
Approximate Matching in Genomic
Sequence Data

Xia Cao

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approximate Matching in Genomic
Sequence Data

Xia Cao

Master of Computer Engineering, Wuhan University, China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

iii

Acknowledgement

This thesis is the result of a collaboration with a very talented group of people.

I consider myself extremely fortunate to have received such excellent training and

education as well as tremendous support and encouragement at the National Uni-

versity of Singapore.

First, I would like to express my appreciation to my supervisors Prof. Ooi Beng

Chin and Dr. Tung Kum Hoe for their invaluable tutoring, advice, perspective,

and encouragement through all the years of my Ph.D study. I have learned a lot

from them about how to do and present research work. This work could not have

been completed without their insight and encouragement.

I am thankful to the members of my thesis evaluation committees for going

through my thesis and giving me valuable feedback. They are Prof. Tan Kian-Lee

and Dr. Ken Sung.

I also wish to thank Prof. Tan Kian-Lee for his valuable suggestions and help.

A big part of the great and enjoyable experience here at the School of Computing

came from working in the Database Group and the Computational Biology Group.

I am deeply indebted to Li Shuaicheng and Tan Zhenqiang for their very helpful

iv

ideas and discussions. I would like to thank Zhang Zong Hong, Yang Xia, Yang

Jing, Cong Gao, Zhang Zhenjie, Dai Bingtian, Lin Dan, Li Hanyu, Cui Bin, He

Qi, Li Yingguang, Guo Shuqiao, Zhang Rui and Yang Rui for their friendship and

support.

I could not have achieved this degree without the support and encouragement of

my family. Many thanks go to my parents and sisters, who have always encouraged

me to pursue my education and provided often a helping hand. Finally, I wish to

thank my husband Xuewen Chen for his love, support and understanding while

this thesis was being written.

CONTENTS

Acknowledgement iii

Summary xvi

1 Introduction 1

1.1 Background of Genomic Sequence Approximate Matching 2

1.1.1 Genomics and Genomic Databases 3

1.1.2 Similarity Search in Genomic Sequence Database 4

1.1.3 Genomic Sequence Approximate Join 6

1.1.4 Protein Subcellular Localization Prediction 8

1.2 Motivation and Objectives . 10

1.3 Contribution . 13

1.4 Thesis Organization . 14

2 Background and Related Work 17

2.1 Basic Concepts of Molecular Biology 17

2.1.1 Genome and Chromosome 18

v

vi

2.1.2 Nucleotide, DNA and RNA 20

2.1.3 Genes . 20

2.1.4 Proteins . 21

2.2 Background of Genomic Sequences and Sequence Comparison . . . 22

2.2.1 Genomic Databases . 23

2.2.2 The Importance of Sequence Comparison in Molecular Biology 26

2.2.3 Sequence Alignment and Edit Distance 28

2.2.4 Algorithm of Calculating Edit Distance and Generating Se-

quence Alignment . 31

2.3 Research Problems: Genomic Sequence Search, Join and Classification 33

2.3.1 Genomic Sequence Similarity Searches 35

2.3.2 Genomic Sequence Approximate Join 49

2.3.3 Protein Subcellular Localization Prediction 50

2.4 Summary . 53

3 Piers: An Efficient Model for Similarity Search in DNA Sequence

Databases 54

3.1 Introduction . 54

3.2 Notations and Problem Statement 58

3.2.1 Notations and Definitions 58

3.2.2 Problem Statement . 59

3.3 The Proposed Pier Model . 60

3.3.1 Generation of the Piers . 61

3.4 Sensitivity Analysis . 62

3.4.1 Theoretical Sensitivity Analysis for BLASTn 64

3.4.2 Theoretical Sensitivity Analysis of the Pier Model 65

3.4.3 Comparison of Sensitivity of BLASTn and Pier Model . . . 67

vii

3.5 The Hash-based Pier Model . 70

3.5.1 Construction of the Hash Table 71

3.5.2 Collision Handling . 72

3.6 Query Processing . 73

3.6.1 Neighborhood Enumeration 74

3.6.2 Sequence Similarity Search 76

3.6.3 Time and Space Complexity 78

3.7 Experiments . 79

3.7.1 Datasets . 79

3.7.2 Experimental Settings . 80

3.7.3 Effect of Parameters . 81

3.7.4 Comparison of Hash-based Pier Model and BLAST11 85

3.7.5 Search Accuracy Analysis 94

3.8 Summary . 97

4 Indexing DNA Sequences Using q-grams 99

4.1 Introduction . 99

4.2 Problem Definition . 101

4.3 Preliminaries . 102

4.3.1 The q-gram . 103

4.3.2 The qClusters and c-signature 104

4.4 An Indexing Scheme for DNA Sequences 107

4.4.1 The Hash Table . 107

4.4.2 The c-trees . 107

4.5 Query Processing . 112

4.5.1 The First Level Filter: Hash Table Based Similarity Search . 113

4.5.2 The Second Level Filter: The c-trees Based Similarity Search 114

viii

4.5.3 The Space and Time Complexity Analysis 116

4.6 Experimental Studies . 117

4.6.1 Dataset and Experimental Settings 118

4.6.2 The Effectiveness Analysis 118

4.6.3 The Sensitivity Analysis . 121

4.6.4 The Efficiency Analysis . 123

4.6.5 Comparison to Hash-based Pier model and BLAST11 126

4.6.6 Search Accuracy Analysis 129

4.7 Summary . 132

5 Sequence Join Using Precedence Count Matrix 133

5.1 Introduction . 133

5.2 Approximating Edit Distance Using Precedence Count Matrix . . . 135

5.2.1 Adjusting Diagonal Elements 137

5.2.2 Computing Maximum Impact 138

5.2.3 Adjusting Non-Diagonal Elements 141

5.3 Approximate DNA Sequence Join 146

5.3.1 PCM-based Filtering of DNA Sequence Join 147

5.4 Experimental Results . 149

5.4.1 Effect of Edit Distance e . 151

5.4.2 Effect of Minlen . 154

5.5 Summary . 154

6 The q-gram Based Protein Subcellular Localization Prediction 157

6.1 Introduction . 157

6.2 Problem Description . 159

6.3 q-gram Based Feature Extraction Method 160

ix

6.3.1 q-gram Based Feature Extraction 161

6.3.2 Support Vector Machine . 166

6.4 Classifier Evaluation Method . 168

6.4.1 The k-fold Cross Validation Method 168

6.4.2 Classifier Evaluation Measurement 169

6.5 Dataset . 170

6.6 Experimental Results and Discussion 171

6.6.1 Parameters Selection . 172

6.6.2 Prediction Results for All Protein Subcellular Localizations . 176

6.6.3 Classification on Combined Feature Vectors 176

6.7 Summary . 181

7 Conclusion 182

7.1 Summary of Contributions . 182

7.1.1 DNA Sequence Similarity Search 183

7.1.2 DNA Sequence Approximate Join 184

7.1.3 Protein Subcellular Localization Prediction 184

7.2 Future Work . 185

LIST OF FIGURES

2.1 Information Flow . 18

2.2 Chromosome (Image from[1]) . 19

2.3 Growth of GenBank (1982-2004) [2] 24

2.4 Illustration of BLAST Search Steps 37

2.5 Breakdown of BLAST’s Search Time 39

3.1 An Example of the Piers Extracted from DNA Sequence 61

3.2 Similarity vs Sensitivity . 68

3.3 Similarity vs Sensitivity . 68

3.4 An Example of the Hash Table for Piers 71

3.5 Pre-processing Time . 87

3.6 Query Time (Dataset:month.gss) 88

3.7 Query Time (Dataset:patnt) . 90

3.8 Query Time (|Q| = 300) . 90

3.9 Query Time (|Q| = 500) . 91

3.10 Query Time (|Q| = 1000) . 91

x

xi

3.11 Query Time (|Q| = 1500) . 92

3.12 Average Accuracy (Dataset:human est.fa, 20 Queries Randomly Se-

lected from mouse est.fa) . 97

4.1 The c-signature of DNA Sequence P 106

4.2 The c-trees for the DNA segments 111

4.3 Effect of Number of Common q-grams: ω=30, p=67% 120

4.4 Filter Rate vs Parameter c . 120

4.5 Filter Rate vs Segment Length ω 121

4.6 Similarity vs Sensitivity . 122

4.7 Efficiency of Preprocessing . 123

4.8 Query Time . 125

4.9 Query Time (|Q|=1000) . 125

4.10 Efficiency of Preprocessing . 127

4.11 Query Time (Dataset:patnt) . 128

4.12 Query Time (|Q|=1000) . 129

4.13 Average Accuracy (Dataset:human est.fa, 20 Queries Randomly Se-

lected from mouse est.fa) . 131

5.1 PCMs of Q and R . 136

5.2 Intermediate PCMs for Step 1 and 2. 138

5.3 Assessing Impact of Edit Operations on Non-Diagonal Element PCM ′
Q[a, b]

139

5.4 Subcases for Case (I) . 139

5.5 Filtering Rate for Minlen=40 . 151

5.6 Filtering Rate for e=5 . 151

5.7 Filter Time vs Edit Distance (Dataset Size:1000, Minlen=40) 152

xii

5.8 Verify Time vs Edit Distance (Dataset Size:1000, Minlen=40) . . . 153

5.9 Total Time vs Edit Distance (Dataset Size:1000, Minlen=40) 153

5.10 Filter Time vs Minlen (Dataset Size:1000, e=5) 155

5.11 Verify Time vs Minlen (Dataset Size:1000, e=5) 155

5.12 Total Time vs Minlen (Dataset Size:1000, e=5) 156

6.1 An Example of SVM Classifier . 167

6.2 Flow Chart of Protein Subcellular Localization Prediction 169

LIST OF TABLES

2.1 The Twenty Amino Acids Found in Proteins [104, 33] 22

2.2 Sequence Alignment of Sequence s1 and s2 30

2.3 Genomic Sequence Indexing Based Similarity Search Methods . . . 42

3.1 The Notations . 60

3.2 The Parameters Used for Sensitivity Analysis (Pier Model) 68

3.3 An Example of the Global Penalty Matrix, ω = 2 74

3.4 The DNA Sequence Databases . 80

3.5 The Parameter Settings . 80

3.6 Effect of Pier Length `p and Prefix Length λ (ω=5; Dataset:month.gss) 82

3.7 Effect of Suffix Length ω (`p=15; Dataset:month.gss) 83

3.8 Effect of Suffix Length ω (`p=18; Dataset:month.gss) 83

3.9 Effect of Span Length ω (`p=15; Dataset:month.gss) 84

3.10 Effect of Span Length ω (`p=18; Dataset:month.gss) 88

3.11 Effect of Error Tolerances θ and β (`p=18; Dataset:month.gss) . . . 89

3.12 Alignments Found (Dataset:month.gss) 89

xiii

xiv

3.13 Alignments Returned (Dataset:month.gss) 93

3.14 Eight Local Alignments (Dataset:month.gss, Query Length:100) . . 94

3.15 Precision and Recall of the Results (Dataset:human est.fa, 20 Queries

Randomly Selected from mouse est.fa) 96

4.1 Notation Description . 102

4.2 Precision and Recall of the Results (Dataset:human est.fa, 20 Queries

Randomly Selected from mouse est.fa) 130

6.1 BLOSUM62 Matrix . 163

6.2 Dataset . 171

6.3 Results Based on q-gram Frequency Transformation for Outer Mem-

brane Proteins . 173

6.4 Results Based on q-gram Wavelet Transformation for Outer Mem-

brane Proteins . 174

6.5 Results Based on q-gram TF.IDF Transformation for Outer Mem-

brane Proteins . 175

6.6 Results Based on q-gram Similarity Transformation for Outer Mem-

brane Proteins . 176

6.7 Results for Different Transformation Based on q-grams for All Pro-

tein Subcellular Localizations . 177

6.8 Results on Combined Method SIM+ for All Protein Subcellular Local-

izations . 178

6.9 Results on Combined Method TF.IDF+ for All Protein Subcellular Lo-

calizations . 179

6.10 Results on Combined Method SIM+TF.IDF for All Protein Subcellular

Localizations . 180

xv

6.11 Results on Combined Method SIM+TF.IDF+ for All Protein Subcellular

Localizations . 181

xvi

Summary

Increasing interest in genetic research has resulted in the creation of huge genomic

databases and approximate sequence matching in genomic sequence databases has

become a basic operation in computational biology. In this thesis, we shall design

several models and algorithms for approximate sequence matching in the context

of DNA sequence similarity search, DNA sequence similarity join, and protein se-

quence subcellular localization prediction.

To efficiently support similarity search in very large DNA sequence databases,

we present an efficient hash-based model for DNA sequences. In this model, only

certain segments of a DNA sequence database called “piers” need to be accessed

during search, unlike other approaches, where a full scan of the biological sequence

database is required. To further improve search efficiency, the piers are stored in

a specially designed hash table, which helps avoid expensive alignment operations.

The hash table is small enough to reside in main memory, hence avoiding I/Os in

the search steps. We investigate the effect of parameter settings on the performance

of the proposed hash-based pier model. We also compare the proposed approach

with the latest version of BLAST11, and show theoretically and empirically that

xvii

our approach can efficiently detect biological sequences that are similar to a query

sequence with acceptable accuracy. Moreover, the idea of “pier” can be used on

any kind of sequence indexing structures as a means to select interesting segments

for indexing.

To facilitate similarity search in a DNA database and sidestep the need for

linear scan of the entire database, we propose a novel two-level index method for

indexing long seeds efficiently based on q-grams of DNA sequences. At the first

level, a hash table is built on the sequences in terms of qClusters, which are a group

of clusters generated on the q-grams. At the second level, a novel data structure

called c-trees is proposed to organize c-signatures for sequence similarity search.

The c-signatures of a DNA sequence are generated according to the occurrence of

q-grams in the sequence. The proposed data structures allow the quick detection of

sequences within a certain distance to the query sequence. We present the results

of experiments conducted to evaluate the performance of the proposed two-level

index against hash-based pier model and the latest version of BLASTn.

To perform DNA sequence approximate join efficiently without false dismissal,

we propose a filter-and-refine sequence join algorithm for DNA sequences. While

the filtering phase can rapidly prune away sequences that are not joinable, the

refinement phase employs a comprehensive algorithm to remove the remaining false

alarms. The efficiency of the proposed scheme lies in the use of the precedence count

matrix (PCM) for approximating the edit distance between two sequences. With

PCM, the time complexity of sequence comparison is bounded by a constant. We

have evaluated the proposed sequence join algorithm based on PCM, and our study

shows that it outperforms the known techniques.

To effectively predict the subcellular localization of proteins, q-gram frequency

vectors, q-gram wavelet vectors, q-gram similarity vectors, and q-gram TF.IDF

xviii

vectors based on q-grams for protein sequences are proposed, and the Support

Vector Machine (SVM) is used to predict the subcellular localization of proteins

based on these q-gram vectors in the sequences. The experimental results show

that the q-gram based features represent the protein sequence well, and they are

very effective for the prediction of the subcellular localization of proteins. Since

there is no single method of prediction which can achieve high prediction accuracy,

precision or recall for all the subcellular localizations for proteins, the contribution

of our proposed prediction method is substantial and useful in practice.

We believe that our contributions have successfully addressed some of the issues

of approximate sequence matching in genomic sequences. Our contributions include

the proposal of an efficient search model for DNA sequences [27], a novel indexing

structure of DNA sequences [28], a filter-and-refine algorithm for DNA sequence

approximate join [30] and some q-gram based subcellular localization prediction

methods for proteins [29]. We have conducted extensive performance studies, and

the experimental results show that the proposed methods are effective and efficient

for the problems addressed in this thesis.

The publications that have arisen from the material described in this thesis are

listed in the reverse chronological order as follows.

• Xia Cao, Beng Chin Ooi, Kian-Lee Tan, Anthony K.H. Tung. The q-gram

Based Protein Subcellular Localization Prediction. Technical Report: School

of Computing, National University of Singapore, 2005.

• Xia Cao, Shuai Cheng Li, Anthony K.H. Tung. Indexing DNA Sequences

Using q-grams. In Proc. of the 10th Int. Conf. on Database Systems for

Advanced Applications, 2005.

• Xia Cao, Shuai Cheng Li, Beng Chin Ooi, Anthony K.H. Tung. Piers: An

xix

Efficient Model for Similarity Search in DNA Sequence Databases. In ACM

Sigmod Record, 33(2):39-44, 2004.

• Xia Cao, Anthony K.H. Tung, Beng Chin Ooi, Kian-Lee Tan, Shuai Cheng

Li. String Join Using Precedence Count Matrix. In Proc. of the 16th Int.

Conf. on Scientific and Statistical Database Management, 2004.

1

CHAPTER 1

Introduction

Sequence data naturally arises in many real-world applications such as genomic

data, web data and event sequences. There is frequent need to conduct sequence

similarity search, sequence approximate join and sequence mining to locate some

useful information in a sequence database. These applications in sequence data

involve sequence approximate matching. In contrast to the simpler exact matching

problem, which consists of locating all exact matches between a query or pattern

and a target database, sequence approximate matching includes recognizing all

approximate matches with respect to a certain measure of similarity or distance.

Furthermore, the sequence approximate matching problem can be classified into two

groups: full sequence approximate matching and subsequence approximate match-

ing. In this thesis, we confine our attention to sequence approximate matching

in the aspect of subsequence matching since the subsequence approximate match-

ing problem is a general case of the full sequence approximate matching problem.

This, however, does not mean that we forget the role of exact matching; rather,

2

we consider exact matching problems to be subproblems in large-scale sequence

comparison, database search and other biologically important applications. For

the approximate sequence matching problem, there is a need to measure the differ-

ence or distance between two sequences in the study of biological sequences. One

common and simple formalization, called edit distance, focuses on transforming

(or editing) one sequence to the other by a series of edit operations on individual

characters [50].

This thesis presents our research in three important problems in the area of

approximate subsequence matching: DNA sequence similarity search in a sequence

database, DNA sequence approximate join, and protein subcellular localization

prediction.

1.1 Background of Genomic Sequence Approxi-

mate Matching

There exist a number of practical applications for approximate sequence matching

including signal processing, text retrieval, optical character recognition and pattern

recognition. “Approximate” means some errors of various types are acceptable

in valid matches. The particularly important recent application for approximate

sequence matching is genome research. The growing interest in genome research has

resulted in the creation of huge genomic databases and significant breakthroughs

have already been achieved with the aid of the analysis of approximate matching in

genomic databases. Databases holding genomic sequences are firmly established as

central tools in current molecular biology, and electronic databases are becoming

the lifeline of the field [50]. In the following, we survey the background knowledge

to genomic databases and introduce the three problems investigated in this thesis:

3

similarity search in DNA sequence database, DNA sequence approximate join, and

protein sequence subcellular localization prediction which are all related to sequence

approximate matching in genomic databases.

1.1.1 Genomics and Genomic Databases

Genetic material, or DNA is the basic blueprint of life, and its structure can be

viewed as a simple but very long sequence over the four-letter alphabet of A, C,

G and T. Some nucleotide sequences are responsible for the production of the pro-

tein. Such DNA sequences are transcribed to RNA, which is a one-strand sequence

similar in structure to DNA. Triplet combinations of the nucleotide bases from the

mRNA, known as codons, are used to specify amino acids. Since there are four

kinds of bases in DNA sequence, there are 64 possible nucleotide triplets. However,

there are only 20 amino acids to specify since different triplet can correspond to

the same amino acid. A protein sequence is a chain of amino acids.

A genomic database is a database of genetic sequences. Genomic databases as-

sist molecular biologists in understanding the biochemical function, chemical struc-

ture and evolutionary history of an organism [121]. Due in part to the development

of molecular biology, large numbers of DNA, RNA and protein sequences have been

determined in the past two decades. In recent years, statistics show that the size

of the collective genomic database doubles every 15 months [17].

There are several public DNA sequence databases. DNA sequence databases

were first assembled at the Los Alamos National Laboratory (LANL) in New Mex-

ico by Walter Goad and his colleagues who worked on the GenBank database,

and at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Ger-

many, where the EMBL database was assembled [77]. GenBank is now main-

tained by the National Center for Biotechnology Information (NCBI). Currently,

4

the large and well-known DNA sequence databases include GenBank, EMBL and

the DNA Database of Japan (DDBJ) [101, 77]. GenBank, EMBL, and DDBJ

have now formed the International Nucleotide Sequence Database Collaboration

(http://www.ncbi.nlm.nih.gov/collab). The three databases are similar in struc-

ture, and are updated every day to guarantee their data consistency.

Though DNA is the basic blueprint of life, protein sequences are the first se-

quences to be collected into a database instead of DNA sequences. Margaret Day-

hoff and her colleagues were the pioneers to assemble the databases of these protein

sequences, and the collection eventually becomes known as the Protein Information

Resource (PIR) [3]. The SWISS-PROT Protein Knowledgebase [90, 19] is an anno-

tated protein sequence database established in 1986 and maintained collaboratively

by the Swiss Institute for Bioinformatics (SIB) and the European Bioinformatics

Institute (EBI).

In the experiments reported in this thesis, we use the biological sequence database

in GenBank for DNA sequence processing, and the protein sequences from SWISS-

PROT for protein sequence subcellular localization prediction.

1.1.2 Similarity Search in Genomic Sequence Database

In biological sequences (DNA, RNA, or protein sequences), high sequence similarity

usually implies significant functional or structural similarity. Understanding the re-

lationship of a query DNA or protein genomic sequence to the known sequences in

genomic databases allows molecular biologists to assign functions to poorly under-

stood sequences. Therefore, similarity search in genomic databases is an important

function in genome research as it is useful for discovering the location of functional

sites, searching novel repeats and conducting comparative analysis of different ge-

nomic sequences. To cater for evolutionary mutations in genomic sequences and

5

noise in the sequence data, approximate sequence matching is preferred to ex-

act matching from the biologists’ point of view when similarity search in genomic

databases is conducted.

Many approaches have been developed for approximate sequence matching. The

most fundamental is the Smith-Waterman alignment algorithm [108], which is a

dynamic programming approach that seeks optimal alignment between a query

and the target sequence in O(mn) time, m and n being the length of the two

sequences. These methods are not practical for long sequences in the megabases

range due to the time complexity of O(mn).

Effort spent improving the efficiency of approximate sequence matching results

in the common idea of filtering by discarding regions of low sequence similarity.

Many approaches have been proposed to perform approximate sequence matching

with respect to the idea of filtering. A well known approach is to scan biological

sequences and find short seed exact matches which are subsequently extended into

longer alignments. This method detects similar regions without using dynamic

programming, and is used in programs such as FASTA [96] and BLAST [8], which

are the most popular tools among biologists. However, the dilemma of this approach

is that increasing seed size decreases search sensitivity whereas decreasing seed size

leads to too many random search results. An alternative approach is to build an

index on the data sequences and conduct the search on the index. Various index

structure models have been proposed for this purpose. In these index structures,

the suffix tree and the suffix array are the popular data structures for sequence

similarity search, as seen in algorithms such as QUASAR [25] and the disk-based

suffix tree structure used in [57]. Suffix trees and suffix array provide efficient string

operations but are not well suited to handling insertion and deletion (gap) in either

sequence. Furthermore, the structure of the suffix tree and the suffix array devours

6

very large amounts of memory. For example, an index file of 2GB is built for a

DNA sequence of the size 20.5M when a suffix tree with links is used. Even if the

suffix tree is used without links as proposed in [57], the suffix tree structure index

is still nearly 10 times the size of the original sequence database. There also exist

some other index structures for biological sequence databases [47, 61, 88, 121, 110,

91]. Though these proposed index structures can support genomic sequence search

efficiently, they suffer either a large index structure or low sensitivity for similarity

search.

1.1.3 Genomic Sequence Approximate Join

The join operation is one of the most useful operations for relational databases and

the most commonly used way to combine information from two or more relations

based on common attributes [99]. Likewise, in the area of computational biology,

join on sequences is very useful for combining sequences, but it is based on similar

sequence values.

Sequence join, which is a computationally expensive operation on sequences,

combines data from two sequence datasets with similar sequence values on the

join attribute. The similarity (or distance) between two sequences is typically

determined by the edit distance, which is computed by using the standard dynamic

programming approach [50]. Two sequences are said to be joinable if the prefix of

one sequence is similar to the suffix of another with respect to the edit distance.

For every ordered pair of sequenced sequences S1 and S2, we would compute the

longest suffix of S1 that approximately matches a prefix of S2. In the context of

genomic applications, such as sequencing by hybridization or sequence assembly,

a sequence is assembled from a set of smaller and overlapping subsequences. In

sequence assembly, the first step is to find how much a suffix of the first sequence

7

matches a prefix of the second. Sequencing errors are a reality (even if they are only

in the 1-5% range) and suffix-prefix matching must allow for approximate matches

[50]. We design an algorithm to find the longest suffix-prefix match which allows

for approximate match for every pair of sequences.

To find the longest suffix and prefix match within a certain distance between

two sequences S1 and S2 with length m and n respectively, standard dynamic

programming can be used [50], and the time complexity to compute the longest

suffix-prefix matches is O(mn). However the computation of the longest best suffix-

prefix matches becomes a bottleneck in sequencing by hybridization or sequence

assembly when the length of sequences is very large. Many heuristic approaches

have been subsequently proposed to speed up the sequence join by skipping the

dynamic programming computation for unattractive pairs. Chen and Skiena [31]

proposed a method called in-depth examination of exact matching with false dis-

missals based on suffix trees and suffix arrays. Their test established that the

approach achieves a 1,000 speedup over dynamic programming while sacrificing 1%

quality in sequence join. The approach finds 99% of the significant overlaps found

by using dynamic programming. A method that computes the length of the longest

common subsequences was presented to speed up sequence join as well since two

sequences which have sufficient overlap should have at least one significant long

common subsequence [50]. The idea is that we can recognize and exclude many

pairs of sequences which are unlikely to be overlapping pairs in the full sequence

[50]. Cohen [34] presented a framework for approximate sequence matching using

the vector space model of similarity. However, the similarity metric for sequence

joins is TF.IDF term weighting 1, rather than edit distance. Since TF.IDF between

1The term frequency / inverse document frequency (TF.IDF) is commonly used to weight each
word in a text document. The TF.IDF approach can capture the relevancy among words, text
documents and particular categories.

8

two sequences does not correspond well with actual edit distance, a larger number

of false dismissals may occur in genomic sequence join.

The q-grams, which have been well used in text retrieval, could be used to gen-

erate the candidates of approximate sequence joins. Gravano et al. [48] used the

concept of q-grams in approximate sequence joins in relational databases by aug-

menting a database with q-grams information, which is needed to run approximate

sequence join. However, the filter rate of this method is still not efficient enough

for sequence join for genomic data. Jin et al. [59] proposed a two-step process

for sequence join. Their approach can support any distance measure between se-

quences, but it suffers from a large number of false dismissals during the processing

of sequence join.

1.1.4 Protein Subcellular Localization Prediction

Advances in proteomics and genome sequencing are generating an enormous amount

of data on genes and proteins at an accelerating rate. Mining the DNA, RNA and

protein data to extract significant information is essential in genome processing.

The significant information may refer to motifs, functional sites, clustering and

classification rules [118].

The development of automated systems for the annotations of protein structure

and function has become extremely important. Subcellular localization is a key

function characteristic of potential gene products such as proteins [39], and the

specific knowledge of subcellular localization allow biologists to decide if further

experimental studies of proteins are required [65]. Therefore, it is very important

to use automated annotation systems to identify or predict subcellular localization

of proteins.

We assume there are two protein sequence datasets: a positive dataset and a

9

negative dataset. For a localization L, positive sequences are the protein sequences

that locate in localization L, and negative sequences are the protein sequence that

do not locate in localization L. The problem of predicting protein subcellular lo-

calization can be stated as follows: Given an unlabeled protein sequence S, and a

known subcellular localization L, we want to determine if the sequence S locates in

the localization L. Several methods have been proposed during the last decade for

the prediction or classification task of protein localization. Since 1991, a number

of systems have been developed to support the automated prediction of subcellular

localization of proteins using different approaches. In these systems, machine learn-

ing methods such as Artificial Neural Networks, the k-nearest neighbors method,

and the Support Vector Machine (SVM) have been applied on different features

extracted from protein sequences.

The existing methods may be grouped into three categories. The first cate-

gory of methods use similarity search to assign functions including the subcellular

localization site of a protein. Subcellular localization tends to be evolutionarily

conserved, thus homology to a protein of known localization can be a good indi-

cator of a protein’s actual localization site [79]. However, this method fails when

the query sequence and target protein sequence are not significantly similar. The

second group of methods use sequence motifs such as peptide signals, or nuclear lo-

calization signals, which are short subsequences with a length of three to 70 amino

acids [40]. The problem of this method is that sometimes it is very difficult to find

universal motifs for a group of protein sequences. The third group of methods are

based on amino acid composition, where some machine learning classifiers are used

to implement the prediction. The biological experiments show that the information

needed to direct a protein to any localization site is mainly encoded in its amino acid

sequence. For example, NNPSL [100] uses artificial neural nets (ANN), and SubLoc

10

[55] uses SVM as classifier based on amino acid composition. This approach may

not capture the information on sequence order and the inter-relationships between

amino acids.

The previous research on protein subcellular localization prediction clearly in-

dicates that no single method of prediction can achieve high prediction accuracy,

precision or recall for all subcellular localizations of proteins. The observation in-

deed provides us with the motivation to propose novel approaches to predict the

subcellular localization of proteins.

1.2 Motivation and Objectives

Sequence similarity search, sequence approximate join, and sequence mining are

important applications of sequence processing in molecular biology. While they

may differ in functionalities, they share certain underlying operations, and they

are common underlying operations, such as sequence approximate matching and

sequence alignment, that determine their efficiency and effectiveness. To process

approximate matching, the approximation metric must be specified, and there are

several ways to formalize the notion of distance between sequences. One common

and simple formalization called edit distance focuses on editing one sequence into

the other by a series of edit operations on individual characters. Though edit

distance is one common and simple approximation metric for sequence approximate

matching, the time complexity and space complexity of computing edit distance

are both O(mn) for two sequences with length m and n respectively when using

standard dynamic programming [108]. Obviously, the computation of edit distance

is very costly in terms of both time and space when sequences in the database are

very long.

11

To speed up approximate sequence matching, filtering is an efficient means to

quickly discard irrelevant parts of a sequence database by means of filtering criteria.

Useful parts are retained for further checking with the edit distance computed

using dynamic programming. Several filtering techniques have been developed

for efficient sequence approximate matching of DNA sequences, and they require

reasonable amount of memory and disk space.

In this thesis, we set out to achieve three goals:

1. First, we seek to develop efficient index structures and design the correspond-

ing algorithms for efficient comparison of many short DNA query sequences

with a very large genomic database. To measure the new proposed structures

and algorithms, we have devised the following criteria that the similarity

search method should meet.

• The index data structure should be a compact and approximate rep-

resentation of a large genomic sequence database, and the size of the

index structure is within an acceptable range compared to the original

sequence database.

• The filtering approach based on the index structure must be very effi-

cient for sequence similarity search. It must also ensure there will be no

false dismissals in sequence approximate matching. False dismissals

are subsequences that are within a specified distance from query sub-

sequences but are discarded wrongly as dissimilar subsequences. Sensi-

tivity analysis for the search method must be conducted to guarantee

that the search method is comparable in accuracy to existing popular

systems in identifying answers.

• The system must be fast and scalable with query rate and database size.

12

2. Second, we seek to design an approximate measurement of edit distance with

the aim of decreasing the computational cost of deriving edit distance by stan-

dard dynamic programming. To this end, a DNA sequence is first transformed

to a numeric vector which can be denoted as a point in high-dimensional

space, and an algorithm is then developed for approximating the edit dis-

tance of two sequences in the new transformed data space. The edit distance

approximation algorithm must satisfy the following principles:

• The space of the transformed data vector should be small as we need

to reduce the space requirement for approximating the edit distance

between two sequences.

• The distance function between two vectors defined in the new trans-

formed spaces should be the lower bound of the actual edit distance

between the two corresponding sequences. This principle is meant to be

a guarantee against false dismissal in sequence approximate matching.

• The approximation of edit distance should be sufficiently tight so that

the number of false positives is small and the cost of refining results for

final outputs is kept low.

3. Third, we seek to extract useful and significant information from protein sub-

cellular location sequences. These extracted features should be “relevant”

[118] in the sense that there should be high mutual information between the

features and the classification label, which is the subcellular localization in

this case. Moveover, for protein sequences, the extracted features should cap-

ture both the global and local similarity of the sequences. In all, the proposed

feature extraction method should be very effective in capturing information

in protein sequences that is useful and critical for sequence prediction, for

13

example, protein subcellular localization prediction.

1.3 Contribution

To achieve the objectives outlined in Section 1.2, we define each problem and study

its related work, and subsequently propose novel sequence filtering techniques and

sequence feature extraction methods for more efficient and effective sequence ap-

proximate matching in genomic databases. To study the effectiveness and efficiency

of our proposals, we provide theoretical analysis and conduct extensive experiments

using real datasets, comparing our methods against existing methods. We now

summarize the contributions of this thesis:

First, we propose an efficient similarity search model for DNA sequences. From

observation, we note that only some extracted DNA segments called “piers”, need to

be accessed from the DNA sequence database; there is no need to search the entire

database. Based on the model, we construct a hash table on the extracted piers

to further improve search efficiency and avoid unnecessary dynamic programming

computation. The piers model is a general model for reducing the segments to be

indexed by the indexing structures while keeping higher sensitivity.

Second, we propose a two-level index to organize DNA sequences efficiently

based on q-grams. The purpose of the index is to allow similarity search in a DNA

database, sidestepping the need for linear scan of the entire database. The two-

level index structure is composed of two parts: a hash table built on the q-Clusters

of DNA segments, and a novel data structure, c-trees, constructed on the q-grams

of the DNA segments. The filter principle of the two-level index structure should

guarantee efficient sequence search while keeping sensitivity high.

Third, we design an effective and efficient filter-and-refine sequence join algo-

14

rithm to conduct DNA sequence approximate join efficiently. The proposed scheme

employs the precedence count matrix (PCM) to compute the edit distance between

two DNA sequences efficiently.

Finally, to predict protein subcellular localization, we propose q-gram frequency

vectors, q-gram wavelet vectors, q-gram similarity vectors, and q-gram TF.IDF

vectors based on q-grams for protein sequences to extract useful information from

a protein sequence. The sequence representation feature vectors can be trained on

SVMs to predict the subcellular localization of proteins.

1.4 Thesis Organization

The thesis is organized as follows.

• Chapter 2 provides an introduction and overview of state-of-the-art research

works that are closely related to this thesis. First, the backgrounds of molec-

ular biology, genomic databases, and techniques for practical sequence com-

parison are introduced and described. Second, the core research problems of

this thesis are defined, and related work are reviewed and discussed. They

provide the necessary background for this thesis.

• In Chapter 3, an efficient hash-based pier model is presented for similarity

search in very large DNA sequence databases. In this model, only certain

segments in a DNA sequence database called “piers” need to be accessed

during search, as opposed to other approaches which require a full scan of the

biological sequence database. We compare our proposed approach with the

latest of BLAST, and show theoretically and empirically that the proposed

approach can efficiently detect biological sequences that are similar to a query

sequence with very high sensitivity. The idea of “pier” is also applicable to

15

any kind of sequence indexing structures since it acts as a tool for selecting

“useful” segments of a database for indexing.

• In Chapter 4, a novel method for indexing DNA sequences efficiently based

on q-grams is proposed to facilitate similarity search in a DNA database

and avoid the need for linear scan of the entire database. A two-level index

is proposed based on the q-grams of DNA sequences. The proposed data

structures allow the quick detection of sequences within a certain distance

to the query sequence. We present experimental studies that evaluate the

performance of the proposed two-level index against the proposed hash-based

pier model and the latest version of BLASTn.

• In Chapter 5, we propose a filter-and-refine sequence join algorithm. While

the filtering phase can rapidly prune away sequences that are not joinable, the

refinement phase employs an efficient algorithm to remove the remaining false

positives. The efficiency of the proposed scheme lies in the use of the PCM

for computing the edit distance between two sequences. We also evaluate

the proposed sequence join algorithm, and our performance study shows that

it outperforms known techniques such as the q-grams method [48] and the

frequency vector method [61].

• In Chapter 6, we devise several sequence features generated based on the q-

grams for protein sequences: the q-gram frequency feature, the q-gram wavelet

feature, the q-gram similarity feature, and the q-gram TF.IDF feature. SVM

is used to predict the subcellular localization of proteins based on these pro-

posed q-gram based features generated from sequences. The experimental

studies show that q-gram based features can represent a protein sequence

well, and they are very effective for the prediction of subcellular localization

16

of proteins.

• We conclude in Chapter 7 with a summary of our contributions, and discus-

sion on some limitations of our work and some suggestions for future work.

17

CHAPTER 2

Background and Related Work

This chapter first gives an overview of concepts in molecular biology that are es-

sential to computational biology. It then introduces the background of genomic

sequence databases and addresses the importance of sequence comparison in molec-

ular biology. Subsequently, the standard dynamic programming algorithm for com-

puting the edit distance between two sequences is introduced. Finally, we present

three research problems studied in this thesis for approximate genomic sequence

matching in the area of molecular biology, and review the existing work related to

these research problems.

2.1 Basic Concepts of Molecular Biology

Modern science has shown that life started some 3.5 billion years ago, shortly after

the Earth itself was formed [33, 36]. Both complex and simple organisms are similar

in molecular chemistry or bio-chemistry. The main actors in the chemistry of life

18

are molecules called proteins and nucleic acid. In general, proteins are responsible

for what a living being is and does in a physical sense. Nucleic acids, on the other

hand, encode the information necessary to produce the proteins and are responsible

for passing along this “recipe” to subsequence generation.

The “central dogma” of information flow in biology states that information flows

from DNA to RNA to protein; since a protein’s functionality is determined by its

unique three dimensional structure, it follows that the one-dimensional sequence in-

formation in DNA determines the three-dimensional structure of the corresponding

protein [33].

The central dogma states that once “information” has passed into a protein it

cannot get out again. The transfer of information from nucleic acid to protein may

be possible, but transfer from protein to protein, or from protein to nucleic acid is

impossible. Information here means the precise determination of sequence, either

of bases in the nucleic acid or of amino acid in the protein [36].

The following depicts information flow in biology:

DNA RNA Protein

Figure 2.1: Information Flow

2.1.1 Genome and Chromosome

A genome is all the DNA contained in an organism or a cell, which includes the

chromosomes plus the DNA in mitochondria (and DNA in the chloroplasts of plant

cells)1. In other words, all the genetic information in an organism is referred to

collectively as a “genome”. A chromosome is one of the threadlike “packages” of

1definition from the National Human Genome Research Institute (NHGRI): Glossary of Ge-
netic Terms.

19

genes and other DNA in the nucleus of a cell. Different kinds of organisms have

different numbers of chromosomes. Humans have 23 pairs of chromosomes, 46 in all:

44 autosomes and two sex chromosomes. Each parent contributes one chromosome

to each pair, so children get half of their chromosomes from their mothers and half

from their fathers. An example of chromosome is given in Figure 2.2.

Figure 2.2: Chromosome (Image from[1])

20

2.1.2 Nucleotide, DNA and RNA

A nucleotide is one of the structural components, or building blocks, of DNA and

RNA. A nucleotide consists of a base (adenine, thymine, guanine, and cytosine)

plus a molecule of sugar and one of phosphoric acids [54].

Genetic material, or DNA is the basic blueprint of life, and its structure can

be viewed as a simple but very long sequence. Both DNA and RNA are polymers,

which are composed of nucleotides. DNA is composed by four bases adenine(A),

cytosine(C), guanine(G), and thymine(T). DNA exists as a double-strand molec-

ular, formed by hydrogen bonds between hydrogen bonds between complementary

bases: A with T , and C with G, the so-called Watson-Crick rules. Double-strand

DNA forms a helix – two strands line up anti-parallel to each other but are oriented

in opposite directions. DNA stores the instruction required by a cell to perform

the daily life function. The information in DNA is used like a library. Then infor-

mation in genes is read, maybe millions of times in the life of an organism, but the

DNA itself is never used up.

In contrast to DNA, RNA is single-stranded. In RNA, the thymine is replaced

by uracil (U). While DNA serves only the function of information storage, RNA

serves certain catalytic functions through its complex three-dimensional form.

2.1.3 Genes

Genes, in the form of DNA, are embedded in a cell’s chromosomes. A gene is the

functional and physical unit of heredity passed from parent to offspring. Genes are

pieces of DNA, and most genes contain information for making a specific protein

or an RNA. Genes comprise two non-coding regions, whose functions may include

providing chromosomal structural integrity and regulating where, when and in what

quantity proteins are made.

21

2.1.4 Proteins

Proteins perform a wide variety of activities in a cell. A protein is a large complex

molecule made up of one or more chains of amino acids. Amino acids are a group

of 20 different kinds of small molecules that link together in long chains to form

proteins. Therefore, amino acids are often referred to as the “building blocks” of

proteins. The types of amino acids found in proteins are shown in Table 2.1 [104,

33]. There are altogether 20 amino acids in proteins, although a few nonstandard

amino acids might also be present in them [104].

Protein synthesis begins in the cell’s nucleus when the gene encoding a protein

is copied into RNA. RNA then functions to convert the nucleic acid sequence into

the amino acid sequences of proteins. The process of transferring the gene’s DNA

into RNA is called transcription. Transcription helps magnify the amount of DNA

by creating many copies of RNA that can act as the template for protein synthesis

[33]. The RNA copy of the gene is called the messenger RNA (mRNA).

Translation is the actual synthesis of a protein under the direction of mRNA

[104, 33]. During this process the nucleotide sequence of an mRNA is translated

into the amino acid sequence of a protein. The nucleotide sequence of the mRNA

is composed of four different nucleotides whereas a protein is built up from 20

amino acids. To allow the four nucleotides to specify 20 different amino acids, the

nucleotide sequence is interpreted in codons, groups of three nucleotides. These

codons have their corresponding anticodon in the transfer RNA (tRNA). Further-

more each anticodon is linked to one particular amino acid. Thus, each codon

specifies one amino acid.

A protein is not only a linear sequence of amino acids. The sequence is known

as primary structure, and proteins also fold in three dimensions, which present

secondary structure, tertiary structure and quaternary structure. In our work, as

22

One-letter code Three-letter code Name
1 A Ala Alanine
2 C Cys Cysteine
3 D Asp Aspartic Acid
4 E Glu Glutamic Acid
5 F Phe Phenylalanine
6 G Gly Glycine
7 H His Histidine
8 I Ile Isoleucine
9 K Lys Lysine
10 L Leu Leucine
11 M Met Methionine
12 N Asn Asparagine
13 P Pro Proline
14 Q Gln Glutamine
15 R Arg Arginine
16 S Ser Serine
17 T Thr Threonine
18 V Val Valine
19 W Trp Tryptophan
20 Y Tyr Tyrosine

Table 2.1: The Twenty Amino Acids Found in Proteins [104, 33]

the protein is concerned, note that we only focus on processing the primary protein

sequences.

2.2 Background of Genomic Sequences and Se-

quence Comparison

Understanding the relationship of an unknown DNA or protein genomic sequence

to well understood sequences in a genomic database allows molecular biologists to

assign function to poorly understood sequences. Indeed, in computational biology,

one of the goals of sequence analysis is to determine sequence function, structure,

and role from inspection and querying with a character string representation (or

linear sequence) of a genomic sequence [50]. In this section, we start by illustrating

23

the development of genomic sequence database, and by describing the importance

of genomic sequence comparison, and then present some techniques and algorithms

for sequence comparison.

2.2.1 Genomic Databases

Genomic database is the database of the genetic sequences. Comprehensive databases

holding DNA and protein sequences are firmly established as central tools in cur-

rent molecular biology. Electronic databases have become the lifeblood of the field

[117]. Genomic databases assist molecular biologists in understanding the bio-

chemical function, chemical structure and evolutionary history of organisms [121].

Given the effectiveness of sequence comparison in molecular biology which will

be discussed in Section 2.2.2, it is natural to systematically organize the genomic

sequences to be compared.

Large number of DNA, RNA and protein sequences have been determined in

the past decades. Some institutional sequence databases have been set up to har-

bor these sequences as well as wealth of associated data. The rate at which new

sequences are being added to these databases is exponential. Historically, one of

the most popular DNA sequence databases, GenBank had been doubling in size

about every 18 months, but that rate has accelerated to doubling every 15 months

due primarily to the enormous growth in data from expressed sequence tags (ESTs)

[15, 16, 17], as shown in Figure 2.3.

• Genomic Sequence Storage and Format. Sequence information is stored

in computers as simple rows of sequence characters. Each character is stored

in a byte, which produces 255 possible combinations. The combinations are

also called ASCII characters by convention. Each DNA or protein sequence

database entry has much information, including an assigned accession num-

24

Figure 2.3: Growth of GenBank (1982-2004) [2]

ber; score organism; name of locus; reference; keywords that apply to se-

quences; features in the sequence such as coding regions, intro splice sites

and mutations; and finally the sequence itself [77].

In genomic sequence database, though the formats of databases all are stan-

dard ASCII files, they would differ in the presence of certain characters and

words that indicate where different types of information and the sequence

itself are to be found. FASTA sequence format is one of the most popular

sequence formats used for the genomic sequence databases. It includes three

parts [77]: (1) a comment line identified by a ‘>’ character in the first column

followed by the name and origin of the sequence; (2) the sequence in standard

one-letter symbols; and (3) an optional ‘*’ which indicates end of sequence

which may or may not be present.

25

• DNA Sequence Databases.

DNA sequence databases were first assembled at Los Alamos National Lab-

oratory (LANL), New Mexico, by Walter Goad and his colleagues in the

GeneBank Database and at the European Molecular Biology Laboratory

(EMBL) in Heidelberg, Germany. For DNA sequence in database, in ad-

dition to four nucleotide bases, there are eleven standard wildcard characters

used to represent different possible substitution in a nucleotide sequence [68].

The most common wildcard is ‘N’ which represents any base, and some se-

quences contain thousands of consecutive occurrence of ‘N’ that represents

poorly understood regions of a certain length [121].

There are several public DNA sequence databases. The larger databases

are GenBank [15], the DNA Database of Japan (DDBJ) [4], the European

Molecular Biology Laboratory database (EMBL) [101], and Genome Sequence

Database (GSDB). The four databases share information between them and

they have similar structure and they are also updated daily to incorporate

the most recently available sequence data from all sources.

GenBank stores sequence data generated through the US human genome

initiative, which not only focuses on the human genome, but also on model

organisms [35]. Historically, the database has roughly doubled in size every

21 months since 1984, however GenBank is now doubling in size every 15 or

16 months. The average sequence length is around 700 bases, with sequences

ranging from a few bases to 300,000 bases in length; several sequences are

longer than 300,000 bases, but have been stored as separate records according

to GenBank guidelines. GenBank contains amino-acid translations for many

coding nucleotide sequences, however several solely protein databases also

exist.

26

• Protein Sequence Databases. In nature, 20 different amino acids are

found in protein sequences. These 20 common amino acids are listed in Table

2.1, while a few nonstandard amino acids might also be present in protein

sequence databases. Protein databases are typically well-managed and less

redundant than nucleotide databases, commonly including classification of se-

quences into related families and, in some cases, superfamilies of families. On

the protein side, such databases include SWISS-PROT [10, 90, 19] in Europe

and Protein Information Resource (PIR) [3]. SWISS-PROT contains cross-

references and data from around twenty smaller databases that investigate

special organisms and protein types. There also exist some special protein

databases, such as the Portable Mouse Genome Database [122].

2.2.2 The Importance of Sequence Comparison in Molecu-

lar Biology

The importance of sequence comparison in molecular biology can be traced back

to a few earliest researches. The first success story in sequence comparison was

to establish the link between cancer-causing genes and a gene involved in normal

growth and development [38, 119, 102].

After comparing some sequences, they discovered that some of the sequences,

v-sis oncogene, are very similar to the platelet-derived growth factor. At that time

the function of v-sis oncogene is still unknown. Based on the similarity of two

sequences, they suggested that the function of both v-sis oncogene and platelet-

derived growth factor is the same. Indeed, scientist later found that these two

genes share similar functions. Another research work [102] also resulted in the

same conclusion. They made use of multiple sequence alignment to understand

the cystic fibrosis gene. Since all the compared sequences are similar, they share

27

similar function.

Sequence comparison is one of the most important primitive operations in com-

putational biology as a basis for many other and more complex operations, and

it has become essential in modern molecular biology due to the development on

the systematic collection, sequence assembly and search of databases containing

biomolecular sequences and emergence of many other important applications in

molecular biology. In essence, sequence comparison is an operation of finding which

parts of the sequences are alike and which parts differ.

In biological sequences (DNA, RNA or protein sequences), high sequence sim-

ilarity usually implies significant functional or structural similarity [50]. In the

genome of a single species and across a very wide spectrum of divergent species,

the same and related molecular structures and mechanisms repeatedly occur.

The following quote is from Eric Wieschaus, cowinner of the 1995 Nobel Prize

in medicine. Wieschaus says in an Associated Press article of October 9, 1995:

“We didn’t know it at the time, but we found out everything in life is so similar,

that the same genes that work in flies are the ones that work in humans.”

And also from a book review on DNA repair [109], it is said that “Throughout

the present work we see the insight gained through our ability to look for sequence

homologies by comparison of the DNA of different species. Studies on yeast are

remarkable predictors of the human system!”.

We can obviously see that redundancy and similarity are key phenomena in

molecular biology. But there are lots of limits for similarity - humans and mice are

different. These differences make conserved similarity even more significant, which

in turn makes comparison and analogy very powerful tools in biology [50].

28

2.2.3 Sequence Alignment and Edit Distance

Mutation in DNA is a natural evolutionary process. DNA replication errors cause

substitutions, insertions, and deletions of nucleotides, leading to “editing” of DNA

texts. Similarity between DNA sequences can be a clue to common evolutionary

origin (say the similarity between globin genes in humans and chimpanzees), or a

clue to common function (say the similarity between the v-sys oncogene and the

growth-stimulating hormone).

In this section, the definition of two notations will be introduced. One is distance

(similarity) of two sequences which gives a measurement on how similar are the two

sequences. The other is the alignment of two sequences, which is a way of placing

one sequence with another to make clear correspondence between similar characters

or subsequences from the sequences.

In 1979, Sims and his colleagues [106] analyzed similar regions from the DNA

of two bacteriophages. An alignment was presented between regions from the DNA

of the H-gene from phages St-1 and G4 containing 11 matches, which means that

there are equal characters in 11 columns in both sequences. They described the

procedure of alignment as the “insertion of occasional gaps to maximize number

of identities”. However, in [107], Smith and his colleagues produced an alignment

with 12 matches for the same sequences with the aid of computer. It shows that

the use of computer can help detect the intriguing similarity that is easy to be

neglected by human beings. We shall introduce the two important concepts: edit

distance between two sequences and sequence alignments in the following.

Edit Distance

We start with a detailed examination of the most classic sequence approximate

matching problem solved by using dynamic programming, the edit distance prob-

29

lem. Edit distance focuses on transforming one sequence into the other by a series

of edit operations on individual characters, which are insertion, deletion ad re-

placement. The edit distance between two sequences is defined as the minimum

number of edit operations needed to transform the first sequence into the second

[50]. Edit distance is also referred to as Levenshtein distance since it was firstly

discussed in Levenshtein’s paper properly in 1966 [66]. Currently most of genomic

sequence comparison algorithms still use this operation or a slight variation of it.

In this thesis, we use edit distance instead of Levenshtein distance for consistency

and simplicity.

Formally, the definition of edit distance is given as follow:

Definition 2.2.1 Edit Distance

The edit distance between two sequences is the minimum number of edit opera-

tions (i.e., insertions, deletions, and substitutions) of single characters needed to

transform the first sequence into the second.

The edit distance is a symmetric distance measurement in two sequences, and

a deletion in the first sequence can be seen as an insertion in the second, and vice

versa. The edit distance problem is to compute the edit distance between two given

sequences, along with an optimal edit transcript that describes the transformation.

Sequence Alignment

From the mathematical view of point, sequence alignment is equivalent to the edit

transcript between two sequences. Sequence alignment is the procedure of com-

paring two (pair-wise alignment) or more (multiple sequence alignment) sequences

by searching for a series of individual characters or character patterns that are

in the same order in the sequences. Sequence alignment is useful for discovering

functional, structural, and evolutionary information in genomic sequences. It is

30

A T - C - T G A T
- T G C A T - A -

Table 2.2: Sequence Alignment of Sequence s1 and s2

important to obtain the best possible or so-called “optimal” alignment to discover

this kind of information. In alignment, identical or similar characters are placed

in the same column, and nonidentical characters can either be placed in the same

column as a mismatch or opposite a gap in the other sequence. The definition of

sequence alignment given in [50] is shown as follows:

Definition 2.2.2 Sequence Alignment

A (global) alignment of two sequences s1 and s2 is obtained by first inserting chosen

spaces (or dashes), either into or at the ends of s1 and s2, and then placing the two

resulting sequences one above the other so that every character or space in either

sequence is opposite a character or a space in the other sequence [50].

There are two kinds of alignments: global alignment and local alignment. The

term “global” gives regard to the fact that for each sequence, and the entire se-

quence is involved in the alignment. Sequences that are quite similar and ap-

proximately the same length are suitable candidates for global alignment. As a

global alignment, it considers the alignment of the sequences s1 : “ATCTGAT”

and s2 : “TGCATA” shown in Table 2.2. A local alignment between s1 and s2 is

an alignment between a subsequence of s1 and a subsequence of s2.

In the early research on sequence alignment, researchers focused on finding the

similarity between two entire sequences, i.e. global alignment. Global alignment

of sequences is often meaningful when the two sequences are members of the same

sequence family, such as the similar DNA or protein family. However, in molecular

biological applications, local similarity (local alignment) is far more meaningful in

31

some sense than global similarity (global alignment).

When the long stretches of unknown sequences are compared, only some internal

segments of the two sequences are similar, especially for some protein sequences.

In a case of this, local alignment is a more appropriate way to compare sequences.

For example, homeobox genes, which regulate embryonic development, are present

in a large variety of species. Though homeobox genes are very different in different

species, only one region of them, homeodomain is highly conserved. It means that

we need to find the conserved region but ignore the regions with little similarity.

2.2.4 Algorithm of Calculating Edit Distance and Gener-

ating Sequence Alignment

Then we should turn to the question of how to compute, via dynamic programming,

the edit distance of two sequences along with the sequence alignment together. This

algorithm has been discovered and re-discovered many times in different applica-

tions from speech processing [115] to molecular biology [85]. Though the details are

slightly different with the different algorithms, they have dynamic programming as

basis in essence.

The dynamic programming approach consists of three essential components,

which are the recurrence relation, the tabular computation, and the traceback [50].

To compute the edit distance of two sequences s1 and s2 with length m and n,

respectively, the dynamic programming approach will build an m ∗ n matrix and

compute the value for every cell in the matrix. The time complexity is O(mn). The

basic algorithm for computing the edit distance between two sequences s1[1..m] and

s2[1..n] is as follows [104]:

A two-dimensional matrix, M [0..m, 0..n] is used to store the edit distance values

in matrix. The value of M(i, j) is the edit distance of s1[1..i] and s2[1..j]. For the

32

edit distance problem, the base conditions are

M(i, 0) =
∑i

k=1 d(s1[k],−), i = 1..m

M(0, j) =
∑j

k=1 d(−, s2[k]), j = 1..n
(2.1)

where a dash(“-”) denotes a space inserted in a sequence; d(s1[k],−) denotes

the distance weight between character s1[k] and the inserted space, and d(−, s2[k])

the distance weight between the inserted space and character s2[k].

The general recurrence is described as below:

M(i, j) = min(M(i− 1, j) + 1,M(i, j − 1) + 1,

M(i− 1, j − 1) + d(s1[i], s2[j])), i = 1..m, j = 1..n
(2.2)

In the above equation, d(s1[i], s2[j]) denotes the distance weight value of two

characters s1[i] and s2[j], which can handle insertion, deletion, substitution and

equality, where

d(s1[i], s2[j]) =





1, s1[i] 6= s2[j];

0, otherwise;

An alternate way for edit distance in formalizing the relation of two sequences

is to measure their similarity rather than their distance. The similarity of two

sequences is related with the edit distance, but it depends on the specific scor-

ing matrix. Numerous character scoring matrices have been suggested for DNA

and proteins. In protein sequence, the famous scoring matrices are PAM (Point

Accepted Mutation) or BLOSUM (Blocks Substitution Matrix) matrix. Scoring

matrix is often used in sequence alignment.

When focusing on similarity, the language of alignment is usually more conve-

nient than the language of edit transcript. Every alignment of s1 and s2 corresponds

33

to a path in the matrix of sequence s1 and s2. The global alignment problem cor-

responds to finding the path between cell [0, 0] and cell [n,m] in the matrix.

Smith and Waterman [108] in 1981 proposed a clever modification of dynamic

programming that solves the local alignment problem. The algorithm of computing

the local edit distance or alignment between two sequences s1 and s2 is similar to

the one of computing the global edit distance mentioned above. Also the three

steps are necessary, and the time complexity is also O(mn) when computing the

local edit distance between s1[1..m] and s2[1..n]. Obviously, the computational cost

is high when the length of sequence is long. Therefore, it is important to find a

more cost effective method especially for large database.

In the biological literature, global alignment is often referred to as a Needleman-

Wunsch [85] alignment after the authors first discussed global alignment. Local

alignment is often referred to as Smith-Waterman [108] alignment since the authors

introduced local alignment.

2.3 Research Problems: Genomic Sequence Search,

Join and Classification

A couple of examples which describe a list of problems in computational biology

were given in [104]. Here we shall cite them to give us a clear picture about the

basic operations for genomic sequences in computational biology.

1. We have two sequences over the same alphabet, both about the same length

(ten of thousands of characters). We know that the sequences are almost

equal, with a few isolated differences such as insertions, deletions, and substi-

tutions of characters. The average frequency of these differences is low. We

want to find the places where the difference occur.

34

2. We have two sequences over the same alphabet with a few hundred characters

each. We want to know whether there is a prefix of one which is similar to

a suffix of the other. If the answer is yes, the prefix and the suffix involved

must be produced.

3. We have the same problem as in (2), but now we have several hundred se-

quences that must be compared (each one against all). In addition, we know

that the great majority of sequence pairs are unrelated, that is, they will not

have the required degree of similarity.

4. We have two sequences over the same alphabet with a few hundred characters

each. We want to know whether there are two subsequences, one from each

sequence, that are similar.

5. We have the same problem as in (4), but instead of two sequences we have

one sequence that must be compared to thousands of others.

Problem (1) arises in the situation when we want to compare the results se-

quenced by two different labs on the same genes, or we want to detect the typing

errors when the same long sequence is input to computer. Problem (2) and Problem

(3) are about sequence approximate join which is needed to be solved in fragment

assembly to conduct the DNA sequencing. Meanwhile, Problem (4) and Problem

(5) are mainly about local similarity search in large biological sequence databases.

In addition, advances in proteomics and genome sequencing are generating enor-

mous numbers of genes and proteins at an accelerating rate. Mining these DNA,

RNA, protein sequence data to extract significant information is essential in genome

processing. In the following, we shall introduce some existing work closely related

to the research problems addressed in this thesis.

35

2.3.1 Genomic Sequence Similarity Searches

Database similarity searches have become a mainstay of computational biology

or bioinformatics. Searching a sequence database for sequences that are similar

to a query sequence is the most common type of database similarity search. A

common reason for performing a database search with a query sequence is to find

a related gene or protein in another organism. The sequence of the gene of interest

is compared with every sequence in sequence database, and the similar ones are

identified, which may provide a clue as function of this query gene with unknown

function. Whenever a new gene or a new protein is cloned or sequenced in the

laboratory, searching the related database is the next step. Sequence databases

and the software to search them have become important and vital tools in modern

molecular biology. Database organization and searching have become industries,

and “discoveries based solely on sequence have become routine” [94]. It would be

hard to find a recent DNA-based discovery that didn’t use these tools [14]. The

problem description of similarity search in the sequence databases can be defined

formally as follows:

Problem 2.3.1 Given a query sequence Q and a target sequence database D, find

a set of subsequences of Q such that each subsequence Q′ in the set is highly similar

to some subsequence D′ of D. The similarity between Q′ and D′ is computed as a

function of the edit distance, edit(Q′, D′).

Sequence similarity search programs are versatile tools for the molecular biolo-

gist, frequently able to identify possible DNA coding regions and to provide clues

to gene and protein structure and function. A great amount of work has been done

to improve search efficiency and effectiveness, and we now review some existing

work of homology search in genomic sequence databases.

36

BLAST – The Standard Tool

This section first examines BLAST – the standard tool that is being used by biol-

ogists – before discussing other related work.

The BLAST programs [8, 9] are among the most frequently used to search

sequence databases worldwide since BLAST programs are available on the World

Wide Web through a large server at the NCBI (http://ncbi.nlm.nih.gov), and at

many other mapping sites. BLAST has been a dominant searching engine for the

biological sequence databases since 1990.

BLAST is the standard tool that molecular biologists use to search for sequence

similarity in genomic databases, and is known to be one of the more efficient tools

available. It is a local similarity search algorithm that incorporates heuristics to

prune the search space in order to keep the computational cost low. As a result, it

may miss the (global) maximum segment pair (MSP).

BLAST is actually a collection of programs, which are used to deal with different

problems in sequence database search. However, the basic principle of BLAST is

the same. BLASTN focuses on searching DNA sequence database, while BLASTP

is to search protein sequence database, which uses PAM or BLOSUM matrix to

compute similarity scores.

The operation of matching a query sequence against a library of data sequences

is carried out in three steps. First, BLAST generates a list of query windows of

length W (W -tuples), where W is a tunable parameter, by placing a window of

size W over every position of the query.

In the second step, BLAST scans through every database sequence to see if it

contains a W -tuple that can match with one of the query W -tuples to produce a seed

with a score greater than or equal to a predetermined threshold T . The sequential

scan of the entire sequence database employs a finite state machine algorithm.

37

Moreover, BLAST encodes every database sequence into bit representation, and

this step searches the bit-encoded data rather than the original database sequences.

Figure 2.4: Illustration of BLAST Search Steps

Finally, in the third step, the seeds are extended in an attempt to locate longer

similar segment pairs. Each seed is extended on the left and right to determine if it

is contained within a longer segment pair whose score is greater than or equal to S.

The algorithm stops extending the seed in one direction when that causes the score

to fall a certain distance below the best score found so far. In BLAST-2 [9], seed

extension is restricted to sequences that share at least two non-overlapping seeds,

with the same relative offset and within a certain distance of one another. This

38

stricter criterion trades sensitivity for speed. BLAST-2 also tries to produce gapped

alignment from multiple local MSPs (maximum segment pairs) for each sequence,

whereas the original BLAST program often finds several alignments involving a

single database sequence.

BLAST permits a tradeoff between speed and sensitivity, by adjusting the set-

tings for the threshold T and the length of W -tuple. A higher T or W value yields

greater speed by avoiding spurious short seeds arising by chance in data sequences

that cause unnecessary comparisons. However, it may increase the probability of

missing weak similarities (i.e., less sensitive). For DNA queries, the default settings

are T = 0 and W = 11.

Figure 2.4 illustrates how BLAST works. Here, W = 11, T = 0, and the query

sequence has a length of 17 base pairs leading to 7 query windows in step 1. In step

2, four of these windows are identified as having matching segments in the data

sequence. Step 3 then extends the first of these seeds to give the alignment shown

in step 4.

BLAST has a few popular implementations, including the NCBI-BLAST [5]

from NCBI, and WU-BLAST [7] from Washington University. We evaluated NCBI-

BLAST because its source code is freely available for download. To understand the

cost breakdown, we recompiled the source codes of BLAST with the profiling option

and ran the program with a profiler, gprof [6] to generate statistics on the time

spent on each function. These statistics are grouped to produce the time spent on

database retrieval, W -tuple matching, and seed extension.

We ran BLAST on a DNA database of 487 KB sequences with 1.7 GB letters

to study the effect of query length on BLAST. For each query length, we generated

100 random queries and obtained the average running time. The results, plotted

in Figure 2.5, show that the seed searching time dominates the total response time

39

for BLAST. Database read time and seed extension time are just a small portion

of the total response time.

0

5

10

15

20

25

30

35

40

5 6 7 8 9 10 11 12

E
la

ps
ed

 ti
m

e(
s)

log2(QueryLength)

Blast’s Search in Genbank sequences (DNA)

Total response time
Database read time

Seed searching time
Seed extension time

Figure 2.5: Breakdown of BLAST’s Search Time

In all, BLAST is a heuristic method for finding similar regions between two

genomic sequences. It regards the exact match of W contiguous bases as candidates

which are then extended along the left side and the right side to obtain the final

alignments. Unfortunately, BLAST faces the dilemma of DNA homology search:

increasing the seed size W decreases sensitivity while decreasing the seed size results

in too many random results.

Sequence Scan Based Similarity Search

The widely used sequence similarity finding programs include Needleman-Wunsch

[85], Smith-Waterman [108], FASTA [96, 95] and BLAST [8, 9].

The Needleman - Wunsch algorithm performs global sequence alignment using

a dynamic programming algorithm. Its computational complexity is O(mn). The

40

Smith-Waterman algorithm [108] is a heuristic approximation to the Needleman-

Wunsch [85] algorithm using local sequence alignment to find the similar sequence

from the sequence database. The computational complexity is still O(mn), with

a coefficient of complexity smaller than Needleman-Wunsch. It performs local

sequence alignment between a query sequence and the target sequence using a

dynamic programming algorithm.

The FASTA algorithm [96, 95] identifies regions of local sequence similarity by

first identifying candidate similar sequences based on the shared W -tuples. FASTA

is a tool for the analysis of protein and DNA sequence similarity that achieves a

tradeoff between the selectivity and sensitivity. The search algorithm used by

FASTA includes four steps in computing the score for pair-wise sequence similarity

[96, 95].

1. In the first step of comparison, FASTA uses a lookup table to locate all

identities between two DNA or protein sequences, and find the best diagonal

regions.

2. In the second step of comparison, FASTA evaluates these regions found in the

first step and rescores them using a scoring matrix, which allows conservative

replacements and runs of identities shorter than W -tuples to contribute more

score to the final similarity score between the two pair-wise sequences. A

certain sub-regions, say 10 sub-regions, with higher scores will be found,

which are called “initial regions”.

3. In the third step of comparison, FASTA will check the “initial region” iden-

tified in the second step to see whether several initial regions may be joined

together. FASTA also computes the final alignment score of the combination

of several initial regions and ranks the database sequences according to the

41

final scores.

4. In the fourth step of comparison, the highest scoring database sequences

are aligned again using a modification of the optimization method described

by Needleman and Wunsch, Smith and Waterman. This step considers all

possible alignments of the query and database sequence that fall within a

band centered around the highest scoring initial region. The final optimized

alignments are reported as the results.

FASTA also considers local similarity analysis since molecular biologists are

often interested in the detection of similar subsequences within longer sequences.

Statistical significance of an alignment is also evaluated in the tool of FASTA by

providing additional tool, which compares one sequence with randomly permuted

versions of the potentially related sequences. A simple Monte Carlo shuffle analysis

can be used in the evaluation of the statistical significance.

Both FASTA and BLAST have formed the basis for their latest versions that

provide very powerful search tools for the molecular biologists, and are freely avail-

able to run on desktops.

PatternHunter [70] is an improvement on BLAST both in speed and sensitivity

through the use of non-consecutive W characters as model, where W is the weight of

this model. Though it seems that non-consecutive W seed is a very simple change,

it has a very surprisingly large effect on sensitivity. They denote a model by 0-1

string, where the 1-positions represent the matches for the “care” part, while the

0-positions are the part of “do not care”. According to the reported experiment

results by Bin Ma et al. [70], PatternHunter outperforms BLAST both in speed

and sensitivity. However, in essence, PatternHunter’s basic principles in algorithm

are similar to those of BLAST. Therefore, it also suffers the dilemma of BLAST.

42

Category Method
Suffix structure QUASAR [25]

Oasis [75]
Multi-dimensional indexing approaches Wavelet-Based Method [61]

Four different transformation methods [91]
Other tree-structured index structures SPINE [86]

ed-tree [110]
SST [47]

Inverted file index CAFE [121]
Hash structure LSH-ALL-PAIRS [23]

RAMdb [44]
FLASH [26]
SSAHA [88]
BLAT [63]

Table 2.3: Genomic Sequence Indexing Based Similarity Search Methods

Sequence Indexing Based Similarity Search

The above-mentioned similarity search methods are based on sequence scan. The

alternative to exhaustive search is to use an index-based approach. In order to

improve the efficiency of similarity search, the researchers in the area of computer

science have also proposed many index structures for genomic sequence databases.

These index structures are summarized in Table 2.3. We review these schemes in

detail subsequently.

The family of suffix tree and suffix array are well-studied indexing structures

for facilitating string-related retrieval [120, 74, 71, 72]. QUASAR [25] applies a

modification of q-gram filtering on top of a suffix array. It pre-computes the posi-

tions of the hit lists in the suffix array A for all possible q-grams and stores them

in a search array of size |Σ|q, where |Σ| is the number in the alphabet. QUASAR

is faster in detecting the regions with strong similarity, however, its performance

deteriorates dramatically if the compared sequences are weakly similar. Also, the

resultant index structure based on the suffix array and suffix tree is large compared

43

to the size of the sequence database. For example, an index file of 2GB is built for

a DNA sequence of 20.5M when a suffix tree with links is used. Even if the suffix

tree is used without links as proposed in [57], the suffix tree structure index is still

nearly 10 times the size of the original sequence database. In [78], Muthukrishnan

and Sahinalp proposed an index structure for approximate nearest search for se-

quences. The index structure is based on a suffix array, and the resulting index

structure is still four times the size of the sequence database.

Oasis [75] is a novel search algorithm which uses a dynamic programming A*-

search driven by a suffix tree index built on the DNA sequence dataset for fast

and accurate local alignment search on sequences. The study shows that Oasis is

often an order-of-magnitude or more faster than Smith-Waterman algorithm for

the short query sequence. And it also can be used in online mode as it returns the

results in decreasing order of the matching scores. Since Oasis is driven by a suffix

tree, it also suffers the weakness of the suffix tree, say large size of index structure.

For long genome sequences, constructing suffix tree is very time-consuming,

and the size of the suffix tree is typically too large to fit in memory. Consequently,

many proposals [42, 57, 111, 112, 12, 13] have focused on reducing the time and

space for suffix tree construction. In [111, 112], the authors proposed an approach

for efficiently constructing large suffix trees on disk. The approach takes into

account the effects of buffering policies during the suffix-tree construction. [111,

112] demonstrated that a suffix tree can be built on the entire human genome in 30

hours based on the proposal. In [12, 13], Bedathur et al. developed a low overhead

buffer management policy called TOP-Q to exploit the pattern of access over the

suffix tree during its construction. They also evaluated the impact of buffering and

internal node implementation choices on the construction of a suffix tree on disk.

In [71, 72], Manber and Myers proposed suffix arrays as a space-saving alternative

44

to suffix trees and presented the first algorithms for suffix array construction and

use. Subsequent research on compressed suffix arrays [49, 64, 103, 53] and the FM-

index [43] has revealed that self-indexing structures are possible, which can search

for and report matches without the need for the original sequences to be stored.

Because of the non-sequential access patterns exhibited by current suffix array

algorithms, all the work with such algorithms assume that their structures can fit in

memory. In [64], for a human DNA which comprises about 2.8 billion characters, a

compressed suffix array occupies about 2GB; moreover, the compressed suffix array

for a human genome can be constructed in 2 hours, which is faster than suffix tree.

[64] also demonstrated that searching on compressed suffix array is much faster

than searching on hard disk based suffix tree.

In [86], Neelapala et al. proposed the SPINE index data structure, a carefully

engineered horizontally-compacted tire index. In SPINE, a set of forward and back-

ward edges are employed to ensure that all suffixes of the data string are captured

in index structure. The algorithms are also designed for both online construction of

the SPINE index structure and performing complex searching based on SPINE. The

authors demonstrated that SPINE requires significantly less space than standard

implementation of suffix tree, and SPINE takes less time for both construction and

searching compared to suffix tree. But in SPINE, it only considers the occurrences

of a matching pattern in data strings instead of approximate matches.

Recently, some attempts have been made to transform DNA sequences into nu-

merical vector spaces to allow the use of multi-dimensional indexing approaches

for sequence similarity search. The distance function defined in the new spaces

should be the lower bound of the edit distance between the related sequences cor-

responding to the two vectors. A wavelet-based method is proposed to map the

subsequences of a database into a 2σ dimensional integer vector where σ is the

45

alphabet size of the sequence in [61]. The coefficients of the integer vector are then

indexed by MRS-Index. Range queries and nearest-neighbor queries are performed

based on the index structure. Though this method avoids false dismissals and offers

very fast filtering, its approximation of edit distance is not sufficiently tight, and

as a result, the overhead of refining results for final output can be very high. MRS-

Index returns only approximate answers for sequence approximate match [86], and

it is designed to find the global alignment for the whole query sequence, but not

for the subsequence of the whole query sequence. This is thus different from what

we are trying to achieve in this thesis.

Four different transformation domains and five different distance functions are

investigated in [91]. Three strategies, namely scanning access, the R-tree based

indexing and scalar quantization-based indexing are built on top of the transformed

vectors. The distance in this new transformed space is not expected to keep the

exact same relationships as the edit distance of the originating strings.

A new index for DNA sequences, called the ed-tree [110] is proposed to support

probe-based homology search in DNA sequence databases. The tree-structure in-

dex is constructed by sliding a window on the DNA data sequence with the skip

intervals. In each window, the subsequences are segmented in terms of a segment

length vector. The paper showed that query using the ed-tree is up to six times

faster than BLAST. But the size of the tree-structure index is larger than the se-

quence database and as well as it is very time-consuming to build the ed-tree for

DNA sequences.

In SST [47], each sequence is partitioned into fragments according to the window

size, and each window is mapped into a vector. Tree structured vector quantization

is used to create its tree-structured index by a k-means clustering technique. SST

has been shown to be much faster than BLAST when searching for highly similar

46

sequences. Unfortunately, since the distance between sequences in the transformed

vector space does not correspond well with the actual edit distance, a larger number

of false dismissals may occur if the similarity between the query sequence and the

target sequence is not sufficiently high.

Inverted file index in text processing has also been applied to a biological se-

quence database. Williams et al. [121] proposed a search algorithm in a research

prototype system, CAFE, which uses an inverted index to select a subset of se-

quences that display broad similarity to the query sequence. CAFE is based on

a partitioned search approach, where a coarse search using an inverted index is

used to rank sequences by similarity to a query sequence, and a subsequent fine

search is used to locally align only a subset of database sequences with the query.

The CAFE index consists of three components: a search structure, which contains

the index terms or distinct intervals, that is, fixed-length overlapping subsequences

from the collection being indexed; inverted lists, which are a carefully compressed

list of ordinal sequence numbers, where each list is an index of sequences containing

a particular interval; and a mapping table that maps ordinal sequence numbers to

the physical location of sequence data on disk. A compression scheme is employed

to make the index size more manageable. CAFE evaluates a query by representing

it as a set of intervals, retrieving the list for each interval, then using a ranking

structure to store a similarity score of each database sequence to the query. CAFE

bears the additional overhead of uncompressing the index at runtime for a query.

The experiments conducted in [121] show that CAFE is faster but also less sensitive

than BLAST when searching for very similar sequences.

Buhler [23] proposed a method, LSH-ALL-PAIRS, for finding longer seeds to

improve efficiency, while maintaining sensitivity for weak similarity by using the

technique of locality-sensitive hashing (LSH). However false drops and false hits

47

cannot be completely avoided because the result is sensitive to the hashing functions

being used. Furthermore, it may miss some short alignments in a collection of

sequences.

RAMdb (Rapid Access Motif database) [44] is a system for finding short pat-

terns called motifs in genome databases. Each genome sequence is indexed by its

constituent overlapping intervals in a hash table structure. For each interval, an

associated list of sequence numbers and offsets is stored. This allows a quick lookup

of any sequences that match a query sequence. A long query sequence is split into

shorter non-overlapping motifs that are used to query the database. RAMdb is

best suited for query motifs whose length is equal to or slightly longer than the

indexed interval length, and has been shown to produce up to an 800-fold speedup

in search time over exhaustive approximate pattern matching schemes. It requires

a large index that is twice the size of the original flat-file database including the

textual descriptions and suffers from a lack of special-purpose ranking schemes for

identifying initial match regions. In addition, the non-overlapping interval of query

motifs can lead to false dismissals.

The FLASH search tool redundantly indexes genome data based on a probabilis-

tic scheme [26]. For each interval of length n, the FLASH search structure stores,

in a hash-table, all possible similarly-ordered contiguous and non-contiguous sub-

sequences of length m that begin with the first base in the interval, where m < n.

As an example, for a nucleotide sequence ACCTGATT the index terms for the first

n = 5 bases, where m = 3, would be ACC, ACT, ACG, ACT, ACG and ATG with

each of the permuted strings beginning with base A, the first base in the interval

of length n = 5. The hash-table then stores each permuted m-length subsequence,

the sequences that contain the permuted subsequences, and the offsets within each

sequence of the permuted subsequence. The key idea is that the permuted scheme

48

approximates a reasonable number of insertions, deletions, and substitutions in the

genome sequences. The authors found that FLASH was of the order of ten times

faster than BLAST for a small test collection, and was superior in accuracy and

sensitivity in determining homologies. Unfortunately, the hash-table index is un-

compressed and impractically large – For a nucleotide collection of around 100 MB,

the index requires 18 Gb on disk, around 180 times the collection size.

Another algorithm, Sequence Search and Alignment by Hashing Algorithm

(SSAHA) [88], performs fast searches on databases containing multiple gigabases

of DNA sequences. It hashes the non-overlapping W -tuples in the data sequences.

Search for a query sequence is done by obtaining from the hash table the “hits”

for each W -tuple in the query sequence and then performing a sort on the results.

The final similar regions can be created by joining together the exact matchings

sufficiently close to one another. Though it is fast, it also suffers from the same

dilemma of BLAST.

BLAT [63] constructed an index of nonoverlapping W -tuples and their positions

in the sequence database. It then looks up each overlapping W -tuple of query

sequence in the index. BLAT is fast due to the index of all overlapping W -tuples in

the genome. The index can be fit inside memory for fast access. BLAT also returns

each region of homology between the data sequence and query sequence as separate

alignment and stitches these regions together into a larger alignment. In addition,

instead of using perfect matches of a W -tuple seed to trigger an alignment, BLAT

also provides an option (denoted as near-perfect match) to allow one mistake in a

seed hit. Every possible W -tuple that matches in all but one position. However,

for a given sensitivity, the near-perfect match criteria runs 15 time slower than the

perfect match criteria in BLAT [63].

49

2.3.2 Genomic Sequence Approximate Join

The standard approaches to assembling DNA sequence from randomly located and

randomly oriented reads use “overlap-layout-consensus” [50, 58, 97, 98]. In this

section, we discuss some of the related work in sequence approximate joins which

are relevant to the first step of DNA sequence assembly, overlap detection, and also

relevant to sequence by hybridization.

To find the most similar suffix and prefix match, we can use the standard

dynamic programming recurrences to compute the similarity between s1 and s2

[50]. For the sequence s1 and s2 with the length m and n respectively, the best

suffix-prefix match of the pairs takes O(mn) time. Therefore, the computation of

the best longest suffix-prefix matches of two sequences is actually a bottleneck in

sequence assembly when the length of sequences is very large.

Hence many researchers have started to consider some approaches to speed up

the first step of assembly by skipping the dynamic programming computation for

those unattractive pairs. In [50], a method that computes the length of the longest

common substrings is presented for this purpose since two strings which have the

sufficient overlap should have at least one significant long common substring. Chen

and Skiena in [31] proposed a method called in-depth examination of exact match-

ing with dismissal. This method speeds up the dynamic programming with the

cost of decline in quality.

Cohen [34] presented a framework for the approximate string matches using the

vector space model of similarity. But the similarity metric for the string joins is

TF.IDF term weighting, rather than the edit distance used in our method.

Another method to generate the candidates of approximate string joins is to use

q-grams. In [48], Gravano et al. used the concept of q-grams in approximate string

joins in relational database by augmenting a database with q-grams information,

50

which is needed to run the approximate string joins. Three filtering techniques,

count filtering, position filtering and length filtering are used to get a set of candi-

date answers for string joins efficiently.

Jin, Li and Mehrotra [59] also proposed a two-step process for string join.

Firstly, the strings are mapped into the points in a multi-dimensional vector space

by FastMap algorithm so that the mapped space preserves the distance over

strings. In the second step, the high-dimensional similarity join algorithm pro-

posed in [52] is used to conduct a multi-dimensional similarity join. This approach

can support any distance measure between strings, but it cannot guarantee to find

all the results.

A great amount of work has been conducted to design the efficient and effective

solutions to the approximate sequence joins problem. A good survey on the current

techniques for approximate string matching can be found in [84].

2.3.3 Protein Subcellular Localization Prediction

A number of systems have been developed to support the prediction of subcellu-

lar localization based on amino acid sequences. The pioneering work was done by

Nakai and Kanehisa in [81, 82]. They developed an expert system that makes use

of various kinds of knowledge organized as “if-then” rules for predicting localiza-

tion sites of proteins based on the N-terminal sorting signals from the amino acid

sequence. Von Heijine et al. [116] and Nielsen et al. [87] proposed to use the sig-

nal peptides, mitochondrial targeting peptides and chloroplast transit pepetides for

the protein subcellular localization prediction. As an improvement, TargetP [40] is

an integrated prediction system built from two layers of neural networks based on

combining these individual sorting signal predictions. TargetP has a relatively well-

working cleavage site prediction capability for all involved target sequences. The

51

prediction accuracy highly depends on the quality of protein N-terminal sequence

alignment. However, the prediction accuracy based on sorting signals is not stable

since annotating the N-terminal using the existing gene identification methods is

often unreliable.

In [83], sequences of intracellular and extracellular soluble proteins were ana-

lyzed statistically in terms of amino acid composition and residue-pair frequencies.

Moreover, the authors have declared that introcellular and extracellular differ signif-

icantly in their amino acid composition. Reinhardt and Hubbard [100] used neural

networks to predict the subcellular location of proteins in prokaryotic or eukary-

otic cells from their amino acid composition. This study also examines whether

the differences in amino acid composition between other subcellular locations is

strong enough to establish a prediction method. A method based on the amino

acid composition should be comparatively stable when the leader sequences are

missing or only partially included. In [32], Chou and Elrod proposed a covariant

discriminant algorithm to predict the subcellular location of a query protein ac-

cording to its amino acid composition. In [55], SVM was introduced to predict the

subcellular localization of proteins from amino acid composition, and Hua and Sun

[55] examined three locations in prokaryotic organisms: cytoplasmic, periplasmic

and extracellular; and four locations in eukaryotic cells: cytoplasmic, extracellular,

mitochondrial, and nuclear, and they concluded that the amino acid composition

based prediction method can be a complementary method to other existing meth-

ods based on sorting signals. A set of SVMs were trained to predict the subcellular

location of protein based on its amino acid, amino acid pair, and gapped amino

acid pair composition in [92], and a voting scheme was proposed to combine the

prediction of these different compositions. The weakness of this method is that

it may not catch the information on sequence order and the inter-relationships

52

between the amino acids.

Dipeptide composition was presented in [56], which is another representative

form of proteins incorporating neighborhood information. A fuzzy k-NN method

based on the protein’s dipeptide composition was proposed for prediction of sub-

cellular localizations. Fourier analysis and tri-peptide frequency are proposed in

[65] as features to capture the information about long-range correlations and global

symmetries in proteins which are missed by the global amino acid composition. The

SVM was also used as the classifier based on the proposed features.

Instead of using amino acid sequence alone, Lu et al. [69] explored the use of

database text annotations from homologies and machine learning to substantially

improve the prediction of subcellular location. Each feature of the query protein is

a Boolean value corresponding to the presence or absence of a token (word or phase)

from certain field of the homologous sequence Swiss-Prot dataset entries. These

features were not obtained from the training dataset, and they were computed

automatically from Swiss-Prot database.

Based on the concepts of frequent patterns in data mining, frequent patterns are

used as the basis for designing accurate and efficient prediction algorithms for outer

membrane proteins [105]. A frequent subsequence is a consecutive subsequence of

amino acids that occurs in outer membrane proteins. Two methods were presented

by using frequent subsequences to predict outer membrane proteins: one method

uses frequent subsequence to construct classification rules, the other uses frequent

subsequence as features for an SVM. The methods are only applied on the prediction

of outer membrane proteins.

In order to improve the prediction accuracy, an SVM-based hybrid module [18]

was developed by using many features of a protein, which consisted of an input

vector of 458 dimensions (400 dipeptide compositions, 33 properties, 20 amino

53

acid compositions of the protein and 5 from PSI-BLAST output). The hybrid

module can capture more information about a protein that is crucial for detecting

subcellular localization of proteins. In essence this method is a hybrid module

which integrates some existing subcellular localization prediction methods.

For bacterial location prediction, the most widely used tool is PSORT-B [46],

which combines several methods, including SCL-BLAST, identification of motifs

and sorting signals and machine learning methods. PSORTb v2.0 [45], the up-

dated version of PSORTb tool was extended by including Gram-positive organisms

and increasing its predictive coverage to improve significantly upon the original

program.

2.4 Summary

In this Chapter, we have introduced the foundation required for the research issues

being addressed in this thesis. In particular, we defined the problems and discussed

related work of these research issues.

54

CHAPTER 3

Piers: An Efficient Model for Similarity

Search in DNA Sequence Databases

3.1 Introduction

Increasing interest in genetic research has resulted in the creation of huge genomic

databases, and similarity search in genome sequence databases has become a basic

operation in computational biology. Many algorithms have been developed, and

one of the most fundamental is the Smith-Waterman alignment algorithm [108],

which is based on dynamic programming concept for finding an optimal alignment

between a query and its target sequence in O(mn) time, where m and n being

the length of the two sequences respectively. Obviously, the overhead is high for

large m and n. The work has however generated interest and followup work in

developing faster algorithms and tools.

One of the most common approaches adopted in efficient retrieval from large

55

and complex database is the two step filter-and-refine approach. An algorithm

based on such principle consists of two phases. In phase 1, it reduces the number

of negatives quickly as cost effectively as possible. In phase 2, it goes through

each member in the retrieved result set and performs a more detailed and costly

check to remove the false positives that are not filtered out earlier. Likewise in

computational biology, many proposals have adopted this approach [96, 8]. In this

context, the sequences database is first broken into short segments and matched

against the query sequences. Then segments with low similarity are first filtered

off while more complex computations are done on the remaining high similarity

segments to form the final result. The efficiency and sensitivity of such approaches

are highly dependant on the choice for the length of the segments and how regular

the segments are being sampled from the database sequences. For example, in the

case of BLASTn [8], a segment length of 11 characters is usually used and segments

are obtained from every position in the database sequence.

In this chapter, we propose a hash based model for efficient and sensitive DNA

sequence search. It introduces the notation of “pier”, which is defined as a segment

with length `p and located at position pos in a data sequence1. The proposed

technique focuses on effective filtering in the first phase of the search since the

performance in the second phase is typically similar across most of such approaches.

During pre-processing, the piers are randomly picked from a data sequence S

based on the principle that at least one pier is fully contained within any subse-

quence of S having a minimum length. These piers are then stored in a hash table

for efficient access. Such an approach gives us a much lower pre-processing time

compared to BLASTn and other index building approaches.

During query time, by picking each query pattern (or seed) generated from

1The name “pier” is selected since we believe that these small set of selected segments should
be enough to “support” highly sensitive similarity search for the whose database sequence.

56

the query sequences and enumerating its neighbors (i.e. segments of the same

length that are within a small edit distance from the query pattern), candidate

buckets can be located in the hash table very efficiently. Using the algorithm, we

can enumerate all the neighbors which are potential candidates without searching

through the whole hash space.

In order to achieve high efficiency in searching, we have to solve the insertion

collision in hash table. We propose to pre-compute a global penalty matrix (called

GPM), with size 42ω for all the possible DNA segments, where ω is the length of

suffix of pier segment. We keep length ω small to ensure that GPM is small enough

to reside in memory. By looking up GPM, we can obtain the set of pier candidates

which are similar to query pattern without computing the edit distance.

After completing the search for the pier candidates which are similar to the

query pattern qi, we use these pier candidates to detect the regions in sequence

database which are similar to the query subsequence. All the subsequences which

include the candidate piers are needed to be aligned and verified to see whether

they are really similar to the query subsequence which include query pattern qi.

We then extend the candidate into both directions for the final alignments between

data sequence and query sequence.

In summary, this chapter has the following contributions.

• We propose to use the extracted piers, not the whole sequence database for

efficient sequence similarity search with acceptable sensitivity. The issue of

sensitivity of our proposed pier model is also addressed. The piers are the

segments of data sequence which meet the principle of pier extraction. The

proposed pier model is applicable to other similarity search methods for se-

lecting some segments as index terms.

• A hash table is built on the extracted piers for efficient access. The hash key

57

of the pier is the encoded integer of the prefix of pier in our method. Every

pier is inserted into one of the buckets in the hash table according to the hash

key of the pier.

• The algorithm of enumerating all the neighbors of the query pattern is also

devised. By using the algorithm of neighbor enumeration, the candidate

buckets can be located in hash table very efficiently without scanning all the

hash keys in it.

• In order to reduce the computation cost of verifying the piers in the collision

list in a candidate bucket, a method is presented to solve it. The method is

to only look up the pre-built GPM for detecting the pier candidates.

• We show theoretically and empirically that the proposed approach can effi-

ciently detect biological sequences that are similar to a query sequence with

very high sensitivity.

The rest of the chapter is organized as follows. In Section 2, we shall provide

some definitions and formally give a problem statement discussed in this chapter. In

Section 3, the pier model is proposed for DNA sequence search and the sensitivity of

the proposed pier model is also analyzed theoretically. In Section 4, a hash-based

pier model is presented for efficient sequence search in DNA sequence database.

Section 5 shows how sequence similarity search can be efficiently processed using

the proposed hash-based pier model with analysis on the space and time complexity

of the method. The test data and experimental results are presented in Section 6.

Section 7 concludes the chapter.

58

3.2 Notations and Problem Statement

In this section, we shall give some definitions and provide a formal problem state-

ment.

3.2.1 Notations and Definitions

The most commonly used distance measurement for two sequences is referred to

as edit distance. As we have stated in Chapter 2, it is a simple but fairly accu-

rate measure for the evolutionary proximity of two DNA sequences [50]. The edit

distance between two sequences is the minimum number of edit operations (i.e.,

insertions, deletions, and substitutions) of single characters needed to transform

the first sequence into the second. Edit distance is used as a distance measurement

for two DNA sequences in this chapter.

In this chapter, small segments from a sequence database are referred to as piers.

Formally, a pier is defined as a tuple 〈p, pos〉, where pier sequence p is a segment

of length `p extracted from a DNA sequence, and pos is the list of positions for the

pier sequence p occurring in the data sequences.

For notation simplicity, we shall use p to refer to as both the segment with the

corresponding positions, and the segment itself. It should be clear in the context.

Intuitively, by using piers, we are able to avoid indexing the whole sequence,

while selecting the appropriate number of piers and the distribution of the piers to

achieve desirable sensitivity of search. Formally, a pier has the following definition.

Definition 3.2.1 Pier

A pier is defined as a pair 〈p, pos〉. Pier sequence p is a segment extracted from

DNA sequence of length `p. pos is the list of positions for the pier sequence p

occurring in the sequence database.

59

Based on the definition of piers, we define span to be the segment between two

adjacent piers in the proposed pier model.

Definition 3.2.2 Span

The span is the segment between two adjacent piers in the proposed pier model.

The length of span `s must meet the pier extraction principle which will be

described later. Here, candidate is referred to as the set of the target subsequences

that we want to search further in the sequence database, and it is stated as follow

formally.

Definition 3.2.3 Candidate

Given the query sequence Q, the pier p can be regarded as the candidate if it satisfies

the formula: edit(p, qi) ≤ θ, where qi is the query pattern with length `p in query

sequence Q.

The notations to be used in this chapter are summarized in Table 3.1.

3.2.2 Problem Statement

The approximate sequence match problem can be classified into two categories:

whole sequence matching and subsequence matching [41]. Since the subsequence

matching problem is a generalization of the whole matching problem, we confine

our attention to a subsequence match problem. The sequence similarity search

problem can be described as follows:

Problem 3.2.1 Given the length l and edit distance ϑ, find all subsequences S

in D which have length |S| ≥ l and edit(S, Q′) ≤ ϑ for subsequence Q′ in query

sequence Q.

60

Notation Description
D a DNA sequence database
|D| the size of DNA sequence database D
S the data sequence in D
|S| the length of sequence S
S[i, j] the subsequence of S from i to j
s ⊂ S s is a subsequence of sequence S
pi the ith pier segment along D
`p the length of a pier
λ the length of prefix of pier segment
ω the length of suffix of pier segment, λ + ω = `p

`s the length of a span
Q a query sequence
qi the ith query pattern in Q with length `p

θ edit distance threshold allowed for pier candidate and query pattern
`min the minimum length of the high similarity region
edit(S,Q) the edit distance between two sequences S and Q

Table 3.1: The Notations

We adopt the filter-and-refine approach, and according to the analysis of search

cost for BLASTn in Chapter 2, we know that the seed searching time dominates

the total response time for BLASTn, while database read time and seed extension

time are just a small portion of the total response time. Therefore, in this chapter,

we shall focus on the filtering problem defined as follows:

Problem 3.2.2 Given edit distance threshold θ, find all candidates p, p ⊂ S in

data sequence S, S ∈ D for each query pattern qi ⊂ Q, where edit(p, qi) ≤ θ.

3.3 The Proposed Pier Model

This section describes our pier model for biological sequence similarity search. The

main assumption in the pier model is that users are only interested in high simi-

larity region that is of length greater than a minimum length lmin. Based on this

61

assumption, we define piers in a biological sequence database as some segments in

the data sequences, which meet Property 3.3.1 defined below.

Property 3.3.1 Pier Extraction Principle

The Pier Extraction Principle states that at least k piers should be fully contained

in any subsequence with length no less than the threshold of minimum length `min.

This means that the following formula must hold:

((k + 1)`p + k`s) ≤ `min.

Intuitively, the pier extraction principle simply ensures that consecutive piers

are selected in the data sequences such that at least k of the piers will be fully

contained in any candidate subsequence of length no less than lmin. In the pier

model, the pier sequences can be extracted randomly or periodically from the data

sequence as long as the pier extraction principle (3.3.1) is satisfied. As explained

later, this is done to reduce the probability of a high similarity region being lost in

a worse case scenario. For ease of discussion, we extract the piers from the sequence

database periodically.

3.3.1 Generation of the Piers

Sequence S

span1 span3span2

pier3pier2

... ...

... ...

pier1

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.1: An Example of the Piers Extracted from DNA Sequence

In Algorithm 1, we describe how the piers are extracted from the sequence

database. For each sequence S in database, startOffset is the start position of

62

the first pier in S. After the first pier is extracted, the current offset o is set

as startOffset. The start position of next pier will be specified from the interval

[o+`p, o+`p +`s] since it must satisfy the pier extraction principle. This extracting

process will be executed until the end of the last sequence in the sequence is reached.

For each pier, the pier sequence and its corresponding position in the sequence

database are stored. Figure 3.1 gives a visual description on how the piers are

extracted from the data sequence S. In our implementation, we extract the piers

from data sequences periodically, which means that the start position of next pier

is o + `p + `s if the position of current pier is o.

Algorithm 1 Pier Generation Algorithm
Input: DNA sequence database D, Pier length `p, Span length `s.
Output: A set of piers P = {p1, p2, ..., pn}.
Method:
1: P ← ∅, i ← 1;
2: for each sequence Si ∈ D do
3: o ← startOffset;
4: while |Si| − o ≥ `p do
5: pi ← 〈Si[o, o + `p − 1], o〉;
6: P ← P ∪ {pi};
7: o ← a random number ∈ [o+`p, o + `p + `s];
8: i ← i + 1;
9: end while

10: end for

In next section, we shall analyze how our pier model is theoretically effective

and sensitive enough for sequence search.

3.4 Sensitivity Analysis

In approximate search, if a candidate is similar to the query sequence, then the edit

distance of the corresponding parts in the alignment between query and candidate

is small as well. Traditional methods are based on a more restrictive conclusion of

63

this: if the distance between two sequences is short, then they have at least one

q-length segment that is exactly the same. In BLASTn, the segment is referred to

as seed, and in others, it may be referred to as q-gram, or pattern. Approaches

adopted have the constraint that seeds cannot be too long, otherwise the index

structure will be large and it will also lead to low sensitivity. The seed length

cannot be small as well, otherwise it makes filtering ineffective. BLASTn looks for

matches of w consecutive letters as seeds. In the case of BLASTn, the seed length

is typically set to 11. If the edit distance is allowed to be 10%−20% of the matched

subsequence, then it is possible that BLASTn may miss some of the candidates.

Gapped seed is used by PatternHunter [70] to reduce the missing candidates. The

pier here is in some sense a more flexible version of gapped seeds. We use pier

segment with error tolerances as seed. For example, we set the length of pier as

15, and set edit distance allowed in pier segment as 3 in our pier model.

In order to investigate the sensitivity of BLASTn and pier model theoretically,

we follow the same prototype as in PatternHunter [70]. In sensitivity model, we

represent an alignment between two sequences as a 0-1 string, where 1 positions

represent matches, while 0 positions represent mismatches. Suppose a substring

s1 from query sequence is similar to a same-length subsequence s2 from the data

sequence. Let a = a(s1, s2) be a 0-1 string indicating the alignment between s1

and s2, i.e. a[i] = 1 if and only if s1[i1] = s2[i2], where s1[i1], and s2[i2] are the

corresponding letters in s1 and s2 in terms of the position i of alignment a. So

there are in total 2L binary strings of length L: R0, ..., R2L−1. The sensitivity of a

seed model is computed as
∑2L−1

i=0 (Pr(Ri has a seed match)). If we count the hit

probability one by one for all 2L − 1 binary strings, it takes exponential time. In

the following, we shall discuss how to compute the sensitivity of BLASTn and pier

model in polynomial time.

64

3.4.1 Theoretical Sensitivity Analysis for BLASTn

For BLASTn, its default seed is 11111111111, or 11 consecutive matches to generate

a hit. In order to compute the exact sensitivity of BLASTn much more efficiently,

we use the algorithm of dynamic programming [62, 67, 70].

Algorithm 2 Algorithm: Dynamic Programming
Input: A seed A, similarity level p and length L.
Output: The probability that A hits a p-random region of length L.
Method:
1: compute the compatible suffix set B;
2: for i from 0 to L do
3: for b in B from longest to shortest do
4: if i < |b| then
5: f [i, b] = 0;
6: else
7: f0 = f [i− |b|+ |b′|, 0b′], where 0b′ = B(0b);
8: if A hits 1b then
9: f1 = 1;

10: else
11: f1 = f [i, 1b];
12: end if
13: f [i, b] = (1− p)× f0 + p× f1;
14: end if
15: end for
16: end for
17: output f [L, ε]

In PattenHunterII [67], they use the Algorithm of dynamic programming (Shown

in Algorithm 2) to compute the hit probability for k seeds. Let R be a random

binary string of length L with similarity level p. Each bit independently is 1 with

probability p. A is a seed or a set of seeds. 2

For a binary string b and |b| ≤ i ≤ L, f(i, b) = Pr(A hits R[0 : i]|b is a suffix of

R[0 : i]). The hit probability of A on R is equal to f(L, ε), where ε is the empty

string. For any i > |b|, f(i, b) = (1 − p)f(i, 0b) + pf(i, 1b). So f(i, b) is computed

2We consider a single seed hit in this Chapter. And the BLASTn’s default seed is 11111111111.

65

in terms of other f(i′, b′) which has been computed earlier, and the set of b’s we

need to consider is limited in the process [67]. The set B is needed to be computed

before Algorithm 2 is run. B is the set of binary strings that are not hit by seed A

but compatible with A 3.

Therefore, by using Algorithm 2, we can compute the exact sensitivity (hit

probability) of BLASTn’s default seed in polynomial time.

3.4.2 Theoretical Sensitivity Analysis of the Pier Model

Based on the observation that two similar sequences would have similar subse-

quences, we arrive at the following property:

Property 3.4.1 If two sequences Q and C have edit(Q, C)≤ ζ, then for each

segment s ⊂ C, there exists a segment s
′ ⊂ Q such that edit(s, s

′
) ≤ ζ.

By Property 3.4.1, we can simply index a partial set of segments of the database,

and when given each query segment s′, search only for segments s in the index

structure that has edit(s, s
′
) ≤ ζ. Further, in the above property, edit(s, s

′
) is

rarely near to ζ when the segment length or pier length is much smaller than the

length of C or Q. Subsequently, we can state the property as follows:

Property 3.4.2 If sequences Q and C have edit(Q, C)≤ ζ, then for each s ⊂ C,

there exist a segment s
′ ⊂ Q with high probability such that edit(s, s

′
) ≤ ζ

′
for some

ζ
′ ≤ ζ.

Intuitively, if two sequences C and Q have very few differences between them,

then the probability of these differences being clustered in the same region should

be low. Instead, the differences are expected to be scattered in most cases. By

losing some of the rare cases, the computation cost can be reduced dramatically.

3In [67], a suffix b of a region R is compatible with seed A if b[|b|−j] = 1 whenever A[|A|−j] = 1
for 0 < j ≤ min(|A|, |b|).

66

Good Seeds Selection

A dilemma for a BLASTn type of search is that large seeds lose distant homologies

while small ones create too many random hits [70]. BLASTn looks for matches

of w (default w=11) consecutive letters as seeds. The choice of the seed length w

is determined by the tradeoff between search speed and sensitivity [62]. Larger w

reduces chance hits and smaller w finds weaker similarities. Compared to BLASTn’s

consecutive seed model, our proposed pier model uses longer seeds with error

tolerance to have a higher probability of a hit in a similarity region. For example,

in pier model, we set the length of pier as 15, and set error tolerance (edit distance)

allowed in pier segment as 3. In the following, we will investigate the sensitivity of

the pier model in a more theoretical way.

Let R be a random binary string of length L with similarity level p. Each bit

independently is 1 with probability p. In pier model, we use pier segment of length

`p with error tolerance (edit distance is θ) as a seed. We use the following formula

to compute the sensitivity (hit probability) if region R contains only a single pier

seed. We use A denotes the event that a pier seed is fully contained by the random

region R.

P (A) = Pr(`p, θ, p) =
θ∑

i=0




`p

i


p(`p−i)(1− p)i (3.1)

Based on the sensitivity of single pier seed, we use inclusion-exclusion principle

to compute the sensitivity of pier model when more than one pier is fully contained

in region R. The inclusive-exclusive principle can be used to compute the proba-

bility of exactly k occurrences of events A1, A2, ..., An, where k is the number of

pier seeds that are fully contained by the random region R, and Ai is the event

that a pier seed is fully contained by the random region R. The inclusion-exclusion

67

principle can be used in probability where it becomes:

Pr(
k⋃

i=1

Ai) =
k∑

i=1

P (Ai)−
∑

i,j:i<j

P (Ai

⋂
Aj)+

∑

i,j,k:i<j<k

P (Ai

⋂
Aj

⋂
Ak)−...±P (

k⋂

i=1

Ai).

(3.2)

By using inclusion-exclusion principle, we can compute the sensitivity (hit prob-

ability) of k pier seeds for a random region.

3.4.3 Comparison of Sensitivity of BLASTn and Pier Model

We studied the sensitivity of seeds used in pier model and BLASTn, and we also

compared the sensitivity of pier model with BLASTn. In our pier model, piers are

extracted from data sequence in terms of Property 3.3.1 instead of all the sliding

segments in data sequence. For example, three piers are extracted from a region

of length L=64, and the length of each pier is 15. According to the parameter

setting used in [70, 67] 4, we somewhat arbitrarily chose a region of length 36 and

64 because in practice homologies are typically of size 20-200 bases. In the following

study of sensitivity analysis, we use three region lengthes of 36 and 64 for both pier

model and BLASTn method.

For BLASTn search method, we use its default value 11 for seed length. For

pier model, we use pier segment with error tolerances as seed. We investigated the

sensitivity of pier model with different parameters when the edit distance (error

tolerance) θ allowed in the pier segment is set to 1, 2 or 3. The parameters of the

experiments for the sensitivity analysis of pier model are summarized in Table 3.2.

We plot the figure of Similarity vs Sensitivity to investigate the sensitivity of pier

model and compare it with BLASTn. In Figure 3.2 and 3.3 5, for each similarity

4In PatternHunter, the authors arbitrarily chose a region length of 64.
5In both figures, we use (`p,k,θ) to denote pier seed for sensitivity analysis.

68

Parameter Settings
length of pier: `p 11, 13, 15, 17, 18
number of piers: k 1, 2, 3, 4, 5
edit distance allowed: θ 1, 2, 3

Table 3.2: The Parameters Used for Sensitivity Analysis (Pier Model)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
en

si
tiv

ity

Similarity

Lengh of Random Region: 36

(11,1,3)
(11,2,3)
(11,3,3)
(13,1,3)
(13,2,3)
(15,1,3)
(15,2,3)
(17,1,3)
(17,2,2)
(17,2,1)
(18,1,3)
(18,2,3)

BLAST11

Figure 3.2: Similarity vs Sensitivity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
en

si
tiv

ity

Similarity

Lengh of Random Region: 64

(11,1,3)
(11,2,3)
(11,3,3)
(11,4,3)
(11,5,3)
(13,1,3)
(13,2,3)
(13,3,3)
(13,4,3)
(15,1,3)
(15,2,3)
(15,3,3)
(15,4,3)
(17,1,3)
(17,3,1)
(17,3,2)
(18,1,3)
(18,2,3)
(18,3,3)

BLAST11

Figure 3.3: Similarity vs Sensitivity

69

percentage on the x-axis, the hit probabilities in the random region of length 36

and 64 are plotted on the y-axis as the sensitivity at that similarity level. We use

the typical seed length 11 for BLASTn.

Figure 3.2 shows the sensitivity of random region of length 36. The results

in Figure 3.2 show very clearly that pier model has much higher sensitivity than

BLASTn with seed length 11 (denoted as BLAST11) for different level of similarity

when we different parameter settings shown in Table 3.2. When the length of

random region is set to 36, there are at most three piers of length 11 which can be

fully contained in this region. Similarly, at most two piers can be fully contained

when the length of pier is set to 13, 15 and 18, respectively. For example, we

observed that in a random region of length 36 with 80% similarity, BLAST11 has a

46.7958% probability to get a hit, while our pier model with (15,1,3) has a 64.8162%

probability to get a hit. Figure 3.3 shows the sensitivity of random region of length

64. The results show that pier model has higher probability than BLAST11 to get

a hit for the seeds shown in Table 3.2, except for seeds (15,1,3), (17,1,3), (17,3,1)

and (18,1,3).

In conclusion, there are three factors that affect the sensitivity of pier model.

The first factor is the length of pier `p; the second one is the number of pier k; and

the third one is the edit distance allowed in pier seed θ. In our model, we fix θ to

1, 2 and 3, and we observed from two above two figures that smaller `p, bigger k

and bigger θ all imply higher sensitivity.

Note that in pier model, only some piers are extracted from data sequence.

In comparison with BLASTn, the results show that our proposed pier model can

achieve higher sensitivity even though only some extracted piers from data sequence

are used to identify the hits instead of all the slidings.

70

3.5 The Hash-based Pier Model

After the piers are extracted from data sequences, we can just store them in a link

list, or some other sequential data structure. For each pier, it will be aligned with

the query patterns q1, q2, ..., qm. If the edit distance between the pier and the query

pattern is smaller or equal to θ, the pier sequence will be regarded as a candidate.

But we know that the sequential search algorithm works very slowly: the num-

ber of piers may be small, but all of them have to be accessed for each given query

pattern and there are generally few hits in the whole set. The complexity of the

sequential search is O(mn`2
p), where m is the number of query patterns and n is the

number of piers. In order to find the candidates in D for the given query pattern

much more efficiently, a hash-based pier model is proposed. Using a hash table

constructed on the piers, we need only access the piers in the candidate buckets

in the hash table, where candidate buckets refer to those buckets that have a high

possibility of holding piers that are most possibly similar to the query patterns.

In the hash-based pier model, piers with length `p are first extracted from a

sequence database and then hashed into the bucket of hash table HTable. In order

to hash the piers to the pre-constructed hash table, it is necessary to encode the

prefix of the pier with length λ, λ ≤ `p into a 2λ bit integer. Each of the four

possible nucleotides in a DNA sequence is encoded as two binary digits as follows:

f(a) =





00, a = ‘A’

01, a = ‘C’

10, a = ‘G’

11, a = ‘T ’

Using the encoding function f , any λ-tuples of DNA sequence s = b1, b2, ..., bλ

can be mapped uniquely to a 2λ bit integer by the encoding function:

71

encode(s) =
λ∑

i=1

4i−1f(bi)

The encode function is compact and efficient to process, but there is no way

to encode any characters apart from the four valid letters. In our implementation,

invalid characters are transformed into one of the four valid ones (‘A’, ‘C’, ‘G’ and

‘T’) randomly in order to keep the positions of the matches found exactly as the

positions in the original data sequence.

3.5.1 Construction of the Hash Table

After all the buckets in the hash table are initialized to empty, each pier pi will

be inserted into the corresponding bucket in the hash table using the encoding

function encode(pi[0, λ−1]) which maps the first λ-tuple of pi into a 2λ bit integer.

The hash table has a total of 4λ buckets for DNA sequences.

A
A
T

T
T
G

C
G
A

T
T

T
G
A

CAA

G

ACC

G
T
G

C
A
T

C
C
C

T
G
A

C
A
A

CAG

p p
754 10 151412311862 913

p

TTC TTT

Hash Key:

p
1

p p p p p p p p p p p

ACAAAA

G
T
C

C
T
T

A
T
G

G
A
T

C
C
G

0 636261... ...19181716... ...54321

Figure 3.4: An Example of the Hash Table for Piers

The piers in the same bucket will share the same hashed prefix, i.e., the same

first λ-tuple. On average, there are |P |/4λ piers in each bucket for DNA sequences,

72

where P is the set of piers extracted from data sequences. The algorithm for

constructing the hash table on the piers is outlined in Algorithm 36.

Example 3.5.1 For example in Figure 3.4, `p = 6, λ = 3, P = {p1, p2, . . . , p15}
and the hash table has 4λ = 64 buckets. In this example, all the 15 piers are

inserted into the hash table one by one. The piers p1 : AAAGTC, p4 : AAACTT

and p5 : AAAATG are inserted into the first bucket since the hash keys of these

three piers are all encode(AAA) = 000000.

Algorithm 3 Hash Table Generating Algorithm
Input: A set of piers P = {p1, p2, ..., pn}, λ.
Output: Hash table HTable.
Method:
1: Initialize the HTable with size of 4λ, with each bucket set to be empty;
2: for each pi ∈ P do
3: ei ← encode(pi[0, λ]);
4: HTable[ei] ← HTable[ei] ∪ {pi};
5: end for

3.5.2 Collision Handling

To handle collision caused by the insertion of piers into the same bucket of a

hash table, the trivial solution is simply to store the piers in a bucket into a link

list, named collision list, or consolidate them into an array to save space and

increase accessing efficiency since the hash table structure is relatively stable once

it is constructed. If the piers in the same bucket are stored as a list, each pier

in the bucket will be retrieved one by one and compared with the query pattern

using dynamic programming. This will be inefficient when the number of piers in

the candidate bucket is large. In our implementation, we choose λ to be 10, and

6In Algorithm 3, HTable[ei] stores the piers that share the same prefix which is encoded into
ei.

73

thus it means that there are over 106 buckets in the hash table. Given 109 piers,

each bucket contains 1000 piers on average. To minimize the computation cost

of obtaining candidates for sequence similarity search, we propose to use global

penalty matrix (GPM) to handle the collision list of a hash table.

A 42ω GPM, where ω = `p − λ, is built beforehand. All the possible segments

in a DNA sequence with length ω are mapped into 2ω bit integers with the use of

the encoding function. We compute the edit distance for each pair of 〈i, j〉, where

0 ≤ i, j < 4ω, and store the computed value into cell 〈i, j〉 in GPM. Table 3.3

illustrates the structure of GPM by an example for ω = 2 in DNA sequences. Note

that by carefully and systematically eliminating symmetric cases, we can reduce

the size of the table dramatically.

When the piers in a candidate bucket need to be retrieved and checked during

query processing, the edit distance of a pier and the query pattern does not have

to be computed through dynamic programming. Instead, only the GPM is looked

up to see whether the pier suffix segments and query pattern suffix are within a

small edit distance ε. If it holds, we will say that the current pier pi may be a

candidate of the query pattern qj since we know that the current pier and the

query pattern share the similar prefix with length `p. By using the pre-computed

GPM, the dynamic computation cost of verification can be reduced from O(`2
p) to

O(1).

3.6 Query Processing

In this section, we shall show how the hash-based pier model can be used to con-

duct efficient and effective similarity search in a biological sequence database. The

space and time complexity are also discussed and analyzed. In our approach, the

74

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT
AA 0 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2
AC 1 0 1 1 2 1 2 2 2 1 2 2 2 1 2 2
AG 1 1 0 1 2 2 1 2 2 2 1 2 2 2 1 2
AT 1 1 1 0 2 2 2 1 2 2 2 1 2 2 2 1
CA 1 2 2 2 0 1 1 1 1 2 2 2 1 2 2 2
CC 2 1 2 2 1 0 1 1 2 1 2 2 2 1 2 2
CG 2 2 1 2 1 1 0 1 2 2 1 2 2 2 1 2
CT 2 2 2 1 1 1 1 0 2 2 2 1 2 2 2 1
GA 1 2 2 2 1 2 2 2 0 1 1 1 1 2 2 2
GC 2 1 2 2 2 1 2 2 1 0 1 1 2 1 2 2
GG 2 2 1 2 2 2 1 2 1 1 0 1 2 2 1 2
GT 2 2 2 1 2 2 2 1 1 1 1 0 2 2 2 1
TA 1 2 2 2 1 2 2 2 1 2 2 2 0 1 1 1
TC 2 1 2 2 2 1 2 2 2 1 2 2 1 0 1 1
TG 2 2 1 2 2 2 1 2 2 2 1 2 1 1 0 1
TT 2 2 2 1 2 2 2 1 2 2 2 1 1 1 1 0

Table 3.3: An Example of the Global Penalty Matrix, ω = 2

algorithm of sequence similarity search based on the hash-based pier model con-

sists of three steps: generating the query pattern with size of `p from Q; searching

for pier candidates among the hashed piers; and post-processing the candidates to

concatenate adjacent candidates to form final alignments with a high alignment

score. We focus our discussion on the second step since it is the main part of query

processing.

3.6.1 Neighborhood Enumeration

Our search technique partitions the given query sequence Q into |Q|− `p +1 query

patterns q1, q2, ..., q|Q|−`p+1. In the second step, the pier prefix segment with length

λ, qi[0, λ − 1] is encoded to a hash key hi, which is a 2λ bit integer. Then all

the encoded neighbors ngbr of this hash key hi are enumerated, and the neighbors

are those 2λ bit integers which are within a small edit distance from hi. In our

algorithm, for simplicity, λ is set to 10 or 12, and the edit distance allowed for

75

neighbors is set to 2. Our method for enumerating all neighbors within an edit

distance of 2 from the given encoded query pattern is supported by Theorem 3.6.1.

Note that each neighbor of the hash key can be enumerated in O(1) amortized cost.

Theorem 3.6.1 Let S and Q be two sequences of length λ from the alphabet set

Σ. If edit(S, Q) ≤ 2, then one of the following cases is true:

• Case 1: edit(S, Q) = 0, i.e. the two sequences are exactly the same;

• Case 2: edit(S, Q) = 1, i.e. one replacement operation is needed in S to

transform S to Q;

• Case 3: edit(S, Q) = 2, there will be three subcases to explain it:

– Case 3.1 two replacement operations in S are needed to transform S to

Q;

– Case 3.2 one insertion and one deletion in S with order are needed to

transform S to Q;

– Case 3.3 one deletion and one insertion in S with order are required to

transform S to Q.

We shall illustrate in detail how the neighbors of the given encoded sequence q

of length λ are generated.

Proof:

1. Case 1 means that the neighbor of q is q itself.

2. In Case 2, the neighbor of q is enumerated with the replacement of the letter

x in position i, 0 ≤ i < λ with other letters in Σ. Each neighbor ngbr

enumerated in terms of Case 2 meets edit(q, ngbr)=1.

76

3. In Case 3.1, the neighbor is generated with the replacement of the letter x

in position i, 0 ≤ i < (λ − 1) with other letters except x, followed by the

replacement of the letter y in position j, (i + 1) ≤ j < λ with other letters

except y.

4. In Case 3.2, the neighbors are enumerated with the insertion of any letter in

Σ in position 0 ≤ i < (λ− 1) of q and the deletion of the letter in position j

of q, (i + 1) ≤ j < λ.

5. Similarly, in Case 3.3, the neighbors are generated with the deletion of a letter

in position i, 0 ≤ i < λ and the insertion of any letter in Σ in position j,

(i + 1) ≤ j < λ of q.

6. Each neighbor ngbr enumerated in terms of Case 3.1, Case 3.2 and Case 3.3

meets edit(q, ngbr)=2.

2

Based on Theorem 3.6.1, the encoded neighboring 2λ bit integers are enumer-

ated. There may exist several kinds of redundancy in neighbor enumeration, which

means that the same neighbor may possibly be enumerated several times across the

different cases in Theorem 3.6.1, or the neighbor generated may be the sequence

itself.

Most of the redundancy can be avoided easily with little additional cost. For

those redundancy that cannot be detected easily, we will exempt it by labeling

those neighbors that have been enumerated already.

3.6.2 Sequence Similarity Search

The algorithm of sequence similarity search using the proposed hash-based pier

model is presented in Algorithm 4. Once an encoded neighbor ngbr of the hash

77

key of query pattern qi is enumerated, the piers in the bucket of the hash struc-

ture HTable[ngbr] will be retrieved and checked to see if they are candidates, i.e.,

whether they are similar to the query pattern qi by the verify function. The verify

function is implemented using the GPM we mentioned in earlier section.

In order to find the local alignment between pier segment and query pattern,

for a pier candidate, we allow the edit distance in its prefix and suffix, respectively.

For its prefix, we use the edit distance threshold to enumerate neighbors of query

pattern; for its suffix we use edit distant to compute the GPM beforehand. The

two edit distances cannot be simply added up as the edit distance between pier

p and query pattern qi. In order to ensure a high sensitivity, suppose that the

edit distance for enumerating neighbors is β and the one for the GPM is ε. By

careful setting of β and ε, we can capture most cases of edit(p, qi) ≤ θ. In our next

experimental study, we discover the performance of query processing by setting β

as 1 and 2, setting ε as 1, 2 and 3.

Algorithm 4 Hash-based Similarity Search Algorithm
Input: Hash table HTable, Query sequence Q, `p, λ.
Output: Candidate.
Method:
1: Candidate ← ∅;
2: for each query pattern qj in Q do
3: Enumerate the next neighbor ngbr of encode(qj[0, λ]);
4: for each pier p in the bucket HTable[ngbr] do
5: verify(p, qj);
6: if p and qj are similar then
7: Candidate ← Candidate ∪ {〈p, qj〉};
8: end if
9: end for

10: Until all the neighbors of qj are enumerated;
11: end for

78

3.6.3 Time and Space Complexity

We next look at the time and space complexity for our algorithm. First, for pier

set P construction, we need to scan the database once; the time complexity for this

is O(|D|). A more effective way is to simply read the piers that we need since we

can obtain the start position of each pier on the fly. To build a hash table for the

piers, each pier can be inserted with time complexity O(1) if the GPM is used. So

the total time complexity for the construction of the hash table will be O(|P |). For

the space complexity of the hash table, we need O(4λ) for the table head. For the

bucket of the table, each pier will contribute space Θ(ω). Thus, the total size of

the buckets will require space O(ω|P |). Also, we need space Θ(42ω) for the GPM.

Thus, the total space complexity for the hash structure will be O(4λ +42ω +ω|P |).
Typically, if we set λ = 10 and ω = 5, for a sequence with 3 × 109 letters, with

span length `s = 7, then the hash table size will be less than 200 mega-bytes. The

structure is small enough to keep in the main memory to aid faster computation.

For each query pattern q of the query Q, the set of piers which are N neighbors of

q will be enumerated. As we have explained, each neighboring pier can be generated

with time amortized complexity O(1). For each collision list we access, each item

of the collision list will require time O(1) when the GPM is used. Thus, the time

complexity for the query is O(α|Q||N |), with the loading factor α = |P |/4λ. We can

take the repetitive computation into consideration, such as in symmetric cases, the

letter repetition in a sequence and the neighboring of the several query patterns,

to reduce time complexity.

79

3.7 Experiments

In this section, we present the experimental results on the performance of homology

search in DNA sequence databases to evaluate the efficiency and effectiveness of the

proposed hash-based pier models. We investigate the impact of different parameter

setting on performance of hash-based pier model. Meanwhile, we also compare the

proposed search model to the latest version of BLAST (NCBI BLAST 2) for the

efficiency and effectiveness of pre-processing and query processing.

3.7.1 Datasets

All the DNA sequence databases used in the experiment are real datasets down-

loaded from NCBI website. In the experimental study, all the six DNA sequence

datasets: ecoli.nt (4.68MB), yeast.nt (12.3MB), human est.fa (23.6MB), month.gss

(286.2MB), patnt (702.1MB), other genome (1.06GB) and other genome+patnt

(1.76GB), shown in Table 3.4, are used to evaluate the query performance of our

proposed method.

The databases are composed from the characters ‘A’, ‘C’, ‘G’, ‘T’, ‘N’ with

‘N’ representing a wildcard, i.e. ‘N’ can be any one of the four characters. The

character ‘N’ is randomly regarded as ‘A’, ‘C’, ‘G’, ‘T’.

We have collected a query set from human genomic sequence database to eval-

uate the responses from the hash-based pier approach and BLASTn. The query

sequences are segments randomly extracted from the human genome databases,

and the reported performance results are averaged over 10 queries. Based on Prop-

erty 3.3.1, the shortest length of queries allowed for both sets is set to be 100. The

shortest query length is 100 and the longest is 2000 in our experiments.

80

Database Size No. of Sequences
ecoli.nt 4.68MB 400
yeast 12.3MB 16
human est.fa 23.6MB 40000
month.gss 286.2MB 293031
patnt 702.1MB 1125356
other genome 1.06GB 2638
other genome + patnt 1.76GB 1127994

Table 3.4: The DNA Sequence Databases

3.7.2 Experimental Settings

This performance analysis contains two sets of experiments to investigate the per-

formance of the proposed hash-based pier model. We first investigate the effect

of parameter settings on the performance of the hash-based pier model. The six

parameters for our hash-based pier model are `p, `s, λ, ω = `s − λ, θ, β. Subse-

quently we compare the performance of the hash-based pier model with BLAST11.

Since the comparison of sensitivity analysis has been conducted in Section 3.4,

here we shall focus on comparing the efficiency and accuracy of query processing

between the hash-based pier model and BLAST11. The parameters used in the

experiments are listed in Table 3.5. The experiments are conducted in C++ pro-

gramming language, and are executed on a Linux server with 4 UltraSPARC-III+

CPU of 900MHz and 8GB free memory.

Parameter Settings
length of pier: `p 11, 12, 13, 14, 15, 16, 17, 18
length of span: `s 0, 5, 10, 15, 20, 25, 30
length of prefix: λ(=`p-ω) 5, 6, 7, 8, 9, 10, 11, 12, 13
length of suffix: ω 2, 3, 4, 5, 6
θ 1, 2, 3
β 0, 1, 2

Table 3.5: The Parameter Settings

81

3.7.3 Effect of Parameters

We study the effect of the parameters of pier length, prefix length, suffix length,

span length and error tolerance on the performance of the hash-based pier model

respectively. To do this, we construct the hash structure on dataset month.gss and

perform similarity search for query length of 100 on month.gss. The size of dataset

month.gss is 286.2MB as listed in Table 3.4, the number of sequence in month.gss

is 293031. The efficiency of dataset preprocessing, efficiency of pier candidate (seed)

detection, efficiency of candidate extension, and number of alignments returned are

investigated and analyzed for the different parameter settings listed in Table 3.5.

We use (`p, `s, λ, ω, θ, β) to denote the parameter setting for the hash-based pier

model. In the following experiments, the default values for different parameters are

high-lighted in bold in Table 3.5.

Effect of Pier Length `p and Prefix Length λ

We first study the performance of hash-based pier model with different pier length

and prefix length while we fix the span length, suffix length, error tolerances θ and

β to the default values, respectively. Table 3.6 shows the response time of pre-

precessing, response time of seed detection and extension, and the number of final

alignments when pier length varies from 11 to 18. We use longer seed with error

tolerances in the hash-based pier model compared to BLASTn with seed length 11.

Since the size of hash structure is too big when the pier length is greater than 18,

we therefore vary pier length from 11 to 18 to investigate the effect of pier length

and prefix length on the performance of search.

As expected, the results in Table 3.6 show that the response time of pre-

processing increases as both the length of pier (`p) and the length of its prefix

(λ) increase. It takes more time to construct the hash structure for the bigger `p

82

Parameter Pre-processing Seed/Candidate Seed/Candidate No. of
Settings time (Sec) Detection (Sec) Extension (Sec) Alignments
(11,5,6,5,3,2) 14.38 15.45 13.02 15766392
(12,5,7,5,3,2) 14.19 7.33 8.52 836337
(13,5,8,5,3,2) 14.8 2.46 4.45 256011
(14,5,9,5,3,2) 14.53 0.8 1.81 77659
(15,5,10,5,3,2) 15.9 0.27 0.64 23001
(16,5,11,5,3,2) 22.16 0.12 0.22 6891
(17,5,12,5,3,2) 31.51 0.08 0.06 2026
(18,5,13,5,3,2) 70.62 0.07 0.02 575

Table 3.6: Effect of Pier Length `p and Prefix Length λ (ω=5; Dataset:month.gss)

and λ because the size of the constructed hash structure becomes larger for longer

pier length and prefix length. From Table 3.6, we also observe that the response

time of both candidate detection and extension decrease rapidly, as the length of

pier increases. Similarly, the number of final alignments between data sequences

and query sequence decreases when `p and λ increase. This is because much more

pier alignments are returned for smaller `p and λ with the same error tolerances

θ=3 and β=2. For example, the number of alignments is 15,766,392 for `p=11,

λ=6, θ=3, β=2; while the number of alignments is 575 for `p=18, λ=13, θ=3,

β=2. The result is consistent with the one we observed from theoretical sensitivity

analysis in Section 3.4. Longer piers lose distant homologies while short ones create

too many random hits.

Effect of Suffix Length ω

We measure the effect of suffix length ω on the performance of hash-based pier

model. Table 3.7 shows the response time of pre-precessing, response time of both

seed detection and extension, and the number of final alignments for different value

of span length when we fix the length of pier length to 15. Note that there are two

portions for the response time of pre-processing: response time for constructing the

83

hash structure based on prefix length, and response time for initializing the GPM

based on suffix length. When the pier length `p is fixed, decreasing suffix length

will increase prefix length. When suffix length is small, the time of constructing

the hash table dominates the whole response time of pre-processing. As shown

in Table 3.7, we observed that the response time of pre-processing increases with

the suffix length decreases from 5 to 2. We also investigate the effect of suffix

length on the performance of the search when pier length is set to 18 in Table 3.8.

The result shows that the pre-processing with (λ=12, ω=6) is faster than that

with (λ=13, ω=5) and (λ=11, ω=7). It indicates that for a larger suffix length

ω, the time incurred for initializing the GPM dominates the total response time of

pre-processing.

Parameter Pre-processing Seed/Candidate Seed/Candidate No. of
Settings time (Sec) Detection (Sec) Extension (Sec) Alignments
(15,5,10,5,3,2) 15.9 0.27 0.64 23001
(15,5,11,4,3,2) 22.03 0.12 0.6 20279
(15,5,12,3,3,2) 31.99 0.08 0.52 17236
(15,5,13,2,3,2) 71.57 0.07 0.41 13314

Table 3.7: Effect of Suffix Length ω (`p=15; Dataset:month.gss)

Parameter Pre-processing Seed/Candidate Seed/Candidate No. of
Settings time (Sec) Detection (Sec) Extension (Sec) Alignments
(18,5,13,5,3,2) 70.62 0.07 0.02 575
(18,5,12,6,3,2) 45.72 0.08 0.03 642
(18,5,11,7,3,2) 362.76 0.12 0.02 716

Table 3.8: Effect of Suffix Length ω (`p=18; Dataset:month.gss)

In Table 3.7 and 3.8, we also observed that both the response time of candidate

detection and the response time of extension increase as the length of suffix increases

for both `p = 15 and `p=18. With the same error tolerances of θ=3 and β=2, more

alignments (or hits) can be found by decreasing the pier length `p and prefix length

84

λ; however, this also increases the response time of query processing: candidate

detection and extension. More alignments lead to higher computation cost, and

therefore slower speed.

Effect of Span Length `s

The effect of span length on the performance of hash-based pier model is summa-

rized in Tables 3.9 and 3.10. The results demonstrate that the response time of

pre-processing decreases with the span length increases from 0 to 20 for both `p=15

and 18. Meanwhile, the response time of candidate detection and extension also

decreases when the span length increases. The reason is that more piers are ex-

tracted from the sequence dataset for smaller span length, and consequently more

piers are indexed and searched in hash-based pier model. We also observed that

the performance only changes slowly (not dramatically) when the span length is

varied from 0 to 20.

Parameter Pre-processing Seed/Candidate Seed/Candidate No. of
Settings time (Sec) Detection (Sec) Extension (Sec) Alignments
(15,0,12,3,3,2) 38.27 0.09 0.67 22976
(15,5,12,3,3,2) 31.99 0.08 0.52 17236
(15,10,12,3,3,2) 28.47 0.08 0.45 14068
(15,15,12,3,3,2) 25.96 0.07 0.37 11608
(15,20,12,3,3,2) 24.34 0.06 0.33 10044

Table 3.9: Effect of Span Length ω (`p=15; Dataset:month.gss)

Effect of Error Tolerances θ and β

Since we use longer seed with error tolerance in our hash-based pier model, we

further study the performance of the query processing based on our proposed model

using different values of error tolerances. The response time of candidate detection

and extension for different values of θ and β is shown in Table 3.11 when pier

85

length `p is set to 18. The number of alignments (or hits) found by our model is

also depicted. As we have introduced, β is the error tolerance for the prefix of pier

segment; while ε(=θ-β) is the error tolerance for the suffix of pier segment. The

results in Table 3.11 show that both the response times of candidate detection and

candidate extension decrease rapidly when error tolerance β decreases. The same

results can be observed when error tolerance θ decreases.

Correspondingly, as expected, the number of alignments or hits reduces when

θ and β decrease. For example, when we use the default values `p=18, `s=5, λ=13

and ω=5, the number of alignments is 3556 for β = 2 and θ=4; while the number

is decreased to 24 for β=0 and θ=4. The bigger β, the more neighbors of the query

pattern are enumerated; consequently, more buckets of the hash structure are re-

quired to be checked to determine if the piers in the buckets are really similar to

the query pattern. Thus this also increases the response time of candidate detec-

tion and extension. When we fix the error tolerance β, the number of alignments

decreases when θ decreases. This is obvious since GPM is used to check if the edit

distance of pier suffix and query suffix is within ε. The results in Table 3.11 also

confirm that more candidates are returned for bigger ε.

3.7.4 Comparison of Hash-based Pier Model and BLAST11

In this subsection, we compare the performance of hash-based pier model and

BLAST11. First, we explore the efficiency of pre-processing of both hash-based pier

model and BLAST11. Next we conduct the experiments to investigate the effect

of the length of the query sequence and the size of dateset on the performance of

hash-based pier model in comparison to BLAST11. Finally, we discuss the results

of alignments returned by hash-based pier model and BLAST11.

86

Efficiency in Pre-processing

We perform an experiment to evaluate the efficiency of data sequence pre-processing

for sequence similarity search. We conduct the pre-precessing for hash-based pier

model by using four sets of parameter settings. We use (`p, `s, λ) to denote the

hash-based pier model with different parameter settings. Figure 3.5 shows that

pre-processing with our proposed hash-based pier model is always faster than with

BLAST11 for different parameter settings. This is because our hash-based pier

model simply extracts longer piers and hashes them rather than processes shorter

segments in the sequence database as in BLAST11 and other methods [96, 70,

25]. For the hash-based pier model with different parameter settings (`p, `s, λ), we

achieve 2-10 times speedup compared to BLAST11 in the stage of pre-processing

for all the seven sequence datasets. The result also shows that our method scales

up sublinearly with respect to the size of DNA sequence dataset. From Figure 3.5,

we also observe that there is a spike on the query processing of BLAST11, and it

is possibly due to the characteristic of the dataset other genome which containing

many long sequences.

Varying Query Length

The next experiment is to investigate the impact of length of the query sequence on

the performance of our method in comparison to BLAST11. For this experiment,

we perform similarity search for query lengths of 100, 300, 500, 800, 1000, 1500

and 2000 on the datasets month.gss and patnt. For hash-based pier model, we

conduct the similarity search with different parameter settings. In the following

experiments, we use (`p,`s,λ,ω,θ,β) to denote the parameter setting for the hash-

based pier model. We use three parameter settings for hash-based pier model:

(15,5,10,5,3,1), (16,5,11,5,3,1) and (17,5,12,5,3,1) to study the performance of sim-

87

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Preprocessing Time

BLAST11
(15,5,10)
(16,5,11)
(17,5,12)
(18,5,13)

Figure 3.5: Pre-processing Time

ilarity search when query length is varied since the pier model with the three pa-

rameter settings can achieve as high as or much higher sensitivity than BLAST11.

Figures 3.6 and 3.7 show that search speed of pier model is 2-15 times faster.

The margin is widened as the query length increases. They also confirm that our

method with the parameter setting of (17,5,12,5,3,1) is faster than our method with

the other two settings, named (15,5,10,5,3,1) and (16,5,11,5,3,1) as we observed in

the section of effect of parameters in Section 3.7.3, advocating that the search time

decreases as the length of pier increases.

To investigate the effectiveness of both hash-based pier model and Blast11, in

Table 3.12, we also plot the number of alignments that both methods can return.

We observe that for both month.gss and patnt datasets, the hash-based pier model

with the three parameter settings returns much more alignments than BLAST11.

This is due to the seed we used in hash-based pier model. We use longer pier

88

Parameter Pre-processing Seed/Candidate Seed/Candidate No. of
Settings time (Sec) Detection (Sec) Extension (Sec) Alignments
(18,0,13,5,3,2) 75.53 0.08 0.03 732
(18,5,13,5,3,2) 70.62 0.07 0.02 575
(18,10,13,5,3,2) 67.62 0.07 0.02 463
(18,15,13,5,3,2) 65.59 0.06 0.02 392
(18,20,13,5,3,2) 64.02 0.07 0.02 362

Table 3.10: Effect of Span Length ω (`p=18; Dataset:month.gss)

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000

T
im

e(
se

c)

Query Length

Dataset:Month.gss

BLAST11
(15,5,10,5,3,1)
(16,5,11,5,3,1)
(17,5,12,5,3,1)

Figure 3.6: Query Time (Dataset:month.gss)

89

Parameter Seed/Candidate Seed/Candidate No. of
Settings Detection (Sec) Extension (Sec) Alignments
(18,5,13,5,4,2) 0.07 0.12 3556
(18,5,13,5,4,1) 0.01 0.02 520
(18,5,13,5,4,0) 0.02 0.01 24
(18,5,13,5,3,2) 0.06 0.03 576
(18,5,13,5,3,1) 0.01 0.02 169
(18,5,13,5,3,0) 0.01 0.01 14
(18,5,13,5,2,2) 0.07 0.02 55
(18,5,13,5,2,1) 0.01 0.01 23
(18,5,13,5,2,0) 0.01 0.01 4
(18,5,13,5,1,1) 0.01 0.01 2
(18,5,13,5,1,0) 0.01 0 1

Table 3.11: Effect of Error Tolerances θ and β (`p=18; Dataset:month.gss)

with error tolerance in our pier model. Consequently, we are able to detect more

alignments and similar region between the query sequence and data sequence com-

pared to BLAST11. Furthermore, in terms of both the response time and the

number of returned alignments for similarity search, we will use the parameter set-

ting (17,5,12,5,3,1) in the following experiments for comparing the performance of

both methods with the effect of dataset size.

Query Length BLAST11 (15,5,10,5,3,1) (16,5,11,5,3,1) (17,5,12,5,3,1)
100 21 9878 2703 792
300 9 26648 7261 1976
500 19 44338 12259 3357
800 39 72507 1999 5538
1000 12 89977 24838 6907
1500 19 143019 39472 10813
2000 27 189725 52289 14357

Table 3.12: Alignments Found (Dataset:month.gss)

90

 0

 4

 8

 12

 16

 20

 0 500 1000 1500 2000

T
im

e(
se

c)

Query Length

Dataset:Patnt

BLAST11
(15,5,10,5,3,1)
(16,5,11,5,3,1)
(17,5,12,5,3,1)

Figure 3.7: Query Time (Dataset:patnt)

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Query Length: 300

BLAST11
(17,5,12,5,3,1)

Figure 3.8: Query Time (|Q| = 300)

91

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Query Length: 500

BLAST11
(17,5,12,5,3,1)

Figure 3.9: Query Time (|Q| = 500)

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Query Length: 1000

BLAST11
(17,5,12,5,3,1)

Figure 3.10: Query Time (|Q| = 1000)

92

 0

 5

 10

 15

 20

 25

 30

 35

 40

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Query Length: 1500

BLAST11
(17,5,12,5,3,1)

Figure 3.11: Query Time (|Q| = 1500)

Varying Dataset Size

For further evaluation of the efficiency of our method, we run query processing with

query length of 300, 500, 1000 and 1500 on six datasets. The experiment evaluates

the effect of database size on the search time of both hash-based pier model and

BLAST11. As shown in Figures 3.8, 3.9, 3.10 and 3.11, our method with parameter

setting (17,5,12,5,3,1) outperforms BLAST11 2-10 times when the size of datasets

varies from 4.68MB to 1.76GB. The results exemplify that our method is very

efficient for handling sequence similarity search in large DNA sequence databases.

Discussion on Returned Alignments (Hits)

Recently proposed methods such as [70, 67, 63, 24, 21] have reported that modifica-

tions of the basic approach proposed by BLAST [8, 9] lead to significant improve-

ment in both sensitivity and running time of similarity search in DNA sequence

93

databases. Sensitivity can no doubt be increased by decreasing the length of the

seed. However, this would increase the number of alignments returned (may de-

crease accuracy of results), and also the running time [21]. So researchers are

looking for a better seed model to achieve both high accuracy and low running

time. We propose to use a longer seed (“pier”) with error tolerances to achieve

both higher sensitivity and efficiency.

Query Length BLAST11 (17,5,12,5,1,1)
100 21 8
300 9 27
500 19 43
800 39 65
1000 12 80
1500 19 129
2000 27 165

Table 3.13: Alignments Returned (Dataset:month.gss)

We investigate the number of returned alignments for the hash-based pier model

with parameter (17,5,12,5,1,1) and BLAST11 when varying the length of query

from 100 to 2000 on the dataset month.gss. Compared to using (17,5,12,5,3,1),

the hash-based pier model using (17,5,12,5,1,1) can return comparable number

of local alignment with BLAST11, while it is much faster than (17,5,12,5,3,1) and

BLAST11. The numbers of returned alignments by both our hash-based pier model

and BLAST11 are listed in Table 3.13. We observed that the pier model with

(17,5,12,5,1,1) can return more local alignments than BLAST11.

Note that in this experiment, we generated the query sequence of length 100,

300, 500, 800, 1000, 1500 and 2000 from a single longer sequence. This means that

the query sequence of length 100 is a subsequence of query sequence of length 300,

and so forth. We make an interesting observation that for BLAST11, the number

of returned alignments does not increase with the length of query sequence. It is

94

Data Sequence Data Query Query
Sequence ID Position Segment Position Segment
162854 550-568 AGAGTGTTTGAAAACTGA 0-18 AGAGTGTTTCAAAACTGC
185360 22-40 GAATGCAAAAATCACAAG 50-68 GAATGCAAACATCACAAA
111133 748-767 CAAAGAAGTTTCTAAAAAG 64-83 CAAAGAAGTTTCTGAAAAT
24291 483-502 TCAAAGATGTTTCTGAAAG 63-82 ACAAAGAAGTTTCTGAAAA
129674 528-546 GAAGTTGCTGAAAATGCA 68-86 GAAGTTTCTGAAAATGCT
118605 197-216 AAACTTTCTGAAAATGCTG 68-87 GAAGTTTCTGAAAATGCTT
66538 550-568 TCTGAAAATCCTTCTGTG 74-92 TCTGAAAATGCTTCTGTC
86779 395-413 CTGACAATGCTTCTGTCT 75-93 CTGAAAATGCTTCTGTCT

Table 3.14: Eight Local Alignments (Dataset:month.gss, Query Length:100)

surprising that the number of returned alignment for query length of 300 is less than

the number for query length of 100. For the hash-based pier model, as expected,

we observed that the 8 returned local alignments for query length 100 are also part

of the 28 returned results for query of length 300. After close examination, we also

discover that we can find the local alignments which are really very similar, but

cannot be detected by BLAST11. In Table 3.14, we show the 8 local alignments

returned by the hash-based pier model with (17,5,12,5,1,1) for the query length

of 100 on the dataset month.gss. In the next section, we will further examine

investigate the results returned by both hash-based pier model and BLAST11 by

using Smith-Waterman algorithm [108].

3.7.5 Search Accuracy Analysis

To compare and analyze the accuracy of the results of hash-based pier model and

BLAST11, we define two search accuracy metrics: precision and recall as follow:

Precision =
Number of pairs of similar sequences returned

Number of total pairs of sequences returned

Recall =
Number of pairs of similar sequences returned

Number of total pairs of similar sequences

95

In the following experiments, we use 400,00 sequences in human EST dataset

as data sequences; we randomly select 20 sequences from mouse EST dataset as

query sequences. To obtain the total matching sequences, we performed all-against-

all comparison on the data sequences and query sequences. The all-against-all

comparison was conducted with the SSEARCH [93] implementation of the Smith-

Waterman algorithm [108]. SSEARCH is a subprogram in the FASTA software,

which can return the total pairs of similar sequences between the data sequences

and query sequence. As stated in [67], the recall of SSEARCH is regarded as 100%.

In our experiments, for each randomly selected query sequence, we use SSEARCH

to generate the top 1000 alignments between the query sequence and sequences in

human EST dataset. We observed that the minimum score of all the alignments is

67, and the maximum score of all the alignments is 1660.

We next run hash-based pier model and BLAST11 on the same dataset and

with the same query sequences. For a query sequence, if a sequence pair returned

by the search method is also returned by SSEARCH, we regard the sequence pair

as a similar sequence pair or a real alignment. That is, we compute the number of

pairs of similar sequences returned by each search method for each query sequence,

and their precision and recall based on SSEARCH results.

Table 3.15 shows the precision and recall of the search results for the hash-based

pier model and BLAST11 for 20 randomly selected queries. For the hash-based pier

model, we use two parameter settings (15,5,10,5,3,1) and (17,5,12,5,3,1) 7. In Ta-

ble 3.15, we observe that BLAST11 can achieve high precision and low recall, while

hash-based pier model with parameter setting (15,5,10,5,3,1) can achieve high recall

and low precision. And we also observe that hash-based pier model with parameter

setting (17,5,12,5,3,1) has higher recall than BLAST11, and higher precision than

7We use (`p,`s,λ,ω,θ,β) to denote the parameter setting for the hash-based pier model.

96

QID Pier(15,5,10,5,3,1) Pier(17,5,12,5,3,1) BLAST11
Precision Recall Precision Recall Precision Recall

1 0.043507 0.134576 0.055556 0.014493 0.428571 0.012
2 0.121159 0.139113 0.26158 0.096774 0.895833 0.172
3 0.102703 0.019095 0.333333 0.003015 1 0.008
4 0.055982 0.073663 0.054264 0.007064 0.384615 0.005
5 0.069104 0.206827 0.144172 0.047189 0.1 0.001
6 0.041562 0.033199 0.034483 0.002012 0.358974 0.014
7 0.080276 0.151454 0.077519 0.01003 0.2 0.002
8 0.060278 0.039674 0.393939 0.013225 0.785714 0.011
9 0.051958 0.06599 0.147727 0.013198 0.363636 0.008
10 0.049052 0.119598 0.056034 0.013065 0.090909 0.001
11 0.039792 0.069556 0.057851 0.007056 0.375 0.003
12 0.337413 0.193387 0.649573 0.152305 1 0.202
13 0.054036 0.081818 0.070313 0.009091 0.478873 0.034
14 0.075862 0.022066 0.210526 0.004012 1 0.005
15 0.095926 0.07322 0.085714 0.006018 0.291667 0.007
16 0.098661 0.449187 0.150746 0.410569 0.484 0.121
17 0.099073 0.139418 0.289308 0.046138 0.815385 0.053
18 0.038486 0.123858 0.040541 0.012183 0.032258 0.001
19 0.122449 0.116923 0.3125 0.030769 0.324324 0.012
20 0.079077 0.161323 0.059701 0.008016 0.142857 0.002

Table 3.15: Precision and Recall of the Results (Dataset:human est.fa, 20 Queries
Randomly Selected from mouse est.fa)

hash-based pier model with parameter setting (15,5,10,5,3,1). For example, for the

query sequence of QID=16, the recalls of hash-based pier model with parameter set-

tings (15,5,10,5,3,1) and (17,5,12,5,3,1) are 0.449187 and 0.410569 respectively, but

the recall of BLAST11 is only 0.121 which are lower than hash-based pier model. In

addition, we note that the corresponding precision for BLAST11 is 0.484, which is

higher than the hash-based pier model with parameter settings (15,5,10,5,3,1) and

(17,5,12,5,3,1). The results are consistent with the results of theoretical sensitivity

analysis we observed in Section 3.4.

We also give an overall evaluation on the average precision and recall for both

BLAST11 and hash-based pier model in Figure 3.12. The average precision and

97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

(17,5,12,5,3,1)(15,5,10,5,3,1)BLAST11

A
ve

ra
ge

 A
cc

ur
ac

y

Search Methods

Recall
Precision

Figure 3.12: Average Accuracy (Dataset:human est.fa, 20 Queries Randomly Se-
lected from mouse est.fa)

recall are computed based on the precisions and recalls (listed in Table 3.15) of the

20 randomly selected queries. The average precision of BLAST11 is 0.477, which

is higher than that of hash-based pier method; the average recall of BLAST11 is

0.337, which is lower than that of the hash-based pier model 8. The results shown

in Figure 3.12 confirm that the hash-based pier model achieves higher recall than

BLAST11, while sacrificing some precision.

3.8 Summary

There is a growing requirement for the efficient searching of genomic database since

the current genomic databases are growing rapidly and they are queried about ten

of thousands of times per day. In this chapter, for efficient similarity search, we

8The average recalls of the hash-based pier model with parameter settings (15,5,10,5,3,1) and
(17,5,12,5,3,1) are 0.121 and 0.4531, respectively.

98

have proposed a new model, the hash-based pier model, and demonstrated its

search efficiency, sensitivity, effectiveness and accuracy.

Before performing the similarity search in DNA sequence database, the piers are

extracted from data sequences, and inserted into a hash table. Based on the hash

table, the similarity search is done efficiently. We also proposed a method – the

GPM (Global Penalty Matrix)-based method – to further improve search efficiency

by reducing the computation cost of candidate verification. Compared to the most

widely used biological database search tool, BLAST11, our method is faster, yet

requiring smaller memory and space. Further, though it sacrifices some precision,

hash-base pier model achieves better recall than BLAST11 .

99

CHAPTER 4

Indexing DNA Sequences Using q-grams

4.1 Introduction

We observed in Chapter 3 that our proposed hash-based pier model can efficiently

detect the similar regions between data sequences and query sequence with high

recall, but sacrifices some precision compared to BLAST11. Since we know that

longer seeds lose distant homologies while small ones create too many random

hits [70], we propose to use seeds with length greater than 17 1 to improve the

precision of the search. In this chapter, we present a novel method for indexing

long seeds efficiently based on q-grams to facilitate similarity search in a DNA

sequence database and sidestep the need for linear scan of the entire sequence

database.

Our method is based on the observation that two sequences share a certain

number of q-grams if the edit distance between them is within a certain threshold.

1We used seed length of 17 in Chapter 3, and we will use seed length of 30 in this chapter.

100

Moreover, since there are only four characters in the DNA alphabet, we know that

the number of all combinations of q-grams in a DNA sequence is 4q.

Based on the q-grams in DNA sequence, we propose a two level index to prune

data sequences that are far away from the query sequence. The disjoint segments

with the length ω are generated from the data sequence. At the first level of the

indexing structure, a cluster (called qCluster) of similar q-grams in DNA sequence

is generated; then a typical hash table is built on the segments with respect to

the qCluster. At the second level indexing structure, the DNA segments are trans-

formed into the c-signature based on their q-grams; then a new index called the

c-signature trees (c-trees) is proposed to organize the c-signatures of all segments

of the DNA sequences for search efficiency. The c-trees are dynamic trees built on

the c-signatures as a technique to avoid the linear scan of the entire database.

At the first level of search, the ω-length sliding segment of query sequence is

generated and encoded into the key in terms of the proposed coding function, and

then the neighbors of this key will be enumerated. Thus a set of candidate segments

of the data sequences will be extracted from the buckets pointed by the key and

its neighbors, and inserted into the second index structure c-trees for subsequent

filtering. At the second level of search, we only access the tree paths in c-trees

that include possible similar data sequences in their leaf nodes with respect to the

partial distance between the corresponding c-signature substrings of query segment

and data segment. We also propose a similarity search algorithm based on the c-

trees for query segments.

The contributions of this chapter can be summarized as follows:

• The proposed c-signature provides a compact and approximate representation

of DNA sequence data in terms of its q-grams.

• A two-level filtering approach is proposed based on qCluster and c-signature.

101

• We present a new two-level index structure for c-signatures and qClusters,

and further propose and describe an efficient search method based on the

two-level index.

The rest of this chapter is organized as follows. In Section 2, we give a brief

introduction of the problem definition, which has been described in Chapter 2.

In Section 3, the concept of qClusters and c-signature is presented. The filtering

principle based on q-grams is also described. In Section 4, we propose a two-level

index scheme constructed on the q-grams for DNA sequences. In Section 5, an

efficient similarity search algorithm is presented based on the proposed two-level

index structure. The test data and experimental results are presented in Section

6. Section 7 summarizes the contributions of this chapter.

4.2 Problem Definition

Following the definition of similarity search problem in a DNA sequence database

given in Chapter 3, we propose in this chapter a novel method for indexing the

DNA sequences efficiently based on q-grams to facilitate similarity search in a DNA

sequence database. The notations used throughout the chapter are summarized in

Table 4.1.

Property 4.2.1 S and Q are two sequences with the same length L = |S| = |Q|.
S is divided into p disjoint ω-length segments s1, s2, . . . , sp, and then there exists an

ω-length segment q ∈ Q and si ∈ S such that if edit(S, Q) ≤ ζ, then edit(si, q) ≤
bζ/pc.

With respect to Property 4.2.1, the region in data sequence which is similar to

the query sequence can be detected by computing the edit distance between the

disjoint segment si in S and the sliding query segment q in Q.

102

Notation Description
D a DNA sequence database D
|D| the size of DNA sequence database D
S the data sequence in D
|S| the length of sequence S
S[i : j] the subsequence from position i to j
edit(S, P) edit distance of sequence S and P
ω the length of segment
θ distance threshold for data segments and query segment
sig1(S) q-gram signature of sequence S
sigc(S) c-signature of sequence S
sigc(S)[i, j] c-signature string from position i to j in sigc(S)
SDist(sigc(S1), sig

c(S2)) signature distance between sigc(S1) and sigc(S2)
δ number of the c-trees
Ti the ith c-tree
` height of c-tree Ti, 0 ≤ i < δ

Table 4.1: Notation Description

Since with high possibility there exists a similar segment pair (s, q), s ∈ S, q ∈ Q′

if S is similar to Q′, we instead solve the following problem:

Problem 4.2.1 Given the length ω and edit distance θ, find all the disjoint seg-

ments si with length ω generated from D which meet edit(si, qj) ≤ θ for the query

segments qj with length ω in Q.

4.3 Preliminaries

Although the edit distance is a simple but fairly accurate measure of the evolu-

tionary proximity of two DNA sequences, the computation complexity is O(mn),

m and n being the length of the two sequences. To speed up approximate se-

quence matching, filtering is an efficient way to quickly discard parts of a sequence

database, leaving the remaining parts to be checked by the edit distance. Our pro-

posed approach to sequence similarity search is based on q-grams, where the q-gram

103

similarity is used as a filter for similarity sequence search in DNA sequences.

4.3.1 The q-gram

Before we define qClusters and c-signature, we shall briefly review the definition

of q-gram and the principle of q-gram based filtering. The intuition behind the use

of q-grams as a filter for approximate sequence search is that two sequences would

have a large number of q-grams in common when the edit distance between them

is within a certain number.

Definition 4.3.1 q-gram of Sequence

Given a sequence S, its q-grams are obtained by sliding a window of length q over

the characters of S. For a sequence S, there are |S| − q + 1 q-grams in it.

The q-gram based filtering introduced by Jokinen and Ukkonen [60] in 1991 is

given as follows:

Lemma 4.3.1 Filtering based on q-grams (Jokinen and Ukkonen [60])

Let an occurrence of Q[1 : w] with at most θ edit or hamming distance end at

position j in sequence data S. Then at least w + 1 − (θ + 1)q of the q-grams in

Q[1 : w] occur in the subsequence S[j − w + 1 : j]. In the other words, there are at

most θq q-grams in Q[1 : w] which do not occur in S[j −w + 1 : j], and vice versa.

So obviously, the number of different q-grams between Q[1 : w] and S[j −w + 1 : j]

is at most 2θq.

Lemma 4.3.1 uses the number of common q-grams in two sequences as filter.

Conversely, we can also use the number of dissimilar q-grams in two sequences as

the filter and propose another lemma. Theoretically, the new lemma can therefore

be deduced from Lemma 4.3.1 as below:

104

Lemma 4.3.2 Filtering Based on Different q-grams

Let an occurrence of Q[1 : w] with at most θ edit or hamming distance end at

position j in data sequence S. Then we have the following property: |(GQ[1:w] ∪
GS[j−w+1:j])−(GQ[1:w]∩GS[j−w+1:j])| ≤ 2θq. GS denotes the set of q-grams occurring

in sequence S.

Proof: Lemma 4.3.1 gives a necessary condition for S[j−w+1 : j], a subsequence

of S to be a candidate for an approximate match with Q[1 : w]: At least w + 1 −
(θ +1)q of the q-grams are contained in S[j−w +1 : j]. Hence, there exist at most

(w − q + 1− (w − (θ + 1)q + 1) = θq q-grams in Q[1 : w] which are different from

the q-grams in S[j − w + 1 : j]. Therefore, the number of all the different q-grams

in Q[1 : w] from the q-grams S[j − w + 1 : j] is at most 2θq.

4.3.2 The qClusters and c-signature

The alphabet of the DNA sequence comprises four characters: Σ = {A,C, G, T}.
It means there are in all |Σ|q = 4q kinds of q-grams, and we may arrange them

according to the lexicographic order, and use ri to denote the ith q-gram in this

order. All the possible q-grams are denoted as: < = {r0, r1, . . . , r4q−1}. The q-gram

clusters (qClusters) can be defined below:

Definition 4.3.2 q-gram Clusters (qClusters)

All the possible q-grams, < = {r0, r1, . . . , r4q−1} are divided into λ clusters (de-

noted as qClusters) {qCluster1, . . . , qClusterλ} by a certain principle. In this

work, we simply cluster the m continuous q-grams {r(i−1)m, . . . , rim−1} together into

qClusteri, 1 ≤ i ≤ λ = d4q

m
e.

The q-gram signature and c-signature of the DNA sequence are defined as fol-

lows:

105

Definition 4.3.3 q-gram Signature

The q-gram signature is a bitmap with 4q dimensions where ith bit corresponds to

the presence or absence of the q-gram ri. For a given sequence S, the ith bit is set

as ‘1’ if ri ∈ < occurs at least once in sequence S, else it is set as ‘0’.

For brevity, we use 1-signature interchangeably with q-gram signature in our

discussion. Using the definition of 1-signature, each DNA segment can be mapped

into a 4q-dimensional 1-signature vector, and we can therefore transform the seg-

ments of the DNA sequences in the database into their corresponding 1-signatures.

Definition 4.3.4 c-signature

Let sig1(S)=(a0, . . . , an−1) be a q-gram signature of the DNA segment S with n=4q,

then its c-signature is defined as: sigc(S) = (u0, . . . , uk−1) where k=dn/ce, and

ui =
∑(i+1)c−1

j=ic aj. Set aj = 0 when n ≤ j < ck. For sequence S and P , we

define the distance between sigc(S) = (u0, . . . , uk−1) and sigc(P) = (v0, . . . , vk−1)

as SDist(sigc(S), sigc(P))=
∑k−1

i=0 |ui − vi|.

Clearly, we can generate c-signatures with different granularity according to the

definition of the c-signature. For better understanding of the definition of q-gram

signature and c-signature, we consider the following example:

Example 4.3.1 For a DNA sequence P=“ACGGTACT”, its q-gram signature is

(01 00 00 11 00 11 10 00) with 16(=42) dimensions when q = 2. In sequence

P , the q-gram ‘AC’ occurs twice in position 0 and 5 respectively, so we set the

corresponding bit in position 1 in q-gram signature as ‘1’. As there is no occurrence

of the q-gram ‘AA’ in sequence P , the corresponding bit in position 0 in q-gram

signature is set as ‘0’. For c=2, the c-signature of sequence P , shown in Figure 4.1,

is (10020210) with respect to the definition of the c-signature.

106

)(c=2

(q=2)

P= ACGGTACT

c−signature: (1 0 0 2 0 2 1 0)

q−gram signature: (01 00 00 11 00 11 10 00)

Figure 4.1: The c-signature of DNA Sequence P

With the property |a| + |b| ≥ |a + b|, it is not difficult to obtain the following

lemma for filtering in terms of c-signature:

Lemma 4.3.3 Filter Based on c-signatures

Given a sequence S, there is at most θ edit or hamming distance from another se-

quence P with |S| = |P |. Let sig1(S) = (a0, a1, . . . , an−1) and sig1(P) = (b0, b1, . . . , bn−1)

be the q-gram signatures generated for sequence S and P respectively. Denote the c-

signatures of S and P as sigc(S) = (u0, u1, . . . , uk−1) and sigc(P) = (v0, v1, . . . , vk−1),

c > 1, respectively. Then
∑k−1

i=0 |ui − vi| ≤ ∑n−1
j=0 |aj − bj| ≤ 2θq.

Proof: In term of Lemma 4.3.1 and the definition of q-gram signature,
∑n−1

i=0 |ai−
bi| ≤ 2θq holds. According to the definition of c-signature, ui =

∑(i+1)c−1
j=ic aj and

vi =
∑(i+1)c−1

j=ic bj. The following formula holds:
∑k−1

i=0 |ui−vi| = ∑k−1
i=0 |

∑(i+1)c−1
j=ic aj−

∑(i+1)c−1
j=ic bj| ≤ ∑k−1

i=0

∑(i+1)c−1
j=ic |aj − bj|= ∑kc−1

j=0 |aj − bj|=∑n−1
j=0 |aj − bj| ≤ 2θq.

107

4.4 An Indexing Scheme for DNA Sequences

In this section, we present a two-level indexing scheme to organize the segments in

DNA sequence database and support the similarity search.

4.4.1 The Hash Table

In order to hash the DNA segments to a hash table with size 2λ, it is necessary to

encode the segment into a λ-bit integer. Given a segment s, we encode it into a λ

bitmap e = (e1, e2, . . . , eλ) with respect to qClusters={qCluster1, . . . , qClusterλ}.
If there exists a q-gram gram in s which meets gram ∈ qClusteri, we set ei = 1,

else ei = 0, where 1 ≤ i ≤ λ. Following the encoding principle, any DNA segment

s can be encoded into a λ-bit integer (e1, . . . , eλ) by the coding function:

coding(s) =
λ∑

i=1

2i−1ei

The hash table has a total of 2λ buckets for the qClusters {qCluster1, . . . , qClusterλ},
and each segment si can be inserted into the corresponding bucket in the hash table

with the use of the hash function coding(si). Note that λ is set as 11 and 24 for

q=3 and 4 respectively in the experimental studies to make the hash structure fit

in memory, and furthermore, get the better performance on search, and we will not

declare it again.

4.4.2 The c-trees

The c-trees are a group of rooted dynamic trees built for indexing c-signatures. The

height of the trees, ` is set by the users. Given the c-signature of the segment s,

sigc(s)= (v0, v1, . . . , vk−1), there are δ = dk
`
e trees in total. We denote these trees

108

as T0, T1, . . . , Tδ−1. Each path from the root to a leaf in Ti corresponds to the c-

signature string sigc
i (s) = (vi`, vi`+1, . . . , v(i+1)`−1) in the c-signature of sequence s.

For ease of discussion, we shall assume without loss of generality that k is divisible

by ` and thus Tδ−1 also has a height of `. For each internal node of the tree,

there are at most c + 1 children. Each edge in a tree of c-trees is labeled with the

respective value from 0 to c.

The DNA segments are transformed into the c-signatures in order to build the

c-trees on them. Note that it is not necessary to store the c-signatures themselves

after the trees are constructed. To have a better understanding of the definition of

c-trees, we shall present a straightforward algorithm to build c-trees for a group of

c-signatures in Algorithm 5.

In Algorithm 5, label[〈Nx, Ny〉] denotes the label of edge 〈Nx, Ny〉 in the c-trees.

For notation convenience, we define S − S
′

as a suffix of S, where S
′

is a prefix

of S, and the concatenation of S
′

and S − S
′

is S. ε is used to refer an empty

string. Also lNode denotes the leaf node in the c-trees, and E0[lNode] is a group

of segments in lNode of the first tree T0. Note that E0[∗] will be constructed only

for the tree T0. For the other trees, the link from the c-signature to the leaf node

will be constructed instead.

Given a group of c-signatures {sigc(s0), sig
c(s1), . . . , sig

c(sm)}, the set of c-

signature strings for the first c-tree T0 is {sigc
0(s0), sig

c
0(s1), . . . , sig

c
0(sm)}. We will

show how the first tree T0 can be constructed.

The tree T0 is initialized with a root node T0. In the algorithm, first the

c-signature string sigc
0(s0) is inserted into the tree. According to the function

TreeInsert(T0, sig
c
0(s0), s0), since there are no other paths in the tree T0, a new leaf

node N0 is created with the path labeled with sigc
0(s0) from T0 to N0 under the

root node T0, and s0 is added into E0[N0].

109

Algorithm 5 Tree Construction
Input: c-signatures sigc(s0), . . . , sig

c(s|D|−ω).
Output: c-trees (T0, T1, . . . , Tδ−1).
Method:
1: Ti ← NULL, 0 ≤ i < δ
2: for each c-signature sigc(sj) do
3: for i ← 0 . . . δ − 1 do
4: TreeInsert(Ti, sigc

i (sj), sj)
5: end for
6: end for
7:
8: Function TreeInsert(Nx, sig, s)
9: if sig = ε then

10: insert(Nx, s, i) /*Nx is the leaf node*/
11: else if there exists an edge 〈Nx, Ny〉 where label[〈Nx, Ny〉] is a prefix of sig

then
12: TreeInsert(Ny, sig − label[〈Nx, Ny〉], s)
13: else if there exists an edge 〈Nx, Ny〉 where label[〈Nx, Ny〉] shares a longest

prefix pf with sig, pf 6= ε then
14: split 〈Nx, Ny〉 into two parts with a new node Nz, such that pf =

label[〈Nx, Nz〉]
15: create a new leaf lNode with edge label sig-label[〈Nx, Nz〉] under Nz

16: insert(lNode, s, i)
17: else
18: create a new leaf node lNode under Nx with edge label

label[〈Nx, lNode〉]=sig
19: insert(lNode, s, i)
20: end if
21:
22: Function insert(lNode, s, i)
23: if i=0 then
24: E0[lNode] ← E0[lNode] ∪ {s}
25: else
26: build the link from c-signature of s to lNode in Ti

27: end if

For the following c-signature strings sigc
0(si), 1 ≤ i ≤ m, they will be inserted

into the growing tree one by one. For each sigc
0(ti), the function TreeInsert(T0, sig

c
0(si), si)

from Line 9 to 20 in Algorithm 5 will be executed recursively. The following case

will be executed in order.

110

1. If there exists a path out of the root T0 whose label is exactly equal to sigc
0(si),

add si to the set E0[lNode], where lNode is the leaf node of this path.

2. If there exists an edge or a path 〈T0, Ny〉 with longest length which is the

prefix of sigc
0(si), the function TreeInsert(Ny, sig

c
0(si)− label[〈T0, Ny〉], si) will

be recursively executed until si is put into lNode of a path in T0.

3. For the case that there is no above path or edge in the tree T0, we will check

if there is a path 〈T0, Ny〉 in T0 which shares the longest prefix pf 6= ε with

sigc
0(si). If such a path exists, 〈T0, Ny〉 will be split into two parts with a

new node Nz such that pf=〈T0, Nz〉. One edge is labeled by pf , the other

edge labeled with sigc
0(si)-pf is created under the node Nz. A new leaf node

lNode is also created under the second edge and si is added to E0[lNode] as

well.

4. If sigc
0(si) shares nothing with the edge or path in T0, then a new path labeled

with it will be created with E0[lNode] = {si}, where lNode is the new created

leaf node.

The c-signature strings sigc
i (s) are inserted into the growing trees Ti 1 ≤ i <

δ one by one by executing the function TreeInsert(Ti, sig
c
i (s), s) recursively. We

now demonstrate the c-trees construction constructed for DNA segments with the

following example.

Example 4.4.1 Consider the five DNA segments s0=“ACGGT”, s1=“CTTAG”,

s2=“ACGTT”, s3=“TAAGC” and s4=“GACGT”. When we set q=2 and c=2,

their c-signatures are: sig2(s0)=(1001 0200), sig2(s1)=(0101 0011), sig2(s2)=(1001

0101), sig2(s3)=(1100 1010), sig2(s4)=(1001 1100). If ` = 4, we get 4q

c`
=2 trees.

The first tree T0 is constructed from the c-signature strings sig2
0(si), 0 ≤ i ≤ 4, and

111

the tree T1 is constructed from sig2
1(si), 0 ≤ i ≤ 4. The c-trees (T0, T1) for the five

DNA segments are shown in Figure 4.2.

0

1

1

0

0

s3(s0,s2,s4)s1

T0

0

1

1

0

1

1

11

0

2

0

01

0

0

T1

s2s1 s4s3s0

1

0

1

0

1 0

0

0

Figure 4.2: The c-trees for the DNA segments

An example is given below in detail about the tree T0 construction.

Example 4.4.2 In this example, the first half of the five 2-signatures are sig2
0(s0) =

1001, sig2
0(s1) = 0101, sig2

0(s2) = 1001, sig2
0(s3) = 1100 and sig2

0(s4) = 1001. The

construction of the tree T0 can be described as follows:

1. When the c-signature string 1001 for s0 is to be inserted, T0 is empty, so an

edge with label 1001 is created under the root node of T0;

2. When the c-signature string 0101 for s1 is to be inserted, T0 has one edge

1001 which shares no prefix with 0101. An edge with label 0101 is inserted

under the root node of T0;

3. For the third c-signature string 1001 of s2, an identical edge (path) label with

it is found in c-tree T0. So the segment identifier s2 is simply inserted under

the existing leaf node with label 1001;

112

4. For the fourth c-signature string 1100 of s3, since it shares a prefix 1 with an

existing edge labeled with 1001, the edge 1001 is split into 1 and 001 at a new

created internal node, and a new edge 100 is created and inserted under the

new created internal node;

5. For the last c-signature string 1001 of s4, as it is just the same as the first and

third c-signature string for s0 and s2 respectively, the identifier of segment s4

is simply inserted under the existing leaf node with label 1001.

4.5 Query Processing

In this section, we present a two step filter-and-refine algorithm in performing the

similarity search on DNA segments. In the first step, the two-level index is used

to identify potential candidates by pruning data segments that are far away from

the query sequence. In the second step, the dynamic programming is conducted to

obtain the final alignments with high alignment score between the candidates and

query sequence. Similar to BLAST, these candidates are then extended on the left

and right to determine if it is contained within a longer segment pair whose score

is greater than or equal to a certain threshold. The algorithm stops extending the

seed in one direction when that causes the score to fall a certain distance below

the best score found so far. As we have discussed in Chapter 2, the seed searching

time dominates the total response time for BLAST. Database read time and seed

extension time are just a small portion of the total response time. Therefore, in

the following, we mainly consider how we can obtain these candidates which are

similar to query segments by pruning those dissimilar data segments. The query

processing in this work can be described as follows:

1. Preprocess the DNA sequence dataset and query sequence;

113

• Partition query sequence Q into |Q| − ω + 1 sliding query patterns;

• Build hash table HTable and c-trees on the DNA data segments;

2. Two-level Filtering

• The first level: Hash table based similarity search;

• The second level: The c-trees based similarity search;

3. Refining:

Extend the candidates/seeds in both directions to obtain the final alignments

with high alignment score between the data subsequence and query sequence.

4.5.1 The First Level Filter: Hash Table Based Similarity

Search

After the hash table is constructed on the segments of DNA sequences, our search

technique partitions the given query sequence Q into |Q| − ω + 1 sliding query

patterns q1, q2, ..., q|Q|−ω+1. Given the q-gram clusters {qCluster1, . . . , qClusterλ},
the query pattern qi is first encoded to a hash key hi, which is a λ bit integer.

Then all the encoded neighbors ngbr of the hash key hi are enumerated, and the

neighbors are those λ bit integers encoded from the segments which are within a

small edit distance from qi.

In [27], an approach has been proposed to enumerate a segment’s neighbors.

The main idea is also applicable for our current case, but the difference is that we

need to consider the impact on the q-grams to get the encoded neighbors when some

edit operations are conducted on the segment. The d edit operations on segment s

will result in at most dq q-grams which are different from those in s, and the new

neighboring key will be computed in terms of the new group of q-grams by using

the coding function.

114

Algorithm 6 illustrates the similarity search based on the first level indexing

structure – hash table. For a query pattern qi, once an encoded neighbor engbr of

qi is enumerated, the segments in the bucket HT [engbr] of the hash structure HT

will be retrieved as candidates and stored into the candidate set Cht.

Algorithm 6 The First Level Filter Algorithm
Input: Hash structure HT , Query pattern qi.
Output: Candidate Cht.
Method:
1: Cht ← ∅;
2: Encode the query pattern qi to a hash key hi in terms of encoding function;
3: Enumerate the next neighbor ngbr of hi;
4: for each segment s in the bucket HT [ngbr] do
5: if s and qi are similar then
6: Cht ← Cht ∪ s;
7: end if
8: end for
9: Until all the neighbors of qj are enumerated;

4.5.2 The Second Level Filter: The c-trees Based Similarity

Search

The candidate segments Cht generated from the first level filter will be further

verified by the second level indexing structure, c-trees. According to the c-trees

structure, the c-signature sigc(q) of query q is divided into δ c-signature strings

which are sigc
i (q), 0 ≤ i < δ. Algorithm 7 shows how to retrieve the segment s

which satisfies the range constraint edit(q, s) ≤ θ for a query segment q based on

the second level indexing structure – c-trees. For clarity, threshold γ in Algorithm 7

is set to 2qθ or a value smaller than 2qθ, where q is the q-gram length and θ is the

edit distance allowed between the DNA data segment and query segment.

In Algorithm 7, wi[lNode] is used to denote the distance between sigc
i (q) and

the path label pl = label[〈rooti, lNode〉] from the respective root rooti to lNode in

115

Ti, namely wi[lNode] = SDist(sigc
i (q), pl). We use score[s] to denote the partial

distance for segment s during similarity search. Also for notation simplicity, we use

sigc
i (s) as its corresponding path label for a leaf node in Ti, 0 < i < δ, since each

sigc
i (s) can only be mapped to one path or one leaf node in Ti.

Algorithm 7 The Second Level Filter Algorithm
Input: The c-trees (T0, T1, ..., Tδ−1) on D, query c-signature (sigc

0(q), ..., sig
c
δ−1(q)),

Candidate segments Cht, distance γ.
Output: Candidate set C.
Method:
1: C ← ∅
2: for lNode ∈ T0 do
3: if w0[lNode] < γ then
4: E

′
0[lNode] ← E0[lNode] ∩ Cht; C ← C ∪ E

′
0[lNode]

5: for each s ∈ E
′
0[lNode] do

6: score[s] ← w0[lNode]
7: end for
8: end if
9: return Search({T1, . . . , Tδ−1}, C)

10: end for
11:
12: Function: Search(TSet, C)
13: if TSet = ∅ then
14: return C
15: else
16: Ti ← first entry in TSet
17: for each s ∈ C do
18: if wi[sig

c
i (s)] + score[s] ≤ γ then

19: score[s] ← wi[sig
c
i (s)] + score[s]

20: else
21: C ← C − {s}
22: end if
23: end for
24: return Search(TSet-{Ti}, C)
25: end if

During query processing, for each leaf node lNode in tree T0, the distance

w0[lNode]) between the path label of lNode and sigc
0(q) are computed. And

the initial candidate set C includes those segments in E0[lNode] ∩ Cht where

116

w0[lNode] ≤ γ. For the other trees {T1, . . . , Tδ−1}, candidates will be pruned based

on the partial distance gradually by executing the function Search(TSet, C) recur-

sively. For each candidate s in C, we can find its corresponding leaf node lNode

with label sigc
i (s) in tree Ti(i 6= 0) in time O(1) by links constructed during tree con-

struction, and the partial distance score[s] can be computed as well. For the tree Ti,

if the new partial distance for candidate segment s, wi[sig
c
i (s)]+ score[s] ≤ γ, then

the partial distance score[s] for segment s is modified as wi[sig
c
i (s)] + score[s], else

the segment s is removed from candidate set C since segment s is not a candidate.

The function Search(TSet, C) is executed until TSet is empty.

4.5.3 The Space and Time Complexity Analysis

In this section, the space and time complexity are analyzed for the two-level index

structure. For the space complexity of the hash table, we need O(2λ) for the table

head. For the bucket of the table, DNA segments will contribute space Θ(|D|/ω).

Thus, the total space complexity for the hash structure will be O(2λ+|D|/ω). Each

neighborhood of the segment can be generated with time amortized complexity

O(1). Thus, the time complexity for the query is O(|q|) for the first level filtering.

Essentially, the space complexity for the c-trees can be divided into two portions:

the c-trees themselves, and space occupied by E0[∗] for the first tree T0 and the

links for the other trees. As in the algorithm, E0[∗] must be stored for the first

tree, thus they require O(|D|/ω) space. The height of each tree is bounded by

O(4q/(δc)), thus for each tree the storage required for the edge labels is bounded

by O((c + 1)4q/(δc) log(c + 1)). Besides, we also need to maintain the links for the

other trees. The space required by links highly depends on the data distribution.

Note there are many zeros in c-signatures, thus a lot of links will point to a dummy

leaf (by dummy we mean that the path label is 0); and compression may therefore

117

be beneficial. However, in our implementation and performance study, we do not

apply any compression so that we can explain the effects of certain parameters

properly. The time complexity depends on the pruning rate for each iteration.

Suppose the filtering rate for each iteration is β, then the total time required to

obtain the final candidate set is O(δ(c + 1)4q/(δc) + (|D|/ω) (1−β)(1−(1−β)δ)
β

) in the

worst case. Note in practice, the algorithm is much more efficient since we hardly

need to traverse the whole structure.

4.6 Experimental Studies

In this section, we evaluate the effectiveness, sensitivity, efficiency of DNA se-

quence similarity search based on the two-level index structure. First, we study

the effectiveness of the two-level index by examining the effect of number of com-

mon q-grams, the effect of parameter c and q, and the effect of parameter ω and

θ. Second, we use the theoretical sensitivity model proposed in Chapter 3 to inves-

tigate the sensitivity of similarity search based on the two-level index. Third, we

use pier model proposed in Chapter 3 to extract the segments, construct the two-

level index structure based on the extracted piers and perform the DNA sequence

similarity search to investigate efficiency of DNA sequence similarity search based

on the two-level index. Finally, we compare the DNA sequence similarity search

based on two-level index to hash-based pier model proposed in Chapter 3 and we

also compare it against the latest version of BLAST (NCBI BLAST 2). We use the

default seed length 11 for BLAST (denoted as BLAST11).

118

4.6.1 Dataset and Experimental Settings

We use the same DNA sequence datasets as those listed in Table 3.42. They are

ecoli.nt (4.68MB), yeast.nt (12.3MB), human est.fa (23.6MB), month.gss (286.2MB),

patnt (702.1MB), other genome (1.06GB) and other genome+patnt (1.76GB). All

the datasets are real datasets which are downloaded from NCBI website. The pro-

grams are implemented in C++ programming language, and are executed on a

Linux server with 4 UltraSPARC-III+ CPU of 900MHz and 8GB memory, which

is the same as the machine we used for experimental studies in Chapter 3.

4.6.2 The Effectiveness Analysis

We use the dataset ecoli.nt to study the effectiveness of the two-level index struc-

ture. We investigate the effect of number of common q-grams, the effect of pa-

rameter c and q, and the effect of parameter ω and θ on the performance of DNA

sequence similarity search based on the two-level index structure.

Effect of Number of Common q-grams

Our proposed search method is based on q-grams, where the q-gram similarity is

used as a filter for similarity sequence search in DNA sequences. Therefore we

first explore the effect of the number of common q-grams on the proposed search

method. For a given data segment with length ω and a certain similarity p to the

query segment, we compute the probability of this segment being detected as a hit

when we vary the number of common q-grams.

Figure 4.3 depicts the effect of the number of common q-grams on the proposed

search method for ω=30, p=67% and q = 2, 3, 4. Figure 4.3 shows that the “hit”

probability decreases as the number of common q-grams increases. It is because

2Table 3.4 lists the datasets used for experimental study in Chapter 3.

119

that the probability to get a hit will be lower when more common q-grams are

needed. We also observe that smaller q led to higher hit probability when we fixed

the number of q-grams, due to the fact that it is easier to get more common q-grams

when q is smaller.

We also conduct the experiment to compute the hit probability for BLAST11.

For ω=30, p=67%, the hit probability is 0.0338. In comparison with BLAST11,

when ω=30, p=63% and q=4, our q-gram based method achieves higher hit prob-

ability than BLAST11 as long as the number of common q-grams smaller than

10.

Effect of Parameter c and q

We next investigate the effect of parameter c and q on the filter rate of the two-level

index structure. The filter rate used in the experiment study is defined as below:

Filter Rate = 1- total number of hits found
total number of segments in data sequence

.

We first conduct experiment to measure how the parameters c and q affect the

effectiveness of filtering when we fix the segment length ω and error tolerance θ

in the filter processing. Since we focus on investigating the effect of longer seeds

on the performance of the search by using two-level index structure, we set ω=30

with error tolerance θ=3 3. The result in Figure 4.4 shows that as c increases,

the filter rate deteriorates since the c-signature representing the segment becomes

inaccurate. On the other hand, larger q results in better filter rate since the segment

property can be captured more accurately by the c-signatures. We can achieve the

very high filter rate, 99.9495%, for q=4 and c=3. It means that two-level index

is very effective for filtering. We will use q=4 and c=3 as the default parameter

values for the efficiency analysis in the following experiment.

3We will next investigate the effect of different value of ω and θ on the effectiveness of the
search in the subsequent experiments.

120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

Pr
ob

ab
ili

ty

The Number of Common q-grams

q=2
q=3
q=4

Figure 4.3: Effect of Number of Common q-grams: ω=30, p=67%

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7

Fi
lte

r
R

at
e(

%
)

The Parameter c

Filter Rate(w=30, edit distance=3)

q=3
q=4

Figure 4.4: Filter Rate vs Parameter c

121

Effect of Parameter ω and θ

We next study the effect of segment length ω and error tolerance θ. The results

are summarized in Figure 4.5. Figure 4.5 shows that the filter rate increases as

ω increases and θ decreases. We note that even for ω=30 and θ=4, the filter

rate is already as high as 95.895%. When ω=30 and θ=3, we can achieve much

higher filter rate of 99.4%. The results confirm that the proposed index structure

is very effective for the similarity search. We will use ω=30 and θ=3 as the default

parameter values for the efficiency analysis in the subsequent experiment.

 95

 96

 97

 98

 99

 100

 30 31 32 33 34 35 36 37 38 39 40

Fi
lte

r
R

at
e(

%
)

The Segment Length

Filter Rate(q=4,c=3)

edit distance=3
edit distance=4

Figure 4.5: Filter Rate vs Segment Length ω

4.6.3 The Sensitivity Analysis

The two-level index structure can be used to organize very long seed with error

tolerances. To study sensitivity of longer seed with error tolerances, we use the

theoretical sensitivity model which was proposed in Chapter 3. There are three pa-

122

rameters in the theoretical model: the pier length `p, error tolerance θ, and number

of seeds k; and the pier length `p corresponds to the segment length ω in the two-

level index structure based similarity search. Since the two-level index structure

is built on qClusters and c-signatures of data segments, its size is not affected by

segment length. Naturally, we can index much longer seeds (segments) by using

the two-index structure than using hash-based pier model. On the contrary, both

BLASTn and hash-based pier model cannot handle very long seeds (segments) with

error tolerances. BLASTn identifies seeds of length from 9 to 11 [22]. The hash-

based pier model can not handle very long seeds (for example, seed with length 30)

due to the big size of the hash structure and GPM.

Figure 4.6 presents the results on sensitivity where length of random region is

set to 64. In the graph, we use (ω,k,θ) to denote the different seed for sensitivity

analysis. The results show that smaller ω, bigger k and bigger θ yield higher

sensitivity.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1

Se
ns

iti
vi

ty

Similarity

Lengh of Random Region: 64

(30,4,2)
(30,3,2)
(30,3,1)
(17,3,3)
(17,2,3)
(17,2,2)
(17,1,3)
(17,1,2)

Figure 4.6: Similarity vs Sensitivity

123

4.6.4 The Efficiency Analysis

In this subsection, we evaluate the efficiency of sequence similarity search based

on the two-level index structure. We build the two-level index on the disjoint 4

data segments by using the default parameter values selected in Section 4.6.2 to

evaluate the efficiency of the search on the two-level index. We set q=4, c=3, ω=30

and θ=3, and we use two-level(30) to stand for the parameter setting. We conduct

the experiments to investigate the effect of query length and dataset size on the

performance of search based on two-level index for long seeds.

 50

 100

 150

 200

 250

 300

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Preprocessing Time

two-level(30)

Figure 4.7: Efficiency of Preprocessing

Efficiency in Pre-processing

We would first like to investigate the efficiency of constructing the two-level index

structure. Figure 4.7 presents the time of pre-processing the seven DNA sequence

4Note that disjoint segment corresponds to pier with span length `s=0 in Chapter 3.

124

datasets described in Table 3.4 before performing similarity search. The result

shows that the time of pre-processing increases linearly with the size of dataset.

We index all the disjoint segments instead of sliding segments in data sequences,

and the response time of pre-precessing is scalable with respect to dataset size.

Varying Query Length

We next conduct an experiment on the two datasets month.gss and patnt to inves-

tigate the effect of query length on the performance of the search of the two-level

index by setting the query length to 100, 300, 500, 800, 1000, 1500 and 2000.

Figure 4.8 shows that the response time of the search increases linearly for both

datasets as the query length increases. For dataset patnt, it takes about 12 seconds

to return the alignments between the query sequence and data sequences when

query length is set to 2000. The efficiency of query deteriorates linearly as query

length increases because we use all the sliding windows of query sequence as the

query patterns in similarity search based on the two-level index structure.

Varying Dataset Size

To study the effect of database size on the search efficiency of two-level index, we

fix the query length to 1000, and conduct similarity search on the seven datasets

of various sizes. The result in Figure 4.9 shows that the search method based on

the two-level index is efficient in detecting the similar regions between the query

sequence and data sequences by using longer seeds. Most of all, the results indicate

that the efficiency deteriorates linearly with respect to dataset size.

125

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

T
im

e(
se

c)

Query Length

two-level(30):month.gss
two-level(30):patnt

Figure 4.8: Query Time

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Query Length: 1000

two-level(30)

Figure 4.9: Query Time (|Q|=1000)

126

4.6.5 Comparison to Hash-based Pier model and BLAST11

In this subsection, we compare the performance of two-level index method with

the hash-based pier model and BLAST11. First, we evaluate the efficiency of

pre-processing of the three methods. Then we conduct experiments to investigate

the effect of query length and the size of dataset on the performance of the two-

level index method in comparison with both hash-based pier model and BLAST11.

Finally, we analyze the results returned by the three methods in terms of precision

and recall. In Chapter 3, we noted that when compared to BLAST11, the hash-

based pier model can achieve higher recall and acceptable precision using parameter

setting `p=17, `s=5 and θ=3. In the subsequent experiments, we therefore use the

same parameter setting `p=17, `s=5 and θ=3 on the two-level index structure to

compare against hash-based pier model and BLAST11. For two-level index method,

we use two− level(17) to denote the parameter setting; for hash-based pier model,

we use Pier(17) to denote the parameter setting.

Efficiency in Pre-processing

We first evaluate the efficiency in data sequence pre-processing before perform-

ing similarity search for the three search methods. Figure 4.10 shows that pre-

processing of hash-based pier model is fastest, followed by the two-level index

method and BLAST11. The hash-based pier model and two-level index method are

fast to pre-process the sequence database since we only index the extracted “piers”

instead of indexing all the sliding segments in data sequences as in BLAST11.

Furthermore, the hash-based pier model directly hashes the extracted “piers” into

hash table while the two-level index method needs to first transform the “piers”

into c-signatures and qClusters in terms of q-grams. As a result, it takes more time

for the two-level index structure to build the index structure than the hash-based

127

pier model. In all, the pre-processing of the hash-based pier model and two-level

index is about 2-10 times faster and 2-6 times faster than BLAST11, respectively.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Preprocessing Time

BLAST11
Pier(17)

two-level(17)

Figure 4.10: Efficiency of Preprocessing

Varying Query Length

An experiment is also conducted to investigate the effect of query length on the

performance of two-level index method in comparison with hash-based pier model

and BLAST11. In this experiment, we set the query length to 100, 300, 500, 800,

1000, 1500 and 2000. We perform the similarity search on dataset patnt. We found

that both the hash-based pier model and two-level index method are faster than

BLAST11 when we vary query length. Figure 4.11 shows that the hash-based pier

model maintains a good margin in efficiency even as the query length increases

compared to both two-level index method and BLAST11. This is because that

the hash-based pier model enumerates the neighbors of query segments, and then

retrieves the segments in hash structure in terms of the neighbors in time O(1). It

128

does not need to do any computation for candidate detection during the search.

Figure 4.11 also shows that the two-level index method is faster than BLAST11 as

we vary the query length from 100 to 2000, however, the gain of the two-level index

method decreases slightly for large query length as it needs to transform all query

sliding windows to their corresponding hash keys and c-signatures for the search.

 0

 3

 6

 9

 12

 15

 18

 21

 0 500 1000 1500 2000

T
im

e(
se

c)

Query Length

Dataset:Patnt

BLAST11
Pier(17)

two-level(17)

Figure 4.11: Query Time (Dataset:patnt)

Varying Dataset Size

Similarly, we perform a comparison of two-level index search method with hash-

based pier model and BLAST11 on the seven datasets as well. To study the effect

of database size on the three methods, we run them on seven datasets of various

sizes when the query length is fixed to 1000. The results in Figure 4.12 show that

both the hash-based pier model and the two-level index method perform well for

large datasets and the margin over BLAST11 is widened as database size increases.

129

The reason is obvious: we use index structures to organize the extracted piers from

the data sequences, while BLAST11 basically does the sequential scan on the data

sequences. We note that other characteristics of the undivided dataset may have

effects on the results, which are however not significant since the size dominates

the cost in this test.

 0

 5

 10

 15

 20

 25

 30

 35

 200 400 600 800 1000 1200 1400 1600 1800

T
im

e(
se

c)

Database Size(MB)

Query Length: 1000

BLAST11
Pier(17)

two-level(17)

Figure 4.12: Query Time (|Q|=1000)

4.6.6 Search Accuracy Analysis

We now conduct the experiments to compare and analyze the accuracy of the

results of two-level index method, hash-based pier model and BLAST11 in terms

of two search accuracy metrics: precision and recall (The two accuracy metrics have

been earlier defined in Section 3.7.5). To evaluate the precision and recall of the

search methods, we use the same datasets and evaluation methods as those used in

Section 3.7.5. We use 400,00 sequences in human EST dataset as data sequences;

130

we randomly select 20 sequences from mouse EST dataset as query sequences. We

perform the search accuracy analysis on the results of the search methods: two-level

index method, hash-based pier model and BLAST11. Table 4.2 shows the precision

and recall of the three search methods. In Table 4.2, T (30), T (17) and P (17) are

the abbreviations of two-level(30), two-level(17) and Pier(17), respectively, which

are used for efficiency analysis in Section 4.6.4 and Section 4.6.5.

QID T (30) T (30) T (17) T (17) P (17) P (17) BLAST11 BLAST11
Precision Recall Precision Recall Precision Recall Precision Recall

1 1 0 0.025057 0.275362 0.055556 0.014493 0.428571 0.012
2 0.156085 0.059476 0.027625 0.157258 0.26158 0.096774 0.895833 0.172
3 1 0 0.018717 0.007035 0.333333 0.003015 1 0.008
4 1 0 0.026607 0.077699 0.054264 0.007064 0.384615 0.005
5 0.08046 0.007028 0.025541 0.60241 0.144172 0.047189 0.1 0.001
6 1 0 0.010152 0.032193 0.034483 0.002012 0.358974 0.014
7 1 0 0.017414 0.125376 0.077519 0.01003 0.2 0.002
8 1 0 0.023193 0.043744 0.393939 0.013225 0.785714 0.011
9 1 0 0.020211 0.11269 0.147727 0.013198 0.363636 0.008
10 1 0 0.017698 0.269347 0.056034 0.013065 0.090909 0.001
11 1 0 0.01555 0.08871 0.057851 0.007056 0.375 0.003
12 0.707692 0.046092 0.226158 0.166333 0.649573 0.152305 1 0.202
13 1 0 0.020191 0.091919 0.070313 0.009091 0.478873 0.034
14 1 0 0.022796 0.015045 0.210526 0.004012 1 0.005
15 1 0 0.025784 0.060181 0.085714 0.006018 0.291667 0.007
16 0.06503 0.390244 0.10038 0.402439 0.150746 0.410569 0.484 0.121
17 1 0 0.032601 0.095286 0.289308 0.046138 0.815385 0.053
18 1 0 0.018945 0.22132 0.040541 0.012183 0.032258 0.001
19 0.6 0.003077 0.036889 0.217436 0.3125 0.030769 0.324324 0.012
20 1 0 0.014725 0.139279 0.059701 0.008016 0.142857 0.002

Table 4.2: Precision and Recall of the Results (Dataset:human est.fa, 20 Queries
Randomly Selected from mouse est.fa)

The results in Table 4.2 show that two-level index method T (30) can achieve

higher precision followed by BLAST11, but low recall; and two-level index method

T (17) achieves higher recall followed by hash-based pier model P (17), but low

precision. Compared to two-level index method T (30), the two-level index method

T (17) has lower precision and higher recall. The results of recall for different search

methods are also consistent with the results of theoretical sensitivity analysis in

Section 4.6.3, advocating that longer seeds lose distant homologies while small ones

create too many random hits. In addition, we note that two-level index method

T (17) achieves higher recall and lower precision compared to hash-based pier model

131

P (17). This is because that we use q-gram based filtering method in two-level index

method, while we enumerate the neighbors of query segments in hash-based pier

model. Some alignments with not very high similarity can be found by the q-gram

based filtering method.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

T(30)T(17)P(17)BLAST11

A
ve

ra
ge

 A
cc

ur
ac

y

Search Methods

Recall
Precision

Figure 4.13: Average Accuracy (Dataset:human est.fa, 20 Queries Randomly Se-
lected from mouse est.fa)

We also provide an overall evaluation on the average precision and recall for the

search methods in Figure 4.13. The average precision and recall are computed based

on the precisions and recalls (listed in Table 4.2) of the 20 randomly selected queries.

The average precision of T (30) is 0.8305, which is higher than BLAST11; the

average recall of T (30) is 0.0253, which is lower than that of BLAST11. Moreover,

for the other two search methods T (17) and P (17), they both achieve lower precision

but higher recall than BLAST11. In summary, the two-level index method T (30)

can achieve higher precision than the hash-based pier model and BLAST11, while

the two-level index method T (17) achieves highest recall compared to the hash-

132

based pier model and BLAST11.

4.7 Summary

We have devised a novel two-level index structure based on q-grams of the DNA

sequences which can support efficient similarity search in DNA sequence database.

The filtering principle with respect to the index structure is presented and it has

been designed to achieve efficient sequence searching while keeping high sensitivity.

We conducted experiments to evaluate the performance of our method in terms

of sensitivity, effectiveness, efficiency and accuracy. We also conducted the exper-

iments to compare the two-level index search method to our proposed hash-based

pier model and BLAST11. The results show that the two-level index method can be

used to effectively index very long seeds with error tolerance and efficiently detect

the regions in DNA sequence database which are similar to the query sequence.

However, for some seeds (length of seeds from 11 to 18) with error tolerances, the

two-level index method is not as efficient as the hash-based pier model.

133

CHAPTER 5

Sequence Join Using Precedence Count

Matrix

5.1 Introduction

Many applications manipulate sequence data, for example computational genomics,

computational finance, and text and audio processing. One of the most frequently

used and expensive operations is the sequence join that combines data from two

datasets with similar sequence values on the join attribute. The similarity between

two sequences is typically determined by the edit distance.

In this chapter, we study the problem of sequence join in the context of genomic

applications, for example in sequencing by hybridization and sequence assembly, a

sequence is assembled from a set of smaller and overlapping subsequences. In

sequence assembly, the first step is to find how much a suffix of the first sequence

matches a prefix of the second. Sequencing errors are a reality (even if they are only

134

in the 1-5% range) and suffix-prefix matching must allow for approximate matches

[50]. In this context, two sequences are joinable if the prefix of one sequence is

similar to the suffix of another with respect to the edit distance. For every ordered

pair of sequenced sequences S1 and S2, we would compute the longest suffix of S1

that approximately matches a prefix of S2.

We propose an efficient filter-and-refine sequence join algorithm to find the

longest suffix-prefix match which allows for approximate match for every pair of

sequences. In the filtering phase, the proposed scheme can rapidly prune away

sequences that are not joinable. In the refinement phase, a more comprehensive

alignment scheme is used to filter out the false positives.

In the filtering phase, the key operation is to determine the similarity between

two sequences. We propose to use the precedence count matrix (PCM) to

estimate a lower bound for the edit distance between two sequences. Given the

PCMs of two sequences, we derive an efficient algorithm for computing a lower

bound for the edit distance between the two sequences. The complexity of this

algorithm is O(|Σ|2log|Σ|) where Σ is the alphabet set of the sequences. This means

that our algorithm is effective for DNA sequences which have a small alphabet set of

size 4. We conducted experiments to evaluate the proposed sequence join algorithm,

and our results show that it outperforms existing techniques.

In the next section, we introduce the PCM and the algorithm for approximating

the edit distance of two sequences using their PCMs. Section 3 presents the pro-

posed sequence join algorithm. Results from a performance study will be reported

in Section 4. In Section 5, we review some related work, and finally, we conclude

in Section 6.

135

5.2 Approximating Edit Distance Using Prece-

dence Count Matrix

The similarity (or distance) between two sequences is typically determined by the

edit distance, which is computed by using the standard dynamic programming

approach. As we have introduced in Chapter 2, it is very costly in terms of both

time and space to compute the edit distance when dynamic programming is applied.

In this section, we will introduce the precedence count matrix (PCM) and use it to

approximate the edit distance between two sequences. The time complexity of our

approximate algorithm based on PCM is O(|Σ|2log|Σ|) where Σ is the alphabet set

of the sequences. Throughout the discussion in this section, we will use the two

sequences in Figure 5.1 and their PCMs as a running example.

Definition 5.2.1 Precedence Count Matrix

Let alphabet Σ be the set of characters {A,C,G,T} and Q be a sequence formed

from the characters in Σ. The precedence count matrix of Q, denoted as PCMQ is

a |Σ| × |Σ| matrix where each element, represented as PCMQ[a, b], a ∈ Σ, b ∈ Σ,

is the number of unique occurrences of a preceding b (not necessary consecutive) in

the sequence Q. 2

Example 5.2.1 Throughout the discussion in this section, we will use the two se-

quences in Figure 5.1 and their PCMs as a running example. Consider the sequence

Q, and the element PCMQ[C, T]. Since there are 2 occurrences of the character

‘T ’ following the first four ‘C’, PCMQ[C, T] will be 8. The resultant PCMQ is

shown in Figure 5.1. 2

For the notation simplicity, we will refer PCMQ[a, b] both as a matrix element

and as the precedence count of (a, b), it should be clear for the context.

136

A C G T
A 6 25 15 17
C 3 21 15 8
G 1 13 6 4
T 3 27 16 10

(a) PCM of Q

A C G T
A 21 25 6 15
C 10 10 3 6
G 15 12 3 13
T 20 19 2 10

(b) PCM of R

Q=“AAATGTTCCCACTTCGGGCC”
NQ(A) = 4, NQ(C) = 7, NQ(G) = 4, NQ(T) = 5

R=“AACGGTTGATATCTACAACC”
NR(A) = 7, NR(C) = 5, NR(G) = 3, NR(T) = 5

Figure 5.1: PCMs of Q and R

For ease of discussion, denote Diag(PCMQ) = {PCMQ[a, a]|a ∈ Σ} as the

diagonal of the matrix and other elements in the matrix which are not part of

Diag(PCMQ) will be referred to as non-diagonal elements.

Before we describe the algorithm, we will first highlight the following two prop-

erties of the PCM.

Property 5.2.1 Occurrence Count Property

Let NQ(a) denote the number of occurrences of a character ‘a’ in a sequence Q.

Then PCMQ[a, a] = f(NQ(a)) where f(n) = n(n−1)
2

. Conversely, given PCMQ[a, a],

we will have NQ(a) = f ′(PCMQ[a, a]) where f ′(n) is the inverse of the function

f(n)1. 2

The occurrence count property simply states that the frequency of a character

a in the sequence Q can be derived from its PCM and vice versa. The second

property is as follow:

Property 5.2.2 Reverse Sum Property

Given a sequence Q and any two characters a and b, a 6= b, PCMQ[a, b]+PCMQ[b, a] =

1PCMQ[a, a] = 0, the value NQ(a) can be determined with other information.

137

NQ(a)×NQ(b). 2

Noticed that PCMQ[a, b]+PCMQ[b, a] is the number of distinct unordered pairs

of characters a and b, by the production rule of permutation, the above property

can be obtained. The property will be used to reduce the number of cases we

have to consider in our algorithm for approximating the edit distance between two

instances.

Given the precedence matrix of two sequences Q and R, an algorithm for approx-

imating the minimum edit distance between Q and R is sketched in Algorithm 8.

We shall describe the three steps of the algorithm in more details.

Algorithm 8 Estimate Edit Distance
Input: PCMQ and PCMR.
Output: Lower bound of edit distance between Q and R.
Method:
1: Compute the minimum number of operations (insertion, deletion or replace-

ment) D1 required to transform Diag(PCMQ) into Diag(PCMR).
An algorithm in [61] can be adopted for this step. Let this set of operations be
denoted as OPER and let the transformed precedence count matrix of Q be
PCM ′

Q.
2: Compute elements of PCM ′

Q. Let the new precedence count matrix be PCM ′′
Q.

3: Finally, we need to compute the minimum number of operations D2 needed
to adjust PCM ′′

Q such that its other non-diagonal elements are the same as
PCMR. This must be done while keeping the diagonal unchanged.

5.2.1 Adjusting Diagonal Elements

In the first step, we compute the minimum number of operations needed to adjust

the diagonal elements of PCMQ to be the same as the corresponding diagonal

elements of PCMR. The reason for doing so can be deduced from the occurrence

count property we discussed earlier.

The diagonal elements directly correspond to the number of occurrences of each

character in the sequence and to convert Q into R, we must make sure the frequency

138

A C G T
A 21 25 15 17
C 3 10 15 8
G 1 13 3 4
T 3 27 16 10

(a) PCM ′
Q

A C G T
A 21 25 11 17
C 10 10 3 6
G 10 12 3 4
T 18 19 11 10

(b) PCM ′′
Q

Figure 5.2: Intermediate PCMs for Step 1 and 2.

of each character in Q and R is the same. We can just adopt an algorithm from

[61]. Denote vector V as V [a] = f ′(PCMR[a, a]) − f ′(PCMQ[a, a]), a ∈ Σ. Then

it is not difficult to deduce the following Lemma from the algorithm in [61].

Lemma 5.2.1 D1 = (
∑

a∈Σ |V [a]|+ ||R| − |Q||)/2. 2

Intuitively, to transform R into S, we need to delete or insert at least ||R|− |Q||
characters, and then perform at least (

∑
a∈Σ |V [a]| − ||R| − |Q||)/2 replacement

operations.

Example 5.2.2 Consider the two sequences in Figure 5.1. Since sequence Q has

only 4 occurrences of ‘A’ while sequence R has 7 occurrences of ‘A’, 3 ‘A’ are

necessary to be inserted. On the other hand, we need to delete 2 ‘C’ and 1 ‘G’

from Q so that the transformed PCM will have the same diagonal values as R. D1

has a value of 3 and V [A,C,G,T]={3,-2,-1,0}. The resultant PCM ′
Q is shown in

Figure 5.2(a). 2

5.2.2 Computing Maximum Impact

In this phase, our aim is to assess how the various edit operations we compute

in the earlier stage will impact the non-diagonal values of PCM ′
Q. By adjusting

PCM ′
Q according to the maximum impact, we will derive PCM ′′

Q.

139

V [a] > 0 V [a] < 0 V [b] > 0 V [b] < 0
Insert a Delete a Insert b Delete b

Case (I) + 0 + 0
PCMR[a, b] ≥ PCM ′

Q[a, b]

Case (II) 0 - 0 -
PCMR[a, b] ≤ PCM ′

Q[a, b]

Figure 5.3: Assessing Impact of Edit Operations on Non-Diagonal Element
PCM ′

Q[a, b]

SubCases Conditions Computing PCM ′′
Q

(1) V [a] > 0 PCM ′′
Q[a, b] = min{PCMR[a, b], PCM ′

Q[a, b] + NR[a]NR[b]−NQ[a]NQ[b]}
V [b] > 0

(2) V [a] ≤ 0 PCM ′′
Q[a, b] = min{PCMR[a, b], PCM ′

Q[a, b] + V [b]N ′
Q[a]}

V [b] > 0
(3) V [a] > 0 PCM ′′

Q[a, b] = min{PCMR[a, b], PCM ′
Q[a, b] + V [a]N ′

Q[b]}
V [b] ≤ 0

(4) V [a] ≤ 0 PCM ′′
Q[a, b] = PCM ′

Q[a, b]
V [b] ≤ 0

Figure 5.4: Subcases for Case (I)

Note that an operation has an impact only if it brings the non-diagonal values

of PCM ′
Q closer to the non-diagonal values of PCMR. We assess this impact

individually for each non-diagonal value PCM ′
Q[a, b] where a 6= b. We show the

two cases we have to handle in Figure 5.3 together with the edit operations involved

and their potential impact. In Figure 5.3, ‘+’ means that inserting a or b can affect

Case (I), ‘−’ means that deleting a or b can affect Case (II), and ‘0’ means that

there is no influence on both Case (I) and Case (II).

Note that V [a] > 0 corresponds to an insertion of at least one character a in

sequence Q and V [a] < 0 corresponds to a deletion of at least one character a in

Q.

Referring again to the table in Figure 5.3, we can see that only two types of

operations will affect PCM ′
Q[a, b] in each case.

Give any one of the two cases, there are four additional subcases to be considered

140

when computing the maximum impact. We will illustrate this for case (I) here and

leave out case (II) which is a “mirror” image of case (I). Figure 5.4 shows the four

subcases and how PCM ′′
Q is to be computed for each of them. Our explanation for

each of the four subcases is as follow:

• Case (I) 1: We have insertions for both characters a and b. Since PCM ′
Q[a, b] ≤

PCMR[a, b], these insertions will have an impact on PCM ′
Q[a, b]. Assuming

that all inserted a precede all b and all inserted b follow all a, the maximum

increase in PCM ′
Q[a, b] can be computed as NR[a] ∗ NR[b] − NQ[a] ∗ NQ[b].

Since our aim is to bring PCM ′
Q[a, b] to be as close to PCMR[a, b] as possible,

we compute PCM ′′
Q[a, b] to be the minimum of PCMR[a, b] and PCMQ[a, b]+

NR[a] ∗NR[b]−NQ[a] ∗NQ[b].

• Case (I) 2: For this case, there are only insertions of b. Inserting b will have

an impact on PCM ′
Q[a, b] since it is smaller than PCMR[a, b]. The maximum

impact is achieved by assuming that all inserted b are behind all character

a. This gives a maximum increase of V [b] ∗ N ′
Q[a] to PCM ′

Q[a, b]. Again,

since we want to bring PCM ′
Q[a, b] closer to PCMR[a, b], we will take the

minimum of the two values.

• Case (I) 3: There are only insertions of a in this subcase. The insertion of a

will impact PCM ′
Q[a, b]. The derivation of the formula is similar to Case (I)b

and we leave out the explanation for brevity.

• Case (I) 4: In this case, there are no insertion of any characters of a and

b. Thus, there is no impact on PCM ′
Q[a, b] for Case (I), and we will have

PCM ′′
Q[a, b] = PCM ′

Q[a, b].

Example 5.2.3 To illustrate how maximum impact is computed, let us consider

the non-diagonal element, PCM ′
Q[G,A] = 1 (highlighted in bold) in Figure 5.2(a)

141

which is smaller than PCMR[G,A] = 15 in our running example. Since there are

1 deletion of ‘G’ and 3 insertions of ‘A’, this example falls into subcase (I)2. We

thus assume that the 3 additional ‘A’ are inserted at the end of all ‘G’. Since there

are 3 ‘G’ in sequence Q′ (i.e. N ′
Q(G) = 3), the 3 inserted ‘A’ will at most increase

PCM ′
Q[G,A] by V [A] × N ′

Q[G] = 3 × 3 = 9. This means that PCM ′′
Q[G,A] =

min(PCMR[G,A], PCM ′
Q[G,A] + 9) = 10. We compute the other elements of

PCM ′′
Q based on the cases we described above and the resultant PCM ′′

Q is shown in

Figure 5.2(b).

5.2.3 Adjusting Non-Diagonal Elements

Having computed PCM ′′
Q, this phase will proceed to calculate the minimum number

of edit operations that are needed to transform PCM ′′
Q into PCMR. We note that

since Diag(PCM ′′
Q) = Diag(PCMR), we only need to adjust the non-diagonal

values of PCM ′′
Q to be the same as those of PCMR in the minimum number of

operations. This must also be done while ensuring that the diagonal values

of PCM ′′
Q remain the same, failing which we undo the effect from earlier edit

operations. To do so, operations must be done in pairs and according to the

following two cases:

• Case 1: PCM ′′
Q[a, b] ≥ PCMR[a, b] & PCM ′′

Q[b, a] ≤ PCMR[b, a]. The fol-

lowing three pairs of operations will reduce the difference:

– delete an a that precedes all b and insert an a after all b

– delete a b behind all a and insert a b in front of all a

– replace an a which is in front of all b with a b and replace a b which is

behind all a with a

• Case 2: PCM ′′
Q[a, b] ≤ PCMR[a, b] & PCM ′′

Q[b, a] ≥ PCMR[b, a].

142

– delete an a behind all b and insert an a in front of all b

– delete an b in front of all a and insert a b behind all a

– replace an a which is behind all b with b and replace b which is in front

of all a with a

Note that the third pair of operations in both cases are a combination of the

first two pairs of operations using the edit operation replace. Since they perform

more swapping at one go, they can reduce the difference between PCM ′′
Q and

PCMR with fewer edit operations. Thus, we will always perform the third pair of

operations to reduce the difference between the two PCMs.

Theorem 5.2.1 Let Q and R be two sequences. If Diag(PCMQ) = Diag(PCMR),

then no other cases can be true except the following:

1. PCMR[a, b] ≥ PCMQ[a, b] &

PCMR[b, a] ≤ PCMQ[b, a]

2. PCMR[a, b] ≤ PCMQ[a, b] &

PCMR[b, a] ≥ PCMQ[b, a]

Proof: Since the diagonal values for the two PCMs are equal, we can deduce from

the reverse sum property shown in Property 5.2.2 that

PCMQ[a, b] + PCMQ[b, a]

= NQ(a)×NQ(b)

= NR(a)×NR(b)

= PCMR[a, b] + PCMR[b, a]

Thus the theorem holds. 2

143

Theorem 5.2.1 simplifies the cases and assumptions we have to consider. Next,

we will establish the formula to compute the maximum increase or decrease in

PCM ′′
Q[a, b] when swapping the characters ‘a’ and ‘b’ by the pair of replace opera-

tions.

Theorem 5.2.2 Given that p pairs of replace operations are performed to reduce

the difference between PCM ′′
R[a, b] and PCMR[a, b], then the maximum reduction

in the difference is p ∗ (NR(a) + NR(b)− p).

Proof: We assume that all a are before all b in Q′′. In this case, every pair of

replace operations will give maximum reduction in the difference if the first a is

replaced by b and the last b is replaced by a. With i pairs of replace operations,

there will be (NR(a) − p) a’s in front of (NR(b) − p) b’s. Thus, the maximum

reduction in difference will be NR(a)∗NR(b)− (NR(a)−p)∗ (NR(b)−p) which gives

the above formula. 2

With Theorem 5.2.2, we can now describe our algorithm for the last phase

which is shown in Figure 9. In Step 1 of the algorithm, we invoke Theorem 5.2.2 to

compute the minimum number of operations MinOpr that are needed to remove the

difference between all corresponding pairs of non-diagonal elements for PCM ′′
Q and

PCMR. In Step 2, the non-diagonal element with the highest MinOpr is chosen

and MinOpr is added to D2 since we need at least this number of operations to

transform PCM ′′
Q to PCMR. Although only the cell PCM ′′

Q[a, b] considered to be

swapped in Step 2, there could be other cells that are in between them and Step

3 caters to this possibility. For any other letter x, these are the cases in which a

non-diagonal elements involving x will be affected.

• Case 1: PCM ′′
Q[a, b] < PCMR[a, b];

144

– PCM ′′
Q[a, x] affected

if PCM ′′
Q[a, x] < PCMR[a, x];

– PCM ′′
Q[x, b] affected

if PCM ′′
Q[x, b] < PCMR[x, b];

– PCM ′′
Q[x, a] affected

if PCM ′′
Q[x, a] > PCMR[x, a];

– PCM ′′
Q[b, x] affected

if PCM ′′
Q[b, x] > PCMR[b, x];

Case 2: PCM ′′
Q[a, b] > PCMR[a, b];

– PCM ′′
Q[a, x] affected

if PCM ′′
Q[a, x] > PCMR[a, x];

– PCM ′′
Q[x, b] affected

if PCM ′′
Q[x, b] > PCMR[x, b];

– PCM ′′
Q[x, a] affected

if PCM ′′
Q[x, a] < PCMR[x, a];

– PCM ′′
Q[b, x] affected

if PCM ′′
Q[b, x] < PCMR[b, x];

To ensure the correctness of our algorithm in computing the lower bound, these

affected non-diagonal elements are removed from future consideration in Step 32.

This process is repeated until PCM ′′
Q is transformed to PCMR. The output of

Algorithm 9, D2 is the minimum number of edit operations that are needed to

transform PCM ′′
Q into PCMR. By summing up D1 (computed by Lemma 5.2.1)

and D2, we obtain a lower bound on the edit distance of Q and R.

2Otherwise, the process of selecting the non-diagonal elements in Step 2 will be more compli-
cated since we need to analyze how these non-diagonal elements affect each other.

145

Algorithm 9 Phase 3: Adjust Non-diagonal Elements
Input: PCM ′′

Q, PCMR.
Output: D2.
Method:
1: Find all different non-diagonal elements between PCM ′′

Q and PCMR, and com-
pute the minimum number of operations MinOpr for each pair according to
Theorem 5.2.2.

2: Find the non-diagonal element [a, b] with maximum MinOpr; D2 = D2 +
MinOpr.

3: Set PCM ′′
Q[a, b] and other affected non-diagonal elements to be the same as the

ones in PCMR.
3: Go to 2 until all the non-diagonal elements in PCM ′′

Q are adjusted to the same
as PCMR.

We now illustrate this final phase with our running example.

Example 5.2.4 For all the different non-diagonal elements between PCM ′′
Q and

PCMR in our example which are [A,G], [A, T], [G,A], [G, T], [T, A], [T, G], the

corresponding MinOpr are 2, 2, 2, 4, 2 and 4 according to Theorem 5.2.2. Here,

[G, T] and [T, G] are the elements with the maximum MinOpr = 4 and the re-

lated elements {[G,A], [A,G], [G, T], [T,G]} since swapping of ‘G’ and ‘T ’ will af-

fect these elements. Following Step 3 of the algorithm, we have D2 = 4 after the

first loop. In the next loop, only [A, T] and [T, A] with maximum MinOpr = 2 is

left for further processing. Using the same principle, we obtain D2=6. 2

Theorem 5.2.3 The lower bound of edit distance between two DNA sequences Q

and R based on PCM is D1 + D2. D1 + D2 can be computed in time complexity

O(|Σ|2log|Σ|).

Proof: D1 +D2 is computed by following 3 steps described in Algorithm 8. In Step

1, the minimum number of operations is obtained in O(|Σ|) time. In Step 2, since

the maximum impact is computed only once for each element based on V , PCM ′′
Q

can be generated in O(|Σ|2) time. In Step 3, the elements must be sorted according

146

to MinOpr which takes O(|Σ|2log|Σ|). An efficient implementation will take only

one scan through the sorted elements to compute D2. Summing up the three steps,

we will see that the complexity of Algorithm 8 is O(|Σ|2log|Σ|).
It is proven in [61] that D1 is the lower bound of the edit distance between two

sequences. For the second and third steps of Algorithm 9, it can be observed that

we always overestimate the impact to reduce the differences of the two PCMs while

underestimating the edit operations that are needed to do so. As such, D1 +D2 will

be a lower bound of the edit distance between Q and R. 2

5.3 Approximate DNA Sequence Join

In this section, we will describe how the PCM is useful in DNA sequence join. We

assume there are two sets of sequences PSet and SSet. We call them prefix and

suffix DNA sequence sets respectively.

Given two sequences Si and Sj, sequence approximate join is to find the longest

suffix-prefix approximate match of Si and Sj.

For any general sequence Q, we will use Q[i : j] to denote the subsequence of

Q that includes entry in position i through j. The ith suffix of a sequence Q (i.e.

Q[i, |Q|−1]) will be denoted as suf(Q, i). Similarly, we will use pre(Q, j) to denote

the jth prefix of the sequence Q(i.e. Q[0, j]).

Let P be a sequence in PSet and S be a sequence in SSet. Our objective here is

to find all pairs of P and S in which there exists i, j, min((|S|−i), (j+1)) ≥ Minlen

such that edit(suf(S, i), pre(P, j)) ≤ e. Here, Minlen and e are user specified

threshold and edit(S, P) denotes the edit distance of the two sequences S and P .

In order to do so efficiently, the new concept of PCM will be adopted as a fast

filter. We will use PCMEdit(S, P) to denote the estimated edit distance of S and

147

P that is computed based on PCMS and PCMP . The method can be described

as follows:

1. Transformation

In this step, for each DNA sequence, we generate two sets of PCMs. For

each S in SSet, the first set of PCMs corresponds to the suffixes of S, i.e.,

each suffix of S results in a PCM. For each P in PSet, the first set of PCMs

corresponds to the prefixes of P . For each sequence (either from SSet or

PSet), the second set of PCMs is generated in the same manner as follows.

A set of w-tuples is obtained from a sequence by placing a sliding window of

size w over the sequence. Each such w-tuple is transformed into a PCM.

2. Filtering

Potential candidates of DNA sequence join are formed by using PCM as part

of the filter. We will discuss the filtering mechanisms shortly. Candidate

pairs for sequence join are of the form 〈suf(S, i), pre(P, j)〉;

3. Verification

For two DNA sequences of length m and n, the edit distance computed by dy-

namic programming with time complexity O(mn) can be used to process the

candidates pairs generated to obtain the final results pairs of DNA sequence

join.

Among the three, the transformation and verification steps can be easily un-

derstood. We will give details on the filtering step.

5.3.1 PCM-based Filtering of DNA Sequence Join

In this section, we present basic techniques for filtering approximate DNA sequence

join based on PCM. The aim is to efficiently identify the candidate answers to our

148

problems by using the information in the PCMs. As DNA sequence join needs to

be done efficiently without false dismissal, we propose the following three filtering

techniques.

1. Distance Filtering

In the Distance Filtering scheme, the candidates of sequence join are obtained

by using the distance function based on the PCMs, which is the lower bound

of edit distance. Algorithm 10 gives the algorithmic description to do so.

Algorithm 10 Distance Filtering Function
Input: suf(S, i), pre(P, j), w, e.
Output: IsCandidate.
Method:
1: IsCandidate ← true;
2: l ← ||suf(S, i)| − |pre(P, j)||;
3: if PCMEdit(suf(S, i), pre(P, j)) ≤ e then
4: for each pair PCMs S∗ and P ∗ of the corresponding disjoint w-tuples of

suf(S, i) and pre(P, j), respectively do
5: if (PCMEdit(S∗, P ∗) > (e + l)) then
6: IsCandidate ←false;
7: break;
8: end if
9: end for

10: else
11: IsCandidate ←false;
12: end if
13: return IsCandidate;

Firstly, for each prefix pre(P, j) and suffix suf(S, i) with length not shorter

than Minlen, we compute the distance between the corresponding PCMs

of the prefix and suffix. If the distance is greater than a given threshold e,

this pair of prefix and suffix is not candidate. Otherwise, the PCMs of the

disjoint sub-windows of the prefix and the suffix will be used as another layer

of filtering. If all the distances between all the corresponding PCMs of the

sub-windows are not greater than e + ||pre(P, j)| − |suf(S, i)||, pre(P, j) and

149

suf(S, i) will be accepted as a candidate, or else this pair will be filtered out.

2. Length Filtering

The sequence length can be used as a filter for sequence join. If ||S|−|P || > e

then edit(S, P) > e.

The function LenFilter(S, e, P) returns the set of the prefixes of sequence P ,

pre(P, j), which meets the ||S| − |pre(P, j)|| ≤ e.

3. Heuristic Filtering

Assume edit(suf(S, i), pre(P, j)) = k > e and |suf(S, i)| = |pre(P, j)|,
for suf(S, xi) and pre(P, yj), where i ≤ xi ≤ n, 0 ≤ yj ≤ j, we have

edit(suf(S, xi), pre(P, yj))+ (xi− i)+ (j− yj) ≥ k since k is edit distance for

the best alignment of suf(S, i) and pre(P, j). Furthermore, according to the

Length Filtering technique, the possible candidate pair suf(S, xi), pre(P, yj)

should satisfy xi ≥ i + k/2 − e. Thus, if xi < i + k/2 − e, we can eliminate

the pair 〈suf(S, xi), pre(P, yj)〉 quickly.

We used a nested-loop approach to join two DNA sequence sets. Given e and

Minlen, Algorithm 11 described can be used to generate the candidates of DNA

sequence join for each sequence S in suffix set and each sequence P in prefix set.

5.4 Experimental Results

We implemented and evaluated the proposed PCM method with the three filtering

schemes. As references, we also compared our scheme against the q-grams method

(denoted qgram) and frequency vector (denoted FV) method.

Under qgram, an auxiliary file that stores the q-grams information will be cre-

ated beforehand. We also used the Length Filtering and Heuristic Filtering, as well

150

Algorithm 11 Generate Candidates for DNA Sequence Join
Input: S, P , e, Minlen.
Output: 〈suf(S, i), pre(P, j)〉.
Method:
1: i ←0;
2: for suf(S, i) of sequence S do
3: for each pre(P, j)∈LenFilter(suf(S, i), e, P) do
4: if suf(S, i), pre(P, j) is regarded as candidate pair by following Algo-

rithm 10 then
5: Return 〈suf(S, i), pre(P, j)〉;
6: else
7: k ← PCMEdit(suf(S, i), pre(P, j));
8: end if
9: end for

10: Use heuristic filtering to decide next suf(S, i);
11: i ← i + max(k/2− e, 1);
12: if |suf(S, i)| < MinLen then
13: break;
14: end if
15: end for

as the count filtering technique proposed in [48].

For the frequency vector (FV) method, we used the Frequency distance proposed

in [61] as the distance filtering in our implementation. In addition, the Length

Filtering and Heuristic Filtering are also deployed.

We also looked at two integrated strategies: PCM+qgram method and FV+qgram

method. Both methods extend their base method (i.e., PCM and FV respectively)

by using qgram method as a further filter for the candidates pairs generated by the

respective base methods.

We randomly generated two datasets, prefix dataset and suffix dataset, from a

complete sequence in Ecoli sequence database. Each sequence dataset consists of

1000 DNA sequences with the length varying between 200 and 300.

151

e PCM PCM+qgram FV FV+qgram qgram
1 99.9985% 100% 99.81% 100% 100%
2 99.42% 99.998% 96.66% 99.998% 99.997%
3 92.47% 99.986% 84.98% 99.98% 99.98%
4 75.17% 99.918% 66.39% 99.91% 99.90%
5 54.42% 99.387% 47.25% 99.36% 99.28%

Figure 5.5: Filtering Rate for Minlen=40

Minlen PCM PCM+qgram FV FV+qgram qgram
20 20.50% 32.09% 14.99% 27.91% 80.97%
30 39.17% 92.17% 32.27% 91.69% 90.73%
40 54.42% 99.39% 47.25% 99.36% 99.28%
50 64.74% 99.88% 58.36% 99.87% 99.87%
60 71.92% 99.96% 66.46% 99.96% 99.96%

Figure 5.6: Filtering Rate for e=5

5.4.1 Effect of Edit Distance e

In the experiment, we study the effect of e on the five join algorithms. We vary e

from 1 to 5 for Minlen = 40 and q = 3. The size of q was set 3 for q-grams method

since it always gives the best performance for our algorithm. We note that this is

consistent with the observation given in [48]. The sliding window size w for PCM

and FV is set as 40 in this experiment.

The filtering rate of the schemes is shown in Figure 5.5. The efficiency of the

schemes is shown in Figure 5.7, Figure 5.8 and Figure 5.9 for the filtering, verifying

and total processing of the sequence approximate join, respectively. The results

show that qgram is very effective but least efficient. We also observe that PCM

method is generally superior over FV method. However, though they provide fast

filtering, the inability to prune away dissimilar sequences results in high refinement

computation overhead. On the whole, they still outperform qgram. This is because

the distance function based on PCM can cause better effect of filtering with low

152

0

4000

8000

12000

16000

20000

24000

28000

1 2 3 4 5

tim
e(

se
cs

)

Edit Distance

Filter Time

PCM
FV

qgram
PCM+qgram

FV+qgram

Figure 5.7: Filter Time vs Edit Distance (Dataset Size:1000, Minlen=40)

cost of computation. Finally, we note that the integrated methods, PCM+qgram

and FV+qgram outperform qgram in terms of both effectiveness and efficiency,

with PCM+qgram being slightly more superior.

Figure 5.9 plots the total time including filtering time and verifying time of

DNA sequence join for all the five methods. With e increasing, the performance of

PCM and FV deteriorates since the verifying time (shown in Figure 5.8) increases

fast due to the bad filtering rate. Figure 5.9 shows the performance of both PCM

and FV improves a lot with e increasing when combined with q-grams method.

Furthermore, PCM+qgram method can outperform all the other methods as the

edit distance e increases.

We also note that with increasing e values, the performance of all schemes

degenerates. This is expected since more false positives are being retained in the

filtering step.

153

 0

 4000

 8000

 12000

 16000

 20000

 24000

 1 2 3 4 5

tim
e(

se
cs

)

Edit Distance

Verify Time

PCM
FV

q-gram
PCM+q-gram

FV+q-gram

Figure 5.8: Verify Time vs Edit Distance (Dataset Size:1000, Minlen=40)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5

tim
e(

se
cs

)

Edit Distance

Total Time

PCM
FV

qgram
PCM+qgram

FV+qgram

Figure 5.9: Total Time vs Edit Distance (Dataset Size:1000, Minlen=40)

154

5.4.2 Effect of Minlen

We also study the effects of Minlen, on the schemes on the same dataset. This

experiment varies Minlen from 20 to 60 for e = 5. Figure 5.6 shows the filtering

rate. Figure 5.10, Figure 5.11 and Figure 5.12 plot the filtering time, verifying

time and the total time of the five methods for the DNA sequence approximate

join processing.

As expected, the results show that all the schemes are less effective for small

Minlen as the number of false candidates increases with smaller Minlen. The rel-

ative performance of the five methods is consistent with the results of the earlier

experiments: PCM+qgram is the best in terms of both filtering rate and total

running time, followed by FV+qgram, PCM, and qgram is superior over FV when

Minlen decreases.

5.5 Summary

In this chapter, we have proposed a filter-and-refine sequence join algorithm for

genomic applications. In the filtering phase, sequences that are not joinable are

pruned away rapidly. The refinement phase employs an efficient algorithm to re-

move the remaining false alarms. The proposed scheme employs the precedence

count matrix (PCM) to compute the edit distance between two DNA sequences

efficiently. We have evaluated the proposed sequence join algorithm, and our ex-

perimental study shows that it outperforms known techniques.

155

0

5000

10000

15000

20000

25000

30000

20 30 40 50 60

tim
e(

se
cs

)

Minlen

Filter Time

PCM
FV

qgram
PCM+qgram

FV+qgram

Figure 5.10: Filter Time vs Minlen (Dataset Size:1000, e=5)

0

10000

20000

30000

40000

50000

20 30 40 50 60

tim
e(

se
cs

)

Minlen

Verify Time

PCM
FV

q-gram
PCM+q-gram

FV+q-gram

Figure 5.11: Verify Time vs Minlen (Dataset Size:1000, e=5)

156

0

10000

20000

30000

40000

50000

60000

20 30 40 50 60

tim
e(

se
cs

)

Minlen

Total Time

PCM
FV

qgram
PCM+qgram

FV+qgram

Figure 5.12: Total Time vs Minlen (Dataset Size:1000, e=5)

157

CHAPTER 6

The q-gram Based Protein Subcellular

Localization Prediction

6.1 Introduction

With advancements in large-scale genome sequencing, biologists have produced

a huge amount of nucleic acid sequences and amino acid sequences, which are

available in public databases. There are more than 1,200 genome sequences stored

in public databases. Since a protein’s subcellular localization is closely related to

biological functions and it is one of the key features of a protein, it is therefore

very important to use automated annotation systems to identify or predict the

subcellular localization of proteins.

Some efforts have been made in the prediction of protein subcellular localiza-

tions. Since 1991, a number of systems have been developed to support automated

prediction of protein subcellular localization using different approaches. In these

158

systems, machine learning methods such as Artificial Neural Networks (ANN), the

k-nearest neighbors method, and the Support Vector Machine (SVM) have been

applied on different feature extraction from protein sequences.

For example, there are some programs, such as PSORT(PSORTI) for prokary-

otic organisms [81], PSORTII [80], iPSORT [11] and TargetP [40] for eukaryotic

organisms, and NNPSL [100] for both organism classes. The existing methods may

be grouped into three categories. The first category of methods use the similar-

ity search to assign functions including the subcellular localization of a protein.

Subcellular localizations tend to be evolutionarily conserved; thus, homology to a

protein of known localization can be a good indicator of a protein’s actual localiza-

tion site [79]. However, this method fails when the query sequence and the target

protein sequence are not significantly similar. The second category of methods use

the sequence motifs such as peptide signals, or nuclear localization signals, which

are short subsequences with a length of 3-70 amino acids [40]. The problem with

these methods is that sometimes it is very difficult to find universal motifs for a

group of protein sequences. The third category of methods is based on amino acid

composition, using some machine learning classifiers to implement the prediction.

Biological experiments show that information needed to direct a protein to any lo-

calization site is mainly encoded in its amino acid sequence. For example, NNPSL

[100] uses ANN, and SubLoc [55] uses SVM as the classifier based on amino acid

composition. However, this method may not capture information on sequence order

and inter-relationships between amino acids.

There is no single method of prediction which can achieve high prediction ac-

curacy, precision or recall for all protein subcellular localizations. We proposed

a new method based on the observation that two sequences may share a certain

number of q-grams if the two protein sequences are in the same subcellular location.

159

Moreover, since there are 20 amino acids in the protein alphabet, we know that the

number of all combinations of q-grams in a protein sequence is 20q.

Our proposed method uses the q-grams of protein sequences to predict the

subcellular localizations of these proteins. We proposed using the q-gram frequency

vectors, q-gram wavelet vectors, q-gram similarity vectors, and q-gram TF.IDF

vectors based on the q-grams of the protein sequence to capture information in

protein sequences. These proposed q-grams based transformed vectors are then

used as features for an SVM [20, 114] that searches for the hyperplane to separate

the two classes of data. An SVM is a kernel learning algorithm, in which all the

data are mapped into vectors in a k-dimensional feature space. In the proposed

method, the k-dimensional feature space can be one of the four vector spaces: q-

gram frequency vector space, q-gram wavelet vector space, q-gram similarity vector

space, and q-gram TF.IDF vector space. Furthermore, the feature space can also

be any combination of the above four proposed vector spaces.

The remaining of this chapter is organized as follows. In Section 2 we briefly

review the related work, and describe the problem of protein subcellular localization

prediction. In Section 3, several q-gram based feature extraction methods are

proposed and our SVM-based method is described. Section 4 introduces the dataset

used in our experiments, as well as the evaluation methods used in our method.

Section 5 discusses the experimental results, and Section 6 concludes the chapter.

6.2 Problem Description

In this section, we formalize the problem of subcellular localization prediction in

protein sequence datsets.

Protein sequences are chains of amino acids and there are 20 different types of

160

amino acids. Each amino acid is represented by an English alphabet letter from

A to Z, excluding the letters B, J , O, U , X and Z. Given an unlabeled protein

sequence S, and a known subcellular localization L, we want to determine whether

or not sequence S locates in localization L. We assume there are two protein

sequence datasets: a positive dataset and a negative dataset. For a localization

L, positive sequences are the protein sequences that locate in localization L, and

negative sequences are the protein sequence that do not locate in localization L.

The problem can be defined formally as follows:

Problem 6.2.1 Given the positive protein sequence dataset Pset = {p0, . . . , pm}
and the negative protein sequence dataset Nset = {n0, . . . , nn}, features in protein

sequences are extracted, and a classifier is developed on these features to distinguish

the sequence pi in Pset from nj in Nset.

The features extracted from protein sequences can be amino acid composi-

tion, overall physico-chemical properties (hydrophobicity, hydrophilicity and polar-

ity), dipeptide composition, fourier analysis tri-peptide frequency, frequent subse-

quences, etc.

6.3 q-gram Based Feature Extraction Method

This section introduces four sequence transformation methods based on q-grams.

The features of proteins sequence can be represented as q-gram frequency vectors,

q-gram wavelet vectors, q-gram similarity vectors, and q-gram TF.IDF vectors,

respectively. A short description of SVM is also presented. We shall first briefly

review the notion of q-grams, which we have already introduced in Chapter 4.

Definition 6.3.1 q-gram of Sequence

Given a sequence S, its q-grams are obtained by sliding a window of length q over the

161

letters of S, more specifically, the set of substrings: {S[i : i+q−1]|0 ≤ i ≤ |S|−q}.
For a sequence S, there are |S| − q + 1 q-grams.

6.3.1 q-gram Based Feature Extraction

In this chapter, q-grams are used to generate the features of protein sequences.

For a protein sequence, there are a total of 8,000(=203) grams when q equals 3.

Here, we present four kinds of feature extraction methods based on the q-grams of

protein sequences.

The alphabet of a protein sequence comprises in all 20 letters:

Σ = {C, S, T, P,A, G, N,D,E,Q, H, R, K, M, I, L, V, F, Y,W}. This means that

there are in total |Σ|q = 20q kinds of q-grams for a protein sequence, and we

may arrange them according to lexicographic order, and use ri to denote the ith

q-gram in this order. The set of all the possible q-grams is denoted as: < =

{r0, r1, . . . , r20q−1}. In the following, we shall present four kinds of transformation

methods for protein sequences based on q-grams. These methods are: feature selec-

tion based on q-gram frequency, feature selection based on q-gram wavelet, feature

selection based on q-gram similarity, and feature selection based on q-gram TF.IDF.

Feature Selection Based on q-gram Frequency

The q-gram frequency based feature selection method is proposed for protein se-

quence by extending the concept of amino acid composition, dipeptide composition,

and tri-peptide frequency encoding. The following definition describes the steps to

transform the original sequence domain to frequency vector domain.

Definition 6.3.2 The q-gram Frequency Vector

Let S={s0, s1, . . . , sn−1} be a protein sequence over the alphabet Σ, and the set of all

possible q-grams be denoted as: < = {r0, r1, . . . , r|Σ|q−1}. Then the q-gram frequency

162

vector of S is defined as FV q(S)=[f0, . . . , f|Σ|q−1], where fi(≥ 0) corresponds to the

occurrence frequency of the q-gram ri in S, and
∑|Σ|q−1

i=0 fi = |S|− q +1 = n− q +1.

Feature Selection Based on q-gram Wavelet

A wavelet based method was proposed in [61] to transform sequences into a high-

dimensional integer space. The number of dimensions is determined by alphabet

size and number of wavelet coefficients. The wavelet transformation in [61] is

based on the frequency of the letter itself. In contrast, wavelet transformation

in our method is based on the frequency of q-grams. The definition of wavelet

transformation based on q-grams is given below:

Definition 6.3.3 The q-gram Wavelet Vector

Let S={s0, s1, . . . , sn−1} be a protein sequence over the alphabet Σ, and the set

of all the possible q-grams be denoted as: < = {r0, r1, . . . , r|Σ|q−1}. Then the k-

level wavelet transformation q-gram wavelet vector of S is defined as W q
k (S) =

[vk,0, . . . , vk, n−q+1

2k −1], where vk,i = [Ak,i, Bk,i] for

Ak,i =





f(si+q−1) k = 0

Ak−1,2i + Ak−1,2i+1 0 < k ≤ log2(n− q + 1)
(6.1)

Bk,i =





0 k = 0

Ak−1,2i − Ak−1,2i+1 0 < k ≤ log2(n− q + 1)
(6.2)

For sequence S, when k = log2(n − q + 1), Ak,0 is the q-gram frequency vector

FV q(S), and Bk,0=FV q(S[0 : dn−q+1
2
e]) − FV q(S[dn−q+1

2
e : n − q + 1]). These

two vectors represent the set of first and second wavelet coefficients. Note that the

q-gram wavelet transformation is exactly the wavelet transformation presented in

[61] when q equals 1.

163

Feature Selection Based on q-gram Similarity

Definition 6.3.4 The q-gram Similarity Vector

Let S={s0, s1, . . . , sn−1} be a protein sequence over the alphabet Σ, and the set of

all the possible q-grams be denoted as: < = {r0, r1, . . . , r|Σ|q−1}. Then the q-gram

similarity vector of S can be denoted as (wS
0 , wS

1 , . . . , wS
|Σ|q−1), where the value wS

i

is calculated as the maximum similarity score between the q-gram ri and the q-gram

occurring in sequence S in terms of BLOSUM 1.

C S T P A G N D E Q H R K M I L V F Y W
C 9 -1 -1 -3 0 -3 -3 -3 -4 -3 -3 -3 -3 -1 -1 -1 -1 -2 -2 -2
S -1 4 1 -1 1 0 1 0 0 0 -1 -1 0 -1 -2 -2 -2 -2 -2 -3
T -1 1 4 1 -1 1 0 1 0 0 0 -1 0 -1 -2 -2 -2 -2 -2 -3
P -3 -1 1 7 -1 -2 -1 -1 -1 -1 -2 -2 -1 -2 -3 -3 -2 -4 -3 -4
A 0 1 -1 -1 4 0 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -2 -3
G -3 0 1 -2 0 6 -2 -1 -2 -2 -2 -2 -2 -3 -4 -4 0 -3 -3 -2
N -3 1 0 -2 -2 0 6 1 0 0 -1 0 0 -2 -3 -3 -3 -3 -2 -4
D -3 0 1 -1 -2 -1 1 6 2 0 -1 -2 -1 -3 -3 -4 -3 -3 -3 -4
E -4 0 0 -1 -1 -2 0 2 5 2 0 0 1 -2 -3 -3 -3 -3 -2 -3
Q -3 0 0 -1 -1 -2 0 0 2 5 0 1 1 0 -3 -2 -2 -3 -1 -2
H -3 -1 0 -2 -2 -2 1 1 0 0 8 0 -1 -2 -3 -3 -2 -1 2 -2
R -3 -1 -1 -2 -1 -2 0 -2 0 1 0 5 2 -1 -3 -2 -3 -3 -2 -3
K -3 0 0 -1 -1 -2 0 -1 1 1 -1 2 5 -1 -3 -2 -3 -3 -2 -3
M -1 -1 -1 -2 -1 -3 -2 -3 -2 0 -2 -1 -1 5 1 2 -2 0 -1 -1
I -1 -2 -2 -3 -1 -4 -3 -3 -3 -3 -3 -3 -3 1 4 2 1 0 -1 -3
L -1 -2 -2 -3 -1 -4 -3 -4 -3 -2 -3 -2 -2 2 2 4 3 0 -1 -2
V -1 -2 -2 -2 0 -3 -3 -3 -2 -2 -3 -3 -2 1 3 1 4 -1 -1 -3
F -2 -2 -2 -4 -2 -3 -3 -3 -3 -3 -1 -3 -3 0 0 0 -1 6 3 1
Y -2 -2 -2 -3 -2 -3 -2 -3 -2 -1 2 -2 -2 -1 -1 -1 -1 3 7 2
W -2 -3 -3 -4 -3 -2 -4 -4 -3 -2 -2 -3 -3 -1 -3 -2 -3 1 2 11

Table 6.1: BLOSUM62 Matrix

The BLOSUM matrix originates from a paper by Henikoff and Henikoff [51].

Different levels of the BLOSUM matrix can be created by differentially weighting

the degree of similarity between sequences. For example, a BLOSUM62 matrix

is calculated from protein blocks such that if two sequences are more than 62%

identical, the contribution of these sequences is weighted to sum to one. In this

way, the contributions of multiple entries of closely related sequences are reduced.

The BLOSUM62 matrix is given in Table 6.1.

1BLOSUM stands for BLOcks SUbstitution Matrix.

164

For a protein sequence, the alphabet size for all the amino acids is 20. Hence,

according to the definition of the q-gram similarity vector, each protein sequence is

transformed into a |Σ|q(= 20q)-dimensional feature vector. The q-gram similarity

vectors of the protein sequences can be obtained by using Algorithm 12.

Algorithm 12 q-gram Similarity Vector Extraction
Input: Protein sequences.
Output: q-gram Similarity Feature Vectors.

1: for each protein sequence S do
2: for i = 0 to |Σ|q − 1 do
3: wS

i ← −1000;
4: end for
5: for each q-gram ri, 0 ≤ i < |Σ|q − 1 do
6: for each q-gram qS

j in protein sequence S do
7: wS

i ← max(wS
i , similarity(qS

j , ri));
8: end for
9: wS

i ← wS
i

similarity(ri,ri)
; //normalize the value wS

i

10: end for
11: end for

For sequences s and t of length m, the similarity function is defined as follows:

similarity(s, t)=
∑m−1

i=0 (blosumMatrix[s[i], t[i]])2. Note that for the mismatch op-

eration, only replacement is considered in the proposed similarity function while

insertion and deletion are disregarded.

Feature Selection Based on q-gram TF.IDF

We use a general text classification method to process a protein sequence for a

feature vector. In text classification, the term frequency / inverse document fre-

quency (TF.IDF) is commonly used to weight each word in the text document.

The TF.IDF approach can capture relevancy among words, text documents and

categories.

2blosumMatrix[a, b] represents the similarity between a letter a and another letter b, which is
shown in Table 6.1.

165

In our method, q-grams in protein sequences correspond to terms or words in

text documents. Document frequency threshold is used to remove some q-grams

that have little influence on the classification work. Finally, the feature values of

the term are the term weights calculated by the simple TF.IDF method. Now we

give the details of our algorithm in Algorithm 13.

Algorithm 13 q-gram TF.IDF Vector Extraction
Input: Protein sequences.
Output: q-gram TF.IDF Feature Vectors.

1: for each protein sequence S do
2: All the q-grams in S are generated;
3: end for
4: A hash-table is built on all the unique q-grams which occur in these protein

sequences to maintain the q-gram inverted index IIndex;
5: Remove q-gram qi from inverted index IIndex if df(qi) < ε;
6: for each protein sequence S do
7: Compute the TF.IDF weight vector of all q-grams in inverted index IIndex

for S;
8: end for

For each protein sequence, its TF.IDF weight vector based on the q-grams

inverted index IIndex is computed by the following method:

tfidfij = tfij × log N
ni

, where

N : Number of protein sequences in the dataset;

ni: Number of protein sequences containing the q-gram qi;

tfij: the term weight of q-gram qi in the protein sequence Sj.

In Algorithm 13, document frequency threshold ε is used to remove some fea-

tures, (i.e., q-grams) that have little influence on the classification work. The

number of documents that contain a certain q-gram qi is denoted as df(Ti), and

the q-gram qi is removed if df(Ti) < ε. The threshold can be adjusted to meet the

requirement of the features for the classifier.

166

6.3.2 Support Vector Machine

The SVM algorithm [20, 114] is a classification algorithm that gives better perfor-

mance in a very large number of application domains including text classification,

face detection, object recognition, speaker identification and handwriting recogni-

tion [89]. In recent years, the SVM learning algorithm has been extensively applied

in the field of bioinformatics. Due to their ability to handle noise, high-dimensional

data, and a large dataset [123], SVMs have become a new generation of machine

learning algorithms that are popular in the analysis of biological problems such as

gene and tissue classifications from microarray expression data, protein fold recog-

nition, protein interaction prediction, protein secondary structure prediction, and

protein localization prediction.

The key idea of SVM is that a classifier must not only work well on training

samples, but also equally well on testing unknown samples. SVM is a learning

algorithm [37] which learns a classifier from a set of positively and negatively labeled

training dataset. The learned classifier can be used to classify new unlabeled test

samples.

SVMs assume that all data are represented as feature vectors in feature space.

Given a set of training data labeled with two classes, SVMs operate by finding a

hyperplane in the space of the training dataset. This hyperplane separates positive

samples from negative samples. The separation is done so that the distance from

the hyperplane to the nearest of the positive and negative samples is the largest.

Intuitively, this makes the classification correct for testing data that is near but

not identical to the training data. In all, the goal of SVM is to find the optimal

hyperplane with the maximum margin of separation. Figure 6.1 shows a very simple

example of the SVM classifier.

We start with the simplest case: linear machines trained on separable data

167

R

Support Vectors

Optimal

Hyperplane

Figure 6.1: An Example of SVM Classifier

(as we shall see, the analysis for the general case – nonlinear machines trained

on non-separable data – results in a very similar quadratic programming prob-

lem). Suppose we have a labeled training set, {Xi, yi}, i = 1, . . . , N , yi ∈ {−1, 1},
Xi ∈ Rk. For each training sample Xi, we assign a target value or class label yi with

the value of -1 or 1. For the linearly separable case, the support vector algorithm

simply looks for the separating hyperplane with the largest margin. This can be

formulated as follows:

Xi · w + b ≥ +1 for yi = +1 (6.3)

Xi · w + b ≤ −1 for yi = −1 (6.4)

or

yi ∗ (Xi · w + b)− 1 ≥ 0, for i = 1, . . . , N (6.5)

In Equations (3),(4) and (5), w is the weight vector and b is the bias. The

following formula is to find the optimal hyperplane in terms of w and b, where the

168

parameter C is the constant which controls the trade-off between maximizing the

margin and minimizing error.

min (1/2wT · w + C
∑N

i=1 αi)

s.t. yi ∗ (Xi · w + b)− 1 + αi ≥ 0

αi ≥ 0, for i = 1, . . . , N

(6.6)

In our study, we use SVMlight to predict the subcellular localization of proteins

based on the proposed feature selection method. This software can be freely down-

loaded for academic use from http://www.cs.cornell.edu/People/tj/svm light/. SVM-

light is an implementation of Vapnik’s SVM [113] for the problems of pattern recog-

nition, regression, and learning a ranking function.

For a given dataset, SVMs are trained in the transformed feature space with

different kernel functions and different values of parameter C. SVMs can handle

very high-dimensional feature spaces efficiently and can effectively avoid overfitting

by controlling the margin, and can automatically identify a small subset of support

vectors.

6.4 Classifier Evaluation Method

The evaluation criteria for protein subcellular localization prediction are described

and defined in this section.

6.4.1 The k-fold Cross Validation Method

Protein subcellular localization prediction is a multi-class classification problem,

which can be handled by a series of binary classifiers. When the sample size is small,

we cannot afford to use an independent test set; instead k-fold cross validation [76]

169

is the usual choice for assessing the performance of the classifier. In k-fold cross-

validation, the data is divided into k subsets of (approximately) equal size. In this

chapter, we use SVM for the prediction of subcellular localizations of Gram-negative

proteins.

For each localization site, protein sequences with the class label are randomly

divided into k groups. The SVMs are trained k times for each localization site, each

time leaving out one of the subsets from training, but using only the omitted subset

to compute whatever error criterion interests us. The basic flow chart of protein

subcellular localization prediction is plotted in Figure 6.2. In the experimental

study of this work, the value of k is set to 5.

Prediction results

Classifier

Classifier
Feature vectorsExtraction

Feature
Protein sequences

Test

Training

Method
LearningFeature vectorsProtein sequences

Extraction
Feature

Figure 6.2: Flow Chart of Protein Subcellular Localization Prediction

6.4.2 Classifier Evaluation Measurement

The performance of a classifier is usually measured by average classification accu-

racy, precision, recall, specificity and Matthew’s correlation coefficient (MCC) [73]

based on the k-fold cross validation method for each localization site. The evalu-

ation of the classifier for the subcellular localization site is based on the following

quantities: number of true positives TP (i), which is the number of correctly pre-

dicted protein sequences of the localization site i; number of true negatives TN(i),

170

which is the number of correctly predicted proteins not of localization site i; num-

ber of false positives FP (i), which is the number of incorrectly predicted proteins

of the localization site i; and number of false negatives FN(i) which is the number

of incorrectly predicted proteins not of the localization site i:

precision(i) = TP (i)
TP (i)+FP (i)

,

recall(i) = TP (i)
TP (i)+FN(i)

,

specificity(i) = TN(i)
TN(i)+FP (i)

,

accuracy(i) = TP (i)+TN(i)
TP (i)+FP (i)+TN(i)+FN(i)

,

MCC(i)

= TP (i)×TN(i)−FP (i)×FN(i)√
(TP (i)+FN(i))(TP (i)+FP (i))(TN(i)+FP (i))(TN(i)+FN(i))

.

Here, N is the total number of protein sequences in all the localization sites, and

m is the number of subcellular localization sites for the proteins in the experiments.

6.5 Dataset

The prediction performance is mainly related to two factors: number of protein se-

quences for training and number of target subcellular localizations covered by the

dataset. While many bacteria have only three primary localization sites, Gram-

negative bacteria have five primary localization sites: cytoplasm, cytoplasmic mem-

brane, periplasm, outer membrane and extracellular space. In this chapter, we only

consider the subcellular localization prediction of Gram-negative bacteria.

The dataset used to evaluate the effectiveness of the proposed prediction method

is PSORTdb Dataset [46], available at http://www.psort.org/dataset/. PSORTdb

is a new database of bacterial protein subcellular localizations that contains both

171

Positive # of sequences Negative #of sequences
outer 391 Non-outer 1052
cyto 278 Non-cyto 1166
cm 309 Non-cm 1134

extra 190 Non-extra 1253
peri 276 Non-peri 1167

Table 6.2: Dataset

information determined through laboratory experimentation (ePSORTdb dataset)

and computational predictions (cPSORTdb dataset). This dataset has been gen-

erated from the SWISS-PROT database with the extraction of all Gram-negative

proteins with annotated subcellular locations. The final dataset used in our exper-

iments consists of 1444 Gram-negative bacterial proteins of experimentally deter-

mined localizations, and all these proteins reside in a single localization site. For

each localization, the relevant dataset consisting of proteins with specific subcellular

localizations is denoted as a positive dataset, and the remaining proteins with other

four subcellular localizations are regarded as the negative dataset. For example,

when the localization site of outer membrane is considered, there are in total 391

proteins labeled with ‘+1’ which reside at the outer membrane, and the remaining

1052 proteins which reside at cytoplasmic, cytoplasmic membrane, periplasmic and

extracellular are labeled with ‘-1’. The datasets used in the experimental study are

shown in Table 6.2.

6.6 Experimental Results and Discussion

We evaluate the proposed prediction methods on the datasets introduced in Section

6.5. SVMs are trained in different transformed feature spaces with different kernels,

different values for the parameter C, and different values of q from 1 to 3 in our

work.

172

In this section, we first transform outer membrane proteins into their corre-

sponding feature vectors by using our proposed feature transformation method.

Then SVMs are trained on the feature vectors of the outer membrane proteins

to investigate how the parameters of the SVMs influence prediction performance.

The five evaluation values: precision, recall, accuracy, specificity and MCC are

computed by the average values over the five-fold cross validation. Note that the

five folds for different proteins are generated only once and are used by all the

proposed methods for the fairness.

According to the prediction results for outer membrane proteins, a group of

parameter settings are selected for different transformation methods. Then we use

these parameter settings on the other proteins with different subcellular locations.

6.6.1 Parameters Selection

In this section, we present a group of experiments on outer membrane proteins

that investigate the impact of the parameter q and SVM parameters on prediction.

The best parameters for various transformed methods are selected according to the

prediction results for proteins in the location of outer membrane. The best results

are selected to maximize the precision of prediction while keeping the corresponding

recall and other evaluation measurements acceptable.

Table 6.3 reports the performance of the SVM classifier for outer membrane

proteins, and the classifiers are built on the q-gram frequency feature space with

different values of q, different kernel functions and the parameter C. When q=1,

it is equal to the amino acid composition method proposed in [55]. When q = 2,

it is equal to the amino acid pairs method in [92]. The results in Table 6.3 shows

that we can achieve better prediction performance by using amino acid composition

instead of amino acid pairs (or dipeptide composition [56]). Moreover, for q=2, the

173

q Kernel C Precision Recall Accuracy Specificity MCC
1 Linear default 76.77% 61.54% 84.51% 93.05% 0.588384
1 Linear 1 75.17% 63.59% 84.44% 92.19% 0.589732
1 Linear 10 74.65% 64.61% 84.44% 91.80% 0.591928
1 Polynomial default 84.6% 72.82% 89.1% 95.14% 0.714005
1 Polynomial 1 79.82% 80.77% 89.24% 92.38% 0.728939
1 Polynomial 10 79.40% 81.03% 89.09% 92.09% 0.727372
1 RBF default 89.64% 76.92% 91.39% 96.76% 0.774896
1 RBF 1 91.2% 79.74% 92.43% 97.14% 0.803515
1 RBF 10 88.22% 84.35% 92.70% 95.80% 0.813284
2 Linear default 93.85% 23.08% 78.75% 99.43% 0.396009
2 Linear 1 75.51% 76.67% 86.94% 90.76% 0.671110
2 Linear 10 73.38% 6.92% 86.18% 89.62% 0.655921
2 Polynomial default 86.78% 58.46% 86.39% 96.76% 0.634292
2 Polynomial 1 78.63% 82.82% 89.24% 91.62% 0.732671
2 Polynomial 10 78.63% 82.82% 89.24% 91.62% 0.732671
2 RBF NaN

Table 6.3: Results Based on q-gram Frequency Transformation for Outer Membrane
Proteins

precision of the prediction nearly approaches zero when the RBF kernel is used,

and we use ‘NaN’ to stand for the failure in this work. We do not further discover

the prediction result for q=3 since the results show that when the dimension of the

feature vector increases, performance will decrease a little. We also observe that

the best results are achieved with RBF kernel, C=1 or 10, and q=1 in the case of

the q-gram based frequency vector.

In Table 6.4, the results of SVM prediction performance based on the q-gram

wavelet feature vector are described for the proteins residing in the outer mem-

brane. We observe that for most of the cases with the same kernel function, the

parameter C and q = 1, the q-gram wavelet feature vector can achieve better pre-

cision, accuracy, specificity and MCC but not recall. It outperforms the method

based on the q-gram frequency feature vector when q=2 for all the evaluation val-

ues. It also cannot work in the case where the kernel function is RBF and q=2. The

best results are achieved with parameter settings similar to those in the method

174

q Kernel C Precision Recall Accuracy Specificity MCC
1 Linear default 75.92% 62.31% 84.44% 92.67% 0.587525
1 Linear 1 76.24% 69.23% 85.76% 91.91% 0.631085
1 Linear 10 76.24% 69.23% 85.76% 91.91% 0.631085
1 Polynomial default 85.72% 72.05% 89.17% 95.52% 0.716071
1 Polynomial 1 85.17% 85.9% 92.15% 94.48% 0.801536
1 Polynomial 10 85.17% 85.9% 92.15% 94.48% 0.801536
1 RBF default 95.92% 65.9% 90% 98.95% 0.739688
1 RBF 1 95.85% 74.36% 92.16% 98.76% 0.797262
1 RBF 10 95.53% 77.44% 92.92% 98.67% 0.816776
2 Linear default 95.89% 26.92% 79.86% 99.52% 0.438448
2 Linear 1 78.26% 80.77% 88.68% 91.62% 0.717044
2 Linear 10 78.26% 80.77% 88.68% 91.62% 0.717044
2 Polynomial default 89.43% 61.8% 87.64% 97.24% 0.671987
2 Polynomial 1 80.65% 83.33% 90.07% 92.57% 0.751473
2 Polynomial 10 80.65% 83.33% 90.07% 92.57% 0.751473
2 RBF NaN

Table 6.4: Results Based on q-gram Wavelet Transformation for Outer Membrane
Proteins

based on q-gram frequency feature vectors, where we use the RBF kernel function,

C=1 or 10, and q=1: the precision is greater than 95%, with an acceptable recall

(greater than 74%).

Table 6.5 shows the effects of the parameter settings on prediction performance

when the q-gram TF.IDF transformation method is applied. The best result can be

achieved when we use linear kernel function, C=1 or 10, and q=3. The experimental

results also imply that the kernel function RBF does not work well in feature space

of higher dimensions.

The prediction results based on q-gram similarity transformation for outer mem-

brane proteins are shown in Table 6.6. Only the results for q=3 are reported since

the q-gram similarity feature vector cannot represent well the information in the

amino acid sequence when q is small (q=1 or 2). In other words, the dimension

of the q-gram similarity vector is 20 and 400 respectively for q=1 and 2, and the

length of protein sequences in the dataset is normally about hundreds of amino

175

q Kernel C Precision Recall Accuracy Specificity MCC
1 Linear default 75.92% 62.31% 84.44% 92.67% 0.587525
1 Linear 1 80.92% 38.97% 81.04% 96.67% 0.469620
1 Linear 10 76.10% 68.97% 85.69% 91.90% 0.628775
1 Polynomial default 85.71% 72.05% 89.17% 95.52% 0.716071
1 Polynomial 1 85.17% 85.90% 92.15% 94.48% 0.801536
1 Polynomial 10 84.25% 54.62% 84.24% 95.24% 0.568523
1 RBF default 87.75% 49.74% 83.96% 96.67% 0.533609
1 RBF 1 84.56% 63.85% 87.01% 95.62% 0.654435
1 RBF 10 86.70% 73.85% 89.93% 95.90% 0.735211
2 Linear default 83.01% 32.82% 80% 97.52% 0.434879
2 Linear 1 77.76% 74.36% 87.36% 92.19% 0.67481
2 Linear 10 77.30% 73.08% 86.94% 92.10% 0.663395
2 Polynomial default 86.68% 61.03% 86.88% 96.48% 0.649998
2 Polynomial 1 83.28% 76.41% 89.51% 94.38% 0.727726
2 Polynomial 10 83.28% 76.41% 89.51% 94.38% 0.727726
2 RBF NaN
3 Linear default 94.06% 67.69% 90.07% 98.38% 0.741100
3 Linear 1 93.47% 75.64% 91.94% 98% 0.791047
3 Linear 10 93.47% 75.64% 91.94% 98.00% 0.791047
3 Polynomial default 87.11% 5.64% 74.10% 99.52% 0.166650
3 Polynomial 1 87.36% 30.00% 79.86% 98.38% 0.432163
3 Polynomial 10 87.36% 30.00% 79.86% 98.38% 0.432163
3 RBF NaN

Table 6.5: Results Based on q-gram TF.IDF Transformation for Outer Membrane
Proteins

acids, so most q-grams would have at least an occurrence in the protein sequence.

According to the definition of q-gram similarity vector, every bit in the vector is

set as 1 with high probability. So most of the protein sequences would be trans-

formed into the same feature vector when q equals 1 or 2. We observe that the best

result with high precision and recall based on q-gram similarity transformation is

obtained when we use a polynomial kernel function, q=3, and C=1.

176

q Kernel C Precision Recall Accuracy Specificity MCC
3 Linear default NaN
3 Linear 1 90.05% 81.28% 92.5% 96.67% 0.805989
3 Polynomial default 89.57% 52.05% 85.28% 97.62% 0.604546
3 Polynomial 1 91.37% 81.80% 92.99% 97.14% 0.818453

Table 6.6: Results Based on q-gram Similarity Transformation for Outer Membrane
Proteins

6.6.2 Prediction Results for All Protein Subcellular Local-

izations

After the parameter settings are selected for different q-gram based transformation

methods to achieve the best prediction performance according to the outer mem-

brane proteins, we conduct the experimental study on all the proteins subcellular

locations. The results depicted in Table 6.7 show that the prediction methods

based on q-gram wavelet transformation, q-gram similarity transformation, and q-

gram TF.IDF transformation all can achieve a precision higher than the prediction

method based on q-gram frequency transformation for all the five datasets used

in our experiments. However, the method based on q-gram frequency transforma-

tion can achieve higher recall. Therefore, we conduct the experiments to combine

the feature vectors of different transformations to see if we can achieve both high

prediction precision and recall.

6.6.3 Classification on Combined Feature Vectors

In Table 6.7, we observe that the method based on q-gram frequency transforma-

tion can achieve higher recall, while the methods based on the other three trans-

formation methods achieve higher precision. Therefore in this section, we shall

combine the features of q-gram frequency transformation with the features based

on other transformation methods to see if we can achieve both higher precision and

177

localization method q precision recall accuracy specificity MCC
outer Frequency 1 88.22% 84.36% 92.71% 95.81% 0.813284
outer DWT 1 95.53% 77.44% 92.92% 98.67% 0.816776
outer Similarity 3 91.37% 81.79% 92.99% 97.14% 0.818453
outer TF.IDF 3 93.47% 75.64% 91.95% 98% 0.791047
cyto Frequency 1 81.10% 65.82% 90.50% 96.39% 0.675487
cyto DWT 1 89.03% 56.36% 90.28% 98.28% 0.657381
cyto Similarity 3 81.83% 74.91% 92.01% 96.05% 0.734141
cyto TF.IDF 3 82.69% 56.36% 89.38% 97.17% 0.625097
cm Frequency 1 98.09% 81.64% 95.76% 99.56% 0.870624
cm DWT 1 100.00% 73.12% 94.31% 100.00% 0.825489
cm Similarity 3 95.25% 85.57% 96.04% 98.85% 0.878768
cm TF.IDF 3 100.00% 77.05% 95.14% 100.00% 0.851551

extra Frequency 1 65.71% 67.37% 91.11% 94.72% 0.613877
extra DWT 1 96.27% 56.32% 93.96% 99.68% 0.708682
extra Similarity 3 86.77% 61.05% 93.61% 98.56% 0.694617
extra TF.IDF 3 89.92% 51.05% 92.85% 99.20% 0.641817
peri Frequency 1 74.17% 67.27% 88.96% 94.08% 0.637714
peri DWT 1 89.37% 52.36% 89.58% 98.37% 0.631646
peri Similarity 3 74.30% 62.91% 88.68% 94.76% 0.615731
peri TF.IDF 3 85.82% 50.91% 89.03% 98.03% 0.606374

Table 6.7: Results for Different Transformation Based on q-grams for All Protein
Subcellular Localizations

recall. Since features of q-gram wavelet transformation is a superset of features

of q-gram frequency transformation, we will not consider the features of q-gram

wavelet transformation here. In the following, we investigate the effect of the

combined feature vector of q-gram frequency transformation and q-gram similarity

transformation, the combined feature vector of q-gram frequency transformation

and q-gram TF.IDF transformation, and also the combined feature vector of the

three transformation methods.

SIM+: Combination of Frequency and Similarity

We first combine the feature vectors of q-gram frequency transformation and q-gram

similarity transformation, and train the SVMs on the combined feature vectors to

178

investigate the effect on prediction performance. We use “SIM+” to denote the

combined method. For q-gram frequency transformation, we set q=1 based on

results obtained in Section 6.6.1. Similarly, for q-gram similarity transformation, q

is set to 3 according to the parameter selection in Section 6.6.1. Moreover, although

RBF kernel function is good to train the SVMs on q-gram frequency feature vectors,

RBF kernel does not work on similarity feature vectors; we therefore use polynomial

kernel function when the SVMs are trained on the combined feature vectors. We

summarize the results of prediction based on “SIM+” in Table 6.8. By comparing

the overall evaluation measurement of prediction MCC in Table 6.8 to MCC values

in Table 6.7 for both frequency transformation and similarity transformation, we

observe that the MCC value for the combined method is higher than MCCs for the

two separate methods, Frequency and Similarity for protein localizations except

for protein localization cyto. Furthermore, the result also shows that higher recall

can be achieved by using the combined methods while keeping high precision of

prediction for all the five protein localizations.

localization precision recall accuracy specificity MCC
outer 91.25% 82.05% 92.99% 97.05% 0.819088
cyto 81.28% 72.36% 91.53% 96.05% 0.715748
cm 94.93% 85.90% 96.04% 98.77% 0.878851

extra 86.47% 61.58% 93.61% 98.48% 0.695968
peri 74.26% 66.18% 89.03% 94.42% 0.633788

Table 6.8: Results on Combined Method SIM+ for All Protein Subcellular Localizations

TF.IDF+: Combination of Frequency and TF.IDF

We also combine the feature vectors of q-gram frequency transformation and q-

gram TF.IDF transformation, and train the SVMs on the combined feature vectors

to investigate the effect on performance of prediction. In brief, we denote this

combined method as “TF.IDF+”. According to the analysis of parameter selection

179

in Section 6.6.1, we use linear kernel to train SVMs on the combine features; we set

q=1 and 3 for frequency transformation and similarity transformation, respectively.

The prediction based on TF.IDF+ method is summarized in Table 6.9. We

make the following two observations. Firstly, the result of prediction based on

this combined method is mainly dominated by TF.IDF transformation instead

of frequency transformation. Secondly, the precision of the combined method is

similar to that of the method based on TF.IDF transformation, while a slightly

higher recall is achieved by using the combined method than the method based on

TF.IDF transformation.

localization precision recall accuracy specificity MCC
outer 93.49% 75.90% 92.01% 98.00% 0.792867
cyto 82.90% 58.55% 89.72% 97.08% 0.639909
cm 100.00% 77.38% 95.21% 100.00% 0.853695

extra 89.99% 51.58% 92.92% 99.20% 0.645579
peri 85.55% 52.00% 89.10% 97.94% 0.612241

Table 6.9: Results on Combined Method TF.IDF+ for All Protein Subcellular Localiza-
tions

SIM+TF.IDF: Combination of Similarity and TF.IDF

Since the result based on the two combined methods SIM+ and TF.IDF+ are not

dominated by Frequency transformation, we combine feature vectors of similarity

transformation and TF.IDF transformation together and investigate the effect on

protein localization prediction.

According to the analysis of parameter selection in Section 6.6.1, we again use

linear kernel to train SVMs on the combine features; we set q=3 for both similarity

transformation and TF.IDF transformation. We call the combined method based

on similarity feature vector and TF.IDF feature vector as “SIM+TF.IDF”.

The results based on SIM+TF.IDF combined method are shown in Table 6.10.

180

In Table 6.10, we notice that the recall of prediction based on SIM+TF.IDF is

higher than that based on TF.IDF transformation vectors, and the precision of pre-

diction is higher than that based on Similarity transformation vectors. The result

indicates that combined feature vectors of similarity transformation and TF.IDF

can represent the protein sequence better than the features vectors of single trans-

formation method.

localization precision recall accuracy specificity MCC
outer 94.51% 81.03% 93.54% 98.19% 0.833875
cyto 84.22% 65.09% 91.04% 97.17% 0.689362
cm 99.24% 80.66% 95.76% 99.82% 0.870857

extra 92.00% 55.79% 93.61% 99.36% 0.683450
peri 83.91% 58.91% 89.93% 97.25% 0.647476

Table 6.10: Results on Combined Method SIM+TF.IDF for All Protein Subcellular
Localizations

SIM+TF.IDF+: Combination of Frequency, Similarity and TF.IDF

We also combine the feature vectors of Frequency transformation, similarity trans-

formation and TF.IDF transformation and conduct the protein subcellular local-

ization prediction based on the combined feature vectors. We called the combined

method as “SIM+TF.IDF+”. The result of protein subcellular prediction is shown

in Table 6.11. Compared to the results (In Table 6.10) of prediction based on the

combined method SIM+TF.IDF, the result based on SIM+TFIDF+ can achieve

higher precision, recall, accuracy, specificity and MCC for all the protein local-

izations except proteins locating in “extra”. Compared to all the other combined

methods, SIM+TF.IDF+ can achieve much higher recall while keeping very high

precision as well for protein subcellular localization prediction. Since more trans-

formation methods are combined in method SIM+TF.IDF+, much more informa-

tion of protein sequences is used on protein subcelluar localization prediction. It

181

therefore leads to higher accuracy of prediction on protein subcelluar localization

prediction.

localization precision recall accuracy specificity MCC
outer 94.53% 81.28% 93.61% 98.19% 0.835720
cyto 83.63% 65.82% 91.04% 97.00% 0.690526
cm 99.25% 80.98% 95.83% 99.82% 0.873019

extra 91.29% 55.79% 93.34% 99.28% 0.679932
peri 84.50% 59.27% 90.07% 97.34% 0.652985

Table 6.11: Results on Combined Method SIM+TF.IDF+ for All Protein Subcellular
Localizations

6.7 Summary

In this chapter, q-gram frequency transformation, q-gram wavelet transformation,

q-gram similarity transformation, and q-gram TF.IDF transformation have been

proposed and described. These four transformation methods are then used to

extract feature vectors from subcellular localization proteins. To build a system

for protein subcellular localization prediction, transformed feature vectors are used

to train SVMs. The experimental results show that q-gram based features can

represent a protein sequence well, and they can be very useful in protein subcellular

localization prediction. Since no single method of prediction can achieve high

prediction accuracy, precision or recall for all protein subcellular localizations, we

believe our proposed prediction method is a new investigation approach in research

on protein subcellular localization prediction.

182

CHAPTER 7

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss the

possible directions of future work on sequence approximate matching in genomic

sequence databases.

7.1 Summary of Contributions

In this thesis, we have studied three research problems – DNA sequence simi-

larity search in sequence database, DNA sequence approximate join, and protein

subcellular localization prediction, which are all related to sequence approximate

matching in genomic databases. Our proposed search model and index structure

are very effective in organizing a large genomic sequence database. Similarly, our

proposed novel filtering algorithms are very efficient in processing approximate se-

quence matching, and the proposed q-gram based feature vectors extracted from

protein sequence are helpful in predicting the subcellular localization of protein

183

sequences. We summarize our main contributions as follow.

7.1.1 DNA Sequence Similarity Search

Hash-based Pier Model

We have proposed a similarity search model, the hash-based pier model for DNA

sequence similarity search. The pier model only extracts piers from a genomic

database and eradicates any need to search the entire database. The sensitivity of

the pier model is analyzed theoretically. The experimental results show that the

size of the hash table in the pier model is relatively small compared to the original

genomic database, and similarity search based on the pier model can be conducted

very efficiently with high sensitivity. Compared to the most widely used DNA

database search tool, BLASTn, the hash-based pier method is faster and requires

less memory and disk space because our hash-based pier model simply extracts

piers and hashes them instead of processing each segment in the sequence database

as BLASTn and other methods do. Moreover, the GPM-based method has been

presented to further improve search efficiency by reducing the computation cost

of candidate verification. The hash-based pier model is very efficient and effective

for similarity search in very large genomic databases owing to the idea of ‘piers’.

In addition, the proposed pier model is also applicable to other similarity search

methods for selecting some segments as index terms.

Two-level Index Structure

We have devised an indexing structure, the two-level index comprising the hash

table and c-trees, to support efficient similarity search in DNA sequence databases

based on the q-grams of DNA sequences. At the first level, a hash table is built

on the sequences in terms of qClusters, which are a group of clusters generated

184

on the q-grams. At the second level, a novel data structure called c-trees and

constructed on a group of c-signatures of the DNA segments is used to support

DNA sequence similarity search. The proposed filter principle based on qClusters

and c-signatures guarantees high efficiency and high sensitivity in sequence search.

We have carried out a series of experiments to evaluate the performance of the

two-level index structure in terms of sensitivity, effectiveness and efficiency and

accuracy. The experimental results are consistent with the theoretical analysis of

the q-gram based filtering techniques and the sensitivity analysis of the proposed

search model based on the two-level index structure.

7.1.2 DNA Sequence Approximate Join

We have studied the notion and operation of approximate sequence join in genomic

databases. Following these, we have proposed a filter-and-refine sequence join al-

gorithm for DNA sequence approximate join. In the filtering phase, sequences that

are not joinable are pruned away rapidly. The refinement phase employs an efficient

algorithm to remove the remaining false positives. The proposed scheme employs

the precedence count matrix (PCM) to approximate the edit distance between two

DNA sequences efficiently. We have evaluated the proposed sequence join algo-

rithm, and our experimental study shows that our algorithm outperforms existing

ones such as FV [61], q-gram and brute force by a wide margin in DNA sequence

approximate join.

7.1.3 Protein Subcellular Localization Prediction

We have proposed using q-grams in protein sequences to predict the subcellular

localization of proteins. The q-gram frequency vector, q-gram wavelet vector, q-

gram similarity vector, and q-gram IDF.TF vector based on the q-grams of a protein

185

sequence are proposed and generated to capture information in protein sequences.

These q-gram based vectors are then used as k-dimensional features for an SVM

that searches for the hyperplane to separate the two classes. In the proposed

method, the k-dimensional feature space can be one of four feature vector spaces:

q-gram frequency vectors, q-gram wavelet vectors, q-gram similarity vectors, and q-

gram IDF.TF vectors. We have implemented and compared the prediction systems

based on the proposed feature vectors, and the results show that these feature

vectors can represent a protein sequence well. Since there is no single method of

prediction that can achieve high prediction accuracy, precision or recall for all the

subcellular localizations for proteins, our proposed method is therefore substantial

and useful in practice.

7.2 Future Work

While we have made a number of contributions in this thesis, we have also left a

number of interesting questions unanswered, and they can be further explored in fu-

ture work. Here, we suggest several interesting problems in the area of approximate

sequence matching in genomic sequence databases.

First, for the similarity search problem, future work could consider the following:

• Our proposed search model and filtering methods are mainly about sequence

similarity search in DNA sequence databases. For example, the novel two-

level index structure is effective and efficient for DNA sequence similarity

search, however it is limited to process sequences which are formed from a

small alphabet size, such as DNA sequence data with an alphabet size of

4. For a larger alphabet size, such as a protein sequence with an alphabet

size of 20, the two-level index structure on these q-grams would be much

186

larger than the original sequence database due to the large number of all

the possible q-grams, so it is not applicable for indexing protein sequences.

Since protein sequences allow more meaningful alignments with the use of

scoring matrices (PAM or BLOSUM), we consider to propose some effective

and efficient algorithms for searching protein sequences in protein sequence

database in the future work.

Second, for the problem of DNA sequence approximate join, our work is con-

fined to academic study; much work needs to be done before this approximate

join method is deployed in real genomic applications in the area of computational

biology, such as DNA sequence assembly and sequencing by hybridization.

Lastly, for the problem of prediction of subcellular localization of protein se-

quences, all our proposed prediction methods are based on q-grams in protein se-

quences. Though q-grams in protein sequences can represent the information in a

protein sequence well, they are not enough for the prediction of protein subcellular

localization. In the future, we can combine the feature vectors based on q-grams

with other existing features extracted from the protein sequences. For example, we

can combine our methods with homology analysis, identification of sorting signals

and motifs, etc. into an expert system for the prediction of subcellular localization

of protein sequences.

BIBLIOGRAPHY

[1] In http://www.genome.gov.

[2] In http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html.

[3] In http://pir.georgetown.edu/.

[4] In http://www.ddbj.nig.ac.jp/.

[5] In ftp://ncbi.nlm.nih.gov/blast/db/README.

[6] In http://www.gnu.org/manual/gprof-2.9.1/gprof.html.

[7] Wu-blast. In http://blast.wustl.edu/.

[8] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Molecular Biology, 215:403–410, 1990.

[9] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller,

and D.J. Lipman. Gapped blast and psi-blast: a new generation of protein

database search programs. Nucleic Acids Research, 25:3389–3402, 1997.

187

188

[10] A. Bairoch and R. Apweiler. The swiss-prot protein sequence data bank and

its new supplement trembl. Nucleic Acids Research, 24:21–25, 1996.

[11] H. Bannai, Y. Tamada, O. Maruyama, K. Nakai, and S. Miyano. Exten-

sive feature detection of n-terminal protein sorting signals. Bioinformatics,

18:298–305, 2002.

[12] S. Bedathur and J. Haritsa. Engineering a fast online persistent suffix tree

construction. In Proc. 2004 Int. Conf. Data Engineering (ICDE’04), pages

720–731, Boston, USA, Mar. 2004.

[13] S. Bedathur and J. Haritsa. Search-optimized persistent suffix tree storage

for biological applications. In Technical Report TR-2004-04, Database Sys-

tem Lab, Supercomputer Education and Research Center, Indian Institute of

Sicence, Bangalore 560012, India, 2004.

[14] S. Begley and A. Rogers. It’s all in the genes: in compuational biology,

scientists track elusive dna stands through databases. Newsweek, page 64,

1994.

[15] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, and B.F. Ouellette.

Genbank. Nucleic Acids Research, 26:1–7, 1998.

[16] D.A. Benson, I. Karsch-mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, and

D.L. Wheeler. Genbank. Nucleic Acids Research, 28:15–18, 2000.

[17] D.A. Benson, I. Karsch-mizrachi, D.J. Lipman, J. Ostell, and D.L. Wheeler.

Genbank update. Nucleic Acids Research, 32:D23–CD26, 2004.

[18] M. Bhasin and G.P.S. Raghava. Eslpred: Svm-based method for subcellular

localization of eukaryotic proteins using dipeptide composition and psi-blast.

Nucleic Acids Research, 32:w414–w419, 2004.

189

[19] B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher,

E. Gasteiger, M.J. Martin, K. Michoud, C. O’Donovan, I. Phan I, S. Pilbout,

and M. Schneider. The swiss-prot protein knowledgebase and its supplement

trembl in 2003. Nucleic Acids Research, 31:365–370, 2003.

[20] B.E. Boser, I.M. Guyon, and V. Vapnik. A training algorithm for optimal

margin classifiers. In Annual Workshop on Computational Learning Theory

archive, Proceedings of the fifth annual workshop on Computational learning

theory, pages 144–152, Pittsburgh, PA, July 1992.

[21] Brona Brejova, Daniel G. Brown, and Tomas Vinar. Vector seeds: an ex-

tension to spaced seeds allows substantial improvements in sensitivity and

specificity. Journal of Computer and System Sciences, 70(3):364–380, 2005.

Early version appeared in WABI 2003.

[22] D. Brown, M. Li, and B. Ma. A tutorial of recent developments in the seeding

of local alignment. Journal of Bioinformatics and Computational Biology,

2(4):819–842, 2004.

[23] J. Buhler. Efficient large-scale sequence comparison by locality-sensitive hash-

ing. Bioinformatics, 17:419–428, 2001.

[24] J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in

genomic dna. In Int. Conf. RECOMB, pages 67–75, 2003.

[25] S. Burkhardt, A. Crauser, P. Ferragina, H.P. Lenhof, and M. Vingron. q-

gram based database searching using a suffix array (quasar). In Int. Conf.

RECOMB, Lyon, April 1999.

190

[26] A. Califano and I. Rigoutsos. Flash: A fast look-up algorithm for string

homology. In Proc. of the Int. Conference on Intelligent Systems for Molecular

Biology, pages 56–64, Bethesda, MD, 1993.

[27] X. Cao, S.C. Li, B.C. Ooi, and A.K.H. Tung. Piers: An efficient model for

similarity search in dna sequence databases. ACM Sigmod Record, 33, 2004.

[28] X. Cao, S.C. Li, and A.K.H. Tung. Indexing dna sequences using q-grams. In

Proc. of the 10th Int. Conf. on Database Systems for Advanced Applications

(DASFAA’05), pages 4–16, China, 2005, Best Paper Award.

[29] X. Cao, B.C. Ooi, K.L. Tan, and A.K.H. Tung. The q-gram based protein

subcellular localization prediction. In Technical Report: School of Computing,

National University of Singapore, 2005.

[30] X. Cao, A.K.H. Tung, B.C. Ooi, K.L. Tan, and S.C. Li. String join using

precedence count matrix. In Proc. of the 16th Int. Conf. on Scientific and

Statistical Database Management (SSDBM’04), pages 345–348, Greece, 2004.

[31] T. Chen and S. Skiena. Trie-based data structures for sequence assembly. In

Technical Report: Department of Computer Science, Stony Brook N.Y, 1996.

[32] K.C. Chou and D.W. Elrod. Protein subcellular location prediction. Protein

Engineering, 12:107–118, 1999.

[33] P. Clote and R. Backofen. Computational Molecular Biology: An Introduc-

tion. JOHN WILEY & SONS, LTD, 2000.

[34] W. Cohen. Integration of heterogeneous databases without common domains

using queries based on textual similarity. In Proc. of the 1998 ACM SIGMOD

Conf. on Management of Data (SIGMOD’98), pages 201–212, 1998.

191

[35] F. Collins and D. Galas. A new five-year plan for the us human genome

project. Science, 262:43–46, 1993.

[36] F.H.C. Crick. On protein synthesis. In Symposium of the Society of Experi-

mental Biology, pages 12: 138–167, 1958.

[37] N. Cristianini and J. Shawe-Taylor. An introduction to support vector ma-

chines and other kernel-based learning methods. Cambridge University Press,

Canbridge, UK, 2000.

[38] R.F. Doolittle, M.W. Hunkapiller, L.E. Hood, S.G. Devare, K.C. Robbins,

S.A. Aaronson, and H.N. Antoniades. Simian sarcoma virus onc gene, v-sis,

is derived from the gene (or genes) encoding a platelet-derived growth factor.

Science, 221:275–277, 1983.

[39] F. Eisenhaber and P. Bork. Wanted: subcellular localization of proteins based

on sequence. Trans. Cell Biol., 8:169–170, 1998.

[40] O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne. Predicting subcel-

lular localization of proteins based on their n-terminal amino acid sequences.

J. Mol. Biol., 300:1005–1016, 2000.

[41] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence

matching in time-series databases. In Proc. 1994 ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD’94), pages 419–429, Minneapolis, Minnesota,

May 1994.

[42] M. Farach, P. Ferragina, and S. Muthukrishnan. Overcoming the memory

bottleneck in suffix tree construction. In Proc. of IEEE Annual Symposium

on Foundation of Computer Science, 1998.

192

[43] P. Ferragina and G. Manzini. Opportunistic data structures with applica-

tions. In Proc. of Symp. on Foundation of Computer Science, pages 390–398,

2000.

[44] C. Fondrat and P. Dessen. A rapid access motif database (ramdb) with a

search algorithm for the retrieval patterns in nucleic acids or protein data-

banks. Computer Applications in the Biosciences, 11(3):273–279, 1995.

[45] J.L. Gardy, M.R. Laird, F. Chen, S. Rey, C.J. Walsh, M. Ester, and Fiona S.L.

Brinkman. Predicting of protein subcellular locations using fuzzy k-nn

method. Bioinformatics, 21:617–623, 2005.

[46] J.L. Gardy, C. Spencer, K. Wang, M. Ester, G.E. Tusnady, I. Simon, S. Hua,

K. deFays, C. Lambert, K. Nakai, and Fiona S.L. Brinkman. Psort-b: im-

proving protein subcellular localization prediction for gram-negative bacteria.

Nucleic Acid Research, 31:3613–3617, 2003.

[47] E. Giladi, M. Walker, J. Wang, and W. Volkmuth. Sst: An algorithm for

searching sequence databases in time proportional to the logarithm of the

database size. In Int. Conf. RECOMB, Japan, 2000.

[48] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S. Muthukrishnan,

and D. Srivastava. Approximate string joins in a database (almost) for free.

In Proc. 2001 Int. Conf. Very Large Data Bases (VLDB’01), pages 491–500,

Italy, Roma, Sept. 2001.

[49] R. Grossi and J.S. Vitter. Compressed suffix arrays and suffix trees with

applications to text indexing and string matching. In Proc. 2000 ACM-SIAM

Symp. Theory of Computing (STOC’00), Portland, Or, 2000.

193

[50] D. Gusfield. Algorithms on Strings, Trees and Sequences, Computer Science

and Computation Biology. Cambridge University Press, New York, 1997.

[51] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein

blocks. Proc Natl Acad Sci, 89:10915–10919, 1992.

[52] G.R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial

databases. In Proc. of the 1998 ACM SIGMOD Conf. on Management of

Data (SIGMOD’98), pages 237–248, 1998.

[53] W.K. Hon, T.W. Lam, W.K. Sung, W.L. Tse, C.K. Wong, and S.M. Yiu.

Practical aspects of compressed suffix arrays and fm-index in searching dna

sequences. In Proc. of Workshops on Algorithm Engineering and Experiments,

2004.

[54] http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview.

Molecular biology review.

[55] S. Hua and Z. Sun. Support vector machine approach for protein subcellular

localization prediction. Bioinformatics, 17:721–728, 2001.

[56] Y. Huang and Y. Li. Predicting of protein subcellular locations using fuzzy

k-nn method. Bioinformatics, 20:21–28, 2004.

[57] E. Hunt, M.P. Atkinson, and R.W. Irving. A database index to large biolog-

ical sequences. In Proc. 2001 Int. Conf. Very Large Data Bases (VLDB’01),

pages 139–148, Roma, Italy, September 2001.

[58] R. Idury and M.S. Waterman. A new algorithm for dna sequence assembly.

Journal of Computational Biology, 2:291–306, 1995.

194

[59] L. Jin, C. Li, and S. Mehrotra. Efficient similarity string joins in large data

sets. In Technical Report: Department of Information and Computer Science,

University of California, 2002.

[60] P. Jokinen and E. Ukkonen. Two algorithm for approximate string matching

in static texts. In Proc. of the 16th Symposium on Mathematical Foundataions

of Computer Science, pages 240–248, 1991.

[61] T. Kahveci and A. Singh. An efficient index structure for string databases.

In Proc. 2001 Int. Conf. Very Large Data Bases (VLDB’01), Roma, Italy,

2001.

[62] U. Keich, M. Li, B. Ma, and J. Tromp. On Spaced Seeds for Similarity Search.

Discrete Applied Mathematics, 138(3):253–263, 2004.

[63] W.J. Kent. Blat - the blast-like alignment tool. Genome Research, 12:656–

664, 2002.

[64] T.W. Lam, K. Sadakane, W.K. Sung, and S.M. Yiu. A space and time

efficient algorithm for constructing compressed suffix arrays. In Proc. of the

8th International Computing and Combinatorics Conference (COCOON’02),

pages 401–410, 2002.

[65] Z. Lei and Y. Dai. A novel approach for prediction of protein subcellular local-

ization from sequence using fourier analysis and support vector machine. In

Proc. of the 4th ACM SIGKDD Workshop on Data Mining in Bioinformatics

(BIOKDD 2004), pages 265–274, Seattle, USA, 2004.

[66] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics Doklady, 6:707–710, 1966.

195

[67] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: Highly Sensitive

and Fast Homology Search. Journal of Bioinformatics and Computational

Biology, 2(3):417–439, 2004. Early version in GIW 2003.

[68] C. Liebecq. Biochemical nomenclature and related documents. Portland Press,

2nd edition, 1992.

[69] Z. Lu, D. Szafron, R. Greiner, P. Lu, D.S. Wishart, B. Poulin, J. Anvik,

C. Macdonell, and R. Eisner. Predicting subcellular localization of proteins

using machine-learning classifiers. Bioinformatics, 20:547–556, 2004.

[70] B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive ho-

mology search. Bioinformatics, 18:440–445, 2002.

[71] U. Manber and G. Myers. Suffix arrays: a new method for on-line string

searches. In Proc. of the Fist Annual ACM-SIAM Symp. and Applied Math-

ematics, pages 319–327, Philadelphia, USA, 1990.

[72] U. Manber and G. Myers. Suffix arrays: a new method for on-line string

searches. SIAM Journal on Computing, 22:935–948, 1993.

[73] B.W. Matthews. Comparison of predicted and observed secondary structure

of t4 phage lysozyme. Biochim. Biophys. Acta, 405:442–451, 1975.

[74] E.M. McCreight. A space-economical suffix tree construction algorithm. Jour-

nal of the ACM, 23:262–272, 1976.

[75] C. Meek, J.M. Patel, and S. Kasetty. Oasis: An online and accurate technique

for local-alignment searches on biological sequences. In Proc. 2003 Int. Conf.

Very Large Data Bases (VLDB’03), pages 910–921, Berlin, Germany, Sept.

2003.

196

[76] T.M. Mitchell. Machine learning. McGraw-Hill, New York, 1997.

[77] David W. Mount. Bioinformatics: Sequence and Genome Analysis. Cold

Spring Harbor Laboratory Press, 2001.

[78] S. Muthukrishnan and S.C. Sahinalp. Approximate nearest neighbors and

sequence comparison with block operation. In Proc. 2000 ACM-SIAM Symp.

Theory of Computing (STOC’00), Portland, Or, 2000.

[79] R. Nair and B. Rost. Sequence conserved for subcellular localization. Protein

Science, 11:2836–2847, 2002.

[80] K. Nakai and P. Horton. Psort: a program for detecting the sorting signals

of proteins and predicting their subcellular localization. Trends Biochem.,

24:34–35, 1999.

[81] K. Nakai and M. Kanehisa. Expert system for predicting protein localiza-

tion sites in gram-negative bacteria. PROTEINS: Structure, Function, and

Genetics, 11:95–110, 1991.

[82] K. Nakai and M. Kanehisa. A knowledge base for predicting protein local-

ization sites in eukaryotic cells. Genomics, 14:897–911, 1992.

[83] H. Nakashima and K. Nishikawa. Discrimination of intracellular and extra-

cellular proteins using amino acid composition and residue-pair frequencies.

J Mol Biol., 238:54–61, 1994.

[84] G. Navarro. A guided tour to approximate string matching. ACM Computing

Surveys (CSUR), 33:31 – 88, 2001.

197

[85] S.B. Needleman and C.D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molec-

ular Biology, 48:443–453, 1970.

[86] N. Neelapala, R. Mittal, and J. Haritsa. Spine: Putting backbone into string

indexing. In Proc. 2004 Int. Conf. Data Engineering (ICDE’04), pages 325–

336, Boston, USA, Mar. 2004.

[87] H. Nielsen, J. Engelbrecht, S. Brunak, and G. von Heijne. A neural network

method for identification of prokaryotic and eukaryotic signal peptides and

prediction of their cleavage sites. Int J Neural Syst., 8:581–599, 1997.

[88] Z. Ning, A.J. Cox, and J.C. Mullikin. Ssaha: A fast search method for large

dna databases. Genome Research, 11:1725–1729, 2001.

[89] W.S. Noble. Support vector machine applications in computational biology.

B. Schoelkopf, K. Tsuda and J.P. Vert, MIT Presse, 2004.

[90] C. O’Donovan, M.J. Martin, A. Gattiker, E. Gasteiger, A. Bairoch, and

R. Apweiler. High-quality protein knowledge resource: Swiss-prot and trembl.

Brief Bioinform., 3(3):275–284, 2002 Sept.

[91] O. Ozturk and H. Ferhatosmanoglu. Effective indexing and filtering for sim-

ilarity search in large biosequence datasbases. In Third IEEE Symposium on

BioInformatics and BioEngineering (BIBE’03), Bethesda, Maryland, 2003.

[92] K. Park and M. Kanehisa. Prediction of protein subcellular locations by

support vector machines using compositions of amino acids and amino acid

pairs. Bioinformatics, 19:1656–1663, 2003.

198

[93] W.R. Pearson. Searching protein sequences libraries: Comparison of the sen-

sitivity and selectivity of the smith-waterman and fasta algorithm. Genomics,

11:635–650, 1991.

[94] W.R. Pearson. Protein sequence comparision and protein evolution. In Tuto-

rial T6 of Intelligent Systems in Mol. Biol., Cambridge, England, July 1995.

[95] W.R. Pearson. Effective protein sequence comparison. Methods Enzymol,

266:227–258, 1996.

[96] W.R. Pearson and D.J. Lipman. Improved tools for biological sequence com-

parison. Proc. of the National Academy of Sciences, 85:2444–2448, 1988.

[97] M. Peltola, H. Soderlund, J. Tarhio, and E. Ukkonen. Algorithms for some

string matching problems arising in molecular genetics. In Proc. of the 9th

IFIP World Computer Congress, pages 59–64, 1983.

[98] M. Peltola, H. Soderlund, and E. Ukkonen. Sequaid: a dna sequence assembly

program based on a mathematical model. Nucleic Acids Research, 12:307–

321, 1984.

[99] R. Ramakrishnan. Database Management Systems. McGraw-Hill, 1997.

[100] A. Reinhardt and T. Hubbard. Using neural networks for prediction of the

subcellular location of proteins. Nucleic Acids Research, 26:2230–2236, 1998.

[101] C.M. Rice, R. Fuchs, D.G. Higgins, P.J. Stoehr, and G.N. Cameron. The

embl data library. Nucleic Acids Research, 21:2967–2971, 1993.

[102] J.R. Riordan, J.M. Rommens, B. Kerem, N. Alon, R. Rozmahel, Z. Grzelczak,

J. Zielenski, S. Lok, N. Plavsic, and J.L. Chou. Identification of the cystic

199

fibrosis gene: Cloning and characterization of complementary dna(in cystic

fibrosis: Cloning and genetics). Science, 245:1066–1073, 1989.

[103] K. Sadakane. New text indexing functionalities of the compressed suffix ar-

rays. Journal of Algorithms, 48:294–313, 2003. A preliminary version appears

in ISAAC 2000.

[104] J.C. Setubal and J. Meidanis. Introduction to computational molecular biol-

ogy. PWS Publishing Company, Boston, 1997.

[105] R. She, F. Chen, K. Wang, M. Ester, J.L. Gardy, and F.S. Brinkman.

Frequent-subsequence-based prediction of outer membrane proteins. In Proc.

9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining

(SIGKDD’03), Washington DC, USA, 2003.

[106] J. Sims, D. Capon, and D. Dressler. dnag(primase)-dependent origins of dna

replication. Journal of Biolical Chemistry, 254:12615–12628, 1979.

[107] T.F. Smith and M.S. Waterman. Comparative biosequence metrics. Journal

of Molecular Evolution, 18:38–46, 1981.

[108] T.F. Smith and M.S. Waterman. The identification of common molecular

subsequences. Journal of Molecular Biology, 147:195–197, 1981.

[109] B.S. Strauss. Book review: Dna repair and mutagenesis. Science, 270:1511–

1513, 1995.

[110] Z. Tan, X. Cao, B.C. Ooi, and A.K.H. Tung. The ed-tree: an index for large

dna sequence databases. In Proc. 15th Int. Conf. on Scientific and Statistical

Database Management, pages 151–160, 2003.

200

[111] S. Tata, R.A. Hankins, and J.M. Patel. Practical suffix tree construction. In

Proc. 2004 Int. Conf. Very Large Data Bases (VLDB’04), Toronto, Canada,

Sept. 2004.

[112] Y. Tian, S. Tata, R.A. Hankins, and J.M. Patel. Practical methods for

constructing suffix trees. The VLDB Journal, 14:281–299, 2005.

[113] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[114] V.N. Vapnik. Statistical Learning Theory (Adaptive and Learning Systems for

Signal Processing, Communications and Control). Wiley-Interscience, New

York, 1998.

[115] T.K. Vintsyuk. Speech discrimination by dynamic programming. Comput.,

4:52–57, 1968.

[116] G. von Heijne, H. Nielsen, J. Engelbrecht, and S. Brunak. Identification of

prokaryotic and eukaryotic signal peptides and prediction of their cleavage

sites. Protein Eng., 10:1–6, 1997.

[117] M.M. Waldrop. On-line achives let biologists interrogate teh genome. Science,

269:1356–1358, 1995.

[118] J.T.L. Wang, Q.H. Ma, D. Shasha, and C.H. Wu. Application of networks

to biological data mining: a case study in protein sequence classification.

In Proc. 2000 Int. Conf. Knowledge Discovery and Data Mining (KDD’00),

Boston, MA, 2000.

[119] M.D. Waterfield, G.T. Scrace, N. Whittle, P. Stroobant, A. Johnsson,

A. Wasteson, B. Westermark, C.H. Heldin, J.S. Huang, and T.F. Deuel.

Platelet-derived growth factor is structurally related to the putative trans-

forming protein p28sis of simian sarcoma virus. Nature, 304:35–39, 1983.

201

[120] P. Weiner. Linear pattern matching algorithms. In Proc. 14th IEEE Symp.

On Switching and Automata Theory, pages 1–11, 1973.

[121] H.E. Williams and J. Zobel. Indexing and retrieval for genomic databases.

IEEE Transactions on Knowledge and Data Engineering, 14:63–78, 2002.

[122] R.W. Williams. The portable dictionary of the mouse genome: a personal

database for gene mapping and molecular biology. Mammalian Genome,

5:372–375, 1994.

[123] N. Zavaljevski, F.J. Stevens, and J. Reifman. Support vector machines with

selective kernel scaling for protein classification and identification of key

amino acid positions. Bioinformatics, 18:689–696, 2002.

