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Summary

Dear friend, theory is all gray,

and the golden tree of life is green.

Goethe, from “Faust”.

Longitudinal data are becoming more and more common in study designs

for many research areas. One of the most widely applied statistical models for

longitudinal data analysis is the Generalized Estimating Equation (GEE) model

(Liang and Zeger 1986), which is the basis of this work. GEEs are appropriate

for modeling the population mean of continuous and discrete responses when

the correlation structure is not the focus. GEEs are preferred because they can

provide consistent regression parameter estimates even when the within-subject

correlation structure is misspecified. As is common to many robust methods with

respect to one particular aspect of model misspecification, GEEs also pay the

price for robustness. That is the underestimation of the variance for regression

parameters, which is due to the approximation of response variance matrix by the

moment estimate, namely the products of residuals.

The purpose of this work is to apply the resampling idea to longitudinal data



xii

for the regression parameter estimation and provide better alternatives to the

common estimation procedures in GEEs, especially in terms of variance estimation

and of confidence interval construction. Two types of resampling approaches are

proposed. The first approach is “smooth bootstrap,” a random perturbation to

the estimating algorithms, which provides a simple way to produce bootstrapped

copies of parameter estimates. Two versions of smooth bootstrap methods are

investigated analytically and via Monte Carlo simulation. One version retains

the robustness to the misspecification of the within-subject correlation structure.

The other version is model-based and hence more efficient when the covariance

model is correctly specified. When compared to the commonly used sandwich

estimators and some classical resampling methods applied to the longitudinal

data, the smooth bootstrap methods yield more accurate variance estimates and

confidence intervals for different types of data and sample sizes.

The second resampling approach proposed in this thesis is based on the esti-

mating function rather than the parameter estimates. Several simple perturbation

methods based on two versions of studentized estimating function statistics are

suggested for parameter and the variance estimation. The bootstrap distribution

of two versions of studentized estimating functions can be obtained. The end-

points of confidence interval for parameter estimates could be solved from only

two equations defined at the quantiles of the bootstrap distribution of the studen-

tized EF statistic. The resulting confidence intervals turn out to perform quite well

for different types of data and different sample sizes. Particularly, one of the two

versions of the studentized EF statistics is a first-term corrected studentized esti-

mating function statistic obtained from the Edgeworth expansion. Bootstrapping

this first-term corrected statistic will give even higher order distribution approx-
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imation and lead to improved confidence intervals for the regression parameter

estimates.
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Chapter 1

Introduction

1.1 Longitudinal studies

1.1.1 Background

Analysis of repeated measurements has achieved great popularity in recent years

because repeated measurements are commonly found in study designs of more and

more research areas, such as clinical trial studies, toxicological studies and even

advanced systems biological studies. In terms of “repeated measurements,” we

refer broadly to the data with multiple observations (such as different occasions

or conditions) for each experimental unit or subject. If multiple observations

are collected over a period of time, the data are known as “longitudinal data”

(also called “panel data”). Repeated measurements, including longitudinal data,

have many advantages for scientific studies. First, this design of data structure

is the only design that is able to obtain the information that concerns individual

pattern of change. Second, each unit or subject can serve as its own control,



CHAPTER 1. INTRODUCTION 2

because the measurements can be taken under both control and experimental

conditions. This reduces the number of subjects, removes the variation across

subjects and increases the power of analysis compared to a cross-sectional design

with the same number of subjects. However, repeated measurements also raise a

number of challenges for statistical analysis. The key characteristic of repeated

measurement data is the possible dependence within the observations for each

experimental unit or subject, which introduces correlation into the consideration,

violates the common assumption of classical statistical methods and thus makes

the analysis much difficult. Ignoring the correlation when it does exist could cause

inefficient estimates of regression parameters and result in lower power to detect

differences of interest because a number of degrees of freedom must be used to

estimate the association parameters. Furthermore, in practice, when the number

of the observations for each subject is not common across all the subjects or the

observations are not regularly time-spaced, the data is unbalanced. For example,

in the study of litter effects, the sizes of litters usually differ, or the patients

under study may go back for checkups at different times. Besides imbalance,

repeated measurements can also be incomplete due to some factor relevant or

irrelevant to the studies. For example, in clinical trials, some patients may fail to

be followed up within a certain period of time which will result in missing data.

Both the unbalanced and incomplete structures of repeated measurements make

the analysis of such data even harder. Therefore, appropriate statistical models

and corresponding analysis methodology are in great demand to deal with such

kind of data.

Table 1.1 shows the general structure of the longitudinal data which will be

used throughout this dissertation (Strategies dealing with missing data are beyond
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the scope of this thesis. Hence no missing data will be assumed throughout the

thesis.)

Table 1.1: General structure of longitudinal data

Subject Time Response Covariates

1 1 y11 x111 · · · x11p
...

...
...

. . .
...

j y1j x1j1 · · · x1jp
...

...
...

. . . · · ·
n1 y1n1 x1n11 · · · x1n1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i 1 yi1 xi11 · · · xi1p

...
...

...
. . .

...
j yij xij1 · · · xijp
...

...
...

. . . · · ·
ni yini

xini1 · · · xinip

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
K 1 yK1 xK11 · · · xK1p

...
...

...
. . .

...
j yKj xKj1 · · · xKjp
...

...
...

. . . · · ·
nK yKnK

xKnK1 · · · xKnKp

Let K be the number of subjects, ni be the number of observations for subject

i, and yij be the observations for subject i at time j, where i = 1, . . . , K and

j = 1 , . . . , ni . Let xij = (xij1 , . . . , xijp )T be the vector of covariates for response

yij and p be the number of covariates; hence the dimension of regression parameter

of interest. The covariates could be random, random but time-independent, or

completely non-stochastic. In matrix form, Yi = ( yi1 , . . . , yini
)T is the ni × 1

response vector for subject i and the corresponding covariates Xi being ni × p

matrix for i = 1, . . . , K.

Actually, almost all types of correlated data could be expressed in such a

layout. Different scales of K and ni will result in different levels of statistical
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inference. Below are some special cases of correlated data which are commonly

seen, arranged in an increasing order of difficulty in statistical analysis:

• Time Series data: K = 1, ni = n is large.

• Multivariate data:

K > 1, ni small or moderate; independence among subjects.

Such as longitudinal/panel data or cluster data.

• Multiple Time Series: K > 1, ni is large; subjects are dependent.

• Spatial data: both K and ni are hopefully large; rows are dependent.

The focus of this thesis will be longitudinal data that are frequently observed

in biomedical and biological research areas. In longitudinal data analysis, rapid

development of statistical research have been seen in recent years. Good references

for overview of research relevant to longitudinal data are Diggle et al. (2002),

Davis (2001), and Fitzmaurice et al.. (2004). In the following sections, some

important achievements in the development of statistical analysis for longitudinal

data will be reviewed.

1.1.2 Statistical models for longitudinal data

Since the second half of the 20th century, a variety of statistical approaches for

longitudinal data have been studied, such as normal-theory method assuming

the normality of the responses’ distributions (see for example Timm 1980; Ware

1985) and weighted least squares method for categorical responses (see for exam-

ple Grizzle et al. 1969; Koch et al. 1977). However, those early methods are
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mainly specific to some types of variables or require strong assumption of the

full distribution of the responses. Therefore their applications are very limited.

To provide a unifying framework, the idea of “generalized linear models” (GLM)

was introduced, which enables the analysis for both continuous and categorical

data and can analyze data from different distributions: normal, gamma, binomial,

Poisson, etc. (Nelder and Wedderburn 1972; McCullagh and Nelder 1989; Dobson

1990). This is one of the most important breakthroughs in statistical modeling.

But it still requires the assumption for the distribution of the responses. The ap-

plicability of GLM is further extended by quasi-likelihood approach (Wedderburn

1974). The quasi-likelihood approach only needs to assume the first two moments

of the distribution for the responses. Those important developments enable many

related types of extensions of GLM and quasilikelihood methods towards the anal-

ysis of correlated data including longitudinal data. Such extensions are marginal

models, transition models and random-effects models (Zeger and Liang 1992).

The differences among those three models are the interpretations of the regression

coefficients, especially for categorical outcome variables. Transition models are

appropriate when it is reasonable to assume that responses follow a stochastic

process depending on the subject only through the values of the measured covari-

ates. Random effects models can model the heterogeneity among subjects; hence,

the regression coefficients explain the effect of covariates, not only on the aver-

age of the population, but also on one subject’s response. Marginal models only

focus on the population average, which is the most common scientific objective.

Furthermore, in marginal models, the association among observations from each

subject is modeled separately from the regression model, while random effects

and transition models model the covariate effects and within-subject correlation
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through one single equation.

Marginal model is the focus of this thesis. Here we give justifications of pref-

erence for marginal model. First, statistical analysis using the marginal model

is conceptually and computationally simple. For example, the marginal model

can handle model structure that is the same for all the observations regardless

of the number of observations for each subject. Therefore, the marginal model is

simple, or “reproducible” following the terminology of Liang et al. (1992). Sec-

ond, for the same reason, missing observations (for example, missing completely

at random) are easily accommodated when using the marginal models by simply

omitting those non-informative missing observations in the analysis. However,

missing observations severely complicate analysis of fully or partly conditional

models such as transitional model. As these observations are an explicit part of

the conditional regression model for each measurement within the subject, they

cannot simply be ignored in models like transitional model. Third, the marginal

model can not only be applied to longitudinal data, but also to a large group of

repeated measurements data, such as clustered data. When applying marginal

models, cautions must be taken. For example, it is found that marginal models

will tend to give biased estimates with time-dependent covariates unless working

independence is assumed or a key assumption is verified (see Pepe and Anderson

1994, Emond et al. 1997, Pan et al. 2000, Schildscrout and Heagerty 2005 and

references therein).

As an extension of the quasi-likelihood method to multivariate correlated

responses, a marginal model approach, generalized estimating equation (GEE)

method, was developed in Liang and Zeger (1986)’s seminal paper. This method
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gives consistent and asymptotically normal estimates even when the correlation

structure is misspecified (a comprehensive discussion about GEE can be found

in Hardin and Hilbe 2002). The corresponding variance-covariance estimator,

named “sandwich estimator” or “robust estimator”, is robust and widely used.

GEE provides us with a flexible model that can accommodate different structures

of longitudinal data. In other words, the number of observations for each sub-

ject do not have to be constant, and the measuring times need not be the same

across subjects. Missing data can also be accommodated under the restriction

that the missing data must be MCAR (missing completely at random). All these

nice properties make GEE method widely applied in correlated data analysis.

The proposed new methods in this dissertation will be applied in GEE proce-

dures and we think the application of the new methods can be easily extended to

other estimating procedures with estimating equations. The details and extensive

discussions about GEE procedures will be given in the next chapter.

1.2 Resampling methods

1.2.1 Introduction

To begin with, resampling methods are not panacea!

The incredibly fast development in computer power and the emergence of large

numbers of friendly statistical packages have boosted the computer-intensive sta-

tistical techniques – “resampling” approaches. Resampling methods provide us

with an alternative to standard statistical approaches (such as maximum likeli-

hood estimation, etc.) for the analysis related to the sampling distribution of



CHAPTER 1. INTRODUCTION 8

estimated parameters, such as standard deviation, MSE and confidence intervals.

The persistent efforts of numerous researchers have made the technique of resam-

pling more applicable and efficient particularly in the analysis for independent

data. The commonly used resampling schemes could be classified into four main

categories: the permutation test developed by Fisher (1935), cross-validation pro-

posed by Kurtz (1948), the jackknife by Quenouille (1949) and Tukey (1958), and

the bootstrap proposed by Efron (1979). The bootstrap resampling scheme tends

to be more versatile than the others in its wide range of applications. It is debat-

able whether the jackknife or bootstrap schemes are superior for their efficiency

and robustness (Liu and Singh 1992, Wu 1986, Hu 2001). For a good introduction

to resampling methods or bootstrap, please refer to Efron (1982), Efron and Tib-

shirani (1993) and Good (2001). Since resampling methods can give answers to

a large class of statistical problems without strict structural assumptions on the

underlying distribution of data, the applications of resampling methods have been

realized in more complicated data structures, such as correlated data of structure

described in Table 1.1.

1.2.2 Resampling methods for correlated data

There have been many attempts to extend the resampling methods to the cor-

related data in various forms and different inference problems. Lahiri (2003)

provides an elaborate reference of bootstrap theory and methods for the analysis

of times series and spatial data structures. Several block bootstrap methods are

discussed and compared with great details in applications and theories.

Under the settings of GEE for longitudinal data, the application of various re-
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sampling methods are also of great interest. Most of the existing relevant work is

mainly for variance estimation, confidence interval construction or hypothesis test-

ing. Paik (1988), Lipsitz et al. (1990b), Ziegler et al. (2000), Yan and Fine (2004)

have investigated the jackknife variance estimators to the estimated parameters.

Moulton and Zeger (1989) and Shermann and le Cessie (1997) proposed bootstrap

methods in the variance estimation of GEE regression estimators. Those resam-

pling variance estimators have comparable performance to the Liang and Zeger

(1986)’s sandwich estimator. We refer to those methods as “classical jackknife”

or “classical bootstrap” methods because they directly applied the classical idea

of jackknife or bootstrap by resampling the data itself. One inherent problem

for those direct jackknife or bootstrap methods is that the consistency will be

affected when the sample size is not large enough. Therefore the resampling pro-

cedures may generate one or more “wild” estimators or even have singularity or

convergence problem. Although “one-step” iteration is suggested in case of small

number of subjects (Paik 1988, Moulton and Zeger 1989, Lipsitz et al. 1990b), it

will still affect the accuracy of estimates and the final inference based on all the

estimates. Unavoidably, due to the nature of those direct jackknife or bootstrap

methods, they require great computational time, because for example, in most

of the methods mentioned above, the same GEE procedure will repeat each time

when deleting a subject or obtaining a bootstrap resample from all the blocks.

Rather than applying classical jackknife and bootstrap to the data itself, many

researchers have investigated the problem from a totally different view: resampling

based on the estimating functions. Considering that most of the estimating func-

tions can be expressed as the sum of finite independent items, Lele (1991a) applied

the jackknife idea to the items of the estimating functions; Hu and Zidek (1995)
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proposed the bootstrap version in linear regression problems; Jin et al. (2001)

bootstrapped the objective functions with U-statistic structure. Lele (1991b) fur-

ther discussed the application of jackknifing or bootstrapping estimating functions

for a sequence of non-independent, non-identically distributed random variables,

e.g. time series data. A common characteristic of these methods is that, the finite

terms of estimating functions are recombined in one way or another to obtain an

estimate of the resampling distribution of parameter estimates. We refer to those

methods as “EF-based resampling” methods. If there is known feature about the

distribution of the estimating functions, for example, the estimating function is

pivotal, a more accurate approach was proposed by Parzen, Wei and Ying (1994).

They set the estimating functions equal to random values from the known piv-

otal distribution and obtained parameter estimates by repeating this procedure

in a resampling manner. This method takes advantage of the pivotal property of

estimating functions and is expected to gain more efficiency when compared to

the others. But, the vital assumption of pivots here may not always be valid in

practice. If one can mimic the way the estimating functions vary in their own

distributions, even when the distributions are unknown, the idea of Parzen et al.

(1994) can be extended to more general cases. The “Estimating Function Boot-

strap” (EFB) proposed by Hu and Kalbfleisch (2000) is another type of “EF-based

resampling” method. The EFB resorts to the bootstrapping distribution of esti-

mating functions (EF) instead of that of estimates and inverts the quantiles of

bootstrapping distribution of EF to the quantiles of parameter estimates. Their

idea was applied to estimating functions with U-statistic structure by Jiang and

Kalbfleisch (2004). Details of EFB will be discussed further in Chapter 5.
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1.3 Aim and structure of the dissertation

The aim of this thesis is to investigate the more general application of resampling

methods to the analysis of longitudinal data such as variance estimation and

confidence interval construction. The basic tools used are Monte Carlo simulations

and Edgeworth expansion. The proposed methods are focused on the estimating

equation or estimating function with possibly unknown limiting distributions. A

practical guideline for the application of resampling methods in the longitudinal

data analysis is suggested.

The thesis is organized as follows. In Chapter 2, GEE procedures are studied

in details to serve as the summary of common methods and different interpreta-

tions of improved approaches are provided. In Chapter 3 two versions of smooth

bootstrap methods are introduced and extensive simulation studies for investiga-

tion of those methods are discussed in Chapter 4. In Chapter 5, a proposal of

the other type of resampling scheme is presented, based upon the studentized EF

statistics, including a first-term corrected studentized EF statistic obtained from

Edgeworth expansion. In Chapter 6, concluding remarks, discussions and some

topics for future research are given.
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Chapter 2

GEE procedure

2.1 GEE procedure

Popularity of GEE approaches can be seen from the enormous literature on the

improvement and extensions of GEE method since first proposed in Liang and

Zeger (1986). There are mainly two categories: GEE1 and GEE2. The term

“GEE1” refers to the methodology in which two individual estimating equations

for regression and association parameters respectively are used in an iterative man-

ner (moment estimators for the association parameters in Liang and Zeger 1986;

an ad-hoc estimating equation in Prentice (1988) and Prentice and Zhao 1991).

GEE1 approach requires only first and second moment assumptions and provides

consistent regression parameter estimators even when the covariance model is mis-

specified. However GEE1 approach has the problems of inconsistent estimation of

the correlation parameters and the unstable estimation for the variance of regres-

sion parameter estimates. However, choices of association estimators would also

affect the asymptotic efficiency of regression estimators. Research on the estima-
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tion of association parameters can be found in Lipsitz et al. (1990a), Park et al.

(1998), Wang and Carey (2003, 2004), among others. “GEE2” approach allows

simultaneous estimation of regression and association parameters. It requires even

the third and fourth moments of the responses and produces consistent estimates

of regression and association parameters only when both the mean and variance

function are correctly specified (Zhao and Prentice 1990; Prentice and Zhao 1991;

Liang et al. 1992). Extended quasi-likelihood approaches that have a close con-

nection with GEE1 and GEE2 have been investigated by Hall and Severini (1998)

and Hall (2001). In practice, since the correct model for the correlation structure

is usually unknown, GEE1 may be more appropriate in terms of robustness. The

discussions in this dissertation will be based on models like GEE1. The proposed

resampling strategies could be extended to GEE2 framework in a straight forward

manner.

One of the most important aspects in GEE is the variance estimation for

the regression parameter estimates. In statistical inference it is important to

obtain not only parameter estimates but also their asymptotic covariances. A very

popular variance estimator, robust sandwich variance estimator, was proposed

in Liang and Zeger (1986). As long as the mean and variance functions in the

marginal model are correctly specified, the sandwich estimator can give consistent

estimation even if the working correlation is misspecified. However, this sandwich

estimator generally underestimates the true variance of the parameters and even

is inconsistent in some cases. Much literature has discussed the performance of

this sandwich estimator in different scenarios (for example, Paik 1988, Shermann

and le Cessie 1997), and improved versions have been investigated (Mancl and

DeRouen 2001, Kauermann and Carroll 2001, Pan 2001).
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Next, we will introduce the GEE, the construction of the sandwich estima-

tor and its properties. Referring to the data structure in Table 1.1, yij and xij

are the response and the covariate vector for subject i at time j respectively, for

1 ≤ i ≤ K and 1 ≤ j ≤ ni. The response yij has marginal mean µij and marginal

covariance φ σ2
ij , where µij and σ2

ij are known mean and variance function linked

to the covariates: µij = h (xT
ij β) and σ2

ij = v (µij). The working covariance of Yi,

Vi is then in the form of φA
1/2
i Ri A

1/2
i , where Ai is the diagonal matrix of vari-

ances, diag (σ2
ij) ; Ri(α) is the “working” correlation matrix; α is the correlation

coefficient and φ is the scale parameter usually used to explain overdispersion

or underdispersion. The unknown parameters are θ = (β, α, φ)T , and the true

values are denoted as θ0 = (β0, α0, φ0)
T . The GEE procedure for estimating β

for given α and φ proposed by Liang and Zeger (1986) is (GEE1 procedure):

U(β) :=
K∑

i=1

DT
i (β) V −1

i (θ) εi(β) = 0p×1, (2.1.1)

where Di(β) = ∂µi(β)/∂βT and εi(β) = Yi − µi(β).

Iterative algorithm is used to obtain the solution to (2.1.1) given α̂ and φ̂:

β̂
(m+1)

= β̂
(m)

+

(
K∑

i=1

D̂T
i V̂ −1

i D̂i

)−1( K∑

i=1

D̂T
i V̂ −1

i ε̂i

)
, (2.1.2)

where D̂i and ε̂i are evaluated at β̂
(m)

and V̂i is evaluated at θ̂ = (β̂
(m)

, α̂, φ̂)T .

The consistency and asymptotic normality of β̂ is proved in Liang and Zeger

(1986). The estimate of scale parameter φ is conventionally obtained by the es-

timated original or Pearson residuals via method of moments. Supplementary

estimating equations for α in Vi in (2.1.1) are needed so that iterative process can

be used to estimate β and α. Care must be taken in choosing an appropriate es-

timator or estimating functions for α to avoid the problems identified by Crowder
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(1995). The choice of the α-estimator will affect the asymptotic efficiency of the

β̂ obtained from (2.1.1), unless Vi is correctly specified.

Suppose the parameter estimators are θ̂ = (β̂, α̂, φ̂)T . Delta method provides

the covariance of
√

K β̂ as:

(
1

K

K∑

i=1

Mi

)−1(
1

K

K∑

i=1

DT
i V −1

i V̄i V
−1
i Di

) (
1

K

K∑

i=1

Mi

)−1

. (2.1.3)

Under mild regular conditions (Liang and Zeger 1986), (2.1.3) will converge to

VR =M−1 VU M−1, (2.1.4)

as K → ∞, where Mi(θ) = DT
i (β) V −1

i (θ) Di(β) is a symmetric matrix, V̄i is

the true covariance matrix of Yi, and the positive definite matrices M and VU

are the limit for

K∑

i=1

Mi/ K and Var (U(β0))/ K respectively. If U is a score

function or quasi-score function, it is particularly true that Mi = −E(∂Ui/∂β).

The “sandwich estimator” is then obtained by using the product of residuals ε̂i ε̂i
T

to estimate the true covariance of responses V̄i in formula (2.1.3) (Liang and Zeger

1986), denoted as VLZ hereafter. If in the equation (2.1.1), the working covariance

matrix Vi is modeled correctly, the corresponding VR reduces to the model-based

version (the naive estimator), VM =M−1. It is well known that for a general choice

Vi, VR − VM is a nonnegative definite matrix indicating that the true covariance

is the optimal choice for Vi. Hence, when the covariance is correctly specified, V̂M

is a more reliable estimator for cov(β̂) since the variance of V̂R will be larger. In

the case of misspecified Vi, V̂M is no longer valid as it underestimates cov(β̂).

Despite the overwhelming popularity of GEE procedures, Pepe and Anderson

(1994) pointed out there is an important underlying assumption for GEE method.

Unless this assumption is satisfied, only working independence structure can give
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consistent estimates. The assumption is non-trivial when the covariates vary over

time, i.e., the estimating equation (2.1.1) is unbiased for β either when working

independence covariance should be used or the following conditional expectation

must be valid:

E (Yit |Xit) = E (Yit |Xi1, Xi2, . . . , Xi ni
). (2.1.5)

Emond et al. (1997) and Pan et al. (2000) provided analytic calculations for bias

with continuous response data. Pan et al. (2000) proved that the bias of GLS

estimator is proportional to β.

2.2 A closer look at sandwich estimator

In GEE models, the more interesting research topic is the variance estimator,

namely the “sandwich estimator.” The reason why the sandwich estimator VLZ is

preferred and widely applied is that it is consistent in terms of misspecification

of the working correlation structure and asymptotically normal. These properties

are believed to be enough for the inference about variance in most situations.

However, it may not be consistent in some cases and generally underestimates

the true variance of parameter estimates (Efron 1992 raised the question that

delta method tends to underestimate standard errors). Even if it is consistent,

the price paid for the consistency is increased variation, that is, the variance of

the sandwich estimator is generally larger than the model-based estimate.
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2.2.1 The bias of the sandwich estimator

The bias of VLZ is found to be introduced by the approximation of V̄i by ε̂i ε̂i
T , and

the bias could be substantial when the sample size is small especially for binary

responses (Paik 1988; Sherman and le Cessie 1997; Mancl and DeRouen 2001).

Many bias-corrected version of sandwich estimators have been suggested (Mancl

and DeRouen 2001, Kauermann and Carroll 2001). Pan (2001) gave a pooled

covariance estimator based on the residuals of all the subjects under the assump-

tion of correctly specified variance function and common correlation structures

throughout subjects.

Kauermann and Carroll (2001) suggested to substitute the estimated residual

ε̂i by the leverage adjusted residual ε̃i = (I − Hii)
−1/2ε̂i, where I is an identity

matrix and Hii is a hat matrix defined later in the next section. Mancl and DeR-

ouen (2001) gave an approximate bias-correction based on the following argument:

they considered the first-order expansion of the residual ε̂i for 1 ≤ i ≤ K,

ε̂i ≈ εi +
∂εi

∂βT
(β̂ − β) = εi −Di (β̂ − β).

Take square of both sides of the equation above and then take the expectation.

Substitute (β̂ − β) by

(
K∑

i=1

Mi

)−1 K∑

i=1

DT
i V −1

i εi, and omit the higher order of

(β̂ − β) then one can have:

E
[
ε̂i ε̂i

T
]

= (Ii −Hii) cov(Yi) (Ii −Hii)
T +

∑

j 6=i

Hij cov(Yj) HT
ij , (2.2.1)

where Hij = Di

(
K∑

l=1

Ml

)−1

DT
j V −1

j is a matrix of dimension ni × nj , Ii is an

identity matrix of the same dimension as Hii [note there is a typographical error in

expression of (4) in Mancl and DeRouen 2001: the cov(yi) in the last term should
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be cov(yj)]. Hii may not be a symmetric matrix unless the working correlation

matrix is independent. Mancl and DeRouen (2001) assume that the contribution

of the last term to the bias of the sum in expression (2.2.1) is negligible.

We have carried out some simulations to compare the different versions of

sandwich estimators: VNV , the naive estimator; VLZ , the first sandwich estimator;

VP , Pan (2001); VMD, Mancl and DeRouen (2001); VKC, Kauermann and Carroll

(2001). The performances are compared in terms of relative efficiency, i.e.

RE =

(
VX

Vtrue

− 1

)
× 100%,

where VX is any one of the five variance estimates, and Vtrue is obtained from the

β̂’s estimated from 1000 simulations. Normal and Poisson responses are used (for

details of generating such multivariate correlated data please refer to Chapter 4)

with different sample sizes K, 40 and 20. The true correlation structure is AR1,

and different working correlation structures are used, AR1, EXC (exchangeable)

and IND (independent), to see the effect of misspecification of the correlation

structure. Furthermore, different values of correlation coefficient are used: 0.1,

0.5 and 0.9 (0.8 for Poisson), to see the effect of the strength of correlation.

Table 2.1 and 2.2 show the results of the five sandwich-formed variance esti-

mators for the slope estimate for normal and Poisson responses respectively (in

both types of simulation one intercept and one slope were fitted in the linear

predictor). The majority of the values are negative, meaning that most of those

variance estimators tend to underestimate the true variance of β̂. It is easy to see

that, no matter in case of misspecification of correlation structure, or in case of

strong correlation, or in case of small sample size, Mancl and DeRouen (2001)’s

bias-corrected sandwich estimates outperform all the others, followed by Kauer-
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mann and Carroll (2001)’s bias-corrected version. The latter fails to give real

valued estimates when the correlation is strong because there are possibly com-

plex values in the calculation of (I − Hii)
−1/2. Pan (2001)’s pooled estimator is

slightly better than VLZ in most of the cases but not as good as VMD and VKC.

This might be due to the inherent bias of the residual products. All the variance

estimators except the naive one are robust to the misspecification of the correla-

tion structure. The naive estimator is efficient when the correlation structure is

correctly specified as AR1. But even when the working correlation is the same as

the true one, VNV is not as good as VMD and only comparable to VKC in some

cases. As for the stability of those sandwich estimators, it is clear to see that

Var(VNV ) < Var(VP ) ≤ Var(VLZ) ≤ Var(VKC) ≤ Var(VMD). (2.2.2)

This is consistent with the following theorem (refer to the proof in the appendix)

for large K.

Theorem 2.1 Under mild regularity conditions, cov
{
vec(MP )

}
−cov

{
vec(MLZ)

}
,

cov
{
vec(MLZ)

}
−cov

{
vec(MKC)

}
and cov

{
vec(MKC)

}
−cov

{
vec(MMD)

}
are non-

negative definite with probability tending to 1 as K →∞.

Under this theorem, asymptotically we have the relationship (2.2.2). The proof

is included in Appendix I for reference. Furthermore, the simulations also show

this result seems to hold also for small K.

2.2.2 Another justification for VMD

Below we give another interpretation for the bias-correction by Mancl and DeR-

ouen (2001). This interpretation relies on the commonly accepted results in or-
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dinary linear regression and serves as a better understanding and support for

VMD. Here we introduce the concept of “generalized hat matrix.” Denote the

total number of observations N =
K∑

i=1

ni. Let Y be the N × 1 response vec-

tor, Û be the N × 1 estimated mean vector, X = (XT
1 , . . . , XT

K)T be the N × p

design matrix, D = (DT
1 , . . . , DT

K)T be a N × p matrix, and V be a N × N

block diagonal matrix whose ith block being Vi, corresponding to the ith subject.

Then
K∑

l=1

Ml = DTV−1D. The iterative algorithm (2.1.2) for obtaining β̂ can be

rephrased as:

β̂new = β̂old +
(
DTV−1D

)−1DTV−1(Y − Ûold), (2.2.3)

and it can be further expressed as:

Dβ̂new = H [ D β̂old + (Y − Ûold) ], (2.2.4)

where H = D
(
DTV−1D

)−1DTV−1, an N × N asymmetric and idempotent pro-

jection matrix. This matrix H is the analogue of the “hat” matrix in ordinary

least squares (OLS). It maps the current value of Z = Dβ̂old + (Y − Ûold) into

the updated values of Dβ̂new (which is actually some transformation of the linear

predictor X β̂ ), i.e.

D β̂ ≈ HZ. (2.2.5)

Most of the properties of hat matrix in OLS are also valid in this scenario: H2 =

H ; tr(H) = p ; the diagonal elements hkl , for 1 ≤ k, l ≤ N , could be interpreted

as how much influence or “leverage” exerted on the fitted values by the original

response; the average of hkl is p/N . However, different from the hat matrix in

OLS, H here may not be symmetric unless the working correlation matrix is

independent in which case the whole procedure reduces to OLS. We call this H

a generalized hat matrix, and the hat matrix in OLS is a special case of H when
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the link function is linear link and the correlation structure is independence. The

generalized hat matrix H can be divided into blocks corresponding to different

subjects. The leverage of the ith subject is contained in the ith diagonal block,

Hii = Di

(
DTV−1D

)−1
DT

i V −1
i of dimension ni × ni, and the off-diagonal blocks

are Hij = Di

(
DTV−1D

)−1
DT

j V −1
j of dimension ni × nj , for 1 ≤ i, j ≤ K.

Recall that in OLS, the hat matrix provides nice interpretation of the variance

of residuals. In our case, there is such an analogue as well. From equation (2.2.5),

it can be obtained that Ê = (I −H)Z, where Ê = Y − Û is N × 1 residual vector.

Therefore,

Var(Ê | β̂old) = (I −H) Var(Y) (I −H)T , (2.2.6)

where I is an N×N identity matrix and Var(Y) is the covariance matrix for N×1

response vector Y with the variance-covariance matrices of individual subjects

being the diagonal blocks Vi and the covariance matrices among subjects being

the off-diagonal blocks Vij , for 1 ≤ i, j ≤ K that are assumed to be diagonal

matrices because of the independence among subjects under GEE settings. Look

into the ith diagonal block of Var(Y) and Var(Ê), one can obtain

Var(ε̂i| β̂old) = (I −Hii)Var(Yi)(I −Hii)
T . (2.2.7)

From here it is easy to conclude that using the product of residuals to approx-

imately estimate the true variance of responses is biased. The bias could be

corrected by substituting V̄i in formula (2.1.3) by (I − Hii)
−1ε̂i ε̂i

T (I − HT
ii )

−1,

which resulting the bias-corrected version of VMD.
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2.2.3 Why resampling ?

In the two versions of bias-corrected sandwich estimators, VMD and VKC, the bias

from substituting the residual products for the variance of responses is reduced

by using better estimation for the true covariance of the responses. The bias is

corrected partially and VMD seems to work quite well in different situations. How-

ever, in both bias-corrected sandwich estimators, new problems may be introduced

because of the near singular matrix, (I −Hii), especially when the sample size is

small and the correlation is strong.

An alternative to the biased-corrected variance estimators could be those based

on resampling methods. Although asymptotically they do not provide a different

parameter estimate from the usual methods, resampling methods such as boot-

strap and jackknife have been observed to correct bias in one way or another. More

importantly, the resampling methods could generally provide with an estimate for

the distribution of the estimated parameters which can serve as a good source for

bias correction, variance estimation, confidence interval construction, hypothesis

testing and even higher order inferences. Furthermore, resampling methods can

have more flexible applicability in the analysis of repeated measurements. Hence,

the investigations of resampling methods for longitudinal data analysis are of great

interest. There have been a large amount of research done in this area and some

of the relevant work have been briefly reviewed in the second part of Chapter 1.

In the next few chapters, we explore some new proposals for the application of

resampling idea to the GEE procedure in longitudinal data analysis.
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Chapter 3

Smooth Bootstrap

A large amount of literature has discussed the application of the classical jackknife

and bootstrap methods to longitudinal data. Their performance is limited due to

the conventional resampling schemes, and hence the estimators there are strongly

model dependent. “EF-based resampling” methods seem to have gained more

attention in recent years. The notable characteristics of the method of estimating

functions are as follows: first, it only depends on a few features (for example,

mean and variance) of the underlying probability model; and second, it is easy to

handle nuisance parameters. The less dependence on the model yields standard

errors and confidence regions that are less dependent on the model. Hence, re-

sampling methods such as bootstrap and jackknife become the natural candidates

for obtaining such standard errors and confidence intervals. Since most of the es-

timating functions can be expressed as sum of finite terms, those terms naturally

become the subject to be resampled.

In GEE procedure for longitudinal data analysis, the estimating function is

also in form of sum of finite independent items, therefore we keep our interest
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on “EF-based resampling” approaches which are expected to gain more efficiency

compared with the classical resampling methods and bootstrap. We mainly deal

with the methods for regression parameters and those methods can be extended

to deal with nuisance parameter problems where the inference is based on the

generalized score function and its bootstrap analog.

To have a better understanding of resampling methods to the correlated longi-

tudinal data, we begin with the idea of bootstrap and the application of EF-based

bootstrap to independent data.

3.1 Analytical discussion in independent cases

3.1.1 The idea of Bootstrap

The basic principle underlying bootstrap methods in various settings and in differ-

ent forms is quite straight forward: it attempts to mimic the relationship between

the “population” and the “sample” by the relationship between the “sample” and

the appropriately generated “resample”. It enables statisticians to avoid dealing

with the unknown “population” directly; instead, it utilizes the “resample” and

the original “sample” that are known or have known distributions to do statistical

inferences.

This method is most applicable in case of independent and identically dis-

tributed data. Assume X = {X1, X2, . . . , Xn} is an i.i.d. random sample from an

unknown probability distribution F and the parameter of interest θ = θ(F ) ∈ Θ.

The corresponding estimator based on the sample is θ̂n = θ(Fn), where Fn is
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the sample distribution. The inferences about some characteristic of the sampling

distribution of θ̂n, such as variance estimation and confidence intervals, depend on

the population distribution F that is generally unknown. The idea of bootstrap

goes as follows: first from the sample construct an estimator of F , say F̂n, which

can serve as a good representative of F (the most commonly used F̂n is the em-

pirical distribution function of the sample, F̂n(u) = n−1
n∑

i=1

I(Xi ≤ u), where I(·)

is an indicator function); second, draw i.i.d. resamples X∗ = (X∗
1 , . . . , X

∗
n) from

F̃n; and third, obtain “bootstrap version” of the estimator θ̂n, θ∗
n by replacing X

with X∗, and then the “bootstrap version” of θ(F ) is given by θ(F̃n). For a rea-

sonable choice of F̃n, the bootstrap version accurately mimics those corresponding

characteristics of the population and the sample which determine the sampling

distribution of parameters of interest. This mimicking nature of the bootstrap

method is one of its most salient features.

There are basically two ways to calculate the bootstrap distribution. One is

analytical attempts to express explicitly the form of θ(F̃n) . This is limited to a

few cases. The other approach is Monte Carlo approximations and is theoretically

available for all cases, but requires a fair amount of computing time. Note that

the parameter estimated from GEE procedure has no closed form, but it is usually

obtained in an iterative manner and so that perturbing the estimation algorithm

may greatly simplify the calculations needed in resampling (more in later sections).

3.1.2 Smooth bootstrap for independent data

Most of the estimating functions in statistical models can be expressed as the sum

of finite independent or nearly independent items. One can consider these items as
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the realizations of some random variable from some common distribution known

or unknown so that one can apply the idea of bootstrap to those items, treating

them as the original sample from some population. Therefore the inference about

the sampling distribution of parameter estimators would become easily based on

the sampling distribution of the estimating functions. We start with a simple

model for data structure in Table 1.1, assuming independence both within and

between subjects, Yi = Xiβ + εi, for 1 ≤ i ≤ K, where β is the p× 1 parameter

vector of interest, Yi and εi are ni × 1 vectors, Xi is ni × p covariate matrix, or

the model can be expressed as Y = Xβ + E , the form in Section 2.2.2. Besides

the assumption of independence, we further assume that the common variance

within subjects, i.e. cov(εi) = Σi = diag{σ2
i , . . . , σ

2
i }(ni×ni); and we allow the

heterogeneity across subjects, i.e. Σi might not be equal to Σj for i 6= j. Then

cov(E) = diag{Σ1, . . . , ΣK}. The estimation procedure reduces to the ordinary

least squares problem and the usual estimator β̂ = (X TX )−1X TY . The normal

estimating equation is:
K∑

i=1

XT
i εi = 0, (3.1.1)

where εi = Yi−Xiβ. Various classical resampling schemes can be applied here, for

example, delete-one jackknife, residual bootstrap or paired-bootstrap. Wu (1986)

discussed in full details about their performances under independence assumption.

One possible EF-based bootstrap is the direct application of Hu and Zidek (1995)

to this multivariate data, where β̂
∗

is obtained from resampling {XT
i ε̂i}1≤i≤K .

Their case can be viewed as the special case with ni = n = 1. Let zi = XT
i ε̂i ,

then the bootstrap estimates for β can be obtained from :

β̂
∗

(b) = β̂ +

(
K∑

i=1

XT
i Xi

)−1 K∑

i=1

z∗i (b), (3.1.2)
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for b = 1, . . . , B, where {z∗i }1≤i≤K being bootstrap resample from {zi}1≤i≤K . More

generally, consider the weighted version of the estimating equations:

K∑

i=1

wi X
T
i εi = 0, (3.1.3)

where (wi)
K
i=1 are weights which are independent of the data. Usually the weights

sum up to 1, but since here the right side of the estimating equation is zero, it

will not matter whether we have such a restriction or not. Practically it is natural

and convenient to choose weights with mean 1 and variance 1 because the first

two moments of the weighted estimating functions will remain the same as the

original unweighted estimating functions. The performance of such weights are

quite satisfactory as seen in later Monte Carlo simulations. Note that the weights

(wi)
K
i=1 suggested here are generated independently of the data. In contrast in some

other research work the weights are chosen as data dependent. The main reason

for the preference for the random weights is that in widely-used GEE approach

for non-normal responses, the estimating functions are usually nonlinear and the

inclusion of random weights will not make the statistical inference more difficult

(since higher order derivatives may be involved otherwise).

From (3.1.3), the bootstrap-mannered estimating procedure can be carried

out:

β̂
∗

(b) = β̂ +

(
K∑

i=1

wi(b) XT
i Xi

)−1 K∑

i=1

wi(b) zi, (3.1.4)

therefore, the procedure (3.1.2) is a special case of (3.1.4) when the weights are

obtained from a multinomial distribution. We refer to this resampling scheme

as “smooth bootstrap,” because, in general, the form of (3.1.3) can usually be

regarded as a “smoothed” version of bootstrapping when wi is a continuous ran-

dom variable such as N(1, 1) or Exp(1), exponential with unit parameter. The
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rationale behind the smooth bootstrap scheme is as follows. The first term on

the right-hand side of (3.1.4) reflects the value of the true parameter in the boot-

strap space, which is β̂, and the second term represents the random fluctuation

of the bootstrap replicate around this value, which follows from the perturba-

tion to the estimating functions. A possible extension to the second and third

order efficiency approximations can be done in a way discussed in Claeskens et al

(2003), in which the authors suggested a second order Taylor approximation of

the estimating equation and eventually gave a quadratic form of the bootstrap.

Denote the expectation with respect to the distribution induced by resampling

as E∗. The common conditions needed are:

Assumption 3.1 For the design matrix X ,

max
1≤i≤K,1≤j≤ni

xT
ij (

K∑

i=1

XT
i Xi)

−1xij ≤ c/n,

for some scalar c > 0 independent of n.

Assumption 3.2 For the error variances, max
1≤i≤K

σ2
i <∞.

The consistency of the covariance matrix of β̂
∗

for this independent multivari-

ate data can be established easily from (3.1.4):

Theorem 3.1

E(v∗) = cov (β̂){1 + O(n−1)},

where v∗ = E∗(β̂
∗ − β̂)(β̂

∗ − β̂)T .
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This is because

(β̂
∗−β̂)(β̂

∗−β̂)T =

(
K∑

i=1

wi(b) XT
i Xi

)−1( K∑

i=1

wi
2
(b)X

T
i ε̂iε̂

T
i Xi

)(
K∑

i=1

wi(b) XT
i Xi

)−1

,

and E(ε̂iε̂
T
i ) = diag(σ2

i ) + O(n−1).

For the asymptotic normality of β̂
∗
, more assumptions are needed to establish

the next theorem.

Assumption 3.3 The residuals εij are independent with distributions Fi having

mean 0 and variance σ2
i , both Fi and σ2

i being unknown, for 1 ≤ i ≤ K.

Assumption 3.4 There exists a positive definite matrix V such that

VK = K−1
K∑

i=1

XT
i Xi → V as K →∞.

Assumption 3.5 There exists a positive definite matrix W such that

WK = K−1
K∑

i=1

XT
i diag(σ2

i ) Xi → W.

Assumption 3.6 xij and E(ε4
ij) are uniformly bounded for 1 ≤ i ≤ K.

Theorem 3.2 For the regression model (3.1.1), suppose assumptions (3.3) - (3.6)

hold, then given data (Y ,X ),

√
K (β̂

∗ − β̂) ∼ Np (0, V −1 W V −1).

Proof. From (3.1.4), we have:

√
K (β̂

∗ − β̂) = (
√

K VK,w)−1
K∑

i=1

wi(b) zi,
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where VK,w = K−1

K∑

i=1

wi(b) XT
i Xi → V as K →∞ as well.

Let ξi = lT wizi, 1 ≤ i ≤ K, for any fixed p dimensional vector l with ||l|| =

1. Conditional on the original sample, (lT zi)
K
i=1 are independent and identically

distributed random variables with zero means and common standard deviation

σK = (lT WK,wl)1/2 = (K−1
K∑

i=1

ξiξ
T
i )1/2, where WK,w is the weighted version of

WK hence converge to W as well. The Berry-Essen theorem implies that

sup
x

∣∣∣∣∣PK

(
(
√

K WK,w)−1
K∑

i=1

lT wizi ≤ x

)
−Φ(x)

∣∣∣∣∣ ≤ AγK

√
K −1, (3.1.5)

where γK = K−1
K∑

i=1

|ξi|3/(K−1
K∑

i=1

|ξi|2)3/2. From Assumption (3.5), K−1
K∑

i=1

|ξi|2 →

lT Wl > 0 almost everywhere. Moreover, n−3/2

K∑

i=1

|ξi|3 → 0 as n → ∞ almost

everywhere, due to the assumption (3.6) and strong law of large numbers. Finally,

since the inequality (3.1.5) is valid for all l, this completes the proof. �

The results stated above are similar to Hu and Zidek (1995). We do not

distinguish random or fixed covariates because these two different cases will lead

to essentially equivalent results. Regardless of random or fixed covariates, the

results stated in the previous theorems are valid.

In summary, the smooth bootstrapping scheme in (3.1.4) has the following

properties:

• the sample covariance of β̂
∗

is a consistent estimator for cov(β̂); and

• the asymptotic distribution of the bootstrap estimator β̂
∗

is normal whether

the covariates are fixed or random.
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3.2 Smooth bootstrap for longitudinal data

Following the argument in the previous section, the smooth bootstrap of esti-

mating function procedure can be applied to more general longitudinal settings

allowing correlation within subjects. Note that the weights are added to the

subject level, and in longitudinal data subjects are independent of each other.

Therefore, the inclusion of correlation structure in each summand will not affect

the consistency of such a procedure. In this section, two smooth bootstrap ap-

proaches for correlated longitudinal data are suggested (Wang and Li 2005). One

approach is “robust” to the misspecification of correlation structure; the other

approach is “model-based” counterpart, which is supposed to be more efficient

than the robust version when the working correlation is correctly specified. The

smooth bootstrap estimators are shown to be more efficient in terms of variance

estimation and confidence interval coverage in the later simulation studies.

3.2.1 Robust version of Smooth bootstrap

Recall the GEE procedure for the longitudinal data introduced in Chapter 2,

U(β) :=
K∑

i=1

DT
i (β) V −1

i (θ) εi(β) = 0p×1 (3.2.1)

and the iterative algorithm is given by

β̂
(m+1)

= β̂
(m)

+

(
K∑

i=1

D̂T
i V̂ −1

i D̂i

)−1( K∑

i=1

D̂T
i V̂ −1

i ε̂i

)
. (3.2.2)

We carry out the same smooth bootstrap procedure as in (3.1.3), that is,

K∑

i=1

wi D
T
i (β) V −1

i (θ) εi(β) = 0p×1 (3.2.3)
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and similarly we have the following algorithm

β̂
∗(m+1)

= β̂
∗(m)

+

(
K∑

i=1

wi D̂
∗T
i V̂ ∗−1

i D̂∗
i

)−1( K∑

i=1

wi D̂
∗T
i V̂ ∗−1

i ε̂
∗
i

)
, (3.2.4)

where D̂∗
i and ε̂

∗
i are evaluated at β̂

∗(m)
; V̂ ∗

i is evaluated at θ̂
∗

= (β̂
∗(m)

, α̂∗, φ̂
∗
)T

and α̂
∗ and φ̂

∗
are respectively the intermediate estimates for α and φ using

β̂
∗(m)

, the ∗ in α̂
∗ and φ̂

∗
indicating the resampling manner for β. The weights

wi for 1 ≤ i ≤ K are random values from distribution with mean one and unit

variance. The consistency and asymptotic normality of the resulting estimators

can be established in a similar way as in the previous section. Considering the

cumbersome form of (3.2.4) might make this resampling scheme rather compli-

cated and too computer-intensive, here we present a proposition to realize an easy

implementation of such smooth bootstrap idea.

Let Ci(θ)p×ni
= DT

i (β)V −1
i (θ) in the estimating equation (3.2.1). The fol-

lowing proposition shows that if at each iteration step in (3.2.2) or (3.2.4) the

parameter θ in Ci are fixed at values of θ̂ + op (1), such as θ̂ or the true values θ0,

the consistency and asymptotic covariance of the resulting β-estimator will not be

affected. This implies that in the estimating equation (3.2.1), if we replace C(θ)

with C(θ̂) or C(θ0), the resulting β-estimators will have the same asymptotic

variance. Jiang and Zhang (2001) also claimed a similar result. The proof of the

following proposition is included in Appendix I.

Proposition 3.1 Suppose β̂ and β̃ are respectively the solutions to the unbiased

estimating equations g1 :
K∑

i=1

Ci(β)εi(β) = 0 and g2 :
K∑

i=1

Ci(β̄)εi(β) = 0, where

β̄ is also a consistent estimate for β in the sense of β̄ = β0 + op (1). Therefore,

we have K · cov(β̃) = K · cov(β̂) + o (1) = VR + o (1).
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Given the proposition, we can rephrase our iterative steps in (3.2.4) as follows:

β̃R

(m+1)
= β̃R

(m)
+

(
K∑

i=1

wi M̂i

)−1( K∑

i=1

wi D
T
i (β̃R

(m)
) V −1

i (β̃R

(m)
, α̂, φ̂) εi(β̃R

(m)
)

)

(3.2.5)

where we fix the parameters in Mi. If we begin the iteration with a consistent

parameter estimate, for example, the GEE estimator β̂, assuming the resulting

α̂ and φ̂ are as well
√

K consistent, we can fix these nuisance parameter as well.

Hence we will focus on making replicates of β̂ by giving random weights in (3.2.5).

The motivation of this smooth bootstrap procedure can be presented in an-

other way. Suppose that F (u) is the distribution of U(β0). Parzen, Wei and Ying

(1994) considered the case when F (u) is pivotal and suggested to obtain “boot-

strapped” copies of β̂, β∗, by solving U(Y ; β) = R, where R is generated from the

distribution F (u). Parzen et al (1994) showed that the conditional distribution of

β̂ − β∗ is asymptotically identical to the distribution of β̂− β0. This resampling

approach relies on the key fact that independent realizations of R are available.

Therefore, the pivotal assumption here is vital.

In many cases, the distribution of U(β0) may not be known but may well

depend on both β and α. To this end, we suggest the following stochastic realiza-

tions for U(β),

K∑

i=1

wi Ĉi ε̂i, in which w1, w2, ..., wK are independent realizations

from a distribution with arbitrary mean but unit variance, and the hat symbol ̂

indicates evaluation at θ̂ = (β̂, α̂, φ̂).

This may suggest us to use
K∑

i=1

wi Ĉi ε̂i as the random realizations of F (u):

U(β) = 0←
K∑

i=1

wi Ĉi ε̂i (3.2.6)
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Further, we are motivated to solve the following perturbed GEE version of U(β)

conditional on β̂ to produce smooth bootstrap estimates of β̂ which can be pro-

duced in an iterative way,

Ũ(β) :=

K∑

i=1

wi Ĉi εi(β) = 0 (3.2.7)

Note that Ĉi is evaluated at the known estimates θ̂. By the proposition introduced

above, the asymptotic covariance of the resulting β-estimator is not affected if Ĉi

is replaced by Ci as in (3.2.7). For example, the modified version of Ũ(β),

K∑

i=1

wi D
T
i (β) V −1

i (β; α̂, φ̂) εi(β),

is asymptotically equivalent to Ũ(β). This can lead to the iterative steps as in

(3.2.5).

More specifically, the iterative steps go as follows:

β̃R

(0)
= β̂

β̃R

(1)
= β̃R

(0)
+

(
K∑

i=1

wi M̂i

)−1( K∑

i=1

wi D
T
i (β̃R

(0)
) V −1

i (β̃R

(0)
, α̂, φ̂) εi(β̃R

(0)
)

)

β̃R

(2)
= β̃R

(1)
+

(
K∑

i=1

wi M̂i

)−1( K∑

i=1

wi D
T
i (β̃R

(1)
) V −1

i (β̃R

(1)
, α̂, φ̂) εi(β̃R

(1)
)

)

...

Note that β̃R

(l)
, for l = 1, 2, ..., are all asymptotically equivalent. It is easy

to see that β̃R

(l) → β̂ → β0 given the initial value β̂ being the consistent GEE

parameter estimate and
√

K consistency of α̂ and φ̂. For any l, the covariance

of the estimates from the perturbing method conditional on the observed data is

given by

v̂ar(β̃R

(l)
) =

(
∑

i

M̂i

)−1(∑

i

(Ĉi ε̂i ε̂
T
i ĈT

i )

)(
∑

i

M̂i

)−1

, (3.2.8)
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which is essentially the estimated var(β̂) by plugging in β̂. As we can see, this

smooth bootstrap estimator can be easily obtained without solving any extra esti-

mating equations compared with that in Parzen et al (1994), each time generating

a random value from the pivotal distribution one new estimating equation has to

be solved.

Theorem 3.3 Under mild regularity conditions, conditional on the data and given

a consistent GEE estimate β̂, α̂ and φ̂, the smooth bootstrap estimates from the

resampling procedure (3.2.5) satisfy

√
K (β̃R − β̂) ∼ Np (0,M−1 VUM−1),

where M and VU are as defined in Chapter 2. The proof of this theorem closely

resembles Theorem 3.2 with the exception that there is correlation matrix involved

in V .

Below are remarks about this smooth bootstrap method.

Remark 1. It might be expected that the estimator can be improved even fur-

ther by iterating the above procedure. However, our experience based on simula-

tion studies indicates that further iterations do not result in significant difference.

Therefore, we recommend using β̃R

(1)
or β̃R

(2)
as the smooth bootstrap estimator

of β̂.

Remark 2. During the iterative steps we have kept the information matrix

fixed at the initial consistent parameter estimates. The information matrix can

be updated accordingly at each step. The reason for not updating the information

matrix at each step is that the computation time will be greatly reduced without
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affecting the consistency and asymptotic variance. Furthermore, when the sample

size is small, perturbing the information matrix may result in unstable variance

estimates because the perturbed information matrix may become close to singu-

lar. Hence, in such cases, caution needs to be taken when applying the smooth

bootstrap methods.

Remark 3. The proposed method is robust to the misspecification of the cor-

relation structure given that mean function is correctly specified and the variance

function is correct or at least can be efficiently estimated. The “robust” is not in

the sense of outlier-resistance.

Remark 4. This perturbation method has a close link to the classical boot-

strap method. If we let (w1, w2, ..., wK) follow a multinomial distribution with the

population parameter K and probability vector (1/K, 1/K, ..., 1/K), the above

resampling method will coincide with the traditional bootstrap method. In this

case wi has mean 1 and variance 1 − 1/K, close to 1 when K is large. Moulton

and Zeger (1989) applied this idea for repeated measures extended from the GLM

setting.

Remark 5. One might want to use covariate-dependent weights or even parameter-

dependent weights. However, the asymptotic covariance matrix of the estimator

will be the same as the one we suggest here. Thus, the complication may not

result in a real gain in efficiency from this point of view.
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3.2.2 Model-based version of smooth bootstrap

Just like the sandwich estimator, the perturbation method introduced above is ap-

propriate even when Vi is misspecified. In the case when Vi is correctly specified,

we expect to have a more efficient counterpart corresponding to the model-based

estimator V̂M . This option of variance estimator is hardly seen in existing re-

search. We now introduce another resampling procedure to provide such option

when Vi = V̄i .

Consider the Cholesky decomposition of the variance matrix. Let Γi(θ) =

V
−1/2
i (θ) (a lower triangular matrix) such that V −1

i (θ) = ΓT
i (θ)Γi(θ), Γ̂i = Γi(θ̂),

Zi(β; α0, φ0) = Γi(β; α0, φ0) εi(β). The idea here is to make the residuals of one

subject, εij , 1 ≤ j ≤ ni, “independent” of each other so that an analogue of

residual bootstrap in i.i.d. case could be done. The correct covariance model

is the key to the consistency of this approach. Therefore, when Vi is correctly

specified, var(Zi) = φ Ini
, where Ini

is an ni × ni identity matrix, we define

ŨM (β) : =

K∑

i=1

D̂T
i Γ̂

T

i Wi Zi(β; α̂, φ̂), (3.2.9)

where Wi is a ni × ni diagonal matrix with diagonal elements {wii}ni

1 that are

independent realizations from a distribution with mean 1 and variance 1. Here

the perturbation to the i-th subject is based on a weighted sum of ni random

variables {wii}ni

1 , while in (3.2.7) the subject i is perturbed only by one random

number wi.
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Again, the iterative procedure can be carried out as follows

β̃M

(0)
= β̂

β̃M

(1)
= β̃M

(0)
+

(
K∑

i=1

D̂T
i Γ̂

T

i Wi Γ̂i D̂i

)−1( K∑

i=1

D̂T
i Γ̂

T

i Wi Zi(β̃M

(0)
; α̂, φ̂)

)

β̃M

(2)
= β̃M

(1)
+

(
K∑

i=1

D̂T
i Γ̂

T

i Wi Γ̂i D̂i

)−1( K∑

i=1

D̂T
i Γ̂

T

i Wi Zi(β̃M

(1)
; α̂, φ̂)

)

...

To further simplify the computing, there could be only Zi that updates at each

iterative step without any effect to the consistency. Again, β̃M

(l)
, for l = 1, 2, ...,

are all asymptotically equivalent. When the correlation is correctly specified, we

have β̃M

(l) → β̂ → β0. It can be seen that, for any l, the covariance of the

estimates from the perturbing method conditional on the observed data is given

by

v̂ar(β̃M

(l)
) =

(
K∑

i=1

M̂i

)−1( K∑

i=1

(D̂T
i Γ̂

T

i diag (Γ̂i ε̂i ε̂
T
i Γ̂

T

i ) Γ̂i D̂i)

)(
K∑

i=1

M̂i

)−1

.

(3.2.10)

When Vi is correctly specified, E[v̂ar(β̃R

(l)
)] = E[v̂ar(β̃M

(l)
)] = M−1, and the

variation of v̂ar(β̃M

(l)
) is expected to be smaller than that of v̂ar(β̃R

(l)
), which is

verified in the simulation studies. From this point on, the procedures for β̃R

(l)

and β̃M

(l)
will be referred to as “Robust Resampling” (RR) and “Model-based

Resampling” (MR) procedures. For MR procedures, similar remarks can be given

as for RR procedure.

To summarize, the smooth bootstrap approaches capture the the first order

and second order moments. Intuitively, higher order moments such as skewness

can also be captured if appropriate wi can be chosen. Hu and Zidek (1995) es-

tablished the consistency of the third and fourth moments in the linear model for
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independent data. In the context of time series, Lele (1991a) considered how such

random sequences may be chosen. Future research along this direction is of great

interest. There are more aspects which tend to affect the performance of perturba-

tion by adding weights. One must be cautious when introducing random weights.

Usually borrowing information outside the sample may risk robustness. Although

the consistency of the estimator’s moments can be assured, it may possibly be

achieved at the expense of the estimation accuracy for overall distribution. Par-

ticularly when K is not sufficiently large, the distribution of weighted estimating

function will be sensitive to the choice of the distribution for the weights. Thus,

data-dependent weights in the application of GEE models will be an interesting

subject for future research.
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Chapter 4

Simulation studies for smooth

bootstrap

4.1 Correlated data generation

The generation of correlated random variates from multivariate distributions has

gained little interest. However, it is important to generate appropriate corre-

lated data for Monte Carlo simulations to investigate statistical methods for the

analysis of correlated data. In this section different approaches for generating

correlated data, namely normal, overdispersed Poisson and lognormal, will be

discussed briefly. More information is included in the Appendix II.

Considering the characteristics of longitudinal data, in most of the cases in our

simulation studies, the covariates xij for 1 ≤ i ≤ K and 1 ≤ j ≤ ni are generated

from a uniform distribution on (j , j + 1) to make them have some time trend. K

is the number of subjects, which were chosen to be 20 and 40 (the corresponding
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simulation and bootstrap times in the simulation studies are 1000 for sample

size 20 and 500 for sample size 40 respectively, considering smaller variation for

larger sample size). ni is the number of observations for the ith subject. Both

common and different ni’s are considered as balanced and unbalanced structure

of longitudinal data. For balanced data, the number of observations per subject

is ni = n = 4. For unbalanced data, the number of observations per subject varies

as follows: the proportions for ni = 2, 3, 4, 5, and 6 are 20%, 30%, 20%, 15%

and 15% respectively.

4.1.1 Correlated normal data

The normal data are generated from the following model, yij = µij + εij , 1 ≤

i ≤ K, 1 ≤ j ≤ ni , where identity link is used, µij = β0 + β1xij , where β =

(β0, β1)
T = (0, 1)T . For each subject i, (εi1, εi2, ..., εini

) are correlated with a first

order autoregressive structure (AR(1)), correlation coefficient being 0.5.

4.1.2 Correlated lognormal data

To generate non-normal data with long tail distributions, we use the approach

provided in Wang and Carey (2004) for generating correlated lognormal data

with given mean and covariance. Log link is used, µij = exp(β0 + β1xij), where

β = (β0, β1)
T = (0, 1)T . Gamma variance function is used for this type of data

in the simulation, i.e., variance matrix being a diagonal matrix diag(µ2
i ). AR(1)

correlation structure is used with correlation coefficient 0.5.
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4.1.3 Overdispersed Poisson data

For the overdispersed Poisson data, three methods with different variance func-

tions are provided here. The relevant R code and justification are given in Ap-

pendix II.

Method 1): AR(1) Poisson with Var(µ) = µ + λµ2.

yij is sampled from a Poisson distribution with mean µij ξij , where µij =

exp(β0 + β1xij), where β = (β0, β1)
T = (0, 1)T . Here xij is from uniform dis-

tribution on (j , j + 1) and then log-transformed, and ξij is a gamma random

variable with mean 1 and variance λ. In our case we chose λ = 0.5 so that

var(yij) = µij + 0.5 µ2
ij. Within subject correlations are introduced through ξij

by allowing ξij to be correlated for 1 ≤ j ≤ ni, correlation coefficient being

0.3. The induced covariance of Yi is Vi = diag (µi) + diag (µi) cov (ξi) diag (µi),

from which we can determine the required correlation matrix for ξi, Rξ = (rkl).

The correlated gamma variables with the desired correlation matrix R0 can be

easily generated from ξij =
d∑

l=1

z2
lj / d, where d = 2/λ = 4 and each of the

four ni-variate (zl·), 1 ≤ l ≤ d are independently sampled from N(0, R0), where

R0 = (r̄kl ) = (
√

rkl ) (Henderson and Shimakura, 2003; Davis, Dunsmuir and

Wang, 2000).

Method 2): AR(1) Poisson with Var(µ) = µ/(1− ρ2).

For subject i, generate an initial observation yi0 is generated from a Poisson dis-

tribution with mean µi1 and variance µi1. Then the observations yij , 1 ≤ j ≤ ni

are generated from Poisson distribution with parameter µi(j−1)+ρ

√
µij

µi(j−1)

(yi(j−1)−µ
i(j−1)

),
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so that E(yij) = µij , Var(yij) =
µij

1− ρ2
, and Cor(yij, yil) = ρ|j−l|. The mean vec-

tor µi is generated in the same way as in the first method.

Method 3): AR(1) Poisson with Var(µ) = aµ + bµ2.

This is a more general approach to generate AR(1) Poisson data using gamma

frailty model. For subject i, the first observation yi1 is generated from a Pois-

son distribution with parameter µi1 ∗ t1, where t1 is a random value from a

gamma(a1, a1) and a1 =
µi1

(a− 1) + bµi1

. The following observations yij for 2 ≤ j ≤

ni are generated from Poisson distribution with parameter ηj∗tj , where ηj = µij+

ρ

√
aµij + bµ2

ij

aµi(j−1) + bµ2
i(j−1)

(
yi(j−1) − µi(j−1)

)
, and tj =

µ2
ij + ρ2(aµij + bµ2

ij)

(aµij + bµ2
ij)(1− ρ2)− µij

.

Therefore, we have E(yij) = µij, Var(yij) = aµij + bµ2
ij and Cor(yij, yil) = ρ|j−l|.

The two constants a and b in the variance function are not arbitrary, a > 0 and

1− 1/(a + bµ) > ρ2 for all µ.

4.2 Simulation Results

The objectives of our simulation studies are two-fold: first, to investigate the con-

sistency of the variance estimators (in terms of the relative efficiency of estimated

standard errors against the empirical true standard deviation of β̂ obtained from

the simulation); and second, to evaluate the accuracy of 80% and 95% confidence

interval coverage probabilities.

We use random weights from different distributions to see the performances

of proposed resampling methods when using different weights. The RR proce-

dure using Normal(1, 1) random values is denoted as “RR-norm” and the MR
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procedure using Normal(1, 1) is denoted as “MR-norm.” The same notation rule

applies to the random values from other distributions. The following table lists

the distributions from which come all the random values under investigation. The

first four cumulants might be relevant to the performances and are listed. The

first two cumulants are all 1.

Table 4.1: Different distributions to generate weights in simulation studies

Dist. Mean Var Skewness Kurtosis Has negative value?

Norm(1,1) 1 1 0 0 Y

Double Exp(1,
√

2) 1 1 0 3 Y

Unif(1−
√

3, 1 +
√

3) 1 1 0 -1.2 Y
Gamma(4,2)-1 1 1 1 1.5 Y
Pois(1) 1 1 1 1 N
Exp(1) 1 1 2 6 N
Chisq(2)/2* 1 1 2 6 N

Note *: Distribution chisq(2)/2 is essentially Exp(1).

The simulation studies compare the performances of RR and MR procedures,

with commonly used variance estimators (VNV , VLZ and VMD) and classical re-

sampling variance estimators: the “approximate jackknife” estimator (denoted as

AJ) improved by Yan and Fine (2004); and the “All Block Bootstrap” estimator

by Sherman and le Cessie (1997) (denoted as BB).

4.2.1 Consistency of variance estimates

The results for examining the consistency of variance estimates are presented in

side-by-side boxplots, in terms of the relative efficiency (ratios) of the standard

errors from different methods to the “true” standard deviation of β̂, which was

obtained from the simulations. Generally, the relative performances of those com-

petitors are similar in different simulation studies. We will discuss the results

for normal responses first, followed by additional comments for the simulation
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results for lognormal and Poisson responses and ending with a brief summary of

the highlights.

Figure 4.1 and 4.2 show the results for normal responses with sample size

K = 40 and K = 20 respectively. In each figure, the left three panels are for the

balanced data, and the right three panels are for the unbalanced data (refer to

the beginning of the previous section for the details about ni). In either panel,

three individual graphs represent different working correlation structures, AR(1),

exchangeable and independence, where the true correlation structure of the data

is AR(1) with correlation coefficient .5. Boxplots have the advantage of showing

the main characteristics of a distribution, such as median which tells us the central

tendency, interquartile range (IQR) which is a good measure of variation, and the

whiskers and outliers which can tell us the skewness and the tail of the distribution.

We also add the mean value to the boxplot with a “+” sign. Comparing Figure 4.1

and 4.2, the IQRs of those boxplots increase as the sample size decreases, which

is as expected. Similarly, an increase of the variation of those standard deviation

estimators can be seen comparing the results for balanced data with those for

unbalanced data.

In each of the six plots in Figure 4.1, there are three groups of boxplots. The

first group consists of five estimators: the naive estimator, LZ, MD and the two

classical resampling estimators, AJ and BB. The second group of boxplots display

the results for RR estimators suggested in Section 3.2, using different random

variates to perturb the estimating algorithm, in the order of RR-norm, RR-de,

RR-unif, RR-gamma, RR-pois and RR-exp. The last group consists of the cor-

responding MR counterparts following the same order. The horizontal lines are
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Figure 4.1: Relative efficiency of std. dev. estimates for normal data, K=40,
sim=500, boot=500
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Figure 4.2: Relative efficiency of std. dev. estimates for normal data, K=20,
sim=1000, boot=1000
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used to separate the three groups for clearer presentation. As we can see, most

of the estimators underestimate var(β̂) since most of the median lines are below

the vertical line “ratio=1”, which represents the same value as the true stan-

dard deviation on that line. Focusing on one single plot, “Normal.b.40.ar1.” It is

quite obvious that the median lines of the first three RR and the first three MR

estimators nearly touch the vertical line, meaning that they give very accurate

estimation for the variance of parameter estimates. As for the other three types

of random variates, gamma and Poisson seem to perform similarly in RR and MR

procedures. RR/MR-gamma and RR/MR-pois are less accurate than the previ-

ous three, namely normal, double exponential and uniform, but more accurate

than RR/MR-exp respectively. All the RR estimators have larger variations than

the MR estimators which confirms our previous discussion. ABB approach gives

accurate estimates in this case as well; while AJS approach tends to overestimate

the standard deviation of the parameter estimates. As for the “sandwich”-type

estimators, the naive estimator has the smallest variation and is consistent in this

case, because the correlation model is correctly specified; the LZ sandwich estima-

tor underestimates the standard deviation obviously; the MD estimator corrects

the bias of LZ quite a lot, but is still outperformed by some of the RR and MR

procedures, for example RR-norm. The variations of LZ and MD estimators are

similar to the RR estimators and AJS estimator. The variation of ABB estima-

tor is a little smaller, but still larger than that of the naive estimator. Similar

results can be seen in “Normal.b.40.exc” and “Normal.b.40.ind” (the other two

small plots in the top panel in Figure 4.1) with the exception of the performances

of the naive estimator and the MR estimators. When the working correlation is

EXC, the naive and MR estimators are no longer valid although they have smaller
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variations. In the case of working independence assumption, i.e. Rw=IND, the

naive and MR procedures are still producing very efficient estimates. This may

due to the moderate correlation strength (ρ = 0.5). One additional important

result in these two plots is the robustness to the misspecification of the correlation

structure for the LZ, MD, AJS, ABB and the RR estimators.

Looking to the right panel in Figure 4.1, in this case of unbalanced data, the

ABB approach fails to yield efficient estimates and has similar large variation

as the LZ, MD, AJS and the RR estimators. The AJS estimates underestimate

the standard deviation this time. The MD bias-corrected estimator is still quite

accurate, and the LZ is still not very accurate. The first three RR estimators

tend to overestimate a bit for this unbalanced case. RR-gamma and RR-pois are

very accurate in terms of variance estimation because their median lines and the

mean values are among the closest to the vertical line. Another distinct result can

be seen for this unbalanced data compared with those for balanced data. When

the working correlation is independent, the naive and MR estimators are not as

consistent as in the balanced case while the RR estimators are still valid.

In the case of small sample size presented in Figure 4.2, the superiority of

the RR procedures become more obvious. In the left three plots for the balanced

data, RR-norm, RR-de and RR-unif yield the most accurate standard deviation

estimates among all. In case of correct working correlation, MR-norm, MR-de

and MR-unif also outperform the “sandwich”-type estimators and the classical

resampling estimators. The MD estimators are only comparable to RR-gamma

and RR-pois, but less accurate than the first three RR estimators. On the right

panel, the best estimators become RR-gamma, RR-pois and MD, since the RR
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procedures as well as some MR procedures using the first three types of random

variates tend to have much larger variations. The most likely reason for this is

that for these three distributions, negative random values are likely to be drawn.

When the sample size is small and the data is unbalanced (in our case the smallest

number of observation per subject is only 2), those negative values would result

in very unstable estimation when making the bootstrap copies of parameter es-

timates and leads to even inconsistent estimation for the variance. The gamma

distribution we used also has negative values, but generating negative values is

less likely than from the first three distributions. But it does have same tendency

as shown in the plot “Normal.ub.20.ind.” There are many outliers in the boot-

strap distribution of parameter estimates by RR-gamma procedure which result

in the less efficient mean estimates but the median is still satisfied. Such problems

are not observed for RR-pois procedures. Therefore, in case of unbalanced data

with small sample size, RR-pois procedure may be the preferable procedure for

the robust smooth bootstrap estimation.

The simulation studies for Poisson and lognormal data yield generally similar

results. Figure 4.3 and 4.4 are the simulation results for Poisson data with sample

size 40 and 20 respectively. Figure 4.5 and 4.6 are for lognormal data. All the

data are generated with AR(1) correlation with the correlation coefficient being .5.

The layout of the plots are the same as normal data. As can be seen from Figure

4.3 and 4.4, the performances of different methods in terms of relative efficiency of

standard deviation estimation for Poisson data are almost the same as in normal

response case. As for lognormal data, there are some minor differences from the

simulation results for normal and Poisson data. First, many outliers in the right

tail of the boxplots can be seen for all the estimators. Second, the variations of the
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standard deviation estimators for lognormal data are generally larger than those

for normal and Poisson data. For lognormal data, the IQRs of the naive and MR

estimators have similar lengths to the robust estimators. Therefore, these model-

based estimators do not have an obvious advantage in variation as in the cases

of normal and Poisson data. The most likely explanation is that the estimation

via GEE model for data not from exponential family is not as efficient as that

from the exponential family. Despite the larger variance of the standard deviation

estimation, the superiority of RR procedures over other competitors is clearly

illustrated on the graphs. Furthermore, in case of unbalanced data of sample size

20 (the right panel in Figure 4.6), the first three RR procedures are more stable

than those for normal and Poisson data. In particular, in the case of AR(1) or

EXC working correlation (the first two plots in the right panel in Figure 4.6), the

median lines of RR-unif estimates fall on the vertical line.

To summarize, the proposed RR procedures and MR procedures in case of cor-

rect covariance model can generate more accurate variance estimates compared

with the usual “sandwich”-type variance estimators and classical resampling es-

timators. But the choices of random weights depend on the sample size and the

data structure. Here we list out some practical guidelines on the choices of weights

for the variance estimation of the parameter estimates:

• For balanced data of moderate or large sample size, RR-norm, RR-de and

RR-unif procedures can provide better estimates for the standard deviation

of the regression parameter estimates;

• For unbalanced data, especially of small sample size, RR-norm, RR-de and

RR-unif tend to produce unstable bootstrap copies of parameter estimates
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Figure 4.3: Relative efficiency of std. dev. estimates for Poisson data, K=40,
sim=500, boot=500
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Figure 4.4: Relative efficiency of std. dev. estimates for Poisson data, K=20,
sim= 1000, boot=1000
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Figure 4.5: Relative efficiency of std. dev. estimates for lognormal data, K=40,
sim=500, boot=500
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Figure 4.6: Relative efficiency of std. dev. estimates for lognormal data, K=20,
sim=1000, boot=1000
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and thus the resulting variance estimators may become inconsistent. RR-

gamma and RR-pois, especially the latter, will be the efficient smooth

bootstrap procedure to be applied; and

• In case of the correlation structure could be correctly specified, MR-norm,

MR-de and MR-unif would be more efficient than the RR counterparts

since they generally have smaller variance than the RR counterparts.

4.2.2 Confidence interval coverage

We have also investigated the 95% and 80% confidence interval coverage probabili-

ties for different variance estimators. SD-type confidence intervals are constructed

for the naive, LZ, MD, KC and AJS methods. That is, the two endpoints of the

confidence intervals are calculated as the parameter estimates plus or minus the

quantile from standard normal for specific level of significance (in our case, 0.2

or 0.05) multiplied by the standard errors. The confidence intervals in ABB are

constructed using percentile methods, that is, 10% and 90% quantiles of the boot-

strap distribution of the parameter estimates are used as the two endpoints of 80%

confidence interval; 2.5% and 97.5% quantiles are used for 95% confidence inter-

val. For RR and MR procedures, we construct both types of confidence intervals,

SD-type and percentile.

• SD-type CI for smooth bootstrap methods

Considering the accuracy of the variance estimation observed in the first aspect

of the simulation, we think and see SD-type confidence interval by the proposed

RR and MR approaches (especially using the first three types of random vari-
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Figure 4.7: 80% and 95% CI coverage probabilities for normal balanced data,
K=40, sim=500, boot=500 (SD-type CI used for smooth bootstrap methods)
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Figure 4.8: 80% and 95% CI coverage probabilities for lognormal balanced data,
K=40, sim=500, boot=500 (SD-type CI used for smooth bootstrap methods)
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ates) should easily beat the other candidates, because they correct the bias of the

sandwich variance estimator and are robust to the misspecification of correlation

structure. It is reasonable to conclude from the results that in the previous simu-

lation studies that the RR and MR approaches outperform most other candidates

in most cases. Here we only illustrate the simulation results for balanced normal

data of sample size 40 in Figure 4.7 and balanced lognormal data of sample size

40 in Figure 4.8. All the other cases lead to almost the same conclusion. The left

panel presents the results for 80% confidence interval while the right panel for 95%

confidence interval. The vertical lines in the plots are the nominal values: 80%

and 95%. In each individual plot of the six in Figure 4.7, the candidate methods

are classified into the same three groups and are laid out in the same way as in the

previous boxplots. For clearer presentation, besides including the two horizontal

lines, different symbols for data points are used to differentiate the results from

different methods: the first three “sandwich” estimators, the naive, LZ and MD,

are presented using “◦”; the two classical resampling methods use “.”; the six RR

procedures use “+”; and the MR procedures use “×”. As seen in Figure 4.7, the

80% and 95% confidence interval coverage probabilities by RR-norm, RR-de and

RR-unif are the closest to the nominal values in all cases, even identical to the

nominal values in some cases. The differences in the smooth bootstrap methods

when using different random variates can be clearly seen from this Figure. They

can be classified into three groups: the first three perform similarly; followed by

those using Gamma and Poisson random variates; and finally is the procedure

using unit exponential random variates. When SD-type confidence intervals are

used, the relationship of confidence interval length together with the variations of

the lengths by different methods is the same as what we observe for the variance
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estimation.

• Percentile CI for the smooth bootstrap methods

We also construct the percentile confidence intervals for the proposed smooth

bootstrap methods. This is more interesting because we can check whether the

bootstrap distribution by the proposed procedure well approximate the true dis-

tribution of the parameter estimates without using normal approximation.

The answer turns out to be a promising “yes”! The approximation of the pa-

rameter estimate distribution by the bootstrap distribution obtained from the

proposed procedures is quite satisfactory especially when using random variates

from the specific normal, double exponential and uniform distribution in Table

4.2. A simple illustration is shown in Figure 4.9. It presents the comparison of the

distribution of the parameter estimates with the bootstrap distribution obtaining

from RR-norm procedure for unbalanced Poisson data of sample size 20 under the

working independence assumption. As illustrated for this unbalanced small data

set, the approximation is quite good and the two curves from simple kernel fitting

are bell-shaped. The good approximation can also be seen from constructing per-

centile confidence intervals. All the results for percentile confidence intervals are

presented here for reference. We mainly explain the results for normal responses.

Similar results can be seen in the graphs for Poisson and lognormal data.

Figure 4.10 and 4.11 show the 80% and 95% confidence interval coverage prob-

abilities (in %) for normal data of sample size 40, one for balanced and the other

for unbalanced structure. Figure 4.12 and 4.13 are the results for normal data

of sample size 20, balanced and unbalanced respectively. The same plot layout

is used as in Figure 4.7 and 4.8. From these graphs, we can see that there is
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Figure 4.9: Histograms for parameter estimate and the bootstrapped estimates
for unbalanced Poisson data of sample size 20

an analogy between the performance of these “sandwich” and resampling meth-

ods in terms of coverage probabilities and variance estimation. Figure 4.10 and

4.11 illustrate that for normal data of moderate sample size, the classical resam-

pling methods generally perform only as good as LZ estimators in constructing

confidence intervals, especially when the data is unbalanced. The coverage prob-

abilities by AJS methods for balanced data are always larger than the nominal

values. The MD estimators perform better than LZ because of the bias-correction.

The RR-norm, RR-de and RR-unif procedures have higher or at least comparable

coverage probabilities to the MD estimators, but have better performance for 95%

confidence intervals than for 80% CIs. RR-gamma and RR-pois perform not as

good as the first three RR procedures but are generally comparable to the LZ

estimator. The RR-exp does not have very satisfactory performance. The naive

estimator and MR procedures still perform the best with correctly specified corre-

lation structure and satisfactorily with working independence for balanced data,

but are less efficient in other cases. The same conclusions can be drawn from

Figure 4.12 and 4.13 for normal responses of sample size 20.
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Figure 4.10: 80% and 95% CI coverage probabilities for normal balanced data,
K=40, sim=500, boot=500
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Figure 4.11: 80% and 95% CI coverage probabilities for normal unbalanced data,
K=40, sim=500, boot=500
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Figure 4.12: 80% and 95% CI coverage probabilities for normal balanced data,
K=20, sim=1000, boot=1000
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Figure 4.13: 80% and 95% CI coverage probabilities for normal unbalanced data,
K=20, sim=1000, boot=1000
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As for Poisson and lognormal data, the simulation results about confidence

interval coverage when percentile CIs are used for smooth bootstrap procedures

are presented in Figure 4.14 - 4.21. The most preferable confidence intervals in

most of the cases are also MD and the first three RR procedures: RR-norm, RR-de

and RR-unif. Therefore, different from the guideline for variance estimation, the

first three RR procedures are recommended in constructing percentile confidence

intervals for all cases. For SD-type confidence intervals, the guidelines for variance

estimation can be applied.

4.3 Real data application

4.3.1 Leprosy study

In this section we apply the smooth bootstrap method to a real dataset from a clin-

ical trial of antibiotics for Leprosy (page 312, Fitzmaurice et al; 2004). The data

consists of counts from a randomized and placebo-controlled clinical trial of 20

patients with leprosy at the Eversley Childs Sanitorium in the Philippines. Each

patient was randomly assigned to either of two antibiotics (denoted treatment

drug A and B) or a placebo (denoted treatment drug C). The numbers of leprosy

bacilli at six sites on the body were recorded before and after the treatment. The

scientific interest of this study is whether treatment with antibiotics (drugs A and

B) reduces the abundance of leprosy bacilli at the six sites on the body when

compared to placebo (drug C). This dataset displays substantial overdispersion

under a Poisson model. We used the following marginal model:

log E(Yij) = log (µij) = β1+β2 timeij+β3 timeij× trt1i+β4 timeij×trt2i , (4.3.1)
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Figure 4.14: 80% and 95% CI coverage probabilities for Poisson balanced data,
K=40, sim=500, boot=500
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Figure 4.15: 80% and 95% CI coverage probabilities for Poisson unbalanced data,
K=40, sim=500, boot=500
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Figure 4.16: 80% and 95% CI coverage probabilities for Poisson balanced data,
K=20, sim=1000, boot=1000
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Figure 4.17: 80% and 95% CI coverage probabilities for Poisson unbalanced data,
K=20, sim=1000, boot=1000
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Figure 4.18: 80% and 95% CI coverage probabilities for lognormal balanced data,
K=40, sim=500, boot=500
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Figure 4.19: 80% and 95% CI coverage probabilities for lognormal unbalanced
data, K=40, sim=500, boot=500
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Figure 4.20: 80% and 95% CI coverage probabilities for lognormal balanced data,
K=20, sim=1000, boot=1000
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Figure 4.21: 80% and 95% CI coverage probabilities for lognormal unbalanced
data, K=20, sim=1000, boot=1000
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where Yij is the count of the number of leprosy bacilli for the ith patient in the jth

observation(j = 1, 2 representing before and after treatment). The variables trt1

and trt2 are dummy variables for drugs A and B respectively, with trt1 = 1 if the

patient took drug A and trt1 = 0 otherwise, and trt2 = 1 if the patient took drug B

and trt2 = 0 otherwise. The binary variable is time which denotes before- (time =

0) or after-treatment (time = 1). Note that there is no treatment effect term in

the model, because the mean number of the leprosy bacilli is assumed to be the

same among the three groups before treatment (Fitzmaurice et al; 2004). Hence,

the main interest is the coefficients β3 and β4, which represent the difference

of responses between drug A, B and C respectively. For example, significant

β3 implies important changes in the responses when comparing drug A and the

placebo C.

Estimated standard errors from seven different methods for β2, β3 and β4 from

the marginal log-linear regression model are listed in Table 4.2. Also listed are

the 95% confidence intervals together with their lengths for β̂3 and β̂4. We choose

Normal(1, 1) and Poisson(1) random variates to illustrate the applications of the

smooth bootstrap methods. The working correlation used in the estimation was

AR(1). Since there are only 2 observations for each of the 20 patients, only one

correlation relationship needs to be identified which means any working correlation

structure except independence should be very close to the truth. In this case, MR

procedure is expected to perform most efficiently. This can be seen from Table 4.2.

MR-norm and MR-pois procedures gave the smallest variance estimates and the

narrowest confidence interval especially MR-pois procedure. The ABB method

performed poorly for this small data set and failed to declare the significance of

β3 and β4. Using the MR-pois procedure, 2000 smooth bootstrap estimates for
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β̂3 and β̂4 were produced, and the histograms with kernel fitting are presented in

Figure (4.22). We can see the estimates are approximately normally distributed.
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Figure 4.22: Histogram with kernel fitting for β3 and β4 estimated by “MR-pois”
procedure. The top panel is for β3 and the bottom is for β4.
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Table 4.2: Parameter estimates with standard errors and length of 95% confidence
interval (intervals in brackets) from a Poisson model for the leprosy bacilli data.
Estimates “RR-norm” and “MR-norm” represent the robust and model-based re-
sampling estimates using Norm(1,1) for perturbation; “RR-pois” and “MR-pois”
represent the two estimates using Pois(1); “ABB” represent all block boostrap esti-
mates by Sherman and le Cessie (1997).

Variable Methods Estimate SE Z p-value length of 95% CI
timeij LZ -0.0029 0.1570 -0.018 0.985

β2 naive 0.1530 -0.019 0.985
ABB 0.1890 -0.015 0.988

RR-norm 0.1876 -0.015 0.988
RR-pois 0.1693 -0.017 0.986

MR-norm 0.1440 -0.020 0.984
MR-pois 0.1331 -0.022 0.983

timeij × trt1i LZ -0.5626 0.2220 -2.534 0.011 0.871 (-0.998, -0.127)
β3 naive 0.2498 -2.252 0.024 0.979 (-1.052, -0.073)

ABB 0.3660 -1.537 0.124 1.434 (-1.563, -0.129)
RR-norm 0.2580 -2.181 0.029 1.040 (-1.086, -0.046)
RR-pois 0.2351 -2.392 0.017 0.928 (-1.005, -0.077)

MR-norm 0.2187 -2.573 0.010 0.877 (-0.990, -0.113)
MR-pois 0.2010 -2.798 0.005 0.772 (-0.943, -0.171)

timeij × trt2i LZ -0.4953 0.2342 -2.115 0.034 0.918 (-0.954, -0.036)
β4 naive 0.2442 -2.028 0.043 0.957 (-0.974, -0.017)

ABB 0.4038 -1.227 0.220 1.583 (-1.522, 0.061)
RR-norm 0.2709 -1.828 0.068 1.105 (-1.040, 0.065)
RR-pois 0.2496 -1.984 0.047 0.978 (-0.964, 0.014)

MR-norm 0.2220 -2.232 0.026 0.909 (-0.947, -0.038)
MR-pois 0.2068 -2.395 0.017 0.803 (-0.894, -0.09)

Note: Interpretations of those coefficients:
β2: difference between before and after treatment for Drug C;
β3: difference between Drug A and C when after treatment;
β4: difference between Drug B and C when after treatment.
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Chapter 5

Bootstrap methods based on

first-term corrected studentized

EF statistics

Other than resampling the data in the classical way, more general idea of re-

sampling is to perturb the estimating process in such a way that a bootstrap

distribution of the regression parameter estimates could be produced. Parzen et

al. (1994) perturbed the estimating equation by random values from the distri-

bution of the pivotal estimating functions. Tian et al. (2004) perturbed an initial

parameter estimate and applied importance resampling technique to generate the

final estimate replicates. The smooth bootstrap approaches introduced in Section

3.2 use random weights to different levels of data through the estimating func-

tions: RR procedure adds weights to the subject level and MR procedure adds

weights to the measurement level.
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Let’s consider a natural idea of perturbation,

K∑

i=1

Ui = a, where “a” is some

random variate or variable satisfying some specific conditions and can be generated

in a resampling way so that many new estimating functions can be constructed

and copies of the parameter estimates could be obtained by solving
K∑

i=1

Ui = a.

When the estimating function is pivotal or asymptotically pivotal, the method in

Parzen et al. (1994) can apply. However, for general estimating functions with

unknown distributions, the picture for such an “a” is less clear. One natural choice

of “a” could be
K∑

i=1

Ui =
K∑

i=1

Û∗
i , where Û∗

i ’s are bootstrap samples from (Ûi)
K
i=1

evaluated at θ̂. Repeatedly solving such equations for different bootstrap samples

can result in a bootstrap estimate for the distribution of the parameter estimates.

Or, one can directly obtain the bootstrap distribution of the estimating function

by repeatedly bootstrapping from Ûi. Based on the bootstrap distribution of the

estimating function (EF), statistical inference on parameter estimates could be

done, for example inverting the quantiles of the EF bootstrap distribution could

produce confidence intervals for the parameter estimates. In this way only one

or two equations need to be solved for the construction of confidence intervals

for parameter estimates. Hu and Kalbfleisch (2000) strongly recommended the

EF bootstrap and suggested to bootstrap the studentized estimating function,

V −1/2

K∑

i=1

Ui , where V is the variance of the estimating function,

K∑

i=1

Ui , which

can be estimated for example by the
K∑

i=1

(Ui − U)2.

In this chapter we resort to the theory of Edgeworth expansion and first-

term correction that render us a better pivotal statistic and lead us to a way

of generating the random values for

K∑

i=1

Ui = a or V −1/2

K∑

i=1

Ui = a. First we

derive the results under the assumption that Ui’s are identically distributed. The
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extension to non-i.i.d. cases is straight forward and is discussed at the end of this

chapter.

5.1 A brief introduction to Edgeworth expan-

sion

It’s necessary to give a brief introduction to the Edgeworth expansion (more com-

prehensive explanation on this topic could be found in Hall 1992), because this

may define the scope of our discussion. The theory of Edgeworth expansion has a

very long history that can date from the first paper by Chebyshev (1890). After

a time of decline, a revival of research based on Edgeworth expansion has been

seen in recent years, since it is useful for exploring the properties of contemporary

statistical methods, among which there is bootstrap method. The Edgeworth

expansion involves a great deal of analytical computations for the distribution

approximations, or more specifically, normal approximations. Briefly, if θ̂ is es-

timated from a sample of size n, and if n1/2(θ̂ − θ0) is asymptotically normally

distributed with zero mean and variance σ2, then the distribution function of

n1/2(θ̂ − θ0) may be expanded as a power series in n−1/2:

P{n1/2(θ̂ − θ0)/σ ≤ x} = Φ(x) + n−1/2p1(x)φ(x) + . . . + n−j/2pj(x)φ(x) + . . . ,

(5.1.1)

where pj(x)’s are polynomials with coefficients depending on the cumulants of

θ̂ − θ0, Φ(x) and φ(x) are the standard normal distribution function and den-

sity function respectively. This expansion (5.1.1) is the so-called Edgeworth ex-

pansion. Conventionally, we are more interested in the terms after Φ(x), hence
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n−1/2p1(x)φ(x) is considered as the first term rather than the second term. The

Edgeworth series can be best explained via the characteristic functions. Let

Sn = n1/2(θ̂−θ0)/σ. Since Sn is asymptotically normally distributed, its charac-

teristic function χn converges to that of the standard normal, e−t2/2. The Edge-

worth series can be obtained from the expansion of χn(t) = {χ(t/n1/2)}n, where

χ is the characteristic function of Y = (X − µ)/σ.

Most of the results on Edgeworth expansion are established for sample mean

problem. Let’s consider the sum of independent random variables. Suppose X, X1,

X2, . . . are i.i.d. random variables with mean θ0 = µ and finite variance σ2.

An estimate for θ0 is the sample average, i.e. θ̂ = n−1

n∑

i=1

Xi with variance

n−1σ2. By the central limit theorem, Sn = n1/2(θ̂ − θ0)/σ is asymptotically

normally distributed with zero mean and unit variance. Many inference about

the estimate are based on this normal approximation. For example, confidence

intervals for the estimate θ̂ are constructed based on this normal approximation,

(θ̂−n−1/2σzα, θ̂+n−1/2σzα), where zα is the quantile for significance level α from

the standard normal distribution. The quality of this normal approximation is

therefore of great importance. It can be investigated via the Edgeworth expansion

for Sn, in the form of (5.1.1). However, the expansion for its distribution may not

be available for infinite terms. One has to stop the expansion after a given number

of terms and the remainder is of smaller order than the previous term,

P{Sn ≤ x} = Φ(x) + n−1/2p1(x)φ(x) + . . . + n−j/2pj(x)φ(x) + o(n−j/2). (5.1.2)

This expansion is valid for fixed j, as n → ∞. Regularity conditions need to be

satisfied for the “asymptotic” expansion (5.1.2), with the remainder of the stated



CHAPTER 5: FIRST-TERM CORRECTED EF STATISTICS 84

order uniformly in all x:

E(|X|j+2|) <∞, and lim sup
|t|→∞

|χ(t)| < 1.

The second condition is the well-known Cramér’s condition. It holds when the

distribution of X is nonsingular, or equivalently if that distribution has nonde-

generate absolutely continuous components, more specifically, if X has a proper

density function. Therefore, it would be convenient to restrict our discussions for

the continuous estimating functions. For more robust estimating function, such as

quantile regression estimating functions or rank estimating functions, Edgeworth

expansion may not exist. For those cases, Bahadur representation may be another

useful tool and that direction of research might be worth doing.

5.2 First-term corrected EF statistics in i.i.d.

cases

The estimating functions in GEE’s case are also in forms of the sum of finite in-

dependent terms and the correlation which usually makes estimation complicated

is within each term itself. Consider the case of a scalar parameter, i.e. p = 1. We

have the one-dimensional estimating equation:

K∑

i=1

Ui :=
K∑

i=1

DT
i V −1

i εi = 0.

Denote Ui = DT
i V −1

i εi , 1 ≤ i ≤ K and U = K−1
K∑

i=1

Ui. Assuming the inde-

pendence among all the K subjects, Ui’s are independent variables with common

mean 0. Further assume they have common variance first, i.e. var(U1) = · · · =
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var(UK) = σ2. Hence, (Ui)
K
i=1 are i.i.d. random variables with mean 0 and finite

variance σ2. We then have E(
K∑

i=1

Ui) = 0 and Var (
K∑

i=1

Ui) = Kσ2 def
= V 2.

Consider the pivotal statistic based on the estimating function:

SK =

∑K
i=1 Ui√
Kσ

, (5.2.1)

which is actually the standardized estimating function. Since usually σ is un-

known, we use V̂ 2 =
K

K − 1

K∑

i=1

(Ui − U)2 (or asymptotically equivalent

K∑

i=1

U2
i )

to estimate the variance of
K∑

i=1

Ui and consider the studentized pivotal statistic

instead:

TK =

∑K
i=1 Ui

V̂
. (5.2.2)

Hu and Kalbfleisch (2000) proposed EFB for similar studentized estimating func-

tion by bootstrapping its empirical distribution and then inverted the confidence

interval to that of the parameter estimates. On the other hand, based on the cen-

tral limit theorem, the asymptotic normality of TK can be established. Some sim-

ple idea of perturbation to the estimating function arises, such as setting TK = a,

where “a” is a random value from the asymptotic normal distribution of TK . Such

procedures could be expected to produce consistent estimates for the parameters.

Therefore, we use the Edgeworth expansion to explore the property of this normal

approximation for the distribution of TK . We have found that there are higher-

order approximations for this distribution so that the corresponding perturbation

procedures can lead to more efficient results. It turns out that the perturbation

done to the new statistic whose distribution has higher-order approximation to

normality can be viewed as perturbing the original TK with a K−1/2-term.

Appendix III shows the details for deriving the Edgeworth expansion for TK ,
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which is shown as follows:

P (TK ≤ x) = Φ(x) + ϕ(x)
{
K−1/2q1(x) + K−1q2(x) + O(K−3/2)

}
, (5.2.3)

where

q1(x) =
1

6
γ (2x2 + 1);

q2(x) = x

{
1

12
κ (x2 − 3)− 1

18
γ2 (x4 + 2x2 − 3) +

1

4
(x2 + 3)

}
.

The skewness γ and kurtosis κ for Ui’s, are defined as EU3/σ3 and EU4/σ4 − 3

respectively. This expansion (5.2.3) is valid if Cramér’s condition is satisfied

(particularly, U has an absolutely continuous distribution), and E(|U |5) < ∞

(Hall 1987).

5.2.1 First-term correction

The attempt to remove the first-term in (5.2.3) to improve the normal approxi-

mation in higher order is also called correction for skewness, since the skewness is

the key factor in the first term. However it cannot be done uniformly in x since

the first term is a function of x. When the value of x is fixed, for example as

normal quantile, the corrections for skewness can be done for confidence interval

constructions. In other words, the first-term corrections are usually done at fixed

x. Fortunately enough, in Abramovitch and Singh (1985), a uniform skewness

and higher order correction based on Edgeworth expansion is proposed for pivotal

statistics and bootstrap methods are applied for the corrected statistics. Now we

introduce the important theorem proved by Abramovitch and Singh (1985).

Theorem 5.1 ( Theorem 1 in Abramovitch and Singh, 1985):
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Suppose that T admits an Edgeworth expansion

P (T ≤ x) = Φ(x) + n−1/2 p (F, x) + o (n−1/2)

uniformly in x, where p (F, x) is a polynomial in x whose coefficients possibly

depend upon F (F is the population from which the sample of size n is obtained,

annotated by the author of this thesis). Let p̂n be an estimator of p (F, T ) which

satisfies the condition that

for all ε > 0, P ( | p̂n − p (F, T )| > ε ) = o (n−1/2) (5.2.4)

as n→∞. Then T1 defined as

T1 = T + n−1/2 p̂n

has the following Edgeworth expansion:

P (T1 ≤ x) = Φ(x) + o (n−1/2) (5.2.5)

uniformly in x.

Abramovitch and Singh (1985) suggested to use p (Fn, T ) as p̂n, where Fn is

the empirical c.d.f. from the sample, if p (F, x) is a polynomial in x, its coefficients

depend on F only through its first several moments and those moments satisfy

certain bounded conditions. The authors gave a modified t-statistic based on

this theory and showed the distribution obtained by bootstrapping T1 beats the

normal approximation.

Our settings at the beginning of this section fit the conditions of this theory

quite well, therefore we can similarly define:

T ′
K = TK + K−1/2 q̂1(TK), (5.2.6)
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in which

q̂1(TK) =
1

6
γ̂ (2 T 2

K + 1),

where γ̂ =
1

K

K∑

i=1

(Ui − U)3/σ̃3 , and σ̃
2 =

1

K − 1

K∑

i=1

(Ui − U)2 (the choice of

sample skewness and kurtosis estimators can be found in Joanes and Gill 1998).

And it follows from the theorem introduced above that

P (T ′
K ≤ x) = Φ(x) + O(K−1) (5.2.7)

uniformly in x. The K−1-term in the Edgeworth expansion can be further re-

moved in a similar way. Theoretically this way of corrections can be carried out

up to j-terms as long as the expansion is valid. However, it may not be worth-

while going beyond a two-term correction since higher order correction involves

estimation of higher moments which are generally hard to achieve reasonable ac-

curacy. Even a second-term correction does not seem to be necessary, since for

moderate sample size the significant improvement is expected to be seen when the

first-term is removed from the Edgeworth expansion, but when further removing

the second-term the improvement may not be so significant any more. The sim-

ulations in Abramovitch and Singh (1985) showed that the fist-term correction is

enough for the approximation of distribution. On the other hand, since the Edge-

worth expansion is an asymptotic result based on large number theory as well,

the improvement in the sense of approximation of distributions can only be seen

in case of moderate sample sizes. In other words, when the sample size is large

enough, removing the first-term may not matter much; while when the sample

size is too small, this approach also suffers from small sample problems.
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5.2.2 Simple perturbation methods for parameter estimates

Thus, we have a higher order normal approximation for T ′
K in form of (5.2.6)

which has the approximate distribution (5.2.7). A naive interpretation for T ′
K is

that, it can be viewed as a perturbation to TK by a K−1/2-term. For example,

such perturbation could be TK−
1√
K

q̂1(TK), or TK−
1√
K

q̂1(TK)+δ, where δ is

a random variate from standard normal distribution. Some simple perturbation

procedures are proposed to generate bootstrap copies of regression estimates:

TK = δ denoted as NM1 ; (5.2.8)

T ′
K = δ denoted as NM2 ; (5.2.9)

TK = − 1√
K

q̂1(TK) + δ denoted as NM3 ; (5.2.10)

TK = T ∗
K denoted as EFB ; (5.2.11)

T ′
K = T

′∗
K denoted as FTCB ; (5.2.12)

TK = T
′∗
K denoted as FTP ; (5.2.13)

where δ is a random variate that can be generated from standard normal distri-

bution repeatedly; T ∗
K and T

′∗
K are bootstrap copies of TK and T ′

K . The first three

perturbation methods (5.2.8), (5.2.9) and (5.2.10) rely on the normal approxi-

mation of the studentized EF statistic and the first-term corrected version. The

following three (5.2.11), (5.2.12) and (5.2.13) are empirical bootstrap methods like

in Hu and Kalbfleisch (2000). We repeatedly solve the perturbed estimating equa-

tions and compare the estimation results in terms of variance estimation, MSE

of parameter estimates and the confidence intervals. We simulate 1000 balanced

normal and Poisson data with sample size K = 40 and n = 4 using the settings

in Chapter 4. The bootstrap time is 1000.
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Table 5.1 Parameter estimation and confidence interval construction by simple pertur-
bation methods

NM1 NM2 NM3 EFB FTCB FTP LZ NV RR MR

normal responses

(SD ratio-1)* 100 -0.041 -0.141 -0.051 -3.818 -3.280 -3.140 -0.666 -0.762 0.5167 -0.3058
MSE (e-05) 4.043 4.058 4.051 4.361 4.315 4.304 4.049 4.142 4.274 4.239

80% 78.6 78.7 78.1 79.3 79.6 79.5 78.0 78.4 78.5 78.6
CI cover. 90% 90.1 90.1 89.9 91.3 91.2 91.2 88.9 89.3 - -

95% 95.6 95.4 95.4 96.2 95.7 96.4 95.9 96.1 94.6 94.4

Poisson responses

(SD ratio-1)* 100 2.740 2.721 2.614 -1.110 -0.443 0.178 -3.739 -2.399 -0.811 -0.814
MSE * 100 0.282 0.280 0.282 0.303 0.298 0.298 0.289 0.285 0.290 0.289

80% 79.6 79.8 79.3 80.0 79.6 79.1 78.0 78.5 78.6 79.6
CI cover. 90% 89.8 90.4 89.0 88.9 88.9 88.7 87.7 88.4 - -

95% 94.8 94.6 94.2 94.8 94.3 94.1 93.5 94.1 94.2 94.3

The simulation results are presented in Table 5.1 compared with the Liang and

Zeger (1986) sandwich estimator (denoted as LZ) and the naive estimator (de-

noted as NV ). We also include the results of RR-norm and MR-norm procedure

from Chapter 4 for comparison. For each row of the table, the best two results

are shown in bold. The first row for normal responses (or Poisson, in the lower

part of the table) shows the relative efficiency of standard deviation estimates to

the true standard deviation of β̂ obtained from 1000 simulations. The second row

is MSE of the parameter estimates. The following three rows show the 80%, 90%

and 95% confidence interval coverage probabilities (in %). For the first six per-

turbation methods and the last two smooth bootstrap methods, quantile methods

are used; for LZ and NV the confidence intervals are constructed as SD-type.

For normal responses, the perturbation methods using normal approximation

give the closest variance estimates to the true variance of parameter estimates

and their parameter estimates have the smallest MSE. The two smooth bootstrap
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procedures also yield satisfactory SD estimates. The perturbation methods using

normal approximation give the best coverage for 90% and 95% confidence inter-

val; while for 80% confidence interval, FTCB and FTP methods give the best

coverage. Confidence intervals by LZ and NV estimators are less accurate than

those by the simple perturbation methods and the smooth bootstrap methods.

For Poisson responses, the perturbation methods FTCB and FTP produce the

closest variance estimates to the true values but the perturbation methods using

normal approximation still yield parameter estimates with smallest MSE. As for

the confidence interval coverage, the first two perturbation methods using normal

approximation seem to give the best coverage for most of the time. The coverage

probabilities by EFB method are very close to the nominal values as well. RR

and MR procedures give better coverage than LZ and NV but less accurate than

the simple perturbation methods based on the studentized estimating function

statistics. The results have shown that the simple perturbation methods based on

the normal approximation can generally yield parameter estimates with smaller

MSE. All the six simple perturbation methods generally have better confidence

interval coverage than the common methods by LZ and NV, and even better than

the smooth bootstrap methods which we have observed outperform some classical

resampling methods.

Remark 1. The methods discussed above can be easily extended to multidi-

mensional parameter cases, i.e. p > 1. Statistical inferences such as the variance

estimation and confidence interval construction for the components of the parame-

ter estimates can be done based on the bootstrap copies obtained from repeatedly

solving perturbed estimating equations (5.2.8) - (5.2.13). He and Hu (2002) sug-

gested a Markov Chain Marginal Bootstrap (MCMB, available in SAS version
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9.1) for the bootstrap procedures for multidimensional parameter problems. The

MCMB method solves one component of the parameter by fixing all the other

components at each bootstrap time.

Remark 2. We have tried to integrate the idea of smooth bootstrap introduced

in Chapter 3 with the bootstrap methods based on studentized estimating func-

tions discussed in this chapter. That is, we can bootstrap the weighted version of

TK or T ′
K , for example,

TK, w =

∑K
i=1 wi Ui√∑K

i=1(wi Ui − Uw)2

,

where Uw = K−1
K∑

i=1

wi Ui. Empirical bootstrap methods such as (5.2.11) have

been investigated for the estimation of parameters and the corresponding confi-

dence intervals. Unfortunately, we find that except that the point estimates of the

parameter are consistent, other results are not satisfactory: the estimated vari-

ance is far less than the true value; the confidence interval coverage probabilities

are less than the nominal values. The most likely reason for the poor performance

of the smoothed estimating function bootstrap is that such perturbation seems

to be so liberal that it results in great increase of the variance of the studentized

estimating functions. Another possible explanation is that there should be more

appropriate choice for the weights, for example data-dependent weights. This

direction would be worthy of further investigation.

5.3 Methods for confidence interval construction

In this section we suggest easier ways particularly for the construction of confi-

dence intervals: one relies on the better normal approximation after the first-term



CHAPTER 5: FIRST-TERM CORRECTED EF STATISTICS 93

correction; the other one, bootstrap with much less computation. Basically, for

both of the two methods, there are two steps to construct confidence intervals for

parameter estimates: the fist step is to obtain the confidence intervals for the esti-

mating function

K∑

i=1

Ui or the studentized estimating function T ′
K based on normal

approximation or from bootstrap distribution; second, invert the confidence in-

terval of the estimating function or the pivotal statistic to that of the regression

parameter estimates β̂. By this way, only small number of estimating equations

are to be solved and computational time could be reduced greatly. However, if

one needs to estimate the variance of the parameter estimates using the inference

about T ′
K , the simple perturbation methods proposed in the previous section could

be applied.

5.3.1 First-term corrected C.I. for EF

Given the improved normal approximation, first-term corrected confidence inter-

val can be constructed for

K∑

i=1

Ui. Then the confidence intervals of regression

parameter estimates can be calculated by solving one or two equations, setting
K∑

i=1

Ui at the the endpoints of its confidence interval. Let

a1 = zα/2 −K−1/2 q̂1(zα/2), (5.3.1)

a2 = −zα/2 −K−1/2 q̂1(−zα/2), (5.3.2)

where zα/2 = −Φ−1(α/2). Then the corollary below follows from Theorem 2 in

Abramovitch and Singh (1985):

Corollary 5.1 If TK admits a one-term Edgeworth expansion and q̂1 ( FK , TK)
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is a valid estimate for q1 ( F, TK) required in Theorem 5.1, then,

P (
K∑

i=1

Ui <
K∑

i=1

Ûi − a1 V̂ ) = P (T ′
K > zα/2) + O(K−1);

and

P (
K∑

i=1

Ui >
K∑

i=1

Ûi − a2 V̂ ) = P (T ′
K < −zα/2) + O(K−1).

Therefore the interval

[
K∑

i=1

Ûi − a1 V̂ ,
K∑

i=1

Ûi − a2 V̂

]
(5.3.3)

is a confidence interval for
K∑

i=1

Ui leaving out α/2 + O(K−1) probability in ei-

ther tail. Note that the function q1(x) is a quadratic function, which results in

q̂1(zα/2) = q̂1(−zα/2). Hence the length of this interval (5.3.3) is 2 zα/2 V̂ , the

same as the interval

[
K∑

i=1

Ûi − zα/2 V̂ ,

K∑

i=1

Ûi + zα/2 V̂

]
based on the central limit

theorem; however the latter leaves lower order probability in both tails. Via this

method, a two-sided confidence interval for the parameter estimates, say β̂, can

be obtained by solving only two equations, namely

K∑

i=1

Ui =
K∑

i=1

Ui(θ̂)− âj
̂
V (θ̂), j = 1, 2, (5.3.4)

where “âj” are those aj defined in (5.3.1) and (5.3.2) evaluated at θ̂ = (β̂, α̂, φ̂)

in the GEE estimation; Ui(θ̂) and
̂
V (θ̂) are the values of Ui and V̂ evaluated

at θ̂ respectively. The resulting confidence intervals for β̂ can also be used for

hypothesis testing of the parameter estimates, i.e. reject the null hypothesis when

the confidence interval does not intersect the null hypothesis.
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5.3.2 Bootstrapping first-term corrected EF statistic

Hu and Kalbfleisch (2000) suggested to approximate the distribution of TK by

bootstrapping. Here we can also apply their EFB idea to the GEE settings, boot-

strapping the first-term corrected statistic, T ′
K . We suggest to approximate the

distribution of the studentized EF statistic T ′
K by bootstrapping T ′

K . Such ap-

proximation is expected to be more accurate than bootstrapping TK in terms of

distribution approximation, such as confidence interval construction. The ratio-

nale lying behind is that: the preference for bootstrapping studentized estimating

function rather than bootstrapping
K∑

i=1

Ui is because the studentized EF is an

“asymptotic” pivot, and our effort on correcting the first-term in the Edgeworth

expansion is to make this “asymptotic” more accurate, namely of higher order.

More specifically, the bootstrap procedure is carried out as follows:

• Step 1: Obtain the bootstrap distribution of T ′
K ;

• Step 2: Find the quantiles T ′
K

∗
α/2 from T ′

K ’s bootstrap distribution;

• Step 3: Solve T ′
K = T ′

K
∗
α/2 for the endpoints of confidence intervals for

β̂.

In the first step, the bootstrap copies of TK , T ∗
K are first obtained in the same

way as in Hu and Kalbfleisch (2000),

T ∗
K =

∑K
i=1 Û∗

i√∑K
i=1(Û

∗
i − Û

∗

)2

, (5.3.5)

where Û∗
i are bootstrap samples from Ui(θ̂)K

i=1, and Û
∗

is the mean of each boot-

strap sample. Then the bootstrap copies of T ′
K , T ′

K
∗

are obtained using the def-

inition (5.2.6) and the moments are also calculated using Û∗
i ’s. This procedure
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is referred to as “First-term corrected EF bootstrap”. We also include another

similar procedure in the later simulation studies, that is, in the third step, we

solve TK = T ′
K

∗
α/2 instead. This can be viewed as a perturbation to the stu-

dentized EF statistic, which is supposed to be asymptotically equivalent to the

one by solving T ′
K = T ′

K
∗
α/2. But since TK is of simpler form than T ′

K , faster

computation by solving TK = T ′
K

∗
α/2 might be expected. In both bootstrapping

procedures, again only two equations are to be solved for constructing a two-sided

confidence interval for the regression parameter estimates.

Remark 1. There is one important assumption for the validity of the EF boot-

strap methods discussed above. That is the monotonicity of the studentized EF

function with regard to the parameter estimates. Only when this condition is

satisfied, we can invert the quantiles of the bootstrap distribution of studentized

EF statistic to those of the parameter estimates. However in GEE models, most

of the cases the estimating function is a nonlinear function of the regression pa-

rameter, hence it is not convenient to verify this condition analytically. To check

this condition, we suggest a practical way which is easy to implement in any

model inferences, that is, to observe the behavior of the estimated studentized

EF statistic in a neighborhood of the parameter estimates, for example three es-

timated standard deviations away from the parameter estimates. The parameter

estimates together with the estimated standard deviations must be consistent in-

deed. Then, evaluate the studentized EF statistic at the values in this range, draw

a plot of the estimated studentized EF statistic versus those parameter values and

observe whether the monotonicity is held in this range. If it shows monotone rela-

tionship of the studentized EF and the parameter, the inversion of quantiles from

the bootstrap distribution of the studentized EF to the endpoints of confidence
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interval for parameter estimated is valid and the bootstrapping methods based on

the studentized estimating function discussed above can be carried out.

Remark 2. Consider the two methods discussed in Section 5.3.1 and 5.3.2.

The first approach relies on the improved normal distribution; while the second

one applies the idea of bootstrapping. The normal approximation to the distri-

bution of T ′
K is valid with a remainder of order o(K−1/2) (typically O(K−1)),

whereas the bootstrap distribution of T ′
K approximates its true distribution with

an error term o(K−1), which means that the bootstrap gives “an extra step of ac-

curacy”. Abramovitch and Singh (1985) argued that this is because the bootstrap

distribution of T ′
K has the Edgeworth expansion:

Φ(x) + K−1q2(FK , x)φ(x) + o(K−1) = Φ(x) + K−1q2(F, x)φ(x) + o(K−1), a.s.,

and the validity of this expansion for the bootstrap distribution does not require

additional assumptions because all the requirements on FK are guaranteed for

large K by the same requirements on F . Therefore, bootstrapping T ′
K basically

amounts to a second-order correction, which is the same asymptotic order as the

approximation by the second-term correction. In other words, bootstrapping T ′
K

can achieve the same asymptotic accuracy as a second-term correction of normal

approximation, without having to derive the complicated form of the second term

in the Edgeworth expansion.

Remark 3. The methods for confidence interval construction stated above

focus on scalar parameter cases. For multidimensional parameter cases, confidence

regions for the parameter could be obtained using the inversion idea as in Hu and

Kalbfleisch (2000). But the component-wise confidence intervals would be more

convenient to explain than the confidence regions because the latter are not easy



CHAPTER 5: FIRST-TERM CORRECTED EF STATISTICS 98

to describe. Therefore, for multidimensional parameter, the simple perturbation

methods discussed in the previous section could be used for variance estimation

as well as confidence interval construction.

5.3.3 Simulation studies

In this section, we carry out simulation studies to investigate the two types of

methods for the construction of confidence intervals for scalar parameters. We

use similar settings which have been used in Chapter 4 for the investigation of

smooth bootstrap methods. 1000 Normal and Poisson multivariate correlated

responses of different sample sizes 10, 20, 30, 40 and 50 are generated respectively

for the confidence interval estimation.

We mainly compare the performances of six procedures for constructing con-

fidence interval for the slope parameter:

• SD-type confidence intervals by Liang and Zeger (1985) sandwich estimator,

denoted as LZ;

• SD-type confidence intervals by the naive estimator, denoted as NV ;

• first-term corrected EF confidence interval, denoted as FTCI;

• the EF bootstrap, i.e. TK = T ∗
K , denoted as EFB;

• first-term corrected EF bootstrap, T ′
K = T

′∗
K , denoted as FTCB;

• perturbation to the studentized EF statistic, TK = T
′∗
K , denoted as FTP .
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We also consider different nominal values of confidence intervals, namely 80%,

90% and 95%. The coverage probabilities, the average confidence interval lengths

and the standard error of the lengths are tabulated. The tabulated results are

from the simulation using correct working correlation which is AR1; in case of

misspecification of correlation structure, the results are similar except the poor

performance of NV in case of strong correlation.

Before carrying out the last three bootstrap methods, we checked the mono-

tonicity condition following the simple way suggested in Remark 1 in Section 5.3.2.

Figure 5.1 shows the plots for sample size 40. The top two plots are for normal

responses, where the left one is for the studentized EF statistic TK and the right

one is for the first-term corrected studentized EF statistic T ′
K ; the bottom two

plots are the two studentized EF statistics for Poisson responses. It is very obvi-

ous that in such a neighborhood of the parameter estimates those EF statistics

are monotone. Therefore we can carry out simulations for the last three bootstrap

methods above. The bootstrap time is 1000.
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Figure 5.1: Checking the monotonicity of the studentized EF statistics in the

regression parameter
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Table 5.2 shows the simulation results for normal responses. The first row

entries are the coverage probabilities of the SD-type confidence intervals by the

sandwich estimator for different sample sizes and at different level of significance

(in %); the second row entries are the average lengths of this type of confidence

intervals (in %); and the third row are the standard errors for the lengths (in %).

The same table layout is used for the rest five groups of confidence intervals. As

expected, as the sample size decreases, the coverage probabilities are further away

from the nominal values.

For the normal data, the most accurate coverage of the confidence intervals

of the parameter estimates occurs at the moderate sample size 40, where FTCI

gives the coverage closest to the nominal values, followed by FTCB and NV. EFB

and FTP give similar coverage which is not so good as FTCI and FTCB. LZ

gives the worst coverage which can be expected because it underestimates the

variance of the parameter estimates. At a larger sample size, the three bootstrap

methods and the FTCI together with NV perform similarly, since given a large

enough sample size, the difference caused by first-term correction is small. But

when the sample size decreases, the coverage by NV and LZ decreases, because

both of these SD-type confidence intervals relies on normal approximation of the

parameter estimates which needs large sample size to have good performance. The

same situation goes with FTCI, since it also relies on a normal approximation,

but of the studentized estimating function this time. However, the other three

bootstrap methods can still provide satisfactory coverage in case of small sample

sizes. EFB seems to be the best among the three, followed by FTP and then

FTCB. Higher coverage pays the price of wider length. In almost all the cases,

the three bootstrap methods give wider confidence intervals than FTCI, NV and
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LZ, where the lengths of FTCI and NV confidence intervals are similar and LZ

gives the narrowest again due to the underestimation of the variance. As for the

standard errors of the lengths of those confidence intervals, NV is usually the

smallest and then LZ and FTCI. The three bootstrap methods have similar larger

variation in the length of confidence intervals due to the resampling nature.

Most of the comments for normal responses can also be given exactly for the

results in Table 5.3, for Poisson responses. There are some differences worth at-

tention. The naive confidence interval outperforms FTCI, which might mean that

for this Poisson data set the normal approximation works well for the parameter

estimates but may not work well for the studentized estimating function. But the

three bootstrap methods work satisfactorily and better than NV especially in the

cases of small sample sizes. When the sample size is 40, FTCB gives the most

accurate coverage and also for the sample size 30. When the sample size is 20

or smaller, EFB performs slightly better. But the lengths of FTCB confidence

intervals are always narrower than those of EFB’s. Therefore, we conclude the

bootstrap methods based on studentized EF statistic TK or first-term corrected

statistic T ′
K can provide much better confidence intervals than the NV and LZ

methods. When the sample size is moderate, bootstrap methods based on T ′
K can

further improve the confidence interval coverage and always give narrower confi-

dence intervals with satisfactory coverage when compared with bootstrap methods

based on the statistic without first-term correction.
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5.4 Direct generalization to non-i.i.d. cases

In the discussions above we assume the components of the estimating function are

independent and identically distributed. For longitudinal data, the assumption of

independence of the components is generally valid, but the components may not

have equal variances. Liu (1988) discussed the bootstrap procedures under some

non-i.i.d. models and justified the validity of bootstrapping non-i.i.d. data via

Edgeworth expansions. Based on this result, the bootstrap methods proposed in

this Chapter are valid in non-i.i.d. cases in GEE settings. Thus, such methods

can be easily generalized to general longitudinal data analysis. This robustness to

heterogeneity has already been verified in some of the simulation studies shown

in the previous sections. Liu (1988) obtained the results via similar arguments

using Edgeworth expansion. Below we give out some important results and the

corresponding conditions needed for the validity of those bootstrap methods for

non-i.i.d. cases.

Theorem 5.2 ( Theorem 1 in Liu 1988.)

Let U1, . . . , Un be a set of independent random observations and let µi and

σ2
i denote respectively, the mean and the variance of Ui, i = 1, . . . , n. Also let

ν2
n =

n∑

i=1

σ2
i /n, and V 2

n =

n∑

i=1

(Ui − Ūn)2/n. If (i) lim
n→∞

n∑

i=1

(µi − µ̄n)2/n = 0, (ii)

lim inf
n→∞

ν2
n > 0 and (iii) E|Ui|2+δ ≤M <∞, for some δ > 0 and for all i, then

lim
n→∞

||P ∗(
√

n(Ū∗
n − Ūn) ≤ x)− P (

√
n(Ūn − µ̄n) ≤ x)||∞ = 0, a.s.

(P ∗ stands for the bootstrap probability and || ||∞ stands for the sup-norm over x.)
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Theorem 5.2 states the validity of bootstrap methods for non-i.i.d. random

series, such as Ui’s in GEE situations in terms of “first order limit”. Liu (1988)

further investigated the second order asymptotic properties in case of the sam-

ple mean, which can be directly applied in the generalized estimating functions.

Such properties are established via the Edgeworth expansion for the studentized

statistics.

P (
√

n
Ūn − µ̄n

Vn
≤ x) = Φ(x) +

µ̄3,n

6ν3
n

√
n

(2x2 + 1)φ(x) + o(n−1/2); (5.4.1)

P ∗(
√

n
Ū∗

n − Ūn

V ∗
n

≤ x) = Φ(x) +
κ̂3

6V 3
n

√
n

(2x2 + 1)φ(x) + o(n−1/2);(5.4.2)

where V ∗2
n =

n∑

i=1

(U∗
i − Ū∗

n)2/n, µ̄3,n =

n∑

i=1

E(Ui − µi)
3/n, κ̂3 =

n∑

i=1

(Ui − Ūn)3/n.

If κ3 − µ̄3,n → 0, a.s. as n → ∞, “there is a total n−1/2-term correction by the

bootstrap in the studentized case.” The existence of those Edgeworth expansions

for the studentized statistics needs some conditions. The second part of Theorem

2 in Liu (1988) stated those conditions.

Theorem 5.3 ( The second part of Theorem 2 in Liu 1988)

The expansion (5.4.1) and (5.4.2) will hold under conditions (a), (b) and (c):

(a) There exists a nonlattice distribution H with mean 0 and variance 1, and

a sequence kn with kn/log(n)→∞, such that kn of the population Gi’s are of the

form Gi(x) = H((x−µi)/σi) with the σi’s bounded away from 0, where Gi is the

distribution of Ui.

(b) E|Ui|6+δ ≤M2 <∞ for some δ > 0.

(c) lim inf
n→∞

ν2
n > 0 and

n∑

i=1

(µi − µ̄n)2/n = o(n−1/2).
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It is easy to verify that the conditions required in Theorem 5.3 is valid in

GEE settings (as long as the estimating functions are continuous). Therefore, the

bootstrap methods proposed in Section 5.2 and 5.3 for the parameter estimation

are valid in general GEE settings.
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Chapter 6

Discussions

This chapter contains an outline of the results discussed in the thesis, the problems

that we encountered and the topics for further research.

6.1 Concluding remarks

Longitudinal data are becoming increasingly common in many research areas.

Consequently, the number of applications of GEE methods will continue to in-

crease due to its flexibility and robustness. The resampling methods will definitely

add greater versatility to the GEE models because of the increasing computational

ability.

In this thesis, basically two types of resampling methods are proposed for the

inference of regression parameters in GEE models. The first approach is “smooth

bootstrap,” a random perturbation to the estimating algorithms that provides a

simple way to yield bootstrapped copies of parameter estimates. Two versions of
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the smooth bootstrap method are proposed and investigated analytically and via

Monte Carlo simulation in Chapter 3 and 4. One is robust to the misspecification

of the within-subject correlation structure and the other one is model-based which

is more efficient when the covariance model is correctly specified. Smooth boot-

strap helps to give more accurate variance estimates and confidence intervals for

different types of data and sample sizes compared with the commonly used “sand-

wich” estimators and some classical resampling methods applied to longitudinal

data.

The second type of approach proposed in this thesis applies the resampling

scheme to the estimating function instead of the parameter estimates. Chapter

5 proposes several simple perturbation methods to the estimating functions for

the parameter estimation. Particularly, one bootstrap scheme and a first-term

corrected confidence interval method are proposed for confidence interval con-

struction. In the bootstrapping scheme, the first-term corrected studentized EF

is the subject to be bootstrapped and only two equations need to be solved for

the construction of confidence intervals for parameter estimates. The first-term

corrected studentized estimating function statistic is obtained via the Edgeworth

expansion. Bootstrapping this first-term corrected statistic will give higher order

distribution approximation when compared with bootstrapping the studentized

EF without first-term correction and lead to improved confidence intervals.
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6.2 Topics for further research

As with any research project, there are usually more unanswered questions at the

end of the study than at the beginning. This is certainly true here. Some of the

major interests for future work are summarized as follows.

First, the smooth bootstrap methods presented here capture the the first order

and second order moments. The choice of such random weights may depend on

other factors not considered here. This type of data independent weights may not

be the optimal choices to accommodate the characteristics of the longitudinal data.

Further research should be undertaken to develop the use of data dependent (or

data-driven) weights. Moreover, the application of such resampling methods in the

bias estimation for the GEE parameters is also a subject for further investigation.

Second, in multidimensional parameter cases, the higher order approximation

for the distribution of the studentized estimating functions could be reached under

methods similar to those discussed and such investigation might involve multivari-

ate Edgeworth expansions (Chamber 1967). Other types of estimating functions

could be considered as well. Li (1998) considered an optimal estimating equation

based on the first three cumulants for scalar parameter. Li added an extra term

of order n−1/2 to the quasilikelihood function by including the information of the

skewness of observations when there is departure from exponential family. The

resampling methods proposed in this thesis could be applied to this method and

generalization to multidimensional parameters would be interesting.

Third, the smooth bootstrap methods and the estimating function bootstrap

can also be applied to the estimation of nuisance parameters. There is actually
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much room for the improvement of nuisance parameter estimation since we have

also observe inefficient estimation for the scale and correlation parameter in our

simulation studies especially for non-normal data. By improving the accuracy of

estimating the nuisance parameters, the efficiency of the estimation of regression

parameters will also be improved.

As an alternative to the mean regression model, the application of quantile

regression model to longitudinal data has received extensive attention in recent

years. Due to the non-smooth nature of the estimating function in the quantile

regression, the methods available for mean regression model cannot be directly

applied. Parzen et al. (1994) and Tian et al. (2004) discussed some resampling

methods for such non-smooth estimating functions. The application of resam-

pling methods like the smooth bootstrap proposed in this thesis may be possible

for direct application, but the choices of weights will have a greater effect on the

consistency of the resampling procedures given the non-smooth nature of the esti-

mating functions. The idea of estimating function bootstrap may also be applied

to such estimation procedure but the conditions for its validity need more careful

investigation. As for the first-term correction, the Edgeworth expansion does not

exist for non-smooth function. Therefore one may try Bahadur representation in

such direction.

Last but not least, there is a need for studying mechanisms for generating

clustered correlated data. We introduced some procedures for generating corre-

lated Poisson data and Lognormal data in Chapter 4. In addition, more general

mechanisms to generate other types of correlated data is an interesting subject

for further study. These mechanisms should correspond to phenomena observed
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in practice so that the conclusions from the simulation studies would be more

adaptable to the real data sets.
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Appendix I

I.1 About sandwich estimators

In this part, we give analytical argument for the variability of VMD, VKC, VP

and VLZ following the way in Pan (2001). As in Pan (2001), we treat the Di, Vi

and Ai as fixed, and compare the variabilities of those four covariance estimators

by comparing their middle factors since they have the same two outside factors:

MLZ =

K∑

i=1

DT
i V −1

i ε̂i ε̂
T
i V −1

i Di ;

MMD =

K∑

i=1

DT
i V −1

i (Ii −Hii)
−1 ε̂i ε̂

T
i (Ii −HT

ii )
−1 V −1

i Di ;

MKC =
K∑

i=1

DT
i V −1

i (Ii −Hii)
−1/2 ε̂i ε̂

T
i (Ii −HT

ii )
−1/2 V −1

i Di ;

MP =

K∑

i=1

DT
i V −1

i A
1/2
i

(
K∑

j=1

A
−1/2
j ε̂j ε̂

T
j A

−1/2
j /K

)
A

1/2
i V −1

i Di .

Pan (2001) has already proved that under mild regularity conditions, asymp-

totically cov
{
vec(MLZ)

}
≥ cov

{
vec(MP )

}
. We further show that:

cov
{
vec(MP )

}
≤ cov

{
vec(MLZ)

}
≤ cov

{
vec(MKC)

}
≤ cov

{
vec(MMD)

}
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Proof. Using the Kronecker product ⊗ and vec(·) operations, we have:

vec(MLZ) =

K∑

i=1

Ci vec(εiε
T
i )

vec(MMD) =

K∑

i=1

Ci vec
(
(Ii −Hii)

−1εiε
T
i (Ii −HT

ii )
−1
)

vec(MKC) =
K∑

i=1

Ci vec
(
(Ii −Hii)

−1/2εiε
T
i (Ii −HT

ii )
−1/2

)

vec(MP ) =

K∑

i=1

Ci vec

(
A

1/2
i

K∑

j=1

A
−1/2
j ε̂j ε̂

T
j A

−1/2
j /K A

1/2
i

)

and then,

cov
{
vec(MLZ)

}
=

K∑

i=1

Ci Ωi C
T
i

cov
{
vec(MMD)

}
=

K∑

i=1

Ci G
2
i Ωi G

2
i

T CT
i

cov
{
vec(MKC)

}
=

K∑

i=1

Ci Gi Ωi G
T
i CT

i

cov
{
vec(MP )

}
=

K∑

i=1

Ci

{
Fi

K∑

j=1

(
1

K2
F−1

j ΩjF
−1
j

)
Fi

}
CT

i

where Ci = (DT
i V −1

i )⊗ (DT
i V −1

i ), Fi = A
1/2
i ⊗A

1/2
i , Gi = (Ii−Hii)

−1/2⊗ (Ii−
Hii)

−1/2 and Ωi = cov
{
vec(εiε

T
i )
}
.

Hence,

cov
{
vec(MLZ)

}
− cov

{
vec(MMD)

}
=

K∑

i=1

Ci

(
Ωi −Gi Ωi GT

i

)
CT

i ≤ 0,

cov
{
vec(MLZ)

}
− cov

{
vec(MKC)

}
=

K∑

i=1

Ci

(
Ωi −G2

i Ωi G
2
i

T
)
CT

i ≤ 0,

cov
{
vec(MKC)

}
− cov

{
vec(MMD)

}
=

K∑

i=1

Ci Gi

(
Ωi −Gi Ωi G

T
i

)
GT

i CT
i ≤ 0,

cov
{
vec(MP )

}
− cov

{
vec(MLZ)

}
=

K∑

i=1

Ci

(
Fi

∑K
j=1 F−1

j ΩjF
−1
j

K2
Fi − Ωi

)
CT

i ≤ 0,

since the elements of Hii are very close to 0. The last expression is from Pan(2001).

I.2 Proof of Proposition 3.1
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Proof. Fix α and φ , apply Taylor expansion to the two estimating equations at

the true value of regression estimator, β0,

g1(β̂) =
K∑

i=1

Ci(β0) εi0 +
K∑

i=1

∂(Ci εi)

∂βT

∣∣∣∣
β=β0

(β̂ − β0) + op (K1/2);

g2(β̃) =

K∑

i=1

Ci(β̄) εi0 +

K∑

i=1

{
−Ci(β̄) Di(β0)

}
(β̃ − β0) + op (K1/2).

Denote ·i0 = ·i(β0), for example the p×p matrix Mi0 = DT
i (β0) V −1

i (β0) Di(β0),

the p × ni matrix Ci0 = Ci(β0), and Ċi0 =
∂Ci

∂βT

∣∣∣∣
β=β0

. Since Ci0 is p × ni, the

form of
∂Ci

∂βT
is expressed as




∂Ci01

∂βT

...
∂Ci0j

∂βT

...
∂Ci0ni

∂βT




,

where Ci0j is of p×1, the jth column of Ci0, 1 ≤ j ≤ ni. Hence
∂Ci0j

∂βT
of dimension

p× p and
∂Ci

∂βT
is of dimension (p× ni)× p, or equivalently the derivative can be

expressed as another way 


∂Ci
T
01

∂βT

...

∂Ci
T
0l

∂βT

...

∂Ci
T
0p

∂βT




,

where Ci0l is of ni× 1, the lth row of Ci0, 1 ≤ l ≤ p. Hence
∂Ci

T
01

∂βT
is of dimension

ni × p and there are p blocks of these matrices.

Therefore,
∂(Ci εi)

∂βT
= Mi0 + εi

T
0 Ċi0, where the second term of the right-hand



Appendix I: Some Proof 115

side is of the form 


εi
T
0

∂Ci
T
01

∂βT

...

εi
T
0

∂Ci
T
0l

∂βT

...

εi
T
0

∂Ci
T
0p

∂βT




,

resulting in a p× p matrix.

Since β̄ = β0+ op (1), let β̄ = β0+δ, where δ is a vector such that ||δ|| = op (1).

Hence Ci(β̄) = Ci(β0 + δ) = Ci0 + Ċi0

′
δ + op (1). The expression of Ċi0

′
δ is as

follows (
∂Ci01

∂βT
δ · · · ∂Ci0j

∂βT
δ · · · ∂Ci0ni

∂βT
δ

)
,

which gives a p× ni matrix, the same dimension as Ci0.

Therefore one can have the expression for β̂ and β̃:

β̂ = β0 +

{
K∑

i=1

Mi0 −
K∑

i=1

εi
T
0 Ċi0

}−1{ K∑

i=1

Ci0 εi0

}
+ op (K−1/2) (6.2.1)

β̃ = β0 +

{
K∑

i=1

Ci(β̄) Di(β0)

}−1{ K∑

i=1

Ci(β̄) εi0

}
+ op (K−1/2)

≈ β0 +

{
K∑

i=1

Mi0 +
K∑

i=1

Ċi0

′
δDi0

}−1 { K∑

i=1

Ci0 εi0

}
+ op (K−1/2).(6.2.2)

Now compare the first part of the second term in (6.2.1) and (6.2.2). Note

that εi = εi0 − Di0(β − β0) and E(εi) = 0. In a close neighborhood of β0, say

||β − β0|| = δ, εi0 = Di0δ + op(1). Then the conclusion follows. �
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Appendix II

In this appendix, we give the justification for the multivariate correlated data

generation in the simulations and the relevant R code.

III.1 Justification of correlated data generation

Method 1): AR-1 Poisson with Var(µ) = µ + λµ2

• Input: N, ni, β = c(0, 1)T , ρ, “corstr”, xj = log(runif(ni)+1:ni), and µj =

exp(xT
j β).

• Generate yi ← rpois(µi ∗ ξi), where ξi is a gamma random variable with

mean 1 and variance λ. To generate correlated ξ, first

1) Calculate

Cov(y) = diag(
√

Var(µ) ) ×AR1(ρ, ni) × diag(
√

Var(µ) ),

and correlation matrix of ξ

R0 = Cor(ξ) =
√

Cov(ξ)/λ =
√
{diag(1/µ) × (Cov(y)− diag(µ)) × diag(1/µ)}/λ;

2) With d = 2/λ, generate ξi =
d∑

j=1

z2
ji/d, where each of the four ni-variate

(zj.) is independently sampled from N(0, R0). That is,

z11 z12 z13 z14 ← N(0, R0)

z21 z22 z23 z24 ← N(0, R0)

z31 z32 z33 z34 ← N(0, R0)

z41 z42 z43 z44 ← N(0, R0)
...

...
...

...

↓ ↓ ↓ ↓
ξi1 ξi2 ξi3 ξi4 → ξi
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Method 2): AR-1 Poisson with Var(µ) = µ/(1− ρ2)

• Input: N, ni, ρ, and µj = (µj1, · · · , µj,ni)
T, j = 1, . . . , N

• Generate yj = (yj1, . . . , yj,ni)
T for subject j (omit j for convenience):

1) y0 ← rpois(µ1)

E(y0) = µ1, Var(y0) = µ1;

2) y1 ← rpois

(
µ1 +

ρ√
1− ρ2

(y0 − µ1)

)

E(y1|y0) = Var(y1|y0) = µ1 +
ρ√

1− ρ2
(y0 − µ1);

E(y1) = µ1,

Var(y1) = E(V (y1|y0)) + V (E(y1|y0)) = µ1 +
ρ2

1− ρ2
µ1 =

1

1− ρ2
µ1;

3) y2 ← rpois

(
µ2 + ρ

√
µ2

µ1

(y1 − µ1)

)

E(y2) = E(µ2 + ρ

√
µ2

µ1

(y1 − µ1)) = µ2,

Var(y2) = µ2 + ρ2µ2

µ1

Var(y1) =
1

1− ρ2
µ2,

Cov(y2, y1) = E(µ2y1 + ρ

√
µ2

µ1

y2
1 − ρ

√
µ1µ2y1)− µ2µ1 =

ρ

1− ρ2

√
µ2µ1,

Cor(y2, y1) = ρ;

4) y3 ← rpois

(
µ3 + ρ

√
µ3

µ2

(y2 − µ2)

)

E(y3) = µ3, Var(y2) =
1

1− ρ2
µ3,

Cov(y3, y2) =
ρ

1− ρ2

√
µ3µ2, Cor(y3, y2) = ρ,

Cov(y3, y1) = E[E(µ3y1 +ρ

√
µ3

µ2

y1(y2−µ2))|y1]−µ3µ1 =
ρ2

1− ρ2

√
µ3µ1,

Cor(y3, y1) = ρ2;

5) repeatedly generate yni ← rpois

(
µni−1 + ρ

√
µni

µni−1

(yni−1 − µni−1)

)
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E(yni) = µni, Var(yni) =
1

1− ρ2
µni, Cor(yr, ys) = ρ|r−s|.

Method 3): AR-1 Poisson with Var(µ) = aµ + bµ2

• Input: N, ni, β = c(0, 1)T , ρ, xj = log(runif(ni)+1:ni), and µj = exp(xT
j β).

• Generate yj = (yj1, . . . , yj,ni)
T for subject j (omit j for convenience):

1) y1 ← rpois(µ1 ∗ t1), where t1 ← rgamma(a1, a1),

a1 =
µ1

(a− 1) + b ∗ µ1

.

E(y1) = E(µ1t1) = µ1,

Var(y1) = E(µ1t1) + V (µ1t1) = µ1 + µ2
1/a1 = aµ1 + bµ2

1;

2) y2 ← rpois(η2 ∗ t2), where t2 ← rgamma(a2, a2),

η2 = µ2 + ρ

√
aµ2 + bµ2

2

aµ1 + bµ2
1

(y1 − µ1)

and

a2 =
µ2

2 + ρ2(aµ2 + bµ2
2)

(aµ2 + bµ2
2)(1− ρ2)− µ2

.

E(y2) = E(η2)E(t2) = µ2,

Var(y2) = E(η2t2) + V (η2t2)

= E(η2)E(t2) + E(η2
2)E(t22)− (E(η2))

2(E(t2))
2

= µ2 +

(
µ2

2 + ρ2 aµ2 + bµ2
2

aµ1 + bµ2
1

(aµ1 + bµ2
1)

)(
1 +

1

a2

)
− µ2

2

= aµ2 + bµ2
2,

Cov(y2, y1) = E(y2y1)− µ2µ1

=

(
E(y2)E(y1)E(t2) + ρ

√
aµ2 + bµ2

2

aµ1 + bµ2
1

E(t2)(E(y2
1)− µ1E(y1))

)
− µ2µ1

= ρ

√
(aµ2 + bµ2

2)(aµ1 + bµ2
1),

Cor(y2, y1) = ρ.

3) y3 ← rpois(η3 ∗ rgamma(a3, a3), where

η3 = µ3 + ρ

√
aµ3 + bµ2

3

aµ2 + bµ2
2

(y2 − µ2)
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and

a3 =
µ2

3 + ρ2(aµ3 + bµ2
3)

(aµ3 + bµ2
3)(1− ρ2)− µ3

.

E(y3) = µ3,

Var(y3) = aµ3 + bµ2
3,

Cov(y3, y2) = ρ

√
(aµ3 + bµ2

3)(aµ2 + bµ2
2),

Cor(y3, y2) = ρ,

Cov(y3, y1) = E(y3y1)− µ3µ1

= µ3µ1 + ρ

√
aµ3 + bµ2

3

aµ2 + bµ2
2

(E(y1y2)− µ2µ1)− µ3µ1

= ρ2
√

(aµ3 + bµ2
3)(aµ1 + bµ2

1),

Cor(y3, y1) = ρ2.

4) repeatedly generate yj ← rpois(ηj ∗ rgamma(aj , aj)), where

ηj = µj + ρ

√
aµj + bµ2

j

aµj−1 + bµ2
j−1

(yj−1 − µj−1)

and

aj =
µ2

j + ρ2(aµj + bµ2
j )

(aµj + bµ2
j )(1− ρ2)− µj

,

E(yi) = µi, Var(yi) = aµi + bµ2
i ,

Cov(yr, ys) = ρ|r−s|
√

(aµr + µ2
r)(aµs + bµ2

s), Cor(yr, ys) = ρ|r−s|.

III.2 R code for correlated multivariate generation

In this appendix, we list the R code for generating multivariate correlated data

for reference. Other R code for the simulation studies are available upon request

from the author.

1. Correlated normal data

gennorm<-function(K, n, b, cv) { y<-matrix(NA,K*n,4)

dimnames(y)<-list(NULL,c("id","yi","xi","time"))
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for (i in 1:K) {

xi<- runif(n)+c(1:n)

id<-rep(i,n)

time<-1:n

mu<-b[1]+b[2]*xi

err<-t(cv)%*%rnorm(n)

yi<-mu+sigma*err

y[((i-1)*n+1):(i*n),] <-cbind(id,yi,xi,time)

}

y }

2. Correlated normal data

#simulate a single correlated lognormal error vector

mlnormal<-function(n, mu, V) { y<-rep(NA,n)

a<-log(1+diag(V)/mu^2)

m<-log(mu)-a/2

mm<-outer(m,m,FUN="+")

aa<-outer(a,a,FUN="+")

xmu<-mm+aa/2

A<-log(V+exp(xmu))-xmu

y<-m+t(chol(A))%*%rnorm(n)

return(exp(y))

} #simulation for a multivariate correlated lognormal data

Mlnormal<-function(K, n, btrue, Rtrue) # mu is mean of yi, V is

variance of yi { y<-matrix(NA,K*n,4)

dimnames(y)<-list(NULL,c("id","yi","xi","time"))

for (i in 1:K)

{ time<-1:n

xi<-log(time+runif(n))

id<-rep(i,n)

eta<-btrue[1]+btrue[2]*xi

mui<-exp(eta) # mean

Atrue<-diag(mui) # s.e., variance is mu^2

Vtrue<-Atrue%*%Rtrue%*%Atrue # covariance

yi<-mlnormal(n,mui,Vtrue)

y[((i-1)*n+1):(i*n),] <-cbind(id,yi,xi,time)

}

y }

3. Correlated overdispersed Poisson data

# generate overdispered Poisson, mean=exp(beta*x),var=mu+lamda*mu^2
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rcnorm<-function(mu, Sigma) y<-mu+t(chol(Sigma))%*%rnorm(length(mu))

varf1<-function(mean) var<-mean+lambda*mean^2

mvrpois<-function(K, n, b, rho) { y<-matrix(NA,K*n,4)

dimnames(y)<-list(NULL,c("id","yi","xi","time"))

for (i in 1:K) {

id<-rep(i,n)

time<-1:n

xi<-log(runif(n)+1:n)

mui<-exp(b[1]+b[2]*xi)

var<-varf1(mui) #overdispersion

covy<-diag(sqrt(var))%*%ar1(rho,n)%*%diag(sqrt(var))# cov. of y

coverr<-diag(1/mui)%*%(covy-diag(mui))%*%diag(1/mui)# cov. of error

R0<-sqrt(coverr/lambda)

#eigen(R0)

z<-matrix(0,n,n)

err<-yi<-rep(0,n)

d=2/lambda

for(j in 1:d) z[,j]<-rcnorm(rep(0,n), R0)

#for(j in 1:d) z[,j]<-mvrnorm(n,rep(0,n),R0)

for(j in 1:n) {

err[j]=sum(z[j,]^2) / 4

yi[j]<-rpois(1,mui[j]*err[j])

}

y[((i-1)*n+1):(i*n),] <-cbind(id,yi,xi,time)

}

y }

## generate overdispersed Posisson data with AR(1) correlation

structure with var = mu/(1-rho^2)

varf2<-function(mu) mu/(1-rho^2)

genarpoi2 <- function(N, ni, rho, muvec) { y0 <-rpois(N,muvec[,1])

out <- matrix(NA, nr = N, nc = ni)

out[,1] <- rpois(N, muvec[,1]+ rho*sqrt(1/(1-rho^2))*(y0-muvec[,1]))

for(j in 2:ni)

out[,j] <- rpois(N, muvec[,j]+ rho*sqrt(muvec[,j]

/muvec[,j-1])*(out[,j-1]-muvec[,j-1]))

out

}
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AR1poisson<-function(K, n, b, rho) { y<-matrix(NA,K,n)

x<-matrix(log(rep(1:n,rep(K,n))+runif(K*n)), nc=n) # the covariate matrix

#x <- t(matrix((1:n)*1 + 0*rnorm(K*n),nr=n)) # covariate

mu <- exp(b[1]+b[2]*x) # mean matrix

y<-genarpoi2(K, n, rho, mu)

dd<- as.data.frame(cbind(y=as.numeric(t(y)),x=as.numeric(t(x))))

dd$id<-as.vector(t(matrix(rep(c(1:K),n),nc=n)))

dd

}

## A more general approach to generate AR1 Poisson data using gamma

frailty model;

varf3<-function(mu) g1*mu+g2*mu^2

genarpoi <- function(K, n, rho,g1,g2)

{ y<-x<-mu<-id<-matrix(NA,K,n)

id<-rep(1:K, rep(n,K))

x1<-log(1+runif(K))

x[,1]<-x1

mu1<-exp(x1) # mu=exp(b0+b1*x), b0=0, b1=1

mu[,1]<-mu1

a1<-mu1/(g1-1+g2*mu1)

y1<-rpois(K,mu1*rgamma(K,a1,a1))

y[,1]<-y1

for( j in 2:n){

x2<-log(j+runif(K))

x[,j]<-x2

mu2<-exp(x2)

mu[,j]<-mu2

eta<-mu[,j]+rho*sqrt((g1*mu[,j]+g2*(mu[,j])^2)

/(g1*mu[,j-1]+g2*(mu[,j-1])^2))*(y[,j-1]-mu[,j-1])

a2<-((mu[,j])^2+rho^2*(g1*mu[,j]+g2*(mu[,j])^2))

/((g1*mu[,j]+g2*(mu[,j])^2)*(1-rho^2)-mu[,j])

y[,j]<-rpois(K,eta*rgamma(K,a2,a2))

}

yy<-(as.numeric(t(y)))

xx<-(as.numeric(t(x)))

df<-matrix(NA,K*n,3)

dimnames(df)<-list(NULL,c("id","yi","xi"))

as.data.frame(cbind(id,yy,xx))

}
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Appendix III

Edgeworth expansion for TK

For the derivation of the Edgeworth expansion for the statistic

TK =

∑K
i=1 Ui√∑K
i=1 U2

i

=

∑K
i=1 Ui

V̂
,

we begin with its characteristic function:

φK(t) = EeitTK = exp

{
itγ1,K +

(it)2

2
γ2,K +

(it)3

6
γ3,K + . . .

}

First prepare some results for the moments of U (γ and κ are respectively the

skewness and kurtosis of U). The right row for the raw moments of average U is obtained

from the left row and the following relationships: E(UiUjUk) = 0 and E(UiUjUkUl) = 0

if one index differs from the rest; E(U2
i U2

j ) = σ4.

E(U) = 0 E(U) = 0

E(U2) = σ2 E(U 2) = K−1 σ2

E(U3) = γ σ3 E(U 3) = K−2 γ σ3

E(U4) = (κ + 3) σ4 E(U 4) = K−3 σ4 (κ + 3K)

Some other useful preliminary results:

• E(
K∑

i=1

U2
i ) = Kσ2 = V 2;

• E[(
K∑

i=1

U2
i )2] = K(κ + 3)σ4 + K(K − 1)σ4 = Kσ4 (κ + 2 + K);

• E[
K∑

i=1

Ui (
K∑

i=1

U2
i )] = E[

K∑

i=1

Ui (
K∑

i=1

Ui)
2] = K E(U3) = Kγ σ3;
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• E[
K∑

i=1

U2
i (

K∑

i=1

Ui)] = K E(U3) = Kγ σ3;

• E[

K∑

i=1

U2
i (

K∑

i=1

U2
i )] = E[

K∑

i=1

U2
i (

K∑

i=1

Ui)
2] = K σ4 (κ + 2 + K).

• For the variance estimator V̂ 2 =
K

K − 1

K∑

i=1

(Ui − U)2 :

E(V̂ 2) = Kσ2 = V 2 ;

E

[
K∑

i=1

Ui V̂ 2

]
= γ σ3 ;

E

[(∑
Ui

)2
V̂ 2

]
= K σ4 (κ + 2 + K) .

We write

K∑

i=1

as
∑

later on to make the presentation clearer. Express TK as

∑
Ui

V

(
1 +

V̂ 2 − V 2

V 2

)−1/2

,

to apply Taylor expansion, then the first four raw moments of TK can be computed as

follows:

µ′
1, K = E(TK) = E

∑
Ui

V

[
1− 1

2

(
V̂ 2 − V 2

V 2

)
+ O(K−3/2)

]

= E

(∑
Ui

V

)
− 1

2V
E

[
∑

Ui

(
V̂ 2 − V 2

V 2

)]
+ O(K−3/2)

= − 1

2
K−1/2 γ + O(K−3/2);

µ′
2, K = E(T 2

K) = E
(
∑

Ui)
2

V 2



(

1 +
V̂ 2 − V 2

V 2

)−1



= E

∑
U2

i

V 2
− 1

V 4
E
[∑

U2
i (V̂ 2 − V 2)

]

+
1

V 6
E
[
(
∑

Ui)
2 (V̂ 2 − V 2)2

]
+ O(K−2)

= 1−K−1(κ + 2) + K−1(3 + 2γ2 + κ + 2) + O(K−2)

= 1 + K−1 (2γ2 + 3) + O(K−2);
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µ′
3, K = E(T 3

K) = E
(
∑

Ui)
3

V 3



(

1 +
V̂ 2 − V 2

V 2

)−3/2



= E
(
∑

Ui)
3

V 3

[
1− 3

2

V̂ 2 − V 2

V 2
+ O(K−3/2)

]

= −7

2
K−1/2 γ + O(K−3/2);

µ′
4, K = E(T 4

K) = E
(
∑

Ui)
4

V 4



(

1 +
V̂ 2 − V 2

V 2

)−2



= E
(
∑

Ui)
4

V 4


1− 2

(
V̂ 2 − V 2

V 2

)
+ 3

(
V̂ 2 − V 2

V 2

)2

+ O(K−2)




= (3 + K−1κ)− 2K−1[4γ2 + 6 (κ + 2)] + 30K−1

+3K−1[12γ2 + 3 (κ + 2)] + . . .

= 3 + K−1(28γ2 − 2κ + 24) + O(K−2),

where γ = EU3/σ3 and κ = EU4/σ4 − 3 are the third and fourth cumulants of U .

Therefore by the relationship between cumulants and raw moments, one can obtain:

γ1, K = µ′
1, K =

1

2
K−1/2 γ + O(K−3/2);

γ2, K = µ′
2, K − µ′

1, K
2 = 1 +

1

4
K−1 (7γ2 + 12) + O(K−2);

γ3, K = µ′
3, K − 3µ′

2, Kµ′
1, K + 2µ′

1, K
3 = −2K−1/2γ + O(K−3/2);

γ4, K = µ′
4, K − 4µ′

1, Kµ′
3, K − 3µ′

2, K
2 + 12µ′

1, K
2µ′

2, K − 6µ′
1, K

4

= K−1 (12γ2 − 2κ + 6) + O(K−2)

Substituting the above cumulants in the characteristic function of TK , it follows by
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Taylor expansion of exponential function that:

φK(t) = exp

{
− t2

2
+ K−1/2

[
−γ

2
it− γ

3
(it)3

]

+ K−1

[
(it)2

8
(7γ2 + 12) +

(it)4

4!
(12γ3 − 2κ + 6)

]
+ . . .

}

= e−t2/2
{

1 + K−1/2
[
−γ

2
it− γ

3
(it)3

]

+ K−1

[
(it)2

8
(7γ2 + 12) +

(it)4

4!
(12γ3 − 2κ + 6)

+
1

2

(
−γ

2
it− γ

3
(it)3

)2
]

+ . . .

}

= e−t2/2
{

K−1/2
[
−γ

2
it− γ

3
(it)3

]

+ K−1

[
(it)2

(
γ2 +

3

2

)
+ (it)4

(
− 1

12
κ +

2

3
γ2 +

1

4

)
+ (it)6

γ2

18

]
+ . . .

}
.

By Fourier transform, it can be obtained that:

P (TK ≤ x) = Φ(x) + ϕ(x)

{
K−1/2

[γ
2

H0(x) +
γ

3
H2(x)

]
+ K−1

[
−
(

γ2 +
3

2

)
H1(x)

+

(
1

12
κ− 2

3
γ2 − 1

4

)
H3(x)− γ2

18
H5(x)

]
+ . . .

}

= Φ(x) + ϕ(x)
{

K−1/2q1(x) + K−1q2(x) + O(K−3/2)
}

,

where Hi(x) are Hermite Polynomials defined by

φ(x)Hj(x) = (−1)j
[

dj

dxj
φ(x)

]
,

and

q1(x) =
1

6
γ (2x2 + 1);

q2(x) = x

{
1

12
κ (x2 − 3)− 1

18
γ2 (x4 + 2x2 − 3) +

1

4
(x2 + 3)

}
.

This expansion of remainder O(K−j/2) is valid if U has an absolutely continuous dis-

tribution and E(|U |j+2) <∞ (Hall 1987).
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[3] Chebyshev, P. L. (1890). Sur deux théorèmes relatifs aux probabilités. Acta Math-

ematica 14, 305-315.

[4] Claseskens, G., Aerts, M. and Molenberghs, G. (2003). A quadratic bootstrap

method and improved estimation in logistic regression. Statistics & Probability Let-

ters 61, 383-394.

[5] Crowder, M. J. (1995). On the use of a working correlation matrix in using gener-

alised linear models for repeated measurements. Biometrika 82, 407-410.

[6] Davis, C. S. (2001). Statistical Methods for the Analysis of Repeated Measurements.

Springer-Verlag, New York.

[7] Davis, R. A., Dunsmuir, W. T. M. and Wang, Y. (2000). On autocorrelation in a

Poisson regression model. Biometrika 87, 491-505.s

[8] Diggle, P. J., Heagerty, P., Liang, K. - Y. and Zeger, S. L. (2002). Analysis of

Longitudinal Data. Oxford University Press, Oxford.

[9] Dobson, A. J. (1990). Introduction to Generalized Linear Models. Oxford University

Press, Oxford.

[10] Efron, B. (1979). Bootstrap methods: another look at the jackknife. Annals of

Statistics 7, 1-26.

[11] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling Plans.

Philadelphia: Society for Industrial and Applied Mathematics.

[12] Efron, B. (1992). Six questions raised by the bootstrap. Exploring the limits of

bootstrap, Lepage, R. and Billard, L. (Ed.). Wiley, pp. 99-126.

[13] Efron, B. and Tibshirani, R. J. (1994). An Introduciton to the Bootstrap. Chapman

and Hall, New York.



Bibliography 128

[14] Emond, M. J., Ritz, J. and Oakes, D. (1997). Bias in GEE estimates from mis-

spsecified models for longitudinal data. Communications in Statistics, Theory and

Methods 26, 15-32.

[15] Fisher, R. A. (1935). The Design of Experiments. Oliver & Boyd, Edinburgh.

[16] Fitzmaurice, G., Laird, N. and Ware, J. (2004). Applied Longitudinal Analysis.

John Wiley and Sons, New York.

[17] Good, P. I. (2001). Resampling Methods: a practical guide to data analysis..

Birkhauser.

[18] Grizzle, J. E., Starmer, C. F. and Koch, G. G. (1969). Analysis of categorical data

by linear models. Biometrics 25, 489-504.

[19] Hall, D. B. (2001). On the application of extended quasi-likelihood to the clustered

data case. Canadian Journal of Statistics 29, 77-97.

[20] Hall, D. B. and Severini, T. A. (1998). Extended generalized estimating equations

for clustered data. Journal of the American Statistical Association 93, 1365-1375.

[21] Hall, P. (1987). Edgeworth expansion for Student’s t statistic under minimal mo-

ment conditions. Annals of Probability 15, 920-931.

[22] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, New

York.

[23] Hardin, J. W. and Hilbe, J. M. (2002). Generalized Estimating Equations. Chapman

and Hall / CRC.

[24] He, X. and Hu, F. (2002). Markov Chain Marginal Bootstrap. Journal of the Amer-

ican Statistical Association 97, 783-795.

[25] Henderson, R. and Shimakura, S. (2003). A serially correlated gamma frailty model

for longitudinal count data. Biometrika 90, 355-366.

[26] Hu, F. (2001). Efficiency and Robustness of a Resampling M-Estimator in the

Linear Model. Journal of Multivariate Analysis 78, 252-271.

[27] Hu, F. and Kalbfleisch, J. D. (2000). The estimating function bootstrap (with

discussions). Canadian Journal of Statistics 28, 449-499.

[28] Hu, F. and Zidek, J. V. (1995). A bootstrap based on the estimating equations of

the linear model. Biometrika 82, 263-275.

[29] Jiang, W. and Kalbfleisch J. D. (2004). Resampling methods for estimat-

ing functions with U-statistic structure. Working Paper Series. The Uni-

versity of Michigan Department of Biostatistics. Working Paper 33. URL:

http://www.bepress.com/umichbiostat/paper33.

[30] Jiang, J. and Zhang, W. (2001). Robust estimating in generalised linear mixed

models. Biometrika 88, 753-765.



Bibliography 129

[31] Jin, Z., Ying, Z. and Wei, L. J. (2001). A resampling method by perturbing the

minimand. Biometrika 88, 381-390.

[32] Joanes, D. N. and Gill, C. A. (1998). Comparing measures of sample skewness and

kurtosis. The Statistician 47, 183-189.

[33] Kauermann, G. and Carroll, R. J. (2001). A note on the efficiency of sandwich

covariance matrix estimation. Journal of the American Statistical Association 96,

1387-1396.

[34] Koch, G. G., Landis, J. R., Freeman, J. L, Freeman, Jr., D. H. and Lehnen, R.

G. (1977). A general methodology for the analysis of experiments with repeated

measurements of categorical data. Biometrics 33, 133-158.

[35] Kurtz, A. K. (1948). A research test of Rorschach test. Personnel Psychology 1,

41-53.

[36] Lahiri., S. N. (2003). Resampling Methods for Dependent Data. Springer.

[37] Lele, S. (1991a). Jackknifing linear estimating equations: asymptotic theory and

applications in stochastic processes. Journal of the Royal Statistical Society, Series

B 53, 253-267.

[38] Lele, S. (1991b). Resampling using estimating equations. Estimating Functions,

Godambe V.P. (Ed.). Oxford University Press, pp. 295-304.

[39] Li, B. (1998). An optimal estimating equation based on the first three cumulants.

Biometrika 85, 103-114.

[40] Liang, K. - Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized

linear models. Biometrika 73, 13-22.

[41] Liang, K. - Y., Zeger, S. L. and Qaqish, B. (1992). Multivariate regression analyses

for categorical data (with discussion). Journal of the Royal Statistical Society, Series

B 54, 3-40.

[42] Lipsitz, S. R., Laird, N. M. and Harrington, D. P. (1990a). Generalized estimating

equations for correlated binary data: using the odds ratio as a measure of association.

Biometrika 78, 153-160.

[43] Lipsitz, S. R., Laird, N. M. and Harrington, D. P. (1990b). Using the Jackknife to

Estimate the Variance of Regression Estimators from Repeated Measures Studies.

Communications in Statistics, Theory and Methods 19, 821-845.

[44] Liu, R. Y. (1988). Bootstrap procedures under some non-i.i.d. models. Annals of

Statistics 16, 1696-1708.

[45] Liu, R. Y. and Singh, K. (1992). Efficiency and Robustness in Resampling. Annals

of Statistics 20, 370-384.

[46] Mancl, L. A. and DeRouen, T. A. (2001). A covariance estimator for GEE with

improved small-sample properties. Biometrics 57, 126-134.



Bibliography 130

[47] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and

Hall, London.

[48] Moulton, L. H. and Zeger, S. L. (1989). Analyzing repeated measures on generalized

linear models via the bootstrap. Biometrics 45, 381-394.

[49] Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models. Journal

of the Royal Statistical Society, Series A 135, 370-384.

[50] Paik, M. C. (1988). Repeated measurement analysis for nonnormal data in small

samples. Communications in Statistics, Simulation and Computation 17, 1155-1171.

[51] Pan, W. (2001). On the robust variance estimator in generalised estimating equa-

tions. Biometrika 88, 901-906.

[52] Pan, W., Louis, T. A. and Connett, J. E. (2000). A note on marginal linear regres-

sion with correlated response data. The American Statistician 54, 191-195.

[53] Park, T., Davis, C. S. and Li, N. (1998). Alternative GEE estimation procedures for

discrete longitudinal data. Computational Statistics and Data Analysis 28, 243-256.

[54] Parzen, M.I., Wei, L.J. and Ying, Z. (1994). A resampling method based on pivotal

estimating functions. Biometrika 81, 341-350.

[55] Pepe, M. S. and Anderson, G. L. (1994). A cautionary note on inference for

marginal regression models with longitudinal data and general correlated response

data. Communications in Statistics, Simulation and Computation 23, 939-951.

[56] Prentice, R. L. (1988). Correlated binary regression with covariates specific to each

binary observation. Biometrics 44, 1033-1048.

[57] Prentice, R. L. and Zhao, L. P. (1991). Estimating equations for parameters in

means and covariances of multivariate discrete and continuous responses. Biometrics

47, 825-839.

[58] Quenouille, M. (1949). Approximate tests of correlation in time series. Journal of

the Royal Statistical Society, Series B 11, 18-84.

[59] Schildscrout, J. S. and Heagerty, P, J. (2005). Regression analysis of longitudi-

nal binary data with time-dependent environmental covariates: bias and efficiency.

Biostatistics 6, 633-652.

[60] Sherman, M. and le Cessie, S. (1997). A comparison between bootstrap methods

and generalized estimating equations for correlated outcomes in generalized linear

models. Communications in Statistics, Simulation and Computation 26, 901-925.

[61] Tian, L., Liu, J., Zhao, Y. and Wei, L. J. (2004). Statistical inference based on

non-smooth estimating functions. Biometrika91, 943-954.

[62] Timm, N. H. (1980). Multivariate analysis of variance of repeated measurements. In

Krishnaiah, P. R. and Sen, P. K. editors, Handbook of Statistics, Volume 1: Analysis

of Variance, pages 41-87. Elsevier Science Publishers, Amsterdam.



Bibliography 131

[63] Tukey, J. W. (1958). Bias and confidence in not quite large samples. Annals of

Mathematical Statistics 29, 614.

[64] Wang, Y. - G. and Carey, V. (2003). Working correlation structure misspecification,

estimation and covariate design: Implications for generalised estimating equations

performance. Biometrika 90, 29-41.

[65] Wang, Y. - G. and Carey, V. (2004). Unbiased estimating equations from working

correlation models for irregularly timed repeated measures. Journal of the American

Statistical Association 99, 845-853.

[66] Wang, Y. - G. and Li, Y. (2005). Smooth bootstrap methods for analysis of longi-

tudinal data. submitted.

[67] Ware, J. H. (1985). Linear models for the analysis of longitudinal studies. The

American Statistician 39, 95-101.

[68] Wedderburn, R. W. M. (1974). Quasilikelihood functions, generalized linear models

and the Gauss-Newton method. Biometrika 61, 439-447.

[69] Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regres-

sion analysis (with discussion). Annals of Statistics 14, 1261-95.

[70] Yan, J. and Fine, J. (2004). Estimating equations for association structures. Statis-

tics in Medicine 23, 859-874.

[71] Zeger, S. L. and Liang, K. - Y. (1992). An overview of methods for the analysis of

longitudinal data. Statistics in Medicine 11, 1825-1839.

[72] Zhao, L. P. and Prentice, R. L. (1990). Correlated binary regression using a

quadratic exponential model. Biometrika 77, 642-648.

[73] Ziegler, A., Kastner, C., Brunner, D. and Blettner, M. (2000). Familial association

of lipid profile: a generalized estimating equations approach. Statistics in Medicine

19, 3345-3357.


