1

[bi(j) − b̄i]2, i = 1, 2, . . . , N. (2.15)
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Neighborhoods corresponding to smooth regions have smaller Yi compared to those

containing edges. A small value of γ̂ increases robustness to different edge strength

but results in heightened sensitivity to noise, and vice versa.

Table 2.2 shows the influence of σ2 on the 5× 5 HBT filter response to random

noise. The energy of the response is given by the mean sum squared filter response,

∑

i R
2
i /N , averaged over ten different random noise records, where each record is a

512×512 image with zero mean and unit standard deviation. The results agree with

the qualitative evaluation of Fig. 2.2(b), which shows the noise response decreasing

as σ2 increases. Similar results are obtained for σ2 = 0.5 and 1.0 since σ2 = 0.5 gives

rise to a larger side lobe although its main lobe is smaller than that of σ2 = 1.0.

All four HBT filters also exhibit a smaller noise response compared to the GFD

filter value of 2.41 × 10−3 obtained with s = 0.8.

Table 2.2: Influence of HBT filter σ2 on the noise response

σ2

∑

i R
2
i /N

(

×10−3
)

0.5 2.24

1.0 2.24

1.5 2.29

2.0 2.35

Table 2.3 shows the influence of parameter c in (2.13). As observed, the filter

response to noise decreases as the parameter c increases. Typically, c > 1 in order

to effectively suppress noise from smooth regions such as those observed when

using (2.12). However, large values of c may result in (2.13) being insensitive to

the presence of weak edges. It is empirically determined that c = 4 offers a good

compromise value.
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Table 2.3: Influence of parameter c on the noise response

c
∑

i R
2
i /N

(

×10−2
)

0 7.88

1 2.47

2 0.82

3 0.39

4 0.22

5 0.14

The details of the method [47] are as follows.

Determine HBT parameter, σW

Step 1. For a given image, apply PCA to find the eigenvectors e2 and e3.

Step 2. From a set of four 2–D HBT filters oriented along 0◦, 45◦, 90◦ and 135◦

and defined by a given W and σW , find the orthogonal HBT filter pair gi and

gj that best approximates e2 and e3, i.e., yield the smallest εtotal (Section

2.3.3.) The filter width W ranges from 1 to 3. A smaller width achieves

better edge localization but poorer noise tolerance and vice versa.

Step 3. Determine the σW corresponding to the smallest εtotal by using a simple

1–D bisection method where step 2 is repeated for specific σW values within

the interval [0.01, 5.00]. This is possible since the error curves as shown in

Fig. 2.3 have only one minima and the corresponding σW offers the ideal

HBT slope to optimally approximate the natural image edges.
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Determine γ̂i

Step 4. Obtain an estimate of γi (2.14) and set c = 4.

Compute similarity maps

Step 5. Using γi and c from step 4, apply Ri to the given image to compute four

similarity maps where each map corresponds to one of the four HBT filters

defined by W and σW from step 3. The use of these four filters ensures a

more robust detection of edges that are diagonally oriented.

Determine equivalent similarity map

Step 6. At each pixel location, compare the corresponding values from the four

similarity maps; the largest magnitude is selected as the pixel value at this

point.

Detect edge pixels

Step 7. Determine the local maximas in the equivalent map and apply a suitable

threshold on the local maxima to determine the edge pixels.

2.5 Results and Discussion

The robustness of the proposed method is compared against the AN [31] and GM

methods [12, 63, 67] under different illumination, contrast and noise levels. The

noise reduction property of the FIR HBT filter is also compared with the GFD

filter. In the results shown later in this Section, pixel values are scaled to the gray
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level range [0, 255] and image intensities are inverted so that pixels with strong

edge responses are shown as dark points.

2.5.1 Uneven illumination

Fig. 2.4(a) shows a 512×512 Lena image with an artificially imposed illumination

gradient. Figs. 2.4(b) and 2.4(c) are similarity maps obtained using steps 1-6 of

the algorithm in Section 4 with W = 2 and σW = 1.0. Fig. 2.4(b) is computed

using the similarity measure Pi [31] and Fig. 2.4(c) using Ri.

(a) (b) (c)

Figure 2.4: Comparison between the Pi and Ri measures. (a) Lena image with

illumination gradient. (b) Similarity map, Pi measure. (c) Similarity map, Ri

measure.

As expected, the similarity map of Fig. 2.4(b) is more distinct in the darker

rather than in the lighter regions of the image. The similarity map of Fig. 2.4(c))

is equally distinct regardless of image illumination. This example illustrates the

fact that Pi, unlike Ri, is sensitive to variation in illumination.
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2.5.2 Contrast variation

Fig. 2.5(a) shows a 570× 760 light microscope image of malaria-infected red blood

cells. The malaria parasites appear as tiny black spots within the red blood cells

while the relatively larger black blob just to the right of the image center is a

white blood cell. Figs. 2.5(b) and 2.5(c) are similarity maps obtained using the

algorithm in Section 2.4 with W = 2 and σW = 0.5; Fig. 2.5(b) is computed using

the similarity measure Ĉi from (2.1) and Fig. 2.5(c) computed using Ri from (2.13).

(a) (b) (c)

(d) (e)

Figure 2.5: Comparison between the Ĉi and Ri measures. (a) Light microscope image

of infected red blood cells. (b) Similarity map, measure Ĉi. (c) Similarity map, measure

Ri. (d) Edge map, measure Ĉi. (e) Edge map, measure Ri.

It is observed in Fig. 2.5(b) that using Ĉi gives rise to large values of the

similarity measure at the boudaries of the white blood cell and parasite regions at

the cost of suppressing the valid edges at the boundaries of the red blood cells.

In contrast, both strong and weak edges are accurately detected in the similarity
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map of Fig. 2.5(c). Ri ensures the robustness of the proposed method in handling a

wide range of edge strength values. This is a significant advantage in edge detection

since a fixed threshold can be easily determined for automatically thresholding the

similarity maps of a large set of images, whereas the large difference in magnitude

between the strong and weak edges in Fig. 2.5(b) complicates the search for a

suitable edge threshold.

The edge maps in Figs. 2.5(d) and (e) correspond to (b) and (c), respectively,

and they are obtained via Canny’s non-maxima suppression and hysteresis thresh-

olding [12]. As observed in Figs. 2.5(d) and (e), some cell edges are undetected

in the classical GM method whereas the proposed method accurately detects all

edges.

2.5.3 Noise

Here, the performances of the FIR HBT filter and the GFD filter are compared

using steps 1 and 4-6 of the proposed algorithm. Both filters have a spatial dimen-

sion of 5 × 5 (W = 2), parameter s of the GFD filter is fixed at 0.8 [12] and σ2 of

the HBT filter is found to be 1.11 from steps 2 and 3. Fig. 2.6(a) shows an image

of an outdoor scene containing a wide range of edge strengths.

The image is corrupted by Gaussian noise with an image SNR of approxi-

mately 10 dB. It is evident that the similarity map using the FIR HBT filter

(Fig. 2.6(c)) gives superior edge response and noise performance compared to the

GFD filter (Fig. 2.6(b)). This is explained by the careful selection of σ2 to en-

sure that HBT has a high similarity to the edges in the image as well as a nar-

rower bandwidth (σ2 = 1.11 from Steps 2 and 3 of Section 4) compared to GFD
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(s = 0.80). Figs. 2.6(d) and (e) are the resultant edge maps corresponding to

the GFD and HBT filters, respectively. They were obtained by applying suitable

hysteresis thresholds to the local maxima in Figs. 2.6(b) and (c). It is seen that

more accurate detection and localization of edges is obtained with the HBT filter.

(a) (b) (c)

(d) (e)

Figure 2.6: Comparison between the FIR HBT and GFD filters on noisy images. (a)

Outdoor scene. (b) Similarity map, GFD filter. (c) Similarity map, FIR HBT filter. (d)

Edge map, GFD filter. (e) Edge map, HBT filter.

The noise sensitivity of both GFD and HBT filters are also compared by ap-

plying them to a synthetic binary image comprising a white square on a black

background and corrupted with white Gaussian noise. The comparison is made

over a range of SNR levels for a filter width of W = 2. Using steps 2 and 3 from the

algorithm in Section 4, σ2 = 1.36 for SNR ≥ 5 dB and σ2 = 1.66 for SNR < 5 dB
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for the HBT filter. The s values for the GFD filters remain fixed at 0.8.

Since it is known a priori that 3.4% of the image comprises edge pixels, which

are located at the boundary of the white square, a threshold is imposed such that

only pixels with edge strengths in the top 3.4% are admitted as edge pixels. The

results of the comparison are shown in Table 2.4 where the total number of true

edge pixels is 260. The GFD filter, in general, detects more true edge pixels than

the HBT filter. However, HBT detects fewer false edge pixels and tends to perform

better than GFD for SNR levels below 5 dB. The performance of GFD degrades

more rapidly as the noise level increases, indicating a lower robustness to noise.

Table 2.4: Quantitative performance of edge detection with noise.

SNR(dB)

GFD HBT

Correct Missed False Correct Missed False

Edges Edges Edges Edges Edges Edges

No noise 256 4 0 252 8 0

10 255 5 2 232 28 0

5 254 6 28 222 38 3

0 165 95 256 176 84 62

2.5.4 Edge localization

Fig. 2.7(a) shows a 512 × 512 synthetic image from the USC-SIPI database [84].

Figs. 2.7(b) and 2.7(c) represent, respectively, the corresponding edge maps ob-

tained using the proposed method and phase congruency (PC) [46]. The PC

method employs filters at four scales with six filter orientations at each scale to
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generate a map (which is termed the PC map) from the phase congruency infor-

mation. The edge maps are obtained by applying non-maxima suppression to the

PC map and similarity map using Ri, followed by a threshold of 0.1 on the local

maxima.

(a) (b) (c)

Figure 2.7: Edge localization comparison of the proposed and PC methods. (a) Syn-

thetic image. (b) Edge map from proposed method. (c) Edge map from PC method.

A quantitative measure of edge detection performance is provided by Pratt’s

figure of merit [74],

F =
1

max(EI , ED)

ED
∑

i=1

1

1 + αd2(i)
(2.16)

where EI and ED are the number of ideal and detected edge pixels, respectively,

d(i) the Euclidean distance between the ith edge pixel detected and the ideal edge

pixel nearest to it, and α a scaling constant set to 1. The proposed method gives

significantly better edge localization (F = 0.86) than the PC method (F = 0.63),

which detects false edges in the vicinity of sharp transitions in an image and gives

poor edge localization. The value of F for the proposed method is smaller than 1

since, being a step edge detector, it does not detect the corners in the image (the

junctions where the edges meet)
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The performance of the proposed method is also compared with the PC ap-

proach using the Lena image of Fig. 2.8(a). Figs. 2.8(b) and (c) show the similarity

map using Ri and the PC map, both normalized to the range [0, 1]. Figs. 2.8(d) and

(e) show the corresponding edge maps obtained by first detecting the local edge

maxima, followed by applying Canny’s hysteresis thresholding. Compared to PC,

the proposed method results in a higher gradient magnitude response (Figs. 2.8(b)

and (c)) and more accurate detection of both strong and weak edges (Figs. 2.8(d)

and (e)).

(a) (b) (c)

(d) (e)

Figure 2.8: Edge localization comparison between the proposed and PC methods. (a)

Lena image. (b) Similarity map from proposed method. (c) PC map. (d) Edge map

from proposed method. (e) Edge map from PC method.
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2.6 Conclusion

The proposed edge-similarity measure has been shown to be simultaneously robust

to image illumination and contrast unlike traditional GM and AN methods, which

are sensitive to contrast and illumination, respectively. The subtraction of mean

luminance from the image neighborhoods ensures that the AN method is invari-

ant to contrast changes but results in increased sensitivity to noise. The use of a

regularization term γ̂, estimated using the MAD criterion, achieves a good com-

promise between the opposing objectives of reduced noise sensitivity and contrast

invariance. In addition, the edge filter used has a FIR HBT profile, which offers

better edge localization and reduced noise sensitivity compared to the classical

GFD filter. The proposed method shows better edge localization compared to PC

and has been successfully applied to both synthetic and natural images.



Chapter 3
Step Edge Detection via a Multi-Scale

Min-Product Method

In Chapter 2, a luminance and contrast-invariant edge detection scheme is pro-

posed and validated. An undesirable side effect of having contrast invariance is

the heightened sensitivity to noise. This issue is addressed by introducing a reg-

ularization parameter which achieves a good compromise between the conflicting

goals of contrast invariance and robustness to noise. In this Chapter, a multi-scale

method is presented which ensures accurate detection of edges under high levels

of noise by the novel use of point-wise min and product operators on coefficients

at successive scales. The method is based on the observation that the best edge

localization is achieved at the finest scale and edge coefficients increase in mag-

nitude from the finest to the coarsest scale whereas noise coefficients decreases in

magnitude. Unlike existing multi-scale methods, edge filters are directly applied,

with multiple spatial widths, on the original image as this avoids the drifting of

edge maxima that occurs across successive scales.

37
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3.1 Rationale

Edge detection schemes that operate at a fixed scale suffer from a trade-off in

achieving the conflicting goals of good signal-to-noise ratio (SNR) and edge local-

ization of the processed image. It is often difficult to find an edge detector with

a fixed scale which detects all edges in an image. Smoothing has been used as a

pre-processing step to minimize noise [12, 63] but this results in blurring which

then makes weak edges harder to detect [53]. Multi-scale edge detection methods

offer a solution to this problem since they utilize edge operators at different scales

to find edges in the image. Rosenfeld et al. [80] demonstrated that edges can

be enhanced while suppressing noise by taking the direct point-wise products of

the image sub-band decompositions. Their method was then further developed by

Mallat et al. and successfully applied in the wavelet transform domain [61, 62].

The wavelet transform [16] can be used as an effective multi-scale edge detection

tool as it is well adapted to finding edges in an image. Mallat et al. distinguish

edges from noise and characterize various edge profiles from the Lipschitz regularity

of these edges across scale space [61, 62]. The Lipschitz regularity is based on the

observation that step edges have large wavelet coefficients over many adjacent

scales whereas noise dies out swiftly with increasing scale [61, 62].

Several methods have been developed for detecting edges based on their scale

space behaviour in the wavelet domain [92, 4, 68, 96, 97, 83]. These methods

will henceforth be called the multi-scale wavelet product based method or MWPM

since they involve the direct point-wise multiplication of wavelet coefficients at

several adjacent decomposition scales. Xu et al. [92] applied MWPM to filter noise
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from images. Subsequently, Sadler and Swami [83] applied this method to detect

step edges while Zhang [96, 97] imposed an adaptive threshold on the point-wise

products of the wavelet coefficients in order to identify important edge features.

A drawback of MWPM is that it results in the drift of edge maxima from the

finer to coarser scales when the low pass filter has an even number of coefficients.

This adversely affects the performance of MWPM in step edge detection since

odd-symmetric high pass filters, used for detecting step edges, have even-numbered

coefficients in their corresponding low pass filters. In order to minimize the drift

of edge maxima, the point-wise product operation was restricted by Xu et al. to

the first two or three sub-band decomposition levels [92]. Another drawback of

MWPM is that the choice of edge filter is confined to the quadratic spline filter [4]

although the chosen filter may not necessarily perform well under noisy conditions.

A multi-scale min-product method (MMPM) is proposed that addresses the

aforementioned shortcomings. It is based on the following two observations: (1)

At a given location, the magnitude of edge coefficients increases from the finest to

the coarsest scale but conversely, noise coefficients decreases in magnitude and (2)

coefficients at the finest scale offer the best edge localization. These observations

are reflected in MMPM via the point-wise min and product operators, applied in

that sequence, across successive scales to accurately detects edges under high levels

of noise.

Unlike MWPM, a wider choice of filters which include the difference-of-box

(DOB) [38] and the hyperbolic tangent filters (HBT) of finite impulse response

(FIR) is available for use in MMPM. MMPM also avoids the edge drift problem

by directly applying edge filters of multiple spatial widths on the original image
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instead of following the wavelet decomposition algorithm.

The MMPM algorithm is briefly described as follows: A stack of similarity

maps are first computed using the similarity measure as in Chapter 2 where each

similarity map is obtained using an edge filter, of a specific width. The stack is

ordered such that the filter width progressively increases from the top to the bottom

of the stack. The min operator reduces the effects of noise in the first three maps

of the stack by replacing the coefficients at every location in each map by the

smallest magnitude at that location over another subset of the stack. This subset

starts from the map which is currently subjected to the min operation and extends

downwards to include a fixed number of maps. Finally, a composite similarity map

is obtained by taking the point-wise product of these three maps.

The rest of this Chapter is organized as follows. Section 3.2 discusses the

MMPM method and its application to edge detection. Section 3.3 redefines the

Canny criteria for optimal edge detection in the multi-scale edge detection domain.

Section 3.4 applies the performance criteria for evaluating the MMPM and MWPM

and compares the edge detection performance of the DOB [38] and HBT filters

against the Canny filter [12]. Section 3.5 discusses the experimental results. Section

3.6 concludes this Chapter.

3.2 Multi-Scale Min-Product Method

As noted above, the MMPM is based on the observation that the magnitude of the

similarity measure at valid edge locations, increases from the finest to the coarsest

scale. Conversely, their magnitude decreases from the finest to coarsest scale at

noise locations. This is attributed by Meyer [64] to the Lipschitz regularity of step
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edge profiles being greater than or equal to zero whereas that of noise is less than

zero.

Here, edge filters of smaller width are used at valid edge pixel locations in order

to preserve edge localization and filters of larger width at non-edge pixel locations

to suppress noise. This is achieved by applying the min and product operators on

the similarity measure coefficients across a stack of similarity maps. Section 3.2.1

defines the multi-scale edge filters which will be used to compute the similarity

measures at the various scales.

3.2.1 Defining multi-scale edge filters

In the wavelet transform domain [60, 62, 61], the low and high pass filters at scale n

are denoted by hn and gn where hn functions as a smoothing filter and gn functions

as an edge filter. These two filters can be obtained by convolving the low pass filter,

h1, at the finest scale, with the low and high pass filters, hn−1 and gn−1 from the

finer scale, n − 1 as:

hn = h1 ⊗ hn−1 (3.1)

gn = g1 ⊗ gn−1 (3.2)

where n = 2, 3, . . . and ⊗ denotes the convolution operator. The low pass filter

performs image smoothing to regularize the subsequent ill-posed differentiating

effect of the high pass filter. In the wavelet transform domain, the high pass filter

for step edge detection is confined to the quadratic spline filter [61] since the filter

is separable in the spatial domain and its low pass pair, the Gaussian function,

is the only filter that does not create zero-crossings as the scale increases. This

ensures that the edge detection process does not introduce new features as the
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scale increases thus enabling it to effectively track edge pixels over a range of

scales. However, this requirement does not ensure that the chosen filter performs

well under noisy conditions.

In order to enable the implementation of a wider choice of filters such as the

difference-of-box filter (DOB) [38] in the multi-scale edge detection framework and

to avoid the edge drift problem, an alternative method is proposed for generating

multi-scale filters:

hWn
(x) = [u(x + Wn) − u(x − Wn)] · h∞

Wn
(x) (3.3)

gWn
(x) = [u(x + Wn) − u(x − Wn)] · g∞

Wn
(x) (3.4)

where hWn
(x) and gWn

(x) denote the coefficient values at location x of FIR filters

hWn
and gWn

, respectively. h∞

Wn
and g∞

Wn
are the corresponding infinite impulse

response (IIR) filters at scale n and u(x) is an ideal step function at x = 0. Wn is

the width of the FIR filters corresponding to scale n. The IIR low pass filter h∞

Wn

is defined as h∞

Wn
(x) = 1 for all values of x and scale n.

The IIR high pass filters considered in this thesis are listed as follows:

• First derivative of Gaussian (GFD) filter, [12]

g∞

Wn
(x) = xe

−x2

σ2
Wn where σ increase with scale n.

• Difference-of-box (DOB) filter, [38]

g∞

Wn
(x) =















[· · · 1 1 0 −1 −1 · · · ] for odd length FIR

[· · · 1 1 −1 −1 · · · ] for even length FIR

• Hyperbolic tangent (HBT) filter from Chapter 2,

g∞

Wn
(x) = 1−e−σx

1+e−σx
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• Ramp (RMP) filter,

g∞

Wn
(x) =















[· · · 2 1 0 −1 −2 · · · ] for odd length FIR

[· · · 3/2 1/2 −1/2 −3/2 · · · ] for even length FIR

3.2.2 Implementation of MMPM algorithm

The horizontal and vertical sub-bands, GWn,H and GWn,V , at scale n are computed

as follows:

GWn,H(x, y) =
∑

n1

gWn
(x − n1)

∑

n2

hT
Wn

(y − n2)I(n1, n2) (3.5)

GWn,V (x, y) =
∑

n1

hWn
(x − n1)

∑

n2

gT
Wn

(y − n2)I(n1, n2) (3.6)

where I is the image, the gWn
and hWn

1–D filter pair is aligned along the x

direction and gT
Wn

and hT
Wn

is the transposed pair, aligned along the y direction.

A corresponding composite pair of horizontal and vertical sub-bands, CSWn,H and

CSWn,V , is then obtained by point-wise selection of sub-band coefficients from

the optimal scale jo corresponding to the optimal filter width Wjo
, at each image

location (x, y) as follows:

CSWn,H(x, y) = GWjo ,H(x, y), jo = arg min
Ω

|GWj ,H(x, y)| (3.7)

CSWn,V (x, y) = GWjo ,V (x, y), jo = arg min
Ω

|GWj ,V (x, y)| (3.8)

where Ω : Wn ≤ Wj ≤ J + Wn − 1 given that J is the number of filter widths

considered and is empirically determined. The optimal scale at a particular image

location, from the range of filter widths defined in Ω, corresponds to the one with

the minimum coefficient magnitude . The low and high pass filters at each scale is

normalized to unit magnitude so that the magnitude of coefficients at the different

scales can be directly compared via the point-wise operation. The composite sub-

bands are computed for the three most localized window widths, 1 ≤ Wn ≤ 3.
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These three sub-bands are multiplied together in order to further enhance the

edges while reducing noise. The multi-scale product of the first three scales is given

by

PSH(x, y) =

3
∏

n=1

CSWn,H(x, y) (3.9)

PSV (x, y) =

3
∏

n=1

CSWn,V (x, y) (3.10)

The gradient magnitude map ∇I and angle map α are defined as

∇I(x, y) =

√

PS
2/3

H (x, y) + PS
2/3

V (x, y) (3.11)

α(x, y) = arctan
PS

1/3

V (x, y)

PS
1/3

H (x, y)
(3.12)

An edge is therefore detected at location (x, y) if ∇I(x, y) has a local maximum in

the direction perpendicular to that of the gradient vector, given by α(x, y) . The

overall multi-scale edge detection algorithm is summarized in Fig. 3.1. Fig. 3.2

shows a simulated 1-D data set I of a noisy step edge signal and its corresponding

1-D similarity signals at three successive scales, G1, G2, G3 and corresponding

composite similarity signals, CS1, CS2, CS3 as well as the final gradient magnitude

signal ∇I. The input signal is an ideal step edge in additive white Gaussian noise

of zero mean and standard deviation of 1 yielding an SNR of 15 dB.

As observed, the similarity coefficients at the finest scale, G1, shows a good

localization of the step transition at the centre of the waveform but contains noise.

The edge response increases from G1 to G3 but noise response remains high. The

composite outputs represent coefficients with minimum magnitudes over J = 10

adjacent decomposition scales. Noise is significantly reduced while edge localization

and magnitude is preserved. Finally, ∇I represents the geometric mean of the three
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Initialize the MMPM outputs PSH(x, y) and PSV (x, y) to 1’s for all x and y

Loop from j = 1 to 3

{

Initialize the composite outputs CSWj ,H(x, y) and CSWj ,V (x, y) to very large

values → ∞

Loop from Wn = j to J + j − 1

{

From (3.3) and (3.4) construct the 1-D separable low pass and

high pass filters with filter width Wn at scale n

Normalize both filters to unit magnitude

Compute GWn,H and GWn,V by convolving input image I with the 1-D

separable filters

Update CSWj ,H(x, y) and CSWj ,V (x, y) for all x and y:

if |CSWj ,H(x, y)| > |GWn,H(x, y)|

{

new |CSWj ,H(x, y)| = |GWn,H(x, y)|

}

if |CSWj ,V (x, y)| > |GWn,V (x, y)|

{

new |CSWj ,V (x, y)| = |GWn,V (x, y)|

}

}

Update PSH(x, y) and PSV (x, y) for all x and y:

New PSH(x, y) = PSH(x, y) ∗ CSWj ,H(x, y)

New PSV (x, y) = PSV (x, y) ∗ CSWj ,V (x, y)

}

From (3.11) and (3.12), compute ∇I(x, y) and α(x, y).

Figure 3.1: Pseudo code for the proposed MMPM scheme.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(e)

Figure 3.2: The noisy step signal I with the corresponding similarity signals G1→3,

composite similarity signals CS1→3 and gradient magnitude signal ∇I: (a) I. (b)

G1. (c) G2. (d) G3. (e) CS1. (f) CS2. (g) CS3. (e) ∇I.

composite signals and achieves a slight improvement in noise suppression compared

to the composite signals.

The peak in the composite sub-band output corresponds to the step edge which

is prominent and localized due to the use of the fine scale filter at this location.

Noise reduction is achieved by applying coarse scale filters at the other locations.
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A larger number of decomposition scales will give a better noise reduction. The

edge detection performance is also influenced by the type of filter used and the

noise level.

3.3 Multi-Scale Edge Detection Criteria

A set of criteria is provided to objectively evaluate the performance of three multi-

scale product based methods, MMPM, MWPM and MPM (similar to MMPM

except that J = 1). The set of criteria is also used to compare the performances of

the DOB, RMP and HBT filters against the GFD filter in the proposed MMPM.

Canny has proposed the use of SNR, edge localization and multiple false edge

response criteria to evaluate the performance of step edge filters which are contin-

uous at x = 0 and defined for a fixed scale. Here, the SNR, edge localization and

multi-scale false edge responses criteria are redefined in the multi-scale domain for

a wider range of filters that are not necessarily continuous at x = 0 e.g. DOB. A

performance index is formulated for each criterion based on the MMPM output

PS (1–D case). The multi-scale SNR, M-SNR, and localization, ML, indices are

computed from the MMPM output of an ideal 1–D step edge signal immersed in

additive white Gaussian noise while the multi-scale false edge responses, MFER,

index is computed from a pure additive white noise input. Since all three indices are

computed in the presence of white noise, a statistical average of each performance

index is obtained from over 1000 realizations of noise records.
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3.3.1 Multi-scale SNR, M-SNR

The M-SNR value is directly computed from the statistical average of the ratio of

the MMPM step edge response to that of the filter response over:

M-SNR =
1

Nn

Nn
∑

i=1

3
√

|PSi(0)|
1

2Ns+1

∑Ns

x=−Ns

3
√

|PSi(x)|
(3.13)

where 0 ≤ SNR ≤ 1, 2Ns + 1 represents the number of discrete samples in the

noise immersed step edge signal, Nn is the number of realizations of noise records

indexed by i and PSi(0) is the 1–D step edge response corresponding to the ith

noise record.

3.3.2 Multi-scale Localization, ML

The localization index ML is the distance between the expected local maxima

corresponding to the step edge at x = 0 and the actual local maxima observed in

the MMPM output nearest to x = 0. The local maxima in the MMPM output, PS,

are required to have a magnitude exceeding an automatically determined binary

threshold to ensure that valid edges are detected. The threshold is obtained using

Otsu’s method [70]. The index ML is formally defined as

ML =
1

Nn

Nn
∑

i=1

δxi
(3.14)

where δxi
is the distance between the input step edge and the detected edge for

the ith realization of noise. The larger ML is, the poorer the localization and vice

versa.
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3.3.3 Multi-scale false edge responses, MFER

The multi-scale false edge responses index MFER is defined as the average distance

between two adjacent noise maxima in the MMPM output. The larger MFER is,

the lower the number of false edge responses in the vicinity of the actual edge and

vice versa. The formal definition is [17]

MFER =
1

Nn

Nn
∑

i=1

2π

arccos (−ρi)
(3.15)

where MFER ≥ 2 since −1 ≤ ρi ≤ 1 and 0 ≤ arccos (−ρi) ≤ π given that

ρi =
cov(Xi, Yi)

√

var(Xi)var(Yi)
(3.16)

Xi and Yi, corresponding to the ith instance of noise, have zero mean and similar

variance:

Xi(x) = 3
√

PSi(x) − 3
√

PSi(x − 1) (3.17)

Yi(x) = 3
√

PSi(x) − 3
√

PSi(x + 1) (3.18)

where the input signal is a Gaussian white noise. The average distance MFER → ∞

when Xi and Yi are increasingly negative correlated (ρi → −1 ). It approaches

the lower bound (MFER → 2) when Xi and Yi are increasingly positive correlated

(ρi → 1).

3.4 Experiments

The M-SNR, ML and MFER performance of the proposed MMPM method are

compared against the classical multi-scale product method (MPM) under different

levels of decomposition and noise. The performance of the Canny, DOB, hyper-

bolic tangent and ramp filters are also observed for both these methods under the
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aforementioned conditions.

3.4.1 M-SNR performance

MMPM is applied to a step edge signal corrupted by Gaussian noise with an SNR

of 10 dB. Fig. 3.3 shows the output M-SNR corresponding to the various filters

applied in MMPM for different values of J . As observed, the RMP filter gives the

best M-SNR performance followed closely by HBT, DOB and GFD in that order.

Figure 3.3: The M-SNR performance of MMPM for different J .

Setting J = 1 in MMPM is equivalent to applying the classical multi-scale

product method, MPM, as it only involves the product operation of MMPM. The

proposed MMPM clearly gives better M-SNR performance than MPM for values

of J > 1. Fig. 3.4 shows that the MMPM using the RMP filter at a decomposition

level of J = 10 gives significantly better output M-SNR for different levels of input

SNR.
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Figure 3.4: Comparison between the M-SNR performances of MMPM and MPM

for different input SNR levels.

3.4.2 ML performance

Both MMPM and MWPM are based on the point-wise correlation of the similarity

coefficients across a given range of scales. Therefore, good localization can only be

achieved in the point-wise scheme if all local maxima in the finest decomposition

scale propagate to the coarser scales within half a pixel from their location. How-

ever, it is observed that MWPM is susceptible to edge drift when the low pass filter

used in the non-decimated wavelet transform algorithm is of even length. Table

3.1 compares the extent of drift between the proposed MMPM and MWPM when

tested on an ideal step edge signal.

The results indicate the displacement at a particular decomposition scale of the

local maxima obtained, by either method, from the actual local maxima of the step

edge. As observed in Table 3.1, MWPM suffers from edge drift when the low pass

filter used has an even length. Conversely, the local maxima in MMPM remains

within half a pixel of the actual edge for all possible lengths of low and high pass

filters.
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Table 3.1: Comparison of the extent of drift in local maxima (in pixels) between

(a) MWPM non-decimated wavelet transform scheme and (b) proposed MMPM.

MWPM

Filter length Scale n

Low pass filter, hn High pass filter, gn 1 2 3 4 5

Even Odd -0.5 0.0 0.5 1.0 1.5

Even Even 0.0 0.5 1.0 1.5 2.0

Odd Odd -0.5 -0.5 -0.5 -0.5 -0.5

Odd Even 0.0 0.0 0.0 0.0 0.0

MMPM

Filter length Window Wn

Low pass filter, hWn
High pass filter, gWn

1 2 3 4 5

Even Odd -0.5 0.0 -0.5 0.0 -0.5

Even Even 0.0 -0.5 0.0 -0.5 0.0

Odd Odd -0.5 -0.5 -0.5 -0.5 -0.5

Odd Even 0.0 0.0 0.0 0.0 0.0

Fig. 3.5 shows the localization performance of the MMPM for the four different

filters under different decomposition levels. The MMPM is applied to a noisy step

edge signal with an SNR of 10 dB.

As observed, the localization measure ML defined in Section 3.3.2 is approxi-

mately similar for all four cases with GFD performing slightly better, followed by

DOB, HBT and RMP. The localization measure of about 0.5 pixel is achieved for

all cases, which is obviously small enough to accurately locate the step edge and

is largely insensitive to the type of filter used.
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Figure 3.5: Localization measure ML of the MMPM for four different filters under

different J .

Fig. 3.6 shows the localization measure ML of the MMPM at J = 10 for

four different filters when applied to the step edge signal with different levels of

additive noise. The relative filter performance is the same as before except that

the difference in their localization measure becomes more distinct for SNR values

below 5 dB.

Figure 3.6: Localization measure ML of the MMPM for four different filters under

different levels of noise.
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3.4.3 MFER performance

Fig. 3.7 shows the average MFER distances between adjacent noise maxima for

the four different filters under different decomposition levels of MMPM. The larger

the distance, the fewer is the number of false edge responses. All four filters give

a very similar number of false responses in MMPM, with GFD performing slightly

better followed by DOB, HBT and RMP, in that order. MMPM gives better results

compared to the classical multi-scale product approach (J = 1) for decomposition

levels J = 2, . . . , 7 in the case of GFD, and J = 2 for DOB, RMP and HBT. The

distance measure MFER becomes approximately constant for all four filters after

a decomposition level of MFER = 14.

Figure 3.7: Multiple false edge response measure MFER of the MMPM for four

different filters under different J .

3.4.4 Overall performance

The overall performance of MMPM on a synthetic image is evaluated under dif-

ferent levels of noise, types of filters, and decomposition level J . The original

synthetic image is a noiseless 128 × 128 binary image as shown in Fig. 3.8 where
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the white square of size 64 × 64 is located at the center of the image.

Figure 3.8: A noiseless synthetic image of a white rectangular box on a black

background.

MMPM finds the local maxima in the image via (3.11) and (3.12). Since it

is known a priori that approximately 1.5% of the image comprises edge pixels, a

threshold is imposed such that only local maxima with gradient magnitude, from

(3.11), that fall within the largest 1.5% of all pixels in the image are admitted as

edge pixels. The Pratt’s figure of merit (F ) 3.19 is then applied to evaluate the

accuracy of the edges detected against the ideal edge map,

F =
1

max(EI , ED)

ED
∑

i=1

1

1 + αd2(i)
(3.19)

where EI and ED are the number of ideal and detected edge pixels, respectively,

d(i) is the Euclidean distance between the ith edge pixel detected and the ideal

edge pixel nearest to it, and α is a scaling constant set to 1.

In Fig. 3.9, F of the GFD filter is computed for input SNR levels ranging from

-10 dB to 20 dB at different J . In Fig. 3.9, it is observed that the F increases for

input SNR values ranging from -10 dB to 5 dB and then saturates at approximately

0.75, for all values of J . For input SNR values below 5 dB, F increases for larger

number of decomposition levels J . A similar trend is observed for the other three

filters.The proposed MMPM clearly enables a higher F for low input SNR values

compared to the classical point-wise product based method corresponding to J = 1.
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Figure 3.9: F for MMPM edge map, obtained using GFD, as a function of input

SNR at different J .

In Fig. 3.10, F of the GFD, DOB, HBT and RMP filters is computed for input

SNR levels ranging from -10 dB to 20 dB at J = 10. It is observed that all four

filters show similar F values for input SNR values greater than 5 dB at J = 10.

However, F values of RMP and HBT filters and to a lesser extent the DOB filters

are markedly better than GFD.

Figure 3.10: F for MMPM edge map as a function of input SNR for the four filters

with J = 10.

The 2-D edge detection results in Figs. 11 and 12 corroborate the findings

for the 1-D case in Figs. 3.9 and 3.10, respectively. Fig. 3.11(a) is an axial MR
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image of a head scan. The image is corrupted by additive white Gaussian noise

and has an overall SNR of 15 dB. Figs. 3.11(b) - (d) show the edge detection

results of the proposed MMPM, using the GFD filter corresponding to J = 1, 5

and 10 respectively. The edges are found by first scaling the gradient magnitude

map from (3.11) such that all coefficients lie between 0 and 1 and then detecting

all local maxima that exceed an empirically determined threshold of 0.1. It is

observed that the number of false edges reduces while the valid edges are retained

as the number of decomposition levels increases.

(a) (b)

(c) (d)

Figure 3.11: MMPM 2-D edge map as a function of J (a) MR image from an axial

head scan (15 dB). MMPM edge map for (b) J = 1. (c) J = 5. (d) J = 10.
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Fig. 3.12 compares the performance of the four filters on the MR image of Fig.

3.11(a). The RMP filter provides the best edge detection accuracy as it detects the

least false edges followed by the HBT, DOB and GFD filters in that order while

all four filters give comparable detection of valid edges.

(a) (b)

(c) (d)

Figure 3.12: MMPM edge maps for MR image from Fig. 3.11(a) at J = 5 and

filter (a) GFD. (b) DOB. (c) HBT. (d) RMP.

Fig. 3.13 compares the performance of the proposed MMPM against the fixed

scale scheme. It is observed that only strong edges are detected at the coarse scale

corresponding to Wn = 6 while noise and fine edges are suppressed whereas both

noise and fine edges are retained together with the strong edges at the fine scale
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corresponding to Wn = 1. The proposed MMPM effectively combines the fixed

scale results to accurately retain both strong and fine edges while suppressing

noise.

(a) (b) (c)

Figure 3.13: Comparison between edge detection results of MR image from Fig.

3.11(a) using GFD filter for (a) fixed scale with Wn = 2, σ = 2. (b) fixed scale with

Wn = 1, σ = 0.3. (c) multi-scale with J = 3 (combining scales from Wn = 1 → 6).

3.5 Discussion

The SNR performances of the four filters correlate with their expected perfor-

mances in the fixed scale case, i.e., RMP and HBT filters have significantly better

SNR performance than DOB and GFD. As in the fixed scale case, the SNR per-

formance of the filters in the multi-scale domain is also related to the frequency

bandwidth of the filter in that a narrower bandwidth results in better noise sup-

pression and vice versa. MMPM performs better than MPM in noise suppression

since the output SNR increases as the number of levels (J) is increased. This is

attributed to the min operator which further suppresses the noise for larger values
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of J while preserving the valid edges.

Unlike MMPM, MWPM suffers from edge drift when the low pass filter is of

even length. The local edge maxima drifts away from the desired location by half

a pixel for every decomposition level. This phenomenon is due to the discrete

wavelet transform (DWT) algorithm, where a drift of half a pixel occurs everytime

an approximate sub-band is computed by convolving the approximate sub-band

from the previous decomposition level with a low pass filter of even length. Both

MMPM and MPM have comparable localization performances and the number

of levels J have little influence on localization. All four filters in the MMPM

method also have similar localization performance with the GFD filter performing

incrementally better than the other filters for very low input SNR values around 0

dB.

The multiple false edge response performances among all four filters are com-

parable. This is in contrast to the fixed scale domain where the GFD performs

significantly better than the other three filters. The similarity in performance is due

to the effective suppression of noise maxima via the min operator, thus increasing

the average distance between adjacent noise maxima.

MMPM gives a better overall performance compared to MPM while the overall

performance of the RMP and HBT filters is better than DOB and GFD for SNR

values below 5 dB. However, the performances of MMPM and MPM as well as

there of the four filters become comparable for larger SNR values. The MMPM

method combined with the RMP or HBT filters gives the best overall performance

as its SNR performance is significantly better while its localization and multiple

false edge response performance is similar to the other combinations.
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3.6 Conclusion

The edge response, localization and multiple false edge response criteria have been

effectively redefined in the multi-scale domain. They allow the comparison of the

multi-scale performance of step edge detection filters which were previously com-

pared at a fixed scale. A robust multi-scale min-product based method, MMPM,

has also been presented for step edge detection. In addition to Canny and the

quadratic spline filters, a wider range of edge filters can be applied in the proposed

method. MMPM gives better noise suppression compared to the classical MWPM.

Unlike MWPM, MMPM does not suffer from the problem of edge drift over suc-

cessive scales and gives better suppression of Gaussian noise compared to MWPM.

The four filters considered here give an approximately similar performance for edge

localization and number of false edge responses in the multi-scale domain. How-

ever, a marked difference is observed in their SNR performance with both RMP

and HBT showing significantly better results compared to the other two.

The choice between the fixed-scale method of Chapter 2 and the multi-scale

method in this Chapter is largely dependent on the noise levels and difference in

magnitude between strong and weak edges. In general, both fixed-scale and multi-

scale methods work well on images with low to medium levels of noise. However,

the proposed multi-scale method is also effective for detecting edges in images with

high levels of noise. Conversely, the fixed-scale method shows better robustness

compared to the multi-scale method when there is a large difference in magnitude

between strong and weak edges.



Chapter 4
A Rule-Based Approach for Robust

Clump Splitting

Chapters 2 and 3 of this thesis explore robust techniques for accurately detecting

edge pixels of cell boundaries. However, these boundaries may be attributed to

clumps comprising two or more cell regions of interest. In this Chapter, a robust

rule-based approach is presented for the splitting of binary clumps that are formed

by objects of diverse shapes and sizes. First, the deepest boundary pixels, i.e.,

the concavity pixels in a clump, are detected using a fast and accurate scheme.

Next, concavity-based rules are applied to generate the candidate split lines that

join pairs of concavity pixels. A figure of merit is used to determine the best split

line from the set of candidate lines. Experimental results show that the proposed

approach is robust and accurate.

4.1 Rationale

The clumping together of objects of interest is a common phenomenon in a wide

variety of image data, e.g., cytological [8, 14, 69, 93] and remotely sensed images

[45]. Although a human operator may be able to detect the constituent objects

62
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of interest based on prior knowledge and perception of texture and structure, it

is difficult for a computer-based algorithm to do this automatically. This poses

a problem if the aim is to label these objects correctly and perform a population

count of each class. The splitting of clumps into constituent objects is thus a vital

step that must be performed accurately to ensure the overall success of the vision

task.

Clump splitting methods that are available include binary erosion [2, 69, 86, 88]

watershed techniques [5], model-based approaches [14, 26, 40, 94] and concavity

analysis [8, 9, 21, 41, 59, 91, 51, 93]. A difficulty with erosion-based methods is that

they may completely erode a constituent object in a clump before a split occurs.

Watershed techniques tend to over-split the clumps. Model-based approaches [14,

40, 94, 26] besides being computationally expensive, require initialization of the

model parameters [40].

Concavity analysis methods offer an intuitive way of clump splitting. Such

methods have been successfully implemented in a variety of application domains

such as cervical cancer cells [93], plant cells [21], chromosomes [59], and crushed

aggregates [91], to name a few. However, tests have shown that these methods

are only applicable for objects of specific sizes and shapes. Wang [91] reported

90% accuracy in splitting clumps comprising overlapping convex and compactly

shaped objects. Fernandez et al. [21] assumed that the grey level variation along

the split line was minimal. This may be true for images in a particular application

domain but is not generally valid. Liang [59] implemented a scheme for splitting

chromosomes that reportedly worked well but required heuristics incorporating

shape and grey level information. The method is thus not sufficiently general for
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splitting other types of clumps.

The clump-splitting method proposed in this thesis [50] addresses the afore-

mentioned drawbacks. It enables the accurate splitting of clumps composed of

objects of different sizes, shapes and degrees of overlap. It is a general method

that can be applied to a wide variety of application domains. This is achieved via

the implementation of a set of features that guide each decision to split the clump.

First, the concavity pixels1 are detected using a fast and accurate scheme. Next,

candidate split lines are selected from the set of all possible lines joining any two

concavity pixels. A candidate split line is one that connects two concavity pixels

that are close together and lie in concavity regions that are appropriately aligned

with respect to each other. A candidate split line could also connect a concav-

ity pixel with a non-concavity boundary pixel on the clump contour if the binary

clump has only one concavity region, or if no candidate split line can be found.

Finally, a figure of merit is introduced to determine the best split line from the set

of candidate lines.

A review of recent concavity analysis methods in Section 4.2 provides the back-

ground. Sections 4.3 and 4.4 give an overview of the proposed method and define

the features used for detecting concavity pixels and candidate split lines. In Sec-

tion 4.5, the size-invariant feature used for selecting the best split line from the set

of candidate split lines is described. Section 4.6 presents training and implementa-

tion details. Section 4.7 evaluates the performance of the algorithm on unseen data

while Section 4.8 compares its performance against another method and validates

1The pixel on the boundary arc (Fig. 4.1) that has the largest perpendicular distance from

its corresponding convex hull chord.
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each of the features used. Section 4.9 concludes this thesis.

4.2 Review of Concavity Analysis for Clump Split-

ting

In methods based on concavity analysis, a clump is split by the line joining two

concavity pixels on the clump contour. These methods vary with respect to the

technique for locating the concavity pixels and the cost function used to detect

a split path. In general, there are three sequential steps: detection of concavity

regions, detection of candidate split lines and selection of best split line. The best

split line is obtained recursively until a specific stopping criterion is met.

4.2.1 Detection of concavity regions or concavity pixels

This step detects regions or pixels along the boundary where the degree of concavity

is high. Such regions or pixels are regarded as valid concavity regions or pixels.

Yeo et al. [93] define a concavity region, Si, as any region bounded by a boundary

arc Bi and its corresponding convex hull chord (Fig. 4.1). A concavity region is

taken to be valid if its concavity degree, DGi, and normalized concavity weight,

WTi, exceed their respective threshold values:

DGi = |Bi|/|Ki|, DGi > DGT , (4.1)

WTi = |Bi|/|Bmax|, WTi > WTT , (4.2)

where | · | denotes length and |Bmax| is the length of the longest boundary arc in

the clump. However, the use of thresholds DGT and WTT removes valid concavity

regions when Bmax and Ki are unusually large.
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Fernandez et al. [21] and Liang [59] used concaveness measures to identify

concavity pixels. These measures place more emphasis on the sharpness of the

region surrounding the concavity pixel rather than on its depth (measured by the

distance of the concavity pixel from the convex hull). Consequently, their definition

often leads to the detection of invalid concavity regions.

Wang applies a polygonal approximation method followed by corner detection

to find the concavity regions [91]. The polygonal approximation, however, results

in distortion to the clump contour and the natural shape of the constituent objects.

Figure 4.1: Binary clump with convex hull chords K1, K2 and K3 and correspond-

ing boundary arcs, B1, B2 and B3.

4.2.2 Detection of candidate split lines

This step detects candidate split lines from all possible lines joining any two con-

cavity regions. Yeo et al. considers a line joining two concavity regions to be a

valid split line if its length is less than or equal to those between any two pixels

that are immediately adjacent to the pixel pair at the ends of the split line [93].

This approach is computationally expensive and results in some incorrect splitting
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due to boundary irregularities.

Wang [91] requires the concavity regions at the two ends of the split line to be

“oppositely aligned” to each other. Given a concavity region, he defines another

concavity region to be in opposite alignment to the first one if the second region

lies within the cone (grey triangular region in Fig. 4.2) obtained by extending two

vertex lines from the first concavity region. The example in Fig. 4.2 illustrates

a situation where his method fails to identify the line connecting concavity pixels

CV1 and CV2 as a candidate split line.

Figure 4.2: Wang’s opposite alignment criterion (from Ref. [91]).

Both Fernandez et al. [21] and Liang [59] require candidate split lines to con-

nect two concavity pixels such that the distance between the two pixels and the

intensity variation along the split line are below predefined thresholds. Their use

of a distance threshold implicitly assumes that the objects of interest have similar

sizes and shapes but this may not be true in many domains. The threshold on

intensity variation also fails if the objects of interest are textured.

4.2.3 Selection of best split line

The best split line is selected from the set of candidate split lines. Generally, in

all concavity analysis methods, the line that maximizes a predefined cost function

is selected as the best split line from a set of candidate split lines. The methods
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vary in the choice of this cost function.

Yeo et al. [93] and Wang [91] define the best split line to be the shortest of

all the candidate lines but do not impose a maximum distance threshold. False

splitting may therefore arise if the distance is not small enough to warrant a split.

The refinement proposed by Fernandez et al. [21] and Liang [59] imposed two

conditions for a split: (i) the “concaveness” at each end of the split line exceeds a

set threshold TH1, and (ii) the length of the split line is less than another threshold

TH2. Each pair of concavity pixels in a clump can be represented by a point in the

2–D space defined by the above two features (Fig. 4.3). The decision boundary

obtained by using thresholds TH1 and TH2 (dashed lines) will lead to false splitting2

and under splitting3 if this partitioning does not conform to the underlying data.

In Section 4.6, it is shown that the effective separation of the split and no-split

cases for the image data requires a straight line. Hence the use of two thresholds

will result in both false splitting (region FS) and under splitting (regions US1 and

US2) where the accurately split feature subspace (region AS) is smaller than the

ideal case (US1 ∪ US2 ∪ AS).

4.3 Overview of Methodology

The proposed algorithm [50] splits a binary clump into two smaller clumps and

repeats the process on each of them until no more split lines can be detected. The

method begins with the detection of concavity pixels in a clump. The boundary

arcs Bi and the convex hull segments Ki of the clump (Fig. 4.1) are first obtained

2Instances when an incorrect split line is made.
3Instances when a correct split line is not made.
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Figure 4.3: Feature space of length of split line vs. concaveness. Dashed line -

decision boundary obtained by using two separate thresholds. Solid line - correct

decision boundary.

using the methods from [30] and [42]. On each boundary arc, Bi, the pixel with the

largest perpendicular distance from the corresponding convex hull, Ki, is selected

as the concavity pixel, CVi.

Next, a set of candidate split lines is selected from the set of split lines obtained

by joining all possible pairs of concavity pixels. A pair of concavity pixels CVi and

CVj forms a candidate split line if: (i) the pixels are in close proximity, (ii) they

are located in high concavity regions, and (iii) their concavity regions are suitably

aligned. A cost function is also introduced for determining the best split line from

the set of candidate split lines. The cost function is obtained from a linear classifier

and combines the concaveness information at the ends of the split line as well as

the length of the line.

4.4 Detecting Candidate Split Lines

This Section describes a set of features for detecting concavity pixels and candidate

split lines.
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4.4.1 Concavity depth

Concavity depth, CD, is a concaveness measure proposed by Rosenfeld [79]. Each

pixel on a boundary arc has a concavity depth value equal to its perpendicular

distance from the corresponding convex hull segment, Ki . For each boundary arc,

Bi, the concavity pixel, CVi, is defined to be the pixel with the largest concavity

depth, CDi (Fig. 4.4), provided CDi exceeds a threshold CDT . In experiments,

the threshold CDT has a fixed value that is typically small since the aim is only to

distinguish concavity pixels from boundary irregularities.

Figure 4.4: Binary clump with concavity pixels, CV1 and CV2, and corresponding

concavity depths, CD1 and CD2.

4.4.2 Saliency

The set of possible split lines obtained by joining the concavity pixels is culled with

the help of a feature called ”saliency”, SA. Split lines are more likely to be valid if

the concavity regions at both ends of the line have large concaveness measures and

the distance between the two regions is small. The saliency of a split line joining
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a pair of concavity pixels, CVi and CVj , is defined as

SAij =
min(CDi, CDj)

min(CDi, CDj) + d(CVi, CVj)
, (4.3)

where min(CDi, CDj) is the smaller of the two concavity depths CDi and CDj and

d(CVi, CVj) is the distance between concavity pixels CVi and CVj . The value of

SAij lies within the range 0 to 1. Each candidate split line is required to have a

saliency measure, SAij, that exceeds a threshold, SAT .

4.4.3 Alignment

Using only saliency is not sufficient for selecting candidate split lines. Fig. 4.5

illustrates a situation where the saliency SA12 is high but line CV1CV2 should

not be considered a candidate split line since the concavity regions S1 and S2 are

not “oppositely aligned”. The term opposite alignment as defined variously in

[93, 59, 91] is domain specific. A generic definition is offered by making use of the

features concavity-concavity alignment (CC) and concavity-line alignment (CL).

Figure 4.5(b) shows a clump with two concavities S1 and Sj . The orientation of

(a) (b)

Figure 4.5: Alignment (a) Clump comprising three overlapping specimens. (b)

Concavity-concavity alignment, CC and concavity-line alignment, CL.
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concavity Si, denoted by the unit vector vi, is defined by the line joining the mid-

point of its convex hull chord to concavity pixel CVi. The concavity-concavity

alignment CCij is the angle that represents the relative orientation between the

pair of concavity regions, S1 and Sj . CCij, defined by

CCij = π − arccos(vi,vj), (4.4)

has the minimum value of 0 when the concavities are directly facing each other

and the maximum value of π when they are oriented in the same direction. A

small value of CCij indicates a good split line. Concavity-line alignment, CLij, is

a measure of the difference in directions of the two concavity regions Si and Sj

with respect to the split line (whose direction is denoted by the unit vector uij)

connecting them. CLij is defined by the larger of the two angles φi and φj:

CLij = max(φi, φj) = max(arccos(vi,uij), arccos(vj ,−uij)), (4.5)

where φi is the angle between vi and uij and φj the angle between vj and −uij .

CLij is the larger of the angles φi and φj since a more conservative estimate for the

concavity-line alignment is preferable. Angles φi and φj are small if the concavities

are well aligned with the split line and large if the directions of the two concavities

are distinctly different from their split line. A small value for each angle is indicative

of a good split.

For the clump in Fig. 4.5(a), the candidate split lines are most likely to be

the lines joining concavity regions S1 and S3 as well as S2 and S4 since both

these concavity pairs have very small values of CC and CL (approximately ). The

concavity regions S1 and S4 exhibit good opposite alignment (CC14 ≈ 0) but poor

concavity-line alignment (CL14 ≈ π/3) whereas concavity regions S1 and S4 are
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neither oppositely aligned (CC14 ≈ π) nor laterally aligned (CL14 ≈ π/2).

In the ideal case, a pair of concavity regions Si and Sj is considered to be

perfectly aligned if both CCij and CLij are 0. However, since candidate split

lines connect concavities that are generally misaligned to some extent, mandatory

conditions are imposed, namely, CCij < CCT , and CLij < CLT , where CCT and

CLT are preset thresholds.

4.4.4 Concavity angle and concavity ratio

Concavity angle CA and concavity ratio CR are the two features used to decide if

a clump is to be split along the line joining a concavity pixel CVi to a boundary

pixel P . Such a split is considered only if no candidate split lines can be found

after applying the above mentioned features. As shown in Fig. 4.6, the split line is

the line passing through the midpoint of the convex hull chord Ki and concavity

pixel CVi, and intersecting the far side of the boundary at P . The concavity angle,

Figure 4.6: Concavity angle, CA and concavity ratio, CR.
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CA and concavity ratio, CR, are defined respectively by

CA = ∠Ci1CiCi2, (4.6)

CR = CDm/CDn, (4.7)

where CDm and CDn represent the largest and second largest concavity depths,

respectively. CA is a measure of the sharpness of a concavity region and CR a

measure of the size of the major concavity (depth CDm) relative to the other con-

cavities in the clump. The second largest concavity depth, CDn, assumes the value

of the concavity depth threshold (CDT ) in Section 4.4.1 if only one valid concavity

region is detected. The use of preset thresholds CAT and CRT ensure that a split

is made only if a concavity is sufficiently sharp CA < CAT and significantly larger

than all the other concavities in the clump CR > CRT .

4.5 Selecting the Best Split Line

The best split line is selected from the set of candidate split lines. It is a general

observation that, apart from satisfying the alignment conditions (Section 4.4.3),

valid split lines connect the two concavity pixels CVi and CVj that are closest to

each other and at the same time come from the largest concavities (large CDi and

CDj). With these considerations, a figure of merit, the ”measure of split” χ, is

proposed:

χ =
c1CDi + c1CDj + c2

d(CVi, CVj) + c1CDi + c1CDj + c2

, (4.8)

where c1 and c2 are appropriate weights. CDi and CDj are given the same weight,

c1, since they should have equal influence. It is noted that χ lies in the range [0, 1]

and
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• χ → 1 when d(CVi, CVj) → 0 or either CDi, CDj → 0

• χ → 0 when d(CVi, CVj) → ∞

A split line is regarded as the best choice if it has the largest χ that exceeds the

empirically obtained threshold of 0.5, which simplifies (4.8) to

d(CVi, CVj) < c1(CDi + CDj) + c2. (4.9)

It follows from (4.9) that the decision boundary for ascertaining whether a split

should be made is a straight line in the 2–D feature space defined by d(CVi, CVj)

and CDi + CDj. This is verified experimentally, as described in Section 4.6. The

values of weights c1 and c2 can be determined using any linear classifier. The linear

SVM classifier is used here since it ensures maximum separation between the two

subsets (split and no-split classes) and minimizes decision errors [20, 37]. The

decision rule of (4.9) can be expressed in the form

wTz + b > 0, (4.10)

where w is the weight vector, b is the bias and z is the feature vector comprising

the Euclidean distance, d(CVi, CVj), and the total concavity depth, CDi + CDj:

z = [d(CVi, CVj), CDi + CDj]
T . (4.11)

4.6 Methodology

The appropriate values for the parameters used in the proposed algorithm are first

determined and then validated. The training and test data sets comprise binary

clumps extracted from microscope images of the five different species of pollen (Aca-

cia and Podocarpus), fungal (Dreschlera and Curvularia) and fern (Nephrolepis)
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spores shown in the composite image of Fig. 4.7.

Figure 4.7: Five species of airborne spore specimens used in the experiments.

4.6.1 Training

To ensure robust clump splitting, the training set must contain spores of different

sizes and shapes that may overlap with debris or with one another. The process

comprises (i) the selection of threshold values of the features defined in Section

4.4, and (ii) the determination of the weight constants c1 and c2 of the measure of

split, χ, defined in Section 4.5.

The threshold values (Table 4.1) are obtained via inspection of the training set

and should be effective in detecting the candidate split lines:

• Thresholds CDT and SAT are chosen to be greater than the CD and SA

values arising from minor boundary irregularities.

• Thresholds CCT and CLT are selected from known cases of correct split lines

in the training set where the concavity regions at the ends of each correct

split line are well aligned in opposing directions.
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• A split line joining a concavity pixel and a boundary pixel will be considered

if the clump has only one significant major concavity; this is ensured by

having a sufficiently large threshold CRT .

• Threshold CAT is selected to be greater than the CA values due to the natural

concavities of objects such as Dreschlera and Podocarpus.

Table 4.1: Threshold values assigned to the features that determine validity of split

lines.

Rules Threshold Value

CD > CDT CDT 3

SA > SAT SAT 0.12

CL < CLT CLT 70o

CC < CCT CCT 105o

CA < CAT CAT 90o

CR > CRT CRT 6

A training set of 1,100 2–D feature vectors, where the features are total con-

cavity depth and distance between a pair of concavity pixels on a clump, is used

as the inputs to a linear SVM classifier [37] to determine suitable values for c1 and

c2. The data samples were extracted over the five spore species and comprise 100

samples taken from pairs of concavity pixels that form valid split lines and 1,000

samples from pairs that form invalid split lines. (The disparity in sample size is

due to a much lower occurrence of the former.) Classification accuracy is computed

using threefold cross validation of the training set for different penalty factor val-

ues. The results are shown in Table 4.2, where the weight constants c1 = 1.72 and

c2 = −4.70 give the best generalization performance with an average classification
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accuracy of 99.5%. Fig. 4.8 shows the decision boundary that optimally separates

the training distribution set into the split and no-split classes.

Table 4.2: Training results for different penalty factor values.

Penalty factor Accuracy (%) c1 c2

0.1 99.4 1.73 -5.32

1 99.5 1.73 -4.72

10 99.5 1.73 -4.72

100 99.5 1.72 -4.70

1000 99.5 1.70 -4.54

Figure 4.8: Linear decision boundary obtained from the training data set.
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4.6.2 Implementation of clump splitting

The clump splitting algorithm [50] is applied to binary clump images. After each

round of splitting, the resulting objects are subjected to the same algorithm. This

iterative splitting of a clump terminates when the resulting constituent objects do

not have any candidate split lines. A split line joining a concavity pixel and a

boundary pixel is then attempted if there are no more candidate split lines. The

two cases of splitting overlapping regions are, therefore: (i) split line joining two

concavity pixels, and (ii) split line joining a concavity pixel and a boundary pixel.

Split line joining two concavity pixels

A line is considered a candidate split line if the concavity depths at its two ends,

CDi and CDj , are greater than CDT . It must also satisfy the requirements of

saliency and alignment, i.e., SA > SAT , CL < CLT and CC < CCT . From the

set of candidate split lines, the one with the largest measure of split, χ (χ > 0.5),

is used to split the clump. An exception to the above rule is that the alignment

conditions of Section 4.4.3 can be ignored if χ > 0.8.

Split line joining one concavity pixel and one boundary pixel

A split line joining a concavity pixel CVi and a non-concavity boundary pixel P

is considered when (i) there is only one concavity pixel, or (ii) there is more than

one concavity pixel but no candidate split line can be found. A split is made in

the first case if CA < CAT , and in the second case if CA < CAT and CR > CRT .
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4.7 Performance on Unseen Data

A total of 112 overlapping and 140 non-overlapping binary regions across all five

species were involved in the validation of the rule-based approach (henceforth re-

ferred to as RBA). These test images were extracted from 8-bit airborne-spore

images via the application of edge detection, thresholding and morphological rou-

tines.

Some of the splitting results for clumps involving two spore specimens are shown

in Fig. 4.9. RBA was also applied to a set of cytological images to demonstrate

its versatility. Fig. 4.10 shows the results for some overlapping specimens. The

Figure 4.9: Sample results of splitting clumps comprising two touching spore spec-

imens (not to scale).

splitting of overlapping clumps with only one major concavity region is illustrated

in Fig. 4.11. The two overlapping Dreschlera specimens have only one major

concavity region and are accurately split due to the sufficiently small CA and large

CR of the clump. RBA also performs well on large clumps comprising multiple
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Figure 4.10: Sample results of splitting clumps comprising two or three touching

cytological specimens.

(a) (b)

Figure 4.11: Splitting a clump comprising only one dominant concavity region. (a)

Two overlapped Dreschlera specimens. (b) Split line joining the concavity pixel

and a boundary pixel.

objects as shown in Fig. 4.12. Fig. 4.13 shows the accurate splitting of clumps

involving specimens of different shapes and sizes. It is also observed that the

natural boundaries of the spore specimens sometimes lead to the formation of

small concavity regions that are adjacent to one another. The generation of false

split lines joining adjacent concavity regions is avoided by the alignment criteria

of Section 4.4.3. The overall clump splitting performance is evaluated from the

percentages of correct, false, and under splitting (Table 4.3). Considering the

diverse sizes and shapes of the specimens, a creditable overall splitting accuracy

of 79.5% is obtained. The extremely low percentage of clumps that are falsely
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(a) (b)

(c) (d)

Figure 4.12: Split results of large clumps comprising several specimens. (a)

Nephrolepis clump. (b) Nephrolepis clump after splitting. (c) Two large Podocar-

pus clumps. (d) Podocarpus clumps after splitting.

(a) (b)

Figure 4.13: Splitting clumps comprising specimens with different sizes and shapes.

(a) Fungal and fern spore. (b) Nephrolepis with attached dirt particle.

split (5%) is due to the conditions imposed by SA, CC and CL. The proposed
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method works well on both convex (Acacia - 100%, Nephrolepis - 78.5%) and non-

convex spores (Podocarpus - 91%). However, the split accuracies for Dreschlera

and Curvularia are relatively poorer (69.5% and 60%, respectively). The high rate

Table 4.3: Detailed performance of RBA.

Species
Clumps Individual

Total Correct(%) False(%) Under(%) Total Correct(%) False(%)

Acacia 6 100.0 0.0 0.0 15 100.0 0.0

Dreschlera 11 69.5 23.0 7.5 20 100.0 0.0

Nephrolepis 29 78.5 0.0 21.5 31 100.0 0.0

Podocarpus 42 91.0 4.5 4.5 37 100.0 0.0

Curvularia 24 60.0 6.0 34.5 37 100.0 0.0

Overall 112 79.5 5.0 15.5 140 100.0 0.0

of false splitting for Dreschlera (23.0%) is explained by the frequent occurrence

of specimens crossing each other (Fig. 4.14). This would result in one of the

specimens in a clump to be correctly split at the expense of the other or both

specimens to be incorrectly split as observed in Fig. 4.14. Under splitting for

Curvularia (34.5%) is pronounced because of the removal of some concavities in

its clumps by the dilation/erosion operations at the pre-processing stage. This is

illustrated in Fig. 4.15, where the concavity regions in 4.15(b) appear smaller than

their actual sizes in 4.15(a).
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Figure 4.14: False splitting of a clump comprising two Dreschlera specimens cross-

ing each other.

(a) (b)

Figure 4.15: Reduction in the sizes of the concavity regions in a Curvularia clump.

(a) Overlapping and individual Curvularia specimens. (b) Binary clump of Curvu-

laria specimens after dilation/erosion operation.

4.8 Performance Comparison and Feature Vali-

dation

This Section compares the performances of RBA and the optimal dissection method

(ODM) of Yeo et al. [93]. It also validates the importance of the features in RBA by

studying the effects on splitting performance when a feature is removed or replaced

by another feature from ODM. The following experiments were performed:

• Comparison I - Concavity depth (CD) in RBA vs concavity degree (DG) and

normalized concavity weight (WT) in ODM,



4.8 Performance Comparison and Feature Validation 85

• Comparison II - Measure of split (χ) in RBA vs Optimal dissection require-

ment in ODM, and

• Comparison III - Effect of removing saliency (SA) and alignment features

(CC and CL) in RBA.

The aforementioned comparisons are valid since the features, whose perfor-

mances are being compared, share a similar role in the concavity analysis scheme.

The comparisons are also fair since the other parameters in the scheme remain

fixed.

4.8.1 Comparison I

In this experiment, the effects on split accuracy are determined if the concavity

pixels, identified using CD in RBA, are detected only from concavity regions which

satisfy concavity degree DG and normalized concavity weight WT criteria of ODM

with thresholds DGT = 1.15 and WTT = 0.25, respectively. As seen in Table

4.4, the selection of concavity pixels only from these concavity regions results in

lower split accuracy of 58.5% compared to 79.5% for RBA. The reason for this is the

ineffectiveness of DG and WT in detecting all valid concavity regions, as illustrated

in Fig. 4.16 (where the desired split lines are depicted in white). Fig. 4.16(a) shows

a binary region of two overlapping Curvularia specimens; the concavity pixel in

region Sa is undetected since its corresponding boundary arc is significantly smaller

than the longest boundary arc, |Bmax|, of the clump. In Fig. 4.16(b), where the

clump consists of a Curvularia specimen and a long detritus, the concavity pixel

in region is undetected since its concavity region lacks sharpness and has a very

long convex hull chord, |Ki|.
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Table 4.4: Summary of performance comparison and feature validation results.

Experiment
Clumps Individual

Correct(%) False(%) Under(%) Correct(%) False(%)

RBA 79.5 5.0 15.5 100.0 0.0

Comparison I 58.5 15.0 26.5 99.5 0.5

Comparison II 56.0 28.0 16.0 79.0 21.0

Comparison III 74.0 12.0 14.0 99.5 0.5

(a) (b)

Figure 4.16: Shortcomings of concavity measure in ODM. (a) Two overlapping

Curvularia specimens; concavity region Sa is not detected. (b) Curvularia speci-

men with overlapping detritus; concavity region Sb is not detected.

4.8.2 Comparison II

In this experiment, the effects on splitting accuracy are determined if the method

of selecting the best split line in RBA is replaced by ODM. In the latter, the best

split line is the shortest line that satisfies the optimal selection criterion and joins

two concavity regions that meet the DG and WT requirements [93]. From Table

4.4, ODM falsely splits the clumps and individual objects 28% and 21% of the

time, respectively, compared to the experiment in Comparison I, where they are

falsely split 15% and 0.5% of the time, respectively. The higher percentage of false

splitting in Comparison II is attributed to the shortcoming of optimal selection
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criterion in ODM for selecting the best split line. It is sensitive to boundary

irregularity and performs poorly on individual objects with large concavities (e.g.,

Podocarpus, Fig. 4.17).

Figure 4.17: False splitting of a Podocarpus specimen using ODM.

4.8.3 Comparison III

The influence of saliency and alignment is investigated by determining the amount

of false splitting when these features are not used. The result is a significantly

higher percentage of false splitting (12.0% compared to 5.0%). The lower percent-

age of false splitting by RBA is due to the validity checks imposed by these two

conditions. Fig. 4.18(a) shows an invalid split of overlapping Curvularia specimens

when these conditions are relaxed as opposed to the accurate split results shown

in Fig. 4.18(b) when they are imposed.

4.9 Conclusion

A novel approach for splitting binary clumps has been presented using a set of

concavity-based rules. The concavity depth CD provides a fast and simple way

of detecting concavity pixels. Both CD and saliency SA effectively distinguish

concavity pixels that form valid split lines from those that arise due to minor

boundary irregularities. In addition, the alignment features, CC and CL, ensure
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(a) (b)

Figure 4.18: Splitting a clump comprising three Curvularia specimens that overlap

along their major axes. (a) False splitting when saliency and alignment conditions

are removed. (b) Correct splitting when saliency and alignment conditions are

imposed.

that the concavity regions at the ends of candidate split lines are suitably oriented

with respect to each other. Clumps with only one major concavity region are

correctly split with the use of concavity angle CA and concavity ratio CR. By using

the measure of split, the best split line can be determined while avoiding the false

splitting that often occurs in objects with natural concavities in their boundaries.

The proposed method has been shown to be robust by accurately splitting objects

of diverse sizes, shapes and degrees of overlap. It has been successfully applied to

images comprising objects such as airborne spores and cytological specimens.



Chapter 5
Invariant Texture Classification via

Non-Linear Polar Map Filtering

Textural classification of specimens from light microscope images is a daunting

problem given the arbitrary orientation, scale and contrast of specimens. A novel

texture based classification, which is robust under the aforementioned conditions, is

presented for elliptical biomedical specimens in an image. First, the largest ellipse

is defined for each segmented specimen from which the textural features are to be

extracted. The elliptical region lies completely within the specimen and provides a

sufficiently large feature extraction area unlike conventional methods, which define

rectangular or circular areas within the specimen. A polar map, which is invariant

to the effects of the specimens’ orientation and scale, is then constructed from the

elliptical region. Non-linear filtering is performed on the polar map to obtain a

contrast-invariant similarity map using a 5 × 5 Gaussian first derivative (GFD)

filter. Local and global energy measures are extracted from this similarity map

to be used in the training and testing of an SVM classifier. Experimental results

show that the proposed method achieves an accuracy of over 90% in classifying six

species of pollen, fungal and fern spores. The robustness of the method and choice

of features are also validated under different orientation, scale and contrast levels.

89
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5.1 Rationale

The classification of biomedical specimens is a vital step in studies where the

specimens in question could be asthma-causing allergenic spores or malaria-infected

red blood cells, to name a few examples [29, 54, 57, 22, 82, 52, 49]. However,

manual classification of these specimens via visual inspection of light microscope

(LM) images can be a time-consuming exercise. Conversely, automated methods

potentially provide fast and reliable classification of these specimens. The texture

of the specimen offers vital information to this end provided each class of specimens

have their own unique textural properties.

Current methods of texture based classification of specimens in LM images

work well under fixed setting of image luminance, scale and contrast but often fail

when these are changed. It is impractical to assume that the settings remain fixed

since, for instance, image contrast and luminance can change depending on the

intensity from the light source, which may deteriorate over time [39].

Current classification methods using linear filtering schemes such as Laws’ [55]

and wavelet sub-band decomposition [62] are sensitive to luminance and contrast

since (1) features extracted from the low frequency (approximation) sub-band are

sensitive to luminance changes and (2) the underlying spatial convolution operation

emphasizes textured patterns of stronger contrast and suppresses those of weaker

contrast although their profiles may be the same.

Garćıa-Sevilla [33] has shown that the classification accuracy of features ex-

tracted from classical methods such as the gray level co-occurrence matrix (GLCM)

[35] and wavelet transform [13] are sensitive to scale. The scale of the specimens
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in microscope images varies depending on the choice of the objective lense where

each magnification ratio, i.e., 10×, 20×, 40× and 60× corresponds to a particular

scale.

Muneeswaran et al. [66] have used fractal analysis, via wavelet decomposition,

to characterize textural regions in their work due to its scale invariance property.

However, empirical studies have shown that the fractal dimension is often different

at different scales of natural textures, although it may be constant for a range of

scales [11].

Garćıa-Sevilla [33] also showed that classical methods perform poorly when the

spatial orientation of the textured regions is changed. This is a serious limitation

since the biomedical specimens, studied in this thesis, are also oriented arbitrarily

when viewed under the LM.

Various methods have been proposed to address the effects of both scale and

orientation variation of textural regions [95]. Standard wavelet-based algorithms

have been modified by combining detail sub-bands [73, 98] or using a set of rotated

wavelet filters and multi-channel Gabor filters [28]. However, the performance of

these methods degrades when the number of texture classes increases since they

are derived from standard filtering methods which are sensitive to orientation.

The circular auto-regressive [44] and the log polar Gabor filters [56] have also

been proposed but these methods are computationally intensive especially when

the number of classes or size of textural regions increases. More recently, a method

combining the log-polar transform and shift invariant wavelet packet transform [76]

gave promising results when tested on a set of 25 distinct Brodatz textures [10]

with different scale and orientation.
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The above methods assume that the texture regions are rectangular in shape.

Langford et al. [54] identified pollen specimens from SEM scanned images by

selecting a rectangular region of approximately 10% of the entire pollen area. Such

a small region was representative of the textural pattern since it was manually

selected but this will not be the case for an automated texture classification scheme

where a priori information is not available. The assumption of rectangular regions

are often not valid in this case since specimens such as air-borne spores and red

blood cells have a general elliptical form with different eccentricity and size.

A texture classification method that is robust under the aforementioned condi-

tions is presented and implemented for the identification of biomedical specimens

from LM images. Orientation invariance is achieved by expressing each specimen

region in a Cartesian space defined by the major and minor axes of the largest

elliptical region within the specimen. Scale invariance is achieved by mapping the

elliptical region to a unit circle before constructing the polar map. The non-linear

filtering method, from Chapter 2, is applied on the polar map so that the energy

measures extracted from the filter output are invariant to contrast. Both local and

global energy measures are extracted to ensure improved accuracy.

The Chapter is organized as follows: Section 5.2 briefly describes the standard

polar map transform followed by an overview of the proposed method in Section

5.3. Section 5.4 describes the process of identifying the largest ellipse within each

specimen and Section 5.5 describes the use of this ellipse for obtaining orientation

and scale invariance. Section 5.6 describes the contrast- and luminance-invariant

properties whereas Section 5.7 defines the energy measures used in the classification

of the specimens. Section 5.9 discusses results from Section 5.8 on experiments
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undertaken to validate the invariant properties of the proposed method, choice of

texture based features used and overall classification accuracy on a dataset of air-

borne allergens from six species of fungal, fern and pollen spores. Finally, Section

5.10 concludes this Chapter.

5.2 Standard Polar Map Transform

Figure 5.1: Transformation of largest circle within textured image I(x, y) to polar

map p(α, r).

The polar map transform [3, 76] is used to eliminate the effects of orientation

and scale on the accuracy of specimen classification. As illustrated in Fig. 5.1,

the largest circle with radius ℜ is first located within the original textured image

I of size N ×N . Next, each pixel (x, y) in the image is mapped from its Cartesian

space to the corresponding polar coordinate space where the position of each pixel

(r, α) in the polar map is expressed in terms of its angle α and distance r from the

centre of the circle. The polar map can be formally defined as follows,

p(α, r) = I

([

N

2
+ r cos

(

2πα

360o

)]

,

[

N

2
− r sin

(

2πα

360o

)])

(5.1)

where 0o ≤ α ≤ 360o, 0 ≤ r ≤ ℜ and [·] rounds to the nearest integer. There are



5.2 Standard Polar Map Transform 94

minor variations to the above polar map such as the log polar map, log(r) vs α

[76].

There are several drawbacks associated with the above polar map transforma-

tion. First, it is observed that any variation in orientation or scale of the specimen

region results in a horizontal or vertical shift of the polar map, thus compromising

the invariance of the polar map to such changes [95, 76]. Pun et al. [76] proposed

the decomposition of the polar map via an adaptive row shift-invariant wavelet

packet transform to eliminate the effects of the shift. In Section 5.3 of this thesis,

a more straightforward and computationally efficient way is provided for achieving

orientation and scale invariance.

Secondly, the polar map is constructed from the largest circular region from

within the arbitrarily shaped region of the segmented specimen. The circular

region can be considerably smaller than the segmented area if the specimen is

highly elongated, which is the case for some specimens. Polar maps constructed

from such a small area may not accurately represent the textural characteristics

of the entire specimen and this would adversely affect the classification accuracy.

This limitation is overcome in Section 5.3 by identifying the largest ellipse within

the specimen prior to constructing the polar map.

Lastly, polar maps are not inherently invariant to changes in specimen contrast.

However, this shortcoming is addressed by subjecting the polar map to non-linear

filtering.
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5.3 Overview of Method

The proposed method involves a five step process: (1) Identify largest ellipse

which is completely within specimen region, (2) generate an orientation- and

scale-invariant polar map (3) non-linearly filter the polar map to obtain contrast-

invariant filter response (4) extract local and global energy measures from the filter

response and (5) classify features using SVM.

First, it is assumed that the specimens in an image have already been accurately

segmented. Next, the largest elliptical area within each segmented specimen region

is determined. Orientation invariance is ensured by expressing the elliptical region

in a Cartesian space defined by the major and minor axes of the ellipse and then

scale invariance is achieved by transforming the elliptical area to a circular area of

unit radius from which the polar map is finally constructed. Next, the polar map is

subjected to non-linear filtering by a 5 × 5 Gaussian first derivative (GFD) filter,

to give a contrast-invariant result. This filter is selected it is a band-pass filter

that extracts most of the textural information. Finally, local and global energy

measures are then extracted from the filter output and used in the training and

testing of a SVM classifier.

5.4 Identifying Elliptical Region

An ellipse boundary can be represented by a general conic equation as follows

ζ(a,x) = a · x = a1x
2 + a2xy + a3y

2 + a4x + a5y + a6 = 0 (5.2)

where a = [a1 a2 a3 a4 a5 a6]
T and x = [x2 xy y2 x y 1]T . ζ(a,xi) is the

algebraic distance of a point (xi, yi) to the boundary defined by ζ(a,x) = 0, where
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ζ(a,xi) < 0 if xi lies within the boundary and ζ(a,xi) > 0 if it lies outside.

Finding an ellipse within a segmented specimen can be posed as a problem of

finding a suitable a that minimizes the following sum of the squared algebraic

distances [36], ε,

ε(a) =

N
∑

i=1

ζ2(a, x̃i) = aTDTDa (5.3)

The N data points of x̃i: 1 ≤ i ≤ N belong to the segmented specimen boundary

and the design matrix D is defined as D = [x̃1 x̃2 · · · x̃N ]T . In addition, the entire

ellipse is also required to be completely within the segmented specimen,

Da ≥ 0 (5.4)

The objective function in (5.3) needs to be further constrained to avoid the trivial

solution of â = 0. This is achieved by adopting the well known constraint a2
2 −

4a1a3 ≤ 0 [24] which can be expressed as

aTCa > 0 (5.5)

where C is a 6 × 6 constraint matrix:

C =






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


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(5.6)

This ensures that the solution â which satisfies (5.3), (5.4) and (5.5) defines an

ellipse function (5.2). The above constrained problem is difficult to solve in general
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as the Kuhn-Tucker conditions [76] do not guarantee a solution. Therefore, a two-

step procedure is implemented to find the largest ellipse within the segmented

specimen. First, the eccentricity of the ellipse, i.e., parameters â1, â2 and â3, is

determined by minimizing (5.3) subject to the constraint aT Ca > 0 [7]. Using

the method of Lagrange multipliers and differentiating gives us the equation for

stationarity, 2DTDa− 2λCa = 0 which reduces to

Sa = λCa (5.7)

subject to the constraint aT Ca = 1 where the scatter matrix S = DTD and λ

is the Lagrange multiplier. The system in (5.7) [25] gives a unique solution â

corresponding to eigenvalue λ = aTSa > 0 from (5.7).

The constraint aT Ca = 1 gives a unique solution for the ellipse and ensures that

it is affine invariant with low eccentricity bias. Low eccentricity bias is a desirable

property as it draws the solution away from outlier points [24]. The parameters

â4, â5 and â6 in â are ignored since they will be determined next.

The parameters â1, â2 and â3 are set to the values in â and then the translation

and magnification of the ellipse, i.e., parameters â4, â5 and â6, are determined by

minimizing (5.3) subject to the constraints (5.4) and (5.8):

a1 = â1, a2 = â2, a3 = â3 (5.8)

Fig. 5.2 illustrates the two step process for determining the largest ellipse.

5.5 Orientation- and Scale- Invariant Polar Map

The aim of this Section is to construct an orientation- and scale-invariant polar

map p from the elliptical region defined in Section 5.4. The orientation invariance
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(a) (b)

Figure 5.2: Two step process of finding the largest ellipse within a segmented

specimen. (a) Determining the ellipse eccentricity from parameters â1, â2 and â3.

(b) Ensuring that the ellipse completely fits within the specimen by adjusting its

translation and size via parameters â4, â5 and â6.

of the polar map is achieved by redefining the ellipse in an alternative Cartesian

space so that the ellipse is centered at the origin and its major and minor axes

are aligned along the coordinate axes, x′ and y′, as shown in Fig. 5.3 where the

parameters a1 and a2 from (5.2) correspond to the semi-major and semi-minor axes

of the ellipse and

x′ =

[

x1 y1

]T

, y′ =

[

x2 y2

]T

(5.9)

in xy Cartesian space. The parameters a1, a2, x′ and y′ are determined by solving

Figure 5.3: Ellipse redefined in x′y′ Cartesian space and centered at the origin.



5.5 Orientation- and Scale- Invariant Polar Map 99

for Q and Λ, for a known K, from the following eigenvalue system

KQ = QΛ (5.10)

where from (5.2), K is expressed as

K =









−a1/a6 −a2/2a6

−a2/2a6 −a3/a6









(5.11)

where the ellipse centroid is assumed to be at the origin (a4 = 0, a5 = 0) and Q is a

square transformation matrix which contains the eigenvectors x′ and y′, i.e., Q =

[x′, y′] and Λ is a diagonal matrix with eigenvalues of K related to the parameters

a1 and a2 as follows

Λ =









1/a2
1 0

0 1/a2
2









(5.12)

The directions of the major and minor axes, x′ and y′, vary with the orientation

of the specimen, thus ensuring the orientation invariance of the polar map.

Next, scale invariance of the polar map is achieved by expressing the elliptical

area of Fig. 5.3 as a circular area of unit radius in the (a1x
′,a2y

′) Cartesian space

defined in Fig. 5.4.

Figure 5.4: Ellipse expressed as a unit circle in the (a1u,a2v) Cartesian space.
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Each point p(α, r) in the polar map p corresponds to the point (rcosα rsinα)T

in the unit circle of Fig. 5.4, which in turn corresponds to the point in the ellipse of

Fig. 5.3. From (5.9), the same point can be expressed in the original xy Cartesian

space as

[

xα,r yα,r

]T

=

[

a1x1rcosα + a2x2rsinα a1y1rcosα + a2y2rsinα

]T

(5.13)

where r ≤ ℜ = 1. The polar map is finally constructed by determining each value

p(α, r) from the pixel value of I at the corresponding point (xα,r, yα,r). Given that

(xα,r, yα,r) is a real-numbered vector and the pixel indices are integer valued, the

weighted pixel value of I in the neighborhood of the point (xα,r, yα,r) is computed

via cubic interpolation. Both α and r are quantized into 360 bins each to obtain

sufficiently accurate polar maps of size 360 × 360.

Fig. 5.5 shows the polar maps obtained for the images of a fern spore under

different scale (Fig. 5.5(a)–(c)) and orientation (Fig. 5.5(g)) levels. As observed,

the polar maps are all similar to each other thus indicating that they are invariant

to the affine transformations of the same image. Minor discrepancies between the

polar maps are attributed to inaccuracies in the approximation by cubic interpo-

lation.

5.6 Contrast and Luminance Invariant Filter Out-

put

In Chapter 2, a similarity measure Ri was proposed in a contrast- and luminance-

invariant edge detection scheme. In this Section, the same similarity measure

is applied on the polar maps to extract textural features that are robust under
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.5: Influence of affine transformation on polar map. (a)–(c)—Images

captured under (a) 40×. (b) 60×. (c) 20× objective magnification. (d)–(f)—

Corresponding polar maps for images (a)–(c). (g)—Image (a) rotated by 45◦

counter-clockwise. (h)—Corresponding polar map of image (g).

different contrast and luminance levels. Unlike the classical linear spatial filtering

measure Ci (from Chapter 2), Ri, is insensitive to image contrast since the filtering

operation emphasizes texture patterns of both strong and weak contrast. The

similarity measure (Ri) also incorporates a regularization parameters γ and c for
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suppressing values of filter outputs corresponding to noise.

Laws [55] generates 2-D filters from a bank of five 1-D separable filters, ti,

i = 1, . . . , 5, where t1 =

[

1 4 6 4 1

]

, t2 =

[

−1 −2 0 2 1

]

, t3 =
[

−1 0 2 0 −1

]

, t4 =

[

−1 2 0 −2 1

]

and t5 =

[

−1 −4 6 −4 −1

]

such that each 2-D filter is a template of a specific texture pattern.

From t1 and t2, the following 2-D filter g is derived

g = tT
1 × t2 (5.14)

which resembles a 5×5 Gaussian first derivative (GFD). This filter is chosen since

GFD extracts mid-band frequency information that contains most of the textural

energy. These frequencies are also lower than some of the other 2-D filters derived

from Laws’ 1-D ti filters, thus giving GFD more robustness under noisy conditions.

Fig. 5.6 shows the magnitude of GFD filter outputs, |Ci| and |Ri| for the same

image captured under three different luminance levels. It is also observed, from the

corresponding histogram plots, that an increase in luminance from Fig. 5.6(a)–(c)

also results in an increase in image contrast.

The regularization constant c for the Ri case is set to 0 whereas the GFD filter is

oriented at θ = 0◦ for both Ri and Ci. The brighter pixels in the filter outputs from

5.6(d) to (i) correspond to larger coefficient magnitude. The filter coefficients Ci is

sensitive to contrast since the magnitude of the filter coefficients |Ci| in the filter

outputs increase from 5.6(d) to (f) as seen by the increasing proportion of brighter

pixels. Conversely, all three filter outputs from 5.6(g) to (i) have similar coefficient

values, indicating a relatively greater robustness of Ri to contrast variation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Influence of contrast variation on linear and non-linear filtering output.

(a)-(c)—Images captured under progressively increasing luminance and contrast.

(d)-(f)—Corresponding magnitude of filter output, |Ci|. (g)-(i)—Corresponding

magnitude of filter output, |Ri|.

5.7 Local and Global Energy Measures

At each pixel location i, a pair of filter outputs RH
i and RV

i is obtained correspond-

ing to GFD filters g and gT (5.14) oriented at θ = 0◦ and setting γ = 0. A set of

energy measures is extracted from RH
i , RV

i and from the corresponding magnitude
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Mi =

√

RH
i

2
+ RV

i
2

resulting in a total of ten features. The feature set is broadly

classified into the following three categories: (1) global energy measures, GEM (2)

normalized global energy measures, NGEM and (3) local energy measures, LEM.

Global energy measures, GEM, are commonly used in texture classification and

effectively represent the total energy measure computed from regions with uniform

texture properties such as those found in the Brodatz database [72, 90] or its polar

map equivalent [76].

The GEM features capture the overall energy measure of the entire specimen

region. However, it is likely that two specimens from different classes may have

entirely different polar maps but give similar global feature values. NGEM features

enable effective classification of specimens for such cases since they also carry the

specimens’ area information.

However, textures may not have uniform (stationary) statistics within an entire

specimen region. The largest ellipse with each specimen region is therefore divided

into several annular sub-regions as shown in Fig. 5.7(a), where the local texture

properties within each annulus is assumed to be uniform. Both local features

from each annulus and global features are then extracted from the entire ellipse.

Both types of features, i.e., local and global, complement each other in accurately

classifying the various specimens to their respective classes.
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5.7.1 Global energy measures, GEM

The GM features, T1 and T2 are obtained from the norm–1 energy measures of RH
i

and RV
i as:

T1 =

N
∑

i=1

|RH
i |, T2 =

N
∑

i=1

|RV
i | (5.15)

where N is the number of pixels in the polar map.

5.7.2 Normalized global energy measures, NGEM

T1 and T2 are both normalized with respect to the specimen area, A, to get the

NGEM features, T3 and T4:

T3 =
1

A

N
∑

i=1

|RH
i |, T4 =

1

A

N
∑

i=1

|RV
i | (5.16)

5.7.3 Local energy measures, LEM

Local energy measures LEM obtained from sub-regions within the specimen may

facilitate better classification. Fig. 5.7 shows the division of the polar map into

six rectangular regions A1-A6 of equal area in 5.7(b) where each area corresponds

to an annulus of the largest ellipse within a specimen as shown in 5.7(a).

A local feature is computed from each annulus Aj giving the set LEM compris-

ing six local features T5 to T10:

Tj+4 =

∑

i∈Aj
M(i)

∑

k∈AT
M(k)

where AT =

6
∑

j=1

Aj (5.17)

5.8 Experimental Results

Three experiments were carried out with the following objectives: (1) classify the

various specimens to their respective classes using SVM, based on the ten energy
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(a) (b)

Figure 5.7: Distribution of local energy features. (a) Elliptical area divided into

six localized regions. (b) Corresponding six rectangular regions of equal area: A1

to A6 in polar map p.

measures T1 to T10, (2) test the accuracy of the SVM classifier under different

contrast, scale and orientation of the specimens, (3) study the influence of the

size of feature extraction area, within the specimen, on the accuracy, (4) validate

the relevance of the energy measures and (5) study the influence of γ on contrast

invariance and noise robustness.

5.8.1 Texture classification via support vector machines

(SVM)

The experimental data set comprises airborne spore allergens from six different

species. The allergens were captured using the Burkard seven day volumetric

recording spore traps. The air-borne allergens were trapped on a silicone grease

coated tape that was mounted on a drum which rotates at a rate of 2mm per hour.

At the end of the week, the tape was cut into segments that represent each day of
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the week and mounted on glass slides for examination under an Olympus LM at

400× magnification. The microscope is attached to a color video camera which in

turn is linked to a frame grabber with RGB channels.

The specimens are classified from a total of six species. A sample specimen

for each species is shown in Fig. 5.8. All specimens used in this experiment are

gray-scale images with 256 gray levels. For ease of reference, the species names in

Figs. 5.8(a)-(f) are henceforth denoted as NEBI, STPA, SOHA, ACAU, CUBR

and PIMA respectively.

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Sample images of different species used in the proposed work. (a)

Nephrolepis auriculata, NEBI (95µm×75µm). (b) Stenochlaena palustris, STPA

(122µm×85µm). (c) Sorghum halepensis, SOHA (115µm×115µm). (d) Aca-

cia auriculiformis, ACAU (93µm×84µm). (e) Curvularia brachyspora, CUBR

(34µm×50µm). (f) Pithomyces maydicus, PIMA (45µm×82µm)

The classification study uses a large test set of approximately 1250 and a train-

ing set of approximately 2,500 segmented specimens. The segmented specimens

have arbitrary orientation but belong to images acquired under fixed luminance,
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contrast and scale (40× objective magnification) settings. The largest elliptical

region was identified within each specimen and then subjected to a polar map

transformation. The similarity maps, RH and RV were computed from the polar

map while setting the regularization constant c = 0. The feature vector T com-

prising the ten energy measures T1, . . . , T10 was then extracted from the similarity

maps.

The classification methodology is as follows. The mean and standard deviation

values are extracted from the training set. These values are then used to normalize

feature vectors from both the training and test sets where the normalized set T̂

has zero mean and unit standard deviation.

SVM is then used for supervised classification of the normalized feature vectors

T̂ as it achieves good generalization performance on unseen data. The three types

of kernel functions K
(

T̂, T̂k

)

〉 considered were: (1) linear, 〈T̂, T̂k〉, (2) radial basis

function (RBF), exp(−‖T̂−T̂k‖
2/2σ2) and (3) polynomial, (λ〈T̂, T̂k〉+κ)d, where

T̂k denotes the kth feature vector from the training phase and σ controls the width

of the RBF kernel. The σ values considered in this thesis range from 0.2 to 6.0.

The parameters λ, κ and d belong to the polynomial kernel where κ = 1, λ ranges

from 0.1 to 1.5 and d = {1, 2, 3}.

A pair-wise classification scheme is employed where a dedicated SVM classifier

is implemented for each pair of classes. During the testing phase, the SVM outputs

a decision value

spq =

M
∑

k=1

αpq
k ypq

k K〈T̂, T̂k〉 + bpq (5.18)

where the Lagrange multiplier αpq
k > 0 if it corresponds to a support vector and

αpq
k = 0, otherwise. The a priori output label ypq

k ∈ {±1}, and bpq is a scalar for
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the pq class pair. The values of {αpq
k : 1 ≤ k ≤ M} and bpq are determined during

the training phase by minimizing

Jpq =
1

2

M
∑

i=1

M
∑

j=1

αpq
i αpq

j ypq
i ypq

j K〈T̂, T̂k〉 + PF
M
∑

i=1

ξpq
i (5.19)

subject to the constraint

ypq
i

(

M
∑

j=1

αpq
j ypq

j K〈T̂i, T̂j〉 + bpq

)

≥ 1 − ξpq
i (5.20)

where ξpq
i ≥ 0 and PF is a penalty factor which controls the trade-off between model

complexity and training error in order to ensure good generalization performance.

The PF values considered in this thesis range from 0.l to 100.

The sign and magnitude of spq can be used to predict the winning class which

the feature vector T̂ is more likely to be assigned to and the confidence level of

that prediction. A majority voting method by Friedman [32] is used to select the

class label with the most number of winning two-class decisions.

Table 5.1 shows the overall classification accuracy of the polynomial SVM for λ

ranging from 0.1 to 1.5, d = {1, 2, 3}, PF={0.1, 1, 10, 100} and κ = 1. As observed,

the highest overall classification accuracy of 96.4% is achieved for two different

cases denoted by the results in bold print and italics, but the parameters, λ = 0.3,

d = 2 and PF=1, corresponding to the results in bold print, are selected since the

classification accuracy is the highest for both overall and individual classes in the

data set.

Table 5.2 shows the overall classification accuracy of the RBF SVM for a sub-

set of the σ values ranging from 3.2 to 6.0 and PF={0.1, 1, 10, 100}. The highest

classification accuracy of 96.9% is denoted in bold print and corresponds to para-

meters σ = 5.4 and PF=100. The highest classification accuracy of the linear SVM
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Table 5.1: Overall classification percentage of polynomial SVM for a range of λ, d

and PF.

Degree (d)

1 2 3

Penalty factor(PF) Penalty factor(PF) Penalty factor(PF)

Gamma(λ) 0.1 1.0 10 100 0.1 1.0 10 100 0.1 1.0 10 100

0.1 94.6 96.0 96.2 96.2 95.5 96.3 95.9 95.8 95.9 96.2 95.4 94.6

0.3 95.1 95.8 96.2 96.2 96.0 96.4 95.8 95.4 95.7 95.5 94.6 92.6

0.5 95.6 96.0 96.0 96.2 95.9 95.6 95.1 95.0 95.3 95.1 93.0 91.2

0.7 95.7 96.1 96.1 96.3 96.1 95.5 95.3 95.3 95.3 94.6 92.6 90.9

0.9 95.9 96.2 96.2 96.2 96.4 95.5 95.4 95.3 95.1 93.7 92.2 91.0

1.1 96.1 96.2 96.2 96.2 96.1 95.5 95.2 95.2 95.0 93.0 91.4 90.7

1.3 96.3 96.2 96.1 96.2 96.1 95.7 95.3 95.0 94.7 92.9 91.3 90.7

1.5 96.2 96.2 96.2 96.2 95.8 95.8 94.9 95.0 94.8 92.9 90.8 90.9

is 96.2% for PF=1. The RBF SVM gives the best overall classification accuracy

(96.9%) compared to the other two (96.4% and 96.2%). Although the aforemen-

tioned parameter values are by no means the result of an exhaustive search for the

optimal classification accuracy, they do provide the best results for the substantial

range of parameter values considered.

Fig. 5.9 shows the classification accuracy for individual classes of airborne

spores. The RBF SVM gives the highest classification accuracy for three out of

the six classes considered. Its performance is consistent over all classes with a

mean accuracy of 97.0% compared to 96.2% and 95.7% of the polynomial and

linear SVM respectively. Table 5.3 shows the results, in the form of a confusion

matrix, for classifying the test set comprising 1250 feature vectors using SVM with
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Table 5.2: Overall classification percentage of RBF SVM for a range of σ and PF.

Penalty factor(PF)

Width(σ) 0.1 1 10 100

3.2 94.4 96.1 96.7 95.8

3.4 94.4 96.0 96.8 95.8

3.6 94.2 95.8 96.8 95.9

3.8 94.1 95.8 96.6 95.8

4.0 94.0 95.7 96.5 95.7

4.2 93.8 95.6 96.4 95.9

4.4 93.8 95.6 96.5 96.0

4.6 93.5 95.4 96.6 96.2

4.8 93.6 95.4 96.6 96.5

5.0 93.5 95.4 96.6 96.6

5.2 93.4 95.4 96.6 96.6

5.4 93.3 95.3 96.6 96.9

5.6 93.0 95.4 96.6 96.8

5.8 93.0 95.3 96.6 96.6

6.0 92.6 95.2 96.6 96.6

a RBF kernel. There is usually a trade-off between robustness and accuracy. This

trade-off is reflected in the classification errors observed in the confusion matrix of

Table 5.3. However, these errors are small since the classification accuracies of all

six species are above 94%.
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Figure 5.9: Comparison chart of the classification percentage for the individual

classes.

Table 5.3: Confusion matrix of classifying test set using RBF SVM.

Predicted Class

N
E

B
I

S
T

P
A

S
O

H
A

A
C

A
U

C
U

B
R

P
IM

A

A
ct

u
al

C
la

ss

NEBI 97.2 0.5 0.0 0.0 2.3 0.0

STPA 1.8 94.1 0.0 4.1 0.0 0.0

SOHA 0.0 0.0 98.5 1.5 0.0 0.0

ACAU 0.0 1.7 0.7 97.6 0.0 0.0

CUBR 1.9 0.0 0.0 0.0 97.8 0.3

PIMA 0.0 0.0 0.0 0.0 3.3 96.7

5.8.2 Contrast invariance

Here, the RBF SVM is tested on a new test set obtained from images of different

contrast from the ones used in training the SVM. A representative set of 50 seg-

mented specimens was collected from each class and subjected to linear contrast
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stretching [34] by factors of 0.2 to 1.0 in increments of 0.2. Incidentally, the RBF

SVM was trained for a contrast factor of 1.0. The classification results are shown

in Fig. 5.10. As observed, the classification performance of the proposed method is

approximately the same for different contrast stretching factors. Interestingly, the

STPA samples show slightly higher sensitivity to contrast variation and this is at-

tributed to minor quantization errors involved in obtaining test images of different

contrast factors.

Figure 5.10: Overall percentage of individual classes for different contrast stretch-

ing factors.

Another RBF SVM is trained using features generated by applying the linear

filtering measure, Ci from Chapter 2, and the parameters σ = 4.6 and PF=100

yielded the maximum accuracy on the same test images. Each test image was

subjected to linear contrast stretching [34] by factors of 0.2 to 1.0 in increments

of 0.2. Fig. 5.11 compares the overall classification results from the linear and

non-linear filtering schemes. As observed, the classification performance with non-

linear filtering is relatively unaffected by contrast stretching compared to that of

linear filtering.
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Figure 5.11: Comparison of overall classification accuracy attributed to non-linear

and linear filtering methods for different contrast factors.

5.8.3 Orientation invariance

The RBF SVM is tested on an entirely new feature set obtained from specimens

with different orientations. A representative set of 50 segmented specimens was

collected from each class where 24 samples were extracted from each image with

different orientations (0◦ to 345◦ with 15◦ intervals). In this way, a dataset of 1200

test images (50 × 24) of segmented specimens was created for each class in this

experiment. Fig. 5.12 shows the classification results where the twelve bars for

each class correspond to the various orientations from 0◦ at the leftmost bar to

345◦ at the rightmost. It is found that the test results are approximately similar

for different orientation.

5.8.4 Scale invariance

The RBF SVM is tested on another feature set obtained by sampling specimens

at different scale factors. A representative set of 50 segmented specimens was
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Figure 5.12: Overall percentage of individual classes for different orientations.

collected from each class where 10 samples with different scaling factor (0.25 to 2.5

at increments of 0.25) were extracted from each specimen. A dataset of 500 test

samples (50 × 10) of segmented specimens is therefore created for each class. Fig.

5.13 shows the classification results where the ten bars for each class correspond

to the various scaling factors from 0.25 at the leftmost bar to 2.5 at the rightmost.

Figure 5.13: Overall percentage of individual classes for different scales.

Scale-invariance is observed provided that changes in scale do not cause any

changes in the visual contents of the specimens. The sharp decline in accuracy for

some of the images captured under lower scaling factors such as 0.25 and 0.50 is

attributed to the loss in visual content since the RBF SVM classifier was trained

for images captured under a higher magnification ratio of 1.0. Conversely, the
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classification accuracy of all six species remains high for magnification ratios ex-

ceeding 1.0 since all visual contents of the images are preserved and no additional

information is introduced.

5.8.5 Variation of feature extraction area

It is believed that the specimen area, from which features are extracted, may

influence the overall classification accuracy. Here, this influence is studied by

considering five different cases corresponding to 20%, 40%, 60%, 80% and 100%

of the original specimen sizes considered in the previous sections. A set of feature

vectors are computed for each case and then used to train its respective RBF SVM

classifier. As in Section 5.8.1, a large test set of approximately 1250 and a training

set of approximately 2,500 segmented specimens are available for each case.

Fig. 5.14 shows the maximum overall classification results of the test set for

different feature extraction areas (expressed as a ratio of the original size in Section

5.8.1) over all values of σ and PF considered. In general, an increase in the feature

extraction area has a positive influence on the overall classification accuracy. This is

attributed to the larger amount of information available in aiding the classification

process.

5.8.6 Validation of energy measures

Here, the effects of including different sets of features on the classification process

is studied. As in Section 5.8.1, this study is performed for σ values ranging from

0.2 to 5.0 and PF= {0.1, 1, 10, 100} on a test set of approximately 1250 and a

training set of approximately 2,500 segmented specimens.
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Figure 5.14: Overall percentage for different feature extraction areas.

Table 5.4 shows the overall classification results for each permutation. From

Table 5.4, the combination comprising all three categories gives the highest classifi-

cation accuracy, indicating that all feature categories contribute towards the overall

classification accuracy. Although the feature set comprising exclusively of GEM

yields slight higher accuracy than LEM, the combination of NGEM and LEM gives

a higher accuracy of 96.2%, compared to 95.9% for the combination of NGEM and

GEM. This shows that LEM introduces additional information which is useful in

enhancing the classification accuracy. However, NGEM is the most significant of

all three energy measures since it encodes the area of the specimens in addition to

texture information.

5.8.7 Variation of regularization parameter

The influence of the regularization parameter γ on the noise robustness of the

proposed method is studied by testing the classifier on images added with Gaussian

noise at an SNR of 20 dB. It is reasonable to consider an SNR of 20 dB as it

represents the base-line case (worst case scenario) where typical SNR values of
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Table 5.4: Overall classification percentage for different combination of energy

measures.

GEM NGEM LEM Accuracy

(%)

X 85.6

X 92.5

X 84.1

X X 95.9

X X 89.7

X X 96.2

X X X 96.9

images in the database are significantly higher. The γ values in this study ranges

from 0-7 whereas the regularization constant c (from Chapter 2) remains fixed at

1. For each γ value, an RBF SVM classifier is found which gives the highest overall

classification accuracy for σ values ranging from 0.2 to 6.0 and PF= {0.1, 1, 10, 100}

using the data set from Section 5.8.1.

Fig. 5.15 shows the classification performance of the proposed method on noisy

test images for different γ values. It is observed that the classification accuracy

increases gradually from 40.0% at γ = 0 to its maximum value of 68.3% at γ = 7.

The increase in classification accuracy is attributed to the suppression of noise by

the regularization parameter.

The regularization parameter also influences the sensitivity of the proposed

method to contrast variation. For every γ, the corresponding classifier was tested

on a set of test images subjected to contrast stretching by a contrast factor of
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Figure 5.15: Overall classification accuracy of noisy test images for different regu-

larization values.

0.2. Fig. 5.16 shows the classification performance of the method on the con-

trast stretched test images for different γ values. The accuracy drops sharply for

γ > 0. The narrowing of the dynamic range in gray levels, causes many local

image neighborhoods to have standard deviation values below γ and therefore the

Ri values of these neighborhoods are significantly suppressed from those before

contrast stretching.

Figure 5.16: Overall classification accuracy of test images linearly stretched by

contrast factor = 0.2 for different regularization values.
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5.9 Discussion

The non linear filtering method in this thesis is contrast-invariant provided that

the contrast variation entails a linear transformation of the pixels. This is because

a linear transformation preserves the spatial profile of the local neighborhoods and

as such their corresponding Ri values remain the same.

Section 5.8.3 shows the orientation invariance of the method where minor vari-

ations in classification accuracy are attributed to the approximation and quanti-

zation errors following the cubic interpolation operation.

The proposed method is scale-invariant provided the changes in scale do not

cause a change in the visual contents of the specimens. The visual content is in

turn dependent on the image resolution (µm/pixel). Poor resolution may reduce

the visual contents and even introduce image artifacts if the texture patterns of the

specimens cannot be adequately represented. Therefore a sharp decline is observed

in some images captured under lower scaling factors such as 0.25 and 0.50 given

that the RBF SVM classifier was trained for images captured under a magnification

ratio of 1.0. Conversely, the classification accuracy of all six species remains high

for magnification ratios exceeding 1.0 since all visual contents of the images are

preserved and no additional information is introduced.

The specimen area from which the features is extracted influences the classifica-

tion accuracy since a larger area allows more texture information of the specimens

to be extracted. This also ensures a more robust feature set against the presence

of impurities in the specimen region.

The three energy measures – NGEM, LEM and GEM are required for accurately
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classifying the various spore classes. NGEM in particular, facilitates the distinction

between CUBR and PIMA, which have similar texture information, as they encode

the sizes of the spores.

An increase in the γ values of the non-linear filtering measure Ri results in a

decrease in contrast invariance but results in an increase in noise robustness.

5.10 Conclusion

A texture classification method, which is invariant to orientation, scale and con-

trast, has been successfully implemented. The key points of the proposed classifi-

cation method are: (1) orientation invariance via a simple yet effective strategy of

identifying the major and minor axes of the elliptical region within the specimen,

(2) determination of the largest ellipse within a specimen so as to further improve

the accuracy, (3) scale invariance by mapping the elliptical area within a unit circle

before constructing the polar map, (4) contrast invariance via non-linear filtering

of the polar map and (5) improved accuracy by combining local and global energy

measures. The various aspects of the proposed method, its invariant properties and

classification accuracy have been validated through a series of experiments. This

method is an improvement over classical linear filtering schemes employed in Laws’

and wavelet decomposition methods as it achieves contrast invariance although it

lacks in noise robustness. Its efficacy is demonstrated on a set of air-borne spore

allergens.



Chapter 6
Conclusions

The thesis focuses on the development of image processing and pattern recognition

techniques to ensure the robust detection and classification of biomedical specimens

from LM images. In so doing, contributions are made in the following three areas:

(1) detection of specimen boundary edges, (2) segmentation of specimens from the

background and (3) feature extraction and classification of specimens.

6.1 Summary of Contributions

In Chapter 2, the boundary edges of specimens are found via a novel edge detec-

tion method [47]. It presents an edge similarity measure that is simultaneously

robust to changes in image illumination and contrast unlike traditional GM and

AN methods, which are sensitive to contrast and illumination, respectively. It

incorporates a regularization term that achieves a good compromise between the

opposing objectives of noise reduction and contrast invariance. It is shown that

the proposed edge detection filter has a FIR HBT profile that offers better noise

reduction compared to the classical GFD filter. Although GFD gives better edge

localization (i.e., detection of true edge pixels), the edge localization FIR HBT

122
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filters is better for high noise levels with SNR below 5 dB. The reduction of false

edge responses by FIR HBT filters is comparable to that of GFD filters for narrow

filter widths ranging from 3 × 3 to 7 × 7. There is also better edge localization

of sharp intensity transitions in images compared to the phase congruency (PC)

method.

In Chapter 3, an alternative edge detection method, MMPM, is presented in

the multi-scale domain for detecting edges under high levels of image noise. It

achieves this by using a set of edge filters with multiple spatial widths instead of

a filter with fixed width. MMPM uses the min and product operators, in that

sequence, to accurately detect step edges and significantly reduces the number of

false edges detected due to noise. Unlike traditional multi-scale edge detection

schemes, which are confined to the GFD in Canny’s method [12] and the Mallat-

Zhong filter, MMPM extends this list to include other filters such as the DOB,

ramp filter and the FIR HBT filter proposed in Chapter 2. The MMPM scheme

also removes the problem of edge drift, across successive decomposition scales,

which afflicts the MWPM scheme.

The edge detection criteria by Canny [12] is also redefined in the multi-scale

domain and compares the performance of the various filters based on these criteria.

It was observed that the GFD, ramp, HBT and DOB filters considered in this thesis

give an approximately similar performance for edge localization and number of false

edge responses. However, a marked difference is observed in their SNR performance

with both RMP and HBT showing significantly better results compared to the

other two. Although it achieves better noise tolerance and reduction of false edge

responses than the method in Chapter 2, it is sensitive to contrast variation as it
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adopts the similarity measure Ci from 2.2.

In Chapter 4, a robust method for splitting binary clumps is presented via

a set of concavity-based rules [50]. The binary clumps represent the specimen

regions detected after linking up the edge pixels via binary morphology. Each

binary clump comprises two or more overlapping specimens. The concavity-based

rules introduced include concavity depth, saliency, concavity-concavity alignment,

concavity-line alignment, concavity angle, concavity ratio and measure of split.

They ensure the accurate splitting of clumps comprising specimens of diverse sizes

and shapes with different extent of overlap. It has been successfully applied to

images comprising airborne spores and cytological specimens.

Chapter 5 proposes a texture classification method which is invariant to orien-

tation, scale and contrast. It generates a polar map from each specimen region and

extracts textural features from these polar map which are then assigned to their

respective classes. Orientation invariance is achieved by redefining the coordinate

axes to be aligned along the major and minor axes of specimens. Mapping of the

pixels from the largest elliptical area within a specimen to a fixed unit circular area,

regardless of the specimen size, ensures that the resultant polar map is invariant

to scale. The non-linear filtering of the polar map using the similarity measure Ri

gives the texture classification features its contrast invariance property. Lastly, the

use of both local and global(normalized and non-normalized) texture features and

their extraction from the largest elliptical area from within the specimen, ensure a

high classification accuracy.
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6.2 Future Directions of Research

The aim of the thesis is to expand the knowledge base on robust techniques for

the automatic identification and classification of biomedical cell specimens from

LM images. However, there are several issues that need to be addressed before

the proposed techniques can be successfully incorporated into a fully automated

system.

1. Tuning of regularization parameter c.

The current selection of the parameter, c from Section 2.13, is an empirical

process. Quantifying the relationship of c to noise tolerance and contrast

invariance may provide a more principled basis for the selection of its value

to be used on a given image.

2. Combining edge detection methods proposed in Chapters 2 and 3.

The edge similarity measure Ri in Chapter 2 is implemented for a 2-D filter of

fixed width whereas Chapter 3 proposes a multi-scale edge detection scheme

based on the classical similarity measure Ci and a pair of separable 1-D low

pass and high pass filters. Although the multi-scale method has higher noise

tolerance compared to the fixed scale method, it lacks contrast invariance due

to the use of the similarity measure Ci. Therefore, replacing Ci and the 1-D

filter pair of the multi-scale method with the measure Ri and 2-D FIR HBT

filter from Chapter 2, respectively may further improve its edge detection

performance.

3. Incorporating concavity pixels at the interior boundaries.

The proposed clump splitting method is based on concavity analysis and
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therefore works well provided the sizes of ‘holes’ within the clump is negligi-

ble if any. The proposed method only detects concavity pixels at the exterior

boundary of the clump whereas concavities at the interior boundaries be-

tween the ‘holes’ and the clump, are ignored. The accuracy of the clump

splitting method can be further increased if both types of concavity pixels

are taken into consideration. Although the proposed method can be adapted

for application on overlapping cells of diverse sizes and shapes, its perfor-

mance on elongated cells such as the Dreschlera spores is markedly poorer

than with the more circular cells such as the Acacia spores.

4. Increasing robustness of texture classification method.

The proposed method of extracting texture features from the largest elliptical

region within a cell, works well provided the cells closely resemble an ellipse.

Conversely, the texture extraction area may not be sufficiently large for cells

which are highly non-elliptical and this may adversely affect the classification

accuracy.
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[21] G. Fernàndez, M. Kunt, and J.-P. Zrÿd. A new plant cell image segmentation

algorithm. In ICIAP’95: Proc. 8th Internat. Conf. on Image Analysis and

Processing, pages 229–234, 1995.

[22] M. Fernández-Delgado, P. Carrión, E. Cernadas, J.F. Gálvez, and P. Sá-
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