
ON RESOLVING SEMANTIC
HETEROGENEITIES AND DERIVING

CONSTRAINTS IN SCHEMA INTEGRATION

QI HE

(B.Sc., Fudan University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Abstract

A challenge in schema integration is schematic discrepancy, i.e., meta information

in one database correspond to data values in another. The purposes of this work

were to resolve schematic discrepancies in the integration of relational, ER and

XML schemas, and to derive constraints in schema transformation in the context

of schematic discrepancies.

In the integration of relational schemas with schematic discrepancies, a theory

of schema transformation was developed. The theory was on the properties (i.e.,

reconstructibility and commutativity) of schema-restructuring operators and the

properties (i.e., information preservation and non-redundancy) of schema transfor-

mation.

Qualified functional dependencies which are functional dependencies holding

over a set of relations or a set of horizontal partitions of relations were proposed to

represent constraints in heterogeneous databases with schematic discrepancies. We

proposed algorithms to derive qualified functional dependencies in schema transfor-

mation in the context of schematic discrepancies. The algorithms are sound, com-

plete and efficient to derive some qualified functional dependencies. The theory of

qualified functional dependency derivation is useful in data integration/mediation

systems and multidatabase interoperation.

iii

In the integration of ER schemas which are more complex than relational

schemas, we resolved schematic discrepancies by transforming the meta information

of schema constructs into attribute values of entity types. The schema transforma-

tion was proven to be both information preserving and constraint preserving.

The resolution of schematic discrepancies for the relational and ER models

can be extended to XML. However, the hierarchical structure of XML brings new

challenges in the integration of XML schemas, which was the focus of our work. We

represented XML schemas in the Object-Relationship-Attribute model for Semi-

Structured data (or ORASS). We gave an efficient method to reorder objects in a

hierarchical path, and proposed a semantic approach to integrate XML schemas,

resolving the inconsistencies of hierarchical structures. The algorithms were proven

to be information preserving.

We believe this research has richly extended the theories of schema transfor-

mation and the derivation of constraints in schema integration. It may effectively

improve the interoperability of heterogeneous databases, and be useful in build-

ing multidatabases, data warehouses and information integration systems based on

XML.

iv

Acknowledgement

First of all, I would like to thank my supervisor Prof Ling Tok Wang. He taught

me the way of research and presentation, and the spirit of continuous improvement.

As a researcher, he is a man of insight and experience. His comments are always

suggestive and pertinent. As a supervisor, he is patient and strict. It’s lucky but

not easy to be his student. He leads me along the way here. Without his help, the

thesis would never have been come into being.

Thank Dr. Stéphane Bressan and Dr. Chan Chee Yong for the effort and time

to read the thesis and the valuable comments based on which I improved the thesis

much.

Thank Prof Zhou Aoying and Prof Ooi Beng Chin. They provided me with the

opportunity to pursue the PhD degree in Singapore.

I am also thankful to my colleagues in SoC and all my friends in Singapore: Chen

Ding, Chen Ting, Chen Yabin, Chen Yiqun, Chen Yueguo, Chen Zhuo, Cheng Wei-

wei, Dai Jing, Ding Haoning, Fa Yuan, Fu Haifeng, Hu Jing, Huang Yang, Huang

Yicheng, Jiao Enhua, Li Changqing, Li Xiaolan, Li Yingguang, Liu Chengliang,

Liu Shanshan, Liu Xuan, Lu Jiaheng, Ni Yuan, Pan Yu, Sun Peng, Wang Shiyuan,

Wang Yan, Xia Chenyi, Xia Tian, Xiang Shili, Xie Tao, Xu Linhao, Yang Rui,

Yang Xia, Yang Xiaoyan, Yang Tian, Yao Zhen, Yu Tian, Yu Xiaoyan, Zhang Han,

v

Zhang Wei, Zhang Xiaofeng, Zhang Zhengjie, Zheng Wei, Zheng Wenjie, Zhou

Xuan, and Zhou Yongluan. Thank them not only for the help and encouragement,

but also for the dispute. The friendship among us will be a treasure in my life.

Special thanks go to my friend Ni Wei for his warm heart and wisdom. He

pushed me when I hesitated, guided me when I was lost and accompanied me when

I was hurt. With self discipline, he can be something one day. I have no doubt

about that.

Finally, thank my parents. They are always at my back no matter what I do.

Contents

Abstract ii

1 Introduction 1

1.1 Schematic discrepancies by examples 5

1.2 Functional dependencies in multidatabases 9

1.3 Objectives and organization . 11

2 Preliminaries 14

2.1 ER approach . 15

2.2 ORASS approach . 16

3 Literature review 24

3.1 Restructuring operators and discrepant schema transformation . . . 24

3.2 Data dependencies and the derivation of constraints in schema trans-

formation . 27

3.3 Resolution of structural conflicts in the integration of ER schemas . 32

3.4 XML schema integration and data integration 32

3.5 Ontology merging . 35

3.6 Model management . 36

vi

vii

4 Knowledge gaps and research problems 38

4.1 Theory of discrepant schema transformation 38

4.2 Representing, deriving and using dependencies in schema transfor-

mation . 39

4.3 Resolving schematic discrepancies in the integration of ER schemas 41

4.4 Resolving hierarchical inconsistency in the integration of XML schemas 43

5 Lossless and non-redundant schema transformation 48

5.1 Algebraic laws of restructuring operators 48

5.1.1 Reconstructibility . 49

5.1.2 Commutativity . 53

5.2 Lossless and non-redundant transformations 54

5.3 Summary . 58

6 Deriving and using qualified functional dependencies in multi-

databases 60

6.1 Qualified functional dependencies 61

6.1.1 Definition of qualified functional dependency 61

6.1.2 Inference rules of qualified functional dependencies in fixed

schemas . 62

6.1.3 Compute attribute closures with respect to qualified func-

tional dependencies . 65

6.2 Deriving qualified functional dependencies in schema transformations 69

6.2.1 Propagation rules . 69

6.2.2 Deriving qualified functional dependencies in discrepant schema

transformations . 73

viii

6.2.3 Complexities of Algorithms EFFICIENT PROPAGATE and

CLOSURE . 78

6.3 Uses of qualified functional dependency derivation 83

6.3.1 Deriving qualified functional dependencies in data integra-

tion/mediation systems . 83

6.3.2 Verifying SchemaSQL views 85

6.4 Summary . 89

7 Resolving schematic discrepancies in the integration of ER schemas 91

7.1 Meta information of schema constructs 91

7.2 Resolution of schematic discrepancies in the integration of ER schemas 98

7.2.1 Resolving schematic discrepancies for entity types 99

7.2.2 Resolving schematic discrepancies for relationship types . . . 110

7.2.3 Resolving schematic discrepancies for attributes of entity types113

7.2.4 Resolving schematic discrepancies for attributes of relation-

ship types . 115

7.3 Semantics preserving transformation 117

7.3.1 Semantics preservation of Algorithm ResolveEnt 118

7.4 Schematic discrepancies in different models 119

7.4.1 Representing and resolving schematic discrepancies: from the

relational model to ER . 119

7.4.2 Extending the resolution in the integration of XML schemas 121

7.5 Summary . 123

8 Resolving hierarchical inconsistencies in the integration of XML

schemas 125

8.1 Use cases and criteria of XML schema integration 126

ix

8.2 XML schema integration: using ORASS 128

8.3 Reordering the objects in relationships 129

8.3.1 Reordering objects using relational databases 130

8.3.2 Cost model . 133

8.4 Merging relationship types . 138

8.4.1 Definitions . 138

8.4.2 Algorithm . 142

8.4.3 Evaluation of Algorithm MergeRel 149

8.5 XML schema integration by example 150

8.6 Comparison with other approaches to XML schema integration . . . 154

8.7 Summary . 157

9 Conclusion 159

9.1 Summary of contributions . 159

9.2 Future work . 163

A Appendix 165

A.1 Commutativity of restructuring operations 165

A.2 Proof of Lemma 5.1 . 167

A.3 Proof of Lemma 5.2 . 169

A.4 Proof of Theorem 6.1 . 170

A.5 Proof of Theorem 6.2 . 177

A.6 Proof of Theorem 6.3 . 179

A.7 Quick propagation rules and Algorithm EFFICIENT PROPAGATE 180

A.8 Proof of Theorem 6.4 . 185

A.9 Resolution algorithms of schematic discrepancies in the integration

of ER schemas . 190

x

A.10 Proof of Theorem 7.2 . 196

A.11 Proof of Theorem 8.2 . 208

List of Figures

1.1 Schematic discrepancy: months and supplier numbers are modelled

differently in these databases . 6

2.1 Dependencies in ER schema . 16

2.2 ORASS schema diagram . 18

2.3 ORASS instance diagram . 18

2.4 Corresponding DTD and XML document sections 18

2.5 an ambiguous DTD corresponding to two ORASS schemas 20

3.1 Transforming DB4 to DB5 with a set of fold operations, and the

converse with a set of unfold operations 26

3.2 Illustration of the chase . 29

5.1 A lossy fold transformation: the transformation from R (I1 or I2) to

S is un-recoverable. 50

6.1 Ambiguous SchemaSQL view: SupV iew may have one of the two

instances I1 and I2 . 86

xi

xii

7.1 ER schemas and their contexts. Schematic discrepancies occur as

months and suppliers modelled differently as the attribute values or

metadata in DB1, DB2 and DB3 95

7.2 Resolve schematic discrepancies for entity types: handle attributes . 100

7.3 Resolve schematic discrepancies for entity types: handle relationship

types . 104

7.4 Resolve schematic discrepancies for relationship types 111

7.5 Resolve schematic discrepancies for attributes of entity types 113

7.6 Resolve schematic discrepancies for attributes of relationship types . 116

7.7 Two representations of the supply information in ORASS 121

7.8 Transforming Schema S2 to S1 . 122

8.1 Reorder S/P/M into P/S/M: first sort the table by P#, S#, M#,

then merge the objets with the same identifier values in the table . 131

8.2 XQuery statements to swap the elements SUPPLIER and PROD in

the XML document section of Figure 2.4 133

8.3 different ways to merge relationship types 139

8.4 Source schemas . 151

8.5 Intermediate integrated schema of S1 to S4 after Step 6 153

8.6 Integrated schema of S1 to S4 by our approach 153

8.7 Integrated schema of S1 to S4 by the approach of [74] 155

8.8 Integrated schema of S1 to S4 by the approach of [29] 157

1

Chapter 1
Introduction

Traditionally, database application uses software, called a database management

system managing a multitude of data located in one site. Modern applications

require easy and consistent access to multiple databases. A multidatabase system

(i.e., MDBS) addresses this issue. A MDBS is a collection of cooperating but

autonomous database systems (called component database systems). Such a system

provides controlled and coordinated manipulation of the component databases. In

building a MDBS, schema integration plays an important role. Schema integration

is the activity to integrate the schemas of existing or proposed databases into a

global, unified schema. Users can access the data of those component databases

through the integrated schema. The differences and inconsistencies of data models,

schemas and data among those databases are transparent to users.

A data warehouse is a “subject-oriented, integrated, time varying, non-volatile

collection of data that is used primarily in making decisions in organizations [28].”

Unlike a MDBS, a data warehouse contains consolidated data from several oper-

ational databases and other sources. However, similar information may be stored

in different schemas in source databases, schema integration is therefore a neces-

sary stage before data integration in which duplicate and inconsistency of data are

2

removed.

Another application of schema integration is view integration in database de-

sign. View integration is a process of producing a schema of a proposed database

by integrating different user views. There are two reasons for view integration in

database design: (1) the structure of database is too complex to be modelled in a

single view, and (2) user groups have their own requirements and expectations of

data. View integration is on schema level and usually processed during conceptual

database design.

As XML becomes more and more a de facto standard to represent and exchange

data in e-business, information mediation/integration based on XML provides a

competitive advantage to businesses [48]. XML schema integration is a necessary

stage in building an integration system for either transaction or analytical process-

ing purpose.

Correspondingly, schema integration can be divided into to 2 classes according

to the data models, one on flat models such as relational, ER or object-oriented

model, and the other one on hierarchical models such as XML. In general, in schema

integration, people usually need to resolve different kinds of semantic heterogenei-

ties:

• Naming conflict - Homonyms and synonyms are the two sources of naming

conflicts. Renaming is a frequently chosen solution in existing work.

• Key conflict - Different keys may be assigned as the identifier of the same

concept in different schemas. For example, attributes SSNO and EMPNO

may be identifiers for the entity types of EMPLOYEE in two schemas.

• Structural conflict - The same real world concept may be represented in two

schemas using different schema constructs [4, 39]. For example, the same

3

concept publisher may be modelled as an entity type in one schema, but an

attribute in another schema.

• Domain mismatch - Domain mismatch occurs when we have conflict between

the domains of equivalent attributes. E.g., the value set for an attribute

EXAM SCORE may be in grades (A, B, C etc) in one database and in marks

in another database. Given the corresponding rules between the grades and

marks, we can resolve this kind of conflicts.

• Constraint conflict - Two schemas may represent different constraints on the

same concept [38]. For example, the conflict occurs on the cardinality con-

straints. For instance, PHONE NO may be a single valued attribute in one

schema, but multi-valued in another schema. Another example involves dif-

ferent constraints on a relationship type such as TEACH. Assuming that in-

structors can teach more than one course, one schema may represent TEACH

as 1:n (a course has an instructor) and another schema may represent it as

m:n (some courses may have more than one instructors).

• Classification inconsistency - hyponyms or hypernyms, i.e., an object class is

less or more general than another object class [10, 52].

• Schematic discrepancy - Schema construct names in one schema correspond

to attribute values in another. We will explain this kind of semantic incon-

sistency by an example in Section 1.1 below.

Furthermore, in the integration of XML schemas, we should also resolve the

inconsistency of hierarchical structures. For example, the same binary relationship

type between INSTRUCTOR and COURSE is represented as a path INSTRUC-

TOR/COURSE in one schema tree, i.e., listing the courses taught by each instruc-

4

tor, but COURSE/INSTRUCTOR in another, i.e., listing the instructors of each

course.

To integrate the schemas of sources in different models (e.g., the relational,

object-relational, network or hierarchical model), we should first translate them to

the same data model, e.g., the ER model, and then transform the ER schemas to

consistent ones in which semantic heterogeneities are resolved. At last, we integrate

the transformed schemas by merging the equivalent structures.

In schema transformation, we usually require that the original and transformed

schemas represent exactly the same real world facts, although with different mo-

delling constructs. A semantic preserving schema transformation is both informa-

tion preserving and constraint preserving. Informally, a transformation is informa-

tion preserving if any instance of the original schema can be losslessly converted

into an instance of the transformed schema, and vice versa. A transformation is

constraint preserving if the constraints expressed in the original schema can also

be expressed in the transformed schema.

In this work, we studied the resolution of schematic discrepancies in the in-

tegration of relational or ER schemas, i.e., transforming schematically discrepant

schemas into consistent ones. We also studied the derivation of constraints (in par-

ticular, an extension to functional dependencies) in schema transformation. This is

significant because: (1) a schema transformation should be constraint preserving,

and (2) constraints are very useful in multidatabase systems. One of the interest-

ing points is that constraints (i.e., functional dependencies) can be used to verify

information preserving schema transformations. Note some semantic rich models

(e.g., ER) themselves support (cardinality) constraints. Then the derivation of

constraints is involved in schema transformation rather than a separate process.

In the integration of XML schemas, the new challenges come from the hierar-

5

chical structures of XML. The resolution of some semantic heterogeneities such as

naming conflicts and domain mismatches for the flat models (e.g., the relational

or ER model) can be adapted to the hierarchical model of XML directly. For

some other heterogeneities, e.g., structural conflicts and schematic discrepancies,

we should consider the hierarchical structures of XML in the resolution. Further-

more, besides all these heterogeneities, the inconsistency of hierarchical structures

may occur alone among XML schemas. Our solution is to separate the resolutions

of structural conflicts and schematic discrepancies from the handling of hierarchical

structures in the integration of XML schemas. That is, we first resolve the struc-

tural conflicts and schematic discrepancies using the resolutions similar to those

for the flat models in schema transformations, ignoring the hierarchical character-

istics of XML, and then resolve the inconsistencies of hierarchical structures in the

integration of the transformed schemas. We will focus on the second stage, i.e., the

resolution of the inconsistency of hierarchical structures, in the integration of XML

schemas.

In the rest of this section, we first introduce the semantic heterogeneity of

schematic discrepancy by an example in relational databases. Then we introduce

an extension of functional dependencies in multidatabases. Finally, we present the

objectives and organizations of this thesis.

1.1 Schematic discrepancies by examples

In relational databases, schematic discrepancy occurs when the same information

is modelled differently as attribute values, relation names or attribute names in

different databases, as shown in the example below. For ease of presentation, we

assume naming conflicts have been resolved if any. Furthermore, we assume that

6

the same information is represented in the same form when it is the attribute values,

the relation names or the attribute names in databases.

Example 1.1. In Figure 1.1, we give four databases DB1 to DB4 recording the

same information: supplying prices of products (identified by p#) by suppliers

(identified by s#) in different months. In DB1, all the information, i.e., prod-

uct numbers, supplier numbers, months and prices are modelled as attribute values.

In DB2, the months Jan, . . . , Dec are attribute names whose values are prices in

those months; in DB3, each relation with a month as its name records the supply-

ing information in that month; in DB4, each relation with a supplier number as

its name records products’ prices in each month by that supplier.

unfold(Supply, month, price)

fold(Supply, month, price)

split(Supply, month) unite({jan,...,dec},month)

DB2:
Supply

DB1:
Supply

DB3:
 jan dec

{p#, s#} { jan, ..., dec}→
{p#, s#, month} price→

{p#, s#} price holds in each
relation ofjan, ...,dec

→

DB4:
 s1 sn

p# {jan, ..., dec} holds in each
relation ofs1, s2, ..., sn

→

p# s# jan … dec

p1 s1 105 … 110

p1 s2 97 … 99

p# s# month price

p1 s1 jan 105

p1 s1 dec 110

p1 s2 jan 97

p1 s2 dec 99

...

p# s# price

p1 s1 105

p1 s2 97

p# s# price

p1 s1 110

p1 s2 99

p# jan … dec

p1 105… 110

split(Supply, s#) unite({s1,...,sn}, s#)

p# jan … dec

p1 93 … 95...
...

Figure 1.1: Schematic discrepancy: months and supplier numbers are modelled
differently in these databases

The schemas of Figure 1.1 are schematically discrepant from each other: the

7

values of the attribute month in DB1 correspond to attribute names of DB2 and

DB4, or relation names of DB3, and the values of the attribute s# in DB1 cor-

respond to the relation names in DB4.

In each database, we assume a product’s price is functionally dependent on the

product number, supplier number and month. This constraint is expressed as differ-

ent functional dependencies in these databases: in DB1, the constraint is expressed

as a functional dependency {p#, s#,month} → price; in DB2, it is expressed as

{p#, s#} → {jan, . . . , dec}, i.e., the product numbers and supplier numbers deter-

mine the prices of each month; in DB3, it is expressed as {p#, s#} → price in

each relation, i.e., in each month, the product numbers and supplier numbers deter-

mine the prices; in DB4, it is expressed as p# → {jan, . . . , dec} in each relation

of si. �

Schematic discrepancy arises frequently since the names of schema constructs

often capture some intuitive semantic information. Some researchers argue that

even within the relational model it is common to find data represented in schema

constructs. Real examples of such disparity abound [32, 34, 54]. Originally raised as

a conflict to be resolved in schema integration, schematically discrepant structures

have been used to solve some interesting problems:

• In [54], Miller identified three scenarios in which schematic discrepancies may

occur, i.e., database integration, data publication on the web and physical

data independence.

• In e-commerce, data are conventionally stored as “horizontal row presenta-

tion”, i.e., (Oid,A1, . . . , An) where Oid is the IDs of objects and A1, . . . , An

are the attributes of objects. Agrawal et al. [3] argued that the new genera-

tion of e-commerce applications require the data schemas that are constantly

8

evolving and sparsely populated. The conventional horizontal row represen-

tation fails to meet these requirements. They represented objects in a vertical

format (Oid,AttributeName,AttributeV alue) storing an object as a set of

tuples. Each tuple consists of an object identifier and attribute name-value

pair. They found that a vertical representation of objects is much better

on storage and querying performance than the conventional horizontal row

representation. On the other hand, to facilitate writing queries, they need to

create a logical horizontal view of the vertical representation, and transform

queries on this view to the vertical table.

• In data warehousing, users usually require generating report tables (e.g.,

DB2, DB3 or DB4 of Figure 1.1) which are schematically discrepant from

fact data (e.g., DB1 of Figure 1.1).

Lakshmanan et al. [34] developed four restructuring operators, fold, unfold,

unite and split (introduced in Section 3.1 below), to implement transformations

between schematically discrepant databases. However, the properties of these op-

erators have not been well studied. Are these operators information preserving

and constraint preserving? How to implement a transformation with the minimum

number of operators? We will study these problems in this thesis.

Existing work [32, 33, 35] focused on the development of languages with which

users can query over schematically discrepant databases. Their work is based on

the relational model, and considered a special kind of schematic discrepancy, i.e.,

relation names or attribute names in one database correspond to data values in

another database. A general case may be: a relation name (or attribute name)

corresponds to the values of several attributes. For example 1.1, suppose we have

another database consisting of a set of relations, such that each relation stores the

prices of products supplied by one supplier in one month. That is, each relation

9

name contains the information of a supplier number and a month. This cannot be

handled by previous approaches. We study the issue from the schema-integration

point of view. In particular, we will resolve a general issue of schematic discrepancy

in the integration of schemas in the ER model that is more complex than the

relational model.

1.2 Functional dependencies in multidatabases

Integrity constraints play important roles in not only individual databases, but also

multidatabases. The following example shows an application of functional depen-

dency, i.e., a special kind of integrity constraint, in schema and data integration.

Example 1.2. Suppose we want to integrate two relations of two bookstores BS1(isbn,

title, price) and BS2(isbn, title, price). Suppose in each bookstore, the books with

same isbn number have the same title and price, i.e., isbn is the keys of the re-

lations. Can we just integrate them into a schema as BS1 or BS2? The answer

would be negative if we have the constraint: a book with an isbn number has the

same title but not necessary the same price in the two bookstores. As value in-

consistency would occur on the price attribute for the same book. Actually, the

functional dependency isbn → title is a “global” functional dependency that holds

over the union of the two relations BS1 and BS2, while the functional dependency

isbn → price is a isbn → price is a “local” functional dependency holding in

individual relations.

According to these dependencies, it would be better to distinguish a book’s prices

of the two bookstores in an integrated schema, e.g., Book(isbn, title, BS1 price,

BS2 price) with the key isbn, or Book(isbn, title, store, price) with the 2 functional

dependencies isbn → title and {isbn, store} → price (the derivation of functional

10

dependencies will be discussed in Chapter 6). We note that the second integrated

schema is not in second normal form. It can be normalized into two relations:

Book(isbn, title) and BookPrice(isbn, store, price).

In conclusion, functional dependencies can be used to detect value inconsisten-

cies and design good integrated schemas, and to normalize integrated schemas. �

Classical functional dependencies are proposed to represent constraints on in-

dividual relations, which may be inadequate in multiple, distributed and heteroge-

neous databases. In this work, we will propose qualified functional dependencies,

i.e., the functional dependencies holding over a set of relations or a set of the hori-

zontal partitions of relations, to represent useful constraints in multidatabases. In

the following two examples, the constraints cannot be expressed by conventional

functional dependencies. However, they can be expressed by qualified functional

dependencies.

Example 1.3. For Example 1.2, the dependency isbn → title holds over the union

of the two relations BS1 and BS2. This constraint can be represented as a func-

tional dependency:

{BS1, BS2}(isbn → title)

in which {BS1, BS2} indicates the set of relations over which the dependency holds.

�

Example 1.4. Given a relation Emp(emp#, name, isMgr, phone#) that is ob-

tained by integrating a relation of ordinary staff and a relation of managers, such

that isMgr is a boolean attribute indicating whether an employee is a manager

or an ordinary employee, we know that each ordinary employee has one phone,

and a manager may have a few. We can the constraint as a qualified functional

11

dependency:

Emp(emp#, isMgrσ={‘false′} → phone#)

in which σ means “selection”, and isMgrσ={‘false′} indicates that the dependency

only holds over the tuples with isMgr taking the false value. �

In database integration, source databases are usually distributed (i.e., data may

be divided and stored in several databases) and heterogeneous (i.e., similar data

may be represented in different forms in the source databases). In particular, with

schematic discrepancy, schema and data transformations/integrations are usually

implemented by not only the relational algebra, but also the restructuring operators

(i.e., fold, unfold, unite and split).

The derivation of constraints usually accompanies with schema transforma-

tion/integration, i.e., deriving the constraints on the transformed/integrated schemas

from the constraints on the source schemas. The inference of view dependencies

(i.e., inferring the functional dependencies for view relations from the functional

dependencies on original relations) has been studied in [2, 22]. However, in the

presence of schematic discrepancy, to derive qualified functional dependencies in

schema transformations, the existing inference rules of functional dependencies for

the relational algebra are not enough. We need to find rules of qualified functional

dependencies for the restructuring operators.

1.3 Objectives and organization

Our objective is to resolve schematic discrepancies in the integration of relational,

ER or XML schemas, and to derive/preserve qualified functional dependencies

in the transformation and integration of the schemas. For the relational model,

we studied the properties of the 4 restructuring operators fold, unfold, unite and

12

split and the properties of the transformations between schematically discrepant

schemas. We also studied the representation, derivation and uses of qualified func-

tional dependencies in schema transformation in multidatabases.

Then we extend the theory of schema transformation and qualified functional

dependency in the relational model to the ER model. The new challenges come from

the rich semantics of the ER model. In the integration of ER schemas, we should

resolve more complex and general schematic discrepancies than the issue in the

relational model. Qualified functional dependencies are represented as cardinality

constraints in the ER model, and the propagation of cardinality constraints is

involved in schema transformation rather than a separate process.

We also extend the resolution of schematic discrepancies in the integration of

XML schemas. The new challenges come from the hierarchical structure of XML

which is the focus of our study.

In Chapter 2, we introduce two semantic models, i.e., the ER approach for flat

data and ORASS approach for XML data. In Chapter 3, we review related work.

In Chapter 4, we analyze the knowledge gap of existing work, and state the issues

studied in this thesis. The main contribution of this work constitutes of 4 parts

(chapters):

1. The theory of schema transformation in relational databases. In Chapter

5, we develop a theoretical framework for schema transformation in rela-

tional databases by defining formally the properties of restructuring opera-

tions and discrepant schema transformations. In particular, we present the

reconstructibility and commutativity of the restructuring operators and the

lossless-ness and non-redundancy of transformations between schematically

discrepant schemas.

2. Representation, derivation and application of constraints in multidatabases.

13

In Chapter 6, we introduce the notion of qualified functional dependency

to represent some constraints in multidatabases, and study the inference

of qualified functional dependencies in schema transformation. Soundness,

completeness and time complexity are proven for the inference rules and al-

gorithms. We also introduce some applications of the derivation of qualified

functional dependencies in data integration systems and in a multidatabase

language SchemaSQL [35].

3. Integration of relational databases with schematic discrepancies using the ER

model. In Chapter 7, we propose an approach to the resolution of schematic

discrepancy in the integration of ER schemas.

4. Integration of XML schemas. In Chapter 8, we propose a semantic approach

to the integration of XML schemas, resolving the inconsistencies of the hier-

archical structures of source schemas.

Finally, Chapter 9 concludes the whole thesis.

Several portions of this work have been published in some international confer-

ences [24, 25] and journals [26].

This thesis should provide a theoretical work for schema transformation and

the inference of constraints in schema transformation. It may help researchers and

engineers improve solutions to the interoperability of heterogeneous databases, and

be useful in building multidatabases, data warehouses and information integration

systems based on XML.

14

Chapter 2
Preliminaries

Schema integration is usually performed on semantic rich models, e.g., the ER

model for relational or other flat data or the Object-Relationship-Attribute model

for Semi-Structured data (or ORASS) [43]. The reasons are:

1. A semantic model provides adequate schema constructs (e.g., entity types,

relationship types, attributes of entity types and attributes of relationship

types in the ER model) to model an enterprise. These schema constructs

correspond to real world concepts well. This facilitates the task of schema

matching [63].

2. A semantic model supports integrity constraints (e.g., cardinality constraints

in in the ER model imply functional dependencies and multivalued depen-

dencies) integration, as we will show later.

In this work, we will study some un-resolved semantic inconsistencies in the

integration of ER schemas (i.e., for flat data) and in the integration of ORASS

schemas (i.e., for hierarchical data such as XML). We first introduce these two

models below.

15

2.1 ER approach

In the ER model, an entity is an object in the real world and can be distinctly

identified. An entity type is a collection of similar entities that have the same set of

predefined common attributes. An attribute of an entity type can be single-valued,

i.e., 1:1 (there is a one-to-one mapping from the entities to the attribute values)

or m:1 (many-to-one), or multivalued, i.e., 1:m (one-to-many) or m:m (many-to-

many). A minimal set of attributes of an entity type E whose values uniquely

identifies the entities of E is called a key of E. An entity type may have more

than one key and we designate one of them as the identifier of the entity type. A

relationship is an association among two or more entities. A relationship type is a

collection of similar relationships that satisfy a set of predefined common attributes

(a relationship type may not have any attributes). A minimal set of the identifiers

of some participating entity types in a relationship type R that uniquely identifies

the relationships of R is called a key of R. A relationship type may have more than

one key and we designate one of them as the identifier of the relationship type.

The cardinality constraints of ER schemas incorporate functional dependencies

and multivalued dependencies. For example, in the ER schema of Figure 2.1, K1,

K2 and K3 are the identifiers of entity types E1, E2 and E3, A1 is a one-to-

one attribute of E1, A2 is a many-to-one attribute of E2, A3 is a many-to-many

attribute of E3, and B is a many-to-one attribute of R. These cardinality constraints

are represented as different arrows in the figure. Furthermore, the cardinalities of

E1, E2 and E3 in R are m, m and 1 respectively, represented on the edges between

the relationship type and the entity types. The cardinality constraints imply the

following functional dependencies and multivalued dependencies:

K1 → A1 and A1 → K1, as A1 is a 1:1 attribute of E1;

16

K2 → A2, as A2 is a m:1 attribute of E2;

K3 ։ A3, as A3 is a m:m attribute of E3;

K1, K2 → K3, as {K1, K2} is the identifier of the relationship type R, and

the cardinality of E3 is 1 in R;

K1, K2 → B, as B is a m:1 attribute of R.

E1

K1

E2

K2

E3

R

A3

m m

1

A1
B A2

K3

Figure 2.1: Dependencies in ER schema

2.2 ORASS approach

In this thesis, we adopt the semantic model, ORASS, to represent XML schemas.

ORASS has four kinds of schema constructs:

1. object class, i.e., a set of entities in the real world, like an entity type in

an ER diagram, a class in an object-oriented diagram, or an element in a

semi-structured data model. An object class is characterized by a name.

2. relationship type, i.e., a set of relationships among the objects of some classes.

A relationship type in the ORASS data model represents a nesting relation-

ship. Each relationship type has a degree and participation constraints. The

degree of a relationship type is the number of the object classes involved in

the relationship type.

17

3. attribute of object class, i.e., a property of an object class. One of the features

that distinguishes semi-structured data from structured data is that not all

object classes are expected to have the same set of attributes, and because of

this the attributes of objects are heterogeneous.

4. attribute of relationship type, i.e., a property of a relationship type.

With ORASS, an XML schema is represented as a tree structure with object

classes as rectangles and attributes as circles (filled circles denote the identifiers of

the owning object classes). A relationship type among object classes is specified

on the last edge in the path linking those object classes. The XML data instance

can be modeled using an ORASS instance diagram. The ORASS instance diagram

has labeled rectangles for object instances, labeled circles for attribute and their

associated data, and the edges represent relationship instances.

In the following example, we explain an ORASS schema diagram and its instance

diagram.

Example 2.1. The schema of Figure 2.2 models the supply information of products

supplied by some suppliers in some months.

In Figure 2.2, the three rectangles SUPPLIER, PROD and MONTH represent

three object classes. The label “SPM, 3” on the edge from PROD to MONTH means

that the 3 object classes SUPPLIER, PROD and MONTH constitute a ternary

relationship type SPM. Attributes under an object class may belong to the object

class or a relationship type, e.g., the attribute M# is an identifier of the object

class MONTH, while PRICE is an attribute of the relationship type SPM (this is

indicated by the label “SPM” on the edge from the object class MONTH to the

attribute PRICE).

Figure 2.3 shows an instance (consisting of 3 relationships of SPM) of the

18

MONTH

M#

PRICE

PROD

SPM, 3
P#

SPM

SUPPLIER

S#

Figure 2.2: ORASS schema
diagram

MONTH

M#=feb

PROD

P#=p1

SUPPLIER

S#=s1

SPM

SPM

PRICE=25

MONTH

M#=jan

PROD

P#=p2
SPM

SPM

PRICE=26

MONTH

M#=jan

PRICE=23

PROD

SPMP#=p1

SPM

SUPPLIER

S#=s2

Figure 2.3: ORASS instance diagram

<!ELEMENT SUPPLIER (PROD*)>
<!ELEMENT PROD (MONTH*)>
<!ELEMENT MONTH EMPTY>

<!ATTLIST SUPPLIER S# ID #REQUIRED>
<!ATTLIST PROD P# CDATA #REQUIRED>
<!ATTLIST MONTH M# CDATA #REQUIRED>
<!ATTLIST MONTH PRICE CDATA #REQUIRED>

<SUPPLIER S# = "s1">
 <PROD P# = "p1">
 <MONTH M# = "feb" PRICE = "25" />
 </PROD>
 <PROD P# = "p2" />
 <MONTH M# = "jan" PRICE = "26" />
 </PROD>
</SUPPLIER>
<SUPPLIER S# = "s2">
 <PROD P# = "p1">
 <MONTH M# = "jan" PRICE = "23" />
 </PROD>
</SUPPLIER>

Figure 2.4: Corresponding DTD and XML document sections

19

schema of Figure 2.2. Figure 2.4 gives the corresponding DTD and XML docu-

ment sections of Figure 2.2 and 2.3. �

The participation constraints of the object classes in a relationship type and

the quantifiers of attributes (i.e., the symbol ? represents an optional attribute, +

represents the number of an attribute can be one to many, and * represents the

number of an attribute can be zero to many) can be specified in ORASS. However,

we omit them here, as the resolution of constraint conflicts can be adapted from

the resolution of constraint conflicts for ER schemas, and therefore is not the focus

of our work. In ORASS, a reference (represented as a dashed arrow in a diagram)

links 2 object classes, representing a foreign key constraint.

Comparing with ORASS, DTD and XML Schema [1] do not provide much

semantics for effective schema integration, i.e.,

1. DTD/XML Schema can only express generic binary relationships between

elements and child-elements, while ORASS can express specific relationships

with any degree.

In practice, XML data may contain high degree relationships among the el-

ements in a path, such as the ternary relationship type SPM of Figure 2.2.

Note in general, a high degree relationship type could not be losslessly decom-

posed into a set of binary relationship types, unless it satisfies the condition

(i.e., some multivalued dependencies) of “lossless join decomposition”. For

example, in Figure 2.3, the ternary relationships of SPM cannot be losslessly

decomposed into the binary relationships of SP (between SUPPLIER and

PROD) and PM (between PROD and MONTH).

2. DTD/XML Schema does not explicitly represent relationship types. This

may cause some ambiguity.

20

PAPER

PNAME

RESEARCHER

RP, 2
RNAME

PROJECT

J#
JR, 2

PAPER

PNAME

RESEARCHER

JRP, 3
RNAME

PROJECT

J#

(b) two binary relationship types(c) a ternary relationship type

 <!ELEMENT PROJECT (RESEARCHER*)>
 <!ELEMENT RESEARCHER (PAPER*)>
 <!ELEMENT PAPER EMPTY>

 <!ATTLIST PROJECT J# CDATA #REQUIRED>
 <!ATTLIST RESEARCHER RNAME CDATA #REQUIRED>
 <!ATTLIST PAPER PNAME CDATA #REQUIRED>

(a) DTD

Figure 2.5: an ambiguous DTD corresponding to two ORASS schemas

For example, the DTD of Figure 2.5 (a) can be interpreted in two ways: (1)

for each project, list all the project members; for each project member, list

all his papers; (2) for each project and each member of the project, list all

the papers of the project written by the project member.

This is not a problem in ORASS, as we explicitly represent relationship types

in an ORASS schema. For example, the two interpretations of the DTD of

Figure 2.5 (a) would be represented as two different schemas of Figure 2.5 (b)

and (c) in ORASS. One has two binary relationship types JR and RP, and

the other one has a ternary relationship type JRP.

3. DTD/XML Schema does not distinguish attributes of relationship types from

attributes of object classes, although this kind of information is necessary in

schema transformation.

For example, in Figure 2.2, PRICE is an attribute of the ternary relation-

ship type SPM, i.e., the values of PRICE are determined by the supplier

numbers, product numbers and months. In schema transformation, when

swapping PROD and MONTH in Figure 2.2, if we do not know that PRICE

is an attribute of the relationship type SPM (note that DTD/XML Schema

cannot express PRICE as an attribute of a relationship type), we may at-

tach it to the object class MONTH during the swap. Then in the trans-

21

formed schema (path) SUPPLIER/MONTH/PROD, PRICE becomes an at-

tribute of MONTH or of the binary relationship type between SUPPLIER

and MONTH, which is wrong. ORASS explicitly indicates the attributes of

object classes and the attributes of relationship types.

4. The ID attribute of DTD assigns a unique identifier to an element, which is

unique in a document. The key element of XML Schema is an extension of

the ID in DTD, such that it must have a unique value, and must be present.

The ID of DTD (or the key of XML Schema) cannot be used to identify

entities (or objects) in the real world. For example, in Figure 2.3, part p1

is supplied by two suppliers s1 and s2, and there are two PROD elements

with the same P# value p1, so P# is not unique within the selected PROD

elements. Therefore we cannot define P# as an ID attribute in the DTD in

Figure 2.4 (or as a key in the XML Schema).

In order to integrate data in schema integration, we need to know some

“semantic identifiers” of object classes, e.g., social security numbers of people,

which identify entities in the real world. The identifiers of object classes in

ORASS are such semantic identifiers.

5. In DTD, the type of an element is defined by the element name and the

types of the sub-elements. The nesting definition of element types makes

it costly to identify equivalent elements which should have the same name

and sub-elements. Similarly, in XML Schema, complex types are defined in a

nesting way, which are decoupled from element names. However, it would not

be a problem for ORASS in which the description of an object class is self-

content, independent of the descendent object classes. The underlying reason

of this difference is that DTD/XML Schema only support generic (composite,

22

binary) relationships among an element and its sub-elements, while ORASS

can express specific relationships among object classes.

Actually, ORASS and DTD/XML Schema model information at different levels

for different purposes. ORASS is a conceptual model (like the ER approach) for

the design of semi-structured database [43], the integration of XML schemas [74],

XML view support [11, 12, 13, 46], XML graphical language [56, 57], and the design

of functional dependencies for XML [40]. On the other hand, DTD/XML Schema

is a formal, structural definition for the validation of XML data.

Some concepts of ORASS, e.g., relationship types and attributes of relationship

types, are adapted from the ER approach. However, ORASS is different from the

ER approach:

1. In ORASS, the object classes of a relationship type are ordered in a hier-

archical path. The hierarchical structure of ORASS brings some challenges

in schema integration. ER is a flat model in which the entity types of a re-

lationship type are at the same level, and cannot represent the hierarchical

structure of XML data.

2. In ORASS, relationship types are represented on the edges of hierarchical

structures instead of as particular constructs, and the attributes of a rela-

tionship type are attached to the lowest object class in the relationship type

(as we do not have particular constructs for relationship types). It becomes

tricky to preserve the information of relationship types and the attributes of

relationship types in the transformation of ORASS schemas. However, this

is not a problem in the transformation of ER schemas.

The difference between ORASS and the nested relational model lies in the semi-

structuredness of ORASS. In an ORASS diagram, not all objects of the same class

23

are expected to have the same set of child objects and attributes.

24

Chapter 3
Literature review

We review some related work in this chapter, and analyze the knowledge gaps and

state our research problems in the next chapter.

3.1 Restructuring operators and discrepant schema

transformation

For the integration of schematically discrepant databases and the other applica-

tions of schematically discrepant structures introduced in Section 1.1, people need

transformations in the context of schematic discrepancy. Lakshmanan et al. [34]

developed four restructuring operators, fold, unfold, unite and split (originally in-

troduced in the context of the tabular algebra [23]), to transform relations.

For example, in Figure 1.1, these restructuring operations 1 are used to trans-

form between the 4 databases DB1 to DB4. Intuitively, unfold makes attribute

values become attribute names; fold is the reverse of unfold. Split horizontally

partitions a relation on the values of an attribute; unite is the reverse of split. The

formal definitions of the four operators are given below, as adapted from [34]:

1an operation is an operator with necessary parameters.

25

• unfold(R, B, C). Let R be a relation with the schema R(A1, . . . , An, B, C),

and A1, . . . , An, B and C be the attributes of R. The operation unfold(R,

B, C) transforms R to a relation S(A1, . . . , An, b1, . . . , bm), where b1, . . . , bm

are the distinct values appearing in the column B of R. The content of S is

defined as:

S = {(a1, . . . , an, c1, . . . , cm)|(a1, . . . , an, bi, ci) ∈ R, 1 ≤ i ≤ m}.

• fold(R, B, C). Let R be a relation with the schema R(A1, . . . , An, b1, . . . , bm).

Suppose the attribute names b1, . . . , bm are the values in dom(B), i.e., the do-

main of attribute B, and all the entries appearing in the columns b1, . . . , bm of

R are from dom(C), for some attribute names B,C /∈ {A1, . . . , An}. The op-

eration fold(R, B, C) transforms R to a relation S(A1, . . . , An, B, C), defined

as:

S = {(a1, . . . , an, bi, ci)|∃t ∈ R : t[A1, . . . , An] = (a1, . . . , an) & t[bi] = ci}.

• split(R, B). Let R be a relation with the schema R(A1, . . . , An, B). The

operation split(R, B) transforms R to a set of relations bi(A1, . . . , An), for

each bi appearing in the column B of R. The content of bi is defined as:

bi = {t[A1, . . . , An]|t ∈ R & t[B] = bi}.

• unite(R, B). Let R = {b1, b2, . . . , bm} be a set of relations in a given

database, such that each relation name bi (i = 1, 2, . . . ,m) is an element

of the domain of some fixed attribute B, and each relation has the schema

bi(A1, . . . , An). The operation unite(R, B) transforms the set of the relations

26

{b1, . . . , bm} into a relation S(B,A1, . . . , An), defined as:

S = {t|∃t′ ∈ bi : t[A1, . . . , An] = t′[A1, . . . , An] & t[B] = bi}.

For example, in Figure 1.1, we can transform DB1 to DB4 in two steps:

first transform DB1 to DB2 with an operation unfold(Supply,month, price), then

transform DB2 to DB4 with an operation split(Supply, s#). In general, we have:

Definition 3.1. A discrepant schema transformation is a transformation consisting

of a sequence of restructuring operations. �

A discrepant schema transformation transforms a relation (or a set of relations)

R to one (or a set of relations) S, such that R and S are schematically discrepant

from each other. Note that each step of a discrepant schema transformation may

comprise one restructuring operation or a set of (fold or unfold) operations.

For example, in Figure 3.1, we may transform DB4 (in Figure 1.1) to DB5

with a set of operations {fold(si,month, price)| i = 1, 2, . . . , n}, such that each fold

operation transforms one relation si of DB4 to the corresponding relation of DB5.

DB4:
 s1 sn

p# jan … dec

p1 105… 110

p# jan … dec

p1 93 … 95
...

DB5:
 s1 sn

p# month price

p1 jan 105

...

p1 dec 110

p# month price

p1 jan 93

...

p1 dec 95

...

fold(si, month, price)
for eachi=1, ..., n

unfold(si, month, price)
for eachi=1, ..., n

Figure 3.1: Transforming DB4 to DB5 with a set of fold operations, and the
converse with a set of unfold operations

In general, schema and data transformations in relational databases can be im-

plemented by the restructuring operators and the relational algebra (i.e., selection,

projection, join and union) [34].

27

3.2 Data dependencies and the derivation of con-

straints in schema transformation

An extension to functional dependencies in the database design world are the func-

tional dependencies that partially hold in a relation, in the sense that only some tu-

ples, called exceptions, break the dependencies. These dependencies include “weak

functional dependencies” [42], “afunctional dependencies” [9, 8] and “partial func-

tional dependencies” [20]. A horizontal decomposition through a functional depen-

dency is accomplished using the concept of exception. The usual way to do this is

relaxing the functional dependency in order to obtain a sub-relation verifying the

dependency, and isolating the exceptions to that dependency in a different relation.

In individual relations, the previous work is similar to ours in the sense that

either a weak functional dependency (or some other similar dependencies) or a

qualified functional dependency may hold over a a sub-relation. Based on qualified

functional dependencies, we can also develop a theory of horizontal decomposition

(which would be similar to split operations).

However, qualified functional dependency is more precise and general than the

previous work:

1. Qualified functional dependencies are quantitative while the dependencies of

the previous work are qualitative. That is, a weak functional dependency

(or some other similar dependencies) predicates that some tuples (but do not

know which tuples) in the relation would violate the functional dependency,

while a qualified functional dependency indicates exactly what kind of tuples

in a relation (or in a set of relations) satisfy a functional dependency.

2. Qualified functional dependency is more general than the previous work. A

weak functional dependency (or some other similar dependencies) holds over

28

a sub-relation, while a qualified functional dependency may hold over a set of

sub-relations. This is because the previous dependencies were proposed for

database design purpose, not for the representation of constraints in multi-

databases.

Further more, the schema transformations (i.e., split, unite, unfold and fold)

based on qualified functional dependencies are more extensive than the schema

transformations (i.e., horizontal decomposition which is similar to split) based

on weak functional dependencies, partial functional dependencies etc.

We give the sound and complete sets of inference rules and propagation rules

of qualified functional dependencies. We are not aware of any complete axiomati-

zations for the dependencies of the previous work [20, 9, 8, 42].

Most of the existing relational dependencies, such as functional dependencies,

multivalued dependencies, embedded multivalued dependencies or join dependen-

cies, were defined on individual relations. Researchers have proposed some unifying

frameworks which provide general perspectives on those dependencies. One of the

most powerful methods is to use “tableaux” (a table form representation) to present

dependencies, and use “chase” (a procedure based on the successive application of

constraints to tableaux) to analyze implication and construct axiomatization [2].

Example 3.1. Given a relational schema (A,B,C), let A → B and B → C be two

functional dependencies on it, we want to know whether a functional dependency

A → C holds on the relational schema. In Figure 3.2, we apply the two given

functional dependencies on the tabular representation of the relation in sequence,

and get Figure 3.2 (c) in which the two tuples with the same A value also have

the same C value. It means that the functional dependency A → C holds on

the relational schema. The application of functional dependencies to a tabular

representation is actually a procedure of implication of functional dependencies.

29

A B C
x y z
x y′ z′

(a) The tabular
representation

A B C
x y z
x y z′

(b) Applying
the functional
dependency

A → B

A B C
x y z
x y z

(c) Applying the
functional

dependency
B → C

Figure 3.2: Illustration of the chase

�

The current framework of tableaux and chase unify the representation and im-

plication of a range of dependencies in individual databases. They cannot represent

and imply the constraints in multidatabases such as Examples 1.3 and 1.4 which

may hold over a set of relations and have restrictions on attribute values.

The issue of inferring view dependencies (i.e., inferring the functional depen-

dencies or multivalued dependencies for view relations from the dependencies on

original relations) was introduced in [2, 22]. In [2], Abiteboul et al. proved that

if the dependencies are functional dependencies and multivalued dependencies and

the view is defined by an SPCU expression (i.e., using the operations of selection,

projection, cross-product and union), testing the implication of a view dependency

can be done in polynomial time. In [22], Gottlob proposed an efficient algorithm

to compute covers for the functional dependencies embedded in a subset of a given

relational schema (i.e., the functional dependencies for a projection of the original

relation).

In multidatabases, the classical functional dependencies are not enough to rep-

resent the constraints, and we need to extend them to qualified functional de-

pendencies, as shown in Section 1.2. Schema transformations in multidatabases

contain not only the relational algebra, but also the restructuring operators of fold,

unfold, unite and split. Therefore, the inference of view dependencies in individual

30

databases should be extended to multidatabases.

Some work has been done in the derivation of the constraints for an integrated

schema from the constraints on component schemas in schema integration. Their

work was based on semantic rich models, e.g., the object-oriented approach [64, 72]

or the ER approach [38].

In [64], Reddy et al. integrated object schemas by merging equivalent object

classes. Domain mismatches and naming conflicts among equivalent object classes

were resolved. They derived global constraints for the integrated schema during

schema integration. The constraints are represented as “production rules”, which

subsume two kinds of constraints:

Intra-object-constraints describe the relationships among the properties of a

single object class. This kind of constraints include single-property con-

straints (i.e., domain constraints) and multi-property constraints, e.g., a

teacher with the designation ‘professor’ must receive a salary exceeding ‘90k’.

Inter-object-constraints describe the relationships among two or more different

object classes. In particular, given two object classes O1 and O2, one of four

relationships exists between the instance sets of them: equivalence, subclass-

superclass, disjoint and overlapping. For example, a dean must be a member

of the teaching faculty, i.e., the object class DEAN is a subclass of another

class FACULTY.

In [71], Vermeer and Apers proposed an instance-based database integration

paradigm, where objects rather than classes are the units of integration. They

resolved naming conflicts, domain mismatches and object class-attribute conflicts,

and built class hierarchies in the integration.

Based on the instance-based approach to database integration, Vermeer and

31

Apers defined some necessary conditions under which the derivation of global con-

straints is possible [72]. They use some object-oriented specification language to

express constraints on an object-oriented database. The constraints include the

intra-object-constraints mentioned above, key constraints and inclusion dependen-

cies. Furthermore, they identified two roles of ICs in database integration. First, a

set of ICs describing the valid states of an integrated view can be derived from the

constraints defined on underlying databases. Second, ICs can be used as a semantic

check on the validity of the specification of an integrated view.

The work of [64, 72] did not consider schematic discrepancy in schema integra-

tion and constraints such as qualified functional dependencies in constraint deriva-

tion.

In the integration of ER schemas, Lee and Ling [38] resolved many constraint

conflicts in merging equivalent schema constructs, i.e., domain mismatch, value in-

consistency (i.e., conflict in attribute values) and cardinality conflict. Cardinality

conflict could occur on attributes or relationship types: attribute conflict occurs

when two semantically equivalent attributes do not have the same cardinalities; re-

lationship conflict occurs when the same participating entity types of a relationship

type have different cardinalities in different databases.

This work assumed that naming conflicts, key conflicts, structural conflicts and

schematic discrepancies among component schemas have been resolved. They re-

solved constraint conflicts etc in the last step of schema integration, i.e., merging

equivalent schema constructs. However, they did not study how to obtain the con-

straints on the transformed schemas from the constraints on the original schemas in

the transformation of component schemas to resolve schematic discrepancy, struc-

tural conflicts, etc.

32

3.3 Resolution of structural conflicts in the inte-

gration of ER schemas

Previous approaches [4, 36, 67] enumerated the following types of structural con-

flicts in the integration of ER schemas: (1) an entity type in one schema is modelled

as an attribute of an entity type or a relationship type in another schema; (2) an

entity type in one schema is modelled as a relationship type in another schema;

(3) a relationship type in one schema is modelled as an attribute of an entity type

or a relationship type in another schema; (4) an attribute of a relationship type is

modelled as an attribute of an entity type.

Moreover, Lee and Ling [39] found that if the individual schemas have been

designed properly and the semantic equivalences among the schemas identified

correctly, then the main structural conflict is that between an entity type and an

attribute, i.e., the first type of conflicts mentioned above. They gave an algorithm

to transform an attribute in one schema into an entity type in another schema

without any loss of semantics. The rest of the conflicts are automatically resolved

after they had resolved the first type of conflicts.

3.4 XML schema integration and data integra-

tion

Some work in XML schema integration was based on DTDs. In [29], Jeong and Hsu

applied a tree grammar inference technique to generate a set of tree grammar rules

(i.e., corresponding to an integrated schema) from source DTDs. In [65], Rodriguez-

Gianolli and Mylopoulos devised a semantic approach to integrate a set of DTDs

into a common conceptual schema. They merged the common elements and built

33

ISA and inter-schema relationships among the elements of different source schemas.

Because of the inadequacy of DTD in XML schema integration (see Section 2.2),

the integration approaches based on DTD may cause some problems. For example,

they did not consider the relationship types involving 3 or more elements, and did

not distinguish attributes of relationship types from those of elements.

As to the integration of ORASS schemas, Yang et al. [74, 75] resolved attribute-

object conflicts (i.e., attributes in one schema correspond to object classes in an-

other), classification inconsistencies (i.e., an object class in one schema is the union

of several object classes in another) and ancestor-descendant conflicts (i.e., an ob-

ject class is a parent of another class in one schema, but the converse in another

schema) in the integration of ORASS schemas. They assigned each source schema

a weight of importance, and tried to keep the characteristics of source schemas with

larger weights in the integrated schema. This work considered more semantics (e.g.,

relationship types with high degrees and attributes of relationship types) than the

work on DTD. However, as they treated object classes rather than relationship

types as the semantic units of integration, they cannot ensure that the information

of relationship types can be preserved in the integration. The criterion of “weight”

is too vague sometimes, taking some objective and specific criteria may help the

automatization of the integration process.

In XML schema integration, an integrated schema would be semi-structured

because source schemas would be not only semi-structured by themselves, but also

heterogeneous from each other. In particular, in source schemas, equivalent object

classes may have either different attributes and sub object classes, or the same at-

tributes and sub object classes but with different participation constraints. In [44],

Liu and Ling presented a data model to represent partial and inconsistent data, and

defined the operators of union, intersection and difference on the semi-structured

34

data. The union operation combines sets of semi-structured data and records in-

consistency in the meantime, the intersection operation finds common information

in sets of semi-structured data and indicates inconsistency in the meantime, while

the difference operation finds the information in the first set of semi-structured

data but not in the second set.

In some XML data integration systems, e.g., Xyleme [17], Nimble [18], LoPiX

[49] and YAT [14, 15], the developers either provide an XML query language for

users to write integrated schemas by hand, or assume that an integrated schema

and the mapping from source schemas to the integrated schema have been given

already. They focused on query processing through the integrated schema.

Some work focused on the translation/integration of relational data into XML.

For Clio [61], a schema mapping tool, Popa et al. presented a framework for

mapping between any combination of XML and relational schemas, in which a

high-level, user-specified mapping is translated into semantically meaningful queries

that transform source relational data into the target XML data. The transformed

data satisfy the constraints and structure of the target schema, and preserve the

semantics of the source. In [5], Benedikt et al. proposed a framework for integrating

data from multiple relational sources into an XML document that both conforms to

a given DTD and satisfies predefined XML constraints. They proposed a formalism,

called “Attribute Integration Grammar (AIG)” with which users can specify data

transformation rules to compute XML data from relational databases.

In the work of [5, 61], users specify a transformed/integrated XML schema and

mappings from source relational schema(s) to the target XML schema, and then

the systems automatically transform/integrate the data according to the mappings.

In other words, they focused on data transformation/integration instead of schema

transformation/integration.

35

3.5 Ontology merging

On the Semantic Web, users annotate data using ontology languages, e.g., RDF

[37] and OWL [66]. Ontology was proposed to standardize the specifications of data

and knowledge. However, in fact, it is very hard to create “standard” ontologies

shared by all individuals and organizations on the Semantic Web, and it can be

expected that many different ontologies will appear [70, 73]. Then in order to enable

inter-operation, mediation is required between these ontologies. In [16], Bruijn et

al. presented three use cases which capture the functionality required for ontology

mediation on the Semantic Web, i.e., creating ontology mapping, ontology merging,

and instance mediation.

In ontology, data is classified into classes and related in triplets consisting of

subjects, predicates and objects. Under this way, people can specify attributes of

classes, or binary relationships (e.g., ISA) between classes. In general, ontology can

be regarded as a conceptual model (such as the ER approach) to explicitly represent

the semantics (such as classifications, relationships and attributes of classes) of data

for the understandability of both machines and humans. As in schema integration,

we need to solve some semantic heterogeneities in ontology merging and instance

mediation, such as naming conflicts, domain mismatch and class-hierarchy incon-

sistencies. The resolutions to these issues in schema integration can be adapted to

solve the similar issues in ontology merging.

Existing work in ontology matching and merging focused on the identification

and merging of similar classes, similar attributes and similar (binary) relation-

ships between classes and between classes and attributes. Such methods and tools

include GLUE [19], a system which employs machine learning technologies to semi-

automatically create mappings between heterogeneous ontologies, RDFT [59], an

approach to the integration of product information over the Web by exploiting

36

the data model of RDF, and PROMPT [58], an interactive ontology merging tool.

Some other tools also consider more complex matching information. For exam-

ple, MAFRA [47] handles the correspondences between classes and attributes, or

between attributes and relationships. MOMIS [6, 7, 10] is a typical mediation sys-

tem to integrate heterogeneous data sources. Given a set of disparate data sources,

MOMIS first wraps the disparate schemas in an object-oriented language, then cre-

ates intra- and inter-schema relationships (i.e., synonyms and hypo/hypernyms).

Then a global ontology is obtained by uniting similar classes of the local ontolo-

gies. A query to the global ontology can be translated to the local representation

because of the mapping rules between the local and global ontologies.

Ontology is used to represent semantics, and does not support hierarchies of

XML.

3.6 Model management

In [51], Melnik et al. proposed a programming platform “Rondo” for generic model-

management system, in which high-level operators are used to manipulate mod-

els and mappings between models. Their goal was to reduce the amount of pro-

gramming required for the development of metadata-intensive applications, e.g.,

database design, data integration, data translation, model-driven web site man-

agement and data warehousing. In that work, they represented relational or XML

schemas as directed labelled graphs, and defined the operator Merge to combine

two schemas into one. This is not as simple as set union because the schemas have

structures, so the semantics of duplicates and duplicate removal may be complex.

The implementation of Merge consists of three steps:

1. node renaming, i.e., taking the same name for the equivalent schema con-

37

structs.

2. graph union, i.e., merging equivalent nodes and edges in the graphs of different

schemas. This step may produce some conflicts, e.g., an attribute belonging

to two relations.

3. conflict resolution, e.g., deleting the relationship (edge) between a relation

and an attribute if the attribute belongs to two relations. This step requires

human feedback. Heuristic was developed to select the edges to be deleted

when conflicts occur.

When applying this work to XML schema integration, they treated XML ele-

ments as semantic units, and only considered binary relationships between elements

and between elements and attributes. When a conflict occurs, they resolved it using

the heuristic. However, it cannot be ensured that the Merge operation is informa-

tion preserving. The Merge operation integrates two schemas at once.

More specifically, Pottinger and Bernstein [62] examined the problem of merging

two schemas given correspondences between them. They resolved structural con-

flicts, data model conflicts, and the conflicts of domain constraints and cardinality

constraints. In application of their algorithm in XML schema integration, they first

merged equivalent elements and equivalent attributes of different schemas, then cre-

ated (binary, directed, kinded) relationships between the elements and between the

elements and attributes. Finally, they removed the redundant relationships that

can be implied by others. Again, this work only handled binary relationships, and

merged two schemas at once.

38

Chapter 4
Knowledge gaps and research problems

4.1 Theory of discrepant schema transformation

In data integration, source databases are usually distributed (i.e., data may be di-

vided and stored in several databases) and heterogeneous (i.e., similar data may be

represented in different forms in the source databases). In particular, schematic dis-

crepancy is a common kind of heterogeneity among databases. Schema and data

transformations/integrations are usually implemented by not only the relational

algebra, but also the 4 restructuring operators (introduced in Section 3.1). The

theory of the relational algebra (such as algebra law and lossless schema transfor-

mation) has been well studied. However, the theory of the restructuring operators

was less studied, although they were used to solve many interesting problems in

database integration, data publication on the web and physical data independence

[34, 54].

Our purpose is:

1. to study the algebraic laws of the restructuring operators.

2. to study lossless and non-redundant discrepant schema transformations.

39

Our work focused on pure discrepant schema transformations. It can be ex-

tended to general transformations (consisting of the relational algebra and restruc-

turing operations) using the existing results. The restructuring operators for the

relational model can also be extended to the ER model and the hierarchical model

of XML. This is not trivial as the schema constructs of the ER model are more com-

plex, and the hierarchical structures of XML bring new challenges in the resolution,

as discussed in Sections 4.3 and 4.4 later.

4.2 Representing, deriving and using dependen-

cies in schema transformation

functional dependencies are designed to represent constraints in a single database,

which are inadequate in a multidatabase environment. To represent and infer

data dependencies in schema transformation, we extend functional dependencies to

qualified functional dependencies, i.e., the functional dependencies holding over a

set of relations or a set of the horizontal partitions of relations, to represent useful

constraints in multidatabases, as shown in Example 1.3 and 1.4.

Weak functional dependencies (or partial functional dependencies, or some other

similar dependencies) are proposed for the purpose of database design, and in-

capable to represent the constraints such as qualified functional dependencies in

multidatabases. The reason is that weak functional dependencies are specified on

individual relations, and do not exactly state which tuples satisfy the dependen-

cies. Qualified functional dependencies cannot be represented and implied in the

framework of tableaux and chase [2] either, as a qualified functional dependency

may hold over a set of relations and have restrictions on attribute values.

As mentioned, to integrate multiple, distributed and heterogeneous databases,

40

we may use schema transformations implemented by not only the relational alge-

bra, but also the restructuring operators to resolve schematic discrepancy. Con-

sequently, to derive qualified functional dependencies in such transformations, the

inference rules for functional dependencies and the relational algebra [2, 22] are not

enough. In particular, we need rules to infer qualified functional dependencies for

the restructuring operators.

Some work [64, 72] has been done on the derivation of the constraints for an in-

tegrated schema from the constraints on component schemas in schema integration.

However, they did not consider schematic discrepancy among component schemas

in schema integration. Their representations of constraints do not subsume quali-

fied functional dependencies. They did not prove the completeness and complexity

of their methods.

In the resolution of constraint conflicts in the integration of ER schemas, Lee et

at [38] assume that all the semantic heterogeneities except constraint conflicts have

been resolved and the component schemas are consistent. Our work complements

theirs when we apply our theory of qualified functional dependency derivation in

the integration of ER schemas. That is, in the presence of schematic discrepancy

among source schemas, we first use our theory to derive the dependencies on the

intermediate transformed schemas which are transformed from the source schemas

with restructuring operations, and then resolve the constraint conflicts in merging

the transformed schemas using the approaches of [38].

In summary, our purpose is:

1. to define qualified functional dependencies to represent interesting constraints

in a multidatabase environment, and to find a sound and complete set of

inference rules to infer unknown qualified functional dependencies from known

ones in fixed relational schemas.

41

2. to study the propagation of qualified functional dependencies in discrepant

schema transformations. That is, in a discrepant schema transformation,

given a set of qualified functional dependencies on the original relations, we

should derive a cover of the qualified functional dependencies on the trans-

formed relations. The derivation rules and algorithms should be sound, com-

plete and efficient. Note although we focus on discrepant schema transforma-

tions, the result can be extended to general schema transformations using the

existing results of [2, 22], i.e., the inference rules of functional dependencies

for the relational algebra.

3. to apply our theory to improve the multidatabase interoperability. In partic-

ular, we will verify the uniqueness of SchemaSQL views by deriving qualified

functional dependencies, and explore some usages of qualified functional de-

pendency derivation in data integration systems. The usages include the ver-

ification of lossless transformation, the normalization of integrated schemas,

the detection of duplicates and inconsistencies, etc.

4.3 Resolving schematic discrepancies in the in-

tegration of ER schemas

Previous work in the integration of ER schemas [4, 36, 67, 38] has concentrated

mostly on the resolution of naming conflicts, key conflicts, structural conflicts and

constraint conflicts. A special kind of schematic discrepancy has been studied in the

interoperation of relational databases [30, 32, 35]. They dealt with the discrepancy

of relation names or attribute names in one database corresponding to attribute

values in another. A general issue is yet to be solved. The ER model contains the

rich schema constructs of entity types, relationship types, attributes of entity types

42

and attributes of relationship types, compared to the simple relational model. This

causes a diversity of schematic discrepancies on ER schemas. To resolve schematic

discrepancies in the ER model, we need to extend the resolution for the relational

model.

Furthermore, the work on the relational model is at the “structure level”, i.e.,

they only transformed the structures of schemas and data, but did not consider

the constraint issue in the resolution of schematic discrepancies. However, the

importance of constraints can never be overestimated in both individual and mul-

tidatabase systems. As the ER model supports cardinality constraints inherently,

we should transform the constraints in the transformation and integration of ER

schemas.

In summary, our purpose is:

1. to represent the meta information of schemas in a formal way.

2. to resolve schematic discrepancy in the integration of ER schemas.

3. to preserve the semantics, i.e., information and constraints, in schema trans-

formation.

4. to study the propagation of cardinality constraints in the transformation of

ER schemas. This should be an extension of the theory of qualified functional

dependency derivation in the ER model.

The resolution of schematic discrepancy for ER schemas can be extended to

XML schemas in the ORASS model. However, this is not trivial because of the

hierarchical structure of XML. In this work, we propose to separate the resolu-

tion of schematic discrepancies and the handling of hierarchical structures in the

integration of XML schemas in ORASS. That is, we resolve schematic discrep-

ancy by transforming source XML schemas, using the resolution similar to that for

43

ER schemas, and then merge the transformed schemas, resolving the hierarchical

inconsistencies among them.

4.4 Resolving hierarchical inconsistency in the

integration of XML schemas

In some XML data integration systems, e.g., Xyleme [17], Nimble [18], LoPiX [49]

and YAT [14, 15], the developers either provided an XML query language for users

to write mediated schemas by hand, or assumed that a mediated schema and the

mapping from source schemas to the mediated schema have been given already.

They focused on query processing through a mediated schema instead of schema

integration. However, it is usually not a simple task to integrate disparate schemas

by hand, given different kinds of semantic heterogeneities. Schema integration

can be regarded as a preceding component of theirs, which generates a mediated

schema and the mappings (semi-)automatically. Furthermore, it is especially useful

for some applications:

1. Schema integration is the only task, e.g., in XML database design and XML

schema repository which provides a centralized management of XML schemas

to track the usage of schemas, and avoid proliferating redundant schemas.

2. In some other applications, e.g., the cache of the search engines on the Web,

there are so many sources on the Web that it is hard to integrate them by

hand.

Some work in schema matching [63] focused on the detection of equivalent ele-

ments and structures of source schemas using machine learning or IR techniques.

44

Schema integration typically follows schema matching to reduce human participa-

tion.

In the previous work in the integration of flat schemas, e.g., ER or relational

schemas, the researchers have developed approaches to the resolutions of nam-

ing conflicts, key conflicts, structural conflicts and constraint conflicts. These

approaches can be adapted to resolve the similar conflicts in the integration of

XML schemas. Our resolution to schematic discrepancies in the integration of ER

schemas can also be extended to XML. However, the hierarchical structure and the

semi-structuredness of XML brings some new challenges in the integration of XML

schemas. Although the issue of semi-structuredness was studied in [44], existing

work paid little attention to the hierarchical characteristic of XML. For example,

two paths of two schemas may contain the same set of elements, and represent the

equivalent relationship types among these elements, but have different hierarchical

structures (i.e., the elements in the two paths have different hierarchical orders).

This inconsistency should be resolved in merging the two paths (relationship types).

Most of the existing work in XML schema integration, e.g., [51, 62, 65, 74], treat

elements (or object classes) as “first-class citizens”. That is, they would first merge

equivalent elements, and then handle the relationships among elements (e.g., break

the circles of relationships produced in merging elements). This strategy works in

the integration of traditional flat schemas, such as ER or relational schemas, but

may cause the loss of information in the integration of XML schemas. The reason

is that those approaches may destroy the relationships among elements and the

hierarchical structures (that imply some context information) of XML schemas.

In this work, we will develop an approach to XML schema integration in which

relationships are treated as the semantic units. That is, if we treat objects as

atoms and relationships as molecules, our approach is at the molecular level while

45

the previous work is at the atomic level. The maximum benefit is that we can

preserve more information (i.e., relationships and attributes of relationships) in

schema integration. Furthermore, we respect the hierarchical structure of XML,

and require integrated schemas preserve some important hierarchical characteristics

of source schemas.

Previous work on DTD or other models [65, 29, 51, 62] only handle binary

relationships between elements. In practice, XML data may contain higher degree

relationships among elements, such as the ternary relationship type SPM of Figure

2.2. In general, a higher degree relationship type could not be losslessly decomposed

into a set of binary relationship types. That is, a ternary relationship type should

be handled as a whole instead of as two binary relationship types.

The work on DTD also does not distinguish the attributes of relationship types

(e.g., the attribute PRICE of the relationship type SPM in Figure 2.2) from the

attributes of elements. Consequently, their approaches may loss the information of

attributes of relationships in schema transformation, and transform source schemas

to some schemas with different meaning, as discussed in Section 2.2.

We will use ORASS to represent XML schemas, which support relationship

types of any degrees and distinguish attributes of object classes and attributes of

relationship types.

Yang et al. [74] used the user-specified weight of importance to assess source

schemas and to compute integrated schemas. Sometimes such specification would

be not easy for users, but important to the structure of the integrated schema. We

propose to find some objective and specific criteria emanating from applications of

XML schema and data integration, and use these criteria to guide the integration

of XML schemas.

46

A recent research direction is to annotate information with ontology languages,

e.g., RDF or OWL, and tackle semantic heterogeneity issues in ontology merging.

However, it is inconvenient to represent hierarchical data such as XML using the

current ontology languages such as RDF and OWL. For example, given the ternary

relationship type SPM of Figure 2.2, we may represent the relationship type as an

abstract class, and relate it to the three participating object classes SUPPLIER,

PROD and MONTH using some binary relationship types (predicates) of involving

in ontology. But then the hierarchical structure of the original relationship type

SPM is lost. In other words, some additional hierarchical information needs to

be stored to represent XML data in ontology. Actually, existing work in ontology

integration did not consider ternary and higher degree relationships. They treated

object classes as first-class citizens, and focused on the resolution of different clas-

sifications in source ontologies (some work handled binary relationships between

classes and between classes and attributes). On the other hand, ORASS is de-

signed for semi-structured data such as XML, and our work should focus on the

relationships and hierarchical structures of XML in schema integration.

Previous work in schema transformation/integration used integration assertions

[39, 67], schema correspondences [61], morphisms [51], or mappings [62] to relate

equivalent and similar constructs in two source schemas. These approaches can only

integrate two schemas once. Our purpose is to integrate a set of XML schemas once.

In summary, our purpose is:

1. to find some objective and specific criteria of XML schema integration.

2. to propose an algorithm to integrate a set of XML schemas, treating relation-

ship types as first-class citizens.

3. to consider the rich semantics of real world applications, e.g., the relationships

47

among several objects, attributes of objects and attributes of relationship

types. This can be achieved by use of the ORASS model.

4. to resolve the inconsistencies of hierarchical structures of source data.

5. to preserve the information of relationship types, attributes of object classes

and attributes of relationship types, and important hierarchical characteristic

of source data in the integration.

48

Chapter 5
Lossless and non-redundant schema

transformation

Schema transformation plays an important role in schema integration. In the in-

tegration of relational schemas, we resolve schematic discrepancies among them

by transforming them with the restructuring operators. As mentioned in Chapter

1, schema transformation should be information preserving and constraint pre-

serving. Furthermore, a transformation should be efficient, i.e., free of redundant

operations. We study the issues of information preservation and non-redundancy

in the chapter, and the constraint issue in the next chapter.

In this chapter, we studied the reconstructibilities and commutativities of the

restructuring operations, and the lossless-ness and non-redundancy of discrepant

schema transformations.

5.1 Algebraic laws of restructuring operators

Like many other algebra, there are some laws that the restructuring operators

obey. Although the restructuring operators are useful in the work in schematic

49

discrepancy (see Section 1.1), the properties of them are less-studied. This caused

some problems in the work using them, e.g., a schema transformation including

some restructuring operations may loss information. In this section, we study two

important properties, i.e., reconstructibilities and commutativities, of restructuring

operators.

5.1.1 Reconstructibility

A set of relations can be transformed to another set of relations without any loss

of information, and recovered back, hence the name of reconstructibility.

Property 1 (Reconstructibility of split). Given a relation R(A1, . . . , An, B)

with dom(B) = {b1, . . . , bm}, we have:

unite(split(R, B), B) = R.

Proof. Let R = split(R, B), and R′ = unite(split(R, B), B). For each tuple

t = (a1, . . . , an, bi) in R′, there must be a relation bi ∈ R, and the tuple (a1, . . . , an)

is in the relation bi. As the relation bi is produced by the operation split(R, B),

t ∈ R. So R′ ⊆ R.

On the other hand, for each tuple t = (a1, . . . , an, bi) in R, the tuple (a1, . . . , an)

is in the relation bi after the operation split(R, B). Then t ∈ R′ after the following

unite operation. So R ⊆ R′.

For example, in Figure 1.1, we transform DB1 to DB3 with a split operation,

and recover DB1 with a unite operation.

Property 2 (Reconstructibility of unite). Given a set of relations {b1, . . . , bm}

such that these relations have the same schema and the relation names are from

the domain of an attribute B, we have:

50

split(unite({b1, . . . , bm}, B), B) = {b1, . . . , bm}.

Proof. The proof is similar to the proof of Property 1.

For example, in Figure 1.1, we transform DB3 to DB1 with a unite operation,

and recover DB3 with a split operation.

An operation is reconstructible if it defines a one-to-one mapping from the

original relations onto the transformed relations. However, a fold operation may be

a many-to-one mapping, and an unfold operation may be a one-to-many mapping.

The following example shows a fold operation that is not reconstructible.

Example 5.1. In Figure 5.1, given a relation with the schema R(A, b1, b2), suppose

the attribute names b1, b2 are the values of a fixed attribute B, and the values of the

attributes b1, b2 (i.e., c1, c2, c3 and c4) are from the domain of another attribute

C. By applying the operation fold(R,B,C), we can transform either of the two

instances of R (i.e., R(I1) and R(I2)) into the same relation instance of S. That

is, the mapping from the instances of R onto the instances of S is many-to-one,

which makes the recovery impossible. We say the fold operation is “lossy (or non-

lossless)”.

R (I1)
A b1 b2

a1 c1 c2

a1 c3 c4

R (I2)
A b1 b2

a1 c1 c4

a1 c3 c2

S
A B C
a1 b1 c1

a1 b2 c2

a1 b1 c3

a1 b2 c4

Figure 5.1: A lossy fold transformation: the transformation from R (I1 or I2) to S
is un-recoverable.

However, if the functional dependency A → {b1, b2} held in R (which is not true

in R(I1) and R(I2)), the operation would be reconstructible. That is, functional

dependencies can be used to verify reconstructible fold operations. �

51

The following two propositions give the sufficient conditions (i.e., functional

dependencies) for reconstructible fold and unfold operations.

Proposition 5.1 (Condition of reconstructible fold). Given a relational schema

R(A1, . . . , An, b1, . . . , bm) such that the attribute names b1, . . . , bm are from the do-

main of an attribute B and the values of these attributes are from the domain of

another attribute C, if the functional dependency

{A1, . . . , An} → {b1, . . . , bm}

holds, then for any two instances R(I1) and R(I2), if fold(R(I1), B, C) = fold(R(I2),

B, C), then R(I1) = R(I2).

Proof. Let S = fold(R(I1), B, C). For each tuple t = (a1, . . . , an, c1, . . . , cm) in

R(I1), (a1, . . . , an, bi, ci) is in S, i.e., fold(R(I2), B, C), for each i = 1, . . . ,m. So

there must be a set of tuples {t1, . . . , tm} in R(I2), such that ti.A1 = a1, . . . , ti.An =

an, ti.bi = ci for each i = 1, . . . ,m. As the functional dependency {A1, . . . , An} →

{b1, . . . , bm} holds in any instance of R, t1, . . . , tm are all the same, i.e., t. That is,

t ∈ R(I2). So R(I1) ⊆ R(I2). Similarly, we can prove R(I2) ⊆ R(I1).

Proposition 5.2 (Condition of reconstructible unfold). Given a relation

R(A1, . . . , An, B, C), if the functional dependency

{A1, . . . , An, B} → C

holds, then the result of the operation unfold(R, B, C) is unique.

Proof. Suppose the result is not unique. Let S1 and S2 be two possible results of

the operation unfold(R, B, C). S1 and S2 must have the same set of attributes,

i.e., {A1, . . . , An, b1, . . . , bm} for {b1, . . . , bm} the set of the distinct values of B in

R. Let t = (a1, . . . , an, c1, . . . , cm) be a tuple in S1. Then (a1, . . . , an, bi, ci) is in

52

R for each i = 1, . . . ,m. So there must be a set of tuples {t1, . . . , tm} in S2, such

that ti.A1 = a1, . . . , ti.An = an, ti.bi = ci for each i = 1, . . . ,m. As the functional

dependency {A1, . . . , An, B} → C holds in R, two tuples of S2 with the same values

a1, . . . , an of A1, . . . , An have the same value of the attribute bi for i = 1, . . . ,m.

So t1, . . . , tm are all the same, i.e., t. That is, t ∈ S2. So S1 ⊆ S2. Similarly,

we can prove S2 ⊆ S1. So S1 = S2. This contradicts with the assumption that

S1 6= S2.

For practical case, a fold (unfold) operation makes sense only if the functional

dependency holds. We will regard it as a necessary condition for the fold (unfold)

operations in the rest of the paper. Knowing the conditions of the reconstructibil-

ities of fold and unfold operations, we can present the reconstructibilities below.

Property 3 (Reconstructibility of fold). Given a relation R(A1, . . . , An, b1,

. . . , bm) such that the attribute names b1, . . . , bm are from the domain of an attribute

B and the values of these attributes are from the domain of another attribute C,

we have:

If the functional dependency {A1, . . . , An} → {b1, . . . , bm} holds, then

unfold(fold(R, B, C), B, C) = R.

Proof. Let S = fold(R,B,C) and R′ = unfold(S,B,C). For each tuple t = (a1, . . . ,

an, c1, . . . , cm) ∈ R, (a1, . . . , an, bi, ci) ∈ S for each i = 1, . . . ,m. Then there must

be a set of tuples {t1, . . . , tm} in R′, such that ti.A1 = a1, . . . , ti.An = an, ti.bi = ci

for each i = 1, . . . ,m. As the functional dependency {A1, . . . , An} → {b1, . . . , bm}

holds in R, ci is unique for a given (a1, . . . , an, bi) in S. Then in R′, given the

values a1, . . . , an of A1, . . . , An, the values of the attributes b1, . . . , bm are unique.

So t1, . . . , tm are all the same, i.e., t. That is, t ∈ R′. So R ⊆ R′.

53

On the contrary, for each tuple t′ = (a1, . . . , an, c1, . . . , cm) ∈ R′, there must be

a set of tuples (a1, . . . , an, bi, ci) ∈ S for each i = 1, . . . ,m. Then there must be a set

of tuples {t1, . . . , tm} in R, such that ti.A1 = a1, . . . , ti.An = an, ti.bi = ci for each

i = 1, . . . ,m. As the functional dependency {A1, . . . , An} → {b1, . . . , bm} holds in

R, t1, . . . , tm are all the same, i.e., t′. That is, t′ ∈ R, and R′ ⊆ R. Consequently,

R = R′.

For example, in Figure 1.1, we transform DB2 to DB1 with a fold operation,

and recover DB2 with an unfold operation.

Property 4 (Reconstructibility of unfold). Given a relation R(A1, . . . , An, B, C),

we have:

If the functional dependency {A1, . . . , An, B} → C holds, then fold(unfold(R, B,

C), B, C) = R.

Proof. The proof is similar to the proof of Property 3.

5.1.2 Commutativity

Now we introduce another kind of property, commutativity of the restructuring

operators. In general, given a transformation T on a set (possibly a singleton set)

of relations R consisting of two (sets of) restructuring operations t1 and t2, let T ′ be

a transformation obtained by changing the order of t1 and t2 in T , if T (R) = T ′(R),

then we say t1 and t2 are commutative.

The following example shows the commutativity between a set of fold operations

and a unite operation.

Example 5.2. Suppose in Figure 1.1, we want to transform DB4 into DB1. The

transformation can be implemented with either of the following two sequences of

54

operations:

unite({fold(si,month, price)|i = 1, . . . , n}, s#), or

fold(unite({s1, . . . , sn}, s#),month, price).

In the first transformation, we first perform a fold operation on each relation of

DB4, then perform a unite on the folded relations. In the second transformation,

we first perform a unite operation on the relations of DB4, then perform a fold on

the united relation. In other words, the (set of) fold and the unite operations can

commute in the transformation. �

Commutativity also applies to other pairs of operations, e.g., fold and split, two

fold operations etc. This property is presented in Appendix A.1. In general, all

pairs of restructuring operations except the pair of unite and split operations, the

pair of two unite operations and the pair of two split operations are commutative,

if the pair of operations have no common parameters of attributes.

We have studied the reconstructibilities and commutativities of the restructur-

ing operators. Then we can study the theory of a discrepant schema transformation

consisting of a sequence of sets of restructuring operations.

5.2 Lossless and non-redundant transformations

In practice, one is mostly interested in information-preserving transformations [55],

i.e. transformations such that both original and transformed relations represent ex-

actly the same real world facts, though with different syntaxes. A formal definition

is given below.

Definition 5.1 (Lossless transformation). Given a discrepant schema trans-

formation T on a set (possibly a singleton set) of relations R. If there exist an

55

inverse transformation T ′ of T , such that T ′(T (R)) = R, then T is called a lossless

transformation. �

Any restructuring operation satisfying the reconstructibility property is a loss-

less transformation. In general, we have the following result:

Theorem 5.1. Given a discrepant schema transformation T , if the fold and unfold

operations in T satisfy the reconstructibilities (i.e., Properties 3 and 4), then T is

a lossless transformation.

Proof. This can be concluded from the reconstructibilities of the restructuring op-

erations.

As the reconstructibilities of fold and unfold require certain functional depen-

dencies to hold over relational schemas (Properties 3 and 4), the theorem indicates

that to verify the lossless-ness of a transformation, we need to derive functional de-

pendencies during the transformation, which will be discussed in the next chapter.

A lossless transformation may contain redundant operations. Using the re-

constructibility and commutativity of restructuring operations, we can simplify a

transformation by removing the redundant operations from it.

Example 5.3. In Figure 1.1, we have two ways to transform DB4 into DB2:

T1: unfold (unite ({fold (si,month, price)|i = 1, . . . , n}, s#),month, price)

T2: unite ({s1, . . . , sn}, s#)

That is, T1(DB4) = T2(DB4) = DB2. In T1, we first perform a set of fold

operations on the relations of DB4, and transform them into si(p#,month, price)

for each i = 1, . . . , n. Then we unite these folded relations into the relation of DB1.

Finally we unfold the united relation and get the relation of DB2 as the result. The

transformation can also be implemented by performing a unite operation on the

56

relations of DB4 directly, i.e., T2. Thus T1 is a redundant transformation with

the unnecessary fold and unfold operations. �

A non-redundant transformation is one only consisting of the necessary re-

structuring operations. Before giving its formal definition, we first define a sub-

transformation relationship “�” between two transformations.

Definition 5.2. Given two discrepant schema transformations T and T ′ on the

same set of relations R, we define a partial order � as follows: T � T ′ iff there

is a one-to-one mapping h from the set of all the operations of T to a set of some

operations of T ′, such that (1) h preserves the operations of T , i.e., ∀t ∈ T ∃h(t) ∈

T ′, such that t and h(t) are of the same kind of operator, and have the same

parameters of attributes, and (2) h preserves the important operation orders of T ,

i.e., for any t1, t2 ∈ T , such that t1 precedes t2 in T , and t1 and t2 have some

common parameters of attributes, then h(t1) precedes h(t2) in T ′. �

Definition 5.3 (Non-redundant transformation). A discrepant schema trans-

formation T on a set of relations R is non-redundant iff for any other transforma-

tion T ′ on R,

if T ′(R) = T (R) and T ′ � T , then T � T ′. �

For Example 5.3, T2 is a non-redundant transformation. However, T1 is redun-

dant, as we have T2 such that T2(R) = T1(R) and T2 � T1, but not the converse.

We call the set of fold operations and the unfold operation in T1 a pair of reverse

operations.

Definition 5.4 (Reverse operations). Given a discrepant schema transforma-

tion T on a set of relations R, let t1 and t2 be two sets of operations of T , we

call t1 and t2 a pair of reverse operations iff there exists another transformation

57

T ′ on R, such that T (R) = T ′(R), and there is a one-to-one mapping h from the

set of some operations of T except t1 and t2 to the set of all the operations of T ′,

such that h preserves the operations and the important operation orders of T (see

Definition 5.2). �

In a discrepant schema transformation, fold and unfold (or unite and split)

operations are reverse restructuring operations, if they have the same parameters

of attributes.

Lemma 5.1. In a discrepant schema transformation T , we have two kinds of re-

verse restructuring operations:

1. two operations unite(R, B) and split(R,B), where R is a set of relations and

R is a relation produced during the transformation T .

2. two sets of operations {fold(R,B,C)|R ∈ R} and {unfold(S,B,C)|S ∈ S},

where R and S are two sets (possibly singleton sets) of relations produced

during the transformation T .

Proof. The proof is given in Appendix A.2.

In general, we can remove all the pairs of reverse operations from a lossless

transformation T in three steps:

1. For any pair of reverse operations Ti and Tj (i < j) of T , such that the oper-

ations of Ti+1, Ti+2, . . . , Tj−1 do not have the same parameters of attributes

as Ti and Tj, we swap Ti and Ti+1, Ti+2, . . . , Tj−1 one by one according to

the commutativity of restructuring operations;

2. Cancel the pair of reverse operations Tj−1 and Tj according to the recon-

structibility of restructuring operations;

58

3. Repeat the two steps till no more pairs of reverse operations exist in the

transformation.

Finally, we get a transformation T ′ that is equivalent to T , but does no contain

any pair of reverse operations.

For Example 5.3, we can simplify T1 into T2 by first swapping the fold and

unite operations, then cancelling the fold and unfold operations together.

Intuitively, in a non-redundant transformation, we never unite a set of relations,

and split the united relation later on, or fold a relation, and unfold the folded

relation later on. In general, we have the following result:

Lemma 5.2. A lossless transformation is non-redundant iff it does not contain

any pair of reverse operations.

Proof. The proof is given in Appendix A.3.

As mentioned, all the pairs of reverse operations in a lossless transformation

can be removed in three steps. From Lemma 5.2, we can get the following result:

Theorem 5.2. A lossless transformation can be simplified to a non-redundant loss-

less transformation. �

5.3 Summary

In relational databases, schematic discrepancy occurs when the attribute names or

relation names in one schema correspond to the attribute values in another schema.

Researchers [34] have developed the 4 restructuring operators fold, unfold, unite and

split to transform discrepant schemas into consistent ones. However, the properties

of these operators have not been well studied. We studied the reconstructibilities

and commutativities of these operators. We found unite and split operations are

59

always reconstructible, but fold and unfold operations are not reconstructible un-

less some functional dependencies hold on the original relations (i.e., Properties 3

and 4). In a discrepant schema transformation that is a sequence of sets of re-

structuring operations, two adjacent sets of operations can commute if they have

different parameters of attributes (i.e., the properties in Appendix A.1). Using the

reconstructibilities and commutativities of restructuring operators, we can simplify

a lossless discrepant schema transformation to a non-redundant lossless transfor-

mation by removing reverse operations.

Without loss of generality, in the rest of the paper, we make the assumption that

a discrepant schema transformation is lossless and non-redundant. But remember

that certain functional dependencies should be satisfied to ensure lossless fold and

unfold operations.

60

Chapter 6
Deriving and using qualified functional

dependencies in multidatabases

Conventional functional dependencies are inadequate to represent constraints in

multidatabases, as shown in Section 1.2. We introduce qualified functional de-

pendencies, i.e., an extension to functional dependencies, to represent constraints

in multidatabases. We give a sound and complete set of inference rules to im-

ply qualified functional dependencies in fixed relations, and an algorithm to com-

pute attribute closures with respect to a set of qualified functional dependencies.

We also study the derivation of qualified functional dependencies in a discrepant

schema transformation. In particular, we give propagation rules to derive qualified

functional dependencies for transformed schemas from qualified functional depen-

dencies on original schemas. The rules are sound, complete and efficient to derive

a broad class of qualified functional dependencies in schema transformation. Fi-

nally, we introduce some applications of qualified functional dependencies in data

integration/mediation systems and in multidatabase interoperation.

61

6.1 Qualified functional dependencies

6.1.1 Definition of qualified functional dependency

Qualified functional dependencies are the functional dependencies holding over a

set of relations or a set of horizontal partitions of relations. In other words, they

qualify the relations and the tuples of the relations over which the constraints hold.

Definition 6.1 (Qualified functional dependency). In general, given a set of

relational schemas S with the same set of attributes U , we can represent a qualified

functional dependency as:

R(A1 σ=S1
, A2 σ=S2

, . . . , An σ=Sn
, X → Y)

Syntax of the qualified functional dependency:

• R ⊆ S represents the set of relational schemas over which the qualified func-

tional dependency holds.

• Ai σ=Si
for each i = 1, . . . , n, satisfies Ai ∈ U and Si ⊆ dom(Ai), indicating

the qualification of the attribute values within which the qualified functional

dependency holds. For ease of reference, we call each Ai σ=Si
a qualification

attribute from U .

• X ⊆ U and Y ⊆ U are two sets of regular attributes.

Semantics of the qualified functional dependency:

We say the given qualified functional dependency holds over R, if the following

holds for any two tuples t1, t2 from any instance of R (t1, t2 may come from one

or two relation instances): If t1.Ai ∈ Si
1 and t2.Ai ∈ Si for each i = 1, . . . , n,

1t1.Ai represents the value of the attribute Ai in t1.

62

and t1.Xj = t2.Xj for each attribute Xj ∈ X, then t1.Yk = t2.Yk for each attribute

Yk ∈ Y . This completes the definition of a qualified functional dependency. �

Note that in this definition, the attribute values of Ai, i = 1, . . . , n are not

necessary to be the same. They are only required in the value set Si. In Section 1.2,

Examples 1.3 and 1.4 show two real examples of qualified functional dependencies.

In general, given a qualified functional dependency

R(A1 σ=S1
, A2 σ=S2

, . . . , An σ=Sn
, X → Y),

let R = ∪Ri∈R(σA1∈S1,...,An∈Sn
Ri) (∪ is the union and σ is the selection operator

of the relational algebra), then the functional dependency X → Y holds over R. If

a qualified functional dependency only contains regular attributes and holds over

a relational schema, then it is just a conventional functional dependency.

6.1.2 Inference rules of qualified functional dependencies

in fixed schemas

In general, let F be a set of qualified functional dependencies for a set of relational

schemas R, and let f be a qualified functional dependency also for R. We say F

(logically) implies f , if every instance of R that satisfies the dependencies in F also

satisfies f . We define F+, the closure of F for R , to be the set of qualified functional

dependencies that are logically implied by F . To understand logical implications

among qualified functional dependencies in fixed schemas, we provide a complete set

of inference rules, meaning that from a given set of qualified functional dependencies

F for R, the rules allow us to deduce all the true qualified functional dependencies

for R, i.e., those in F+. Without causing confusion, in Section 6.2 below, we will

give another kind of rules (called propagation rules) which allow us to infer the

63

qualified functional dependencies of the transformed relations from the qualified

functional dependencies of the original relations in a schema transformation.

The inference rules are given below. We assume for each qualification attribute

Aσ=S of a qualified functional dependency, the domain of A is a finite and fixed

set.

Inference rules of qualified functional dependencies. Given a set of rela-

tional schemas S with the same set of attributes U , and a set of qualified functional

dependencies F for S, let X be a mixed set of regular and qualification attributes

from U (X may comprise only regular or qualification attributes), and let Y ⊆ U

and Z ⊆ U be two sets of regular attributes. Let A ∈ U be an attribute not

occurring in X. R1 ⊆ R ⊆ S, S1 ⊆ S ⊆ dom(A). We have the following inference

rules:

(A1) Partition on relation set. If R(X → Y) holds, then R1(X → Y) holds.

(A2) Composition on relation set. If {Ri, Rj}(X → Y) holds for any Ri, Rj ∈ R,

then R(X → Y) holds.

(A3) Partition on qualification. If R(X,Aσ=S → Y) holds, then R(X,Aσ=S1 → Y)

holds.

(A4) Composition on qualification. If R(X,Aσ={ai,aj} → Y) holds for any ai, aj ∈

S, then R(X,Aσ=S → Y) holds.

(A5) Single-valued qualification. If a ∈ dom(A), then R(Aσ={a} → A) holds.

(A6) Assembly. If R(X,Aσ={a} → Y) holds for each a ∈ S, then

R(X,A,Aσ=S → Y) holds.

(A7) Reflexivity. If Y ⊆ X, then R(X → Y).

64

(A8) Augmentation. If R(X → Y) holds, then R(X,Z → Y, Z) holds.

(A9) Transitivity. If R(X → Y) and R(X1, Y → Z) hold for X1 a set (possibly

an empty set) of some qualification attributes in X, then R(X → Z) holds.

(A10) Dummy qualification. R(X → Y) iff R(X,Aσ=dom(A) → Y) holds. �

Rules A5 and A7 give the trivial dependencies. Rules A7, A8 and A9 extend

Armstrong’s Axioms, the inference rules of functional dependencies. Note that in

Rule A9, the inferred qualified functional dependency inherits all the qualification

attributes of the given qualified functional dependencies.

The following rule is derived from the above rules and useful in the rest of the

paper.

(A11) Disassembly. R(X,A → Y) iff R(X,Aσ={a} → Y) holds for each a ∈ dom(A).

For example, in DB1 of Figure 1.1, the functional dependency

{p#, s#,month} → price is equivalent to a set of qualified functional dependencies

Supply(p#, s#,monthσ={mi} → price) for each mi = jan, . . . , dec. That is, in each

month, product numbers and supplier numbers uniquely determine prices.

Theorem 6.1. The inference rules A1 to A10 are sound, complete and irreducible.

Proof. The proof is given in Appendix A.4. Note that the proof should use attribute

closures defined below.

We define attribute closures with respect to qualified functional dependencies

as follows:

Definition 6.2 (Attribute closure). Given a set of qualified functional depen-

dencies F , let R be a set of relational schemas, W be a set of qualification attributes,

and X be a set of regular attributes, we define X+
R,W , the attribute closure of X

65

under the qualification of W in R with respect to F , as the set of attributes A such

that R(W,X → A) can be deduced from F by the inference rules A1 to A10. �

Given a set of qualified functional dependencies F , often we want to know

whether a particular qualified functional dependency R(W,X → Y) follows from

F , where W is a set of qualification attributes, and X and Y are two sets of regular

attributes. The solution is to compute X+
R,W , the attribute closure of X under the

qualification of W in R with respect to F , and then to check whether Y is a subset

of the closure.

The algorithm to compute an attribute closure w.r.t a set of qualified functional

dependencies will be given in Section 6.1.3.

We define the equivalence between two sets of qualified functional dependencies:

Let F and G be 2 sets of qualified functional dependencies on the same set of

relational schemas. We say F and G are equivalent if F+ = G+. That is, each

qualified functional dependency in F is also in G+, and each qualified functional

dependency in G is also in F+.

6.1.3 Compute attribute closures with respect to qualified

functional dependencies

In this sub-section, we will give an algorithm to compute attribute closure w.r.t

a set of qualified functional dependencies. Qualified functional dependency is a

powerful expression that can represent a broad range of constraints. However,

we restrict our study to a set of qualified functional dependencies F satisfying 3

conditions:

1. single-valued qualification. the qualification attributes of any qualified func-

tional dependency of F are restricted to take single values, i.e., any qualifi-

66

cation attribute has a form of Aσ={a}.

2. disjoint regular and qualification attributes. let Z1 be the set of all the regular

attributes, and Z2 be the set of all the attributes occurring in the qualification

attributes of the qualified functional dependencies of F . Then Z1 ∩ Z2 = ∅.

3. individual or all relations. Each qualified functional dependency of F holds

either in a single relation, or in a set of relational schemas R = dom(B) for

some attribute B whose values are modelled as relation names.

The three conditions restrict the expressiveness of qualified functional depen-

dencies. With the three restrictions, we focus our study on common qualified func-

tional dependencies in practice - the qualified functional dependencies that may be

transformed into (or derived from) some functional dependencies in a discrepant

schema transformation. There’re two reasons why we introduce the three restric-

tions: (1) functional dependencies are the most common and useful dependencies

in databases, we are interested in those qualified functional dependencies that may

be transformed into (or derived from) some functional dependencies in a schema

transformation. (2) The computation of an attribute closure with respect to a set

of general qualified functional dependencies would be too slow. By restricting our

study in a set of common and useful qualified functional dependencies, we can give

efficient methods to compute attribute closures.

We hereby present an algorithm CLOSURE below to compute an attribute

closure w.r.t. a set of qualified functional dependencies satisfying the above 3

conditions.

We explain the algorithm by an example below.

Example 6.1. In DB1 of Figure 1.1, given a set of qualified functional dependen-

cies

67

Algorithm:CLOSURE

Input: A set of relational schemas S with the same set of attributes U , a set of
relational schemas R ⊆ S, a set of qualification attributes W from U , a set
of regular attributes X from U , a set of qualified functional dependencies F
satisfying the 3 conditions.

Output: X+
R,W w.r.t. F .

1: Let {X1, . . . , Xn} be the maximum subset of X, such that each Xi,
i = 1, . . . , n, occurs in some qualification attributes of the qualified functional
dependencies of F ;

2: closure := U ;
3: for any x1 ∈ dom(X1), . . . , xn ∈ dom(Xn), such that

{X1 σ={x1}, . . . , Xn σ={xn}} ⊒ W [X1, . . . , Xn] /* The satisfaction relation
⊒ and projection W [X1, . . . , Xn] are defined in Definitions A.1 and A.2 in
Appendix A.4. */ do

4: closure1 := X ∪ {A|Aσ={a} ∈ W};
5: W1 := W ∪ {X1 σ={x1}, . . . , Xn σ={xn}};
6: repeat
7: if there is a qualified functional dependency R1(Y → Z) in F such that

R ⊆ R1 and W1 ∪ closure1 ⊒ Y then
8: closure1 := closure1 ∪ Z;
9: end if

10: until no change on closure1
11: closure := closure ∩ closure1;
12: end for
13: return closure.

68

Supply(p#, s#,monthσ={mi} → price)

for each mi ∈ {jan, . . . , dec}, let X = {p#, s#,month} be a set of attributes, we

compute the attribute closure of X in the Supply relation, i.e., X+
Supply,∅, using the

CLOSURE algorithm below.

For each mi ∈ {jan, . . . , dec}, let W1 = {monthσ={mi}}, then after each itera-

tion of the inner loop (Line 6 to 10), closure1 = X+
Supply,W1 = {p#, s#,month, price}.

Consequently, the algorithm returns the set closure = X+
Supply,∅ = {p#, s#,month, price}.

�

Theorem 6.2. Algorithm CLOSURE correctly computes X+
R,W w.r.t. F .

Proof. The proof is given in Appendix A.5.

Finally, as to the complexity of Algorithm CLOSURE, we have the following

lemma.

Lemma 6.1. In Algorithm CLOSURE, let Z be the set of all the attributes oc-

curring in the qualification attributes of the qualified functional dependencies of F .

Let m be the cardinality of Z, and d be an upper bound for the cardinalities of the

domains of the attributes of Z. Then the algorithm takes time O(dm|U ||F |2).

Proof. The outer loop of the CLOSURE algorithm (Line 3 to 12) will be iterated

for dm times at most. For each iteration of the outer loop, the inner loop (Line 6 to

10) would be repeated for O(|F |2) times, and each iteration of the inner loop takes

O(|U |) time. Consequently, the whole algorithm takes O(dm|U ||F |2) time.

From Lemma 6.1, we know that the performance of Algorithm CLOSURE de-

pends much on the structure of the set Z. When the parameters m and d are

constants, the algorithm runs in polynomial time. In Section 6.2.3, we will study

the complexity of the CLOSURE algorithm further in the context of discrepant

schema transformations.

69

6.2 Deriving qualified functional dependencies in

schema transformations

In this section, the implication of qualified functional dependencies extends to

transforming relations. In general, given a transformation T , let R and S be, re-

spectively, the sets of the original and transformed relations 2 of T ; let F be a set of

qualified functional dependencies for R, and f be a qualified functional dependency

for S; let r be the instance of R satisfying the dependencies of F , and s be the in-

stance of S transformed from r by T . We say F (logically) implies f , if s satisfies

f . Note that unlike the implication of qualified functional dependencies in fixed

schemas, now the given set of dependencies F and the implied dependency f hold

in the original relations and transformed relations respectively. To understand logi-

cal implications among qualified functional dependencies in transforming relations,

we provide a set of propagation rules, meaning that from a given set of qualified

functional dependencies F for the set of the original relations R, the rules allow

us to deduce the qualified functional dependencies for the set of the transformed

relations S.

6.2.1 Propagation rules

We first give the propagation rules for split/unite operations then for unfold/fold

operations in a pairwise way.

(1) Propagation of qualified functional dependencies in application of a split/unite

operation. Let R(A1, . . . , An, B) be an original relation with dom(B) = {b1, . . . , bm},

and bi(A1, . . . , An) for i = 1, . . . ,m be the transformed relations using split(R,

2This study is based on relations (consisting of the schemas and instances) instead of relational
schemas, as a discrepant schema transformation may change data to attribute names or relation
names, or converse.

70

B), i.e., the distinct values of B in R become the relation names of the trans-

formed relations. Let X be a mixed set of regular and qualification attributes

from {A1, . . . , An}, and Y ⊆ {A1, . . . , An} be a set of regular attributes; let

R ⊆ {b1, . . . , bm} be a set of relations. We have the following rule:

(P1) R(Bσ=R, X → Y) holds iff R(X → Y) holds.

The same rule holds for the unite operation, when {b1, . . . , bm} is the set of the

original relations, and R is the transformed relation using unite({b1, . . . , bm}, B).

�

Rule P1 means that in application of a split operation, the restriction on the

values of the attribute B in the given qualified functional dependency becomes the

restriction on the relation set over which the inferred qualified functional depen-

dency holds, as the values of B become the names of the transformed relations. We

hereby give an example to apply this rule.

Example 6.2. Suppose in Figure 1.1, we transform DB1 into DB3 by a split oper-

ation. Given the functional dependency in the relation of DB1: {p#, s#,month} →

price which is equivalent to a set of qualified functional dependencies in the same

relation (by the disassembly rule A11):

Supply(monthσ={mi}, p#, s# → price)

for each attribute value mi = jan, . . . , dec, we can derive a functional dependency

for each relation of DB3 by applying the propagation rule P1 to each of the qualified

functional dependencies in DB1, i.e.,

mi(p#, s# → price)

for each relation name mi = jan, . . . , dec in DB3. That is, the qualification on the

71

attribute value of month in the original qualified functional dependency becomes the

qualification on the relation of the derived qualified functional dependency. �

A unite operation is a qualified functional dependency preserving transforma-

tion, as described below:

Lemma 6.2. In application of unite, Rule P1 changes any qualified functional

dependency on the original relations into an equivalent one on the transformed

relation. �

Although unite is a qualified functional dependency preserving transformation,

split is not. Given the same conditions as those in Rule P1, in application of

split, a qualified functional dependency R(X → B) will not be transformed to any

dependency on the transformed relations, as the values of B become the names of

the transformed relations.

We then give the propagation rules of qualified functional dependencies in ap-

plication of a set of unfold/fold operations. We study based on a set of unfold/fold

operations instead of individual ones because some qualified functional dependen-

cies would hold over a set of relations which are transformed together by a set of

unfold/fold operations.

(2) Propagation of qualified functional dependencies in application of a set of

unfold/fold operations. Let Ri(A1, . . . , An, B, C) for each i = 1, . . . , l be a set

of original relations, and Si(A1, . . . , An, b1, . . . , bm), i = 1, . . . , l, be the transformed

relations by performing unfold(Ri, B, C) on each relation of Ri. That is, the values

of B in Ri, {b1, . . . , bm}, become attribute names in Si, and the values of C in Ri

become the values of the attributes b1, . . . , bm in Si. Let X be a mixed set of

regular and qualification attributes from {A1, . . . , An}, and Y ⊆ {A1, . . . , An} be a

set of regular attributes. Let R = {Ri1, . . . , Rij} be a subset of {R1, . . . , Rl}, and

72

S = {Si1, . . . , Sij}, a subset of {S1, . . . , Sl}, be the transformed relations of those

in R. We have the following rules:

(P2) R(Bσ={bi}, X → C) holds iff S(X → bi) holds.

(P3) R(Bσ={bi}, X,C → Y) holds iff S(X, bi → Y) holds.

(P4) R(X → Y) holds iff S(X → Y) holds.

The three rules also hold for fold operations, when Si, i = 1, . . . , l, are the

original relations, and Ri, i = 1, . . . , l are the transformed relations by performing

fold(Si, B, C) on each relation of Si. �

In application of unfold operations, Rules P2 and P3 mean that the restric-

tion on the value of the attribute B in the given qualified functional dependency

becomes the restriction on the attribute name in the inferred qualified functional

dependency. Rule P4 is trivial as no change happens to the attributes involved in

the given qualified functional dependency during the transformation. We hereby

give an example to apply Rule P2:

Example 6.3. Suppose in Figure 1.1, we transform DB1 into DB2 by an unfold

operation. Given the functional dependency in the relation of DB1:

{p#, s#,month} → price which is equivalent to a set of qualified functional depen-

dencies in the same relation:

Supply(monthσ={mi}, p#, s# → price)

for each attribute value mi = jan, . . . , dec, we can derive a set of functional depen-

dencies in DB2 by applying Rule P2 to each of the qualified functional dependencies

in DB1, i.e.,

Supply(p#, s# → mi)

for each attribute name mi = jan, . . . , dec in the relation of DB2. That is, the

73

functional dependency {p#, s#} → {jan, . . . , dec} holds in the relation of DB2.

�

Both fold and unfold operations are not qualified functional dependency pre-

serving transformations. However, fold operations preserve qualified functional

dependencies with a certain form, as stated below:

Lemma 6.3. Let Si(A1, . . . , An, b1, . . . , bm) for each i = 1, . . . , l be a set of original

relations, and Ri(A1, . . . , An, B, C), i = 1, . . . , l, be the transformed relations by

performing fold(Si, B, C) on each relation of Si. Given any qualified functional

dependency f on the set of the original relations, such that f contains at most

one bi (1 ≤ i ≤ m) as a regular attribute, Rule P2, P3 or P4 changes it into a

qualified functional dependency g on the set of the transformed relations, such that

f is equivalent to g, i.e., f implies g, and vice versa. �

6.2.2 Deriving qualified functional dependencies in discrepant

schema transformations

Using the inference rules A1 to A10 and the propagation rules P1 to P4, we can de-

rive qualified functional dependencies in discrepant schema transformations. Qual-

ified functional dependencies are powerful to express a broad class of dependen-

cies, but the inference and propagation of general qualified functional dependencies

would take much time. To reduce the time complexity and focus on the dependen-

cies which are popular in practice, we study a special class of qualified functional

dependencies, called simple qualified functional dependencies, defined below. Intu-

itively, we are interested in those dependencies which are represented as functional

dependencies in a canonical schema (a canonical schema is one in which all inter-

esting information is modelled as attribute values, e.g., DB1 in Figure 1.1).

74

Definition 6.3. We say a qualified functional dependency f : R(X → Y) is simple

if it satisfies 3 conditions:

1. The set of relations R satisfies either R = dom(A) for some attribute A whose

values are modelled as relation names, or R contains only one relation.

2. The qualified functional dependency only contain regular attributes.

3. For each attribute set Z = {bi| the attribute name bi is a value of an attribute

B, and the values of the attribute bi are from the domain of another attribute

C}, either X ∩ Z = ∅, or |X ∩ Z| = 1 and Y ∩ Z = ∅. �

Condition 3 means that either the left hand side of f has no attributes of bi’s,

or the left hand side of f has one attribute of bi’s and the right hand side of f has

no bi’s.

For Example 1.2, given the two schemas BS1(isbn, title, price) and BS2(isbn,

title, price), the dependencies {BS1, BS2}(isbn → title), BS1(isbn → price) and

BS2(isbn → price) are simple qualified functional dependencies as they hold over

either all the relations whose names are from dom(store) or individual relations.

These dependencies can be changed to functional dependencies isbn → title and

{isbn, store} → price in the integrated schema Book(isbn, store, title, price).

For another example, in DB4 of Figure 1.1, given the qualified functional depen-

dencies si(p# → jan, . . . , dec) (for each i = 1, . . . , n) such that the attribute names

jan, . . . , dec are from the domain of another attribute month, as jan, . . . , dec only

occur on the right hand sides of the qualified functional dependencies (i.e., sat-

isfying Condition 3 of Definition 6.3), these qualified functional dependencies are

simple qualified functional dependencies. These simple qualified functional depen-

dencies can be transformed to functional dependencies in the schema of DB1 of

Figure 1.1.

75

The assumption of simple qualified functional dependencies restricts the class

of qualified functional dependencies we considered in schema transformation, and

has no impact on the schemas and transformations. With this assumption, our

purpose is: (1) to control the complexity of the derivation of qualified functional

dependencies, and (2) to keep the generality of our method, i.e., to derive a class of

common and useful qualified functional dependencies in schema transformations.

Now the problem becomes: given a discrepant schema transformation and a

set of simple qualified functional dependencies that hold over the original relations

of the transformation, compute (a cover of) all the simple qualified functional

dependencies that hold over the target transformed relations.

A naive idea would be: for each step of the discrepant schema transformation,

we first apply the inference rules to compute the closure of the qualified functional

dependencies on the original relations, then apply the propagation rules to get the

qualified functional dependencies on the transformed relations. Finally, we get the

qualified functional dependencies on the target transformed relations. For ease of

reference, we call an algorithm based on the naive idea NAIVE PROPAGATE (the

formal algorithm is omitted).

Theorem 6.3. Algorithm NAIVE PROPAGATE is sound and complete to infer

simple qualified functional dependencies in a lossless discrepant schema transfor-

mation.

Proof. The proof is given in Appendix A.6.

The computation of the closure of qualified functional dependencies is neces-

sary in NAIVE PROPAGATE. As we mentioned in Section 6.2.1, a restructuring

operation may not preserve all the qualified functional dependencies of the original

relations in the transformed relations.

76

For example, given a relation R(A,B,C), we split (i.e., with an operation

split(R,B)) it to a set of relations bi(A,C) for i = 1, . . . , n and bi ∈ dom(B).

Suppose in R, we have two functional dependencies A → B and B → C. These

two functional dependencies cannot be changed to any equivalent (qualified) func-

tional dependencies in the transformed schemas. However, they imply a functional

dependency A → C in R which can be represented as a qualified functional depen-

dency {b1, . . . , bn}(A → C) in the transformed schemas.

In general, in the derivation of qualified functional dependencies in a discrepant

schema transformation, because a restructuring operation may not be qualified

functional dependency preserving, we should not only consider the given qualified

functional dependencies on the original relations, but also those not given but

can be preserved in the schema transformation. In NAIVE PROPAGATE, we

consider all the qualified functional dependencies by computing qualified functional

dependency closures.

However, the computation of a qualified functional dependency closure takes ex-

ponential time at least, which makes the method impractical. Instead of applying

the inference and propagation rules directly, we use some “quick propagation rules”

which are derived from the inference rules A1 to A10 and the propagation rules P1

to P4 to infer qualified functional dependencies in discrepant schema transforma-

tions, without computing qualified functional dependency closures. The basic idea

of the quick propagation rules is: given a set (not necessary a closure) of quali-

fied functional dependencies F on the original relations, we propagate not only the

dependencies in F , but also those which are not in but implied by F and can be

propagated during a schema transformation. The quick propagation rules, i.e., Al-

gorithms INFER SPLIT, INFER UNITE, INFER UNFOLD and INFER FOLD,

are given in Appendix A.7. We hereby give an example to apply these rules to

77

infer qualified functional dependencies in a discrepant schema transformation.

Example 6.4. Suppose in Figure 1.1, we transform DB3 into DB4 in 3 steps:

DB3 DB1 DB2

unfold(Supply,month, price)

unite({Jan,...,Dec}, month)

DB4

split(Supply, s#)

Given a set of qualified functional dependencies in the relations of DB3:

mi(p#, s# → price) for each relation name mi = jan, . . . , dec, we compute the

qualified functional dependencies in DB4 as follows.

After applying the unite operation, we get the dependencies in DB1 (by Rule

(2) of INFER UNITE): Supply(monthσ={mi}, p#, s# → price) for each attribute

value mi = jan, . . . , dec.

After applying the unfold operation, we get the dependencies in DB2 (by Rule

(1) of INFER UNFOLD): Supply(p#, s# → mi) for each attribute name mi =

jan, . . . , dec.

After applying the split operation, we get the dependencies in DB4 (by Rule (2)

of INFER SPLIT): sj(p# → mi) for each relation name sj = s1, . . . , sn and at-

tribute name mi = jan, . . . , dec. That is, in each relation sj of DB4, the functional

dependency p# → {jan, . . . , dec} holds. �

Using the quick propagation rules in Algorithms INFER SPLIT, INFER UNITE,

INFER UNFOLD and INFER FOLD, we designed a more efficient algorithm to in-

fer qualified functional dependencies in discrepant schema transformations. That

is, in each transformation step, we call one of the four inference algorithms to in-

fer the qualified functional dependencies on the transformed relations, and finally

get the qualified functional dependencies on the target transformed relations. For

78

ease of reference, we call the algorithm using the quick propagation rules EFFI-

CIENT PROPAGATE (the algorithm is given in Appendix A.7), in comparison

with the naive algorithm using the inference rules and propagation rules directly.

Theorem 6.4. Algorithm EFFICIENT PROPAGATE is sound and complete to

infer simple qualified functional dependencies in a lossless discrepant schema trans-

formation.

Proof. The proof is given in Appendix A.8.

6.2.3 Complexities of Algorithms EFFICIENT PROPAGATE

and CLOSURE

Given a discrepant schema transformation and a set qualified functional dependen-

cies on the original relations, let G be a minimum cover of the qualified functional

dependencies holding over the target transformed relations. Then |G| could be

exponential to the number of the transformation steps. That is, the time complex-

ity of Algorithm EFFICIENT PROPAGATE could be exponential to the number

of transformation steps. A precise characterization of large and significant input

classes for which the algorithm runs in polynomial time is an interesting problem.

We first derive an upper bound for the algorithm and then present two classes

of inputs for which EFFICIENT PROPAGATE behaves polynomially.

Lemma 6.4. In Algorithm EFFICIENT PROPAGATE, let T =< T1, . . . , Tk >

be a discrepant schema transformation, U be the set of the attributes of the orig-

inal relations of T , F0 be the set of the qualified functional dependencies holding

over the original relations of T , and G be the set of the qualified functional depen-

dencies produced by an inference algorithm (i.e., INFER SPLIT, INFER UNITE,

INFER UNFOLD or INFER FOLD) during the execution of Algorithm

79

EFFICIENT PROPAGATE. If a is an upper bound of |G|, then the algorithm takes

time O(a4|U |k).

Proof. During the i-th (1 ≤ i ≤ k) call of one of the 4 inference algorithms to infer

qualified functional dependency for the set of restructuring operations Ti, it would

take the most time when Ti is a set of unfold operations, and O(a3) sequences of

triple qualified functional dependency are examined (see Rules 8 and 9 of Algorithm

INFER UNFOLD). For each sequence, say (f1, f2, f3), the following 2 tasks are

performed:

1. Checking whether the triple qualified functional dependency (f1, f2, f3)

produce a qualified functional dependency according to Rules 8 and 9 of

Algorithm INFER UNFOLD. This task is feasible in O(|U |) time. Note al-

though the set of attributes U would be changed during a transformation,

the number of the attributes in an inferred qualified functional dependency

would always be O(|U |) during the execution of EFFICIENT PROPAGATE.

2. Inserting the produced qualified functional dependency into the set G. This

requires less than O(|U |a) time.

So for each step Ti of T , it takes O(a4|U |) time to infer qualified functional depen-

dencies. The total time of EFFICIENT PROPAGATE is O(a4|U |k).

We will present two simple classes of “benign” inputs for EFFICIENT PROPAGATE.

The first class of inputs contains all possible inputs, for which the number of the

sets of unfold operations in the discrepant schema transformation is less than a

constant c. The second class of inputs is defined through the constraints on the

structure of F0, the set of input qualified functional dependencies holding over the

original relations.

80

Theorem 6.5. In Algorithm EFFICIENT PROPAGATE, let T =< T1, . . . , Tk >

be a discrepant schema transformation. If the number of the steps of unfold opera-

tions in T is less than a constant c, then the algorithm runs in polynomial time.

Proof. In general, there is at most one split operation in T , which generates a set

of qualified functional dependencies square in the number of input qualified func-

tional dependencies at most. Unite and fold operations generate sets of qualified

functional dependencies with the same sizes as the sets of input qualified functional

dependencies. Now let’s consider the increase of qualified functional dependencies

with an unfold operation.

Let U be the set of the attributes of the original relations of T , F0 be the set

of the qualified functional dependencies holding over the original relations of T ,

and Fi, i = 1, . . . , k, be the set of input qualified functional dependencies on the

transformed relations of Ti. Without loss of generality, suppose that Ti+1, . . . , Ti+k1

are the unfold operations in T . We have |Fi+k1+1| = O(|Fi|
3k1

), which is polynomial

in |Fi| under the assumption k1 < c. Let a be the upper bound for the cardinalities

of the sets of the qualified functional dependencies produced during the execution of

Algorithm EFFICIENT PROPAGATE. Then a is polynomial in |F0|. According to

Lemma 6.4, the algorithm takes polynomial time w.r.t the number of input qualified

functional dependencies |F0|, the number of attributes |U | and the number of the

transformation steps k.

Then we will give the second class of benign inputs. We first define canonical

qualified functional dependencies below.

Definition 6.4. Let F be a set of simple qualified functional dependencies. The set

canonical(F) contains all the simple qualified functional dependencies f = R(X →

A) in F+ such that the following properties hold:

81

1. Non-trivial. A /∈ X;

2. Left-reduced. For no proper subset Y ⊂ X it holds R(Y → A);

3. Relation set increased. For no superset S ⊃ R it holds S(Y → A). �

Given a set of simple qualified functional dependencies F , although |F+| is

always exponential in |U | (|U | is the number of attributes), and often exponential

in |F |, |canonical(F)| can be very small and is polynomial in |U | or |F | in most cases

of practical relevance. For instance, suppose F is a set of conventional functional

dependencies. If |canonical(F)| is exponential in |U | or |F |, then there must exist

an attribute of U which has exponentially many minimal keys. This is not a very

common situation. The second class of benign inputs is based on this observation.

Theorem 6.6. Given a discrepant schema transformation, let F be the set of the

qualified functional dependencies on the original relations of the transformation.

If |canonical(F)| is polynomial in |F |, then EFFICIENT PROPAGATE runs in

polynomial time. �

Proof. In a discrepant schema transformation T , for each step (i.e., a set of re-

structuring operations) Ti in T , let Fi be the set of the inferred non-trivial quali-

fied functional dependencies on the transformed relations of Ti. If |canonical(F)|

is polynomial in |F |, we can prove that |Fi| = O(|canonical(F)|) by induction on

i. By applying Lemma 6.4, we know that Algorithm EFFICIENT PROPAGATE

takes polynomial time in this case.

In Lemma 6.1, we give an upper-bound of Algorithm CLOSURE that is used

to compute an attribute closure w.r.t. a set of qualified functional dependencies.

The theorem below says that if a set of qualified functional dependencies G is de-

rived from a set of simple qualified functional dependencies in a discrepant schema

82

transformation with few fold operations, an attribute closure w.r.t. G can be com-

puted efficiently. Note that the qualified functional dependencies of G satisfy the

three conditions (i.e., single-valued qualification, disjoint regular and qualification

attributes and holding over one or all relations) of the input qualified functional

dependencies of Algorithm CLOSURE (see Section 6.1.3), according to Lemma

A.6.

Theorem 6.7. Given a discrepant schema transformation T =< T1, . . . , Tk >, a

set of original relations R of T , a set of attributes U of R, and a set of qualified

functional dependencies F for R. Let G be the set of the qualified functional de-

pendencies derived by Algorithm EFFICIENT PROPAGATE. If the number of the

steps of fold operations in T is less than a constant c, then it takes polynomial time

to compute an attribute closure w.r.t G.

Proof. Let Z be the set of all the attributes occurring in the qualification attributes

of the qualified functional dependencies of G. Let m be the cardinality of Z,

and d be an upper bound for the cardinalities of the domains of the attributes of

Z. Lemma 6.1 says that the computation of an attribute closure w.r.t. G takes

O(dm|U ||G|2) time.

In the transformation T , only unite and fold operations would change a sim-

ple qualified functional dependency into a qualified functional dependency with

qualification attributes. Note there’s at most one unite operation in T if T is a

non-redundant transformation. So if the number of the steps of fold operations in

T is less than a constant c, then m < c + 1. Furthermore, as the attributes of

Z are computed by fold and unite operations, the values of those attributes are

attribute names or relation names of R. So d = max(|U |, |R|). Consequently, it

takes polynomial time to compute an attribute closure w.r.t. G.

83

6.3 Uses of qualified functional dependency deriva-

tion

In this section, we first introduce some general uses of our theory of qualified func-

tional dependency derivation in data integration/mediation systems, then discuss

a specific application of our theory in a multidatabase language SchemaSQL.

6.3.1 Deriving qualified functional dependencies in data in-

tegration/mediation systems

functional dependencies are useful not only in enforcing the integrity of data, but

also in different stages of schema and data transformation/integration in data in-

tegration/mediation systems, as discussed in this section.

Verifying Lossless Transformations

functional dependencies can be used to verify not only the “lossless join decompo-

sition”, but also lossless fold and unfold operations (see the reconstructibilities of

fold and unfold, i.e., Properties 3 and 4 in Section 5.1).

Normalizing Integrated Schemas

Consolidating data into a single physical store has been the most effective approach

to provide fast, highly available, and integrated access to related information. The

applications include coalescing all the required data for a new e-business appli-

cation for online transactions, and enabling sophisticated data mining of ware-

housed historical data. In the classical relational theory, functional dependencies

are used to detect redundancy and normalize relations. Deriving functional depen-

dencies for integrated schemas becomes important, as schema transformations may

84

introduce redundancy. For Example 1.2 (in Section 1.2), the integrated schema

Book(isbn, title, store, price) is redundant and can be normalized given the func-

tional dependencies on it.

Detecting Duplicates and Inconsistencies in Data Integration

In data integration, the data from different databases may be duplicated or incon-

sistent. The duplicates and inconsistencies should be detected and resolved.

For Example 1.2, suppose two books from the two bookstores BS1 and BS2

have the same isbn number but different titles, i.e., an inconsistency occurs on the

titles. This can be detected by enforcing the functional dependency isbn → title

which is global and holds over the union of the two relations BS1 and BS2. After

detecting the inconsistencies, we can use existing techniques, e.g., [45], to resolve

them.

On the other hand, suppose the two books have the same isbn number, but

different prices. This does not mean there is an inconsistency on the prices, as the

functional dependency isbn → price is local and holds over each of the two relations.

Instead of resolving the “inconsistencies” of the prices, we should distinguish the

prices of the books of the two bookstores in an integrated schema.

Verifying Data Integrity in Materialized View Maintenance

In [31], the researchers proposed an incremental view maintenance strategy for

schema-restructuring views. The work supported the integration of large yet schema-

tically discrepant data sources into an integrated environment such as a data ware-

house, while allowing for incremental propagation of updates. functional depen-

dencies on an integrated schema can be used to verify the integrity of data in the

propagation of the operations of insertion and update.

85

Optimizing Queries

The idea of using integrity constraints to optimize queries is not new [27, 41, 68].

In those works, functional dependencies are usually used to eliminate unnecessary

conditions of selection, join and group-by. In [69], functional dependencies are also

used to optimize large aggregation queries for OLAP applications.

6.3.2 Verifying SchemaSQL views

SchemaSQL is an extension to SQL. It treats data and metadata in a uniform

manner, i.e., variables can range over data, attribute names and relation names.

Consequently, a SchemaSQL view may define on (and generate) relations with

dynamic schemas. Recently, SchemaSQL has been used to solve a broad range of

problems [34, 54]. However, a SchemaSQL view definition may generate ambiguous

results, as shown in the following example.

Example 6.5. In Figure 6.1, suppose in the relation Supply, a functional depen-

dency

{p#, s#,month} → price

holds. The SchemaSQL statements below define a view SupV iew that presents the

prices of products by months:

create view SupView(p#, T.month)

select T.p#, T.price

from Supply T

The above statements are similar to a SQL view definition except that a variable

T.month is in the “create view” clause. The resulting view schema therefore de-

pends on the instantiation of T.month, i.e., the values of the month attribute in

86

Supply
p# s# month price
p1 s1 jan 100
p1 s1 feb 105
p1 s2 jan 95
p1 s2 feb 97

Allocated table
p# jan feb
p1 100 -
p1 - 105
p1 95 -
p1 - 97

SupView (I1)
p# jan feb
p1 100 105
p1 95 97

SupView (I2)
p# jan feb
p1 100 97
p1 95 105

Figure 6.1: Ambiguous SchemaSQL view: SupV iew may have one of the two
instances I1 and I2

the Supply relation. In this case, the view has a schema of SupV iew(p#, jan, feb).

To evaluate this view, a temporarily “allocated table” will be temporarily generated,

as shown in Figure 6.1. Each tuple in the allocated table comes from a tuple of

Supply with the months modelled as the attribute names. “-” is used to denote the

null value. The tuples are then merged in the allocated table, to get the final result.

Two tuples are merge-able if for a common attribute, either the attribute values

of the 2 tuples are the same, or at least one value is null. In the allocated table,

the first tuple can be merged with the second or the 4th tuple. Then the resulting

view relation is not unique for the different choices of merged tuples. Two possible

results are SupV iew(I1) and SupV iew(I2) as shown in Figure 6.1. That is, the

mapping from the original relations onto the view relations is one-to-many. �

We say a view definition in Example 6.5 is non-unique. In general, we have:

Definition 6.5 (Unique SchemaSQL view). Let V be a view definition in

SchemaSQL. Let S1 = {R | R is an original relation (or relation set) on which

V is defined}, and S2 = {R | R is a view relation (or relation set) generated by

V }. If the view definition V : S1 7→ S2 is a many-to-one mapping, we say V is

unique. �

Intuitively, for a unique view V , given a query Q against a view relation (or

relation set) S ∈ S2, we have: Q(S) = Q(V (R)) = Q ◦ V (R) for some R ∈ S1.

87

That is, the query Q against S is mapped onto the unique query Q ◦V against the

original relation (or relation set) R, if V is a many-to-one mapping.

The theorem below gives a necessary and sufficient condition to check whether

a SchemaSQL view is unique by use of the functional dependencies on the view. To

simplify the expression, the theorem only applies to SchemaSQL views generating

individual relations without aggregations. The result can be extended to general

SchemaSQL views readily.

Theorem 6.8. A SchemaSQL view is unique iff it satisfies the following condition:

if the output schema declaration through the “create view” statement of the view

definition has a form of R(A1, . . . , An, B), where R is the name of the view relation,

A1, . . . , An are attribute names, and B is a variable ranging over a set of values

{b1, . . . , bm}, then the functional dependency

{A1, . . . , An} → {b1, . . . , bm}

holds in the view schema R(A1, . . . , An, b1, . . . , bm).

Proof. In general, when the declaration of a view schema contains a variable, the

mapping from the original relations onto the view relations is many-to-many. How-

ever, if the functional dependency holds, there is only one way to merge the tuples

of the allocated table in the evaluation of the view. That is, the resulting view rela-

tion is unique, and the mapping from the original relations onto the view relations

is many-to-one.

Note that according to the SchemaSQL syntax [35], there’s at most one variable

in the attribute list of the output schema declaration through a “create view”

statement. And the above theorem implies that if a view definition does not contain

a variable in the attribute list of the output schema declaration, then the view is

88

always unique. That is, the theorem can be used to check all the SchemaSQL views

which generate individual relations without aggregations.

According to the theorem, in order to check whether a SchemaSQL view is

unique, we need to infer the functional dependencies holding on the view rela-

tions. SchemaSQL queries/views can be implemented by use of the restructuring

operators and the relational algebra (selection, projection, join and union) [34].

Correspondingly, we need to extend our rules and algorithms to the inference of

qualified functional dependencies in a transformation including not only restruc-

turing operations, but also the operations of the relational algebra. This would

not be hard given the existing results on the inference of functional dependencies

for relational algebra views [2, 22]. We hereby give an example to describe this

process.

Example 6.6. The view of Example 6.5 can be implemented in two steps: (1)

project out the s# column from the Supply relation, and get an intermediate rela-

tion, say Sup1(p#, month, price); (2) perform unfold(Sup1,month, price), and

get the resulting view relation SupV iew. As Step (1) projects out s#, the given

functional dependency {p#, s#,month} → price is lost after the projection. Con-

sequently, no functional dependency holds in SupV iew, which means the view is

non-unique.

On the other hand, if the view schema contains the attribute s#, i.e.,

SupV iew(p#, s#, jan, feb), then the view is implemented by performing unfold(Supply,

month, price). Using Rule (2) of Algorithm INFER UNFOLD, we can derive a

functional dependency {p#, s#} → {jan, feb} on SupV iew. According to Theorem

6.8, the view is unique. �

89

6.4 Summary

Conventional functional dependencies are inadequate to represent constraints in

multiple and heterogeneous databases. We introduced the new type of constraints

called qualified functional dependencies, and presented a concise way to represent

them. Qualified functional dependencies are the functional dependencies holding

over a set of relations or a set of horizontal partitions of relations. We have pre-

sented the inference rules A1 to A10 that allow us to infer new qualified functional

dependencies from given ones in fixed relational schemas. The inference rules were

proven to be sound, complete and irreducible. Algorithm CLOSURE was pro-

posed to compute attribute closures with respect to a set of qualified functional

dependencies. The propagation rules P1 to P4 allow us to derive the qualified

functional dependencies on transformed schemas from the qualified functional de-

pendencies on original schemas in application of a (set of) restructuring operator(s).

In discrepant schema transformation, we are mostly interested in simple qualified

functional dependencies (Definition 6.3) that are the qualified functional depen-

dencies represented as functional dependencies in a canonical schema such as DB1

in Figure 1.1. Using the inference rules and propagation rules, we can derive all

the simple qualified functional dependencies on the transformed schemas from the

simple qualified functional dependencies on the original schemas in a discrepant

schema transformation. However, this needs to compute qualified functional de-

pendency closures, and therefore is slow. To avoid the computation of qualified

functional dependency closures, we derived the quick propagation rules from the

inference rules A1 to A10 and the propagation rules P1 to P4, and Algorithm

EFFICIENT PROPAGATE based on the quick propagation rules to efficiently de-

rive qualified functional dependencies in a discrepant schema transformation. Note

that EFFICIENT PROPAGATE computes a cover of (rather than all) the qualified

90

functional dependencies on the transformed schemas.

Our theory of qualified functional dependency derivation is useful in data inte-

gration/mediation systems and in multidatabase interoperation. It can be used to

verify lossless transformations, normalize integrated schemas, detect duplicate and

inconsistency and verify data integrity in materialized view maintenance. SchemaSQL

is a multidatabase language which was used to solve many problems. However, we

found that a SchemaSQL view may be ambiguous. By deriving qualified functional

dependencies for a view, we can verify the correctness of it.

Chapter 7
Resolving schematic discrepancies in the

integration of ER schemas

We proposed a framework to represent the meta information (context) of a con-

struct of an ER schema as a set of meta-attributes with metadata. Schematic dis-

crepancy occurs when metadata in one schema correspond to attribute values in the

other schema. We resolved the schematic discrepancies of ER schemas by remov-

ing the context of schema constructs. The propagation of cardinality constraints

is involved in the schema transformation. The resolution algorithms preserve the

information and cardinality constraints in schema transformation.

7.1 Meta information of schema constructs

Conceptual modelling is always done within a particular context. In particular, the

context of an entity type, relationship type or attribute is the meta-information

relating to its source, classification and property.

For example, an entity type JAN PROD modelling the products supplied in

January has a context of the month January (i.e., ‘JAN’).

91

92

In an ER schema, contexts are usually at four levels: database, entity type,

relationship type and attribute. In general, we have the following hierarchy of

inheritance relations between contexts at different levels:

Database Entity type

Relationship type

Attribute of entity type

Attribute of relationship type

That is, an entity type may “inherit” a context from a database (i.e., the context

of a database applies to the entities), a relationship type may “inherit” a context

from its involving entity types and so on.

The inheritance hierarchy actually reflects the order in which an ER schema is

built up. Given an application to be modelled, we first identify entity types, then

the attributes of the entity types and the relationship types among the entity types,

and finally the attributes of the relationship types. Correspondingly, we first decide

the context of a database in which an ER schema is modelled, then the contexts of

entity types which may inherit a context from the database, and so on.

We propose to represent the context of schema constructs using ontologies. We

treat an ontology as the specification of the representational vocabulary for a shared

domain of discourse which includes the definitions of entity types, relationship

types, attributes of entity types and attributes of relationship types. We present

ontologies at a conceptual level, which could be implemented by ontology languages.

For example, suppose an ontology SupOnto describes the concepts in the uni-

verse of product supply. It includes entity types product, month, supplier, a ternary

relationship type supply among product, month and supplier, a binary relationship

type pm that is a projection of the relationship type supply onto the entity types

product and month, attributes p# (product number), pname (product name), s#

(supplier number), m# (i.e., the identifier of the entity type month. The values of

93

m# are ‘JAN’, ‘FEB’, . . . , ‘DEC’) and price that is an attribute of the relationship

type supply.

We give a formal definition of context that is a set of meta-attributes with values

below.

Definition 7.1. Given an ontology, we represent an entity type (a relationship

type, or an attribute 1) E of an ER schema as:

E = T [C1 = c1, . . . , Cm = cm, inherit Cm+1, . . . , Cn]

where T is a type of the ontology (T is an entity type or relationship type if E is

an entity type, is a relationship type if E is a relationship type, or is an attribute if

E is an attribute), C1, . . . , Cn are attributes of the ontology, and each ci is a value

of Ci for each i = 1, . . . ,m. Cm+1, . . . , Cn respectively have a value of cm+1, . . . , cn

which are stated in a higher level context (i.e. the context of a database if E is an

entity type, the contexts of entity types if E is a relationship type, or the context of

an entity type/relationship type if E is an attribute).

This representation means that each instance of E is an instance of T , and

satisfies the conditions Ci = ci for each i = 1, . . . , n. C1, . . . , Cn with the values

constitute the context within which E is defined; we call them meta-attributes, and

their values metadata of E. We say E inherits the context {Cm+1 = cm+1, . . . , Cn =

cn}. If E inherits all the meta-attributes with the values of a higher level context,

we simply represent it as:

E = T [C1 = c1, . . . , Cm = cm, inherit all]

1Note that as the context of a database would be handled in the entity types which inherit it,
we ignore it in the following definition.

94

For easy reference, we call the set {C1 = c1, . . . , Cm = cm} the self context, and

{Cm+1 = cm+1, . . . , Cn = cn} the inherited context of E. �

Either self or inherited contexts could be empty. In the example below, we

represent the entity types, relationship types and attributes in ER schemas using

the ontology SupOnto.

Example 7.1. Suppose we are given three ER schemas DB1, DB2 and DB3 of

Figure 7.1. They model the similar supply information of products, i.e., product

numbers, product names, suppliers and the supplying prices in each month. In

DB1, the supply relationships are modelled as a ternary relationship type SUP. In

DB2, the entity type JAN PROD models the products supplied in the month of

January, and the attributes S1 PRICE, . . . , Sn PRICE means the prices of the

products by the suppliers S1, . . . , Sn. For example, the attribute S1 PRICE of

the entity type JAN PROD means the prices of the products supplied in January

by the supplier S1. In DB3, the relationship type JAN SUP models the supply

relationships between products and suppliers in January. Note that JAN SUP is a

selection of the ternary relationship type SUP of DB1 (when the value of M# is

‘JAN’).

In relational databases, these ER schemas correspond to the following relational

schemas (i.e., each entity type having more than one attribute and each relationship

type would be transformed into a relation):

DB1: PROD(P#, PNAME), SUP(P#, S#, M#, PRICE)

DB2: JAN PROD(P#, PNAME, S1 PRICE, . . . , Sn PRICE),

...

DEC PROD(P#, PNAME, S1 PRICE, . . . , Sn PRICE)

DB3: PROD(P#, PNAME),

JAN SUP(P#, S#, PRICE),

95

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIERS#

m

DB1:

JAN_PROD

P#
S1_PRICE

DB2:

Sn_PRICE

PROD

P#

PRICE

SUPPLIER

S#JAN_SUP

DEC_SUP

PRICE

m

m
m

m

DB3:

PNAME

PNAME

PNAME

JAN_PROD =pm[m#='JAN']
 {P# =p#, PNAME =pname,
 S1_PRICE =price[s#='S1', inheritall],
 ... ,

Sn_PRICE =price[s#='Sn', inheritall]}

DEC_PROD

P# S1_PRICE

Sn_PRICE

PNAME

PROD =product
 {P# =p#, PNAME =pname}
MONTH =month

{M# = m#}
SUPPLIER =supplier

{S# =s#}
SUP =supply

{PRICE =price}

...
...

...

DEC_PROD =pm[m#='DEC']
 {P# =p#, PNAME =pname,
 S1_PRICE =price[s#='S1', inheritall],
 ... ,

Sn_PRICE =price[s#='Sn', inheritall]}

...

JAN_SUP =supply[m#='JAN']
 {PRICE =price[inherit all]}

DEC_SUP =supply[m#='DEC']
 {PRICE =price[inherit all]}

...

...

Figure 7.1: ER schemas and their contexts. Schematic discrepancies occur as
months and suppliers modelled differently as the attribute values or metadata in
DB1, DB2 and DB3

96

...

DEC SUP(P#, S#, PRICE)

In Figure 7.1, we can represent the contexts of the schema constructs using the

ontology SupOnto. For example, the entity type JAN PROD of DB2 is represented

as:

JAN PROD = pm[m# = ‘JAN’].

That is, the context of JAN PROD is m# =‘JAN’. This means that JAN PROD

corresponds to a relationship type pm when the month is January, i.e., the products

supplied in January.

Also in DB2, the attribute S1 PRICE of the entity type JAN PROD is repre-

sented as:

S1 PRICE = price[s# = ‘S1’, inherit all].

The self context of S1 PRICE is s#=‘S1’, and the inherited context (from the entity

type JAN PROD) is m#=‘JAN’. This means that each value of S1 PRICE of the

entity type JAN PROD is a price of a product supplied by supplier S1 in January.

In DB3, the relationship type JAN SUP is represented as:

JAN SUP = supply[m# = ‘JAN’].

This means that each relationship of JAN SUP corresponds to a relationship of

supply when the month is January.

Also in DB3, the attribute PRICE of the relationship type JAN SUP is repre-

sented as:

PRICE = price[inherit all].

PRICE inherits the context m#=‘JAN’ from its relationship type JAN SUP. This

means that each value of PRICE is a supplying price in January. �

97

In schema integration, contexts should be declared by the owners of source

schemas. Once declared, our integration system can detect the schema matching

information from the contexts automatically. For example, two entity types, two

relationship types or two attributes are equivalent to each other if they correspond

to the same ontology type and have the same context (possibly empty context).

We can also detect schematic discrepancy that is defined below.

Definition 7.2. Two schemas are schematically discrepant from each other iff

some metadata in one schema correspond to the attribute values in the other schema.

We call the meta-attributes whose values correspond to attribute values in other

schemas discrepant meta-attributes. �

The schemas of Figure 7.1 are schematically discrepant from each other. For

example, the values of the attribute M# in DB1 correspond to the metadata of

the relationship types in DB3. In this case, m# is a discrepant meta-attribute of

the relationship types in DB3. The values of the attribute M# in DB1 correspond

to the metadata of the entity types in DB2, and the values of the attribute S# in

DB1 correspond to the metadata of the attributes S1 PRICE, . . . , Sn PRICE in

DB2.

This definition of schematic discrepancy is an extension to that of [34] in which

schematic discrepancy refers to the correspondence between attribute names (or

relation names) and attribute values.

In Section 7.2, we will resolve schematic discrepancies by transforming metadata

into attribute values, e.g., transforming DB2 and DB3 into a form of DB1 in Figure

7.1.

98

7.2 Resolution of schematic discrepancies in the

integration of ER schemas

In schema integration, the 4 kinds of schematic discrepancies should be resolved

in the order of context inheritance presented in Section 7.1, i.e., first for entity

types, then relationship types, finally attributes of entity types and attributes of

relationship types. The resolutions of the other semantic heterogeneities follow the

resolution of schematic discrepancies. In general, given a set of ER schemas, we

can integrate them in 4 steps:

1. Call the algorithms ResolveEnt, ResolveRel, ResolveEntAttr and Resolve-

RelAttr (introduced below) in order to resolve the schematic discrepancies of

entity types, relationship types, attributes of entity types and attributes of

relationship types.

2. Resolve the other semantic heterogeneities of naming conflicts, key conflicts,

structural conflicts and constraint conflicts, using existing methods, e.g., [39].

3. Merge the transformed schemas. Equivalent entity types, relationship types

and attributes are superimposed. Some constraint conflicts may need to be

resolved during the merging [38].

4. Remove the redundant relationship types which can be derived from the oth-

ers. Create special relationship types ISA, UNION, INTERSECT or DE-

COMPOSE among entity types of the integrated schema.

We present the 4 algorithms ResolveEnt, ResolveRel, ResolveEntAttr and Resolve-

RelAttr, i.e., the resolutions of schematic discrepancies for entity types, relationship

types, attributes of entity types and attributes of relationship types one by one. Ex-

amples are provided to understand each algorithm. The resolution is implemented

99

by transforming discrepant meta-attributes into attributes of entity types. The

transformation keeps the cardinalities of attributes and entity types, and therefore

preserves functional dependencies and multivalued dependencies (proven in Section

7.3). Note that in the presence of context, the values of an attribute depend on

not only the key values of the entity type/relationship type, but also the metadata

of the attribute.

To simplify the presentation, we assume schema constructs only have discrepant

meta-attributes, leaving out other meta-attributes that will not cause schematic

discrepancies. Actually, non-discrepant meta-attributes will not be changed in

schema transformation.

7.2.1 Resolving schematic discrepancies for entity types

Given an ER schema, we resolve the schematic discrepancies of the entity types

of the schema in 2 steps. In Step 1, we resolve the schematic discrepancies of

each entity type, and in Step 2, we merge the equivalent schema constructs in the

transformed schema. Step 1 is further divided into 3 sub-steps. Given an entity

type E, in Step 1.1, we transform the discrepant meta-attributes of E into the

attributes of entity types, and relate the entity types in a relationship type. Then

in Step 1.2, we handle the attributes of E according to the ways the attributes

inherit the context of E. Finally in Step 1.3, we handle the relationship types

involving E according to the ways the relationship types inherit the context of E.

We first show two examples of the resolution of schematic discrepancies of entity

types, which focus on handling attributes and handling relationship types respec-

tively, and then give the general algorithm.

Example 7.2. In DB2 of Figure 7.1, the entity types JAN PROD, . . . , DEC PROD

have the same discrepant meta-attribute m#. In Figure 7.2, we resolve the schematic

100

discrepancies of these entity types in two steps.

JAN_PROD

P#
S1_PRICE

DB2:

Sn_PRICE

PNAME

DEC_PROD

P#
S1_PRICE

Sn_PRICE

PNAME

PROD
PMm m

Sn_PRICE

MONTH

S1_PRICE

dom(M#) = {JAN}

P# PNAME M#

PROD

PMm m

Sn_PRICE

MONTH

S1_PRICE

dom(M#) = {DEC}

P# PNAME M#

PROD

PMm m

Sn_PRICE

MONTH

S1_PRICE

dom(M#) =
{JAN, ..., DEC}

P# PNAME M#

. . .

. . .

. . .

Step 1

Step 2DEC_PROD =pm[m#='DEC']
 {S1_PRICE =price[s#='S1', inheritall]

...
Sn_PRICE =price[s#='Sn', inherit all]}

PM =pm
 {S1_PRICE =price[s# = 'S1']

...
Sn_PRICE =price[s# ='Sn']}

...

...

...
...

JAN_PROD =pm[m#='JAN']
 {S1_PRICE =price[s#='S1', inherit all]

...
Sn_PRICE =price[s#='Sn', inherit all]}

Figure 7.2: Resolve schematic discrepancies for entity types: handle attributes

In Step 1, for each entity type of DB2, say JAN PROD = pm[m#=‘JAN’], we

represent the discrepant meta-attribute m# as an attribute M# (with the only value

‘JAN’) of a new created entity type MONTH = month. As in the ontology, pm is a

binary relationship type between the entity types product and month, after removing

the context, we change the entity type JAN PROD into an entity type PROD =

product (with all the entities of JAN PROD), and construct a relationship type

PM = pm to associate the entity types PROD and MONTH.

101

Then we handle the attributes of JAN PROD. As PNAME has nothing to do

with the context of the entity type, it becomes an attribute of PROD. However,

S1 PRICE, . . . , Sn PRICE inherit the context m#=‘JAN’, i.e., their values depend

on not only the product numbers, but also the month January. So they become the

attributes of the relationship type PM. Note as the context of JAN PROD that is

the inherited context of the attributes S1 PRICE, . . . , Sn PRICE is removed, these

attributes only have the self context s#=‘Si’ left for i=1, . . . , n (the discrepant

meta-attribute s# will be resolved in Algorithm ResolveRelAttr later).

Similarly, we can resolve the schematic discrepancies of the other entity types

FEB PROD, . . . , DEC PROD.

Then in Step 2, the equivalent entity types, relationship types and attributes are

merged respectively. Their domains are united. �

The schema transformation (Steps 1 and 2) of Figure 7.2 actually is the appli-

cation of an “unite” operation (introduced in Section 3.1) on the entity types

JAN PROD(P#, PNAME,S1 PRICE, . . . , Sn PRICE)

...

DEC PROD(P#, PNAME,S1 PRICE, . . . , Sn PRICE)

in DB2, such that the the metadata (i.e., months) of these entity types become the

attribute values of the entity type MONTH, and the entity types JAN PROD, . . . ,

DEC PROD are transformed to the relationship type

PM(P#,M#, S1 PRICE, . . . , Sn PRICE)

between PROD and MONTH.

In general, the resolution of schematic discrepancies for entity types (the general

algorithm will be given later) is an extension of the untie operator in the ER model.

As cardinality constraints represent functional dependencies and multivalued

dependencies in the ER model, the propagation of cardinality constraints in the

102

transformation of ER schemas corresponds to the propagation of qualified func-

tional dependencies (or qualified multivalued dependencies) in the transformation

of relational schemas (introduced in Section 6.2).

For Figure 7.2, in DB2, we have two kinds of qualified functional dependencies.

As the attribute PNAME has nothing to do with the context (i.e., months) of the

entity types, the functional dependency P# → PNAME holds over the union of

of the entity types JAN PROD, . . . , DEC PROD, i.e., we can represent it as a

qualified functional dependency

{JAN PROD, . . . , DEC PROD}(P# → PNAME).

On the other hand, the attributes S1 PRICE, . . . , Sn PRICE inherit the context

(months) of the entity types, the functional dependency P# → S1 PRICE, . . . , Sn PRICE

holds in each entity type of JAN PROD, . . . , DEC PROD, i.e., we can represent

it as a set of qualified functional dependencies

Mi PROD(P# → S1 PRICE, . . . , Sn PRICE)

for each Mi = JAN, . . . , DEC. Note that now the qualification (i.e., the set of en-

tity types) of a qualified functional dependency is specified through the (inherited)

contexts of attributes.

Then in the transformed schema of Figure 7.2, we can derive a functional de-

pendency

P# → PNAME

on the PROD entity type and a functional dependency

{P#,M#} → {S1 PRICE, . . . , Sn PRICE}

on the PM relationship type, using a method similar to the derivation of qualified

functional dependencies in application of an unite operation in the relational model.

103

In general, the propagation of cardinality constraints in the ER model (that

will be discussed in Section 7.3) is an extension of the propagation of qualified

functional dependencies in the relational model.

Then we show the other example in which we need to deal with relationship

types in the resolution of schematic discrepancies of entity types.

Example 7.3. In Figure 7.3, we give another ER schema DB4 modelling the si-

milar information as those in Figure 7.1. In DB4, each entity type of JAN PROD,

. . . , DEC PROD models the products supplied in one month, and each relation-

ship type SUPi, i=1, . . . , 12, models the supply relationships in the i-th month.

Note in DB4, we have a constraint that is none in the schemas of Figure 7.1: “in

each month, a product is uniquely supplied by one supplier.” This constraint (i.e.,

a functional dependency P# → S#) is represented as a cardinality constraint on

each relationship type SUPi.

In Figure 7.3, we resolve the schematic discrepancies of the entity types JAN PROD,

. . . , DEC PROD in 3 steps. In Step 1, for each of these entity type, say JAN PROD

= pm[m#=‘JAN’], we transform the discrepant meta-attribute m# to an attribute

M# of a new created entity type MONTH = month, and connect the entity types

PROD and MONTH with a relationship type PM = pm.

Then we handle the relationship type SUP1 that involves the entity type JAN PROD.

As SUP1=supply[inherit all], i.e., it inherits the context m#=‘JAN’ from JAN PROD,

and we have removed the context of JAN PROD, SUP1 becomes a ternary rela-

tionship type SUP=supply connecting the entity types PROD, MONTH and SUP-

PLIER.

Similarly, we can transform the entity types FEB PROD, . . . , DEC PROD and

the relationship types SUP2, . . . , SUP12.

Then in Step 2, the equivalent entity types, relationship types and attributes are

104

JAN_PROD SUP1

m
1P#

DEC_PROD
m

1

SUPPLIER

P#

S#

Step 2

JAN_PROD =pm[m#='JAN']

DEC_PROD =pm[m#='DEC']
SUP1=supply[inherit all]
 {PRICE =price[inherit all]}

SUP12=supply[inherit all]
 {PRICE =price[inherit all]}

PM=pm
SUP=supply
 {PRICE =price}

...

...

PROD SUP

m

1

SUPPLIER

P#
S#

m

PROD

SUP

m

1
SUPPLIER

P# S#

MONTH

m

M#

Step 1

SUP1 2

PRICE

PRICE

...

MONTH M# dom(M#)
= {JAN}

PRICE

MONTH

SUP
m

1

M#

m

PRODP#

dom(M#)
= {DEC}

PRICE

...

PRICE

DB4:

PM

PM

m

m

m

m

PM

m

m
PROD

SUP

m

1
SUPPLIER

P#

S#

MONTH
m

M#

PRICE

dom(M#) =
{JAN, ..., DEC}

Step 3

Figure 7.3: Resolve schematic discrepancies for entity types: handle relationship
types

105

merged respectively. Their domains are united.

Finally in Step 3, as in the ontology, the relationship type pm is a projection

of the relationship type supply, the relationship type PM of the transformed ER

schema is redundant and therefore removed. Note that this step is not included

in Algorithm ResolveEnt. Instead, it will be performed later in a main integration

algorithm calling the resolution algorithms (Section 8.5).

Note that the cardinality constraints on the relationship types SUPi’s of DB4

are represented as an equivalent cardinality constraint (i.e., a functional dependency

{P#, M#} → S#) on the relationship type SUP of the transformed schema. This

issue will be studied in detail in Section 7.3. �

The general algorithm is given below.

Algorithm ResolveEnt

Given an ER schema DB, the algorithm produces a schema DB′ transformed from

DB such that all the discrepant meta-attributes of the entity types are transformed

into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of an entity type.

Let E = T [C1 = c1, . . . , Cl = cl, inherit Cl+1, . . . , Cm] be an entity type of

DB, where T is a relationship type among m+1 entity types T1, . . . , Tm, Tm+1

in the ontology, and C1, . . . , Cm are m discrepant meta-attributes that are the

identifiers of T1, . . . , Tm. Each Ci, i = 1, . . . ,m, has a value of ci. Let Cm+1 be

the identifier of Tm+1, such that the identifier of E, K = Cm+1.

Step 1.1 Transform C1, . . . , Cm into the attributes of entity types.

Construct m+1 entity types E1 = T1, . . . , Em = Tm, Em+1 = Tm+1 with the

identifiers K1 = C1, . . . , Km = Cm, K = Cm+1 (note that the identifier of

Em+1 is the same as the identifier of E) if they do not exist.

106

Each Ei (i=1, . . . , m) contains one entity with the identifier Ci = ci. Em+1

contains all the entities of E.

Construct a relationship type R = T connecting E1, . . . , Em+1, such that

(c1, . . . , cm, k) ∈ R[K1, . . . , Km, K] iff k ∈ E[K].

end Step

Step 1.2 Handle the attributes of E.

Let A be an attribute (not part of the identifier) of E. A corresponds to a

type Aont in the ontology, and has a self context (i.e., a set of meta-attributes

with values) selfCnt.

if A is a many-to-one or many-to-many attribute then

case 1 A does not inherit any context of E:

A becomes an attribute of Em+1, such that

(k, a) ∈ Em+1[K,A] iff (k, a) ∈ E[K,A].

end case

case 2 A = Aont[selfCnt, inherit all], i.e., A inherits all the context

{C1 = c1, . . . , Cm = cm} from E:

Construct an attribute A′ = Aont[selfCnt] of R, such that

(c1, . . . , cm, k, a) ∈ R[K1, . . . , Km, K,A′] iff (k, a) ∈ E[K,A].

A′ has the same cardinality as A.

end case

case 3 A inherits some context from E. Without losing generality, let

A = Aont[selfCnt, inherit C1, . . . , Cj] for 1 ≤ j < m:

Construct a relationship type R′ connecting Em+1 and E1, . . . , Ej.

Construct an attribute A′ = Aont[selfCnt] of R′, such that

(c1, . . . , cj, k, a) ∈ R′[K1, . . . , Kj, K,A′] iff (k, a) ∈ E[K,A].

A′ has the same cardinality as A.

107

end case

else

/* A is a one-to-one or one-to-many attribute, i.e., A determines the

identifier of E in the context. We keep the inherited context of A, and

delay the resolution of it in Algorithm ResolveEntAttr, the resolution for

attributes of entity types, in which A will be transformed to the identifier

of an entity type to preserve the cardinality constraint. */

Construct an attribute A′ = Aont[Cnt] of Em+1, where Cnt is the self

context of A′ that is the union of the self and inherited contexts of A,

such that

(k, a) ∈ Em+1[K,A′] iff (k, a) ∈ E[K,A].

end if

end Step

Step 1.3 Handle the relationship types involving the entity type E in DB.

Let R1 be a relationship type involving E in DB, and S be a sequence of

the identifiers of all the entity types involved in R1. We transform R1 into

a relationship type R1′ as below.

if R1 has no attributes, or only has many-to-one and many-to-many at-

tributes then

case 1 R1 does not inherit any context of E:

Replace E with Em+1 in R1, and change R1 to R1′, such that

s ∈ R1′[S] iff s ∈ R1[S].

/*Note that the identifier of E is the same as the identifier of Em+1.*/

Represent each functional dependency on R1 (that is represented as a

cardinality constraint of the participating entity types in R1) in R1′.

end case

108

case 2 R1 inherits all the context {C1 = c1, . . . , Cm = cm} from E:

Construct R1′ involving E1, . . . , Em, Em+1 and all the entity types in

R1 except E, such that

(s, c1, . . . , cm) ∈ R1′[S,K1, . . . , Km] iff s ∈ R1[S].

Let A → B be a functional dependency on R1, where A and B are two

sets of the identifiers of some participating entity types in R1.

if K, the identifier of E, is in A ∪ B then

Represent a functional dependency A, K1, . . . , Km → B in R1′.

else

Represent the same functional dependency A → B in R1′.

end if

end case

case 3 R1 inherits some context, say {C1 = c1, . . . , Cj = cj} (1 ≤ j < m)

from E:

Construct R1′ involving E1, . . . , Ej, Em+1 and all the entity types in

R1 except E, such that

(s, c1, . . . , cj) ∈ R1′[S,K1, . . . , Kj] iff s ∈ R1[S].

Let A → B be a functional dependency on R1, where A and B are two

sets of the identifiers of some participating entity types in R1.

if K ∈ A ∪ B then

Represent a functional dependency A, K1, . . . , Kj → B in R1′.

else

Represent the same functional dependency A → B in R1′.

end if

end case

In each of the 3 cases, R1′ and R1 have the same attributes, correspond to

109

the same relationship type of the ontology, and have the same self context.

R1′ has no inherited context.

else

/* R1 has some one-to-one or one-to-many attributes. In order to pre-

serve the cardinality constraints of the attributes of R1, we keep the in-

herited context of R1 in R1′. This context would be removed in Algorithm

ResolveRel and ResolveRelAttr later. */

Replace E with Em+1 in R1, and change R1 to R1′, such that

s ∈ R1′[S] iff s ∈ R1[S].

The context of R1′ is the union of the self and inherited contexts of R1.

end if

end Step

end Step

Step 2 Merge equivalent entity types and equivalent relationship types.

for each set of equivalent entity types E do

Let E be the merged entity type.

The attribute set of E is the union of the attribute sets of all the entity

types of E.

for each set of equivalent attributes of some entity types of E do

Resolve the constraint conflicts in the attributes.

/* Algorithms to resolve constraint conflicts are given in [38]. */

Unite the domains of these equivalent attributes.

end for

end for

for each set of equivalent relationship types R do

Let R be the merged relationship type.

110

The attribute set of R is the union of the attribute sets of all the relationship

types of R.

Resolve the constraint conflicts in the relationship types.

/* Algorithms to resolve constraint conflicts are given in [38]. */

for each set of equivalent attributes of some relationship types of R do

Resolve the constraint conflicts in the attributes.

Unite the domains of these equivalent attributes.

end for

end for

end Step �

7.2.2 Resolving schematic discrepancies for relationship types

In the resolution of schematic discrepancies for relationship types, we should deal

with a set of entity types (participating in a relationship type) instead of individual

ones. The resolution can also be performed in 2 steps: first transform the discrepant

meta-attributes of relationship types into the attributes of entity types (unlike

Algorithm ResolveEnt, we don’t need Step 1.3 in Algorithm ResolveRel), and then

merge the equivalent schema constructs in the transformed schema. We first present

an example below.

Example 7.4. In DB3 of Figure 7.1, the relationship types JAN SUP, . . . , DEC SUP

have the same discrepant meta-attribute m#. In Figure 7.4, we resolve the schematic

discrepancies of these relationship types in two steps.

In Step 1, for each relationship type of DB3, say JAN SUP = supply[m#=‘JAN’],

we represent the meta-attribute m# as an attribute M# of a new created entity

type MONTH. After removing the context, we change JAN SUP into a ternary

relationship type SUP = supply, to connect the entity types PROD, MONTH and

111

PROD

P#

PRICE

SUPPLIER

S#JAN_SUP

DEC_SUP

PRICE

m

mm

m

DB3:

PNAME

PROD

P#

SUPPLIER

PNAME
S#

MONTH M#

dom(M#) = {JAN}

MONTH M#

dom(M#) = {DEC}

SUP

SUP

PRICE

PRICE

m

m

m

m

m

m

Step 1

JAN_SUP =supply[m#='JAN']
 {PRICE =price[inherit all]}

SUP =supply
{PRICE =price}

Step 2

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIERS#

m

PNAME

dom(M#)=
{JAN, ...,DEC}

...

...

DEC_SUP =supply[m#='DEC']
 {PRICE =price[inherit all]}

Figure 7.4: Resolve schematic discrepancies for relationship types

SUPPLIER.

Then we handle the attribute PRICE of the relationship type JAN SUP. As

PRICE = price[inherit all], i.e., its values depend on not only product numbers

and supplier numbers, but also months, PRICE = price becomes an attribute of

SUP in the transformed schema.

Similarly, we can transform the other relationship types FEB SUP, . . . , DEC SUP.

Then in Step 2, the equivalent entity types, relationship types and attributes are

merged. Their domains are united. �

The schema transformation (Steps 1 and 2) of Figure 7.4 actually is the appli-

cation of an “unite” operation (introduced in Section 3.1) on the relationship types

JAN SUP (P#, S#, PRICE)

...

DEC SUP (P#, S#, PRICE)

in DB3, such that the the metadata (i.e., months) of these relationship types be-

112

come the attribute values of the entity type MONTH, and these relationship types

are transformed to the relationship type

SUP (P#, S#,M#, PRICE)

among PROD, SUPPLIER and MONTH.

In general, the resolution of the schematic discrepancies for relationship types

is an extension of the untie operator (see Section 3.1) in the ER model. Further-

more, the propagation of cardinality constraints in the schema transformation is

an extension of the propagation of qualified functional dependencies in application

of an unite operation (introduced in Section 6.2).

For Figure 7.4, given the functional dependencies

JAN SUP (P#, S# → PRICE)

...

DEC SUP (P#, S# → PRICE)

on the relationship types JAN SUP, . . . , DEC SUP of DB3, we can derive a

functional dependency on the relationship type SUP in the transformed schema,

i.e.,

SUP (P#, S#,M# → PRICE).

The general algorithm ResolveRel is presented Appendix A.9. Note as the

resolution of the schematic discrepancies for relationship types always follows the

resolution for entity types, the relationship types input to Algorithm ResolveRel

have no inherited context (see Step 1.3 of Algorithm ResolveEnt for the transforma-

tion of relationship types in the resolution of the schematic discrepancies of entity

types).

113

7.2.3 Resolving schematic discrepancies for attributes of

entity types

Given an ER schema, we resolve the schematic discrepancies of the attributes of

entity types in two steps. In Step 1, given an attribute A of an entity type, we

transform the discrepant meta-attributes of A into the attributes of entity types,

and transform A to an attribute of a relationship type or the identifier of an entity

type. Then in Step 2, we merge equivalent schema constructs of the transformed

schema. We first explain the resolution algorithm by an example below.

Example 7.5. In Figure 7.5, we give another ER schema DB5 modelling the si-

milar information as those in Figure 7.1. In DB5, each of the 12 × n attributes

S1 JAN PRICE, . . . , Sn DEC PRICE models the prices of the products supplied

by one supplier in one month.

PROD

P#
S1_JAN_PRICE

Sn_DEC_PRICE

PNAME

PROD

P# SUPPLIER
PNAME S#

MONTH M#dom(M#)={JAN}

MONTH M#

dom(M#)={DEC}

SUP

SUP

SUPPLIER S#

dom(S#)={S1}

dom(S#)={Sn}PRICE

PRICE

m

m

m

m

m

m
Step 1

DB5:

S1_JAN_PRICE =price[s#='S1', m#='JAN']
 ...
Sn_DEC_PRICE =price[s#='Sn', m#='DEC']

SUP=supply
 {PRICE =price}

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIER
S#

m

PNAME Step 2

dom(M#) =
{JAN, ...,DEC}

dom(S#) =
{S1, ..., Sn}

...

...

Figure 7.5: Resolve schematic discrepancies for attributes of entity types

In Figure 7.5, we resolve the schematic discrepancies of the attributes

114

S1 JAN PRICE, . . . , Sn DEC PRICE in two steps. In Step 1, for each of the

attributes, say S1 JAN PRICE = price[s#=S1, m#=JAN], we represent the dis-

crepant meta-attributes s# and m# as the attributes of new created entity types

SUPPLIER = supplier and MONTH = month. In the ontology, price is an attribute

of the ternary relationship type supply. Then in the ER schema, we construct the

relationship type SUP = supply to contain the attribute PRICE = price.

Similarly, we can transform the other attributes S1 FEB PRICE, . . . ,

Sn DEC PRICE.

Then in Step 2, we merge all the equivalent entity types, relationship types and

attributes. Their domains are united. �

The resolution of schematic discrepancy in Figure 7.5 is actually an extended

“fold” operation (see Section 3.1) on the attributes S1 JAN PRICE, . . . ,

Sn DEC PRICE in DB5. Note that now these attributes have two (rather than

one) meta attributes s# and m#. In the transformation, the metadata (supplier

numbers and months) of the attributes S1 JAN PRICE, . . . , Sn DEC PRICE

are transformed to the attribute values of the entity types SUPPLIER and MONTH

in the relationship type SUP , and the values of the attributes S1 JAN PRICE, . . . ,

Sn DEC PRICE become the values of the attribute PRICE of the relationship

type SUP in the transformed schema.

Furthermore, the propagation of cardinality constraints in the schema transfor-

mation of Figure 7.5 extends the propagation of qualified functional dependencies

in application of a fold operation in the relational model (Section 6.2). For Figure

7.5, given a functional dependency

P# → {S1 JAN PRICE, . . . , Sn DEC PRICE}

represented as the cardinality constraints of the attributes of the entity type in

DB5, we can derive a functional dependency

115

{P#, S#,M#} → PRICE

represented as a cardinality constraint on the relationship type SUP in the trans-

formed schema.

The general algorithm ResolveEntAttr is presented in Appendix A.9. Note

as the resolution of the schematic discrepancies for the attributes of entity types

always follows the resolution for entity types, the attributes input to Algorithm

ResolveEntAttr have no inherited context (see Step 1.2 of Algorithm ResolveEnt

for the transformation of attributes in the resolution of the schematic discrepancies

of entity types).

7.2.4 Resolving schematic discrepancies for attributes of

relationship types

Given an ER schema, we resolve the schematic discrepancies of the attributes of

relationship types in two steps, i.e., Step 1 of transforming the discrepant meta-

attributes into the attributes of entity types and Step 2 of merging. Note unlike

Algorithm ResolveEntAttr, in Algorithm ResolveRelAttr, we need to deal with a

set of entity types involved in a relationship type instead of individual entity types.

We first explain the resolution algorithm by an example below.

Example 7.6. In the transformed schema of Figure 7.2, the attributes S1 PRICE,

. . . , Sn PRICE of the relationship type PM represent the prices of the products

supplied by the suppliers S1, . . . , Sn in some months. These attributes have the

same discrepant meta-attribute s#.

In Figure 7.6, we resolve the schematic discrepancies of the attributes S1 PRICE,

. . . , Sn PRICE in three steps.

In Step 1, for each attribute, say S1 PRICE = price[s#=‘S1’], we represent the

116

PROD

PMm m

Sn_PRICE

MONTH

S1_PRICE

P# PNAME M#. . .

Step 1
PROD

P#

MONTH

PNAME M#

PM

SUP
PRICE

SUPPLIER

S#

dom(S#)={S1}

SUPPLIER

S#

dom(S#)={Sn}

SUP

PRICE
. . .S1_PRICE =price[s#='S1']

...
Sn_PRICE =price[s#='Sn']

SUP =supply
 {PRICE =price}

mm

m m

mm

mm

PROD

P#

MONTH

PNAME M#

PM

SUPPRICE

SUPPLIERS#

dom(S#) = {S1, ..., Sn}

Step 2

m

m

mm

m

Step 3

PROD

P#

MONTH

M#

SUP
m m

PRICE

SUPPLIERS#

m

PNAME

Figure 7.6: Resolve schematic discrepancies for attributes of relationship types

discrepant meta-attribute s# as an attribute S# of a new entity type SUPPLIER

= supplier. In the ontology, price is an attribute of the ternary relationship type

supply. Then in the ER schema, we construct the relationship type SUP = supply

to contain the attribute PRICE = price.

Similarly, we transform the other attributes S2 PRICE, . . . , Sn PRICE.

Then in Step 2, equivalent entity types, relationship types and attributes are

merged respectively. Their domains are united.

Finally in Step 3, as in the ontology, the binary relationship type pm is a pro-

jection of the terary relationship type supply, in the ER schema, the relationship

type PM is redundant and therefore removed. Note that this step is not included in

Algorithm ResolveRelAttr. Instead, it will be performed later in a main integration

algorithm calling the resolution algorithms (Section 8.5). �

The resolution of schematic discrepancy in Figure 7.6 is actually a “fold” op-

117

eration (see Section 3.1) on the attributes S1 PRICE, . . . , Sn PRICE of the re-

lationship type PM in DB5, such that the metadata (supplier numbers) of these

attributes are transformed to the attribute values of the entity type SUPPLIER

in the relationship type SUP , and the values of these attributes become the values

of the attribute PRICE of the relationship type SUP in the transformed schema.

Furthermore, the propagation of cardinality constraints in the schema transfor-

mation of Figure 7.6 extends the propagation of qualified functional dependencies

in application of a fold operation in the relational model (Section 6.2). For Figure

7.6, given a functional dependency

{P#,M#} → {S1 PRICE, . . . , Sn PRICE}

represented as the cardinality constraints of the attributes of the original relation-

ship type PM , we can derive a functional dependency

{P#, S#,M#} → PRICE

represented as a cardinality constraint on the relationship type SUP in the trans-

formed schema.

The general algorithm ResolveRelAttr is presented in Appendix A.9. Note

as the resolution of the schematic discrepancies for the attributes of relationship

types always follows the resolution for relationship types, the attributes input to

Algorithm ResolveRelAttr have no inherited context (see Step 1.2 of Algorithm

ResolveRel for the transformation of attributes in the resolution of schematic dis-

crepancies of relationship types).

7.3 Semantics preserving transformation

In this section, we will show that Algorithm ResolveEnt in Section 7.2.1, i.e., the

resolution of the schematic discrepancies of entity types, preserves information and

118

cardinality constraints. The same property holds for the other three algorithms,

which is omitted as the proofs are similar to that of Algorithm ResolveEnt.

7.3.1 Semantics preservation of Algorithm ResolveEnt

We first give a definition of information preservation in the transformation of ER

schemas:

Definition 7.3 (Lossless transformation of ER schemas). Given a schema

transformation T on an ER schema E. Let I be any set of instances of the schema

E, if there exist an inverse transformation T ′ of T , such that T ′(T (I)) = I, then

we say T is information preserving. �

The resolution algorithm of schematic discrepancy for entity types, i.e., Re-

solveEnt is information preserving:

Theorem 7.1. Algorithm ResolveEnt preserves the information of entity types,

relationship types, attributes of entity types and attributes of relationship types.

Proof. The transformation of Step 1 of Algorithm ResolveEnt is a one-to-one map-

ping from the instance set of each original schema construct (i.e., entity type,

relationship type or attribute) onto the instance set of a transformed schema con-

struct. This can be concluded from the necessary and sufficient conditions of the

data transformation statements in the algorithm (i.e., the “iff” statements in Step

1 of Algorithm ResolveEnt).

Step 2 of merging equivalent schema constructs (implemented with the union or

outer-join operations in data integration) also preserves the information. That is,

there is a one-to-one mapping from the instance set of an original schema construct

onto a subset of the instance set of the transformed schema construct.

119

The same result of Theorem 7.1 holds for the other three algorithms, i.e., Al-

gorithm ResolveRel, the resolution of the schematic discrepancies of relationship

types, Algorithm ResolveEntAttr, the resolution of the schematic discrepancies of

the attributes of entity types, and Algorithm ResolveRelAttr, the resolution of the

schematic discrepancies of the attributes of relationship types.

Then we study the preservation of functional dependencies and multivalued

dependencies in the schema transformation of Algorithm ResolveEnt.

Theorem 7.2. The schema transformation of Algorithm ResolveEnt preserves the

constraints of functional dependencies and multivalued dependencies.

Proof. The proof is given in Appendix A.10.

The same result of this theorem also holds for the other three resolution algo-

rithms.

7.4 Schematic discrepancies in different models

7.4.1 Representing and resolving schematic discrepancies:

from the relational model to ER

In comparison to the relational model, ER is a semantic rich model that provides

more schema constructs to model an enterprise, and supports the representation of

cardinality constraints. This makes ER schemas expressive, easy of representation

and easy of understanding. On the other hand, this causes a diversity of schematic

discrepancies on ER schemas. In particular, we resolved schematic discrepancies

for entity types, relationship types, attributes of entity types and attributes of

relationship types respectively. Furthermore, schematic discrepancy on ER schemas

120

is defined through context and more general (in terms of the number of meta-

attributes of a schema construct) than the issue studied in the relational databases.

To resolve the schematic discrepancies for entity types and relationship types,

we extended the unite operator in the ER model. That is, we “unite” a set of en-

tity types (or relationship types) to a relationship type (or a new relationship type,

resp.), such that the meta-attributes of the original entity types (or relationship

types, resp.) are represented as the attributes of some entity types in the united

relationship type, as shown in Figure 7.2 (or Figure 7.4, resp.). To resolve the

schematic discrepancies for the attributes of entity types and attributes of relation-

ship types, we extended the fold operator in the ER model. That is, we transform

the meta-attributes of the original attributes to the attributes of entity types and

the values of the original attributes to the values of a new attribute of a relationship

type, as shown in Figure 7.5 or 7.6.

Qualified functional dependencies (and qualified multivalued dependencies) are

represented as cardinality constraints with contexts in ER. Again, as a construct

of an ER schema may have a set of meta-attributes, the constraints represented in

the ER schema would be more general than the qualified functional dependencies

studied in Chapter 6. The theory of the derivation of qualified functional dependen-

cies was extended to propagate cardinality constraints in the transformation of ER

schemas, as explained with Examples 7.2 to 7.6 in Section 7.2. For ER schemas, the

propagation of cardinality constraints is involved in schema transformation rather

than a separate process.

121

7.4.2 Extending the resolution in the integration of XML

schemas

The resolution of schematic discrepancies in the integration of ER schemas can be

extended to XML schemas in the ORASS model. That is, when schematic discrep-

ancies occur, we just transform the discrepant meta-attributes into the attributes of

new created object classes, and relate these object classes to original object classes

with edges. The new challenges come from the hierarchical structure of XML.

For example, in Figure 7.7, suppose we want to integrate two ORASS schemas

S1 and S2 modelling the same supply information, but with different structures.

In Schema S1, it is represented as a path PROD/MONTH/SUPPLIER, i.e., for

each product, listing the suppliers in each month. Note that the attributes of the

object classes and relationship types in the schema are omitted for convenience.

In Schema S2, it is represented as a set of paths JAN PROD/SUPPLIER, . . . ,

DEC PROD/SUPPLIER. That is, each path represents the suppliers of products

in one month. So the attribute values of months in Schema S1 correspond to

the meta information of Schema S2. That is, the two schemas are schematically

discrepant from each other.

Schema S1 Schema S2

SUPPLIER

S#

PRICE

MONTH

SPM, 3
M#

SPM

PROD

P#
SUPPLIER

S#

PS, 2

PS

JAN_PROD

P#

PRICE

...

SUPPLIER

S#

PS, 2

PS

DEC_PROD

P#

PRICE

JAN_PROD =pm[m#='JAN']
PS =supply[inherit all]

JAN_PROD =pm[m#='DEC']
PS =supply[inherit all]

SPM =supply

Figure 7.7: Two representations of the supply information in ORASS

122

To resolve the schematic discrepancy in the integration of S1 and S2, we may

transform the meta information of months in S2 into the attribute values of a

new created object class MONTH, and relate MONTH to the object classes of

PROD (i.e., the object class transformed from JAN PROD, . . . , DEC PROD after

removing the meta information) and SUPPLIER. The problem is how to order

the three object classes in a hierarchical path, e.g., MONTH/PROD/SUPPLIER,

PROD/SUPPLIER/MONTH, etc. A reasonable choice would be

PROD/MONTH/SUPPLIER, i.e., the same path as S1, as shown in Figure 7.8.

Then in the integrated schema of S1 and S2, this path also becomes the integrated

path of the source ones. The benefit of this choice is that when we integrate the

data of the source schemas to populate the integrated schema, we do not need to

reorder the objects of the path in S1.

Schema S1

Schema S2

SUPPLIER

S#

PRICE

MONTH

SPM, 3
M#

SPM

PROD

P#

SUPPLIER

S#

PS, 2

PS

JAN_PROD

P#

PRICE

...

SUPPLIER

S#

PS, 2

PS

DEC_PROD

P#

PRICE

SUPPLIER

S#

PRICE

MONTH

SPM, 3
M#

SPM

PROD

P#

SUPPLIER

S#

PRICE

MONTH

SPM, 3
M#

SPM

PROD

P#

...

dom(M#)
 = {JAN}

dom(M#)
 = {DEC}

dom(M#) =
{JAN, ..., DEC}

Transform Merge

Figure 7.8: Transforming Schema S2 to S1

In a word, the resolution of schematic discrepancies in the integration of XML

123

schemas can be divided into two steps: first transform the discrepant meta at-

tributes into attributes of object classes, and then integrate the transformed schemas

(free of schematic discrepancy) into one with a “good” hierarchical structure. Al-

though the first step can be adapted from the resolution for ER schemas, the second

step is not trivial, and will be studied in detail in the next chapter.

7.5 Summary

We proposed a framework to represent the meta information (context) of a con-

struct of an ER schema as a set of meta-attributes with metadata. Schematic

discrepancy occurs when metadata in one schema correspond to attribute values in

the other schema. Note that schematic discrepancy is now defined through context,

which is more general than the issue studied in relational database. Qualified func-

tional dependencies are represented by cardinality constraints with contexts in ER.

Correspondingly, the resolution of schematic discrepancy in the ER model is an

extension of the unite and fold operators in the relational model, and the propaga-

tion of cardinality constraints in the transformation of ER schemas is an extension

of the propagation of qualified functional dependencies in the transformation of

relational schemas. We resolved the schematic discrepancies of ER schemas by

removing the context of schema constructs, i.e., transforming the meta-attributes

that cause schematic discrepancies into attributes of entity types. The propagation

of cardinality constraints is involved in the schema transformation. The resolution

algorithms preserve the information and cardinality constraints in schema trans-

formation. This work complements the previous work resolving other semantic

heterogeneities in the integration of ER schemas. We have extended the the resolu-

tion techniques to XML schemas, while the hierarchical structures of XML remain

124

a challenge to be solved in the next chapter.

Chapter 8
Resolving hierarchical inconsistencies in

the integration of XML schemas

An important consideration in schema integration is to preserve the information

of source schemas. However, because of the inadequacy of DTD in XML schema

integration (discussed in Section 2.2), the work based on DTD may loss informa-

tion and generate an integrated schema that represents different meaning from the

source schemas. Furthermore, existing work treated object classes as the semantic

units, and might break relationship types among object classes in schema integra-

tion. We adopt ORASS to represent XML schemas, and treat relationship types

as the semantic units in schema integration. The inconsistencies of the hierarchi-

cal structures of source schemas are resolved in merging relationship types. We

first present some criteria of XML schema integration in applications, and then a

method to integrate XML schema using ORASS.

125

126

8.1 Use cases and criteria of XML schema inte-

gration

XML schema integration plays an important role in building an integration sys-

tem for either transaction or analytical processing purpose, but with different re-

quirements. A system for transaction processing (usually a mediated system, e.g.,

[14, 15, 17, 18, 49]) has a virtual integrated view (i.e., a mediated schema) which

provides a unified access to the heterogeneous data in sources. In this case, to

integrate source schemas into a mediated schema, we have two criteria:

Criterion 1. An integrated schema should preserve the information of source

schemas, i.e., there is a one-to-one mapping from the instance set of each source

schema onto a subset of the instance set of the integrated schema.

Criterion 2. An integrated schema should be concise, i.e., minimizing the number

of redundant elements.

These two criteria also apply to the schema integration in building a repository

of XML schemas [60]. The purpose of such a system is to provide a centralized

management of XML schemas to track the usage of schemas, and avoid proliferating

redundant schemas.

On the other hand, a system for analytical processing (i.e., a decision support

system) requires consolidating source data into a single physical store to provide

fast, highly available and integrated access to related information. Data transfor-

mation/integration is a real process instead of performed on the fly. Source data

are cleaned, transformed into a unified form, and then merged; redundancy is re-

moved. Traditionally, in a decision support system, people need to integrate data

with a magnitude of GB to TB. As the quantity of information available on the

127

Internet is rocketing, data transformation/integration itself becomes a bottle-neck

in the system. In this case, schema integration is a preliminary step to guide the

following data transformation. Besides the two criteria mentioned above, we have

the 3rd one for schema integration in a decision support system:

Criterion 3. Minimize the cost of data transformation.

Another interesting application of XML data integration is the cache of the

search engines on the Web. Currently, as the Web is HTML-based, search en-

gines are based on information retrieval technology. When data sources are well

defined and structured web sites (e.g., financial web sites, electronic libraries, and

business sites using XML-based document exchange), more complex queries with

some structural conditions can be supported. For example, given the title of a

book, search the lowest price of the book from bookstore web sites. To speed up

such queries, people may use robots crawling to cache book information. Unlike

current caches which are simply repositories of HTML documents or URLs (with

many redundancies and inconsistencies), the cache for an XML-based search engine

should have integration capability to support complex queries. Because of the huge

quantity of the information on the Web, the criteria of XML schema integration

in this application are similar to those for analytical processing, i.e., Criterion 1, 2

and 3.

Another similar application is the XML Web cache in a Web-based information

delivery system which provides Internet access to the information in large legacy

infrastructures [21].

128

8.2 XML schema integration: using ORASS

As mentioned in Chapter 2, schema integration is usually performed on semantic

rich models. We adopt ORASS as the canonical model in XML schema integra-

tion. In general, local (source) schemas could be DTDs, XML Schemas or even

relational schemas. We first translate them into ORASS schemas, in which se-

mantic enrichment is needed. The translation should be done semi-automatically.

We have developed a tool to help domain experts to identify relationship types

among object classes (the default relationship types are the binary ones between

parent and child classes) and the attributes of relationship types. Then we specify

the correspondences between the equivalent/similar constructs (i.e., object classes,

relationship types and attributes) of the ORASS schemas. Finally, we transform

and integrate the ORASS schemas, in which semantic heterogeneities are resolved.

Once the integrated schema and the mappings from the component schemas to

the integrated schema are created, we can do data integration or query processing

through the integrated schema.

In general, given a set of XML schemas in ORASS, we integrate them in the

following 7 steps. We say two relationship types are at the same level if their first

nodes are either the same node in a schema tree, or two root nodes in two schema

trees.

Step 1 Resolve schematic discrepancies (i.e., attribute names or class names in

one schema correspond to attribute values in another) by transforming the

attribute names or class names into attribute values.

Step 2 Resolve naming conflicts (i.e., homonyms and synonyms of object classes,

relationship types and attributes) by renaming.

Step 3 Resolve structural conflicts (i.e., attributes in one schema correspond to

129

object classes in another schema) by transforming the attributes into object

classes [74].

Step 4 Resolve the key conflicts of object classes from different schemas by select-

ing the common identifiers for equivalent object classes.

Step 5 Merge the schemas in a top-down way using an algorithm of merging rela-

tionship types (i.e., Algorithm MergeRel which will be introduced in Section

8.4). That is, for each source schema tree, we perform a depth first search

on the object classes. The relationship types at the same level of the schema

trees are merged with Algorithm MergeRel.

Step 6 Build class hierarchies and references among object classes.

Step 7 Remove the redundant relationship types that can be derived from others.

�

In this work, we studied the key techniques to merge relationship types (i.e.,

Step 5) in the integration of ORASS schemas. We first give an efficient method to

reorder the objects in relationships in Section 8.3, and then an algorithm MergeRel

to merge relationship types in Section 8.4. An example of XML schema integration

will be given in Section 8.5.

8.3 Reordering the objects in relationships

In ORASS schemas, a relationship type is represented as a path, i.e., a hierarchy

of object classes. Two object classes are equivalent to each other iff they model

the same real world concept. Two relationship types are equivalent to each other

iff they model the same association involving the same set of real world concepts.

Note the sets of the instances of a pair of equivalent object classes (or equivalent

130

relationship types) may not be the same; instead, they can be related in one of

4 ways: equal, subset, overlap and disjoint [71]. The attribute sets of a pair of

equivalent object classes (or equivalent relationship types) may not be the same

also because of the heterogeneity and semi-structuredness of source data.

Two equivalent relationship types may have different hierarchical structures,

i.e., different hierarchies of the participating object classes. To integrate equivalent

relationship types, we need to transform them to consistent hierarchical structures.

In this section, we present a method to reorder the objects in relationships, i.e.,

change the hierarchical orders of the objects in the relationships. Our method uses

relational databases as temporary storage space, and is more efficient than the

XQuery implementation.

To simplify the presentation, we use identifier values to represent the objects in

relationships, and defer the allocation of attributes (of objects and relationships)

until we have reordered the objects in the relationships. That is, the attributes of

an object will be kept with the object, and the attributes of the relationship will

be moved to the object at the lowest level in the transformed relationship.

We assume that in source XML data, the objects of a class have been sorted

by the identifier values. Otherwise, adopting the different hierarchies of the object

classes in an integrated relationship type makes little difference to the cost of data

transformation using our method.

8.3.1 Reordering objects using relational databases

In this subsection, we introduce two methods to reorder objects in relationships:

one uses relational databases to store and sort relationships, and the other one uses

XQuery. We find the former method would be more efficient than the latter one in

most cases.

131

Source XML data may be stored in different models, e.g., Element-Based Clus-

tering model (or EBC) in which element nodes with the same tag name are clus-

tered and organized as a list [53], Object Exchange Model (or OEM) [50], relational

databases (or object-relational databases) [21], or native XML documents. No mat-

ter how XML data is stored in sources, in order to efficiently reorder the objects in

relationships, we first get (using the wrappers on sources) and store the relation-

ships in a flat table with the fields corresponding to the identifiers of the object

classes involved in the relationship type, then sort the table by the identifier values

of the object classes in a required order. Finally, we compute the relationships

with the needed hierarchies of the objects by merging the objects with the same

identifier values in the table. We hereby present an example to explain the process.

Example 8.1. Suppose in Figure 2.2, we want to transform the relationship type

S/P/M into P/S/M (S, P, M are the shorthands for SUPPLIER, PROD and

MONTH), i.e., swapping SUPPLIER and PROD in Figure 2.2. Figure 8.1 (b)

represents three relationships of the original relationship type, in which “s1” rep-

resents an object of the class SUPPLIER with S# = s1, and so on. The attribute

PRICE of the relationship type will be handled after the reordering of objects, and

is omitted here for convenience.

s1

p1 p2

feb jan

s2

p1

jan

p1

s1 s2

feb jan

p2

s1

jan

(a) flat table (b) tree structure (c) sorted flat table (d) transformed trees

S# P# M#

s1 p1 feb

s1 p2 jan

s2 p1 jan

S# P# M#

s1 p1 feb

s2 p1 jan

s1 p2 jan

Figure 8.1: Reorder S/P/M into P/S/M: first sort the table by P#, S#, M#, then
merge the objets with the same identifier values in the table

We first scan and store the original relationships in a flat table of Figure 8.1

132

(a). To transform S/P/M into P/S/M, we just sort the flat table by P#, S#, M#.

This can be implemented by a sorting algorithm with a comparison function that,

given two tuples, compares the P# values, and if there is a tie, compares the S#

values, and if another tie occurs, compares the M# values. The result is Figure 8.1

(c). To construct the tree structure of these relationships, we scan the table, and

merge the objects with same values of P#, S# and M# in the table in order, and

get Figure 8.1 (d). �

Note that ORASS provides the following semantics that is necessary in reorder-

ing object classes in a relationship type:

1. relationship types. The object classes being reordered should be in a rela-

tionship type.

2. identifiers of object classes. We need to know the identifers of object classes

to merge the equivalent objects in the transformed relationships.

3. attributes of relationship types. Attributes of a relationship type should al-

ways be attached to the lowest object class in the relationship type. For

Figure 2.2, to reorder the object classes PROD and MONTH in the rela-

tionship type SPM , we should move the attribute PRICE from MONTH

to PROD, as it is an attribute of the relationship type SPM .

Then we present another approach to reordering the objects in relationships,

i.e., using XQuery. Suppose we do the same transformation as Example 8.1 with

XQuery statements. The original XML data is given in Figure 2.4. The XQuery

statements to implement the reordering is presented in Figure 8.2 (we assume that

in the source data, the root elements or the elements under the same parent will

not repeat). In Figure 8.2, we first get al.l the distinct values of P#; then for

each product, we get al.l the suppliers supplying that product; finally, for each

133

product and each supplier supplying that product, we get al.l the months in which

the product is supplied. Although not explicitly mention, users should know the

necessary semantics (i.e., the relationship type SPM , the identifiers of the object

classes and the attribute of the relationship type) in the original XML data in order

to write such a query of restructuring.

for $P# in distinct-values(/SUPPLIER/PROD/@P#)

return <PROD P# = ‘‘{$P#}’’>
{
for $S in /SUPPLIER[PROD/@P# = $P#]

return <SUPPLIER S# = ‘‘{$S/@S#}’’
{
for $M in $S/PROD[@P# = $P#]/MONTH

return $M

}
</SUPPLIER>

}</PROD>

Figure 8.2: XQuery statements to swap the elements SUPPLIER and PROD in
the XML document section of Figure 2.4

Suppose the source data is stored in an XML document and SAX is used to

parse the document. The evaluation of the XQuery statements would be costly.

Even for the simple instance of Figure 2.4, six parses of the data are needed. The

method using relational databases is more efficient which comprises two parses of

the data (to read the relationships into a flat table and to output trees from the

flat table), and the sorting of the tuples in the flat table.

8.3.2 Cost model

We consider the cost of data transformation in the integration of a set of equiv-

alent relationship types with different hierarchical structures probably. From the

last subsection, we know that the reordering of the objects in relationships needs to

sort the relationships in a flat table by the identifier values of the object classes in a

required order. Besides the cost of sorting, the integration of equivalent relationship

134

types involves some other costs, e.g., reading source relationships to flat tables, and

combining the relationships of several sorted tables to get the integrated relation-

ship type. The costs of reading and combination are constant given the numbers of

the relationships in the sources. But the sorting cost may be variable if we adopt

the different hierarchies of the object classes in the integrated relationship type.

So as to Criterion 3, i.e., minimizing the cost of data transformation (see Section

8.1), we only need compare the sorting costs in deciding the hierarchical structure

of an integrated relationship type.

To sort the relationships in a flat table, we adopt the classical method of “ex-

ternal merge sort” (the sort key consists of all the identifiers of the object classes

involved in the relationship type, i.e., all the fields in the flat table). Given a table

with n tuples (relationships) or N pages on a disk, let B > 3 be the number of

buffer pages, the I/O cost of sorting is

2N × ⌈1 + logB−1⌈N/B⌉⌉ (1)

However, the cost may be even reduced if the original relationships are already

sorted by the identifier values of some preceding object classes, and these object

classes are not involved in the reordering.

In general, given a relationship type O1/O2/ . . . /Om with n relationships (or

N pages for the table storing the relationships) sorted by the identifier values of

O1, O2, . . . , Om, let kj, j = 1, . . . ,m, be the average number of the objects of Oj

under the same parent object (or the average number of the root objects of Oj) in

the relationship type. Now we reorder O1/O2/ . . . /Om into O′
1/O

′
2/ . . . /O′

m such

that O1 = O′
1, . . . , Oi = O′

i but Oi+1 6= O′
i+1 for some 0 < i < m − 1.

To implement the reordering, we should sort the relationships in the flat table.

That is, we divide the relationships into k1 × . . .×ki groups such that the relation-

135

ships in each group have the same identifier values of O1, . . . , Oi. Then we only

need to sort the relationships in each group as the relationships in the flat table

are already sorted by the identifier values of O1, . . . , Oi which remain unchanged

in the transformed relationship type. Then the estimated I/O cost of sorting the

relationships by the identifier values of O′
1, . . . , O

′
m is

(k1 × . . . × ki) × 2 × N/(k1 × . . . × ki) × ⌈1 + logB−1⌈N/(k1 × . . . × ki)/B⌉⌉

= 2N × ⌈1 + logB−1⌈N/(B × k1 × . . . × ki)⌉⌉ (2)

Note when i = 0, i.e., the reordering changes the root node of a relationship

type, then formula (2) is degenerated into (1). On the other hand, when i = m, i.e.,

no reordering occurs, then formula (2) has a value of 0. In the rest of the paper, we

will use Formula (2) to estimate the cost of reordering the objects in relationships.

Given a set of equivalent relationship types R each element of which involves

m object classes, our purpose is to integrate them into one relationship type R

minimizing the total cost of transforming the relationships of R to the relationships

of R. To decide the hierarchical structure of the integrated relationship type, should

we compute the costs for all the m! permutations of the m object classes? The

answer is negative in most cases. We only need to select the hierarchical structure

of the integrated relationship type from all the distinct hierarchies of the object

classes in the relationship types of R, as shown in the following proposition.

Proposition 8.1. Given a set of equivalent relationship types R, let R be the inte-

grated relationship type of R minimizing the total cost of transforming the relation-

ships of the types in R into the relationships of R, then the hierarchical structure

of R must be the same as some relationship types in R.

Proof. This can be proven by induction.

136

Base case: the first object class of R is the same as the first object class of some

relationship types of R. Otherwise, to transform the relationships of each type R′

of R to the relationships of R, we need to reorder all the objects in R′, as R and

R′ have different root object classes. This takes more time than the case when R

has the same root as some relationship types of R.

Inductive hypothesis: the first i object classes of R are the same as the first i

object classes of all the relationship types of R1 for a non-empty set R1 ⊆ R.

We claim that the first i + 1 object classes of R are the same as the first

i+1 object classes of some relationship types of R1. Otherwise, we can construct a

relationship type R′ that has the same first i object classes as R and the same (i+1)-

th object class as all the relationship types of R2 for a non-empty set R2 ⊆ R1.

It takes the same cost to transform the relationships of the types in R − R2 to

the corresponding ones of R′ as the cost to transform them to the relationships

of R, but takes less cost to transform the relationships of the types of R2 to the

corresponding ones of R′ than the cost to transform them to the relationships of

R. That is, R does not minimize the total transformation cost. This contradicts

with our assumption. We conclude that the first i + 1 object classes of R are the

same as the first i + 1 object classes of some relationship types of R.

Consequently, when i is the number of all the object classes involved in the

relationship types of R, R is the same as some elements of R.

Before ending this section, we give an example of deciding the hierarchy of the

object classes in an integrated relationship type.

Example 8.2. Given two equivalent relationship types R1: S/P/M and R2: S/M/P,

suppose for R1, the page number of the table storing the relationships is 1000, and

the average numbers of the objects of S, P and M under the same parent in R1 are,

respectively, 50, 40 and 12, and for R2, the page number of the table is 3200, and

137

the average numbers of the objects of S, P and M under the same parent are 10,

60 and 12. Let the number of buffer pages B = 5. Applying Formula (2), we can

compute the total reordering cost if we adopt R1 or R2 as the integrated relationship

type:

1. R1 as the integrated relationship type. We only need to transform all the

relationships of R2 to the relationships of R1 (note that the root class S of

R2 is the same as R1):

0 + 2 × 3200 × ⌈1 + log5−1⌈3200/(5 × 10)⌉⌉ = 25600;

2. R2 as the integrated relationship type. We only need to transform all the

relationships of R1 to the relationships of R2:

2 × 1000 × ⌈1 + log5−1⌈1000/(5 × 50)⌉⌉ + 0 = 4000.

Consequently, adopting R2 as the integrated relationship type dramatically reduces

the data transformation cost. Intuitively, the benefit comes from two factors: (1)

the cardinality of R1 is less than R2, and therefore transforming the relationships

of R1 costs less; (2) the average number of the objects of S in R1 is bigger than

that in R2, and therefore the sorting of the tuples in the flat table of R1 costs less

than R2. �

Proposition 8.1 restricts the search space in computing an integrated schema of a

set of equivalent relationship types. More generally, several relationship types from

source schemas may contain some equivalent object classes constituting equivalent

sub relationship types which should be merged. We will study this general issue in

the next section.

138

8.4 Merging relationship types

The merging of relationship types should meet the three criteria raised in Section

8.1. We assume that the schema matching information of equivalent object classes

and equivalent (sub) relationship types are already known by matching techniques

[63] and human input.

8.4.1 Definitions

We first give an example to provide some intuition of the issue, and introduce some

concepts.

Example 8.3. In Figure 8.3 (a), there are three relationship types R1, R2 and R3

among object classes A (SUPPLIER), B (PROD), C (MONTH) and D (PROJECT),

where the sub relationship type among A, B and D in R1 is equivalent to R2, and

the sub relationship type among A, B and C in R1 is equivalent to R3.

We have four ways to merge the 3 relationship types, and get four candidate

integrated schemas (I) to (IV) in Figure 8.3 (b). E.g., Schema (I) is obtained

by first swapping C and D in R1, then merging it with R2 on A, B and D, then

swapping B and A in R3, and merging them together on A and B. Note that the

two C (one from R1 and the other one from R3) of Schema (I) cannot be merged;

otherwise some relationships of R3 which are not in R1 would be lost.

Note that each of the four candidate integrated schemas preserves the informa-

tion of the source relationship types R1, R2 and R3. �

Then the problem is, from those candidate integrated schemas, select one ac-

cording to the three criteria in Section 8.1. The method will be introduced in the

next sub-section. We first define some concepts below.

139

A

B

C

D

A

B

D

B

A

C

A

B

D

C

C

B

A

D

C

C

A

B

C

D

D

B

A

C

D

D

(I) (IV)(III)(II)

(a) original elationship
types

(b) 4 possible integrated schemas
of R1, R2 and R3

(R1) (R3)(R2)

P1

P2

P3

P4

P1=A/B; P2=D;
P3=C; P4=C

(c) the CP tree of
Schema (I)

Figure 8.3: different ways to merge relationship types

Definition 8.1 (Cognate path). In an integrated schema S of a set of relation-

ship types, we call a path of S a cognate path if all the object classes within the path

are from the same set of source relationship types. A cognate path is non-trivial if

it contains more than one object class. �

For example, in the integrated schema (I) of Figure 8.3 (b), A/B is a cognate

path as A and B are from the same set of source relationship types {R1, R2, R3}

(no matter what hierarchical orders of A and B in the source relationship types).

However, A/B/D is not a cognate path, as A and B are from {R1, R2, R3}, but D

is from {R1, R2}.

Lemma 8.1. In an integrated schema of a set of relationship types, the reorder-

ing of some object classes in a cognate path preserves the information of all the

relationship types.

Proof. Given an integrated schema S of a set of relationship types R, let O1/O2/ . . . /On

be a cognate path of S. Then the object classes O1, O2, . . . , On−1 on the path have

no branches. Otherwise, some classes of O1, O2, . . . , On would come from different

relationship types of R. Let R1 ⊆ R be the set of the relationship types from

which the cognate path O1/O2/ . . . /On comes. Then the reordering of some object

classes in the cognate path only affects the relationship types of R1. For any rela-

140

tionship r of a relationship type of R1, it becomes r′ in S such that r and r′ are

equivalent to each other, but have different hierarchical structures on the objects

of O1, O2, . . . , On. That is, there is a one-to-one mapping from the instance set of

each relationship type of R1 onto a subset of the relationships of S. We conclude

that the reordering of some object classes in the path O1/O2/ . . . /On of S preserves

the information of all the relationship types of R.

On the other hand, the reordering of the object classes from two cognate paths

would break relationship types, and therefore is not allowed. E.g., in Schema (I) of

Figure 8.3 (b), the swap of B and D will break the relationship type A/B/C (i.e.,

R3).

Definition 8.2 (Variation of cognate path). Given a cognate path P , we call

a path P ′ a variation of P iff P ′ contains the same set of object classes as P , but

probably has a different hierarchical structure. �

Definition 8.3 (Beneficial cognate path). Given an integrated schema S of a

set of relationship types, we say a cognate path P of S is beneficial if the path from

the root of S to some object class of P is the same as the paths from the roots of

some source relationship types. �

For example, in Schema (I) of Figure 8.3 (b), the cognate path A/B is beneficial,

as it is the same as the paths from the roots of R1 and R2 in Figure 8.3 (a); the

trivial cognate path D is beneficial, as A/B/D is the same as R2. Consequently,

adopting Schema (I) as the integrated schema can save the data transformation

cost of transforming the relationships of R1 and R2 (actually no cost for R2), but

not R3 whose root is different from the root of Schema (I) (see Section 8.3.2 for

the computation of data transformation costs).

141

Definition 8.4 (Cognate path tree). Given an integrated schema tree S of a set

of relationship types, we obtain the cognate path tree (or CP tree) of S by using

a node to represent each cognate path in S and preserving the edges between the

cognate paths in S. �

For example, in Figure 8.3, the CP tree of Schema (I) is Figure 8.3 (c). Note

in this CP tree, P3 is from R1 and P4 from R3.

A CP tree provides an overview of an integrated schema, treating cognate paths

as units to be handled in our algorithm. As there is a one-to-one mapping from

an integrated schema tree to a CP tree, we may use the two concepts (i.e., an

integrated schema tree and its CP tree) interchangeably in the rest of the paper.

Definition 8.5 (Merge-able schema trees). Two integrated schema trees S1

and S2 of some relationship types are (k-)merge-able iff they have the same k object

classes O1, O2, . . . , Ok in the cognate paths from their root nodes. O1, O2, . . . , Ok

are called the merge-able object classes between S1 and S2. �

For example, in Figure 8.3 (a), R1 and R2 are merge-able as they have the same

object classes A, B and D. They can be merged to a schema (path) S = A/B/D/C

consisting of two cognate paths P1 = A/B/D and P2 = C. Then S and R3 are

merge-able as they have the same object classes A and B in P1 of S and in R3.

Consequently, we can merge them to Schema (I) of Figure 8.3 (b).

Definition 8.6 (Data transformation cost of integrated schema). Given an

integrated schema S of a set of relationship types R, the data transformation cost

of S is the total cost of transforming the relationships of the types in R into the

relationships of S. �

The cost of transforming the relationships of a type can be computed with

Formula (2) of Section 8.3.2. Given an integrated schema S of a set of relationship

142

types, the reordering of the object classes in some individual cognate paths of

S will not break the relationship types (Lemma 8.1), but may change the data

transformation cost of S.

Definition 8.7 (Variation of integrated schema). Given an integrated schema

S of a set of relationship types, we call a schema obtained by reordering some object

classes in some individual cognate paths of S a variation of S (S is also a variation

of itself). �

From Lemma 8.1, we know that the variations of an integrated schema rep-

resent the same set of relationship types, but probably have different hierarchical

structures.

Definition 8.8 (Minimum cost tree). In an integrated schema tree S of a set

of relationship types, let S be the set of all the variations of S. We call S ′ ∈ S the

minimum cost tree of S iff S ′ minimizes the data transformation costs of all the

elements of S. �

For example, in Figure 8.3 (b), Schema (II) is a variation of (I). The minimum

cost tree of Schema (I) is Schemas (I) or (II) which has less cost to transform

the relationships of R1, R2 and R3 of Figure 8.3 (a) to the relationships of the

integrated schema.

8.4.2 Algorithm

Recall the three criteria of schema integration (Section 8.1), i.e., information pre-

serving, minimization of both redundancy and the cost of data transformation. Our

algorithm of merging relationship types are based on the three criteria. Although

Criterion 1 should be always satisfied, Criterion 2 and 3 may not be achieved at

the same time (e.g., data transformation is unnecessary at all if we do not merge

143

any relationship types). Criterion 2 usually has a higher priority than Criterion 3.

The reason is that a concise integrated schema (i.e., meeting Criterion 2) facilitates

the pose of queries against the integrated schemas, and reduces the redundancy of

integrated data. Note redundancy not only wastes storage space, but also causes

update, insertion and deletion anomalies. 1

Given a set of relationship types, we merge them by a 3-step algorithm Merg-

eRel. Step 1 is for Criterion 2, the conciseness of integrated schemas. In this step,

we try to merge the equivalent object classes of equivalent (sub) relationship types

as many as possible. It produces several candidate integrated schemas whose min-

imum cost trees are computed in Step 2. The schema with the minimum cost of

data transformation will be chosen as the final integrated schema. Finally in Step

3, we handle the attributes of object classes and attributes of relationship types for

the integrated schema. We first explain the first 2 steps by the following example,

and then give the general algorithm.

Example 8.4. In this example, we integrate the three relationship types R1, R2

and R3 of Figure 8.3 (a) in two steps. In Step 1, we have two strategies to merge

the relationship types (note in this step, we don’t care the variations of cognate

paths):

Strategy 1. First merge R1 and R2, then R3, and get Schema (I) of Figure 8.3

(b), or

Strategy 2. First merge R1 and R3, then R2, and get Schema (III) of Figure 8.3

(b).

Then for each of the candidate integrated schemas obtained from Step 1, we

compute the minimum cost tree for it in Step 2. For Strategy 1, given the CP tree

1Given more semantics, e.g., functional dependencies, we may generate more efficient inte-
grated schemas.

144

of Figure 8.3 (c), we decide the hierarchical structures of the cognate paths in a top-

down way. First for the cognate path P1, we have two variations, A/B and B/A.

Adopting A/B benefits the transformations of the relationships of R1 and R2, while

adopting B/A benefits the transformation of the relationships of R3. We study the

two variations one by one.

For the variation A/B, as the following cognate paths P2, P3 and P4 are all

trivial, no variations of them need to be considered. We compute the total cost

(say c1) to transform the relationships of R1, R2 and R3 into the relationships of

Schema (I), using Formula (2) of Section 8.3.2.

For the variation B/A of P1 (the integrated schema becomes (II) of Figure 8.3

(b)), we compute the cost (say c2) to transform the relationships of R1, R2 and R3

into the relationships of Schema (II). Then we compare c1 and c2, and choose the

schema with the less cost, say Schema (II), as the integrated schema for Strategy

1.

Then in a similar way, for Strategy 2, we compare the data transformation costs

of Schemas (III) and (IV), and get the integrated schema, say Schema (IV) with

the less cost. Finally, we compare the data transformation costs of Schemas (II)

and (IV), and choose the one with the less cost as the final integrated schema of

R1, R2 and R3. �

The general algorithm MergeRel is presented below. In the algorithm, we adopt

a greedy strategy for Step 1 of merging relationship types. The idea is similar to the

classical “agglomerative hierarchical clustering”, if we treat the merging problem

as clustering, and the number of merge-able object classes as the similarity between

two schema trees. That is, in each iteration of a loop, we merge the relationship

types (or schema trees) with the maximum number of merge-able object classes,

until no two trees are merge-able. Then in Step 2, we call an algorithm MCT (given

145

after MergeRel) to compute the minimum cost trees for the candidate integrated

schemas produced in Step 1, and select the schema with the minimum data trans-

formation cost as the final integrated schema. Finally in Step 3, we represent the

attributes for the integrated schema. Note that the integrated schema of a set of

relationship types may be a set of trees instead of one tree.

Algorithm MergeRel

Input: A set of relationship types R.

Output: An integrated schema of the relationship types of R.

Step 1. In this step, we merge the relationship types of R in a loop.

In each iteration of the loop, let T be the set of schema trees obtained from the

last iteration (initially T is equal to R).

while some trees in T are merge-able do

Let k be the maximum number of the merge-able object classes between any

two trees of T. Let M be a set of merge-able object classes with the cardinality

k, and TM be the maximum set of trees merge-able on M in T.

for each tree of TM do

Push the object classes of M to the top of the tree, and permute these object

classes in a fixed hierarchy which is decided in random.

end for

Merge these trees on the object classes of M . The domain of each object class

of M in the merged schema is the union of the domains of the corresponding

object classes of the trees in TM .

Note that the set M may not be unique, and the different choices of M lead

to different integrated schemas whose minimum cost trees will be computed in

Step 2.

end while

146

At the end of Step 1, we get a set of candidate integrated schemas. Each schema

(probably consisting of a set of trees) is an integration result of R corresponding

to a sequence of the choices of M during the merging.

Step 2. In this step, we compute the minimum cost trees for the integrated

schemas.

for each integrated schema S obtained in Step 1 do

for each CP tree T of a schema tree in S do

Let r(T) be the root of T . Call Algorithm MCT(r(T), c, T ′) (given below)

to compute a minimum cost tree T ′ of T with the data transformation cost

c.

end for

The data transformation cost of S is then the sum of the costs of the trees in

S.

end for

The schema with the minimum data transformation cost is selected to be the

final integrated schema of R.

Step 3. In this step, we represent the attributes of the integrated schema.

for each object class O in the integrated schema, let O be the set of the corre-

sponding object classes in the relationship types of R, do

for each set of equivalent attributes A of some classes of O do

Represent an attribute A (equivalent to the attributes of A) of O.

if there are some constraint conflicts (e.g., domain mismatch and cardinality

conflicts) among the attributes of A, then

Resolve these conflicts with some existing techniques, e.g., [38].

end if

The domain of A is the union of the domains of the attributes of A.

147

end for

end for

for each relationship type R in the integrated schema, let R1 be the set of the

corresponding relationship types in R, do

for each set of equivalent attributes A of some relationship types of R1, do

Represent an attribute A (equivalent to the attributes of A) of R under the

object class at the lowest level of R.

if there are some constraint conflicts among the attributes of A, then

Resolve these conflicts with some existing techniques, e.g., [38].

end if

The domain of A is the union of the domains of the attributes of A.

end for

end for �

We then give Algorithm MCT below to compute the minimum cost tree of

a schema tree. Algorithm MCT is developed based on an observation: given an

integrated schema tree S of a set of relationship types, for P a cognate path in the

schema tree, if P is beneficial, it saves the cost of transforming the relationships of

some source relationship types to the relationships of S; otherwise, the hierarchical

structure of P has nothing to do with the data transformation cost (a formal proof

will be given later), and therefore can be decided in random.

The execution of Algorithm MCT can be divided into two stages: top-down and

bottom-up stages. In the top-down stage, we recursively selects the hierarchical

structures of the cognate paths in the integrated schema (Line 5). When reaching

a leaf node (Line 10) or some node without beneficial variations (Line 19), we

compute the data transformation cost for the corresponding path (Line 12 to 17)

or sub-tree (Line 21 to 22), and return the minimum cost trees for those sub

148

Algorithm:MCT(P , c, T)

Input: An integrated schema tree S of a set of relationship types R, the CP tree
TS of S, and P the root node of TS.

Output: A minimum cost tree T of TS with the data transformation cost c.

1: if P has some variations that are beneficial then
2: if P is a non-leaf node in TS then
3: for each beneficial variation of P do
4: for each child node P.child[i] of P , i = 1, . . . , n do
5: MCT(P.child[i], ci, Ti)
6: end for
7: end for
8: Let Popt be a variation of P minimizing c = c1 + c2 + . . . + cn, and let T ′

i ,
i = 1, . . . , n, be the returned minimum cost trees rooted at Popt.child[i].

9: Construct the CP tree T that has the root Popt and n sub-trees T ′
1, . . . , T

′
n

under Popt.
10: else
11: /* P is a leaf node.*/
12: for each beneficial variation of P do
13: Let PATH be the path in S corresponding to the path from the root to

P in TS.
14: Compute the data transformation cost c of PATH by Formula (2) of

Section 8.3.2.
15: end for
16: Let Popt be a variation of P minimizing c.
17: Construct the CP tree T that has the only node Popt.
18: end if
19: else
20: /* P has no beneficial variation. In this case, the hierarchical structures of

P and the descendants of P are not important.*/
21: Construct the CP tree T as the same (sub-)tree rooted at P in TS.
22: Compute the data transformation cost c of the tree consisting of the path

from the root to P and the (sub-)tree rooted at P in TS.
23: end if �

149

structures. Then in the bottom-up stage, we compute the data transformation

costs and construct the minimum cost trees rooted at the parent nodes given the

costs and the minimum cost trees rooted at the child nodes (Line 8 to 9).

We refer readers to Example 8.4 for the intuition of Algorithm MergeRel and

MCT. In the next subsection, we will evaluate the algorithms by the three criteria.

8.4.3 Evaluation of Algorithm MergeRel

We evaluate the algorithm MergeRel of merging relationship types by the three

criteria given in Section 8.1. As to Criterion 1, we have:

Theorem 8.1. Algorithm MergeRel preserves the information of object classes,

relationship types, the attributes of object classes and the attributes of relationship

types.

Proof. Given a set of relationship types R, let S be the integrated schema with

Algorithm MergeRel.

For each object class O of S, let O be the set of the corresponding object classes

in the relationship types of R. The domain of O is the union of the domains of the

classes in O. That is, the merging preserves the objects of each class in O.

As to the preservation of relationships, we consider Step 1 and 2 of Algorithm

MergeRel. In Step 1, in each iteration of the loop, to merge two trees (or paths), we

first reorder the object classes in the cognate paths from the roots of the two trees,

which preserves relationships (according to Lemma 8.1). Then we merge the merge-

able object classes of the two trees, which makes no difference to relationships.

Then in Step 2, we call Algorithm MCT to compute the minimum cost trees of the

candidate integrated schemas, in which we may reorder the object classes in some

cognate paths to get beneficial paths. This also preserves relationships, according

to Lemma 8.1.

150

We omit the proof of the preservation of the attributes, which requires a thor-

ough investigation of the resolution of constraint conflicts among attributes. This

is not the focus of this paper. We refer interested readers to [38].

As to Criterion 2, the minimization of redundancy, Algorithm MergeRel (Step

1) adopts a greedy strategy to merge object classes in equivalent (sub) relationship

types. However, it cannot be ensured that the integrated schema minimizes the

number of redundant object classes, although our experiment shows that it almost

always produces concise integrated schemas. It may take much time to compute

the “optimal” result according to Criterion 2. Actually, even adopting our greedy

method, we find the search space may be exponential to the number of source

relationship types for some extreme cases. This step becomes the bottle-neck of the

merging algorithm, and requires further research on it. Fortunately, the efficiency

of schema integration is not as critical as the efficiency of data transformation

or query processing, as schema integration would be performed infrequently and

off-line in many cases.

As to Criterion 3, we have the following result:

Theorem 8.2. Algorithm MergeRel (Step 2) computes an integrated schema min-

imizing the data transformation costs in the set of the schemas produced by Step 1

of the algorithm.

Proof. The proof is given in Appendix A.11.

8.5 XML schema integration by example

The methods of reordering object classes and merging relationship types introduced

in the last two sections provide the basic operations for XML view management [12]

and XML schema and data integration. In Section 8.2, we introduced 7 steps to

151

integrate XML schemas in ORASS, using our method to merge relationship types

and some existing techniques to resolve semantic heterogeneities. We herby give

an example to explain some of these steps.

Example 8.5. Given the 4 schemas of Figure 8.4 (the schemas are adapted from

[74]), we integrate them following the 7 steps (see Section 8.2). Without loss of

generality and to simplify the discussion, we assume that there are no schematic

discrepancy (Step 1), no naming conflict (Step 2) and no key conflict (Step 4)

among these schemas, and the schemas only include few attributes.

PROJ

PARTJ#

P#

LOCAL_
FUND

L#

FOREIGN_
FUND

F#

PROJ_
MGR

JP

(a) Schema S1

STAFF

E#
ORG

ORG_NAME

NAME ABBR

ADDR

NAME

(b) Schema S2

PROJ

SUPPLIERJ#

S#
name PROJ_MRG

E#

STAFF

E#

PART

P#

JS, 2

JPS, 3

ORG_NAME

NAME ABBR

ORDINARY_
STAFF

(c) Schema S3

PART

SUPPLIERS#

P#
QTY

JPS,3

JPS

PROJ

J#

JP, 2

FUND

U#

PROJ_MRG

NAMEE#

(d) Schema S4

Figure 8.4: Source schemas

Step 3 Resolve attribute-class conflicts. The attribute PROJ MGR (i.e., project

manager) in Schema S1 corresponds to the object classes PROJ MGR in

Schema S3 and S4. We transform it into an object class in S1.

Step 5 Merge relationship types. The relationship type JP of Schema S1, JPS of

S3 and JPS of S4 are at the same level and have equivalent (sub-)structures.

We merge them using Algorithm MergeRel.

152

In Step 1 of Algorithm MergeRel, we first merge the JPS relationship types

of S3 and S4, then JP of S1, and get an integrated schema (path)

PROJ/PART/SUPPLIER constituted of two cognate paths P1=PROJ/PART

from S1, S3 and S4 and P2=SUPPLIER from S3 and S4.

Then in Step 2 of Algorithm MergeRel, we compute the minimum cost tree of

the integrated schema obtained in the last step. For P1, the path PROJ/PART

is the only beneficial path which benefits the transformations of the relation-

ships of all the three relationship types. P2 is a trivial cognate path. Conse-

quently, we get the final integrated schema (path) PROJ/PART/SUPPLIER.

This schema preserves the relationships of the source relationship types of S1,

S3 and S4, has no redundancy and the minimal cost of data transformation.

Actually, we only need to reorder the objects of SUPPLIER and PART in the

relationship type JPS of S3 in data transformation.

Similarly, the relationship types between PROJ and PROJ MGR in Schema

S1 and S4 are merged.

Step 6 Build class hierarchies and references. In the merged schema (say S5) of

S1, S3 and S4, the object class FUND (from Schema S4) is a generalization of

LOCAL FUND and FOREIGN FUND (from S1), and STAFF (from S3) is a

generalization of PROJ MGR (from S1, S3 and S4) and ORDINARY STAFF

(from S3). ISA relationship types are created to link them. The result is shown

as Figure 8.5 (attributes are all omitted for convenience).

Note the object class STAFF of S5 in Figure 8.5 has an inclusion dependency:

its objects are the staff involved in some projects. The same object class of

Schema S2 has not this constraint, and therefore cannot be merged into S5;

otherwise, some staff of S2 may be lost in the integrated schema. Instead, we

153

use a reference (dashed arrows) to indicate that the staff members of S5 is in

the object class STAFF of S2.

PROJ

PART

name PROJ_MGR

STAFF

ORDINARY_
STAFF

SUPPLIER

JP, 2

JPS, 3

ORG_NAME

FUND

FOREIGN_
FUND

LOCAL_
FUND

STAFF

ORG

ORG_NAME

S5 merged from S1, S3 and S4

S2

Figure 8.5: Intermediate integrated schema of S1 to S4 after Step 6

Step 7 Remove the redundant relationship types. In Schema S5 of Figure 8.5, we

remove the redundant relationship type from PROJ to PROJ MGR (this rela-

tionship type can be derived from the relationship type from PROJ to STAFF

and the relationship type from STAFF to PROJ MGR), the relationship type

from PROJ to LOCAL FUND, the relationship type from PROJ to FOR-

EIGN FUND, and the relationship type from PROJ MGR to ORG NAME in

S5. Figure 8.6 is the final integrated schema. �

PROJ

PART

name PROJ_MGR

STAFF

ORDINARY_
STAFFSUPPLIER

JP, 2

JPS, 3

FUND

FOREIGN_
FUND

LOCAL_
FUND

STAFF

ORG

ORG_NAME

QTY

JPS

ADDR

NAME ABBR

J#

P#

S# E# L# F#

E# NAME

E#

Figure 8.6: Integrated schema of S1 to S4 by our approach

Note that in Step 5, we adopt a rather strict method to integrate schemas, i.e.,

only relationship types at the same level would be merged, as two relationship types

154

at the same level have the same context information (i.e., inclusion dependency).

However, this restriction may be loosen if we allow merging equivalent (sub) re-

lationship types of different levels. Then we could obtain more concise integrated

schemas, but lose some information.

8.6 Comparison with other approaches to XML

schema integration

In [74], they treated object classes as first-class citizens, and focused on the resolu-

tion of attribute-class conflicts, classification inconsistencies and ancestor-descendant

conflicts in the integration of XML schemas in ORASS. To integrate schemas, they

assigned each source schema a weight of importance, and tried to keep the char-

acteristics of source schemas with larger weights in the integrated schemas. This

work is an extension to the previous work. The integration approach of this work is

based on the merging of relationships, which preserves more information. Instead

of using the generic criterion of “weight” assigned by users, we adopt three concrete

criteria for schema integration.

Figure 8.7 is the integrated schema of Schemas S1 to S4 in Figure 8.4 by the

approach of [74], which has some problems in comparison to Figure 8.6:

• The binary relationship type JP of Schema S1 is lost in Figure 8.7. E.g., a

relationship between a project and a part that occurs in S1 but not in S3 and

S4 would be lost. Note by assigning a high weight to S1, we may preserve

JP, but some other relationships may be lost. The reason is that their work

was based on the merging of object classes. Relationship types are added to

link object classes. When several relationship types point to one object class,

the relationship types with small weights would be removed (i.e., lost) in the

155

integrated schema. Our approach is based on the merging of relationship

types, and therefore preserve information.

• Schema S2 is merged with the other schemas. This introduces an unnecessary

constraint to the objects of Schema S2, and may cause some loss of informa-

tion. E.g., a staff member of S2 that does not participate in any project

would be lost in the integrated schema. The reason is that they merge equiv-

alent object classes, not considering the ancestors (that represent the context

information) of the classes. In our approach, we merge the equivalent object

classes with the same ancestors, and therefore have not this problem.

PROJ

SUPPLIER

name

PROJ_MGR

STAFF

ORDINARY_
STAFF

PART

JS, 2

JPS, 3

ORG_NAME

FUND

FOREIGN_
FUND

LOCAL_
FUND

ORG

QTY

JPS

J#

S#

P#

E#

E#

L# F#

ABBRNAME

ADDR

NAME

E#

Figure 8.7: Integrated schema of S1 to S4 by the approach of [74]

Unlike our semantic approach, some work in XML schema integration was based

on the grammar model of DTD. For example, [65] devised a semantic approach

to integrate a set of DTDs into a common conceptual schema. That work has

some deficiencies compared with ours: (1) they handled only binary relationship

types between XML elements; (2) they did not integrate equivalent relationship

types in different hierarchical orders; (3) the integrated schema may contain some

unnecessary circles for redundant relationship types. [29] applied a tree grammar

inference technique to generate a set of tree grammar rules from source DTDs. For

156

the inadequacies of DTD in schema integration (Section 2.2), their approach may

lose semantics and the integrated schema may be redundant.

The example below shows the differences between the integration approaches

based on ORASS and DTD. Figure 8.8 is the integrated schema of Schemas S1 to

S4 by the approach of [29], which has some problems in comparison to Figure 8.6:

• Some relationship types are redundant, e.g., the one from PROJ to PART,

the one from PART to SUPPLIER, and the one from PROJ to PROJ MGR.

The reason is that their approach did not check the recursive definitions

of elements which are redundant in an integrated DTD. Actually as DTD

does not support n-ary (n > 2) relationship types in hierarchical paths, the

approaches based on DTD can hardly eliminate the redundant relationship

types without any loss of information.

• QTY, an attribute of the ternary relationship type JPS, becomes an attribute

under the object class SUPPLIER. In other words, QTY becomes an attribute

of SUPPLIER or an attribute of the binary relationship type between PROJ

and SUPPLIER. This is wrong as quantities are dependent on products,

suppliers and months. The underlying reason is that DTD does not support

the attributes of relationship types.

• Schema S2 is merged with the other schemas. The same problem occurred as

mentioned above.

• They did not consider class hierarchies, e.g., the ISA relationships between

FUND and LOCAL FUND/GLOBAL FUND.

157

PROJ

SUPPLIER

name
PROJ_MGR

STAFF

ORDINARY_
STAFF

PART

FUNDFOREIGN_
FUND

LOCAL_
FUND

ORG

ORG_NAME

QTY

ADDR

F#L#

E#

NAME

E#
P#

J#

S# U#

ABBR

E# NAME

Figure 8.8: Integrated schema of S1 to S4 by the approach of [29]

8.7 Summary

In some XML data integration systems, e.g., Xyleme [17], Nimble [18], LoPiX [49]

and YAT [14, 15], the developers either provided an XML query language for users

to write integrated schemas by hand, or assumed that an integrated schema and the

mapping from source schemas to the integrated schema have been given already.

They focused on query processing through the integrated schema. However, our

purpose was to developed an approach to automatically integrate a set of XML

schemas given the schema matching information. The integrated schema should

satisfy three criteria emanating from applications, i.e., information preservation,

minimization of both redundancy and the cost of data transformation. Most of the

previous work was based on DTD, and therefore could not handle n-ary (n > 2)

relationship types among object classes and attributes of relationship types. Yang

et al. [74] used ORASS to represent XML schemas. However, their approach

was based on the merging of object classes, and may loss some relationship types.

They used the user-specified weight of importance to assess source schemas and to

compute integrated schemas. However, the criterion of weight was sometimes too

vague to be specified. In this work, we also adopted ORASS to represent XML

schemas for the rich semantics of the model. Our work was based on the merging

158

of relationship types, and preserved the information of object classes, relationship

types, attributes of object classes and attributes of relationship types. In particular,

we presented Algorithm MergeRel to merge equivalent (sub) relationship types with

different hierarchical structures. Consequently, our approach can produce better

integrated schemas than Yang et al.’s. Furthermore, our approach was based on

the three specific criteria that were customized for the applications introduced in

Section 8.1.

Chapter 9
Conclusion

9.1 Summary of contributions

This research attempted to resolve some semantic heterogeneities and derive con-

straints in the integration of relational, ER or XML schemas.

Schematic discrepancy occurs when meta information in one schema correspond

to data values in another schema. In relational databases, researchers [34] have

developed the 4 restructuring operators fold, unfold, unite and split to transform

discrepant schemas into consistent ones. In this work, we developed a theory for dis-

crepant schema transformations. We gave the algebraic laws, i.e., reconstructibility

and commutativity, of the 4 restructuring operators. We found fold and unfold

operations are not reconstructible unless the original relations satisfy some func-

tional dependencies (i.e., Properties 3 and 4 in Section 5.1.1). A discrepant schema

transformation is lossless if the operations of it are all reconstructible. A lossless

discrepant schema transformation can be simplified to a non-redundant transforma-

tion that contains only necessary operations. This theoretical work could be used

to improve the integration/interoperation of multiple and heterogeneous databases.

Furthermore, as a multidatabase query can be implemented with the restructuring

159

160

operators and relational algebra [34], our work (together with the existing theory

of relational algebra) could be used to optimize the query.

Conventional functional dependencies are inadequate to represent constraints

in multiple and heterogeneous databases. We extended functional dependencies to

qualified functional dependencies, i.e., functional dependencies holding over a set

of relations or a set of horizontal partitions of relations, to represent some com-

mon constraints in multidatabase, and studied the derivation and uses of qualified

functional dependencies in multidatabases. We presented a set of inference rules

to derive new qualified functional dependencies from given ones in a set of fixed

relational schemas. We proved that these rules are sound, complete and irreducible.

We gave an algorithm CLOSURE (in Section 6.1.3) to compute an attribute closure

under the qualification of some attribute values in a set of relations with respect to

a set of qualified functional dependencies. We gave the propagation rules to derive

the qualified functional dependencies on transformed schemas from the qualified

functional dependencies on original schemas in application of a (set of) restructur-

ing operator(s). In discrepant schema transformations, we are mostly interested

in simple qualified functional dependencies that are the qualified functional depen-

dencies represented as functional dependencies in a canonical schema (a canonical

schema is one in which all interesting information is modelled as attribute values,

e.g., DB1 in Figure 1.1). Based on the inference and propagation rules, we pro-

posed algorithms to derive simple qualified functional dependencies in discrepant

schema transformations. The algorithms are sound and complete. The efficient

derivation algorithm runs in polynomial time for some large and significant classes

of inputs. Our theory of qualified functional dependency derivation is useful in data

integration/mediation systems and multidatabase interoperation. For example, we

can use it to verify lossless transformations, normalize integrated schemas, detect

161

duplicate and inconsistency, verify data integrity in materialized view maintenance,

and optimize queries in data integration/mediation. SchemaSQL is a multidatabase

language which was used to solve many problems [54]. However, we found that a

SchemaSQL view may be ambiguous. By deriving qualified functional dependencies

for a view, we can verify the its uniqueness.

In comparison with the relational model, the ER approach provides adequate

schema constructs to model an enterprise, and supports cardinality constraints.

This makes ER an appropriate model in the view integration of database design

and the database-schema integration of federated database systems. In the integra-

tion of ER schemas with schematic discrepancies, we explicitly represent the meta

information (i.e., context) of each schema construct as a set of meta-attributes with

values, and resolve schematic discrepancies by transforming the meta attributes into

attributes of entity types. The schema transformation was proven to be both infor-

mation preserving and constraint (functional dependency and multivalued depen-

dency) preserving. Note that as the ER model supports cardinality constraints, the

derivation of constraints is involved in schema transformation rather than a separate

process. The resolution of schematic discrepancies for entity types and relationship

types is an extension of the unite operator, and the resolution of schematic discrep-

ancies for the attributes of entity types and attributes of relationship types is an

extension of the fold operator in the ER model. Qualified functional dependencies

(and qualified multivalued dependencies) are represented as cardinality constraints

with contexts in ER. The theory of the derivation of qualified functional depen-

dencies was extended to propagate cardinality constraints in the transformation of

ER schemas. This work complements the previous work resolving other semantic

heterogeneities in the integration of ER schemas.

As XML becomes more and more a de facto standard to represent and exchange

162

data on the Web, XML schema and data integration becomes a hot topic in both

academy and industry. The resolutions of schematic discrepancies and other se-

mantic heterogeneities for the relational and ER models can be extended to XML.

However, the hierarchical structure of XML brings new challenges in the integra-

tion of XML schemas, which becomes the focus of our work. Most of the previous

work was based on DTD, and therefore could not handle n-ary (n > 2) relationship

types among object classes and attributes of relationship types. Yang et al. [74]

used ORASS to represent XML schemas. However, their approach was based on

the merging of object classes, and may loss some relationship types. They used

the user-specified weight of importance to assess source schemas and to compute

integrated schemas. However, the criterion of weight was sometimes too vague to

be specified. In this work, we also adopted ORASS to represent XML schemas for

the rich semantics of the model. Our work was based on the merging of relationship

types, and preserved the information of object classes, relationship types, attributes

of object classes and attributes of relationship types. In particular, we presented

Algorithm MergeRel to merge equivalent (sub) relationship types with different

hierarchical structures. We identified three specific criteria of schema integration

in different applications, i.e., information preserving, minimization of both redun-

dancy and the cost of data transformation. Our approach was based on the three

specific criteria that were customized for the applications introduced in Section 8.1.

Furthermore, to resolve the hierarchical inconsistencies among XML schemas, we

gave an efficient method to reorder the objects in relationships (i.e., changing the

hierarchical positions of the objects in the relationships which are represented as

hierarchical paths in ORASS) using relational databases. Our work is useful in

XML-based information integration systems and generic model management sys-

tems. The methods of reordering object classes and merging relationship types can

163

also be used in XML view management.

9.2 Future work

There are some strong assumptions behind the restructuring operators. For exam-

ple, in application of fold and unite operations, we suppose that we know in advance

that the attribute names or relation names are the values of some attributes. Such

information may be hard to know in practice. Are there any ways to get these

information automatically? For another example, in application of unfold and split

operations on some attributes, we assume that the domains of the attributes are

finite. How about the cases when the domains are infinite? These problems need

to be resolved when we apply the restructuring operators in practice.

We studied the derivation of qualified functional dependencies together with

functional dependencies, cardinality constraints in discrepant schema transforma-

tions. It would be interesting and useful to incorporate some other constraints,

e.g., inclusion dependencies, multivalued dependencies, etc, in the framework.

A promising application of our theory of qualified functional dependency is in

the optimization of queries in a multidatabase system, i.e., using the semantics

of qualified functional dependencies and other constraints to add/remove some

conditions in a multidatabase query.

We can also develop a normalization theory of multidatabases based on qualified

functional dependencies, as the normalization theory of individual databases based

on functional dependencies.

XML schema integration is a preceding procedure of data integration or medi-

ation that requires further research. For example, given an integrated schema and

the mappings from the integrated schema to source schemas, how can we query the

164

data in the sources through the integrated schema.

Appendix A
Appendix

A.1 Commutativity of restructuring operations

Property 5 (Commutativity of fold and unite operations). Given a set

of relations {di(A1, . . . , An, b1, . . . , bm)|i = 1, . . . , l}, such that the relation names

d1, . . . , dl are from the domain of an attribute D, and in each relation of di, the

attribute names b1, . . . , bm are from the domain of an attribute B and their values

are from the domain of another attribute C, we have:

unite({fold(di, B, C)|i = 1, . . . , l}, D) = fold(unite({d1, . . . , dl}, D), B, C). �

Property 6 (Commutativity of fold and split operations). Given a relation

R(A1, . . . , An, b1, . . . , bm, D), such that the attribute names b1, . . . , bm are from the

domain of an attribute B and their values are from the domain of another attribute

C, we have:

split(fold(R,B,C), D) = {fold(Ri, B, C)|Ri ∈ split(R,D)}. �

Property 7 (Commutativity of two fold operations). Given a relation

165

166

R(A1, . . . , An, b1, . . . , bm, b′1, . . . , b
′
l), such that the attribute names b1, . . . , bm are

from the domain of an attribute B and their values are from the domain of an

attribute C, and the attribute names b′1, . . . , b
′
l are from the domain of an attribute

B′ and their values are from the domain of an attribute C ′, we have:

fold(fold(R,B,C), B′, C ′) = fold(fold(R,B′, C ′), B, C). �

Property 8 (Commutativity of fold and unfold operations). Given a rela-

tion R(A1, . . . , An, b1, . . . , bm, B′, C ′), such that the attribute names b1, . . . , bm are

from the domain of an attribute B and their values are from the domain of an

attribute C, we have:

unfold(fold(R,B,C), B′, C ′) = fold(unfold(R,B′, C ′), B, C). �

Property 9 (Commutativity of unfold and unite operations). Given a set of

relations {di(A1, . . . , An, B, C)|i = 1, . . . , l}, such that the relation names d1, . . . , dl

are from the domain of an attribute D, we have:

unite({unfold(di, B, C)|i = 1, . . . , l}, D) = unfold(unite({d1, . . . , dl}, D), B, C).

Property 10 (Commutativity of unfold and split operations). Given a

relation R(A1, . . . , An, B, C,D), we have:

split(unfold(R,B,C), D) = {unfold(Ri, B, C)|Ri ∈ split(R,D)}. �

Property 11 (Commutativity of two unfold operations). Given a relation

167

R(A1, . . . , An, B, C,B′, C ′), we have:

unfold(unfold(R,B,C), B′, C ′) = unfold(unfold(R,B′, C ′), B, C). �

A.2 Proof of Lemma 5.1

We prove this lemma by induction. Let T =< T1, . . . , Tn > be a transformation

consisting of n steps, such that each step is one or a set of restructuring operation(s).

Base case: n = 2. If T consists of two operations unite(R, B) and split(R,B),

then according to the reconstructibility of unite (Property 2) or split (Property

1), T is the same as the “identical” transformation. That is, the unite and split

operations are reverse operations. Otherwise, if T consists of two sets of opera-

tions {fold(R,B,C)|R ∈ R} and {unfold(S,B,C)|S ∈ S}, then according to the

reconstructibility of fold (Property 3) or unfold (Property 4), T is the same as

the identical transformation. That is, the fold and unfold operations are reverse

operations.

Induction step: suppose the lemma is true for any transformation T with i

steps. Then for T =< T1, . . . , Ti, Ti+1 >, we need to prove that for any of the

following 4 cases, T1 and Ti+1 are a pair of reverse operations:

1. T1 = unite(R, B), and Ti+1 = split(R,B),

2. T1 = split(R,B), and Ti+1 = unite(R, B),

3. T1 = {fold(R,B,C)|R ∈ R}, and Ti+1 = {unfold(S,B,C)|S ∈ S},

4. T1 = {unfold(S,B,C)|S ∈ S}, and Ti+1 = {fold(R,B,C)|R ∈ R}.

We only prove the 1st case, i.e., T1 = unite(R, B), and Ti+1 = split(R,B). The

other 3 cases can be proven similarly.

168

If the operations of T2, T3, . . . , Ti do not have the parameter of attribute B,

then using the commutativity of unite operations (Properties 5 and 9), we can

swap T1 and T2, T3, . . . , Ti one by one, and then cancel Ti and Ti+1 together using

the reconstructibility of unite (Property 2). Then we get a new transformation

T ′ with i − 1 steps, such that T ′ do the same transformation as T and there is a

one-to-one mapping from the set of all the operations of T except T1 and Ti+1 to

the set of all the operations of T ′, such that h preserves the operations and the

important operation orders of T . So T1 and Ti+1 are a pair of reverse operations in

T .

Otherwise, if some operations of T2, T3, . . . , Ti have an parameter of attribute

B, without loss of generality, let Tj = unfold(R1, B, C) for some 2 ≤ j ≤ i where

R1 is a set of relations produced by Tj−1. We claim that there must be an operation

Tk = fold(R2, B, C) for some j + 1 ≤ k ≤ i where R2 is a set of relations produced

by Tk−1. Otherwise, the attribute values of B would be the attribute names of the

transformed relations after Tj. That is, B would not be an attribute in R on which

Ti+1 = split(R,B) is performed, which is wrong.

According to the induction assumption, Tj and Tk are a pair of reverse opera-

tions in the transformation T1 =< Tj, Tj+1, . . . , Tk >, and we can find a transfor-

mation T1′ that does the same transformation as T1, and has k − j − 1 steps at

most. Replacing T1 with T1′ in T , we get a transformation T ′ that does the same

transformation as T , and has i − 1 steps at most. We can construct a one-to-one

mapping h from the set of some operations of T to the set of all the operations of

T ′, such that h maps the operations T1, . . . , Tj−1, Tk+1, . . . , Ti+1 of T to the same

operations of T ′, and maps all the operations of T1 in T to some operations of T1′

in T ′. Note h preserves the operations and the important operation orders of T .

As T ′ has i−1 steps at most, according to the induction assumption, unite(R, B)

169

and split(R,B), i.e., the first and last operations of T ′, are a pair of reverse op-

erations in T ′. That is, we can find an transformation T ′′ that does the same

transformation as T ′, and a one-to-one mapping h′ from the set of some operations

of T ′ except unite(R, B) and split(R,B) to the set of all the operations of T ′′, such

that h′ preserves the operations and the important operation orders of T ′.

Then we can construct a mapping h′◦h from the set of some operations of T ex-

cept unite(R, B) and split(R,B) to the set of all the operations of T ′′. The mapping

preserves the operations and the important operation orders of T . Consequently,

unite(R, B) and split(R,B) is a pair of reverse operations in T .

A.3 Proof of Lemma 5.2

(⇒) If T is a non-redundant transformation, then T does not contain any pair of

reverse operations. Otherwise, we can remove the reverse operations by the three

steps given before Lemma 5.2 in Section 5.2.

(⇐) Suppose T does not include any pair of reverse operations, but is a redun-

dant transformation. That is ∃T ′ � T , T ′ implements the same transformation

as T , but T � T ′ is not true. That is, for some operation (or operation set)

Ti ∈ T,¬∃T ′
j ∈ T ′, such that Ti and T ′

j are of the same kind of operators, and have

the same parameters of attributes. In this case, we claim that no matter what kind

of operation Ti is, T ′ does not implement the same transformation as T . This will

contradict our assumption. We first show this for the unite operation.

Suppose unite(R, B) ∈ T , and unite(S, B) /∈ T ′, where R and S are two sets

of relations whose names are from dom(B). We can infer that the values of the

attribute B are modelled as the names of the original relations of T (T ′). As T

does not contain any pair of reverse operations, and unite(R, B) ∈ T , split(R,B)

170

/∈ T for any relation name R. Then in the target transformed relations of T , the

values of B are modelled as attribute names or attribute values, but not relation

names. However in T ′, as we never perform a unite operation on B, the values of

B are modelled as relation names in the target transformed relations. Then the

transformed relations of T and T ′ are different. This contradicts our assumption

that T and T ′ implement the same transformation.

The proofs for the other three kinds of operations that Ti can be are similar,

which are omitted here. We conclude if T has no reverse operations, then it is a

non-redundant transformation.

A.4 Proof of Theorem 6.1

For the soundness, we only prove Rule A9:

(A9) If R(X → Y) and R(X1, Y → Z) hold for X1 a set (possibly an empty set)

of some qualification attributes in X, then R(X → Z) holds.

Given any two tuples t1 and t2 from the relation(s) of R, such that the attribute

values of t1 and t2 satisfy the conditions specified in X. That is, if attribute A ∈ X,

then t1.A = t2.A; if qualification attribute Aσ=S ∈ X, then t1.A ∈ S and t2.A ∈ S.

As the qualified functional dependency R(X → Y) holds, the attribute values of

Y are the same in t1 and t2. As X1 is a subset of X, t1 and t2 also satisfies the

conditions of X1. As the qualified functional dependency R(X1, Y → Z) holds,

the attribute values of Z are the same in t1 and t2. Consequently, the qualified

functional dependency R(X → Z) holds. The proof of the soundness of the other

inference rules are omitted.

The irreducibility can be proven by showing that if we delete any one of the

10 rules, we can find a set of relational schemas and a set of qualified functional

171

dependencies, such that the set of the dependencies derived by the left 9 rules is a

proper subset of the set of the dependencies derived by the 10 rules.

For Rule A1, given two relational schemas R1(A,B) and R2(A,B), let {R1, R2}(A →

B) be a qualified functional dependency on them. We prove that A1 is irreducible

by showing that using Rules A2 to A10, we cannot derive the functional depen-

dency R1(A → B) (or R2(A → B) which can be derived by A1). To show this,

we just compute the set of all the qualified functional dependencies derived using

Rules A2 to A10. The qualified functional dependency R1(A → B) is not in the

set. Actually, without Rule A1, we can only derive the trivial qualified functional

dependencies on R1 by Rules A5 and A7.

The irreducibilities of the other rules can be proven similarly. In the rest of this

section, we prove the completeness of the inference rules.

We define a satisfaction relationship “⊒” between two mixed sets of regular

and qualification attributes X and Y . Intuitively, X ⊒ Y , read “X satisfies Y ”

if, X specifies more restrictive conditions than Y when they are on the left hand

sides of qualified functional dependencies. Specifically, if X and Y only contain

regular attributes, and X ⊇ Y , then X ⊒ Y , as X requires more attributes to

be equal than Y when they appear on the left hand sides of (qualified) functional

dependencies.

Definition A.1 (Satisfaction relationship). Given two mixed sets of regular

and qualification attributes X and Y , we define X ⊒ Y provided: (a) for any

qualification attribute Aσ=S1 ∈ Y for S1 ⊆ dom(A), there’s a qualification attribute

Aσ=S2 ∈ X such that S2 ⊆ S1, and (b) for any regular attribute A ∈ Y , either

A ∈ X or Aσ={a} ∈ X for some a ∈ dom(A). �

The following rules hold for the ⊒ relation:

1. Transitivity. X ⊒ Y , Y ⊒ Z ⇒ X ⊒ Z

172

2. Augmentation. X ∪ Y ⊒ X

3. Additivity. X ⊒ Y ,X ⊒ Z ⇒ X ⊒ Y ∪ Z

The attribute closure of a set of attributes X under a more restrictive condi-

tion would contain more attributes, as described in the lemma below (the proof is

omitted).

Lemma A.1. Given two sets of relations R1 and R2, let W1 and W2 be two sets

of qualification attributes, and X be a set of attributes. If R1 ⊆ R2 and W1 ⊒ W2,

then X+
R1,W1 ⊇ X+

R2,W2. �

For example, given 2 qualified functional dependencies R(A,Bσ={b1,b2} → C)

and R(A,Bσ={b1} → D). Let W1 = {Bσ={b1}} and W2 = {Bσ={b1,b2}}. Then

W1 ⊒ W2 as W1 specifies a more restricted condition (i.e., attribute B can only

take value b1) than W2 (i.e., attribute B can take value b1 or b2) when they occur

on the left hand side of qualified functional dependencies. We compute {A}+
R,W1 =

{C,D} and {A}+
R,W2 = {C}. So {A}+

R,W1 ⊇ {A}+
R,W2.

Then we define the projection of attributes below.

Definition A.2. Given a mixed set of regular and qualification attributes X and

a set of regular attributes Y , we define the projection of X onto Y to be a subset

of X consisting of the regular attributes also in Y and the qualification attributes

qualifying the attributes of Y :

X[Y] = {A|A ∈ X ∩ Y } ∪ {Aσ=S|Aσ=S ∈ X and A ∈ Y }. �

For example, let X = {Aσ=S1, Bσ=S2, C,D} and Y = {A,C}, then X[Y] =

{Aσ=S1, C}.

173

The inference rules A1 to A10 are complete. We will prove this by showing that

if F is a set of qualified functional dependencies that hold over a set of relation

schemas S, and f is a qualified functional dependency which cannot be proved by

the inference rules, then there must be an instance of S over which the dependencies

of F all hold but f does not; that is, F does not logically imply f . Algorithm

CONSTRUCT INSTANCE below is proposed to construct such an instance of S

for the given F and f . We prove the correctness of the algorithm in the following

2 lemmas.

Lemma A.2. In an iteration of Algorithm CONSTRUCT INSTANCE, QA is the

current set of qualification attributes, and XC is the current attribute closure. Let

QA′ and XC ′ be the QA and XC after the execution of the algorithm. In the

returned relations of R1 and R2, all the attributes in XC ′ have the same non-null

values, while the other attributes have different values.

Proof. First we prove that at the beginning of the k-th iteration of the while loop

(Lines 6 to 17), those attributes with the same non-null values in R1 and R2 belong

to XC.

Base case: k=1. the condition holds as all attributes have the null value.

Induction step: Let QAk and XCk be the values of QA and XC at the beginning

of the k-th iteration. Suppose at the beginning of the k-th iteration, the attributes

with the same non-null values in R1 and R2 belong to XCk. As QAk+1 ⊒ QAk,

XCk+1 ⊇ XCk (Lemma A.1). For each attribute A with the same value in the

relations of R1 and R2, if it is in XCk, it is also in XCk+1; otherwise, according

to the induction hypothesis, the algorithm assigned the same value to A in R1 and

R2 during the k-th iteration (Line 9). So A ∈ XCk+1 according to the condition of

Line 8.

When the loop terminates, we have: all the attributes in R1 and R2 have non-

174

Algorithm:CONSTRUCT INSTANCE

Input: Let F be a set of qualified functional dependencies that hold over a set of
relational schemas S with the same set of attributes U , and suppose f ,
R(W,X → Y), cannot be derived by the inference rules A1 to A10, where
R ⊆ S, W is a set of qualification attributes, and X and Y are 2 sets of
regular attributes from U .

Output: An instance of S over which the dependencies of F all hold, while f
does not.

1: Find two relational schemas R1, R2 ∈ R, such that Y * X+
{R1,R2},W ;

2: /* R1 and R2 may refer to the same relational schema if R comprises a
single relational schema. The following statements construct a tuple for each
relation of R1 and R2. The other relations of S are empty. */

3: Initialize each attribute in R1 and R2 with the null value;
4: QA := W ; /* QA is the current set of qualification attributes. */
5: XC := X+

{R1,R2},QA
;

6: while ∃A ∈ U,R1[A] = R2[A] = null or ∃A ∈ XC,R1[A] 6= R2[A] do
7: /* R1[A] refers to the value of attribute A in the relation of R1. */
8: if A ∈ XC and (R1[A] 6= R2[A] or R1[A] = R2[A] = null) then
9: R1[A] := a and R2[A] := a such that a ∈ dom(A), {Aσ={a}} ⊒ QA[A],

and Y * X+
{R1,R2},QA∪{Aσ={a}}

;

10: QA := QA ∪ {Aσ={a}}; /*Note that if QA contains a qualification
attribute Aσ=S, then the qualification attribute is replaced by Aσ={a} in
the new QA. */

11: else
12: /* i.e., A /∈ XC and R1[A] = R2[A] = null */
13: R1[A] := a1 and R2[A] := a2 such that a1, a2 ∈ dom(A), a1 6= a2,

{Aσ={a1,a2}} ⊒ QA[A], and Y * X+
{R1,R2},QA∪{Aσ={a1,a2}

};

14: QA := QA ∪ {Aσ={a1,a2}};
15: end if
16: XC := X+

{R1,R2},QA
;

17: end while
18: return the set of the relations {R1, R2}. /* The other relations of S are all

empty.*/

175

null values, all the attributes of XC ′ have the same values in R1 and R2 (the

condition of the while loop), and all the attributes with the same values in R1 and

R2 belong to XC ′ (loop invariant proven above). That is, the attributes not in

XC ′ have different values in R1 and R2.

Finally, the while loop will terminate, as in each iteration, the algorithm assigns

values to one attribute, and it will assign values to one attribute at most twice.

Lemma A.3. Given the input of Algorithm CONSTRUCT INSTANCE, it con-

structs an instance of S over which the qualified functional dependencies of F all

hold but f doest not.

Proof. (1) The qualified functional dependencies of F all hold over the set of the

relations {R1, R2} returned by the algorithm.

Let QA′ and XC ′ be the values of QA and XC after the execution of the

algorithm. We have proven that in the returned relations R1 and R2, all the

attributes in XC ′ have the same values, while the others have different values.

Suppose a qualified functional dependency R1(W1, X1 → Y 1) in F does not hold

over {R1, R2}, where W1 is a set of qualification attributes, and X1 and Y 1 are sets

of regular attributes. That is, {R1, R2} ⊆ R1, QA′ ⊒ W1 ∪ X1, and Y 1 cannot

be a subset of XC ′. As the attributes of X1 have the same values in R1 and

R2, X1 ⊆ XC ′ = X+
{R1,R2},QA′ (Lemma A.2). That is, {R1, R2}(QA′, X → X1)

holds. Then we can derive {R1, R2}(QA′, X → Y 1). But then by the definition of

attribute closure, Y 1 ⊆ XC ′, which we assumed not to be the case. We conclude

by contradiction that each qualified functional dependency R1(W1, X1 → Y 1) in

F holds over the set of the relations {R1, R2}.

(2) f : R(W,X → Y) does not hold over {R1, R2}.

We first try to prove that at the beginning of the k-th iteration, QA ⊒ W and

Y * XC.

176

Base case: k=1. QA ⊒ W as QA = W . We can always find two relations

R1, R2 ⊆ R, such that Y * XC = X+
{R1,R2},QA

; otherwise, {Ri,Rj}(W,X → Y)

for any Ri,Rj ∈ R can be deduced from F , then we can infer R(W,X → Y) by

the inference rule A2. It contradicts the assumption that f cannot be deduced by

the inference rules.

Induction step: Let QAk and XCk be the values of QA and XC at the beginning

of the k-th iteration. Suppose at the beginning of the k-th iteration, QAk ⊒ W

and Y * XCk. Let QAk+1 = QAk ∪ {Aσ=S}, then QAk+1 ⊒ QAk. According to

the induction hypothesis QAk ⊒ W , we have QAk+1 ⊒ W . In what follows, we

will prove Y is not a subset of XCk+1 by contradiction. According to the induction

hypothesis, {R1, R2}(QAk, X → Y) cannot be deduced from F by the inference

rules. We consider two cases corresponding to the conditions of Lines 8 and 11:

Case 1: A ∈ XCk and QAk+1 = QAk ∪ {Aσ={a}}. We can always find the value

a of attribute A, such that {R1, R2}(QAk+1, X → Y) cannot be deduced from F

by the inference rules; otherwise, {R1, R2}(QAk, Aσ={a}, X → Y) can be deduced

for each a such that {Aσ={a}} ⊒ QAk[A]. So {R1, R2}(QAk, A,X → Y) can be

inferred by the inference rules. As A ∈ XCk, i.e., {R1, R2}(QAk, X → A) holds,

we can deduce {R1, R2}(QAk, X → Y), which we assumed not to be the case.

Case 2: A /∈ XCk and QAk+1 = QAk ∪ {Aσ={a1,a2}}. We can always find two

values a1, a2 of attribute A, such that {R1, R2}(QAk+1, X → Y) cannot be deduced

from F by the inference rules; otherwise, {R1, R2}(QAk, Aσ={ai,aj}, X → Y) can be

deduced for any ai, aj such that {Aσ={ai,aj}} ⊒ QAk[A]. So {R1, R2}(QAk, X → Y)

can be inferred by the inference rules, which we assumed not to be the case.

When the loop terminates, QA′ ⊒ W and Y * XC ′. So there must be an

attribute in Y which has different values in the relations of R1 and R2. As X ⊆

XC ′, all the attributes of X have the same values in R1 and R2. Consequently,

177

R(W,X → Y) does not hold over the set of the relations {R1, R2}. Note that the

loop will terminate as mentioned in the proof of Lemma A.2.

From Lemma A.3, we know that the rules A1 to A10 are complete to infer

qualified functional dependencies in fixed relational schemas.

A.5 Proof of Theorem 6.2

We first give a lemma below.

Lemma A.4. In Algorithm CLOSURE, for any x1 ∈ dom(X1), . . . , xn ∈ dom(Xn),

such that {X1 σ={x1}, . . . , Xn σ={xn}} ⊒ W [X1, . . . , Xn], let W1 = W ∪ {X1 σ={x1},

. . . , Xn σ={xn}}, the inner loop (Line 6 to 10) correctly computes closure1, i.e.,

X+
R,W1 w.r.t. F .

Proof. First, if A is in the set closure1 produced by the inner loop, then A ∈ X+
R,W1.

This can be proven easily by induction. We now prove the converse: if A ∈ X+
R,W1,

then A is in closure1 produced by the inner loop.

Suppose A ∈ X+
R,W1, but A is not in closure1 produced by the inner loop.

Consider 2 relational schemas R1, R2 ∈ R (R1 and R2 may refer to the same

relational schema if R comprises only one relation). R1 and R2 each has a tuple

that agree on the attributes of closure1 and disagree on all the other attributes,

and the attribute values satisfy the qualification of W1. We claim that the set

of the relations {R1, R2} satisfies F . If not, let R1(V, Y → Z) (V is a set of

qualification attributes, and Y and Z are 2 sets of regular attributes from U) be

a dependency of F that is violated by {R1, R2}. That is, {R1, R2} ⊆ R1 and

{Aσ=R1[A]∪R2[A]|A ∈ U} ⊒ V ∪ Y , and Z cannot be a subset of closure1.

We claim that V ⊆ {X1 σ={x1}, . . . , Xn σ={xn}} ∪ {Aσ={a}|Aσ={a} ∈ W}. First,

as the qualification attributes of V take single values according to our restriction

178

on F , the attributes of V are all from closure1; otherwise, an attribute of V has

different values in R1 and R2, and then the attribute values of R1 and R2 cannot

satisfy the qualification of V . Second, the attributes of V will not be on the right

hand side of a qualified functional dependency, according to the condition that

there is no intersection between the sets of regular and qualification attributes of

the qualified functional dependencies of F , so the attributes of V will not be added

into closure1 during the inner loop (Lines 6 to 10). So all the attributes qualified

in V can only be added into closure1 by the statement of Line 4 in the algorithm,

i.e., V ⊆ {X1 σ={x1}, . . . , Xn σ={xn}} ∪ {Aσ={a}|Aσ={a} ∈ W}.

So W1 ⊒ V . As Y ⊆ closure1, closure1 ⊒ Y . So W1 ∪ closure1 ⊒ V ∪ Y .

So Z ⊆ clsoure1 (Lines 7 to 9). We conclude by contradiction that each qualified

functional dependency of F holds over {R1, R2}.

Thus, the relation set {R1, R2} must also satisfy R(W1, X → A). The reason

is that we assume A ∈ X+
R,W1, i.e., R(W1, X → A) follows from F by the inference

rules A1 to A10. Since the inference rules are sound, any relation set satisfying

F satisfies R(W1, X → A). But the only way R(W1, X → A) could hold over

{R1, R2} is if A is in closure1, for if not, then the attribute values of R1 and R2

which satisfy W1 ∪ X, would disagree on A and violate R(W1, X → A).

Then we can prove Theorem 6.2, the correctness of Algorithm CLOSURE, be-

low.

In the algorithm, for any x1 ∈ dom(X1), . . . , xn ∈ dom(Xn), such that

{X1 σ={x1}, . . . , Xn σ={xn}} ⊒ W [X1, . . . , Xn], let W1 = W∪{X1 σ={x1}, . . . , Xn σ={xn}}.

If A ∈ closure, then A ∈ X+
R,W1, i.e., R(W1, X → A) holds for each W1. So

R(W,X → A) can be deduced by the inference rules. That is A ∈ X+
R,W .

On the other hand, if A ∈ X+
R,W , then A ∈ X+

R,W1 for each W1. According to

Lemma A.4, A will be returned by each iteration of the inner loop (Lines 6 to 10).

179

So A will be in the set closure returned by the algorithm.

A.6 Proof of Theorem 6.3

We first give a lemma below.

Lemma A.5. Given a discrepant schema transformation T consisting of unite and

fold operations, for each simple qualified functional dependency f on the original

relations of T , we can infer an equivalent qualified functional dependency on the

target transformed relations using Algorithm NAIVE PROPAGATE.

Proof. This can be concluded from Lemmas 6.2 and 6.3.

Then we prove Theorem 6.3. Algorithm NAIVE PROPAGATE is sound be-

cause each qualified functional dependency computed by it holds over Rk. This can

be concluded from the soundness of the inference rules and propagation rules. We

prove the completeness below.

Given a discrepant schema transformation T consisting of k steps, let R0 and

Rk be the original and target transformed relations of T , and R1, . . . , Rk−1 be the

intermediate transformed relations. Let F0 be the set of the qualified functional

dependencies on R0, and Fk be the set of the qualified functional dependencies on Rk

derived using NAIVE PROPAGATE. We can prove the completeness of Algorithm

NAIVE PROPAGATE by showing that if a simple qualified functional dependency

f /∈ F+
k , then there must be an instance r0 of R0 in which the dependencies of F0

all hold, but in the target transformed relations rk (an instance of Rk), f doest not

hold. That is, F0 does not logically imply f .

Without loss of generality, we assume the given lossless transformation T is

non-redundant, which is implemented in two phases: (1) transform the original

relation set R0 into some Ri for some 0 ≤ i ≤ k using unite and fold operations,

180

such that the relation names and attribute names in R0 become attribute values in

Ri; (2) transform Ri into Rk using unfold and split operations.

Suppose a simple qualified functional dependency f for Rk cannot be derived

from F0 using Algorithm NAIVE PROPAGATE. According to Lemma A.5, we

can infer an equivalent qualified functional dependency g of f for Ri (Note that

Ri can be transformed from Rk using unite and fold operations as T is a lossless

transformation). We can also infer a set of qualified functional dependencies Fi for

Ri which are equivalent to F0 according to Lemma A.5. We claim Fi does not imply

g. This can be proven by contradiction. Suppose Fi implies g. As the inference

rules A1 to A10 are complete, we can infer g from Fi. As we inferred Fi from F0,

and f from g, we can infer f from F0 by Algorithm NAIVE PROPAGATE. This

contradicts our assumption.

Consequently, there exists an instance ri of Ri, such that the qualified functional

dependencies in Fi all hold but g does not. Let r0 and rk be the original and target

transformed relations of ri. Then F0 holds over r0 as Fi holds over ri. However, f

does not hold over rk as g does not hold over ri.

A.7 Quick propagation rules and Algorithm EF-

FICIENT PROPAGATE

We present the quick propagation rules for each operator as an algorithm below.

To simplify the presentation, in the following algorithms, we assume each input

qualified functional dependency has a single attribute on the right. Although we

require original qualified functional dependencies to be simple and therefore only

contain regular attributes, the input qualified functional dependencies of a quick

propagation rule may have qualification attributes, as a simple qualified functional

181

dependency may be changed into one with qualification attributes during the unite

and fold operations in a schema operations in a schema transformation.

Algorithm INFER SPLIT: Quick propagation of qualified functional dependen-

cies for a split operation.

INPUT: Let R(A1, . . . , An, B) be an original relation such that dom(B) =

{b1, . . . , bm}, and bi(A1, . . . , An) for each i = 1, . . . ,m be the transformed relations

using split(R, B). Let F be a set (not necessary a closure) of qualified functional

dependencies on R.

OUTPUT: a set of qualified functional dependencies, G, holding over the set of

the transformed relations {b1, . . . , bm}.

METHOD: Let X and Y be 2 mixed sets of regular and qualification attributes

from {A1, . . . , An}, and A ∈ {A1, . . . , An}. We compute the qualified functional

dependencies in G using the following rules:

1. If R(X → A) ∈ F , then dom(B)(X → A) ∈ G.

2. If R(X,B → A) ∈ F , then bi(X → A) ∈ G for each i = 1, . . . ,m.

3. If R(X,Bσ={bi} → A) ∈ F for some 1 ≤ i ≤ m, then bi(X → A) ∈ G.

4. If R(X → B) ∈ F and R(Y ,B → A) ∈ F , then dom(B)(X,Y → A) ∈ G.

�

The four rules are derived from the inference rules A1 to A10 and the propaga-

tion rule P1. Note that for Rule 4, although R(X → B) cannot be changed to any

dependency in G, it and R(Y ,B → A) together imply R(X,Y → A) which can be

changed to dom(B)(X,Y → A) in G.

Algorithm INFER UNITE: Quick propagation of qualified functional dependen-

cies for a unite operation.

182

INPUT: Let bi(A1, . . . , An) for each i = 1, . . . ,m be original relations such that

dom(B) = {b1, . . . , bm} for an attribute B, and R(A1, . . . , An, B) be the trans-

formed relation using unite({b1, . . . , bm}, B). Let F be a set (not necessary a

closure) of qualified functional dependencies holding over the set of the original

relations {b1, . . . , bm}.

OUTPUT: a set of qualified functional dependencies G holding in the trans-

formed relation R.

METHOD: Let X be a mixed set of regular and qualification attributes from

{A1, . . . , An}, and A ∈ {A1, . . . , An}. We compute the qualified functional depen-

dencies in G using the following rules:

1. If dom(B)(X → A) ∈ F , then R(X → A) ∈ G.

2. If R(X → A) ∈ F for a set of relation names R ⊂ {b1, . . . , bm}, then

R(X,Bσ=R → A) ∈ G. �

Algorithm INFER UNFOLD: Quick propagation of qualified functional qualified

functional dependencies for a set of unfold operations.

INPUT: Let Ri(A1, . . . , An, B, C) for each i = 1, . . . , l be original relations, and

Si(A1, . . . , An, b1, . . . , bm) for each i = 1, . . . , l be the transformed relations using

unfold(Ri, B, C). Let F be a set (not necessary a closure) of qualified functional

dependencies holding over the set of the original relations {R1, . . . , Rl}.

OUTPUT: a set of qualified functional dependencies G holding over the set of

the transformed relations {S1, . . . , Sl}.

METHOD: Let X, Y and Z be mixed sets of regular and qualification attributes

from {A1, . . . , An}, and A ∈ {A1, . . . , An}. Let R1, R2, R3 ⊆ {R1, . . . , Rl} and S1,

S2, S3 ⊆ {S1, . . . , Sl}, such that the relations of S1 (S2 or S3) are transformed from

183

the relations of R1 (R2 or R3). We compute the qualified functional dependencies

in G using the following rules:

1. If R1(X,Bσ={bi} → C) ∈ F , then S1(X → bi) ∈ G.

2. If R1(X,B → C) ∈ F or R1(X → C) ∈ F , then S1(X → bi) ∈ G for each

bi ∈ dom(B).

3. If R1(X,Bσ={bi}, C → A) ∈ F , then S1(X, bi → A) ∈ G.

4. If R1(X,B,C → A) ∈ F or R1(X,C → A) ∈ F , then S1(X, bi → A) ∈ G for

each bi ∈ dom(B).

5. If R1(X → A) ∈ F , then S1(X → A) ∈ G.

6. If R1(X → B) ∈ F and R2(Y ,B → A) ∈ F , then S1 ∩ S2(X,Y → A) ∈ G.

7. If R1(X → C) ∈ F and R2(Y ,C → A) ∈ F , then S1 ∩ S2(X,Y → A) ∈ G.

8. If R1(X → B) ∈ F , R2(Y ,B → C) ∈ F and R3(Z,C → A) ∈ F , then

S1 ∩ S2 ∩ S3(X,Y , Z → A) ∈ G.

9. If R1(X → C) ∈ F , R2(Y ,C → B) ∈ F and R3(Z,B → A) ∈ F , then

S1 ∩ S2 ∩ S3(X,Y , Z → A) ∈ G. �

Algorithm INFER FOLD: Quick propagation of qualified functional qualified

functional dependencies for a set of fold operations.

INPUT: Let Ri(A1, . . . , An, b1, . . . , bm) for each i = 1, . . . , l be original relations,

and Si(A1, . . . , An, B, C) for each i = 1, . . . , l be the transformed relations using

fold(Ri, B, C). Let F be the set (not necessary a closure) of qualified functional

dependencies holding over the set of the original relations {R1, . . . , Rl}.

184

OUTPUT: a set of qualified functional dependencies G holding over the set of

the transformed relations {S1, . . . , Sl}.

METHOD: Let X be a mixed set of regular and qualification attributes from

{A1, . . . , An}, and A ∈ {A1, . . . , An}. Let R ⊆ {R1, . . . , Rl} and S ⊆ {S1, . . . , Sl},

such that the relations of S are transformed from the relations of R. We compute

the qualified functional dependencies in G using the following rules:

1. If R(X → bi) ∈ F , then S(X,Bσ={bi} → C) ∈ G.

2. If R(X, bi → A) ∈ F , then S(X,Bσ={bi}, C → A) ∈ G.

3. If R(X → A) ∈ F , then S(X → A) ∈ G. �

Algorithm EFFICIENT PROPAGATE

INPUT: Let T =< T1, . . . , Tn > be a discrepant schema transformation for each

Ti a (or a set of) restructuring operation(s). Let F0 be the set (not necessary a

closure) of qualified functional dependencies holding over the set of the original

relations of T .

OUTPUT: A set of qualified functional dependencies Fn holding over the set of

the transformed relations of T .

METHOD:

for i from 0 to n − 1 do

Let Ri be the set of original (input) relations of the transformation step Ti+1,

and Fi be the set of qualified functional dependencies holding over Ri.

case 1 Ti+1 is a split operation:

call Algorithm INFER SPLIT to get Fi+1

end case

case 2 Ti+1 is a unite operation:

185

call Algorithm INFER UNITE to get Fi+1

end case

case 3 Ti+1 is a (or a set of) unfold operation(s):

call Algorithm INFER UNFOLD to get Fi+1

end case

case 4 Ti+1 is a (or a set of) fold operation(s):

call Algorithm INFER FOLD to get Fi+1

end case

end for

A.8 Proof of Theorem 6.4

During a discrepant schema transformation, a simple qualified functional depen-

dency may become a qualified functional dependency with qualification attributes.

The following lemma describes the form of the qualified functional dependencies

derived during the execution of Algorithm EFFICIENT PROPAGATE.

Lemma A.6. Given a lossless transformation and a set of simple qualified func-

tional dependencies for the original relations of the transformation, in execution

of Algorithm EFFICIENT PROPAGATE, the set of qualified functional dependen-

cies F produced by an inference algorithm (INFER SPLIT, INFER UNITE, IN-

FER UNFOLD or INFER FOLD) satisfies 4 conditions:

1. The qualification attributes of the qualified functional dependencies in F are

restricted to take single values.

2. Let Z1 be the set of all the regular attributes of the qualified functional de-

pendencies in F , and Z2 be the set of all the attributes occurring in the

186

qualification attributes of the qualified functional dependencies in F . Then

Z1 ∩ Z2 = ∅.

3. Condition (1) of Definition 6.3.

4. Condition (3) of Definition 6.3.

Proof. The lemma can be proven by induction on the transformation steps.

Given a set of qualified functional dependencies F , if it implies a qualified func-

tional dependency f , then there is a subset of the qualified functional dependencies

of F from which we can infer f by the inference rules A1 to A10. Definitions A.3,

A.4 and Lemma A.7 give a way to infer f from F .

Definition A.3. Given a set of qualified functional dependencies F , a derivation

sequence s for a qualified functional dependency R(X → A) is a sequence of quali-

fied functional dependencies from F :

R1(Y1 → A1), . . . , Rm(Ym → Am)

such that R ⊆ Ri, X ⊒ Y1, Am = A, and X ∪ {A1, . . . , Ai−1} ⊒ Yi for i = 1, . . . ,m.

We say s lies in a set of attributes U iff the attributes occurring in the qualified

functional dependencies of s are all from U . �

Definition A.4. Given a set of qualified functional dependencies F and a qualified

functional dependency R(W,X → A) with the set of qualification attributes W and

the set of regular attributes X = {X1, . . . , Xn}. A derivation sequence set S for

R(W,X → A) is a set of derivation sequences from F :

S = {s|s is a derivation sequence for R(W,X1 σ={x1}, . . . , Xn σ={xn} → A) for any

x1 ∈ dom(X1), . . . , xn ∈ dom(Xn) such that

{X1 σ={x1}, . . . , Xn σ={xn}} ⊒ W [X1, . . . , Xn]}. �

187

The following example explains the concept of derivation sequence set.

Example A.1. Given a relation R(A,B,C), let F be a set of qualified functional

dependencies consisting of qualified functional dependencies R(Aσ={a} → B) for

each a ∈ dom(A) and a functional dependency B → C on R. Let f : A → C be a

functional dependency on R. Our purpose is to verify whether f follows from F .

Instead of computing F+, we try to find a derivation sequence set S for f :

{R(Aσ={a} → B), R(B → C)| a ∈ dom(A)}.

Note that the dependencies in the derivation sequences are from F , and each se-

quence in S contributes to a “component” of f : R(Aσ={a} → C). Consequently, we

know F implies f . The general result is presented in the following lemma. �

Lemma A.7. Given a set of qualified functional dependencies F satisfying the four

conditions of Lemma A.6 and a qualified functional dependency f , f ∈ F+ iff f is

a trivial dependency or there exists a derivation sequence set S for f .

Proof. Let f = R(W,X → A) be a non-trivial dependency. If there exists a

derivation sequence set S for f , using the inference rules A1 to A10, we can derive

f from the qualified functional dependencies of the derivation sequence set, i.e.,

f ∈ F+.

On the other hand, if f ∈ F+, A ∈ X+
R,W . The computation of X+

R,W with

Algorithm CLOSURE is actually a process to construct a derivation sequence set

for f .

We are ready to prove the completeness of Algorithm EFFICIENT PROPAGATE

now. We will prove this by showing that Algorithm EFFICIENT PROPAGATE

generates the same result as NAIVE PROPAGATE. In what follows, we first prove

188

the completeness of the four inference algorithms INFER SPLIT, INFER UNITE,

INFER UNFOLD and INFER FOLD.

Lemma A.8. The algorithms INFER SPLIT, INFER UNITE, INFER UNFOLD

and INFER FOLD are complete if the input qualified functional dependencies sat-

isfy the 4 conditions in Lemma A.6. �

Proof. We only prove the completeness of Algorithm INFER SPLIT. The proofs

for the other inference algorithms are similar and omitted. Let R(A1, . . . , An, B)

be an original relation, and bi(A1, . . . , An) for each i = 1, . . . ,m be the transformed

relations using split(R,B). Let F be a set (not necessary a closure) of qualified

functional dependencies in R. Let G and G′ be the sets of the qualified functional

dependencies computed by Algorithm NAIVE PROPAGATE and INFER SPLIT

respectively. We will prove G is equivalent to G′. It is easy to see that G′ ⊆ G+ as

the rules of Algorithm INFER SPLIT are derived from the inference rules A1 to

A10 and propagation rules P1 to P4. We will prove G ⊆ G′+ as follows.

For any g = R(W,X → A) ∈ G, where R ⊆ {b1, . . . , bm}, W is a set of

qualification attributes and X = {X1, . . . , Xl} a set of regular attributes from

{A1, . . . , An}, and A ∈ {A1, . . . , An}, let f = R(Bσ=R,W,X → A) ∈ F+ be the

original qualified functional dependency of g. According to Lemma A.7, there’s a

derivation sequence set S from F for f . Let s : R(Y1 → C1), . . . , R(Yk → Ck), be

a derivation sequence in S for the qualified functional dependency

R(Bσ=R,W,X1 σ={x1}, . . . , Xl σ={xl} → A)

for x1 ∈ dom(X1), . . . , xl ∈ dom(Xl) satisfying {X1 σ={x1}, . . . , Xl σ={xl}} ⊒

W [X1, . . . , Xl]. Then we will construct a derivation sequence s′ with the depen-

dencies from G′ for

R(W,X1 σ={x1}, . . . , Xl σ={xl} → A)

189

by transforming the qualified functional dependencies of s.

For each i = 1, . . . , k, let si and s′i be the i-th qualified functional dependency

in s and s′ resp., we consider 3 cases of si = R(Yi → Ci):

Case 1: si lies in {A1, . . . , An}. Then we can derive s′i = dom(B)(Yi → Ci)

from si using Rule (1) of INFER SPLIT.

Case 2: si contains either Bσ={b} for some b ∈ dom(B), or B in its Left Hand Side

(LHS), but all sj with 1 ≤ j < i does not contain B in their Right Hand Side (RHS).

In this case, f must have a form of R(Bσ={b},W,X → A) (and g = b(W,X → A)),

as otherwise si would not be in s for {W,X1 σ={x1}, . . . , Xl σ={xl}} ∪ {C1, . . . , Ci−1}

does not satisfy Yi. Then we derive s′i = b(Y ′
i → Ci) from si for Y ′

i = Yi −{Bσ={b}}

or Y ′
i = Yi − {B}, using Rule (3) or (2) of INFER SPLIT.

Case 3: si contains B in its RHS, i.e., R(Yi → B). Without loss of generality,

we assume s contains exactly one such qualified functional dependency (it would

be no need to derive B more than once). We derive the dependencies in s′ from

those in s by applying Rule (4) of Algorithm INFER SPLIT: for each j, i < j ≤ k,

if sj = R(Yj → Cj) contains B in its LHS, then derive s′j = dom(B)(Yi, Y ′
j → Cj)

for Y ′
j = Yj − {B}. Note that in this case, si itself would not be changed into any

dependency in s′.

Clearly, s′ is a derivation sequence from G′ for R(W,X1 σ={x1}, . . . , Xl σ={xl} →

A). It follows that R(W,X1 σ={x1}, . . . , Xl σ={xl} → A) ∈ G′+. As this is true

for any x1 ∈ dom(X1), . . . , xn ∈ dom(Xn) satisfying {X1 σ={x1}, . . . , Xl σ={xl}} ⊒

W [X1, . . . , Xl], we have R(W,X → A) ∈ G′+. That is, ∀g ∈ G, g ∈ G′+. So

G ⊆ G′+. As Algorithm NAIVE PROPAGATE is complete (Theorem 6.3), so is

INFER SPLIT.

As Algorithm EFFICIENT PROPAGATE is actually a sequence of calls of the

four inference algorithms, from Lemmas A.6 and A.8, we know that Algorithm

190

EFFICIENT PROPAGATE is complete. The soundness of the algorithm can be

concluded from the soundness of the quick propagation rules. Finally, we proved

that Theorem 6.4 is true. That is, Algorithm EFFICIENT PROPAGATE is sound

and complete to infer simple qualified functional dependencies in a lossless dis-

crepant schema transformation.

A.9 Resolution algorithms of schematic discrep-

ancies in the integration of ER schemas

Algorithm ResolveRel

Given an ER schema DB, the algorithm produces a schema DB′ transformed

from DB such that all the discrepant meta-attributes of relationship types are

transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of a relationship type.

Let R = T [C1 = c1, . . . , Cm = cm] be a relationship type among entity types

Em+1, Em+2, . . . , En in DB, where T is a relationship type among n entity

types T1, . . . , Tn in the ontology, C1, . . . , Cm are m discrepant meta-attributes

that are identifiers of T1, . . . , Tm, and each Ei = Ti for i = m + 1, . . . , n has

an identifier Ki = Ci. Let T ′ (a projection of T) be a relationship type among

the entity types Tm+1, . . . , Tn in the ontology.

/* Note that the inherited context of R has been removed in Algorithm Re-

solveEnt if any.*/

Step 1.1 Transform C1, . . . , Cm into attributes of entity types.

Construct m entity types E1 = T1, . . . , Em = Tm with the identifiers K1 =

C1, . . . , Km = Cm if they do not exist.

Each Ei (i = 1, . . . ,m) contains one entity with the identifier Ci = ci.

191

Construct a relationship type R′ = T connecting E1, . . . , En, such that

(c1, . . . , cm, cm+1, . . . , cn) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn] iff (cm+1, . . . , cn) ∈

R[Km+1, . . . , Kn].

Let A → B be a functional dependency on R, where A and B are two sets of

the identifiers of some participating entity types in R. Represent a functional

dependency A, K1, . . . , Km → B in R′.

end Step

Step 1.2 Handle the attributes of R.

Let A be an attribute of R. A corresponds to Aont in the ontology, and has

a self context selfCnt.

if A is a many-to-one or many-to-many attribute then

case 1 attribute A does not inherit any context of R:

A becomes an attribute of a new relationship type R′′ = T ′ among

Em+1, . . . , En, such that

(cm+1, . . . , cn, a) ∈ R′′[Km+1, . . . , Kn, A] iff

(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].

end case

case 2 attribute A = Aont[selfCnt, inherit all] inherits all the context

{C1 = c1, . . . , Cm = cm} from R:

Construct an attribute A′ = Aont[selfCnt] of R′, such that

(c1, . . . , cm, cm+1, . . . , cn, a) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn, A′] iff

(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].

A′ has the same cardinality as A.

end case

case 3 A inherits some context, say {C1 = c1, . . . , Cj = cj} (1 ≤ j < m)

from R:

192

Construct a relationship type R′′ connecting the entity types E1, . . . , Ej,

Em+1, . . . , En.

Construct an attribute A′ = Aont[selfCnt] of R′′, such that

(c1, . . . , cj, cm+1, . . . , cn, a) ∈ R′′[K1, . . . , Kj, Km+1, . . . , Kn, A′] iff

(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].

A′ has the same cardinality as A.

end case

else

/* A is a one-to-one or one-to-many attribute, i.e., A determines the

identifier of R in the context. We keep the inherited context of A, and

delay the resolution of it in Algorithm ResolveRelAttr, in which A will be

transformed to the identifier of an entity type to preserve the cardinality

constraint. */

Construct an attribute A′ = Aont[Cnt] of the relationship type R′′ = T ′,

where Cnt is the self context of A′ that is the union of the self and inherited

contexts of A, such that

(cm+1, . . . , cn, a) ∈ R′′[Km+1, . . . , Kn, A′] iff

(cm+1, . . . , cn, a) ∈ R[Km+1, . . . , Kn, A].

end if

end Step

end Step

Step 2 Merge equivalent constructs.

Merge equivalent entity types, relationship types and attributes respectively.

Their domains are united.

end Step �

193

Algorithm ResolveEntAttr

Given an ER schema DB, the algorithm produces a schema DB′ transformed from

DB such that all the discrepant meta-attributes of the attributes of the entity types

in DB are transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of an attribute of an entity type.

Given an entity type E = T (with the identifier K) of DB, let A = Aont[C1 =

c1, . . . , Cm = cm] be an attribute of E, for Aont an attribute of a relationship

type TR, and C1, . . . , Cm the discrepant meta-attributes that are identifers

of entity types T1, . . . , Tm in the ontology. TR is a relationship type among

T1, . . . , Tm and T in the ontology.

/* Note that the inherited context of A has been removed in Algorithm Re-

solveEnt if any.*/

Construct an entity type Ei = Ti with the identifier Ki = Ci for each i =

1, . . . ,m if they do not exist. Each Ei contains one entity with the identifier

Ci = ci.

if A is a many-to-one or many-to-many attribute then

Construct a relationship type R = TR connecting the entity types E1, . . . , Em

and E.

Attribute A′ = Aont becomes an attribute of R, such that

(c1, . . . , cm, k, a) ∈ R[K1, . . . , Km, K,A′] iff (k, a) ∈ E[K,A].

else

/*A is a one-to-one or one-to-many attribute, i.e., A and the meta-attributes

C1, . . . , Cm together determine the identifier K of E. A should be modelled

as the identifier of an entity type to preserve the cardinality constraint.*/

Construct EA′ with the identifier A′ = Aont.

194

Construct a relationship type R′ connecting the entity types E1, . . . , Em, E

and EA′ , such that

(c1, . . . , cm, k, a) ∈ R[K1, . . . , Km, K,A′] iff (k, a) ∈ E[K,A].

Represent a functional dependency K1, . . . , Km, A′ → K as the cardinality

constraint on R.

if A is a one-to-one attribute then

Represent a functional dependency K1, . . . , Km, K → A′ on R.

end if

end if

end Step

Step 2 Merge equivalent constructs.

Merge equivalent entity types, relationship types and attributes respectively.

Their domains are united.

end Step �

Algorithm ResolveRelAttr

Given an ER schema DB, the algorithm produces a schema DB′ transformed from

DB such that all the discrepant meta-attributes of the attributes of the relationship

types in DB are transformed into the attributes of entity types.

Step 1 Resolve the discrepant meta-attributes of an attribute of a relationship

type.

In DB, let R (with the identifier KR) be a relationship type among m entity

types E1 = T1, . . . , Em = Tm with the identifiers K1 = C1, . . . , Km = Cm,

and let A = Aont[Cm+1 = cm+1, . . . , Cn = cn] be an attribute of R, where

Cm+1, . . . , Cn are discrepant meta-attributes that are identifers of entity types

Tm+1, . . . , Tn, and Aont is an attribute of a relationship type T among n entity

195

types T1, . . . , Tn in the ontology.

/* Note that the inherited context of A has been removed in Algorithm Re-

solveRel if any.*/

Construct an entity types Ei = Ti with an identifier Ki = Ci for each i =

m+1, . . . , n if it does not exist. Each Ei contains one entity with the identifier

ci.

if A is a many-to-one or many-to-many attribute then

Construct a relationship type R′ = T connecting the entity types E1, . . . , En.

Attribute A′ = Aont becomes an attribute of R′, such that

(c1, . . . , cm, cm+1, . . . , cn, a) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn, A′] iff

(c1, . . . , cm, a) ∈ R[K1, . . . , Km, A].

else

/*A is a one-to-one or one-to-many attribute, i.e., A and the meta-attributes

Cm+1, . . . , Cn together determine the identifier of R. A should be modelled

as the identifier of an entity type to preserve the cardinality constraint.*/

Construct EA′ with the identifier A′ = Aont.

Construct a relationship type R′ connecting the entity types E1, . . . , En and

EA′ , such that

(c1, . . . , cm, cm+1, . . . , cn, a) ∈ R′[K1, . . . , Km, Km+1, . . . , Kn, A′] iff

(c1, . . . , cm, a) ∈ R[K1, . . . , Km, A].

Represent a functional dependency Km+1, . . . , Kn, A
′ → KR as the cardinal-

ity constraint on R′.

if A is a one-to-one attribute then

Represent a functional dependency Km+1, . . . , Kn, KR → A′ on R′.

end if

end if

196

end Step

Step 2 Merge equivalent constructs.

Merge equivalent entity types, relationship types and attributes respectively.

Their domains are united.

end Step �

A.10 Proof of Theorem 7.2

We prove Theorem 7.2 through 5 lemmas in the rest of this section. In ER schemas,

cardinality constraints (in particular, the cardinalities of the attributes of entity

types, the cardinalities of the entity types in a relationship type, or the cardinal-

ities of the attributes of relationship types) may represent functional dependen-

cies/multivalued dependencies, as mentioned in Section 2.1. Lemma A.9 is on the

preservation of the functional dependencies and multivalued dependencies repre-

sented as the cardinality constraints of the attributes of entity types. Lemmas

A.10 and A.11 are on the preservation of the functional dependencies represented

as the cardinality constraints of the entity types in a relationship type. Lemmas

A.12 and A.13 are on the preservation of the functional dependencies and multi-

valued dependencies represented as the cardinality constraints of the attributes of

a relationship type.

We first show an example of the preservation of the functional dependencies

that are the cardinality constraints of the attributes of entity types below.

Example A.2. In Figure 7.2, in each of the entity types JAN PROD, . . . , DEC PROD

of DB2, the attributes S1 PRICE, . . . , Sn PRICE inherit all the context of the

entity type. After Algorithm ResolveEnt, the discrepant meta-attribute m# be-

comes the attribute M# of the entity type MONTH in the transformed schema, and

197

S1 PRICE, . . . , Sn PRICE become the attributes of the relationship type PM .

We have the following result:

A functional dependency P# → {S1 PRICE, . . . , Sn PRICE} holds in each

entity type of DB2 iff a functional dependency {P#,M#} → {S1 PRICE, . . . , Sn PRICE}

holds in the relationship type PM of the transformed schema.

On the other hand, in each entity type of DB2, the attribute PNAME has

nothing to do with the context of the entity type, i.e., a product name is only

dependent on the product number, independent of the months in which the product

is supplied. We have the following result:

A functional dependency P# → PNAME holds in each entity type of DB2 iff

the same functional dependency P# → PNAME holds in the entity type PROD

of the transformed schema. �

In general, we have the following result:

Lemma A.9. Algorithm ResolveEnt preserves the functional dependencies and

multivalued dependencies represented as the cardinality constraints of the attributes

of entity types.

Proof. Recall Step 1.2 of Algorithm ResolveEnt in which we transform the at-

tributes of entity types in the resolution of schematic discrepancies of entity types.

We first claim that for each case of Step 1.2, the cardinality constraints of attributes

can be preserved in the transformed schema, then prove a typical case. In Algo-

rithm ResolveEnt, equivalent schema constructs will be merged in Step 2. Without

losing generality, we consider a set of entity types (instead of individual ones) that

correspond to the same ontology type, and have the same set of meta-attributes

but different metadata, such as the entity types JAN PROD, . . . , DEC PROD

of DB2 in the above example. Such entity types will be transformed to equivalent

relationship types and merged in the algorithm.

198

In general, in an ER schema DB, let E be a set of entity types with the same

identifier K, the same attribute A and the same meta-attributes, i.e.,

E = {E|E = T [C1 = c1, . . . , Cl = cl, inherit Cl+1, . . . , Cm],

c1 ∈ dom(C1), . . . , cl ∈ dom(Cl)}.

Let A correspond to an attribute Aont in the ontology, and have a self context

selfCnt, i.e., a set of meta-attributes with values.

Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in

which C1, . . . , Cm become the identifiers K1, . . . , Km of entity types E1, . . . , Em,

and an entity type Em+1 with the identifier K is created to contain all the entities

of the entity types of E. We claim that:

case 1 A is a many-to-one or many-to-many attribute in each entity type of E:

case 1.1 A = Aont[selfCnt] does not inherit any context from the entity

types:

A becomes a non-identifier attribute of the entity type Em+1 in the trans-

formed schema DB′.

if A is a many-to-one attribute then

A functional dependency K → A holds in each entity type of E iff a

functional dependency K → A holds in Em+1.

else

/*A is a many-to-many attribute.*/

A multivalued dependency K ։ A holds in each entity type of E iff a

multivalued dependency K ։ A holds in Em+1.

end if

end case

case 1.2 A = Aont[selfCnt, inherit all] inherits all the context of the entity

types:

199

A′ = Aont[selfCnt] becomes an attribute of a new-created relationship type

R among m+1 entity types E1, . . . , Em+1 in DB′.

if A is a many-to-one attribute then

A functional dependency K → A holds in each entity type of E iff a

functional dependency K1, . . . , Km, K → A′ holds in R.

else

/*A is a many-to-many attribute.*/

A multivalued dependency K ։ A holds in each entity type of E iff a

multivalued dependency K1, . . . , Km, K ։ A′ holds in R.

end if

end case

case 1.3 A = Aont[selfCnt, inherit C1, . . . , Cj] (1 ≤ j < m) inherits some

context of the entity types.

A′ = Aont[selfCnt] becomes an attribute of a new-created relationship type

R′ among j+1 entity types E1, . . . , Ej and Em+1 in DB′.

if A is a many-to-one attribute then

A functional dependency K → A holds in each entity type of E iff a

functional dependency K1, . . . , Kj, K → A′ holds in R′.

else

/*A is a many-to-many attribute.*/

A multivalued dependency K ։ A holds in each entity type of E iff a

multivalued dependency K1, . . . , Kj, K ։ A′ holds in R′.

end if

end case

end case

case 2 A is a one-to-one or one-to-many attribute:

200

A′ = Aont[Cnt] becomes an attribute of Em+1 in DB′, where Cnt is the self

context of A′ that is the union of the self context (i.e., selfCnt) and inherited

context (say inhrtCnt) of A.

A functional dependency A → K holds in each entity type of E which has the

context inhrtCnt iff A′ → K holds in Em+1.

if A is a one-to-one attribute then

A functional dependency K → A holds in each entity type of E which has

the context inhrtCnt iff a functional dependency K → A′ holds in Em+1.

else

A multivalued dependency K ։ A holds in each entity type of E which has

the context inhrtCnt iff a multivalued dependency K ։ A′ holds in Em+1.

end if

end case

Then we prove the above claim. We only prove the case when A is a many-

to-one attribute that inherits all the context of the entity types, i.e, a sub-case of

Case 1.2. The other cases can be proven in a similar way.

(=>) If a functional dependency K → A holds in each entity type of E, then a

functional dependency K1, . . . , Km, K → A′ holds in R.

Suppose we are given two tuples (c1, . . . , cm, k, a), (c1, . . . , cm, k, a′) ∈ R[K1,

. . . , Km, K,A′]. As the two tuples have the same values on K1, . . . , Km (i.e.,

C1, . . . , Cm), they must come from the same entity type of E. As a functional

dependency K → A holds in each entity type of E, we have a = a′. Consequently,

K1, . . . , Km, K → A′ holds in R.

(<=) If a functional dependency K1, . . . , Km, K → A′ holds in R, then a func-

tional dependency K → A holds in each entity type of E.

For each entity type E = T [C1 = c1, . . . , Cl = cl, inherit Cl+1, . . . , Cm] in E,

201

given two tuples (k, a), (k, a′) ∈ E[K,A], by Algorithm ResolveEnt, we can trans-

form them to two tuples (c1, . . . , cm, k, a), (c1, . . . , cm, k, a′) ∈ R[K1, . . . , Km, K,A′].

As a functional dependency K1, . . . , Km, K → A′ holds in R, we have a = a′. Con-

sequently, K → A holds in E.

In the ER approach, functional dependencies/multivalued dependencies can be

represented by not only the cardinalities of the attributes of entity types, but also

the cardinalities of the entity types and the cardinalities of the attributes in a

relationship type. In the rest of this section, we first show an example of functional

dependencies represented as the cardinality constraints in relationship types, then

present 4 lemmas to generalize the results.

Example A.3. In the schema DB4 of Figure 7.3, a relationship type SUP1 (the

other relationship types are similar) inherits the context m#=‘JAN’ from its parti-

cipating entity type JAN PROD. After Algorithm ResolveEnt, the discrepant meta-

attribute m# becomes an attribute M# of the entity type MONTH in the trans-

formed schema, and the relationship types SUPi’s are transformed and merged into

a ternary relationship type SUP among the entity types PROD, MONTH and SUP-

PLIER. We have the following result:

A functional dependency P# → S# holds in each relationship type of DB4 iff

a functional dependency {P#,M#} → S# holds in the relationship type SUP of

the transformed schema.

In the schema of DB4, the relationship type SUP1 (the other relationship types

are similar) has an attribute PRICE with the inherited context m# = ‘JAN ′. After

Algorithm ResolveEnt, PRICE becomes an attribute of the relationship type SUP

in the transformed schema. We have the following result:

A functional dependency P# → PRICE holds in each relationship type of DB4

iff a functional dependency

202

{P#,M#} → PRICE holds in the relationship type SUP of the transformed

schema. �

Recall Step 1.3 of Algorithm ResolveEnt in which we transform relationship

types in the resolution of schematic discrepancies for entity types. According to

whether a relationship type has any one-to-one or one-to-many attributes, the

transformation methods would be different. Correspondingly, when presenting the

issue of functional dependency preservation, we also divide the two cases. In par-

ticular, Lemma A.10 and Lemma A.12 are, respectively, on the preservation of the

cardinalities of entity types and the cardinalities of attributes when relationship

types only have many-to-one and many-to-many attributes. On the other hand,

Lemma A.11 and Lemma A.13 are, respectively, on the preservation of the cardi-

nalities of entity types and the cardinalities of attributes when relationship types

have some one-to-one or one-to-many attributes.

Lemma A.10. When relationship types only have many-to-one and many-to-many

attributes, Algorithm ResolveEnt preserves the functional dependencies represented

as the cardinality constraints of the entity types in the relationship types.

Proof. We first claim that for any of the three cases of Step 1.3 in Algorithm Re-

solveEnt, the cardinality constraints of the entity types in a relationship type can

be preserved in the transformed schema. Note a relationship type may involve sev-

eral entity types with discrepant meta-attributes all of which need to be resolved.

For ease of presentation, we will not distinguish the three cases as in Step 1.3 of the

algorithm, but rather generalize the cases. In particular, we give the general form

of a functional dependency on a relationship type of a transformed schema and the

corresponding functional dependencies in the original schema, and show that the

functional dependency of the transformed schema and the functional dependencies

203

of the original schema are equivalent to each other. In Step 2 of Algorithm Re-

solveEnt, equivalent schema constructs will be merged. Without losing generality,

we consider a set of relationship types that correspond to the same ontology type,

and have the same self context but not necessary the same inherited context. Such

relationship types will be transformed to equivalent relationship types and merged

in Algorithm ResolveEnt.

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship

types corresponding to the same ontology type within the same self context, such

that each relationship type has no attributes, or only has many-to-one and many-

to-many attributes.

Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in which

all the relationship types of R are transformed and merged into a relationship type

R′. We claim that:

A functional dependency K1, . . . , Km → Km+1 holds in R′ for K1, . . . , Km+1

the identifiers of the m + 1 entity types involved in R′, iff in each relationship type

Ri ∈ R, a functional dependency Ki
1, . . . , K

i
l → Ki

l+1 holds for Ki
1, . . . , K

i
l+1 the

identifiers of the entity types Ei
1, . . . , E

i
l+1 involved in Ri, such that:

1. Km+1 is equivalent to Ki
l+1;

2. for each j = 1, . . . ,m, Kj ∈ {Ki
1, . . . , K

i
l}, i.e., Kj is equivalent to some

element of {Ki
1, . . . , K

i
l}, or Kj corresponds to a discrepant meta-attribute of

an entity type of Ei
1, . . . , E

i
l+1;

3. for each j = 1, . . . , l + 1, Ki
j ∈ {K1, . . . , Km+1}, and all the discrepant meta-

attributes of Ei
j are represented as the identifiers in {K1, . . . , Km}.

Then we prove the above claim:

204

(=>) If a functional dependency K1, . . . , Km → Km+1 holds in R′, then a

functional dependency Ki
1, . . . , K

i
l → Ki

l+1 holds in each relationship type Ri ∈ R.

Suppose we are given two tuples (ki
1, . . . , k

i
l , k

i
l+1), (ki

1, . . . , k
i
l , k

i
l+1

′) ∈ Ri[K
i
1,

. . . , Ki
l , K

i
l+1]. These two tuples correspond to (k1, . . . , km, km+1), (k1, . . . , km, k′

m+1)

∈ R′[K1, . . . , Km, Km+1], which satisfy the three conditions of the above claim. As

the functional dependency K1, . . . , Km → Km+1 holds in R′, km+1 = k′
m+1. As km+1

is equivalent to ki
l+1 and k′

m+1 is equivalent to ki
l+1

′, ki
l+1 = ki

l+1
′. So a functional

dependency Ki
1, . . . , K

i
l → Ki

l+1 holds in each relationship type Ri.

(<=) If a functional dependency Ki
1, . . . , K

i
l → Ki

l+1 holds in each relationship

type Ri ∈ R, then a functional dependency K1, . . . , Km → Km+1 holds in R′.

Suppose we are given two tuples (k1, . . . , km, km+1), (k1, . . . , km, k′
m+1) ∈ R′[K1,

. . . , Km, Km+1]. These two tuples correspond to (ki
1, . . . , k

i
l , k

i
l+1), (k

i
1, . . . , k

i
l , k

i
l+1

′)

∈ Ri[K
i
1, . . . , K

i
l , K

i
l+1] for some relationship type Ri ∈ R, which satisfy the three

conditions of the above claim. As the functional dependency K i
1, . . . , K

i
l → Ki

l+1

holds in the relationship type Ri, ki
l+1 = ki

l+1
′. As km+1 is equivalent to ki

l+1

and k′
m+1 is equivalent to ki

l+1
′, km+1 = k′

m+1. So the functional dependency

K1, . . . , Km → Km+1 holds in R′.

Note in the proof of Lemma A.10, two relationship types of R may involve

different sets of entity types because of the interplay of data and metadata (but after

Algorithm ResolveEnt, these relationship types will be transformed to equivalent

ones). Consequently, a functional dependency on R′ may correspond to different

functional dependencies on the relationship types of R.

Lemma A.11. When relationship types have some one-to-one or one-to-many at-

tributes, Algorithm ResolveEnt preserves the functional dependencies represented

as the cardinality constraints of the entity types in the relationship types.

205

Proof. When a relationship type has some one-to-one or one-to-many attributes,

the inherited context of the relationship type would be kept in the transformed

relationship type (see Step 1.3 of Algorithm ResolveEnt). In this case, a set of

relationship types corresponding to the same ontology type within the same self

context would not be necessarily transformed into equivalent relationship types.

Further, they should also have the same inherited context to be merged.

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship

types corresponding to the same ontology type within the same context, such that

each relationship type has some one-to-one or one-to-many attributes.

Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in which

all the relationship types of R are transformed and merged into a relationship type

R′. We claim that:

A functional dependency A → B holds in each relationship type of R for A

and B two distinct sets of the identifiers of some entity types involved in each

relationship type of R iff the same functional dependency A → B holds in R′.

The proof of the claim is omitted.

Lemma A.12. When relationship types only have many-to-one and many-to-many

attributes, Algorithm ResolveEnt preserves the functional dependencies and multi-

valued dependencies represented as the cardinality constraints of the attributes of

the relationship types.

Proof. If a relationship type only has many-to-one and many-to-many attributes,

given an attribute of the relationship type, Algorithm ResolveEnt will remove some

of its context inherited from the entity types involved in the relationship type,

and move the attribute to a new relationship type (see Step 1.3 of Algorithm

ResolveEnt). As long as we keep the cardinality of the attribute, the functional

dependency/multivalued dependency are also preserved, but may be represented

206

in different forms. Note in a relationship type, although the cardinalities of entity

types can only represent functional dependencies, the cardinalities of attributes

can represent functional dependencies (if they are many-to-one attributes) and

multivalued dependencies (if they are many-to-many attributes).

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship

types that correspond to the same ontology type, have the same self context and

the same attribute A, such that each relationship type only has many-to-one and

many-to-many attributes.

Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in which

all the relationship types of R are transformed and merged into a relationship type

R′ with the attribute A. We claim:

A functional dependency K1, . . . , Km → A (or a multivalued dependency

K1, . . . , Km ։ A) holds in R′ for K1, . . . , Km the identifiers of the m entity

types involved in R′, iff in each relationship type Ri ∈ R, a functional depen-

dency Ki
1, . . . , K

i
l → A (or a multivalued dependency Ki

1, . . . , K
i
l ։ A) holds for

Ki
1, . . . , K

i
l the identifiers of the entity types Ei

1, . . . , E
i
l involved in Ri, such that:

1. for each j = 1, . . . ,m, Kj ∈ {Ki
1, . . . , K

i
l}, or Kj corresponds to a discrepant

meta-attribute of an entity type of Ei
1, . . . , E

i
l ;

2. for each j = 1, . . . , l, Ki
j ∈ {K1, . . . , Km}, and all the discrepant meta-

attributes of Ei
j are represented as the identifiers in {K1, . . . , Km}.

The proof of the claim is omitted.

Lemma A.13. When relationship types have some one-to-one or one-to-many at-

tributes, Algorithm ResolveEnt preserves the functional dependencies and multival-

ued dependencies represented as the cardinality constraints of the attributes of the

relationship types.

207

Proof. If a relationship type R has some one-to-one or one-to-many attributes,

we should consider two kinds of dependencies: the identifier of R determines an

attribute of R (i.e., a functional dependency or multivalued dependency), and the

attribute determines the identifier of R (i.e., a functional dependency).

In general, in an ER schema DB, let R = {R1, . . . , Rn} be a set of relationship

types that correspond to the same ontology type, have the same context and the

same attribute A, such that each relationship type has some one-to-one or one-to-

many attributes.

Let DB′ be the schema transformed from DB by Algorithm ResolveEnt, in which

all the relationship types of R are transformed and merged into a relationship type

R′ with the attribute A. We claim:

A functional dependency K → A (or a multivalued dependency K ։ A) for

K the identifier of each relationship type of R holds in each relationship type of R

iff the same functional dependency K → A (or the same multivalued dependency

K ։ A) holds in R′.

Furthermore, if A is a one-to-one or one-to-many attribute, we also have a result

below:

A functional dependency A → K for K the identifier of each relationship type

of R holds in each relationship type of R iff the same functional dependency A → K

holds in R′.

The proof of the claim is omitted.

This completes the proof of Theorem 7.2. In a similar way, we can prove that any

of the other three algorithms of ResolveRel, ResolveEntAttr and ResolveRelAttr

preserves functional dependencies and multivalued dependencies.

208

A.11 Proof of Theorem 8.2

To prove the theorem, we should first prove the correctness of Algorithm MCT. We

first define conditioned minimum cost trees below. Unlike a minimum cost tree that

minimizes the data transformation costs of all the variations of an integrated schema

tree, a conditioned minimum cost tree minimizes the costs of all the variations with

the same fixed hierarchical structures of some cognate paths.

Definition A.5 (Conditioned minimum cost tree). In a CP tree T obtained

by merging a set of relationship types, let P1, . . . , Pk be the nodes (i.e., cognate

paths) of T . Given the hierarchical structures of P1, . . . , Pk, let T be the set of all

the variations of T with the given hierarchical structures of P1, . . . , Pk. We call

T ′ ∈ T a conditioned minimum cost tree of T with respect to {P1, . . . , Pk}, if T ′

minimizes the data transformation costs of all the elements of T. �

The following two lemmas reveal the effect of beneficial cognate paths on the

data transformation cost of an integrated schema.

Given a tree T and a node P in T , we denote T (P) to be the tree consisting of

the path from the root to P and the subtree rooted at P in T .

Lemma A.14. Given a CP tree T obtained by merging a set of relationship types,

let P be a node in T , and P1/ . . . /Pk be the path from the root to the parent of

P in T . Given the hierarchical structures of P1, . . . , Pk, if P has some beneficial

variations, then in the conditioned minimum cost tree of T (P) w.r.t. {P1, . . . , Pk},

P must be beneficial.

Proof. This lemma can be proven by contradiction. Suppose in the conditioned

minimum cost tree T ′ of T (P) w.r.t. {P1, . . . , Pk}, P is not beneficial. Then we

can find a tree T ′′ that is the same as T ′ except the hierarchical structure of P

209

which is beneficial. Then the data transformation cost of T ′′ is less then T ′. This

contradicts with the assumption that T ′ is the conditioned minimum cost tree.

Lemma A.15. Given a CP tree T obtained by merging a set of relationship types,

let P be a node in T , and P1/ . . . /Pk be the path from the root to the parent of P in

T . Given the hierarchical structures of P1, . . . , Pk, if P has no beneficial variations,

then the hierarchical structure of P and the structures the descendants of P in T

have nothing to do with the data transformation cost of the conditioned minimum

cost tree of T (P) w.r.t. {P1, . . . , Pk}.

Proof. Given any variation T ′ of T (P) with the given hierarchical structures of

P1, . . . , Pk, as P has no beneficial variations, we can compute the data transforma-

tion cost of T ′ according to the beneficial cognate paths of P1, . . . , Pk (see Formula

(2) of Section 8.3.2), which have nothing to do with P and the descendants of

P .

Lemma A.16. Algorithm MCT correctly computes a minimum cost tree.

Proof. Given a CP tree TS obtained by merging a set of relationship types, let P

be a node of TS, and P1/ . . . /Pk be the path from the root to the parent of P in

TS. We claim that Algorithm MCT(P, c, T) computes the conditioned minimum

cost tree of T (P) w.r.t. {P1, . . . , Pk}.

Base case: (Case i) P has beneficial variations and is a leaf node. According

to Lemma A.14, to compute the conditioned minimum cost tree of T (P) w.r.t.

{P1, . . . , Pk}, we only need to consider the beneficial variations of P , as shown in

Algorithm MCT (Line 12 to 17).

(Case ii) P has no beneficial variations. In this case, the hierarchical structures

of P and the structures of the descendants of P have nothing to do with the data

transformation cost, according to Lemma A.15. Algorithm MCT (Line 21 to 22)

correctly computes the minimum cost tree of T (P) w.r.t. {P1, . . . , Pk}.

210

Inductive step: P has beneficial variations and is a non-leaf node.

Inductive hypothesis: For any child element P ′ of P , Algorithm MCT returns

the conditioned minimum cost tree of T (P ′) w.r.t. {P1, . . . , Pk, P}.

Given the hierarchical structures of P1, . . . , Pk and a beneficial variation of P ,

for each child P ′ of P , Algorithm MCT (Line 5) correctly computes the minimum

cost tree of T (P ′) w.r.t. {P1, . . . , Pk, P}, according to the inductive hypothesis.

We claim that T (P) is the conditioned minimum cost tree w.r.t. {P1, . . . , Pk, P} at

that time. Otherwise, suppose T (P)′ is the conditioned minimum cost tree whose

data transformation cost is less than T (P). Then in T (P)′, for each subtree T1′

rooted at a child of P that is different from the corresponding subtree T1 of T (P),

we can replace T1′ with T1, and get a tree that has at most the same cost as T (P)′.

This contradicts with the assumption that T (P)′ has less data transformation cost

than T (P).

Then according to Lemma A.14, after considering all the beneficial variations

of P (Line 3), we can get the conditioned minimum cost tree of T (P) w.r.t.

{P1, . . . , Pk} (Line 8 to 9).

Consequently, when the algorithm completes, it returns the minimum cost tree

of TS. Note at that time P is the root node and {P1, . . . , Pk} is empty.

Since Algorithm MCT correctly computes a minimum cost tree for a schema

tree, Algorithm MergeRel (Step 2) can produce an integrated schema minimizing

the data transformation costs in the set of the schemas produced by Step 1 of the

algorithm. That is, Theorem 8.2 is true.

Bibliography

[1] XML Schema, W3C recommendation. http://www.w3c.org/XML/Schema,

2001.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases,

chapter 8, 10, pages 173–187, 216–235. Addison-Wesley, 1995.

[3] Rakesh Agrawal, Amit Somani, and Yirong Xu. Storage and querying of e-

commerce data. In VLDB, pages 149–158, 2001.

[4] Carlo Batini and Maurizio Lenzerini. A methodology for data schema integra-

tion in the entity-relationship model. IEEE Trans. on Software Engineering,

10(6), 1984.

[5] Michael Benedikt, Chee Yong Chan, Wenfei Fan, Juliana Freire, and Rajeev

Rastogi. Capturing both types and constraints in data integration. In SIG-

MOD, pages 277–288, 2003.

[6] Sonia Bergamaschi, Silvana Castano, and Maurizio Vincini. Semantic in-

tegration of semistructured and structured data sources. SIGMOD Record,

28(1):54–59, 1999.

211

212

[7] Sonia Bergamaschi, Silvana Castano, Maurizio Vincini, and Domenico Ben-

eventano. Semantic integration of heterogeneous information sources. Data

Knowl. Eng., 36(3):215–249, 2001.

[8] Paul De Bra. Horizontal Decompositions in the Relational Database Model.

PhD thesis, University of Antwerp, 1987.

[9] Paul De Bra and Jan Paredaens. Conditional dependencies for horizontal

decompositions. In International Colloquium on Automata, Languages and

Programming, 1983.

[10] Giacomo Cabri, Francesco Guerra, Maurizio Vincini, Sonia Bergamaschi,

Letizia Leonardi, and Franco Zambonelli. Momis: Exploiting agents to sup-

port information integration. Int. J. Cooperative Inf. Syst., 11(3):293–314,

2002.

[11] Yabing Chen, Mong Li Lee, and Tok Wang Ling. Automatic generation of

SQLX view definitions from ORA-SS views. In DASFAA, pages 476–481,

2004.

[12] Yabing Chen, Tok Wang Ling, and Mong Li Lee. Designing valid XML views.

In International Conference on Conceptual Modeling (ER), pages 463–478,

2002.

[13] Yabing Chen, Tok Wang Ling, and Mong Li Lee. Automatic generation of

XQuery view definitions from ORA-SS views. In International Conference on

Conceptual Modeling (ER), pages 158–171, 2003.

[14] Vassilis Christophides, Sophie Cluet, and Jérôme Siméon. On wrapping query

languages and efficient XML integration. In SIGMOD, 2000.

213

[15] Sophie Cluet, Claude Delobel, Jérôme Siméon, and Katarzyna Smaga. Your

mediators need data conversion! In SIGMOD, 1998.

[16] Jos de Bruijn, Francisco Martin-Recuerda, Dimitar Manov, and Marc Ehrig.

State-of-the-art survey on ontology merging and aligning. Technical report,

Digital enterprise research institute, Univ. of Innsbruck, http://www.aifb.uni-

karlsruhe.de/WBS/meh/publications/debruijn04state.pdf, 2004.

[17] Claude Delobel, Chantal Reynaud, Marie-Christine Rousset, Jean-Pierre Sirot,

and Dan Vodislav. Semantic integration in Xyleme: a uniform tree-based

approach. Data & Knowledge Engineering, 44(3):267–298, 2003.

[18] Daniel S. Weld Denise Draper, Alon Y. Halevy. The Nimble XML data inte-

gration system. In ICDE, 2001.

[19] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. On-

tology matching: A machine learning approach. In Handbook on Ontologies,

pages 385–404. 2004.

[20] Fernando Berzal Galiano, Juan C. Cubero, Fernando Cuenca, and Juan Miguel

Medina. Relational decomposition through partial functional dependencies.

Data & Knowledge Engineering, 43(2):207–234, 2002.

[21] Anthony Tomasic Georges Gardarin, Antoine Mensch. An introduction to the

e-XML data integration suite. In EDBT, 2002.

[22] Georg Gottlob. Computing covers for embedded functional dependencies. In

SIGMOD, 1987.

[23] Marc Gyssens, Laks V. S. Lakshmanan, and Iyer N. Subramanian. Tables as

a paradigm for querying and restructuring. In PODS, pages 93–103, 1996.

214

[24] Qi He and Tok Wang Ling. Extending and inferring functional dependencies

in schema transformation. In CIKM, pages 12–21, 2004.

[25] Qi He and Tok Wang Ling. Resolving schematic discrepancy in the integration

of entity-relationship schemas. In International Conference on Conceptual

Modeling (ER), pages 245–258, 2004.

[26] Qi He and Tok Wang Ling. An ontology based approach to the integration of

entitycrelationship schemas. Data & Knowledge Engineering, 58(3):299–326,

2006.

[27] Chun-Nan Hsu and Craig A. Knoblock. Semantic query optimization for query

plans of heterogeneous multidatabase systems. TKDE, 12(6):959–978, 2000.

[28] W. H. Inmon. Building the Data Warehouse. Wiley, second edition, 1996.

[29] Euna Jeong and Chun-Nan Hsu. Induction of integrated view for XML data

with heterogeneous DTDs. In CIKM, 2001.

[30] Vipul Kashyap and Amit P. Sheth. Semantic and schematic similarity between

database objects: a context-based approach. The VLDB Journal, 5, 1996.

[31] Andreas Koeller and Elke A. Rundensteiner. Incremental maintenance of

schema-restructuring views in SchemaSQL. TKDE, 16(9):1096–1111, 2004.

[32] Ravi Krishnamurthy, Witold Litwin, and William Kent. Language features

for interoperability of databases with schematic discrepancies. In SIGMOD

Conference, pages 40–49, 1991.

[33] Laks V. S. Lakshmanan, Fereidoon Sadri, and Iyer N. Subramanian. Schemasql

- a language for interoperability in relational multi-database systems. In

VLDB, pages 239–250, 1996.

215

[34] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian. On

efficiently implementing SchemaSQL on a SQL database system. In VLDB,

pages 471–482, 1999.

[35] Laks V. S. Lakshmanan, Fereidoon Sadri, and Subbu N. Subramanian.

SchemaSQL-an extension to SQL for multidatabase interoperability. TODS,

2001.

[36] James A. Larson, Shamkant B. Navathe, and Ramez Elmasri. A theory of at-

tribute equivalence in databases with application to schema integration. IEEE

Trans. Software Eng., 15(4), 1989.

[37] Ora Lassila and Ralph R. Swick. Resource description frame-

work (RDF) model and syntax specification. W3C recommendation.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222, 1999.

[38] Mong Li Lee and Tok Wang Ling. Resolving constraint conflicts in the inte-

gration of ER schemas. In International Conference on Conceptual Modeling

(ER), pages 394–407, 1997.

[39] Mong Li Lee and Tok Wang Ling. A methodology for structural conflicts

resolution in the integration of entity-relationship schemas. Knowledge and

Information Sys., 5:225–247, 2003.

[40] Mong Li Lee, Tok Wang Ling, and Wai Lup Low. Designing functional depen-

dencies for XML. In EDBT, pages 124–141, 2002.

[41] Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. Query optimiza-

tion by predicate move-around. In VLDB, pages 96–107, 1994.

216

[42] Tok Wang Ling. Extending classical functional de-

pendencies for physical database design (lecture notes).

http://www.comp.nus.edu.sg/ lingtw/cs4221/extended.fds.pdf, 2001.

[43] Tok Wang Ling, Mong Li Lee, and Gillian Dobbie. Semistructured Database

Design. Springer, 2005.

[44] Mengchi Liu and Tok Wang Ling. A data model for semistructured data with

partial and inconsistent information. In EDBT, pages 317–331, 2000.

[45] Wai Lup Low, Mong Li Lee, and Tok Wang Ling. A knowledge-based approach

for duplicate elimination in data cleaning. Information Systems, 26:585–606,

2001.

[46] Daofeng Luo, Ting Chen, Tok Wang Ling, and Xiaofeng Meng. On view

transformation support for a native XML DBMS. In DASFAA, pages 226–

231, 2004.

[47] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. MAFRA

a mapping framework for distributed ontologies. In the 13th European Con-

ference on Knowledge Engineering and Knowledge Management EKAW-2002,

2002.

[48] Nelson Mendonça Mattos. Integrating information for on demand computing.

In VLDB, 2003.

[49] Wolfgang May. Lopix: a system for XML data integration and manipulation.

In VLDB, 2001.

[50] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, and Jennifer

Widom. Lore: a database management system for semistructured data. SIG-

MOD Record, 26(3):54–66, 1997.

217

[51] Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: A program-

ming platform for generic model management. In SIGMOD, pages 193–204,

2003.

[52] Eduardo Mena, Arantza Illarramendi, Vipul Kashyap, and Amit P. Sheth.

Observer: An approach for query processing in global information systems

based on interoperation across pre-existing ontologies. Distributed and Parallel

Databases, 8(2):223–271, 2000.

[53] Xiaofeng Meng, Daofeng Luo, Mong Li Lee, and Jing An. OrientStore: A

schema based native XML storage system. In VLDB, pages 1057–1060, 2003.

[54] Renée J. Miller. Using schematically heterogeneous structures. In SIGMOD,

pages 189–200, 1998.

[55] Renée J. Miller, Yannis E. Ioannidis, and Raghu Ramakrishnan. The use of

information capacity in schema integration and translation. In VLDB, 1993.

[56] Wei Ni and Tok Wang Ling. GLASS: a graphical query language for semi-

structured data. In DASFAA, pages 363–370, 2003.

[57] Wei Ni and Tok Wang Ling. Translate graphical XML query language to

SQLX. In DASFAA, pages 907–913, 2005.

[58] Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm and tool for

automated ontology merging and alignment. In AAAI/IAAI, pages 450–455,

2000.

[59] Borys Omelayenko and Dieter Fensel. A two-layered integration approach for

product information in B2B e-commerce. In the Second Intenational Confer-

ence on Electronic Commerce and Web Technologies (EC WEB-2001), 2001.

218

[60] David Plotkin. Building the XML repository (presentation slides).

http://www.intelligenteai.com/XMLRepository/, 2001.

[61] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A. Hernández, and

Ronald Fagin. Translating web data. In VLDB, pages 598–609, 2002.

[62] Rachel Pottinger and Philip A. Bernstein. Merging models based on given

correspondences. In VLDB, 2003.

[63] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic

schema matching. VLDB J., 10(4):334–350, 2001.

[64] M. P. Reddy, Bandreddi E. Prasad, and Amar Gupta. Formulating global

integrity constraints during derivation of global schema. Data & Knowledge

Engineering, pages 241–268, 1995.

[65] Patricia Rodŕıguez-Gianolli and John Mylopoulos. A semantic approach to

xml-based data integration. In ER, pages 117–132, 2001.

[66] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL web

ontology language guide, W3C recommendation. http://www.w3.org/TR/owl-

guide/, 2004.

[67] Yann Dupont Stefano Spaccapietra, Christine Parent. Model independent

assertions for integration of heterogeneous schemas. VLDB, 1992.

[68] Wei Sun and Clement T. Yu. Semantic query optimization for tree and chain

queries. TKDE, 6(1):136–151, 1994.

[69] Aris Tsois and Timos K. Sellis. The generalized pre-grouping transformation:

aggregate query optimization in the presence of dependencies. In VLDB, 2003.

219

[70] Mike Uschold. Creating, integrating, and maintaining local and global ontolo-

gies. In the First Workshop on Ontology Learning (OL-2000), 2000.

[71] Mark W. W. Vermeer and Peter M. G. Apers. On the applicability of schema

integration techniques to database interoperation. In ER, 1996.

[72] Mark W. W. Vermeer and Peter M. G. Apers. The role of integrity constraints

in database interoperation. In VLDB, 1996.

[73] Pepijn R. S. Visser and Zhan Cui. On accepting heterogeneous ontologies in

distributed architectures. In the ECAI98 workshop on applications of ontolo-

gies and problem-solving methods, 1998.

[74] Xia Yang, Mong Li Lee, and Tok Wang Ling. Resolving structural conflicts in

the integration of XML schemas: a semantic approach. In ER, pages 520–533,

2003.

[75] Xia Yang, Mong Li Lee, Tok Wang Ling, and Gillian Dobbie. A semantic

approach to query rewriting for integrated xml data. In ER, 2005.

