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Summary

In the last decade, biologists experienced a fundamental revolution from traditional

researches involving DNA sequence search and protein structure pattern mining.

The biological data is complex, and both the quantity and the size are growing ex-

ponentially. Data evolves more quickly than the technologies developed to interpret

the data. This motivated us to conduct researches on the query and mining in bio-

logical databases. The DNA sequence and the protein structure are the two types

of the most important biological data. The former can be represented by strings

of four characters and the later can be represented by a sequential 3D structure

together with the amino acid sequence information. In this thesis, we focused on

the problems raised in these two types of sequential biological data.

First, we studied the index and similarity search in large DNA sequence databases

on desktop PC. We proposed an index structure called the ed-tree [82] for support-

ing fast and effective homology searches on DNA databases. The ed-tree is a

probe-based homology search algorithm similar with the popular Blastn [7] which

generates short probe strings from the query sequence and matches them against

the sequence database in order to identify the potential regions of high similarity
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to the query sequence. Compared to Blastn, ed-tree adopts more flexible probe

detection model which allows insertion, deletion and replacement. Meanwhile, the

query speed on large DNA sequence datasets is significantly enhanced by a factor

of 3 to 6. Moreover, the index size of ed-tree is modest. For example, the index

for a dataset of 2Gbps is about 3GB which is much smaller than the other index

strategies such as suffix tree and etc.

Second, we investigated substructure clustering in sequential 3D object datasets,

especially protein structures. This problem was not well studied but applicable in

many important applications such as protein 3D structure pattern mining, track

mining on moving objects and so on. We presented a distance measurement,

Feature Difference Summation (fds), for evaluating the dissimilarity of two

sequential 3D structures. The fds is effective on protein structure comparisons

but more efficient compared to the traditional structural distance measurement,

Root Mean Square Distance (rmsd). Mining maximal sClusters was described

for modelling the problem of finding non-trivial substructure cluster where every

two substructures are similar and the cluster cannot be further extended in terms of

both the cardinality of cluster and the length of substructures. We proposed sClus-

ter algorithm [83, 85], a modified-apriori approach for efficiently mining maximal

sClusters on given sequential 3D object datasets. Additionally, we extend the

algorithm to query maximal sClusters which are related to given new objects.

Experiments show that our approach significantly outperforms the alternative al-

gorithm and the sample result on protein chains shows the effectiveness.

Third, as an improvement of sCluster, MSP [86] was designed for mining max-

imal sequential 3D patterns with the constraints of minimum support and mining

confidence based on a seed-and-extension strategy. MSP includes three stages, gen-

erating pairwise patterns as seeds, vertical extension to detect all the hits with a
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depth-first search and horizontal extension to extend the pattern length without

loss of hits. In order to adapt MSP to various datasets, we created a method to

automatically detect proper settings according to the given dataset. The experi-

ments on protein chains and synthetic data show MSP significantly outperforms

the sCluster method.

Fourth, we utilized protein 3D structure patterns as the features in classifica-

tions for remotely homologous proteins where the similarities of their amino acid

sequences to known proteins are ambiguous. Without considering sequences, sClus-

ter were adopted to find structural motifs for building binary classification rule

groups. Deterministic Binary Classification Tree (DBCT ) [84] was proposed to in-

corporate multiple binary classifiers to multi-class classification. DBCT avoids the

tremendous number of binary classifiers. Experimental study shows both the pre-

cision and the recall of our approach are high, and DBCT exponentially enhances

the response speed of protein family prediction.

Furthermore, we applied ed− tree on protein sequences and built a FCDR Sys-

tem to search DNA regions which code conserved 3D protein structures mined by

sCluster. A well-designed GUI was provided for researchers to view 3D protein

structures and to query the coding DNA regions. The hit protein sequence and

the corresponding DNA coding sequence, annotation, position, translation open

reading frames and directions would be described in the query results. It is a

comprehensive and intuitive tool to understand the relationship between DNA se-

quences and conserved protein 3D structures.

In all, we have addressed some important and valuable issues about sequential

biological data including DNA sequences and protein chains and proposed our solu-

tions in this thesis. The ed-tree could be applied for similarity search in large DNA

sequence databases on desktop PC. sCluster and MSP are two generic approaches
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for mining sequential structural patterns with respect to 3D coordinates. Both the

problem and the approaches are new compared to the existing works. sCluster and

MSP could be adopted to find the frequent 3D patterns in proteins. The obtained

3D patterns are further used for classifications in remotely homologous proteins

with the DBCT mechanism. Finally, FCDR System integrates ed − tree on pro-

tein sequences with sCluster to find coding DNA regions for conserved protein 3D

structures.
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CHAPTER 1

Introduction

With the development of molecular biology in the last decades, both the volume

and the complexity of biological data is growing exponentially. Classical approaches

and standard relational database systems are not efficient to produce effective in-

formation. To understand and conduct analysis on the data and the correlations

between them, computational biological methods are required.

DNA sequences and protein structures (mainly protein chains) are two types

of the most important biological data. They are sequential objects which can be

represented as strings of characters and sequential 3D structures respectively. In

this thesis, we mainly investigated several important issues on DNA sequences and

protein structures.
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Figure 1.1: DNA dual-helix structure

1.1 DNA Sequences And Proteins

The DNA-protein system is a simple but extremely powerful system for creating all

biological features and structures. By varying the code words of DNA sequences,

innumerable different proteins with disparate functions are generated. The proteins

are consequently incorporated together to build all biological organisms [73].

1.1.1 DNA Sequences

The structure, type and functions of a cell are all determined by chromosomes

which are composed of DNA. As shown in Figure 1.1, DNA sequence is arranged

into a double-helix structure where the spirals are intertwined with one another

continuously bending in on itself and nucleic acids are the building blocks [51].

There are four different nucleic acids, adenine (A), thymine (T), guanine (G), and

cytosine (C). The number of nucleic acids in genome is normally very large. For

example, a yeast has 12 million and the human genome is made of roughly three

billion of nucleic acids. The genome is like a library of instructions that provide

the instructions for a single protein component of an organism. Billions of nucleic

acids and the variations of permutations result in the uniqueness of the individuals.



3

1.1.2 From DNA Sequences to Proteins

Figure 1.2: From DNA to protein

Each cell contains all the DNA sequences. However, its functions and structures

are composed according to the fractions of the DNA sequences which are used.

Proteins are essential to our body in a variety of ways. They are the results from

a series of transformations on the genetic information in DNA sequences.

Figure 1.2 illustrates the processes for transforming DNA sequences to proteins

[51]. Transcription is the creation of messenger RNA (mRNA) using the DNA as

a template. Translation is the creation of protein in the ribosome. The double

helix structure of DNA uncoils in order for messenger ribonucleic acid (mRNA) to

replicate the genetic sequence responsible for the coding of a particular protein.

At the beginning, mRNA moves in and transcribes the genetic information. Uracil

(U) bases in mRNA replace all thymine bases (T ) in DNA . When the genetic

information responsible for creating substances is available on the mRNA strand,

the mRNA moves out from the DNA towards the ribosome. Ribosomes are special

cell structure which are the sites for translation. Finally, the synthesis of proteins

is done in ribosomes. During the translation, every three nucleic acids in DNA

code one amino acid in protein. The human genome makes about 30,000 proteins,

each of which contains a few hundred amino acids [72].
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1.1.3 Amino Acid Sequences And Protein Structures
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Figure 1.3: Architecture of amino acid
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Figure 1.4: Connection between two amino acids

There are twenty amino acids found in proteins. The architecture of an amino

acid is depicted in Figure 1.3. R denotes any one of the 20 possible side chains [14].

The different side chains R determine the chemical properties of the amino acid

or residue (the residue is the amino acid side chain plus the peptide backbone).

The amino acids are encoded using 3-letter code such as ALA (Alanine), LYS

(Lysine) and TYR (Tyrosine) and etc. They are combined and connected by the

condensation reactions as illustrated in 1.4.

The amino acid sequence is considered as the primary structure of protein. How-

ever, the sequence is folded into a complicated 3D structures. Secondary structure

is defined as ”local” ordered structure brought about via hydrogen bonding mainly

within the peptide backbone. Tertiary structure is the ”global” folding of a single

polypeptide chain. Quaternary structure involves the association of two or more
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polypeptide chains into a multi-subunit structure [14].

Every protein has either chemical or structural functions to fulfill. It means that

the protein functions are determined by the sequence and structure. The protein

structure is one of the most important biological data in real-life applications. For

example, in pharmaceutics, the protein substructure pattern is extremely valuable

for binding site detection which is the basis of the structure-based drug design.

1.1.4 Our Study on Computational Approaches to DNA

Sequences and Proteins

During the evolution, the DNA sequence and the protein varied with mutations

and natural selection. Consequently, the DNA sequence, the protein sequence and

structure are conserved with variations in an extent. To investigate the homol-

ogy on DNA sequences and protein structures is an important approach to better

understanding the evolution.

In this thesis, we firstly studied the homology search in DNA sequences at first.

As a result, we proposed the ed−tree. Secondly, we discussed the homology mining

in protein structures and contributed sCluster [83, 85] and MSP [86]. For proteins

which are remotely homologous to the existing annotated protein collection, 3D

structures are conserved better than sequences. Therefore, we created the DBCT

[84] to apply the structure patterns which are obtained in sCluster and MSP to

remote homology detection for proteins. Moreover, we built FCDR System which

integrates the visualization of 3D structures and sequence searches in order to

further trace DNA regions which code frequent protein 3D patterns.
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1.2 Database Techniques for Biological Datasets

Indexing, clustering and mining technology on biological databases are essential

to summarize the information of biological data, to efficiently discover knowledge

that may be impossible by the traditional methodologies, and to find unexpected

patterns which may be meaningful for drug design and some important biological

applications such as protein interaction predictions.

A database index is meant to improve the efficiency of data lookup at rows of a

table by a key access retrieval method. In practice, large databases must be indexed

to meet performance requirements [26]. DNA sequence databases are normally as

large as billions of bps (base pairs). For example, the human genome, is about

3Gbps. On the other hand, the DNA sequences are mainly consisted of 4 types

of nucleic acids, A (Adeninine), C (Cytosine), G (Guanine) and T (Thymine).

Approximate matches are sometimes more important to detect mutation and ho-

mology. Special indices [45, 62, 82, 91] are designed according to the characteristics

of DNA sequences to address the efficiency and the effectiveness of the results.

Clustering is an unsupervised process to group similar objects together based on

the principle of maximizing the intra-class similarity and minimizing the inter-class

similarity [23, 32, 34]. Subspace clustering is an extension of traditional clustering

that finds clusters in different subspaces within a dataset [67]. Protein chains

are sequential 3D objects which comprise linked amino acids ranging from tens to

thousands. Subspace clustering on protein chains is to find out frequent 3D motifs

which could be very useful.

Classification is a process to find the models or functions to describe and dis-

tinguish data classes for the purpose of predicting the class of objects whose class

labels are unknown [74]. Nearly all proteins have structural similarities with other

proteins and, in some of these cases, share a common evolutionary origin [63].
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Many works such as SCOP [9, 25, 63], CATH [66, 68, 69] and Dali [35] and etc. for

protein classifications have been contributed to illustrate the structural and evo-

lutionary relationships between the proteins whose structures are known. It could

provide a broad survey of all known protein folds, detailed information about the

close relatives of any particular protein, and a framework for future research and

classification. Extensive researches focused on protein homology detection based

on significant or weak sequence similarities [3, 7, 8, 18, 36, 43, 52, 54, 80, 81, 89].

Because protein 3D structure can elucidate its function, in both general and specific

terms as well as its evolutionary history [15, 53]. Besides, protein 3D structures

in the same family conserve in a more significant extent than sequences. Frequent

structural patterns in terms of 3D coordinates could be a new way to facilitate the

detection of remote homologies.

Overall, since the biological data becomes tremendous with the growing re-

search interests and the revolution of research approaches, it becomes more and

more important and necessary to analyze and understand biological data and the

relationships between various data sets using computational approaches.

1.3 Homology Search in DNA Sequences

Homology search on DNA sequences is to find similar local alignments among the

query and the sequences in databases according to a similarity scoring system, for

example edit distance. It is an important function in genomic research. Different

from the previous works, our study in this thesis is to develop a system to enable

biologists to build large DNA databases and to conduct fast and effective queries

on their own desktop PC.
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1.3.1 Motivations

Homology search on DNA sequence databases is an important function in genomic

research. R. Stevens et. al. [31] conducted a survey of the tasks in bioinformatics

in 2001. These include the tasks of obtaining a sequence, finding what exists that is

similar and what patterns are present that might indicate sequence function. The

result in Figure 1.5 depicts 35.2% [31] of the tasks are sequence similarity search

where 33.3% of them are related to DNA sequence search. Due to the recent interest

Question Class Percentage(%)
Sequence similarity searching 35.2
Functional motif searching 11.1

Sequence retrieval 8.57
Multiple sequence alignment 6.7

Restriction mapping 6.03
Secondary and tertiary structure prediction 4.4
Other DNA analysis including translation 4.4

Primer design 3.8
ORF analysis 3.5

literature searching 3.17
Phylogenetic analysis 2.86

Protein analysis 3.17
Sequence assembly 2.54

Location of expression 2.22
Miscellaneous 2.22

Figure 1.5: Task classification

in genomic research, the size of DNA sequence databases is growing exponentially

in the past few years. For example, the popular GenBank ’s nucleotide sequence

database is doubling its size every 15-16 months [11, 12] as shown in Figure 1.6.

As many existing search methods are based on sequential scanning on databases,

the growth in database size will adversely affect the efficiency of these search meth-

ods. Due to limited PC memory and the sequential-scan schema of the existing

approaches, the query speed on large DNA sequence databases is not satisfied. This
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motivated us to either develop new and more efficient methods or enhance existing

methods to be more scalable to the size of databases. Consequently, we designed

the ed-tree [82] to speed up the query process on desktop PC.
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Figure 1.6: Growth of DNA sequences in GenBank

1.3.2 Our Research Problem

Given a query sequence Q and a target sequence database T , find a set of subse-

quences of Q such that each subsequence Q′ in the set is highly similar to some

subsequence T ′ of T . The similarity between Q′ and T ′ is computed as a function

of the edit distance, edit(Q′, T ′), which is defined as the minimum number of edit

operations (insert, delete, replace) that transform Q′ into T ′.

Input
Q: TTATATTGCATA

ATCTGCA

AT−TGCA

AT−GCA

ATTGCA

DNA Sequence DB

TCATGCAATCTGCATT

Figure 1.7: Example of DNA similarity search

As shown in Figure 1.7, Q : ATTGCA is a short DNA sequence and we are
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going to find the similar sequence alignments in the target DNA sequence database

TCATGCAATCTGCATT . Two pairs are found as below:

(ATTGCA, ATGCA) and (ATTGCA, ATCTGCA)

1.3.3 Contributions: The ed-tree

The ed-tree is an index structure specially designed for DNA sequences which

mainly include four kinds of nucleic acids: A, C, G and T. We also presented

the algorithm to index DNA sequences with ed-tree and the search algorithm on

ed-tree. Compared to the popular Blastn method [7], the ed-tree supports more

flexible probe model with longer probes and more relax matching. The query of our

method is up to 6 times faster than Blastn. Moreover, to index a DNA database

of 2 giga base pairs(Gbps), the ed-tree only takes less than 3Gb hard disk storage

which is easily handled by a desktop PC.

1.4 Mining Sequential 3D Patterns in Protein

Structures

Life science data are complicated. In real-life biological applications, many datasets

such as protein chains could be represented by sequential 3D structures. Existing

subspace clustering methods mainly process value-based patterns which are located

on same dimension group.

1.4.1 Motivations

Traditional relational database may not be applicable for modeling and analyzing

such complex data especially protein structures. Protein chains can be represented

as sequential 3D objects. The frequent protein 3D patterns are very meaningful in
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Protein 1
Protein 2

Figure 1.8: Example of subspace clustering

many biological and pharmaceutical applications. However, most of the existing

subspace clustering methods are based on value similarity and pattern similarity

instead of 3D structure similarity where translation and rotation should be consid-

ered. We studied subspace clustering method in terms of 3D coordinates and the

method was applied to discover 3D structural motifs in protein families.

1.4.2 Our Research Problem

Sequential 3D objects appear in many real-life applications. To find out all the

frequent substructures in the sequential 3D object dataset is a common and mean-

ingful problem. The maximal pattern is defined as a group of substructures which

cannot be extended either in terms of length or in terms of occurrences. As shown

in the area specified by the rectangle in Figure 1.8, one substructure of protein 1

exhibits the similarity with one substructure of protein 2. The purpose of the study

in this thesis is to find out the frequent patterns in sequential 3D dataset.

Additionally, because datasets often include objects from various classes and
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it is possible for a pattern to appear in different classes, the constrains of the

minimum support and minimum confidence should be considered during pattern

mining. These constraints form the basis of applications such as classification and

prediction [55].

1.4.3 Contributions: sCluster And MSP

According to our knowledge, we are the first to investigate mining subspace clusters

with respect to 3D coordinates in sequential structural datasets. Motivated by the

lack of suitable mining approaches to protein chains, we started to work on cluster-

ing substructures in sequential 3D object dataset. We proposed sCluster [83, 85]

for mining sequential structural subspace clusters in terms of 3D coordinates. The

obtained clusters are the non-trivial clusters, maximal sCluster, which cannot be

contained by another cluster. sCluster is an extended apriori [5] algorithm to ex-

pand the pairwise maximal sClusters with respects to both the cardinality and

the length. We also extended the approach to support query, i.e., to incremen-

tally generate the maximal sClusters only related to the given new object. Due

to the absence of existing subspace clustering methods on sequential 3D objects,

we compared sCluster with an rmsd-based clustering to evaluate the performance.

Experiments showed that sCluster was faster than the rmsd-based method by mag-

nitudes. Furthermore, randomly selected sClusters in protein chains illustrated the

effectiveness of our results.

As an improvement of sCluster, MSP [86] was proposed for mining maximal

sequential 3D patterns with the constraints of minimum support and mining con-

fidence based on a seed-and-extension strategy. MSP includes three stages. First,

short patterns with fixed length appearing in two 3D objects are produced as

the seeds. Second, the vertical extension, a novel depth-first search algorithm is
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adopted to enumerate the hits of seeds in all objects with the constraints of min-

imum support and minimum confidence. Third, the horizontal extension is to ex-

tend every pattern to be the longest without loss of hits. Furthermore, a dual-level

binary-search algorithm, DPS, is implemented to automatically identify the proper

settings to produce the number of patterns specified by users. Comparison exper-

iments showed that MSP was faster and more scalable than sCluster. We applied

MSP to protein family classification, and the obtained patterns correctly classified

the protein families on all the tested binary-class datasets. We also applied MSP

to PhysioNet/CinC Challenge 2002 dataset and achieved both good precision and

recall in the classification event.

1.5 Remote Homology Detection Based on Se-

quential 3D Patterns

Remote homology detection is to find out the evolution relationship between var-

ious proteins where the sequence similarities are ambiguous, i.e., to classify new

protein chains to the known families. Protein sequences and their corresponding

structures may change due to mutations during natural select. High sequence sim-

ilarity implies that the proteins be descendants of the same ancestry family. At the

same time, the similar structure occurrences also provide evidence of evolutionary

relationship. The results can be applied to drug discovery, phylogenetic analysis

and etc [3]. Naturally, amino acid sequences are conformed into 3D shapes which

are highly conserved in the evolution process.

As protein sequences are translated from DNA sequences, it would be helpful

to further study DNA regions which code the frequent protein 3D structures.
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1.5.1 Motivations

Many researchers proposed methods [7, 8, 18, 43, 52, 54, 80, 81] focused on the

analysis on amino acid sequences. However, the 3D structure of proteins are more

resilient to mutations than sequences due to the conformation and functional con-

straints [3]. Remotely homologies are statistically undetectable using traditional

classification methods which are mainly based on sequence identity [36]. This pro-

motes us to study family classification for remotely homologous proteins based on

3D structural motifs to be a complement of the sequence based methods. More-

over, a convenient visualization tool should be provided to better understand 3D

structures.

1.5.2 Our Research Problem: Protein Classification Based

on 3D Structures

A protein chain can be represented as a sequential 3D object where the vertices are

the Cα atoms with coordinates and the edges are the links between neighboring Cα

atoms.

Given a new protein structure, q, we are going to predict the most possible

protein family which q belongs to based on the 3D structural pattern comparison.

1.5.3 Our Research Problem: Finding Coding DNA Re-

gions for Similar 3D Protein Structures

Given a DNA sequence dataset and a protein 3D structure dataset of an organism,

we are going to find the DNA sequences which code similar protein 3D structures.
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1.5.4 Contributions: Deterministic Binary Classification Tree

We proposed a classification approach that was purely based on 3D structural fea-

tures. We aimed to find an accurate classification method for remotely homologous

protein whose sequence identity to known protein is less than 30% but the function-

alities are similar. Our method generated the discriminative frequent 3D patterns

for each two groups of proteins, i.e., the patterns appear in only one group. A

mechanism, called deterministic binary classification tree (DBCT ) [84] was pro-

posed to incorporate the pattern groups for multi-class classification. Our method

can be a good compliment of the existing sequence based methods.

1.5.5 Contribution: FCDR System

We built a FCDR System to preprocess DNA sequences and protein 3D structures,

to interactively visualize 3D structures and to search DNA regions which code

similar 3D structures.

1.6 Outline of This Thesis

This thesis would be organized as follows. In Chapter 2, we described the existing

works for all the topics that would be discussed in this thesis. In Chapter 3,

the ed-tree was presented together with the algorithms for building ed-tree over

the given DNA sequence database, the search process with the ed-tree and the

experimental evaluation results. In Chapter 4, sCluster was proposed for mining

non-trivial subspace clusters in sequential 3D dataset. Hence, MSP was presented

in Chapter 5 for mining maximal sequential 3D patterns with the constraints of

minimum support and minimum confidence based on a seed-and-extension strategy.

Both sCluster and MSP were evaluated on protein structures. In Chapter 6, we
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described a classification approach that was purely based on 3D structural features.

FCDR System was introduced in Chapter 7. This thesis was concluded in Chapter

8.
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CHAPTER 2

State of Arts

2.1 Homology Search in DNA Sequence Datasets

With the increasing interest on genomic research, various DNA sequence searching

systems [7, 16, 17, 30, 41, 45, 59, 79, 91] have been developed to support different

objectives. Some methods locate similar regions in the sequence database by se-

quential scan while others index the databases using novel data structures which

can speed up homology search processes where homology means the similarity in

different DNA sequences.

2.1.1 Sequential-scan-based Approaches

There have been many proposals on performing a full scan on the sequence database

for homology search. The most fundamental method is the Smith-Waterman algo-

rithm [77], which performs sequence alignment between query sequence and target

sequence using a dynamic programming algorithm in O(mn) time with m and n
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being the lengths of two sequences.

Blastn

Blastn [7] is the most widely used DNA homology search system since 1990. It

considers exact match of w contiguous bases as candidates which are extended

greedily towards both left and right side to obtain the final alignments. However,

Blastn faces a difficulty in the choice of w since increasing w decreases sensitivity

whereas decreasing w slows down computation.

BLAST includes three algorithmic steps, compiling a list of high scoring words,

scanning the database for hits and extending hits. These stages vary somewhat

depending on whether the database contains proteins or DNA sequences. For

proteins, the list consists of all words that score more than a threshold T . For

DNA, given a query sequence Q, Blastn moves a sliding window of size w along

the sequence Q one alphabet at time generating a total of |Q| −w + 1 seeds where

8 ≤ w ≤ 15. It encodes every database sequence into bit representation. And

it employs a finite state machine [10] to scan the entire sequence database to see

if the sequence contains a k-tuple that can match with one of the query k-tuples

to produce a seed with a score no less than a pre-determined threshold. These

seeds are then use to query the target sequence R and any portion of R that

match any of the seeds exactly are extended to check for local alignment. A

full scan through the target sequence is to identify matching positions. Dynamic

programming is used to find a locally maximal segment pair containing the hit.

The similarity score between two sequences is determined by scoring identities +5,

and mismatches -4. The extension is along both the left and the right sides until

the score cannot grow any more through either extending it or cutting it short.

w is a major factor that affects the tradeoff between finding too many random
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matches and having fasle drop. A large value for w can result in matching regions

and to be missed while a small value of w means that there could be too many

random hits which slow down the computation. The root of the problem here is the

requirement for exact seed match which is rather rigid for homology search. And

it consequently cannot detect homologous regions with deletions and insertions.

Blast becomes popular due to its fast speed. However with the growth of the

database size, its memory requirement becomes large that makes it unsuitable for

biologists to build index and conduct search in large sequence database on their

desktop PC.

Pattern Hunter

Pattern Hunter[59] aims to find all approximate repeats or homologies in one DNA

sequence or between two DNA sequences. It is an improvement on Blast both in

speed and sensitivity by using non-consecutive k letters as model, where k is the

weight of model. For example, in 110100110010101111 model 1-positions mean

required matches while 0s are wild cards. The hits will be extended in a greedy

manner to the left and right stopping when the score drops by a certain amount.

Unlike Blast, Pattern Hunter scores matches +1, mismatches -1, gap open -5 and

gap extension -1. According to their reported results, this system is powerful on

handling homologous search with long query sequences.

Pattern Hunter is implemented in Java using the spaced seed model and various

algorithmic improvements using advanced data structures which are the key to its

fast speed.

The obvious improvement of Pattern Hunter is that it introduces wildcards

during hit selections. Compared to Blast, replacements can be more likely detected

by this system. When generating seeds, Pattern Hunter achieves better sensitivity
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since it can better detect replacements in the sequences than Blast. However,

homologous sequence regions with insertions and deletions still cannot be detected

sensitively. Pattern Hunter is still essentially a sequential scan method which may

not scale up for very large sequence databases on desktop PC.

SENSEI

SENsitive SEarch Implmentation(SENSEI) [79] is another sequential scanning

method which selects hits by exact match. It outperforms Blastn by using com-

pactly encoded scoring tables for k-tuples, encoding bases with single bits, remov-

ing the simple sequence repeats, and masking some known repeats in the query

sequence. It is a tool for computationally efficient identification of nucleic acid

sequence similarities, and it is particularly optimized for the analysis of large se-

quences.

Similarly with BLAST, SENSEI search engines is based on a search algorithm

in which words generated from the query sequence are indexed by the location of

their occurrences in the query. It’s based on a heuristic word search similar to that

of Blastn, a component of the BLAST suite of programs, is used for searching DNA

query sequences against a DNA sequence database or a DNA target sequence.

Thus, for each word or k-tuple, a list of all the locations in the query sequence

containing that word is generated. The target sequence is then scanned sequentially

to identify potential matches by finding words in common with the query. When a

word hit occurs, the program attempts to extend it on both the left and the right

by checking if additional matching nucleotides can be found. If this extended word

forms a significant ungapped segment (in the BLAST nomenclature, high-scoring

pair or HSP) and its score achieves statistical significance, the extended word is

saved.
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Figure 2.1: Word tables in Blastn and SENSEI

Compared to Blastn, SENSEI differentiates itself in four points including: First,

Figure 2.1 shows that multiple words for each query address are stored in the word

look-up table in Blastn, while only a single word for each query address is stored in

the word table in SENSEI. Second, in Blastn, both the positive and the negative

strands are considered. While SENSEI uses only the positive strand. Third, Blastn

encodes each base into 2 bits. SENSEI offers two representations of a base. The

default one is representing a base using 1 bit. Both A and G are encoded by bit(0).

Both C and T are encoded by bit(1). Finally, during the extension of hit word,

Blastn moves single base at a time compared to SENSEI that extends high score

pair (HSP) scores 8 bases-pair at a time.

In summary, SENSEI is a variant of Blastn. It uses a logical exclusive-or (XOR)

to encode the score table and extends HSP scores 8 base-pair at a time. And it

does not find more homologous sequences than Blastn.

Locality Sensitive Hashing

LSH-ALL-PAIRS was proposed by Buhler in [16] for finding longer seeds to improve

efficiency, while maintaining sensitivity for weak similarity by using the technique

of locality-sensitive hashing(LSH). However false drops and false hits cannot be

completely avoided because the result is sensitive to the hashing functions being

used. Furthermore, it is possible to miss some short alignments in a collection of

sequences.
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A Whole Genome Alignment Method

In [44], the problem of finding local alignments for huge genome strings has been

discussed. The authors construct a match table, a boolean matrix in which an

entry is marked as true if the corresponding substrings may be similar, and false

otherwise. The match table is used for pruning and partitioning search. After that,

they compute scores in the frequency domain and find local alignments between

two strings. This method addresses on comparing two long sequences such as whole

genomes.

2.1.2 Suffix Tree Based Approaches

For a given string, suffix tree indexes every suffix that can be uniquely traced from

the root to the corresponding leaf. Concatenating all characters along the path

from the root to a leaf will produce the text of the suffix.

Suffix tree was well studied by many researchers [41, 60]. It’s powerful to do

exact matching which costs O(n) time. Theoretically, for a string with n characters,

its suffix tree requires O(n) construction time and O(n) space using suffix links.

However most of the suffix tree variant suffers from the memory bottleneck.

The bottleneck is caused by not only the source string itself but the tree data

structure. Suffix links also contribute substantially to the bottleneck. In all, suffix

tree is powerful to handle exact matching. On the other hand, it has two obvious

weaknesses.

1. Memory bottleneck: up to now, the memory requirement of suffix tree is still

too high to be adopted to practical use for large DNA sequences. As we know,

the longest sequence which can be indexed is 263Mbp under the limitation of

the 2GB RAM.
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2. Hard to handle mismatch: according to its structure, it’s easy to know suffix

tree is difficult to detect mismatch while for biologists distant homologous

sequences are often biologically significant.

QUASAR

QUASAR [17] applies a modification of q-tuple filtering implemented on top of

suffix array. It aims to search for sequences that are strongly similar to a given

query sequence. This approach is based on an observation: if two sequences have

an edit distance below a certain bound, it is guaranteed that they share a certain

number of q-grams[87]. A filter is designed to select candidate positions from the

database where the query sequence possibly occurs with a high level of similarity.

Generally speaking, the approach is to solve approximate matching by reducing it

to exact matching of short substrings of length q (called q-grams). It relies on the

following lemma:

Lemma 2.1.1 Let an occurrence of S[1 : w] with at most k differences end at

position j in D. Then at least w + 1− (k + 1)q of the q-grams in S[1 : w] occur in

the substring D[j − w + 1 : j].

Figure 2.2: Lemma of QUASAR

This lemma gives a necessary condition for a subsequence of D to be a candidate

for an approximate match with S[1 : w] occur in a substring of D with length w.

Substrings of D with this property are potential approximate matches and will later

be checked with an alignment algorithm. The suffix array[60] A built on database
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D is an array of length |D| storing the lexicographically ordered sequence of all

suffixes of D. Entry A[j] contains the text position where the j-th smallest suffix

of D starts. In order to find all approximate matches between S[1 : w] and D, all

the substrings in D that share at least t q-grams with S[1 : w] are identified. For

each block, they maintain one counter.

QUASAR is good search tool for highly similar strings. The database is split

into blocks of a fixed size. A window slides on the query sequence, and the number

of common q-grams of the sub-query specified by the window and each of the

database blocks are counted using the suffix array. Database blocks which contain

less common q-grams than a given threshold are eliminated. Experimentally this

approach is an order of magnitude faster than BLAST. This technique has three

drawbacks. First, it has extensive memory requirement. The memory requirement

is 9 times of the database size at construction phase, and 5 times of the database size

at run time. Second, the performance deteriorates quickly for distant homologous

sequences. Third, it leads to false drops. The substrings that span two consecutive

blocks are not considered, and each block has only one counter.

Disk Based Suffix Tree[41] And In-memory Compressed Suffix Array

[75]

To my knowledge, the most recent work in [41] disposes of suffix links. The authors

reduce storage by not storing the suffix number and the right index into the string

for each node. The suffix number is calculated during tree traversal. The right

pointer into the string is looked up in the child node, or in the case of leaves, is equal

to the size of the indexed string. Multiple passes over the sequence are performed

to construct the suffix tree for a subrange of suffixes at each pass. Because of

removing the suffix links, the construction of a new partition corresponding to a
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different subrange does not need to modify previously checkpointed partitions of

the tree. Each tree node consists of two object references costing 4Beach(child,

sibling). The observed space is about 28B per node in memory. With this method,

the DNA of 263Mbps can be handled by a 2GB log and 18GB in files of 2GB each.

2.1.3 Index-based Approaches

There exist DNA sequence searching methods which pre-build indexes for searching

the sequence database.

SST

In SST [30], each sequence is partitioned into fragments according to the window

size, and each window is mapped into a vector. Tree structured vector quantization

is used to create its tree-structured index by a k-means clustering technique. SST

is much faster than Blastn when searching for highly similar sequences. Unfortu-

nately, since the distance between sequences in vector space does not correspond

well with the actual edit distance, there would be substantial false dismissals if the

similarity between the query sequence and the target sequence is not sufficiently

high.

CAFE

CAFE was proposed by Williams et al. as a searching algorithm in a research

prototype system. CAFE[91] is based on techniques used in text retrieval and in

approximate string matching used for databases of names. It contains two compo-

nents.

1. Coarse search: Uses an inverted index to select a subset of sequences that

display broad similarity to the query sequence.
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2. Fine search: A computationally more expensive fine search mechanism ranks

the resultant sequences from the coarse search in order of relevance to the

query. The ranked results are presented to the user.

An inverted index has two components: a search structure and posting lists.

The search structure consists of the set of unique searchable terms, i.e., the set of

intervals. A posting list is associated with each term in the search structure. For

example, consider the following postings list:

ACCC12, (3 : 144, 154, 962), 38, (2 : 47, 1045)

In which the indexed sequences, the 12th and the 38th, contain the interval

ACCC, the interval appears three times in 12th sequence, at offsets 144, 154 and

962, and twice in 38th sequence, at offsets 47 and 1, 045.

FRAMES are the ranking structure. Frame-based metrics incorporate the rel-

ative positioning of matching intervals, as well as other calculated metrics, to give

a model of likely homologous alignments.

A simple scoring metric that can be calculated using frames is to rank frames

based on the number of intervals in each frame for two sequences s and t, so that

framecount(s, p) = max(|F (I(s)
⋂

I(t))|)
where I(s) is the set of intervals in sequence s, I(t) is the intervals in sequences

t, and F () is the frame function that returns one or more sets of intervals that are

at the same relative offset.

The length and the coverage are considered together to be Combined.

Combined = coverage− k ? (length− coverage) k << 1

Note: length is the total number of bases that lie between the two intervals that

have the smallest and largest offsets. Coverage is a count of the actual number of

residues or bases that match between two sequences.
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According to the reported experiment results, CAFE can be over eighty times

faster than FASTA and eight times faster than BLAST2. The response time de-

pends on query length and the statistics distribution of the intervals in the query;

intervals with longer inverted lists require more processing.

A Wavelet-based Method

In [45], a wavelet-based method was proposed to map the subsequence of the

database into a 2σ dimensional integer vectors where σ is the alphabet size of

the sequences. The number of the dimension is determined by the alphabet size

and the number of wavelet coefficients. FD(Frequency Distance) is defined as a

lower bound of the edit distance. A sliding window is used to translate a set of

contiguous substrings into a MBR(Minimum Bounding Rectangle). This transla-

tions are repeated over all the strings to generate an array of MBRs of the database.

This approximates to the database at different granularities, and produces a grid

of MBRs. The index structure is quite compact and can be stored in memory.

Typical size of this index structure ranges from 1% to 2% of the database size. For

similarity search, range queries and nearest-neighbor queries are performed using

this in-memory index structure with the lower-bound distance at first. Hence, the

obtained candidate pages are then accessed from the disk to remove false hits (using

the actual edit distance). Although this method avoids false dismissals, there are

lots of false hits since the approximation of edit distance is not sufficiently tight.

This increases the cost for refining the final result. In addition, this method tries

to find the regions of the target sequence which are similar to the whole query

sequence and not part of the query sequence.
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2.2 Subspace Clustering And Pattern Mining

High dimensional dataset is increasingly common in many fields. As the number

of dimensions increases, many clustering techniques begin to suffer from the curse

of dimensionality. In high dimensional datasets, data becomes very sparse and dis-

tance measures become increasingly meaningless [67]. There should be appropriate

data mining solutions for different applications. This encourages the extensive

studies on the subspace clustering [1, 2, 19, 27, 39, 40, 42, 48, 64, 88, 95].

2.2.1 Subspace Clustering

CLIQUE

CLIQUE [4] is a subspace clustering algorithm combining density and grid based

clustering and uses an APRIORI style search technique. Once the dense subspaces

are found, they are sorted by coverage defined as the fraction of the dataset the

dense units in the subspace. CLIQUE filters the subspaces with smallest coverage

and expands the remained subspaces in a greedy-growth manner [67]. The progress

of region growing and the density based approach for generating clusters enable

CLIQUE to find clusters of arbitrary shape, in any number of dimensions.

CLTree

CLTree [56] - the cluster tree, is a supervised learning method. It uses a modified

decision tree algorithm to adaptively partition each dimension into cluster and

sparse regions at different levels of details. This method is based on one hypothesis:

If there are clusters in the data

Then the data points cannot be uniformly distributed in the entire space.

Non-existing points are introduced to the data space and a new purity function
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is designed to look ahead in determining the best partitioning. Assume Y is the

class of the record existing in the dataset. By adding some uniformly distributed

N points (non-existing points), CLTree can isolate the clusters because within each

cluster region there are more Y points than N points. Consequently, the decision

tree technique facilitates this clustering.

PROCLUS

PROCLUS [1] - PROjected CLUStering, is a top-down subspace clustering algo-

rithm. It allows the selection of different sets of dimensions for different subsets of

the data. Because normal feature selection algorithms do not work on all types of

datasets, the authors proposed the projected clustering to process the correlation

among various subsets of the given dataset. PROCLUS is an algorithm to partition

data points together with the sets of dimensions on which points in each cluster

are correlated. Compared to the previous clustering methods, PROCLUS generates

not only the clusters but also the guaranteed partitions.

δ-Cluster:

The δ-cluster was introduced by J. Yang et. al. in [95]. It is considered as a

generalization of the subspace cluster model for mining the cluster of points/objects

that have coherent behaviors rather than points/objects that are physically close

to each other. The type of coherence is common in many real-life applications such

as recommendation systems and target marketing in E-commerce and analysis on

DNA microarray datasets.

A metric of residue is introduced to measure the coherency of among points/objects

in a given cluster. The main objective of this measurement is to capture a set of

objects which exhibits strong coherence on the set of dimensions/attributes despite
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the fact that each object may bear a nonzero bias/offset. To find out all δ-clusters is

a NP-hard problem. The authors presented a randomized moved-based algorithm,

FLOC. FLOC is a two-phase process where the first phase is to construct k initial

clusters and the second phase is to iteratively process to improve the quality of

clusters until no improvement can be achieved. In the iteration, every row and ev-

ery column is examined to determine its best actions towards reducing the average

residue. As a result, FLOC discovers near optimal δ-clusters.

pCluster

pCluster [88] was proposed to capture not only the closeness of objects but also

the similarity of the patterns exhibited by the objects. pCluster is a generalization

of subspace clustering in the applications where pattern similarities among a set of

objects carry significant meanings. The goal is to discover such shifting or scaling

patterns from large-sized raw data sets as shown in 2.3.

Figure 2.3: Shift pattern and scaling pattern in pCluster

pScore is defined to evaluate the similarity between patterns. This paper focuses

on the problem on the pattern similarity during clustering where most of the tradi-

tional value-similarity-based subspace clustering approaches are special cases in the

pCluster model. Furthermore, to avoid redundancy, Maximum Dimension Set(MDS)
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is defined. A depth-first search process is designed to deterministically cluster all

similar patterns without loss.

In this model, the value could be shifted on the same dimension groups. However

the model and the algorithm could not discover the patterns appearing in different

dimensions.

AnMol

A platform [78] called AnMol was proposed mainly for supporting similarity search

over structural data of large biomolecules. The author targeted to create a system

to answer the below questions:

1. Show me the set of all proteins that are similar to the hemoglobin molecule

(PDB ID: 1a00).

2. Among the set of molecules that are similar to hemoglobin, which of them

are likely to contain the given active region (structural fragment)?

3. Show me the set of all frequently occurring structural fragments among the

given set of molecules.

4. What are the possible mutations of protein 1a8i?

5. What are the commonly occurring substructures between 1a2a and 1a2e?

6. Which molecule has a similar disulphide bonding structure as that of 1buea?

Figure 2.4 displays the architecture of AnMol platform. The structural infor-

mation is represented using one or more vectors. Structure vectorization is one-way

hashing function to represent a graph structure in the form of vectors. Graphs are

hashed to vectors at different levels depicting different granularities. It is best suited
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Figure 2.4: The architecture of AnMol

for labeled graphs where the number of labels is small and diversity in structures

is large. AnMol enables the nearness queries, substructure queries and mutation

queries. A new distance measurement based on the vectors, AnMol distance is

given to avoid complex rmsd computation. The comparison experiment depicts

the substantial difference between rmsd and AnMol distance but it reveals the

similarity from the graph prospective.

Mining Long Sequential Patterns

Yang et. al. [96] presented an approach for mining sequential frequent patterns

with noisy data. In pattern discovery in long sequences, due to the presence of

noise, a symbol may be misrepresented by some other symbols. The substitution

may prevent an occurrence of a pattern from being recognized and in turn slashes

the support of the pattern. Figure 2.5 shows a fragment of gene expression that

is found in campylabacter jejuni genome. The problem becomes critical when the

pattern is long because a long pattern is much more vulnerable to the distortion
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Figure 2.5: Example of sequence patterns with noise

caused by noise.

A compatibility matrix is introduced as a means to provide the connection from

the observation to the underlying true value. The author used a novel statistical

sampling method and a border collapsing algorithm to discover long patterns in

minimum number of scans of sequence databases with sufficiently high confidence.

This paper mainly focuses on mining the frequent-occurred sequences in charac-

ters instead of sequential substructure patterns. However, it reveals the importance

of mining sequential patterns in noisy environments.

Detection Of Common Geometric Substructure in Proteins

Figure 2.6: Sample result of common structures
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Chew [22] et. al. proposed a genometric representation of protein chains which

were represented as a sequence of unit vectors, defined by each adjacent pair of Cα

atoms. All the algorithms developed so far which are based on calculating rmsd

suffer from the running time which is high-degree polynomials in the number of

atoms in the protein molecules. This caused them infeasible for practical applica-

tions. It motivated the author to define a practical measure of similarity between

two protein structures based on rmsd between corresponding orientation vectors

of two proteins.

The authors represented the protein backbone chains with vectors of Cα. Using

an RMS (Root-Mean-Square) distance on the unit-vector representation {vi} helps

to avoid the drawbacks while retaining the computational efficiency of the minimum

RMS calculations. The representation {vi} is consisting of a sequence of points on

the unit sphere in R3. To compare two proteins, with sets of unit vectors {vi} and

{wi}, they computed the minimum RMS distance between the two sets {vi} and

{wi}, viewed as subsets of the unit sphere. To remain the origins of the vectors

fixed in space, they minimized the RMS distance only over possible rotations of

the vectors, not over translations. Henceforth they used the term position-RMS

to refer to the standard position-based minimum RMS distance and used the term

unit-vector RMS (URMS) to refer to the minimum RMS distance for a pair of

sets in our unit-vector representation. In this paper, URMS was proposed as an

approximate RMS distance measurement on protein structures. The computation

cost for calculating the URMS between any two same length protein structures is

O(n lg n) where n is the number of Cα atoms on backbone.

Figure 2.6 shows a sample result of this approach. The method is mainly for

discovering common substructure between protein structure pair.
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2.2.2 Graph Pattern Mining

Many studies [29, 38, 42, 49, 50, 90, 93, 92] about graph pattern mining have been

contributed recently.

gFsg

gFsg [49, 50] is an algorithm for finding frequent patterns corresponding to geomet-

ric subgraphs in a large collection of geometric graphs. It is a level-by-level apriori

algorithm which iteratively refines shapes in order to optimize the patterns. At the

beginning, it generates the initial patterns using an enumeration approach. Dur-

ing this enumeration, the patterns with low frequencies are pruned. After that, it

starts a heuristic candidate generation process. During the refinements, the pattern

frequency and the number of patterns increase.

gSpan

gSpan [92] was proposed to mine frequent connected subgraphs in large graph

databases by employing a depth-first search strategy. gSpan builds a new lexi-

cographic order among graphs, and maps each graph to a unique minimum DFS

code as its label. DFS lexicographic order and minimum DFS code form a novel

canonical labelling system to support DFS search. It combines the growing and

checking of frequent subgraphs into one procedure, thus accelerates the mining

process. Compared to the previous methods, gSpan eliminated the cases that the

same subgraph patterns were found repeatedly.

CloseGraph

As an improvement of gSpan, CloseGraph [93] has been presented in order to find

the closed graph whose supgraphs cannot have the same support. The authors
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developed equivalent occurrence and early termination to enable CloseGraph to

significantly prune the search space with modest additional costs. The pruning

would lead to missing of some patterns while the authors presented another ap-

proach to eliminate these cases. The main enhancement is that the results of

CloseGraph are non-trivial, i.e., the closed graphs avoid the trivial graph patterns

which are the subgraphs of the other patterns with the same support.

Mining Closed Relational Graphs with Connectivity Constraints

Yan et al. [94] has studied the problem of mining frequent highly connected sub-

graphs in relational graphs where the label for each node is unique. Since this study

aims for the applications related to biological networks and social networks where

thousand of nodes and millions of edges would be involved. The nodes are unique,

relational graphs may be large and the result patterns should be both frequent and

satisfy user-specified connectivity constraints.

GraphMiner

Wang et al. [90] demostrated a prototype system - GraphMiner for mining fre-

quent patterns from large disk-based graph databases with constrants based on an

index structure, ADI. Motivated by the substantial growth of chemical compound

databases, plan databases, XML documents, web logs, citation networks, and so-

cial networks, the authors produced GraphMiner by integrating index structure

and the mining algorithms with a good implementation.

As shown in Figure 2.7, initially the graph mining engine builds the ADI index

over the database. With the constraint composer, users can input their target con-

straints. These constraints would be transferred to the mining engine to start the

pattern mining. The results can be viewed using the pattern browser. GraphMiner
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Figure 2.7: The architecture of GraphMiner

is a system leveraging on multiple research results. It can be a practical tool for

real-life application.

SPIN

SPIN [40]is an algorithm to mine maximal frequent subgraphs from graph databases.

Motivated by the overwhelming abundance of patterns whose supgraphs are fre-

quent, the authors combined the technique of mining frequent subgraphs with the

technique of mining frequent trees in forest because tree related operations are sub-

stantially simpler than the corresponding operation for graphs and many real-life

graph data are trees. The approach firstly find all frequent trees from databases

followed by the construction of the group of frequent subgraphs. After that, a

bottom-up pruning process, a tail shrink process and an external-edge pruning

process is employed for optimizations. Reported by the authors, SPIN outperforms

FFSM and gSpan in terms of scalability on large graph databases.
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Mining Protein Family Specific Residue Packing Patterns From Protein

Structure Graphs

In paper [38], Huan et al. converted protein 3D structures using three graph rep-

resentations: first, based on simple distance threshold between contact residues;

second using the Delaunay tessellation from computational geometry, and third

using the recently developed almost-Delaunay tessellation approach. The graphs

are built by representing the coordinates of C α atoms as the vertices which were

labelled by the residue type. The edges were generated according to the repre-

sentation method. After representing the protein structures by graphs in forms

of CAMs (canonical adjacency matrixes), the authors created a CAM tree and

carried out a frequent subgraph mining process recursively until all CAMs were

handled [39]. A post-process was used to filter the subgraphs appearing across

families and to select the subgraphs which have high distinguishing power between

protein families.

With the obtained subgraph patterns from protein families, Support Vector

Machine with the radius kernel was applied for classifications. In the later chapter,

we would discuss the comparison results between MSP and this method.

2.3 Remote Homology Detection

In 1981, Smith et. al. [77] presented an alignment tool based on dynamic pro-

gramming to identify common biological sequences. BLAST [8] and FASTA [70]

were created and widely used to provide evidences for homology by matching a new

sequence against the annotated proteins.
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SCOP

On 1995, Murzin et. al. [9, 25, 63]constructed the Structural Classification of

Proteins (SCOP) database. The classification is on hierarchical levels that embody

the evolutionary and structural relationships. Family, superfamily, common fold

and class are the four levels in the classification. Based on the secondary structures,

there are four types of classes including all alpha, all beta, alpha and beta, alpha

plus beta and multi-domain. Proteins which exhibit sequence identity larger than

30% or very similar functions or structures are classified to the same family. The

SCOP database aims to provide a detailed and comprehensive description of the

structural and evolutionary relationships between all proteins whose structure is

known. Many researches on remote homology detection were evaluated according

to SCOP database.

CATH

Similar with SCOP, CATH [66, 68] is a hierarchical classification of protein domain

structures, which clusters proteins at four major levels, Class(C), Architecture(A),

Topology(T) and Homologous superfamily (H). CATH is created based on the

criteria different from SCOP. In this database, the class describes the domain of

the protein. The architecture is the summary of the shapes. At the topology level,

sequence connectivity is considered. Proteins of the same topology exhibit similar

functions. On homologous superfamily level, the proteins are evolutionarily related.

Many remote homology detection methods were proposed based on support vector

machine (SVM) [18, 36, 37, 43, 52, 54]. Generally speaking, the framework includes

two steps: the first step is to convert protein information mainly related to their

sequences and structures to feature vectors with different logic and the second step
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is to build SVM classifiers with different kernels.

SVM-Fisher

Jaakkola et. al. [43] proposed SVM-Fisher which was known as the first attempt

to bring classifiers to remote homology detection in 1999. Hidden Markov Models

(HMMs) are used to build statistical models on the sequences for protein families

or superfamilies in SCOP database. HMMs provides a complete summary of the

sequence in the parameter space of the model. For each family or superfamily, an

HMM was trained as the model from the positive samples. Given a new sequence,

HMMs would be used to map it to a fixed-length vector as the Fisher score and

compute the distance between this vector to the score vectors of positive samples

and negative samples. This method performs better than BLAST and it mainly

relies on the sequence information.

SVM-Pairwise

Similarly with SVM-Fisher, SVM-Pairwise [54] represents the protein sequence

using a fixed-length vector and applies SVM as the classifier. It differs from SVM-

Fisher on the vectors. In this study, every vector is a list of pairwise sequence

similarity scores computed with respect to all sequences in the training set. Besides,

a large-margin SVM classifier is used. This method is not significantly better than

SVM-Fisher but SVM-Pairwise is simpler to calculate compared to SVM-Fisher.

SVM with Profile-based Kernels

In [18], Busuttil et. al. computed a multiple alignment of the positive training set

using ClustalW and built a profile from the multiple alignment using the position-

based method. Given a sequence, it would be converted to a vector and compared
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to the profiles to produce the vector to measure the similarity between this given

sequence and the profiles built from the pre-produced profile vectors for superfam-

ilies. This method outperforms non-discriminative methods and it is comparable

with or better than the other SVM based methods.

SVM with Mismatch Kernel

Remote homology detection should finally be applied for protein classification.

SVM-Fisher and etc. involve extensive computations. The computational cost

for Fisher kernel requires quadratic-time computation for each Fisher vector cal-

culated. This motivated Leslie et. al. to propose mismatch kernel [52], a class of

string kernels, to detect (as positives) amino acid sequences that are only remotely

related to the positive training sequences. This kernel reduces the computational

costs while the accuracy is comparable with the previous method.

SVM-I-sites

Hou et. al. proposed SVM-I-sites [36] system. Compared to the previous works,

SVM-I-sites encode structure information into feature vectors instead of using se-

quence similarity. The local sequence-and-structure motifs are obtained from I-sites

library. Given a protein sequence, it would be segmented to short subsequences.

The possibility of each subsequence being one of the motifs in I-sites would be

evaluated. Since there are 263 motifs in I-sites library, each protein sequence is

transformed to a vector of length 263 where each component denotes the confidence

value of the presence of the corresponding structure motif. After that, SVMs are

trained on each protein class. Reported by the authors, the accuracy of this method

is comparable with SVM-Pairwise but it is more efficient than SVM-Pairwise.
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Protein Seer

Protein Seer [57] is a protein classification system which relies on the concept of

protein family which is a group of sequences sharing same evolutionary origin. It

built a statistical model for each family or superfamily. Given a new sequence, the

system computes the probability according to every statistical model. A discrimi-

native framework such as HMM and SVM is used to learn a boundary between two

or more classes. In Protein Seer, the classifications were conducted on superfamily

level in SCOP database. The proteins in each superfamily were converted to fixed

dimension representation to be positive samples. The protein in different folds were

selected as negative sames. SVM was used to separate the superfamily based on

the positive and negative samples.

eKISS

Since the proteins are imbalanced distributed in the SCOP classification, eKISS

[81] was proposed to generate one-against-others classifiers which are capable of

learning over multi-class examples under the skewed normal distribution of the

training examples. The common approach to multi-class learning is to transform

the K classes into a set of two-class problems, which is also known as one-against-

others method. Another approach is to generate all the possible pairwise two-class

classifiers between K classes from the training examples, i.e. all-versus-all method.

eKiss is a machine learning for imbalanced data.

TFASTX, TFASTY

W.R. Pearson et. al. presented TFASTX and TFASTY [71] for comparing a pro-

tein sequence to a DNA sequence database, translating each sequence in the DNA

database in six frames and scoring alignment with gaps and frame shifts. TFASTX
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allows only frame shifts between codons while TFASTY allows substitutions or

frame shifts within a codon.

Aligning a DNA Sequence with a Protein Sequence

Z. Zhang et. al. [99] have further implemented the algorithms for aligning a

DNA sequence with a protein sequence. Based on their definition of an alignment

of a DNA sequence and an amino acid sequence, the author gave a method for

computing an optimal alignment. It has been incorporated with between-codon-

frame-shift algorithm in FASTX and TFASTX. This method considers frame shift

errors rather than the errors inside codons.

BLASTX

BLASTX is a tool to probe nucleotide sequence directly from the presence of protein

coding regions by identifying segments that encode significant similarity to mem-

bers of a protein sequence database. BLASTX allows protein-protein comparison

to be considered when only uncharacterized nucleotide query sequence available.

Most existing tools for finding protein-coding genes are for similar amino acid

sequences. While our FCDR System is to find DNA regions which code similar

protein 3D structures. It can provide a better understanding from DNA to protein

structures.

In this chapter, we briefly introduced the existing research work related to

the topics which would be discussed in this thesis.
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CHAPTER 3

Homology Search in Large DNA Sequence

Datasets

3.1 Introduction

Homology search in large sequence databases becomes more and more important.

The result of searching homologous sequences can help biologists do further anal-

ysis and detection on the protein structure and function. As many existing search

methods are based on sequential scanning on the databases, this growth will ad-

versely affect the efficiency. Besides, biologists often build index and do similarity

search on their desktop PC. This motivated us to develop an efficient system to

enable DNA homology search in large databases on desktop PC.

The problem of homology search on DNA databases can be described in a

nutshell as follow. Given a query sequence Q and a target sequence database T ,

find a set of subsequences of Q such that each subsequence Q′ in the set is highly
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similar to some subsequence T ′ of T . The similarity between Q′ and T ′ is computed

as a function of the edit distance, edit(Q′, T ′), which is defined as the minimum

number of edit operations (insert, delete, replace) that transform Q′ into T ′. While

the actual similarity function can vary depending on a biologist’s preference model,

if resemble to the simple one that we will use in this chapter. In short, it means

that our proposed algorithm and index structure will be robust with respect to

changes in similarity function, defined as:

Definition 3.1.1 ED-Similarity(Q′, T ′)

Given two sequences Q′ and T ′, we measure the similarity between the two se-

quences as

ED-Similarity(Q′, T ′)= |T ′|−edit(Q′,T ′)
|T ′|

Intuitively, the measure defined above tries to estimate the maximum number of

matches that occur between Q′ and T ′ as |T ′| − edit(Q′, T ′) and then normalizes

the measure by dividing this difference by |T ′|.
This chapter focuses on probe-based algorithms like the Blastn[7] which is ar-

guably the most popular homology search tool. The latest version of Blastn works

in two phases. Firstly, Blastn moves a sliding window of size w along the query

sequence Q one letter at a time, generating |Q| − w + 1 probes. Secondly, a

sequential scan is performed on the sequence data T to identify any portion that

matches any one of the probes completely. These portions are then extended in a

greedy fashion in both directions to identify Q′ and T ′ that have a high similarity

score. There are two problems with such an approach. The first and more obvious

is that the whole sequence database must be scanned which is unacceptable for

very large databases. The second is in the choice of the probe length, w, which is

the major factor that affects the tradeoff between sensitivity and speed. The root

of the problem here is the requirement for exact probe match which is too rigid for
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homology search. To find alternative way of probing, we define a model of probing

as follow:

Definition 3.1.2 Probe Model, pmodel(w, s, r)

Given a target sequence T , let T [i] denote its ith letter and T [i, i + w − 1] denote

a substring of length w located at its ith letter. We say that a homology search of

sequence Q is done on a target sequences T using probe model, pmodel(w, s, r)

with skip interval, s and edit distance range, r if we have the following three

conditions:

1. the length of the probe is w

2. each probe is compared again all subsequences of T that are of the form

T [αs, αs + w − 1],

α ∈ I+

3. all subsequences of the form T [αs, αs+w−1] are extended if edit(T [αs, αs+

w − 1], Q′) ≤ r,

Q′ being any one of the probes generated from Q

2

As an example, the default probe model for Blastn will be pmodel(11, 1, 0) since

it uses probes of length 11 by default and extends all substrings of length 11 in T if

they match any of the probes exactly. However, detecting replacements, insertions

and deletions is important in DNA homology search because they occur frequently

in DNA mutations causing diseases and natural selections. For example, deletion

of three nucleotides in CF gene was convincingly proved to cause cystic fibrosis[72].

ED-Similarity is used to evaluate the similarity of two sequences with same

length. Given a group of sequence pairs with ED-Similarity higher than a thresh-
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old, the sensitivity of a probe model can be evaluated according to the proportion

of sequence pairs which are hit by the probe model.

To investigate the querying effectiveness for varying configuration of the probe

model, we randomly select 120,000 sequence pairs of equal length and with more

than 50% ED-Similarity from est human genome. Given each sequence pair Q

and T , we use Q as the query sequence and perform a homology search on T for

each probe model to see whether at least one subsequence of T is extended (we will

refer to this as a hit). Based on the result from the sequence pairs, we can now

compute the probability of generating at least one hit from Q to T given a certain

probe model. This probability will be used to evaluate the sensitivity of a probe

model. Since typical homologous search is of length 20 to 200 bases [59], we select

64 and 128 as the fixed homology length.

Because Blastn has a probe length of 11 by default, we adopted it as a bench-

mark and will denote it as Blastn-11. Figure 3.1 and 3.2 illustrate the sensitivity for

detecting 64-bases homologous sequence pair and 128-bases homologous sequence

pair in different models 1. For the sequences of 64 bases, we can see from Figure

3.1 that adopting pmodel(18, 2, 3), pmodel(18, 3, 3) will find all sequences that have

ED-Similarity of 0.7 and above. This compares very well against Blastn-11 which

only detects 80% of such sequences. Although, pmodel(18, 2, 2) and pmodel(18, 3, 2)

are not as sensitive as Blastn-11 when detecting sequences with low ED-Similarity,

their performance also becomes slightly better than Blastn-11 when we consider se-

quences with ED-Similarity of 0.75 and above. For sequences with 128 base pairs,

Figure 3.2 essentially tells the same story. The only difference is that the curves

level off when ED-Similarity is from 0.65 to 0.7 instead of from 0.75 onwards. This

is due to the longer length of the sequences which make it less likely for Blastn to

1Note that while we have analyzed many pmodels for their sensitivity, we only show the more
relevant ones here to avoid affecting the clarity of the graphs.



48

miss sequences that have higher ED-Similarity. From the experiments, we see that
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Figure 3.1: Sensitivity(64 bps)
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Figure 3.2: Sensitivity(128 bps)

adopting a probe model with longer probe length and more relaxed matching can

result in higher sensitivity. Our aim in this chapter is to develop an index structure

which will support such probe models efficiently.

Contribution:

In this chapter, we propose an index structure called the ed-tree which performs

probe-based homology search on DNA databases with a longer probe length but

more relaxed matching. The ed-tree has the following strengths:
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Scalability. As we will see in the next section, previous work on indexing DNA

sequences often results in an index that is much larger than the original sequence

database. One contributing factor to this is that there is usually a need to store

pointers into every position of the DNA sequences. For example, given a DNA

sequence of 2 billion base pairs (i.e characters), each pointer will require around 4

bytes and the total size of the pointers alone will be 8GB. With the probe model

adopted by ed-tree, this requirement is reduced by 2 to 3 times since not every

position in the sequences needs to be indexed. Combined with some compression

techniques which we will describe later, the index for 2 billion base pairs is around

2.28 to 2.97 GB which is acceptable consisting that the whole human genome is

about 3 billion base pairs.

Efficiency. Unlike Blastn or other algorithms which perform a sequential scan on

the database, the ed-tree allows us to directly access portions of the targets which

are hit by probes. The ed-tree is a multi-layer index and the first two layers of

the index are sufficiently small for storage in the main memory. This enables us to

quickly prune off disk accesses in memory. As mentioned earlier, the disk-resident

portion of the index is also smaller than other sequence indexes and this reduces

I/Os. The use of a large skip interval also means that there are fewer comparisons

to be made in the search.

Sensitivity. The sensitivity of the ed-tree does not short-change the scalability

and efficiency. The probe model of ed-tree is more flexible and sensitive than

Blastn since we allow certain mismatches between the target sequence and the

probe. Experiments shown earlier have already illustrated this point.



50

3.2 The ed-tree

In this section, we present the structure of the ed-tree and relevant concepts.

3.2.1 Definitions

Definition 3.2.1 Segment Length Vector, H = [h1, ..., ht]

A segment length vector H = [h1, ..., ht] is an integer vector in which each hi is

a positive integer. We say that a sequence S is segmented according to a segment

length vector H (denoted as SH) if we partition S into t segments SH [1],...,SH [t]

such that each segment SH [i] = S[1 +
∑j=i−1

j=0 hj,
∑j=i

j=0 hj] with h0 = 0 by default.

For example, if H = [6, 6, 6] and S=AAAATTCGCGATAAGTAG, then we say

that we segment S according to H by partitioning S into 3 parts, SH [1]=AAAATT,

SH [2]=CGCGAT and SH [3]=AAGTAG. As we can see, a sequence S can only be

segmented by a segment length vector H = [h1, ..., ht] if and only if |S| = ∑t
j=1 hj.

Definition 3.2.2 ed-tree(w, s, H), H = [h1, ..., ht]

The structure of ed-tree(w, s, H) defined on a target sequence database, T , will be

a tree with t + 1 levels 2 described as follow:

• it contains a virtual root node at level 0 which represents a null sequence

(recall that h0 = 0 by definition);

• each node ti, at level i represents a sequence of length hi;

• a path from the root to a leaf, {t1, ...., tn} (note that we leave out t0 which

represents a null sequence) represents a sequence S that is segmented based

on H with each ti representing SH [i];

2For convenience of description, we consider the root of the tree to be at level 0. Thus we now
have level 0 to level t for the ed-tree.
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• the leaf node tn at the end of the path {t1, ...., tn} consists of the pointers to

all subsequences in T which match S exactly with the form T [αs, αs+w−1],

α ∈ I+.

For example, Figure 3.3 illustrates an ed-tree(18, 2, [6, 6, 6]) for a length 42 target

sequence T below:

T=AGGTAGGTAGGTAGGTAGGTAGGTAGGGCTTACATTCAGTAC

Since we have w = 18 and s = 2 in this case, all subsequences in T of length 18 and

located at even positions are indexed by the ed-tree. As such, there are a total of

b(42−18)/2c positions being indexed (In Fig 3.3, we begin indexing from the second

letter). The subsequences which start at location 2, 6, 10, 14, 18 and 22 share the

common prefix of “GGTAGG” which are represented by the same level 1 node. At

level 2 however, the subsequence is separated into 3 portions depending on which

of the subsequences “TAGGGC”, “GCTTAC” or “TAGGTA” they match for their

second segment. Finally, if we follow any path from the root to a leaf node, the leaf

node contains the pointers to all subsequences in T that match the subsequence

represented by the path.

Because the size of the leaf nodes could be rather huge for large sequence

databases, to reduce this storage requirement we sort the pointers in each leaf

node in increasing order and apply the frame-of-reference compression method to

each set of pointers in the leaf nodes. We achieve a reduction in storage of around

40% to 50% with this approach.

This however brings a tradeoff between the selectivity of the index and the

compression ratio of the leaf nodes. When the parameter w is high (i.e. more

selective), there exist very few pointers in each leaf node which means that there

is less space for compression because it is less likely to find a “run” of pointers

which are very close in their values within the same leaf node. On the other hand,
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   p2.2

 24

   p2
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   p2.3
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   p2.3.1

 4  8  12  16

T: AGGTAGGTAGGTAGGTAGGTAGGTAGGGCTTACATTCAGTAC
 1 10 20 30

Figure 3.3: An example of ed-tree

if w is low, the number of pointers in one leaf node will be large which still results

in large number of I/Os even after compression. Considering the memory of our

targeting hardware platform, normal PC, and the four major different nucleic acids,

we set w = 18 and H = [6, 6, 6] for the DNA sequences such that its efficiency and

effectiveness are good in practice.

3.2.2 Algorithm to Build The ed-tree

Figure 3.4 gives the general algorithm for building an ed-tree(w, s, H) with time

complexity of O( |D|
s

t), |D| is the sequence size and t is the number of the tree

levels. There are two points to highlight for the actual implementation. First, for

the values of H, level 1 and 2 of the ed-tree usually have a node that represents

each possible sequence of length h1 or h2. As such, these two layers of the tree

are implemented as a two-dimensional lookup table where the values along each

dimension represent sequences and each element of the table is a pointer to the

third level. To find the locations of a sequence Q, QH [1] and QH [2] will be used

to map into a particular element in the lookup table and the third level of the tree
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can then be accessed. Second, for the last level of the tree, the pointers in the

node are in fact physically separated from the node itself. This is because the

pointers will only be accessed if the node is a matching one and we thus can avoid

large amount of I/O by storing them separately. Figure 3.5 illustrates the physical

implementation of a three level ed-tree.

Algorithm 3.2.2: Build ed-tree
input: Parameters w, s, H = [h1, ..., ht] and the target sequence
database T
output: ed-tree(w, s, H) for T
method:
1. EDT ← EmptyNode ; /* root of the tree */
2. Based on w and s, slide along T and for each generated probe p
do

i. Segment p based on H into pH [1],...., pH [t];
ii. pt ← EDT ;
ii. i = 0;
iii. while ( i ≤ t )

If pt has a child, ch, which represents pH [i + 1] then
{ pt ← ch;
i = i + 1 ;}

Else
{ Add a child which sequence pH [i + 1] to pt;
pt ← the new child; }

iv. Add a pointer to location of p in pt

Figure 3.4: Building an ed-tree

3.3 Homology Search with The ed-tree

Our algorithm consists of two phases. The first phase is to search for candidate

region in the target sequence which match the probes and the second phase is to

extend these matching regions. Since the second phase is essentially the same as
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the other probe-based algorithms like Blastn, we focus our discussion on the first

phase.

3.3.1 Theories

Figure 3.5: The 3-level ed-tree index

With a query sequence Q, a target sequence database T and the ed-tree(w, s,H)

built on T , given a probe, P (Note: |P | = w) that is generated from Q, we want

to find the locations of all subsequences in T that are within a distance of r from

P . In other words, we want to look at how the ed-tree can be used to support a

probe model, pmodel(w, s, r).

To compare P efficiently against the segmented sequences in the ed-tree, we

introduce matching segment and length difference vector as follow.

Definition 3.3.1 Matching Segment, MS(P, SH [i])

Let S and P be two sequences of length w and H = [h1, ..., ht] be a segment length

vector. Assume that edit(P, S) is computed based on alignment L and that we

segment S based on H. We say that MS(P, SH [i]) is the matching segment of P
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to SH [i] iff MS(P, SH [i]) is the portion of P that can be transformed to SH [i] in

the alignment L.

Definition 3.3.2 Length Difference Vector, δ(P, S,H) = [δ1, ..., δt]

Let S and P be two sequences of length w and H = [h1, ..., ht] be a segment length

vector. We define the length difference vector between S and P based on H as

an integer vector δ(P, S, H) = [δ1, ..., δt] where δi = |MS(P, SH [i])| − hi.

Example 3.3.1 Let us consider the two sequences

P=GGTAGCGGCTTACTTCAG and

S=GGTAGGGCTTACATTCAG.

Assume that H = [6, 6, 6] is the segment length vector for sequence S. The align-

ment of sequence P and S is as follow:

P:GGTAGCG GCTTAC - TTCAG

S:GGTAG -G GCTTAC ATTCAG

Based on the alignment of S and P and the segment length vector H, P can be par-

titioned into 3 parts, MS(P, SH [1]) = GGTAGCG, MS(P, SH [2]) = GCTTAC,

MS(P, SH [3]) = TTCAG. Thus the corresponding length difference vector is

δ(P, S,H) = [7− 6, 6− 6, 5− 6] = [1, 0,−1].

Lemma 3.3.1 Let S and P be two sequences of length w and H be a segment

length vector. If edit(S, P ) ≤ r, we have the following properties for δ(P, S,H) =

[δ1, ..., δt]:

1.
∑t

i=1 δi = 0;

2.
∑t

i=1 |δi| ≤ r;

Proof: Since P is transformed into S which is of the same length, the total change in

length for P must be zero which implies that the sum of the elements in δ(P, S,H)
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must be zero. For the second property, we note that each edit operation increases

or decreases the length of a sequence at most by 1. Since it takes r operations to

transform P into S, this means that the absolute change in length of each segment

which is computed as
∑t

i=1 |δi| should be less than or equal to r.

Theorem 3.3.1 Let S and P be two sequences of length w and H = [h1, ..., ht]

be a segment length vector. If edit(S, P ) ≤ r, then there exists another segment

length vector H ′ = [h1 + β1, ..., ht + βt] such all the followings are true:

1.
∑t

i=1 βi = 0;

2.
∑t

i=1 |βi| ≤ r;

3.
∑t

i=1 edit(PH′
[i], SH [i]) ≤ r;

Proof: Let δ(P, S,H) = [δ1, ..., δt]. We set each value βi to be δi which means that

PH′
[i] is in fact MS(P, SH [i]). From Lemma 3.3.1, we will immediately know that

the first two properties will be satisfied. For the third property, we should observe

that
∑t

i=1 edit(PH′
[i], SH [i]) is in fact the edit distance of P and S which is known

to be less than r.

Based on Theorem 3.3.1, we derive a method for finding all the substrings of

length w that are within an edit distance of r from a sequence P given ed-tree(w, s, H).

Our approach is to generate all possible values of δ(P, S, H) such that the first two

properties in Theorem 3.3.1 are satisfied and then use these values to segment P

for comparison to the subsequences indexed in the ed-tree. We call the set of all

such possible values the cover generator and denote it as cover gen(r, t). Note

that the size of cover gen(r, t) is only dependent on r, the edit distance range and

t, the number of segments. Combinatorial analysis shows the cardinality of the

cover generator is:

|cover gen(r, t)| = 1 +
b r
2
c∑

j=1

t−1∑

i=1

(
t

i

)(
j − 1
i− 1

)(
j + 1

i− j + 1

)
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Figure 3.6: Cardinality of Cover Generator

Figure 3.6 shows how the cardinality of the cover generator varies with r and t.

We note that the cardinality increases quickly with increasing t but only moderately

for increasing r. For example, if t, the number of the segments is set to 3, then

|cover gen| = 7 for both the cases where r = 2 and r = 3.

Example 3.3.2 Consider a sequence

P=GGTAGCGGCTTACTTCAG and an ed-tree with segment length vector H=[6, 6, 6].

When r=2, searching the ed-tree will result in a cover generator, cov gen(2, 3)={[−1, 0, 1],

[−1, 1, 0], [0,−1, 1],[0, 0, 0],[0, 1,−1],[1, 0,−1],[1,−1, 0]} . By adding each element in the

cover generator to H, we will generate 7 different segment vectors H1, ..., H7 which

will be used to generate 7 ways of segmenting P for searching in the ed-tree. Figure

3.3.1 shows how P is segmented based on the different elements in cov gen. Let us

now illustrate Theorem 3.3.1 by assuming that a sequence, S=GGTAGGGCTTACATTCAG

is indexed by the ed-tree. In this case, since edit(P, S)=2, readers can verify that

H6 will be able to segment P such that all the three conditions in Theorem 3.3.1

are satisfied3.

3edit(GGTAGCG,GGTAGG) + edit(GCTTAC,GCTTAC) + edit(TTCAG,ATTCAG) = 2
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i [β1, β2, β3] Hi PHi [1] PHi [2] PHi [3]
1 [−1, 0, 1] [5, 6, 7] GGTAG CGGCTT ACTTCAG
2 [−1, 1, 0] [5, 7, 6] GGTAG CGGCTTA CTTCAG
3 [0,−1, 1] [6, 5, 7] GGTAGC GGCTT ACTTCAG
4 [0, 0, 0] [6, 6, 6] GGTAGC GGCTTA CATTCAG
5 [0, 1,−1] [6, 7, 5] GGTAGC GGCTTAC TTCAG
6 [1, 0,−1] [7, 6, 5] GGTAGCG GCTTAC TTCAG
7 [1,−1, 0] [7, 5, 6] GGTAGCG GCTTA CTTCAG

Figure 3.7: Segmenting P=GGTAGCGGCTTACTTCAG

3.3.2 The Algorithm - Probe Search

Figure 3.8 presents the homology search algorithm. For example, for a given input

probe, P=GGTAGCGGCTTACTTCAG, we are going to find all the locations of

the subsequences S indexed by ed-tree(18, 2, [6, 6, 6]) of the target sequence T ,

shown in Figure 3.3, such that edit(P, S) ≤ 2.

Step 1 initializes a set, PSet, to store the information of active nodes. In

ed-tree, active nodes are nodes not pruned off based on the search condition.

Each tuple in PSet includes 4 elements, < v, β, l, d >, where v denotes an active

node in the tree, β is a member cover gen(r, t), l denotes the level of the active

node v, and d is the sum of the edit distances from the root to the level l of the

active node v (i.e
∑l

i=1 edit(a[i], PH+β[i]) where a[i] is the ith level ancestor of v).

In Step 2, a tuple (EDT , β, 0, 0) is inserted into PSet for each β ∈ cover gen(r, t)}.
Here EDT is the root of the input ed-tree. In the example, PSet becomes {(EDT , [−1, 0, 1], 0, 0),

(EDT , [−1, 1, 0], 0, 0), (EDT , [0,−1, 1], 0, 0), (EDT , [0, 0, 0], 0, 0), (EDT , [0, 1,−1], 0, 0),

(EDT , [1, 0,−1], 0, 0), (EDT , [1,−1, 0], 0, 0)} after Step 2.

Step 3 initializes the ResultSet which will contain the final output.

Step 4 iteratively goes through the following four sub-steps until PSet becomes

empty. In each iteration, the next available tuple < v, β, l, d > ∈ PSet is retrieved

in Step 4(i) and all tuples of the form < v, β′, l′, d′ >∈ PSet are moved from
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Algorithm 3.3.2: Probe Search
input: probe P , edit distance r, target sequence T ,
ed-tree(w, s, H = [h1, ..., ht]) built on T
output: All locations of the subsequences S indexed by
ed-tree(w, s, H) such that edit(P, S) ≤ r
method:

1. PSet ← ∅; /* a set for storing active nodes */
2. For each β ∈ cover gen(r, t)

PSet ← PSet + {< EDT , β, 0, 0 >}; /* EDT is the root of the
input ed-tree */
3. ResultSet ← ∅;
4. while( PSet 6= ∅ )

i.Select the first tuple < v, β, l, d > from PSet;
ii.QSet ← {< v′, β′, l′, d′ > |v′ = v

∧

< v′, β′, l′, d′ >∈ PSet};
iii. PSet ← PSet−QSet;
iv. for each child node y of v

for each tuple < v′, β′, l′, d′ > in QSet
if edit(y.sequence, PH+β′ [l′ + 1]) +d′+
|∑t

i=l′+2 βi| ≤ r then
if l′ + 1 < t then

PSet ← PSet+
{< y, β′, l′ + 1, d′ + edit(y.sequence, PH+β′ [l′ + 1]) >};

else
for each pointer pt in y /*y is t-th level node */

ResultSet ← ResultSet + {pt};
5. Return ResultSet;

Figure 3.8: Homology search in ed-tree(w, s, H)

PSet into QSet from Step 4(ii) to 4(iii). In step 4(iv), each child y of the node

v is compared against each tuple < v, β′, l′, d′ > in QSet to determine whether

y will lead to a leaf in the solution set with respect to < v, β′, l′, d′ >. This is

done by checking whether the total sum of the edit distance between the sequence

represented by y and PH+β′ [l′ + 1], i.e. edit(y.sequence, PH+β′ [l′ + 1]), d′ and

|∑t
i=l′+2 βi| is less than or equal to r. If the condition fails, then the leaf nodes
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Iteration PSet QSet ResultSet
(EDT , [−1, 0, 1], 0, 0), (EDT , [−1, 1, 0], 0, 0)

0 (EDT , [0,−1, 1], 0, 0), (EDT , [0, 0, 0], 0, 0) ∅ ∅
(EDT , [0, 1,−1], 0, 0), (EDT , [1, 0,−1], 0, 0)

(EDT , [1,−1, 0], 0, 0)
(p1, [−1, 0, 1], 1, 1), (p1, [−1, 1, 0], 1, 1) (EDT , [−1, 0, 1], 0, 0), (EDT , [−1, 1, 0], 0, 0)

1 (p1, [0,−1, 1], 1, 1), (p1, [0, 0, 0], 1, 1) (EDT , [0,−1, 1], 0, 0), (EDT , [0, 0, 0], 0, 0) ∅
(p1, [0, 1,−1], 1, 1), (p1, [1, 0,−1], 1, 1) (EDT , [0, 1,−1], 0, 0), (EDT , [1, 0,−1], 0, 0)

(p1, [1,−1, 0], 1, 1) (EDT , [1,−1, 0], 0, 0)
(p1, [−1, 0, 1], 1, 1), (p1, [−1, 1, 0], 1, 1)

2 (p1.2, [1, 0,−1], 2, 1) (p1, [0,−1, 1], 1, 1), (p1, [0, 0, 0], 1, 1) ∅
(p1, [0, 1,−1], 1, 1), (p1, [1, 0,−1], 1, 1)

(p1, [1,−1, 0], 1, 1)
3 ∅ (p1.2, [1, 0,−1], 2, 1) {22}

Figure 3.9: Processing for the example in step 4

under y is not a active node with respect to < v, β′, l′, d′ > and the next pair of

node-tuple comparison will be processed. If the condition holds and y is a leaf

node, then all the pointers at y will be added to the result set. Otherwise, a new

tuple < y, β′, l′+1, d′+edit(y.sequence, PH+β′ [l′+1]) > will be inserted in the front

of PSet for the next round of processing where the children of y will be searched

for the next level of active nodes. Figure 3.9 depicts the iterations in step 4 of the

example. In iteration 1, node p2 is pruned and there exist 7 values of β which can

make p1 a active node. In iteration 2, the only active node is p1.2 while p1.1 and

p1.3 are pruned. This is because we can see that for node p1.2,

edit(p1.2.sequence, PH+β′ [2]) + d′ + |β′3|

= edit(GCTTAC,GCTTAC) + edit(p1.sequence, PH+β′ [1]) + 1

= edit(GCTTAC,GCTTAC) + edit(GGTAGCG,GGTAGG)) + 1

= 0 + 1 + 1 = 2

In iteration 3, p1.2.1 is again verified to be a active node and the result leaf con-

taining a pointer to location 22 of the sequence is appended to ResultSet. Finally,

in Step 5, ResultSet which contains all the valid locations will be returned.
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Level ed-tree(18,*,(6,6,6)) r=3 ed-tree(18,*,(6,6,6)) r=2
1 63.5082% 90.8696%
2 99.4152% 99.7760%
3 99.8828% 99.7555%

Note: skip interval does not influence the experiment result here.

Figure 3.10: Pruning Rate

3.3.3 Analysis And Experimental Evaluation of Pruning

Effect

We carry out an experiment to analyze the effect of the sequence pruning in

each level of the ed-tree. 2,000,000 sequences pairs with the length of 18 are

randomly selected from the esthuman.z database. In the pruning of level l, se-

quence pair (S1, S2) will be remained only if there exists β = [β1, ..., βt] to satisfy

∑l
i=1 edit(S1

H [i], S2
H+β[i]) ≤ r. For level l, 1 ≤ l ≤ 3, the pruning rate, µl, can be

formalized as follow:

µl = the number of the sequence pairs remained in level l
the number of the sequence pairs checked in level l

Figure 3.10 shows the pruning rates in the different levels. After the processing of

the first two levels, 1-(1-µ1)*(1-µ2) of sequence pairs are pruned. For example, we

consider the pruning rate after the first two levels. Only fewer than 0.03%(0.22%)

sequence pairs needed to be checked in the level 3 for r = 2(r = 3). It greatly

speeds up the homology searching. The time complexity is O(
∑3

i=1

∏i−1
j=0µj · 4βj+1)

where µ0 = 1.
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3.3.4 Detecting Proper Setting

The settings in pmodel and ed-tree significantly determine the efficiency and effec-

tiveness of the index and search method. These settings include:





w length of probe

s skip interval

r edit distance range

H = [h1, ..., ht] segment length vector

In order to determine a probe model with good sensitivity for a given computer,

we firstly randomly select sequence pairs that with ED-Similarity greater or no

less than 0.5 from the given DNA sequence database. Secondly we apply multiple

probe models on the selected pairs and calculate the proportion of hits. Herein,

a hit on a pair means that at least one probe on this pair generates edit dis-

tance less than the threshold. The higher hit rate, the more sensitive the probe

model is. For example, we conduct sensitivity study on est human genome with

the 120,000 sequence pairs which are mentioned in the introduction. In order for

clarity, we only presented the comparison among Blast-11, pmodel(18, 2, 2) and

pmodel(18, 3, 2) in Figure 3.1 and 3.2. More results are observed and summa-

rized in Table 3.3.4 where Blast-11 is used as a benchmark. With edit distance

r = 2, we see pmodel(18, 3, 2) and pmodel(18, 2, 2) become more sensitive with

the increasing of ED-similarity. Compared to Blast-11, they generate less trivial

hits on the sequence pairs with ED-Similarity less than 0.6. While they produce

more hits on the sequence pairs with ED-similarity higher than 0.7. We also notice

that pmodel(20, 1, 3) and pmodel(20, 2, 3) are better choices than Blast-11 if users

would like to detect more hits on sequence pairs with ED-similarity higher than 0.6.

Hence, a proper pmodel for the dataset on the given computer can be identified
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ED-Similarity 0.5 0.6 [0.7, 1]
Sensitivity

1 pmodel(18, 3, 2) pmodel(18, 3, 2) Blast-11
2 pmodel(18, 2, 2) pmodel(18, 2, 2) pmodel(18, 3, 2)
3 pmodel(20, 2, 3) Blast-11 pmodel(18, 2, 2)
4 pmodel(20, 1, 3) pmodel(20, 2, 3) pmodel(20, 2, 3)
5 Blast-11 pmodel(20, 1, 3) pmodel(20, 1, 3)
6 pmodel(18, 3, 3) pmodel(18, 3, 3) pmodel(18, 3, 3)
7 pmodel(18, 2, 3) pmodel(18, 2, 3) pmodel(18, 2, 3)

Table 3.1: Sensitivity and ED-simialrity

according to the user’s expectation.

Given a DNA sequence database, the settings of ed-tree determine the index

size. In order to avoid too high cardinality of the cover generator to speed up the

edit distance calculation, the number of segments in one probe should be no more

than 3 and the edit distance range should be no more than 3 either.

On the one hand, the check-up table for edit distance should be fully loaded

into memory. With edit distance range no more than 3, two bits can store one

entry of the edit distance checkup table. For an example, with segment vector

length [6, 6, 6] and edit distance range 3, we should calculate the edit distances for

all DNA sequence pairs with lengths of (5,6), (6,6) and (6,7). Hence, the check-up

tables require 411+412+413

4
bytes, i.e., 21MB in memory. On the other hand, the

indices of level 1 and 2 should be fully loaded into memory also. In case of large

DNA sequence databases, all 6-character DNA sequences would happen. Therefore,

the pointers in indices of level 1 can be implied by the order of entries. Indices of

level 2 include 46+6 entries each of which includes a 4-byte pointer to its first index

entry in level 3 and a 2-byte short figure to record the number of its entries in level

3. Hence, the index size of level 1 and 2 is 46+6 × (4 + 2) bytes, i.e., 96MB. The

remainder of memory is used to record the temporary results during the search
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process.

According to the above analysis, given 1GB memory, the total length of the

first two segments can be 13 which leads to an index size of 413× (4+2) bytes, i.e.,

384MB. Assume pmodel(20, 2, 3) is adopted, the segment length vector should be

either [7, 6, 7] or [6, 7, 7]. In order to prune more in the level 1, [7, 6, 7] is selected.

3.4 Performance Study

We implemented the ed-tree in C. All our experiments are done on a PC with

a Pentium 4 1.6Ghz CPU, 256MB of SDRAM and a 7200rpm 20GB harddisk

running Windows XP. Two databases are used for our experiments, esthuman.z

and estother.z which were both downloaded from the NCBI website. The databases

are composed from the alphabets {A,C,G,T,N} with N representing a wildcard i.e.

N can be any one of the four alphabets. After removing the wildcard character, the

estother.z database contains 2.07G bases while the esthuman.z database contains

1.55G bases. Because N is a wildcard and the edit distance allows “replace”,

“insert” and “delete”, with regardless of N, pmodel still allows N to appear at

most r times in the hit where r is the edit distance range adopted in pmodel.

3.4.1 Datasets

Figure 3.11 shows the sizes of various ed-trees that are built on the two databases

with the different parameters. We note that the first two levels of the ed-tree take

up at most 96MB of storage and could easily be stored in the main memory. The

third level of the ed-tree on the other hand will require storage of up 3GB.
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s H Dataset Level-1,2(MB) Level-3(MB)
2 [6,6,6] est human 96 2720
2 [6,6,6] est other 96 3036
2 [6,5,7] est human 24 2713
2 [6,5,7] est other 24 3003
3 [6,6,6] est human 96 2075
3 [6,6,6] est other 96 2317
3 [6,5,7] est human 24 2068
3 [6,5,7] est other 24 2304

Figure 3.11: ed-tree Index Sizes, w = 18

3.4.2 Comparing The ed-tree with Blastn

Our focus here is to compare the efficiency of ed-tree against the latest version of

Blastn(NCBI Blastn2) which is available from the NCBI website. The sensitivity of

the probe models that are supported by the ed-tree is in fact comparable to Blastn

as demonstrated in an earlier section. We conducted two sets of experiments to

compare the efficiency of the ed-tree against Blastn by varying the database size

and the query length. In the experiments, the length of probe sequence w is set to

18 and H is set to [6, 6, 6].

The first set of experiments is designed to evaluate how the performance of

Blastn and ed-tree varies with the database size. Three databases of varying sizes

are used. The first two are the esthuman.z and estother.z databases while the third

is a ‘hybrid” dataset containing 2.3G bases, which is created by combining the

whole esthuman.z and a part of estother.z. 1000 query subsequences, each with

length of 250 bases, are randomly selected from the DNA of yeast(Saccharomyces

cerevisiae) and the average time for answering the query is taken. As shown in

Figure 3.12, the increase in query time for Blastn is much more significant than

the ed-tree algorithms as Blastn suffers from its high I/O cost in large sequence

databases. For r = 2, the ed-tree can be faster than Blastn by a factor of up to 6.
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Figure 3.12: Speed vs DB Size (Query length=250)

For r = 3, the ed-tree still outperforms Blastn when the database size increased.

We believe that the ed-tree will be much more capable in handling large DNA

sequence databases than Blastn.

Another set of the experiments is carried out to investigate how the query length

influences the efficiency of the ed-tree compared to Blastn. We randomly select

1000 subsequences with length varying from 30 to 250 bases from the yeast DNA.

For each query length, we take the average query time and plot them against the

query length. Figure 3.13 and 3.14 depict the relationship between the query time

of the various algorithms versus the query length for the two databases. The query

time of ed-tree increases linearly with the query length since the number of probes

in the ed-tree grows linearly. As such, there are likely to be more hits on different

parts of the databases which will incur more I/Os for the search. We note that in

general, indexes will not be useful if most parts of the database have to be accessed

and this is also applicable in the case of the ed-tree.

Blastn’s performance is not significantly affected by the length of the query

since its running time is dominated by the I/O time of its sequential scan which



67

will not increase substantially for the longer queries. Notwithstanding, Blastn’s

performance is typically an order of magnitude slower than the ed-tree’s.

0

50

100

150

200

250

300

350

0 50 100 150 200 250

T
im

e(
s)

Query Length

Blastn-11
ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,3,[6,6,6]) r=2
ed-tree(18,2,(6,6,6)) r=3
ed-tree(18,3,(6,6,6)) r=3

Figure 3.13: DB:est human 1.55Gbps
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Figure 3.14: DB:est other 2.07Gbps

3.4.3 Pruning Cost Analysis

We will next look at the effect of parameter settings on the ed-tree ’s performance.

Since there exist a large number of combinations for the parameter values of the

ed-tree, we can only provide more insight for the more important ones.

From Figure 3.13 and 3.14 which are shown earlier, we make the following

observations on the effect of r and s:
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1. Query time of the ed-tree increases with increasing r

Increasing r, the edit distance range means that a more relaxed query con-

straint is being specified. Naturally, this means that a larger result set will be

returned. From the difference between the result of r = 2 and r = 3, we can

tell that a difference of one edit operation can change the size of the result

set substantially causing a significant increase in I/Os.

2. Query time of ed-tree decreases with increasing s

Since increasing the skip interval s decreases the number of subsequences

being indexed in the database, the number of I/Os operations for the search

will also decrease. The effect of varying s is however less significant than r

as it can be seen from Figure 3.13 and 3.14.

3.4.4 Effect of Parameters

0

5

10

15

20

25

30

35

1.55 2.07 2.35

T
im

e(
s)

DB Size(Gbps)

ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,2,[6,5,7]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,2,[6,5,7]) r=3

Figure 3.15: Level 1,2 Pruning time vs DB Size

We look at how the segment length vector H affects the performance of ed-tree,

more specifically the pruning processes at the first and second level of the ed-tree.

Figure 3.15 shows that the pruning time at the first two levels grows moder-

ately with the database size for a query length of 250. One interesting obser-
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vation here is that the ed-tree(18, 2, [6, 6, 6]) took more time for pruning than

ed-tree(18, 2, [6, 5, 7]) regardless of the value of r. This is because there are sig-

nificantly less nodes in the second level when H is set to [6, 5, 7]. For H = [6, 6, 6],

there are 46+6(=16, 777, 216) nodes in level 2, compared to 46+5(=4, 194, 304) nodes

for H = [6, 5, 7]. At the third level however, r plays a more important role as shown

in Figure 3.16 where the search time for r = 3 is always significantly higher than

that for r = 2. In this case, the I/Os required for retrieving a larger result set

dominate the cost.
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Figure 3.16: Level 3 Pruning time vs DB Size

Likewise, Figure 3.17 and 3.18 confirm that H has a more significant effect on

the first two level of pruning while r has more effect on the third level pruning.

Overall, since the I/Os at the third level dominate the total pruning time for the

three levels, it makes sense to try to adjust H such that a small increase in pruning

time at the first two levels causes a substantial decrease in the I/O time at the third

level. In fact, this is the main principle we adopted in fine tuning H to achieve the

best performance.



70

0

5

10

15

20

25

30

35

0 50 100 150 200 250

T
im

e(
s)

Query length

ed-tree(18,2,[6,6,6]) r=2
ed-tree(18,2,[6,5,7]) r=2
ed-tree(18,2,[6,6,6]) r=3
ed-tree(18,2,[6,5,7]) r=3

Figure 3.17: Level 1,2 Pruning time vs Query Length
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Figure 3.18: Level 3 Pruning time vs Query Length

3.5 Summary

The growing interest in genomic research has caused an explosive growth in the size

of DNA databases making it increasingly challenging to perform searches on them.

In this chapter, we proposed a model called pmodel for generally evaluating the

effectiveness of the probing methodology. It helped us select suitable parameters

to obtain the different searching requirements.

An index structure called the ed-tree was designed for supporting fast and ef-

fective homology searches on DNA databases. The ed-tree is developed to enable

probe-based homology search algorithms like Blastn which generate short probe
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strings from the query sequence and then match them against the sequence database

in order to identify potential regions of high similarity to the query sequence. De-

termining whether two sequences have edit distance no more than a given range is

novelly transformed into computing the edit distances between their corresponding

segments. Based on ed-tree, a fast algorithm is developed to do homology search

which can guarantee the efficiency and sensitivity especially for detecting insertions

and deletions. It supports more flexible probe model with longer probes and more

relaxed matching. As a consequence, the ed-tree is not only more effective and

efficient than the latest Blastn(NCBI Blast2) when supporting homology search

but also takes up moderate storage compared to existing data structures like the

suffix tree. The ed-tree can be also applied to protein sequences with different

pmodel and index configurations. In FCDR system which will be discussed in

Chapter 7, we use ed-tree for indexing protein sequences where the pmodel(8, 1, 2)

and ed-tree(8, 1, [4, 4]) are adopted.

According to our experimental results, to index a DNA database of 2 giga base

pairs(Gbps), ed-tree only takes less than 3Gb of secondary storage which is easily

handled by a desktop PC. The query time using ed-tree is up to 6 times lower than

Blastn for large DNA sequence databases and this performance gap grows with

the size of the DNA sequence database. Unlike previous sequence indexes, the

size of the ed-tree is at most 3Gb for a sequence database of 2 billion base pairs.

Considering that the mapped human genome contains around 3 billion base pairs,

we believe that the ed-tree is well positioned for searching large DNA sequence

database on a desktop computer.
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CHAPTER 4

Substructure Clustering in Sequential 3D

Object Datasets

4.1 Introduction

With an increasing number of new applications related to sequential 3D objects,

such as 3D structural pattern retrieval on protein structures and pattern mining

in the tracks of cell phones, clustering substructure on the sequential 3D object

dataset becomes an important and meaningful approach that can be applied: (1)

in structure-based drug design. Common substructures can help to understand

the working of living organisms [28] and can be used to detect active binding

sites to target organisms. (2) in protein remote homology detection. It is widely

agreed that the similarities among distantly related proteins are often preserved

at the level of their 3D structures, even when very little similarity remains at the

sequence level [35]. In the absence of obvious sequence similarity, it is important
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for clustering substructures on the sequential linked Cα atoms to explore common

substructures on remote homologous proteins. (3) in tracking moving objects in

GSM and GPS systems. Similar tracks in a given time frame could be used to

identify the relationships among moving objects.

There are many algorithms on subspace clustering for various datasets which

include itemsets, sequences, trees, lattices and graphs [4, 46, 77, 88, 78, 95]. How-

ever, the existing techniques are no longer effective on sequential structures with

3D coordinates since they are mainly based on value similarity and pattern simi-

larity instead of 3D structure similarity where translation and rotation should be

considered. This has prompted us to study the subspace clustering on sequential

3D objects.

Traditionally, the minimized root mean square distance (rmsd) which considers

all possible rotations and transformations is adopted to evaluate the dissimilarity

between two 3D structures. Various measurements to detect clusters [4, 20, 22, 88,

95] have been defined according to applications and datasets. In order to facilitate

fast comparison, we devise a simple but effective measurement, feature difference

summation (fds), based on the summation of the difference on selected features

on vertices.

In this chapter, we establish a model, sCluster, to describe the problem and

to define the non-trivial clusters as maximal sCluster to avoid the clusters which

can be contained by other clusters. Leveraging on the simplicity of fds, an efficient

algorithm is devised for mining pairwise maximal sClusters on two sequential

3D objects and a modified apriori algorithm is developed to expand the pairwise

maximal sClusters with respects to both the cardinality and the length. We also

extend the approach to support query, i.e., to incrementally generate the maximal

sClusters only related to a given new object. Experiments have been conducted



74

to study the impacts of settings to performance and query efficiency. Due to the

absence of existing subspace clustering methods on sequential 3D objects, we create

an rmsd-based clustering as the benchmark to evaluate the performance of our

approach. Furthermore, randomly selected sClusters in protein chains are plotted

to show the effectiveness.

4.2 Definition And theory

4.2.1 Sequential 3D object

A sequential 3D object is a group of vertices where each vertex only links to its

left-side and right-side adjacent vertices. It can be represented as S[b : e], where

S is a sequential 3D object, and b and e are the beginning vertex and the ending

vertex respectively. Every vertex is a 3D coordinate. Fig 4.1 shows 3 sequential

3D objects: P [1 : 8], Q[1 : 9] and R[1 : 10], which include 8, 9 and 10 vertices

respectively.
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Figure 4.1: Example of sequential 3D objects
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4.2.2 Similarity Evaluation

Traditionally, rmsd is used to evaluate the similarity between two structures. Given

two sequential 3D objects, S[1 : n] and P [1 : n], rmsd is defined as:

rmsd(S[1 : n], P [1 : n]) = min{
√√√√

n∑

i=1

|T (S[i])− P [i]|2}

Here T is the isometric transformation with rotations and translations. To find

the optimal matching from one structure to the other, optimal vertices alignments,

rotations and translations should be identified before calculating the distance. For

two sequential 3D structures, the alignment is determined by the order of vertices.

In real-life datasets like protein chains, the typical number of vertices ranges from

hundreds to thousands. Computing rmsd is a time-consuming process. This pro-

motes us to define a simple but effective distance measurement, called feature

difference summation (fds):

fds(S1[1 : n], S2[1 : n]) =
k∑

i=1

n∑

j=1

|f1[i][j]− f2[i][j]|
max(|f1[i][j]|, |f2[i][j]|)

k : the number of features on each vertex

n : the number of vertices on one object

fx[i][j] : the value of ith feature on jth vertex of Sx

On every vertex, k features are extracted. The fds is defined as the summation of

the difference on all features on all vertices. To evaluate the dissimilarity of two

sequential 3D objects, on the vertex S[i], we select three features:

1. l[i]: the edge length between S[i− 1] and S[i]

2. a[i]: the angle between the edge linking S[i − 1] − S[i] and the edge linking

S[i]− S[i + 1]
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3. t[i]: the torsion angle between the plane fixed by S[i− 1]−S[i]−S[i+1] and

the plane fixed by S[i]− S[i + 1]− S[i + 2]

t[i]

a[i]

S[i−1]

S[i−2]

S[i]

S[i+1]

S[i+2]

l[i]

Figure 4.2: Features on S[i]: l[i], a[i] and t[i]

Fig 4.2 depicts the three features, l[i], a[i] and t[i].

On each vertex, we calculate the difference of selected features and the feature

differences over two vertices can be calculated independently. Furthermore, fds

between two structures is the summation of the feature differences on all vertices.

Therefore fds could be incrementally computed. In the study [83], we have pro-

posed the measurement ald. Compared to ald, fds takes torsion angels between

adjacent planes into account.

In order to study the effectiveness of fds, we compare fds to ald with the

benchmark of rmsd on real-life dataset. The algorithm in [13, 58] was used to

calculate rmsd. In protein 3D structures, the chain of Cα atoms basically describes

the protein 3D structure and can be represented as a sequential 3D object although

hydrogen and disulfide bonds also play important roles. We randomly download

protein chains from SCOP database [63], and link the Cα atoms in each protein

chain to be a sequential 3D object. From these protein chain 3D objects, we

randomly selected two groups as datasets: D1 and D2. The D1 includes 50 pairs

of objects each of which contains 60 vertices where the objects are longer than

60 vertices have been truncated. The D2 includes 50 pairs of objects each of

which contains 40 vertices where the objects are longer than 40 vertices have been
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truncated.

Without loss of generality, we calculate rmsd, ald and fds and normalize the

values by linearly mapping the values to the interval [0, 1] and plot the normalized

values of rmsd, ald and fds in Fig 4.3 and 4.4. We can observe fds approaches

rmsd better than ald does in both D1 and D2. Table 4.2.2 illustrates the correla-

tions between rmsd and fds in D1 and D2 are 0.63 and 0.32 which are significantly

higher than the correlations between rmsd and ald. In the later section, some

interesting clustering results will be presented to show the effectiveness. The fds

is a summation of feature difference on vertices. In other applications, we sug-

gest to extract different features and give features different weights to describe the

structure in the best manner.
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Figure 4.3: Comparison of fds, ald and rmsd in D1

Dataset Correlation(rmsd, ald) Correlation(rmsd, fds)
D1 0.42 0.63
D2 0.25 0.32

Table 4.1: Correlation comparison
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Figure 4.4: Comparison of fds, ald and rmsd in D2

4.2.3 sCluster

Given a sequential 3D dataset D and a maximum distance ε, sCluster is defined

as:

1. sCluster includes a group of objects.

2. All objects include the same number of vertices.

3. Every object appears as a whole or a portion of a sequential 3D object in D.

4. For every two objects, S[bs : es] and P [bp : ep], fds(S[bs : es], P [bp : ep]) ≤ ε

holds.

The cardinality of sCluster is defined as the number of objects which are in-

cluded by the sCluster. The length of sCluster is defined as the number of vertices

of any object which is included by the sCluster. One group of objects can be con-

tained by another group of objects in terms of cardinality or length.

1. Given two groups of objects, C and C ′, if C ⊆ C ′, we say C is contained by C ′

in terms of cardinality. As shown in Fig 4.5, C = {S2[20 : 35], S4[25 : 40]} is

contained by C ′ = {S2[20 : 35], S4[25 : 40], S5[7 : 22]} in terms of cardinality.
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2. Given two groups of objects, C = {S1[b1 : e1], ..., Sn[bn : en]} and C ′′ =

{S1[b
′′
1 : e′′1], ..., Sn[b′′n : e′′n]}, if bi − b′′i = bj − b′′j and ei − e′′i = ej − e′′j holds

where 1 ≤ i < j ≤ n, we say C ′′ is synchronized to C with the offset of

[b′′1 − b1, e
′′
1 − e1]. Alternatively, we define an operator Π as C ′′ = Π(C, [b′′1 −

b1, e
′′
1 − e1]).

In addition, if b′′1 − b1 ≤ 0 and e′′1 − e1 ≥ 0, then we say C is contained

by C ′′ in terms of length. For instance, C ′′ = {S2[15 : 40], S4[20 : 45]} is

synchronized to C = {S2[20 : 35], S4[25 : 40]} with the offset [−5, 5], i.e.,

C ′′ = π(C, [−5 : 5]). Furthermore, C is contained by C ′′ in terms of length.

Property 4.2.1 Assume C is a sCluster and C ′ is a group of objects which is

contained by C in terms of cardinality or length, then C ′ is a sCluster.

Property 4.2.2 Assume C = {S1[b1 : e1], ..., Sn[bn : en]} is a sCluster with

maximum distance ε and C ′ = {S1[b
′
1 : e′1], ..., Sn[b′n : e′n]} = π(C, [b, e]). Let

Cr = {S1[br1 : er1], ..., Sn[brn : ern]} where [bri : eri] = [bi : ei] ∩ [b′i : e′i] and

i ∈ [1 : n]. Then Cr is a sCluster contained by C in terms of length and Cr is

synchronized to C ′.

Proof: Assume b ≥ 0 and e ≤ 0, then bri = b′i and eri = e′i where i ∈ [1 : n]

and C ′ is contained by C in terms of length. Thus, we have Cr = C ′ which is a

sCluster contained by C and is synchronized to C ′. Similarly, we can prove the

case when b ≤ 0 and e ≥ 0.

Assume b ≥ 0 and e ≥ 0, then bri = b′i and eri = ei where i ∈ [1 : n]. Thus

we have bri − b′i = brj − b′j = 0 and eri − ei = erj − ej = 0 where 1 ≤ i < j ≤ n.

Hence, eri − e′i = eri − (ei + e) = −e = erj − (ej + e) = erj − e′j. Therefore,

Cr = π(C ′, [0,−e]) = π(C, [b, 0]) which is obviously a sCluster contained by C in

terms of length and is synchronized to C ′. Similarly, we can prove the case when

b ≤ 0 and e ≤ 0.
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In all 4 possible cases, the property holds.

Property 4.2.3 With maximum distance ε, C, C ′ and C ′′ are sClusters which

are obtained from object datasets A, A′ and A′′ respectively. Assume A ∩ A′ = ∅,
A ∩ A′′ = ∅ and A′ ∩ A′′ = ∅. If C ∪ C ′, C ∪ C ′′ and C ′ ∪ C ′′ are sClusters, then

C ∪ C ′ ∪ C ′′ is also a sCluster.

Proof: For every two substructures from C ∪C ′ ∪C ′′, Si[bi : ei] and Sj[bj : ej], we

can find them from one of the sClusters: C, C ′, C ′′, C ∪ C ′, C ∪ C ′′ or C ′ ∪ C ′′.

Then we have fds(Si[bi : ei], Sj[bj : ej]) ≤ ε. Hence, the property holds.

Property 4.2.4 Given a sCluster, C, assume the length is L, the minimum

sCluster length is w and the cardinality is u. There are (L−w+1)×(L−w+2)
2

× (2u −
u− 1) sClusters that are contained by C in terms of cardinality or length.

Proof: On the one hand, without considering empty set and u sClusters where

each sCluster includes only one substructure, there are 2u − u− 1 sClusters that

are contained by C in terms of cardinality. On the other hand, for each sCluster,

SubC, contained by C in terms of cardinality, there are (L−w+1)×(L−w+2)
2

sCluster

that are contained by SubC in terms of length. Thus, (L−w+1)×(L−w+2)
2

×(2u−u−1)

sClusters are contained by C.

In order to avoid trivial results, we define maximal sCluster as the sCluster

that cannot be contained by any other sCluster.

As shown in Fig 4.5, T is a dataset of 5 objects and C = {S2[20 : 35], S4[25 : 40]}
is a maximal sCluster. Since C is contained by C ′ in terms of cardinality and C

is a maximal sCluster, C ′ cannot be a sCluster on T . Because C is contained by

C ′′ in terms of length, we conclude C ′′ is not a sCluster.

Problem 4.2.1 Given sequential 3D dataset T , we are going to find all maximal

sClusters with minimum length w, minimum cardinality u and maximum distance
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C={S2[20:35], S4[25:40]}

C"={S2[15:40], S4[20:45]}

C’={S2[20:35], S4[25:40], S5[7,22]} }

T={S1,S2,S3,S4,S5}

SubC={S2[22:31], S4[27:36]} sCluster but not maximal sCluster

Cannot be sCluster

maximal sCluster

Figure 4.5: Example of maximal sCluster

ε.

In this chapter, we focus on solving this problem efficiently and accurately.

According to our knowledge, there is no method addressing this problem, while it

often occurs especially in the recent bioinformatics and biopharmaceutical research.

Lemma 4.2.1 Given C = {S1[b1 : e1], ..., Sn[bn : en]} and C ′ = {S1[b
′
1 : e′1], ..., Sn[b′n :

e′n]}, where C ′ = Π(C, [b, e]), and both C ∪ {P [bp : ep]} and C ′ ∪ {Q[bq : eq]}
are sClusters with maximum distance ε. Let Cr = {S1[br1 : er1], ..., Sn[brn :

ern]} where [bri : eri] = [bi : ei] ∩ [b′i : e′i] and i ∈ [1 : n]. If there exists

{P [brp : erp], Q[brq : erq]} which is a sCluster synchronized to {P [bp − b1 + br1 :

ep − e1 + er1], Q[bq − b′1 + br1 : eq − e′1 + er1]}. Let





[b′p : e′p] = [brp : erp] ∩ [bp − b1 + br1 : ep − e1 + er1]

[b′q : e′q] = [brq : erq] ∩ [bq − b′1 + br1 : eq − e′1 + er1]

Then

Π(C ′, [b′q − bq, e
′
q − eq]) ∪ {P [b′p : e′p]} ∪ {Q[b′q : e′q]}

is a sCluster with maximum distance ε.

Proof : First, according to the definition, we know bq − b′q < 0 and eq − e′q > 0.

Then π(C ′, [b′q − bq, e
′
q − eq]) is a sCluster contained by C ′ in terms of length.
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Second, since {P [brp : erp], Q[brq : erq]} is synchronized to {P [bp − b1 + br1 :

ep − e1 + er1], Q[bq − b′1 + br1 : eq − e′1 + er1]}, according to Property 4.2.2, {P [b′p :

e′p], {Q[b′q : e′q]} is a sCluster contained by {P [brp : brp], Q[brq : brq]} in terms of

length and b′p − b′q = (bp − b1 + br1) − (bq − b′1 + br1) = bp − bq + b and e′p − e′q =

(ep − e1 + er1)− (eq − e′1 + er1) = ep − eq + e.

Third, Π(C ′, [b′q − bq, e
′
q − eq]) ∪ {P [b′p : e′p]} = Π(C, [b′q − bq + b, e′q − eq +

e]) ∪ {P [b′p : e′p]} =
n⋃

i=1

{Si[bi + b′q − bq + b : ei + e′q − eq + e]} ∪ {P [b′p : e′p]}. Since

(bi + b′q− bq + b)− b′p = bi− bq + b− (bp− bq + b) = bi− bp and (ei +e′q−eq +e)−e′p =

ei − eq + e − (ep − eq + e) = ei − ep, Π(C ′, [b′q − bq, e
′
q − eq]) ∪ {P [b′p : e′p]} is

synchronized to C ∪ {P [bp : ep]}. Besides, with b′p ≥ bp and e′p ≤ ep, we know that

Π(C ′, [b′q − bq, e
′
q − eq])∪ {P [b′p : e′p]} is a sCluster contained by C ∪ {P [bp : ep]} in

terms of length.

Fourth, as Q[b′q : e′q] = Q[bq + b′q − bq : eq + e′q − eq], we know π(C ′, [b′q − bq, e
′
q −

eq])∪{Q[b′q : e′q]} = π(C ′∪{Q[bq : eq]}, [b′q−bq, e
′
q−eq]). Since b′q ≥ bq−b′1+br1 ≥ bq

and e′q ≤ eq − e′1 + er1 ≤ eq, π(C ′, [bq − b′q, eq − e′q]) ∪ {Q[b′q : e′q]} is a sCluster

contained by C ′ ∪ {Q[bq : eq]}.
Finally, according to Property 4.2.3, we know Π(C ′, [b′q − bq, e

′
q − eq]) ∪ {P [b′p :

e′p]} ∪ {Q[b′q : e′q]} is a sCluster. Lemma is proved.

S1[6:20]  S3[20:34]  S5[40:54]

S1[4:15]  S3[18:29]  S4[6:17]

S4[9:45]  S5[41:77]

S1[7:15]  S3[21:29]

S4[9:17]  S5[41:49]

Figure 4.6: Sample of Lemma 4.2.1

In Fig 4.6, {S1[4 : 15], S3[18 : 29], S4[6 : 17]} and {S1[6 : 20], S3[20 : 34], S5[40 :

54]} imply that {S1[6 : 15], S3[20 : 29], S4[8 : 17]} and {S1[6 : 15], S3[20 : 29], S5[40 :

49]} are sClusters with maximum distance ε. By combining them with the sCluster
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of {S4[9 : 45], S5[41 : 77]}, we have a new sCluster, {S1[7 : 15], S3[21 : 29], S4[9 :

17], S5[41 : 49]}.

4.3 Algorithms

Our algorithms include the pairwise maximal sCluster mining and a modified

apriori mining process to generate maximal sCluster with the cardinality more

than 2.

The first challenge is to cluster on different groups of dimensions for every

sequential substructure. Similar substructures could appear in any object, and

single structure may contain many vertices, for example one protein chain includes

Cα atoms ranging from hundreds to thousands.

The second challenge is to efficiently and effectively compute the distance be-

tween different substructures. Unlike the normal measurement such as Manhattan

Distance and Euclidean Distance, the similarity is related to optimal rotation and

translation, and is traditionally determined by rmsd which is computationally ex-

pensive. We have proposed fds to overcome the problem.

Finally, our method is deterministic without loss of qualified clusters. This

significantly increases the computation cost due to combinations.

4.3.1 Mining Pairwise Maximal sCluster

Mining maximal sClusters on two objects is the basis for generating sClusters.

Given S and P , without loss of generality, assume the length of S, m, is same with

that of P . The algorithm to find the sClusters on {S, P} is shown in Algorithm

4.3.1.
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Figure 4.7: Example of pairwise maximal sClusters

Mining pairwise maximal sCluster
Input: two objects S[1 : m], P [1 : m], maximum distance ε,
minimum sCluster length w
Output: maximal sCluster

/∗ Compute distance matrix ∗/
1. for i=0 to m− 1
2. for j=i to m− 1
3. fds[i, j] = fds[j, i] = fds(S[i], P [j])
4. result ← ∅

/∗ Search in up-triangle in distance summation matrix ∗/
5. for j=0 to m− w − 2
6. for r=0 to m− 1− j: sum[r]=

∑r
t=0 fds(t, j + t)

7. ε′ ← ε
8. for i=0 to m− 1− j − w /∗ Search in each diagonal ∗/
9. Binary search k where sum[k] = max{sum[u] where
sum[u] ≤ ε and 0 ≤ u ≤ m− 1− j − w}
10. ε′ ← ε′ + fds[i, j + i]
11. If k ≥ w−1 then result ← result∪{S[i : i+k], P [j : j+k]}

12. Search in down-triangle similar with step 5-11
13. Return result

In Fig 4.7, fds[i, j] in distance matrix represents the difference summation

among all the corresponding features on S[i] and P [j]. We convert it to distance

summation matrix by summing up the distances by each diagonal. Assume max-

imum distance ε is 1.0. There are three maximal sClusters, {S[1 : 4], P [0 :
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3]}, {S[0 : 3], P [1 : 4]}, and {S[1 : 4], P [2 : 5]}.
The computation complexity of calculating the distance matrix and distance

summation matrix is O(m2). In Step 8-11, the search of pairwise maximal sClusters

on the diagonal which crosses i cells incurs i binary searches in 1, 2,..., i cells respec-

tively. The complexity of this search is O(lg 1+lg 2+...+lg i). Hence, the computa-

tional cost of searching pairwise maximal sClusters in up-triangle is O(
∑m

i=1 lg i!).

Therefore, we summarize the total computational complexity of mining pairwise

maximal sClusters as below:

O(m2 +
∑m

i=1 lg i!) i.e. O(m2 lg m) where m is object length.

Based on the pairwise maximal sClusters, we can gradually generate all the

sClusters with larger cardinality using a modified apriori algorithm.

S1[1:60]
S2[1:30]
S3[1:50]
S4[1:35]
S5[1:70]

Input

w=8

L(2)

S3[10:34] S5[30:54]

S1[4:17]  S3[18:31]  S4[6:19]

S4[9,17]  S5[41:49]
S1[6:15]  S3[20:29]
S4[8,17]  S5[40:49]

C(4)

S4[7:25]  S5[41:59]

S1[4:15]  S3[18:29]  S4[6:17]

eplsion=1.5

S1[7:15]  S3[21:29]

L(4)

L(3)

S1[6:17]  S3[20:31]  S5[40:51]

C(3)

S3[16:29]  S4[4:17]  S5[36:49]

S1[6:17]  S3[20:31]  S5[40:51]

S1[2:17] S3[16:31]

S4[4:17]S3[16:29]

S1[6:25] S5[40:59]

S4[6:22]S1[4:20]

Figure 4.8: Example of Algorithm 4.3.1
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Mining maximal sCluster
Input: dataset T = {S1, S2, ..., Sn}, maximum distance ε, minimum
length w
Output: maximal sClusters

/∗ Generate pairwise maximal sClusters ∗/
1. L(2) ← ⋃

1≤i<j≤n

{pairwise maximal sClusters on (Si, Sj)}

/∗ Generate candidates C(k + 1) from L(k) ∗/
2. k=2
3. while (L(k) 6= ∅)
4. C(k + 1) ← ∅
5. For any E1, E2 ∈ L(k)
6. E1 = {S1[b1 : e1], ..., Sk−1[bk−1 : ek−1], Sx[bx : ex]}
7. E2 = {S2[b

′
1 : e′1], ..., Sk−1[b

′
k−1 : e′k−1], Sy[by : ey]}

8. If {S1[b1 : e1], ..., Sk−1[bk−1 : ek−1]} synchronizes to {S2[b
′
1 :

e′1], ..., Sk−1[b
′
k−1 : e′k−1]}

9. Then [bri, eri] ← [bi, ei] ∩ [b′i, e
′
i], i ∈ [1 : k − 1]

10. If er1 − br1 ≥ w
11. Then newCandidate ← {S1[br1 : er1], ..., Sk−1[brk−1 :
erk−1]}

∪{Sx[bx+br1−b1 : ex+er1−e1], Sy[by+br1−b′1 :
ey + er1 − e′1]}
12. C(k + 1) ← C(k + 1) ∪ {newCandidate}
/∗ Look up L(2) to refine each candidate in C(k + 1) ∗/
13. L(k + 1) ← ∅
14. For E = {S1[br

′
1 : er′1], ..., Sk−1[br

′
k−1 : er′k−1], Sx[br

′
x :

er′x], Sy[br
′
y : er′y]} ∈ C(k + 1)

15. If there exists {Sx[b
′′
x : e′′x], Sy[b

′′
y : e′′y]} ∈ L(2) which synchro-

nizes to {Sx[br
′
x : er′x], Sy[br

′
y : er′y]}

16. Then [br′′x : er′′x] ← [br′x : er′x] ∩ [b′′x : e′′x]
17. [br′′y : er′′y ] ← [br′y : er′y] ∩ [b′′y : e′′y]
18. If er′′x − br′′x ≥ w
19. Then newsCluster ← {Sx[br

′′
x : er′′x], Sy[br

′′
y : er′′y ]}

∪{S1[br
′
1 + br′′x− br′x : er′1 + er′′x− er′x], ..., Sk−1[br

′
k−1 +

br′′x − br′x : er′k−1 + er′′x − er′x]}
20. L(k + 1) ← L(k + 1) ∪ {newsCluster}
21. k ← k + 1

/∗ Mark redundant sClusters ∗/
22. For each B ∈ L(i), i ∈ [2 : k]
23. If there exists B′ ∈ L(k + 1) and B ⊂ B′

24. Then mark B as redundant sCluster

25. Return
k⋃

i=2

{x : x ∈ L(i) and x is not a redundant sCluster }
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A sample is shown in Fig 4.8 where the dataset includes 5 objects, maximum

distance ε = 1.5 and minimum length w = 8. After computing pairwise maximal

sCluster, the algorithm produces L(2) which includes 6 sClusters. We observe

the sClusters, {S1[2 : 17], S3[16 : 31]} and {S1[4 : 20], S4[6 : 22]}, and {S1[2 :

17]} = Π({S1[4 : 20]}, [−2,−3]). From step 6 to 12, we generate candidate {S1[4 :

17], S3[18 : 31], S4[6 : 19]} which is added into C(3). During the refining process

from step 13 to 21, we check the pairwise maximal sCluster from S3 and S4. We

note {S3[16 : 29], S4[4 : 17]} is synchronized to {S3[18 : 31], S4[6 : 19]}. Therefore,

we refine the candidate {S1[4 : 17], S3[18 : 31], S4[6 : 19]} to the sCluster {S1[4 :

15], S3[18 : 29], S4[6 : 17]} which is added into L(3). Similarly, we produce C(4)

and L(4).

When generating candidates from L(k) to C(k + 1), every two sClusters have

been checked if their first k − 1 objects are synchronized. The computational

complexity for generating C(k + 1) from L(k) is

O(|L(k)|2), where |L(k)| is the number of sCluster in L(k)

When refining candidate from C(k) to L(k), the L(2) is frequently accessed.

We sort the sCluster of L(2) in the order of the object IDs and establish a look-up

table to speed up a single checking process to O( |L(2)|
n2 ) where n is the number of

objects. The computational complexity for refining C(k) to L(k) is:

O( |L(2)|
n2 × |C(k)|), where |C(k)| is number of candidates in C(k) and n is number of objects

Property 4.3.1 Algorithm 4.3.1 generates all maximal sClusters without false

positive and without false negative.

Proof: On one hand, L(2) includes all pairwise maximal sClusters. For any

sCluster B = {S1[b1 : e1], S2[b2 : e2], S3[b3 : e3]}, there must exist sClusters

P = {S1[bp1 : ep1], S2[bp2 : ep2]}, Q = {S2[bq2 : eq2], S3[bq3 : eq3]} and R =
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{S1[br1 : er1], S3[br3 : er3]} where





[b1 : e1] ⊆ [bp1 : ep1] and [b1 : e1] ⊆ [br1 : er1]

[b2 : e2] ⊆ [bp2 : ep2] and [b2 : e2] ⊆ [bq2 : eq2]

[b3 : e3] ⊆ [bp3 : ep3] and [b3 : e3] ⊆ [br3 : er3]

According to Lemma 4.2.1, Algorithm 4.3.1 will generate B and put it into L(3).

Similarly, we can deduce that all sClusters with k objects will be in L(k). On the

other hand, those sClusters which could be contained by any other sClusters are

marked as redundant sClusters. Thus, we know all maximal sClusters are found.

4.3.2 Query Related sClusters

With the growth of the number of applications related to sequential 3D data and

the data size, it is often required to conduct query of the clusters which appear on

a new object. The problem could be defined as:

Problem 4.3.1 Assume the sClusters on dataset T with maximum distance ε are

generated. Given an object Q[1 : m], we are going to find the maximal sClusters

related to Q, i.e., the maximal sClusters in T ∪{Q[1 : m]} with maximum distance

ε where every sCluster includes one object appearing in Q[1 : m].



89

Query related maximal sClusters
Input: Dataset T = {S1, S2, ..., Sn}, maximum distance ε, minimum
sCluster length w, sCluster lists on T : L(2), L(3),..., L(m), query
object Sn+1

Output: maximal sCluster on T + {Sn+1} related to Sn+1

1. A(2) ← ⋃

1≤i≤n

pairwise maximal sCluster on(Si, Sn+1)

2. k=2
3. while (A(k) 6= ∅)
4. Generate candidates C ′(k+1) from A(k)∪L(k) similar with step
2-12 in Algorithm 4.3.1 where every candidate includes one object
appearing in Sn+1.
5. Look-up A(2) to refine each candidate in C ′(k + 1) to produce
A(k + 1) similar with step 13-21 in Algorithm 4.3.1.

6. Mark redundant sClusters in
k⋃

i=1

A(i) similar with step 22-24 in

Algorithm 4.3.1.

7. Return
k⋃

i=2

{x : x ∈ A(i) and x is a maximal sCluster }

S6[1:45]

Input:

S3[18:32] S5[38:52] S6[9:23]

S4[7:20] S5[41:54] S6[12:25]

S3[18:34] S5[38:54] S6[9:25]

S3[16:32] S5[36:52] S6[7:23]

S3[16:29] S4[4:17] S6[7:20]

C’(3)

C’(4)

S1[6:18] S3[20:32] S5[40:52] S6[11:23]

L(3)

S1[6:20]  S3[20:34]  S5[40:54]

S1[4:15]  S3[18:29]  S4[6:17]

w=8

eplsion=1.5

S5[1:70]
S4[1:35]
S3[1:50]
S2[1:30]
S1[1:60]

A(3)

S5[30:54]S3[10:34]

L(2)

S4[7:25]  S5[41:59]

S1[2:17] S3[16:31]

S4[4:17]S3[16:29]

S1[6:25] S5[40:59]

S4[6:22]S1[4:20]

S3[18:32] S5[38:52] S6[9:23]

A(2)

S5[38:54] S6[9,25]

S3[16:32] S6[7:23]

S4[9,17]  S5[41:49]
S1[7:15]  S3[21:29]

L(4)

Figure 4.9: Example of Algorithm 4.3.2

Algorithm 4.3.2 is to find the sClusters related to the given object. Fig 4.9 is a

sample to explain Algorithm 4.3.2. Here, T = {S1, ..., S5], and L(2), L(3) and L(4)
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are the existing lists of sClusters with cardinalities of 2, 3 and 4 respectively. Step 1

calculates pairwise maximal sClusters between the query object, S6[1 : 45] and the

objects in T . A(2) is the list of qualified pairwise maximal sClusters. It includes

{S3[16 : 32], S6[7 : 23]} and {S5[38 : 54], S6[9 : 25]}. We check sClusters in A(2)

with sClusters in L(2) to see if they could be combined, and check if sClusters

in A(2) can be combined each other. For example, {S3[16 : 32], S6[7 : 23]} in A(2)

and {S3[16 : 29], S4[4 : 17]} in L(2) can generate a candidate {S3[16 : 29], S4[4 :

17], S6[7 : 20]} in C ′(3). Similarly, we produce the other four candidates in C ′(3).

After that, we check candidates in C ′(3) to see if they are qualified. {S3[16 :

29], S4[4 : 17], S6[7 : 20]} is invalid due to the absence of sClusters between S4 and

S6. {S3[16 : 32], S5[36 : 52], S6[7 : 23]} becomes {S3[18 : 32], S5[38 : 52], S6[9 : 23]}
after refining with {S5[38 : 54], S6[9 : 25]} in A(2). We notice that it is same as

the last candidate in C ′(3). After that, we check sClusters between L(3) and A(3)

for C ′(4). Only one candidate {S1[16 : 18], S3[20 : 32], S5[40 : 52], S6[11 : 23]} is

produced by combining {S3[18 : 32], S5[38 : 52], S6[9 : 23]} in A(3) and {S1[60 :

20], S3[20 : 34], S5[40 : 54]} in L(3). However, it is invalid as there is no sClusters

between S1 and S6. Until now, all new sClusters are generated in A(2) and A(3).

Trivial sClusters are marked in step 4. Finally, maximal sClusters in A(2)∪A(3)

are returned.

4.4 Experiments

We implement the algorithms in C++. All our experiments are done on a PC

with a Pentium IV 2.6Ghz CPU, 1GB of SDRAM and an 80GB hard disk running

Windows. Two groups of datasets are used. One is a group of protein chains from

SCOP databases. The other is a group of synthetic chains where the vertices are
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3D coordinates ranging from 0 to 1. First, we study the effects of parameters to

the performance of mining sClusters. Second, we present the response speed of

query related sClusters with a given object. Third, we compare sCluster method

with rmsd−based Clustering. Finally, we plot randomly selected sCluster results

from real datasets including HIV protein chains.

4.4.1 Effect of Parameters

The parameters of sCluster include object length, number of objects, minimum

sCluster length w, and maximum distance ε.
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Figure 4.10: Object length VS. Clustering time
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Figure 4.11: Number of objects VS. Clustering time
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Figure 4.12: ε VS. Clustering time
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Figure 4.13: w VS. Clustering time

On the one hand, we study the clustering time of sCluster in terms of the

object length on protein chain datasets. We set w = 30, ε = 5, and vary the object

length from 100 to 500. In Fig 4.10, we can observe that, as the object length

increases, the clustering time increases in a quadratic manner. This is because

most of the clustering time is spent on mining pairwise maximal sClusters and it

accords with the computational complexity analysis. On the other hand, we plot

the clustering time with respect to the number of objects in Fig 4.11. We note

the clustering speed degrades with the increase of dataset size since there are more

distance matrix calculations and more candidates for a larger dataset.

We fix the object length at 500, w = 30 and plot the clustering time in Fig

4.12 when we vary ε from 4.8 to 6.4. We observe that sCluster shows superior
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scalability with ε when 4.8 ≤ ε ≤ 6.2. This is because the pairwise sCluster

mining dominates the candidate generation and refining process.

When ε = 6.4 and number of objects becomes 70, the clustering speed slumps

down. This is because the number of sClusters increases significantly due to the

over relaxed ε. In this case, tens millions of sClusters have been generated and

they exhaust the memory. Because we expect people would be interested in at most

thousands of patterns, the main memory should be large enough to accommodate

the meaningful sClusters unless the sCluster detection criteria is over relaxed.

Fig 4.13 presents the clustering time by varying the minimum sCluster length

w from 28 to 32 in 5 protein chain datasets when ε = 5.0 and object length=500. In

the datasets with protein chains less than 70, sCluster shows good scalability with

respect to w. Upon investigation, we find that the execution time mainly depends

on pairwise sCluster mining that is almost stable in the same dataset. In case of

70 objects with w = 28, our approach takes 80.9 seconds that is 11% larger than

72.1 seconds when w = 29 because shorter minimum sCluster length leads to more

sClusters and the costs for generating and refining candidates become significant.

4.4.2 Query Maximal sClusters Related to New Object

We evaluate the query algorithm in protein chains with object length ranging from

100 to 500. Besides the protein chains used in the study on the effect of parameters,

we randomly select more protein chains from SCOP database as query objects.

Fig 4.14 and 4.15 describe the response time for a query in five datasets which

include 30, 40, 50, 60, and 70 protein chains respectively. We study the query

performance with respect to object length and number of objects. In all cases,

our query approach shows scalable behavior as the query process is an incremental

process where only the candidates related to the query object would be generated
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and refined.
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Figure 4.14: Object length VS. Query response time
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Figure 4.15: Number of objects VS. Query response time

4.4.3 Mining sClusters in Synthetic Datasets

We generate synthetic datasets where the coordinate values of vertices are randomly

ranging from 0 to 1. We fix ε = 5 and w = 30 while vary the object length and

the number of objects. As shown in Fig 4.16 and 4.17, sCluster shows similar

behaviors in terms of the number of objects and the object length with that in

protein chain datasets.
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Figure 4.16: Object length VS. Clustering time on synthetic datasets
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Figure 4.17: Number of objects VS. Clustering time on synthetic datasets

4.4.4 Comparison with rmsd-based Clustering

Since sCluster model is for mining 3D sequential substructure clusters with shift

on dimensions which could not be well supported by the other clustering methods,

we design an alternative algorithm based on rmsd, called rmsd−based clustering.

In the pairwise sCluster mining, we incrementally calculate all the rmsds on every

diagonal of distance summary matrix. After that, we adopt the binary-search

on determining the pairwise maximal sClusters, i.e., the longest substructure

pairs with maximum rmsd no more than ε are identified as the pairwise maximal

sCluster on the diagonal. After computing pairwise maximal sClusters, we use

the same method in Algorithm 4.3.1 for generating and refining candidates. Due to
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the difference between rmsd and fds, we fix w to be 30 and set ε for rmsd− based

clustering to produce sClusters which are included by the sClusters which are

produced by sCluster with ε = 5.0.

First, in the experiment for studying scalability on object length, we use 30 pro-

tein chains and vary the object length from 100 to 500. Second, in the experiment

for studying scalability on the number of objects, we fix the object length to be

200 and conduct experiments in different-sized datasets. Both Fig 4.18 and 4.19

show that sCluster outperforms the rmsd−based clustering by magnitudes. This

is because rmsd − based clustering calculates multiple rmsds on each diagonal

on each diagonal of distance summation matrix and the complexity of calculating

rmsd is significantly higher than fds.
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Figure 4.18: sCluster VS rmsd− based clustering on object length

4.4.5 Results of sCluster

In order to study the effectiveness of sCluster, we design 5 different cases with set-

tings listed in Table 5.2 and plot the number of maximal sClusters with sCluster

cardinalities in Fig 4.20. Case 1 is presented as a benchmark and the others are

created by changing one of the settings. One observation appearing in all the cases

is that the number of sClusters initially increases but decreases after a certain



97

 0.1

 1

 10

 100

 1000

 10000

 30  40  50  60  70

T
im

e(
s)

Number Of Objects

sCluster
rmsd-based clustering

Figure 4.19: sCluster VS rmsd− based clustering on number of objects

sCluster cardinality. This is because the number of candidates increases during

generating stage and the candidates could be filtered during refining stage. The

trade-off between generating and refining candidates determines the number of

valid maximal sClusters.

Parameters Case 1 Case 2 Case 3 Case 4 Case 5
ε 5.0 5.0 5.0 6.2 5.0
w 30 30 30 30 28

Object length 500 100 500 500 500
Number of objects 70 70 30 70 70
Clustering time(s) 64.5 4.22 12.2 78.9 80.9

Table 4.2: Settings of cases
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Figure 4.20: Cardinality VS. Number of sClusters in 5 cases
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Figure 4.21:
d1mma 2[150 : 182]

Figure 4.22:
d1d0xa2[151 : 183]

Figure 4.23:
d1d1aa2[157 : 189]

Figure 4.24:
d1d1ca2[159 : 191]

Figure 4.25:
d1b71a1[7 : 61]

Figure 4.26:
d1bcfa [6 : 60]

Figure 4.27:
d1euma [2 : 56]

Figure 4.28:
d1jgca [5 : 59]

From the results, we randomly select two sClusters and depict them using

PDB2multiGIF [47]. The first is from the motor protein domains in chicken

pectoral muscles. It includes four objects: d1mma 2[150 : 182], d1d0xa2[151 : 183],

d1d1aa2[157 : 189] and d1d1ca2[159 : 191] as shown in Fig 4.21, 4.22, 4.23 and

4.24 respectively. The structure seems to be two α-helix structures connected by

a structure which is consisted of a group of amino acids located in a line. The

second is from the rubrerythrin n-terminal protein domains in ferritin. It includes

four objects: d1b71a1[7 : 61], d1bcfa [6 : 60], d1euma [2 : 56] and d1jgca[5 : 59]

as shown in Fig 5.5.1, 5.5.1, 5.5.1 and 5.5.1 respectively. The structure is a large

α-helix with a sharp turn. The similarities among the objects in the two sClusters

are obvious. They imply that the results found by sCluster are effective and

meaningful.
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4.4.6 Application in HIV Protein 3D Structures

HIV, a virus that attacks human immune cells, has been firstly discovered on 1981

and spread worldwide to be a major killer now. The disease, acquired immunodefi-

ciency syndrome, caused by HIV is well known by its acronym, AIDS. The structure

of HIV protease revealed a crucial fact -like a butterfly, the enzyme is made up of

two equal halves. HIV protease has only one such active site - in the center of the

molecule where the two halves meet. Traditionally, scientists identify new drugs

either by fiddling with existing drugs or by testing thousands of compounds in a

laboratory. Using a structure-based strategy, pharmaceutical scientists have an ini-

tial advantage. If they could plug this single active site with a small molecule, they

could shut down the whole enzyme - and theoretically stop the virus’ spread in the

body [65]. Structural biology has greatly enhanced researchers’ understanding of

HIV and has played a key role in the development of drugs to treat this deadly

disease.

Therefore, it would be interesting and meaningful to apply sCluster to HIV

data and investigate the findings. 168 HIV related protein chains listed in SCOP

database are downloaded. On average, each protein chain is formed of 103 amino

acids. Four cases with different settings as shown in Table 4.4.6 are evaluated where

case 1 is considered as a benchmark. In case 2 and case 3, maximum distance ε and

minimum sCluster length w are varied. Execution time in the first three cases are

almost stable because most of the execution time are occupied by pairwise sCluster

mining. While it is observed that number of sClusters changes significantly with

settings. In case 4, there are 100 randomly selected HIV related protein chains with

average length of 107. For processing case 4, sCluster takes 9.72 seconds which is

much faster compared to 16.18 seconds in processing case 1. This is because fewer

chains incur fewer calculations on comparing every two chains.



100

Figure 4.29:
d1c0ua1[431 : 470]

Figure 4.30:
d1c1ca1[431 : 470]

Figure 4.31:
d1jlga1[431 : 470]

Figure 4.32:
d1rt1a1[431 : 470]

We randomly plot two sClusters using another popular visualization tool -

Chime control. The first sCluster includes the substructures as depicted in Fig-

ure 4.29, 4.30, 4.31 and 4.32. This sCluster appears in the domains of reverse

transcriptase of HIV. The second sCluster includes the substructures as depicted

in Figure 4.33, 4.34, 4.35 and 4.36. It appears in human immunodeficiency virus

type 2 protease. The similarities among the substructures in each sCluster can be

easily observed. These substructure patterns frequently appear in HIV organisms.

Therefore, as long as the chemical compound to bind one substructure in sClusters

can be identified, the binding would happen on many similar sites and the chemical

compound consequently becomes a potential fatal killer to HIV.

Case # of proteins Average length ε w Time(s) # of sClusters
1 168 103 4.0 40 16.18 824
2 168 103 5.0 40 16.74 12741
3 168 103 4.0 38 16.37 4005
4 100 107 4.0 40 9.72 578

Table 4.3: Experiments on HIV dataset. Note: we present number of sClusters
where each includes 4 similar substructures.
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Figure 4.33:
d1hiia [1 : 40]

Figure 4.34:
d1idaa [1 : 40]

Figure 4.35:
d1idbb [1 : 40]

Figure 4.36:
d1idab [1 : 40]

4.5 Summary

In this chapter, we study a new problem, clustering similar substructure on se-

quential 3D objects such as protein chains. We propose a sCluster model to

support these applications. An simple but effective distance measurement, fds, is

designed to evaluate the dissimilarity between sequential 3D objects. We devise a

fast algorithm for discovering pairwise maximal sClusters between two objects. A

modified-apriori algorithm is presented to expand pairwise maximal sClusters to

obtain all maximal sClusters without loss. The algorithm is further extended to

produce maximal sClusters which are related to a given query object.

Compared to the existing subspace clustering approaches, we differentiate sCluster

by two points. The first is that sCluster focuses on mining clusters which could

be located on different dimension group. The other is that sCluster is specialized

for 3D sequential substructures where translation and rotation are involved during

distance measuring.

The applications of sCluster model range widely from bioinformatics, biophar-

maceutical research and moving-object relationship detection. Especially, with the

explosion of protein 3D structures and structure pattern mining, sCluster would

be a potential and ideal tool. In these applications, substructures may not be close

while they are similar after isometric transformations and they are not necessar-



102

ily in the same dimension groups. With distance measurement fds and sCluster

algorithm, we can explore more interesting findings in a better and more efficient

manner.

In the future, sCluster could be explored for mining generic 3D objects rather

than limited in sequential 3D structures. Furthermore, we can extend sCluster

by producing centroid for each cluster, leverage on the centroid to speed up query

process, and present and visualize the centroid for users’ better understanding.
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CHAPTER 5

Mining 3D Sequential Patterns With

Constraints

5.1 Introduction

As an enhancement of sCluster, we study mining sequential 3D patterns with con-

straints of the minimum support and minimum confidence in this chapter. Datasets

often include objects from various classes, and it is possible for a pattern to appear

in different classes. Mining patterns with the constraints of minimum support and

minimum confidence is important and meaningful as it forms the basis of applica-

tions such as classification and prediction [55].

For proteins, it is well-known that their 3D structures influence the biological

functions [53]. In the absence of obvious amino acid sequence similarity, the detec-

tion of 3D structural similarity is a powerful tool to study remote homologies and

protein evolution. For spatial moving objects, similar sequential 3D patterns could
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be the moving tracks of objects in the same class.

One challenge in pattern mining is caused by the object length and the number

of objects. The object length could range from tens of vertices to thousands of

vertices, and the number of objects in datasets could vary as well. A practical

approach should be scalable with respect to both the object length and the number

of objects.

Another challenge arises from the significant difference existing among various

real-life datasets. Features of patterns found in different datasets which are of the

same size may be very different. It is helpful for a mechanism to automatically tune

the settings to discover the meaningful patterns to adapt the mining approach to

various applications.

In this study, we propose MSP, a new approach for mining maximal sequential

3D patterns with the constraints of minimum support and mining confidence based

on a seed-and-extension strategy. According to our knowledge, this problem is

not well studied but valuable in real-life applications. MSP includes three stages.

First, patterns with fixed length appearing in two 3D objects are produced as

the seeds. Second, the vertical extension, a novel depth-first search algorithm

is adopted to locate the hits of seeds in all 3D objects with the constraints of

minimum support and minimum confidence. Third, the horizontal extension is

to extend every pattern to be the longest without loss of hits. Furthermore, a

dual-level binary-search algorithm, Detect Proper Settings (DPS), is implemented

to automatically identify the proper settings to produce the number of patterns

specified by users.

As the initial study, sCluster [83] has been discussed in Chapter 4 for mining

subspace clusters in sequential 3D structures. It is an extended apriori algorithm

for clustering similar substructures without considering the constraints of minimum
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support and minimum confidence. In the later section, we would evaluate the

performance by comparing MSP with sCluster by setting both minimum support

and minimum confidence to be 0. Comparison experiments show that MSP is faster

and more scalable than sCluster.

In our experiments on protein datasets, the randomly selected patterns show

that MSP is effective to detect the frequent patterns. We also adopt the result

patterns to binary classification on different protein families in SCOP database [63]

and the PhysioNet/CinC Challenge 2002 dataset. The results show MSP achieves

very high accuracy and MSP finds out unknown and unexpected patterns

in remote homologous proteins. We believe MSP can be effectively adopted for

classification and prediction in various applications and knowledge domains.

5.2 Definitions

Symbol Definition
S[b : e] Object from the b-th vertex to e-th

vertex on sequential 3D Object S
ε Error tolerance

Len(P ) Length of pattern P
w Seed length
C Dataset of class C
¬C Dataset of the classes other than C
|D| Number of items in dataset D

support(P ) Support of pattern P
confidence(P ) Confidence of pattern P

min sup Minimum support
min conf Minimum confidence

Table 5.1: Symbols and definitions

Table 5.1 lists the main symbols and definitions used throughout the chapter.

Sequential 3D Objects: A 3D sequential object is a group of vertices where
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each vertex only links to its left-side and right-side adjacent vertices. It can be

represented as S[b : e], where S is a sequential 3D object, and b and e are the

beginning vertex and the ending vertex respectively. The edges are connecting

adjacent vertices.

Similarity Measurement: We adopt fds which is defined in Chapter 4 as the

measurement to evaluate the similarity between two sequential 3D objects.

5.2.1 Pattern And Hit

In real-life applications, a sequential 3D pattern could appear in many objects with

small changes. For example, protein structures dynamically change within a small

range due to different chemical environments, temperature and so on. The tracks

of two synchronized spatial moving objects could be slightly different. Therefore,

the pattern is a group of similar objects defined as:





If P is a pattern in data set D with error tolerance ε

then for any two objects p1, p2 ∈ P, fds(p1, p2) ≤ ε holds.

Hit(D, P, ε) is the superset of P which is defined as all the occurrences of

pattern p in dataset D with error tolerance ε. Assume, s is a portion or the whole

of a sequential 3D object in D, then

(∀p ∈ P : fds(p, s) ≤ ε) → s ∈ Hit(D,P, ε)

The more the cardinality of Hit(D,P, ε) (|Hit(D,P, ε)|), the more frequent

pattern P is. Meanwhile, the longer pattern P is, the more significant pattern P

will be. Therefore, we define the maximal pattern to avoid trivial patterns:
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If P is a maximal pattern in D with error tolerance ε then

(1) there does not exist pattern P ′ that P ′ ⊃ P

(2) there does not exist pattern P ′ that Len(P ′) > Len(P )

and every object in P appears in one of the object in P ′

Assume dataset D = {S1, S2, S3, S4, S5}, and P = {S1[6 : 15], S3[10 : 19], S4[5 :

14]} is a maximal pattern in D with ε, then we cannot find hits in S2 or S5.

Furthermore, if we extend the pattern to left side or right side, then there should

be at least one pair of structures in P that have distance larger than ε. In this

chapter, we focus on mining maximal patterns with the constraints of minimum

support and minimum confidence. The problem can be defined as:

Problem 5.2.1 Mining maximal patterns

Given data set D = C ∪ ¬C, error tolerance ε, minimum support min sup, mini-

mum confidence min conf , then we have





support(P ) = |Hit(C∪¬C,P,ε)|
|C∪¬C|

confidence(P ) = |Hit(C,P,ε)|
|Hit(C∪¬C,P,ε)|

the problem is to find:

{P : P is a maximal pattern in C ∪ ¬C with ε

∧(support(P ) ≥ min sup) ∧ (confidence(P ) ≥ min conf)}

5.3 Algorithm

MSP employs a seed-and-extension framework as shown in Figure 5.1. MSP al-

gorithm is described in Algorithm 5.3 which includes generating seeds, vertical
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extension and horizontal extension.

c1  ...  cn        a1  ...  am

Seeds:        s1, ..., st

D={c1,...,cn, a1,...,am}

r1, ..., rk
min_sup and min_conf

Maximum Patterns
0n Conditions Of 

Maximum Frequency
With:Patterns

p1, ..., pw

Depth−first Search
To Detect Hits

Vertical Extension

Horizontal Extension
Extend Pattern Length
Without Loss Of Hits

Pairwise Pattern Mining
Generating Seeds

Figure 5.1: Framework of MSP
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n26:{1,2,3,4,5}

[4:8],[5:9])
([1:5],[2:6],[3:7],

n21:{1,2,3,4}
([1:5],[2:6],[3:7],[4:8])([1:5],[2:6],[3:7])

n11:{1,2,3}

Figure 5.2: Example of vertical extension
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Algorithm 5.3: MSP
input: 3D sequential structure classes, C and ¬C:
C = {S1, S2, ..., Sn}, ¬C = {Sn+2, ..., Sn+m}
error tolerance: ε, seed length: w,
minimum support: min sup, minimum confidence: min conf
output: patterns
data structure:

Node =

{
number of patterns N

list of hits H

Generating seeds
1. ST ← New Stack(∅)
2. L(2) ← ∅, LP ← ∅
3. i ← n + m
4. while (i > 1) / ∗ pairwise objects comparison ∗ /
5. j ← n + m
6. while (j > i)
7. H ← LSSSP (Si, Sj, ε, w) /∗ longest pattern ∗/
8. LP ← LP ∪ {H}
9. H ← Decompose H to patterns with length of w
10. node ← New Node(|H|, H)
11. PUSH(ST, node)
12. L(2) ← L(2) ∪ node.H
13. j ← j − 1
14. i ← i− 1
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Vertical extension
15. while (ST 6= ∅)
16. l ← POP(ST ) where ut is the largest object ID in l.H
17. if ut = n + m
18. or l.N+n+m−ut

n+m
< min sup

19. or |hits ∈l.H from C|+1
l.N+1

< min conf
20. then goto step 15
21. ST ′ ← New Stack(∅)
22. for ut < ut + i ≤ n + m
23. node ← New Node(0, ∅)
24. for m ∈ l.H: m = {Su1[bu1 : eu1], ..., Sut[but : eut]}
25. if ∃Sut+i[b : e] where
26. {Su1[bu1 : eu1], Sut+i[b : e]} ∈ L(2),
27. ..., {Sut[but : eut], Sut+i[b : e]} ∈ L(2) hold
28. then node.H ← node.H ∪ {{m ∪ {Sut+i[b : e]}}}
29. node.N ← node.N + 1
30. if node.N > 0
31. then PUSH(ST ′, node)
32. L(t + 1) ← L(t + 1) ∪ node.H
33. while (ST ′ 6= ∅)
34. PUSH(ST ,POP(ST ′))
35. go to step 15

Horizontal extension
36. For each pattern
37. P = {S1[b1 : e1], ..., St[bt : et]} ∈ L(2), ..., L(k)
38. (l, r) ← (b1, Len(S1)− e1)
39. for i = 1 to t− 1
40. for j = i + 1 to t
41. (l′, e′) ← ExtPairPatt(LP, Si[bi : ei], Sj[bj : ej])
42. if (l′ < l) then l ← l′

43. if (r′ < r) then r ← r′

44. if (l, r) = (0, 0) then go to step 36
45. L(t) ← L(t)− {P}
46. ∪{{S1[b1 − l : e1 + r], ..., Sn[bn − l : et + r]}}
47. return

k⋃

i=1

L(i) where L(i) 6= ∅

Figure 5.3: MSP Algorithm
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5.3.1 Generating Seeds: Pairwise Pattern Mining

A seed is fixed-length pattern appearing in two objects. We compare every two

objects to generate seeds using the Longest Synchronized Similar SubObject

Pair (LSSSP ) mining algorithm in Chapter 4 [83] as shown in step 7. The results

of LSSSP are longest pairwise patterns stored in LP . In step 9, every pairwise

pattern longer than minimum length would be divided into multiple seeds using a

sliding window. For example, with seed length of 6, we will decompose the pattern

{S1[3 : 10], S2[2 : 9]}

into three fixed-length seeds,





{S1[3 : 8], S2[2 : 7]}
{S1[4 : 9], S2[3 : 8]}
{S1[5 : 10], S2[4 : 9]}

The overall computational complexity of generating seeds is:

O((n + m)2(l2 +
∑l

i=1 lg i!)), where

l is the object length, (n + m) is the number of objects

5.3.2 Vertical Extension: Depth-first Search to Detect Hits

Vertical extension is to detect all the hits of seeds in the whole dataset. Cong

et. al. [24] have proposed, Farmer, a depth-first search algorithm for microarray

pattern mining. The method was verified to be efficient in handling long attribute

lists because of the use of various pruning strategies. In datasets of spatial moving

objects and protein chains, the object length can be as long as hundreds of vertices.
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This promotes us to create a depth-first search approach on enumerate all the

eligible hits.

Step 15 to 35 in Algorithm 5.3 describe the vertical extension. A stack ST is

used to realize the depth-first searching order. The patterns including i hits are

stored in both the result list L(i) and the stack nodes.

In the sample shown in Figure 5.2, every box is a stack node which records all

patterns in the objects listed in { }. The items in { } are the object IDs which

are hit by the patterns and ([ ], ...[ ]) are the starting positions and the ending

positions of the hits in objects. For example, node

n5 : {2, 3}([1 : 5], [6 : 10]), ([2 : 6], [3 : 7])

includes two patterns,

{S2[1 : 5], S3[6 : 10]} and {S2[2 : 6], S3[3 : 7]}

Patterns with hits in the same objects are included in the same stack node. Node n5

includes all the patterns appearing in S2 and S3. The enumeration is in ascending

order. To vertically extend n5, the algorithm will detect the hits in S4 and S5.

To detect hits of {S2[1 : 5], S3[6 : 10]} in S4 , we check if there are any pairwise

patterns in form of {S2[1 : 5], S4[b : e]} and {S3[6 : 10], S4[b : e]} in L(2). In this

sample, this extension fails. After that, MSP tries to extend {S2[2 : 6], S3[3 : 7]}
to S4. We see {S2[2 : 6], S4[4 : 8]} and {S3[3 : 7], S4[4 : 8]} in L(2). Consequently,

we produce a new node n17 : {2, 3, 4}([2 : 6], [3 : 7], [4 : 8]). The algorithm further

extends node n17 by detecting hits of the pattern, {S2[2 : 6], S3[3 : 7], S4[4 : 8]}, in

S5. Similarly, we check L(2) and find {S2[2 : 6], S5[5 : 9]}, {S3[3 : 7], S5[5 : 9]} and

{S4[4 : 8], S5[5 : 9]} in L(2). Then we extend n17 to n25. Here we say n17 and n18
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are vertically extended by n5. Since S5 is the last object in C ∪¬C, MSP does not

continue vertical extension on node n25 but retrieves n18 from the stack. The order

of generating stack nodes from n5 is:

...n5 → n17 → n25 → n18...

Because MSP follows depth-first search order, if a node is pruned, then all the

nodes that could be vertically extended are pruned. It significantly reduces the

search space. Furthermore, during vertical extension, min sup and min conf are

used to prune ineligible nodes according to the below properties.

Property 5.3.1 Assume P1 ∈ node and P2 ∈ node, then





support(P1) = support(P2)

confidence(P1) = confidence(P2)

Proof: Since patterns in one node are from the same objects, so the supports and

confidences are the same. 2

Therefore, we define the support and the confidence of a node as the support and

the confidence of any pattern which is included by the node respectively.

Property 5.3.2 If node n1 is vertically extended by n2, then





support(n1) > support(n2)

confidence(n1) ≤ confidence(n2)

Proof: On one hand, because n1 is vertically extended by n2, there must be at

least one more object included by n1 compared to n2. Thus, we have support(n1) >

support(n2). On the other hand, since vertical extension follows depth-first search
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order, the algorithm will extend to objects in C before objects in ¬C. If the algorithm

extends to an object in C, then the confidence is always 100%. Otherwise, the hits

in C will not increase while those in ¬C are possible to increase. Hence, we have

confidence(n1) ≤ confidence(n2). 2

Leveraging on the properties, we implement two pruning strategies that speed up

the search process. If the confidence or support of a node is ineligible, all patterns

in the node will be pruned.

Pruning with min sup: Step 18 is to prune ineligible nodes using min sup.

It calculates the maximum support of the nodes that could be generated by the

current node in vertical extension. If it is less than min sup, the node will not be

extended. Given a dataset D = C ∪ ¬C and a stack node ni as:

{u1, ..., ut}
([bu1,1 : eu1,1], ..., [but,1 : eut,1]), ..., ([bu1,1 : eu1,1], ..., [but,k : eut,k])

The maximum possible support of the nodes which are generated by vertical ex-

tension in ni is

t + |C|+ |¬C| − ut

|C|+ |¬C|

For example, the maximum possible support of n3 and the maximal possible support

of n5 are 2+1
2+3

= 0.6 and 2+2
2+3

= 0.8 respectively. If min sup = 0.7, then MSP will

stop vertical extension on n3 while continue on n5.

Pruning with min conf : Step 19 is to prune ineligible nodes using min conf .

It calculates the confidence of current node. According to Property 5.3.2, the

confidence of current node is the maximum confidence of the patterns that can be

vertically extended by the current node. If it is less than min conf , the node will

not be extended. For example, the confidence of n3 and the confidence of n5 are
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1
2

= 0.5 and 2
2

= 1. If min conf = 0.8, then MSP will stop vertical extension on

n3 while continue on n5.

5.3.3 Horizontal Extension: Extend Pattern Length with-

out Loss of Hits

After detecting all hits, MSP obtains the patterns in fixed length. It is possible to

extend the patterns in terms of length as well as to keep the distance between any

two objects in one pattern be less than ε.

3

2

1

(1,2)=1

Table

321

{S1[4:10],S2[3:9],S3[2:8]}{S1[5:9],S2[4:8],S3[3:7]}

S3[8]

S3[7]

S3[3]

S3[2]

S2[9]

S2[8]

S2[4]

S2[3]
S1[10]

S1[9]S1[5]

S1[4]

(l,r)

(2,3)=5

(1,3)=3

(2,3)

{S2[4:8],S3[3:7]}

{S1[4:18],S3[2:16]}

{S1[3:12],S2[2:11]}

{S2[2:9],S3[1:8]}

{S1[5:9],S3[3:7]}

{S1[5:9],S2[4:9]}

LP

{S1[3:12],S2[2:11]}
{S1[7:12],S2[3:8]}

{S1[2:8],S3[10:16]}
{S1[4:18],S3[2:16]}

{S2[2:9],S3[1:8]}
{S2[1:8],S3[7:14]}

(1,3)

5

31

(1,1)(2,1)

(2,3)

(1,9)

Figure 5.4: Example of horizontal extension
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Problem 5.3.1 Horizontal extension

Given a similar structure set {S1[b1 : e1], ..., Sn[bn : en]} where

∀1 ≤ i < j ≤ n : fds(Si[bi : ei], Sj[bj : ej]) ≤ ε

we are going to find the maximum value of the summation of left side extension l

and right side extension r where

∀1 ≤ i < j ≤ n : fds(Si[bi − l : ei + r], Sj[bj − l : ei + r]) ≤ ε

This problem is solved by step 36 to 46 in Algorithm 5.3. For each pattern, we

horizontally extend every two structures according to the longest pairwise patterns

in LP with a subroutine

ExtPairPatt(LP, Si[bi : ei], Sj[bj : ej])

ExtPairPatt is to find the longest pairwise pattern which contains {Si[bi : ei], Sj[bj :

ej]}. Since the longest pairwise patterns in LP will be frequently checked, we build

a table to store the entry for each two objects in LP . In sample shown in Figure

5.4, there are 3 objects and a pattern {S1[5 : 9], S2[4 : 8], S3[3 : 7]} is found by ver-

tical extension. Here, minimum pattern length is 5. The longest pairwise patterns

on S1, S3 are stored in LP from the third entry {S1[2, 8], S3[10 : 16]}. So the value

of cell (1, 3) in the table is 3.

We first check if there is patterns on S1 and S2 and the pattern could cover

{S1[5 : 9], S2[4 : 8]} with a synchronized left-side and right-side extension. {S1[3 :

12], S2[2 : 11]} is a longest pairwise pattern covering {S1[5 : 9], S2[4 : 8]} with offset

(2, 3). Similarly, we find the offset of {S1[4 : 18], S3[2 : 16]} on {S1[5 : 9], S3[3 : 7]}
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is (1, 9) that intersects with (2, 3) to be (1, 3). After that, we find the longest

pairwise pattern {S2[2 : 9], S3[1 : 8]} contains {S2[4 : 8], S3[3 : 7]} with the offset of

(2, 1). The maximum offset becomes (1, 1) by intersecting (2, 1) with (1, 3).

On one hand, the extension offset on two objects of a pattern iteratively in-

tersects with the current offset until the offset related to every two objects in the

pattern is intersected. It guarantees that the pattern cannot be extended longer

otherwise the fds value between at least two objects in the pattern is larger than ε.

On the other hand, all maximal patterns are found without loss because the stage

of generating seeds produces at least one seed for any one of the maximal patterns.

Although it is possible for a pattern to be a subset of another pattern, the pattern

can be easily filtered with a simple post-process.

5.3.4 Detection of Proper Settings

MSP involves various parameters which influence the number of generated patterns

and processing time. In real-life applications, it is inconvenient for users to decide

settings especially when they are not familiar with the algorithm. A loose pattern

detection setting would produce too many patterns that may take unacceptable

time and exhaust resources, while a tight setting would generate too few patterns

for future study. Furthermore, datasets especially from different areas can be very

different. It is difficult to pre-define a setting that suits all datasets. This motivates

us to devise a strategy to detect proper settings automatically. We define the

problem as follows:

Problem 5.3.2 Detect proper settings

Given a data set C ∪ ¬C, min sup and min conf , we are going to find a proper

setting on (w, ε) to generate approximate n patterns each of which is with t hits,

where t is the minimum integer no less than min sup · |C ∪ ¬C|.
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In order to avoid too many patterns, an approximate number of patterns should

be defined. Since the number of patterns grows with the increasing of error tol-

erance ε and the decreasing of seed length w, we create a heuristic approach to

automatically detect proper settings based on a dual-level binary-search schema as

shown in DPS Algorithm 5.3.4. The first level and the second level are with respect

to w and ε respectively. Initially, we set the range of w and the range of ε as:

[wmin, wmax] : wmin = 1, wmax = object length

[εmin, εmax] : εmin = 0, εmax = 3 ∗ object length

Optimistically, we assume the objects are exactly same with each other. It

implies that wmax = object length and εmin = 0. Pessimistically, we assume the

objects are very different. It implies either the pattern length is as small as 1 or

the error tolerance is as large as 3 ∗ object length because the maximum difference

based on fds on one vertex is the number of the features, i.e., 3. The range can be

defined more precisely with domain knowledge in real-life applications. As a start,

(w, ε) is set as (wmax, εmin). The µw and µε are the incremental steps on w and ε

respectively. We fix w while tune ε to check if there is ε to produce patterns as

expected. If number of patterns differs from n significantly, we increase or decrease

ε in a manner of binary search within [εmin, εmax]. If there is no proper ε with

the fixed w, we tune w in a manner of binary search within [wmin, wmax]. During

vertical extension of MSP, if we find that the existing patterns are much more than

n, then we stop it to speed up the detection. By this means, a proper setting

to generate approximate n patterns will be detected. The times for detection of

proper settings to invoke MSP is:

O(lgwmax−wmin

µw
· lg εmax−εmin

µε
)
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Algorithm 5.3.4: Detect Proper Settings (DPS)
Input: 3D sequential structure classes, C and ¬C:
C = {S1, S2, ..., Sn}, ¬C = {Sn+2, ..., Sn+m}
minimum support: min sup, minimum confidence: min conf
number of hits: t, range of number of patterns: [nmin, nmax]
Output: (w, ε) where:
|MSP (C,¬C, w, ε,min sup,min conf)| ∈ [nmin : nmax]

Method:
1. Initialize [εmin : εmax] and µε

2. Initialize [wmin : wmax] and µw

3. [εl : εr] ← [εmin : εmax]; [wl : wr] ← [wmin : wmax]
4. ε ← εl; w ← wr

5. Result ← MSP (C,¬C, w, ε, min sup,min conf);
/* A counter for pattern number is inserted to MSP. Once the counter
becomes larger than a certain number, MSP will stop. */
6. if |Result| ∈ [nmin : nmax] then return (w, ε)
7. if |Result| > nmax /* too many patterns */
8. then if εu > εl then { εu ← ε− µε; ε ← (ε+εl+µε)

2 }
9. else if wr < wl then return failure;
10. else {wl ← w + µw; w ← (wu+w+µw)

2 ;
11. [εl : εr] ← [εmin : εmax]; ε ← εl}
12. else if εr > εl /* too few patterns */
13. then { εl ← ε + µε; ε ← (ε+εl−µε)

2 }
14. else if wr < wl then return failure;
15. else {wr ← w − µw; w ← (wl+w−µw)

2 }
16. [εl : εr] ← [εmin : εmax]; ε ← εl}
17. goto step 5. 2

Figure 5.5: DPS Algorithm
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Figure 5.6: Example of DPS Algorithm

Figure 5.6 illustrates an example of DPS algorithm. It starts from point 1

(εmin, wmax). Too few patterns are generated, so the algorithm tests ( εmax+εmin

2
, wmax).

However, it generates too many patterns. Then DPS algorithm tests (εmin +

εmax−εmin

4
, wmax). While DPS algorithm still generates too many patterns and the

step µε is larger than εmax−εmin

4
, DPS Algorithm adjusts w to wmax+wmin

2
. Finally,

the setting of (wmin + wmax−wmin

4
, εmax+εmin

2
) generates patterns as expected.

5.4 Experiments

We design a group of experiments to evaluate MSP on a PC with a Pentium 4

2.6Ghz CPU, 1GB of SDRAM and a 7200rpm 40GB hard disk running Windows

XP. Two groups of datasets are used. One is a synthetic dataset with 3D coordi-

nates which are floatpoint numbers ranging from 0 to 1. The other includes protein

chains from various families from SCOP database. We study the effect of param-

eters to the performance followed by the comparison experiments between MSP

and sCluster. Finally, we will apply the results to protein family classification and

PhysioNet/CinC Challenge 2002 dataset to test the effectiveness.
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5.4.1 Parameters

The parameters of MSP includes length of seeds, error tolerance, number of objects,

object length, min sup and min conf . In this section, we study the impacts on

the performance of parameters on protein chains.

Effect of number of objects: We study the scalability in terms of number of

objects on protein chains where seed length w is 15. Both min sup and min conf

are set to 0. First, we tune error tolerance ε ranging from 1.2 to 1.7, but fix object

length to be 500 vertices. The results are presented in Figure 5.7. Second, we tune

the protein chain length ranging from 100 vertices to 500 vertices but fix ε to be

1.7. The results are presented in Figure 5.8.
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Figure 5.7: Number of objects and ε VS. Processing time

Figure 5.7 and 5.8 show that the processing time increases with the number

of objects modestly except in case of ε = 1.7, number of objects=70 and object

length=500 where too many patterns are generated during vertical extension. This

case can be avoided by DPS Algorithm 5.3.4. In the other cases, because the most

time-consuming part is generating seeds, MSP is scalable with the increasing of

number of objects.

Effect of object length: We test MSP on protein chains with seed length=15,

min sup = 0 and min conf = 0 by tuning object length from 100 to 500. In case
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Figure 5.8: Number of objects and object length VS. Processing time

of chains longer than target length, we truncate it. Figure 5.9 depicts the results

of the experiments in 60 protein chains with ε ranging from 1.2 to 1.7. MSP shows

a good scalability in terms of object length.

Figure 5.10 shows the results of the experiments with w = 15, ε = 1.7,

min sup = 0 and min conf = 0 in 6 datasets including 20, 30, 40, 50, 60 and

70 protein chains respectively. Except the case of 70 protein chains with object

length of 500, we observe that the processing time increases modestly with object

length. In case of 70 protein chain with object length of 500, the setting of (w, ε)

leads to too many patterns.
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Figure 5.9: Object length and ε VS. Processing time
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Figure 5.10: Object length and number of objects VS. Processing time
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Figure 5.11: Seed length and number of objects VS. Processing time
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Figure 5.12: ε and number of objects VS. Processing time

Effect of seed length: Seed length is studied in 6 datasets which include

20, 30, 40, 50, 60 and 70 protein chains respectively while we fix ε = 1.7 and
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object length=500. Figure 5.11 displays that the processing time does not vary

significantly except the setting of w = 15 in 70 protein chain dataset because most

of time is taken in seeds generation which mainly depends on the dataset size. The

reason that seed length of 15 in 70 protein chains leads to significant slump-down

of processing speed is that the short seed length forms the loose condition to detect

patterns. It can also be avoided by DPS Algorithm 5.3.4.

Effect of ε: Figure 5.12 shows the effect of ε in various datasets with object

length of 500, w = 15, min sup = 0 and min conf = 0. We notice the processing

time becomes sensitive for ε = 1.7 and number of object=70 due to too many

patterns. This case would be prevented by DPS Algorithm. With the other settings,

MSP slumps down with the relaxing of ε modestly.

Effect of min sup and min conf : We tune min sup from 0 to 0.5 while fix

min conf = 0, w = 15 and object length=500 in datasets of 20, 30, 40, 50, 60 and

70 objects respectively. Figure 5.13 shows the speed for min sup = 0.2 is 3 times

faster that for min sup = 0.3 in 70-object dataset since the pruning with min sup

significantly speeds up the vertical extension. Figure 5.14 shows the results by fixing

min sup = 0 while tuning min conf between 0.1 to 0.5. In 70-object dataset, the

pruning with min conf also speeds up the processing. We observe both pruning

strategies enhance the mining performance in large datasets, and the pruning with

min sup is more effective than the pruning with min conf .

Number of patterns: Numbers of patterns generated in 4 datasets are plotted

in Figure 5.15. Table 5.2 describes the number of objects and the object length in

each dataset. Here we set w = 15, ε = 1.7, min sup = 0 and min conf = 0. We

observe the number of patterns increases almost by 1 magnitude when the number

of objects grows from 60 to 70 because the number of combination of the objects

grows significantly and the number of generated patterns is related to the features of
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Figure 5.13: min sup and number of objects VS. Processing time
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Figure 5.14: min conf and number of objects VS. Processing time

datasets. Although MSP is scalable in terms of both number of objects and object

length, it is important and necessary to detect proper settings automatically since

the patterns generated in different datasets are significantly different.

Case 1 2 3 4
number of objects 70 60 30 60

object length 500 500 500 100

Table 5.2: Settings of cases
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Figure 5.15: Number of patterns VS. Number of hits

5.4.2 Comparing MSP with sCluster

To study the scalability of MSP in terms of number of objects, length of objects and

error tolerance, we design three groups of comparison experiments with sCluster

on real protein chains and synthetic data. Since sCluster does not support the

constraints of minimum support and minimum confidence, we set min sup = 0

and min conf = 0 in all comparisons. In this case, the patterns found by MSP

are the same with those found by sCluster because both MSP and sCluster are

designed to find out all maximal patterns without loss.
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Figure 5.16: MSP VS. sCluster on number of objects

First, we compare the performance in protein chains. To study the scalability
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in terms of number of objects, we set ε = 1.7, w = 15, and object length=500.

Figure 5.16 shows MSP is slightly faster than sCluster when the objects are not

more than 50 because the processing time of both approaches is mainly taken in

generating seeds. For 60 objects, we observe MSP is almost 2 times faster than

sCluster. Furthermore, MSP succeeds in producing results for 70 objects while

sCluster fails due to too many patterns that have to be retained in memory to

produce larger patterns.
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Figure 5.17: MSP VS. sCluster on ε

Figure 5.17 describes the scalability comparison results in term of ε in 60-object

dataset. The two approaches perform similar when ε ranges from 1.2 to 1.6. When

ε ≥ 1.6, MSP starts to show better performance than sCluster due to different

extension strategies. For ε = 1.8, MSP generates all results while sCluster does not

complete since too many medium results have to be resident in memory. Figure

5.18 depicts the processing time in terms of the object length with ε = 1.7 and it

shows that MSP is about 2 times faster than sCluster.

Second, we generate synthetic datasets with coordinate values randomly ranging

from 0 to 1 and study the scalability with respect to number of objects and object

length. The comparison results shown in Figure 5.19 and 5.20 are similar with the

results in protein chain datasets.
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Figure 5.18: MSP VS. sCluster on object length
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Figure 5.19: MSP VS. sCluster on number of objects in synthetic data
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Figure 5.20: MSP VS. sCluster on object length in synthetic data

In all, MSP is faster and more scalable compared to sCluster in terms of number

of object, object length and error tolerance. For relatively large dataset, MSP can
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be 2 times faster than sCluster, and MSP succeeds in producing results in some

cases while sCluster fails. Besides, MSP supports the constraints of minimum

support and minimum confidence while sCluster does not.

5.5 The Applications of MSP

MSP can be used in many areas. In this section, we adopt MSP in binary classifi-

cation for SCOP protein families and the PhysioNet/CinC Challenge 2002 dataset.

5.5.1 MSP for Binary Classification in Protein Structures

SCOP is a protein database classified in five hierarchal levels: class, fold, superfam-

ily, family and individuals. We evaluate the binary classification accuracy on three

datasets. Each dataset includes protein chains from two families. The first dataset

and the second dataset are used in [38]. The first dataset (D1) includes 18 protein

chains from two families, nuclear receptor ligand-binding domain proteins (NB) and

the prokaryotic serine protease family (PSP), which are from α-class and β-class

respectively. The second dataset (D2) includes 44 protein chains from eukaryotic

serine proteases (ESP) and prokaryotic serine proteases that belong to the same

superfamily. The third dataset (D3) includes 50 protein chains from rubrerythrin

n-terminal domains (RN) and 50 protein chains from calmodulin-like troponin c

domains (CTC).

First, protein chains are represented as sequential 3D objects by connecting the

adjacent Cα atoms on amino acids. Second, the dataset is partitioned to training

set and test set and we conduct pattern mining on training data using MSP. Third,

the obtained maximal patterns are used to detect hits in test data. The pattern

collection with higher hit rate in test protein chain identifies the candidate family.
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Table 5.3 presents the target number of patterns, min sup and min conf that

are the inputs to automatically detect proper settings of (w, ε). DT and AD(0.1)

are the methods presented in [38].

Experiments show that in all test cases the patterns correctly predict protein

families. It implies that the patterns found by MSP are meaningful and useful in

protein classification.

From the obtained maximal patterns in rubrerythrin n-terminal domains, we

randomly select a pattern including 4 objects, {d1b71a1[7 : 61], d1bcfa [6 : 60],

d1euma [2 : 56] and d1jgca[5 : 59]}, and plot them in Figure 5.21 using PDB2multiGIF

[47]. The pattern is a helix − turn − helix which is consisted of two α − helixs

connected by a turn and its objects are similar with each other.

(min sup, min conf) (w, ε)
D1 NB (30%, 100%) (20,2.73)

PSP (30%, 100%) (20,0.99)
D2 PSP (30%, 100%) (20,0.99)

ESP (30%, 100%) (20,0.80)
D3 RN (15%, 85%) (34,1.03)

CTC (15%, 85%) (25,3.81)

Table 5.3: Datasets and settings

MSP DT AD(0.1)
D1 100% 100% 100%
D2 100% 95% 95%
D3 100% - -

Table 5.4: Accuracy comparison among MSP, DT and AD(0.1) in binary classifi-
cation.

We also conduct mining on the protein chain dataset randomly selected from

the multi-domain class (for those with domains of different fold and for which

no homologies are known at present) [63], and present a pattern found from
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Figure 5.21: Sample pattern - 1: {d1b71a1[7 : 61], d1bcfa [6 : 60], d1euma [2 :
56], d1jgca[5 : 59]}

Figure 5.22: Sample pattern - 2: {d1bmr [2 : 26], d1cn2 [3 : 27], d1i6ga [2 :
26], d1nrb[1 : 25]}

this dataset in Figure 5.22. This pattern includes four objects, {d1bmr [2 : 26],

d1cn2 [3 : 27], d1i6ga [2 : 26] and d1nrb[1 : 25]}. We observe the pattern is a

group of amino acid atoms in a strand sitting at the middle of a small helix and a

turn. The similarity among the four objects is obvious. Therefore, we believe MSP

can be an effective approach for mining unknown and unexpected patterns

especially for the protein chains whose homologies are unknown.

5.5.2 MSP for PhysioNet/CinC Challenge 2002 Dataset

The PhysioNet/CinC Challenge 2002 dataset

http://www.physionet.org/challenge/2002/dataset.tar.gz

consists of 50 time series of inter-beat intervals. Each series contains between 20

and 24 hours of data (between 70,000 and 130,000 intervals). Approximately half
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of the series contain data derived from ambulatory ECG recordings of subjects

between the ages of 20 and 50 who have no known cardiac abnormality. The other

half contain synthetic data, which have been generated using the models submitted

by other researchers. Each model has been used to generate two time series. We

remove the 4 unknown records and conduct the classification over the real and

synthetic records.

Although the records are one-dimension data, we derive two angles on every

average inter-beat interval per 60 seconds as the features to calculate the summation

of the feature difference. Assume Ii−1, Ii and Ii−1 are three consecutive intervals,

then one angle on Ii is the arc cosine of Ii−1−Ii

max(Ii−1,Ii)
and the other angle on Ii is the

arc cosine of Ii−Ii+1

max(Ii,Ii+1)
.

precision recall
Real 85.19% 92.31%

Synthetic 80% 84.21%

Average 82.59% 88.26%

Table 5.5: Classification result for PhysioNet/CinC Challenge 2002 Dataset

We conduct our classification based on two simple hypotheses. One is that the

number of pattern occurrences on each real record should be within a reasonable

range because it is recorded from the people without cardiac abnormality. The

other is that MSP would produce either only a few or a lot of patterns on synthetic

records. On one hand, because every model has been used to generate only two

time series, if one model is significantly different from the other models, the records

would be hit only by a few patterns. On the other hand, if multiple models share

similar mathematical models, the records would be hit by many patterns.

Therefore, we generate patterns over the dataset, check the occurrences of the

patterns in each record and sort the records according to the occurrences of pat-
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terns. The records which are hit by only a few patterns or hit by a lot of patterns

are classified to be synthetic. We can achieve high precision and recall in the clas-

sification for both synthetic and real data. As shown in Table 5.5, the average

precision and recall are 82.59% and 88.26% respectively. We believe MSP is a

promising tool to be deployed to various applications.

5.6 Summary

In all, we have introduced a new generic pattern mining approach MSP that em-

ploys a seed-and-extension framework. Different from the previous work, MSP is to

find maximal patterns in sequential 3D datasets with the constraints of minimum

support and minimum confidence. Every pattern is a group of similar sequential

3D objects. Pairwise patterns with short and fixed length are generated as the

seeds. Vertical extension is conducted to find all hits of the seed patterns with

the constraints and horizontal extension is to expand patterns to be the longest

without loss of hits. MSP is likely to be deployed in many scientific datasets such

as protein chains and spatial moving objects. In order to enhance the adaptability,

DPS Algorithm is designed to automatically detect proper settings for the given

dataset. Comparison study shows MSP is efficient and scalable in terms of both

number of objects and object length. Applying MSP in protein family classification

and PhysioNet/CinC Challenge 2002 dataset shows the maximal patterns produced

by it are effective in real-life applications.
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CHAPTER 6

Remotely Homology Detection Based on

Protein 3D Structures

6.1 Introduction

Protein structure can elucidate its function in both general and specific terms as

well as its evolutionary history [15, 53]. While remote homologies are evolution-

arily divergent, and there is no significant amino acid sequence overlap to known

proteins. It is now widely agreed that the similarities among distantly related pro-

teins are often preserved at the level of their 3D structure, even when very little

similarity remains at the sequence level [35]. In the absence of obvious sequence

similarity, the association rules on 3D structures are meaningful to find the evolu-

tionary relationship for remotely homologous proteins.

In our approach, every protein chain is represented as a 3D sequential structure.

The Cα atoms are vertices and the links to connect adjacent Cα atoms are the edges.
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The similarity between protein chains is evaluated by the summation of the feature

difference on all the vertices. We employ sCluster for mining 3D structure patterns

and build the binary classification rule group (BCRG) where every rule takes form

of (m,C), m is the frequent substructure pattern and C is a class label. The

possibility of the rule group to correctly differentiate two classes is referred to as

the confidence.

Classifications for remotely homologous proteins pose a challenge for existing

sequence-based methods because the 3D structure information should be consid-

ered. The current association rule mining algorithms [6, 24, 33, 98] are based

on feature lists. Such approaches cannot be directly applied to protein structure

datasets. This is because the frequent 3D substructure patterns should be ex-

tracted before generating rule groups and the occurrences of patterns cannot be

simply determined by exact matching.

On the other hand, upon our investigation there are too few frequent substruc-

ture patterns that appear in 10 protein families while the number of protein families

is typically in the order of tens to hundreds. Therefore, it seems reasonable to create

highly accurate binary classifiers and to incorporate them to conduct multi-class

classification effectively.

There are some studies on combining multiple binary classifications for multi-

class classification. The naive One− V s−All approaches demonstrate good accu-

racy but may consume expensive computing resources [21]. The other approaches

are recursively dividing the classes into two groups of classes [76]. Our proposed

DBCT works a different manner. Given N classes, DBCT to iteratively conducts

N − 1 One − V s − One contests to select the final candidate. The structural dif-

ference between two protein families is evaluated by a measurement, called family

structural difference (fsd) and the binary classifications are iteratively carried out
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on the two families with the largest fsd value.

Our purpose is to conduct accurate classification for proteins especially for re-

mote homologous proteins. Due to the low sequence identify to the known proteins,

traditional approaches based on amino acid sequences are not effective enough. This

prompts us to retrieve the protein 3D structure patterns to form an effective clas-

sification method. In this chapter, we present an algorithm for mining association

rule groups on protein 3D structures. The rule groups are novelly incorporated to

classify multiple classes using DBCT . The experiments illustrate the accuracy and

the efficiency.

Unlike the existing approaches, our method employs the frequent protein struc-

tural patterns in 3D-coordinate as the main features to identify family and a new

approach, i.e. DBCT , to incorporate binary classification rule groups for multi-

class classification.

6.2 Preliminary

In this section, we introduce some basic definitions and algorithms that are useful

for further discussion.

6.2.1 Definitions

In this study, datasets are derived according to SCOP database [63]. Every protein

chain is described as 3D sequential structure where the vertices are Cα atoms

and the edges are the links to connect neighboring Cα atoms. We represent the

substructure of a protein chain as S[b : e] where S stands for the protein chain,

b and e stand for the beginning vertex and the ending vertex respectively. The

structural similarity between two protein chains is determined by the features on
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Figure 6.1: Sample motif: {(R[4 : 7], P [3 : 6], Q[2 : 5])}

the vertices including the distance between adjacent vertices, the angle between

adjacent edges and the torsion angle between adjacent planes. It is defined as fds

in Chapter 4.

The fds is the summation of feature difference on all vertices and it would be

applied by sCluster for mining 3D structural patterns. Motifs are 3D substructure

patterns which frequently appear in protein chains. Whether a structure pattern is

eligible to be a motif is determined by the number of occurrences and the length of

patterns. Moreover, because the protein structures vary in different environments

and different technologies cause different measure errors, it is necessary to allow

variations in the detection of motifs. Hence, we define motifs as the substructure

patterns found from the given dataset C as below:

motifs(C,w, u, ε) where

C : protein 3D structure dataset

u : every motif includes at least u occurrences in C

w : every occurrence of a motif includes at least w vertices

ε : maximum fds distance between two occurrences

Figure 6.1 shows an example with three chains in the dataset C = {R[1 :

7], Q[1 : 8], P [1 : 8]} where minimum length w = 4, number of occurrences

u = 3, and maximum fds distance ε = 0.3. There is one eligible motif, i.e.,
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motifs(C, 4, 3, 0.3) = {(R[4 : 7], P [3 : 6], Q[2 : 5])}.
Motifs are employed to detect homologies among unknown and existing proteins.

Given a new protein chain P and the motifs mined from existing protein dataset C,

we define the hits as all occurrences of motifs in P , i.e., hits(P, motifs(C,w, u, ε)).

Hits are a group of tuples taking forms of (t, A) where t is a substructure of P and

A is a motif. The fds between t and a structure in A is no more than ε.

Figure 6.2 shows an example of hit. Here, w = 6, u = 3 and ε = 0.3. In protein

P , there are two substructure P [2 : 7] and P [10 : 15] similar with motif m1 and

motif m2 respectively. Therefore, two hits (m1, P [2 : 7]) and (m2, P [10 : 15]) are

found.

6.2.2 Mining Motifs with Gaps

In order to classify proteins, we conduct mining on each protein family for fre-

quent sequential 3D substructures as motifs using sCluster [83]. Since the original

sCluster does not consider gaps, motifs found by sCluster are normally short and

appearing frequently. However, it is important to consider insertions, deletions

and replacements which are caused by mutations. In order to detect motifs with

gaps, we conduct a heuristic extension process over the pairwise motifs obtained

by sCluster.
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In this study, we deploy the gapped alignment which is widely studied in se-

quences to sequential 3D structures. Gap penalty function similarly with the pro-

tein sequence extension [8] is applied to extend the pairwise motifs. Because a

single mutational event may insert or delete a large number of residues, it has been

argued that long gaps should not cost much more than short ones [8] and we adopt

an affine gap penalty function as:

Gap Penalty = G + Ln

Here G is gap opening penalty, L is gap extension penalty and n is length of

gap. We set G = 11 and L = 1. For every match, we compensate by a deduction

of 4 on the gap penalty similarly with BlastP [8].

Since structures vary slightly due to the measurement errors and the internal

variations in the protein, we propose a criteria to determine the match with an

error tolerance δ. If a vertex on one structure S1[x : x] matches the corresponding

vertex on the other structure S2[y : y], the summation of feature differences between

S1[x : x] and S2[y : y] is no more than δ, i.e., fds(S1[x : x], S2[y : y]) ≤ δ. We

define the extension problem as:

Problem 6.2.1 Assume we have pairwise motif {S[a : b], P [c : d]}, we are going

to extend it along left-hand, i.e., to find the integer pair (i, j) to maximize i + j

where the gap penalty between the alignment on S[a− i : a− 1] and P [c− j : c− 1]

is less than a given maximum gap penalty. We call (i, j) the left-hand maximum

extension offset. The extension should be also conducted along right-hand.

Algorithm 6.2.2 describes the left-hand extension for Problem 6.2.1. The edit

operation - insert, delete or replace, is determined for mismatches as shown in step

9 to 13. The gap opening cost would be imposed if it is the first mismatch after the

previous matches. This algorithm is to consider local optimal alignments rather

than global optimal alignments. In order to avoid too many motifs, we employ a
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Algorithm 6.2.2: Left-hand extension on pairwise motifs
Input: pairwise motif: {S[a : b], P [c : d]}
maximum gap penalty: MGP , error tolerance δ
Output: left-hand extension offset (i, j)
Method:
Initialization
1. Penalty ← 0, IsExtension ← false
2. i ← 1, j ← 1;
Test boundaries and maximum gap penalty
3. If a− i < 1 or c− j < 1 Then return (i− 1, j − 1)
4. If Penalty > MGP Then return (i− 1, j − 1)
Extend in case of matches
5. If fds(S[a− i : a− i], P [c− j : c− j]) ≤ δ
6. Then i ← i− 1, j ← j − 1
7. Penalty ← Penalty − 4, IsExtension ← false
8. Goto step 3
Extend in case of mismatches
9. If fds(S[a− i : a− i], P [c− j − 1 : c− j − 1]) ≤ δ
10. Then i ← i− 1, j ← j − 2 /∗ Insert ∗/
11. Else If fds(S[a− i− 1 : a− i− 1], P, [c− j : c− j]) ≤ δ
12. Then i ← i− 2, j ← j − 1 /∗ Delete ∗/
13. Else i ← i− 1, j ← j − 1 /∗ Replace ∗/
14. Penalty ← Penalty + 1 /∗ gap cost ∗/
15. If ¬IsExtension
16. Then Penalty ← Penalty + 11 /∗ gap opening cost ∗/
17. IsExtension ← True
18. Goto step 3

Figure 6.3: Left-hand extension on pairwise motifs
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Figure 6.4: Sample motif: {d1dm2a[141 : 170], d1ckpa[144 : 173], d1b38a[157 :
186], d1aq11 [144 : 173]}

tight δ ranging from 0.05 to 0.1 and a small MPG value ranging from 12 to 15.

On the other hand, the right-hand extension would be conducted similarly with

the left-hand extension.

After the extension, the pairwise motifs would be used to generate motifs with

more occurrences by the modified-apriori algorithm in sCluster. We conduct mining

on the protein kinases catalytic subunit protein chains and present a randomly

selected motif in Figure 6.4. This motif includes 4 occurrences, d1dm2a[141 : 170],

d1ckpa[144 : 173], d1b38a[157 : 186] and d1aq11 [144 : 173]. The similarity among

the four occurrences is obvious. This sample shows that this method is effective to

discover protein 3D structure patterns.

6.2.3 Mining Motifs as Specified

The motifs found from different classes are different and they usually vary with the

settings. In order to efficiently generate enough motifs with given occurrences, we

adopt DPS algorithm which was described in Chapter 5.3.4 to automatically detect

suitable settings for the given protein family.

Problem 6.2.2 Give protein chain dataset C, motif occurrences u, range of num-

ber of motifs [nmin : nmax], we are going to find the proper settings including max-

imum distance ε and minimum motif length w to produce n motifs each of which

appear at least u times in C, where n ∈ [nmin : nmax].
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(n, u) = (400,4) (600,5)
family (ε, w) |motifs| (ε, w) |motifs|
RN (1.75,24) 480 (3.92,32) 693

HEC (2.81,26) 413 (3.92,29) 578
EP (2.81,30) 454 (3.92,33) 587
GST (2.43,30) 435 (3.84,34) 667

Table 6.1: Datasets and settings

DPS Algorithm facilitates users by hiding the details of 3D structural pat-

tern mining. Giving number of motifs (n) and the motif occurrence (u), it will

self-tune (ε, w) to produce enough qualified motifs. For example, we are going

to generate motifs on 4 protein families, rubrerythrin n-terminal domains (RN),

human enterovirus B coat proteins (HEC), Eukaryotic proteases (EP ) and Glu-

tathione S-transferase (GST ) with two groups of settings, (n, u) = (400, 4) and

(n, u) = (600, 5). RN is a α protein family. Both HEC and EP are β protein

families, and GST is a α/β protein family. There are 30 protein chains in each

family, and the amino acid sequence length of protein chains ranges from 70 to 500.

The protein chains in same family have sequence identities less than 30%. We set

the ranges for ε and w as below:

[εmin : εmax] = [1.5 : 4], [wmin : wmax] = [15 : 35]

Table 6.1 shows the suitable settings under two different requirements (n, u) =

(400, 4) and (n, u) = (600, 5). We set [nmin : nmax] = [n − 100 : n + 100]. For

family RN , the setting identified by DPS to generate motifs for (n, u) = (400, 4) is

(ε, w) = (1.75, 24) where 480 motifs are generated.

6.3 Binary Classification Rule Group

It is more possible for a motif to appear in the same family than in the other

family. For motifs which appear in more than one families, they are not unique to
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differentiate families. Therefore, we adopt motifs appearing in only one family to

build the association rule group. Given dataset D = {C1, C2} where C1 and C2

are two protein families, with the number of motifs n and the motif occurrence u,

we define the binary classification rule group (BCRG) as a group of 2-dimension

tuples (motif, family):

BCRG

= {(m1, C1) : m1 ∈ motifs(C1, w1, u1, ε1)

∧hits(m1,motifs(C2, w2, u2, ε2)) = ∅}

∪ (m2, C2) : m2 ∈ {motifs(C2, w2, u2, ε2)}

∧hits(m2,motifs(C2, w2, u2, ε2)) = ∅}

where wi and ui are generated by DPS(Ci, n, u)

For tuple (mi, Ci) in the binary classification rule group, motif mi appears in family

Ci but does not appear in family Cj where 1 ≤ i 6= j ≤ 2. The motifs in BCRG

are unique for each family and will be used by binary classifiers. To evaluate the

distinctiveness of BCRG, we define the confidence of motifs as:

conf(motifs(Ci, wi, ui, εi) : {C1, C2})

= 1− |hits(mi,motifs(Cj, wj, uj, εj))|
|motifs(Ci, wi, ui, εi)|

Here, mi ∈ motifs(Ci, wi, ui, εi)

1 ≤ i 6= j ≤ 2

Confidence of motifs from C1 indicates the probability that the motifs only appear

in C1. Motifs with higher confidence could be more possible to detect correct family.

However, too high confidence may lead to the over fit of training set so that the
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Algorithm 6.3: Create BCRG
Input: Training set D: {C1, C2}
number of motifs: n, motif occurrence: u
Output:BCRG
Method:
1. (w1, ε1) ← DPS(C1, n, u)
2. (w2, ε2) ← DPS(C2, n, u)
3. R1 ← motifs(C1, w1, u, ε1)
4. R2 ← motifs(C2, w2, u, ε2)
5. Result1 ← ∅; Result2 ← ∅
6. For each i from 1 to 2
7. For each motif m ∈ Ri, 1 ≤ i 6= j ≤ 2
8. If hit(m,Rj, Lj, εj) = ∅
9. Then Resulti ← Resulti ∪ {(m,Ci)}
10. Return Result1 and Result2

Figure 6.5: Create BCRGs

motifs could not hit the unknown protein structures even if they are from the same

family with the motif.

Algorithm 6.3 describes the process to produce BCRG. For m ∈ motif(Ci, wi, ui, εi),

if hit(m,motif(Ci, wi, ui, εi) = ∅, then add it into BCRG. Two binary classi-

fication rule groups, Result1 and Result2, are generated to identify C1 and C2

respectively.

6.4 Binary Classification Tree

There are some research works for multi-class classification based on binary clas-

sifications. An approach for handling multi-class classification is to generate all

possible 2-class classifiers between K classes from training examples. This ap-

proach is known as One − V s − All method which generates K(K − 1)/2 binary

classifiers given K classes of training examples. In case of many protein families,
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One − V s − All strategy is computationally expensive. To avoid this situation,

we create a new binary classification tree with height of K − 1 to support K-class

classification.

6.4.1 Family Structural Difference

In SCOP database, proteins are grouped into classes on the basis of their secondary

structures. Every class is further classified into multiple families. Motifs illustrate

the 3D structural features of protein family. Given two protein families C1 and C2,

number of motifs n and motif occurrence u, a measurement is defined to evaluate

family structural difference as

fsd(C1, C2, n, u)

= conf(motifs(C1, w1, u, ε1) : {C1, C2})

× conf(motifs(C2, w2, u, ε2) : {C1, C2})

(wi, εi) is generated by DPS(Ci, n, u)

The fsd is the product of the motif confidences on two protein families. The higher

fsd value, the more different the two families are. In the later section, experimental

results show that fsd is reasonable and effective to tell structural difference between

two families.

6.4.2 Deterministic Binary Classification Tree

Obviously, it’s easier to differentiate two significantly different families than two

similar families. Binary classification tree is an order to iteratively partition group

into two subgroups. A height of n − 1 binary classification tree, where n is the

number of classes, leads to a multi-class classification method based on n−1 binary
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classifications ordered by the tree. Leveraging on fsd value, a deterministic binary

classification tree is constructed where the difference between the two classes in

every node is the largest within the subtree rooted by the node.

Definition 6.4.1 Deterministic binary classification tree (DBCT )

Node=





pair (Cl, Cr) Cl, Cr ∈ C

L pointer to left child node

R pointer to right child node

DBCT(C)=





null if C = ∅
Node((C1, C1), null, null) if |C| = 1

Node( (Cl, Cr) : if |C| ≥ 2

|fsd(Cl, Cr, n, u)|
= max(|fsd(Ci, Cj, n, u)| : Ci, Cj ∈ C)

pointer to DBCT (C − {Cl}),
pointer to DBCT (C − {Cr}) )

Here n is the number of motifs, u is the motif occurrence.

C5 C4 C5

C4 : C5C3 : C5C1 : C5

C3C1

C2 : C3

C1 : C2

C3 : C4C4 : C5

C2

C4 : C5 C2 : C4

C1 : C4C4 : C5C2 : C5C1 : C5C1 : C4

C1 C4 C1 C5 C5 C4 C5 C4 C1 C5

C1 : C3

Figure 6.6: DBCT ({C1, C2, C3, C4, C5})
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conf C1 C2 C3 C4 C5

C1 - 0.9 0.8 0.3 0.2
C2 0.6 - 0.6 0.4 0.9
C3 0.5 1 - 0.5 0.5
C4 0.7 0.8 0.7 - 0.6
C5 0.9 0.3 0.4 0.4 -

Table 6.2: Families and confidences

(Fam1, Fam2) fsd (Fam1, Fam2) fsd
(C1, C2) 0.54 (C1, C3) 0.4
(C1, C4) 0.21 (C1, C5) 0.18
(C2, C3) 0.6 (C2, C4 0.32
(C2, C5) 0.27 (C3, C4) 0.35
(C3, C5) 0.2 (C4, C5) 0.24

Table 6.3: Families and fsd

Table 6.2 and 6.3 describe motif confidences and fsd value between any two

families on sample dataset {C1, ..., C5} respectively. Cell (i-th row, j-column) in

Table 6.2 is conf(m → Ci : {Ci, Cj}). Cell(i-th row, j-column) in Table 6.3 is

fsd(Ci, Cj, n, u). For example, Table 6.2 shows that conf(m → C1 : {C1, C2}) =

0.9 and conf(m → C2 : {C1, C2}) = 0.6. We see fsd(C1, C2) = 0.9× 0.6 = 0.54 in

Table 6.3.

In this sample, the largest fsd value is between C2 and C3, so the binary

classifier on C2 and C3 is possibly the most accurate. Hence, (C2, C3) should be at

the root of binary classification tree. Given a test protein, if it is determined by

BCRG on C2 and C3 to be more possible to belong to family C2, it should be the

input of the BCRG between two families which are the most different excluding

C3, and this BCRG is located at the left node of node (C1, C3).

The two classes in the root of DBCT is always the two classes with the largest

fsd value. The left-hand subtree under node ((Cl, Cr), l, r) recursively depicts the

DBCT which is created on families without Cr. Each level of non-leaf node means
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Algorithm 6.4.2: Create DBCT
Input: D = {C1, ..., Ct}
minimum number of motifs: n, motif occurrence: u
Output: DBCT (D, n, u)
Method:
1. if t = 0 then return null
2. if t = 1 then return node((C1, C1), null, null)
3. r ← new node
4. r.pair ← (Cl, Cr)
where fsd(Cl, Cr)=max(fsd(Ci, Cj) : Ci, Cj ∈ C)
5. r.left ← DBCT (D − {Cl})
6. r.right ← DBCT (D − {Cr})
7. return r

Figure 6.7: Create DBCT

one binary classification. So in total there would be n−1 BCRGs used for n-family

in one protein classification. Every protein classification follows through one path

from the root to leaf node which specifies the order of binary classifiers. Algorithm

6.4.2 describes the construction process of the deterministic binary classification

tree.

6.5 Experiments

We implement the multi-family classification proteins in C. All experiments are

done on a PC with a Pentium 4 2.6Ghz CPU, 1GB of SDRAM and a 7200rpm

40GB hard disk running Windows XP. A group of experiments are designed to

study the effect of settings and multi-family classification accuracy as well as the

performance.
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Family Abbreviation
Rubrerythrin n-terminal domains RN

Human enterovirus B coat HEC
Eukaryotic proteases EP

Glutathione S-transferase GST
Glycosyl hydrolase domains GH

Tyrosine-dependent oxidoreductases TDO
C1 set domains CS

Amylase, catalytic domains AC

Table 6.4: Families and abbreviations

6.5.1 Dataset

The dataset for experiments is downloaded from

ftp://vax2.fccc.edu/dunbrack/pub/culledpdb/cullpdb pc30 res3.0 R1.0 d040717 chains3672.gz.

The sequence identity between any two protein chains is less than 30%. We check

the corresponding family for each protein in SCOP database. Proteins in the same

family are remotely homologous. 320 protein chains from 8 families each of which

includes 40 protein chains are randomly selected. The 8 families are listed in Table

6.4. In case that the protein chains are less than 40, we randomly select other

chains in the same family from SCOP database to make up.

6.5.2 Accuracy of Binary Classifier

Since binary classifiers are the foundation of DBCT , we conduct experiments to

investigate the accuracy of binary classifier on real data. Two datasets that we

test are same with that are used in [38]. The first dataset (C1) includes two pro-

tein families that belong to two different SCOP classes. The first family is the

nuclear receptor ligand-binding domain proteins (NB) from all alpha class and the

second one is the prokaryotic serine protease family (PSP ) from all β-class. The

second dataset (C2) includes the families of eukaryotic serine proteases (ESP ) and
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LG LG LG
Dataset DT AD(0.1) CD DBCT (n, u)

C1 100% 100% 95% 100% (600,4)
C2 95% 95% 98% 100% (600,4)

Table 6.5: Accuracy of binary classifier - 1

Families Accuracy Families Accuracy
(RN,HEC) 100% (RN, EP ) 100%
(RN, GST ) 100% (HEC,EP ) 100%

(HEC,GST ) 100% (EP, GST ) 100%

Table 6.6: Accuracy of binary classifiers - 2

the prokaryotic serine proteases (PSP ). These two families belong to the same

superfamily. All proteins included in datasets C1 and C2 were selected from the

culled PDB list (http://www.fccc.edu/ research/labs/dunbrack/pisces/culledpdb.html)

with no more than 60% pair-wise sequence similarity in order to remove highly

homologous proteins. The comparison results are presented in Table 6.5. Here

LG−DT , LG−AD(0.1) and LG−CD represent three methods respectively pro-

posed in [38]. The setting is (n, u) = (600, 4). We see that our method correctly

predict the families for all test cases.

We also evaluate the accuracy on a portion of the downloaded dataset which

includes 160 protein chains from the 4 families, RN , HEC, EP and GST . The

dataset is divided into training set and test set which include 120 and 40 protein

chains repectively. Here the setting is (n, u) = (600, 4). Table 6.6 lists the accu-

racies in all the 6 binary classifications. For every test protein chain, the binary

classifiers predict its family correctly. The high accuracy of binary classification

rule groups forms a solid foundation for multi-family classification.
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setting 1
family RN HEC EP GST Average
RN - 100% 100% 100% 100%

HEC 97.34% - 64.09% 77.39% 79.61%
EP 82.64% 17.88% - 63.73% 54.75%
GST 84.04% 82.79% 72.57% - 79.80%

setting 2
family RN HEC EP GST Average
RN - 100% 100% 100% 100%

HEC 63.71% - 16.46% 62.87% 47.68%
EP 38.92% 2.96% - 25.62% 22.50%
GST 85.46% 82.62% 75.18% - 81.09%

Table 6.7: Motif confidences, setting 1: (n, u) = (600, 4), setting 2: (n, u) = (200, 5)

6.5.3 Confidence

Given a protein family, the number of motifs is determined by three parameters,

maximum distance ε, motif occurrence u and minimum motif length w. We target

to find more motifs with higher occurrence where larger maximum distance and

shorter minimum motif length are required. On the other hand, with the relaxing

of motif detection conditions, many motifs appear in multiple families and they

deteriorate confidence. We design a group of experiments on a 4-family dataset to

study the relationship among n, u and confidence.

In Table 6.7, cell(i-th column, j-th row) is the confidence of motifs from the

i-th family versus the j-th family, i.e.:

conf(motifs(familyi, wi, u, εi) : {familyi, familyj})
where (wi, εi) is determined by DPS(familyi, n, u). In this experiments, (n, u) =

(600, 4). All motifs from RN only appear in RN while motifs from EP frequently

occur in other families. The reason is that RN is an α-protein family whereas

HEC and EP are β-protein family and GST is α + β-protein family. Upon our

investigation, most of the motifs in RN are consisted of α-helix structures linking
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with other structures. For example, Figure 6.4 depicts a motif which is consisted

of two helixes connected by a group of amino acids located in a line.

Since both family HEC and family EP are beta proteins which include many

β-strands, the 3D structural similarity is high even though the sequence identify

between any two protein chains is trivial. So it can be observed that the motif

confidence for family EP to differentiate family HEC is 17.88%. On the other

hand, the confidence for motifs to differentiate family EP from RN is 97.34% and

the confidence for motifs to differentiate family HEC is 82.64%. This is because

family RN is α protein family which is significantly different from family HEC

and EP which are β-protein families. We also see the average confidences of motifs

with setting 1 are higher than that with setting 2 because higher motif occurrence

incurs tighter motif detection conditions.

6.5.4 Precision And Recall

The downloaded dataset is divided into a training set with 240 protein chains

and a testing set with 80 protein chains. There are 30 and 10 protein chains for

each family in training set and in testing set respectively. We build DBCT over

the training set with (n, u) = (600, 4) and predict the families for protein chains

in testing set. As a benchmark of DBCT , One − V s − All methodology is also

implemented to evaluate both effectiveness and efficiency of DBCT .

Table 6.8 describes the precision and recall of DBCT and One − V s − All on

every family in the dataset. We observe that the average precision and recall of

DBCT are 89.36% and 78.75% respectively. In most of the families, the precision

is 100%. The precision in family TDO is 43.5% because it’s a α and β protein

family where α-helix and β-strand are largely interspersed and would be regarded

as independent motifs. Recalls in the families are also good. For GST and AC,



153

Precision Precision Recall Recall
Family DBCT One− V s− All DBCT One− V s− All
RN 100% 100% 100% 100%

HEC 100% 100% 80% 80%
EP 100% 100% 80% 80%
GST 100% 100% 50% 60%
GH 71.4% 76.9% 100% 100%
TDO 43.5% 52.6% 80% 80%
CS 100% 100% 90% 90%
AC 100% 100% 50% 60%

Average 89.36% 91.19% 78.75% 81.25%

Time(s) 0.83 7.7

Table 6.8: DBCT VS. One-Vs-All on precision and recall

recall is 50% because both GST and AC are α and β protein families where the

test protein chains are easily hit by the motifs in forms of α-helix and β-strand.

We also notice that the precision and recall of DBCT are very close to One−
V s− All method. However, the average response speed for DBCT is 0.83 second

per prediction which is 9 times faster than One − V s − All. The baseline accu-

racy [89, 97] for the classification using amino acid sequence information alone was

recently created as 69.6% for proteins with sequence identity less than 35%. There-

fore, it could be concluded that DBCT is an effective and efficient mechanism to

incorporate binary classification rule groups to conduct multi-class classifications.

6.6 Summary

In summary, we have created a new approach for protein classification purely based

on 3D structures. It is a good complement to existing classification methods for

remotely homologous proteins whose sequence identities to known proteins are low

while the functionalities are similar.

First, sCluster is adopted and enhanced for mining frequent 3D structural pat-
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terns with gaps from protein families. Second, motifs are used to build binary

classification rule groups (BCRG). Experimental results illustrate that the accu-

racy reaches 100% in all test cases. In order to support multi-class classification,

the deterministic binary classification tree (DBCT ) is proposed to incorporate n−1

BCRGs. In the comparison experiments with One − V s − All method, DBCT

significantly enhances the efficiency while its precision and recall are close to the

One − V s − All method. We believe our method can be a new direction for de-

tecting the isomorphism and remote homologies in various real-life biological and

pharmaceutical applications.
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CHAPTER 7

FCDR: Finding Coding DNA Regions for

Similar 3D Protein Structures

7.1 Introduction

It is commonly accepted that proteins with similar functions can share similar 3D

structures but different amino acid sequences. Proteins are the results of translation

from DNA sequences where DNA sequences are transcribed into messenger RNA

(mRNA) and further translated into proteins. Every three nucleotides (codon)

determine which amino acid will be added next in the growing protein chain. This

translation is conducted by ribosomes. They start to assemble on the first AUG

(start codon) in mRNA and read the rest of codons sequentially. When a stop

codon is encountered (UAA, UAG, or UGA), mRNA and the ribosome will be

dissociated.

In this chapter, we describe our FCDR System for mining DNA sequences which
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Conserved 3D 
Protein Structures

Translated Proteins
in 6 opening reading frames

DNA Coding Regions
for Conserved Protein Patterns

Protein Sequences

sCluster

Protein Structures

Index
ed−tree

DNA Sequences

Figure 7.1: Architecture of FCDR System

code conserved 3D structures in a given protein dataset. There are many tools for

translating DNA to protein sequences. However, according to our knowledge, no

research has been done on translating a protein 3D structure to DNA sequence while

it is helpful to detect the DNA for the cause of disease and to identify biochemical

compounds for disease resistance.

7.2 Problem Description

Given DNA sequences and protein 3D structures of a biological organism, we are

going to mine the DNA subsequences which code the frequently appearing 3D

structure patterns in this organism.

7.3 System Architecture

We create FCDR system for mining DNA sequences which code similar 3D protein

structures. The main interface is shown in Figure 7.2 which includes:

1. Translate DNA to protein sequence.

2. Build ed− tree on protein sequences.
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Figure 7.2: Main interface of FCDR System

3. DPS & sCluster to mine 3D sequential patterns.

4. Search DNA for 3D protein patterns.

Component “Translate DNA to protein sequence” and component “Build ed−
tree on protein sequences” are the preprocessing on DNA sequences of target or-

ganism. Component “DPS & sCluster to mine 3D sequential patterns” is the pre-

processing on protein 3D structures of target organism. Component “Search DNA

for 3D protein patterns” integrates Chime [61] visualization control with searching

method on protein ed − tree. Users can view the frequent 3D structure patterns,

amino acid sequences and conduct query for the coding DNA sequences.

7.3.1 Translate DNA to Protein Sequence

For DNA sequences, we firstly translate them into protein amino acid sequences in 6

open reading frames using the facilities provided by bioinformatics.org. Since every

three nucleotides codes one amino acid, the translation can start at 3 position. On
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Figure 7.3: Interface of building ed− tree on proteins

the other hand, it can be translated either directly or reversely. Therefore there

are 6 open reading frames for translating DNA sequences.

7.3.2 Build ed− tree on Protein Sequences

Secondly, we build an ed − tree(8, 1, (4, 4)) index for the translated protein se-

quences. Since there are 20 distinct amino acids, we select 8 as seed length. Sliding

window with size of 1 character is adopted to generate subsequences which would

be indexed in ed − tree. Each subsequence is partitioned into two parts, each of

which is consisted of 4 characters. Compared to the ed−tree for DNA, the ed−tree

for proteins is to index shorter sequences with 2 levels only. Figure 7.3 shows the

interface for users to build index on protein sequence file.



159

Figure 7.4: Interface of mining protein 3D patterns

7.3.3 DPS & sCluster to Mine Similar 3D Protein Struc-

tures

We use sCluster to mine conserved 3D protein structures. As displayed in Figure

7.4, users can specify the number of expected 3D structure patterns. DPS will

automatically detect proper settings for sCluster to mine the substructure patterns

as users’ expectation. To enable a better understanding, we apply Chime control

[61] to visualize results in an interactive manner. Users can adjust viewpoints of

the structure pattern using mouse and the corresponding amino acid sequences are

extracted and listed.
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Figure 7.5: Interface of searching DNA sequences for protein 3D structures

7.3.4 Search Coding DNA Regions for 3D Protein Struc-

tures

After preprocessing on DNA sequences and protein 3D structures, users can view

3D structure patterns and conduct search for the coding DNA sequences as shown

in Figure 7.5. A web browser control is located at the middle of this interface

and it initially presents the instructions. When users select motif file, patterns

will be listed into the tree viewer and the selected pattern will be visualized by

Chime control. At the same time, amino acid sequences on the selected pattern are

presented also. Users can easily identify conserved 3D structures which are coded

by different DNA sequences.

The search is to find out sequences similar with those appearing on the con-
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served 3D patterns from amino acid sequences translated from DNA dataset. The

positions, annotations and detailed DNA sequences would be illustrated.

FCDR System is an intuitive and efficient tool for researchers to identify DNA

coding regions which generate similar 3D structures. It is helpful for studying DNA

homologies.

7.4 Experiments

We implement the kernel algorithms in C++ and build GUI for FCDR System

in Visual C++. FCDR System works on Windows XP or Windows 2000/2003.

All experiments are done on a PC with a Pentium IV 2.6Ghz CPU, 1GB of RAM

and a 7200rpm 80GB hard disk running Windows XP. A group of experiments are

designed to study user experience as well as performance.

7.4.1 Datasets

We conduct a study on yeast saccharomyces cerevisiae which is commonly known

as the baker’s budding yeast. The saccharomyces genome database has been down-

loaded from www.ncbi.nlm.nih.gov. The dataset includes about 12 million base

pairs of nucleotides. 32 protein 3D chains in yeast saccharomyces are selected from

SCOP database. On average, each protein chain is consisted of 269 amino acids.

7.4.2 Preprocessing on DNA Sequence Dataset

Firstly, DNA sequences are translated to amino acid sequences in 6 open reading

frames. The results are saved in FASTA format, for example:

>gi|Saccharomyces cerevisiae chromosome I|reading frame 1|direct

FIINFLYIYYIIILIYIIKIIFIIKIFILLSGFRLPWPGPGIIN***IIINN
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>gi|Saccharomyces cerevisiae mitochondrion chromosome I|reading frame 1|reverse

YGYYIIIKHISV**YNYSNIYIYITFFY*YIYMDSFLKRGSVPLPLGRGPSL

Lines with prefix of ”> gi” are the annotations that illustrate DNA source, po-

sition of starting translation and translation direction. These annotations would be

referred to in result presentation. After translation, yeast saccharomyces cerevisiae

protein sequences include about 24 million amino acids.

Secondly, we build an ed− tree(8, 1, (4, 4)) index on the protein sequences and

produce two index files.

7.4.3 Preprocessing on Protein 3D Structure Dataset

With 32 yeast saccharomyces cerevisiae structures, we use DPS and sCluster to

mine 300 patterns and 500 patterns separately. Table 7.1 depicts the auto-detected

settings (w, ε) and the number of obtained patterns. Here, w is the minimum

sCluster length and ε is the maximum distance.

Expected # of patterns # of obtained patterns (w, ε) Processing time (s)
500 459 (15,3.81) 17.6
300 354 (18,2.79) 12.2

Table 7.1: Settings and results of DPS and sCluster on saccharomyces cerevisiae
yeasts

To generate 500 patterns, DPS automatically determines the setting as (w, ε) =

(15, 3.81). Hence, sCluster algorithm produces 459 patterns, each of which includes

4 substructures.

7.4.4 Visualization And Query

After the sCluster process, all patterns and their substructures are listed as shown

in Figure 7.5. We randomly plot one pattern as shown in Figure 7.6.
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Figure 7.6: Sample pattern in FCDR System

The related information is listed as below:

pdb1a48[183 : 197] V GEDLSRRV AELAV K

pdb1ct5[197 : 211] RDFATLV EWKKKIDA

pdb1cte a[26 : 40] CGSCWAFGAV EAMSD

pdb1cte b[30 : 44] WAFGAV EAMSDRICI

Because there are 20 distinct amino acids, the enumeration space will be too

large if the seed is long. We adopt pmodel(8, 1, 2) for searching homologous protein

sequences. The subsequence with edit distance no more than 2 to any one of the

subsequences in the pattern would be found out. Sequences in the above pattern

hit 185 subsequences in the translated dataset. The query takes 3.5 seconds. One

selected sample output is depicted as below:

Hit-3: Query - 0 Seed - 15955340

> gi|6322960|ref |NC 001144.1|Saccharomyces cerevisiae chromosome XII

complete chromosome sequence > frame|open reading frame 1|reverse

Query: VGEDLSRRVAELAVK

Seed: GVGELSRR

DNA: TGGTTTAAAAGTCATACTTCTCTA
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In this hit, subsequence V GEDLSRR from pdb1a48[183 : 197] has edit distance

2 to GV GELSRR, i.e.

ed(“V GEDLSRR”, “GV GELSRR”) ≤ 2

“GVGELSRR” is translated from DNA subsequence “TGGTTTAAAAGTCAT-

ACTTCTCTA” which is located at 15955340 in Saccharomyces Cerevisiae chromo-

some XII with the reverse direction on open reading frame 1.

7.5 Summary

FCDR System is a method for biological researchers to mine frequent protein 3D

structures and to query their coding DNA regions. It integrates the module for

translating DNA sequences to protein sequences, the module for indexing protein

sequences, the module for visualizing protein 3D structures and the module for

searching DNA regions which code selected 3D structures. In our experiment, we

also found out many DNA coding regions for protein structure patterns in the

saccharomyces cerevisiae yeast.
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CHAPTER 8

Conclusions

8.1 Thesis Findings

In this thesis, we studied some important issues about query and mining in bio-

logical databases, mainly about DNA sequences and protein structures. We inves-

tigated the existing work and identified the problems which were not well solved

or fresh but important. We proposed new approaches to each problem. Our re-

search results are meaningful and valuable compared to the previous research. Also

our results presented some interesting research directions and the potentials to be

applied to real-life applications.

Our first target was to create a fast similarity search method in large DNA

sequence database on desktop PC. The motivation was because DNA sequence

databases become larger and larger, and biologists often hope to create a query

system on their own desktop PC with limited memory and CPU. While the previous

works mainly were either based on sequential scan or suffix structures which suffer
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from the memory consuming for datasets as large as the whole human genome.

In Chapter 3, we proposed the ed-tree for indexing large DNA sequence databases

with almost fixed-sized index. A new probe model has been designed to detect

valuable local alignment candidates. Compared to the popular method Blastn, our

probe model is more sensitive and able to detect longer candidates. Theorem 3.3.1

was explored to exactly calculate edit distance on probes in a more efficient manner

compared to the classical dynamic programming. This enabled to detect insertion

and deletion when generating candidates. Compared to the exactly-matching seed

model or the seed detection models with only replacements, our probe model was

substantially sensitive because it allowed gaps which were meaningful in biological

applications such as discovering mutations and evolutionary relationships.

A new index, ed-tree, was devised to organize probes and the positions of their

occurrences. Experiments showed that index size was relatively fixed and moderate.

Search algorithm has been implemented based on ed-tree. For large-sized DNA

sequence databases such as 1.5-2Gbps, ed-tree system can be 3-6 times faster than

BlastN on desktop PC without loss of result effectiveness.

To extend the homology mining to protein structures, we discussed the problem

of finding structure patterns in sequential 3D datasets. Mining sequential patterns

with respect to 3D coordinates has not been studied well but appear in various

important applications such as protein chains, moving objects and so on. This

motivated us to conduct a study on this topic.

In Chapter 4, we defined feature difference summation (fds) for evaluating

the dissimilarity between two sequential 3D objects. Since fds is the difference

summation of the selected features on all the vertices in the sequential 3D object,

it could be simpler and more efficiently compared to the traditional measurement

rmsd. Experiments showed it was effective for detecting frequent patterns. We
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defined sCluster model to formulate the subspace clustering problem. To avoid re-

dundancy, maximal sCluster was defined with respect to both the length and the

occurrences of patterns. As a foundation of mining all maximal sClusters, we have

given out an algorithm to find the longest sClusters on two objects. Compared

to the naive algorithm for this problem which has a computational complexity

of O(L3) (wherein L is the object length), our algorithm reduced the complexity

to O(L2 lg L). From the pairwise structural patterns, we applied the apriori ap-

proach with extensions to produce all maximal sClusters lever-by-level without

loss. In order to study the performance and effectiveness, we built a naive algo-

rithm for mining maximal sClusters. Experiments showed that sCluster could be

faster than naive algorithm by magnitudes. The randomly selected results illus-

trated the accuracy and effectiveness of our approach. With sCluster, biologists

and pharmaceutists can detect protein structure patterns without regard to amino

acid sequence identity, and can get a shortcut to find bundling proteins for some

disease organisms. It is applicable and meaningful in real-life applications.

In order to find the Maximal Sequential 3D Patterns with the constraints of

minimum support and minimum confidence, MSP was proposed as an improvement

of sCluster. Each pattern is a group of similar sequential 3D objects appearing

in a given dataset. MSP involves three stages: generating seeds with pairwise

pattern mining, vertical extension to detect all the hits with the constraints using

a depth-first search and horizontal extension to extend the pattern length without

loss of hits. Furthermore, we proposed a method to automatically Detect Proper

Settings, DPS, in order to adapt MSP to various datasets. DPS is a dual-level

binary search algorithm with respects to seed length and error tolerance. DPS

calls the MSP for mining patterns and it stops when the patterns are significantly

more than expected. Binary search was adopted to find good settings within a
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pre-defined ranges of seed length and error tolerance. The experiments on protein

chains and synthetic data showed MSP significantly outperforms sCluster. We

applied MSP to protein family classification, and the obtained patterns correctly

classified the protein families on all the tested binary-class datasets. We also applied

MSP to PhysioNet/CinC Challenge 2002 dataset and achieved a good accuracy in

the classification event.

For the purpose of complementing the traditional protein classification ap-

proaches which mainly leveraged on amino acid sequences, we were promoted to

build a classifier for remotely homologous proteins purely based on 3D structure

patterns. In Chapter 6, we investigated the characteristics of proteins, applied

sCluster and MSP for protein 3D pattern mining and built the binary classifica-

tion rule groups. Furthermore, Deterministic Binary Classification Tree was

designed to incorporate binary classifiers to enable multi-class classification. Ex-

periments on various protein families showed that the system discovered valuable

motifs and both the precision and recall of our approach were high. Meanwhile, pro-

tein prediction time has been significantly reduced compared to the One−V S−All

method.

To deploy our research results into real-life applications, we have incorporated

ed−tree on protein sequences and sClusters on protein 3D structures into a FCDR

System. It interactively visualizes frequent 3D protein structures and enables re-

searchers to find the DNA regions which code similar protein structures.

8.2 Future Works

To conduct indexing and query on large DNA sequence databases on personal PC,

ed-tree can be deployed to be a complete usable application. On the other hand,
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current ed-tree is mainly to index the database, and the length of query sequence is

ranging from tens to hundreds of nucleic acids. In case of long query sequence and

large sequence database for example, yeast genome and human genome, ed-tree

can be used to index both query and database. A query algorithm deserves to be

developed to compare two ed-trees.

sCluster and MSP are generic subspace cluster approaches to sequential 3D

objects. It provides a framework on 3D structural pattern mining. One direction

is to apply this algorithm into more real-life applications such as web applications,

moving objects and so on. In each application, different features should be selected

for calculating fds according to the characteristics of datasets. The other direction

is investigate 3D structural patterns in all kinds of 3D objects rather than only

sequential 3D objects. This topic is more meaningful and challenging.

To bring sCluster and MSP to real-life applications, it is possible and valuable

to integrate them with a web-based interface for researchers to conduct query and

mining on protein chains. A few interesting applications can be supported. One

is to mine 3D structure patterns appearing from different protein families. It can

discover the homology between families, superfamilies and so on. The other is to

detect remotely homologous proteins where the sequence similarity is ambiguous

but the structural similarity and functional similarity are high. The obtained pat-

terns can also be presented in a rotating 3D manner by integrating the results with

various visualization methods such as PDB2multiGIF [47] and Chime [61].
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