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Summary

An open system is one which repeatedly interacts with an environment,

and whose behaviour crucially depends on this interaction. The subject of

controller synthesis deals with automatic construction of controllers for open

systems. In sequential settings, the controller synthesis problem is: Given a

plant, which describes the possible interactions between the system and the

environment, and a specification, that dictates the desired behaviour, deter-

mine whether there exists a controller such that the controlled behaviour of

the plant satisfies the specification. The goal of this thesis is to investigate

controller synthesis problems in distributed, real-time and hybrid settings.

Distributed Setting

The distributed controller synthesis problem is: Given a distributed plant

and a specification, determine whether there exists a distributed controller

such that the overall controlled behaviour of the distributed plant satisfies

the specification. A distributed plant consists of a family of open sequential

processes communicating with each other, where each process interacts with

its local environment. A distributed controller consists of a family of local

strategies, one for each process. The local strategy for process p recommends

moves for p, based on the knowledge of actions executed by p as well as

actions executed by other processes that p comes to know via communication.

Distributed controller synthesis problems are undecidable in general set-

tings [62], but are decidable in various restricted settings [26, 39, 48, 49,

51, 62]. We study a setting where the communication pattern of the dis-

tributed plant is restricted. We identify the model of connectedly communi-

cating processes (CCP). A CCP consists of a network of sequential processes

v
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which communicate via synchronizing on common actions. And there exists

a bound k such that, for every process p, q, if p executes k steps without

hearing from q, directly or indirectly, then p will never hear from q again,

directly or indirectly.

The non-interleaved branching time behaviour of a CCP is captured by its

event structure unfolding. We prove that the monadic second order (MSO)

theory of the event structure unfolding of every CCP is decidable. Using this

strong logical result, we establish three results on the distributed controller

synthesis problem for distributed plants based on CCPs. Firstly, we show

that the problem is decidable for robust linear time specifications that do not

discriminate different interleavings of the same partially ordered execution.

Secondly, we prove that the problem is also decidable for branching time

specifications given as formulae in the MSO logic of the event structure

unfolding of the given CCP plant. Lastly, for both the first and second

results, we further establish that, if there exists a distributed controller,

then a finite state one can be effectively synthesized in the form of a CCP.

On the negative side, we show that the distributed controller synthesis

problem for CCP plants is undecidable for linear time specifications that

are allowed to be non-robust. We also study the strict distributed controller

synthesis problem where one seeks a family of strictly local strategies, one for

each process. A strictly local strategy for process p must recommend moves

for p based only on the knowledge of actions executed by p. We prove that

the strict distributed controller synthesis for CCP plants is undecidable for

linear time specifications, even if they are robust.

Real-Time Setting

There have been a number of studies that extend results on sequential

controller synthesis to timed settings [9, 13, 19, 53]. We however are inter-

ested in real-time systems with tasks. The correctness of many real-time

systems depends not only on the timely occurrence of events, but also on
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the proper handling of computation tasks triggered by events. With a fixed

computing resource and a fixed scheduling policy, a real-time system may not

be schedulable in the sense that not every task instance can be completed

before its deadline. We address this problem systematically by synthesizing

an admission controller. Upon every newly arrived task instance, the admis-

sion controller either accepts it and puts it into the ready queue through the

scheduling policy, or rejects (discards) it. We demand that every accepted

task instance must be completed before its deadline, and moreover, the task

acceptance pattern must satisfy a quality-of-service (QoS) specification.

We consider the uniprocessor setting with the preemptive EDF (earliest-

deadline-first) scheduling policy. We adopt the generic approach by [24]

of modelling the task arrival pattern of a real-time system using a timed

automaton. We prove that the admission controller synthesis problem is de-

cidable for QoS specifications given as linear time temporal logic (LTL) for-

mulae, and more generally for QoS specifications given as quantified propo-

sitional linear time temporal logic (QPLTL) formulae. In both cases, we

further show that if an admission controller exists, then we can effectively

synthesize one in the form of a (finite) timed automaton.

Using LTL formulae, we can specify that instances of task τ must always

be accepted. We can assert liveness properties. For example, instances

of task τ must be accepted infinitely often. We can also dictate fairness

properties. For example, if instances of task τ are accepted infinitely often,

then so are instances of task τ ′. For a fixed integer n, we can demand that

among every n consecutive instances of task τ , at least .7n must be accepted.

Using QPLTL formulae, we can require that, for a fixed integer n, every n-th

instance of task τ must be accepted, while other instances of task τ may or

may not be accepted. However, it seems that, in LTL or QPLTL, we can not

express properties such as that the limit of the acceptance ratio of instances

of task τ is at least .7.
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Hybrid Setting

A hybrid automaton models a digital control system interacting with a

continuous environment. Basically, a hybrid automaton consists of finitely

many control states and a transition relation between them. The continuous

environment is represented by finitely many real-valued variables. At each

control state, the variables evolve according to some differential equation. A

transition is associated with a guard in terms of the variables and can be

taken only when the guard is true. The most basic question about a hybrid

automaton is the reachability problem, which is to determine whether a

designated control state can ever be reached.

The continuous time semantics for hybrid automata allows a transition

to be taken at any real-valued time. As a result, the reachability prob-

lem is undecidable in general [32], except for variants of hybrid automata

which have the feature that values of variables are reset when a transition

is taken [6, 32, 42, 43]. We believe that this resetting feature severely limits

the kind of practical control systems that can be modelled. On the other

hand, the discrete time semantics demands that a transition can occur only

at integer time instants. Under the discrete time semantics, the reachability

problem is decidable for subclasses of hybrid automata whose key restriction

is that the rates of variables are constant (dx/dt = c) [3, 4, 30].

We propose the class of restricted differential hybrid automata (RDA).

Its key feature is that the rates of variables can either be constant or expo-

nential (dx/dt = c · x). We adopt the discrete time semantics. However, as

in [3, 4], we allow the sensing of values of variables and updating of rates

of variables to occur with bounded delays. We prove that the language of

control state sequences of an RDA is regular. This implies that the reach-

ability for RDAs is decidable. Using the regularity result, we show that if

there is no sensing delay, then the controller synthesis problem for RDAs

is decidable for linear time specifications given as LTL formulae. Further,
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we show that if a controller exists, then we can effectively synthesize one in

the form of a (finite) RDA. The obstacle of tackling controller synthesis for

RDAs is that the controller has incomplete information about the values of

variables due to the presence of sensing delays.



CHAPTER 1

Introduction

In this introductory chapter, we first give the motivation of controller

synthesis in section 1.1. Subsequently, in section 1.2, we review the his-

torical background and the literature on sequential controller synthesis. In

section 1.3, we give an overview of our contributions on controller synthesis

in distributed, real-time and hybrid settings. In the last section, we outline

the organization of subsequent chapters.

1.1. Controller Synthesis

Computing devices are widely used in many safety-critical applications

such as aircrafts, nuclear reactors, and so on. The correct functioning of these

computing devices is of paramount importance. Many of these devices are

reactive in the sense that they repeatedly interact with physical environments

and their behaviours crucially depend on these interactions. For example, a

car brake controller constantly monitors the car’s speed and other parameters

and activates a brake or other actions whenever necessary. The construction

of reactive systems has been a difficult problem, since one needs to design

them with infinite behaviours in mind. What can we do if a constructed

reactive system does not satisfy some property? One may ask an ambitious

question: Given a constructed reactive system, and a specification of correct

behaviour, can we automatically synthesize a controller that restricts the

system so that the controlled behaviour satisfies the specification, no matter

what the the environment does? This is the controller synthesis problem.

The given reactive system is typically called a plant in this context.

1
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Besides the computer science community, the control theory community

has also studied the controller synthesis problem but call it supervisory con-

trol of discrete event systems. These two communities have different view-

points on the problem, as we will describe in detail in the next section. In

this thesis, we adopt the viewpoint of the computer science community.

In what follows, we describe informally the controller synthesis problem

in sequential settings and the associated concepts. A mathematically precise

formulation will be given in section 2.3.

In the sequential setting, a plant can be represented as a finite bipartite

graph whose state (vertex) set is partitioned into environment and system

states. For each environment state s, its successor states represent the pos-

sible moves that the environment may make at s. For each system state s,

its successor states represent the possible choices of moves available to the

system.

A (linear time) specification is basically an ω-regular language over the

action alphabet of the plant. Such a specification may be presented, say, as

a non-deterministic Büchi automaton.

The notion of a controller is based on a strategy. At each stage when the

plant is in a system state, a strategy shall advise the system what moves

to take next. The recommendation of the strategy is based on the current

history of actions executed by the system and the environment. The strategy

must recommend the system only moves that are possible as indicated by

the plant description. If we reach a stage where it is the environment’s

turn to make a move, then the strategy must allow all possible moves of

the environment. We also demand the strategy to be non-blocking. More

precisely, whenever the system reaches a stage by following recommendations

of the strategy, there will always be moves that the system can make and

that are also recommended by the strategy. We note that this notion is
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different from and in fact weaker than that in supervisory control of discrete

event systems [67].

An infinite play is an infinite sequence of actions of the system and envi-

ronment that are possible from the plant description. An infinite play σ is

according to a strategy f iff the moves made by the system in σ are always

inside the corresponding recommendations by f .

We say a strategy f is winning iff f is non-blocking and every infinite

play according to f falls within the specification. By a controller, we shall

mean a winning strategy.

The controller synthesis problem can now be more precisely stated: Given

a plant and a specification, does there exist a controller? This problem has

been answered in the affirmative in many sequential settings. The foun-

dation for these solutions is the decidability of the monadic second order

(MSO) theory of n-successors interpreted over tree unfoldings of finite tran-

sition systems. The tree unfolding of a finite transition system represents its

branching time behaviour. This logical result follows from Rabin’s famous

theorem [63], which states that the MSO theory of 2-successors is decidable.

Loosely speaking, in the sequential setting where the plant is a finite

transition system and the specification is an ω-regular language, we can

effectively construct a sentence ϕ in the MSO logic of n-successors interpreted

over the tree unfolding of the plant, such that ϕ is true iff there exists

a controller. Hence by testing the truth of ϕ, we can determine whether

there exists a controller. Further, in case ϕ is true, the decision procedure

for testing the truth of ϕ also yields a regular witness, which can then be

viewed as a finite state controller.

We emphasize that even for controller synthesis with linear time specifi-

cations, one has to study the branching time behaviour of the plant in order

to determine the existence of a winning strategy. This is due to that, at all
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environment states, the strategy must allow all moves that could possibly

be made by the environment.

Technically, the solutions for controller synthesis problems are quite in-

tricate and usually employ sophisticated machineries from automata theory.

Moreover, the worst case complexities of these solutions are so high that

they still do not seem feasible to be implemented practically. The search of

practically feasible algorithms for controller synthesis has been a real chal-

lenge for the research community and is a long term goal. However, the

realization of this goal is not hopeless, since one would reasonably expect

that the theoretical worst cases for these decision procedures rarely occur in

practice.

Our goals in this thesis are to explore controller synthesis problems in

distributed, real-time and hybrid settings. We are interested mainly in the-

oretical aspects.

1.2. Related Work on Controller Synthesis

Here we review related work on sequential controller synthesis from both

the computer science and control theory communities.

In computer science, the controller synthesis problem is closely related

to the realizability problem. Loosely speaking, the realizability problem is:

Given a specification over an alphabet of environment and system actions,

does there exist a reactive program whose behaviour satisfies the specifica-

tion? In other words, the aim of the realizability problem is to synthesize

a reactive program from a specification. On the other hand, controller syn-

thesis is concerned with restricting an already constructed reactive system,

that is, the plant, so that a specification is met. Technically, the realizabil-

ity problem and the controller synthesis problem can often be tackled using

similar tools. Often, the realizability problem can be viewed as a special case

of the controller synthesis problem if the formulation of a “universal” plant,
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that allows all possible interactions of the system and the environment, is

available. For example, for the sequential setting described in the previous

section, a universal plant can be represented as a complete bipartite graph,

where the successor states of an environment state are all the system states

and conversely, the successor states of a system state are all the environment

states.

In this thesis, we study only the controller synthesis problem. We believe

that it is more widely applicable than the realizability problem. Note that in

order to synthesize a full reactive system from a specification, the specifica-

tion has to describe all aspects of this reactive system. This is not practical

in most cases. On the other hand, in the controller synthesis problem, the

objective is to restrict an already constructed reactive system so that some

specific property is satisfied.

The realizability problem was first posed by Church [16] in 1963 in

the context of synthesizing switching circuits against specifications stated

in restricted second-order arithmetic. This was solved positively by Büchi

and Landweber [14], but later dealt with more elegantly by Rabin [64] (see

also [74]) using tree automata.

In the eighties, several works [22, 54, 55] studied the automatic synthesis

of finite state programs against temporal logic specifications. However, they

consider closed systems. In other words, the program that one seeks against

a temporal logic specification does not interact with an environment and

hence everything about the program can be controlled. In essence, these

papers solve the satisfiability problem for temporal logic formulae by deter-

mining whether there exist finite state programs that are witnesses to the

given temporal logic formulae. Therefore, the results of [22, 54, 55] are not

applicable to the realizability or the controller synthesis problem, where the

environment is a crucial component.
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The realizability problem was taken up later by [61], which investigated

the complexity of synthesizing finite programs from LTL (linear time tem-

poral logic) formulae using automata-theoretic techniques. Meanwhile, [56]

studied infinite games played over finite graphs. The results of [56] are tech-

nically relevant to both the realizability problem and the controller synthesis

problem.

The work [40] investigates the realizability problem for linear time spec-

ifications but considers the issue of partial observation. Namely, a strategy

sees only executed actions that belong to a prescribed set of observable action

alphabet.

The work [38] considers the controller synthesis problem for branching

time specifications given as CTL (computation tree logic), CTL? ([21]) for-

mulae. A strategy is winning iff the computation tree generated from the

controlled plant satisfies the given CTL or CTL? formula.

The work [48] studies controller synthesis for branching time specifica-

tions that are given as transition systems. A strategy is then said to be

winning iff there is a behaviour-preserving simulation from the controlled

branching time behaviour of the plant to the tree unfolding of the specifica-

tion. The results of [48] were extended to bisimulations in [50].

In the control theory community, supervisory control of discrete event

systems (DESs) is initiated by [65, 66]. A DES operates in accordance with

abrupt occurrences at possibly unknown and irregular intervals, of physically

events. Events in a DES are classified as controllable (which can be disabled)

and uncontrollable (which can not be disabled). Hence a DES can be viewed

as an open system. A supervisory controller is a function which disables

certain controllable events at each stage, based upon the history of event

occurrences. The supervisory control problem is to seek a controller such

that no matter how the environment behaves, the controlled behaviour of
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the DES satisfies the specification. For a survey on supervisory control of

DESs, we refer to [67].

The literature on supervisory control of DESs are mostly concerned with

specifications that dictate finite behaviours. Also the specification is usually

stated in terms of the plant itself. For example, certain bad state should be

avoided or certain marked state should be reached and so on. The focus of

the control theory community is on simple subclasses of supervisory control

problems for which there exist tractable synthesis schemes. The complica-

tions in the settings where supervisory control was investigated mainly come

from partial observation, where the controller has limited power of observ-

ing the plant; least restrictive controllers that pose least restriction on the

plant; and decentralized control, where the plant is monolithic but one seeks

a collection of controllers, each controlling a subset of actions; and so on.

In contrast, the computer science community mainly deals with specifi-

cations that talk about infinite behaviours. And often the specification is

independent of the plant. The computer science community concentrates on

investigating decidability and undecidability results.

1.3. Contributions

The goals of this thesis are to investigate controller synthesis problems

in distributed, real-time and hybrid settings.

Distributed Setting

Distributed controller synthesis was initiated in [62] where a distributed

plant is represented as an architecture consisting of a set of local sites con-

nected through fixed communication channels. And each local site may

communicate with its local environment also through fixed channels. To

be precise, the work [62] studies the distributed realizability problem. This

problem is: given a specification and an architecture, is there a family of

programs, one for each local site, such that the collective behaviour satisfies
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the specification. Technically, the distributed realizability problem is closely

related to the distributed controller synthesis problem, in the sense they can

be often be solved using similar tools. It was shown in [62] that for linear

time specifications, the distributed realizability problem is undecidable even

for the simple architecture that consists of just two sites that do not have

any communication channels between them. Since then, decidability results

in distributed realizability and distributed controller synthesis for various

subclasses of architectures have been obtained in [39, 49, 62].

Another line of work in distributed controller synthesis assumes a dis-

tributed plant to be given as a network of sequential processes of communi-

cating with each other by synchronizing on common actions. The problem

is then to find a distributed controller such that the collective controlled

behaviour of the distributed plant meets the specification. A distributed

controller consists of a family of local strategies, one for each process. The

local strategy for p should recommend moves for p based on knowledge about

actions of p as well as knowledge on actions executed by other processes that

p comes to know via synchronizations, directly or indirectly.

In this line of work that processes communicate via synchronizations on

common actions, one obtains decidability results by imposing restrictions on

local strategies [51] and also by restricting the trace alphabet associated with

the distributed plant [26]. In fact, the work [26] shows decidability results

only for specifications that concern finite behaviours. On the other hand,

since we study controller synthesis for reactive systems, we are interested

only in specifications that talk about infinite behaviours.

In this thesis, we are interested in distributed controller synthesis where

the distributed plant consists of processes communicating via synchroniza-

tions on common actions. We believe that this framework is more widely

applicable for modelling practical distributed protocols, than the framework

of an architecture. The reason is that in many distributed protocols, whether
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a process would communicate with another process and what the content of

this communication would be, depend crucially on the current local state of

the process. The architecture framework is not flexible because it demands

that a local site (process) keeps reading to and writing from fixed channels

at each state.

We shall model distributed plants based on asynchronous transition sys-

tems. We place restrictions on the communication patterns of distributed

plants and study its consequence on the decidability of the distributed con-

troller synthesis problem.

We identify the subclass of connectedly communicating asynchronous

transition systems. We say an asynchronous transition system is connectedly

communicating, iff there exists a bound k such that for every process p, q,

if process p executes k steps without hearing from q, directly or indirectly,

then it will never hear from q again, directly or indirectly. By connectedly

communicating processes (CCPs), we refer to the subclass of connected com-

municating asynchronous transition systems. CCPs can model naturally dis-

tributed protocols where processes communicate frequently with each other

so that they maintain bounded loss of status on each other. Further, if the

loss of process p on the status of q exceeds the given bound, then p will

never obtain any further information about q. This kind of phenomenon

often occurs in distributed protocols where if one process tries to establish

links with another process, then it would give up after at most n attempts

for some fixed integer n. For illustrative purpose, we shall give a natural ex-

ample of connectedly communicating processes in section 3.5, which models

two processes exchanging data through two buffers.

As noted in section 1.1, the foundation for solving many sequential con-

troller synthesis problems is the logical result that the MSO theory of the

tree unfolding of a sequential system is decidable. Note that the tree un-

folding of a sequential system represents its branching time behaviour. The
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non-interleaved branching time behaviour of a CCP is given by its event

structure unfolding [18]. One can define naturally an MSO logic over event

structures. To provide the foundation for distributed controller synthesis

associated with CCPs, we prove the logical result that the MSO theory of

the event structure unfolding of every CCP is decidable. Using this strong

logical result, we then establish decidability results of distributed controller

synthesis problems associated with CCP plants for both robust linear time

specifications and branching time specifications. We emphasize that this log-

ical result is also of independent interest for model checking of distributed

protocols that can be modelled as CCPs.

A linear time specification is an ω-regular language. A distributed con-

troller is said to satisfy a linear time specification L iff every infinite run of

the controlled plant is in L. We say the linear time specification L is robust

iff it does not discriminate two different linearizations of the same partially

ordered execution. Namely, if an infinite run σ is in L, and the infinite run

σ′ is in fact arising from the same partially ordered execution as σ, then σ ′

must also be in L. We show that: Given a CCP distributed plant and a

robust linear time specification, one can effectively determine whether there

exists a distributed controller. Further, if such a distributed controller exists,

then a finite state one can be effectively synthesized in the form of a CCP.

A branching time specification for a CCP distributed plant is a formula

in the MSO logic of the event structure unfolding of the CCP plant. A dis-

tributed controller is said to satisfy such a branching time specification ϕ, iff

ϕ is true in the “sub-event structure” resulting from the overall controlled be-

haviour of distributed plant. We show that: Given a CCP distributed plant

and a branching time specification, one can effectively determine whether

there exists a distributed controller. Further, if such a distributed controller

exists, then a finite state one can be effectively synthesized in the form of a

CCP.
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On the negative side, we show that the distributed controller synthesis

associated with CCP distributed plants is undecidable for linear time speci-

fications that are allowed to be non-robust.

We also study the strict distributed controller synthesis problem where

one seeks a strict distributed controller. A strict distributed controller con-

sists of a family of strictly local strategies, one for each process. A strictly

local strategy for p should recommend moves for p, based on only the his-

tory of actions executed by p. We show that the strict distributed controller

synthesis with CCP distributed plants is undecidable for linear time specifi-

cations, even if they are robust.

Real-Time Setting

We next investigate controller synthesis in real-time settings. There have

been a number of studies that extend results on sequential controller synthe-

sis to timed settings [9, 13, 19, 53]. We however are interested in real-time

systems with tasks. We emphasize that the correctness of many real-time

systems depends not only on the timely occurrence of events, but also on

the proper handling of computation tasks triggered by events.

Our aim is to study the problem of synthesizing admission controllers for

real-time systems with tasks. In many real-time computing environments,

there are some tasks that are time-critical and others that are not. To ensure

that every critical task is completed before its deadline, it may be necessary

to deny entry into the ready queue for some non-critical tasks. We address

this problem in the framework of controller synthesis. The environment’s

moves are the releases of task instances. Upon each newly released task

instance, there are two choices available to the system, one is to accept

it and hence putting it into the ready queue, and the other is to reject

(discard) it. The goal is to come up with an admission controller such

that no accepted task instance misses its deadline. And the task acceptance
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patterns generated by the admission controller satisfies a quality-of-service

(QoS) specification.

We follow the approach in [24] of modelling the task arrival pattern in a

real-time environment as a timed automaton ([7]) extended with tasks. Each

task is associated a computation time and a relative deadline. We assume

the uniprocessor setting with the preemptive EDF (earliest-deadline-first)

scheduling policy.

Since we are dealing with reactive real-time systems, we consider QoS

specifications that are given as LTL formulae, and more generally, quantified

propositional LTL (QPLTL) formulae [21].

The admission controller synthesis problem can be more precisely stated

as: Given a task plant based on timed automata with tasks and a QoS

specification in LTL or QPLTL, does there exist an admission controller?

We show that this problem is decidable for QoS specifications in LTL and in

QPLTL. In both cases, we show further that if such an admission controller

exists, then we can effectively synthesize one in the form of a (finite) timed

automaton.

Using LTL formulae, we can specify that a task τ is hard by asserting

that every instance of τ must be accepted. We can also specify qualitative

QoS requirements that will typically assert liveness properties and fairness

properties. For instance, we can say, along every infinite run, instances of

task τ must be accepted infinitely often, if they are released infinitely often.

One can also say that, if instances of task τ are accepted infinitely often,

then instances of task τ ′ must also be accepted infinitely often, assuming

that instances of both τ , τ ′ are released infinitely often.

More interestingly, one can also express in LTL quantitative QoS require-

ments that has a “boundedness” flavour. For instance, for a fixed integer n,

we can assert in LTL that among every consecutive n arrivals of instances

of task τ , at least 0.7n of them must be accepted.
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In QPLTL, we can also express QoS properties like, for a fixed n, every

n-th instance of τ must be accepted, while other instances of τ may or may

not be accepted. This property is not expressible in LTL [80].

However, we do not know how to use LTL or QPLTL to capture quan-

titative QoS requirements that concern the limit average behaviour of task

acceptance patterns. For example, such a QoS property may demand that

the limit of the average acceptance ratio of instances of task τ is at least 0.7.

We believe that tools from quantitative games [20, 82] would provide good

starting points for handling such QoS properties.

Hybrid Setting

A hybrid automaton models a digital control system interacting with a

continuous environment. The environment is captured by finitely many real-

valued variables. The digital system measures the values of these variables

through sensors and updates the rates of evolution of these variables via

actuators. Basically, a hybrid automaton is a finite transition system, whose

states are typically called control states, augmented with finitely many real-

valued variables. At each control state, the variables evolve according to

some differential equation. The variables would usually be governed by dif-

ferent equations in different control states. A transition is associated with

a guard in terms of the variables and can be taken only when the guard is

true. The most basic question about a hybrid automaton is the reachability

problem, which is to determine whether a designated control state can ever

be reached.

In the continuous time semantics, a transition may be taken at any real-

valued time provided its associated guard is true. This endows hybrid au-

tomata with very rich behaviour, and consequently, the reachability problem

is undecidable even for simple subclasses of hybrid automata where each vari-

able evolves at constant rates [32] (dx/dt = c). Decidability results on the
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reachability problem are obtained in [6, 32, 42, 43] for the variant of hy-

brid automata which have the feature that values of continuous variables are

reset during mode switches. We believe that the resetting feature severely

limits the kind of practical control systems that can be modelled, since the

essential feature of control systems is that one can only affect the values of

variables by changing their evolution rates. In [35], the reachability problem

is shown to be decidable for a subclass of hybrid automata where the rates

of variables are constant and with a strong restriction on the structure of

the transition relation.

On the other hand, [30] proposes the discrete time semantics which de-

mand that transitions can only be taken at integer-valued time instants.

With the discrete time semantics, [30] shows that the reachability problem

is decidable for the class of hybrid automata where the rate of each variable

could be any constant from a given interval, and the values of variables are

within a prescribed range.

With the discrete time semantics, [3, 4] show further that the control

state sequence language is regular for classes of hybrid automata with two

key features. One is that variables evolve at constant rates. The other is

that both sensing of values of variables and updating of rates of variables

can take place within bounded delays from the integer time points.

We propose a class of hybrid automata, which we call restricted differen-

tial hybrid automata (RDA). Its key feature is that variables can evolve at

either constant rates, or exponential rates (dx/dt = c · x). As in [3, 4], we

adopt the discrete time semantics, but allow bounded delay in both sensing

of values of variables and updating of rates of variables. We prove that the

control state sequence language of an RDA is regular. This regularity re-

sult provides the foundation for studying controller synthesis problems with

RDAs, though it is also of independent interest for model checking of RDAs.

In [2], it is shown that the control state sequence languages for a variant
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of RDAs are regular. However, [2] does not study the controller synthesis

problem.

We view an RDA naturally as a plant, which describes the possible inter-

actions of the control system and the continuous environment. At each dis-

crete time instant, a strategy for the plant should advise the system whether

to stay at the current control state, or to move to other control states and

to which ones. As usual, the strategy should recommend only moves that

are possible as determined by the values of the continuous variables and

transition guards.

We study linear time specifications given as LTL formulae, or more gen-

erally QPLTL formulae. Such a specification dictates the desired subset of

infinite control state sequences. A strategy is winning with respect to an LTL

or QPLTL formula ϕ iff every infinite control state sequence generated by

the controlled plant satisfies ϕ. By a controller, we mean a winning strategy.

We show that: if there is no delay associated with sensing, then the con-

troller synthesis problem for LTL specifications is decidable. Further, if a

controller exists, then we can effectively synthesize one in the form of a (fi-

nite) RDA. These results also hold for QPLTL specifications. We emphasize

that though sensing delays are prohibited, update delays are allowed.

We do not know how to settle the controller synthesis problem for RDAs

when sensing delays are present. The key obstacle is that in such case, a

strategy has incomplete information about the variables of the RDA.

Parts of the results on distributed controller synthesis were joint work

with P. Madhusudan and P. S. Thiagarajan, and were published as [52].

Parts of the results on synthesis of admission controllers for real-time sys-

tems with tasks were jointly obtained with P. S. Thiagarajan and Wang Yi.

The regularity result for RDAs is closely related to the joint work [2] with

Manindra Agrawal, Frank Stephan and P. S. Thiagarajan.
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1.4. Thesis Organization

In the next chapter, we review some preliminaries of automata and logics

over infinite words and infinite trees. We also give a precise formulation of

a basic controller synthesis problem in a sequential setting.

In chapter 3, we investigate the distributed controller synthesis for CCP

plants. We prove that the MSO theory of the event structure unfolding of

every CCP is decidable. Using this logical result, we obtain decidability re-

sults of distributed controller synthesis for CCP plants for both robust linear

time specifications and branching time specifications. In both cases, we show

further that, if a distributed controller exists, then we can effectively syn-

thesize a finite state one. On the negative side, we show that the distributed

controller synthesis problem for CCP plants is undecidable for linear time

specifications that are allowed to be non-robust. We also show that the strict

distributed controller synthesis problem for CCP plants is undecidable for

linear time specifications, even if they are robust.

In chapter 4, we study the synthesis of admission controllers for real-

time systems with tasks. We prove that, given a task plant based on timed

automata extended with tasks and a QoS requirement in LTL or QPLTL,

we can effectively determine whether there exists an admission controller.

Further, in case such an admission controller exists, then we can effectively

synthesize one in the form of a (finite) timed automaton.

In chapter 5, we consider controller synthesis in hybrid settings. We show

that the language of control state sequences of an RDA is regular. Using

this regularity result, we prove that, if there is no sensing delay, then the

controller synthesis problem for RDAs is decidable for LTL and QPLTL spec-

ifications. Further, if a controller exists, then we can effectively synthesize

one in the form of a (finite) RDA.

In the concluding chapter, we discuss prospects of future directions.



CHAPTER 2

Automata, Logics, Controller Synthesis

In this chapter, we review basic materials of automata over infinite words

and infinite trees in section 2.1, and logics over infinite words and trees in

section 2.2. The purpose is mainly to fix notations and terminologies. The

tools in section 2.1 and 2.2 will be used in the next three chapters in one way

or another. Finally, in section 2.3, we give a formulation of a basic controller

synthesis problem in sequential settings with linear time specifications. This

is just to illustrate the various notions of controller synthesis in a precise

manner.

2.1. Automata on Infinite Words and Infinite Trees

Here we review automata running over infinite words and infinite trees.

We shall need only automata with Büchi and Rabin acceptance conditions.

For a detailed reference, we recommend [73].

In what follows, we fix Σ to be a finite alphabet. Let Σω denote the set

of infinite words (ω-words) over Σ. A non-deterministic Büchi automaton

over Σ is a structure B = (Q, qin ,Σ, ↪→, F ) where Q is a finite set of states,

qin ∈ Q the initial state, ↪→ ⊆ Q×Σ×Q the transition relation and F ⊆ Q

the set of accepting states. Let σ = a0a1 . . . be in Σω. A run of B over σ

is an infinite sequence ρ = q0q1 . . . , where qi ∈ Q for i = 0, 1, . . . , such that

q0 = qin , and qi
ai
↪→ qi+1 for i = 0, 1, . . . . The run ρ is accepting iff for some

q̂ ∈ F , q̂ occurs in ρ infinitely often, that is, there exist infinitely many i

with qi = q̂. We say σ is accepted by B iff there exists an accepting run of

B over σ. The language of B is the set of ω-words over Σ that are accepted

17
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by B. We say B is deterministic iff for each s ∈ S, a ∈ Σ, there is at most

one s′ ∈ S with s
a
↪→ s′.

A non-deterministic Rabin automaton over Σ is a structure R = (Q, qin ,

Σ, ↪→,F) where Q, qin , ↪→ are as those of a Büchi automaton, while F =

{(E1, F1), (E2, F2), . . . , (Ek, Fk)} is a set of accepting pairs, where Ei, Fi are

subsets of Q. Let σ be in Σω. The notion of ρ in Qω being a run of R over

σ is defined in the same way as for Büchi automata. However, we say ρ is

accepting iff for some accepting pair (E`, F`) in F , it is the case that every

state in E` occurs in ρ only finitely often, while some state in F` occurs in

ρ infinitely often. More precisely, we say a state q̂ occurs in ρ = q0q1 . . .

finitely often iff there exists i in {0, 1, . . . } such that qj 6= q̂ for every j > i.

As usual, we say R accepts σ iff there exists an accepting run of R over

σ. The language of R is defined in the obvious way. We define deterministic

Rabin automata in the same way as for deterministic Büchi automata. We

also note that a non-deterministic Büchi automaton can be viewed as a non-

deterministic Rabin automaton in the obvious way.

Languages accepted by non-deterministic Büchi automata are called ω-

regular languages. By a regular subset of Σω, we shall mean an ω-regular

language over Σ. It is known that the class of languages accepted by non-

deterministic Rabin automata and the class of languages accepted by deter-

ministic Rabin automata are the same and are both equal to the class of

ω-regular languages. However, there exist ω-regular languages that can not

be accepted by any deterministic Büchi automaton.

Next we review infinite trees and automata running over Σ-labelled infi-

nite trees. We fix a finite alphabet Γ in what follows. Let Γ? denote the set

of (finite) words over Γ. A Γ-tree is a prefix-closed regular subset of Γ?. Ele-

ments of T are nodes with ε being the root. In particular, we call Γ? the full

Γ-tree. We shall define tree automata with respect to Γ-trees. This differs

from standard treatment of tree automata in the literature which typically
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deals with only the full Γ-tree ([73]). However, one can easily see that our

definition involves no loss of generality.

Let T be a Γ-tree. For a node w in T , we define the set of successors of

w, denoted SuccT (w), to be the set {wv ∈ T | v ∈ Γ}. We will implicitly

assume the Γ-trees we encountered are such that every node has a nonempty

set of successors. A path of T is a subset π ⊆ T satisfying that ε ∈ π and

every node in π has exactly one successor in π. Note that a path must be an

infinite set of nodes. Abusing notation, we will often write the path π as the

infinite sequence d0d1 . . . in Γω in the sense that the set of finite prefixes of

d0d1 . . . is precisely π. The direction of a node w, denoted dir(w), is defined

as follows. dir(ε) is a special element $ /∈ Γ. For wv ∈ T , where v ∈ Γ, we

set dir(wv) = v.

A Σ-labelled Γ-tree is a pair (T, η), where T is a Γ-tree and η : T → Σ a

labelling function. We say T is the underlying tree of (T, η). In what follows,

we fix Γ and a Γ-tree T .

A non-deterministic Büchi tree automaton B over Σ-labelled Γ-trees

(whose underlying tree is T ) is a structure (Q, qin ,Σ, ↪→, F ) where Q is a

finite set of states and qin ∈ Q the initial state. For Γ′ ⊆ Γ, let Fun(Γ′, Q)

denote the set of functions from Γ′ to Q. The transition relation ↪→ is a

subset of Q × Σ ×
⋃

Γ′⊆Γ Fun(Γ′, Q). Lastly, F ⊆ Q is the set of accepting

states.

Let (T, η) be a Σ-labelled Γ-tree. A run of B over the (T, η) is aQ-labelled

Γ-tree (T, ρ) which satisfies:

• ρ(ε) = qin .

• For every node w in T , there exists a transition q
a
↪→ χ such that

q = ρ(w), a = η(w) and χ is a function from the set {dir(w′) | w′ ∈

SuccT (w)} to Q which satisfies: for each w′ in SuccT (w), we have

ρ(w′) = χ(dir(w′)).
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Intuitively, if B is at state q while encountering a node v in T, then B reads

the label of v (dictated by η) and propagates a copy of itself to the successor

nodes of v simultaneously. The run (T, ρ) is accepting iff for every path

d0d1 . . . in T , there exists a state q̂ ∈ F which occurs infinitely often in

q0q1 . . . , where qi = ρ(d0d1 . . . di) for i = 0, 1, . . . . We say (T, η) is accepted

by B iff there exists an accepting run of B over (T, η). By the language of

B, we mean the set of Σ-labelled Γ-trees (whose underlying tree is T ) that

are accepted by B.

We say the Büchi tree automaton B is deterministic iff for every q ∈ Q,

a ∈ Σ, there exists at most one χ in
⋃

Γ′⊆Γ Fun(Γ′, Q) with q
a
↪→ χ.

A non-deterministic Rabin tree automaton B over Σ-labelled Γ-trees

(whose underlying tree is T ) is a structure (Q, qin ,Σ, ↪→,F) where Q, qin ,

↪→ are as those for non-deterministic Büchi tree automata, while F =

{(E1, F1), (E2, F2), . . . , (Ek, Fk)} is a set of accepting pairs, where Ei, Fi

are subsets of Q.

As expected, runs of R over an input tree (T, η) are defined in the same

way as non-deterministic Büchi tree automata. However, we say the run

(T, ρ) is accepting iff every path d0d1 . . . of T satisfies the following property:

for some accepting pair (E`, F`) in F , we have that every state in E` occurs

only finitely often in q0q1 . . . , where qi = ρ(d0d1 . . . di) for i = 0, 1, . . . , while

some state in F` occurs in q0q1 . . . infinitely often. As usual, we say R accepts

the input tree (T, η) iff there exists a run of R over (T, η). The language of

R is defined in the usual way.

Deterministic Rabin tree automata are defined in the same way as for

deterministic Büchi tree automata. We also note that a non-deterministic

Büchi tree automaton can be trivially viewed as a non-deterministic Rabin

tree automaton.

It is known that non-deterministic Rabin tree automata and deterministic

Rabin tree automata have the same expressive power. In other words, given
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a non-deterministic Rabin tree automaton R, there exists a deterministic

Rabin tree automaton R′ such that R and R′ accepts the same set of trees.

However, non-deterministic Büchi tree automata is strictly less expressive

than non-deterministic Rabin tree automata.

Two Σ-labelled Γ-trees are said to be isomorphic iff there exists a bijective

mapping between the nodes such that the labels are preserved. Suppose

(T, η) is a Σ-labelled Γ-tree. Let w be a node. The subtree of (T, η) rooted

at w, denoted (Tw, ηw), is given by: Tw = {u | wu ∈ T} and ηw(u) = ηw(wu).

We say (T, η) is regular iff it has finitely many isomorphic subtrees.

By Rabin’s tree theorem [63], given the Rabin tree automaton R over

Σ-labelled Γ-trees (whose underlying tree is T ), one can effectively determine

whether the language of R is nonempty. Moreover, if the answer is positive,

then the nonemptiness testing algorithm also produces a regular Σ-labelled

Γ-tree (T, η) that is accepted by R.

2.2. Logics over Infinite Words and Infinite Trees

In this section, we introduce logics over infinite words and infinite trees.

We shall need only LTL (linear time temporal logics) and QPLTL (quantified

propositional LTL) over infinite computation sequences, and the monadic

second order (MSO) logics over infinite trees. For detailed references, we

recommend [21] for LTL and QPLTL, and [73] for MSO logics over infinite

trees.

In what follows, we fix a finite set of atomic propositions AP . The set of

LTL formulae over AP , denoted LTL(AP), is defined inductively as follows:

• If p ∈ AP , then p is in LTL(AP).

• If ψ, ψ′ are in LTL(AP), then so are ∼ ψ, ψ∨ψ′, X (ψ), and ψU ψ′.
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Intuitively, X stands for “next” and U “until”. Common derived opera-

tors ♦ (“future”) and � (“globally”) can be defined as: ♦ϕ = true U ϕ; and

�ϕ =∼ (♦ (∼ ϕ)).

Models for LTL(AP) are infinite sequences over 2AP . Let σ = α0 α1 . . .

be in (2AP)ω. Set σ(i) = αi for i = 0, 1, . . . . The notion that the LTL

formula ψ being satisfied by σ at position i, denoted σ, i |= ψ, is defined

inductively as follows:

• σ, i |= p iff p ∈ σ(i).

• σ, i |= ∼ ψ iff it is not the case that σ, i |= ψ.

• σ, i |= ψ ∨ ψ′ iff σ, i |= ψ or σ, i |= ψ′.

• σ, i |= X (ψ) iff σ, i+ 1 |= ψ.

• σ, i |= ψ U ψ′ iff there exists j > i such that σ, k |= ψ for every k

with i ≤ k < j and σ, j |= ψ′.

Now we say that σ is a model of ψ iff σ, 0 |= ψ.

The size of a formula ψ in LTL(AP) is denoted |ψ| and is defined induc-

tively as follows:

• |p| = 1 for p ∈ AP .

• | ∼ ψ| = 1 + |ψ| and |ψ ∨ ψ′| = |ψ| + |ψ′| + 1.

• |X (ψ)| = 1 + |ψ| and |ψ U ψ′| = |ψ| + |ψ′| + 1.

We note that ([78]), given a formula ψ in LTL(AP), one can effectively

construct a non-deterministic Büchi automaton Bψ over 2AP with the fol-

lowing property: for every σ in (2AP)ω, σ is accepted by Bψ iff σ is a model

of ψ. And Bψ will have 2O(|ψ|) states.

The set of QPLTL formulae over AP , denoted QPLTL(AP), is defined

inductively as follows:

• If p ∈ AP , then p is in QPLTL(AP).

• If ψ, ψ′ are in QPLTL(AP), then so are ∼ ψ, ψ ∨ ψ′, X (ψ), and

ψ U ψ′.

• If ϕ is in QPLTL(AP) and p ∈ AP , then ∃p. ϕ is in QPLTL(AP).
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Thus QPLTL(AP) is a proper superset of LTL(AP). As with LTL, mod-

els for QPLTL are infinite sequences over 2AP . Let σ = α0 α1 . . . be in

(2AP)ω. Set σ(i) = αi for i = 0, 1, . . . . The notion that the QPLTL formula

ψ being satisfied by σ at position i, denoted σ, i |= ψ, is defined inductively

as follows:

• The cases of p, ∼ ψ, ψ ∨ ψ′, X (ψ), ψ U ψ′ are defined in the same

way as LTL(AP).

• σ, i |= ∃p. ψ iff there exists σ′ in (2AP)ω such that σ′, i |= ψ and

σ′ differs from σ in at most the truth value of p. More precisely,

let σ′ = α′
0 α

′
1 . . . with σ′(i) = α′

i for i = 0, 1, . . . , then for every

i = 0, 1, . . . , for every q ∈ AP , q is in σ(i) iff q is in σ′(i).

It is known that QPLTL is strictly more expressive than LTL [80]. For

example, the QPLTL formula

∃q (q ∧ X (∼ q) ∧�(q → X (X (q))) ∧�(q → p))

asserts that p holds at all even indices, while p may or may not hold at odd

indices. In general, for a fixed integer n > 1, one can construct a QPLTL

formula Φn, which asserts the property that p holds at all indices that are

multiples of n, while p may or may not hold at other indices. The formula

Ψn will quantify over dlog2 ne atomic propositions and use them to “count”

periodically from 0 to n − 1. It can be proved [80] that for any n > 1, the

Ψn is asserting can not be expressed in LTL, that is, there is no formula ψ

in LTL(AP) such that the set of models of ψ is equal to that of Ψn.

It is known that QPLTL has the same expressive power as the class of

ω-regular languages [21]. In other words, for any ω-regular language L over

2AP , one can effectively construct a formula in QPLTL(AP) such that L

is precisely the set of models of QPLTL(AP). Conversely, for any formula

ψ in QPLTL(AP), one can effectively construct a non-deterministic Büchi

automaton B over 2AP such that the language of B is precisely the set of

models of ψ.
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In what follows, we fix a finite alphabet Σ. We next introduce the

monadic second order (MSO) logic of n-successors (n = |Σ|) interpreted

over the full Σ-tree TR = Σ?, denoted MSO(Σ). The syntax is given by:

MSO(TR) ::= succa(x, y) | x ∈ X | ∃x (ϕ) | ∃X(ϕ) | ∼ ϕ | ϕ′ ∨ ϕ′ ,

where a ranges over Σ. As usual, x, y, . . . are individual variables and

X,Y, . . . are set variables. An interpretation of TR assigns to every in-

dividual variable a member of Σ? and to every set variable a subset of Σ?.

For an interpretation I of TR, we have TR |=I succa(x, y) iff σa = σ′ where

σ = I(x), σ′ = I(y). With this, the semantics of MSO(TR) is clear ([73]).

As usual, sentences are formulae that do not have free individual or set vari-

ables. By the MSO theory of TR, we shall mean the set of sentences in

MSO(TR) that evaluate to true in TR.

Rabin’s famous result [63] states that the MSO theory of 2-successors is

decidable. It follows easily that the MSO theory of n-successors interpreted

over TR is decidable. That is, given any sentence ϕ in MSO(TR), we can

effectively determine whether ϕ is true. This forms the foundation for model

checking [17] and controller synthesis problems in sequential settings.

The key ideas for establishing the decidability of MSO(TR) are as follows.

Firstly, models of formulae can be view as certain labelled trees. Secondly, for

a formula ϕ in MSO(TR), one can effectively construct a non-deterministic

Rabin tree automaton R which accepts precisely the set of models of ϕ.

Finally, by Rabin’s tree theorem [63], we can effectively test whether the

language accepted by a tree automaton is nonempty.
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2.3. Controller Synthesis

In this section, we give a formal introduction to controller synthesis in a

basic sequential setting where the plant model is based on a finite transition

system and the specification is an LTL formula.

A plant A is a structure (Qe, Qs, qin ,−→,AP , λ), where Qe, Qs are dis-

joint finite sets of environment states and system states. qin ∈ Qe is the

initial state. −→ ⊆ (Qe × Qs)
⋃

(Qs × Qe) the transition relation. AP is a

set of atomic propositions, and λ : {Qe ∪Qs} → 2AP is a labelling function

that maps each environment or system state to a subset of atomic propo-

sitions. Intuitively, A describes the possible interactions of an open system

against its environment, where for each state s, the set λ(s) represents atomic

propositions that are true in s. Figure 2.1 shows a plant, where environment

states indicated by circles and system states drawn as boxes. The inscription

of each state s is the set of atomic propositions λ(s).

A specification is an LTL formula ψ over AP . In what follows, we fix the

plant A and the specification ψ.

p

q,r

q

p,r

r

Figure 2.1. A plant

For a state q ∈ Qe, we define Move(q) = {q′ ∈ Qs | q −→ q′}. In other

words, Move(q) is the set of possible moves that the environment may take

at state q. Similarly, for q ∈ Qs, we define Move(q) = {q′ ∈ Qe | q −→ q′}.

Intuitively, Move(q) is the set of moves available to the system at q. Without

loss of generality, we will assume Move(q) 6= ∅ for every q ∈ Qe ∪Qs.

A play of A is a finite sequence q0q1 . . . qn over Qe∪Qs, such that q0 = qin

and qi −→ qi+1 for i = 0, . . . , n− 1. We let Play(A) denote the set of plays
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of A. We are now ready to define strategies. A strategy for A is a function

f : Play(A) → 2Qe∪Qs such that for every play ρ = q0q1 . . . qn, we have:

• If qn ∈ Qe, then f(ρ) = Move(qn).

• If qn ∈ Qs, then f(ρ) ⊆ Move(qn).

The first condition states that f does not restrict the environment’s moves

in any way. The second condition demands that f only recommends moves

among the structurally possible ones indicated by the plant.

The notion of a play being according to a strategy f is defined inductively

as follows:

• ε is according to f .

• If ρ is according to f and q ∈ f(ρ), then ρ q is according to f .

We say the strategy f is non-blocking iff every play according to f can be

extended to a longer one that is also according to f . Note that our notion

of non-blocking is different from and in fact weaker than that of supervisory

control of discrete event systems studied in the control community ([67]).

An infinite play of A is an infinite sequence ρ over Q such that every

finite prefix of ρ is a play of A. The infinite play ρ is said to be according

to a strategy f iff every finite prefix of ρ is according to f .

Let ρ = q0 q1 . . . be an infinite play. We say ρ is a model of ψ iff the

infinite sequence λ(q0)λ(q1) . . . over 2AP is a model of ρ. We say the strategy

f is ψ-winning iff f is non-blocking and every infinite play according to f is

a model of ψ.

The sequential controller synthesis problem can now be stated: Given the

pair (A, ψ), where A is a plant and ψ is a specification, can one effectively

determine whether there exists a ψ-winning strategy for A?

The following result is well-known in the literature (for instance, see [14,

74]).
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Proposition 2.1. Given the pair (A, ψ), where A is a plant and ψ is a

specification, one can effectively determine whether there exists a ψ-winning

strategy.

Further, if the answer is positive, then one can effectively construct a

finite state ψ-winning strategy f̂ presented in the form of a finite transition

system C. And the parallel composition of C and A will produce only infinite

plays according to f̂ .

Instead of LTL, one can also consider a specification L to be an ω-regular

language over Qe ∪ Qs. Such a specification L may be presented as a non-

deterministic Büchi automaton. We define that a strategy f is winning for

L iff f is non-blocking and every infinite play according to f is in L. We

remark that proposition 2.1 also holds if the specification is an ω-regular

language over Qe ∪Qs, instead of an LTL formula.



CHAPTER 3

Distributed Controller Synthesis for Connectedly
Communicating Processes (CCPs)

The subject of this chapter is controller synthesis in distributed settings.

We are mainly interested in distributed controller synthesis problems asso-

ciated with a subclass of distributed systems which we called connectedly

communicating processes (CCPs). Section 3.1 gives an overview of the CCP

model and our results. Subsequently, we present related work in section 3.2.

In section 3.3, we formulate the CCP model based on asynchronous tran-

sition systems. As the foundation for distributed controller synthesis, we

prove, in section 3.4 that the MSO (monadic seconder order) theory of the

event structure unfolding of every CCP is decidable, where the event struc-

ture unfolding of a CCP represents its non-interleaved branching time be-

haviour. We note that this logical result is also of independent interest for

verification of distributed systems that can be modelled as CCPs.

We next formulate a model of distributed plants based on CCPs, in

section 3.5. We then show, in section 3.6, that the distributed controller

synthesis problem for CCP plants is decidable for robust linear time specifi-

cations and branching time specifications given as formulae in the MSO logic

of the event structure unfolding of the CCP plant. By a robust linear time

specification, we mean one that does not discriminate between two different

linearizations of the same partially ordered execution. For both kinds of

specifications, we prove further in section 3.7 that, if a distributed controller

exists, then a finite state one can be effectively synthesized as a CCP.

28
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On the negative side, we show in section 3.8 the distributed controller

synthesis problem with CCP plants is undecidable for linear time specifica-

tions that are allowed to be non-robust. In addition, we also show that the

strict distributed controller synthesis problem with CCP plants is undecid-

able for linear time specifications, even if they are robust.

We conclude with prospects of future directions in section 3.9.

3.1. Overview

Informally, the distributed controller synthesis problem is: Given a dis-

tributed plant and a specification of desired behaviour, determine whether

there exist a family of local strategies, one for each component of the dis-

tributed plant, such that the collective controlled behaviour satisfies the

specification. The problem have been studied in the literature under sev-

eral different frameworks, varying mainly according to the model of the dis-

tributed plant, the kind of specifications and the type of local strategies.

We follow the framework of modelling the distributed plant using asynchro-

nous transition systems and that the local strategies are view-based. And

we study linear time and branching time specifications. In what follows, we

make precise our framework and outline our results. In the next section, we

will discuss in details related work in our framework and in various other

frameworks.

A distributed plant is a family of communicating sequential open reac-

tive systems (which we called processes), each of which interacts with its

local environment. We shall model a distributed plant based on a (finite)

asynchronous transition system, which consists of a family of sequential tran-

sition systems that communicate by synchronizing on common actions. If

an action a involves a subset of processes P , then a is enabled only when

every process in P is ready to execute a. A linear time specification is an



3.1. OVERVIEW 30

ω-regular language over the action alphabet of the distributed plant. Later

we will also discuss branching time specifications.

A local strategy for process p controls the execution of p by restricting, at

each stage of computation, the possible moves of p. It does so based on the

local view of the process p which consists of the history of actions executed

by p as well as actions executed by other processes that p comes to know

via synchronization, directly or indirectly. The local strategy for process

p must not restrict in any way the moves of the local environment of p. A

synchronization action involving a subset of P of processes can be performed

only when it is permitted by all the local strategies of the processes in P .

A family of local strategies, one for each process, is winning for a linear

time specification iff the infinite runs generated by the collective controlled

behaviour fall within the linear time specification. A distributed controller

is a winning family of local strategies.

We also demand that a family of local strategies, one for each process,

is non-blocking in the sense that the distributed plant will not deadlock by

following the local strategies. This does not rule out the possibility that some

(but not all) processes may become deadlocked. However, to demand that

every process will not deadlock, one can place appropriate liveness conditions

in the specification. For instance, we can assert that actions of each process

must occur infinitely often.

As mentioned in section 2.3, to solve controller synthesis for sequential

systems with respect to even linear time specifications, one has to study the

branching time behaviour of sequential systems. This is mainly due to that

the environments’ moves can not be restricted in any way by a strategy. A

sequential system can be modelled by a transition system. The branching

time behaviour of a transition system is defined by its tree unfolding. By the

MSO (monadic second order) logic of a transition system, we mean the MSO

logic of n-successors interpreted over the tree unfolding of the transition
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system. The foundation for solving sequential controller synthesis is the

logical result that the MSO theory of every transition system is decidable,

which follows from Rabin’s famous theorem [63] of the decidability of the

MSO theory of 2-successors.

To study the distributed controller synthesis problem, we set out to inves-

tigate the non-interleaved branching time behaviour of asynchronous tran-

sition systems. The non-interleaved branching time behaviour of an asyn-

chronous transition system is captured by its event structure unfolding. The

event structure consists of events which represent “execution points” of the

asynchronous transition system, and the causality relation (a partial order)

as well as the conflict relation between events. One can also define a natural

MSO logic for event structures in which the causality relation and the con-

flict relation are the non-logical predicates and quantification is carried out

over individual and subsets of events. By the MSO logic of an asynchronous

transition system A, we shall mean the MSO logic of the event structure

unfolding of A. However, it is not the case that the MSO theory of every

asynchronous transition system is decidable. In fact, one can easily construct

a simple asynchronous transition system whose MSO theory is undecidable.

Hence, a logical question of fundamental interest to distributed controller

synthesis is: What is the precise subclass of asynchronous transition sys-

tems for which the MSO theories are decidable?

We provide a partial answer to this logical question by identifying the

subclass of connectedly communicating asynchronous transition systems and

proving that the MSO theory of every connectedly communicating asynchro-

nous transition system is decidable. As the name suggests, the connectedly

communicating criterion requires processes to communicate with each other

frequently. More precisely, we say an asynchronous transition system is

connectedly communicating iff there exists a bound k such that for every

process p, q, if process p executes k steps without hearing from process q
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either directly or indirectly and reaches a state s, then starting from s it

will never hear from q again, directly or indirectly. We note that for a given

asynchronous transition system, one can effectively determine whether it

is connectedly communicating. We shall refer to connectedly communicat-

ing asynchronous transition systems simply as connectedly communicating

processes (CCP). CCPs can model naturally distributed protocols where

processes communicate frequently with each other so that they maintain

bounded loss of status on each other. Further, if the loss of process p on the

status of q exceeds the given bound, then p will never obtain any further

information about q.

Our technique of establishing the decidability of the MSO theories of

CCPs consists of extracting a regular tree from the event structure induced

by a CCP with the nodes of this tree corresponding to the events of the event

structure such that the causality relation are definable in the MSO theory

of trees. This representation is obtained directly and broadly preserves the

structure of the event structure. As might be expected, the decision proce-

dure for determining the truth of a sentence ϕ in the MSO logic of a CCP

is non-elementary in the size of ϕ.

Using our logical result that the MSO theory of every CCP is decidable,

we establish the decidability of the distributed controller synthesis problem

for distributed plants based on CCPs with respect to robust linear time spec-

ifications. By a robust specification, we mean one that does not discriminate

two different interleavings of the same partially ordered execution. In other

words, a robust specification is an ω-regular (Mazurkiewicz) trace language

([18]). More precisely, we prove that, given a CCP plant and a robust lin-

ear time specification, one can effectively determine whether there exists a

distributed controller. This proof is by constructing a sentence in the MSO

theory of the given CCP plant, that asserts the existence of a distributed
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controller. We note that the complexity of this decision procedure is non-

elementary in the size of the linear time specification. Further, we show

that if a distributed controller exists, then we can effectively synthesize one

that consists of a family of finite state local strategies. Such a finite state

distributed controller can be collectively represented also as a CCP.

In fact, the connectedly communicating criterion that we impose on dis-

tributed plants and the robustness requirement that we demand on linear

time specifications are motivated from undecidability results in distributed

controller synthesis. Many undecidability results in distributed controller

synthesis rely on the undecidability of multi-player games with incomplete

information studied in [60]. There are two key ingredients for establishing

this undecidability result. Firstly, the local players (in our case, processes)

may not synchronize frequently and hence can have an unbounded loss of

information on the status of each others’ executions. Secondly, the linear

time specification is allowed to an arbitrary ω-regular language, which may

discriminate different linearizations of the same partially ordered execution.

Our connectedly communicating criterion ensures that processes synchronize

frequently so that the loss of information on the status of each others’ execu-

tions remain bounded. The robustness property we placed on the linear time

specifications prohibits specifications to discriminate different linearizations

of the same partially ordered execution.

Using our decidability result of the MSO theories of CCPs, we also in-

vestigate the distributed controller synthesis problem for distributed plants

based on CCPs with respect to branching time specifications. We consider a

branching time specification to be given by a formula in the MSO logic of the

CCP plant. We say a family of local strategies is winning for such an MSO

formula iff the “sub-event structure” resulting from the overall controlled

branching time behaviour of the distributed plant satisfies the MSO for-

mula. We show that, given a CCP plant and a branching time specification,
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one can effectively determine whether there exists a distributed controller.

We note that the complexity of this decision procedure is non-elementary in

the size of the branching time specification. Further, in case a distributed

controller exists, then a finite state one can be effectively synthesized in the

form of a CCP.

On the negative side, we first show that the distributed controller syn-

thesis problem is undecidable for linear time specifications that are allowed

to be non-robust, even if the distributed plant is based on a CCP.

We show also a negative result concerning distributed controller synthesis

with regard to strictly local strategies. In contrast to a local strategy, we

demand that a strictly local strategy for p should recommend moves for p

based only on knowledge of actions executed by p. In linear time setting, the

strict distributed controller synthesis problem is: given a distributed plant

and a linear time specification, can one determine whether there exists a

family of strictly local strategies such that the infinite runs generated by

collectively controlled plant fall within the linear time specification. We

prove that the strict distributed controller synthesis problem for CCP plants

is undecidable for linear time specifications, even if they are robust. It

would be interesting to also study the strict distributed controller problem

with respect to branching time specifications.

3.2. Related Work

As for related work, we first discuss literature related to our logical result

that the MSO theory of every CCP is decidable. A variety of branching time

logics based on event structures have been proposed in the literature (see for

instance [59] and the references therein). The objectives of these logics are

to extend classical branching time temporal logics over trees (for example,

CTL, CTL? [21]) to event structures that admit efficient model checking

procedures. Since these logics do not deal directly with the MSO theories
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over event structures, they are in general not expressive enough for solv-

ing distributed controller synthesis associated with asynchronous transition

systems.

The work [47] investigates the MSO theories over (regular) event struc-

tures. In our terms, the result in [47], that is closely related to our logical

result, can be stated as follows: the MSO theory of every asynchronous

transition system is decidable provided set quantification is restricted to

conflict-free subsets of events. It is however difficult to exploit this result to

solve distributed controller synthesis problems associated with asynchronous

transition systems. For, as we will see in section 3.6, the set of events corre-

sponding to a family of local strategies will in general contain events that are

in conflict, where these events correspond to the different choices available

to the local environments. This is due to that the local environments’ moves

can not be restricted in any way by the local strategies.

We now turn to more directly related work on distributed controller syn-

thesis. This problem has been studied in both computer science and the

control theory community.

In computer science, there are two main frameworks under which one

studies distributed controller synthesis. The first line of work considers a

distributed plant to be an architecture, which consists of a set of local sites

that communicate via fixed channels; and the other, and in addition the

local sites communicate via fixed channels with local environments. To be

precise, in this setting, the literature studies both the distributed realizabil-

ity problem and the distributed controller synthesis problem. In this setting,

the distributed realizability problem is: Given an architecture and a linear

time or branching time specification, does there exist a collection of local

programs one for each local site, such that the overall behaviour of architec-

ture satisfies the specification? The distributed controller synthesis problem

is: Given an architecture and a collections of local programs, one for each



3.2. RELATED WORK 36

local site, and a (linear time or branching time) specification, does there

exist a collection of local strategies, one for each local site that will restrict

the corresponding local program, such that the overall controlled behaviour

of the local programs satisfies the specification?

The second line of work in distributed controller synthesis, to which our

work belongs, models distributed plants based on asynchronous transition

systems in which processes communicate via synchronization on common

actions.

We begin by reviewing the first line of work in distributed controller syn-

thesis. The work [62] studies the distributed realizability problem with the

notion of architecture. It is reported in [62] that for linear time specifica-

tions, the distributed realizability problem is undecidable even for the simple

architecture consisting of just two sites that do not have any communica-

tion channels between them. This undecidability result has its root in the

undecidability of multi-player games with incomplete information studied

in [60]. It was also shown in [62] that the distributed realizability problem

for linear time specifications is decidable for a small class of architectures,

called hierarchical architectures, in which the local sites are linearly ordered

and information flows in one direction.

The work [39] studied the distributed realizability problem with the no-

tion of architecture but for branching time specifications. The main result

of [39] states that the distributed realizability problem for branching time

specifications given as CTL? formulas is decidable for the subclass of archi-

tectures in which there is a linear or cyclic order among the local sites and

information flows in either one or both directions. This subclass of archi-

tectures properly includes the subclass of hierarchical architectures studied

in [62].
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The work [49] studied the distributed controller synthesis under the

framework of architecture but consider a specification to be given as a con-

junction of local linear time specifications, one for each local site. It is shown

in [49] the distributed controller synthesis problem for local specifications is

decidable for the class of architectures such that each connected component

is either a clean pipeline, or is a sub-architecture of a clean pipeline.

The work of [79] also studies distributed realizability problem under the

framework that processes communicate via fixed channels, albeit in a more

abstract form. The main contribution of [79] are two theorems that allow

to simplify the distributed realizability problem by reducing the number

of players (processes) and the amount of nondeterminism of environments’

moves. In some cases, these two theorems allow one to reduce the distributed

realizability to the setting that there is only one single player or the setting

that that the environments are deterministic. The former is then the realiz-

ability problem in sequential settings, while the latter is also shown in [79]

to be effectively solvable.

Next we review literature in the second line of work in distributed con-

troller synthesis. These include [25, 26, 48, 51].

In contrast with our work, [51] obtains decidability in distributed con-

troller synthesis for general distributed plants but imposes restrictions on

local strategies. The main result of [51] states that: given any distributed

plant based on asynchronous transition systems and a robust specification,

one can effectively determine whether there exists a winning family of clocked

and com-rigid strategies. And further, if one drops any (or more of) the three

restrictions, namely the specification is robust, local strategies are clocked,

local strategies are com-rigid, then the corresponding distributed controller

synthesis problem becomes undecidable. The local strategy f for process p

is clocked if f can recommend moves for p only based on the length of the

history of actions that p has executed (as opposed to the local view of p in
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our work). The com-rigid restriction demands that at any stage of compu-

tation, if the local strategy f for process p recommends a set of actions X,

then the actions in X involve the same set of processes.

The setting in [48] studies distributed controller synthesis for branching

time specifications given as asynchronous transition systems, instead of the

usual branching time temporal logics such as CTL, CTL?. The controlled

behaviour of the distributed plant is said to satisfy such a specification iff it

can be mapped to the unfolding of the specification via a so-called control-

morphism. It is shown in [48] that this problem is undecidable.

The work [26] investigates distributed controller synthesis for linear time

specifications on finite behaviours. Note that our work and all the above

mentioned work consider infinite behaviours. And in this thesis, we are only

interested in infinite behaviours. The main result in [26] states that the dis-

tributed controller synthesis problem is decidable provided the specification

is a regular (Mazurkiewicz) trace language and the trace alphabet associated

with the distributed plant is a cograph. More precisely, the latter condition

means that there does not exist four distinct actions a1, a2, a3, a4 of the

distributed plant such that a1 is dependent on a2, a2 is dependent on a3,

and a3 is dependent on a4. As we will see in section 3.3, it is easy to con-

struct two asynchronous transition systems A1, A2, such that A1 and A2

have identical trace alphabet that is a cograph, and A1 is connectedly com-

municating while A2 is not connectedly communicating. Moreover, it is also

easy to exhibit two asynchronous transition systems A1, A2, such that A1

and A2 have identical trace alphabet that is not a cograph, and A1 is con-

nectedly communicating while A2 is not connectedly communicating. Hence

the subclass of distributed plant whose trace alphabet satisfies the cograph

condition is not comparable with our subclass of CCPs.

The work [25] studies distributed controller synthesis for linear time spec-

ifications that concern both finite and infinite behaviour, but imposes a prior
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a bound on the amount of memory that a local strategy can keep track of. It

is shown in [25] that, given a (general) distributed plant and a robust linear

time specification in the form of a regular trace-closed subset of Σ?∪Σω and

a bound m, one can effectively determine whether there exists a winning

family of m-memory-bounded local strategies. By an m-memory-bounded

local strategy, we mean one whose memory is at most m.

Finally, we note that decentralized controllers have also been studied in

the control theory community under the framework of supervisory control

of discrete event systems, see for instance [77] and its references. Here one

considers the plant to be monolithic but one looks for a set of controllers

each of which can control only a subset of the controllable actions.

3.3. The CCP Model

Through the rest of this chapter, we fix a finite set of processes P and let

p, q, range over P. For convenience, we will often write a P-indexed family

{Xp}p∈P simply as {Xp}. A distributed alphabet over P is a pair (Σ, loc)

where Σ is a finite alphabet of actions and loc : Σ → 2P \ {∅} identifies for

each action, a nonempty set of processes (locations) that take part in each

execution of the action. Σp is the set of actions that p participates in and

it is given by {a ∈ Σ | p ∈ loc(a)}. Fix such a distributed alphabet through

the rest of this chapter.

We will formulate our models of distributed plants in terms of determin-

istic asynchronous transition systems. We impose determinacy only for con-

venience. All our results will go through, with minor complications, even in

the absence of determinacy. An asynchronous transition system (ATS) over

(Σ, loc) is a structure A = ({Sp}, sin , {δa}a∈Σ) where Sp is a finite set of p-

states for each p and sin ∈
∏

p∈P Sp. Further, δa ⊆
∏

p∈loc(a) Sp×
∏

p∈loc(a) Sp

for each a. The ATS A is deterministic if for each a, (sa, s
′
a), (sa, s

′′
a) ∈ δa

implies s′a = s′′a. From now on we will implicitly assume that the ATSs we
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Figure 3.1. An asynchronous transition system

encounter are deterministic. Members of
∏

p∈P Sp are referred to as global

states. It will be convenient to view the global state s as a map from P into
⋃
p∈P Sp such that s(p) ∈ Sp for every p. For the global state s and P ⊆ P,

we will let sP denote the map s restricted to P . An example of an ATS

is shown in figure 3.1, where the locations of an action is assumed are the

components in which it appears as a label of a local transition. In particular,

we have loc(u) = {p}, loc(w) = {p, q, r}.

The dynamics of the ATS A is given by a transition system TSA =

(RSA, sin ,Σ,→A) where RSA ⊆
∏

p∈P Sp, the set of reachable global states,

and →A ⊆ RSA × Σ × RSA are least sets satisfying:

• Firstly, sin ∈ RSA.

• Secondly, suppose s ∈ RSA and s′ ∈
∏

p∈P Sp such that (sP , s
′
P ) ∈ δa

and sQ = s′Q where P = loc(a) and Q = P \P . Then s′ ∈ RSA and

s
a
→A s′.

We extend →A to sequences in Σ? in the obvious way. That is, firstly s
ε
→A s

for every s ∈ RSA; secondly, if s
σ
→A s′ and s′

a
→A s′′ where σ ∈ Σ?, a ∈ Σ,

then s
σa
→A s′′. We define L(A) = {σ ∈ Σ? | ∃s. sin

σ
→A s}.

We shall use (Mazurkiewicz) trace theory ([18]) to capture the notion of

connectedly communicating. It will also come in handy in the next section for

defining the event structure semantics of asynchronous transition systems.

We first recall that a trace alphabet is a pair (Γ, I) where Γ is a finite

alphabet set and I ⊆ Γ×Γ is an irreflexive and symmetric relation called the
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independence relation. The trace alphabet (Σ, I) induced by the distributed

alphabet (Σ, loc) is given by : aIb iff loc(a)∩loc(b) = ∅. Clearly I is irreflexive

and symmetric. We let D = (Σ×Σ) \ I denote the dependency relation. In

what follows, we let σ, σ′ range over Σ?. As usual, the (Mazurkiewicz) trace

equivalence relation ∼I is the least equivalence relation contained in Σ?×Σ?

such that σabσ′ ∼I σbaσ
′ whenever aI b. Intuitively, two sequences are trace

equivalent iff they differ only in the order of independent letters. In what

follows, we will often write ∼ instead of ∼I .

We extend the independence relation to Σ? via: σ I σ′ iff a I b for every

letter a that appears in σ and every letter b that appears in σ′. We let σ � p

be the Σp-projection of σ. It is the sequence obtained by erasing from σ all

appearances of letters that are not in Σp. We define |σ|p = |σ � p| where |τ |

denotes the length of the sequence τ .

We say that two processes p and q are separated in σ if there exist τ, τ ′

in Σ? such that σ ∼ ττ ′ and τ I τ ′ and |τ |q = |τ ′|p = 0. Thus in the

execution represented by σ there can be no flow of information from q to p,

or conversely. The ATS A is k-communicating if for every s ∈ RSA and every

p, q, the following condition is satisfied: Suppose s
σ
→A s′ and |σ|p ≥ k and

|σ|q = 0. Then p and q are separated in σ′ ∈ Σ? for any s′
σ′

→A s′′. We shall

say that the ATS A is connectedly communicating iff it is k-communicating

for some k.

We note that:

Observation 3.1. The ATS A is connectedly communicating iff it is k-

communicating for some k ≤ |RSA|. Consequently, one can effectively de-

termine whether a given ATS is connectedly communicating.

Proof. It suffices to show that, if A is k-communicating, where k > |RSA|,

then A is in fact |RSA|-communicating. Suppose that A is not

|RSA|-communicating. Then there exist s
σ
→A s′

σ′

→A s′′ and p, q such that
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|σ|p ≥ k, |σ|q = 0, but p, q are not separated in σ′. Since |σ| ≥ k > |RSA|,

one can then easily find τ, τ ′, τ ′′ in Σ? such that τ ′ 6= ε and σ = ττ ′τ ′′ and

s
τ
→A s′′′

τ ′

→A s′′′
τ ′′

→A s′ for some s′′′ ∈ RSA. Thus for any η = τ(τ ′)iτ ′′, it is

the case that s
η
→A s′. By choosing a sufficiently large i, one arrives at the

contradiction that A is not k-communicating. �
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Figure 3.2. An ATS which is not connectedly communicating

The ATS shown in figure 3.1 is connectedly communicating, while the

ATS shown in figure 3.2 is not. We note that these two ATSs are based on

the same distributed alphabet.

Intuitively, let p, q be two processes in an connectedly communicating

ATS. Suppose that at a state s, executing a sequence of steps σ leads back

to s. Suppose further that, p takes part in σ. However, either q does not

take part in σ or more generally, there is no information flow in σ between p

and q even though q may also take part in σ. Then in any execution starting

from s, there will never be any information flow between p and q. Naturally,

connectedly communicating ATSs can model protocols in which components

synchronize with each other frequently so that the loss of information on

each others’ execution remains bounded. Further, if the loss of information

of process p on q exceeds the bound, then p will not hear from q anymore,

directly or indirectly. This kind of phenomenon commonly occurs in dis-

tributed protocols, where one component will only make a bounded number

of attempts to establish connections with another component.
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We remark that the notion of connectedly communicating is incompara-

ble with the fairness assumption in the study of implementing distributed

protocols. Fairness in the the latter context often means simply that ev-

ery process gets a chance to perform an action infinitely often. Such a

fairness condition does not dictate the information flow between different

processes. Our study of the connectedly communicating notion is motivated

by distributed controller synthesis, in which the information flow between

processes plays a crucial role.

Recall from section 3.2 that the work [26] studies distributed controller

synthesis where they consider distributed plants based on ATSs whose as-

sociated trace alphabet (with the dependence relation) is a cograph. More

precisely, (Σ, D) is a cograph iff there does not exists distinct letters a1, a2,

a3, a4 in Σ, such that a1Da2 and a2Da3 and a3Da4. It is easy to see that the

trace alphabet induced by the ATS in figure 3.1 (as also that of figure 3.2) is

not a cograph. In figure 3.3(i) and 3.3(ii), we show two ATSs over the same

distributed alphabet whose induced trace alphabet is a cograph. However,

the ATS in figure 3.3(i) is connectedly communicating while that the ATS in

figure 3.3(ii) is not. The examples in figures 3.1, 3.2, and 3.3 together show

that the subclass of ATSs whose associated trace alphabet is a cograph is

incomparable with our subclass of connectedly communicating ATSs.

a

ca

Process  p

(ii)

b c

b

Process  q

a

c

b

c

b

c

a
c

Process  qProcess  p

(i)

From now on we will refer to a deterministic connectedly communicating

ATS as a CCP.
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3.4. The MSO Theory of CCPs

We wish to prove that the MSO theory of the unfolding of every CCP is

decidable. To formulate this result we begin with a brief account of event

structures.

An event structure (often called a prime event structure) is a triple ES =

(E,≤,#) where (E,≤) is a poset such that for every e ∈ E, ↓ e = {e′ ∈

E | e′ ≤ e} is a finite set. And # ⊆ E × E is an irreflexive and symmetric

relation which satisfies the conflict inheritance axiom: for every e, e′, e′′ ∈ E,

if e # e′ and e ≤ e′′, then e′′ # e′. E is the set of events, ≤ the causality

relation and # the conflict relation. The minimal causality relation l is

defined as: e l e′ iff e < e′ and for every e′′, if e ≤ e′′ ≤ e′, then e′′ = e

or e′′ = e′. The minimal conflict relation #µ is given by: e #µ e
′ iff e # e′

and # ∩ (↓ e ×↓ e′) = {(e, e′)}. A Σ-labelled event structure is a structure

(E,≤,#, λ) where (E,≤,#) is an event structure and λ : E → Σ a labelling

function.

The non-interleaved branching time behaviour of the ATS A is naturally

given by its event structure unfolding [69]. This Σ-labelled event structure

denoted ESA is obtained as follows. We first note that L(A) is a trace-closed

subset of Σ? in the sense if σ ∈ L(A) and σ ∼ σ′ then σ′ ∈ L(A) as well. For

a non-null sequence σ ∈ Σ?, we let last(σ) denote the last letter appearing

in σ. In the present context, we shall view a (Mazurkiewicz) trace as a ∼-

equivalence class of strings and denote the ∼-equivalence class containing the

string σ as [σ]∼ and often drop the subscript ∼. The partial ordering relation

v over traces is given by : [σ] v [σ′] iff there exists σ′′ in [σ′] such that σ is

a prefix of σ′′. A trace [σ] is prime iff σ is non-null and for every σ′ in [σ],

last(σ) = last(σ′). Thus for a prime trace [σ], we can set last([σ]) = last(σ).

Now, ESA is defined to be the structure (E,≤,#, λ) where

• E = {[σ] | σ ∈ L(A) and [σ] is prime}.

• ≤ is v restricted to E × E.



3.4. THE MSO THEORY OF CCPS 45

• # is given by: e # e′ iff there does not exist σ ∈ L(A) such that

e v [σ] and e′ v [σ], for every e, e′ ∈ E.

• λ(e) = last(e), for every e ∈ E.

It is easy to check that ESA is a Σ-labelled event structure. In fact, the

labelling function λ will respect the dependency relation D in the sense that

if λ(e) D λ(e′) then it will be the case that e ≤ e′ or e′ ≤ e or e # e′

([18]). And this will endow ESA with a great deal of additional structure.

In particular, it will let us define its MSO theory using just the l relation

and the labelling function as it will turn out below. In what follows, we will

often write ESA as just ES .

In figure 3.3 we display an initial fragment of the event structure un-

folding of the ATS shown in figure 3.1. Each event e is represented by a

box whose inscription is its label λ(e). As usual, directed arrows represent

members of the l relation and the dotted lines1 represent members of the

#µ relation. The relations ≤ and # are to be deduced using the transitiv-

ity of ≤ and the conflict inheritance axiom. In fact, for every event e in

ESA, it is easy ([18]) to see that e is the prime trace whose members are

the linearizations of the partial order (↓ e,≤↓e) subjected to the point-wise

application of λ↓e, where ≤↓e, λ↓e, are the obvious restrictions of ≤, λ to ↓e,

respectively. For example, in figure 3.3, the box with inscription v at the

bottom leftmost is the event (prime trace) {uvwv, vuwv}.

We now define the syntax of the MSO logic over ESA as:

MSO(ESA) ::= Ra(x) | xl y | x ∈ X | ∃x (ϕ) | ∃X(ϕ) | ∼ ϕ | ϕ1 ∨ ϕ2 ,

where a ∈ Σ, x, y, . . . are individual variables and X,Y, . . . are set variables.

An interpretation I assigns to every individual variable an event in E and

every set variable, a subset of E. The notion of ES satisfying a formula ϕ

1Squiggly edges are commonly used in the literature for this purpose. We have used
dotted lines instead to reduce clutter.
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Figure 3.3. Event structure

under an interpretation I, denoted ES |=I ϕ, is defined in the obvious way.

For example, ESA |=I Ra(x) iff λ(I(x)) = a; ESA |=I xl y iff I(x) l I(y).

It is a standard observation that ≤ can be defined in terms of l in the

presence of set quantification. More precisely, e ≤ e′ iff

∀X.
(
(∀x.x ∈ X → ∀y. y l x→ y ∈ X)

∧
(e′ ∈ X)

)
→ e ∈ X .

We next observe that the conflict relation # of ESA admits an alternative

characterization and is thus definable in MSO(ESA).

Observation 3.2. The conflict relation # is definable in MSO(ESA).

Proof. Let the relation #̂D ⊆ E × E be given by: e #̂D e′ iff e � e′ and

e′ � e and λ(e) D λ(e′). Note that Σ is a finite set and hence #̂D is definable

in MSO(ESA). Next define #̂ as: e #̂ e′ iff there exist e1, e1′ ∈ E such that

e1 #̂D e1′ and e1 ≤ e and e1′ ≤ e′. We show that # = #̂, which at once

yields that # is definable in MSO(ESA).

The fact # = #̂ follows easily from two basic properties of ESA ([18]).

Firstly, for every e, e′ ∈ E, if e #µ e
′, then λ(e) D λ(e′). This immediately

yields that # ⊆ #̂, due to the conflict inheritance axiom. Secondly, as noted
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earlier, for every e, e′ ∈ E, λ(e) D λ(e′) implies that e ≤ e′ or e′ ≤ e or

e # e′. It follows that #̂D ⊆ # and thus #̂ ⊆ #. �

The MSO theory of ESA is the set of sentences (formulae that do not have

free occurrences of individual or set variables) given by: {ϕ | ESA |= ϕ}.

The MSO theory of ESA is said to be decidable if there exists an effec-

tive procedure that determines for each sentence ϕ in MSO(ESA), whether

ESA |= ϕ. Finally, by the MSO theory of A we shall mean the MSO theory

of ESA.

It is not difficult to show that the MSO theory of the ATS in figure 3.2

is undecidable.

Proposition 3.3 ([72], attributed to Igor Walukiewicz). The MSO theory

of the event structure of the ATS in figure 3.2 is undecidable.

Proof. Let ES = (E,≤,#, λ) be the event structure of the asynchronous

transition system in figure 3.2. It is easy to see that X = {[ai] | i > 0} and

Y = {[bj] | j > 0} and Z = {[aibjc] | i, j > 0} are subsets of E. Furthermore,

the sets X,Y, Z are definable in MSO(ES ). In particular, an event x is in X

iff for every x′ ≤ x, λ(x′) = a, an event z is in Z iff λ(z) = c, and for every

z′ < z, λ(z′) is a or b, and there exists z1, z2 such that z1 < z, λ(z1) = a

and z2 < z, λ(z2) = b.

We view Z as an encoding of the 2-dimensional grid N × N with the

grid point (i, j) being represented by the event [ai+1bj+1c]. In MSO(ES ), we

can construct a formula right-succ(u, v) with free variables u, v which asserts

that u, v are in Z and v is the right-successor of u, that is, if u denotes (i, j)

then v denotes (i+ 1, j). It is easy to see that if u, v are in Z, then v is the

right-successor of u iff there exist x, x′ and y such that x, x′ ∈ X, y ∈ Y ,

xlu, ylu, x′lv, ylv and xlx′. Similarly, in MSO(ES ), we can construct

a formula up-succ(u, v) with free variables u, v which asserts that u, v are in
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Z and v is the up-successor of u, that is, if u denotes (i, j) then v denotes

(i, j + 1).

As a result, the following grid coloring problem which is known to be

undecidable [46] can be reduced to the decision problem of MSO(ES ). An

instance of the coloring problem consists of a finite set of colors Col =

{c0, c1, . . . , cn} and two functions R : Col → 2Col and U : Col → 2Col . The

problem is to determine if there exists a coloring function f : N × N → Col

such that f(0, 0) = c0 and for each (i, j) it is the case that f(i+1, j) ∈ R(i, j)

and f(i, j + 1) ∈ U(i, j). �

Our main logical result is:

Theorem 3.4. The MSO theory of every CCP is decidable.

We shall use this logical result in the next section to prove the decidability

of the distributed controller synthesis problem where the distributed plant

is based on a CCP and the specification is robust.

In what follows, we establish theorem 3.4. Let A be a k-communicating

ATS where k ≤ |RSA|. Let TR = (Σ?, {succa}a∈Σ) be the full Σ-tree ([73]),

where succa = {(σ, σa) | σ ∈ Σ?} for a ∈ Σ. Members of Σ? are nodes with

ε being the root. We shall denote the standard MSO logic of n-successors

(|Σ| = n) interpreted over TR as MSO(TR). We refer to section 2.2 for the

definition of MSO(TR).

We shall show that the structure (E,l, λ) can be embedded in TR and

that this embedding can be defined in MSO(TR). This will at once yield

theorem 3.4 by Rabin’s famous result that MSO(TR) is decidable [63].

In what follows, we fix a total order lex on Σ. Often, we refer to this

order implicitly, for example, by speaking of a being less than b. Clearly

lex induces a total order over Σ? which we shall refer to as the lexicographic

order. For an event e in E with e = [σ], we let lin(e) be the lexicographically

least member in [σ]. Set LEXA = {lin(e) | e ∈ E}. In what follows, we will
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write LEXA as just LEX . Clearly LEX ⊆ Σ? and hence members of LEX

can be looked upon as distinguished nodes in the tree TR. A pleasant fact

is that LEX is definable in MSO(TR).

Lemma 3.5. One can effectively construct a formula ϕLEX (x) with one

free individual variable x such that for any interpretation I of TR, TR |=I

ϕLEX (x) iff I(x) ∈ LEX .

Proof. It is easy to show that Levents = {σ | [σ] ∈ E} is a regular trace-closed

subset of Σ? and is hence a regular trace language ([18]). It is known that the

collection L̂lex obtained by picking the lexicographically least member of each

∼-equivalence class of a regular trace language L̂ is, in turn, a regular lan-

guage [18]. Thus LEX is a regular subset of Σ? and we can effectively

construct from A, a deterministic finite state automaton accepting LEX .

Further, one can describe the successful runs of this automaton in the form

of a formula ϕLEX (x) ([73]). �

Define now the relation lLEX ⊆ LEX ×LEX by: σlLEX σ
′ iff [σ]l[σ′] in

ESA. Define also the map λLEX as λLEX (σ) = last(σ) for every σ ∈ LEX . It

now follows that (LEX ,lLEX , λLEX ) is isomorphic to the structure (E,l, λ).

Hence if we show that lLEX is definable in MSO(TR) then we are done. In

this light, the following result is crucial.

Lemma 3.6. There exists a constant K (which can be effectively computed

from A) with the following property: Suppose w = a1 . . . am, w
′ = b1 . . . bn ∈

LEX . Suppose further, w lLEX w′ and w is not a prefix of w′. Then

|aiai+1 . . . am| ≤ K, where i is the least index such that ai 6= bi.

Proof. Let e = [w] and e′ = [w′] so that el e′. It follows from the definition

of ES that w′ ∼ wτ for some τ in Σ+. Hence bi is less than ai. We first

show that bi I aiai+1 . . . am. Suppose bi I aiai+1 . . . am does not hold. Let j

(i ≤ j ≤ m) be the least index such that aj D bi. A basic property of traces
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([18]) is that if aDb then the {a, b}-projection of σ1 is identical to the {a, b}-

projection of σ2 whenever σ1 ∼ σ2. It follows that aj = bi. But then bi being

less than ai would imply that ŵ = a1 . . . ai−1biai . . . aj−1aj+1 . . . am ∼ w and

clearly ŵ is lexicographically less than w, a contradiction.

Having established that bi I aiai+1 . . . am, we next show that

|aiai+1 . . . am| ≤ k|P|. Suppose |aiai+1 . . . am| > k|P|. Then there ex-

ists p such that |aiai+1 . . . am|p ≥ k + 1. Pick l (i ≤ l ≤ m) such that

p ∈ loc(al) and |aiai+1 . . . al−1|p ≥ k. Let q ∈ loc(bi). Since bi I aiai+1 . . . am,

we have |aiai+1 . . . al−1|q = 0. It follows that p, q must be separated in

alal+1 . . . ambiτ
′, where w′ ∼ wbiτ

′. This contradicts the facts that [w′]

(hence [alal+1 . . . ambiτ
′]) is a prime trace and p ∈ loc(al) and q ∈ loc(bi). �

We can now use lemma 3.6 to show that lLEX is expressible in MSO(TR).

Lemma 3.7. One can effectively construct a formula ϕl(x, y) in MSO(TR)

with two free individual variables x and y such that, for any interpretation

I of TR, TR |=I ϕl(x, y) iff I(x), I(y) ∈ LEX and I(x) lLEX I(y).

Proof. Let w,w′ ∈ LEX . Consider the condition C1 given by:

C1: w is a proper prefix of w′ and last(w) D last(w′)
and last(w) I w′′ where w′ = ww′′.

It is easy to see that if C1 is satisfied then w lLEX w′ and moreover, C1

is definable in MSO(TR). Let K be the constant established in lemma 3.6.

Now consider the following conditions:

C2.1 : w = w0a1a2 . . . al with l ≤ K and
w′ = w0w

′
1a1w

′
2a2 . . . w

′
lalw

′
l+1last(w

′).
C2.2 : w′

i I aj for 1 ≤ i ≤ j ≤ l and al I w
′
l+1.

C2.3 : al D last(w′).

Let C2 be the conjunction of C2.1, C2.2 and C2.3. It is easy to see that if

C2 is satisfied then w lLEX w′ and also that C2 is definable in MSO(TR).

Next we show that if w lLEX w′ then C1 or C2 is satisfied, which will

then complete the proof.
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Suppose w lLEX w′. If w is a prefix of w′, then it is clear that C1 is

satisfied. Now suppose w is not a prefix of w′. Let w = w0a1a2 . . . al and

w′ = w0b1b2 . . . bm where w0 is the longest common prefix of w,w′. It follows

from lemma 3.6 that l ≤ K. Since wlLEX w′, there exists τ ∈ Σ? such that

w′ ∼ wτ last(w′) and last(w) I τ , last(w) D last(w′). Thus w′ takes the form

w0w
′
1bh1w

′
2bh2 . . . w

′
lbhlw

′
l+1bm where

• w′
i I bhj for 1 ≤ i ≤ j ≤ l, and bhl I w

′
l+1.

• bhl D bm.

• bh1bh2 . . . bhl ∼ a1a2 . . . al.

We show that in fact bh1 = a1, bh2 = a2, . . . , bhl = al.

Suppose bh1 = a1 does not hold. Let j (1 < j ≤ l) be the least index

such that bhj = a1. It follows that bhj I bh1bh2 . . . bhj−1
and thus ŵ ∼

w′ where ŵ = w0w
′
1bhjbh1w

′
2bh2 . . . bhj−1

w′
jw

′
j+1bhj+1

. . . bhlw
′
l+1bm. Since w is

lexicographically less than w0bh1bh2 . . . bhl , bhj = a1 is less than bh1 and thus

ŵ is lexicographically less than w′, a contradiction. Inductively, one can

show that bh2 = a2, . . . , bhl = al. �

We can now establish theorem 3.4.

Proof of theorem 3.4. Define the map ‖·‖ from MSO(ESA) into MSO(TR)

inductively:

• Firstly, ‖Ra(x)‖ = ∃y succa(y, x) and ‖xl y‖ = ϕl(x, y) where

ϕl(x, y) is the formula established in lemma 3.7.

• Secondly, we define ‖x ∈ X‖ = x ∈ X. Further, ‖∃x (Ψ)‖ =

∃x (ϕLEX(x)∧‖Ψ‖) and ‖∃X (Ψ)‖ = ∃X ((∀x ∈ X ϕLEX(x))∧‖Ψ‖)

where ϕLEX (x) is the formula established in lemma 3.5.

• Finally, ‖∼ Ψ‖ = ∼‖Ψ‖ and ‖Ψ1 ∨ Ψ2‖ = ‖Ψ1‖ ∨ ‖Ψ2‖.
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One verifies that for each sentence Ψ in MSO(ESA), ESA |= Ψ iff TR |=

‖Ψ‖, by a routine induction on the structure of Ψ. This then shows that

MSO(ESA) is decidable, following Rabin’s famous result that MSO(TR) is

decidable [63]. �

As for complexity, we have:

Theorem 3.8. Given a CCP A and a sentence Ψ in MSO(ESA), the com-

plexity of the above decision procedure for determining whether ESA |= Ψ is

tower(O(|RSA| · quan(Ψ)), O(|Ψ|)) where |Ψ| is the size of Ψ and quan(Ψ)

is the total number of quantifiers in Ψ. And tower(a, n) is inductively given

by: tower(a, 1) = a and tower(a, n + 1) = atower(a,n).

In particular, for a fixed A, then the complexity of testing whether ESA |=

Ψ is non-elementary in |Ψ|.

In what follows, we prove theorem 3.8. We fix a sentence Ψ. First, we

make clear the notion of the size of Ψ. It is a standard observation (see [73])

that Ψ can be put into the prenex normal form as

Ψ′ = B1B2 . . . BmB
′
1B

′
2 . . . B

′
m′ ψ ,

such that ESA |= Ψ iff ESA |= Ψ′. And ψ is a quantifier free formula;

each Bi, i = 1, 2, . . . ,m, is either an existential block of set quantification

∃Xi1∃Xi2 . . . ∃Xigi , or a universal block of set quantification ∀Xi1∀Xi2 . . .

∀Xigi ; and if Bi is existential (respectively universal), then Bi+1 is universal

(respectively, existential). Moreover, B ′
i, i = 1, 2, . . . ,m′ are blocks of indi-

vidual quantification with analogous forms as Bi, i = 1, 2, . . . ,m. The size

of Ψ is then defined to be m+m′.

The complexity stated in theorem 3.8 may seem extremely high at first

sight. However, we emphasize that, for the purpose of model checking and

controller synthesis of practical distributed protocols, the size of MSO for-

mulae over ESA is usually very small.
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Proof of theorem 3.8. With the above notations, it follows from the defini-

tion of ‖·‖ that ‖Ψ′‖ will have the form

C1C2 . . . CmC
′
1C

′
2 . . . C

′
m′ ‖ψ‖

where each Ci is of the form

∃Xi1. (∀x. x ∈ X, ϕLEX (x)) ∧ . . . ∃Xigi(∀x. x ∈ X, ϕLEX (x))∧

or

∀Xi1. (∀x. x ∈ X, ϕLEX (x)) ∧ . . . ∀Xigi. (∀x. x ∈ X,ϕLEX (x)) ∧ .

Similarly, C ′
i is of the form

∃xi1. ϕLEX (xi1) ∧ . . . ∃xihi . ϕLEX (xigi)∧

or

∀xi1. ϕLEX (xi1) ∧ . . . ∀xihi . ϕLEX (xhi) ∧ .

To test the truth of ‖Ψ′‖ in MSO(TR), the decision procedure (see [73]

for details) builds inductively non-deterministic Rabin tree automata for the

subformulas
‖ψ‖ ,

C ′
m′ ‖ψ‖ ,

C ′
m′−1C

′
m′ ‖ψ‖ ,

. . . ,

C ′
1C

′
2 . . . C

′
m′ ‖ψ‖ ,

CmC
′
1C

′
2 . . . C

′
m′ ‖ψ‖ ,

Cm−1CmC
′
1C

′
2 . . . C

′
m′ ‖ψ‖ ,

. . . ,

C1 . . . Cm−1CmC
′
1C

′
2 . . . C

′
m′ ‖ψ‖ .

Each quantifier alternation incurs an exponential blow up on the number of

states of the tree automaton. Since the formula ϕLEX (x) checks whether x

is in LEX , which is a subset of L(A), it will have O(|RSA|) quantifier-free

subformulas. Hence each Ci will have O(|RSA| · quan(Ψ)) quantifier-free
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subformulas. To sum up, it follows that the complexity of determining the

truth of ‖Ψ′‖ in MSO(TR) is tower(O(|RSA| · quan(Ψ′)), O(|Ψ′|)). This

completes the proof, as quan(Ψ′) = quan(Ψ) and |Ψ′| = |Ψ|. �

3.5. The CCP Plant Model

The goal of this section is to formulate the distributed plant model based

on CCPs and the associated local strategies. We also define formally the

notion of robust linear time specifications.

A distributed plant is a structure A = ({Senv
p }, {Ssys

p }, sin ,Σ
env ,Σsys ,

{δa}a∈Σ) where ({Sp}, sin , {δa}a∈Σ) is a deterministic ATS over (Σ, loc), called

the underlying ATS of A with Sp = Senv
p ∪ Ssys

p and Senv
p ∩ Ssys

p = ∅ for

each p. Further, {Σenv ,Σsys} is a partition of Σ such that for each a in Σenv ,

|loc(a)| = 1. Finally, suppose (sa, s
′
a) ∈ δa and p ∈ loc(a). Then sa(p) ∈ Senv

p

iff a ∈ Σenv and hence loc(a) = {p}.

The sets Senv
p , Ssys

p are respectively the p-environment and p-system

states. The sets Σenv and Σsys are the environment (uncontrollable) and sys-

tem (controllable) actions respectively. Each component interacts with its

local environment and these interactions are enabled only when the compo-

nent is in one of its environment states. We note that although the underly-

ing ATS is deterministic, in general, a menu of controllable actions involving

different processes will be available for the controller at each stage as the

distributed plant evolves. This will be the case even for the local strategies

we define below. Through the rest of the section, we fix a distributed plant

A as above. When talking about the behavioural aspects of A, we shall

identify it with its underlying ATS and will often drop the subscript A. We

will also say the distributed plant is a CCP in case its underlying ATS is.

Figure 3.4 shows an example of a distributed plant. There are four pro-

cesses p, q, B1 and B2. The set of environment actions is { pProduce,

pConsume, qProduce, qConsume }. All other actions are system actions.
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Intuitively, the distributed plant in figure 3.4 models that processes p, q

communicate through two buffers B1, B2. Process p behaves as follows.

Initially, the local environment of process p decides whether it wants to pro-

duce (pProduce) or consume (pConsume) data. Next process p can make a

choice among { pUseB1, pUseB2, pUseB1Only, pUseB2Only }, where pUseB1

means that B1 should be used for the current produce or consume request

(and thus B2 should be used for the successive produce or consume request),

while pUseB1Only indicates that B1 should be used for all produce or con-

sume requests from now on. The actions pUseB2, pUseB2Only have anal-

ogous meanings. The actions pReadB1, pWriteB1 (respectively, pReadB2,

pWriteB2) model that p reads or writes to B1. The behaviours of processes

q, B1 and B2 are now clear from figure 3.4. It is easy to verify that the

distributed plant shown in figure 3.4 is a CCP.

In what follows, we define the distributed controller synthesis problem

formally. Recall the set L(A) defined in section 3.3. Members of L(A) are

referred to as plays. The set of infinite plays Lω(A) is defined in the obvious

way. That is, σ ∈ Σω is in Lω(A) iff every finite prefix of σ is in L(A). We

are interested in distributed strategies obtained by piecing together local

strategies and the local views of a play will be instrumental in determining

local strategies.

Let σ = a1 . . . an be a play in L(A). The p-view of σ denoted ↓p (σ) is the

subsequence ah1 . . . ahm such that H = {h1, h2, . . . , hm} is the least subset of

{1, 2, . . . , n} which satisfies:

• Firstly, hm is the largest index in {1, 2, . . . , n} such that p is in

loc(ahm).

• Secondly, if i ∈ H and j < i and aj D ai, then j ∈ H.
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Figure 3.4. A CCP distributed plant

In other words, ↓p (σ) is the maximum amount of the current play that

p knows about where this knowledge is gathered by its participation in

the actions that have occurred in the play and the information it acquires

as a result of synchronizations with other agents, directly or indirectly.

It is easy to verify that for any play σ in L(A) and any p, the p-view

of σ is also in L(A). For example, in figure 3.4, the p-view of the play

pConsume pUseB1 qProduce qUseB1 is pConsume pUseB1, while the p-

view of the play

σ = pConsume pUseB1 qProduce qUseB1 qWriteB1 pReadB1

is σ itself.

It will be convenient to define the set of actions that can potentially

occur at a local state. For u ∈ Sp we let act(u) be the set given by: a ∈ Σp
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is in act(u) iff there exists (sa, s
′
a) in δa with sa(p) = u. A p-strategy is a

function f : L(A) → 2Σp which satisfies: Suppose σ ∈ L(A) and sin
σ
→ s

with s(p) = u. Then f(σ) ⊆ act(u) and moreover f(σ) = act(u) in case

u ∈ Senv
p . Thus a p-strategy recommends a subset of the structurally possible

Σp-actions at the current p-state. It does so without restricting in any way

the environment’s choices.

The p-strategy f is said to be local if it satisfies: for every σ, σ ′ ∈ L(A),

↓p (σ) ∼ ↓p (σ′) implies f(σ) = f(σ′). Hence a local p-strategy depends only

on the (partially ordered!) p-view of the play.

We now define a distributed strategy Str = {Str p} to be a family of local

p-strategies, one for every p.

Let Str = {Str p} be a distributed strategy. The set of plays according to

Str denoted L(Str) is defined inductively by: Firstly, ε ∈ L(Str). Secondly,

if σ ∈ L(Str) and σa ∈ L(A) such that a ∈ Str p(σ) for every p ∈ loc(a),

then σa ∈ L(Str). That is, an action a is allowed to execute only when it

is recommended by every process taking part in a. In what follows, we will

assume without loss of generality that TSA has no deadlocks; more precisely,

every reachable global state has a successor state reachable via a transition.

Thus if a play according to a strategy cannot be extended it is only due to

the local strategies not being able to agree on executing any system action.

We will say that a strategy Str is non-blocking in case every play in L(Str)

can be extended to a longer play in L(Str). This notion does not rule out

the possibility of a play being extended indefinitely by just the execution of

environmental actions. However one can rule out such plays by choosing the

specification suitably.

To define linear time specifications, we first define the set of infinite plays

according to the strategy Str denoted Lω(Str) in the obvious way. That is,

σ ∈ Σω is in Lω(Str) iff every finite prefix of σ is in L(Str). A linear time

specification is an ω-regular subset of Σω which is assumed to be presented
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in a finite way, say, as a Büchi automaton. Unless stated otherwise, by a

specification, we shall mean a linear time specification. For example, for

the distributed plant in figure 3.4, one specification could demand that data

transmission between p and q always succeeds whenever p wants to produce

data and q wants to consume data (or q wants to produce data and p wants

to consume data).

Let Lspec be a specification. A distributed strategy Str is winning for

Lspec iff Str is non-blocking and Lω(Str) ⊆ Lspec. A winning distributed

strategy for Lspec is called a distributed controller for the pair (A, Lspec).

The distributed controller synthesis problem we wish to solve is: given a pair

(A, Lspec) where A is a CCP, determine whether there exists a distributed

controller for Lspec. We will be mainly interested in showing here that this

problem is effectively solvable if the specification Lspec is robust.

To pin down robustness, we extend ∼ to Σω. This can be done in a

number of equivalent ways. For our purposes it will do to define it as follows:

Suppose σ, σ′ ∈ Σω. Then σ ∼ σ′ iff σ � p = σ′ � p for every p. We say

that the specification Lspec is robust iff for every σ, σ′ ∈ Σω, if σ ∈ Lspec and

σ ∼ σ′, then σ′ ∈ Lspec. In other words, the equivalence classes of ∼ over

Σω are infinite traces over our trace alphabet (Σ, I) ([18]). And a robust

specification is an ω-regular trace language ([18]). In fact, in the distributed

setting, since executions are naturally partially ordered, it would be natural

to consider robust specifications.

3.6. Decidability Results

In this section, we establish decidability results for distributed controller

synthesis associated with CCP-based distributed plants for both robust lin-

ear time and branching time specifications.
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3.6.1. Robust Linear Time Specifications.

We begin with the case for robust linear time specifications.

Theorem 3.9.

(i) Given a CCP distributed plant A and a robust specification Lspec, we

can effectively determine whether there exists a distributed controller

for (A, Lspec).

(ii) Further, if such a distributed controller exists, then we can effectively

synthesize a finite state one presented in the form of a CCP.

In what follows, we prove theorem 3.9(i). The proof of theorem 3.9(ii) is

technically of very different nature from that of theorem 3.9(i) and deserves

an independent treatment. Hence we defer the proof of theorem 3.9(ii) to

section 3.7.

We shall assume A is a CCP and Lspec is robust. We shall show that

the existence of a distributed controller for (A, Lspec) can be asserted as

a sentence in MSO(ESA). Theorem 3.9(i) will then follow at once from

theorem 3.4.

In what follows, we let ESA = (E,≤,#, λ) and often write ES instead

of ESA. A configuration of ES is a subset c ⊆ E such that ↓ c = c (where

↓ c = ∪e∈c(↓ e)) and (c × c) ∩ # = ∅. Let c be a finite configuration. Then

it is well-known ([18]) that the Σ-labelled poset (c,≤c, λc) where ≤c and λc

are the obvious restrictions, represents a trace in the following sense. The

set of linearizations of (c,≤c) (subjected to the point-wise application of λc)

will be a trace, viewed as a ∼-equivalence class of strings. In fact finite and

infinite configurations on the one hand and finite and infinite traces on the

other hand, represent each other.

Firstly we show that in MSO(ES ) one can construct a formula infinite(X)

with one free set variable X which asserts that X is an infinite set of
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events. Consequently, in MSO(ES ) one can define a formula fin-conf (X)

(inf -conf (X)) asserting that X is a finite (infinite) configuration.

Claim 3.10. Let A be a CCP. Then in MSO(ESA) one can construct a for-

mula infinite(X) with one free set variable X such that for any interpretation

I of ESA, ESA |=I infinite(X) iff I(X) is an infinite set of events.

Proof. For each event e in ESA, we define the depth of e, denoted depth(e),

to be the largest m such that there exists e1 l e2 l · · · l em = e. It is easy

to see that every event has a finite depth.

We observe the following:

• The predicate dc(X,Y ) is definable in MSO(ESA) where dc(X,Y )

stands for Y is the downward-closure of X, that is, Y =↓X. One

has to simply assert that for every y, it is the case that y ∈ Y iff

there exists x ∈ X such that y ≤ x.

• The predicate infchain(X) is definable in MSO(ESA), where

infchain(X) asserts that X is non-empty and for every x in X there

exists y in X such that x < y. It is a standard fact that that a

set being non-empty can be asserted in the MSO logic and hence

infchain(X) says that every element of X lies on an infinite chain

and this in turn implies that X contains an infinite chain.

• X is infinite iff there exist Y and Z such that Y is the downward-

closure of X and Z ⊆ Y and infchain(Z).

The last observation clearly shows that infinite(X) is definable in

MSO(ESA). To prove that this assertion holds we first note that a set

of events X is infinite iff Y =↓X is infinite. This follows from the fact that

for every event e, ↓ e is finite. So assume that Y is a downward-closed set

of events. We claim that Y is an infinite set iff it contains a set Z such that

infchain(Z) holds. The “if” part is clear and so assume that Y is an infinite

set. We now consider the tree T whose nodes are given inductively by: > is
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a special element and it is the root of the tree and we define last(>) = >.

Inductively, suppose ρ is a node and last(ρ) = u and u� e with e ∈ Y and

� defined as below. Then ρe is a node and last(ρe) = e. The relation � is

given by: u� e iff one of the following holds:

• u = >, e ∈ Y , and depth(e) = 1.

• u, e ∈ Y , ul e, and depth(e) = depth(u) + 1.

We claim that T is finitely branching. This follows from the fact that for

every depth m, there are only finitely many events of depth m. This in

turn follows easily by induction on m because, at every global state, only a

bounded number of transitions are enabled.

Now we can apply König’s lemma ([37]) to deduce that the tree T con-

tains an infinite path. It follows that Y contains a set Z with the property

infchain(Z). �

Next we define, for E ′ ⊆ E, the p-view of E ′ denoted p-view(E ′) to be

the set of events given by: e′ ∈ p-view(E ′) iff there exists e′′ ∈ E ′ such that

e′ ≤ e′′ and p ∈ loc(λ(e′′)). Again it is easy to see that we can define a

formula p-view(X,Y ) asserting that Y is the p-view of X. Let σ be a play

of A. By the observation above, there is a unique configuration c of ESA

which represents [σ] in the sense that [σ] is the the set of linearizations of

the Σ-labelled poset (c,≤c, λc). Let ↓p (σ) = τ . Then it is easy to see that

p-view(c) is the configuration which represents [τ ].

Now let Str be a distributed strategy. From the definitions, it follows

that L(Str) is trace-closed. Hence for each σ ∈ L(Str) we will have that

[σ] ⊆ L(Str) and moreover, by the observation above, there will be a unique

finite configuration in ES that corresponds to [σ]. We will say that EStr

is the set of Str-events and define it to be the set given by: e ∈ E is in

EStr iff there exists σ ∈ L(Str) such that e = [σ]. We will say that E ′ is

good in case there exists a distributed strategy Str such that E ′ is the set

of Str -events. We can construct a formula Good(X) which will assert that
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X is good. For arguing this, it will be convenient to assume the transition

relation ⇒ ⊆ Cfin × E × Cfin where Cfin is the set of finite configurations

of ES and ⇒ is given by: c
e
⇒ c′ iff e /∈ c and c′ = c ∪ {e}. The formula

Good(X) will be a conjunction of the following properties all of which are

easily definable in MSO(ES ).

• X is a nonempty set and for every finite configuration Y contained

in X, if Y
e
⇒ Y ′ and λ(e) ∈ Σenv then Y ′ ⊆ X.

• If Y is a finite configuration contained in X then there exists a finite

configuration Y ′ such that Y ⊂ Y ′ ⊆ X.

• Suppose Y is a finite configuration contained in X, and Y
e
⇒ Y ′.

Suppose that for every p in loc(a), where a = λ(e), there exists

Yp ⊆ X such that the p-view of Yp is identical to the p-view of Y

and Yp
e1
⇒ Y ′

p with λ(e1) = a and Y ′
p ⊆ X. Then Y ′ ⊆ X.

Now for a distributed strategy Str , it is easy to check that the formula

Good(X) is satisfied under the interpretation that maps X to the set of

Str -events. Conversely, Good(X) is satisfied under the interpretation that

maps X to G (where G ⊆ E). We can construct a distributed strategy

Str = {Str p} from G, where for each p and σ ∈ L(A), Str p(σ) is defined as

follows: Let c be the configuration of ES that corresponds to ↓p (σ), that is,

the p-view of σ.

• If c ⊆ G, then Str p(σ) is the set given by: a ∈ Σp is in Strp(σ) iff

there exists e ∈ G such that p-view(↓e− {e}) = c and λ(e) = a.

• If c is not a subset of G, then Str p(σ) = ∅.

Again, it is routine to verify that Str as such is a well-defined distributed

strategy and the set of Str -events is precisely G.

All we need now is to argue that we can assert that every infinite play

belonging to a good set meets the specification. But this is easy to do since

Lspec is robust and is in fact an ω-regular trace language. Hence Lspec is

definable in the monadic second order logic of infinite traces interpreted
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over the set of infinite traces generated by our trace alphabet (Σ, I) [18].

Denoting this logical language by MSO(Σ, loc), we can assume, without loss

of generality, that its syntax is exactly that of MSO(ES ) but interpreted over

infinite traces represented as Σ-labelled partial orders. In particular, the l

refers to the partial order of the trace rather than the positional order of a

linearization of the trace.

Now let Φspec be a sentence in MSO(Σ, loc) such that the ω-regular trace

language defined by it is precisely Lspec. For an infinite play σ in Lω(A),

it will be the case that σ in is in Lspec iff the Σ-labelled poset (c,≤c, λc)

satisfies Φspec in MSO(Σ, loc), where c is the unique infinite configuration of

ESA that represents the infinite trace {σ′ ∈ Σω | σ′ ∼ σ}.

We can now construct in MSO(ES ) a sentence ∃X. Φctrl(X), where the

formula Φctrl(X) with one free set variable X asserts that X is a good set and

moreover, for every infinite configuration Y contained in X, the infinite trace

represented by Y , viewed as the Σ-labelled poset (Y,≤Y , λY ), satisfies Φspec.

It is routine to show that the sentence ∃X. Φctrl(X) is true in MSO(ES )

iff there exists a distributed controller for (A, Lspec). It now follows from

theorem 3.4 that, given the CCP distributed plant A and the robust specifi-

cation Lspec, one can effectively determine whether there exists a distributed

controller for the pair (A, Lspec). This establishes theorem 3.9(i).

It follows from theorem 3.8 that the complexity of the decision procedure

in theorem 3.9(i) is tower(O(|RSA|), O(|Φspec|), where |Φspec| is the size of

Φspec [18].

3.6.2. Branching Time Specifications.

Next we study distributed controller synthesis with branching time spec-

ifications. As usual, we fix a CCP plant A. We define a branching time

specification for A to be a sentence in MSO(A). In what follows, we fix a

branching time specification Ψspec. One could of course consider branching

time specifications given in CTL or CTL? ([21]). We however believe that, in
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the distributed setting, where executions are partially ordered, it is natural

to reason about non-interleaved branching time behaviours. In this aspect,

the MSO logic over event structures is more suitable than CTL or CTL?,

since CTL and CTL? concern interleaved branching time behaviours.

Let Str be a distributed strategy for A. Intuitively, we shall say Str

is winning for Ψspec iff the “sub-event structure” induced by Str is satisfies

Ψspec. We now make this precise. As in the proof of theorem 3.9(i) in

section 3.6.1, EStr , the set of Str -events, is a downward-closed set of events.

Let ESStr = (EStr ,≤Str ,#Str , λStr ), where ≤Str , #Str , λStr are, respectively,

the restrictions of ≤, #, λ to EStr . It follows that ES Str is a Σ-labelled

event structure. Moreover, the set of formulas in MSO(ES Str ) is identical

with MSO(ESA). The notion of ES Str |= Ψspec is also clear. Now we say the

distributed strategy Str is winning for Ψspec iff ES Str |= Ψspec.

By a distributed controller for the pair (A, Ψspec), we shall mean a dis-

tributed strategy of A that is winning for Ψspec.

Theorem 3.11.

(i) Given a CCP distributed plant A and a sentence Ψspec in MSO(ESA),

we can effectively determine whether there exists a distributed controller

for (A, Ψspec).

(ii) Further, if such a distributed controller exists, then we can effectively

synthesize a finite state one presented in the form of a CCP.

In what follows, we prove theorem 3.11(i) by an easy modification of

the proof of theorem 3.9(i). As is the case with theorem 3.9, the proof

of theorem 3.11(ii) requires very different tools from that of theorem 3.11.

Hence, we defer the proof of theorem 3.11(ii) to section 3.7.

Proof of theorem 3.11(i). For a set variable Y and a formula ψ in

MSO(ESA), we define the Y -relativized version of ψ, denoted RelX(ψ), in-

ductively as follows:
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• Firstly, RelY (Ra(x)) = Ra(x) and RelY (xl y) = xl y.

• Secondly, we define RelY (x ∈ X) = x ∈ X. Further, RelY (∃x. (Ψ))

= ∃x. x ∈ Y ∧ RelY (Ψ) and RelY (∃X (Ψ)) = ∃X. (X ⊆ Y ) ∧

RelY (Ψ)).

• Finally, RelY (∼ Ψ) =∼ RelY (Ψ) and RelY (Ψ1 ∨ Ψ2) = RelY (Ψ1)∨

RelY (Ψ2).

Let Good(X) be the predicate as in the proof of theorem 3.9(i). It follows

that there exists a distributed controller for (A,Ψspec(X)) iff the sentence

∃X. Good(X) ∧ RelX(Ψspec) is true in MSO(ESA). Hence, this establishes

theorem 3.11(i), owing to theorem 3.4. �

It follows from theorem 3.8 that the complexity of the decision procedure

in theorem 3.11(i) is tower(O(|RSA|), O(|Ψspec|), where |Ψspec| is the size of

Ψspec.

3.7. Synthesis of Finite State Distributed Controllers

The goal of this section is show the effective synthesis of finite state

distributed controller. More precisely, we shall prove theorem 3.9(ii) and

theorem 3.11(ii).

In what follows, we show the proof of theorem 3.9(ii). It will be clear that

theorem 3.11(ii) can be proved in exactly the same way as theorem 3.9(ii).

We fix A and Lspec as in theorem 3.9, and assume a distributed controller

for the pair (A, Lspec) has been known to exist. Recall from section 3.4 the

full Σ-tree TR and also the map ‖·‖ from MSO(ESA) into MSO(TR).

To establish theorem 3.9(ii), we need two ideas. Firstly, for a sentence

ψ in MSO(TR), the decision algorithm for testing the truth of ψ yields a

“witness” for ψ in the form of a regular labelled tree, in case ψ is true. Sec-

ondly, Zielonka’s famous theorem [81] states every regular trace-closed lan-

guage can be accepted by a deterministic asynchronous automaton [18]. A
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deterministic asynchronous automaton is basically a deterministic asynchro-

nous transition system with a designated subset of global states as accepting

states. A string σ is accepted by a deterministic asynchronous automaton B

iff running B on σ leads to an accepting global state. However, we are seek-

ing finite state distributed controllers in the form of asynchronous transition

system. A deterministic asynchronous transition system may be viewed as

an deterministic asynchronous automaton of which every global state is ac-

cepting. This complication requires use to appeal to the following variation

of Zielonka’s theorem:

Proposition 3.12 ([71]). Let L is a regular trace language over the dis-

tributed alphabet (Σ, loc). If L is prefix-closed and for every σ in Σ?, a, b ∈ Σ,

it is the case that σab ∈ L whenever σa ∈ L and σb ∈ L and a I b, then

one can effectively construct a deterministic asynchronous automaton C over

(Σ, loc) such that the language accepted by C is L and moreover, every global

state of C is an accepting state.

Now we are ready to prove theorem 3.9(ii).

Proof of theorem 3.9(ii). Let ‖∃X. Φctrl(X)‖ = ∃X. Ψctrl(X), where

Ψctrl(X) is a formula in MSO(TR) with one free set variable X. By Ra-

bin’s result [63] that MSO(TR) is decidable, one can effectively determine

whether the sentence ∃X. Ψctrl(X) holds in TR. This test is in fact per-

formed by first constructing a non-deterministic Rabin tree automaton R

that runs over {>,⊥}-labelled Σ-tree whose underlying tree is TR, where

>,⊥ are special symbols, that has the following property: A {>,⊥}-labelled

Σ-tree (TR, η) is accepted by R iff TR |=I Ψctrl(X) where I maps X to

the set of >-labelled nodes, namely, {w ∈ TR | η(w) = >}. It follows

that ∃X. Ψctrl(X) is true in TR iff the language of R is nonempty. By Ra-

bin’s tree theorem [63], we can effectively test whether the language of R

is nonempty and thus determine the truth of ∃X. Ψctrl(X). Further, if the
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language of R is nonempty, then the nonemptiness testing algorithm also

produces a regular {>,⊥}-labelled Σ-tree (TR, η). This implies that the set

Wctrl = {w ∈ TR | η(w) = >} is a regular subset of Σ? and can be effectively

extracted from the finitary presentation of (TR, η).

Clearly Wctrl must be a subset of LEXA. We note that Wctrl can be

presented as a finite state automaton and moreover, every state of this finite

state automaton is an accepting state.

Let W ′
ctrl ⊆ Σ? be given by: σ ∈ Σ? is in W ′

ctrl iff there exists σ′ in Wctrl

such that σ ∼ σ′. It follows ([18]) that W ′
ctrl is a regular subset of Σ? and

is thus a regular trace language over (Σ, I). From W ′
ctrl , we define the set

Ŵctrl ⊆ Σ? as follows: σ ∈ Σ? is in Ŵctrl iff for every σ′ ∈ Σ? with [σ′] being

a prime trace and [σ′] v [σ], it is the case that σ′ ∈ W ′
ctrl . Since W ′

ctrl is a

regular trace language over (Σ, I), it is easy to show ([18]) that Ŵctrl is also

a regular trace language over (Σ, I).

We note that Wctrl represents the distributed strategy Str = {Str p}

defined as follows:

• For every p, for every σ ∈ L(A), Str p(σ) is given by: a ∈ Σp

is in Strp(σ) iff there exists σ′a in Σ? such that σ′a ∈ Wctrl and

↓p (σ′) ∼↓p (σ).

It is routine to verify that Str is well-defined. Further, the set of events

{e = [σ] ∈ ES | lin([σ]) ∈ Wctrl} is the set of Str -events; and L(Str) is

precisely Ŵctrl .

It is straightforward to verify that Ŵctrl satisfies the conditions set out

in proposition 3.12, since Str is distributed. It follows that we can effectively

construct a deterministic ATS C such that L(C) is Ŵctrl .

Note that A is a CCP and Ŵctrl is a subset of L(A). Hence, following

the definition of connectedly communicating, it is routine to check that C

must be a CCP. This completes the proof of theorem 3.9. �
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3.8. Undecidability Results

In this section, we present some undecidability results concerning dis-

tributed controller synthesis for CCPs.

3.8.1. Non-Robust Linear Time Specifications.

We begin by considering non-robust linear time specifications.

Theorem 3.13. There is no effective procedure which can, given a CCP

distributed plant A and a specification Lspec (that is not necessarily robust),

determine whether there exists a distributed controller for (A, Lspec).

As with many undecidability results in distributed controller synthesis,

the proof of theorem 3.13 relies on the undecidability proof of the multi-

player game with partial information developed in [60]. In what follows, we

prove theorem 3.13 by a reduction from the two-player-one-adversary (2-P-

1-A) game problem which is known to be undecidable following the results

in [60].

A 2-P-1-A alphabet is a structure Γ̂ = (Γenv
1 ,Γsys

1 ,Γenv
2 ,Γsys

2 ) where Γenv
1 ,

Γsys
1 , Γenv

2 , Γsys
2 are disjoint finite alphabets. An instance of the 2-P-1-A game

problem over Γ̂ is a subset Gspec of (Γenv
1 .Γsys

1 .Γenv
2 .Γsys

2 )ω such that Gspec

is ω-regular (over Γenv
1

⋃
Γsys

1

⋃
Γenv

2

⋃
Γsys

2 ). The 2-P-1-A game is played

in infinitely many rounds. Each round consists of four moves: firstly, the

adversary picks a letter in Γenv
1 ; secondly, player 1 picks a letter in Γsys

1 ;

thirdly the adversary picks a letter in Γenv
2 ; finally, player 2 picks a letter

in Γsys
2 . A 2-P-1-A strategy is a pair (f1, f2) where fi is the function from

(Γenv
i .Γsys

i )?.Γenv to Γsys
i . Let σ be in (Γenv

1 .Γsys
1 .Γenv

2 .Γsys
2 )ω. We say that σ is

according to the 2-P-1-A strategy (f1, f2) iff for every prefix τa1b1a2b2 of σ,

where τ ∈ (Γenv
1 .Γsys

1 .Γenv
2 .Γsys

2 )?, a1 ∈ Γenv
1 , b1 ∈ Γsys

1 , a2 ∈ Γenv
2 , b2 ∈ Γsys

2 , it

is the case that bi = fi(τiai) with τi = τ � (Γenv
i

⋃
Γsys
i ) for i = 1, 2. We note

that player i only knows the history of actions in the alphabets Γenv
i , Γsys

i .

The 2-P-1-A strategy (f1, f2) is winning for Gspec iff the following holds: for
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every σ in (Γenv
1 .Γsys

1 .Γenv
2 .Γsys

2 )ω, if σ is according to (f1, f2), then σ is in

Gspec.

The proposition below follows from results in [60].

Proposition 3.14 ([60]). One can construct a 2-P-1-A alphabet

Γ̂ = (Γenv
1 ,Γsys

1 ,Γenv
2 ,Γsys

2 ) such that there is no effective procedure which

can, given an 2-P-1-A instance Gspec over Γ̂, determine whether there exists

a winning 2-P-1-A strategy for Gspec.

Proof. The proof is via a reduction from the halting problem for Turing ma-

chines. Intuitively, the alphabet Γsys
1 contains letters suitable for describing

configurations of a Turing machine and a marker symbol $. The alphabet

Γenv
1 contains letters to tell player 1 whether to generate the marker symbol

$ or to generate letters representing Turing machine configurations. The

alphabets Γenv
2 , Γsys

2 have similar meanings.

The intuition of the reduction is as follows. We shall use environment

moves to force each player to output configurations of a Turing machine.

The team of two players wins iff each player outputs a successive sequence

of configurations ending at a halting configuration. This condition can be

checked by interleaving the sequence of configurations produced by player 1

with that produced by player 2. The crucial point to note is that successive

configurations of a Turing machine differ only by boundedly many letters.

Given a Turing machine M, we construct a 2-P-1-A game instance Gspec

such that for every σ in (Γenv
1 .Γsys

1 .Γenv
2 .Γsys

2 )ω, σ is inGspec iff σ � (Γenv
1

⋃
Γsys

1 )

and σ � (Γenv
2

⋃
Γsys

2 ) both “represent” the same infinite sequence of con-

figurations of the form ξ = C1C2 . . . CmCmCm . . . , where C1 is an initial

configuration; and for i = 1, 2, . . . ,m− 1, M can go from Ci to Ci+1 in one

move; and Cm is a halting configuration. The required condition on σ can be

checked by a non-deterministic Büchi automaton which reads configurations

of σ � (Γenv
1

⋃
Γsys

1 ) and σ � (Γenv
2

⋃
Γsys

2 ) in an interleaving fashion. Hence
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Gspec is a well-defined 2-P-1-A problem instance. We refer to [60, 62] for

detailed arguments. �

We now prove theorem 3.13.

Proof of theorem 3.13. Let Γ̂ = (Γenv
1 ,Γsys

1 ,Γenv
2 ,Γsys

2 ) be the 2-P-1-A alpha-

bet constructed in Proposition 3.14. Let Gspec be an instance of the 2-P-1-A

game problem over Γ̂. We construct a CCP distributed plant A and a spec-

ification Lspec such that there exists a winning 2-P-1-A strategy for Gspec iff

there exists a distributed controller for (A, Lspec). This will then establish

theorem 3.13.

Let P = {p1, p2}. Set (Σ, loc) to be the distributed alphabet where

Σ = Γenv
1

⋃
Γsys

1

⋃
Γenv

2

⋃
Γsys

2 and loc(a) = {p1} for every a ∈ Γenv
1

⋃
Γsys

1 and

loc(a) = {p2} for every a ∈ Γenv
2

⋃
Γsys

2 . The distributed plant A will be over

(Σ, loc). Figure 3.5 illustrates intuitive idea of A. More precisely, we have

A = ({Senv
p1
, Senv

p2
}, {Ssys

p1
, Ssys

p2
}, sin ,Σ

env ,Σsys , {δa}a∈Σ) where Senv
pi

= {senv
pi

}

for i = 1, 2; Ssys
pi

= {ssyspi } for i = 1, 2; sin = (senv
p1
, senv
p2

); Σenv = Γenv
1

⋃
Γenv

2 ;

Σsys = Γsys
1

⋃
Γsys

2 . And for i = 1, 2, we have δa = {(senv
pi
, ssyspi )} if a ∈ Γenv

i ;

δa = {(ssyspi , s
env
pi

)} if a ∈ Γsys
i .

Γ
env

1

Process p1

Γ
sys

1
Γ

env

2
Γ

sys

2

Process p2

Figure 3.5

We define Lspec as follows: σ ∈ Σω is in Lspec iff either σ is not in

(Γenv
1 .Γsys

1 .Γenv
2 .Γsys

2 )ω, or σ is in Gspec. It is now routine to verify that there

exists a winning 2-P-1-A strategy for Gspec iff there exists a distributed con-

troller for (A, Lspec). �
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3.8.2. Strictly Local Strategies.

One can also study distributed controller synthesis for distributed plants

with respect to strictly local strategies. Let A be a distributed plant. We say

that a p-strategy f for A is strictly local if it satisfies: for every σ, σ ′ ∈ L(A),

σ � Σp = σ′ � Σp implies f(σ) = f(σ′). Hence a strictly local p-strategy

depends only on the projection of the play onto Σp.

Let Lspec be a specification. By a strict distributed controller for the pair

(A, Lspec), we mean a family {Str p} of strictly local p-strategies for A, one

for each p; and {Str p} is winning for Lspec. We have:

Theorem 3.15. There is no effective procedure which can, given a CCP

distributed plant A and a robust specification Lspec, determine whether there

exists a strict distributed controller for (A, Lspec).

Proof. Let Γ̂ = (Γenv
1 ,Γsys

1 ,Γenv
2 ,Γsys

2 ) be the 2-P-1-A alphabet constructed

in Proposition 3.14. Let Gspec be an instance of the 2-P-1-A game problem

over Γ̂. We construct a CCP distributed plant A and a robust specification

Lspec such that there exists a winning 2-P-1-A strategy for Gspec iff there

exists a strict distributed controller for (A, Lspec). This will then establish

theorem 3.15.

Let P = {p1, p2}. Set (Σ, loc) to be the distributed alphabet where

Σ = Γenv
1

⋃
Γsys

1

⋃
Γenv

2

⋃
Γsys

2

⋃
{$, $$}; and loc(a) = {p1} for every a ∈

Γenv
1

⋃
Γsys

1 , loc(a) = {p2} for every a ∈ Γenv
2

⋃
Γsys

2 , loc($) = {p1, p2} =

loc($$). The distributed plant A will be over (Σ, loc). Figure 3.6 illustrates

intuitive idea of A. More precisely, we have A = ({Senv
p1
, Senv

p2
}, {Ssys

p1
, Ssys

p2
},

sin ,Σ
env ,Σsys , {δa}a∈Σ) where Senv

pi
= {senv

pi
} for i = 1, 2; Ssys

pi
= {ssyspi , s

$
pi
, s$$
pi
}

for i = 1, 2; sin = (senv
p1
, s$
p2

); Σenv = Γenv
1

⋃
Γenv

2 ; Σsys = Γsys
1

⋃
Γsys

2

⋃
{$, $$},

and {δa}a∈Σ is given as follows. For i = 1, 2, if a ∈ Γenv
i , then δa =

{(senv
pi
, ssyspi )}. For a ∈ Γsys

1 , we have δa = {(ssysp1 , s
$
p1
}. For a ∈ Γsys

2 ,



3.9. DISCUSSION 72

we have δa = {(ssysp2 , s
$$
p2

)}. Finally, δ$ = {((ssysp1 , s
$
p2

), (s$$
p1
, senv
p2

))}, and

δ$$ = {((s$$
p1
, s$$
p2

), (senv
p1
, s$
p2

))}. Note that Lω(A) is precisely the set

(Γenv
1 .Γsys

1 .{$}.Γenv
2 .Γsys

2 .{$$})ω .

Process p1

Γ
env

1

Γ
sys

1$

$$

Process p2

$

Γ
env

2

$$

Γ
sys

2

Figure 3.6

We define Lspec as follows: σ ∈ Σω is in Lspec iff σ is in Lω(A) and the

projection of σ onto Γenv
1

⋃
Γsys

1

⋃
Γenv

2

⋃
Γsys

2 is in Gspec. It is easy to see

that Lspec is robust. It is also routine to verify that there exists a winning

2-P-1-A strategy for Gspec iff there exists a strict distributed controller for

(A, Lspec). �

3.9. Discussion

One can also assume that the distributed plant itself is not a CCP but

require, for robust specifications, the distributed controller be a CCP. More

precisely, we say that the distributed strategy Str is k-communicating iff

for every σ ∈ L(Str), if σσ′ ∈ L(Str) and |σ′|p ≥ k and |σ′|q = 0, then

for every σσ′σ′′ ∈ L(Str), p, q are separated in σ′′. We say Str is connect-

edly communicating iff Str is k-communicating for some integer k. The k-

communicating distributed controller synthesis is: Given a distributed plant

A, that is not necessarily a CCP, and a robust linear time specification Lspec

and an integer k, does there exists a k-communicating distributed controller

for (A, Lspec)? We conjecture that the k-communicating controller synthe-

sis problem is decidable; and in case such a distributed controller exists,

a finite state one exists as well and it can be effectively synthesized. It is
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also interesting to study the connectedly communicating controller synthe-

sis problem: Given a distributed plant, that is not necessarily connectedly

communicating, and a robust specification, does there exist a connectedly

communicating distributed controller? We conjecture that the connectedly

communicating controller synthesis problem is undecidable.



CHAPTER 4

Controller Synthesis for Real-Time Systems with
Tasks

In this chapter, we investigate controller synthesis in the real-time set-

ting. Our aim is to study the problem of synthesizing admission controllers

for real-time systems with tasks. We begin with an overview of this problem

in section 4.1. Subsequently we discuss related work in section 4.2. In sec-

tion 4.3, we formulate the plant model that represents the arrival pattern of

tasks in a real-time system. And we define the admission controller synthe-

sis problem in section 4.4. Section 4.5 presents our results on the admission

controller synthesis problem. We prove that the admission controller syn-

thesis is decidable for quality-of-service specifications given in LTL (linear

time temporal logic), and more generally in QPLTL (quantified propositional

LTL). We show further that if there exists an admission controller, then we

can synthesize one in the form of a finite timed automaton. In section 4.6

we discuss the prospects for extending the current work.

4.1. Overview

In many real-time systems, there are hard tasks that are time-critical

and soft tasks that are not. A soft task might be discarded causing only

performance penalties, while a hard task must be always be served, that is,

put into the ready queue, and must be completed before its deadline.

With fixed computing resources and a fixed scheduling policy, the task

arrival pattern of a real-time system may be such that some tasks will miss

their deadlines, if every released task instance is put into the ready queue. In

other words, the task arrival pattern may not be schedulable. An approach

74
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to deal with this is proposed in [45]. For each new task instance, we check if

the ready queue would still be schedulable if the new task instance were to be

served, that is, put into the ready queue according to the scheduling policy.

This checking is the called the acceptance test. Each new task instance will be

added to the ready queue only if it passes an acceptance test. In particular,

[45] discusses ways of designing the acceptance test for various restricted

kind of task arrival patterns. However, this approach is not satisfactory for

the following reason. It may happen that a time-critical task instance fails

the acceptance test, simply because we have admitted earlier too many soft

task instances.

We address this problem in a systematic manner and term it the admis-

sion controller synthesis problem. Informally, given the task arrival pattern

of a real-time system and a quality-of-service (QoS) requirement, we would

like to determine whether there exists an admission controller. The admis-

sion controller will, upon each newly arrived task instance, either accept it

and put it into the ready queue through the scheduling policy, or reject (dis-

card) it. We require that every accepted task instance must be completed

before its deadline, and moreover, the actions of the admission controller

must meet the QoS requirement. In particular, with suitable QoS require-

ments, we will prevent the admission controller from simply rejecting all soft

task instances.

We assume a uniprocessor setting with the preemptive EDF (earliest-

deadline-first) scheduling policy. The preemptive EDF policy is known to

be optimal in the uniprocessor setting [15] in the following sense: If a task

set is schedulable at all, then it is schedulable under the preemptive EDF

policy. In the sequel, we discuss the choice of formalisms for modelling task

arrival patterns and QoS requirements.

Classical schedulability analysis techniques [15] for real-time systems

make strong assumptions about the temporal arrival patterns of the tasks.
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To overcome this limitation, a model was suggested in [24], where timed

automata [7] are used to describe task arrival patterns. In this way, many

task arrival patterns can be captured in a uniform way. It was shown in [24]

that, with a uniprocessor setting and the preemptive EDF scheduling policy,

one can effectively decide whether all tasks can be scheduled to meet their

deadlines when the task arrivals are described by a timed automaton.

We shall adopt the approach in [24] of modelling task arrival patterns

using timed automata. Further, we extend such timed automata slightly to

form what we called task plants. A task plant will have environment states

from which the environment can make uncontrollable timed moves to release

tasks. Each such uncontrollable action, leading to a system state, will then

be immediately followed by an urgent pair of controllable actions; one of

them, accepting the just released task instance and putting it into the ready

queue and the other one rejecting it. The admission controller synthesis

problem is then to determine whether there exists an admission strategy for

choosing the controllable actions so that the admitted task instances, no

matter what the environment does, can all be scheduled without missing

their deadlines. And moreover the task acceptance pattern by the admission

strategy satisfies a given QoS requirement.

We shall label each transition of the task plant with a set of atomic

propositions and consider a QoS requirement to be given as a formula in

LTL, or more generally in QPLTL (cf. section 2.2). For such a formula ψ,

we say an admission controller satisfies ψ iff along every infinite run σ of the

task plant that can be generated by the admission controller, the sequence

of sets of atomic positions induced by σ is a model of ψ.

The admission controller synthesis problem can be more precisely stated:

Given a task plant and a QoS specification in LTL or in QPLTL, does there

exist an admission controller? We prove that this problem is decidable, for

both QoS specifications in LTL and in QPLTL. Further, in both cases, we



4.1. OVERVIEW 77

show that if an admission controller exists, then we can effectively synthesize

one in the form of a (finite) timed automaton.

In the sequel, we elaborate on the kind of QoS requirements that can be

expressed with this framework.

Obviously, in LTL, we can easily indicate that a task τ is hard by asserting

that every instance of τ must be accepted. Hence in the task plant model,

we need not impose a syntactic distinction between hard and soft tasks. We

can also express in LTL liveness and fairness properties, which may be seen

as QoS requirements of qualitative nature. For instance, one can specify

the liveness property that along every infinite run, if instances of task τ

is released infinitely often, then infinitely often some instance of τ must

be accepted. One can also demand the fairness property that assuming

instances of task τ and τ ′ are released infinitely often, if infinitely often

some instance of τ is accepted, then infinitely often some instance of τ ′ is

accepted.

More interestingly, we can express in LTL quantitative QoS requirements

that have the “boundedness” flavour. For instance, for a fixed integer n and

a task τ , we can construct an LTL formula ϕ to assert that between every

consecutive n instances of τ , at least 0.7n of them must be accepted. Specif-

ically, we will enumerate all possible acceptance patterns of n consecutive

arrivals of instances of τ in which more than 0.7n instances are accepted,

and define ϕ will be a disjunction of all these acceptance patterns.

For a fixed integer n, we can specify in QPLTL the QoS requirement Ψn

that: every n-th instance of task τ must be accepted, while other instances

of τ may or may not be accepted. Such a property is not expressible in

LTL [80]. We refer to section 2.2 for the construction of Ψn.

On the other hand, it seems we can not express in LTL or QPLTL quan-

titative QoS requirements that concern the limit average behaviour of task

acceptance patterns. Such a property may demand that the limit of the
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average acceptance ratio of instances of task type τ is at least 0.7. It would

be worthwhile to extend our work to handle such quantitative QoS require-

ments. For doing so, we believe that techniques from quantitative games

(see for instance [20, 82]) will turn out to be useful.

Our work in admission controller synthesis may be viewed as an extension

to an open system framework of the results reported in [24]. As discussed

already, this extension has a natural motivation and it is a pleasing fact that

techniques from the controller synthesis domain and timed-automata-based

schedulability analysis techniques can be combined in a natural manner to

solve the synthesis problem at hand.

4.2. Related Work

In the literature, a number of studies are available regarding controller

synthesis in a timed setting; a representative sample being [9, 13, 19, 53].

The key motivation of these works is to extend classical controller synthesis

results for discrete event systems [14, 61, 66] to a timed setting. In com-

parison, though we use the language and techniques of (timed) controller

synthesis, our motivation is very different. Our goal is to derive admission

controller for real-time systems with tasks so as to obtain schedulability and

to satisfy QoS requirements. We chose to study real-time systems with tasks,

as we believe that the correctness of many real-time systems depends not

only on timely occurrence of events, but also the proper handling of tasks

triggered by these events.

In particular, the work [9] studied timed games played on timed automata

with the safety, denoted �, winning condition which asserts that the con-

trolled timed plant only visits the good states. It also considers dually, the

eventuality, denoted ♦, winning condition which dictates that the controlled

timed plant will eventually reach one of the good states. The emphasis of [9]
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is to extend efficient symbolic methods for analysis of timed systems to derive

practically efficient synthesis procedures for solving timed games.

The work [53] extends the results of [9] to include also ♦� and �♦ and

Rabin winning conditions. The ♦� condition asserts that the set of states

that the controlled timed plant will visit infinitely often are contained in a

prescribed subset of good states, while the �♦ condition demands that some

state from a prescribed subset of good states is visited infinitely often by the

controlled timed plant. The Rabin condition is a sequence of accepting pairs

{(Fi, Gi) | i = 1, 2, . . . , k} where Fi,Gi are prescribed subsets of good states.

This requires that, for some accepting pair (Fi, Gi), the controlled timed

plant visits some state from Fi infinitely often and moreover the set of states

that the controlled timed plant visited infinitely often is contained in Gi.

The work [19] studies timed games where the plant is based on a timed

automaton and also the specification is given as another timed automaton.

In this sense, the specification is external to the plant. In view that classical

controller synthesis on discrete event systems from the control theory litera-

ture often deals with internal specification (in terms of the plant states), the

objective of [19] is to study the effect of external specifications on decidability

and undecidability of timed games.

The work [13] carries on the framework of [19] and investigates decidabil-

ity and undecidability results of timed games for both internal and external

specifications, but with partial observation. The partial observation compli-

cation dictates that the controllers are not able to observe all the actions of

the environment.

Both [13, 19] also consider whether the clocks available to the controller

and the granularity of these clocks are fixed a prior or can be chosen by the

controller. In our setting of admission controller synthesis, the admission

controller will not have any clock variables of its own. It will be perhaps
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interesting to extend our controller synthesis to settings where the admission

controller is endowed with its own clocks and granularity.

A second line of work related to admission controller synthesis is to derive

a schedule for a real-time application, given the timed model of the appli-

cation and a set of resource constraints [1, 5, 10, 12, 28, 41, 58] with [1, 5]

in fact carrying out the work using the controller synthesis paradigm. The

emphasis in this line of work however is to restrict the timed behaviours of

the application so as to meet, in a timely fashion, access to shared resources.

At present, we have considered a uniprocessor setting. It will be interesting

to extend our work along this line, to multi-processor settings accompanied

by resource access protocols for shared resources.

In particular, the work [1] investigates the computation of optimal sched-

ules for a given set of tasks that require shared resources. The execution time

of a task is not fixed and rather varies in a given interval. It is shown in [1]

that the problem can be reduced to synthesizing controllers for timed au-

tomata with reachability winning conditions. More generally, the work [5]

studies the following problem: given a timed automaton modelling a real-

time system with tasks and a constraint dictating the timing properties of the

tasks (called processes in [5]) and policy requirements about resource man-

agement (dynamic priorities, preemption, etc), one seeks a scheduler such

that the tasks are schedulable (deadlines are not violated) while respecting

the policy requirements about resource management.

4.3. The Task Plant Model

In this section, we formulate the task plant model and define its opera-

tional semantics.
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4.3.1. Timed Automata.

Since our task plant model will be based on timed automata. We begin

by reviewing the basics of timed automata. For detailed reference, we refer

to [7].

A timed automaton is basically a finite transition system augmented

with clocks. Let X be a finite set of clocks. A clock constraint over X is

a finite conjunction of basic constraints (inequalities) of the form x ≺ c

or x − y ≺ c where x, y ∈ X, c ∈ N, ≺ ∈ {<,≤, >,≥}. We let Grd(X)

denote the set of clock constraints over X. As usual N is the set of natural

numbers. The difference constraints x−y ≺ c will be needed later to capture

the behaviour of the ready queue of tasks. Formally, a timed automaton A

is a structure (Q, qin , X, {Iq}q∈Q,Σ,−→) where Q is a finite set of locations

and qin ∈ Q is the initial location. X is a finite set of clocks. For each q ∈ Q,

Iq ∈ Grd(X) is the invariant associated with q. Σ is a finite set of events.

And −→ ⊆ Q× Grd(X) × Σ × 2X ×Q is the transition relation.

Suppose A1 = (Q1, q
1
in , X1, {I

1
q }q∈Q1,Σ,−→1) and A2 = (Q2, q

2
in , X2,

{I2
q }q∈Q2,Σ,−→2) are timed automata, where X1 and X2 are disjoint. Then

the product of A1 and A2 is the timed automaton A = (Q, qin , X, {Iq}q∈q,Σ,

−→) where Q = Q1 × Q2, qin = (q1
in , q

2
in), X = X1 ∪ X2. And for each

(q1, q2) ∈ Q1 × Q2, I(q1,q2) = Iq1 ∧ Iq2. Finally, −→ is the least set such

that: if q1
ϕ1,a,Y1
−→ 1 q1

′ and q2
ϕ2,a,Y2
−→ 2 q2

′, then (q1, q2)
ϕ,a,Y
−→ (q1′, q2′), where

ϕ = ϕ1 ∧ ϕ2 and Y = Y1 ∪ Y2.

In what follows, R≥0 and R+ will denote the set of non-negative reals

and positive reals, respectively. A clock valuation V over X is a function

X → R≥0. For t ∈ R+, V + t is the clock valuation (V + t)(x) = V (x) + t

for x ∈ X. For Y ⊆ X, V [Y := 0] is the clock valuation which maps every

clock in Y to zero and agrees with V on other clocks. The notation that the

valuation V satisfies the clock constraint ϕ is defined in the obvious way.
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The timed behaviour of A is given by the transition system TSA =

(RCA, (qin , Vin),R+ ×Σ,=⇒A) where RCA and =⇒A are the least sets sat-

isfying the following.

• Firstly, (qin , Vin) ∈ RCA, where Vin(x) = 0 for every clock variable

x.

• Secondly, suppose (q, V ) ∈ RCA. Suppose further, there exists a

transition (q
ϕ,a,Y
−→ q′) and t ∈ R+ such that V + t′ satisfies Iq for

all t′ ∈ R+ with t′ ≤ t, and V + t satisfies both ϕ and Iq′ . Then

(q′, V ′) ∈ RCA, where V ′ = (V+t)[Y := 0], and (q, V )
t,a

=⇒A (q′, V ′).

It is well-known [7] that we can quotient TSA into a finite transition

system, called the region automaton RAA of A. For x ∈ X, let cx be the

maximum constant which appears in basic constraints (of transition guards

of) A of the form x ≺ c, where c ∈ N, ≺ is in {<, ≤, >, ≥}. We say two

clock valuations V and V ′ are region-equivalent, denoted V ∼ V ′ iff the

following conditions hold:

• For each x ∈ X, either bV (x)c = bV ′(x)c ≤ cx; or V (x) > cx

and V ′(x) > cx. Further, in the former case, fra(V (x)) = 0 iff

fra(V ′(x)) = 0, where fra(v) is the fractional part of v.

• For each x, y ∈ X such that V (x) ≤ cx, V
′(x) ≤ cx, V (y) ≤ cy,

and V ′(y) ≤ cy, we have fra(V (x)) ≤ fra(V (y)) iff fra(V ′(x)) ≤

fra(V ′(y)).

• For every difference constraint x−y ≺ c which appears in (transition

guards of) A, V satisfies x− y ≺ c iff V ′ satisfies x− y ≺ c.

A clock region is an equivalence class of ∼ (over the set of clock valuations

over X). It is clear that a clock region R can be effectively represented as θ,

a conjunction of clock constraints of the form x = c, c− 1 < x < c, x > cx,

x− y = c, c− 1 < x− y < c and x− y ≺ c′, where x, y ∈ X, c ∈ N, c ≤ cx,

and x− y ≺ c′ is a difference constraint which appears in A. More precisely,

for every clock valuation V , V is in R iff V satisfies θ.
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We extend ∼ to RCA (denoted also as ∼) via: (q, V ) ∼ (q′, V ′) iff q = q′

and V ∼ V ′. A region is an equivalence class of ∼ over RCA. The key

property of regions is the following:

Proposition 4.1. Let RCA be as given above and assume the associated

notations. If (q, V )
t,a

=⇒A (q′, V ′) and (q, V ) ∼ (q1, V 1), then there exists

t′ ∈ R+ such that (q1, V 1)
t′,a
=⇒A (q1′, V 1′) and (q1′, V 1′) ∼ (q′, V ′).

For (q, V ) in RCA, we shall denote the region containing (q, V ) by

[(q, V )]∼ and often just write [(q, V )]. We can now define the region automa-

ton RAA = (RGA, [(qin , Vin)],Σ, A), where RGA is the set of regions, and

 A ⊆ RGA × Σ × RGA is given by: [(q, V )]
a
 A [(q′, V ′)] iff there ex-

ists (q1, V 1) in [(q, V )] and there exists (q1′, V 1′) in [(q′, V ′)] such that

(q1, V 1)
t,a
 A (q1′, V 1′) for some t ∈ R+. It is easy to see that RAA is

well-defined and can be effectively constructed from A.

4.3.2. The Task Plant Model.

Next we recall how task arrival patterns in a real time environment can

be modelled using timed automata as proposed in [24]. The basic idea is

to associate a task with each location. Whenever a location is entered, an

instance of the task associated with the location is supposed to be released.

Here, it will be convenient to associate tasks with the transitions rather

than with the locations. We also wish to highlight that we are dealing with

an open system model—called a task plant in the present context—of task

arrival patterns on which an admission control policy can be imposed.

Formally, we define a task plant A to be a structure (Qe, Qs, qin , X,

{Iq}q∈Qe,Υ, C,D,−→e,−→s), where

• Qe and Qs are disjoint finite nonempty sets of environment states

and system states, respectively.

• qin ∈ Qe is the initial state.

• X is a finite set of clocks.
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• For each q ∈ Qe, Iq ∈ Grd(X), is the invariant associated with q.

• Υ is a finite set of task types. The functions C,D : Υ → N associate

with each task type a computation time and a relative deadline,

respectively. Further, for each τ ∈ Υ, 0 < C(τ) ≤ D(τ).

• −→e ⊆ Qe×Grd(X)×Υ×2X×Qs is a set of environment transitions.

For each system state q′, there exists a unique environment state q

and a unique environment transition of the form (q
ϕ,τ,Y
−→e q

′).

• −→s ⊆ Qs×{0, 1}×Qe is a set of system transitions. For each sys-

tem state q′, there exists a unique environment state q and exactly

two system transitions of the form (q′
0

−→s q) and (q′
1

−→s q).

Through the rest of this chapter, we fix a task plant A defined above

and assume the associated notations and terminologies. Informally, the task

plant model consists of a timed automaton whose events are interpreted as

tasks, in case they are associated with environment transitions. For system

transitions we allow only the events {0, 1} which will be used to capture

the decisions made by the controller. The semantics of the task plant will

implicitly impose a zero-delay on the system states. In other words, as soon

as a system state is entered, the admission controller will make the decision

to either accept the task that has just been released by the environment;

this is captured by the 1-labelled transition going out of the system state.

On the other hand, the 0-labelled transition going out of a system state

models the decision to reject the just released task. We could have assigned

a special clock variable to capture the immediacy of these transitions, but

we have not done so for convenience. As mentioned above, the decision as

to whether a just released task is to be admitted or not is made as soon

as the task is released by the environment. Thus system moves come in

pairs and each such pair is uniquely associated with an environment move.

Further, the environment is oblivious to the admission policy being followed

by the system. This explains the restrictions placed on the structure of
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the transitions. An example of a task plant is shown in figure 4.1 below.

Environment states are indicated by circles and system states by boxes. We

have C(τa) = 1, D(τa) = 2, C(τb) = 2, D(τb) = 3. All invariants associated

with environment states are true.

s1

0

1

e1
1<x<2,τb

x<1,τb

s2

0

1

e2

x<3,τa,x:=0

s3

0

1

Figure 4.1. A task plant

4.3.3. The Ready Queue States.

The semantics of the task plant A is to be understood with respect to a

scheduling policy. Here we work with the simple framework consisting of a

single processor. The scheduling policy we shall assume is preemptive EDF

(earliest-deadline-first). At any given time, the task that is executing on

the processor is the one with earliest relative deadline among all the tasks

currently in the ready queue. Whenever a fresh task τ ′ arrives, if its relative

deadline is less than the (current) relative deadline of the currently executing

task τ , then τ is preempted, placed back in the ready queue (at the head of

the queue actually) and τ ′ will start executing. Thus the state of the task

plant will consist of the current location, the values of the clocks associated

with the task plant and the state of the ready queue. This motivates the

following definition.

A ready queue η over Υ is a finite sequence σ1 . . . σn where, for i =

1, . . . , n, we have σi = 〈τi, ci, di〉, with τi ∈ Υ, ci, di ∈ R≥0, ci ≤ C(τi),

and di ≤ D(τi). Intuitively, σi is a task instance at position i of type τi

with remaining computation time ci and remaining relative deadline di. We

assume the convention that σ1 is the head of the queue. The empty queue is

denoted ε.
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The order in which the task instances appear in the queue reflects the

order in which these task instances will be scheduled. If the queue is non-

empty, the task instance at the head of the queue is currently supposed to be

executing. When time passes, both the remaining computation time (ci) and

the relative deadline (di) of the task at the head of the queue will decrease

while just the relative deadlines of the remaining tasks will decrease. When

the task at the head of the queue finishes, it will leave the ready queue and

the task behind it will be promoted to the head of the queue and will start

executing. A fresh task instance, when admitted will be inserted into the

ready queue at the appropriate slot as dictated by the relative deadline of

this instance and the current relative deadlines of the task instances in the

ready queue.

The way in which the state of the ready queue changes due to passage

of time (and the execution of tasks) is modelled by the function Comp. This

function takes a queue η and a time duration t as inputs and returns a queue

η′ resulting from computing the tasks in η for t time units on the processor

and is defined as follows:

• Firstly, Comp(ε, t) = ε.

• Secondly suppose η = σ1 . . . σn where σi = 〈τi, ci, di〉 for 1 ≤ i ≤ n.

If t < c1, then Comp(η, t) = η′, where η′ = σ′
1σ

′
2 . . . σ

′
n with σ′

1 =

〈τ1, c1 − t, d1 − t〉 and σ′
i = 〈τi, ci, di − t〉 for 1 < i ≤ n.

If t ≥ c1, then Comp(η, t) = Comp(η′, t − c1) where η′ =

σ′
1σ

′
2 . . . σ

′
n−1 with σ′

i = 〈τi+1, ci+1, di+1 − c1〉 for 1 ≤ i ≤ n− 1.

The way in which a task that has just been admitted is inserted into the

ready queue is captured by the function Sch which takes as inputs a ready

queue η and a task instance J and returns a ready queue η′.

Let η = 〈τ1, c1, d1〉 . . . 〈τn, cn, dn〉 be a ready queue, where d1 ≤ · · · ≤ dn,

and let J = 〈τ, C(τ), D(τ)〉 be a task instance. Then Sch(η, J) = η′, where

η′ = 〈τ1, c1, d1〉 . . . 〈τk−1, ck−1, dk−1〉〈τ, C(τ), D(τ)〉〈τk, ck, dk〉 . . . 〈τn, cn, dn〉
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with k being the least index such that D(τ) < dk. Clearly this reflects

the preemptive EDF policy.

A queue η = 〈τ1, c1, d1〉 . . . 〈τn, cn, dn〉 is schedulable iff
∑m

i=1 ci ≤ dm for

1 ≤ m ≤ n. That is, assuming that no fresh task instances are inserted

into the ready queue, each task instance currently residing in the ready

queue can be scheduled (according to EDF) and run to completion before

its current deadline expires. In what follows, all non-schedulable queues will

be identified with the single designated (non-schedulable) queue named Err.

The functions Comp and Sch are extended in the obvious way to reflect this

convention.

4.3.4. The Task Plant Semantics.

The semantics of the task plant A is defined by a transition system

TSA = (RCA, 〈q0, V0, ε, ]〉,ACTA,=⇒A), where

ACTA = (R+ × Υ)
⋃

{0, 1}
⋃

{err} .

And RCA, the set of (reachable) configurations, and =⇒A are the least sets

satisfying the following:

• Firstly, 〈qin , Vin , ε, ]〉 ∈ RCA.

• Secondly, suppose 〈q, V, η, ]〉 ∈ RCA and q
ϕ,τ,Y
−→e q

′. If there ex-

ists t ∈ R+ such that V + t |= ϕ, then 〈q′, V ′, η′, J〉 ∈ RCA

and 〈q, V, η, ]〉
t,τ

=⇒A 〈q′, V ′, η′, J〉, where V ′ = (V + t)[Y := 0],

η′ = Comp(η, t), and J = 〈τ, C(τ), D(τ)〉.

• Thirdly, suppose 〈q, V, η, J〉 ∈ RCA and q
0

−→s q
′. Then 〈q′, V, η, ]〉

is in RCA and 〈q, V, η, J〉
0

=⇒A 〈q′, V, η, ]〉.

• Fourth, suppose 〈q, V, η, J〉 ∈ RCA and q
1

−→s q
′. If Sch(η, J) =

η′ 6= Err, then 〈q′, V, η′, ]〉 ∈ RCA and 〈q, V, η, J〉
1

=⇒A 〈q′, V, η′, ]〉.

If Sch(η, J) = Err, then Err ∈ RCA and 〈q, V, η, J〉
1

=⇒A Err.

• Finally, Err
err

=⇒A Err.
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Configurations of the form 〈q, V, η, ]〉 are called environment configura-

tions where ] is a special symbol, while those of the form 〈q, V, η, J〉 are

called system configurations. Note that Err is neither an environment config-

uration nor a system configuration. Intuitively, TSA is the game graph of a

real-time system where the environment triggers tasks in an uncontrollable

manner, while the system admits or rejects them in a controllable way. Note

that we require environment moves to consume a nonzero amount of time

and system moves to consume no time.

In what follows, we shall often omit the subscript A. For a configuration

σ, we define Act(σ) = {a ∈ ACT | ∃σ′. σ
a

=⇒ σ′}. That is, Act(σ) is

the set of possible actions that can be taken at configuration σ. Note that

Act(σ) ⊆ R+ × Υ if σ is an environment configuration, Act(σ) = {0, 1} if σ

is a system configuration σ and Act(Err) = {err}.

Without loss of generality, we shall assume that the task plant has no

dead configuration, that is, Act(σ) 6= ∅ for σ ∈ RC . Given the restrictions on

the structure of the task plant transitions, we can uniquely recover a sequence

of task plant transitions from each sequence of transitions of TS with the help

of the projection operator PrjA. Let δ = 〈〈q, V, η, ]〉, (t, τ), 〈q′, V ′, η′, J〉〉 be

an environment transition in TS . Then clearly, there is a unique transition

β = (q
ϕ,τ,Y
−→e q

′) in A such that V + t′ satisfies Iq for t′ ≤ t, V + t satisfies ϕ,

V ′ = (V +t)[Y := 0]. In this case, we define PrjA(δ) = β. For a system move

δ = 〈〈q, V, η, J〉,m, 〈q′, V ′, η′, ]〉〉 in TS , we define PrjA(δ) = (q
m
−→s q

′). For

the special move δ = 〈Err, err,Err〉, we define PrjA(δ) = δ. Using the operator

PrjA, it is clear that we can uniquely associate a sequence of transitions of

the task plant with each transition sequence of TS (modulo the handling of

the err moves).
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4.4. The Admission Controller Synthesis Problem

Here we define the admission controller synthesis problem formally.

Let A be the task plant as fixed in the preceding section. We say A is

said to be schedulable iff Err /∈ RCA. That is, no task will ever miss its

deadline, even if we never reject any task. It is proved in [24]—in a related

closed system setting—that one can effectively determine if A is schedulable,

under the preemptive EDF policy for a single processor.

Here we consider task plants which may not be schedulable and study

the problem of designing an admission policy under which the restricted be-

haviour of the plant becomes schedulable. Clearly, one can trivially achieve

schedulability by constantly rejecting all arrived tasks. To rule out this, we

shall assume that we are also given a liveness specification. Here we shall

assume that LTL (linear time temporal logic) is the chosen specification lan-

guage. In order to formulate this, we fix a finite set of atomic propositions

AP and a labelling function λ : ∆A → 2AP , where ∆A consists of all transi-

tions in −→e and all transitions in −→s. The target states of both the 0 and

1 transitions coming out of a system state are the same. To capture liveness

properties we need to get the admission decisions made by the system dur-

ing a run. Hence we assign atomic propositions to transitions than to states.

From now on we shall assume our task plant model to be augmented with

AP and a labelling function λ as specified above.

Let ∆TS be the set of transitions of TS , that is, the set of transitions in

=⇒A. Using the operator Prj we extend λ to ∆TS . By abuse of notation

this extension will also be denoted as λ and it is given by: λ(δ) = λ(Prj(δ))

for every δ ∈ ∆TS . By convention, we will set λ(〈Err, err,Err〉) = ∅. Let

χ = β0 β1 . . . be an infinite sequence of transitions of TS . Let ψ be an LTL

formula over AP . We shall say χ is a model of ψ iff the infinite sequence

λ(β0)λ(β1) . . . over 2AP is a model of ψ.
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We are now ready to define the notion of an admission strategy. Define

the set of (finite) runs of TS , denoted Runs(TS ), to be the least subset of

finite sequences over ∆TS satisfying:

• ε ∈ Runs(TS ) and the end state of ε is 〈qin , Vin , ε, ]〉.

• Suppose ρ ∈ Runs(TS ) and the end state of ρ is σ. Suppose further

that there exists δ = 〈σ, a, σ′〉 in ∆TS . Then ρ δ ∈ Runs(TS ) and

the end state of ρ δ is σ′.

In what follows, we denote the end state of a run ρ in Runs(TS ) by end(ρ).

An admission strategy f for the task plant A is a function f from

Runs(TS ) into 2ACT such that for every ρ in Runs(TS ), the following con-

ditions hold (where σ = end(ρ)):

• If σ is a system configuration, then f(ρ) is nonempty subset of

Act(σ) (note that Act(σ) = {0, 1} in this case).

• If σ is an environment configuration, then f(ρ) = Act(σ).

• If σ = Err, then f(ρ) = ∅.

Thus an admission strategy recommends a set of moves at the end state

of each run. The moves recommended are a subset of the moves enabled

at the end state and at least one move is recommended. In this sense an

admission strategy is, by definition, non-blocking. Note that an admission

strategy does not restrict the moves of the environment in any way.

Let f be an admission strategy for A. We define the set of runs in

Runs(TS ) being according to f , denoted Runs(f), inductively as follows:

• ε is in Runs(f).

• Suppose ρ in Runs(TS ) is in Runs(f) and σ = end(ρ). Suppose

further that a ∈ f(ρ) and δ = 〈σ, a, σ′〉 is in ∆TS . Then ρ δ is in

Runs(f).
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Infinite runs of TS and the notion of an infinite run of TS being according

to an admission strategy are defined in the usual way. Namely, an infinite

run of TS is an infinite sequence ρ over ∆TS such that every finite prefix of

ρ is in Runs(TS ). For an infinite run ρ of TS , we say ρ is according to the

admission strategy f iff every finite prefix of ρ is according to f .

We say the admission strategy f for A is safe iff for any run ρ in Runs(f),

the end state of ρ is not Err. Given an LTL or QPLTL formula ψ, we will

say that the admission strategy f is ψ-winning iff the following conditions

are satisfied: firstly, f is safe; secondly, if ρ = δ0 δ1 . . . is any infinite run of

TS according to f , then ρ is a model of ψ. By a ψ-controller for A, we shall

mean a ψ-winning admission strategy.

We can now state the admission controller synthesis problem formally:

Given a task plant A and an LTL or QPLTL formula ψ, does there exist an

admission controller.

4.5. Decidability Results

Our result is that the admission controller synthesis problem is decid-

able and moreover, if an admission controller exists, then one can effectively

construct a finite state admission controller in the form of a (finite) timed

automaton.

We begin with QoS specifications in LTL.

Theorem 4.2.

(i) Given a task plant A and an LTL formula ψ. we can effectively deter-

mine whether there exists a ψ-controller for A.

(ii) Moreover, whenever such a ψ-controller exists, one can effectively con-

struct a ψ-controller in the form of a finite timed automaton.
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The proof of theorem 4.2(i) is based on two ideas. Firstly, as shown in

[24], we can associate clock variables with the ready queue and capture its

dynamics with the help of a mildly extended timed automaton model that

uses only the ready queue’s clock variables. We review this construction in

section 4.5.1. Secondly, we prove in section 4.5.2 the important lemma that

if there is a winning admission strategy at all then there is region-respecting

one which respects the regional equivalence induced by the plant’s and the

ready queue’s clock variables. Consequently, it suffices to determine whether

or not there exists a region-respecting winning admission strategy. And this

allows us to work with the regional version of TS which will be a finite

transition system.

In section 4.5.3, we reduce the problem of determining the existence of

a winning admission strategy to checking the nonemptiness of the language

of a non-deterministic Rabin tree automaton Rctrl that we can effectively

construct. The tree automaton Rctrl will run over {>,⊥}-labelled trees

whose underlying tree will be the computation tree induced by the regional

version of A. Such a tree will be accepted by Rctrl iff the {>,⊥}-labelling

represents a winning strategy. This will settle theorem 4.2(i). We then

analyze the complexity of the decision procedure in theorem 4.2(i).

In section 4.5.4, we discuss that the proof of theorem 4.2(i) can also be

handled using zones, instead of regions.

To prove theorem 4.2(ii), we shall make use of Rabin’s tree theorem [63].

It implies that in case the set of {>,⊥}-labelled trees accepted by Rctrl

is nonempty, then Rctrl in fact accepts a regular {>,⊥}-labelled tree. In

section 4.5.5, we show that this regular tree can be effectively computed,

represented as a finite structure and this structure can be naturally viewed

as a timed automaton. This timed automaton will constitute the winning

admission strategy we seek.
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Lastly, in section 4.5.6, we show that the proof of theorem 4.2 can be

easily adapted to handle QPLTL formulae.

4.5.1. Timed Automaton for the Ready Queue.

Here we briefly summarize the construction in [24] of a timed automaton

extended with subtraction Aqu which describes the dynamics of the ready

queue under the preemptive EDF scheduling policy in a uniprocessor setting.

A timed automaton extended with subtraction is just an ordinary timed

automaton, in which a constant integer value may be subtracted from a clock

value during a transition. However such subtractions will not be allowed in

arbitrary contexts. They will be used in a manner which ensures that no

clock value becomes negative via subtraction. Moreover, a clock value will

be subtracted from only when its value is below the maximum constant

associated with it. Due to these two properties, the region construction of

ordinary timed automata can also be applied to Aqu .

For illustration, we show a timed automaton in in figure 4.2. We display

its clock regions in figure 4.3 and its region automaton in figure 4.4

x := 0

x := 0

a

x ≥ 1 ∧ y < 2

y := y − 1

b

y < 2 ∧ y − x ≥ 1

q1 q2

Figure 4.2. A timed automaton extended with subtraction

Observe that a schedulable ready queue contains at most dD(τ)/C(τ)e

instances of each task type τ ∈ Υ. Let (τ, j) denote the j-th instance of τ ,

for j = 1, . . . , dD(τ)/C(τ)e. The function stat, to be associated with the

locations of A will give the status of each potential instance (τ, j).
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x

2

1

1
0

y

Figure 4.3. Clock regions

a

b

b

b

q1

q2 q1

0 < y < 1

x = 0

q2

1 < y < 2

x = 0

y = 0
x = 0 x = 0

y = 1

a

a

Figure 4.4. The region automaton

The status of an instance can be out (not in the ready queue), in (re-

leased and in the ready queue, but has not started execution), exec (being

executed by the processor) or pre (started execution but has been preempted

by another instance). The set of locations of A consist of these status func-

tions and a special location Errqu designated to represent all non-schedulable

ready queues. The initial location is the status function representing the

empty queue ε, denoted εqu .

The event alphabet is Υ ∪ {errqu}. An event τ ∈ Υ signifies the arrival

of an instance of τ . The event errqu is a dummy one which is used only for

the special location Errqu .

For each instance (τ, j), two clocks xc(τ, j) and xd(τ, j) are used to keep

track of its remaining computation time and remaining relative deadline.

More precisely, the remaining computation time will be C(τ)− xc(τ, j) and

the remaining relative deadline will be D(τ) − xd(τ, j). The set Xqu of all
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such clocks xc(τ, j), xd(τ, j), where τ ∈ Υ, j ≤ dD(τ)/C(τ)e, is the clock

set of Aqu . These clocks evolve as follows:

• xd(τ, j) is reset to zero when (τ, j) is released. xc(τ, j) is reset to

zero when it starts execution.

• When (τ, j) finishes execution (and exits the ready queue), we sub-

tract C(τ) from every xc(σ, k) whose status is pre.

For illustration, we display in figure 4.5 a fragment of the timed automa-

ton Aqu for the task types τa, τb associated with the task plant in figure 4.1.

To reduce clutter, we have omitted those task instances whose statuses are

out. A transition labelled with action τa (respectively, τb) indicates the ar-

rival of a new task instance of τa (respectively, τb). The action labels of other

transitions are immaterial and hence omitted.

Let TSAqu
(TS qu for short) be the transition system associated with Aqu .

From [24], we have the following.

Proposition 4.3 ([24]). There exists a 1-1 correspondence Ω between ready

queues and configurations in TS qu which satisfies:

• Ω(ε) = (εqu , V
qu
in ), where V qu

in (x) = 0 for each x ∈ Xqu .

• Suppose Ω(η1) = (q1, V1),Ω(η2) = (q2, V2). Let t ∈ R+ and J =

〈τ, C(τ), D(τ)〉 be a task instance. Then η2 = Comp(η1, t) iff

〈(q1, V1), t, (q2, V2)〉 is a transition of TS qu . Further, η2 = Sch(η1, J)

iff 〈(q1, V1), τ, (q2, V2)〉 is a transition of TS qu .

• Ω(Err) = (Errqu , V
qu
in ).

Hence, from now on, we shall replace the ready queue component in con-

figurations of TS by the corresponding configuration in TS qu . To be specific,

the configuration 〈q, V, η, κ〉 of TS will now be represented as 〈q, V, q′, V ′, κ〉

where Ω(η) = (q′, V ′).

We define the regional equivalence relation ∼ to be the least equiva-

lence relation on RC satisfying: Suppose σ1 = 〈q1, V 1, q′1, V
′
1 , κ1〉, σ2 =
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Errqu

stat(τb, 1) : exec

xc(τb, 1) ≤ 2

stat(τa, 1) : in

stat(τb, 1) : exec

xc(τb, 1) ≤ 2

stat(τb, 1) : exec

xc(τb, 1) ≤ 2

xc(τb, 1) := 0
xd(τb, 1) := 0

τb

xd(τb, 1) ≤ 3
xc(τb, 1) = 2

xc(τa, 1) := 0
xd(τa, 1) := 0

τa

∧ xd(τb, 1) < 1

xc(τb, 1) < 2

xc(τb, 1) := xc(τb, 1) − 1

εqu

xc(τa, 1) ≤ 1

stat(τa, 1) : exec

stat(τb, 1) : pre

xd(τa, 1) := 0
τa

∧ xd(τb, 1) ≥ 1
xc(τb, 1) < 2

∧ xd(τa, 1) ≤ 2
xc(τa, 1) = 1

∧ xd(τb, 1) ≤ 3

∧ xd(τb, 1) > 3
xc(τb, 1) ≤ 2 ∧ xd(τa, 1) > 2

xc(τa, 1) ≤ 1

xd(τb, 1) > 3

xc(τa, 1) := 0
xd(τa, 1) := 0

τa

stat(τa, 1) : in

stat(τb, 1) : exec

stat(τb, 2) : in

xc(τb, 1) ≤ 2

xc(τb, 1) < 2
τb

xd(τb, 2) := 0

stat(τa, 1) : exec

stat(τb, 2) : in

xc(τa, 1) ≤ 2

stat(τa, 1) : in

stat(τb, 2) : exec

xc(τb, 2) ≤ 2

. . .

. . .

∧ 2 − xd(τa, 1) ≤ 3 − xd(τb, 2)
xc(τb, 1) = 2

∧ 2 − xd(τa, 1) > 3 − xd(τb, 2)
xc(τb, 1) = 2

xd(τb, 2) := 0

xc(τa, 1) := 0

. . .

. . .

. . .

Figure 4.5. The timed automaton Aqu

〈q2, V2, q
′
2, V

′
2 , κ2〉 are configurations in RC . Then σ1 ∼ σ2 iff q1 = q2, q

′
1 = q′2,

κ1 = κ2, and the clock valuations V1 ·V
′
1 and V2 ·V

′
2 belong to the same clock

region with respect to the clocks in X ∪Xqu , where V · V ′ denotes the clock

valuation over X ∪Xqu which agrees with V on clocks of X and agrees with

V ′ on clocks of Xqu . In particular, Err is region-equivalent only to itself (if

Err is in RC ).

Using the arguments developed in [24], it is easy to prove the following

result.
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Proposition 4.4 ([24]). Suppose σ1, σ2 are configurations in RC with

σ1 ∼ σ2. Then we have the following:

(i) Suppose σ1 (hence also σ2) is an environment configuration. If

σ1
t,τ

=⇒ σ3, then there exists t′ ∈ R+ such that σ2
t′,τ
=⇒ σ4 and σ3 ∼ σ4.

(ii) Suppose σ1 (hence also σ2) is a system configuration. If

σ1
m

=⇒ σ3 and σ2
m′

=⇒ σ4, where m,m′ ∈ {0, 1}, then m = m′ iff

σ3 ∼ σ4.

We are now ready to define RAA, the regional version of A. A re-

gion of A is an equivalence class of ∼ on RC . For σ ∈ RC , we let

[σ]∼ denote the region containing σ and often just write [σ]. We define

RA = (RG , [〈qin , Vin , εqu , V
qu
in , ]〉],ACTRA, ) where RG is the set of regions

and ACTRA = Υ ∪ {0, 1} ∪ {err}. Further,  is least set which satisfies the

following:

• Suppose [σ1], [σ2] are in RG where σ1 is an environment config-

uration and σ2 is a system configuration. Let τ be in Υ. Then

[σ1]
τ

=⇒ [σ2] iff there exist σ′
1 in [σ1] and σ′

2 in [σ2] and t in R+ such

that σ′
1

t,τ
=⇒ σ′

2.

• Suppose [σ1], [σ2] are in RG where σ1 is a system configuration

and σ2 is an environment configuration. Let m ∈ {0, 1}. Then

[σ1]
m

=⇒ [σ2] iff there exists σ′
1 in [σ1], σ

′
2 in [σ2] such that σ′

1
m
 σ′

2.

• If Err is in RC , then [Err]
err

 [Err].

It follows that RG is finite. It is also easy to see that the construction of

RA is effective.
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4.5.2. Region-Respecting Strategies.

In order to prove theorem 4.2(i), we first show a crucial lemma which

states that if there exists a ψ-winning admission strategy for A, then there

exists a region-respecting ψ-winning admission strategy for A. This lemma

will then allow us to work with the regional version of the task plant and

consider only region-respecting admission strategies. Intuitively, we say an

admission strategy is region-respecting iff it does not distinguish two runs in

Runs(TS ) that pass through the same sequence of regions.

Formally, we define the notion of an admission strategy being region-

respecting as follows. Abusing notation, we first extend the region equiva-

lence relation ∼ on RC to Runs(TS ) as follows. Suppose ρ, ρ̂ are runs in

Runs(TS ), where

ρ = 〈σ0, a0, σ
′
0〉 〈σ1, a1, σ

′
1〉 . . . 〈σn, an, σ

′
n〉 ,

ρ̂ = 〈σ̂0, â0, σ̂
′
0〉 〈σ̂1, â1, σ̂

′
1〉 . . . 〈σ̂n, ân, σ̂

′
n〉 .

Then we say ρ ∼ ρ′ iff for every i = 1, 2, . . . , n, it is the case that σi ∼ σ̂′
i,

ai = âi, and σ′
i ∼ σ̂′

i. Now we say the admission strategy f is region-

respecting iff for every ρ, ρ̂ in Runs(TS ), if ρ, ρ̂ are in Runs(f) and ρ ∼ ρ̂,

then f(ρ) = f(ρ̂).

The following result is crucial for establishing theorem 4.2.

Lemma 4.5. Let A be the task plant as fixed above. Suppose ψ is an LTL

specification. Then there exists a ψ-winning admission strategy for A iff

there exists a region-respecting ψ-winning admission strategy for A.

Proof. Suppose f is a ψ-winning strategy for A. We inductively construct

a prefix-closed subset REP f of Runs(f) such that REP f is “representative”

of Runs(f).

Firstly ε ∈ REP f . We recall that end(ε) is 〈qin , Vin , εqu , V
qu
in , ]〉.

Next suppose ρ ∈ REP f where end(ρ) = σ is an environment configura-

tion. For [σ̂] in RG , we will say that [σ̂] is a region successor of σ iff there
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exists σ̂′ in [σ̂] and (t, τ) in R+×Υ such that σ
t,τ

=⇒ σ̂′. Let [σ̂1], [σ̂2], . . . , [σ̂k]

be the set of region successors of σ. For each i = 1, 2, . . . , k, we pick (ti, τi)

such that σ̂′
i is in [σ̂i], where σ̂′

i is the unique configuration in RC satisfying

σ
ti,τi
=⇒ σ̂′

i. We then let ρ δi be in REP f , where δi = 〈σ, (ti, τi), σ̂
′
i〉, for every

i = 1, 2, . . . , k.

We argue that the choices of ti, i = 1, 2, . . . , k, can be made effective,

and hence one need not appeal to the axiom of choice ([34]) here. Now fix

i ∈ {1, 2, . . . , k}. Clearly, the task type τi exists and is unique. Let Ti be the

set of reals given by: t in R+ is in Ti iff σ′
i is in [σ̂i] where σ′

i is the unique

configuration in RC with σ
t,τi
=⇒ σ′

i.

Let σ̂i = 〈q̂i, V̂i, q̂
′
i, V̂

′
i , κ̂i〉. We note that the region [σ̂i] is in fact repre-

sented as a tuple consisting of qi, q
′
i, κi and the clock region containing V̂ · V̂ ′

that is in turn represented as a conjunction of clock constraints of the forms

x = c, c− 1 < x < c, x > cx, x− y = c, c− 1 < x− y < c, x− y ≺ c′,

where x, y in X ∪ Xqu and ≺ is in {<, ≤, >, ≥}. And cx is the maximum

constant which appears in basic constraints of A and Aqu ; c ∈ N with c ≤ cx;

and x−y ≺ c′ is a difference constraint which appears in basic constraints of

A and Aqu . It follows that Ti is actually an interval, namely, there exist r,

r′ in R≥0 (respectively, r ∈ R≥0 such that t ∈ Ti iff r ≺ t ≺ r′ (respectively,

r ≺ t), where ≺ is in {<, ≤}. Hence we pick ti to be 1
2
(r+ r′) (respectively,

r + 1).

Finally, suppose ρ ∈ REP f where end(ρ) = σ is a system configuration.

Then for each m ∈ f(ρ), we let ρ δ be in REP f , where δ = 〈σ,m, σ′〉 with σ′

being the unique (environment) configuration in RC with σ
m

=⇒ σ′.

It is clear that REP f is indeed a prefix-closed subset of Runs(f).

Now we construct the region-respecting admission strategy f̂ from REP f

as follows. For ρ in Runs(TS ), if there exists ρ′ in REP f such that ρ′ ∼ ρ,

then f̂(ρ) = f(ρ′); otherwise f̂(ρ) = ∅. It is now routine to show that f̂ is

in fact ψ-winning.
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�

4.5.3. Decidability for LTL Specifications.

With lemma 4.5, we are now ready to prove theorem 4.2(i). It follows

from lemma 4.5, to check if a ψ-winning admission strategy exists, it suffices

to determine if a region-respecting ψ-winning admission strategy exists. We

now show that the latter can be done effectively and hence establish theo-

rem 4.2(i).

In what follows, we fix a two-letter alphabet {>,⊥}, where >, ⊥ are

special symbols. We show that region-respecting admission strategies can

be represented as {>,⊥}-labelled trees, whose underlying tree is basically

the computation tree induced by RA. And one can effectively construct a

non-deterministic Rabin tree automaton which accepts the set of {>,⊥}-

labelled trees representing region-respecting ψ-winning admission strategies.

We set ∆RA to be the set of transitions of RA, that is, the set of tran-

sitions in  . For a region [σ] in RG , we define Tran([σ]) to be the subset

of ∆RA given by: 〈[σ̂], a, [σ̂′]〉 in ∆RA is in Tran([σ]) iff [σ̂] = [σ]. Now we

construct the ∆RA-tree T inductively as follows:

• Firstly, ε ∈ T and the end state of ε is [〈qin , Vin , εqu , V
qu
in , ]〉].

• Secondly, suppose ρ ∈ T and the end state of ρ is [σ] (in RG).

Then for each 〈[σ], a, [σ′]〉 in Tran([σ]), we let ρ δ be in T , where

δ = 〈[σ], a, [σ′]〉, and set the end state of ρ δ to be [σ′].

By abuse of notation, we will also denote the end state of a node ρ in T as

end(ρ). Clearly T is a ∆RA-tree and for every ρ in T , SuccT (ρ) 6= ∅.

Let (T , ξ) be a {>,⊥}-labelled ∆RA-tree, where η : T → {>,⊥} is

a labelling function. We say (T , ξ) is an admission strategy tree iff the

following conditions hold:

• ξ(ε) = >.
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• Suppose ρ is in T where end(ρ) = [σ] with σ being an environment

configuration in RC . Then for any δ in Tran([σ]), we have ξ(ρ δ) =

>.

• Suppose ρ is in T where end(ρ) = [σ] with σ being a system con-

figuration in RC . Then for there exists δ in Tran([σ]) such that

ξ(ρ δ) = >.

• Suppose ρ is in T where end(ρ) = Err. Then for any δ in Tran([Err]),

we have ξ(ρ δ) = ⊥.

It is easy to see that there is a 1-1 correspondence between region-

respecting admission strategies and admission strategy trees. In fact, if f is a

region-respecting admission strategy, then one can define the {>,⊥}-labelled

∆RA-tree (T , ξf ) as follows: for a node

ρ = 〈[σ0], a0, [σ
′
0]〉 〈[σ1], a1, [σ

′
1]〉 . . . 〈[σn], an, [σ

′
n]〉

in T , we have ξf (ρ) = > if there exists

ρ̂ = 〈σ̂0, â0, σ̂
′
0〉 〈σ̂1, â1, σ̂

′
1〉 . . . 〈σ̂n, ân, σ̂

′
n〉

in Runs(TS ) such that for i = 1, 2, . . . , n, it is the case that σ̂i is in [σi]

and âi = ai and σ̂′
i is in [σ′

i]. Further, ηf (ρ) = ⊥ otherwise. It is clear that

(T , ξf ) is an admission strategy tree. On the other hand, suppose (T , ξ) is an

admission strategy tree, then one can define a region-respecting admission

strategy fξ as follows: for ρ in T with end(ρ) = [σ], we have:

• If σ is an environment configuration, then fξ(ρ) = Act(σ).

• If σ is a system configuration, then m ∈ {0, 1} is in fξ(ρ) iff the

node ρ δ in T is labelled > by ξ, where δ = 〈[σ],m, [σ′]〉 with [σ′]

being the unique region such that 〈[σ],m, [σ′]〉 is in ∆RA.

• If σ = Err, then fξ(ρ) = ∅.
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It is straightforward to verify that fη is a well-defined admission strategy

and is region-respecting.

Now it is routine to show that an admission strategy tree (T , ξ) repre-

sents a region-respecting ψ-winning admission strategy iff (T , ξ) satisfies the

following conditions:

• (safe) For every ρ in T with end(ρ) = [Err], we have ξ(ρ) = ⊥.

• Suppose ρ = 〈[σ0], a0, [σ
′
0]〉 〈[σ1], a1, [σ

′
1]〉 . . . is a path in T . If every

finite prefix of ρ is labelled > by ξ, then for every infinite run ρ̂ =

〈σ̂0, â0, σ̂
′
0〉 〈σ̂1, â1, σ̂

′
1〉 . . . of TS , where for i = 0, 1, . . . , σ̂i is in [σi]

and âi = ai and σ̂′
i is in [σ′

i], it is the case that ρ̂ is a model of ψ.

We can now construct a non-deterministic Rabin tree automaton Rctrl

which will run over {>,⊥}-labelled ∆RA-trees (whose underlying tree is T )

Rctrl accepts (T , ξ) iff (T , ξ) is an admission strategy tree representing a

region-respecting ψ-winning admission strategy. It will be convenient to

view Rctrl as the intersection of three non-deterministic tree automata B1,

B2, R3, where B1, B2 are non-deterministic Büchi tree automata and R3 is a

deterministic Rabin tree automaton. For an input {>,⊥}-labelled ∆RA-tree

(T , ξ), B1 checks whether (T , ξ) is an admission strategy tree, B2 examines

whether the region-respecting admission strategy represented by (T , ξ) is

safe, and R3 verifies that for every path ρ of T along which every node is

labelled > by ξ, ρ is a model of ψ (in the sense defined above).

We have B1 = (RG × {>,⊥}, ([〈qin , Vin , εqu , V
qu
in , ]〉],>), {>,⊥},

↪→1, RG × {>,⊥}) where ↪→1 is given by:

• Suppose [σ] is in RG where σ is an environment configuration. Then

([σ],>)
>
↪→1 χ, where χ : Tran([σ]) → (RG × {>,⊥}) is given by:

χ(〈[σ], a, [σ′]〉) = ([σ′],>).

Further, ([σ],⊥)
⊥
↪→1 χ, where χ : Tran([σ]) → (RG × {>,⊥})

is given by: χ(〈[σ], a, [σ′]〉) = ([σ′],⊥).
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• Suppose [σ] is in RG where σ is a system configuration. It fol-

lows that Tran([σ]) = {〈[σ],m1, [σ
′
1]〉, 〈[σ],m2, [σ

′
2]〉} where m1 = 0

and m2 = 1. We have ([σ],>)
>
↪→1 χ for any χ : Tran([σ]) →

(RG × {>,⊥}) which maps each 〈[σ],mi, [σ
′
i]〉 to ([σ′

i], bi), where

bi ∈ {>,⊥}, and satisfies the condition that there exists at least

one i with bi = >.

Further, ([σ],⊥)
⊥
↪→1 χ, where χ : Tran([σ]) → (RG × {>,⊥})

is given by: χ(〈[σ], a, [σ′]〉) = ([σ′],⊥).

• If [Err] is in RG , then we have ([Err],>)
>
↪→1 χ, where χ is the

function from Tran([Err]) to RG×{>,⊥} that maps 〈[Err], err, [Err]〉

to ([Err],⊥).

Intuitively, for an input {>,⊥}-labelled ∆RA-tree (T , ξ), a state ([σ], b)

of B1 indicates that B1 expects a node ρ in T such that dir(ρ) = 〈[σ̂], a, [σ̂′]〉

with [σ̂′] = [σ], and ξ(v) = b. It is straightforward to verify that B1 accepts

(T , ξ) iff (T , ξ) is an admission strategy tree.

We next define B2 =
(
RG × ({>,⊥} ∪ {$}), ([〈qin , Vin , εqu , V

qu
in , ]〉],>),

{>,⊥}, ↪→2,RG × {>,⊥}
)

where $ is a special symbol and ↪→2 is given by:

• Suppose [σ] is in RG and σ 6= Err. Then we have ([σ],>)
>
↪→2 χ for

any map χ : Tran([σ]) → (RG × ({>,⊥} ∪ {$})).

Further, we have (σ,⊥)
⊥
↪→2 χ, where χ is the function from

Tran([σ]) to RG × ({>,⊥} ∪ {$}) defined by: χ(〈[σ], a, [σ′]〉) =

([σ′],⊥).

• Suppose [Err] is in RG . Firstly, we have ([Err,>])
>
↪→2 χ, where χ is

the function from Tran([Err]) to RG × ({>,⊥} ∪ {$}) defined by:

χ(〈[Err], err, [Err]〉) = ([Err], $).

Secondly, ([Err,⊥])
⊥
↪→2 χ, where χ is the function

Tran([Err]) to RG × ({>,⊥} ∪ {$}) given by: χ(〈[Err], err, [Err]〉) =

([Err],⊥).
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Lastly, ([Err, $])
⊥
↪→2 χ, where χ is the function from Tran([Err])

to RG × ({>,⊥} ∪ {$}) defined by: χ(〈[Err], err, [Err]〉) = ([Err], $).

Similarly to B1, for an input {>,⊥}-labelled ∆RA-tree (T , ξ), a state

([σ], b) of B2 indicates that B2 expects a node ρ in T such that dir(ρ) =

〈[σ̂], a, [σ̂′]〉 with [σ̂′] = [σ], and ξ(v) = b. It is again clear that B2 accepts

an admission strategy tree (T , ξ) iff the admission strategy represented by

(T , ξ) is safe.

To define R3, we first note that for the LTL formula ψ, one can effectively

construct a non-deterministic Büchi automaton Bψ over 2AP ([78]) which has

the following property: Let σ be in (2AP)ω. Then σ is accepted by Bψ iff σ is

a model of ψ. From Bψ, we can construct a deterministic Rabin automaton

Rψ ([68]) over 2AP such that: for every σ in (2AP)ω, σ is accepted by Bψ iff

σ is accepted by Rψ. The Rabin tree automaton R3 that we next construct

will simulate Rψ along every path of which every node is labelled >. The

crucial point to note is that Rψ is deterministic.

We also recall from section 4.4 the operator Prj which maps transitions

in ∆TS to transitions in ∆A. We extend Prj in the obvious way to ∆RA as

follows:

• Suppose 〈[σ], a, [σ′]〉 where σ is an environment configuration. Then

Prj(〈[σ], a, [σ′]〉) = Prj(δ) where δ = 〈σ̂, (t, â), σ̂′〉 is in ∆TS with

σ̂ ∈ [σ] and â = a and σ̂′ ∈ [σ′].

• Suppose 〈[σ],m, [σ′] where σ is a system configuration. Then

Prj(〈[σ],m, [σ′]〉) = Prj(δ) where δ = 〈σ̂, m̂, σ̂′〉 is in ∆TS with

σ̂ ∈ [σ] and m̂ = m and σ̂′ ∈ [σ′].

It is easy to see that Prj(δ) can be effectively found for any δ in ∆RA.

Suppose Rψ = (Sψ, s
ψ
in , 2

AP , ↪→ψ,Fψ), where Fψ = {(E1, F1), (E2, F2),

. . . , (Ek, Fk)}. We now define

R3 = (RG × (Sψ ∪ {$}), ([〈qin , Vin , εqu , V
qu
in , ]〉], s

ψ
in), {>,⊥}, ↪→3, F̂)
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with F̂ = {
(
RG ×Ei,RG × (Fi∪{$})

)
| i = 1, 2, . . . , k}, where $ is a special

symbol not in Sψ. And ↪→3 is defined as follows: Suppose [σ] is in RG . Then

we have

• For s ∈ Sψ, we have ([σ], s)
>
↪→3 χ, where χ is the function from

Tran([σ]) to RG × (Sψ ∪{$}) such that for each δ = 〈[σ], a, [σ′]〉, we

have χ(δ) = ([σ′], s′), where s
λ(δ̂)
↪→ψ s

′ with δ̂ = Prj(δ).

Further, ([σ], s)
⊥
↪→3 χ, where χ is the function from Tran([σ])

to RG × (Sψ ∪ {$}) such that for each δ = 〈[σ], a, [σ′]〉, we have

χ(δ) = ([σ′], $).

• ([σ], $)
>
↪→3 χ and ([σ], $)

⊥
↪→3 χ, where χ is the function from

Tran([σ]) to RG × (Sψ ∪{$}) such that for each δ = 〈[σ], a, [σ′]〉, we

have χ(δ) = ([σ′], $).

Intuitively, the tree automaton R3 simulates Rψ along the paths in which

every node is labelled ρ and assign to each node in such a path the corre-

sponding unique state reached by Rψ upon reading the atomic propositions

of v. The states of the form ([σ], $) in R3, where [σ] ∈ RG , are used to

indicate that the node being read is labelled ⊥ and hence is irrelevant.

Since Rctrl is the intersection of B1, B2, R3, it is now routine to verify

that the language of Rctrl is nonempty iff there exists a region-respecting

ψ-winning admission strategy for A. This establishes theorem 4.2(i), owing

to lemma 4.5.

We analyze the complexity of the above decision procedure for theo-

rem 5.4(i). The non-deterministic Büchi automaton Bψ will have NBψ =

2O(|ψ|) states, where |ψ| is the size of ψ. Hence the deterministic Rabin

automaton for Rψ has NRψ
= 2O(NBψ

·logNBψ
) states and KRψ

= O(NBψ)

accepting pairs ([68]). It is easy to construct the non-deterministic Ra-

bin tree automaton Rctrl directly which will have NRctrl
= O(|RG | · NRψ

)

states and KRctrl
= O(NBψ) accepting pairs. It is not difficult to see that
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|RG | = O
(
NA · NAqu

· 2O(k log(kc)) · 2d
)

([7]), where NA is the number of lo-

cations of the plant, NQ is the number of locations of the queue automaton

Aqu , k is the total number of clock variables (k = |X|+|Xqu |), c is the largest

constant appearing across all the clock constraints (in A and Aqu) and d is

the total number of difference constraints (in A and Aqu). The complexity

for testing nonemptiness of Rctrl ([23]) is
(
NRctrl

·KRctrl

)O(KRctrl
)
, that is,

(
O(NA ·NAqu

· 2O(k log(kc)) · 2d · 2O(|ψ|·2O(|ψ|))
)O(2|ψ|)

.

4.5.4. Working with Zones. We have settled theorem 4.2(i) using

regions. Here we argue that one can also prove theorem 4.2(i) using zones.

Let B = (Q, qin , X, {Iq}q∈Q,Σ,−→) be a timed automaton. A clock zone

is a union of clock regions. A clock zone Z can be effectively represented as

a clock constraint ϕ in the sense that for every clock valuation V , V is in Z

iff V satisfies ϕ. A zone is a pair (q, Z), where q ∈ Q and Z a clock zone. It

is shown in [11] that for the timed automaton B, that may contain difference

constraints, we can quotient TSB into a finite transition system ZAB, called

the zone automaton of B. We have ZAB = (ZN B, (qin ,∧x∈Xx = 0),Σ,�B),

where ZN B is a subset of zones, and �B⊆ ZN B × Σ × ZN B the transition

relation. We refer to [11] for the detailed definition of ZAB. For our purpose,

it suffices to note that, similar to Proposition 4.1, ZAB has the following

property:

Proposition 4.6. Let ZAB be as given above and assume the associated

notations. If (q, V )
t,a

=⇒B (q′, V ′), and (q1, V 1) is in the same zone as (q, V ),

then there exists t′ ∈ R+ such that (q1, V 1)
t′,a
=⇒B (q1′, V 1′) and (q1′, V 1′)

being in the same zone as (q′, V ′).

Note that the timed automaton Aqu contains bounded clock subtraction

operations. The construction of ZAB in [11] can be easily adapted to handle

bounded clock subtractions [24].
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Now we turn to the task plant A and show that theorem 4.2(i) can also be

handled using zones. Following the above discussion, we can define the zone

version of the A, by easily adapting the construction of zone automata for

timed automata. We can then define zone-respecting admission strategies, in

exactly the same way as region-respecting admission strategies. Namely, we

say an admission strategy f is zone-respecting iff for every ρ, ρ̂ in Runs(TS ),

if ρ, ρ̂ are in Runs(f) and ρ, ρ̂ “pass” through the same sequence of zones,

then f(ρ) = f(ρ̂).

As usual, fix the LTL formula ψ. It is easy to see that the cornerstone

for the proof of lemma 4.5 is Proposition 4.1. In this respect, with Proposi-

tion 4.6, we can then show that, there exists a ψ-winning admission strategy

for A iff there exists a zone-respecting ψ-winning admission strategy for A.

It now follows that we can then prove theorem 4.2(i) by working with the

zone automaton of A and with zone-respecting strategies.

As for complexity, the zone automaton of the task plant A will usually

be smaller than its region automaton. However, in the worst case, the zone

automaton of A can be of the same size as the region automaton of A. Hence,

the worst case complexity of the decision procedure for theorem 4.2(i) based

on the zone automataon of A would be the same as that based on the region

automaton of A.

4.5.5. Synthesis of Admission Controllers.

Here we prove theorem 4.2(ii). Recall the Rabin tree automaton Rctrl

constructed in the proof of theorem 4.2(i). Suppose the language of Rctrl

is nonempty. Then by Rabin’s tree theorem [63], the decision procedure for

testing the nonemptiness of the language of Rctrl yields a regular {>,⊥}-

labelled tree (T , ξ) that is accepted by Rctrl . More precisely, the set of

nodes in T that are labelled > by ξ is a regular subset of ∆?
RA, and (T , ξ) is

presented in the form of a finite transition system, which we shall extend to a
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timed automaton C. The finite timed automaton C will form the ψ-controller

we seek for A.

Each location of C will be a node of T and it will be accompanied by a la-

belling function γ. The initial location will be ε with γ(ε) =

[〈qin , Vin , εqu , V
qu
in , ]〉], whereas to all other locations γ will assign a tran-

sition of RA of the form 〈[σ], a, [σ′]〉. From the region [σ′], we can recover a

clock constraint θ over the clocks X ∪Xqu and view it as the clock invariant

associated with the location. To be precise, we must introduce an extra clock

x̂ to ensure that the system states are urgent.

We convert each edge (l, l′) of C to a transition as follows. Let γ(l′) =

〈[σ], b, [σ′]〉. If σ is an environment configuration and Prj(γ(l′)) =

(q, ϕ, a, Y, q′) (in ∆A), then we convert (l, l′) to (l, true, a, Y ∪ {x̂}, l′). If

σ is a system configuration, then we convert (l, l′) to (l, x̂ = 0, b, ∅, l′).

4.5.6. QPLTL Specifications.

Our goal here is to show that theorem 4.2 can be generalized to QoS

specifications in QPLTL.

Theorem 4.7.

(i) Given a task plant A and a QPLTL formula ψ. we can effectively

determine whether there exists a ψ-controller for A.

(ii) Moreover, whenever such a ψ-controller exists, one can effectively con-

struct a ψ-controller in the form of a finite timed automaton.

Proof. The only point to note is that we can effectively construct a non-

deterministic Büchi automaton Bψ over 2AP which accepts precisely the set

of models of ψ. The rest follows from the proof of theorem 4.2. �

As pointed out in section 4.1, QPLTL is strictly more expressive than

LTL and hence theorem 4.7 allows us to handle more general QoS specifica-

tions.
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4.6. Discussion

In the present setting we have assumed that the admission controller

has read-only access to the clocks of the plant (and the clocks of the queue

automaton). This is a justifiable assumption since the plant model merely

describes the expected task arrival patterns and this information can be

assumed to be available to the admission controller as well. Nevertheless, it

will be perhaps worth exploring settings where the admission controller is

endowed with its own clocks with pre-specified granularities.

It will be equally interesting to study admission controllers that can

interact with the ready queue so that tasks can be rejected after they have

been admitted to the ready queue. One can also relax the requirement

that every accepted task instance must be completed before its deadline,

by allowing an accepted task instance to miss its deadline. However, we

associate penalties with deadline misses and consider QoS specifications that

take these penalties into account.

It will also be worthwhile considering settings with multi-processors, and

settings where tasks have precedence constraints, and settings with shared

resources.



CHAPTER 5

Controller Synthesis for Restricted Differential Hybrid
Automata (RDAs)

In this chapter, we study controller synthesis in the hybrid setting. We

propose a class of hybrid automata with discrete time semantics, which we

called restricted differential hybrid automata (RDA). Our aim is to study

controller synthesis for RDAs.

We give an overview of RDAs and our results in section 5.1. Subse-

quently we review related work in section 5.2. We define RDAs formally in

section 5.3. In section 5.4, we prove that the language of control state se-

quences generated by an RDA is regular. This regularity result provides the

foundation for studying controller synthesis with RDAs, though it is also of

independent interest for verification of RDAs. We formulate, in section 5.5,

the controller synthesis problem for RDAs. In section 5.6, we prove that if

there is no sensing delay, then the controller synthesis problem for RDAs

with LTL (linear time temporal logic), or more generally, QPLTL (quanti-

fied propositional LTL) specifications is decidable. Further, if there exists

a controller, then we can effectively synthesize one in the form of a (finite)

RDA with no sensing delay. We conclude with a discussion and prospects of

future directions in section 5.7.

5.1. Overview

A hybrid automaton models a digital control system interacting with

a continuous environment. The digital system measures, that is, observes,

the values of the continuous variables via sensors and updates the rates of

evolution of the continuous via actuators. Basically, a hybrid automaton is a

110
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finite state transition system augmented with a set of real-valued variables.

Loosely speaking, the transition system represents the digital control system.

To emphasize this, states of the transition system are called control states

or modes. The variables model the continuous environment. At each control

state, the variables evolve according to some differential equations. Each

transition of the hybrid automaton is associated with a guard in the form

of certain constraints on the variables. A transition can be taken only when

its guard evaluates to true. To each control state, we may also associate a

constraint, called the invariant. We demand that the hybrid automaton can

stay at a control state only when its invariant is true.

The most basic question about hybrid automata is the reachability prob-

lem: Given a hybrid automaton and a designated control state qf , determine

whether there exists a finite run such that the last control state is qf .

In the continuous time semantics, a transition may be taken at any real-

valued time provided its guard is true. This equips hybrid automata with

very expressive power. Consequently, the reachability problem is undecidable

even for simple subclasses of hybrid automata where each continuous variable

evolves at constant rates [32] (dx/dt = c). In [6, 32, 42, 43], the reachability

problem is shown to be decidable for variants of hybrid automata that have

the additional resetting feature. The resetting feature demands that during

mode changes, the value of a variable must be reset nondeterministically to

some real number from a given set. Of course, in many practical control

systems, one can not directly reset the value of a variable. Rather we can

only update the evolution rate of a variable and thus indirectly influence

the value of a variable. The resetting feature can be interpreted as giving

over-approximations of the possible values of variables at each control state.

We believe that this feature severely limits the ability of modelling practical

hybrid systems faithfully.
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We mention that [44] studies hybrid automata which have no discrete

dynamics (that is, there is only one single discrete control state) and whose

continuous dynamics are governed by a linear differential equation. The

emphasis of [44] is to, given a pre-specified possible initial values of the

continuous variables, effectively compute and represent the sets of possible

values of these continuous variables due to evolution according to the linear

differential equation.

Under the continuous time semantics, the work [35] shows that the reach-

ability problem is decidable for a subclass of hybrid automata where each

continuous variable evolves at constant rates. And guards in a loop can not

refer to variables with rates different from 1 (that is, ẋ = c, c 6= 1).

In view of the expressiveness of the continuous time semantics, [30] pro-

poses to study hybrid automata with discrete time semantics. The discrete

time semantics demands that transitions can only be taken at integer-valued

time instants. As argued in [27], if the hybrid automaton models the closed

loop system consisting of a digital controller interacting with a continuous

plant, then the discrete time semantics is the natural one; the digital con-

troller will observe via sensors, the states of the plant and effect, via actua-

tors, changes in the plant dynamics at discrete time instants determined by

its internal clock. In [30], it is shown the reachability problem is decidable

for the class of hybrid automata where the rate of each variable could be

any constant from given bounded intervals. And values of variables are re-

quired to stay within a prescribed range. Further, each transition guard and

invariant is a conjunction of rectangular constraints, where a rectangular

constraint is a simple linear inequality involving just one variable.

The work [3] also considers the discrete time semantics and generalize

it to allow sensing of values of variables and updating of rates of variables

to both occur within bounded delays from integer time instants. For con-

venience, we shall call this the generalized discrete time semantics. The
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motivation comes from the fact that in practical hybrid systems, sensors

and actuators do incur delays. For, it is reasonable to assume that there

might be a delay between the time a sensor measured the value of a variable

and the time the control system received this measurement. Further, when

an actuator initiates an update on rates of variables, the rate change would

generally not take effect immediately, but with some delay.

The main result of [3] is that the control state sequence languages of

a class of hybrid automata are regular, under the generalized discrete time

semantics. The features of this class of hybrid automata are as follows.

Firstly, variables evolve at constant rates. Secondly, values of variables must

stay within a prescribed range. Lastly, guards and invariants are rectangular.

The work [4] carries on the line of [3] and proves that, if one assumes the

additional finite precision feature, then the regularity result in [3] also holds

for the case that guards and invariants are polynomial constraints. The finite

precision feature demands that values of variables can only be measured with

a bounded accuracy. More precisely, there is a fixed rational ε such that,

any value in the half-open interval [(`− 1
2
)ε, (`+ 1

2
)ε) is measured as `ε. A

polynomial constraint is a conjunction of polynomial inequalities in several

variables.

In this thesis, we carry along the line of [3] and propose the class of hybrid

automata which we called, restricted differential hybrid automata (RDA). As

in [3], we consider the generalized discrete time semantics. The key features

of RDAs are as follows. Firstly, the rates of variables are governed by linear

differential operators in diagonal forms. In other words, each variable may

evolve at constant rates, or at exponential rates (dx/dt = c · x). However,

we further require that each variable either evolves at (possibly different)

constant rates in all the control states or at (possibly different) exponential

rates in all the control states. Secondly, the absolute values of variables
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must lie in a prescribed range. Lastly, guards and invariants are rectangular

constraints. Note that we do not introduce the finite precision feature.

We prove that the language of control state sequences generated by an

RDA is regular and can be effectively computed. We then use this regularity

result to study controller synthesis with RDAs. We note that this regularity

result is also of independent interest for verification of RDAs.

The work [2] studies the variant of RDAs with the finite precision feature

and that guards and invariants are allowed to be polynomial guards. It is

shown in [2] that the control state sequences languages of this variant of

RDAs are regular. However, [2] does not investigate the controller synthesis

problem.

We view an RDA naturally as a plant, which describes the possible in-

teractions between the continuous environment and a digital control system.

At each discrete time instant, the system receives measurements of the val-

ues of the variables and may decide to remain at the current control state

(thus maintains the current rates of continuous variables) or to switch to

another control state (thus updates the rates of continuous variables). A

strategy should make recommendations for the system on which actions to

take, based on the history of control states and measurements of variables

in the past integer time instants. A strategy f is non-blocking iff the system

is always able to make a move if it always follow the recommendations of f .

We are interested in controller synthesis of RDAs with general specifica-

tions. We label the control states of the RDA with atomic propositions. And

consider linear time specifications given as LTL formulae, or more generally,

QPLTL formulae. Such a specification dictates the desired set of infinite

control state sequences.

We say a strategy is winning iff it is non-blocking and the infinite con-

trol state sequences generated by the controlled RDA satisfies the the given

formula in LTL or QPLTL. By a controller, we mean a winning strategy.
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We prove that if there is no sensing delay, then the controller synthesis

for RDAs is decidable for LTL specifications, and more generally QPLTL

specifications. Further, if there exists a controller, then we can effectively

synthesize one in the form of a (finite) RDA with no sensing delay.

We do not know how to solve the controller synthesis problem for RDAs

when sensing delays are present. The key obstacle is: At each integer time

instant, the measurements of variables received by the system and the strat-

egy are not the current values of variables. On the other hand, if there is no

sensing delay, then a strategy knows precisely the current values of variables.

5.2. Related Work

Much of the literature in controller synthesis deal with only safety spec-

ifications. A safety specification typically demands that the hybrid plant

should be controlled in such a way that it stays only in good control states

(thus avoiding bad states) We refer to [8, 36, 70, 75, 76] for a representative

sample of hybrid controller synthesis for safety specifications. The emphasis

of this line of work is to be able to handle hybrid automata of rich con-

tinuous dynamics but derives approximation algorithms for computing the

hybrid controller. In contrast, in this thesis, we are interested decidability

results in controller synthesis for hybrid automata with respect to general

specifications given by LTL or QPLTL formulae.

Controller synthesis for the class of rectangular hybrid automata against

LTL specifications were studied in [29, 31]. In a rectangular hybrid automa-

ton, the guards and invariants are rectangular constraints. And the rates of

variables are constants that may vary in a given range.

In particular, [31] studies the discrete time setting and [29] investigates

the continuous time setting. In both cases, the corresponding controller

synthesis problem is shown to be decidable. Further, if a controller exists,
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then we can effectively construct one in the form of a rectangular hybrid

automaton.

The work [57] studies the following controller synthesis for hybrid au-

tomata: Let A be a hybrid automaton whose continuous state space is par-

titioned into finitely many portions and each such portion is called an event.

Given a specification in terms of a set of finite sequences of events, find a

controller such that the trajectories of the controlled hybrid automaton tra-

verse the given event sequences. Approximate approaches for solving this

controller synthesis problem are then developed in [57]. We mention that

though [57] uses modal logics ([21]). It use them merely for the development

of these approximate solutions, and not as the formalism for the specification

of desired behaviour.

5.3. Restricted Differential Hybrid Automata

Through the rest of this chapter, we fix a positive integer n and one

function symbol xi for each i in {1, 2, . . . , n}. We will often refer to the xi’s

as variables and will view each xi as a function of time xi : R≥0 → R with

R being the set of reals and R≥0, the set of non-negative reals. We write ẋi

for the derivative of xi over time. We let Q denote the set of rationals.

A rectangular constraint is xi ≺ c, where i ∈ {1, 2, . . . , n}, ≺ is in

{<, ≤, >, ≥} and c ∈ Q. A rectangular guard is a finite conjunction of

rectangular constraints. We let Grd denote the set of rectangular guards. We

will often refer to rectangular constraints (respectively, rectangular guards)

simply as constraints (respectively, guards).

A valuation V is just a member of Rn. It will be viewed as prescribing

the value V (i) to each variable xi. The notion of a valuation satisfying a

guard is defined in the obvious way. Namely, the valuation V satisfies the

constraint xi ≺ c iff V (i) ≺ c. And V satisfies the guard g iff V satisfies

every constraint in g.
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A restricted differential hybrid automaton (RDA) is a structure A =

(Q, qin , Vin ,Delay, {ρq}q∈Q, {CON ,DIF}, {Iq}q∈Q, {γmin , γmax},−→) where:

• Q is a finite set of control states with q, q′ ranging over Q.

• qin ∈ Q is the initial control state.

• Vin ∈ Qn is the initial valuation.

• Delay = (δ0
ob, δ

1
ob , δ

0
up, δ

1
up) where δ0

ob , δ
1
ob, δ

0
up , δ

1
up ∈ Q are delay pa-

rameters such that 0 ≤ δ0
up ≤ δ1

up < δ0
ob ≤ δ1

ob ≤ 1.

• {ρq}q∈Q is a family of rate functions associated with the control

states. For each control state q, ρq is of the form ẋ = Aqx + bq

where x = (x1, x2, . . . , xn), Aq is a diagonal n × n matrix with

rational entries and bq ∈ Qn. Thus at control state q, each variable

xi evolves at the rate ρq(i) given by: ẋi = Aq(i, i) · xi + bq(i).

• {CON , DIF} is a partition of the indices {1, 2, . . . , n}. And for

every control state q, it is the case that: i ∈ CON implies Aq(i, i) =

0; i ∈ DIF implies bq(i) = 0.

Hence at each control state q, if i ∈ CON , then ρq(i) is ẋi = bq(i).

if i ∈ DIF , then ρq(i) is ẋi = Aq(i, i) · xi. Intuitively, variables in

{xi | i ∈ CON } must always evolve at constant rates, while variables

in {xi | i ∈ DIF} must always evolve at differential (more precisely,

exponential) rates.

• {Iq}q∈Q is a family of invariants associated with the control states.

For each control state q, Iq ∈ Grd .

• γmin , γmax ∈ Q are range parameters such that 0 < γmin < γmax .

• −→ ⊆ Q × Grd × Q is a transition relation such that q 6= q ′ for

every (q, g, q′) in −→.

Through the rest of this chapter we fix an RDA A and assume its asso-

ciated notations and terminology as defined above. An example of an RDA

is given in figure 5.1, where all the control state invariants are true.
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ẋ1 = −1.4

ẋ3 = 1.2x3

ẋ2 = −x2

ẋ1 = 2

ẋ3 = −2x3

ẋ2 = 1.5x2

Vin (1) = Vin(2) = Vin (3) = 1

γmin = 0.5, γmax = 4

x2 ≤ 1 ∧ x3 > 0.5

x1 < 1.5 ∧ x2 > 2

δ0

ob
= 0.8, δ1

ob
= 0.9, δ0

up = 0.1, δ1
up = 0.2

Figure 5.1. An RDA

In what follows, we explain the intuition of the parameters of A and give

the operational semantics of A. As in [3], we assume the discrete time se-

mantics, but allow delays in both sensing of values of variables and updating

of rates of variables. For clarity, we will write Tk for the time instant k, for

k = 0, 1, 2, . . . .

Suppose at time instant Tk−1, the RDA A was at control state q. Then

at time Tk, A may remain at q if the n-tuple (v1, v2, . . . , vn) of the values of

xi’s satisfies Iq. Intuitively, Iq dictates the condition on the current values

of xi’s, in order for A to stay at q.

At each time instant Tk (= k), the RDA A receives a measurement

regarding the current values of the xi’s. However, the value of xi that is

observed at time Tk is the value that held at some time Tk−1 + tobi where

tobi ∈ [δ0
ob , δ

1
ob ]. If at time instant Tk, A is in control state q and (q, g, q′) is

a transition in A, then A may perform this transition instantaneously and

move to the control state q′, provided the following conditions hold:

• The observed n-tuple of values (v1, v2, . . . , vn) received at Tk satisfies

the guard g.

• The current n-tuple of (actual) values of variables satisfies the in-

variant Iq′ .

If A takes the transition (q, g, q′), then as a result, each xi will cease to

evolve according to the rate ρq(i) and instead start evolving according to the

rate ρq′(i). However, this change in the rate of evolution of each xi will not
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kick in at Tk but at some time Tk+t
up
i where tup

i ∈ [δ0
up , δ

1
up]. We illustrate the

relative positions of tobi , tup
i , for a fixed i, and the delay bounds in figure 5.2.

We emphasize that the reals tobi , i = 1, 2, . . . , n, are not necessarily identical.

Also the reals tup
i , i = 1, 2, . . . , n, are not necessarily identical.

TkTk−1 Tk+1

: Tk−1 + δ0
ob

: Tk−1 + t
ob
i

: Tk−1 + δ
1
ob

: Tk + δ
0
up

: Tk + t
up
i

: Tk + δ
1
up

Figure 5.2. Delay parameters

Intuitively, both the sensing of values of the xi’s and the rate changes

associated with mode switching take place in a lazy fashion but with bounded

delays. We expect δ0
ob, δ

1
ob to be close to 1 and δ0

up , δ
1
up to be close to 0 while

both δ1
ob−δ

0
ob and δ1

up−δ
0
up to be small compared to 1. In the idealized setting,

the value observed at Tk is the value that holds at exactly Tk (δ0
ob = 1 = δ1

ob)

and the change in rates due to mode switching would kick in immediately

(δ0
up = 0 = δ1

up).

The parameters γmin , γmax specify the relevant range of the absolute val-

ues of the variables. The RDA A gets stuck if for some i, |xi| gets outside

the allowed range [γmin , γmax ]. Loosely speaking, the γmax bound is used to

restrict the amount of information carried by a variable evolving at a (posi-

tive or negative) constant rate, and a variable increasing at an exponential

rate (ẋi = c · xi, c > 0). On the other hand, γmin is used to restrict the

amount of information carried by a variable decreasing at an exponential

rate (ẋi = c · xi, c < 0). We note that our setting is quite different from the

classical continuous setting. Hence the standard control objective of driving
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a system variable to 0 is not relevant here and thus does not pose a serious

limitation.

The behaviour of A will be defined in terms of an associated transition

system. We assume that the unit of time has been fixed at some suitable

level of granularity and that the rate functions {ρq}q∈Q have been scaled

accordingly.

A configuration is a triple (q, V, q′) where q, q′ are control states and V

is a valuation. q is the current control state, q′ is the control state that

held at the previous time instant, and V captures the actual values of the

variables at the current time instant. The valuation V is said to be feasible if

γmin ≤ |V (i)| ≤ γmax for every i in {1, 2, . . . , n}. The configuration (q, V, q′)

is feasible iff V is a feasible valuation.

The initial configuration is by convention (qin , Vin , qin) and is assumed to

be feasible. Further, we assume Vin satisfies Iqin . We let Conf A denote the

set of configurations.

Suppose the RDA A was in the configuration (qk−1, Vk−1, q
′
k−1) at time

Tk−1 and one unit of time has elapsed. Then at the current time instant

Tk, A will make an instantaneous move by executing a transition or the

silent action τ and move to a configuration (qk, Vk, q
′
k). The silent action

τ will be used to record that no mode change has taken place during this

move. The action µ will be used to record that a transition has been taken

and as a result, a mode change has taken place. As is common, we will

collapse the unit-time-passage followed by an instantaneous transition into

one “time-abstract” transition labelled by τ or µ.

We wish to formalize the transition relation =⇒, which is a subset of

Conf A × {τ, µ} × Conf A. For doing so, we note a basic fact. Let q be a

control state and i be in {1, 2, . . . , n}. Given a real number v and a real T ,

we have:
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• If i ∈ CON , then the curve xi : [0, T ] → R with xi(t) = v + bq(i) · t

is the unique curve which satisfies xi(0) = v and dxi/dt = bq(i).

• If i ∈ DIF , then the curve xi : [0, T ] → R with xi(t) =

v · exp(Aq(i, i) · t) is the unique curve (see [33]) which satisfies

xi(0) = v and dxi/dt = Aq(i, i) · xi.

In what follows, we shall denote the value xi(T ) thus obtained by

Val(q, i, T, v).

The transition relation =⇒ is the least subset of Conf A×{τ, µ}×Conf A

which satisfies the following condition. Let (q, V, q′), (q1, V 1, q1′) be in

Conf A. Suppose there exist reals tup
i in [δ0

up, δ
1
up ], t

ob
i in [δ0

ob, δ
1
ob ], i =

1, 2, . . . , n, such that for i = 1, 2, . . . , n, we have V 1(i) = Val(q, i, 1−tup
i , wi)

where wi = Val(q′, i, tup
i , V (i)).

• If q1 = q1′ = q and V 1(i) satisfies the invariant Iq. Then

(q, V, q′)
τ

=⇒ (q1, V 1, q1′).

• Suppose q1′ = q and there exists a transition (q, g, q1) in

−→ such that:

– The valuation U satisfies the guard g, where U(i) =

Val(q, i, tobi − tup
i , wi), for i = 1, 2, . . . , n.

– V 1(i) satisfies the invariant Iq1.

Then (q, V, q′)
µ

=⇒A (q1, V 1, q1′).

Basically we have the four possible transition types as follows:

Type (i): q = q′ and α = τ .

Since q = q′, no mode change has taken place at the previous time

instant Tk−1. Hence, during the interval [Tk−1, Tk), each variable xi evolves

according to ρq′(i). Since α = τ , there will also be no mode change at

the current time instant Tk. It follows during the interval [Tk, Tk+1), each

variable xi evolves at the rate ρq(i), that is, ρq′(i).

Type (ii): q = q′ and α = µ.



5.3. RESTRICTED DIFFERENTIAL HYBRID AUTOMATA 122

type (i)

type (iv)

type (iii)

type (ii)

TkTk−1 Tk+1

ρq′ (i)

: Tk + δ1
up

: Tk + δ0
up

: Tk−1 + δ1
ob

: Tk−1 + δ0
ob

: Tk−1 + δ1
up

: Tk−1 + δ0
up

TkTk−1 Tk+1

ρq1 (i)

TkTk−1 Tk+1

ρq(i)

ρq′ (i)

ρq′ (i)

TkTk−1 Tk+1

ρq1 (i)

ρq′ (i)

ρq(i)

Figure 5.3. Four transition types

As with type (i), no mode change took place at the previous time instant

Tk−1 and thus each variable xi evolve according to ρq′(i) during the interval

[Tk−1, Tk). However A makes a mode change at the current time instant Tk.

Hence for each variable xi, there exists a real sup
i ∈ [δ0

up , δ
1
up] such that xi

evolves at the rate ρq(i) during the interval [Tk, Tk + sup
i ), but it assumes

the rate ρq1(i) during the interval [Tk + sup
i , Tk+1).
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Type (iii): q 6= q′ and α = τ .

Since q 6= q′, a mode change has taken place at the previous time instant

Tk−1. Hence for each variable xi, there exists a real tup
i ∈ [δ0

up, δ
1
up] such that

xi evolves at the rate ρq′(i) during the interval [Tk−1, Tk−1 + tup
i ), but it

assumes the rate ρq(i) during the interval [Tk−1 + tup
i , Tk).

Since α = τ , there is no mode change occurs at the current time instant

Tk. It follows that each xi continues to evolve at the rate ρq(i) during the

interval [Tk, Tk+1).

Type (iv): q 6= q′ and α = µ.

As with type (iii), a mode change has occurred at the previous time

instant Tk−1. Hence each xi evolves according to ρq′(i) during the interval

[Tk−1, Tk−1 + tup
i ), but at the rate ρq(i) during the interval [Tk−1 + tup

i , Tk),

where tup
i is a real in [δ0

up, δ
1
up].

Since α = µ, a mode change also takes place at the current time instant

Tk. Hence, for each variable xi, there exists sup
i ∈ [δ0

up , δ
1
up ] such that xi

evolves at the rate ρq(i) during the interval [Tk, Tk + sup
i ), but at the rate

ρq1(i) during the interval [Tk + sup
i , Tk+1).

Figure 5.3 illustrates the four transition types by depicting the evolution

of a variable xi with i ∈ CON . For convenience, in the definition of =⇒, we

have collapsed these four transition types into two cases according to τ or

µ being the action label, and in each case have handled the subcases q = q ′

and q 6= q′ simultaneously.

Now we define the transition system TSA = (RCA, (qin , Vin , qin), {τ, µ},

=⇒A) associated with A via:

• RCA, the set of reachable configurations of A is the least subset

of Conf A that contains the initial configuration (qin , Vin , qin) and

satisfies: Suppose (q, V, q′) is in RCA and is a feasible configuration.

Suppose further, (q, V, q′)
α

=⇒ (q1, V 1, q1′) for some α ∈ {τ, µ}.

Then (q1, V 1, q1′) ∈ RCA.
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• =⇒A is =⇒ restricted to RCA × {τ, µ} × RCA.

We note that a reachable configuration can be the source of a transition

in TSA only if it is feasible. Thus infeasible reachable configurations will be

deadlocked in TSA. A run of TSA is a finite sequence of the form

σ = (q0, V0, q
′
0) (q1, V1, q

′
1) . . . (q`, V`, q

′
`)

where (q0, V0, q
′
0) is the initial configuration and for each k = 0, 1, . . . , `− 1,

there exists αk ∈ {τ, µ} with (qk, Vk, q
′
k)

αk=⇒A (qk+1, Vk+1, q
′
k+1). By a run of

A, we shall mean a run of TSA. We let Runs(A) denote the set of runs of

A. The control state sequence induced by the run σ above is the sequence

q0 q1 . . . q`. We define the state sequence language of A, denoted Lst(A), to

be the set of control state sequences induced by runs of A. We will often

refer to the state sequence language of A simply as the language of A.

5.4. State Sequence Languages of RDAs

Here we study the state sequence languages of RDAs. Our main result

is:

Theorem 5.1. Let A be an RDA. Then Lst(A) is a regular subset of Q?.

Further, a finite state automaton accepting Lst(A) can be effectively com-

puted from A.

Theorem 5.1 will provide the foundation for studying controller synthesis

problems with RDAs. Independently, theorem 5.1 also implies various model

checking problems for RDAs, in particular the reachability problem, can be

effectively solved.

The rest of this section is devoted the proof of theorem 5.1. This proof

consists of two major steps. The first one is to quotient the set of reach-

able configurations RCA into a finite number of equivalence classes using a

suitably chosen equivalence relation ≈. The crucial property required of ≈

is that it should be a congruence with respect to the transition relation of
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TSA. In other words, if (q1, V 1, q1′) ≈ (q2, V 2, q2′) and (q1, V 1, q1′)
α

=⇒A

(q3, V 3, q3′), then we require that there exists a configuration (q4, V 4, q4′)

such that (q2, V 2, q2′)
α

=⇒A (q4, V 4, q4′) and (q3, V 3, q3′) ≈ (q4, V 4, q4′).

The second step is to show that we can effectively compute these equiv-

alence classes and a transition relation over them such that the resulting

finite state automaton generates the language of A.

For notational convenience, we assume Vin(i) > 0 for every i ∈ DIF . It

is clear that this involves no loss of generality. The key consequence of this

assumption is that in any reachable configuration of A, the value of xi for

i ∈ DIF will be positive.

We also assume without loss of generality that for each constraint xi ≺ c

that appeared in control state invariants and transition guards of A, it is the

case that |γmin | ≤ c ≤ |γmax | if i ∈ CON and γmin ≤ c ≤ γmax if i ∈ DIF .

Define ∆ to be the largest rational which integrally divides every member

of {δ0
ob, δ

1
ob , δ

0
up, δ

1
up , 1}. Let RAT be the set of rational numbers given by:

c ∈ RAT iff there exists a constraint xi ≺ c which appears in some control

state invariant or transition guard of A. Define Γ to be the largest rational

which integrally divides every number in the finite set of rational numbers

{Aq(i, i) · ∆ | q ∈ Q, i ∈ DIF}
⋃

{bq(j) · ∆ | q ∈ Q, j ∈ CON }
⋃

{γmin , γmax}
⋃

RAT .

Define Θcon to be the finite set of rational numbers

{hΓ ∈ [−γmax ,−γmin ] | h ∈ Z}
⋃

{hΓ ∈ [γmin , γmax ] | h ∈ Z}

where Z is the set of integers. In other words, Θcon contains integral multiples

of Γ in the intervals [−γmax ,−γmin ] and [γmin , γmax ].

Let RAT dif be the finite set of rational numbers given by: c ∈ RAT dif iff

there exists a constraint xi ≺ c that appears in some control state invariant
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or transition guard of A and i ∈ DIF . Let ΘIR be the set of irrational

numbers {ln γmin , ln γmax} ∪ {ln c | c ∈ RAT dif }. Define Θdif to be the finite

set of real numbers

{hΓ ∈ [ln γmin , ln γmax ] | h ∈ Z}
⋃

{`Γ + θ ∈ [ln γmin , ln γmax ] | ` ∈ Z, θ ∈ ΘIR} .

In other words, Θdif contains rational numbers of the form hΓ in the interval

[ln γmin , ln γmax ] where h is a positive integer, and irrational numbers of the

form `Γ + θ in the interval [ln γmin , ln γmax ] where ` is an integer, that may

be positive, zero or negative, and θ is a member of ΘIR.

Loosely speaking, the set Θcon (respectively Θdif ) contains bounds rele-

vant to the values of variables xi’s for i ∈ CON (respectively i ∈ DIF ). The

points in Θcon (Θdif ) cut the real line into a finite number of segments. We

shall use this segmentation to in turn partition the set of reachable configura-

tions into finitely many equivalence classes. The simple but key observation

that enables this is, in the (natural) logarithmic scale, exponential rates get

represented as constant rates. More precisely, at control state q, if the rate

of xi is ẋi = Aq(i, i) ·xi, then the derivative of ln xi over time is the constant

Aq(i, i). However, if we were to deal with ln xi directly instead of xi, then

we need to handle inequalities of the form ln xi ≺ ln c, that arises from con-

straints of the form xi ≺ c. Hence, the crux is to be able to handle irrational

bounds ln c.

In this light, let the members of Θdif be {θ1, θ2, . . . , θ|Θdif |} where θ1 <

θ2 < · · · < θ|Θdif |. We define the finite set of intervals Idif = {(−∞, θ1),

(θ1, θ2), . . . , (θ|Θdif |−1, θ|Θdif |), (θ|Θdif |,∞)}
⋃

{[θi, θi] | i = 1, 2, . . . , |Θdif |}. In

the same way, we define Icon from Θcon .

Define the map ‖·‖dif : R+ → Idif via: ‖v‖ = I if ln v ∈ I. Define

‖·‖con : R → Icon via: ‖v‖ = I if v ∈ I. Finally we define the map

‖·‖ : RC → (Idif ∪ Icon)n by: ‖V ‖ = (I1, I2, . . . , In) where Ii = ‖V (i)‖dif for

i ∈ DIF and Ii = ‖V (i)‖con for i ∈ CON .
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We can now define the equivalence relation ≈ ⊆ RC × RC by:

(q1, V 1, q1′) ≈ (q2, V 2, q2′) iff q1 = q2, ‖V 1‖ = ‖V 2‖ and q1′ = q2′. The

crucial property of ≈ is that ≈ is a congruence relation with respect to

the transition relation =⇒A. In order to prove this, we first note the basic

properties of ‖·‖.

Observation 5.2. Let V , V ′ be valuations of A such that ‖V ‖ = ‖V ′‖.

Then we have:

(i) V is feasible iff V ′ is feasible.

(ii) Suppose V , V ′ are feasible. Let ϕ be a control state invariant or a

transition guard of A. We have V satisfies ϕ iff V ′ satisfies ϕ.

Proof.

(i) Suppose V is feasible. We prove V ′ is also feasible by showing that

γmin ≤ |V ′(i)| ≤ γmax for i = 1, 2, . . . , n. We consider two cases ac-

cording to whether i ∈ CON or i ∈ DIF . The arguments for these two

cases are in fact similar.

Fix an i ∈ CON . We have γmin ≤ V (i) ≤ γmax or −γmax ≤ V (i) ≤

−γmin . Note that γmin , γmax , −γmax , −γmin are integral multiples of

Γ and are thus in Θcon . Applying ‖V (i)‖con = ‖V ′(i)‖con then yields

γmin ≤ V ′(i) ≤ γmax or −γmax ≤ V ′(i) ≤ −γmin .

Fix an i ∈ DIF . We have γmin ≤ V (i) ≤ γmax and thus ln γmin ≤

lnV (i) ≤ ln γmax . Note that ln γmin , ln γmax are members of Θdif . Ap-

plying ‖V (i)‖dif = ‖V ′(i)‖dif then yields ln γmin ≤ lnV ′(i) ≤ ln γmax

and hence γmin ≤ |V ′(i)| ≤ γmax .

(ii) Suppose V satisfies ϕ. It suffices to show that for any constraint xi ≺ c

in ϕ, V satisfies xi ≺ c. To avoid repetition, we show this for i ∈ DIF .

The argument for i ∈ CON is similar but simpler.
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Fix a constraint xi ≺ c in ϕ where i ∈ DIF . Note that V (i) ≺ c and

thus lnV (i) ≺ ln c. Note that ln c is a member of Θdif and ‖V (i)‖dif =

‖V ′(i)‖dif . It follows that lnV ′(i) ≺ ln c, that is, V ′(i) ≺ c.

�

We are now ready show that ≈ is a congruence with respect to =⇒A.

Proposition 5.3. Suppose (q1, V 1, q1′) ≈ (q2, V 2, q2′) and

(q1, V 1, q1′)
α

=⇒ (q3, V 3, q3′)

where α ∈ {τ, µ}. Then there exists a reachable configuration (q4, V 4, q4′)

such that

(q2, V 2, q2′)
α

=⇒ (q4, V 4, q4′)

and (q3, V 3, q3′) ≈ (q4, V 4, q4′).

Proof. Clearly q1 = q2 and q1′ = q2′. We set q4 = q3 and q4′ = q3′. Since

(q1, V 1, q1′) is feasible, (q2, V 2, q2′) is also feasible by Observation 5.2(i). We

show that exists a valuation V 4 such that (q2, V 2, q2′)
α

=⇒A (q4, V 4, q4′) and

‖V 4‖ = ‖V 3‖. We consider two cases according to α = τ or α = µ.

—Case 1: α = τ .

It follows from the definition of TSA that there exist reals tup
i ∈ [δ0

up, δ
1
up],

i = 1, 2, . . . , n, such that lnV 3(i) = lnV 1(i)+Aq′(i, i) ·t
up
i +Aq(i, i) ·(1−t

up
i )

for i ∈ DIF and V 3(i) = V 1(i) + bq′(i) · t
up
i + bq(i) · (1 − tup

i ) for i ∈ CON .

And V 3 satisfies the invariant Iq3.

It suffices to show that there exist reals sup
i ∈ [δ0

up, δ
1
up], i = 1, 2, . . . , n,

such that ‖V 4‖ = ‖V 3‖, where lnV 4(i) = lnV 2(i) +Aq′(i, i) · s
up
i +Aq(i, i) ·

(1 − sup
i ) for i ∈ DIF and V 4(i) = V 2(i) + bq′(i) · s

up
i + bq(i) · (1 − sup

i ) for

i ∈ CON . Note that, by Observation 5.2, ‖V 4‖ = ‖V 3‖ will guarantee that

V 4 satisfies the invariant Iq4, that is, Iq3.

In what follows, we will often need to give similar arguments for i ∈ DIF

and i ∈ CON . To avoid repetition, we will omit the latter.
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Fix an i ∈ DIF . We show the existence of sup
i . Assume ‖V 3(i)‖dif =

(θ, θ′) where θ, θ′ ∈ Θdif and Aq′(i, i) > Aq(i, i). It will become clear that

other cases can be similarly handled. For any real u, let Φτ (u) be the con-

dition

∃ tup ∈ R. δ0
up ≤ tup ≤ δ1

up∧
θ < u+ Aq′(i, i) · t

up + Aq(i, i) · (1 − tup) < θ′ .

It is easy to see that Φτ (u) holds iff η < u < η′ where η = θ−Aq′(i, i) · δ
1
up −

Aq(i, i) · (1 − δ1
up) and η′ = θ′ − Aq′(i, i) · δ

0
up − Aq(i, i) · (1 − δ0

up).

Since Φτ (lnV 1(i)) holds, we have η < lnV 1(i) < η′. Note that η, η′

are members of Θdif (if η, η′ ∈ [ln γmin , ln γmax ]). Applying ‖V 2(i)‖dif =

‖V 1(i)‖dif then yields η < lnV 2(i) < η′ and consequently Φτ (lnV 2(i)) holds.

This establishes the existence of sup
i for i ∈ DIF .

—Case 2: α = µ.

As in Case 1, it follows from the definition of TSA that there exists a

transition (q1, g, q3) in −→ and reals tup
i in [δ0

up, δ
1
up ], t

ob
i in [δ0

ob, δ
1
ob ], i =

1, 2, . . . , n such that:

• The valuation U satisfies the guard g where lnU(i) = lnV 1(i) +

Aq′(i, i) · t
up
i +Aq(i, i) · (t

ob
i − tup

i ) for i ∈ DIF ; U(i) = V 1(i)+ bq′(i) ·

tup
i + bq(i) · (t

ob
i − tup

i ) for i ∈ CON .

• lnV 3(i) = lnV 1(i) + Aq′(i, i) · t
up
i + Aq(i, i) · (1 − tup

i ) for i ∈ DIF

and V 3(i) = V 1(i) + bq′(i) · t
up
i + bq(i) · (1 − tup

i ) for i ∈ CON .

• V 3 satisfies the invariant Iq3.

We shall show the existence of reals sup
i ∈ [δ0

up, δ
1
up ], s

ob
i ∈ [δ0

ob, δ
1
ob ],

i = 1, 2, . . . , n, such that:

• ‖U ′‖ = ‖U‖ where U ′ is the valuation given by lnU ′(i) = lnV 2(i)+

Aq′(i, i) · s
up
i +Aq(i, i) · (s

ob
i − sup

i ) for i ∈ DIF and U ′(i) = V 2(i) +

bq′(i) · s
up
i + bq(i) · (s

ob
i − sup

i ) for i ∈ CON .
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• ‖V 4‖ = ‖V 3‖ where V 4 is the valuation given by lnV 4(i) =

lnV 2(i) +Aq′(i, i) · s
up
i +Aq(i, i) · (1− sup

i ) for i ∈ DIF and V 4(i) =

V 2(i) + bq′(i) · s
up
i + bq(i) · (1 − sup

i ) for i ∈ CON .

By Observation 5.2(ii), ‖U ′‖ = ‖U‖ implies that U ′ satisfies the guard g, and

‖V 4‖ = ‖V 3‖ guarantees V 4 satisfies the invariant Iq4, that is Iq3. Hence

the existence of sup
i , sobi , i = 1, 2, . . . , n, suffices to complete the proof.

Fix an i ∈ DIF . Assume ‖V 3(i)‖dif = (θ, θ′), ‖U(i)‖dif = (ϑ, ϑ′) where

θ, θ′, ϑ, ϑ′ ∈ Θdif and Aq′(i, i) > Aq(i, i) > 0. It will become clear that other

cases can be similarly handled. For any real u, let Φµ(u) be the condition

∃ tup ∈ R. ∃ tob ∈ R. δ0
up ≤ tup ≤ δ1

up∧
θ < u+ Aq′(i, i) · t

up + Aq(i, i) · (1 − tup) < θ′∧
δ0
ob ≤ tob ≤ δ1

ob∧
ϑ < u+ Aq′(i, i) · t

up + Aq(i, i) · (t
ob − tup) < ϑ′ .

As in Case 1, it is easy to see that Φµ(u) holds iff η < u < η′, where η is the

larger of θ−Aq′(i, i)·δ
1
up−Aq(i, i)·(1−δ

1
up) and ϑ−Aq′(i, i)·δ

1
up−Aq(i, i)·(δ

1
ob−

δ1
up). On the other hand, η′ is the smaller of θ′−Aq′(i, i)·δ

0
up−Aq(i, i)·(1−δ

0
up)

and ϑ′−Aq′(i, i) · δ
0
up −Aq(i, i) · (δ

0
ob − δ0

up). It follows that η, η′ are members

of Θdif (if η, η′ ∈ [ln γmin , ln γmax ]). Thus, as in Case 1, one concludes that

Φµ(lnV 2(i)) holds and the existence of sup
i , sobi for i ∈ DIF is established.

By filling in similar but simpler arguments for i ∈ CON , we can complete

the proof of proposition 5.3. �

Having established the claim that ≈ is a congruence with respect to =⇒A,

we are now ready to prove theorem 5.1.

Proof of theorem 5.1. Clearly, the members of Θdif and Θcon can be effec-

tively represented. Further, the members of Θdif (Θcon) can be effectively

ordered and thus the finitely many equivalence classes of ≈ can be effec-

tively represented. Note that, to compare two members of Θdif one just

needs to determine whether em1 < m2 for integers m1,m2. This can be done

by approximating e sufficiently precisely using for instance the power series
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expansion of e. In fact, we note that for any polynomial f(u) in one vari-

able u with integer coefficients, we can effectively whether f(u) < 0. Since

e = 1 +
∑∞

h=1 1/h!, we have

1 +
∑̀

h=1

1

h!
< e < 1 +

∑̀

h=1

1

h!
+

∞∑

h=`+1

1

`h−`
= 1 +

∑̀

h=1

1

h!
+

1

`− 1
.

Note that the polynomial f(u) has finitely many real roots. Hence for suffi-

ciently large `, f(u) has no root in the interval [1 +
∑`

h=1 1/h!,

1+
∑`

h=1 1/h!+1/(`−1)] and so f(e) has the same sign as f(1+
∑`

h=1 1/h!).

Clearly such an ` can be effectively found.

We shall refer to equivalence classes of ≈ as clusters of A. We denote

the cluster containing (q, V, q′) by [(q, V, q′)]≈, or simply [(q, V, q′)]. Now

construct a finite transition system CAA = (CLA, [(qin , Vin , qin)], {τ, µ}, A)

which we called the cluster automaton of A. We have that CLA is the finite

set of clusters of A. The transition relation A is a subset of CLA×{τ, µ}×

CLA and is given by: there is a transition from C1
α
 A C2 iff there exists

(q, V, q′) in C1, (q1, V 1, q1′) in C2 such that (q, V, q′)
α

=⇒A (q1, V 1, q1′).

From the proof of proposition 5.3, to determine whether there exists a

transition C1
α
 A C2 amounts to comparing members of Θdif (and Θcon).

Hence the transition system CAA can be effectively computed from A. It is

now straightforward to construct from CAA a finite state automaton which

accepts Lst(A). This completes the proof of theorem 5.1. �

ẋ1 = −0.1x1

ẋ2 = −0.1ẋ2 = 0.1

ẋ1 = 0.1x1

x1 < 1.125

δ0

ob
= .75, δ1

ob
= 1, δ0

up = 0, δ1
up = .25

Vin (1) = Vin (2) = 1.025

q2

γmin = 1.025, γmax = 1.15

q1
x1 ≥ 1.125 ∧ x2 < 1.125

Figure 5.4. A simple RDA
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For illustration, we construct the cluster automaton of the RDA shown

in figure 5.4. Both invariants of q1 and q2 are true. We have ∆ = .25 and

thus Γ = .025. Elements of the set Θcon are shown in figure 5.5. Note that

γmin = 41Γ and γmax = 46Γ.

−45 Γ −44 Γ −43 Γ −42 Γ −41 Γ 41 Γ 42 Γ 43 Γ 44 Γ 45 Γ−46 Γ 46 Γ

Figure 5.5. The set Θcon (not to scale)

θ4

θ6

θ5θ3 θ8

θ10

θ9θ7 θ12

θ14

θ13θ11 θ16

θ18

θ17θ15 θ19θ1

θ2

Figure 5.6. The set Θdif (not to scale)

The set ΘIR consists of the reals ln 1.025, ln 1.15, ln 1.125, which are

approximately equal to .99Γ, 5.59Γ, 4.71Γ, respectively. Elements of the set

Θdif are shown in figure 5.6, where

θ1 = ln 1.025, θ2 = Γ,
θ3 = −4Γ + ln 1.15, θ4 = −3Γ + ln 1.125,
θ5 = Γ + ln 1.025, θ6 = 2Γ,
θ7 = −3Γ + ln 1.15, θ8 = −2Γ + ln 1.125,
θ9 = 2Γ + ln 1.025, θ10 = 3Γ,
θ11 = −2Γ + ln 1.15, θ12 = −Γ + ln 1.125,
θ13 = 3Γ + ln 1.025, θ14 = 4Γ,
θ15 = −Γ + ln 1.15, θ16 = ln 1.125,
θ17 = 4Γ + ln 1.025, θ18 = 5Γ,
θ19 = ln 1.15 .

It follows that each cluster is (q, J1, J2, q
′) where q, q′ ∈ {q1 , q2} and J1

is a member of Idif , J2 is a member of Icon . In figure 5.7, we display a

fragment of the cluster automaton, where

C1 = (q1, [θ1, θ1], [41Γ, 41Γ], q1),

C2 = (q1, [θ17, θ17], [45Γ, 45Γ], q1),

C3 = (q1, (θ19,∞), (46Γ,∞), q1),

C4 = (q2, [θ17, θ17], [45Γ, 45Γ], q1) .
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And to reduce clutter, the dotted arrow from C4 to Cij with label τ rep-

resents the collection of transitions from C4 to each Cij = (q2, (J1
i , J

2
j ), q2)

with label τ , where J1
i is an interval in

{[θh, θh] | h = 1, 2, . . . , 9}
⋃

{(θh, θh+1) | h = 1, 2, . . . , 8}

and J2
j is an interval in

{[hΓ, hΓ] | h = 41, 42, 43}
⋃

{(hΓ, (h+ 1)Γ) | h = 41, 42} .

Similarly the dotted arrow from C4 to C ′
ij with label µ represents the col-

lection of transitions from C4 to each C ′
ij = (q1, (J1

i , J
2
j ), q2) with label µ,

where J1
i , J

2
j are as described above.

Cij
µ

τ

τ

µ

τ

C′

ij

C4

C1

C2 C3

Figure 5.7. Cluster automaton

5.5. Controller Synthesis for RDAs

We now define the controller synthesis problem associated with RDAs.

We shall view the RDA A naturally as a plant, which describes the possible

interactions between a system interacting with a continuous environment. At

each time instant Tk, the system can decide whether to stay at the current

control state q provided the associated invariant Iq is satisfied, or to switch

to another control state q′ provided the associated guard and Iq′ is satisfied.

The goal is to derive a strategy which advises the moves of the system at

each time instant Tk such that the controlled behaviour of plant, in terms of

the state sequences, satisfies a specification.
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Through the rest of this chapter, we assume that δ0
ob = 1 = δ1

ob and tackle

the controller synthesis problem in this setting. Hence the values of the xi’s

that are observed at time instant Tk are equal to the actual values of the xi’s

at Tk. We will also assume from now on that A is augmented with a set AP

of atomic propositions and a labelling function λA : Q→ 2AP .

We shall consider linear time specifications given as LTL or QPLTL for-

mulae over AP . Let ψ be an LTL formula over AP . For an infinite run

σ = (q0, V0, q
′
0)(q1, V1, q

′
1) . . . of A. We say σ is a model of ψ iff λ(q0)λ(q1) . . .

is a model of ψ.

A strategy f for A is a function Runs(A) → 2Q which satisfies the follow-

ing: Suppose σ = (q0, V0, q
′
0) (q1, V1, q

′
1) . . . (q`, V`, q

′
`) is a run in Runs(A).

Then for each q in f(σ), there exists a reachable configuration (q̂, V̂ , q̂′) such

that q̂ = q and (q`, V`, q
′
`)

α
=⇒ (q̂, V̂ , q̂′) for some α ∈ {τ, µ}. Thus the

strategy f recommends only structurally possible moves.

The set of runs according to the strategy f , denoted Runs(f), is defined

inductively as follows:

• ε is in Runs(f).

• If σ = (q0, V0, q
′
0) (q1, V1, q

′
1) . . . (q`, V`, q

′
`) is in Runs(f) and σ′ =

σ (q̂, V̂ , q̂′) with q̂ ∈ f(σ), then σ′ ∈ Runs(f).

Infinite runs of A and infinite runs according to f are defined in the

obvious way. Namely, σ ∈ RC ω is an infinite run of A iff every finite prefix

of σ is in Runs(A). An infinite run σ is according to f iff every finite prefix

of σ is according to f . We say the strategy f for A is non-blocking iff

every run according to f can be extended to a longer run according to f .

In particular, this implies that every run according to f will not reach any

infeasible configurations.

We say the strategy f is ψ-winning iff f is non-blocking and every infinite

run according to f is a model of ψ. By a ψ-controller for A, we shall mean

a ψ-winning strategy for A.
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5.6. Decidability Results

Our result for controller synthesis of RDAs is:

Theorem 5.4.

(i) Given a pair (A, ψ), where A is an RDA with δ0
ob = 1 = δ1

ob and ψ is

an LTL formula over AP, we can effectively determine whether there

exists a ψ-controller for A.

(ii) Further, if there exists a ψ-controller for A, then we can effectively

construct one in the form of a (finite) RDA with no sensing delay.

In the rest of this section we prove theorem 5.4(i) and analyze the com-

plexity of the decision procedure. We then prove theorem 5.4(ii). We also

show that theorem 5.4 can be easily extended to QPLTL specifications. The

proofs of these results are technically similar to the proofs of theorem 4.2

and 4.7.

Recall the cluster automaton of A from the proof of theorem 5.1. With

CAA, we show that there exists a ψ-controller iff there exists a cluster-

respecting ψ-controller (one that does not distinguish two runs that pass

through the same sequence of clusters). This result is the key for establishing

theorem 5.4. With this result in mind, we show how to determine the exis-

tence of cluster-respecting ψ-controllers by constructing a non-deterministic

Rabin tree automaton Rctrl which will run over {>,⊥}-labelled trees whose

underlying tree is the computation tree induced by the cluster automaton

of A. And Rctrl will accepts a {>,⊥}-labelled tree iff this labelled tree rep-

resents a cluster-respecting ψ-controller. This will settle the first part of

theorem 5.4, namely, the decidability problem. Further, due to Rabin’s tree

theorem [63], in case the set of labelled trees accepted by Rctrl is nonempty

then it in fact accepts a regular {>,⊥}-labelled tree. This regular tree can

be effectively computed, represented as a finite structure C and this structure
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can be naturally viewed as an RDA with no sensing delay. This RDA will

then constitute the controller we seek.

5.6.1. Cluster-Respecting Strategies.

In order to prove theorem 5.4(i), we first show a crucial lemma which

allows us to deal with only cluster-respecting strategies. Intuitively, a cluster-

respecting strategy is one that does not discriminate between two histories

of configurations that pass through the same sequence of clusters.

We fix ψ (and A) as stated in theorem 5.4. We shall assume for nota-

tional convenience the only deadlocked configurations in TSA are infeasible

configurations. In other words, for every reachable configuration (q, V, q ′) in

RC , if (q, V, q′) is feasible, then there exists (q1, V 1, q1′) in RC such that

(q, V, q′)
α

=⇒ (q1, V 1, q1′).

We extend the equivalence relation ≈ on reachable configurations to runs

of A in the obvious way. Namely, if σ = (q0, V0, q
′
0) (q1, V1, q

′
1) . . . (q`, V`, q

′
`)

and σ̂ = (q̂0, V̂0, q̂
′
0)(q̂1, V̂1, q̂

′
1) . . . (q̂`, V̂`, q̂

′
`) are runs in A, then we say σ ≈ σ′

iff (qi, Vi, q
′
i) ≈ (q̂i, V̂i, q̂

′
i) for i = 1, 2, . . . , `.

Let f be a strategy for A. We say f is cluster-respecting iff the following

holds: for every σ, σ′ in Runs(f), if σ ≈ σ′, then f(σ) = f(σ′). The lemma

below is the key for establishing theorem 5.4.

The following lemma is crucial for establishing theorem 5.4.

Lemma 5.5. Let ψ be an LTL specification. Then there exists a ψ-controller

for A iff there exists a cluster-respecting ψ-controller for A.

Proof. Suppose f is a ψ-controller. We shall construct a cluster-respecting

ψ-controller from f .

We begin by constructing REP f , a “representative” prefix-closed subset

of Runs(f) inductively as follows.

Firstly, ε is in REP f and also the run (qin , Vin , qin) is in REP f .
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Secondly, suppose σ = (q0, V0, q
′
0) (q1, V1, q

′
1) . . . (q`, V`, q

′
`) is in Runs(f).

Call Z in CL a successor cluster of σ iff (q`, V`, q
′
`)

α
=⇒ (q̂, V̂ , q̂′) for some

α ∈ {τ, µ} and (q̂, V̂ , q̂′) in Z. Let Z1, Z2, . . . , Zm be the set of successor

clusters of σ. Note that since f is non-blocking, (q`, V`, q
′
`) is a feasible

configuration and hence Z1, Z2, . . . , Zm exist.

We pick (q̂1, V̂1, q̂
′
1) in Z1, (q̂2, V̂2, q̂

′
2) in Z2, . . . , (q̂m, V̂m, q̂

′
m) in Zm such

that (q`, V`, q
′
`)

αj
=⇒ (q̂j, V̂j, q̂

′
j), for j = 1, 2, . . . ,m, where αj ∈ {τ, µ}. Now

we let σ (q̂j, V̂j, q̂
′
j) ∈ REP f , for i = 1, 2, . . . ,m.

We argue that the choices of (q̂j, V̂j, q̂
′
j), j = 1, 2, . . . ,m, can be made

effective and hence we need not appeal to the axiom of choice ([34]) here.

Fix j ∈ {1, 2, . . . ,m}. Let
∥∥∥V̂j

∥∥∥ = (L1, L2, . . . , Ln). Now to pick (q̂j, V̂j,

q̂′j) effectively, it suffices to choose effectively n real numbers tup
i in [δ0

up, δ
1
up ],

i = 1, 2, . . . , n, such that V`(i) · exp
(
Aq′

`
(i, i) · tup

i + Aq`(i, i) · (1 − tup
i )

)
is in

Li for i ∈ DIF and V`(i) + bq′
`
(i) · tup

i + bq`(i) · (1− tup
i ) is in Li for i ∈ CON .

Fix i ∈ DIF . We show that tup
i can be picked effectively.

Assume that Li = (θ, θ′) where θ, θ′ ∈ Θdif and Aq′
`
(i, i) > Aq`(i, i). It

will become clear that other cases can be similarly handled.

We pick tup
i as follows. If ϑ < δ1

up where ϑ =
(
ln θ − lnV`(i) − Aq`(i, i)

)
·

(Aq′
`
−Aq`)

−1, then we pick tup
i = 1/2(ϑ+ δ1

up). Otherwise we have δ0
up < ϑ′,

where ϑ′ =
(
ln θ′ − lnV`(i) − Aq`(i, i)

)
· (Aq′

`
− Aq`)

−1, In this case, we pick

tup
i = 1/2(δ0

up + ϑ′).

By filling similar but simpler arguments for the effective choices of tup
i

for i ∈ CON , we establish the claim that tup
i , i = 1, 2, . . . ,m, can be made

effectively.

Now we construct the cluster-respecting strategy f̂ from REP f as follows.

For σ in Runs(A), if there exists σ′ in REP f such that σ ≈ σ′, then f̂(σ) =

f(σ′); otherwise f̂(σ) = ∅. It is now routine to show that f̂ is in fact a

well-defined cluster-respecting ψ-controller. �
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5.6.2. Decidability for LTL Specifications.

With lemma 5.5, to determine whether there exists a ψ-controller for

A, one just need to determine whether there exists a cluster-respecting ψ-

controller for A. We next show that the latter can be done effectively. This

will settle the first part of theorem 5.4.

In what follows, we fix a two letter alphabet {>,⊥}, where >, ⊥ are spe-

cial symbols. We show that cluster-respecting strategies can be represented

as {>,⊥}-labelled trees and one can effectively construct a non-deterministic

Rabin tree automaton which accepts the set of {>,⊥}-labelled trees repre-

senting cluster-respecting ψ-winning strategies.

First we construct a CL-tree T by unfolding CA, the cluster automa-

ton of A with special handling on clusters containing infeasible configura-

tions. For a cluster [(q, V, q′)] in CL, we define the set SuccCA([(q, V, q′)]) by:

[(q̂, V̂ , q̂′)] ∈ CL is in SuccCA([(q, V, q′)]) iff [(q, V, q′)]
α
 [(q̂, V̂ , q̂′)] for some

α ∈ {τ, µ}. Formally, we define the CL-tree T inductively as follows.

• ε is in T and [(qin , Vin , qin)] is in T .

• Suppose σ = [(q0, V0, q
′
0)] [(q1, V1, q

′
1)] . . . [(q`, V`, q

′
`)] is in T where

[(qi, Vi, q
′
i)] ∈ CL for i = 0, 1, . . . , `.

– If (q`, V`, q
′
`) is a feasible configuration (see proposition 5.3),

then for each [(q̂, V̂ , q̂′)] in SuccCA([(q`, V`, q
′
`)]), we let

σ [(q̂, V̂ , q̂′)] be in T .

– If (q`, V`, q
′
`) is an infeasible configuration, then we let

σ [(q`, V`, q
′
`)] be in T .

Clearly T is a CL-tree and for every σ in T , SuccT (σ) 6= ∅.

Let (T , η) be a {>,⊥}-labelled CL-tree, where η : T → {>,⊥} is a

labelling function. We say (T , η) is a strategy tree iff the following hold:

• η(ε) = > and η([(qin , Vin , qin)]) = >.

• Suppose σ = [(q0, V0, q
′
0)] [(q1, V1, q

′
1)] . . . [(q`, V`, q

′
`)] is in T and

η(σ) = >.
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– Suppose (q`, V`, q
′
`) is a feasible configuration. Then for any

[(q̂1, V̂1, q̂
′
1)], [(q̂2, V̂2, q̂

′
2)] in CL such that σ [(q̂1, V̂1, q̂

′
1)] and

σ [(q̂2, V̂2, q̂
′
2)] are both in T , q̂1 = q̂2 implies that

η(σ [(q̂1, V̂1, q̂
′
1)]) = η(σ [(q̂2, V̂2, q̂

′
2)]).

– Suppose (q`, V`, q
′
`) is an infeasible configuration. Then for

any [(q̂, V̂ , q̂′)] in CL such that σ [(q̂, V̂ , q̂′)] is in T , we have

η(σ [(q̂, V̂ , q̂′)]) = ⊥.

• Suppose σ = [(q0, V0, q
′
0)] [(q1, V1, q

′
1)] . . . [(q`, V`, q

′
`)] is in T and

η(σ) = ⊥. Then for any [(q̂, V̂ , q̂′)] in CL such that σ [(q̂, V̂ , q̂′)] is

in T , we have η(σ [(q̂, V̂ , q̂′)]) = ⊥.

It is easy to see that there is a 1-1 correspondence between cluster-

respecting strategies and strategy trees. In fact, if f is a cluster-respecting

strategy, then one can define the {>,⊥}-labelled CLA-tree (T , ηf ) as follows:

for σ = [(q0, V0, q
′
0)] [(q1, V1, q

′
1)] . . . [(q`, V`, q

′
`)] in T , we have ηf (σ) = > if

there exists σ̂ in Runs(f) where σ̂ = (q̂0, V̂0, q̂
′
0) (q̂1, V̂1, q̂

′
1) . . . (q̂`, V̂`, q̂

′
`) with

(q̂j, V̂j , q̂
′
j) in [(qj, Vj, q

′
j)] for j = 1, 2, . . . , `. And ηf (σ) = ⊥ otherwise. It is

clear that (T , ηf ) is a strategy tree. On the other hand, suppose (T , η) is

a strategy tree, then one can define a cluster-respecting strategy fη as fol-

lows: for σ = (q0, V0, q
′
0) (q1, V1, q

′
1) . . . (q`, V`, q

′
`) in Runs(A), fη(σ) is given

by: q in Q is in fη(σ) iff there exists [(q̂, V̂ , q̂′)] in CL such that q̂ = q and

η(σ [(q̂, V̂ , q̂′)]) = >. It is straightforward to verify that fη is well-defined

strategy and is cluster-respecting.

Now it is routine to show that a strategy tree (T , η) represents a cluster-

respecting ψ-winning strategy iff (T , η) satisfies the following conditions:

• (non-blocking) For every σ in T with η(σ) = >, there exists

[(q, V, q′)] in CL such that σ[(q, V, q′)] is in T and η(σ[(q, V, q′)]) = >.

• Suppose [(q0, V0, q
′
0)] [(q1, V1, q

′
1)] . . . is a path in T . If for every

` = 0, 1, . . . , the node [(q0, V0, q
′
0)] [(q1, V1, q

′
1)] . . . [(q`, V`, q

′
`)] in T

is labelled > by η, then (q0, V0, q
′
0) (q1, V1, q

′
1) . . . is a model of ψ.
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We can now construct a non-deterministic Rabin tree automaton Rctrl

which will run over {>,⊥}-labelled CL-trees (whose underlying tree is T )

such that Rctrl accepts (T , η) iff (T , η) is a strategy tree representing a ψ-

winning cluster-respecting strategy. It will be convenient to view Rctrl as

the intersection of three non-deterministic tree automata B1, B2, R3, where

B1, B2 are non-deterministic Büchi tree automata and R3 is a deterministic

Rabin tree automaton. For an input {>,⊥}-labelled CL-tree (T , η), B1

checks whether (T , η) is a strategy tree, B2 examines whether the cluster-

respecting strategy represented by (T , η) is non-blocking, and R3 verifies

that for every path σ of T along which every node is labelled >, σ is a

model of ψ (in the sense defined above).

We have B1 = ((CL ∪ {$}) × {>,⊥}, ($,>), {>,⊥}, ↪→1,CL × {>,⊥})

where $ is a special symbol and ↪→1 is given by:

• ($,>)
>
↪→1 χ, where χ : {[(qin , Vin , q

′
in)]} → (CL × {>,⊥}) maps

[(qin , Vin , q
′
in)] to ([(qin , Vin , q

′
in)],>).

• Suppose [(q, V, q′)] is in CL where (q, V, q′) is a feasible configu-

ration. Let SuccCA([(q, V, q′)]) = {Z1, Z2, . . . , Zm}. Then we have

([(q, V, q′)],>)
>
↪→1 χ for any χ : SuccCA([(q, V, q′)]) → (CL×{>,⊥})

which maps Zi to (Zi, bi) where bi ∈ {>,⊥}, for each i = 1, 2, . . . ,m

and satisfies the following condition: for any Zi = [(q̂i, V̂i, q̂
′
i)],

Zj = [(q̂j, V̂j , q̂
′
j)] with q̂i = q̂j, we have bi = bj.

Further, ([(q, V, q′)],⊥)
⊥
↪→1 χ where χ : SuccCA([(q, V, q′)]) →

(CL × {>,⊥}) maps Zi to (Zi,⊥) for each i = 1, 2, . . . ,m.

• Suppose [(q, V, q′)] is in CL where (q, V, q′) is an infeasible configu-

ration. Then ([(q, V, q′)],>)
>
↪→1 χ and ([(q, V, q′)],⊥)

⊥
↪→1 χ, where

χ : {[(q, V, q′)]} → CL × {>,⊥} maps [(q, V, q′)] to ([(q, V, q′)],⊥).
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Intuitively, for an input {>,⊥}-labelled CL-tree (T , η), a state

([(q, V, q′)], b) of B1 indicates that B1 expects a node σ in T such that

dir(v) = [(q, V, q′)] and η(v) = b. It is straightforward to verify that B1

accepts (T , η) iff (T , η) is a strategy tree.

We next define B2 = ((CL ∪ {$}) × {>,⊥}, ($,>), {>,⊥}, ↪→2,

CL × {>,⊥}) where $ is a special symbol and ↪→2 is given by:

• ($,>)
>
↪→2 χ where χ : {[(qin , Vin , q

′
in)]} → (CL × {>,⊥}) maps

[(qin , Vin , q
′
in)] to ([(qin , Vin , q

′
in)],>).

• Suppose [(q, V, q′)] is in CL where (q, V, q′) is a feasible configuration.

Let SuccCA([(q, V, q′)]) = {Z1, Z2, . . . , Zm}. Then

([(q, V, q′)],>)
>
↪→2 χ for any function χ from SuccCA([(q, V, q′)])

to CL × {>,⊥} which maps each Zi to (Zi, bi), where bi ∈ {>,⊥}

for i = 1, 2, . . . ,m, and satisfies the following condition: there exists

at least one i in {1, 2, . . . ,m} with bi = >.

Further, ([(q, V, q′)],⊥)
⊥
↪→2 χ where χ : SuccCA([(q, V, q′)]) →

(CL × {>,⊥}) maps each Zi to (Zi,⊥) for i = 1, 2, . . . ,m.

• Suppose [(q, V, q′)] is in CL where (q, V, q′) is an infeasible con-

figuration. Then ([(q, V, q′)],⊥)
⊥
↪→2 χ, where χ : {[(q, V, q′)]} →

CL × {>,⊥} maps [(q, V, q′)] to ([(q, V, q′)],⊥).

Similarly to B1, for an input {>,⊥}-labelled CL-tree (T , η), a state

([(q, V, q′)], b) of B2 indicates that B2 expects a node σ in T such that

dir(σ) = [(q, V, q′)] and η(v) = b. It is again clear that B2 accepts a strategy

tree (T , η) iff the strategy represented by (T , η) is non-blocking.

To define R3, we first note that for the LTL formula ψ, one can effectively

construct a non-deterministic Büchi automaton Bψ over 2AP ([78]) which has

the following property: Let σ be in (2AP)ω. Then σ is accepted by Bψ iff σ is

a model of ψ. From Bψ, we can construct a deterministic Rabin automaton

Rψ ([68]) over 2AP such that: for every σ in (2AP)ω, σ is accepted by Bψ iff

σ is accepted by Rψ. The Rabin tree automaton R3 will simulate Rψ along
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every path of which every node is labelled >. The crucial point to note is

that Rψ is deterministic.

Suppose Rψ = (Sψ, s
ψ
in , 2

AP , ↪→ψ,Fψ), where Fψ = {(E1, F1), (E2, F2),

. . . , (Ek, Fk)}. We define R3 = (CL × (Sψ ∪ {]}), ($, sψin), {>,⊥}, ↪→3, F̂)

with F̂ = {
(
CL ×Ei,CL × (Fi ∪ {]})

)
| i = 1, 2, . . . , k}, where ] is a special

symbol and is not in Sψ. And ↪→3 is defined as follows:

• ($, sψin)
>
↪→3 χ, where χ : {[(qin , Vin , q

′
in)]} → (CL × Sψ) maps

[(qin , Vin , q
′
in)] to ([(qin , Vin , q

′
in)], sψin).

• Suppose [(q, V, q′)] is in CL where (q, V, q′) is a feasible configuration.

Let SuccCA([(q, V, q′)]) = {Z1, Z2, . . . , Zm}.

For s ∈ Sψ, we have:

– ([(q, V, q′)], s)
>
↪→3 χ where χ : SuccCA([(q, V, q′)]) → (CL × Sψ)

maps Zi to (Zi, si) where s
λ(q)
↪→ψ si, for i = 1, 2, . . . ,m. Recall

that λ is the function which labels every control state of A with

a subset of atomic propositions in AP .

– ([(q, V, q′)], s)
⊥
↪→3 χ where χ : SuccCA([(q, V, q′)]) → (CL ×

(Sψ ∪ {]})) maps each Zi to (Zi, ]) for i = 1, 2, . . . ,m.

Further, we have ([(q, V, q′)], ])
⊥
↪→3 χ where χ :

SuccCA([(q, V, q′)]) → (CL × (Sψ ∪ {]})) maps each Zi to (Zi, ])

for i = 1, 2, . . . ,m.

• Suppose [(q, V, q′)] is in CL where (q, V, q′) is an infeasible con-

figuration. Then ([(q, V, q′)], s)
⊥
↪→3 χ, where χ : {[(q, V, q′)]} →

(CL × (Sψ ∪ {]})) maps each [(q, V, q′)] to ([(q, V, q′)], ]).

Intuitively, the tree automaton R3 simulates Rψ along the paths in which

every node is labelled > and assign to each node σ in such a path the corre-

sponding unique state reached by Rψ upon reading the atomic propositions

of v. The states of the form ([(q, V, q′)], ]) in R3, where [(q, V, q′)] ∈ CL,

are used to indicate that the node being read is labelled ⊥ and hence is

irrelevant.
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Since Rctrl is the intersection of B1, B2, R3, it is now routine to verify

that the language of Rctrl is nonempty iff there exists a cluster-respecting ψ-

winning strategy for A. This establishes theorem 5.4(i), owing to lemma 5.5.

We analyze the complexity of the above decision procedure for theo-

rem 5.4. The non-deterministic Büchi automaton Bψ will have NBψ = 2O(|ψ|)

states, where |ψ| is the size of ψ. Hence the deterministic Rabin automa-

ton for Rψ has NRψ
= 2O(NBψ

·logNBψ
) states and KRψ

= O(NBψ) accepting

pairs ([68]). It is easy to construct the non-deterministic Rabin tree au-

tomaton Rctrl directly which will have NRctrl
= O(|CL| · NRψ

) states and

KRctrl
= O(NBψ) accepting pairs. We have |CL| = O(|Q|2 ·(γmax ·Γ

−1)n). The

complexity for testing nonemptiness of Rctrl ([23]) is
(
NRctrl

·KRctrl

)O(KRctrl
)
,

that is,
(
O(|Q|2 · (γmax · Γ

−1)n · 2O(|ψ|·2O(|ψ|))
)O(2|ψ|)

.

5.6.3. Synthesis of Controllers.

To prove theorem 5.4(ii), we suppose the set of {>,⊥}-labelled T trees

accepted by Rctrl is nonempty. Then by Rabin’s tree theorem [63], the

decision procedure for testing the nonemptiness of the language of Rctrl yields

a regular {>,⊥}-labelled CL-tree (T , η) that is accepted by Rctrl . More

precisely, the set of nodes in T that are labelled by > by η is a regular subset

of CL?, and moreover (T , η) is presented in the form of a finite transition

system, which we shall extend to be an RDA C with no sensing delay.

Each state of C will be a node in T (that is labelled > by η) and it will

be accompanied by a labelling function ξ. The initial location will be ε with

ξ(ε) = [(qin , Vin , qin)] whereas to all other locations ξ will assign a cluster in

CL.

For a state s of C that is labelled [(q, V, q′)] ∈ CL by ξ, we define its

rate function to be ρq. Further, we set the invariant Is to be such that:

a valuation V̂ satisfies Is iff
∥∥∥V̂

∥∥∥ = ‖V ‖. Clearly the invariant Is can be

effectively computed, albeit that Is is a finite conjunction of inequalities of
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the form xi ≺ c where c is a rational or c = c′ +ln c′′ with c′, c′′ are rationals.

For each transition of C, we associate it with the guard true. We set the

delay parameters and range parameters of C to be the same as those of A.

This completes the proof of theorem 5.4(ii).

5.6.4. QPLTL Specifications.

We note that for a QPLTL formula ψ, one can effectively construct a

non-deterministic Büchi automaton Bψ over 2AP which accepts precisely the

set of models of ψ. It follows that the proof of theorem 5.4 implies:

Theorem 5.6.

(i) Given a pair (A, ψ), where A is an RDA with δ0
ob = 1 = δ1

ob and ψ is a

QPLTL formula over AP, we can effectively determine whether there

exists a ψ-controller for A.

(ii) Further, if there exists a ψ-controller for A, then we can effectively

construct one in the form of a (finite) RDA with no sensing delay.

5.7. Discussion

We have considered linear time specifications. One could also study

controller synthesis of RDAs with branching time specifications in CTL, or

CTL? [21].

It would be interesting to extend our present results to study controller

synthesis for the variant of RDAs with finite precision and polynomial guards

in [2]. Here, again the controller knows only the measured values of contin-

uous variables and hence does not have “accurate” information about the

status of continuous variables. Nevertheless, we believe that the techniques

in this chapter would turn out to be useful.



CHAPTER 6

Conclusions

We have explored controlled synthesis in distributed, real-time and hy-

brid settings.

In the distributed setting, we obtained decidability results on distributed

controller synthesis for the large class of CCPs for both robust linear time

specifications and branching time specifications given as MSO formulae over

event structures. Further, we showed that finite state distributed controllers

can be effectively synthesized whenever they exist.

Distributed protocols are often difficult to design by hand. Our results on

CCPs imply that one can in fact automatically synthesize many distributed

protocols from protypes and specifications. One can also hope that, for

specialized kinds of properties such as safety and liveness properties, the

complexities of our decision algorithms for distributed controller synthesis

can be significantly improved.

In fact, we established the strong result that the MSO theory of every

CCP is decidable, where the MSO logic of a CCP is its canonical non-

interleaved branching time logic. This result is also of fundamental impor-

tance to model checking of CCPs. It serves as the cornerstone for deriving

branching time logics that are amenable to more efficient model checking

procedures.

It would be interesting to extend the class of CCPs to timed and hybrid

settings. That is, to study networks of timed or hybrid automata whose

underlying network of transition systems is a CCP.

In the real-time setting, we showed that admission controllers for real-

time systems with tasks is decidable. Further, if there exists an admission
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controller, then we can effectively synthesize one as a (finite) timed automa-

ton. Clearly we can apply these results to synthesize admission controllers

if a given task arrival pattern is not schedulable with respect to a fixed

processor and the preemptive EDF scheduling policy.

We have assumed that the task arrival pattern is described by a single

timed automaton. It would be interesting to consider to a task arrival pattern

to be given by a network of timed automata and to synthesize a family of

admission controllers, one for each component timed automaton.

We have assumed that the scheduling policy is fixed. A more ambitious

problem is to synthesize a scheduling policy for a given task arrival pattern

on fixed computing resources.

We have assumed that there is a processor dedicated to all the tasks.

If the processor is not dedicated, one may ask the question whether there

exists an admission controller that guarantees schedulability of accepted task

instances and that the QoS specification is met, but tries to minimize the

computing load on the processor.

In the hybrid setting, we showed the control state sequence languages

of an RDA is regular and solved the controller synthesis problem for RDAs

with no sensing delays.

The regularity result can be applied to solve model checking problems for

RDAs. The techniques for proving this regularity result also provide insights

for handling variables evolving at differential rates. It would be interesting

to study whether RDAs can be used to abstract hybrid automata where the

rates of variables are governed by linear differential equations.

It would be worthwhile to try applying the controller synthesis result

for RDAs to in the design of practical control systems. For safety, liveness

and other simple specifications, it is promising that we can improve the

complexities of our decision procedure for controller synthesis of RDAs with

no sensing delays.
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We have focused on decidability and undecidability results of controller

synthesis in distributed, real-time and hybrid settings. As with most decision

procedures for controller synthesis, our decision algorithms are of rather

high complexity theoretically and thus not immediately feasible for practical

applications. The search of pragmatically feasible algorithms is a common

challenge in the field of controller synthesis. However, one should not be

pessimistic, since the average case complexities of these algorithms could be

far less than their worst case complexities.
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