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Summary 

    In current literature, some of the EOS which are used to simulate solid behaviour 

include the Mie-Gruneisen EOS from Miller and Puckett (1996) and the hydro-elasto-

plastic model by Tang and Sotiropoulos (1999). The Naviers equation is based on the 

theory of elasticity and is well-known in solid mechanics. It only involves two material 

parameters (Young modulus and Poisson Ratio) which can be found in most material 

handbooks, unlike the other EOS mentioned above. In this thesis, a novel approach 

was adopted in which the Naviers equation was used to simulate elastic solid 

behaviour when the elastic solid is coupled to compressible fluid media. The level-set 

method was used to track the fluid-solid interface movement and through the 

implementation of the Modified Ghost Fluid method, which calculates predicted 

interface values and ghost fluid status using an approximate Riemann solver, the 

interface boundary conditions could be maintained without specifying the interface 

position. Due to the nature of the Naviers equation, the mesh over the solid media has 

to be Lagrangian while the mesh remains Eulerian over the fluid media and in order to 

ensure stability, the smaller Lagrangian timestep was used. The numerical solver for 

the fluid medium was the high-order MUSCL scheme with a minmod limiter while for 

the solid medium, the second-order modified Harten’s TVD MUSCL scheme with the 

incorporation of an artificial compression method(ACM) technique in the immediate 

region of shock/contact discontinuity from Liu et al. (1999) was applied. Using this 

method, we were able to capture the shock front over comparably fewer computational 

cells compared to the MUSCL scheme without ACM technique. As the coupling of the 

Naviers equation with the Euler equations in a finite difference approach is relatively 

new, we have also derived the 1D analytical solutions for various scenarios in order to 



 

 xvi 

adequately compare the numerical results. From the non-reflection test cases of 4.3 and 

4.4, there are no visible non-physical humps at the interface location, indicating the 

accuracy and robustness of the interface algorithm in transmitting the full strength of 

the shock from the left to right media. The 1D numerical solutions for most cases fit 

very well with the analytical solutions except for cases 4.7 and 4.11 where rarefraction 

waves occur in both media. Pressure undershoots are seen near the solid rarefraction 

wave in both test cases. It is suggested from Lin and Ballmann (1993a) that plasticity 

effects may need to be considered in modeling solid rarefraction waves. In case 4.14 

which is similar to the 1D case study in Tang and Huang (1996), results from the gas-

water-steel cavitation interaction show similar effects as Wardlaw et al. (2000) in the 

comparisons between deformable and rigid walls. It is noted that the pressure pulses 

drop to a lower mean value compared to the case with rigid boundary. Also, less 

number of cavitation zones were observed in the case with steel structure. In order to 

ensure compatibility with the Euler system, the Naviers equation in two dimensions 

has to be re-written in similar form. The formulation of the eigensystem of the re-

written Naviers equation in two dimensions was achieved in this thesis. 
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Chapter 1 Introduction 

1.1 Fluid-Structure Interaction 

In many varied applications ranging from naval weapon design, naval ship/submarine 

structure, flow-induced vibration of underwater pipes, sloshing and impact of liquid on 

retaining structures, water hammer in pipes and many other problems, solving these 

fluid-structure interaction problems have required multi-disciplinary knowledge in 

fluid dynamics, solid dynamics and acoustics. Many models simulating the fluid-

structure interaction have been proposed. Some of the models include a finite element 

formulation based on flow velocity model by Kochupillai et al. (2004) for 

waterhammer effect, and shock-cavitation-structure interaction using commercial 

GEMINI Euler equation solver-DYNA_N finite element solver coupled hydrocode by 

Wardlaw et al. (2000). 

In Miller and Puckett (1996), they designed a second-order Godunov scheme for 

materials in condensed phases, i.e. liquids and solids in hydrostatic limit and the model 

used was based on the Mie-Gruneisen EOS and a linear Hugoniot. In Tang and 

Sotiropoulos (1999), the behavior of the solid structure was simulated using a hydro-

elasto-plastic EOS with the ultimate purpose of computing the unsteady one-

dimensional wave problems with fracture and cavitation in coupled solid-water-gas 

systems in which there are distinct interfaces between different phases. In Fedkiw 

(2002), springs with some stiffness were used to simulate the strength of a solid 

structure.  

Most of the current studies have used various EOS to represent the unique 

characteristics of solids. The Naviers equations are differential equilibrium conditions 

which illustrate most aptly the elastic behaviour of isotropic, homogeneous solids and 

have been used to describe many solid mechanics problems. The Naviers equations 
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were also applied in the field of geophysics or more specifically, seismic modelling 

whereby various applications include surface wave noise analysis in oil and gas 

exploration (Cohen et al.(1991)).  

1.2 Objectives and Organizational Structure of this work 

In this work, we seek to develop a new finite difference model coupling the Euler 

equations for a compressible fluid with the Naviers equations simulating an elastic 

solid structure. In Chapter 2, we will discuss the background of the previous work 

done in this area followed by a discourse on the 1D methodology in Chapter 3. We will 

then validate our new model with other results in Chapter 4, and a discussion on the 

2D methodology in Chapter 5. Last but not least, we will end this dissertation with 

some conclusions in Chapter 6 as well as discussion on possible future research areas. 
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Chapter 2 Background on Previous Work 

2.1 Compressible fluid medium 

In compressible fluid medium, a commonly used equation is the time-dependent Euler 

equations which are a system of non-linear hyperbolic conservation laws that govern 

the dynamics of a compressible fluid, such as gases or liquids at high pressures, for 

which the effects of body forces, viscous stresses and heat conductivity are neglected. 

In the various studies of compressible medium, discussions of shock waves, contact 

discontinuities and rarefraction waves are commonplace. Shock waves are small 

transition layers of very rapid changes of physical quantities such as pressure, density 

and temperature. In fact, they are solutions of the Rankine-Hugoniot relations with 

non-zero mass flow through the discontinuity. As a result, pressure and normal 

velocity undergo discontinuous variations while the tangential velocity remains 

continuous. A system of hyperbolic conservation laws is given as  

0)( =+ xt UFU ,        (2.1) 

where ( ) ( ) ( )( )TT PEuPuuUFEuU ++== ,,,,, 2ρρρρ . Together with a 

discontinuous wave solution of speed S  associated with the eigenvalue-characteristic 

field, the Rankine-Hugoniot condition states that 

 USF ∆=∆ ,         (2.2a) 

LR UUU −=∆ ,        (2.2b) 

LR FFF −=∆ ,        (2.2c) 

)(),( RRLL UFFUFF == ,       (2.2d) 
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where F denotes the inviscid flow flux and LU  and RU  are the respective states 

immediately to the left and right of the discontinuity. In addition, the shock wave has 

to obey the entropy condition below as denoted in Toro (1997). 

( ) ( )RL uSu λλ >> ,        (2.3) 

In other words, the shock wave speed has to be in-between the propagation speeds of 

the left and right states. 

The contact discontinuity represents an interface across which both pressure and 

particle velocity are constant but density jumps discontinuously as do variables that 

depend on density such as specific internal energy, temperature, sound speed and 

entropy.  

The various eigenvalues of the 1D Euler equations are au −=1λ , u=2λ  or 

au +=3λ  where a is the sound speed. The rarefraction wave is a smooth wave 

associated with au −=1λ  and au +=3λ fields across which ρ, u and p change. The 

wave has a fan-type shape and is enclosed by two bounding characteristics 

corresponding to the Head and Tail of the wave as depicted in the figure below. Across 

the wave, the isentropic law applies below for a perfect gas and s here denotes the 

entropy and γ is the ratio of specific heat. 

� −
=

1
2

γ
ρ

ρ
a

d
a

,        (2.4) 

Hence, the characteristics inside the rarefraction wave are governed by these rules. 

auacross
tconss
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a

u −=
��

�
�

�

=

=
−

+
1

tan

tan
1

2
λγ ,     (2.5a) 
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u +=
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�
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=
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−

−
3

tan
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1

2
λγ ,     (2.5b) 
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Figure 2-1 (a): x-t diagram of rarefraction wave, (b): Diagram illustrating the Head and Tail of 
the rarefraction wave 

2.2 The shock tube problem 

The shock tube problem as seen in Hirsch (1992), is an interesting and difficult test 

case since it presents an exact solution to the full system of one-dimensional Euler 

equations comprising at the same time, a shock wave, a contact discontinuity and a 

rarefraction wave. This problem, also called the Riemann problem, can be realized 

experimentally by the sudden removal of a diaphragm in a long one-dimensional tube 

separating two initial gas states at different pressures and densities. The initial 

conditions are  

0,,,,

0,,,,

0

0

=>===
=<===

txxppuu

txxppuu

RRR

LLL

ρρ
ρρ

     (2.6) 

The diaphragm is located at 0xx = and LR pp < . In this problem, the two gases are the 

same. We will assume that viscous effects along the sides of the tube wall are 

negligible and the length of the tube is infinite, thus avoiding reflections at the tube 

end. 

t 

UL 

UR 

x 

x 

t 

(a) 

(b) 

Tail 

Head 

UL 
UR 
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Figure 2-2: Illustration of the shock tube problem 
 
The figure above illustrates the process. At time 0=t , the diaphragm is burst and the 

pressure discontinuity propagates to the right in the low-pressure gas and at the same 

time, a rarefraction wave propagates to the left in the high-pressure gas. In addition, a 

contact discontinuity separating the two gas regions propagates to the right in the tube. 

2.3 One-Fluid and two-fluid continuum 

In the simulation of two different phase media such as gas and water, there are two 

approaches to the problem in the literature. The first approach is the two-fluid model 

approach in which it is assumed that both phases co-exist at every point in the flow 

field and each phase is governed by its own set of differential equations. This model is 

further developed and explained in greater details by many authors such as Shyue 

(1998), Saurel and Abgrall (1999a,b) and Allaire et al (2002). The two-fluid model can 

easily take into account the physical details occurring at the interface such as the mass 

and energy exchange, thermal transfer and surface tension. But in order to simulate the 

exchanges at the interface, factors such as exchange rates and viscous friction between 

Diaphragm 

State L State R 

Initial state at t=0 

L 3
  

Initial position of 
diaphragm 

Rarefraction 
wave 

2
  

R 

Contact 
Discontinuity 

Shock Wave 

V
  

C 

Flow state at t>0 
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the two phases have to be known a priori. Another disadvantage would be the total 

number of partial differential equations to be solved which can sometimes be twice 

that of a single phase flow.  

In one-fluid models, the two phase media is treated as a single fluid with only one set 

of differential equations to solve which makes it similar to a single phase flow. 

However, at the interface, special techniques would have to be applied in order to 

prevent nonphysical oscillations at the interface due to smearing out of the density 

profile and the abrupt change in the equation of state across the interface. One such 

technique is the Original Ghost Fluid Method (to be discussed in Chapter 3) developed 

by Fedkiw et al. (1999) and further explored in Liu et al. (2003, 2005). 

2.4 Unsteady Cavitation 

The definition of cavitation is when a body of liquid under constant temperature, 

whose pressure is reduced by static or dynamic means, a state is reached ultimately at 

which cavities(gas-filled bubbles) become visible and grow (Knapp et al. (1970)). The 

limiting pressure is usually the vapour pressure. Cavitation is a liquid phenomenon 

which does not occur under any normal circumstances in either a solid or a gas. It is 

also a dynamic process as it is concerned with the growth and collapse of cavities. 

Cavitation is a phenomenon that is faced by surface sea-faring vessels as well as 

hydraulic equipment. When it occurs unexpectedly, damage to the structure may result 

due to the large forces generated when the cavitation regions collapse (Ventikos and 

Tzabiras (2000)). In the underwater shock analysis of naval vessels(Aanhold et 

al.(1998)), simulation of the unsteady cavitation process is critical in understanding 

more of the process and ultimately, in protecting important sea vessels or strategic oil 

platforms from the damage resulting. Recently, there has also been keen developments 

in simulating the process of unsteady cavitation in “super-cavitating” projectiles (Owis 
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and Nayfeh (2004)). There have also been studies conducted on the effect of cavitation 

collapse on rigid and deformable cylinder walls with experiments on the effects of an 

explosion inside a water-filled cylinder (Wardlaw et al.(2000)). In unsteady cavitation 

which usually occurs in the case of underwater explosion near a structure or free 

surface, the development of the cavitation boundary is dynamic and can evolve rapidly 

before finally collapsing and resulting in large sudden forces generated (Liu et al. 

(2004)). To simulate such cavitating flows, common models in one-fluid modelling are 

the Cut-off model (Aanhold et al. (1998), Wardlaw et al. (2000)), the vacuum model 

(Tang and Huang (1996)) and the Schmidt’s model (Schmidt et al. (1999), Qin et al. 

(1999)). In the Cut-off model, when the liquid pressure falls below a specified critical 

value, the flow pressure is reinforced as a given value and computation continues. This 

model does not consider phase change within the cavities, making it easy to implement 

and use. However, the Cut-off model entails some physical violations and the system 

of equations may not turn out to be conservative as it degenerates non-physically due 

to the cut-off pressure and its associated density, resulting in zero sound speed in the 

cavitation regions. The vacuum model assumes zero mass inside the cavitation regions 

since under most circumstances, only a small amount of liquid will vaporize and the 

density of vapour is about ( )410−O  of the liquid density. Schmidt’s model is only 

suitable for use in small cavitation zones under high pressure and it is found that this 

model does not work consistently in simulating cavitating flows with large vapour-to-

liquid density ratios or under low surrounding pressure. Hence, a modified Schmidt’s 

model was developed by Xie et al. (2005) to overcome the shortcomings of the 

Schmidt’s model. 
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2.5 Interface tracking methods 

There are many numerical methods in the literature which are used to track the 

movement of interfaces in multi-phase flows or fluid-solid interaction. Here, three 

main types of interface tracking methods are highlighted. They are the Volume-of-

fluid(VOF) method, the marker-cell method and the level set method. A brief 

description of each method is mentioned below and the reader may refer to the 

references for further information. In the level set method, the interface is not tracked 

explicitly but is deduced based on a field variable such as the distance function in Chen 

et al.(1997), the order parameter in Kobayashi(1993) or local enthalpy in Voller and 

Prakash(1987). The level set method was introduced by Osher and Sethian (1988) as a 

simple and versatile method for computing and analyzing the motion of an interface Γ 

in two or three spatial dimensions. The interface Γ may bound a region Ω and the 

method is capable of computing the subsequent motion of the interface Γ subject to a 

velocity field v, normal to the interface. The interface remains sharp and retains the 

jumps in material and flow quantities as sharp discontinuities. The level set approach 

requires an initial function ( )0, =txφ  with the property that the zero level set of that 

initial function corresponds to the initial position of the interface. The signed-distance 

function from each grid point to the initial interface or zero level set is computed. As a 

rule, only accuracy is required in a few cells near the interface. The level set function 

can be embedded inside the usual flow solver and advected with the normal velocity 

field. The new value of the function is then solved to obtain the new interface position 

which makes the level set function zero. 

 The marker/string method tracks the motion of ‘markers’ located at the moving 

interface as seen in Hirt and Nichols (1973). This method is more commonly utilized 

in Lagrangian framework. It first discretizes the Lagrangian form of the equations of 
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motion and the parameterization interval is then divided into intervals to form the 

‘markers’. The derivatives at these ‘markers’ are then approximated using the 

neighboring mesh points. Using Taylor Series expansion for the time and space 

derivatives and substituting into the equations of motion, the new position of the 

‘markers’ can then be determined and the interface can be remapped. However, for 

complicated interface motions, the method suffers from instability and topological 

limitations because they follow a local representation of the front, rather than a global 

one which takes into account the proper entropy conditions and weak solutions of the 

equations of motion. 

Another approach is the Volume-of-Fluid method from Hirt and Nichols B (1981) and 

Noh and Woodward (1976) which is based on an Eulerian view. This method does not 

suffer from the time-step and topological limitations of the marker method due to the 

Eulerian framework. With a fixed grid on the computational domain, values are 

assigned to each grid cell based on the fraction of that cell containing material inside 

the interface. We would need to rely on these cell fractions to characterize the interface 

location. In order to evolve the interface, the idea is to update the cell fractions on the 

fixed grid to reflect the front progress. However, there are some disadvantages 

depicted in Sethian (1996). A significantly large number of cells are required for the 

computation and in the presence of directional velocity fields, the evolution of the 

front becomes problematic. Also, there is an inherent inaccuracy in the calculation of 

the geometric properties of the front (e.g. curvature and normal direction).  

In recent years, development has seen that more accurate VOF methods fit the 

interface through piecewise linear segments, known as the piecewise linear interface 

construction (PLIC), with major contributions made by Ashgriz and Poo. (1991), 

Rudman (1998) and He et al.(1999). 



Chapter 2 Background on Previous Work 
_____________________________________________________________________ 

 
Shock/Cavitation Structure Interaction  11 

2.6 Eulerian vs Lagrangian 

Traditionally, the Eulerian framework has been used for fluid dynamics computer 

simulation particularly in simulating high-speed fluids with strong shocks and large 

deformation. In the Eulerian framework, the mesh remains stationary and does not 

move with the fluid, rather like capturing a still shot of the fluid and its properties at 

that point in time. For the Lagrangian framework, the mesh moves with the local speed 

of the fluid/solid. Hence, Lagrangian numerical methods have difficulties treating 

flows with large deformations since this causes large deformations of the mesh and 

consequently, large numerical errors which can only be removed by complex 

remeshing or mesh generation techniques which tend to be low-order accurate. Due to 

their nature, Eulerian methods avoid such pitfalls and in addition, Eulerian shock-

capturing schemes are able to capture shocks in a straight-forward way using 

conservation and robust limiters(Hirsch (1992)). For these methods, the shocks can be 

modelled with as few as one grid-cell without oscillations. In comparison, the 

Lagrangian numerical methods usually suffer from some post-shock oscillations until 

the shock is spread out over about six grid-cells as noted by Benson (1991 & 1992).  

While Eulerian methods work very well for fluid calculations (Fedkiw (2002)), they 

perform badly for solid dynamics in problems of solid loading and damage because 

they do not track changes in material properties at particular positions in time and 

space which are fundamental in modeling time-history variables. But Lagrangian 

methods have been proven to work well in modelling solid dynamics and that is why 

the Lagrangian approach has been adopted for the Naviers equation in the 

compressible fluid-solid simulation. 
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2.7 Naviers Equation vs other solid EOS 

There are many Equations of State(EOS) developed for simulating the behaviour of 

solids. Some of these EOS in the literature include the Mie-Gruneisen EOS which has 

been utilized quite extensively in the simulation of solid material as attested by Miller 

and Puckett (1996) and Udaykumar et al. (2003) and the hydro-elasto-plastic solid 

model in Tang and Sotiropoulos (1999). However, till date, there has been no universal 

EOS for solids. A universal EOS is applicable to all types of solids, irrespective of 

their bonding characteristics, given the solids possess the desired homogeneity to 

behave as an elastic continuum. Moreover, many of these EOS require parameters, 

which are not readily available and either have to be obtained experimentally or 

derived through other more common parameters, in addition to the standard properties 

provided in most material handbooks and these additional parameters may also differ 

under different conditions. This difficulty in obtaining appropriate parameters has 

sometimes hindered the use of many EOS in the simulation of solid behaviour and 

thus, affected the acceptance of these by the community. Also, though a few of the 

EOSs have a partial theoretical support, none of them is derived from fundamental 

structural energetics and as such, these EOS are essentially empirical in nature 

according to Bose and Bose (2004). 

On the other hand, the Naviers Equations, which are differential conditions of 

equilibrium, had been developed based on the well-known theory of elasticity for small 

deformations of the solid. It has been used extensively in the solution for the stresses 

and strains in many elastic problems, especially in the field of modeling seismic waves 

in the earth’s crust as seen in Minkoff (2002). In addition, the only material parameters 

required in the Naviers Equations are the Young modulus and the Poisson ratio data, 

both of which are readily available in most material handbooks. As such, the Naviers 
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Equations can be utilized to simulate the behaviour of many different solid materials. 

The limitations would be problems involving large deformations of the solid, and also 

problems involving plastic flow whereby due to the non-linear constitutive stress-strain 

relations, the system of governing equations becomes non-linear as well. In addition, 

the Naviers equation when applied to homogeneous, isotropic medium, consists of a 

system of PDEs which are hyperbolic in nature. The Euler equation for the fluid 

medium is hyperbolic in time. As such, high-order, upwind schemes such as MUSCL 

scheme developed for the Euler equation can also be applicable to the Naviers equation 

and thus, there is no need to develop new schemes for the Naviers Equation. 
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Chapter 3 Methodology:1D System 

3.1 1D Planar Euler equations 

The 1D conservative Euler equations for inviscid with no heat conduction gas-gas and 

gas-water compressible flows can be written in a quasi-linear form as  

( ) ([ ) [ ],,,00 BA xxxandt
x
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t
U ∈∞∈=
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∂
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The independent variables are time (t) and spatial distance (x) while the dependent 

variables are pressure (P), density (ρ), flow velocity (u) and total energy per unit 

volume, (E). [ ]BA xx ,  is the spatial interval in the computational domain. The source or 

forcing term in this case is equal to zero and thus, the equations above are 

homogeneous equations. However, since there are 4 dependent variables and only 3 

equations, it is then not mathematically possible to solve for the respective variables. 

Hence, an EOS or Equation of State is required to close this system of equations in 

Eqn.(3.1). For compressible gas flows, the equation of state used is the perfect gas law 

and is given as 

,
2
1

1
2u

P
E ρ

γ
+

−
=         (3.2) 

where γ is the specific heat ratio and is set equal to 1.4 for air. 

In the case of water, the Tait’s equation is utilized as the equation of state( Flores and 

Holt, 1981). The Tait’s equation is simply 
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N
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,         (3.3) 

where BPPBPP +=+= 00, ; B is constant and is equal to Pax 810309.3  and the 

initial water pressure, PaP 5
0 10= and initial water density, 310000 m

kg=ρ . It should 

be noted that this equation is only applicable under pressures lower than 20000 atm. 

The power index, N is set to 7.15. Using Tate’s equation, the speed of sound in water 

is  

,
ρρ
PN

d
dP

a ==         (3.4) 

and the total energy of water is given as 

2

2
1

1
u

N
NBP

E ρ+
−

+= ,        (3.5) 

There are other equations of state for water such as the Tillotson equation. In Tate’s 

equation, the water pressure is merely a function of the water density. The latter is 

similar in form to the perfect gas law which is the equation of state for gas medium. In 

addition, it is noted that if γ is replaced with N and a (where 
ρ
γP

a =  in gas) is seen 

as the local sound speed in a similar form to the sound speed in water, a , the equations 

for gas and water then become similar in form. Hence, the same computational scheme 

can be applied to both gas and water. This would also make the computer code more 

generic. 

3.2 1D Naviers Equation 

For a linearly elastic, isotropic, homogeneous solid material, the Naviers equation from 

Chung (1996) is given as 
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where λ and µ are Lame constants, f represents the body forces and is assumed to be 

zero and ε represents the displacement of each mesh point in the solid. Supposing v
�

 is 

a vector and defined by kvjvivv zyx ++=�
, 
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s
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s

issgrad
∂
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∂
∂+

∂
∂=∇=  where s is a scalar field.   (3.6c) 

The Naviers Equations are also known as differential conditions of equilibrium. These 

equations have been developed for the unstrained state of the solid and may only be 

considered relevant for very small deformations. In addition, since the Lagrangian 

mesh is used for the solid, large deformations are not allowed as it will result in 

problems related to meshing. In Eqn. (3.6), 

( )υ
µ

+
=

12
E

         (3.7a) 

and ( )( )υυ
υλ

211 −+
= E

,       (3.7b) 

with E and υ being the material’s Young modulus of elasticity and the Poisson ratio, 

respectively. They are material constants and depend very much on the type of 

material used. If the material is symmetric with respect to every plane and every axis, 

then the elastic properties are identical in all directions. Material which exhibits such a 

property is said to be isotropic. In a homogeneous material, it is assumed that there are 

no second phases, voids and nucleations and thus, the density throughout the material 

is assumed constant. 
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For 1D, ( ) 0=×∇×∇ εµ �
 in Eqn. (3.6) and the equation becomes 

( ) ( ) 2

2

2
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∂=⋅∇∇+ ερεµλ
�

�
.       (3.8a) 

Eqn. (3.8a) can be written in the form of 

2
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2 1
tcx s ∂
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∂
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where 
s

sc
ρ

µλ 2+=  is defined as the propagation speed of the elastic longitudinal 

wave in the solid. In order to relate displacements to stresses in the solid, another 

equation is required. In the case of elastic solids, the most common relationship is the 

1D Hooke’s law where 

x
E

∂
∂= εσ ,         (3.9a) 

 
Figure 3-1 : Illustration of fluid pressure(compressive stress) on solid medium 

 
However, in solids, tensile stress is defined as positive which is in opposite direction to 

the pressure definition in fluids( P−=σ ) as seen in Fig. 3-1. Hence, to resolve the 

contradiction in modelling, the Hooke’s law is rewritten as  

x
E
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and hence, 
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Eqn. (3.10) thus shows the Naviers equation in the form relating displacement to 

stress. 

The velocity of each node in the solid is related to the displacement by the following 

relationship, 
t

u
∂
∂= ε

. This relationship is used to convert Eqn. (3.9b) and Eqn. (3.10) 

into the equations below relating velocity to pressure. 

0
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E
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t
u s  relates the velocity to pressure within the solid,       (3.11a) 
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 is obtained by differentiating Eqn. (3.9b) with respect to time. (3.11b) 

Writing the equations in Eqn. (3.11) in a quasi-linear form similar to the Euler 

equations, we have 

00 =
∂
∂+

∂
∂

�=
∂
∂+

∂
∂

x
U

A
t

U
x
F

t
U

,      (3.12) 

where the variable U and Flux F are defined as 
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Using linear algebra techniques, the right eigenvector and its determinant is calculated 
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whereas the left eigenvector, which is the inverse of the right eigenvector, is 
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These variables are essential in the implementation of the high-order MUSCL scheme 

as a numerical solver for the solid. 

3.3 Level-set method for Interface 

In the Eulerian frame, the grid is fixed and does not move with the fluid. The interface 

position can be captured using the level-set technique originally developed by Sethian 

and Osher (1988). In the level-set method, the interface is not captured as a function 

but rather embedded as a particular level set in a partial differential solution of a fixed 

domain. 

For the 1D planar flow, the level set function is defined as 
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.        (3.16) 

φ is initialized as the normal distance measured from the interface, i.e. ( ) 00, Ixxx −=φ . 

Discretizing Eqn. (3.16) using the second-order upwind difference scheme, we have 

from Liu et al (2001), 
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where x
t

∆
∆=λ  and ∆t and ∆x are the time and spatial step sizes, respectively. 
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To obtain the new position of the interface, we simply calculate the x that makes 

01 =+nφ . For the 1D multi-medium flow, the scheme for re-initialization is carried out 

by redefining at time, nt , ( ) n
Ixxx −=φ . 

3.4 Ghost Fluid Method 

For simple illustration, the one-dimensional ghost fluid method is explained. Here, the 

Ghost Fluid Method is termed as the Original Ghost Fluid Method to distinguish it 

from other variants which follow. Three quantities are defined in the ghost region in 

order to define the ghost nodes. Since many problems involve continuous pressure and 

velocity across the interface, pressure and velocity are two of the three quantities 

needed and the pressure and velocity of the ghost fluid can be set equal to the pressure 

and velocity of the real fluid. So we copy node by node, the real fluid values of 

pressure and velocity onto the ghost fluid values of pressure and velocity. Using this 

method, the interface boundary conditions for the pressure and velocity can be 

captured without specifying the location of the interface. The last quantity selected is 

entropy because since entropy is generally discontinuous across a contact 

discontinuity, when standard finite difference schemes are applied, large dissipative 

errors can arise which can lead to spurious oscillations at the interface. These 

oscillations can be eliminated by using one-sided extrapolation of the entropy, 

resulting in a continuous entropy profile. 

According to Fig. 3-2 below, the zero level of the level set function lies between nodes 

i and i+1. The fluid 1 is defined at node i and to the left of node i while fluid 2 is 

defined at node i+1 and to the right of node i+1. In order to update fluid 1, we define 

ghost fluid values of fluid 1 at nodes to the right and including node i+1. For each of 
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these nodes, we obtain the ghost fluid value by combining fluid 2’s pressure and 

velocity with fluid 1’s entropy from node i in the process of constant extrapolation.  

Figure 3-2 : Illustration of Original Ghost Fluid method without isobaric fixing 
 
For the isobaric fix which is used to reduce “overheating” errors, it is illustrated in Fig. 

3-3 below and the entropy at node i is changed to be equal to the entropy at node i-1 

without modifying the pressure and velocity values at node i. The entropy at node i+1 

is modified to be equal to node i+2. In the Original Ghost Fluid Method, only a band 

of 3 to 5 ghost cells are needed on each side of the interface depending on the interface 

movement and stencil used. 
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Figure 3-3: Illustration of Original Ghost Fluid Method with isobaric fixing 
 
The Original Ghost Fluid Method in Fedkiw et al. (1999) is simple to implement and 

does not need to solve an initial boundary value problem, nor the Rankine-Hugoniot 

jump conditions or a Riemann problem at the interface. 

3.5 Riemann solver at the interface 

However, it has been shown by Liu et al. (2003) that the Original Ghost Fluid Method 

does not work very efficiently in the application of a strong shockwave impacting on 

an interface even though it works well for shock tube problems and moderate shock 

impacting on an interface problems. In applications with a strong shock impacting, the 

interface pressure, velocity and entropy may have a sudden jump and the sudden jump 

in these properties implies that the real fluid pressure and velocity may not be 

acceptable ghost fluid pressure and velocity. Hence, the ghost fluid pressure and 

velocity would have to be determined first before the ghost fluid method is applied. By 

employing the Rankine-Hugoniot conditions, it ensures that the flow dynamic 

behaviour is correct at the interface (i.e. the continuity of pressure and normal velocity) 

but by itself, it is still inadequate to fully determine the interfacial status. This is 
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because at the moment of a strong shock impacting a surface, it creates a singularity 

where the pressure and velocity values are discontinuous and this singularity has to be 

correctly decomposed in order to supplement the Rankine-Hugoniot conditions in fully 

describing the interface state.  

3.5.1 Fluid Characteristic Equations 

To correctly predict the interface pressure and velocity, the Modified Ghost Fluid 

Method is developed in Liu et al (2003) whereby Rankine-Hugoniot conditions and 

implicit characteristic equations are used to solve the Riemann problem at the 

interface. Fig. 3-4 below illustrates the basic concept of the Modified Ghost Fluid 

Method. 

Figure 3-4:Illustration of Modified Ghost Fluid Method 
 
Unlike the Original Ghost Fluid Method, the Modified Ghost Fluid Method is able to 

calculate predicted interface values and ghost fluid status based on an approximate 

Riemann solver. 
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Here, we will directly apply the characteristic equation from the Modified Ghost Fluid 

Method in order to solve for the interface values. For the fluid, the two nonlinear 

characteristics are 

,0=+
dt

du
c

dt
dP I

ILIL
I ρ  along ILI cu

dt
dx += ,     (3.18a) 

,0=−
dt

du
c

dt
dP I

IRIR
I ρ  along IRI cu

dt
dx −= ,     (3.18b) 

where ( )IRIL ρρ  and ( )IRIL cc  are the density and sound speed to the left(right) of the 

interface. Depending on the orientation of the fluid with respect to the solid, the 

corresponding characteristic can be chosen from Eqn. (3.18). To illustrate the 

Approximate Riemann solver at the interface, the fluid has been chosen to reside on 

the left and the solid on the right. Hence Eqn. (3.18a) would form the +C characteristic 

line. 

3.5.2 Solid Characteristic Equations 

As for the solid media, Eqn. (3.10) is formulated using the Hamilton-Jacobi method as  
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where 1−R  is obtained from Eqn. (3.15), 
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respective eigenvalues. 

For the solid on the right-hand side(i.e. −C  characteristics along sc
Dt
Dx −= ), Eqn. 

(3.19b) leads to 
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Hence the −C characteristic line is given by 
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where sc is the Naviers equation elastic wave propagation speed. 

From Eqn. (3.22), 
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From the fluid characteristic equation, Eqn. (3.18a) is re-arranged to give 
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When discretized, Eqn. (3.25) leads to 

( )wIwwwI uuCPP −−= ρ .       (3.26) 

Solving Eqn. (3.24) and Eqn. (3.26) simultaneously, the interface velocity can be 

found from the resulting equation below as 
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Here the subscript w and s refers to the fluid and solid values, respectively and the 

interface pressure can be found by substituting the value of Iu  back into Eqn. (3.26). 
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3.6 Numerical solver 

3.6.1 Numerical solver for fluid media 

In this thesis, simulations of compressible fluid-solid interaction are carried out and 

often, these simulations deal with shock which requires high order schemes in order to 

capture the shock front over a few computational cells. Such high-resolution upwind 

schemes include TVD scheme (Harten, 1983) and ENO scheme (Harten et al, 1986, 

1987). 

The reader is referred to more details of the TVD scheme in Leer(1979) and 

Harten(1989); these are briefly given below as 
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where I is the interface between the fluid and solid media and
2
1+j

LRA satisfies Roe’s 

average condition, 

( ) ( ) ( )
2
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2
1

2
12

1
2
1 ++++ −=−

+
j

n
Lj

n
RLRj

n
Lj

n
R UUAUFUF

j
.    (3.38) 

Here 
( )
U
UF

A
∂

∂=  and 
2
1+jR , 1

2
1

−
+jR  and l

j 2
1+λ  are the right eigenvector, left eigenvector 

and eigenvalues of matrix A, respectively. For the fluid media, u
j

=+
1

2
1λ , cu

j
+=+

2

2
1λ  

and cu
j

−=+
3

2
1λ .To ensure stability for the TVD scheme, a stability condition is 

normally enforced. The CFL condition for the fluid media is set as 

( )jj

f
cu

x
CFLt

+
∆=∆

max
.       (3.39) 

where ju  and jc  are the velocity and sound speed of each mesh point, respectively. 

3.6.2 Numerical solver for solid media 

For the solid media, the scheme is similar to the earlier MUSCL scheme for the fluid 

media. The difference lies in the limiter applied. Different limiters would apply 

different extents of dissipation at the location of large gradients. The limiter used for 

the fluid media is the minmod limiter which works well for fluid but diffuses the shock 

in the solid media. A more compressive limiter should be applied to sharpen the shock 

in the solid media. 

For the solid media, the second-order modified Harten’s TVD MUSCL scheme with 

the incorporation of an artificial compression method(ACM) technique in the 

immediate region of shock/contact discontinuity from Liu et al. (1999) was applied. 

This modified scheme is able to accurately capture shock fronts and especially contact 

discontinuities well by increasing the resolution only in the region near the 

shock/contact discontinuity and it is able to do so without changing the properties and 
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attributes of the original scheme. The rest of the solution follows the TVD-MUSCL 

scheme because the use of ACM technique in smooth regions will distort the solution 

and hence the application of this ACM technique is limited to the immediate region 

surrounding the shock/contact discontinuity. Using the modified MUSCL scheme with 

ACM technique as the solid solver, we are able to capture the shock front over 

comparably fewer computational cells compared to just using the MUSCL scheme 

without ACM technique. Hence, the modified MUSCL scheme with ACM technique is 

applied as the solid solver in the steps below. 

( )n
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where ε is a very small number, typically of the order of 310− . 

Similarly, the CFL condition is enforced for the solid media, using the Lagrangian 

approach. 

( )j
s c

x
CFLt

max
∆=∆ .        (3.50) 

where jc  is the sound speed of each mesh point. 

However, since there can only be one ∆t, the time step is chosen such that it is the 

smaller of the 2 values in order to ensure stability. That is, 
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       solidsfluidf −− ,  

Since the wave speed propagation in solids is usually much higher than the sound 

speed in fluids, the timestep size employed follows that of the solid timestep which is 

relatively small. The timestep limitation thus becomes one of the factors for 

consideration in multi-dimensional simulations. 

Also, since the Lagrangian approach is applied to the solid mesh, the mesh nodes 

would move with the local velocity and new positions of the nodes are updated at 

every single timestep according to: 

( ) tuuXX oldnewoldnew ∆−+= .       (3.52) 

This is only applicable to the mesh on the solid side. 
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3.6.3 Computational Procedures 

The computational steps in the program are briefly summarized below. Firstly, it was 

assumed that the various variables at time ntt =  are known and then the steps below 

are used to obtain quantities at the next time step. 

1. The level set function, φ, is advanced to the next time step and the identification 

matrix, 1+n
kS  for each medium is updated for the whole domain. 

2. The computational domain for each medium is then defined based on the 

identification matrix. 

3. The previous flow field is then mapped onto the working domain and the Modified 

Ghost Fluid Method is applied to the three points nearest the interface. 

4. Using the Method of Characteristics, the quantities 11 , ++ n
I

n
I uP  are obtained from 

eqn.(3.26) and eqn.(3.27) respectively. 

5. The quantity 1+n
kU  is obtained using the numerical solver for each medium and 

update 1+nU  using the relation 1111 ++++ += n
k

n
k

nn USUU ( 1+nU  is initialized to zero at 

the beginning). 

6. The whole cycle is repeated using the new calculated time step size. 
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3.7 Analytical Solution 

Since coupling the Naviers equation with the Eulers equation in a finite difference 

scheme is relatively new, the numerical solution can be verified by comparison with 

the analytical solution for each case. However, this method can only work for one-

dimensional problems as the analytical solutions for multi-dimensions are difficult to 

obtain. Here this section covers the derivation of the analytical solutions for specific 

scenarios. In all the analytical problems, it is assumed that the shock tube is open at 

both ends and that no reflection takes place at the boundaries. 

3.7.1 Fluid-Solid(shock-shock) 

In compressible fluid dynamics, when a moving shock impacts on a fluid-solid 

interface, part of the shock is reflected back into the fluid and part of the shock is 

transmitted into the solid media. 

Figure 3-5: Ideal pressure, velocity and density plots in a shock-shock interaction 
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The nomenclature of the various quantities is in accordance with the ideal plots above. 

For the case of a shockwave in both the gas and the solid where the shock speed in gas 

is denoted by S and the shock speed in solid is denoted by D, the Rankine-Hugoniot 

conditions for the gas are as follows, 

( ) ( )SuSu sslll −=− ρρ ,       (3.53a) 

( ) ( )22 SuPSuP sslslll −+=−+ ρρ ,      (3.53b) 
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where 
ρ

Pe
h

+=  is the entropy of each medium. 

The perfect gas law is applied as the EOS for the gas medium and it is expressed in the 

fluid as 
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The shock speed can be derived from Eqn. (3.53a) to obtain the expression: 
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From Eqn. (3.53b), the following relation is obtained as 
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By substituting Eqn. (3.54) into Eqn. (3.56), the equation resulting from the shock 

resolution in the gas is 

( )
( ) ( ) ( ) 1

1

1
2

11
2

1

1

1
1

1
1

1
1

1
2

+

−

−
=

+

−
−

=
�
�

�

�

	
	




�

+

−−
=−

−
+

−
+

−
+

−

l

s

l

s

l

s
l

s

l

s

P
P

P
P

l

l

lP
P

ls

lP
P

P
P

l

s
sl

P

P

PPPP
uu

γ
γ

γ
γ

γ
γ

γ

ργργρ
. 

(3.57) 
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In the solid, the jump relationships for the re-written Naviers equation eigensystem in 

(3.11a, 3.11b) are shown below. 

( ) ( )rsrs PP
E
c

Duu −=−
2

,       (3.58a) 

( ) ( )rsrs uuEDPP −=− ,       (3.58b) 

where D refers to the shock speed in the solid. Multiplying the left-hand side of 

eqn.(3.58a) to the left-hand side of eqn.(3.58b) and similarly for the right-hand sides 

shows that cD ±= . This is not unexpected as the discontinuity can only propagate 

along the characteristic line at the speed of the respective eigenvalues and in this case, 

the eigenvalues in the solid medium correspond to c± . 

In combination with the equation from the gas medium, we have 
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The equations from Eqn. (3.59) combine to give the following result, 
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Re-arranging and squaring both sides, the above equation becomes 
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Further manipulation leads to: 
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The final equation is obtained via re-arranging the various terms in descending order in 

powers of sP . 
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Due to the complexity of the equation, the software Mathematica is utilized in solving 

for the parameter, sP  which is the interface pressure. Multiple values of sP  are 

obtained from this equation. The true sP  has to obey the following conditions for the 

test cases in the next section: 

1) 0>sP ,         (3.64a) 

2) sP > max( lP , rP ) only in shock-shock interactions,   (3.64b) 
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The interface velocity is then obtained from  

( ) rrss uPP
E
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u +−= ,        (3.65) 

and the solid shock speed is given by 
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In essence, the whole plot can be determined from the following conditions, 
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where 0x  is the initial location of the interface. 

In water, the same Rankine-Hugoniot relations apply across the shock wave. 

The main difference would be the difference in the EOS parameters. For water, the 

following relation holds, 
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And Eqn. (3.60) is also applicable to water. Re-arranging and squaring both sides 

yields 
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Thus, it leads to the final equation below given as 
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This equation is then solved to obtain sP  which obeys Conditions (1), (2) and (3a) 

above. 
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3.7.2 Fluid-Solid(Rarefaction-Shock) 

Similarly, when a rarefraction wave impacts on the fluid-solid interface, a rarefraction 

wave is reflected back into the fluid media while a shock wave is transmitted into the 

solid media. 

Figure 3-6: Ideal pressure, velocity and density plots for a rarefraction-shock interaction 
 
When a rarefaction fan occurs in the gas medium, the isentropic gas law is applied to 

obtain the analytical solution. la  and *a  denotes the sound speed on the left and right 

states bounding the left rarefraction wave, 
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Combining the equation from the gas medium and the Naviers equation, we have 
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From Eqn. (3.73), re-arrangement of the terms yields 
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Substituting Eqn. (3.71) into Eqn. (3.74), we have 
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using the isentropic law, 
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Next, Eqn. (3.76) is substituted into Eqn. (3.75) to yield, in terms of descending 

powers of sP , 
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Mathematica software was used to derive the multiple solutions to the equation. Some 

of the conditions for sP  in Section 3.7.1 applies here. The applicable conditions are 

Condition(1) and Condition(3b).  

The plot of the analytical solution follows the rules below, 
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where 0x  is the initial location of the interface. Similarly, for rarefraction wave in 

water, the same equations apply except for a different definition of la  and 

*a according to the Tate’s equation which is the EOS for water. The relationships for 

Tate’s Equation are 
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Substituting Eqn. (3.80) into Eqn. (3.74), we have 
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And Eqn. (3.79) is substituted next into Eqn. (3.81), and the resulting Eqn. (3.81) is re-

arranged in terms of descending powers of sP  to give, 
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          (3.82) 

This equation is then solved to obtain sP . 
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3.7.3 Fluid-solid(Rarefraction-rarefraction) 

There are certain problems where a rarefraction wave at the fluid-solid interface results 

in a rarefraction wave reflected back into the fluid media and a very weak 

shock/rarefraction wave is transmitted into the solid media. 

To solve for rarefraction wave in the solid, the same Naviers equation is used and the 

overall equation for the interface pressure turns out to be the same as in Eqn. (3.77) for 

gas and Eqn. (3.82) for water. The plot in this case follows, 
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   (3.83) 

where C is the sound speed in the solid and 0x  is the initial location of the interface. 
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Chapter 4 Results and Discussion 

4.1 Test cases 

In order to validate the one-dimensional fluid-solid code constructed using Naviers 

equation, the code is used to run a series of test cases exploring various scenarios and 

the numerical results are then compared with the analytical solution. In a few of the 

test cases, the numerical solution(Naviers equation) would be compared to the 

published results in Tang and Sotiropoulos (1999).  

4.1.1 Properties of metal 

The properties of a typical stainless steel grade AISI Type 431are chosen for the solid. 

These properties are taken from Davies (1997). 

Metal Young’s 
Modulus(E), 
106 psi 

Bulk 
Modulus(K), 
106 psi 

Shear 
Modulus(G), 106 
psi 

Poisson ratio 

Mild Steel 30.7 24.5 11.9 0.291 
Stainless 
Steel(2Ni-18Cr) 
AISI Type 431 

31.2 24.1 12.2 0.283 

Table 4-1 Properties of metals in imperial units at 200C 
 
Upon conversion to SI units, 
Metal Young’s 

Modulus(E), 
GPa 

Bulk 
Modulus(K), 
GPa 

Shear 
Modulus(G), GPa 

Poisson ratio 

Mild Steel 211.67 168.92 82.04 0.291 
Stainless 
Steel(2Ni-18Cr) 
AISI Type 431 

215.116 166.16 84.12 0.283 

Table 4-2 Properties of metals in SI units at 200C 
 
From another table, the typical density of AISI Type 431 alloy is 37.7 cm

g .  
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Designation Composition(max),wt% 

UNIS 
No. 

AISI 
Type 

C Mn Si P S Cr Ni 

S43100 431 0.20 1.00 1.00 0.040 0.030 15.00-
17.00 

1.25-
2.50 

Table 4-3 Composition of AISI type 431 Steel 
 
The properties of the steel modeled in Tang and Sotiropoulos (1999) were derived 

under the specific conditions of the Hydro-elasto-plastic model(i.e. high pressure and 

large deformation with plasticity effect) and these properties are different from those 

under normal conditions. For the Naviers equation, it was based on the assumption of 

small strains in the elastic zone. Hence, the steel properties used in the modeling had to 

be different due to the different fundamentals of each model. In the results below, the 

various quantities are non-dimensionalised with respect to the following reference 

parameters. 31000 m
kg

ref =ρ , PaPref
510= , mLref 0.1= , 

ref

ref
ref

P
u

ρ
=  and 

ref

ref
ref u

L
t = . 

4.2 Test cases in comparison with published results 

Case 4.1(Gas-Steel): This case is similar to the Riemann Problem(III) case in Tang 

and Sotiropoulos (1999) whereby a high pressure gas impacts at a high velocity on an 

unmoving steel, resulting in a strong shock transmitted through the steel and a strong 

shock reflected back into the gas medium. However, the properties of steel used in this 

paper differ from that of the typical steel grade used in the present model. The reason 

being that in the Hydro-elasto-plastic model used by Tang and Sotiropoulos, the model 

assumes that the steel is under very high pressure and behaves almost like a fluid, 

effectively describing the transition between solid state and liquid state. The initial 

conditions are 0.50=lu , 0.10000=lp , 05.0=lρ ; 0.0=ru , 01325.1=rp . The 

density of the steel differs for the models: 8.7=rρ  for Hydro-elasto-plastic model and 
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7.7=rρ  for the Naviers equation model. The CFL number is chosen as 1.0 for both 

models. The computational domain is from 0.0 to 10.0 and the initial interface is 

located at 5.0. Both ends of the domain are kept open. The computation time is 

31045.4 −x  for both models. The number of grid points for both models is 2201 in lieu 

of the large computational domain. Figs. 4-1a to 4-1c depict the comparison between 

the Naviers equation model and the analytical solution. Figs 4-1d to Figs 4-1f show the 

comparison between the Naviers equation model and the Hydro-elasto-plastic model. 

As seen from Figs 4-1d and 4-1e, the elastic shock is travelling at a slightly faster 

speed in the Hydro-elasto-plastic model as compared to the Naviers equation model. In 

fact, the numerical values of the steel shock speed are 5580.656=HEPC  and 

7806.599=NEC  for the Hydro-elasto-plastic model and Naviers equation model, 

respectively. This is physically consistent with the basic fundamentals of the models. 

From the results, it is shown that the interface in the Naviers equation model has 

moved only a few mesh spaces. This is expected as there should only be small 

deformations of the elastic solid. 

 

Case 4.2(water-steel): This case is taken from Tang and Sotiropoulos (1999)’s 

Riemann Problem II where water at high velocity going from left to right and pressure 

impacts on incoming steel moving from right to left. The initial conditions 

are 0.30=lu , 0.25000=lp , 0.1=lρ ; 0.30−=ru , 0.25=rp . The density of the 

steel differs for the models: 8.7=rρ  for Hydro-elasto-plastic model and 7.7=rρ  for 

the Naviers equation model. The CFL number is chosen as 1.0 for both models. The 

computational domain is from 0.0 to 10.0 and the initial interface is located at 5.0. 

Both ends of the domain are kept open. The computation time is 31045.4 −x  for both 

models. The grid points for both models is 2201 in lieu of the large computational 
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domain. From Figs 4-2d to 4-2f, the Hydro-elasto-plastic model is able to capture an 

additional shockwave(plastic shock) apart from the elastic shockwave compared to the 

Naviers equation model. The Naviers equation model (Figs 4-2a to 4-2c) is insufficient 

to capture the characteristics of plastic flow as elastic-plastic behaviour is essentially 

non-linear and the Naviers equation is derived from the linear elastic relationship 

between stress and strain. 

4.3 Non Reflection test cases 

These test cases are specially designed such that the shock refraction on the interface 

does not produce any reflected wave. The ideal interface algorithm should be robust 

and accurately transmit shock forces to media on either side. In order to prove the 

robustness and accuracy of the fluid-solid interface characteristics equations, non-

reflection or shock impedance matching cases are computed. If the interface algorithm 

under-predicts or over-predicts any physical quantities, non-physical humps would 

appear at the interface location as seen in Liu et al (2003).  

 

Case 4.3(Gas-steel): The initial conditions are 78789.2=lu , 0.10000=lp , 

05.0=lρ ; 0.0=ru , 01325.1=rp , 7.7=rρ . The CFL number remains at 1.0 and 

the initial interface location is 5.0. The computational domain is from 0.0 to 10.0 and 

the initial interface is located at 5.0. Both ends of the domain are kept open. The 

number of grid points is 2201 in lieu of the large computational domain. The 

computation time is 31045.4 −x . As can be seen from Figs 4-3a to 4-3c, there are no 

visible non-physical humps at the interface location, indicating the accuracy and 

robustness of the interface algorithm. 
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Case 4.4(Water-steel): The initial conditions are 96346.6=lu , 0.25000=lp , 

0.1=lρ ; 0.0=ru , 0.25=rp , 7.7=rρ . The CFL number remains at 1.0 and the 

initial interface location is 5.0. The computational domain is from 0.0 to 10.0 and the 

initial interface is located at 5.0. Both ends of the domain are kept open. The number 

of grid points is 2201 in lieu of the large computational domain. The computation time 

is 31045.4 −x . Again, from Figs. 4-4a to.4-4c, no non-physical humps were spotted. 

4.4 Other test cases involving gas-solid compressible flows 

More gas-solid compressible flow case scenarios are designed in order to validate the 

effectiveness of the Naviers equation model in simulating shocks/rarefraction waves in 

steel when coupled to a fluid such as gas. The numerical solutions are compared to the 

analytical solutions. 

 

Case 4.5: In this case, gas at moderate pressure and moderate velocity impacts on a 

still steel. The initial conditions for this case are 0.20=lu , 0.1000=lp , 2.0=lρ ; 

0.0=ru , 0.1=rp , 7.7=rρ , CFL=1.0. The number of grid points is 2201. The 

program is run till 31045.4 −x . The solution for this scenario should see shockwaves 

occurring in both the gas medium and the steel. Figs. 4-5a to 4-5c show good matching 

of the numerical solution to the exact solution. 

 

Case 4.6: The solution type of this case is a rarefaction wave in gas and a shock wave 

in solid. The initial conditions for this case are 0.10−=lu , 0.1800=lp , 2.0=lρ ; 

0.0=ru , 0.1=rp , 7.7=rρ , CFL=1.0. The program is run to 31045.4 −x .  
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The number of grid points is 2201. From Figs. 4-6a to 4-6c, the numerical solution is a 

good fit to the analytical solution and the locations of the rarefraction wave and shock 

wave are accurately calculated/captured by the numerical solution. 

 

Case 4.7: The solution type of this case is a rarefaction wave in gas and a rarefaction 

wave in solid. The initial conditions for this case are 0.10−=lu , 0.8000=lp , 2.1=lρ ; 

0.0=ru , 0.8000=rp . The computation is run to a final time of 31045.3 −× . From 

Figs. 4-7a, a pressure undershoot is seen near the rarefraction wave in the steel.  

 

4.5 Other test cases involving water-solid compressible flows 

Similarly, more test cases for water-steel are designed to test the solid phase algorithm 

in the simulation of shockwaves/rarefraction waves accurately. 

Case 4.8: The solution type is also a shock wave in water and a shock wave in solid. 

The initial conditions are 0.30=lu , 0.25000=lp , 0.1=lρ , 0.10−=ru , 0.25=rp , 

7.7=rρ , CFL=1.0. The number of grid points is 2201. The program is run to 

31045.4 −x . From Figs. 4-8a to 4-8c, it seems that the numerical solution follows the 

exact solution closely. 

 

Case 4.9: In this case, the initial pressure of the water stream impacting the steel is 

quite low. The initial conditions for this case are 0.10=lu , 0.800=lp , 0.1=lρ  

0.0=ru , 0.1=rp , 7.7=rρ , CFL=1.0. The number of grid points is 2201. The 

program is run till 31045.4 −x . From Figs. 4-9a to 4-9c, the numerical solution of the 

Naviers equation model compares favorably well with the analytical solution. In fact, 

the Naviers equation model seems to have no difficulty in modeling water-steel cases 
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with low pressure. On the other hand, the Hydro-elasto-plastic model is unable to 

simulate for cases with 0.750<lp . 

 

Case 4.10: In this test case, a rarefraction wave occurs in the water and a shock occurs 

in the solid. The initial conditions are 0.10−=lu , 0.25000=lp , 0.1=lρ , 0.0=ru , 

25=rp , 7.7=rρ , CFL=1.0. The number of grid points is kept to 2201. The program 

is run to 31045.4 −x . From Figs. 4-10a to 4-10c, the numerical solution is very close to 

the analytical solution and is able to accurately simulate the locations of the 

rarefraction and shock waves in the water and solid media, respectively. 

 

Case 4.11: The solution type is a rarefraction wave in water and a rarefraction wave in 

solid. The initial conditions are 0.10−=lu , 0.30000=lp , 0.1=lρ , 0.0=ru , 

25000=rp , 7.7=rρ , CFL=1.0 The number of grid points is 2201. The program is 

run till 31045.3 −x . As seen in Case 4.7, there is also a pressure undershoot near the 

rarefraction wave in the steel in Fig. 4-11a; this pressure undershoot is magnified in 

this case as both the Tait’s equation and the Naviers equation is quite stiff. From Lin 

and Ballmann (1993a), the authors see a family of centered plastic waves as the form 

of the rarefraction wave in solid material. Since the Naviers equation only considers 

the elasticity of materials, it is insufficient to effectively model the rarefraction waves 

in the solid. Plasticity effects would have to be included in order to model rarefraction 

waves in solid as was done in Lin and Ballmann (1993a). 
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4.6 Mesh Refinement test 

Case 4.12: For a gas-solid scenario, the initial conditions are 0.50=lu , 0.10000=lp , 

05.0=lρ ; 0.0=ru , 01325.1=rp  and 7.7=rρ . The program is run till 31045.4 −x . 

The mesh size is varied in order to determine the effect of mesh refinement on the 

numerical solution. Three mesh sizes were used. As seen from Fig. 4-12, as the mesh 

resolution increases, the shock in the solid steepens as expected in usual mesh 

refinement exercises. 

 

Case 4.13: In water-solid cases, given the following initial conditions, 0.30=lu , 

0.25000=lp , 0.1=lρ , 0.0=ru , 0.25=rp , 7.7=rρ , the computation is run till 

31045.3 −x  with CFL=1.0 for three mesh sizes. From Fig. 4-13, it is noted that shock 

steepening occurs as mesh resolution increases, similar to Case 4.11. 

 

4.7 Water shock tube test 

Case 4.14: This case is similar to the 1D case study in Tang and Huang (1996). At the 

right end of the tube, instead of a rigid end, a steel structure is placed at the end before 

the rigid wall. The properties of a typical steel grade AISI type 431 were used for the 

simulation. The shock tube setup is illustrated in the figure below. 

Figure 4-14: Schematic Diagram of water shock tube problem with steel 

Gas 

Water 

Steel 

XI(1)=0.001 
XI(2)=0.276 
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The whole domain is from 0=x  to 3.0=x . The total number of cells is 3000. The 

initial conditions are: ,070735.0=gρ 0.0=gu , 929853.1006=gP , 0.1=wρ , 

0.0=wu , 01325.1=wP , 7.7=sρ , 0.0=su , 0.1=sP . The program is run till 

21000.3 −x . 

The Modified Schmidt’s model for cavitation (Xie et al.(In Press))is added to the fluid-

solid algorithm in order to simulate the cavitation which occurs in the process. The 

gas-water-solid cavitation plot in Fig. 4-14a was compared with the case(Fig.4-14b) in 

which the right-end boundary is a reflecting wall. In the latter case, the computational 

domain was from 0=x  to 276.0=x  and the total number of cells was 2760 with the 

same initial conditions and computed for the same length of time. As seen from Fig. 4-

14c which displays the overlapping plots, the first peak pressure is around the same but 

for the case with steel structure, it is noted that the pressure pulses drop to a lower 

mean value compared to the case with rigid boundary. Also, there appear to be less 

number of cavitation zones in the case with steel structure.  

However, the present computation is based on a simple, one-dimensional model, 

ignoring possible secondary flow effects and hence, it may not truly explain all the 

features of a water shock tube flow problem. The experimental results of the paper 

from Wardlaw et al. (2000) seem to show that the pressure pulses on the cylinder wall 

is much lower for the deformable cylinder compared to the rigid cylinder. The same 

effect is also noted in our 1D computation in Fig. 4-14c even though the case in the 

above-mentioned paper was a three-dimensional experiment. However, work on 

extension to multi-dimensions is recommended in order to further validate the gas-

water-solid algorithm in simulating unsteady cavitation and the effect of cavitation 

collapse on different solid structures. 
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Figure 4-1a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.1 Gas-solid) 

 
Figure 4-1b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.1 Gas-solid) 
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Figure 4-1c: The distribution of density obtained for comparison against the analytical solution  

(Case 4.1 Gas-solid) 

 
Figure 4-1d: The distribution of pressure obtained for comparison between Naviers equation and 

Hydro-elasto-plastic models 
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Figure 4-1e: The distribution of velocity obtained for comparison between Naviers equation and 

Hydro-elasto-plastic models 

 
Figure 4-1f: The distribution of density obtained for comparison between Naviers equation and 

Hydro-elasto-plastic models 
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Figure 4-2a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.2 Water-solid) 

 
Figure 4-2b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.2 Water-solid) 
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Figure 4-2c: The distribution of density obtained for comparison against the analytical solution  

(Case 4.2 Water-solid) 

 
Figure 4-2d: The distribution of pressure obtained for comparison between Naviers equation and 

Hydro-elasto-plastic models 
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wave 
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Figure 4-2e: The distribution of velocity obtained for comparison between Naviers equation and 

Hydro-elasto-plastic models 

 
Figure 4-2f: The distribution of velocity obtained for comparison between Naviers equation and 

Hydro-elasto-plastic models 
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Figure 4-3a: The pressure profile for Case 4.3 Gas-Solid shock impedance problem 

 
Figure 4-3b: The velocity profile for Case 4.3 Gas-Solid shock-impedance problem 
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Figure 4-3c: The density profile for Case 4.3 Gas-Solid shock-impedance problem 

 
Figure 4-4a: The pressure profile for Case 4.4 Water-Solid shock impedance problem 
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Figure 4-4b: The velocity profile for Case 4.4 Water-Solid shock impedance problem 

 
Figure 4-4c: The density profile for Case 4.4 Water-Solid shock impedance problem 
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Figure 4-5a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.5 Gas-solid) 

 
Figure 4-5b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.5 Gas-solid) 
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Figure 4-5c: The distribution of density obtained for comparison against the analytical solution 

(Case 4.5 Gas-solid) 

 
Figure 4-6a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.6 Gas-solid) 
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Figure 4-6b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.6 Gas-solid) 

 
Figure 4-6c: The distribution of density obtained for comparison against the analytical solution  

(Case 4.6 Gas-solid) 
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Figure 4-7a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.7 Gas-solid) 

 
Figure 4-7b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.7 Gas-solid) 
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Figure 4-7c: The distribution of density obtained for comparison against the analytical solution 

 (Case 4.7 Gas-solid) 

 
Figure 4-8a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.8 Water-solid) 
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Figure 4-8b: The distribution of velocity obtained for comparison against the analytical solution 

 (Case 4.8 Water-solid) 

 
Figure 4-8c: The distribution of density obtained for comparison against the analytical solution 

 (Case 4.8 Water-solid) 
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Figure 4-9a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.9 Water-solid) 

 
Figure 4-9b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.9 Water-solid) 
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Figure 4-9c: The distribution of density obtained for comparison against the analytical solution 

(Case 4.9 Water-solid) 

  
Figure 4-10a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.10 Water-solid) 
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Figure 4-10b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.10 Water-solid) 

 
Figure 4-10c: The distribution of density obtained for comparison against the analytical solution 

(Case 4.10 Water-solid) 
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Figure 4-11a: The distribution of pressure obtained for comparison against the analytical solution 

(Case 4.11 Water-solid) 

 
Figure 4-11b: The distribution of velocity obtained for comparison against the analytical solution 

(Case 4.11 Water-solid) 
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Figure 4-11c: The distribution of density obtained for comparison against the analytical solution 

(Case 4.11 Water-solid) 

 
Figure 4-12: Mesh refinement of the pressure profile for gas-solid (Mesh sizes: 2000, 4000, 8000) 
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Figure 4-13: Mesh refinement of the pressure profile for water-solid (Mesh sizes: 2000, 4000, 

8000) 

 
Figure 4-14a: Pressure profile at the surface of the steel wall 
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Figure 4-14b: Pressure profile at the rigid reflecting-end of tube (without steel) 

 
Figure 4-14c: Overlapping pressure plots for gas-water and gas-water-steel 
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Chapter 5 2-D Naviers Equation 

5.1 General Formulation 

Using the equation of motion in the absence of body forces for a volume element V 

with surface area S, we have 

2

2

t
amF

∂
∂=⋅∇�= ερσ

�
���

.       (5.1) 

Next, using the relationship between stress and strain in an isotropic elastic medium, 

we have 

ijijij eµδλσ 2+∆= ,        (5.2) 

where ∆ is the dilatational strain and is defined by zzyyxx eee ++=∆  and ije  represents 

the strain in the various directions. ijδ  is the dirac operator in Eqn. (5.2) and is given 

as. 

�
�
�

⋅=
≠

=
jiif

jiif
ij 1

0
δ         (5.3) 

And substituting into the equation of motion yields 

( ) ( )[ ] ( ) ( ) fT ρεµεµλεεµελερ +×∇×∇−⋅∇∇++∇+∇⋅∇+⋅∇∇=
�����

�� 2 . (5.4) 

This is the complete elastic wave equation as seen in Rawlinson N.’s lecture notes. The 

first two terms on the right-hand side of the above equation contain gradients of the 

Lame parameters. They are non-zero if the material is inhomogeneous and non-

isotropic. For homogeneous, isotropic medium, the elastic wave equation reduces to 

the general Naviers equation. 

( ) ( ) ( ) 02 2

2

=+
∂
∂−×∇×∇−⋅∇∇+ f

t
ρερεµεµλ

�
��

.    (5.5) 
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5.2 Specific 2-D formulation 

In textbooks such as Filonenko-Borodich (1968) , the two-dimensional form of the 

Naviers equation for elastic solids is expressed in the form given as: 

( ) ( ) 1
2

2

2
1

2

2
1

2

2
1

2
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where ε1 is the displacement in the x-direction and ε2 is the displacement in the y-

direction and 1F  and 2F  are the respective body force in the x and y direction. The 

body forces are considered negligible in our derivation. Through some simple 

mathematical manipulation, we have 
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where 

ρ
µβ

ρ
λµα =+= ,

2
.       (5.8) 

So we can also express the equation in terms of velocity-stress via the following 

relations between displacement and velocity, 

t
V

t
u

∂
∂=

∂
∂= 21 ,

εε
.        (5.9) 

The Naviers equations are actually obtained from Newton’s 2nd law and the stress-

strain relationships. α  and β  are the compressional or longitudinal and shear wave 

speeds respectively. In geophysics, they are termed as the P-wave and S-wave, 

respectively. For the P-wave, the displacements occur along the direction of 
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propagation whereas for an S-wave, the displacements occur perpendicular to the 

direction of propagation. 

When Newton’s 2nd law: ( amF = ) is applied to the isotropic, homogeneous solid 

material, we have 
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In many engineering applications, complex three-dimensional problems may be 

simplified to two-dimensional or plane problems. There are the usual two types of 

plane problems: plane stress or plane strain. 

In the case of plane stress, one of the dimensions is much smaller compared with the 

other dimensions and we can then assume that the stress in the direction of the small 

dimension is negligible. Thus, we can simply ignore the ‘small’ dimension and 

perform our analysis for the two-dimensional plane of the larger dimensions only (Fig. 

5-1(a)). From Chung (1996), 0,0,0,0 3 ≠
∂

∂
===

zzzyzxz

εσσσ . (5.11) 

For plane strain, one dimension is extremely large in comparison with the other two 

dimensions and hence, it is possible that the strain in this direction is negligible. We 

may then perform two-dimensional analysis on a sliced plane with unit thickness along 

the axis of the extremely large dimension as seen in Fig. 5-1(b). In mathematical terms, 

0,0,0,0 333 ≠=
∂

∂
=

∂
∂

=
∂

∂
zzzyx

σεεε
. 
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Figure 5-1(a): Plane stress, (b): Plane Strain 
 
For plane strain conditions, the stress-strain relations are given by: 

( )
( )( )

( )







�

�

�
�
�

�

�














�

�

�
�
�
�
�
�

�

�

−
−

−

−

−+
−=








�

�

�
�
�

�

�

xy

yy

xx

xy

yy

xx

e
e

e
E

υ
υ

υ
υ

υ
υ

υυ
υ

σ
σ
σ

12
21

00

01
1

0
1

1

211
1

   (5.12) 

Using Cauchy’s equations which give the relation between displacements and strains, 

we can then determine the stress-displacement relations from Filonenko-Borodich 

(1968), 
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Thus, the stress-displacement relations for plane strain are given by 
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Combining with the definitions of Lame constants in Eqns. (3.7), the stress-

displacement relations can be written with just the Lame constants as 
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By substituting Eqns. (5.15a) to (5.15c) into Eqns. (5.10a) and (5.10b), we can derive 

the concise form of the Naviers equations as seen in Eqns. (5.7a) and (5.7b) and noted 

by Toro and Clarke (1998). 

The same approach in defining the Euler equations for fluid media is applied to the 

Naviers equations. Here, the Naviers equations are formulated in a quasi-linear form. 

Similarly to the Euler equations, the Naviers equations contain only first-order 

derivatives and hence the system is first order in the variables U where U is defined 

below. 

In the explicit form, the quasi-linear form of equations is written as 
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Here Q  is the source term and is equivalent to zero in the case of the homogeneous 2D 

Naviers equations. The flux vector F
�

 is also defined in such a way that the flux 

components are homogeneous functions of the conservative variables in U. 

This meant that the flux components can be decomposed into  

BUgAUf == , ,       (5.18) 

where A and B are the two Jacobian matrices of the flux vector. 

Hence, the equations can be written as 
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Where ( )T
xyyyxxVuU σσσρρ ,,,,=  and ( )[ ]Txyxx Vuuf ρβρβαρασσ 2222 ,2,,, −= , 

( )[ ]Tyyxy uVVg ρβραρβασσ 2222 ,,2,, −= . 

The related Jacobian matrices from Toro and Clarke (1998), are thus 
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To determine the eigenvalues, 0=− IA λ  and 0=− IB θ . 

The characteristic equation for both A and B are the same. .i.e. 
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( )[ ] 0222224 =++− βαλβαλλ ,      (5.22) 

Hence, the eigenvalues for both A and B are ββαα −− or,,,0 . In this case, since 

one of the eigenvalues is zero, we are unable to derive generalized eigenvectors as was 

done previously for the 2D Euler equation. Instead, explicit eigenvectors for the x and 

y directions have to be found individually. 

According to linear algebra theory, when 0=λ , 0=AX  where X is a 5x1 matrix and 

its elements are [ ]Txxxxx 54321 ,,,, , we have 
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With 14 =x , we have 














�

�

�
�
�
�
�
�

�

�

=

0
1
0
0
0

X .         (5.25) 

When 0≠λ , 0=XA  and hence 
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From Eqn. (5.26a) and Eqn. (5.26c), 
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When ,αλ −=  0,0 52 == xx , we have 
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When ,βλ = 00,0 431 =�== xxx , we have 














�

�

�
�
�
�
�
�

�

�

==�














�

�

�
�
�
�
�
�

�

�

= ++

2

22

0
0

0

,

0
0
1
0

β

β
β

λ

ββ XxletxX .     (5.29) 

When ,βλ −= 00,0 431 =�== xxx , we have 



Chapter 5 2D Naviers Equation 
_____________________________________________________________________ 

 
Shock/Cavitation Structure Interaction  79 














�

�

�
�
�
�
�
�

�

�

−
=−=�














�

�

�
�
�
�
�
�

�

�

= −−

2

22

0
0

0

,

0
0
1
0

β

β
β

λ

ββ XxletxX .    (5.30) 

Therefore, the right eigenvector of A is determined as 
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In a similar manner, the right eigenvector for B can be determined as 
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The left eigenvectors may be determined by finding the inverse of the right 

eigenvectors and given as 
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where jkx is the cofactor given by the formula 

( ) jk
kj

jk Mx +−= 1 ,        (5.33c) 
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and jkM  is the determinant of the sub-matrices. The left eigenvector for A is thus 

found to be 
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And the left eignvector for B is described below as 
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The variable matrix, flux matrix, left and right eigenvectors determined can thus be 

used in the two-dimensional MUSCL scheme for the simulation of the two-

dimensional solid.  
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Chapter 6 Conclusion and Future Directions 

6.1 Conclusion 

To simulate the shock-cavitation interaction with solid structure, Naviers equation was 

used to model the structure rather than any of the existing solid EOS such as Mie-

Gruneisen EOS which has been utilized quite extensively in the simulation of solid 

material as attested by Miller and Puckett (1996) and the hydro-elasto-plastic solid 

model in Tang and Sotiropoulos (1999). Naviers equation is based on structural 

mechanics involving elastic continuum and constitutive stress-strain relations. The 

only material parameters required are the Young’s Modulus and the Poisson Ratio 

which are common parameters available in material handbooks. No other experimental 

material parameters are needed and this makes the Naviers equation model very 

attractive to use as it can be utilized for many different materials from data already 

collated in handbooks. The limitations would be problems involving large 

deformations of the solid, and also problems involving plastic flow whereby due to the 

non-linear constitutive stress-strain relations, the system of governing equations 

becomes non-linear as well.  

Though there were many models using the Naviers equation, this is the first time that 

the Naviers equation model is used to simulate shock-cavitation interaction between a 

fluid and solid media. This novel approach also uses the Modified Ghost Fluid method 

which is based on the approximate Riemann problem solver at the fluid-solid interface 

and tracked using the Level Set method. The MUSCL scheme which is a high order, 

upwind scheme, is used for both the fluid and solid solver. The analytical solutions for 

the 1D test cases were also derived for the first time using Euler equation for the fluid 

and Naviers equation for the solid media. From the test cases 4.3 and 4.4 which are 
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typical shock impedance tests, the smooth transition at the fluid-solid interface 

indicates that the interface solver developed in this thesis has accurately dealt with the 

1D interface characteristics. The results of various other test cases involving shock-

shock, rarefraction-shock and rarefraction-rarefraction interaction were also shown and 

discussed. The 1D numerical solutions for majority of the cases fit very well with the 

analytical solutions with a few exceptions in cases 4.7 and 4.11. In test cases 4.7 and 

4.11, rarefraction waves occur in both the fluid and solid medium. However, pressure 

undershoots are seen near the solid rarefraction wave in both test cases. From Lin and 

Ballmann (1993a), the solid rarefraction wave comes from a family of centered plastic 

waves and the authors were able to successfully simulate the rarefraction waves in the 

solid media by solving the Riemann Problem for the waves. This could mean that 

plasticity effects have to be considered in modeling the rarefraction waves in solid 

materials. In the test case 4.14, the results from the gas-water-steel cavitation 

interaction show similar general effects as Wardlaw et al. (2000) in the comparisons 

between deformable and rigid walls. In our results, it is noted that the pressure pulses 

drop to a lower mean value compared to the case with rigid boundary, though the 

magnitude of the drop may not be the same as for the 3D experimental results used in 

the paper. Also, there appear to be less number of cavitation zones in the case with 

steel structure. However, as the simulations here are only one-dimensional and can 

only reflect a limited behaviour, the extension to multi-dimensions would be required 

to further validate the one-dimensional results. The formulation of the eigensystem of 

the re-written Naviers equation in two dimensions was also achieved in this thesis. 
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6.2 Future directions 

The next area of work would be extending the 1D methodology to multi-dimensions. 

Even though the mathematical formulae for the two-dimensional Naviers equation has 

been worked out, more work still needs to be done in solving the Approximate 

Riemann problem at the interface and working out any Eulerian-Lagrangian mesh 

problems. Another possible area to work on would be the consideration of plasticity 

effects, in which case, the linear Naviers equation would not be suitable for use as the 

plasticity effects are often non-linear. Instead, the non-linear form of the Naviers 

equation would have to be used and further mathematical treatment is needed to 

express the non-linear equation in eigensystem form.
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