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Abstract 
 

 

Fundus image of human retina serves as a significant avenue for clinical doctors to 

monitor and probe the progress and severity of various diseases. Cardiovascular diseases 

such as stroke and coronary heart disease are the leading causes of morbidity and 

mortality worldwide and narrowing of the retinal arterioles has long been recognized as 

an early feature of hypertensive retinopathy and has been suggested to predict 

cardiovascular disease and mortality. The temporal registration of retinal images provides 

an important groundwork for doctors to monitor the progression of diseases. In this 

paper, we describe a tree matching approach to register retinal images. We model each 

vessel in a retinal image as a tree, called Vessel Feature Tree (VFT).  We design a 

matching function to compute the similarity of a pair of vessels based on their VFTs. We 

develop a global alignment algorithm to compute the best match between the vessels in 

two images. Experiment results on 300 pairs of real-world retina images indicate that the 

proposed approach is able to achieve an accuracy of 93% and we prove that our proposed 

algorithm outperforms other latest developed algorithms. 
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Chapter 1

INTRODUCTION

Image registration is the process of overlaying two or more images of the same

scene taken at different times, from different viewpoints, and/or by different sen-

sors. It geometrically aligns two images - theTemplate Imageand theInput Image.

The differences between Template Image and Input Image are introduced due to

different imaging conditions and changes over time. Image registration is a cru-

cial step in all image analysis tasks in which the final information is gained from

the combination of various data sources like in image fusion, change detection,

and multi-channel image restoration.

Typically, registration is required in remote sensing (multi-spectral classifica-

tion, environmental monitoring, change detection, image mosaicing, weather fore-

casting, creating super-resolution images, integrating information into geographic

information systems (GIS)), in medicine (monitoring retinal vessel changes to

screen heart disease progress, treatment verification, comparison of the patient’s

data with anatomical atlases), in cartography (map updating), and in computer vi-

sion (target localization, automatic quality control). During the last decade, image
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acquisition devices have undergone rapid development and growing amount and

diversity of obtained images invoked the research on automatic image registra-

tion. In general, the applications of image registration can be divided into four

main groups according to the manner of the image acquisition:

• Different viewpoints (multi-view analysis). Images of the same scene are

acquired from different viewpoints. The aim is to gain larger a 2D view or a

3D representation of the scanned scene. Examples of applications: Remote

sensing mosaicing of images of the surveyed area. Computer vision - shape

recovery (shape from stereo).

• Different times (multi-temporal analysis). Images of the same scene are ac-

quired at different times, often on regular basis, and possibly under differ-

ent conditions. The aim is to find and evaluate changes in the scene which

appeared between the consecutive image acquisitions. Examples of appli-

cations: Remote sensing - monitoring of global land usage, landscape plan-

ning. Computer vision - automatic change detection for security monitor-

ing, motion tracking. Medical imaging - monitoring of the healing therapy,

monitoring of the tumor evolution, monitoring of the vessel width change

in human retinas.

• Different sensors (multimodal analysis). Images of the same scene are ac-

quired by different sensors. The aim is to integrate the information ob-

tained from different source streams to gain more complex and detailed

scene representation. Examples of applications: Remote sensing - fusion

of information from sensors with different characteristics like panchromatic

images, offering better spatial resolution, color/multi-spectral images with
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better spectral resolution, or radar images independent of cloud cover and

solar illumination. Medical imaging - combination of sensors recording the

anatomical body structure like magnetic resonance image (MRI), ultrasound

or CT with sensors monitoring functional and metabolic body activities like

positron emission tomography (PET), single photon emission computed to-

mography (SPECT) or magnetic resonance spectroscopy (MRS). Results

can be applied, for instance, in radiotherapy and nuclear medicine.

• Scene to model registration. Images of a scene and a model of the scene

are registered. The model can be a computer representation of the scene,

for instance maps or digital elevation models (DEM) in GIS, another scene

with similar content (another patient), ’average’ specimen, etc. The aim

is to localize the acquired image in the scene/model and/or to compare

them. Examples of applications: Remote sensing - registration of aerial or

satellite data into maps or other GIS layers. Computer vision - target tem-

plate matching with real-time images, automatic quality inspection. Med-

ical imaging - comparison of the patient’s image with digital anatomical

atlases, specimen classification.

1.1 Retinal Image Registration

Digital retinal images are widely used in the diagnosis and follow-up manage-

ment of patients with eye disorders such as glaucoma, diabetic retinopathy, and

age-related macular degeneration. Figure 1.1 shows a digital retinal image. Op-

tic Disc is the circular area in the back of the inside of the eye where the optic

nerve connects to the retina. Branching Point is any point in vessel where a vessel
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segment splits into two children segments. Crossing Point is any point in reti-

nal image where two vessels intersect with each other. The vascular structure of

the retina plays an important role in revealing the severity of eye-related diseases.

Clinical studies have suggested that the narrowing of retinal arterioles may be an

early indicator of cardiovascular diseases [65]. A metric for determining the nar-

rowing of arterioles is to compute the ratio of the diameters of arteries and veins

in a digital retina image [65]. However, as diseases typically evolve over time,

doctors need to monitor the changes in the diameters of vessel to determine the

degree of arterioles narrowing. The first step to monitor changes in the diameters

of the vessels is to register the vessels between a patient’s retinal images taken at

different time points.

Retinal image registration is a challenging task because it requires the accu-

rate identification of important features in an image and an effective matching

algorithm to find the correspondence of features between pair of images. This is

difficult as the intensity of the retina can vary greatly and the positions of the ves-

sels may shift. Further, the onset of diseases may also affect the vascular structure

itself with vessels disappearing over time and new vessels growing. Figure 1.2

shows an example of patient’s retinal images taken 5 years apart. We observe new

vessels growing from a major vessel after 5 years. Figure 1.3 shows the result-

ing overlap image. Figure 1.4 shows another example where an existing vessel

disappears. Figure 1.5 shows the resulting overlap image. These changes in the

vascular structure makes registration of retinal images difficult. Vessels need to

be matched to their corresponding ones between the two images, and once vessels

are correctly registered, and segments of each vessel are matched, doctors are able

to monitor the changes in width of vessels over time and assess the evolution of
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diseases.

Figure 1.1: An example of a retinal image

The majority of registration methods consists of the following four steps:

• Feature detection. Salient and distinctive objects (closed-boundary regions,

edges, contours, line intersections, etc.) are detected. For further process-

ing, these features can be represented by their point representatives (line

endings, distinctive points), which are called control points (CPs).

• Feature matching. In this step, the correspondence between the features

detected in the Input Image and those detected in Template Image is es-

tablished. Various feature descriptors and similarity measures along with

spatial relationships among the features are used for that purpose.
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(a) Template Image (b) Input Image

Figure 1.2: (a) and (b) are retinal images of a patient’s retina taken 5 years apart.
Vessel segments x and y are new.

Figure 1.3: Result of registration for images in Figure 1.2, the centerline (high-
lighted in red) of vessels in Input Image is overlapped onto vessels (highlighted in
white) in Template Image
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(a) Template Image (b) Input Image

Figure 1.4: (a) and (b) are retinal images of a patient’s retina taken 5 years apart.
Vessel segment z in (a) has disappeared in (b).

Figure 1.5: Result of registration for images in Figure 1.4, the centerline (high-
lighted in red) of vessels in Input Image is overlapped onto vessels (highlighted in
white) in Template Image
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• Transform model estimation. The type and parameters of the so-called map-

ping functions, aligning Input Image with Template Image are estimated.

The parameters of the mapping functions are computed by means of the

established feature correspondence.

• Image re-sampling and transformation. The Input Image is transformed by

means of the mapping functions. Image values in non-integer coordinates

are computed by the appropriate interpolation technique.

The implementation of each registration step has its problems. First, we have

to decide what kind of features is appropriate for the given task. The features

should be distinctive objects, which are frequently spread over the images and

easily detectable. For retinal image, the usual features chosen are vascular struc-

ture and its related features, such as branching or crossing points. Usually, the

physical interpretability of the features is demanded. The detected feature sets

in Template Image and Input Image must have enough common elements, even

in situations when the images do not cover exactly the same area or when there

are object occlusions or other unexpected changes. The detection methods should

have good localization accuracy and should not be sensitive to the assumed image

degradation. In an ideal case, the algorithm should be able to detect the same fea-

tures in all projections of the retina regardless of the particular image deformation.

In the feature matching step, problems caused by incorrect feature detection

or by image degradations can arise. Physically corresponding features can be dis-

similar due to the different imaging conditions and/or different spectral sensitivity

of retinal camera. The choice of the feature description and similarity measure

has to consider these factors. The feature descriptors should be invariant to the
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assumed degradations. Simultaneously, they have to be discriminable enough to

be able to distinguish among different features as well as sufficiently stable so as

not to be influenced by slight unexpected feature variations and noise. The match-

ing algorithm in the space of invariants should be robust and efficient. Single

features without corresponding counterparts in the other image should not affect

algorithm’s performance.

The type of the mapping functions should be chosen according to the a-priori

known information about the acquisition process and expected image degrada-

tions. If no a-priori information is available, the model should be flexible and

general enough to handle all possible degradations which might appear. The ac-

curacy of the feature detection method, the reliability of feature correspondence

estimation, and the acceptable approximation error need to be considered too.

Moreover, the decision about which differences between images have to be re-

moved by registration has to be done. It is desirable not to remove the differences

we are searching for if the aim is a change detection. This issue is very important

and extremely difficult.

Finally, the choice of the appropriate type of re-sampling technique depends

on the trade-off between the demanded accuracy of the interpolation and the com-

putational complexity. The nearest-neighbor or bilinear interpolation are sufficient

in most cases; however, some applications require more precise methods.

Many methods have been developed to tackle the retinal image registration

problem. Generally all methods can be categorized with respect to certain crite-

ria. We can classify registration techniques according to the similarity measures

they choose in transformation model estimation step, namely intensity-based and

feature-based approaches [44].
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Intensity-based approaches [11] [19] [41] [31] [33] [40] [43] [48] [63] [64]

use intensities or intensity gradients as similarity measures to optimize a trans-

formation function to realize the registration. These algorithms potentially have

a large number of local minimum and are expensive computationally . Moreover,

intensity-based approaches are highly dependent on the consistent brightness in

two images, and tend to fail if there is relatively big change in brightness between

two images.

Feature-based approaches [17] [21] [23] [37] [4] [13] [7] [22] [29] [45] [49]

[57] [66] align images based on correspondences between automatically detected

features in two images. These approaches utilize vessel trees and branch points

as similarity measure for matching. One major issue for feature-based approaches

is how to successfully extract features from images and matching to consistent

features. This problem is sometimes exacerbated by poor quality of image or

disease progress. Besides, these features are seldom static (e.g. the appear-

ance/disappearance of vessels), which may affect the registration accuracy.

1.2 Contributions

In this thesis, we investigate how to utilize tree matching techniques to perform

retinal image registration. We first conduct a comprehensive survey over existing

image registration algorithms, analyze some landmark techniques and summa-

rize their strengths and weakness. We first describe methods to extract features

from both Template Image and Input Image, including optic disc detection, vessel

structure reconstruction, and we propose our own methods to track vessels and ex-

tract features such as branching point, crossing point, with, branching angles that
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will be used during feature matching. Next we describe our approach to register

retinal images, we model vessel tree structure as rooted trees called Vessel Fea-

ture Tree (VFT), thereby transforming the image registration problem into a tree

matching problem. We propose a tree matching algorithm that utilizes both local

and global matching functions for registration. The local matching function calcu-

lates matching cost for each pair of potential matchingVFTs; the global matching

function minimizes the global matching cost, which is the sum of matching cost

for all matching pairs. The global matching function also takes into account of

vessel alignments. We utilize these two functions to eventually register vessels in

Template Image and Input Image. We perform a series of experiments to evaluate

the performance of our registration algorithm and experiment results show that

our algorithm is able to register vessels with high accuracy and robustness. From

300 randomly selected pairs of clinical retinal images, our proposed algorithm has

an average accuracy of 93%. It correctly matches all the vessels in 114 pairs of

images (100% accuracy), and achieves at least 90% accuracy in 75 pairs of im-

ages. 108 pairs of images achieve at least 80% accuracy. Only 3 pair of image has

an accuracy below 80% due to a lesion over a large area of retinal image surface

in theInput Image. We compare our proposed algorithm with existing algorithms

[17] and [57] and show that our algorithm outperforms them.

1.3 Thesis Organization

Chapter 2 gives a comprehensive survey of existing image registration algorithms

and analyze some landmark techniques. Chapter 3 presents method used in this

thesis to extract features from retinal images. Chapter 4 describes transforming
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retinal image registration problem into a tree matching problem, then it describes

modelling each vessel structure of retinal image into a structured tree, namely

Vessel Feature Tree (VFT) and finally presents matching functions to perform

local matching and then global matching ofVFTs. By utilizing those matching

functions, we then elaborate our core algorithm to perform the registration of

vessel in two images. In Chapter 5, we perform a series of experiments to evaluate

the performance of our registration algorithm. In Chapter 6 makes a conclusion

and identifies some possible extensions of our works.
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Chapter 2

LITERATURE REVIEW

2.1 General Medical Image Registration

Medical imaging is a vital component of a large number of applications, such ap-

plications occur throughout the clinical track of events; not only within clinical

diagnostics settings, but prominently so in the area of planning, consummation,

and evaluation of surgical and radiotherapeutical procedures. Since information

extracted from two images acquired clinically is usually of a complementary na-

ture, proper integration of useful data obtained from the separate images is often

desired. A first step in this integration process is to register those images.

Many techniques used in retinal image registrations are inspired by techniques

developed for general medical image registration or for other specific medical

purposes. Some of the techniques used in retinal image registration are incre-

mental work specially designed for retinal image topologies and characteristics.

Therefore, general medical image registration techniques have a huge influence

on retinal image registration and are of great interest to us. In this section, we
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will introduce some of the prominent general medical image registration tech-

niques proposed to gain a better perspective of the development history of image

registration. Then we will describe some techniques introduced for retinal image

registration specifically.

For general medical image based registration methods, they can be generally

divided into extrinsic and intrinsic. The former is based on foreign objects intro-

duced into the imaged space, and the latter is based on the image information as

generated by the patient.

2.1.1 Extrinsic Registration Methods

Extrinsic methods rely on artificial objects attached to the patient, objects which

are designed to be well visible and accurately detectable in all of the pertinent

modalities. As such, the registration of the acquired images is comparatively easy,

fast, can usually be automated, and, since the registration parameters can often be

computed explicitly, there is no need for complex optimization algorithms. The

main drawbacks of extrinsic registration are the prospective character, i.e., provi-

sions must be made in the pre-acquisition phase, and the often invasive character

of the marker objects. Non-invasive markers can be used, but as a rule are less

accurate.

Since extrinsic methods by definition cannot include patient related image in-

formation, the nature of the registration transformation is often restricted to be

rigid (translations and rotations only). Furthermore, if they are to be used with im-

ages of low (spatial) information content such as EEG or MEG, a calibrated video

image or spatial measurements are often necessary to provide spatial informa-
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tion for basing the registration on. Because of the rigid-transformation constraint,

and various practical considerations, use of extrinsic methods is largely limited to

brain and orthopedic ([52] [14]) imaging, although markers can often be used in

projective (2D) imaging of any body area. Non-rigid transformations can in some

cases be obtained using markers, e.g., in studies of animal heart motion, where

markers can be implanted into the cardiac wall.

2.1.2 Intrinsic registration methods

Intrinsic methods rely on patient generated image content only. Registration can

be based on a limited set of identified salient points (landmarks), on the align-

ment of segmented binary structures (segmentation based), most commonly object

surfaces, or directly onto measures computed from the image grey values (voxel

property based).

Landmark based registration methods

Landmarks can be anatomical, i.e., salient and accurately locatable points of the

morphology of the visible anatomy, usually identified interactively by the user

([27] [38] [34] [55] [51] [56] [61]), or geometrical, i.e., points at the locus of

the optimum of some geometric property, e.g., local curvature extrema, corners,

bifurcation points, etc, generally localized in an automatic fashion ([2] [60] [1]

[10] [58]). Landmark based registration is versatile in the sense that it can be

applied to any image. Landmark based methods are mostly used to find rigid or

affine transformations. Anatomical landmarks are also often used in combination

with an entirely different registration basis ([20] [34] [69] [9] [15]): methods that
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rely on optimization of a parameter space that is not quasiconvex are prone to

sometimes get stuck in local optima, possibly resulting in a large mismatch. A

drawback is that user interaction is usually required for the identification of the

landmarks.

In landmark based registration, the set of identified points is sparse compared

to the original image content, which makes for relatively fast optimization proce-

dures. Such algorithms optimize measures such as the average distance between

each landmark and its closest counterpart, or iterated minimal landmark distances.

For the optimization of the latter measure the Iterative closest point (ICP) algo-

rithm [5] and derived methods are popular.

Segmentation based registration methods

Segmentation based registration methods can be rigid model based ([59] [62] [61]

[69] [15]), where anatomically the same structures are extracted from both images

to be registered, and used as sole input for the alignment procedure. They can also

be deformable model based ([6] [3] [50] [58] [12]), where an extracted structure

(also mostly surfaces, and curves) from one image is elastically deformed to fit

the second image. Since the segmentation task is fairly easy to perform, and the

computational complexity relatively low, the method has remained popular. Many

follow-up papers aimed at automating the segmentation step, improving the op-

timization performance, or otherwise extending the method have been published.

A drawback of segmentation based methods is that the registration accuracy is

limited to the accuracy of the segmentation step. In theory, segmentation based

registration is applicable to images of many areas of the body, yet in practice the

application areas have largely been limited to neuro imaging, orthopedic imag-
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ing and retinal imaging. The methods are commonly automated but for the seg-

mentation step, which needs human instruction and therefore is performed semi-

automatically most of the times.

With deformable models however, the optimization criterion is different: it

is always locally defined and computed, and the deformation is constrained by

elastic modelling constraints imposed onto the segmented curve or surface. De-

formable curves appear in literature as snakes or active contours; 3D deformable

models are sometimes referred to as nets. The deformation process is always done

iteratively, small deformations at a time. Deformable model approaches are based

on a template model that needs to be defined in one image. Opposed to regis-

tration based on extracted rigid models, which is mainly suited for intra-subject

registration, deformable models are in theory very well suited for inter-subject

and atlasa registration, as well as for registration of a template obtained from a

patient to a mathematically defined general model of the templated anatomy. A

drawback of deformable models is that they often need a good initial position in

order to properly converge, which is generally realized by pre-registration of the

images involved. Another disadvantage is that the local deformation of the tem-

plate can be unpredictably erratic if the target structure differs sufficiently from

the template structure.

Voxel property based registration methods

The voxel property based registration methods stand apart from the other intrinsic

methods by the fact that they operate directly on the image grey values, with-

out prior data reduction by the user or segmentation. There are two distinct ap-

proaches: the first is to immediately reduce the image grey value content to a
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representative set of scalars and orientations, the second is to use the full image

content throughout the registration process.

Voxel property based methods use full image content. Theoretically, these

are the most flexible of registration methods, since they, unlike all other methods

mentioned, do not start with reducing the grey valued image to relatively sparse

extracted information, but use all of the available information throughout the reg-

istration process. Although voxel property based methods have been around a

long time, their use in extensive 3D/3D clinical applications has been limited by

the considerable computational costs.

2.2 Retinal Image Registration

Retinal image registration methods are limited to intrinsic feature based methods

because it is usually impossible to implant any extrinsic object into eyes. Existing

registration techniques can be categorized according to the similarity measures

they choose in transformation model estimation step, namely intensity-based and

feature-based approaches [44].

Intensity-based approaches [11] [19] [41] [31] [33] [40] [43] [48] [63] [64]

use intensities or intensity gradients as similarity measures to optimize a trans-

formation function to realize the registration. These algorithms potentially have

a large number of local minimum and are expensive. Moreover, intensity-based

approaches are highly dependent on the consistent brightness in two images, and

tend to fail if there is huge change in brightness between two images.

Feature-based approaches [17] [21] [23] [37] [4] [13] [7] [22] [29] [45] [49]

[57] [66] align images based on correspondences between automatically detected

18



features in two images. These approaches utilize vessel trees and branch points

as similarity measure for matching. One major issue for feature-based approaches

is how to successfully extract features from images and matching to consistent

features. This problem is sometimes exacerbated by poor quality of image or

disease progress. Besides, these features are seldom static (e.g. the appear-

ance/disappearance of vessels), which may affect the registration accuracy. In

this section we describe in detail some landmark registration algorithms and then

analyze their performances.

2.2.1 Intensity-based Methods

Fourier Spectrum Method

Cideciyan [11] uses a multi-stage method to register retinal images. In the first

stage they compute the Fourier spectrums of the two images. If the Template

Image is a scaled, rotated and translated version of the Input Image then, in the

Fourier spectrum, image of the Template Image will be a rotated and scaled ver-

sion of the Input Image with the rotation and scaling parameters being the same

with the two original images. In the second stage the log polar transformation of

the Fourier spectrum images is computed, which converts the rotation and scaling

differences to a translation difference. In the third stage, the rotation and scaling

parameters are computed from the log-polar image pair using cross-correlation.

These parameters are then used to rotate and scale one of the original images. The

translation parameters can then be found via cross-correlation on the resulting

pair.

Although [11] reports some good results for images taken at the same sitting,
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images taken at different times may have large x translation; this would cause

problems if we use the Fourier spectrum. Changes in light intensity between sit-

tings could also cause problems with the use of cross-correlation in the second

and third stage of their method.

Signal Processor Assisted Method

Wade and Fitzke [64] describe an image processing system which they develop to

align autofluorescence and high-magnification images taken with a laser scanning

ophthalmoscope. However, they use a modern dedicated signal processor (Matrox

board) to aid their work. A window of the Template Image is matched against

Input Image taking the cross-correlation as the alignment measure. They make

full use of the hardware capabilities. For instance, a Gaussian filter to eliminate

noise, or the full refinements of the in-box algorithmic search.

The main focus of their work is to demonstrate the capabilities of a dedicated

image processing hardware for the registration of ophthalmologic images, but they

do not report in detail it success for sequences other than the original images.

Their algorithm runs at an average speed of 1 second on a Pentium 133MHz and

the dedicated signal processor (Matrox board) configuration.

Method Using Mutual Information

Ritter [48] uses the full image content for alignment and mutual information as

the similarity measure. These methods applied firstly on the registration of head

images in 1995, they do not extract corresponding features but make use of all

the information available. They measure the statistical dependence or information

redundancy between the image intensities of pixels corresponding at both images.
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In this algorithm, mutual information defined by entropy in mathematics is

modified to apply for retina images to serve as the similarity calculation. Mutual

information function has a natural defect, multiple local minima. In retinal image

registration, some images are registered at local minima instead of at the correct

global minimum. In order to tackle this problem, the algorithm adopts simulated

annealing that is designed to deal with local minima and does not presuppose

any particular shape for the function being searched. Further more, the algorithm

institutes a system of re-annealing incorporating pyramid sampling for speed and

allowing the search over fewer parameters. An interpolation is used for computing

the nearest neighbor for approximation.

Although successful, the simulated annealing algorithm is highly dependent

on a large number of parameters, 6 global plus 7 for each layer of the pyramidal

search. These parameters are hidden deep into the code, making it impossible for

a user to tune to any change in the image constraints. Their registration algorithm

runs at an average speed of 3 to 38 seconds, depending on the accuracy demanded.

A steep tradeoff between time and accuracy is required for their algorithm.

2.2.2 Feature-based Methods

Adaptive Adjacency Graphs

Jasiobedzki [23] suggests the use of active contours which conform to edges found

by previously processing the images. These contours are active in the sense that

they are controlled by an energy level that they try to minimize. This energy level

is affected by the shape of the contour and surrounding image. The active con-

tours for the Template Image are then mapped into an adaptive adjacency graph,
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which is simply a network of active contours where nodes are replaced by springs

that allow free movement of the contours meeting at that node. If the graph of

one image is placed over another image that has the same topology of contours,

then the graph will steadily move to match the Input Image, thereby successfully

registering two images.

The main disadvantage of this algorithm is that the active contours are at-

tracted only to features that they are initially close to. This means that the method

would fail whenever the deformation between images is large. In temporal images

it is not uncommon that x translation is as much as 70 pixels. This would make it

impossible for the contours to map to the correct features in the second image.

Method Using Automatically Selected Control Point Pairs

Hart [21] utilizes control points in retinal images to perform the registration. In

the proposed algorithm, a blood vessel filter [8] is applied to the green plane of

an RGB image to obtain a response map, and then this map of the blood vessel

filter is thinned to produce an image containing binary edge segments. The edge

segments are classified afterwards to be labelled as blood vessels or non-blood

vessels. Control points are identified by examining the ends of the edge segments.

For every two ends of edge segments that are within 10 pixels, a single control

point is extracted.

After the control points are extracted, a selection process is performed to pair

each control point in the Template Image with one in the Input Image, and the

next step involves removing those pairs that are more than 100 pixels apart on

a coordinate system based on the estimated center of the optic nerve. A further

reduction in pairs is then made by correlating the pixel intensities of a15∗15-pixel
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window centered on the control points. Erroneous pairs are now eliminated by

comparing the x and y scaling factors of the pairs. Those where the two factors are

quite different are discarded on the assumption that the aspect ratio between the

images is unlikely to vary greatly. Pairs that are too close to previously accepted

pairs are also eliminated.

A selection of the remaining pairs is then chosen and a least squares method

is used to fit the current transformation to these pairs. The estimate of the trans-

formation is then iteratively refined by removing the control point pair with the

greatest error and the pair that, with its exclusion, gives the best overall error re-

duction. This iterative process terminates when either there are only four control

points left or the mean square error drops below 5.0 pixels.

This algorithm does not work under some circumstances such as transition or

rotation cases; it also cannot provide high accuracy. As it uses correlation as a

measure of comparison it also has problems with temporal images that are very

different in color or intensity. This is also true for images taken from patients

with glaucoma. One of the signs of this disease is the loss of nerve fibers on the

retina and topography of the optic disc, which can cause a significant change in

pixel intensities between the two images. A further problem comes from the use

of the estimated location of the optic nerve, as errors in this can affect the final

registration. Blood vessels do not maintain the same position over time, this is a

case where this algorithm cannot handle.

Matrices-based Method

Mendonca et al. [37] propose a matrix-based method, which involves using clas-

sical edge-detection techniques on the two images and then quantifying these data

23



as two matrices for each image: one recording the horizontal component of the

location of edge features and the other storing the vertical component. Registra-

tion then becomes the task of aligning the two matrices to get the best fit possible,

the measure of fit being calculated from the addition of the matches between the

first and second pair of image matrices.

To perform the actual registration, a template area is chosen from the first pair

of matrices and then matched within the pair of matrices from the second image.

This is done using an exhaustive search.

While this comparison method clearly solves the problem of different inten-

sities, it leaves two major problems unsolved: it deals only with translation, not

rotation or scale changes, and it does not state clearly on how to choose the tem-

plate to be matched. While the largest type of misalignment of retinal images is

translation, there will be some cases where the eye is not situated at exactly the

same distance from the camera, or the patient’s head is tilted differently. These ef-

fects can lead to scale and rotation changes in the image data, which this algorithm

can hardly handle well.

Abstract Token based Method

Pinz and coworkers [45] describe a generic method for image registration that uses

tokens, which are symbolic representations based on structures extracted from the

image and do not require exact correspondence to work. The algorithm defines

an exponentially decreasing distance function and a hierarchical structure is built

with the dilate morphological operator, which proves to be robust and suitable for

a broad range of images. They also propose a method for a full mapping of the

human retina. They automate detection of the vessels by the following stages: a)
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extracting the edge elements along the boundary, b) grouping and search for cross

sections and c) combinations of cross sections to tubes.

Their algorithm runs at an average speed of 5 to 6 minutes on a SGI O2 +

KBVision hardware configuration. This time includes the full mapping of the

human retina, which includes automatic detection of vessels, removal of several

anatomical and pathological features: optic disc, fovea and foveola, skotoma and

sub-retinal leakage.

Method Using Vessels Detection and Hough Transform

Zana [66] uses the vascular tree for bifurcation point identification. An opening

with reconstruction using revolving linear structuring elements of size 15 pixels

is applied to remove the noise and nonlinear parts of the image. A sum of top

hats is used to enhance the contrast. Then the cross-curvature is calculated using

a principal curvature evaluation. After that a simple threshold is applied on every

positive value of the filtered curvature to detect vessel-like patterns. Eventually a

binary image with vessel structures is obtained.

A geodesic distance is computed on the binary image of nonvascular patterns.

Then a watershed is performed on the inverse of this distance image so that the

vessels can be reduced to one-pixel-wide paths. Bifurcation points are detected

using a supremum of openings with revolving structure elements with a T shape.

And each bifurcation point is labelled with surrounding vessel orientations.

The bifurcation points may not match exactly, but during the transformation,

angle between edges are preserved and bifurcation points can be identified by the

directions of the branches surrounding them by means of an appropriate measure

of similarity. According to the angle-based invariant, a probability is then com-
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puted for points to match. Then a Bayesian Hough transform is used to sort the

transformations with their respective likelihoods. A precise affine estimate is fi-

nally computed for most likely transformations. The best transformation is chosen

for registration.

However, this method only utilizes individual control points and there is a high

possibility that the control points are sparse and transformed so that the registra-

tion is prone to fail. Their registration algorithm runs at an average speed of 5 to

7 minutes on a Pentium 150 MHz CPU configuration.

Method Using Creases as Anatomical Landmarks

Lloret’s work [29] identifies the vessel structure as an important feature for regis-

tration. Vessels are reliable landmarks in retinal images because they are almost

rigid structures and they are depicted in all modalities and over time. Opposite

to the bifurcation points approach, using vessel structure do not have a strong

dependence of the quality of the segmentation.

They treat vessels as creases and images are seen as landscapes. They firstly

start by extracting vessels by a detector of the creaseness of an image. They use

a definition of crease based on level set extrinsic curvature (LSEC) and use the

invariance properties for creaseness detection. They employ the MLSEC - ST

operator defined in [30] for vessel extraction.

After the vessels have been extracted, they choose a cross-correlation function

to match those pixels with creaseness values higher than a small fixed threshold.

An iterative Simplex algorithm is developed to optimize the alignment process,

a hierarchical search scheme is applied to speed up the results and add an ini-

tial wide search to improve it robustness. In their experiment they have some
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appealing success rate that is lower than 5 pixels. However, they simulate the

transformation on retinal images and then apply their algorithm to test the ro-

bustness. Manual simulation of transformation is not a convincing way to prove

robustness; almost all the algorithms can reach an excellent success rate under

manual simulation. Therefore, the effectiveness of their algorithm is still yet to be

proved.

Method Using Control Points

Heneghan et al. [22] design an algorithm to register pairs of images using con-

trol points. They use two control points from each image; rigid global transform

(RGT) coefficients are calculated for all possible combinations of control point

pairs. The set of RGT coefficients is then exhaustively searched and the clus-

ter of coefficients associated with the matched control point pairs is identified.

This cluster is identified by calculating the Euclidean distance between each set

of RGT coefficients and its Rth nearest neighbor and then using the Expectation-

Maximization (EM) algorithm to identify matched pairs of control points. Once

control point pairs are established, registration of the two images is achieved by

using linear regression to optimize the bilinear or 2nd order polynomial.

The novelty of this approach is to use EM technique to identify the parameters

of the optimal transform. EM technique is a common technique used in mathemat-

ics and datamining field for iteratively finding the maximum likelihood estimate

of the parameters of a system. It has special use in cases where the data is incom-

plete or has missing values. They use EM technique to iteratively try matching of

control points and eventually converge to certain matching.

Control points to be matched are manually selected vessel crossings, however,

27



in a practical situation, control points may not be easy to detect, some control

points may not be detected at all if brightness condition changes dramatically over

time. In the experiment they show two examples of registration. First is an ex-

ample of cross-modal image registration using an optical image and a fluorescein

angiogram of an eye. The second example shows an example of the registration

of two images of an infant eye capture thirteen days apart. No concrete number of

experiments is shown to demonstrate the accuracy or robustness of the algorithm

and this algorithm is yet to prove its effectiveness.

Dual-Bootstrap Iterative Closest Point Algorithm

Stewart et al. [57] develop an algorithm for registration of retinal images, which is

called ”Dual-Bootstrap Iterative Closest Point (Bootstrap ICP)”. The general idea

of this approach is to start from one or more initial, low-order estimates that are

only accurate in small image regions, called bootstrap regions, and expand into a

globally accurate final transformation estimate. This expansion iteratively refines

and extends the transformation. In each bootstrap region, the algorithm iteratively:

1) refines the transformation estimate using constraints only from within the boot-

strap region; 2) expands the bootstrap region; and 3) test to see if a higher order

transformation model can be used, stopping when the region expands to cover

the overlap between images. Step 1) and 3), the bootstrap steps, are governed

by the covariance matrix of the estimated transformation. Estimation refinement

uses a novel robust version of the ICP algorithm in registering retinal image pairs,

Dual-Bootstrap ICP is initialized by automatically matching individual vascular

landmarks, and it aligns images based on detected blood vessel centerlines. The

resulting quadratic transformations are stated to be as accurate as less than a pixel.
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Stewart’s algorithm has been tested over 4000 images and proven to be a very

successful technique for retinal image registration. The quantitative measure of

overall performance used in this paper is success rate - the percentage of image

pairs for which a correct (transformation is within 1.5 pixels of the pseudo ground-

truth) transformation estimate is obtained. Stewart’s algorithm achieved as high

as 97.0% success rate, the only few failed cases are due to having few common

landmarks or a combination of sparse centerline trace points and low overlap. It

is said to be able to handle lower image overlaps, image changes and poor image

quality as long as there are enough common landmarks located in the image pair.

Although it claims to avoid the need for expensive global search techniques, it

needs to try all pairs of matches and therefore entails a long time to register pair

of images. The overall time taken is approximately between 600 seconds to 1300

seconds.

However, as explained in Stewart’s algorithm, ICP is based on point features;

the idea of ICP is to alternate steps of: 1) closest point matching based on a

transformation estimate and 2) transformation estimation based on the resulting

matches until convergence to a local minimum. The initialization is crucial to

ICP, and convergence and robustness to missing and misaligned structures are

also important requirements. Accurate registration requires precise and repeatable

estimation of image features and their intersection angles and thickness values.

Besides, in the initial matching step, landmarks tend to be matched wrongly if

vascular structure is dense in image pairs. The initial incorrect matching can lead

ICP algorithm converging to wrong overall matching.
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Elastic Matching Algorithm

Fang [17] develops two registration algorithms, a fast chamfer matching and an

elastic matching applied to the vascular structure to align pairs of fundus images.

The algorithm first employs a technique [16] to enhance vessels and segment them

out of background by using Laplacian of Gaussian filter and morphological filters.

Then the fast chamfer matching is applied to perform the registration.

The fast chamfer matching is based on an approximate Euclidean distance

transformation which forms a goodness of fit objective functions. It searches for

the local optimal transformation at a coarse resolution with a large number of

initial positions with acceptable computation load and allow a few candidates to

next finer levels for global optimal transformation search. This method is incor-

porated with the parametric model of rigid affine transformation. However, the

fast chamfer matching suffers from problem of being trapped in the local minima;

a non-parametric elastic matching method is proposed to overcome this problem.

Elastic matching first does a thinning on the binary vascular structures to ob-

tain patterns consist of lines and curves with one pixel width. Noises are then re-

moved and remaining lines and curves are approximated by fitting a set of straight

lines which are derived by using a minimum square error procedure. Then an

energy function is defined to gradually attract two patterns towards each other.

Fast chamfer has the problem of being trapped in the local minima; and the

energy function defined in elastic matching uses the overall distance between two

patterns to measure the deformation of one of the images. Minimizing the energy

function tends to move vessels of one image towards vessels in the other image.

This algorithm largely depends on the deformation of images over time. It is
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highly possible for patient that dramatic deformation takes place over time, vessels

cross one another and densely positioned vessels in an area. In these cases, this

elastic matching fails to perform the correct registration.

2.2.3 Discussions

Intensity-based approaches have inherent disadvantage, which is they use inten-

sities or intensity gradients as similarity measures to optimize a transformation

function. They usually suffer from large number of local minima and computa-

tions are expensive. Moreover, intensity-based approaches are highly dependent

on the consistent brightness in two images, and tend to fail if there is change in

brightness between two images.

In feature-based approaches, methods that use control points, such as [21],

[37], [66], [29], [22] and [57], are mostly used to find rigid or affine transfor-

mations. Control points are also often used in combination with an entirely dif-

ferent registration basis: methods that rely on optimization of a parameter space

are prone to sometimes get stuck in local optima, possibly resulting in a large

mismatch. A drawback is that user interaction is usually required for the identifi-

cation of the control points when automated detection fails. The set of identified

control points is sparse compared to the original image content, which makes for

relatively fast optimization procedures. Such algorithms optimize measures such

as the average distance between each landmark and its closest counterpart, or it-

erated minimal landmark distances. For the optimization of the latter measure the

Iterative closest point (ICP) algorithm and derived methods are popular. How-

ever, this still suffers from constraint on initial step, initial step to start ICP must
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be correct, or else it usually fails eventually.

Methods that extracts vessel structure from one image and elastically deform

to fit the second image, such as [17] and [23], is popular since the computational

complexity is relatively low. A drawback of this type of methods is that the regis-

tration accuracy is limited to the accuracy of the vessel reconstruction step. [23]

used active contours as deformable curvature, the deformation process is always

done iteratively, small deformations at a time. They often need a good initial posi-

tion in order to properly converge, which is generally realized by pre-registration

of the images involved. Another disadvantage is that the local deformation of

the template can be unpredictably erratic if the target structure differs sufficiently

from the template structure.

Methods using the full image content, such as Ritter, are the most flexible of

registration methods theoretically, since they, unlike other methods, use all of the

available information throughout the registration process. However, their use in

extensive clinical registration applications has been limited by the considerable

computational costs.
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Chapter 3

FEATURE EXTRACTION

There is a huge number of features in the retinal image that we can extract,

amongst those features we need to find appropriate ones for our temporal reg-

istration since registration requires salient features presented in both images for

tree matching so that we can find the correct matching between two images. In

this chapter, we first obtain the optic disc position, and then we extract features

from vessels, including length, width and orientation for each vessel segment and

branching angle for segments that contain branching children segments. The al-

gorithm assumes that the input images have a resolution of780×520, images that

are of different resolution will be scaled to the expected resolution.

3.1 Optic Disc Detection

Existing optic disc detection algorithms [24] [25] [28] [35] [36] [39] [54] employ

a variety of techniques to detect the optic disc, but they are neither sufficiently

sensitive nor specific enough for clinical application. In this thesis we utilize a
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localize-and-refine approach [42] to detect the optic disc. Briefly, we first approx-

imate the location of the optic disc via the Daubechies wavelet transformation.

The aim of wavelet transform is to ”express” an input signal as a series of coef-

ficients of specified energy. The intensity template is employed to construct an

abstract representation of the optic disc. This abstract representation of the optic

disc significantly reduces the processing area, thus increasing the computational

efficiency. Next, an ellipse fitting procedure is applied to detect disc contour and

to filter out the difficult cases.

The result of the optic disc detection is shown in Figure 3.1.

Figure 3.1: Optic disc detection result
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3.2 Vessel Structure Detection

Following the detection of optic disc, we need to extract the vessel structure. Many

vessel structure extraction algorithms [18] [26] [47] [67] [68] have been proposed.

They typically utilize edge detectors such as Sobel, Gaussian and Laplacian of

Gaussian. However, these edge detectors are not able to detect the vessel struc-

tures accurately because vessels in these retina fundus images usually have poor

local contrast where the edges are rarely sharp and distinct enough to be read-

ily identified. We implement and enhance a morphological approach to vessel

structure detection [16]. It consists of three steps. 1) enhance vessels through

morphological transformations; 2) a Gaussian smoothing is first performed, then

the sign of Laplacian is applied to the result image of top-hats to approximate the

sign of the curvature; 3) a set of filters with linear structure elements is applied to

remove the enhanced noise patterns thereby producing the final images.

First step involves designing a set of linear structure elements with length

equal to the maximum diameter of the primary/major vessels. We pose these

elements in different orientations using a rotating angle from 0 to 180 degree.

A sum of top-hats using these linear structure elements with various orientations

allows us to enhance all vessels regardless of their directions, sizes, and even if

they lie in the low local contrast regions.

Careful observation reveals that after enhancement, the highlighted noise tends

to be weak and disorganized whose curvature oscillates between positive and neg-

ative values frequently. On the other hand, the curvature of vessels is generally

of larger positive amplitudes. This gives rise to the idea of differentiating such

noise from vessels by using curvature evaluation as our second step. A Gaussian
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smoothing is first performed. Then the sign of Laplacian is applied to the result

image of top-hats to approximate the sign of the curvature. In the third step, a set

of filters with linear structure elements is applied to remove the enhanced noise

patterns thereby producing the final images.

During the vessel structure detection, some branching and crossing sections

of vessels will be ripped, causing vessel broken into fragments. We perform an

additional operation to reconnect possibly broken branching and crossing section

with the main vessels, which is caused by the filtering in the second step. On the

green layer of the retinal image, we put a threshold to be 3 times of the caliber

of major vessels, 36 pixels, to define the minimum length of small vessels. Any

vessels whose length exceeds this threshold will be added to a list of small vessels;

those with caliber below the threshold will be discarded. After we collect a list of

small vessels, on both ends of the small vessel, we draw a fan sector of 90 degree

radian with the direction of centerline of arc same with the slope angle as same as

the small vessel at this point. We search within the fan sector area for end of other

vessels. For all possible ends we have found within the sector area, we further

trace to identify if it is just a short spur or a major vessel. If it is a major vessel,

this small vessel has been successfully reconnected to its parent vessel; if all the

ends found are short spurs, this candidate small vessel is discarded. In this way,

the broken branching or crossing problem is resolved.

The result of the vessel structure extraction is a binary image as shown in

Figure 3.2 where the white stripes are vessel structures.
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Figure 3.2: Vessel structure detection result

3.3 Vessel Tracking

Having obtained the vessel structure, we can start tracking each vessel. We have

already obtained the binary vessel structure as discussed previously, we then per-

form a thinning to the binary image and obtained the centerline image of all ves-

sels. the skeleton of the vascular tree is obtained from the thinning process where

pixels are eliminated from the boundaries toward the center without destroying

connectivity in an eight-connected scheme [46]. The resulting centerline image

is shown in Figure 3.4. Then we track each vessel along its centerline and obtain

the left and right edge point in the binary image, the tracking splits at branching

points and continue on its two children segments.

In the tracking process, we detect branching and crossing point (shown in Fig-

ure 3.3) and continue tracking till the end of vessel tree. To identify branching
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and crossing point, we first define bifurcation point. In the3× 3 neighborhood of

the centerline image, pixels with three neighbors are labelled as candidate bifur-

cation points. Crossing points appear in the centerline image as two bifurcation

points very close to each other, we use a fixed-size circular window centered on

the candidate bifurcation points, the window diameter is set equal to the largest

vessel diameter expected clinically, if another bifurcation point is found within the

range, the pair of points are defined as crossing points. Bifurcation points other

than crossing points are defined as branching points.

At fixed interval of pixels, we take two anchor pixels (shown as red points

in Figure 3.5) and draw a line that is perpendicular to the line connecting the

two anchor pixels. We find a pixel on the left edge pixels that is closest to the

perpendicular line, and measure the length of this diameter line. In this way, we

can get diameters at the fixed interval to compute the average diameter of a vessel.

Figure 3.3: Branching and Crossing point in centerline image

38



Figure 3.4: Vessel Centerline (result of thinning)

The calculation of vessel segment’s width is illustrated in Figure 3.5.
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Figure 3.5: Vessel width measurement
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Chapter 4

RETINAL IMAGE

REGISTRATION USING TREE

MATCHING TECHNIQUES

Many problems can be modelled as trees and solved using tree matching tech-

niques. As analyzed in Chapter2, both intensity-based and feature-based algo-

rithms suffer from their own drawbacks that affects the registration accuracy. They

fail to take advantage of the entire set of available features presented in retinal im-

ages, few papers pay attention to the relationships between segments of the same

vessel, such as parent and children vessel segments. The features in vessel struc-

ture are extracted while the vessel tree structure itself is left ignored; however, the

structure of each vessel often contains information for registration.

Vessel trees are obvious and important structures presented in retinal images,

it contains many features that can be used for registration and it does not have a

strong dependence of the quality of the segmentation. In our approach, we can
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utilize the overall vessel tree structures, the relationship between parent and child

tree segments and transform registration problem into a tree matching problem,

extract features in vessels, and model one vessel including its branches in retinal

image as rooted tree and store those features in the abstract tree. Now the problem

is how to measure the similarity of two trees representing two vessel structures

and how to obtain the best matched ones from two retinal images.

4.1 Vessel Feature Tree

After extracting the vascular structure from a retina image. With the extracted

structure, we model each vessel that originates from the optic disc as a rooted tree

structure called the Vessel Feature Tree (VFT).

A vessel tree is divided into segments at each branch point (see Figure 4.1). A

vessel tree can be mapped to aVFT where each node in theVFT corresponds to

a vessel segment (see Figure 4.2). Each node is also associated with the length,

diameter and branching angle of each vessel segment.

Then we make use of Vessel Feature Tree to perform registration of vessels in

two images. For each image, there is a collection ofVFTs, representing a collec-

tion of vessels in the retinal image. In our approach, we design local and global

matching functions for registration. The local matching function is to calculate

matching cost for each pair of potential matchingVFTs; the global matching func-

tion is to minimize the global matching cost, which is the sum of matching cost for

all matching pairs. The global matching function also takes into account of vessel

alignments. Matching cost measures the goodness ofVFT matching, a lower value

means more similar twoVFTsare. Ultimately we want to find a global matching
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Figure 4.1: Example of a vessel tree in a retinal image.δ represents the direction
angle of segment r;β represents the branching angle between segment c and d.

Figure 4.2: AVFT constructed from the vessel tree in Figure 4.1
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of vessels between two images with the lowest global matching cost. We can uti-

lize these two functions to eventually register vessels in Template Image and Input

Image.

Definition: Let VFT = (N, E) be the Vessel Feature Tree, where N is the set of

nodes and E is the set of directed edges.VFT is rooted, directed and acyclic. Each

noden in N represents a vessel segment. Each edge e in E represents a branching

occurs between the parent and child vessel segments. Crossing point does not

create new segment, each segment remain as a single segment after the crossing

point.

The root node in theVFT represents the vessel segment starting from the optic

disc.VFT is a strict binary tree, each segment has 0 or 2 children due to the bifur-

cation property of vessels [32]. Figure 4.2 shows theVFT constructed from the

vessel tree in Figure 4.1. Segments r, a, b, c and d in the vessel tree in Figure 4.1

are represented by nodes r, a, b, c and d in Figure 4.2 respectively.

Each noden in a VFT has three attributes: length, width and direction, repre-

sented byn.L, n.W andn.δ respectively. The length attribute stores the length of

the vessel segment along its centerline from its start to its end point. The width

attribute stores the average width of the segment. The direction attribute captures

the angle between the segment’s centerline, and the line formed by the optic disc

and the segment’s start point (see angleδ in Figure 4.1). We also store the depth

of a node from its root, denoted byn.λ. Further, each internal node in aVFT has

an additional attribute called the branching angle, denoted byn.β. The branching

angle of a segment measures the angle between two child segments (see angleβ

in Figure 4.1).
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With theVFT, we are able to know if there is a growth of new vessel segments

or if an existing vessel segment has disappeared. We design matching function

to compute the similarity of two vessel trees, and transform the original registra-

tion problem into finding the optimal match ofVFTsbetween two retinal images.

This ensures that the registration algorithm is robust to handle any deformation

in the retinal images. The features computed from previous chapter are shown in

Figure 4.1.

4.2 Matching Vessel Feature Trees

For each image, we will have a set ofVFTs, representing a collection of vessels in

the retinal image. Now we need to find matching pair ofVFTsin two images. We

design local and global matching functions to achieve this. The local matching

function calculates the matching cost for each pair of potential matchingVFTs

while the global matching function minimizes the global matching cost, which is

the sum of matching cost for all matching pairs. The global matching function

also takes into account vessel alignments. Matching cost measures the goodness

of VFT matching, a lower value means more similar twoVFTsare. Ultimately

we want to find a global matching of vessels between two images with the lowest

global matching cost. We can utilize these two functions to eventually register

vessels in Template Image and Input Image.

MatchedVFTsdo not necessarily have the same number of nodes or levels, be-

cause a segment of vessel is missed during detection or a false detected segment

presents in either of theTemplate Imageand theInput Image. The complication

prompts us not to pursue exact matching of trees. In exact matching, two trees are
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matched if they have the same number of nodes and at each level in the tree their

nodes are perfectly matched. Instead, we seek for the best approximate match-

ing of two trees. However, we do impose penalties for mismatched nodes at each

level, the cost for mismatch of nodes should increase sub-linearly. In order to cor-

rectly compute the matching cost of twoVFTs, we need to address the following

issues:

• The same vessel in two images does not necessarily have the same number

of segments. This may be due to the growth of a new vessel or failure to

detect a vessel segment in one of the images.

For example, in Figure 1.2(a), the highlighted vessel has only one segment

r. However, in Figure 1.2(b), several new segments have grown from this

vessel. Segmentr in Figure 1.2(b) is now split into segmentsr1 andr2. Our

matching algorithm should matchr to r1 andr2, and impose penalties for

segments without any matches, i.e.w, x andy.

• A vessel segment might disappear over time due to the progression of dis-

ease or eye movement rotation. This causes the deletion of the node repre-

senting this segment inVFT. If this node has a sibling, we need to combine

the sibling with its parent node.

For example, segmentsr, w, x, y andz are five segments in a vessel in Fig-

ure 1.4(a). However, segmentzhas disappeared in Figure 1.4(b). Therefore,

in the correspondingVFTs (see Figure 4.3), we need to delete the nodez that

represents segmentz in Figure 1.4(a), and match nodesr andw in V FT1 to

noder’ in V FT2. Nodesx andy in V FT1 are matched to nodesx andy in

V FT2 respectively.
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• Finally due to scaling problem, we need to formulate the cost function with

respect to the relative differences of angle, width and length between two

nodes inVFT instead of matching the exact value.

Figure 4.3: TwoVFTsconstructed from the highlighted vessel trees in Figure 1.4.
V FT1 represents the vessel in Figure 1.4(a),V FT2 represents the vessel in Fig-
ure 1.4(b)

4.2.1 Vessel Matching Functions

For theTemplate Image, we haveS1 = V FT1, V FT2, . . . , V FTn, n VFTs, each

V FTi in S1 represents a vessel in theTemplate Image. For theInput Image, we

haveS2 = V FT1, V FT2, . . . , V FTm, m VFTs, eachV FTj in S2 represents a

vessel in theInput Image. n is not necessarily equal tom. S1 andS2 are the

collections of allVFTs in the Template Imageand theInput Imagerespectively.

For the problem of registering vessels in retinal images, for eachV FTi in S1, we
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Figure 4.4: Example of matching concept
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want to find a correspondence inS2. Of course not allVFTs in S1 can find its

matching inS2 due to reasons that we have mentioned above. In our algorithm,

we perform two matching, local and global matching.

We measure the goodness of matching by comparing the similarity of at-

tributes’ values inVFTs’nodes instead ofVFTs’structural similarity. An example

is illustrated in Figure 4.4. In this example,V FTi represents a vessel tree inTem-

plate Image, V FTj represents the same vessel tree inInput ImageasV FTi does

in Template Image; however, a new small vessel segment branches out from seg-

ment a inInput Image, causing nodea in V FTi to split into two nodesa and

d in V FTj, nodec represents the newly grown vessel segment. Now nodea in

V FTi represents a vessel segment that is represented by the combination of node

a and noded in V FTj. V FTj
′ represents a completely different vessel tree in

Input Imageand attributes in each node differ hugely from attributes in nodes of

V FTi. By only looking at the structure of these threeVFTs, V FTj
′ is a more suit-

able match withV FTi; however, the length, width or direction attributes of each

node inV FTi differ hugely with attributes of matched node inV FTj
′. Instead,

attributes of nodes inV FTi andV FTj have close values, implying similar vessel

structure in images. In this case,V FTj are preferred byV FTi overV FTj
′ even

though the structure ofV FTj
′ is more similar toV FTi.

In this thesis, we look for matching ofVFTswith similarity carried by feature

attributes stored in each VFT nodes instead of similarity of rigidVFT structure.

To achieve this, we need to adopt a more flexible matching manner ofVFTs. In

the example shown in Figure 1.2, nodea in V FTi corresponds to combined path

a andd in V FTj, attributes of the combined path are highly similar with nodea

in V FTi. In this case, we can match nodea in V FTi to the merged node{a, d} in
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V FTj; in the meantime we need to delete nodec as it is a superfluous node and

impose a cost on this deletion. We refer this match as multiple segment match, we

will define a match function later to handle this case.

4.2.2 TreeMatch Function

We define aTreeMatchfunction to compute the cost of matching twoVFTs.

TreeMatchcalls the functionsSingleSegmentMatchandMultiSegmentMatch.

Given twoVFT V FT1 andV FT2, theSingleSegmentMatchfunction computes

the matching cost between a nodeni in V FT1 and a nodenj in V FT2. Two nodes

are similar if their vessel lengths, average vessel widths and branching angles are

similar. The three factors are incorporated into the formula below:

SingleSegmentMatch(ni, nj) = 1√
λ
(|ni.L−nj.L|+k1×|ni.W −σ×nj.W |+

k2 × |ni.D − nj.D|+ k3 × |ni.A− nj.A|) (1)

whereλ is the maximum of the depths of nodesni andnj (the root is at depth

1); σ is the degree of vessel width narrowing between children and parent vessel

segment1; k1, k2 andk3 are the normalizing for width, direction and branching

angle respectively. In our experiment, we setk1 = MaxL× 1
MaxW

, k2 = MaxL×
(1+

√
niL

MaxL
), k3 = MaxL×(1+

√
niL

MaxL
) where MaxL and MaxW are the upper

bounds for the length and width attributes respectively.

As mentioned, a new vessel may cause single segment to split into multiple

segments. Hence it is crucial to compute the matching cost between a node and

a path (multiple segments). The formula for matching a nodeni to multiple seg-

ments denoted by a pathpj match is as follows:

1the value ofσ is obtained through experiments.
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MultiSegmentMatch(ni, pj) = 1√
λ
(|ni.L− pjL|+ k1 × |ni.W − σ × pj.W |+

k2 × |ni.D − pj.D|+ k3 × |ni.A− pj.A|) (2)

where

pj.L =
∑

nj∈pj

nj.L

pj.W is the average width of vessel segments onpj; pj.D is the direction ofpj

calculated by connecting the start point of first node and the end point of the last

node onpj; andpj.A is the last branching angle along the pathpj.

The TreeMatchalgorithm will utilize the two functions described above to

compute the total matching cost for a pair ofVFTs.

Algorithm 1 TreeMatch Algorithm
1: Input: ni, root node ofV FTi andnj , root node ofV FTj

2: Output: matching cost ofV FTi andV FTj .
3: Cost1← 0;
4: Cost2← 0;
5: if (bothni andnj are leaf nodes)then
6: returnSingleSegmentMatch(ni, nj);
7: end if
8: if (ni is nonleaf node andnj is leaf node)then
9: returnSingleSegmentMatch(ni, nj)+ Penalty(ni);

10: end if
11: if (nj is nonleaf node)then
12: Cost1=SingleSegmentMatch(ni, nj);
13: if (ni is nonleaf node)then
14: Cost1+=TreeMatch(left(ni), left(nj))+ TreeMatch(right(ni), right(nj));
15: end if
16: pj ← SelectSegments(ni, nj);
17: Cost2=MultiSegmentMatch(ni, pj);
18: if (ni is nonleaf node)then
19: Cost2+=TreeMatch(left(ni), left(pj))+ TreeMatch(right(ni), right(pj))+

DeletionCost(pj);
20: end if
21: end if
22: returnmin{Cost1, Cost2};
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left(ni) and right(ni) represent the left and right child of nodeni respec-

tively. Starting from the root nodes of the twoVFTs, we consider both SingleSeg-

mentMatch and MultipleSegmentMatch and select the match that gives the lowest

cost. This procedure terminates when we reach the leaves of bothVFTs. Finally,

we pick the lowest matching cost as the final cost to match the twoVFTs.

Penalty(ni) computes the penalty imposed on this matching because the sub-

tree ofni fails to match to any node inV FTj and it is defined as follows:

Penalty(ni) = 1
2×
√

λ

∑
nj∈subtree of ni

(ni.L + k1 × ni.W + k2 × ni.D + k3 ×
ni.A) (3)

where the symbols have the same interpretations as in SingleSegmentMatch.

The SelectSegments function selects the pathpj to be matched in Multi-

pleSegmentMatch. Essentially, it adopts a greedy approach to pick a series of

segments that minimizes the overall matching cost. For example, in Figure 1.2,

as nodesr1 andr2 in the Input Imagerepresent noder in the Template Image,

the combined segments byr1 andr2 have the most similar attributes value with

segmentr and MultiSegmentMatchfunction yields the lowest cost. Therefore,

SelectSegments selects segmentsr1 andr2 to be matched. Once the segments

are selected, we need to delete those unwanted siblings (segmentsw, x andy) of

the selected segments. For this, we impose a deletion cost on this deletion. The

DeletionCost function is defined as follows:

DeletionCost(pj) = 1
2×
√

λ

∑
nj∈siblings of nodes in pj

(nj.L + k1 × nj.W + k2 ×
nj.D + k3 × nj.A) (4)
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4.3 Registration of Images

In this section, we describe how the Vessel Feature Trees can be utilized to find

the corresponding vessels between two images, hence registering the images. We

observe that the starting points of major vessels are unlikely to shift such that one

vessel crosses over another one within optic disc boundary over time.

Figure 4.5: Example of vessels alignment

We can globally alignVFTsin both images clockwise according to their start

points (see Figure 4.5). During registration, we approximate the position of the

matchingV FTj in Input Imagefor V FTi in Template Image. Based on theVFTs

that have already been paired up, ifj goes too far from the previous matched

positionm in Input Image, thisj may be a wrong match. Therefore we can utilize

this observation to prune incorrect matching.

We haveS1 = {v1, v2, . . . , vn}, n VFTs, eachvi represents a vessel tree in
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Template Image; andS2 = {w1, w2, . . . ,wm}, m VFTs, eachwi represents a vessel

tree inInput Image. S1 andS2 are the collections of allVFTsin Template Image

andInput Imagerespectively.n is not necessarily equal tom. Our goal is to find a

mapping fromS1 to S2 with minimum total matching cost. We also need to take

into account of global vessel alignment described by the observation mentioned

earlier. As we do not allow multipleVFTs from S1 to map to the sameVFT in

S2, if n < m, everyvi are matched to a distinctwj; else, onlym VFTsin S1 are

matched tom distinctVFTsin S2.

Our registration algorithm has two main steps:

Local Matching Stage: For eachvi ∈ S1, we compute the matching cost for

each pair of(vi, wj) by TreeMatch(vi, wj) wherewj ∈ S2. At the end of this

stage, eachvi maintains its preference list ofVFTs in S2 ordered by ascending

matching cost; the most preferredwj for eachvi gives the lowest matching cost.

Eachwj also maintains its preference list ofVFTs in S1 ordered by ascending

matching cost. ACostMatrixmaintains the pairwise matching cost for each pair

of (vi, wj).

Global Alignment Stage: We compute the optimal matching fromS1 to S2

taking alignment ofVFTsaccording to the observation described earlier into con-

sideration. For avi ∈ S1, take(vi, wj) such thatwj is its most preferredVFT; use

this pair as anchor pair to reorganizeS1 andS2 to S ′1 andS ′2 respectively.S ′1 =

{v′1, v′2, . . . , v′n} wherev′1 is vi in anchor pair and rest ofVFTsin S ′1 are ordered

clockwise starting fromv′1. S ′2 = {w′
1, w′

2, . . . , w′
m} wherew′

1 is wj in anchor

pair and rest ofVFTsin S ′2 are ordered clockwise fromw′
1 according to their start

points.Rv[i] is the preference list forv′i in S ′1, Rw[j] is the preference list forw′
j

in S ′2, Mv[i] is the matchingVFT for v′i andMw[j] is the matchingVFT for w′
j.
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We then compute an optimal matching fromS ′1 andS ′2 with algorithm 2 and its

corresponding cost.

This stage is iterated until allvi ∈ S1 and its corresponding most preferred

VFT is used as anchor pair to reorganizeS1 andS2 and compute an optimal match-

ing. Finally the optimal matching with the lowest cost are selected and we thereby

register vessel trees to their correspondence between two images.

In Figure 4.5, suppose the most preferred nodes forVFT1, VFT2 andVFT3

areVFT1’, VFT3’ andVFT2’ respectively. We first start by fixing the pair (VFT1,

VFT1’) and rematch rest ofVFTsclockwise, wherebyVFT2andVFT3are mapped

to VFT2’ andVFT3’ respectively. Because each pairs has similar topology and

attribute values, this global matching yields a very low cost. Then we fix the pair

(VFT2, VFT3’) and rematch the restVFTs, VFT1 and VFT3 are matched to VFT2

and VFT1 respectively. Clearly this is not an optimal matching and cost is higher

than the first matching, we thereby prune this matching. Same procedure are done

for the pair (VFT3, VFT2’) and finally we obtain the optimal matching and its

corresponding cost. The final matching is (VFT1, VFT1’), (VFT2, VFT2’) and

(VFT3, VFT3’).

Algorithm 2 describes the case whenn ≤ m, if n > m, the direction of

matching can be simply reversed. We formulate global vessel alignment asAlign-

Cost function that computes the realignment cost.Reorganizefunction simply

repositionw in Rv[v] according tow′s new matching cost,c. AlignCostfunction

is defined as follows:
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AlignCost(i, v, Mv) =

1√
n

(
∑

∀m∈[i,v)

CostMatrix(m,Mv[m]))

wheren = |i− v|
With the Local Matching and Global Alignment Stage, we match vessels from

Template Image to their corresponding ones in Input Image. At the end of regis-

tration each vessel in Template Image has one and only one distinct corresponding

vessel in Input Image and registration is thus achieved.
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Algorithm 2 Algorithm to compute optimal matching
1: Input: Rv, Rw andCostMatrix
2: Output: A global matching ofVFTsbetweenS′1 andS′2.
3: Cost← 0;
4: for i ∈ {1, n} do
5: Mv[i] ← free, rejected[i]← 0, Mw[i] ← free;
6: end for
7: v ∈ {1, n}, w ∈ {1,m};
8: while v is not matched yetdo
9: w ← Rv[v][rejected[v]+1];

10: if (Mw[w] = free)then
11: if (∀i < v, Mv[i] < w) then
12: Mv[v] ← w, Mw[w] ← v;
13: Cost ← Cost + CostMatrix(v, w);
14: else
15: c ← CostMatrix(v, w) + AlignCost(i, v, Mv);
16: R′

v[v] ←Reorganize(Rv[v], c, w);
17: if (w = R′

v[v][rejected[v]+1]) then
18: Mv[v] ← w, Mw[w] ← v;
19: Cost ← Cost + CostMatrix(v, w);
20: else
21: rejected[v]← rejected[v]+1;
22: end if
23: end if
24: else
25: v′ ← Mw[w];
26: if (RANK(Rw[w], v)<RANK(Rw[w], v′)) then
27: if (∀i < v,Mv[i] < w) then
28: rejected[v′]← rejected[v′]+1;
29: Mv[v′] ←free,Mv[v] ← w,Mw[w] ← v;
30: Cost ← Cost− CostMatrix(v′, w) + CostMatrix(v, w);
31: else
32: c ← CostMatrix(v, w) + AlignCost(i, v, Mv);
33: R′

w[w] ← Reorganize(Rw[w], c, v);
34: if (RANK(R′

w[w], v)<RANK(R′
w[w], v′)) then

35: rejected[v′]←rejected[v′]+1;
36: Mv[v′] ← free,Mv[v] ← w, Mw[w] ← v;
37: Cost ← Cost− CostMatrix(v′, w) + CostMatrix(v, w);
38: else
39: rejected[v]← rejected[v]+1;
40: end if
41: end if
42: else
43: rejected[v]← rejected[v]+1;
44: end if
45: end if
46: end while
47: returnM and Cost;
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Chapter 5

Experiment Study

In this section, we present the results of our experiments to evaluate the perfor-

mance of our proposed approach. Then we compare our proposed algorithm with

other two latest registration algorithms, [17] and [57]. The results demonstrate

that our algorithm is able to register vessels in temporal images with excellent

accuracy, it is also highly reliable and robust under different circumstances. Be-

sides, our algorithm yields better results compared to other algorithms, puts more

focus on vascular structures and captures missing and newly grown vessel struc-

ture, which enables doctors to better evaluate disease progress after registration

process.

5.1 Experiment Setup

In our experiment, we use the Blue Mountain Eye Study images that are 5 years

apart. The Blue Mountain Eye Study is a population-based follow-up study of

vision and common eye diseases, hearing loss and other health outcomes in an
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urban population aged 49 years or older. 3654 Baseline participants represented

82.4% of eligible potential participants living in two postcode areas of the Blue

Mountains region, west of Sydney, Australia. The baseline survey (1992 - 1994)

methods and procedures have been previously described [65]. At the examina-

tions, stereoscopic retinal photographs of the macula, optic disc and other reti-

nal fields of both eyes were taken, using a Zeiss FF3 fundus camera (Carl Zeiss,

Oberkochen, Germany). The data sets are purely collected by ophthalmologists

and all of the images are raw data without reconciliation. The data set contains

retinal image of both healthy and pathologic participants, and therefore includes

all kinds of complications in images, such as brightness changes, rotation, trans-

formation, missing vessels, etc. This data set serves as a much stronger and con-

vincing set for both accuracy and robustness test.

A random selected sample of 300 pairs of right eye photographs was used.

The selection is purely random and no conditions are imposed. We conducted

a number of experiments to assess the accuracy and robustness of our registra-

tion algorithm. Vessels in our experiment image data set have more significant

variations and pose greater challenges for our algorithm.

5.2 Accuracy Study

We evaluate the accuracy of our algorithm by computing the percentage of vessels

that have been successfully matched in each pair of images. A pair of vessels is

considered to be successfully matched if these two vessels indeed represent the

same vessel in a patient’s retina.

Supposen vessels are detected in the first image (orTemplate Image), andm
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vessels are detected in the next consecutive image (orInput Image). Then

accuracy = x/min(n,m)

wherex is the number of pairs of correctly matched vessels.

Figure 5.1: Results of accuracy experiment on 300 pairs of retina image. X axis
represents the success rate. Y axis represents number of images

Figure 5.1 and Figure 5.2 show that the registration algorithm has an average

accuracy of 93%. It correctly matches all the vessels in 114 pairs of images (100%

accuracy), and achieves at least 90% accuracy in 75 pairs of images. 108 pairs of

images achieve at least 80% accuracy. Only 3 pair of image has an accuracy below

80% due to a lesion over a large area of retinal image surface in theInput Image.

Table 5.1 summarizes the average statistics in the accuracy experiment.

Figures 5.3, 5.4 and 5.5 show examples of successful registration even when

vessels appear or disappear in the Input Image and have poor image quality with

large area of bright regions. Figure 5.6 shows an example of unsuccessful regis-

tration due to failure in the vessel extraction process.
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Figure 5.2: Results of accuracy experiment on 300 pairs of retina image. X axis
represents the number of images. Y axis represents number of success rate. 70%
indicates images with success rate less than 80%, 80% contains the images with
success rate between 80% and 90%, 90% contains the images with success rate
between 90% and 100% and 100% contains the images with success rate to be
100%

Average Number Average Number Average Number Success Rate
of Vessels of Matches of Mismatches

9.64 8.95 0.69 93%

Table 5.1: Summary of average accuracy experiment statistics. 9.64 vessels are
detected in each image on average. Out of the 9.64 vessels, an average of 8.95
pairs of vessels are registered correctly, 0.69 vessels are matched to wrong vessels
or without a match. The average registration success rate is 93%.

61



(a) Template Image (b) Input Image

(c) Superimposed Images

Figure 5.3: Successful registration results I. Images have newly grown vessels
over time
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(a) Template Image (b) Input Image

(c) Superimposed Images

Figure 5.4: Successful registration results II. Images have disappearing vessels
over time
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(a) Template Image (b) Input Image

(c) Superimposed Image

Figure 5.5: Successful registration results III. Images have large area of abnor-
mally bright region
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(a) Template Image (b) Input Image

(c) Superimposed Images

Figure 5.6: Unsuccessful registration results. Images have bad quality and blurry
vessels
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5.3 Comparative Study

In this section we compared our proposed algorithm with the elastic matching in

[17] and Dual-Bootstrap approach in [57].

We re-implemented [17] so that its accuracy can be assessed using ourSuccess

Rate. Its accuracy is also measured by the Success Rate defined above in Accuracy

Experiment section. We obtained executable file of [57] from its authors.

Figure 5.7: Results of accuracy experiment on 300 pairs of retina image for [17].
X axis represents the success rate. Y axis represents number of images

Average Number Average Number Average Number Success Rate
of Vessels of Matches of Mismatches

9.64 8.01 1.63 83%

Table 5.2: Summary of average accuracy experiment statistics for [17]. 9.64 ves-
sels are detected in each image on average. Out of the 9.64 vessels, an average of
8.01 pairs of vessels are registered correctly, 1.63 vessels are matched to wrong
vessels or without a match. The average registration success rate is 83%.

Figure 5.7 and Figure 5.8 show that [17] has an average accuracy of 83%.

Table 5.2 summarizes the average statistics in the accuracy experiment. From the
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Figure 5.8: Results of accuracy experiment on 300 pairs of retina image for [17].
X axis represents the number of images. Y axis represents number of success rate.
70% indicates images with success rate less than 80%, 80% contains the images
with success rate between 80% and 90%, 90% contains the images with success
rate between 90% and 100% and 100% contains the images with success rate to
be 100%

experiment results we can see that our proposed algorithm yields a more accurate

result than [17].

For [57], the quantitative measure of overall performance is the percentage of

image pairs for which a correct (transformation is within 1.5 pixels) transforma-

tion estimate is obtained. The result yields a 96% accuracy running on 300 pairs

of images for [17]. Figure 5.9 shows an example of successfully registered images

by [57]. The failed cases are due to having bright region in the images. Figure 5.10

shows the Template and Input image that [57] fails to register, however our pro-

posed algorithm is able to handle this case and the superimposed image is shown

previously. We modify our algorithm to conform to [57]’s metrics, with threshold

set at 1.5 pixels, our algorithm has a slightly lower accuracy, which is 92%.

For processing time, our proposed algorithm takes on average 80.3 seconds

to complete the whole registration process; [17] takes on average 240.4 seconds
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to complete and [57] takes 1154.3 seconds to complete. This shows our algo-

rithm takes much shorter time to process and outperforms both [17] and [57] in

processing time aspect.

(a) Template Image (b) Input Image (c) Mosaic Image

Figure 5.9: Successful case for [57].

(a) Template Image (b) Input Image

Figure 5.10: Failed case for [57].
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5.4 Discussions

We have introduced our proposed algorithm, which utilizes vessel trees as ab-

stract structures and formulate the problem as tree matching problem to achieve

registration purpose. This approach is different from many other existing registra-

tion approaches. In comparison to existing retina image registration approaches,

it handles image changes, poor image quality, inconsistency of image brightness,

missing and newly grown vessel structures. Our proposed algorithm captures the

vessel trees in retina images well and use them as key features for registration.

Our algorithm performs registration from a global view and gain higher accuracy,

in the meantime, it also captures missing or newly grown vessel structures during

registration and facilitate future analysis.

We compared our proposed algorithm with two latest existing algorithms, [57]

and [17]. The experiment results show that our algorithm achieves a higher accu-

racy compared with [17] but slightly lower accuracy compared with [57].

The advantage of our algorithm is that we are able to capture the structure of

missing vessel structures and branches, in the monitoring process doctors are able

to utilize these information to better evaluate the disease development. The failed

cases for Stewart’s algorithm are due to having a large bright region in the image,

however, our algorithm is able to handle this kind of cases well. For those cases

that [57] failed to register correctly, our algorithm is able to achieve excellent

registration results. Our algorithm’s performance is superior than [17] in most

cases, and is superior than [57] under circumstances that vessel trees are the focus

in registration. This is because our algorithm is able to capture various features

for vessel trees and register them with excellent accuracy. Besides our algorithm

69



is able to handle bright regions in retina images.

70



Chapter 6

Conclusion

In this thesis, we firstly investigated the importance of retinal image registration,

we also did a comprehensive survey over various types of registration techniques

and performed analysis of several landmark techniques. As analyzed in section

2, for intensity-based algorithms, they all suffer from a major drawback which is

dependence on consistent brightness in two images. If there is huge brightness

change between two images caused either by exposure of photographs or disease

development, algorithms pertaining to this category can hardly yield convincing

results. For existing feature-based algorithms, each algorithm utilizes one ex-

tracted feature, such as centerline, tangent direction, width, branching and cross-

over points, from retinal image to perform the registration. This causes problems

during registration or even failures if the quality of Input Image is poor, over ex-

posure of photographs so that some features are missing in Input Image, etc. They

fail to take advantage of the entire set of available features presented in retinal im-

ages, few papers pay attention to the relationships between segments of the same

vessel, such as parental segment and children branches. The pieces of features in
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vessel structure are extracted while the structure itself is left ignored; however, the

structure of each vessel often contains information for registration.

In our proposed algorithm, We avoid the problems encountered by existing

techniques, make use of all available features presented in retinal images and

model vessel structures as rooted trees, namely Vessel Feature Trees (VFT), each

segment of vessel is represented by a tree node, a branching of vessel into two

children vessels are represented by edge and children nodes inVFT. By modelling

vessel structures in retinal images asVFTs, we transform the original registration

problem into tree matching problem; our target is to find a matching in Input Im-

age for eachVFT in Template Imagewhereby global matching cost is minimized.

We use vessel features, vessel segment length, width, orientation and branching

angle, as similarity measures in matching function.

We proposed a local matching function to calculate matching cost for each

pair of potential matching vessels and a global matching function to minimize

the global matching cost, taking into account of vessel alignments and eventually

register vessels in Template Image and Input Image.

Experiment results show that our algorithm is able to match vessels in retinal

image with excellent accuracy. Our algorithm is able to achieve an average suc-

cess rate of 93%. For the isolated registration algorithm, the median processing

time is 2.21 seconds. Worst case performance is 3.38 seconds.

The registration algorithm proposed in this paper is not only accurate, but also

efficient. This algorithm can be applied in clinical retinal disease diagnosis and

provides the fundamental groundwork for further medical research.
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6.1 Future Work

Retinal images registration has vast range of applications. It is merely the first

step towards curing some of the most fatal diseases in the world; there are plenty

of works to be done. In this paper, we described a novel registration technique

for registering vessels in temporal retinal images. This algorithm successfully

registers detected vessels from Template Image to Input Image. From this point,

we can extend our work to detect the change in AVR and changes of widths in

individual vessels. This enables us to assess the impact of disease development

on patients.

Also, to further make use of the parent and child branch structure provided

by our algorithm, we can monitor the disappearance of some small vessels or dis-

covering newly grown small vessels, this provides crucial information and keeps

doctors on alert for some cardiovascular diseases [53].

After we successfully register two images, in ourVFT structure, we already

store the orientation of each vessel segment, we can advance our research in gaug-

ing the tortuosity changes of each vessels over time.

73



Bibliography

[1] Y. Amit and A. Kong. Graphical templates for model registration.IEEE Transac-

tions on pattern analysis and machine intelligence, 18:225–236, 1996.

[2] T. Ault and M. W. Siegel. Frameless patient registration using ultrasonic imaging: a

preliminary study.Journal of image guided surgery, 1:94–102, 1995.

[3] E. Bainville, G. Champledoux, P. Cinquin, V. Dessenne, A. Hamadeh, J. Troccaz,

S. Lavallee, O. Peria, P. Sautot, and R. Szeliski. Anatomical surfaces based 3d/3d

and 3d/2d registration for computer assisted medical interventions.Computer vision,

virtual reality, and robotics in medicine, 19:53–65, 1995.

[4] D. E. Becker, A. Can, H. L. Tanenbaum, J. N. Turner, and B. Roysam. Image

processing algorithms for retinal montage synthesis, mapping, and realtime location

determination.IEEE Trans. Biomed. Eng., 45:105–118, 1998.

[5] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes.IEEE Trans-

actions on pattern analysis and machine intelligence, 14:239–256, 1992.

[6] M. Bro-nielsen. Modelling elasticity in solids using active cubes c application to

simulated operations.Computer vision, virtual reality, and robotics in medicine,

905:535–541, 1995.

[7] A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum. A feature-based, robust,

hierarchical algorithm for registering pairs of images of the curved human retina.

74



IEEE Trans. Pattern Anal. Machine Intell., 24:347–364, 2002.

[8] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detection of

blood vessels in retinal images using two-dimensional matched filters.IEEE Trans.

Med. Image., 8:263–269, 1989.

[9] G. E. Christensen, A. A. Kane, J. L. Marsh, and M. W. Vannier. Synthesis of an

individual cranial atlas with dysmorphic shape.IEEE computer society press, pages

309–318, 1996.

[10] C. S. Chua and R. Jarvis. 3d free-form surface registration and object recognition.

International journal of computer vision, 17:77–99, 1996.

[11] A. V. Cideciyan, S. G. Jacobson, C. M. Kemp, R. W. Knighton, and J. H. Nagel.

Registration of high resolution images of the retina.Proc. SPIE: Medical Imaging

VI: Image Processing, 1652:310–322, 1992.

[12] C. Davatzikos and J. L. Prince. Brain image registration based on curve mapping.

IEEE workshop on biomedical image analysis, pages 245–254, 1994.

[13] B. Ege, T. Dahl, T. Sndergaard, O. Larsen, T. Bek, and O. Hejlesen. Automatic

registration of ocular fundus images.Workshop on Computer Assisted fundus Image

Analysis, 2000.

[14] R. E. Ellis, S. Toksvig-Larsen, M. Marcacci, D. Caramella, and M. Fadda. A

biocompatible fiducial marker for evaluating the accuracy of ct image registration.

Computer assisted radiology, 1124:693–698, 1996.

[15] A. C. Evans, S. Marrett, J. Torrescorzo, S. Ku, and L. Collins. Mri-pet correlation

in three dimensions using a volume of interest (voi) atlas.Journal of cerebral blood

flow and metabolism, 11:69–78, 1991.

[16] B. Fang, W. Hsu, and M. Lee. Reconstruction of vascular structures in retinal im-

ages.IEEE International Conference On Image Processing, 2:157–160, 2003.

75



[17] B. Fang, W. Hsu, and M. Lee. Techniques for temporal registration of retinal images.

IEEE International Conference On Image Processing, 2004.

[18] L. Gang, O. Chutatape, and S. M. Krishnan. Detection and measurement of reti-

nal vessels in fundus images using amplitude modified second-order gaussian filter.

IEEE Transactions on Biomedical Engineering, 49:168–172, 2002.

[19] J. V. Hajnal, D. L. G. Hill, and D. J. Hawkes. Medical image registration.FL: CRC,

2001.

[20] A. Hamadeh, P. Sautot, S. Lavallee, and P. Cinquin. Towards automatic registration

between ct and x-ray images: cooperation between 3d/2d registration and 2d edge

detection.Medical robotics and computer assisted surgery, pages 39–46, 1995.

[21] W. E. Hart and M. H. Goldbaum. Registering retinal images using automatically

selected control points pairs.IEEE International Conference on Image Processing,

1994.

[22] C. Heneghan, P. Maguire, N. Ryan, and P. D. Chazel. Retinal image registration

using control points.IEEE International Symposium on Biomedical Imaging, pages

349–352, 2002.

[23] P. Jasiobedzki. Registration of retinal images using adaptive adjacency graphs.6th

IEEE Symposium Computer-Based Medical Systems, pages 40–45, 1993.

[24] M. Lalonde, M. Beaulieu, and L. Gagnon. Fast and robust optic disc detection using

pyramidal decomposition and hausdorff-based template matching.IEEE Transac-

tions on Medical Imaging, 2001.

[25] S. Lee and M. Brady. Optic disc boundary detection.British Machine Vision Con-

ference, 1989.

[26] T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner. Artery-vein separation via mra - an

image processing approach.IEEE Transactions on Medical Imaging, 20:689–703,

76



2001.

[27] W. D. Leslie, A. Borys, D. McDonald, J. O. Dupont, and A. E. Peterdy. External

reference markers for the correction of head rotation in brain single-photon emission

tomography.European journal of nuclear medicine, 22:351–355, 1995.

[28] H. Li and O. Chutatape. Automatic location of optic disc in retinal images.Interna-

tional Conference on Image Processing, 2001.

[29] D. Lloret, J. Serrat, A. Lopez, A. Soler, and J. Villanueva. Retinal image regis-

tration using creases as anatomical landmarks.Proceedings of IEEE International

Conference on Image Processing, 3:203–207, 2000.

[30] A. Lopez, D. Lloret, J. Serrat, and J. Villaneuva. Multilocal creaseness based on the

level set extrinsic curvature.Computer Vision and Image Understanding, 77, 2000.

[31] F. Maes, A. Collignon, D. Vandermeulen, G. marchal, and P. Suetens. Multimodality

image registration by maximization of mutual information.IEEE Transaction on

Medical Imaging, 16:187–198, 1997.

[32] M. E. Martinez-Perez, A. D. Hughes, A. V. Stanton, S. A. Thom, N. chapman, A. A.

Bharath, and K. H. Parker. Retinal vascular tree morphology: A semi-automatic

quantifcation.IEEE Transactions on Biomedical Engineering, 49:912–917, 2002.

[33] G. K. Matsopoulos, N. A. Mouravliansky, K. K. Delibasis, and K. S. Nikita. Auto-

matic retinal image registration scheme using global optimization techniques.IEEE

Transaction on Information Technology on Biomedicine, 3:47–60, 1999.

[34] B. J. McParland and J. C. Kumaradas. Digital portal image registration by sequential

anatomical matchpoint and image correlations for real-time continuous field align-

ment verfication.Medical physics, 22:1063–1075, 1995.

[35] F. Mendels, C. Heneghan, P. Harper, R. B. Reilly, and J.-P. Thiran. Extraction of the

optic disc boundary in digital fundus images.First Joint BMES/EMBS Conference

77



Serving Humanity, Advancing Technology, 1999.

[36] F. Mendels, C. Heneghan, and J.-P. Thiran. Identification of the optic disc boundary

in retinal images using active contours.Irish Machine Vision and Image Processing

Conference, 1999.

[37] A. Mendonca, J. Campilho, and A. Nunes. A new similarity criterion for retinal

image registration.Proceedings of IEEE International conference on Image Pro-

cessing, pages 696–700, 1994.

[38] C. R. Meyer, G. S. Leichtman, J. A. Brunberg, R. L. Wahl, and L. E. Quint. Si-

multaneous usage of homologous points, lines, and planes for optimal, 3-d, linear

registration of multimodality imaging data.IEEE Transactions on medical imaging,

14:1–11, 1995.

[39] D. T. Morris and C. Donnison. Identifying the neuro-retinal rim boundary using

dynamic contours.Image and Vision Computing 17, 1999.

[40] N. Mourvliansky, G. Matsopoulos, K. Delibasis, and K. Nikita. Automatic retinal

registration using global optimization techniques.20th IEEE International Confer-

ence on Engineering in Medicine and Biology, 2, 1998.

[41] J. Noack and D. Sutton. An algorithm for the fast registration of image sequences

obtained with a scanning laser ophthalmoscope.Physics in Medicine and Biology,

39:907–915, 1994.

[42] P. Pallawala, W. Hsu, M. L. Lee, and K. G. A. Eong. Automated optic disc localiza-

tion and contour detection using ellipse fitting and wavelet transform.8th European

Conference on Computer Vision (ECCV), 2004.

[43] E. Peli, R. A. Augliere, and G. T. Timberlake. Feature-based registration of retinal

images.IEEE Transactions on Medical Imaging, 6:272–278, 1987.

78



[44] G. P. Penny, J. Weese, J. A. Little, P. Desmedt, D. L. Hill, and D. J. Hawkes. A

comparison of similarity measures for used in 2-d-3-d medical image registration.

IEEE Transactions on Medical Imaging, 17:586–594, 1998.

[45] A. Pinz, S. Bernogger, P. Datlinger, and A. Kruger. Mapping the human retina.IEEE

Transactions on Medical Imaging, 17:606–619, 1998.

[46] W. K. Pratt. Digital image processing, 2nd edition.New York: Wiley, 1991.

[47] F. K. H. Quek and C. Kirbas. Vessel extraction in medical images by wave-

propagation and traceback.IEEE Transactions on Biomedical Engineering, 49:117–

131, 2002.

[48] N. Ritter, R. Owens, J. Cooper, R. H. Eikelboom, and P. P. V. Saarloos. Registration

of stereo and temporal images of the retina.IEEE Transactions on Medical Imaging,

18:404–418, 1999.

[49] G. K. Rohde, A. Aldroubi, and B. M. Dawant. The adaptive bases algorithm for

intensity-based nonrigid image registration.IEEE Transactions on Medical Imaging,

22:1470–1479, 2003.

[50] S. Sandor and R. Leahy. Matching deformable atlas models to preprocessed mag-

netic resonance brain images.International conference on image processing, pages

686–690, 1994.

[51] A. Savi, M. C. Gilardi, G. Rizzo, M. Pepi, C. Landoni, C. Rossetti, G. Lucignani,

A. Bartorelli, and F. Fazio. Spatial registration of echocardiographic and positron

emission tomographic heart studies.European journal of nuclear medicine, 22:243–

247, 1995.

[52] D. A. Simon, R. V. OToole, M. Blackwell, F. Morgan, A. M. DiGioia, and T. Kanade.

Accuracy validation in imageguided orthopaedic surgery.Medical robotics and com-

puter assisted surgery, 19:185–192, 1995.

79



[53] D. E. Singer, D. M. Nathan, H. A. Fogel, and A. P. Schachar. Screening for diabetic

retinopathy.Annual International Medicine, 116:660–671, 1992.

[54] C. Sinthanayothin, J. F. Boyce, H. L. Cook, and T. H. Williamson. Automated

localization of optic disc, fovea and retinal blood vessels from digital color fundus

images.British Journal of Ophthalmology, 1999.

[55] M. Soltys, D. V. Beard, V. Carrasco, S. Mukherji, and J. Rosenman. Fusion: a tool

for registration and visualization of multiple modality 3d medical data.Medical

imaging: image processing, 2434:74–80, 1995.

[56] S. J. Stapleton, C. B. Caldwell, L. E. Ehrlich, C. L. Leonhardt, S. E. Black, and

M. J. Yaffe. Effects on non-linear flow and spatial orientation on technetium-99m

hexamethylpropylene amin oxime single-photon emission tomography.European

journal of nuclear medicine, 22:1009–1016, 1995.

[57] C. V. Stewart, C. L. Tsai, and B. Roysam. The dual-bootstrap iterative closest point

algorithm with application to retinal image registration.IEEE Transactions on Med-

ical Imaging, 22:1379–1394, 2003.

[58] J. Thirion. New feature points based on geometric invariants for 3d image registra-

tion. International journal of computer vision, 18:127–137, 1996.

[59] T. G. Turkington, J. M. Hoffman, R. J. Jaszczak, J. R. MacFall, C. C. Harris, C. D.

Kilts, C. A. Pelizzari, and R. E. Coleman. Accuracy of surface fit registration for pet

and mr brain images using full and incomplete brain surfaces.Journal of computer

assisted tomography, 19:117–124, 1995.

[60] M. Uenohara and T. Kanade. Vision-based object registration for real-time image

overlay. Computer vision, virtual reality, and robotics in medicine, pages 13–22,

1995.

80



[61] D. Vandermeulen, A. Collignon, J. Michiels, H. Bosmans, P. Suetens, G. Marchal,

G. Timmens, P. van den Elsen, M. Viergever, H. Ehricke, D. Hentschel, and R. Grau-

mann. Multi-modality image registration within covira.Medical imaging: analysis

of multimodality 2D/3D images, 19:29–42, 1995.

[62] P. Vassal, J. Troccaz, N. Laieb, P. Cinquin, M. Bolla, and E. Berland. Introducing

computer vision sensors in radiotherapy for accurate dose selivery.Medical robotics

and computer assisted surgery, pages 16–23, 1995.

[63] P. Viola and W. M. W. III. Alignment by maximization of mutual information.

International Journal of Computer Vision, 24:137–154, 1997.

[64] A. R. Wade and F. W. Fitzke. A fast, robust pattern recognition system for low

light level image registration and its application to retinal imaging.Optics Express,

3:190–197, 1998.

[65] T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, and L. D. Hubbard. A

prospective cohort study of retinal arteriolar narrowing and mortality.American

Journal of Epidemiol, 159:819–825, 2004.

[66] F. Zana and J. C. Klein. A multimodal registration algorithm of eye fundus im-

ages using vessels detection and hough transform.IEEE Transactions on Medical

Imaging, 18:419–428, 1999.

[67] F. Zana and J. C. Klein. Segmentation of vessel-like patterns using mathematical

morphology and curvature evaluation.IEEE Transactions on Image Processing,

10:1010–1019, 2001.

[68] L. Zhou, M. Rzeszotarski, L. Singerman, and J. Chokreff. The detection and quan-

tification of retinopathy using digital angiograms.IEEE Transactions on Medical

Image, 13:619–626, 1994.

81



[69] I. G. Zubal, S. S. Spencer, J. S. K. Imam, E. O. Smith, G. Wisniewski, and P. B. Hof-

fer. Difference images calculated from ictal and interictal technetium-99m-hmpao

spect scans of epilepsy.Journal of nuclear medicine, 36:684–689, 1995.

82


