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SUMMARY   

 
 
       Both pure component spectral reconstruction from spectroscopic data arrays and 

chemical system identification are important steps in exploratory chemometric studies. 

Various methods and techniques have been reported in the literature. In recent years, the use 

of simultaneous multiple 1D spectroscopies as well as higher order spectroscopies i.e. 2D and 

3D data, has become quite common in the chemical sciences. The resulting data is often very 

complex and the size of the data arrays can be huge. Very few if any feasible 

algorithms/methods have been devised for treating very large scale spectroscopic data arrays, 

particularly for recovering pure component spectra without the use of any a priori 

information. In this thesis a model-free spectral reconstruction method for large scale and 

particularly higher dimensional data sets is developed. A variation on the concept of entropy 

minimization is used to deconvolute the signals. 

 As a starting point for the present studies, the 1D-BTEM algorithm i was extended, 

and with some modification, it was successfully applied for the first time, to sets of acoustic 

data and solid state powder X-ray diffraction data. After further modifications, it was applied 

to non-reactive and reactive 1H-13C-19F-31P 1D NMR spectroscopic data.  

Subsequently, a higher dimensional entropy minimization method based on the BTEM 

and related techniques were developed for very large scale arrays. Starting from computer 

simulated experiments, the algorithms were tested. Then they were successfully applied to 

various sets of 2D images, both black and white, as well as color. They were then successfully 

                                                 
i Widjaja, E.; Li, C.; Garland, M. Organometallics, 2002, 21, 1991-1997. 

 



 xii

implemented on 2D spectroscopic data, in particular, 2D NMR spectroscopic data (COSY and 

HSQC) and 2D fluorescence spectral data sets. The performance of these proposed novel 

methods, both with simulated and real experimental mixture spectral data is very good. The 

pure component images/spectra were recovered from mixture data with very little a priori 

information what-so-ever. This means there was no assumption made about the number of 

pattern present, nor the characteristics of the patterns. Also the relative concentrations of the 

constituents were obtained. The ideas for 2D entropy minimization were successfully 

extended to 3D, and 3D patterns were extracted.  

 Starting from the known concept of 1D target transformation for pattern analysis, the 

concepts of 2D and 3D target transformation are introduced. The mathematical procedures 

needed are developed.  

 The present developments represent a significant step forward for very complex blind 

source separation problems (inverse problems with multiple sources). The ability to obtain 

accurate deconvolution with no assumptions what-so-ever, opens many possibilities. Indeed, 

a vast range of different types of 2D spectroscopic mixture data and 3D spectroscopic mixture 

data can now be analyzed in the future. Also, the present development promotes system 

identification in the chemical sciences (both non-reactive and reactive systems), and sets 

detailed in-situ spectroscopic studies of reactive systems on a much more firm basis. This will 

certainly lead to more accurate mechanistic and kinetic models. 
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Chapter 1 

Introduction 

 

 There are countless problems encountered in science, in which there are imbedded 

patterns in the observed data set, but the experimentalist does not know how many 

patterns there are nor what the patterns may look like. In the pure and applied mathematics 

literature these are often referred to as inverse problems (Sabatier, 1978). In the electrical 

engineering literature, they are often referred to as blind-source separation problems 

(Jutten and Hérault, 1991; Cardoso, 1997). In the chemical sciences the term spectral 

deconvolution is often used (Brown et al., 1996). 

Finding a proper model that describes significant dependencies between variables 

is an essential first step to untangle the data. Superpositions of patterns result when m 

individual sources are instantaneously mixed, contaminated with noise E, and the n 

resulting superpositions are observed. A simple formulation is given below: 

EXfY += )(                                                  (1.1)  

where X denotes a series of  sources. For example, these sources could be time series 

signals X(t) such as acoustics in electrical engineering, or these sources could be  

electromagnetic spectra of constituents in the chemical sciences. In the latter case, the 

source represents a series of intensity measurements along the wavelength or frequency 

X(ν). Here, f denotes an unknown function which maps the m dimensions of sources to n 

dimensions of observations.  The really interesting, intricate, and difficult work is to invert 
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the experimental observations Y and recover both the function f and all the sources X as 

precisely as possible – preferably with no a priori information about the system.   

In the modern chemistry laboratory, large observation/data sets can be routinely 

obtained from sophisticated analytical instruments (particularly spectrometers), 

manipulated and stored. The common bottleneck in the chemical sciences today is the full 

analysis and utilization of the spectroscopic data.   

Chemometrics, a relatively new and separate branch of chemistry, is a data 

analysis methodology with the application of mathematical, statistical and logical methods 

to elucidate the concealed information embedded inside the observable data set (Wold, 

1995). The revealed information commonly forms the basis for new understanding of the 

studied system for the chemist or chemical engineer.  

If a chemist or chemical engineer has a reactive system, and has appropriate 

analytical instrumentation, there are some basic questions that can be asked in almost all 

cases. These include (1) how many observable species are present and what are their 

spectra i  (2) how many observable reactions are present and what are the reaction 

stochiometries (3) what are the physico-chemical parameters associated with the 

observable speciesii and (4) what are the physico-chemical parameters associated with the 

observable reactionsiii? The answers for the above questions provide very detailed system 

identification models for the system i.e., algebraic model, thermodynamic model, kinetic 

model, etc. At the present moment, the most important point to note is the need to solve 

Part (1) at the outset. In other words, the determination of the observable species present is 

of primary importance. It should be clear that the solution to Part (1) is a difficult inverse 

                                                 
i From bulk spectroscopic measurements 
ii Requires additional bulk density, refractive index, dielectric measurements, etc 
iii Requires additional bulk density, bulk calorimetric measurements, etc 
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problem and represents a special case of Eq. 1.1, where each species has its own unique 

spectral pattern.  A robust solution to Eq. 1.1 in order to solve Part (1) without any a priori 

information would be very important for the chemical sciences. In part, a robust solution 

is difficult to obtain, since spectroscopic signals are inherently non-stationary. In other 

words, the pure component spectra (patterns) are non-constant.iv    

 Over the past few decades, quite a lot of work has focused on spectroscopy and the 

reconstruction of pure component spectra from multi-component mixtures. Numerous 

self-modeling curve resolution methods are now available for spectroscopic data. For 

example, iterative target transformation factor analysis (ITTFA) (Gemperline, 1984, 1986; 

Vandeginste 1985), multivariate curve resolution and alternating least squares method, 

(MCR-ALS) (Tauler et al., 1991; Tauler 2001), simple to use interactive self-modeling 

mixture analysis (SIMPLISMA) (Windig, 1991, 1997), and heuristic evolving latent 

projection (HELP) (Kvalheim and Liang, 1992). Most of these methods deal with the 

general 1-dimensional (1D) spectroscopic data set. Recently, some methods/algorithms 

were extended to the analysis of large scale multi-way spectroscopic data set. A family of 

methods have been developed to treat such data sets where a trilinear structure is assumed: 

direct trilinear decomposition (TLD) (Sanchez and Kowalski, 1990), parallel factor 

analysis (PARAFAC) (Carroll and Chang, 1970), TUCKER3 (Tucker, 1966; Kroonenberg 

and de Leeuw, 1980) and also MCR-ALS (Tauler et al., 1998; de Juan and Tauler, 2001).  

In all of the above examples, some sort of a priori information is needed, or some sort of 

severe restriction in the scope of the method exists. 

                                                 
iv The term non-stationary is extensively used in the physical literature to denote signals whose mean and 
standard deviation change. For problems in the chemical sciences, non-stationary spectra are ubiquitous. 
They arise due to a convolution of physical and instrumental effects, and are known to effect 
electromagnetic spectra from the radio wave (Nuclear Magnetic Resonance) to X-ray diffraction.  
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Thesis Objective 

 
 Over the past few years, our research group has developed a very robust algorithm 

for treating 1D spectroscopic data (solving Eq 1.1 and Part (1)), which does not require 

any a priori information what-so-ever. The primary objective of the present thesis is to 

develop and successfully test an algorithm which is applicable to higher dimensional 

problems, where the patterns are matrices X(ν×ν) or even tensors X (ν×ν×ν) instead of 

vectors x(ν). This would considerably extend the scope of problems that can be treated in 

the chemical sciences. Here, it is important to note that NMR (Nuclear Magnetic 

Resonance) is the most important spectroscopic tool in the chemical sciences and that 2D 

and 3D NMR are of incredible importance for understanding structural and dynamic 

molecular problems.  

 During the course of this PhD thesis, I first worked with the groups’ 1D algorithm 

and extended its scope. Then a new higher dimensional pattern recognition algorithm was 

successfully developed and tested without requiring any a priori information what-so-ever.  

  

Outline of this Thesis 

The organization of this thesis is summarized as follows.  

 Chapter 2 provides a broad review of recent and related literature pertinent to this 

multi-disciplinary thesis. This review covers chemometrics, self-modeling curve 

resolution, chemometric techniques for high dimensional data and NMR spectroscopy. A 

brief review of numerical optimization algorithms is also included. 
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 Chapter 3 can be considered as an introductory tutorial to the fundamental 

concepts, mathematics and methodologies that will be needed and used in chemometric 

data analysis. Data pretreatment and data enhancement are also covered. 

 Chapter 4 As a starting point, this chapter is devoted to the 1D spectroscopic 

problem. The group’s advanced spectral reconstruction algorithm named Band-Target 

Entropy Minimization (1D-BTEM) is introduced. I successfully applied it to solve four (4) 

sets of group data from different types of homogeneous catalytic hydroformylation. After 

some modification, it was successfully applied for the first time, to sets of acoustic data 

and solid state powder x-ray diffraction data. After further modifications, it was applied to 

non-reactive and reactive 1H-13C-19F-31P NMR data (in collaboration with Bruker AG 

Switzerland). 

In Chapter 5, the theoretical and mathematical foundations of 2D-BTEM and a 

more general 2D EM method are developed and proposed. The necessary mathematical 

manipulations are described and the higher dimensional target transformation technique is 

discussed.  

 Chapter 6 applies the tools from chapter 5 to simulated 2D spectral data to make 

sure that the algorithm works. Then a real problem from image processing is successfully 

treated. 

In Chapter 7, 2D-BTEM is further tested and applied to several real experimental 

systems. In particular it is applied to both COSY and HMQC NMR data sets (in 

collaboration with ICES and Bruker Singapore). Also another important type of 2D 

pattern, fluorescent excitation-emission-matrix (EEM) data is successfully treated.  

Chapter 8 describes the theoretical and mathematical foundations of 3D entropy 

minimization method and its applications. 
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 The final Chapter 9 provides a retrospective discussion and suggests some 

possible future works that could be endeavored from the present study. 
       All computational work was implemented on a NT workstation with 2GB RAM 

and 2 Xeon processors running MATLAB 6.5v. 

 

                                                 
v MATLAB, Mathworks. http://www.mathworks.com/ 
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Chapter 2 

Literature Review 

 

This chapter provides an overview of the theoretical background and literature 

relevant to this study and presents a theoretical framework for the research. The outline of 

chapter 2 is as follows. Section 2.1 gives a brief introduction and the development of 

chemometric studies. Section 2.2 reviews the various chemometric techniques used in 

quantitative spectroscopy. In section 2.2.1 the progress and development of various self-

modeling curve resolution techniques are discussed. Section 2.2.2 reviews chemometric 

techniques for higher dimensional data analysis. Section 2.2.3 reviews chemometric 

techniques for NMR data analysis. In Section 2.3, numerical optimization algorithms used 

in analytical chemistry applications are reviewed. At the end, in section 2.4, there is a 

summary of this chapter.  

2.1. What is Chemometrics? 

Chemometrics has been evolving into a separate discipline within chemistry for 

more than three decades. The terminology “Chemometrics” was coined by S. Wold in 

1971(Brereton, 1990). Chemometrics is a chemical discipline that applies mathematical, 

statistical and logical methods to elucidate the concealed phenomena and reveal 

information embedded in the observations or experimental data set. And for the chemist or 

chemical engineer, the revealed information forms the basis for considerably better 

understanding of the system. It is fair to say that chemometrics is the tool that bridges the 

gap between chemical data and chemical knowledge by investigating and extracting 
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information from the data. Chemometrics heavily relies on the use of mathematical 

models and applies the most widely used multivariate calibration and pattern recognition 

techniques to solve data analysis problems in the chemical sciences. In the early years, 

chemists borrowed some basic methods which originally developed in other fields such as 

statistics, electrical engineering, and psychology where very complex data sets are 

encountered and sophisticated analytical tools are needed. Today, many new methods are 

being developed within the chemometrics community itself.  

After 30 years of rapid development, various important topics in chemometrics 

today include (Einax, 2004): “Descriptive statistics, planning and evaluation of sampling,  

experimental design and optimization, signal detection and univariate signal processing, 

calibration, multivariate signal processing, multivariate data analysis, geostatistical 

methods, time series analysis, soft modeling, laboratory information and management 

systems, library search and expert systems, analytical quality assurance, process analysis 

and optimization.” Detailed reviews of the methodologies and practice of data analysis in 

chemistry have appeared in the biennial “Fundamental Reviews” issue of the 

journal Analytical Chemistry (Brown et. al., 1988, 1990, 1992, 1994, 1996; Lavine, 1998, 

2000, 2002; Lavine and Workman, 2004).  

 

2.2. Chemometrics in Quantitative Spectroscopy 

 There are various chemometric methods used in processing and interpreting 

spectroscopic data. It covers data calibration, the data acquisition and signal enhancement, 

feature selection and extraction, pattern recognition, cluster analysis and other multivariate 

calibration techniques. Due to the scope of the thesis, this chapter will focus on self-

modeling curve resolution techniques. 
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2.2.1. Self –Modelling Curve Resolution 

Self-modeling curve resolution (SMCR) comprises a family of chemometric 

techniques which target the reconstruction of pure component spectra from mixture 

spectroscopic data. Even though there are already many attempts to resolve the 

components in complex spectroscopic data sets (Wallace, 1960; Blackburn, 1965), the 

new term SMCR first appeared when Lawton and Sylvestre (1971) resolved a two-

component system measured by UV/Vis spectroscopy in 1971. Although only applicable 

for a two-component system, this pioneering work inspired further studies by Ohta (1973) 

and Borgen et al. (1985, 1987). During the next two decades, significant progress was 

made by several research groups. Ritter et al.(1976) proposed a method to determine the 

number of components in chromatography-mass spectrometric data, and similar work also 

was done by Davis et al. (1974). SMCR analysis was successful implemented in infrared 

spectroscopy and the number of components in a mixture was predicted even in case 

where the spectra of the individual compounds were very similar (Rasmussen, 1978). In 

the 1980s, the information entropy concept was introduced into SMCR method by Sasaki 

and co-workers (Sasaki et al., 1983, 1984; Kawata et al., 1985). Later, Kawata et al. 

applied its extension to multispectral images data (1987, 1989). They minimized the 

entropy function with non-negativity constraints to search for pure component spectral 

estimates.  

As a new discipline, chemometric techniques have experienced continuous rapid 

development along with their applications. In recent developments, many research groups 

have applied SMCR to spectroscopic studies of complex chemical kinetic and equilibrium 

systems (Bijlsma et al., 1998, 1999, 2000; Forland et al., 1996; Libnau et al., 1995; 

Nodland et al., 1996). At the same time, a number of self-modeling curve resolution 
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methods were made available for spectroscopic data analysis applications: Key set factor 

analysis (KSFA) (Malinowski, 1982), iterative target transformation factor analysis 

(ITTFA) (Gemperline,1984, 1986; Vandeginste et al., 1985), evolving factor analysis 

(EFA) (Maeder, 1987; Keller and Massart, 1992), window factor analysis (WFA) 

(Malinowski, 1992), multivariate curve resolution and alternating least squares 

method ,(MCR-ALS) (Tauler et al., 1991, 2001), simple to use interactive self-modeling 

mixture analysis (SIMPLISMA) (Windig, 1991; Windig and Stephenson 1992), 

orthogonal projection approach (OPA) (Sanchez et al., 1994, 1996b), heuristic evolving 

latent projection(HELP) (Kvalheim and Liang, 1992), SAFER (Kim, 1989), interactive 

principal component analysis (IPCA) (Bu and Brown, 2000),  Dynamic Monte Carlo 

SMCR (DMC-SMCR) (Leger and Wentzell, 2002), singular value decomposition with 

self-modeling method (SVD-SM) (Steinbock et al., 1997; Zimanyi et al., 1999; Zimanyi, 

2004). 

Also non-negativity is a natural condition for many spectroscopic applications. 

Methods based on this property are positive matrix factorization (PMF) (Paatero and 

Tapper, 1994), non-negative matrix factorization (NMF) (Lee and Seung, 1999), etc.  

There is another independent category of techniques developed from the signal 

processing field and which comes under the name of blind source separation (BSS) and 

within this, the most common method is independent component analysis (ICA).  Blind 

source separation consists in extracting independent sources from superimposed signals, 

by manipulation of the statistical independence between sources/components. Most 

studies have been focused on linear systems which have some close analogs to 

spectroscopic data analysis in chemometrics.  ICA tools have been applied to some 
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chemical data analysis problems (Chen and Wang, 2001; Ladroue et al., 2002; Ren et al., 

2004; Stogbauer et al., 2004; Shao et al., 2004; Simonetti et al., 2005).   

For older reviews of SMRC methods and chemometrics studies, one can refer to 

the contributions from Gemperline (1989), Hamilton and Gemperline (1990), Sanchez et 

al. (1996a), Mobley et al. (1996), Workman et al. (1996), Bro et al. (1997). More recently, 

reviews by de Juan et al. (2003) and Jiang et al. (2004) provided some further descriptions 

of SMCR   methodologies.  

Even though SMCR has been widely applied in chemometrics; there are still some 

ubiquitous problems that have not been fully addressed. (1) Non-stationarity (or 

nonlinearity) is the major obstacle when applying SMCR techniques to spectroscopic data, 

where Beer-Lambert law is not observedi. Therefore, a bilinear model is only locally valid 

and not globally valid. Data pretreatment and signal enhancement may help to some 

degree to correct this problem. (2) Secondly, the correct estimation of the number of 

components present in the systems is another very difficult quantity to determine. The 

experimentalist unfortunately faces the problems of unknown concentration matrix, 

unknown spectral matrix, unknown error component and unknown number of species all 

at the same time. Effort has been invested in solving this problem (Chen et al., 1999, 

2001); and it shows that determining the number of components in the real experimental 

data matrix really is a hard task. (3) The inverse problem is normally ill-posed in other 

ways as well, for example, due to ill-conditioning and this may significantly deteriorate 

the performance of the self-modeling. This problem arises particularly, in the case when 

                                                 
i Several phenomena can cause a deviation from Beer-Lambert law. The two most common causes are 1. 
changes in temperature or pressure which induce spectral changes and 2. changes in concentrations which 
induce spectral changes (changes in solvation induce absorbance peaks shifting, band shape changes).  
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there are minor components and their contribution is small compared to the other 

components present, and when the noise signal contribution is significant in comparison 

with the minor component. In these situations, self-modeling methods may fail to predict 

the correct results accurately.  

For more detailed discussions of SMCR technique, see section 4.1 in chapter 4. 

2.2.2. Chemometric Techniques for Higher Dimensional Data Analysis 

 Most of chemometric tools, especially the SMCR methods, are designed to deal 

with 1D spectroscopic data. However, 2D spectroscopic data, which is obtained as an 

analytical response in matrix-format rather than a vector, is becoming much more 

common in today’s analytical laboratory. A real need exists for the development of 

chemometric techniques for 2D data.   

It should be noted that not all 2D formatted data is equivalent from any analysis 

viewpoint. Some 2D formatted data has more structure and can be factorized into the 

product of 2 vectors. The most common example is luminescence data (excitation-

emission-matrices). Other 2D formatted data has less structure and has to be treated as a 

whole. Common examples are some 2D NMR and even photographs. Clearly, an analysis 

that can treat the less structured data would represent a more robust generalized way of 

solving the problems. A method/solution that can treat the less structured data will also be 

able to treat the more structured data.   

The matrix-formatted measurement of 2D luminescence of a dilute solution, is the 

prototype for bilinear data which can be factorized into a row and a column. When dealing 

with the bilinear 2D data, there is also a theoretical “second-order advantage” which 
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means the accurate and reliable discrimination of the analyte can be performed in the 

presence of unknown interferents (Sanchez et al., 1987; Ramos et al., 1987). There are 

families of rank annihilation methods targeting at the resolution of such 2D bilinear data 

and they play an important role in the high-dimensional data analysis (Ho et al., 1980, 

1981; Ramos et al., 1987; Millican and Mcgown, 1990, Faber et al. 2001a, 2001b).  

The rank annihilation factor analysis (RAFA) was proposed by Ho et al. in 1978 

(1978). Later it was modified into an efficient chemometric technique based on the 

eigenanalysis (rank analysis) for the two-way data and it is often applied to quantitatively 

analyze a system with unknown interferents (Lorber, 1984, 1985). But RAFA suffers from 

a serious deficiency, namely, that it needs a pure standard with known concentration. 

Sanchez and Kowalski fixed this deficiency and developed GRAM (the generalized rank 

annihilation method) algorithm, a general extension of RAFA and applied it to liquid 

chromatography diode array-UV (LC-DA-UV) data (Sanchez and Kowalski, 1986, 

Sanchez et al., 1987) and pulsed gradient spin echo (PGSE) NMR data (Antalek and 

Windig, 1996).  

Besides GRAM, Sanchez et al. (1990) suggested a tensorial resolution: Direct 

Trilinear Decomposition. All the above are eigen-problem based methods. Another main 

method is the family of alternating least-square (ALS) methods which are more flexible 

but more numerically expensive. And these ALS methods also can be constrained with 

some criteria, such as non-negative, unimodality, and column-wise orthogonality. The two 

major significant families are PARAFA (PARAllel RActor analysis)/CANDECOMP 

(CANonical DECOMPosition) (Carrol and Chang 1970; Harshman and Lundy, 1996) and 

TUCKER3 (Tucker, 1966) series. Smilde has reviewed various TUCKER unfolding 
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schemes and PARAFAC modeling, and offered a discussion of the history and applications 

of higher-order analysis (Smilde, 1992). As an extension of PMF, namely, PMF3, a 

weighted nonnegative least-square algorithm for three-way factor analysis was proposed 

(Hopke et al., 1998; Paatero, 1997), and the property of nonnegativity is achieved by 

posing a logarithmic penalty. Such higher-order analysis also encounters many difficulties 

inherented from the trilinear form, including ambiguity of the correct model size (number 

of factors involves in the system), model mismatch and the interference by noise. 

2.2.3. Chemometric Techniques for NMR Data Analysis Studies 

 As the most important tool in the chemical science, NMR spectroscopy has been of 

long interested in chemical analysis, pharmaceutical analysis (Lepre et al., 2004) ii , 

biomedical analysis, especially metabonomic studies (Lenz et al., 2004; Holmes and Antti, 

2002). In bioinformatics studies, the complex NMR data are treated by cluster analysis 

and other pattern recognition techniques, which are implemented to identify, e.g. 

diagnostic compounds. Normally these would involve chemometric techniques, such as, 

soft independent modeling of class analogy (SIMCA), and K-nearest neighbor analysis. 

Other chemometric techniques are also used in more general chemical science studies. 

Most of this work falls into the category of signal enhancement (Lin and Hwang, 1993; 

Koehl, 1999) and multivariate linear calibration methods (Schulze and Stilbs, 1993). 

However, few of them are related to the application of SMCR methods on mixture NMR 

data. In 1996, Antalek and Windig, applied one of the variations of generalized rank 

annihilation method (GRAM), namely, DECRA (direct exponential curve resolution 

algorithm) to directly resolve PGSE NMR mixture data; and later extended to magnetic 
                                                 
ii Also other articles in the same thematic issue: Chem. Rev. Vol.104, 2004 
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resonance images (Antalek and Windig, 1996; Windig et al., 1999). Xie et al. (1998) re-

investigated these three NMR spectral data sets using a least-square approach called 

Positive Matrix Factorization (PMF). In 2002, based on the DECRA, Pedersen et al. (2002) 

proposed a method, SLICING, for the decomposition of low-field pulsed NMR data. 

 In 2001, Vives et al. (2001) applied the MCR-ALS method to study 1H NMR data. 

In the same group, MCR-ALS approaches have been implemented for the analysis and 

resolution of simple transformed NMR data (Joaquim et al., 2003).  

NMR spectra of complex mixtures possess unique features, such as, phase 

problems and sample-to-sample variability in peak positions due to the different chemical 

environment surrounding the analyte, for example, the different concentrations of 

molecules. Therefore, proper preprocessing tools would be extraordinarily important for 

NMR data analysis. Unfortunately, very little literature has reported the study of NMR 

data preprocessing and subsequent SMCR data analysis. Except for specific studies on 

PGSE NMR data sets (Huo et al., 2003, 2004), the application of spectral resolution 

algorithms in the decomposition of general NMR data to obtain pure component spectra 

and concentrations is seldom reported (Brekke and Kvalheim, 1996; Alam and Alam, 

2005). 

2.3. Optimization Methods 

In most of the SMCR methods, the kernel of data analysis consists of two parts, 

one is the definition of the objective function related to the curve solution, and the other is 

the search of the optimal solution. Many SMCR methods differ primarily by the 

philosophical approach taken and hence the formulation of the equations which will be 
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used to resolve the spectra. However, there can also be significant differences in the 

numerical approaches that can be taken to find optimal solutions. In most cases, the 

function is nonlinear; a nonlinear program (NLP) problem exists in analysis. Normally the 

NLP problem can be formulated as 

Min F(x)      subject to g(x) = 0 and h(x) >= 0                 (2.1) 

A solution is found by adjusting or searching a set of parameters to minimize iii a chosen 

cost function, F(x), subject to one or more of constraint functions related to g(x) and h(x).  

Global optimization is an area with great theoretical challenges and has a broad 

range of scientific, engineering applications. The objective of global optimization is to 

find the best solution for a nonlinear problem which may possess a multitude of local 

optima. In practice, systematic searches can be performed to find the local optima; a 

typical example is gradient-based methods, which are very efficient to find the local 

optima but not global optimum, since it will be easily trapped in the area around its 

starting point.  To overcome this difficulty, many algorithms were proposed to find ways 

to move beyond local optima to the global solution without using an exhaustive search. 

Tabu search, Genetic/Evolutionary Algorithm (GA/EA), Simulated Annealing (SA) are 

the most common methods that have been used in chemometrics and they have countless 

applications in analytical science and chemical engineering. Excellent reviews about these 

optimization methods can be found in references (Shaffer and Small, 1997; Lavine and 

Moores, 1999; Leardi, 2001). In the present study, GA and SA are used for solving the 

entropy minimization problems. Also they are often used to solve curve-fitting problems.  

                                                 
iii It is known that the many problems come naturally in a minimization form. A maximum problem can 
always be converted into a minimization problem by changing the sign of the objective. 
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Simulated annealing (Metropolis et al., 1953; Kirkpatrick et al., 1983; Siarry, 1997) 

is a stochastic optimization method based on the Monte Carlo sampling technique. The 

method starts from an initial point and takes an iterative strategy. During its annealing 

procedure, some steps which produce the “worse” points can also be temporarily accepted 

according to a Boltzman-like probability function, which depends on a pseudo-

temperature parameter. At higher temperature, more steps are accepted and more state 

spaces are searched. However, when the temperature drops, the search range shrinks and 

the focus of the search shifts to improving the quality of the current solution, in other 

words, the increasing partition of “better” points is favored. The numerical cooling 

procedure mimics physical annealing and enables SA to efficiently search the solution 

space instead of being trapped at local optima (Brooks and Morgan, 1995). 

Genetic algorithm (GA) (Holland, 1975; Goldberg, 1989) is a global optimization 

technique which is based on the analogy of iteratively selecting the best genes and best 

solutions among a population of evolving candidate solutions through modification of 

their gene pool and guided by evolutionary mechanisms (“survival of the fittest”). 

Selecting a parent from the previous generation by evaluation of “fitness”, GA forms the 

next generation by applying genetic operators, such as mutation and/or recombination 

(crossover).  Without the need to use complicated differential equations, genetic algorithm 

is often more attractive than gradient search methods even if the response space of the 

function is very complicated.  

Compared to other methods, the strength of GA and SA methods is that they are 

especially useful for functions with discontinuities and multimodality since they do not 

make use of the gradient.  They also perform well when there are lots of local optima to 

avoid and they do not rely on the quality of the initial guess.  On the other hand, 
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substantial computation efforts are normally needed for GA and SA. They are less 

efficient than a gradient-guided method if a gradient function is available and the function 

is well-behaved. Also parameters such as mutation crossover rates for GA and cooling 

factor for SA should be fine-tuned to the particular application. Otherwise, it would either 

converge prematurely or never converge to a global minimum at all. Nevertheless, GA and 

SA are strongly favored when solving many difficult optimization problems in analytical 

chemistry due to their convenience.  

It is unrealistic to expect to find one general optimization tool which can solve 

every kind of nonlinear problem. The choice of an appropriate algorithm would depend on 

the specific characteristic of the targeted function. For a well-behaved function and 

gradient available function, gradient-based solvers would be the more efficient and 

suitable algorithm. But in high-dimensional problems where gradients are typically not 

available, random search method are favored. Also a few studies have compared 

stochastic methods, and general guidelines about when to use GA and SA are far from 

complete (Lucasius et al., 1994; Hörchner and Kalivas, 1995).  

2.4. Summary 

In modern chemical science laboratories, a huge amount of data can be produced. 

In particular, a significant portion of this data comes from spectrometers, which can 

acquire many megabytes and even gigabytes of 1D, 2D, and even 3D data daily. 

Chemometric tools play an important part in analyzing such data. A lot of effort has been 

invested in resolving pure component spectra using SMCR techniques. Global 

optimization plays a key role in achieving numerical solutions to many of the problems.  
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Chapter 3  

 Data Manipulation in Spectroscopy 

 As introduced in chapter 2, chemometrics is a field of data analysis that involves 

the application of various multivariate analysis methods to chemical data sets. In practice, 

after considerations about experiment design, the experimental data is collected with 

spectroscopic instruments. It is clear that the success of data analysis heavily depends on 

the quality of the data. After data acquisition, the first step is often a data pre-processing 

procedure. The reason is that spectra, as well as other types of analytical measurements 

(and their data arrays), often contain both random and systematic errors and noises, and 

artifacts of various types. Often the unwanted signals or variations should be eliminated or 

at least reduced. The corrected or pre-processed data is then more suitable for other 

chemometric techniques. A wide variety of tools are employed for this purpose in 

exploratory data analysis. In this chapter, a detailed exposition of the concept and 

mathematical principles related to some data manipulations needed in this study is 

provided.i  

  

                                                 

iThere is some specific nomenclature used in higher dimensional analysis, i.e. the terms “dimension” and 
“way”. The dimension of a data array refers to the number of coordinates needed to specify a point inside the 
array and refer to “dimensionality” also. For example, an mn × array is two-dimensional array, while a 
tensor ( kmn ×× ) array is three-dimensional array. However, in some literature, an mn × array is 
described to be n points in an m dimensional space, in another word, the data is m-dimensional. In order to 
avoid confusion, in this thesis, the traditional nomenclature is adopted and the mn ×  data array would be 
regarded as 2D (two-dimensional or two-way) data. By analogy, an ( kmn ×× ) array is three-dimensional, 
and is also called three-way data. 
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3.1. Different Types of Measurements in Multivariate Analysis 

 

Figure 3.1. A batch reaction with four kinds of on-line measurements according to the 
dimension of the individual measurements 

 

In chemical and engineering science, data are collected from all kinds of detectors. 

Figure 3.1 represents, to some extent, a general liquid phase reaction carried out in a batch 

reactor in fine chemical or pharmaceutical research. The reaction is carried out with some 

sorts of on-line measurements. Ideally, in a very modern and well equipped research 

laboratory, one would like to make as many simultaneous and sophisticated measurements 

as possible, in order to properly and thoroughly investigate the system.ii The inversion of 

such data leads to a model of the system (system identification). 

                                                 
ii  Such a system like Figure 3.1 is presently being completed in Prof Garland’s Advanced Reaction 
Engineering, Process Analytics and Chemometrics lab at the Institute of Chemical and Engineering Sciences 
in Singapore (ICES). The scalar instruments include (1) a densitometer (Anton Paar, Austria) (2) a 
refractometer (Dr Kernchen GmBh, Germany) (3) a dielectric cell (Scientifica, Princeton NJ) and (4) an 
ultra-sensitive flow through calorimeter (Thermometrics, Sweden). The vector instruments include (1) Far 
Infrared (Bruker, Germany) (2) Mid Infrared (Bruker, Germany), (3) Raman Optical Activity (Biotools, 
USA). Facilities for MS, 1D, 2D and 3D NMR are available in the neighboring lab.     
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As shown in Figure 3.1, meaningful on-line measurements can be classified into 

four categories according to the data format of the individual measurements, e.g. scalar, 

vector, matrix and tensor. However, these individual measurements can be grouped in 

various ways and this leads to one-way, two-way, three-way, four-way data etc.  

 

One-Way Data: 

All measurements in the engineering sciences are related to the physical 

phenomenon or response (radiation, density, electric current, and mass). Quite a lot of 

thermo-physical property measurement data, such as density ( vρ ), heat capacity at 

constant pressure ( pC ), heat capacity at constant volume ( vC ), thermal conductivity ( h ) 

and surface tension (σ ) are simple scalar measurements. If a series of measurements of 

temperature (scalar data) in a reaction system are collected with a temperature detector 

(such as a thermometer), the data set is considered one-way data since the scalar data is 

only collected in one direction (a time series) denoted as T(t), over time. Also if a sensitive 

heat flow calorimeter is used, simultaneous heat flux measurements Q(t) are collected over 

time. Other forms of one-way data can be time series measurements of viscosity ( µ ) or 

dielectric constant (ε  ).  

 

Two-Way Data:  

As in the above system, a digitized FTIR spectrometer can be employed to 

measure the mixture spectra of the liquid phase at specific intervals in time. A set of 

vector-formatted data are collected along time which forms a “two-way” data set, denoted 

as A (v, t). This data set is a matrix A of absorbance with one way along wavenumber (v) 
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and a second way along time (t). Analogously, a matrix I (m/e iii , t) of intensity 

measurements can be obtained from an on-line MS (mass spectrometer) and a matrix I 

(ppmiv, t) from an on-line NMR spectrometer.  This kind of two-way data are formed by 

time-series measurements of vector-formed data. These examples are perhaps the most 

common.  

Hyphenated two-way data sets also exist, and these represent another type of 2-

way data. Good examples are GC-MS, HPLC-MS, GC-IR, HPLC-UV and GC-GC. All of 

these examples represent series of spectra collected at even intervals of time during a 

chromatographic run. This yields a matrix indexed by wavenumber from the spectra in 

one direction and by time from the chromatography in another direction. All of the 

mentioned examples arise from hyphenated instruments which consist of two instruments 

in series (Albert, 2002).  

Yet another kind of two-way data exists and this type is often referred to as a 2D 

spectroscopy. A 2D spectroscopy arises from excitation at one frequency followed by 

changes at other frequencies.  Examples are represented by two-dimensional infrared (2D 

IR) spectroscopy (Zhao and Wright, 2000; Ge and Hochstrasser, 2001; Brixner et al., 

2005), and two-dimensional Raman (2D Raman) (Tanimura and Mukamel, 1993) which 

can be denoted as A (ν1,ν2). Other more common examples are two-dimensional NMR 

spectroscopy (2D NMR Spectroscopy) (Wider et al., 1984, Ernst et al., 1987) and 2D 

excitation emission fluorometry (Patonay, 1987).  

 
                                                 
iii  m/e refers to “mass to charge ratio”, which is the x-axis of a mass spectrum. 
iv In NMR spectroscopy, the chemical shift is defined as 

reference

referencesignal

v
vv −

×= 610δ (ν: frequency of 

resonance), so that its value can be independent of the magnetic field strength. The scale is made more 
manageable by expressing it in parts per million (ppm). 
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Three-Way Data: 

Three-way can be formed by collecting two-way data along a third direction. An 

ordinary chemical example could be 2D excitation-emission matrix fluorescence spectra 

collected for a series of discrete physical samples. Another example could be 

chromatographic separation followed by any kind of 2D spectroscopy – again for a series 

of discrete physical samples. Finally, a series of 2D spectra collected in time is also an 

example of a three-way data set. The development of second-order (i.e. GC-MS or 2D 

NMR) and higher-order (i.e. the GC-MS-MS) instrumentation has benefited modern 

analytical chemistry by providing two and multidimensional data arrays, which greatly 

enhances chemical identification.  

Analogous to the 2D NMR, the one type of 3D NMR data can be constructed by 

combining two kinds of 2D NMR experiment which consists of correlating the various 

nuclei either through scalar coupling (COSY, TOCSY, HMQC, and HSQC) or through 

space (NOESY) and spreading this overlapping along the third chemical shift axis by 

combining two 2D experiments.  

Another type of 3D NMR experiment is the so called triple resonance experiment. 

The most common type is found in the bio-molecule studies where a 1H-13C-15N triple 

resonance is detected. An individual 3D triple resonance NMR measurement is also a 

three-way data array.  

 

Four-Way Data: 

It is obvious that more elaborate analytical instruments increase the dimension of 

the data sets collected. Actually, there is no limit to the number of “ways” in which the 

data set form. Therefore, four-way data can be constructed in many ways.  
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For the purpose of this thesis, there is only one type of four-way data which is 

particularly important, and this is formed from a set of 3D triple resonance NMR 

measurements.  

Univariate, Bivariate, Multivariate Data 

 The number of variables measured also provides a way to classify the data. 

Depending on the number of variables measured simultaneously, we obtain three different 

categories of data: (a), univariate data: measurements with only one variable per 

observation. (b), bivariate data: measurements with two variables per observation. (c), 

multivariate data: measurements with many variables per observation.  A multivariate data 

set consists of several variables recorded for a number of objects or samples. The most 

obvious example of multivariate data is spectroscopic data where a spectrum is recorded at 

hundreds of different frequency channels on a single sample instantaneously.  

3.2. Data Pretreatment and Data Enhancement 

As already mentioned, it is apparent that the success of data analysis heavily 

depends on the quality of the data. Many available chemometric techniques are based on 

the linearity of the data (for example, bilinear model for PCA or trilinearity for 

PARAFAC and TUCKER3). But unfortunately this important prerequisite for linearity is 

seldom adequately met in the real world and the measurement is always deteriorated by 

experimental error or noise. It is an important step to try to “clean up” the data set prior to 

the further data analysis.  Suitable pre-processing of the data would be very useful in 

improving the quality of the treated data. These pre-processing methods include, but are 

not limited to, signal enhancement (signal filtering, signal smoothing, signal restoration). 
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Also outlier detection and spectral alignment are indispensable techniques in many data 

processing procedures.  A brief discussion of these methods follows.  

3.2.1. Outlier Detection 

The term outlier normally refers to an observation that lies an abnormal distance 

from other similar observations in a data set. This is normally attributed to infrequent 

random events (i.e. a power fluctuation) or even mistakes. The presence of outlier has a 

detrimental effect on the data analysis since an outlier can easily bias estimations of a 

spectrum and make the model fail, distort the result and obscure their prediction. In 

statistics, outliers can be dectected by checking with range of the “inner fences” and 

“outer fences”, whose definition relates to the value of quartiles.  An observation beyond 

the inner fence would be labeled a mild outlier, and a point beyond an outer fence is 

considered an extreme outlier. Hotelling’s 2T test which is based on the squared 

Mahalanobis distance is another method for detecting outliers (Jackson, 1991). Other more 

sophisticated treatments for outlier detection exist (Walczak, 1995; Singh, 1996).  

 

3.2.2. Data Filtering  

 Signal-to-noise enhancement of 1D signal can be accomplished by several well-

developed methods.  

 

3.2.2.1. Time Averaging/ Ensemble Averaging Method 

  Ideally, signals can be distinguished from noise by the fact that the noise is not 

reproducible, whereas, the genuine signal is at least partially reproducible. Therefore the 

signal to noise ratio can be improved by repeating the successive set of measurements and 
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adding up all this data point-by-point.  The price for the improvement of signal-to-noise-

ratio is the time needed for repeated measurements. Even though the ensemble averaging 

method is one of the most powerful methods for improving signals, it seems that it is not 

suitable for measurements which are slow on the reaction time scale.  Trying to reproduce 

the signal as many times as possible, seems impractical for continuously reacting systems. 

 

3.2.2.2. Moving Average Algorithm  

The moving average method is often used to reduce the effects due to random 

variation. The simplest form of moving average simply replaces each data value with the 

average of neighboring values. Mathematically it can be implemented by convolving the 

untreated spectrum with a box-shaped function of 12 +× m points with their values all 

equal to )/( 121 +× m , where m denotes the number of points before and after the target 

data point (where the average is being performed). More details can be found in the useful 

references (Tomita and Tsuji, 1977; Wells, 1986). 

 

3.2.2.3. Savitzky–Golay Smoothing Method  

  Savitzky–Golay smoothing method is a popular smoothing method in the field of 

chemistry (Savitzky and Golay, 1964). Instead of simply averaging, Savitzky–Golay 

smoothing method can be thought of as a generalized moving average method. It performs 

a least-square polynomial fit of a small set of consecutive data and replaces the central 

point with the new smoothed calculated point of the fitted polynomial curve by using a set 

of pre-computed weighting coefficients. The polynomial order and the number of points 
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used to compute each smoothed output value are two parameters which should be tuned 

for specific applications.  

 

3.2.3. Fourier Transformation and Wavelet Transformation  

Instead of filtering the data in the time domain, filtering can be implemented in the 

frequency domain. Fourier transformation (FT) is the most common transformation 

procedure in spectroscopic data analysis. In the frequency domain, one can truncate the 

noise part and back-fill them with zeros to remove the high-frequency components (noise). 

A signal enhancement will then result when the inverse Fourier transformation is 

calculated. Briefly speaking, signal smoothing is performed by FT by removing 

completely the noise frequency components, while the information bearing frequency 

components are still retained (this assumes that the signal has a lower frequency 

component than the noise). It is noted that finding a suitable digital filter is very critical 

for the success of filtering process. High-frequency noise may be removed by a low-pass 

filter, but if the filter is too soft, unfiltered non-linearity or noise would mess up later 

processing steps, meanwhile, if over-filtered, some essential information will be lost or the 

spectrum will be distorted and further other nonlinearities will be introduced into the 

system.  

As an analogue of Fourier transform, wavelet transform replaces the sinusoidal 

waves of Fourier transform by a family of functions which are generated by translation 

and dilation of a wavelet. By setting the thresholdv, one is able to retain the primary 

contributions of the signal and successively denoise the spectra. The whole spectrum can 

                                                 
v The purpose of setting threshold is to keep those coefficients that are sufficiently large, and to re-set the 
rest of the small coefficients to zero.   
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be reconstructed using these coefficients by an inverse wavelet transformation. A detailed 

and practical introduction can be found in MATLAB vi  Wavelet Toolbox, tutorials 

(Alsberg et al., 1997; Jetter et al., 2000) and references (Meyer, 1993; Kaiser, 1994; 

Vetterli and Herley, 1992). 

3.2.4. Maximum Entropy Method (MEM)   

Since the Band-Target Entropy Minimization method is based on the entropy 

concept from information theory, some theoretical background information about the 

MEM algorithm would help to clarify the entropy concept. Since both MEM and BTEM 

belong to “spectral reconstruction”, misunderstanding easily arises (Lavine and Workman, 

2004) and the very significant and important differences have to be made clear.  

The maximum entropy method is regarded as a variation on the Bayesian method. 

This approach was pioneered by Jaynes (1957) and applied to statistical physics in 1957. 

MEM is designed to extract as much information from “one” measurement as possible. 

According to the maximum entropy method principle, the estimate that has the maximum 

entropy would be the single best candidate within all possible spectral reconstructions 

consistent with this one measurement. (In contrast, BTEM aims to reconstruct all the 

embedded pure spectra within an entire set of mixture data.) Maximum-entropy method 

has been successfully used in a variety of scientific fields, including NMR spectroscopy, 

X-ray crystallography, fluorescence, astronomical imaging, and digital image restoration 

(Laue et al., 1986; Gilmore et al., 1990, 1993).  

In information theory, entropy refers to lack of order. So it is fairly plausible that 

the maximum entropy method seeks the unbiased solution which has minimum structure 

                                                 
vi MATLAB, MathWorks Inc. MATLAB Reference Guide, 1995. 
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(order) that remains consistent with the data and the prior knowledge. The entropy of a 

spectrum with equal probability of measuring a random noise at all the wavelengths 

reaches the maximum value – so pure  noise with no structure has a maximum entropy. 

The entropy of the re-constructed spectrum will decrease if the contribution of noise 

decreases and the entropy will increase if the contribution of noise increases.  

In practice, the Maximum entropy method is approached by maximizing the 

entropy of the estimate while minimizing the discrepancy between the estimate and the 

raw observations/data. The Cambridge algorithm, one implementation of MEM method 

which was originally developed for applications in astronomy (Skilling and Bryan, 1984), 

consists of the following steps. First, an initial trial spectrum is made if no prior 

knowledge is available, and this trial object is blurred with a blurring function to get an 

estimated one.   The residuals obtained by subtracting the estimated one from the raw data 

are used to modify the initial guess to give a new estimated spectrum. And the new 

estimate is again blurred and new residuals computed. During the process of the 

modification to the next estimate, all the negative values are set to zeros. This procedure is 

repeated until the variance of the residuals is reduced to be almost the same level of noise 

as the original measure spectrum (this can be realized with, for example, a chi-square test).  

Since there would be many sets of candidate spectra which would generate similar 

residuals to the original noise, we need a simple guideline to make the choice.  Entropy 

maximization is used to select the minimal structure (maximum entropy) from the all 

accepted spectra.  On the other hand, a “fitting “constraint is imposed to make sure that 

the calculated result will not depart from the experiment mean by more than one standard 

deviation. Therefore, the MEM algorithm comes into a “tug of war” between the 

minimizing the “fit” and the maximizing entropy in practice.  
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Maximum-entropy reconstruction is a powerful method for spectrum analysis. It is 

frequently used as an alternative to classical methods based on the discrete Fourier 

transform (Sibisi, 1983; Sibisi et al., 1984; Jones and Hore, 1991). It is worth repeating 

that MEM is applied to an individual spectrum. Statistically, MEM gives us a more 

uniform or broad distribution.  Details of the MEM can be found in many references 

(Cornwell and Evans, 1985; Skilling, 1989; van Smaalen et al., 2003).  

 

3.2.5. Alignment  

There are various undesired variations associated with the ordinate values in 

spectroscopic data matrices, which may deleteriously affect subsequent data analyses. 

Sometimes severe non-linearities due to shifting peak positions and changing peak shapes 

occur. For example, it has been reported that temperature has a strong influence on the 

position and intensity of near infrared (NIR) spectral absorption bands and thus affect the 

predictive ability of the associated calibration model (Delwiche et al., 1992; Thygesen and 

Lundqvistt, 2000; Blanco and Valdes, 2004). It is known that shifts in X-ray diffraction 

data occur due to calibration/alignment experimental error (Jenkin and Snyder, 1996). 

Also effects of laser frequency shift happen in Raman spectroscopy (Swierenga et al., 

1999). The difficulties encountered in aligning the mass spectral peak of time-of-flight 

secondary ion mass spectrum (TOF-SIMS) (Zheng et al. 1995) imply a similar situation.   

 Since spectral non-linearities are almost ubiquitous for spectroscopy, proper 

pretreatment is needed to “clean” the spectroscopic data. This non-stationary characteristic 

caused by constant peak shifting can be corrected by pre-processing the data with a re-

alignment algorithm. The nonlinearity caused by peak shifting should be eliminated, or at 

least partially corrected before data analysis. 
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 For alignment, several methods have been proposed. Two kinds of well-

established warping algorithms: DTW and COW, have received considerable attention for 

chromatographic data, spectroscopic data, and gene sequence data. DTW (dynamic time 

warping) was borrowed from the electronic community which initially devised it for 

aligning frequency spectra of speech (Myers and Rabiner, 1981). In general, DTW is a 

method designed to achieve an optimal alignment between two given sequences which are 

"warped" non-linearly to match each other. In 1998, Nielsen et al. (1998) introduced an 

algorithm called piecewise linear correlation optimized warping (COW) of 

chromatographic profiles. It begins with the selection of the target spectrum, which is 

representative of the whole set of spectra. The target spectrum is divided into several 

segments which can be either of equal or different length depending on specified features 

in the data set. Then the predetermined spectral segment is stretched or shrunk to match 

the corresponding segment in the target spectrum. The measurement of match/mismatch is 

the correlation coefficient and its variance. COW was adopted to reduce chromatographic 

variation on multi-way models and significantly facilitated the modeling (Bylund, 2002). 

Both of them were devised to correct the position shifts prior to consequential modeling. 

DTW works through the signals element by element until all the spectra are aligned. The 

measurement/evaluation is measured by the cumulative distance between the peaks, which 

means that this method would be sensitive to peak height difference. Tomasi et al. (2004) 

studied both COW and DTW as preprocessing for chromatographic data and discuss the 

connection between the two algorithms.  

 Other general alignment methods include: PAGA (Peak alignment by a genetic 

algorithm) method (Forshed et al., 2003) which aligns a spectrum to a corresponding 

reference part by sideways movement via a GA optimizer, Partial linear fit (PLF) method 
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(Vogels et al., 1993) which minimizes the difference between shifted result and reference 

by trying each possible relevant combination of spectral segment size and movement size.  

Brown and Stoyanova proposed an automatic phase correction and frequency shift 

of one single NMR resonance peak in a series of spectra by using PCA, and this algorithm 

was further improved (Witjes et al., 2000;  Stoyanova and Brown, 2002; Stoyanova et al., 

2004). But it is still assumed to be applicable to spectrally isolated peaks.  

 

3.3. Data Decomposition  

 Multivariate data analysis is related to a family of data analysis techniques which 

aims at investigating the patterns of relationships between several variables 

simultaneously. Multivariate data analysis deals with all kinds of different measurements. 

And it is designed to uncover significant relationships among the variables of the samples.  

Most of the time, PCA and SVD are the primary tools for multivariate data analysis. 

Decomposition will factorize the data set from many variables to a few factors which can 

express the main information and facilitate the variance analysis in the data. 

 

 3.3.1. Principle Component Analysis (PCA) 

 Principal component analysis forms the basis for multivariate data analysis which 

allows us to explore patterns in data, similar to exploring patterns in psychometric data 

(Wold et al., 1987; Jackson, 1991). An early description of PCA was made by Cauchy in 

physics in 1829 and it was further developed by Pearson (1901) and Hotelling (1933).The 

main purpose of PCA is to project the data from a higher dimensional space into a lower 

dimensional space, therefore concentrated onto a few underlying latent variables which 

capture most of the information of the data. These new bases in the subspace are also 
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called components (“latent variables”, “regression factors”, or “factors”). So a large 

number of variables can be substituted by a small number of new latent factors needed to 

reproduce the original data matrix.  

The PCA can be considered a general framework for rank reduction and data 

compression which re-express a noisy and garbled data set by some new and most 

meaningful basis, meanwhile, redundancy and small noise variabilities are removed. So 

PCA also addresses data redundancy reduction with decrease in dimensionality, leading to 

more parsimonious, more robust models. This separation of structure and noise can be 

utilized for data compression. Statistically, PCA finds lines, planes and hyperplanes in the 

K-dimensional space that approximate the data as well as possible in the least-square 

sense.  

In practice, a simple way to calculate principal component begins with the 

covariance matrix of the data set. By solving eigenvalues and corresponding eigenvectors 

of the covariance matix and ordering the eigenvectors in the order of descending 

eigenvalues (largest first), an ordered orthogonal basis is obtained. For more details, see 

two excellent discussions of the issues given by Joliffe (1986)  and Jackson (1991).  

3.3.2. Limitation of Principle Component Analysis (PCA)   

A primary assumption of this method is that the data itself is valid and all data is 

suitable for the model. The “garbage in and garbage out” rule definitely applies when 

messy data are provided.  The quality of the data unequivocally affects the result of 

processing. Also another drawback of classical PCA is that it is not robust to the presence 

of “outliers” which are common in real data.  Some “robust PCA” algorithms have been 

proposed to remedy this weakness (Croux and Haesbroeck, 2000). Also one property of 
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PCs (principle components) is their orthogonality, which may not be necessary or even 

desired in some real applications. Therefore other factorization methods like independent 

component analysis (ICA) and Non-negative matrix factorization (NMF) have been 

developed.   

 As an essential technique for data analysis, PCA still plays a fundamental and 

important role in many areas of chemometrics. A lot of articles discuss PCA and different 

aspects in detail (Horst, 1992). PCA decomposition can be calculated directly using 

Singular Value Decomposition (SVD), or iteratively using the Non-linear Iterative Partial 

Least Squares (NIPALS) (Wold et al., 1987) algorithm.  

3.3.3. Singular Value Decomposition (SVD) 

 There are more robust and reliable PCA techniques. SVD (Deprettere et al., 1988; 

Berry, 1992; Berry et al., 1993) is a general mathematical technique used to extract 

principle components of complex mixture spectra. Even though they have the same 

purpose, there are some differences between PCA and SVD. SVD is the more robust and 

efficient process (Golub and Kahan, 1965; Golub and Reinsch, 1970). SVD has a lot of 

applications, including data compression and visualization, micro-array data analysis, and 

control problems (Karlsmore et al., 1994; Romo et al., 1995; Alter et al., 2000; Wall et al., 

2001; Yeung et al., 2002; Schmidt et al., 2003). 

 Let A denote a nm ×  matrix of real-valued data and where without loss of 

generality nm ≤ . The observation matrix A can be decomposed into three 

parts: T
nnnmmmnm VΣUA ×××× = , where U is an mm× matrix, Σ  is an nm×  diagonal matrix, 

and TV is also an n x n matrix, where the superscript T denotes the standard transpose. All 
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of U and V are orthonormal, in other words, m
TT IVVUU == (I denotes the unit matrix 

with size m). The columns of U are called the left singular vectors, ku , and form an 

orthonormal basis for the principal scores, so that ji uu ⋅  = 1 for i = j, and ji uu ⋅ = 0 

otherwise. The rows of TV  contain the elements of the right singular vectors, kv , and 

form an orthonormal basis for loadings. The middle diagonal matrix Σ  contains the 

singular values of matrix A, and the square of its diagonal elements represent the amount 

of information corresponding to each principal component. By convention, the ordering of 

the singular vectors is determined by high-to-low sorting of singular values, with the 

highest singular value in the upper left index of the Σ  matrix. Note that for a square, 

symmetric matrix A, singular value decomposition is equivalent to diagonalization, or 

solution of the eigenvalue problem. For references on the mathematics and computation of 

SVD, see the work of Gentle (1998) and Golub and Van Loan (1996). 

3.3.4. Number of Components 

 In some SMCR methods, the “statistical determination” of the number of 

components is one of the most important preliminary steps for the result. If the wrong 

number of components is chosen, realistic pure spectra and all other related results may be 

erroneous. PCA is generally used to determine the number of pure spectra present in the 

data. Cattell proposed a measure of indicating the contribution of each major component 

by the use of a “scree” graph that is simply a plot of eigenvalue versus PCs (Cattell, 1966). 

Other different methods include: LEV (log eigenvalue) plot (Craddock and Flood 1969, 

Farmer, 1971), Malinowski’s IND (Malinowski, 1977, 2002) and REV methods 

(Malinowski, 1987); F-test (Faber and Kowalski, 1997), the permutation test (Dijksterhuis 
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and Heiser, 1995) and leave-one-out cross-validation (Wold, 1978; Eastment and 

Krzanowski 1982). However, normally the result of numbers of components from 

different methods is not consistent. A recent reference can be found in the study where 

more that ten methods for determining the number of significant components were tested 

(Wasim and Brereton, 2004).  

 Actually, it is not at all surprising that there are problems with the “statistical 

determination” of the number of pure spectra present. The basis for most if not all the tests 

is the assumption that the spectra are stationary and that the spectroscopic matrix 

represents a linear system. In most if not all cases, this is not possible. So the starting 

assumption of linearity possesses a problem. This issue will be addressed a number of 

times in this thesis.  

 

3.4 Hyphenated Data Analysis   

Simultaneous spectroscopic data are now more common with the increasing need 

for hyphenated measurements in chemistry. The complementary information provided by 

independent spectroscopic data will facilitate the interpretation of an unknown/partly 

known chemical mixture. Several kinds of structural determination spectroscopes can be 

combined and used for the identification process.  An example is the application of FTIR-

VCD (vibrational circular dichroism) to identify chiral components in a mixture system. If 

huge amounts of data are collected for the same samples, separate analysis of each data set 

causes loss of the intrinsic relations (correlations) between the observations taken from the 

same system. Extracting such information from the whole data set leads to better 

qualitative and quantitative understanding on each of the interesting components. 
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The first problem faced with really big arrays will be the manipulation of large 

scale data sets, including the singular value decompositions required when the number of 

floating point operations is enormous. Fortunately, several software packages have been 

proven to be efficient tools for solving large-scale eigenvalue problems (Lehoucq, 1998; 

Larsen, 1998; Berry 1992). MATLAB has also adopted the ARPACK package in 

MATLAB 6.0 for calculating a few singular values and vectors for a matrix with large 

dimension n. 

 

3.5. Multi-Way Data Analysis and High Dimensional Decomposition     

 It is common practice to have a single matrix data set with m rows and n columns. 

But in a number of cases, the data must be collected in a three-mode data “box”, which 

has m rows, n columns, and k slices. As already noted, even higher dimensional data sets 

are possible. A decomposition on the data is necessary in many applications and make the 

encoding easy to interpret. For these purposes, two major significant families exist, 

namely, are PARAFA and TUCKER3 series. These two algorithms relate to alternating 

least-square (ALS) methods, and they can used with constraints, such as non-negative, 

unimodality, orthogonality etc. PARAFAC and TUCKER3 are regarded as 

complementary to the PCA algorithm. 

 

3.5.1. PARAFAC/CANDECOMP Model 

Harshman(1970)and Carrol and Chang (1970) independently developed an easy-

to-interprete model for fitting an n-linear model to an n-way array. It is called PARAFAC 

(PARallel FACtor analysis) by Harshman, whereas Carrall and Chang named their method 
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CANDECOMP (canonical decomposition). A three way PARAFAC model can be 

formulated as the following algebraic equation:  

                                       ijk

N

n
knjninijk ecbax += ∑                                (3.2)      

The elements ain , bjn,and ckn are the decomposed triads.   

 

Figure 3.2. A three-component PARAFAC/CANDECOMP model. 

3.5.2. The Tucker3 Model 

A more general analysis tool for three-mode factor analysis based on reducing the 

dimensionality of all the three modes to extract the information in the three-way data was 

proposed by Tucker (1966). All these modes are symmetrically treated and defined as:   

 

Figure 3.3. A TUCKER 3 model. 
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where w1, w2 and w3 denote the degraded dimensionalities of the component spaces for the 

three modes respectively. And a, b, c are the elements of the extracted component matrices 

A, B, C. The three-way array G is the so-called core whose elements g denoting interaction 

between these triads. Kroonenberg and de Leeuw (1980) suggested an alternating least 

squares fitting for the TUCKER3 model. The TUCKER3 model allows for extraction of 

different numbers of factors in each of the modes which are different with the PARAFAC 

model.  The most difficult part of TUCKER’s model is how to interpret the core matrix 

elements from which essential information on the interaction between modes can be 

obtained. 

3.5.3. Comparison    

One major difference of the TUCKER3 model compared with the PARAFAC 

model is the presence of the core array G (w1, w2, w3). Fig.3.3 illustrates that the 

TUCKER3 model is a weighted sum of all possible outer products (i.e., triads), where the 

weight of the outer product among the ith factor from A, the jth factor from B and the kth 

factor from C is determined by element gijk of the core. The elements of G represent the 

interaction between these component triads.  

The PARAFAC can be regarded as TUCKER3 by imposing the constraints that the 

core array G’s elements gw1,w2,w3 =1,when w1= w2= w3, and equate zero otherwise. The 

heavy constraint results in the simplest format together with the expected loss of fit. For 

trilinear data or almost trilinear data, PARAFAC is preferred for easy interpretation. But as 
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for TUCKER3, the analyst will not only face the complexity of interpretation of the result, 

but will also be frustrated with the ambiguity of rotation. 

The PARAFAC model always yields a unique solution, whereas the TUCKER3 

model does not. It is certain that there are an infinite number of different solutions A, B, C 

and G that fit the X equally well even when we fix the values of w1, w2, w3. 

Mathematically it can be explained by the fact that one solution of TUCKER3 can be 

transformed by adding a rotation factor into their mode matrixes resulting in a new and 

different solution without any loss in fit.  

The profiles derived by the PARAFAC model are often left unconstrained for 

chemical applications. However, the factors in the TUCKER3 model are often constrained 

to be orthogonal since the resulting core is easier to interpret and the model requires much 

less time for computation.  Also some efforts has been invested in simplifying the core 

array in a parsimonious sense by obtaining a fixed number of zeros in the core by 

appropriate rotation (Kier, 1998) or by the maximization of the leading squared core entry 

in TUCKER3 (Henrion, 2000). 

3.5.4. The Discussion of Multi-Way System Analysis   

In the application to a real system, many unexpected difficulties will be met. The 

first and most important thing is how to determine the optimal number of factors which is 

extracted from the data set with maximum information. Recently Chen et al. (2001) 

proposed an algorithm named ADD-ONE-UP, which performs the PARAFAC 

decomposition repeatedly, and thus determines the factor number when some pre-specified 

degree of fit is achieved. This method suffers from an expensive computation cost. 
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Once the factor number problem is resolved, the next concern will be focused on 

the choice of model and algorithm.  Depending on their degree of trilinearity, 3-way 

modeling methods can be classified into two groups: (1) direct trilinear decomposition and 

PARAFAC, and (2) TUCKER3 and MCR-ALS. Recently some algorithms, such as 

PARAFAC2 (Kiers et al., 1999), PARATuck2 (Harshman and Lundy, 1996), have been 

proposed to deal with non-trilinear data while keeping PARAFAC-like uniqueness in the 

solution. The computation cost of performing these decompositions will differ.  

In practice, the prerequisite of trilinearity seldom can be met. For example, non-

linear detector/instrumental responses may introduce deviations from trilinearity. In 

hyphenated experiments with LC or GC the retention time shifts are sometimes not so 

reproducible.  Also for fluorescence EEM data, even though the signal of the analyte 

follows a strict trilinear mode, background signals which consist of first and second order 

scattering do not (Esteves da Silva, 2002).  

3.5.5. Multi-Way Analysis with Unfolding 

The intuition-driven way of tackling a higher-dimensional array is unfolding. 

Unfolding creates a hierarchy of each mode with slices along different modes which 

breaks the n-dimensional structure in the data set. The illustration diagram is shown in 

Figure 3.4. 

Then conventional chemometric methods can be applied to the resulting matrix 

after unfolding. The MCR-ALS method has been applied to unfolded three-way data sets 

(de Juan and Tauler, 2001). 
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Figure 3.4.  A three-mode data set and the three kinds of unfolding 

 

3.6. Summary 

 In this chapter, different types of measurements encountered in multivariate 

analysis are mentioned. Also many methods available for the effective preprocessing are 

discussed.  But it is known that it is still hard to decide which method is suitable for a 

particular application since it depends on the nature of the specific data in question. Not 

discussed in this chapter are other known pretreatment methods, such as spectral pre-

conditioning, baseline correction etc., which will not be needed to solve any of the 

problems presented in this thesis.  

Data decomposition, including multi-way data analysis and high dimensional 

decomposition were the main focus of this chapter. With decomposition, one can obtain 
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the singular values and the right singular vectors of the mixing structure, which could in 

principle be further transformed into spectral estimates by meaningful transformations. 

The indeterminacy of rotation is the big challenge to pure spectra recovery. PCA breaks 

down the observation matrix into a series of orthogonal vectors, but does not achieve a 

realistic solution. Depending on a priori knowledge and spectral features, some of these 

constraints can be interactively chosen for specific cases to break this ambiguity. It would 

be most meaningful if PCA/SVD can be used as a starting point and spectral estimates 

predicted with little or no a priori information.  

In the next chapter, the group’s new 1D entropy-based curve resolution method 

will be introduced and extended. Then in the following chapters pattern recognition for 3-

way and 4-way data will be developed. 
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Chapter 4 

 1D Minimum-Entropy Based Pure Component Spectral Reconstruction    
 

In this chapter, a relatively new methodology for pure component spectral 

reconstruction based on entropy concept will be presented. Beginning with an introduction 

of the concept of entropy and a necessary review of SMCR methods, the new pure 

component spectral reconstruction method based on minimum-entropy is described and 

extended. It is applied to several real chemical reaction projects and very accurate pure 

component spectral reconstructions are obtained.  It is also successfully applied to the 

blind source separation problem in acoustics.   

 

4.1. Entropy Minimized Spectral Reconstruction – Algorithm  

4.1.1. Concept of Entropy 

In 1948, Claude Shannon (1948) published the seminal paper “A mathematical 

theory of communication” which laid the foundation of information theory. The concept 

of Shannon's entropy plays a central role in information theory. This entropy refers to the 

measure of uncertainty which provides a way to estimate the average minimum number of 

bits needed to encode a string of symbols, based on the frequency of the symbols. The 

Shannon entropy equation is shown in Eq. 4.1.  

∑
=

−=
N

i
ii ppH

1
log                                                     (4.1) 

In the Shannon entropy equation, pi is the probability distribution of a given symbol. The 

entropy of a random variable is defined in terms of its probability distribution and can be 

shown to be a good measure of randomness or uncertainty. In the spectroscopic field, the 
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technique most related to entropy concept is the Maximum Entropy Method. (Details of 

MEM were discussed as a signal restoration method in chapter 3, section 3.2.4.)  It is 

worth noting that entropy is a common concept in many fields, including thermodynamics, 

pattern classification, information theory, signal processing, etc. In the literature, there are 

different types of entropy expressions used for various purposes in various fields. 

Classical information entropy describes information-related properties for a given signal. 

In the signal processing field, Shannon’s entropy can be viewed as a measure of the 

degree of randomness of the observed variables. Therefore, random noise has a very high 

entropy.  

 Conceptually, the approach taken in this chapter is very simple. A set of 

observations will be searched in order to find the simplest irreducible patterns. These 

patterns will have a very low entropy. The big challenge is to find a numerical way to 

achieve this.  

 

4.1.2. Entropy Minimized Spectral Reconstruction 

4.1.2.1. General Bilinear Model  

In chapter 1, the X term in Eq. 1.1 represents the input of the process; Y is the 

observation of the process function f, with the inference of E. In a totally unknown system, 

the solution to the Inverse Problem seems impossible since little is known about the 

quantities on the right hand side of Eq. 1.1, neither the function f nor the inference E. 

Inverse problems are often ill-posed, which means the process of recovering the unknown 

parameters is very sensitive to errors in the measured response. And a problem is 

considered to be ill-posed, if it does not meet one or more of the following criteria 

(Hadamard, 1902): (1) for each set of data, there exists a solution, (2) the solution is 
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unique and (3) the solution depends continuously on the data. Also it is worthy to note that 

in some cases, there are more unknown parameters than the number of limited 

observations in the problem.    

Generally speaking, the practical solution of an inverse problem involves the 

recovery of interesting sources which possess some physically/chemically meaningful 

characteristics. In chemistry, excitations might be electro-magnetic radiation, heat, 

phonons, electrical potential etc. and these induce a response. The response has valuable 

information and the inverse problem attempts to recover this physical/chemical 

information.  

Fortunately in many chemical studies, the measured properties of the system can 

be approximated by a linear model at least in some specific range. In spectroscopy, the 

simplified model can often be achieved by assuming the source has a well defined energy, 

the effects are additive, other convolution effects are negligible. However, caution must be 

heeded since the linear model should not be applied everywhere without consideration, for 

example, the Beer-Lambert Law is only true for limited ranges in the composition space; 

the exact range of solutions must be determined experimentally.  Beyond this range, the 

direct use of the model based on Beer-Lambert Law will be erroneous.  

In perhaps the simplest case, Eq 1.1 can be presented as a very simple 

instantaneous linear model, which holds for any point/element, and can be represented in 

the form of a set of linear equations:  

EBXY +=                                                    (4.2)  

  or 

ijiji exBy += ∑                                               (4.3) 
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where, E denotes the undesired error and noise, which could be ignored or eliminated in a 

well-designed experiment. If, in Eq. 4.2, the E term drops, a simplified form: BXY = is 

available. This equation coincidently has the same form as the Beer-Lambert Law 

equation which represents the relationship between concentration of a compound in 

solution and the spectroscopic absorption of the solution.  

The Beer-Lambert law of the absorption in a mixture sample can be regarded as a 

linear combination of the individual component spectrum with their concentration. The 

Beer-Lambert Law states that the absorbance, A, of a species at a particular wavenumber 

of electromagnetic radiation, ν, is proportional to the concentration,C′ , of the absorbing 

species and to the optical path length, L, of the electromagnetic radiation through the 

sample containing the absorbing species where a is the molar absorptivity of the absorbing 

species (Eq 4.4).  

                )()( vaLCvA ⋅′=                                                 (4.4) 

                                      ε+⋅= )()( vaCvA                                               (4.5) 

In practice, the Beer-Lambert Law is normally formulated in its bilinear form 

given by Eq. 4.5 where LCC ′= . Also in the real world, the measured data are often 

corrupted by experimental noise and/or errorε  (Eq. 4.5). These errors may originate from 

many sources, i.e., the use of dirty cuvettes, poorly mixed solutions, and instrumental 

errors.   It is worthy to note that in the real data, the bilinear form of Eq. 4.5 is only locally 

valid. If the pure component spectra a(ν) are non-stationary (they are not always strictly 

constant), then the solution of Eq 4.5 forcing a(ν) to be constants, leads to both random 

and systematic error in the error term (Garland, 1997).  
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4.1.2.2. Self Modeling Curve Resolution Methods 

The pure component spectral reconstruction is actually an inverse problem where 

one wants to determine a(ν) with the only knowledge of A(ν), given only the bilinear 

model (Eq. 4.5). The problem is implicitly ill-posed because one does not know a priori 

how many species are even present.  

It is no surprise that there will be many solutions for the above inverse problem 

mathematically since three kinds of ambiguity related to the solution of the problem, 

namely, scale ambiguity, rotation ambiguity and order ambiguity exist. Order ambiguity is 

trivial in spectroscopic analysis, since it is meaningless to judge the order of the 

components in the recovered procedure. Scale ambiguity also is not so important since it 

can be circumvented by adding mass balance constraints or some other a priori 

information, such as, a reference component. Alternately, without loss of generality, the 

spectra can be assumed to have unit norm, which is usually taken as Euclidean norm or 

L1-norm according to the specific SMCR method and the scale ambiguity is taken out of 

the consideration. However, the rotation ambiguity is still the core problem for the SMCR 

methods. As shown in Eq. 4.6, if C and a(ν) are the true solution of the problem, it is easy 

to find more than one no-singular matrix R, which will also make the product -CR , and 

the product - aRT  satisfied Eq. 4.6. This phenomenon is so-called rotation ambiguity. 

           ε+⋅= )()( vaRCRvA T                                                   (4.6) 

One group of self-modeling curve resolution methods integrates some type of 

generic knowledge concerning pure variables in the spectroscopic data in order to break 

the rotation ambiguity problem and obtain unique resolution. These methods normally 

exploited the local rank analysis which confines the feasible solution to a desirably small 
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region. SIMPLISMA (Windig, 1988; Windig et. al., 1990), one popular method for self-

modeling, uses close examination of pure variables to help finding suitable rotations to 

generate solutions. Finding a pure variable that has intensity contribution from only one of 

the components in the mixture is the basic principle of SIMPLISMA. The apparent 

limitation of the method is that the solutions are subject to uncertainty unless each species 

has a signature that is independent of the others at one or more of the wavelength channels 

in the multivariate data set. Other similar methods require the identification of pure 

variables include EFA (Maeder , 1987) and WFA (Malinowski, 1992).  

To break rotational ambiguity, several constraints have been proposed to narrow 

the feasible range for solutions. A group of SMCR algorithms seek to break the ambiguity 

by seeking a best fit of the original data set, in a least-square or weighted least-square 

sense. Typical examples are Multivariate Curve Resolution and Alternating Least Squares 

method (MCR-ALS) (Tauler et al., 1991, 2001), Positive Matrix Factorization (PMF) 

(Paatero and Tapper, 1994; Paatero, 1997), Iterative Target-Testing Factor Analysis 

(ITTFA) (Gamperline, 1984) and Alternating Regression (AR) (Karjalainen, 1989). 

Unfortunately the minimization of error between the regression model and real data while 

optimizing both C’ and a may not guarantee a unique solution.  Also the final solutions of 

iterative regressions often rely on the quality of initial estimates. 

Heuristic evolving latent projections (HELP) (Kvalheim and Liang, 1992; Liang et 

al., 1992; Keller et al., 1992; Liang and Kvalheim, 2001) was initially proposed in the 

field of liquid chromatography with photodiode array detection. It targeted to resolve two-

way bilinear multi-component data into spectra and chromatograms of the pure 

constituents. Since there is no substantial information about the compositions in the 

system, the utilization of their time series correlations along the chromatographic direction 
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is important. For the liquid chromatography with diode array detection, during a 

chromatographic run, data are collected as a matrix indexed by wave-number of the 

spectra in one direction, and by time from chromatography in another direction. In this 

case, the additional correlation offers an additional constraint that helps to remove 

ambiguity in the rotated solution. Tracking of the number of significant principal 

components/or the rank over the time axis permits an estimate of the number of species 

that vary over the data set. Proper rotation yields both the spectral response and the 

chromatogram, and gives estimates of pure responses and relative concentration of 

analytes. Malinowski discussed this approach in more detail (1991). In the HELP 

algorithm, the so-called zero-component regions and local rank analysis technique are 

used. 

All these abovementioned algorithms were designed to be applied to any 

experiment whose outcome is a continuous curve that is a sum of unknown, non-negative, 

linearly independent functions. However, for a specified system, we can manage to 

impose suitable constraints for this inverse problem.  There are several examples of 

SMCR methods now available to separate a set of complex spectral curves under certain 

constraints. Generic knowledge about the bilinear system is proposed to narrow the 

feasible range for solution. The most often used constraints are a  characteristic of the 

spectra and the concentration profile, such as non-negativity of concentrations and 

absorptivity estimates, unimodality of concentrations and spectra, selectivity (presence in 

parts of the experiment of only some of the species), spectra closure (the sum of 

concentrations of particular species remains constant). Also the constraint of forcing the 

shapes of the spectra to be as distinct as possible is favored. Besides the aforementioned 

means, involving some hard-model component, stoichiometric and kinetic characteristics 
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are also suitable as constraints to the curve resolution, for example, assuming a first order 

kinetic reaction carried out in the system (Saurina et al., 1998) or fitting rate constants of 

distinct chemical model reactions (Neuhold and Maeder, 2002). In PGSE NMR 

spectroscopic data analysis, it was assumed that each component decays with an 

exponential profile (Stilbs et al., 1996).  

Depending on the a priori knowledge and spectral features, some of these 

constraints can be interactively chosen for specific cases. However, only for specific cases 

can we manage to impose suitable constraints for this inverse problem. We should note 

that for a totally blind system, the constraints, such as closure, spectral shape, and 

stoichiometric and kinetic characteristics are totally unavailable.  

  

4.2. Historical Perspective and Developments of BTEM 

The Entropy concept was applied and a new algorithm for self-modeling curve 

resolution method was developed by Sasaki et al. (1983, 1984) They used an optimization 

objective which focused on the non-negativities of absorptivities and required a 

minimization of Shannon’s entropy. In these seminal papers, the pure spectral 

reconstruction was obtained by minimizing the entropy of the second derivative of the 

spectra estimate. Sasaki et al. first used entropy minimization for chemical component 

spectral reconstruction – but the quality was modest and only two-three components could 

be recovered in their papers.  

A number of advances were made by others in Prof Garland’s group for pure 

component reconstruction before the original BTEM algorithm was developed (Zeng and 

Garland, 1997, 1998; Pan et al., 1999, 2000; Widjaja, 2002; Chew, 2003).  The newly 

developed algorithm of BTEM has been successfully applied to resolution of various 
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spectroscopic data, such as FTIR, (Chew et al., 2002; Widjaja et al., 2002; Widjaja and 

Garland, 2002; Chen et al., 2003; Widjaja et al., 2003), Raman (Sin et al., 2003; Ong et al, 

2003), NMR (Widjaja, 2005), and MS (Zhang, 2002).  

The BTEM algorithm in this thesis started with the two important premises that 

pure component spectra have simplest patterns in the data set and that due to non-

stationary/non-linear behavior, statistical tests for the number of species present is of 

limited use. The ideas are fashioned together with a novel spectral band-targeting strategy 

for one-at-a-time spectral recovery and signal enhancement. Also simplified spectral 

measures (which differ form the original entropy formulae) have been used recently to 

expedite computation, particularly for the analysis of very large data sets. However, the 

name “entropy minimization” has been retained due to the original problem formulation 

and the fact that the goal remains a search for spectral simplicity. Further discussions 

about the close relationship between entropy minimization and pattern recognition 

(Watanabe, 1981), relationship between entropy minimization and the principle of 

simplicity (Kapur, 1993) can be found elsewhere.  

The most attractive and important characteristic of BTEM is its ability to retrieve 

the extremely weak signals of the pure component spectra from trace-level species which 

are impossible to retrieve using other existing methods (Li et al., 2002, 2003 ). Some mild 

non-linearity problems due to shifting band position and changing band shape can be 

solved by BTEM, which is capable of recovering most of the real chemical signals 

contained in absorbance data. The primary utility of BTEM comes from (1) the fact that 

no a priori estimate of the number of species present is needed, (2) considerable noise 

reduction can be obtained and (3) its goal-oriented approach; the user targets a single 

spectral feature of interest, and the algorithm returns the full-range deconvoluted spectrum.  
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4.3. Entropy Minimization Method: BTEM 

The first procedure in BTEM is performing singular value decomposition on the 

set of spectroscopic data ν×qA ( spectroscopic data matrix with q spectra and ν channels of 

wavenumbers).            

                   T
qqqq VΣUA νννν ×××× =                                          (4.7)     

Assuming that a diligent experimental design has been carried out and that a 

sufficiently large number of spectra were acquired, then the first few vectors in TV  

(perhaps as many as 50-100) should have localized signals, and the remaining vectors in 

TV  are more-or-less random noise. This means that most of the physically meaningful 

information is captured in the first j vectors. 

The experimentalist then identifies local features in the first 10-20 right singular 

vectors which are “targeted” one-at-a-time by BTEM. This strategy would ensure that 

each feature is retained in the final reconstruction by BTEM. Not only the feature is 

retained, the entire function f(x) associated with the feature is recovered – without any a 

priori knowledge. The primary numerical manipulation is associated with the 

transforming of the abstract right singular vectors, TV  into pure component spectral 

estimates, â by proper linear combination of these basis vectors.i 

   T
vzz1v1 Vtâ ××× =                                                 (4.8) 

    The transformation is governed by an optimization for the elements of t. In this 

optimization, the global minimum value of the proposed objective function corresponds to 

the final estimate of the pure component spectral estimate, â . GA or SA is used 
                                                 
i A forerunner of BTEM was MESS (Minimization of Entropy with Spectral dis-Similarity) (Chen et al., 
2003). In this problem, a so called square problem is solved where only s basis vectors are taken and a Tsxs is 
optimized simultaneously. There are also other SMCR approaches where a square transformation must be 
solved.  
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throughout this thesis. Statistically speaking, entropy can be expressed as disorder, 

therefore minimizing the entropy of the transformed eigenvectors means maximizing the 

spectrum simplicity. In other words, minimizing entropy localizes the spectral information 

around the major bands and maximizes the number of zero elements in the spectrum 

(Widjaja, 2002). Therefore, the objective function consists of one entropy term H which is 

defined by Eq. 4.10 and one penalty term P.  

                                              PHFobj +=                                        (4.9) 

                                             ∑−=
ν

νν hhH ln                                            (4.10) 

In Eq. 4.10, hν is a discrete probability distribution function described as the derivative 

amplitude of the estimated pure spectrum in a L1 norm (Eq. 4.11).  
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where the superscript m denotes the degree of spectral differentiation. A penalty P is 

imposed for guaranteeing the non-negativity of spectra and concentrations.  

( ) ( )121111 C ×××× += qcaq ĈFâF)ˆ,â(P γγ νν                              (4.12) 

where                              ( ) 01
2

111   â      â)â(F <∀= ××× ∑ ννν                          (4.13) 

( ) 01

2

112   Ĉ      Ĉ)Ĉ(F qqq <∀= ××× ∑                                  (4.14) 

γa and γc are penalty factors set to the penalty function, which provide soft constraints 

when tuned accordingly. It should be noted that the maximum of absorbance in the 

range/window of the targeted band is normalized to be unity before the entropy calculation. 
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The choice of band target windows is pragmatic. Since if the bands move during 

the whole set of mixture data (non-stationarity),i.e. collected during reaction, we need to 

have a big enough band-target window to make sure that the band is within this window. 

Thus for complex infrared data, with a lot of overlap, but the bands move ±1, then the 

window is usually about 2 wavenumbers wide. If there are no bands maxima are close 

together in this targeted window, then a very big window can be used, perhaps 5 or even 

greater. 

 After extensive search for all possible spectra by targeting the interested features, 

the final estimate of the pure component spectra, ν×sâ , can be used for calculating the 

corresponding concentration expectation, qxsĈ , with Eq. 4.15, where the superscript “+” 

denotes the Moore-Penrose pseudo inverseii.  

                                                ( )+

×× ⋅= vssq âAĈ                                                   (4.15)      

With the powerful method BTEM, not only the pure component solute spectra can 

be resolved, but subsequently, further algebraic system identification of complex reaction 

systems can be carried out. Further details of BTEM are available in Widjaja’s thesis 

(2002). Finally, it should be noted that in many applications, the penalty function in 1×qĈ  

(Eq 4.14) can be safely omitted.  Sufficiently good spectral estimates can be obtained with 

a penalty function for non-negativity of spectra alone.  

  For completeness, it is necessary to note that Banerjee (1991) suggested the 

similarity of using derivative minimization to produce pure component spectra, but an 

algorithm was not suggested. Also Volkov (1996) tried an approach by adding some 

                                                 
ii The classical inverse is restricted to square and non-singular matrices. Moore-Penrose pseudo inverse is the 
best approximate solution to the problem of inverting a rectangular matrix. 
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penalty terms including the similarity term, the spectral curve length term and the overall 

curvature term of trial component spectra vectors. This approach utilized a square 

methodiii and therefore could not account for non-linear spectral contributions. Karjalainen 

(1990) tried to use entropy to be a complement to the AR (alternating regression) 

algorithm in the GC/MS data analysis.  

 

4.3.1. Discussion  

 There are many important differences between BTEM and the other SMCR 

techniques. One important difference between BTEM with other SMCR methods is the 

strategy of solving one spectrum a time. Another importance difference is the idea of 

targeting the interested band. By exhaustive search, all the spectra would be obtained with 

the all interested feature retained in the result.  

  This approach is obviously simple and convenient, especially, in those cases 

where only one interesting solution is needed, instead of the whole spectral system. Band-

target strategy would make it easy to target the interesting band out without solving the 

whole system first.  The BTEM algorithm offers many advantages over traditional SMCR 

methods by solving for several local solutions (one spectrum at one run) instead of solving 

the perplexing global solution (obtaining all species’ spectra in one run), 

  In practical terms, this approach simplifies/lightens the burden of optimization of 

the nonlinear objective function, especially, when we deal with the large scale data sets, 

which possess a large number of measurements or where each measurement consists of a 

large number of variables. As we know, the decrease in the number of variables will 

dramatically decrease complexity, and this would expedite the optimization problem. On 
                                                 
iii see footnote i 
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the other hand, if the number of species increases rapidly, a supremely arduous 

optimization exists due to the big number of variables involved. 

 Another distinction of BTEM is the utilization of right singular vectors by making 

use of the SVD technique. As discussed in chapter 3 section 3.3.3, SVD is a robust and 

reliable PCA technique. One purpose of using of the SVD technique, is to project the data 

from a higher dimensional space into a lower dimensional space, therefore concentrating 

onto a few underlying latent variables which capture most of the information of the data. 

When the number of samples is much bigger than the number of sources, it is fairly 

reasonable to do analysis with just a few latent variables instead of the huge set of original 

data. A more important issue is that the data are made “cleaner” by the SVD procedure by 

producing the reduced latent factors and discarding the noisy factors. And this makes it 

possible for BTEM to tolerate the minor nonlinearities inside the original spectral data and 

find the minor components.  

 The band-targeting technique makes deliberate and explicit use of the right 

singular vectors by targeting each feature inside. Such local features are normally regarded 

as having little or no physical meaning at all. By targeting the features in the right singular 

vectors, these features are remained in the final reconstruction. Band-targeting technique 

integrates the user’s interest with a goal-oriented approach. It also takes advantage of 

spectroscopic knowledge of the chemist i.e. in example 4.4.1.c (infra vida) the unusual 

event of ketone formation during hydroformylation is readily confirmed by targeting the 

localized feature at circa 1725 cm-1 which implies a “ketonic” type carbonyl vibration.  
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4.4.   Applications of BTEM to Real Chemical Reaction Systems 

 A number of real spectroscopic data sets from Prof. Garland’s group, NUS, as well 

as from other laboratories at ICES had been investigated.   

 

4.4.1.  The Data Sets from the Hydroformylation Reactions of Alkenes 

The hydroformylation reaction of alkenes is one of the most important 

homogeneous catalytic processes worldwide (Cornils and Herrmann, 1996; Van Leeuwen, 

2000). However, due to the complexity of the catalytic mechanisms, the systems are still 

the object of many studies. Detailed knowledge of the catalytic mechanisms, in particular 

the possibility of identification of intermediates and obtaining their concentrations, is an 

important step towards creating good kinetic models for reaction engineering purposes.  

(Garland, 1989, 1991a, 1991b, Feng and Garland, 1999)   

 

(a)  Hydroformylation of COT (cyclooctene) with Co2 (CO) 8.  

This data set was generated by L. Susithra in 2000 (before BTEM algorithm was 

developed). These mixture data were measured under isobaric and isothermal conditions 

using in situ high-pressure infrared spectroscopy. Further analysis of the data set was 

needed.  Without spectral preconditioning, estimated pure component spectra of Co2(CO)8, 

Co4(CO)12, HCo(CO)4, RCHO, and COT  from the reaction mixture data were obtained by 

the BTEM (some of result are shown in Figure 4.1). Satisfyingly, some of these 

reconstructed results are highly consistent with their corresponding in situ infrared pure 

spectrum dissolved in solvent after the subtraction of background signals.  The BTEM 

analysis and further analysis were consistent with the preliminary analysis by Susithra 
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(1999). A kinetics / reaction engineering manuscript is in preparation which will include 

the BTEM results.  

1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

 

Figure 4.1. The estimated infrared spectra of  HCo(CO)4, Co4(CO)12  and RCHO. 

 

(b) Hydroformylation of (COT) cyclooctene with Rh4 (CO)12   

         COT has potentially undesirable reactivity patterns with Rh4(CO)12. Some new 

pure component spectra were reconstructed from the non-preconditioned data – spectra 

not obtained in the previous analysis using routine subtracting method (Liu, 1999).  Not 

only the pure component spectra of background water, hexane, carbon dioxide, dissolved 

CO and the reagent, namely cyclooctene (COT), the product aldehyde (C8H15CHO), the 

catalyst precursor Rh4(σ-CO)9(µ-CO)3 and intermediate RCORh(CO)4 were recovered. An 

unforeseen finding was a species with a spectrum with vibrations centered at ca. 1707.8 
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cm-1, 1759.4 cm-1 which is consistent with the formation of a ketone as a byproduct 

(shown in Figure 4.2). The organometallic intermediate, HRh(CO)4 and   Rh4(σ-CO)12 

were reconstructed as well. This analysis helps to understand the reaction system and a 

detailed kinetics/ reaction engineering manuscript was submitted. This data set was 

generated by Liu Guowei in 2000 (before BTEM algorithm was developed). The results 

have been published (Liu et al., 2006). A reprint can be found in Appendix A. 

 

Figure 4.2. The estimated infrared spectrum of byproduct – ketone. 

 

(c) Homogeneous hydroformylation of ethylene catalyzed by Rh4 (CO)12. 

Rhodium by far is the most active metal in the homogeneous catalyzed 

hydroformylation reaction and previous studies show that spectroscopic analysis of the 

hydroformylation of ethylene is extremely difficult to understand (Liu and Garland, 2000).  

The purpose of this study was to re-examine the unmodified rhodium catalyzed 

hydroformylation of ethylene with the BTEM. This experiment was carried out by Li 

Chuanzhao in 2002.  Without preconditioning, the data was decomposed by SVD and 
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reconstructed with BTEM. Although there was severe spectral overlapping in the mixture 

spectra, some new pure component spectra were identified by BTEM.  

The numerical results showed that the expected organometallic species 

RCORh(CO)4 and Rh6(CO)16 are reconstructed well.  Two unexpected spectrum were 

found also: one spectrum with vibrations centered at ca.1695.2, 2017.6, 2040.2 and 

2090.4cm-1, another mainly centered at ca.1641.6 and 1695.4 cm-1.These new species are  

identified as CH3CH2CORh(CO)3(C2H4) and  ketone (Figure 4.3). This is an important 

finding since no organometallic species from this class have ever been observed before. 

The results have already been presented at a conference and published in Organometallics 

(Li et al., 2004a). A reprint can be found in Appendix B.  

 

Figure 4.3. The estimated infrared spectra of new species: CH3CH2CORh(CO)3(C2H4)  
(left) and  ketone (right). 

 

(d) Hydroformylation of 4-Vinyl Pyridine catalyzed by Rh4 (CO)12.  

 Many of the primary classes of rhodium organometallic carbonyl species 

postulated to exist have now been found. One class, namely alkyl rhodium tetracarbonyls 
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RRh(CO)4 have not been identified yet. Very recently in Italy, it was shown that 4-vinyl 

pyridine undergoes considerable hydrogenation to 4-ethyl pyridine under 

hydroformylation conditions (Lazzaroni et al., 2002). An elaborate experimental design 

was performed and a series of in-situ spectra were collected by Li Chuanzhao in our group. 

I performed singular value decomposition of the spectra which is followed by BTEM 

analysis. Several organometallic species were recovered, but the expected acyls and alkyls 

could not be found. The reaction undergoes very fast deactivation (loss of precursor from 

solution), and we are not able to model the system kinetics. One possible explanation is 

that this reaction could be heterogeneously catalyzed on metallic rhodium formed by 

decomposition of the Rh4(CO)12 precursor. Rhodium metal is known to be able to perform 

room temperature hydrogenations – it is very active.  

 

(e) A new species involved in hydroformylation RhRe(CO)9.  

 The group found that solutions of rhodium and rhenium carbonyls are much more 

active that solutions of rhodium carbonyls alone. Li Chuanzhao performed an experiment 

where he contacted rhodium and rhenium carbonyls under hydrogen and carbon monoxide 

in n-hexane. In-situ spectra were taken using FTIR spectroscopy. The data set was 

deconvoluted using BTEM. A new pattern was found. Further vibrational group theoretic 

and other analysis indicated that it belonged to a previously unknown organometallic 

species RhRe(CO)9. These results appeared in Organometallics (Li, et al., 2004b). A 

reprint of this paper is given in Appendix C   
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4.4.2. NMR Data Sets 

Entropy minimization in an alternate form was successfully applied to PGSE NMR 

data by Widjaja (2005). Given this encouraging result, we then tried to apply BTEM to 

resolve the pure component spectra of more common NMR data sets.  

A set of experimental 1H NMR data (10 spectra) were collected from mixtures of 4 

chemical components (Prof. Leong Weng Kee’s group in Chemistry Department, NUS). 

The untreated data were analyzed by BTEM and the results were poor. The 

reconstructions are quite far away from true pure spectra. One reason for this result is the 

severe non-linearity found in NMR (non-stationary signals - change in absorption 

frequency). This shifting has been a serious impediment to the use of chemometric 

methods on NMR data.   

A numerical experiment was carried out on a small region (401 channels) of the 

spectra instead of the whole region.  A small range of NMR data with mild overlapping 

was pre-treated in order to re-align the peaks in the same data channels.  BTEM was 

preformed after the singular value decomposition of the aligned data. Two major 

components were obtained and compared with the reference spectra (Figure 4.4). The 

reconstructed spectrum (1) is almost the same with the reference spectrum. The left side of 

the second constructed spectrum was noisy and the mismatch with the reference may be 

due to in-exact pretreatment of the data. This experiment shows that if a proper and robust 

alignment method could be developed, BTEM could be successfully applied to a wide 

range of NMR data. Further investigations about NMR data and the development of NMR 

data analysis are illustrated in section 4.5. 
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Figure 4.4. The first five 1H-NMR mixture spectra (left) and resolved pure component and 
their references (right). 

 

4.4.3. XRD Data Set 

Before this analysis, all of the applications of BTEM were limited to liquid phase 

analysis. In principle, if a linear model still holds, there is no significant difference 

between a liquid phase analysis and a solid phase analysis. One obvious common type of 

analysis in material science is powder XRD (X-ray diffraction). In this technique, 

powdered crystalline materials are measured, and the intensities of the X-rays are 

measured as a function of the angle of diffraction. Such information provides information 

regarding the phase, crystallinity, crystal structure etc.   

Pure component spectral reconstruction from a set of XRD data (12 spectra) were 

preformed with BTEM. The analysis provided the right prediction that 5 components were 

present. Outstanding pure component XRD patterns were obtained for all 5 components 

(Pb3(PO4)2, Pb3(PO4)3Cl, ZrO2, Pb(OH)2, and PbO) present as indicated by comparison 
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with authentic references. These results have implications for a large variety of 

intrinsically inseparable multi-component mixtures encountered in material science 

research. These include un-reactive as well as reactive systems, and ex-situ as well as in-

situ studies, involving organic, inorganic and even metallic/alloy components. Initial tests 

suggest that BTEM may be well suited for recovering even trace component diffraction 

patterns present and hence greatly aiding material characterization. Dr. Fethi Kooli at 

ICES conducted the experiment in 2003 and I performed numerical data analysis. Full 

details of the study of XRD data can be found in Journal: Analytica Chimica Acta (Guo et 

al., 2004). A reprint is provided in Appendix D   

 

4.4.4. Entropy Minimization and Sound Source Separation Application  

4.4.4.1. Introduction  

The classical problem associated with Blind Source Separation (BSS) is the so-

called “Cocktail Party Problem” which has long been of interest in electrical engineering 

(Haykin, 2003), acoustical engineering (Bronkhorst, 2000) and cognitive sciences 

(Conway et al., 2001; Gaetz et al., 1998). It describes a typical scene at a party where 

several sound sources are located in the room: voice of woman, man, children, foreign 

language, music, and even noises from surroundings. Amazingly we can focus on the 

voice from one specific person among a mixture of conversations and background noises. 

This elaborate auditory source separation problem is easily solved by the human brain, but 

proved to be a tough and complex problem in digital signal processing. In the BSS study 

for sound separation, the only input for analysis is the recorded signal from several 

microphones in a room and the goal is to identify and extract the voices/sounds of each 

individual speaker (sources) from the recorded signals.  
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  A number of approaches have been proposed for the solution of the BSS problem, 

typically, for the sound source separation problem (Plumbley et al., 2002; Makeig et al., 

1997). And independent components analysis (ICA), a computational method for 

separating a multivariate signal into components with the assumption of the mutual 

statistical independence of source signals has a wide practical application (Cardoso, 1998; 

Vigario, 1997).  

The above-mentioned situation is an excellent analogue to the mixture analysis of 

chemical signals which consist of different constituents. In this section, a simulation of 

mixture sounds was studied. The objective of the analysis is to find the original acoustic 

signals from the mixture signals via Entropy-Minimization method. 

 

4.4.4.2. Experiment Section 

A simulated sound data set (5-by-10000) was generated by mixing three digitized 

sound waves (with 10000 channels each) with random coefficient matrix (5 by 3) created 

by MATLAB function “rand”iv. The data set is shown in Figure 4.5. The pure sound 

waves are also shown in the Figure 4.6. The mixture sound waves are rather similar to 

each other since there are no highly localized features that stand out – there is a certain 

lack of a characteristic structure.  

                                                 
iv The “rand” function generates random numbers uniformly distributed in the range from zero to one. 
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Figure 4.5.  The sound waves of the five experimental mixtures (shown in channels). 
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Figure 4.6.  The sound waves of three pure sources (shown in channels). 
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4.4.4.3. Entropy Minimization with Dissimilarity Constraints  

 Singular value decomposition (SVD) of the spectra was performed. From Figure 

4.7, it is apparent that the fourth TV  vector is close to the homoscedastic noise where the 

noise is almost constant in magnitude between variables. The real diagonal elements of the 

mixture matrix, called the singular values, are ordered in descent: 21.21, 9.05, 5.72, 0.00, 

and 0.00. Since no noise was added to the data, almost all the information concentrates in 

the first three vectors; no useful information would be imbedded in the last two vectors. 

Therefore it makes sense that only the first three TV  vectors were used in the 

transformation or reconstruction. 

Quite different from the normal chemical spectrum which is a sum of a series of 

Gaussian or Lorentzian band shapes, the signals of a sound wave are sinusoidal 

waveforms without any obviously different features. In this case, it is hard to search for a 

band to target in BTEM. So instead of a band targeting method, entropy minimization is 

used without targeting. The resolution of the pure sound source still can be achieved by 

solving Eq. 4.9. The objective function Fobj   includes the entropy term H along with a 

newly defined penalty function P′  (infra vida).  

 It is apparent that without a similarity criterion, only one sound will be resolved. 

So the first step is to recover the first pure source sound, where P′  is set to zero, and the 

global entropy minimum is sought. In each subsequent search, the penalty function is 

formulated such that only sources dissimilar to all previous results are admissible. This 

effect can be achieved by adding a dissimilarity penalty function, P′ , to the reconstruction 

objective function. Four types of spectral dissimilarity functions were investigated, 

namely angle function, Euclidean inner product, determinant of covariance matrix, and 
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condition number(Widjaja, 2002). In this study, the Euclidean inner product was used due 

to its simplicity. The Euclidean inner product between two normalized pure component 

spectra, a and b, is calculated as follows. 

       ∑
=

=
ν

1i
ii b.ab,a               (4.16) 

 If vectors a and b are similar, the Euclidean inner product will produce a large 

value and tend to be unity when they are identical. In practice, the vectors a and b would 

be the estimated vector during the current optimization and a previously determined 

source vector(s) respectively. The penalty function prevents any identical reconstruction 

from occurring in subsequent optimizations which will help to produce a set of distinct or 

unique pure sounds by maximizing the dissimilarities.    

 Two objective functions were tested. In the first trial, the first derivative entropy 

and dissimilarity penalty functions are used, but in the second trial, second derivative and 

integration of area under the curve are the main part of the objective function. The 

dissimilarity term is added as a penalty. Both objective functions work with almost 

identical results. Here, only reconstruction results using the entropy objective function are 

presented in Figure 4.8. We notice that the amplitudes, sign and the ordering of the signals 

may not be the same as the original sources. But by adjusting the scale, we can “hear” that 

they are the same as the original sources. 
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Figure 4.7.  Plot of the five right singular vectors obtained from the SVD of the mixture 

sounds. The last two vectors contain primarily noises. 
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Figure 4.8. The reconstruction results using the entropy objective function. 
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4.4.4.4. Fourier Analysis and Band-Targeting Entropy Minimization  

It is apparent that one big difference between acoustics and spectroscopy is that the 

former is a time series.  As we know, sound is vibration that propagates through air. 

Although there is no obvious feature such as a band can be used for identification in the 

oscillations of waves, our brains sort the audio signals by frequencies.  In the same spirit, 

Fourier transform would be a suitable tool to transform the acoustics from time domain to 

frequency domain. With this idea, the mixture data are transformed into a new set of data 

via Fourier transformation. BTEM is then implemented afterward.  

In Figure 4.9, the FT result of the five sound mixtures is shown.  In the FT domain 

there are not so many sinusoidal signals appearing. Five right singular vectors are shown 

in Figure 4.10. The last two TV vectors are still not physically important. Only the first 

three significant TV vectors are used in the reconstructions. We notice that most of band 

features are located on the right side of the plots.  

A close examination finds that there are a few bands around index number 8000 to 

9500. After an exhaustive search using all the feature bands, only three patterns are 

obtained by the BTEM approach. They resulted from targeting bands: 8605± 2, 8804± 2 

and 9049± 2. In Figure 4.11 the extrema of the targeted bands are labeled.  The inversed 

Fourier transformation of the reconstruction results are shown in Figure 4.12. 

 It is possible that other transforms such as the wavelet transform, could work as 

well or perhaps a little better in such applications. Since acoustic data analysis is not the 

primary aim of my thesis, other transformations were not further pursued. 
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Figure 4.9.  The Fourier transformation result of the five mixture sound waves.  
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Figure 4.10. Plot of the five right singular vectors of TV  obtained from the SVD of the 

Fourier transformed mixture sounds. The last two vectors contain primarily 
noise.  
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Figure 4.11.  Plot of the first three right singular vectors of TV  obtained from the SVD of 

the Fourier transformed mixture sounds. Letters a-c indicate different peaks 
subsequently targeted by BTEM.  Letter b, b’ and b’’ indicate the same peaks 
appear in different TV  vectors.  
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Figure 4.12. Reconstruction result of three sound patterns by BTEM and Fourier analysis.  
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4.4.4.5. Discussion  

 1. Entropy minimization:   It is important to note that three different strategies can 

be attempted to obtain the curve resolution, namely, BTEM, Entropy Minimization with 

dissimilarity constraints (section 4.4.4.3.) and MESS(Chen et al., 2003a).  It is obvious 

that BTEM is characterized by its band-targeting technique.  The discrepancy between the 

Entropy Minimization with dissimilarity constraints and MESS lies in the fact the MESS 

is used for simultaneous resolution of s species by rotating s basis right singular vectors; 

meanwhile, the former is still one-at-a-time approach. 

 In this simple and noiseless case, since there are only three components inside, we 

can specify this fact, and with this knowledge we can apply MESS. However, in most real 

data, there are more severe nonlinearities imbedded. Hence, in most real situations, it is 

quite troublesome to predict the number of components precisely. 

2. Two object functions (1)2nd derivative and area and (2) entropy based on 1st 

derivative were implemented in section 4.4.4.3. The qualities of the reconstructions were 

outstanding, but it was observed that it is more practical to use objective function (1) than 

entropy. The main reason lies in the fact that the response surface of the entropy function 

is fairly complex. From Table 4.1, we can see the objective function value of each pure 

component. It is apparent that depending on the measure used, the sources are either very 

similar to one another or very different from one another. Since the sources are much 

different from one another when using the 2nd derivative method, this may explain in part 

why the 2nd derivative method provided faster convergence to the correct solutions.  
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Table 4.1. The values of the two types of objective functions.  The variation between 2nd 
derivative values of different sources is much larger than their entropy value. 

 
         Original  sources                   Recovered result with similarity penalty  Sound waves 

in Fig. 4.5. 2nd derivative 1st derivative entropy 2nd derivative 1st derivative entropy 

1st   5.6195e+002 8.9145e+000 5.6419e+002 8.9188e+000 

2nd  1.7549e+003 8.8337e+000 1.7634e+003 8.8354e+000 

3rd 1.8640e+002 8.6472e+000 1.8903e+002 8.6641e+000 

 

3. It is known that FT is a linear transform. The bilinear model is not affected by 

the FT operation. Since FT is a reversible procedure, the resolved pattern will be extracted 

from the transformed data and easily be converted back into the time domain via the 

inverse FT.  FT converts the complex time domain signal into the simple and explicit 

spectrum in frequency domain, which we are accustomed to seeing in FT-IR and NMR 

spectroscopy. Band-targeting is easier to be implemented with FT data in this case since 

localized signals arise in the frequency domain.  

 

 4.5. Application to 1D Nuclear Magnetic Resonance Spectroscopic Data 

NMR spectroscopy is an absorption spectroscopy involving the absorption of radio 

frequency electromagnetic waves and plays an important role in the structural 

determination of a wide variety of organic and inorganic species. As an unrivaled tool to 

be used to analyze complex systems, the NMR technique is now widely used in various 

areas such as physics, chemistry, biology, material science, etc. Also as a complementary 

tool to infrared spectroscopy, NMR has been employed in the study of catalysis. Both 

qualitative and quantitatively information on complex reaction systems can be obtained. 

Routinely 1H, 13C, 19F, 31P and 29Si-NMR are employed. Similar to FT-IR, Raman and 
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other spectroscopes, the initial basic assumption is that NMR spectra obey a bilinear form, 

where a generalized Beer-Lambert law holds. 

A method based on Minimization of Entropy (MESS) was successfully applied to 

PGSE NMR data by Widjaja (2005). In his study, by specifying a priori that there are 3 

species present, all the pure component spectra could be extracted. PGSE is quite a special 

technique, since the concentration of analytes does not change but one nevertheless 

obtains a series of spectra with different spectral contribution from each component. Since 

the analyte concentrations do not change, the pure component spectra in each spectrum are 

very similar. Non-stationary effects are dramatically reduced.  So PGSE experiments are 

more well-posed than typical NMR experiments.   

In Widjaja’s study, MESS outperformed DECRA (direct exponential curve 

resolution algorithm) (Windig, 1997; Windig et al., 1997, 1999a, 1999b, 1999c) and PMF 

(positive matrix factorization) (Xie et al., 1998). To my knowledge, compare with 

vibration spectroscopy, relatively little effort has been invested in the NMR data analysis 

with multivariate data technique (Antalek and Windig, 1996; Antalek, 2002; Stilbs et al., 

1996; Schulze and Stilbs, 1993; Dyrby et al., 2005). Again, the reason is probably the very 

bad non-stationary effects including phase, lineshape and line position. Below, BTEM is 

applied to resolve pure component spectra of more typical and more commonly 

encountered NMR data sets.  

In this section, a series of non-reactive mixture NMR data and a reactive 13C NMR 

data set are analyzed. All of these data were measured in collaboration with a Bruker 

scientist, Peter Sprenger, at the Bruker headquarters in Switzerland (Bruker Biospin AG., 

Zurich) in July 2004.  
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4.5.1. Study of 1D NMR Mixture Data with Four Chemical Components 

4.5.1.1. Experimental: Materials and Sample Preparation 

All 1H/13C/19F/31P NMR spectra were recorded on a Bruker AVANCE 400 

spectrometer (400 MHz) in the FT mode at 295K. The instrument was equipped with 5 

mm z-gradient 1H/13C/19F/31P quad-nucleus probe.  

Four chemical species were used in this non-reactive experiment. These were 

(a):   chloroform-D  (CDCl3, deuterochloroform)  (99.96 atom % D, Aldrich), (b): 2,5-

dimethyl-2,4-hexadiene   ( 96%, Aldrich), (c): tris(pentafluorophenyl)phosphine  (97%, 

Aldrich) ; (d): ethyl 4,4,4-trifluoro-2-(triphenylphosphoranylidene)acetoacetate (97%, 

Aldrich) .  And Table 4.2 shows that not all compounds contained all elements. 

 

Table 4.2. The elements contained in (a), chloroform-D,  (b), 2,5-dimethyl-2,4-hexadiene, 
(c), tris(pentafluorophenyl)phosphine and  (d) ethyl 4,4,4-trifluoro-2-
(triphenylphosphoranylidene)acetoacetate. 

 
 

Element Chemical 
H C P F 

a  O   

b O O   

c  O O O  

d O O O O  

 

Ten solutions containing the four chemical components were also prepared 

according to Table 4.3. Reference solutions were prepared by dissolving each pure 

component in the solvent (chloroform-D) individually (from number 11 to 14 in Table 4.3). 

 

 



                                                                                                                                 Chapter 4 

 78

 
Table 4.3  Composition of chloroform-D (a),  2,5-dimethyl-2,4-hexadiene     

(b),  tris(pentafluorophenyl)phosphine (c)   and   ethyl 4,4,4-trifluoro-2-
(triphenylphosphoranylidene)acetoacetate (d) in the ten mixtures and four 
reference samples. 

 
Mixture   No. Reference No. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

a(µl) 700.0 850.0 750.0 800.0 750.0 850.0 800.0 900.0 950.0 700.0 900.0 800.0 800.0 800.0 

b(mg) 125.0 50.0 100.0 75.0 25.0 50.0 25.0 125.0 25.0 50.0 0 100.0 0 0 

c(mg) 50.4 51.0 75.8 50.6 123.5 74.9 49.0 74.0 26.0 101.0 0 0 75.0 0 

d(mg) 25.8 50.4 48.0 98.4 73.2 23.0 124.0 24.5 48.6 75.1 0 0 0 100.0 

 

4.5.1.2. Methodology of Data Pretreatment 

 It was observed that the peaks drifted from spectrum to spectrum. This was most 

serious for 1H-NMR spectra (Figure 4.13), but the other nuclei also showed some drifting.  

Therefore, it is clear that the untreated data does not obey a bilinear model. One reason is 

the spectral shifting (change in absorption frequency) due to the different surrounding 

chemical environments (concentrations). This shifting is probably the main reason that 

SMCR techniques have not been seriously applied to NMR data. NMR data with mildly 

overlapping spectra should be treated by alignment and other re-adjustment techniques. 

BTEM can be implemented after the singular value decomposition of these pre-processed 

data.  
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Figure 4.13. Example of the unsystematic drift of each peak in 1H-NMR spectra taken 
from the ten random four-component solutions.  

 

Indeed, this non-stationary characteristic of the data should be corrected by pre-

processing the data with a re-alignment algorithm. But the drift is not constant along the 

whole spectral range, which makes the alignment process more complicated than normal. 

Furthermore, the irregular peak shapes also make alignment more difficult. A five-step 

procedure was proposed. The alignment of the spectra was obtained by the following 

algorithm.   

 Step1.  The large regions that contain the significant peaks were chosen and the 

rest were discarded.  
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 Step2. Further sub-divided the large regions with many bands, into smaller 

regions. Each of these smaller regions represented a segment which could be individually 

controlled/aligned. 

 Step3. For each segment, the alignment would be optimized by permitting a 

constant shift. First, we chose one representative spectrum from our ten mixtures – this 

was our fixed “reference” spectrum. The remaining nine spectra were compared one-by-

one with the “reference” spectrum. The targeted spectrum was shifted in a systematic way 

until a maximum inner product was achieved. At this point the “reference” pattern and 

shifted vector were aligned. Figure 4.14 shows the re-aligned segments in the 1H-NMR 

spectra for one band. There is little doubt that the peaks are aligned well if all peaks in the 

spectra are symmetric about their peak centers.  

 Unfortunately, in NMR, especially in 13C-NMR, the frequency dispersion of 

chemical shift appears in a board range, and the resolution of the peak is low. In other 

words, often the peak only consists of several points and the peak is asymmetric.  

In Figure 4.15, the result of alignment in a single peak 13C-NMR segment 

according to the procedures stated above is shown. But it is obvious that peaks in the top 

row (a) are not well aligned. It is clear that the higher one should shift more to the left. 

Row (b) in Figure 4.15 shows the result of moving the higher spectrum to left side by 

exactly one channel. This move has over-compensated. Even one channel move is too 

much, that is to say, precise alignment is impossible to achieve with low resolution data.  

 Step4. The linear interpolation method was applied to overcome the alignment 

problem due to the low resolution – and this can only be done by increasing the number of 

the data channels used. It is obvious that the interpolation does not distort the peak heights 

and area under the peak (row (c) in Figure 4.15). As a result, the original 13C-NMR 
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spectrum had a digital resolution of approximately 1.3 points/Hz and was increased to 5.4 

points/Hz after interpolation.  

 
 
Figure 4.14. The result of alignment. Upper figure: the stack plot of ten mixture 1H-NMR 

spectra around in peak s (Figure 4.17),Bottom figure: spectra after alignment, 
the index of spectra from top to bottom is 3, 4, 1 ,10, 5, 2, 7, 8, 9, 6. 
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 Step5. After interpolation, (Figure 4.15c) the two peaks still were not symmetric in 

shape. v  Accordingly, a smoothing technique would help to alleviate or remove the 

artifacts. The result of a smoothing approach with the Savitzky-Golay method (discussed 

in chapter 3, section 3.2.2) is shown in row (d) in Figure 4.15. These two peaks now have 

similar shape and coinciding peak centers. Of course, other smoothing procedures could 

be implemented by using other methods and the primary criterion might be to achieve the 

least possible distortion.   

 
Figure 4.15.  The alignment difficulty due to the asymmetric peak in 13C-NMR.  (a)  the 

result of left shift, (b) the result of right shift, (c) the alignment result after 
interpolation, (d) the alignment result after interpolation integrated with 
smoothing. Note: the top two figures have circa 60 channels of data. The 
bottom two figures have circa 604× channels to facilitate interpolation.  

                                                 
v The severe non-linearities may not only originate from the shifting peak positions, but also from the 
changing shapes of peaks belonging to the same components presented in the different mixture samples. 
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4.5.1.3. Result 

 1H-NMR Data Set  

Data arrangement: The 1H-NMR data from the 10 mixtures were collected in a matrix D  

with size of 10 × 32K(32768), in which each spectrum contained 32K (chemical shifts) 

readings from -125.84Hz to 369.68Hz.  An original multi-component 1H-NMR spectrum 

is shown in Figure 4.16. The NMR software MestReC, that is available at 

http://www.mestrec.com/, was used for display / plotting of the spectrum. Further plots 

having the same format were produced using the same software. 

  

 

Figure 4.16. One spectrum of the mixture 1H-NMR (in Hz) 

 
 

In Figure 4.17, all ten mixture 1H-NMR spectra (refer to Table 4.3) are shown. After 

careful examination of the ten spectra, shifts in some characteristic peaks were clearly 

discernable. One specific segment was plotted previously in Figure 4.14 and discussed.  
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Figure 4.17. Ten original 1H-NMR mixture spectra (reformatted with data channels and 
not chemical shifts in ppm) 

 
 
Data manipulation: Due to the irregular shifts in the 1H-NMR spectra, the interesting 

regions were selected and segments re-aligned individually.  The re-aligned data were then 

filtered using the Savitzky-Golay method. The final pre-treated data were consolidated 

into a single matrix.  SVD was performed on the pre-treated data matrix, yielding the two 

orthonormal matrices U and TV , and the diagonal singular value matrixΣ . And the right 

singular vectors in TV are needed for the BTEM analysis. Both components possessing 

hydrogen were obtained and these were compared with the reference spectra.  The 

reconstructed spectra are almost the same as the reference spectra. Some regions which 

should be zeros in the reconstructed spectra are actually noisy (i.e., see 4.17d from 5000-
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10000 data channels). This is due to changing band shapes, inexact shift alignment etc. 

 

Figure 4.18. The reference 1H-NMR spectra (a and b) and the recovered spectra (c and 
d) via BTEM.   (a) and (d), 2,5-dimethyl-2,4-hexadiene. (b) and (c), ethyl 
4,4,4-trifluoro-2-(triphenylphosphoranylidene)acetoacetate     

 

13C-NMR Data Set  

Data arrangement: The 13C-NMR data from the 10 mixtures were collected in a matrix D  

with size of 10 × 32768, where each spectra contained 32K (chemical shifts) readings 

from -1958.43 Hz to 22080.04 Hz.   

 A multi-component 13C-NMR spectrum is shown in Figure 4.19. In Figure 4.20, all 

ten mixture 13C-NMR spectra are shown.   



                                                                                                                                 Chapter 4 

 86

 

Figure 4.19. One spectrum of the mixture 13C-NMR (in Hz). 

 

 
 

Figure 4.20. Ten original 13C-NMR mixture spectra. 
 
 

 The 13C-NMR data were manipulated according to section 4.5.1.2. Further, BTEM 

analysis was applied to the pre-treated data. Upon exhaustive targeting of all the 

interesting features in the TV , all four 13C-NMR spectra were recovered.  The four 
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recovered 13C-NMR spectra are shown in Figure 4.21. Since all reference spectra were 

measured by dissolving the analyte in the solvent CDCl3, the reference spectra are actually 

not the “pure” spectra but the pure spectrum superimposed with the solvent signal (Figure 

4.22).  

  In Figure 4.21, all the three recovered analyte pure spectra are “clean” enough 

without any “contamination” of solvent. The last spectrum (d) is noisy due to sensitivity 

issues, and a few signal artifacts arising from the other components 

present.

 

Figure 4.21. The recovered 13C-NMR spectra via BTEM. (a), 2,5-dimethyl-2,4-
hexadiene,  (b), chloroform-D (c), ethyl 4,4,4-trifluoro-2-
(triphenylphosphoranylidene)acetoacetate and (d) 
tris(pentafluorophenyl)phosphine.   
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Figure 4.22. The reference 13C-NMR with imbedded solvent signal. (a), chloroform-D  

(b), 2,5-dimethyl-2,4-hexadiene, (c), tris(pentafluorophenyl)phosphine and 
(d)ethyl 4,4,4-trifluoro-2-(triphenylphosphoranylidene)acetoacetate. 

 
 
 19F-NMR Data Set  

Data arrangement: A multi-component 19F-NMR spectrum is shown in Figure 4.23. In 

Figure 4.24, all ten mixture 19F-NMR spectra (refer to Table 4.3) are shown. The 13F-

NMR data from 10 mixtures were collected in matrix D with size of 10 × 32768, where 

each spectrum contained 32K (chemical shifts) readings.  The 19F-NMR data were 

manipulated according to section 4.5.1.2.  Further, BTEM analysis was applied to the pre-

treated data. Upon exhaustive targeting of all the interesting features in the TV , all the 19F-

NMR spectra were recovered. The two recovered 19F-NMR spectra are shown in Figure 

4.25.   
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Figure 4.23. One spectrum of the mixture 19F-NMR (in Hz) 
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Figure 4.24. Ten original 19F-NMR mixture spectra 
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 Figure 4.25. The recovered 19F-NMR spectra (a and b) via BTEM and the reference 19F- 

NMR spectra (c and d). (a) and (c): tris(pentafluorophenyl)phosphine,  (b) 
and (d) ethyl 4,4,4-trifluoro-2-(triphenylphosphoranylidene)acetoacetate. 

 
 
31P-NMR Data Set  

Data arrangement: A multi-component 31P-NMR  spectrum is shown in Figure 4.26. In 

Figure 4.27, all ten mixture 31P-NMR  spectra (refer to Table 4.3) are shown. The 31P-

NMR data from 10 mixtures were collected in matrix D with size of 10 × 32768, where 

each spectra contained 32K (chemical shifts) readings.  The 31P-NMR data were 

manipulated according to section 4.5.1.2.  Further, BTEM analysis was applied to the pre-

treated data. Upon exhaustive targeting of all the interesting features in the TV , all the 31P-

NMR spectra were recovered and the chosen targeted features were also retained. The two 

recovered  31P-NMR spectra are shown in Figure 4.28. 
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Figure 4.26. One spectrum of the mixture 31P-NMR (in Hz) 

 

 

Figure 4.27. Ten original 31P-NMR mixture spectra 
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Figure 4.28. The recovered 31P-NMR spectra (a and b) via BTEM and the reference 31P-

NMR spectra (c and d). (a) and (c): tris(pentafluorophenyl)phosphine, (b) and 
(d) ethyl 4,4,4-trifluoro-2-(triphenylphosphoranylidene)acetoacetate 

 
 

4.5.2. Study of 1D Reaction NMR Data 

 With successful application of spectral alignment and BTEM on the 1H, 13C, 19F, 

31P NMR data individually, the above methodology was further tested in a reaction NMR 

data set. A cycloaddition reaction was selected in this study. 

 

4.5.2.1. Experimental  

Materials: The cycloaddition reaction between 1,3-cyclohexadiene 97% (Aldrich) and  

dimethyl acetylenedicarboxylate 99% (Aldrich) was studied.  Solution 1 was prepared by 

mixing 0.4 ml 1,3-Cyclohexadiene, 0.2 ml dimethyl acetylenedicarboxylate and 0.3 ml 

CDCl3.  Solution 2 was prepared with mixing 0.2 ml 1,3-Cyclohexadiene, 0.4 ml Dimethyl 
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acetylenedicarboxylate and 0.3 ml CDCl3. Therefore, these two reactions were carried out 

with different initial ratios of reagents.  

 Both reactions were conducted using the same temperature control. For the period 

0-15 hours, the reaction temperature was held constant at 295K and for the period 15-22 

hours, the reaction temperature was held constant at 310K.  

 

Figure 4.29. The chemical reaction equation for the cycloaddition of 1,3-Cyclohexadiene 
and  Dimethyl acetylenedicarboxylate  

 

Instrumental Aspects: All the data were acquired on a Bruker AVANCE 400 NMR 

Spectrometer.  The interval of each measurement was about 40 mins. 13C-NMR spectra 

were recorded during the reaction. Moreover, spectra of each pure reagent component 

were measured as the reference for later comparison with the recovered spectra from 

BTEM. Reference spectra for (a) Dimethyl acetylenedicarboxylate and (b) 1,3-

Cyclohexadiene are shown in Figure 4.30.  

 Also a time-dependent stack plot of mixture spectra during reaction (Stage I) are 

shown in Figure 4.31. 
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Figure 4.30.  Reference experimental 13C-NMR spectra (in Hz) for (a) Dimethyl 
acetylenedicarboxylate and (b) 1,3-Cyclohexadiene 

 

 

Figure 4.31. A time-dependent stack plot of mixture spectra during reaction (Stage I). 
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4.5.2.2. Computational Section 

Data arrangement: Three sets of  13C-NMR data were collected with 26 measurements 

from Stage I (Solution 1 at 295K), 12 measurements from Stage II (Solution 2 at 295K), 

11 measurements from Stage III (Solution 1 continues at 310K) measurements, 

respectively. [Note that some instrumental problems occurred and some data was thus 

discarded] Each 13C-NMR spectra spectrum contained 32K (chemical shifts) readings 

from -1958.43 Hz to 22080.04 Hz.  

 As before, non-stationary NMR characteristics were observed in these reaction 

data sets. The shifts were not constant along the whole range of spectra, and furthermore 

irregular band shapes also existed. There is no doubt that these nonlinearities should be 

corrected by pre-processing the data with a re-alignment algorithm and other data 

processing techniques.  An important thing to note is that there were impurities in the 

reaction. As mentioned in section 3.2.2, the smoothing/filtering procedure will help to 

minimize the influence of the noise and irrelevant signals which sometime will interfere 

with the interesting peaks.   

  Consistent with the algorithm stated in section 4.5.1.2, data were broken down into 

smaller segments and then aligned individually. In figure 4.32, the top row shows the 

reconsolidated spectra after segmentation and the bottom row shows the enlarging part 

from channels 440 to 570 where the drifts of three solvent peaks are prominent. In order to 

obtain higher quality spectral recovery, the linear interpolation method described in step4, 

section 4.5.1.2 was applied here to overcome the low resolution data. The re-aligned data 

were then filtered using the Savitzky-Golay method with the polynomial order and the 

frame size parameter settings as 3 and 15, respectively. 
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Figure 4.32.  The reconsolidated spectra before alignment. Top row: spectra after 

segmentation; Bottom row: the enlarging part range from 440 to 570 
where the shifts of three solvent peaks are prominent. 

 
 For each segment, the alignment can be optimized by permitting a constant shift in 

a controlled manner. Figure 4.33 shows the result after alignment; the top row shows all 

the spectral results and the bottom row shows the enlarging part ranging from 440 to 570.  

 
Figure 4.33.  The reconsolidated spectra after alignment. Top row: spectra after alignment; 

Bottom row: the enlargement part from channel 440 to 570 where the 
shifts are now corrected. 



                                                                                                                                 Chapter 4 

 97

4.5.2.3. Result and Discussion 

Recovered Spectra Singular value decomposition was performed on the aligned data.  And 

the right singular vectors in VT were used for the BTEM analysis. Three major components 

were obtained and compared with the reference spectra. Two of the reconstructed spectra 

are close to the reference spectra. These were the reagents. The third species is the product 

which is easily verified by the presence of six distinguishable 13C resonances.  

It is pity that the pure solvent spectrum is not being perfectly recovered in this 

study. One reason is that the solvent signal is too low compared with the reactants. 

Another explanation is that the variation of the solvent signal is also too low.  A remedy to 

solve the problem is to introduce more variation of solvent in a better experimental design.  

 

Figure 4.34. The recover spectra (upper figure, a, b, and c) and the reference (bottom 
figure, d and e). b and d are spectra of  Dimethyl acetylenedicarboxylate; c 
and e are the spectra of 1,3-Cyclohexadiene;  a is speculated to be the 
product spectrum. 
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Concentration profile. With all the recovered spectra, a first approximation to the profiles 

of the relative concentrations of the reactants could be obtained by using a least-square fit 

of the resolved pure component spectra to the mixture spectra. This approach neglected 

the small contribution to the 13C signal due to chloroform-D.  

 

 

Figure 4.35. The relative concentration profiles for three stage of the reaction before 
normalization. Cross: Dimethyl acetylenedicarboxylate; Six-point star: 1,3-
Cyclohexadiene;  Diamond : product. 

 

 It is worthy to report here, that the analysis was actually somewhat more 

complicated. During the first attempt at analysis, inconsistencies in the profiles were 

obtained for Stage III (Figure 4.35). Some data points in the Stage III were clearly 
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undergoing unacceptable variations (moving up or down dramatically). It quickly became 

apparent that the band intensities were varying too much (instability in the spectrometer).  

Therefore, a spectral normalization procedurevi was performed by adopting the middle 

peak of solvent chloroform-D as internal standard for the normalization. The recalculation 

of the concentration profiles after the normalization showed reasonable monotonically 

decreasing or increasing profiles profile throughout duration of the reaction period i.e. 

Figure 4.36.  

 

 

Figure 4.36. The relative concentration profiles for three stage of the reaction after 
normalization. Cross: Dimethyl acetylenedicarboxylate; Six-point star: 1,3-
Cyclohexadiene;  Diamond : product. 

                                                 
vi The group has been using spectral normalization algorithem to get accurate in-situ concentrations when 
system pressure, solution density/volume, temperature, spectroscopic pathlength, etc. change during reaction. 
It is a very reliable method to correct data.   
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4.5.3. Conclusion  

In this section, BTEM showed its usefulness to identify and to recover pure 

component NMR spectra from a non-reactive mixture system and a reaction system. These 

experiments show that if (1) there are much more dense data sets (more channels per 

band), (2) much more spectra per data setvii and (3) a proper alignment method like the 

one introduced here, BTEM can be successfully applied in NMR system identification. 

The potential for greatly assisting the understanding of the chemistry in poorly understood 

reactions is obvious.   

Further, in order to obtain higher quality spectral recovery, other NMR signal 

enhancement techniques, just like Cadzow (1988) iterations and Linear Prediction (Tirendi 

and Martin, 1989) technique may be integrated with the aforementioned techniques to 

remove undesirable variations in the data.   

Also it is important to note that COW and DTW, which were used to correct the 

position shifts in the spectra in the open literature, were not used here in this chapter. 

When these procedures were tried with this data, severe distortion was observed. DTW, 

which works through the signals element by element, has a tendency to destroy the 

integral of the band/peak, and distortion existed in COW due to the stretch or shrinking of 

segments as well.  

 

4.6. Summary    

In this chapter, BTEM, the self-modeling curve resolution method, which is based 

on entropy minimization, is introduced after reviews of other curve resolution methods. 

                                                 
vii If the number of spectra is very large, then enough information is available about the non-linear 
characteristics to achieve a very smooth re-construction.  
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BTEM was successfully implemented to analyze and to reconstruct various cases of multi-

component mixture systems including the homogeneous catalytic hydroformylation 

reaction, and inorganic power X-ray diffraction patterns. Also the numerical experiment of 

separation mixtures source via entropy minimization method is demonstrated; the usage of 

the Fourier transform in the acoustics analysis is discussed. This chapter also included 

discussion of the entropy and the similarities functions that are utilized to improve spectral 

reconstruction. 

 Finally, 1D NMR data analysis is the focus of a larger part of this chapter. A five-

step procedure was proposed to perform the alignment of the spectra. A non-reactive 

mixture and a reaction system were tested. Satisfactory results were obtained. Much more 

work will have to be done to develop routine and automated programs for correcting NMR 

data before routine BTEM analysis can be performed.  
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Chapter 5 
 

2D Entropy Minimization Algorithm 
 
 

There are many types of 2D patterns and spectra in the chemical sciences. Besides 

multivariate images given by many surface analysis methods (Paul et al., 1992; Geladi and 

Grahn, 1996), there are still quite a lot of different types of 2D spectroscopic data 

available (discussed in chapter 3, section 3.1). Since there is the pervasive popularity of 

the 2D format data set in chemical laboratories, the need for 2D data analysis is increasing 

in demand. The resolution of the blind source separation typically involves 1D and 2D 

data arrays and is found in a wide variety of disciplines (Cardoso, 1998). It represents a 

particularly difficult type of inverse problem, where the observables are 

superpositions/mixtures of source patterns. In the most difficult form of such problems, no 

a priori information is commonly available concerning neither the individual source 

patterns, nor the number of sources giving rise to the observations.  

 

In this chapter, the 1D entropy-based curve resolution algorithm is generalized and 

further extended to 2D spectroscopy in order to treat sets of 2D spectroscopic data. A new 

entropy like function is defined that more fully utilizes the inherent organization found in 

2D arrays.  The details of matrix-wise 2D Entropy Minimization algorithm as well as the 

vector-wise 2D Entropy Minimization are shown. Also the 2D and higher dimensional 

target transformation techniques for testing hypothetical factors are introduced.  
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5.1. Methodology of 2D Entropy Minimization   

In chapter 2, section 2.2.1, various methods proposed for estimating the component 

spectra from multi-component mixtures with different concentrations have been reviewed. 

Methods based on self-modeling curve resolution techniques are more attractive since it is 

remarkable that the estimated basis component spectra can be extracted with no use of 

other external information. In 1983, Sasaki, et al. (1983) proposed a method based on 

entropy minimization with the merit of providing the unique estimation of the component 

spectra. Fully revising this algorithm, a new algorithm called Band-Target Entropy 

Minimization (BTEM) was introduced by Garland’s group recently. BTEM is a self-

modeling deconvolution technique. The novel entropy minimization method used in 

BTEM is based on the idea that the real pure components are the simplest patterns 

involved in the data set and these should have the minimum values of entropy. The pursuit 

of the minimum entropy thus gives the pattern with greatest simplicity without any a prior 

information. The details of the BTEM methodology were given in chapter 3 and the 

references therein.  The development of the 2D Entropy minimization follows in the next 

section.  

 

5.2. Overview of Approach 

 The basic philosophy behind the present 2D entropy minimization curve resolution 

methodology has 3 primary parts. First, given an arbitrary set of observations (data array), 

this array should be decomposed into orthogonal components using PCA or SVD etc. It is 

known that if the number of the observations is smaller than the number of components 

embedded inside, this leads to an under-determined problem. Fortunately, this is not often 

the case; collection of copious quantities of data is often an easily met prerequisite for 
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analysis. Secondly, an appropriate entropy like function must be chosen, and an objective 

function must be designed to sequentially search for the minima which correspond to the 

pure patterns. A penalty term is needed to narrow the space and to ensure finding the 

feasible solution.  At the last stage, a reliable global optimizer is utilized to achieve the 

objective function minima and realize the mixture separation.  

 

5.3. System Representation  

   First, in order to facilitate discussion of the numerical data analysis for 2D Entropy 

minimization, it is instructive to have a system model. For 2D absorption spectroscopy, 

for example, in 2D Nuclear Magnet Resonance spectroscopy which involves spectra with 

two frequency axes, each element in the matrix is specified by two coordinates 

corresponding to frequency f1 and frequency f2.  Let nmA ×  denote one measurement of a 

single multi-component solution with s species where m and n are the number of channels 

in each spectral direction respectively. It is assumed that there are Ni moles of each species 

present in the measured sample. Each species possesses a pure component absorptivity 

nma × . Since the measured 2D spectrum is the superposition of s pure component 

absorptivities, nmA ×  can be represented as shown in Eq. 5.1 where nm×ε denotes the 

associated instrumental/experimental error.  

nm
i

inminm aNA ××× += ∑ ε                                          (5. 1) 

 

   The q spectral measurements give rise to a set of 2D observations. These will be 

denoted nmqA ×× (an underlined alphabet denotes the 3-way array) where the raw absorbance 

data is now a 3-way array. It is very important to note that the error term still exists and 
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consists of instrumental/experimental error as well as the system non-linearities arising 

from the non-stationary signal characteristics.   

 

5.4. Data Decomposition and Model Reduction  

 In chapter 3 section 3.5, the theoretical basis for generalized decompositions of 

higher-order tensors and n-arrays has been discussed. The ordering of the decomposition 

of an n-array can be carried out in more than one way, in other words, with priority given 

to one or more indices. The numerical realizations of such decompositions have been 

reported (Kolda, 2001). But it is quite a common situation that the increase of dimension 

does not change the intrinsic structure of the data, the multidimensional arrays or n-way 

arrays are still bilinear data which can not be decomposed into independent vectors in 

each dimension. Therefore, instead of using a full orthogonal tensor decomposition 

technique (which will probably lead to loss of physical understanding of the problem), a 

modified tensor decomposition is used.  In the following development, a decomposition 

which retains the natural physical structure of the data set is implemented.  

 

5.4.1. Principle Component Analysis (PCA) 

Principle component analysis (also known as the Karhunen-Loève transform) is 

often used for finding the latent variables in data analysis (see discussion in chapter 3, 

section 3.3.1). PCA is well known for its use in identifying a few variables which explain 

all or most of the total variance. The components after the transformation have the highest 

possible variance, with an important impact on the data analysis and later data 

reconstruction.  
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The 2D Entropy Minimization algorithm begins with an appropriate decomposition. 

In the present case of analyzing a series of 2D data, a 3-way data set is generated. In other 

words, the set of observations consist of stacks of 2D mixture data. As shown in Eq. 5.2 

and Fig 5.1, a 3-way data set can be decomposed into two parts. One is the loading part, 

the other is the scores part. The 3-way matrix algebra equation is represented as follows: 

                                             ECFA i

q

i
i +⊗= ∑

=1

                                            (5.2)       

 

 
 
Figure 5.1. A three-way data can be decomposed into a sum of Kronecker products and a 

residual E. 
 

where, A  denotes the series of q mixture spectra ( A  is a 3-way array); iF denotes matrix-

formatted component i with size ( yx × ); iC denotes the loading for component i (relate to 

its contribution) which is a vector of length q ; ⊗ denotes the Kronecker product; and E  is  

the residual part. Ideally most of the information in the mixture spectra will be 

concentrated in the first term of Eq. 5.2, but in real sets of data there are always noise and 

errors which show up in the residual term, E.  Details of the PCA on 3-way array data 

decomposition can be found in paper by Geladi et al. (1989).  
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5.4.2. Singular Value Decomposition (SVD) 

A PCA decomposition can be conveniently calculated using a SVD technique, 

which possesses a more robust and efficient process (Golub and Kahan, 1965; Golub and 

Reinsch, 1970). SVD is used in the present contribution. The details of SVD 

decomposition procedure is outlined here. 

In order to achieve appropriate vector-space decomposition of this 3-way 

array nmqA ×× , nmqA ×× must be unfolded into a 2-way array (matrix) )( nmqA ××  first. This 

requires that each experimentally measured 2D spectrum is re-ordered by 

concatenation/unfolding. As a result, the number of elements in the 3-way array and the 2-

way array are exactly the same. This procedure can be represented in Eq. 5.3, in which a 

2-way array is obtained by the transformation of the 3-way array.  

nmqA ××  → )( nmqA ××                                                  (5.3) 

 

 Secondly, SVD can be directly applied to )( nmqA ×× . As mentioned in chapter 3, 

section 3.3.3, three new objects, namely, the left singular matrix qqU × , the diagonal 

singular values matrix )( nmq ××Σ and the right singular matrix )()( nmnm
TV ×××  are produced.  

)( nmqA ×× = qqU × )( nmq ××Σ )()( nmnm
TV ×××                            (5.4) 

       It is important to note that the number of columns in the matrix )( nmq ××Σ  and the 

number of rows in the matrix )()( nmnm
TV ×××  greatly exceed the number of experimental 

spectra. The extra columns and rows exist due to the mathematical construct of SVD and 

are not physical relevant. Accordingly, the last qnm −× )(  columns/rows can be discarded 

which lead to the truncated form as Eq. 5.5.  
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)( nmqA ××  = qqU × qq×Σ )( nmq
TV ××                                          (5.5) 

 The last stage of the decomposition involves the refolding procedure which 

involves the undoing of concatenation, or folding on the resulting matrix  )( nmq
TV ××  . This 

leads to Eq. 5.6 where the q physically meaningful right singular vectors have been 

transformed to q physically meaningful right singular matrices which are analogous to F   

in the PCA decomposition mode. 

nmqA ××  = qqU × qq×Σ nmq
TV ××                                          (5.6) 

 If the absorptivities absolutely obey the Lambert-Beer Law, and the bilinear 

model holds for the system, there would be only s degrees of freedom,  and subsequently 

only s of the q right singular matrices in nmq
TV ×× in Eq. 5.6 would be physically important 

from a spectroscopic viewpoint of reconstruction. However, as stated before in chapter 4. 

section 4.1.2.1, for the system representation, the bilinear model is only locally valid for 

real data sets. Comparison of the system model, Eq. 5.1, and the decomposition of 

experimental observations, Eq. 5.6, leads to the conclusion that information on the s pure 

component absorptivities are imbedded, in a nontrivial manner, in the q physically 

meaningful right singular matrices in nmq
TV ×× . If the number of experimentally measured 

spectra q happens to be less than the number of observable components s, then the 

mathematical problem can be considered irrevocably ill-posed and subsequently, there is 

no possibility for a unique solution to deconvolution.  

 Here it is necessary to emphasize the importance of SVD with the expression in Eq. 

5.6. Consistent with the discussion in section 3.3.3, SVD can be considered a general 

framework for rank reduction and data compression which indeed provides a crucial initial 

untangling of the signals. Specifically, SVD untangles the 3-way array observations into j 
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matrices which contain a significant amount of useful physical information relating to the 

pure 2D spectral patterns. There are j essential matrices of meaningful information in the q 

right singular matrices in nmq
TV ×× (where s<j<q) and the remaining right singular matrices 

are mainly randomly distributed noise. The situation can be expressed by Eq. 5.7 where 

nmqA ××

~  is now the expectation for the set of observations (Eq. 5.8). With q-j matrices of 

discarded noise, the potential exists for spectral reconstruction with outstanding signal to 

noise enhancement.  

nmqA ××

~  ← jqU × jj×Σ nmj
TV ××                                          (5.7) 

   nmqA ××

~  ≈ nmqA ××                                                 (5.8) 

 It was demonstrated in 1D spectroscopic data, that circa one thousand spectra can 

be collected during a reaction and this can be reduced to around 50 right singular vectors 

which contain most information in the reaction system (Li et al., 2002, 2003). The data 

reduction greatly facilitates the consequent data analysis procedures. 

 

5.5. The Formulation of 2D Entropy Minimization  

 The ultimate objective of 2D Entropy Minimization is to obtain accurate estimates 

of the pure component absorptivities. This is achieved by transforming the abstract TV  

information into pure component absorptivity approximations, nma ×ˆ , one estimate at a 

time. The computation can be performed on either the right singular vectors in )( nmj
TV ×× or 

the right singular matrices in the 3-way array nmj
TV ×× . This computational issue requires 

two different formulations for entropy resulting in two different types of objective 

functions. Also it is important to note that in the real data set, the real pure component 
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absorptivities vary somewhat from measurement to measurement, so the approximations 

of pure component, nma ×ˆ ,is a mean of the observations in some sense. 

 

5.5.1. Vector-Wise 2D Entropy Minimization 

 For vector-wise 2D-Entropy Minimization algorithm, all the 2D matrix data are re-

ordered by concatenation/unfolding and represented as vectors. The resultant right 

singular vectors in )( nmj
TV ×× are used for entropy minimization operation. Thus the 2D 

pure component recovery is associated with a transformation process from abstract right 

singular vectors, )( nmj
TV ××  by 1D entropy minimization algorithm, into pure component 

spectral estimates, â  (vectors) with proper linear combination of the basis vectors. Final 

2D pure component spectra should be obtained from re-folding the vector to 2-

dimensional matrix.    

nma ×ˆ  ←  )(1ˆ nma ××  ← jt ×1 )( nmj
TV ××                                        (5.9) 

 

5.5.2. Matrix-Wise 2D Entropy Minimization 

 The j physically meaningful right singular matrices (from 3-way array nmj
TV ×× ) 

from Eq. 5.6 are used for entropy minimization operation. Thus the 2D pure component 

recovery is associated with a transformation process from abstract right singular matrices. 

And the proper transformation directly results in the 2D estimate, nma ×ˆ .  

                          nma ×ˆ  =   nma ××1ˆ  ←   jt ×1 nmj
TV ××                                       (5.10) 

Some information is in a sense “lost” during unfolding, since the “connectivity or 

correlation” of the adjacent data elements is erased. Also the unfolding induces period 
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discontinuities in data which is a small nuisance during entropy evaluation. Therefore, 

matrix-wise 2D- Entropy Minimization will prove to be the preferred computational route. 

The higher quality spectral estimates generally result since the spatial correlation is not 

affected when they are treated as a whole 2D plane. 

 The optimal determination of the j unknowns in jt ×1  is the computationally 

intensive task. There are two parts involved in solving this problem. The first issue is the 

repeated evaluation of the entropy of the term jt ×1 )( nmj
TV ××  or jt ×1 nmj

TV ×× . The second 

issue is the search for the final value of jt ×1 such that the global entropy minimum is 

obtained.                                                

Consistent with the original formulation of Shannon entropy, a definition for the 

entropy H used in 2D Entropy Minimization can take the form of Eq. 5.11, where the 

probability distribution p, consistent with Sasaki et al.’s original suggestion, is replaced by 

Eq. 5.12.                           

                             ∑∑ ∑∑−=−=
1 2
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where the superscript m denotes the degree of spectral differentiation, it can be first 

derivative, second derivative, or fourth derivative. When m is equal to 1 and the 
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denominator is dropped as it is just a normalizing factor, Eq. 5.12 will be reduced 

to
1

21

1

ˆ
dv
ad

p vv
v = . Substituting the latter expression in Eq. 5.13,  

21υνp  will turn into the 

following expression which captures the simultaneous curvature in two directions.  

21

2

21 vv
ap
∂∂

∂
=υν                                                        (5.14) 

 

5.5.3. Objective Function Formulation and Optimization 

  The resolution of a 2D pure component spectrum can be achieved by solving the 

following minimization problem.  

                                         PHF D
obj += 2min                                                      (5.15) 

Specifically, the objective function Fobj   includes the entropy term DH 2 along with 

a penalty function P (infra vida). The transformation of right singular matrices into an 

estimate of a pure spectrum is achieved by Eq. 5.10 but governed by the global optimizer. 

The global minimization of the objective function is, in principle, achievable using 

simulated annealing (Corana et al., 1987) or a genetic algorithm (Goldberg, 1989) which 

are both stochastic search techniques. 

For the first pure spectral solution, in the objective function given by Eq. 5.15, P is 

set to zero, and the global entropy minimum is sought without P penalty. In each 

subsequent search, the penalty function is formulated with the constraints of the P penalty. 

The minimization solution is admissible only when this subsequent result is dissimilar to 

all the previous results.  

The scheme can be realized by adding a dissimilarity penalty function, P, to the 

objective function. For example, an admissible function is shown in Eq. 5.16 where 2corr  
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denotes the 2D correlation coefficient between any two 2D arrays X and Y (Hogg and 

Tanis, 1983). The calculation can be implemented with MATLAB function “corr2”. 

                                           )}1(max{ 21 −×= −corr
b

eaP                                               (5.16) 

 

Figure 5.2. The sigmoid penalty function defined by the 2D correlation coefficient 
between two matrices.  

 

If matrices X and Y are identical, then, the resulting value of 2corr  will be unity. 

In practice, X and Y are the estimated 2D result during the current optimization and a 

previously determined pure spectrum respectively. For more similar matrices X and Y, the 

bigger the value of 2corr  and thus the argument on the right hand side of Eq. 5.16. By 

taking the maximum of the set of values of the 2D correlation coefficients between all 
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combinations of X and Y, the penalty function prevents any identical reconstruction from 

occurring in subsequent optimizations.  

As a smooth and continuous thresholding function, the sigmoid function is often 

used in artificial neural networks, where it is designed to introduce nonlinearity in the 

model and used as a transfer function. As shown in Figure 5.2, the function 2corr  adopted 

here is a modified sigmoid function which rapidly approaches zero when X and Y become 

dissimilar and increase quickly when they are alike. This prevents similar 2D patterns 

from being reconstructed sequentially.  

 

5.5.4. 2D Band Target Entropy Minimization (2D-BTEM) 

 In a similar spirit, the combination of band-targeting technique with 2D Entropy 

Minimization was adopted to achieve the recovery of one spectral estimate at a time, but 

with the targeted feature retained in the reconstruction. 2D-BTEM would have appropriate 

applications in the spectral reconstruction area where the targeted feature is of particular 

interest to the analyst.  

 As a first step, the data observations are decomposed into the basis matrices by 

SVD using the same procedure stated in section 5.4. In the second step, a careful 

identification of significant spectral features is required. Through a close examination of 

the series of right singular matrices, the coordinates of interesting spectral features are 

recorded. Finally, in the last step, by targeting the selected spectral feature, a 2D pure 

spectral pattern is obtained with the feature retained. 

The objective function adopted here is similar to Eq. 5.15. But a new P penalty is 

used, which constrains the band-targeting approach to a specific 2D coordinate range.  

Analogically, other penalty functions, for example, to ensure non-negativities of pure 
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component spectra and concentration profiles, are allowed if necessary. In the 2D-BTEM 

algorithm, the use of various penalties in the objective function is often favored if the 

additional information is available. For example, if the approximation of concentration 

trajectories is known, so the unimodality or convexity constraint can be imposed. 

 

5.5.5. Variation of the Objective Function 

 The repeated evaluation of the logarithm term, “ln” in Eq. 5.11 requires significant 

computational time. Previously the expression for H which omits the ln term, had been 

tested and the functions H ′  often yield good quality pure component spectra. In this new 

formulated objective function, the original xx ln  format entropy term does not exist and it 

is replaced by x. Even though the new form of the entropy has changed, the principle 

behind the new entropy function is still consistent with the original intention of searching 

for the simplest patterns in the system. Accordingly, for vector-wise 2D Entropy 

Minimization or matrix-wise 2D Entropy Minimization, Equation 5.17 and 5.18 can be 

used respectively.  

                            ∑= pH '                                                        (5.17) 

                           ∑∑=
m n

mnpH '                                                   (5.18) 

 

        Further, if p  is replaced with the intensity of the spectrum, then the integral 

representation of absorbance data in 2 dimensions will be a volume (the volume of the 2D 

spectrum). The volume minimization often yields good quality pure component spectra in 

practice. 
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5.6. Discussion 

  1.  The objective of the proposed methodology is to solve the 2D spectroscopic 

inverse problem by using an entropy minimization algorithm. This approach includes 

several rather simple and straightforward steps, namely, (1) defining an appropriate 

entropy type objective function, (2) defining an appropriate measure to hinder replicate 2D 

spectrum, and (3) performing a one-result-at-a-time search. 

 2. The entropy type function and objective function chosen in the present study, 

obviously, aren't the only choices available. Indeed, there are a multitude of other 

literature and references that are very important in allowing us to understand entropy and 

entropy type functions (Frieden, 1975). A number of entropy functions relate to the 

statistical calculation involving histograms to evaluate the probability value. However, 

this approach normally does not take into consideration the spatial correlation between the 

elements in a 2D plane. The spatial correlation implies smoothness and continuity of the 

spectra in the 2D plane, which is composed of patterns with physical meaning rather that 

the random variables. The simple derivative function used in the present entropy type 

function, makes use of nearest neighbor pixel information. By minimizing the element-to-

element variations (derivative or local curvature), one can obtain the simplest pure 2D 

pattern by minimizing the randomness between element values. It is also worthy to note 

that the objective function is not limited to the sum of the calculation of the entropy along 

the two canonical and orthogonal directions (x, y). It is also possible to evaluate entropy 

along diagonal elements in 2D patterns and this may be useful for some specific problems.  

 3. Instead of trying to solve for all the 2D patterns at once, 2D-BTEM takes a one-

at-a-time approach represented by Eq 5.9 and 5.10.  The concept of a one-result-at-a-time 

global search greatly simplifies a number of issues. First numerically, a single spectrum 
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reconstruction is simpler than an N-objective simultaneous reconstruction. Secondly, 

constraints to prevent redundant reconstructions in sequential searches are easier to 

implement than all constraints simultaneously in an N-objective rotation. Third, the user 

does not need to specify, a priori, the dimension or degrees of freedom in the search.  

 4. The final result involves the expectation for each spectrum nma ×
ˆ , with further 

corresponding expectation for concentration sqC ×
ˆ  given by Eq. 5.19.  The implementation 

of entropy minimization in 2D data analysis would help to achieve the relative 

concentration profiles which are fairly important in the chemical reaction studies.  

    ( )+

××××× = )()( ˆˆ
nmsnmqsq aAC     (5.19) 

 
5.7.   2D Testing of Hypothetical Factors by Target Transformation 

 Both SVD and PCA are characterized by decomposing the data matrix into bases 

that represent the data in another space. In practice, one individual (hypothetical) spectrum 

can be tested to see if it lies in the subspace spanned by the chosen abstract vectors 

resulted from the factorization of one data set. The essential purpose of target 

transformation is to form the projection of the target vector onto the subspace spanned by 

right singular vectors, and then compute the predicted vector using this projection. The 

identification process involves using a least-square procedure to minimize the deviation 

between the hypothetical vector and the predicted result. If the hypothetical vector and the 

calculated result are not significantly different, the hypothetical vector should be regarded 

as a real factor, otherwise, it would not be a real factor. Target transformation would help 

to serve as a means of identifying the presence of a hypothetical vector, normally a 

suspected pure component spectrum. The hypothetical spectrum can be either the real 
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spectrum from an experimental result, a spectrum in a library, or the theoretical result 

from a quantum chemistry calculation.  

The inherent mathematical relation between abstract basis and real chemical 

solutions is revealed by target transformation. From a spectral reconstruction viewpoint, 

the target transformation technique is concerned with the connection between the abstract 

spectral bases and physically meaningful or experimentally obtained pure component 

spectra.   

In section 5.7.1 that follows a brief review of 1D Target Transformation from the 

literature. Then in sections 5.7.2, 2D and 3D Target Transformations are developed. As far 

as I am aware, the results of sections of 5.7.2 are new.  

 

5.7.1.   1D Target Transformation  

Developed during the 1960s, the target transformation technique attempts to find 

linear transformations or oblique rotations of the set of basis vectors to test physical 

models (Malinowski, 1991). In addition to target transformation, there are many kinds of 

transformation exist, such as quartimin, quartimax, oblimax, varimax, etc. (Rummel, 1970, 

Richman, 1986). But target transformation is used to rotate the basis vectors to produce 

the spectrum that best fits the test spectrum.  

Assume that we have a new reaction experiment. After SVD, the spectra from the 

new experiment give a set of right singular vectors TV . Linear combinations of these right 

singular vectors can be made using a transformation vector t.  Let us call this new 

estimated spectrum â .  Schematically, this can be shown as Figure 5.3. 
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Figure 5.3. A scheme representing a linear combination of right singular vectors which 
gives an estimated spectrum â .  

 

If â  is an estimate, then the linear algebraic expression is given by Eq. 5.21.  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

),(

),2(
),1(

)1,(

)1,2(
)1,1(

)(

)2(
)1(

)(ˆ

)2(ˆ
)1(ˆ

nsV

nV
nV

sV

V
V

st

t
t

na

a
a

T

T

T

T

T

TTT

MMM
                         (5.21) 

Now let us introduce a spectrum a  from a library which we are interested in testing. The 

difference a∆  between the test spectrum a and the estimated vector â can be written as: 
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The difference between the test spectrum and an estimate should be minimized. This 

requires the differential equation (Eq. 5.23). 
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    0)( 2

=
∆
dt
ad

                                                           (5.23) 

After some mathematical operations, the transformation matrix t can be solved exactly as 

(5.24) and the spectral estimate â  is given by (5.25).   

VVVat T 1)( −=                                                        (5.24) 

TVta =ˆ                                                                 (5.25) 

Finally, one compares the similarity between the test spectrum a  and the best 

estimate â . This is easily done using e.g. the visual inspection, an inner product, etc. If the 

estimate â is in close agreement with the test spectrum a then there is strong evidence that 

that species exists in the reaction system.  

 

5.7.2.   The Extension to 2D and Higher Dimensions 

 

Figure 5.4. A scheme representing a linear combination of right singular matrices which 
gives an estimated spectrum.  

 

 2D target transformation can also be proposed since the 2D decomposition exists. 

By this 2D projection, the predicted matrix can be computed and compared with the 
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original 2D spectrum/pattern. 2D target transformation provides an efficient means of 

identifying possible components contained inside a series of mixture samples. There is 

also a practical need to check whether one individual 2D spectrum lies in the subspace 

spanned by the chosen abstract singular matrices (or observations).   

After unfolding each 2-dimensional matrix with m rows and n columns into a 

vector (with nm×  elements), we can follow the previous procedure easily. When all 2-

dimensional matrices are unfolded, a 2-way array is obtained. Sequentially, the TV vectors 

are calculated by SVD.   

The test spectrum A is also unfolded into a vector a . Sequentially, similar 

procedures as stated in section 5.7.1 can be used to obtain a estimated vector a~  by a linear 

combination of the TV vectors which is the best approximation to the vector a  (obtained 

from unfolding the test spectrum: matrix A  )  (Eq.  5.26). Further, the predicted vector a~  

can be unfolded back to the predicted matrix Â with m rows and n columns. Finally, one 

can compare the similarity between the test spectrum A  and predicted Â  and decide if the 

test spectrum is present in the test data set or not. 

T
nmqnm Vta )()(1

~
×××× =                                                       (5.26) 

Further we can extend this method into higher dimensions. For example, in three 

dimensions, all 3D tensors can be unfolded into concatenated vectors in a systematic way. 

Right singular arrays are obtained afterward. Similar procedures in section 5.7.1 are 

adopted to predict a estimated vector a , which is regarded as the best approximation to 

the vector a  (obtained from unfolding the test spectrum: tensor A  )(Eq. 5.27). Further, 

the estimated vector a  can be unfolded back to the tensor Â with m rows, n columns and 

o slices. The illustration is shown in Figure 5.5.  
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T
onmqonm Vta )()(1 ×××××× =                                                       (5.27) 

Finally, one can compare the similarity between the test spectrum A  and predicted 

Â  and decide if the test spectrum is present in the test data set or not. 

 

Figure 5.5. A scheme representing a linear combination of right singular array which gives 
an estimated three-way tensor. 

 

 Although quite a few references can be found to 1D target transformation in the 

literature, the concepts of 2D and 3D target transformations, and their implementation 

appear to be new.  

 

5.8. Summary  

 In this chapter, the extension of 1D entropy minimization based curve resolution 

algorithm is presented.  The details of system representation of the 2D spectroscopic data 

set, the singular value decomposition and model reduction of 2D spectroscopic data are 

illustrated. The procedure about objective function formulation and entropy type function 
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selection are brought into discussion. 2D-BTEM is a combination of band-targeting with 

Entropy Minimization methodology, both in 2D aspects. The band-targeting makes sure 

that each feature is retained in the final reconstruction.  

Also, in this chapter, the concept of 1D target transformation is extended to 2D and 

higher dimensional domains. Target transformation can be used as a tool to test whether a 

hypothetical spectrum can be regarded as a real spectrum which is embedded inside the 

data set. The extension makes the technique available for higher dimensional data analysis.  
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Chapter 6 
 

2D Entropy Minimization Algorithm —Application to Simulated Data 
and Image Signal Processing 

 
 

 In this chapter, the 2D Entropy Minimization algorithm and 2D Band-Target 

Entropy Minimization developed in chapter 5 are applied to simulated data as well as 

image data. This chapter is divided into three major sections. The first section describes 

the separation of a set of matrix mixture data generated from three texturally different 

matrices. Further, the second section presents the application of Entropy Minimization 

algorithm to simulated 2D mixture spectra. In the third section, image reconstruction 

analysis is also explored; image mixture separation is demonstrated in detail.   

 The first problem encountered in 2D data is the visualization of matrix-formatted 

data, in other words, the way to represent such a spectrum on paper. Generally speaking, 

there are two major techniques used to visualize the matrix, namely, the mesh routine and 

contours routine. Both are implemented as the build-in functions in MATLAB. The 

function “mesh”, draws a wire frame mesh with colour, and colour is defined by surface 

height. Another function “contour”, in the same way as a topographical map, makes a plot 

in which the intensity of the peaks is represented by contour lines drawn at proper 

intervals. It is easier for a user to find the feature, if we plot the matrix in a 3D view with 

“mesh” function. On the other hand, if there are a multitude of features in the plot, the 

smaller ones behind the front peaks may not be seen clearly, the contour plot would avoid 

this problem with a bird's eye view.  
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6.1. The Use of Entropy Minimization for Matrix Mixture Separation 

 In this section, a generalize source separation problem is formulated. A set of 

mixtures originating from three texturally different matrices were simulated in order to 

explore and test the performance of the 2D Entropy Minimization method.  

 

6.1.1. Data Simulation  

 The numerical experiment began with the simulation data of matrix mixtures. The 

first matrix was a sparse matrix with only several entries that were non-zero (Sparse 

Matrix). The positions and magnitudes were arbitrarily chosen on the interval [0 1]. The 

second one (Tri-diagonal Matrix) was a banded matrix whose entries were all zeros except 

the ones on the diagonal and adjacent. The positions were fixed by the fact that it must 

have a tri-diagonal structure, and the magnitudes were chosen arbitrarily. The third one 

(Random Matrix) was a random matrix produced with the MATLAB function “rand” iwith 

elements between [0,100]. These three original pure matrices are shown in Figure 6.1. The 

values of the matrix-wise entropies for the original matrices were 14.826(Random Matrix), 

12.411 (Tri-diagonal Matrix) and 2.079 (Sparse Matrix), respectively.  

A random mixing matrix with non-negative entries was generated. This mixing 

matrix is shown in Eq. 6.1 and the mixture matrices are shown in Figure 6.2 with the mesh 

plot. Note that these mixtures are very similar, because of the large magnitudes involved 

in the original Random Matrix.  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0.9334    0.7446    0.9601 
0.4399    0.4120    0.3200 
0.2679    0.7266    0.6435 

A                                  (6.1) 

                                                 
i If not specific further, the simulated non-negative random matrix are all produced with  MATLAB function 
“rand”. 
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Figure 6.1. The mesh plot of pure matrices: (a) Random Matrix, (b) Tri-diagonal Matrix 
and (c) Sparse Matrix. 

 

 

Figure 6.2. The mesh plot of the mixture matrices (a) ,(b) and (c). 
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6.1.2. Result   

The three mixture matrices were analyzed with the 2D Entropy Minimization 

algorithm. First, all these three matrices were decomposed into right singular matrices 

using SVD procedure described in chapter 5, section 5.4.2. Secondly, the right singular 

matrices were transformed into the pure source matrices with 2D Entropy Minimization 

algorithm in a systematic way. Thirdly, 2D-BTEM also was applied to these right singular 

matrices to obtain the pure matrices. 

 

6.1.2.1. Result of 2D Entropy Minimization 

The mesh plots of right singular matrices are shown in Figure 6.3. The set of right 

singular vectors were then subjected to a global search for minimum entropy. This first 

estimated matrix result was the “Sparse Matrix”. After that, the second result, which 

should not be identical with the first one, will be sought using the search strategy adopted 

in the 2D Entropy Minimization with the dissimilarity penalty. In the present adaptation to 

matrix formatted data, and in order to take advantage of the natural 2D structure, we 

sequentially take the first derivative in two directions (Eq. 5.14). In other words, the 

entropy like function H used in matrix-wise 2D entropy minimization estimates the 

smoothness of the 2D data in 2 dimensions.       

The mesh plots of resulting set of 3 recovered matrices via 2D Entropy 

Minimization with dissimilarity constraints, one with a global entropy minimum and two 

others with local entropy minima are shown in Figure 6.4. The values of the matrix-wise 

entropies for these recovered matrices were 8.331 (Sparse Matrix), 12.411 (Tri-diagonal 

Matrix) and 14.285 (Random Matrix), respectively. 
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Figure 6.3. The mesh plot of 1st   (a), 2nd (b) and 3rd (c) right singular matrices obtained 
from the mixture matrices via SVD decomposition procedure. 

 

 

Figure 6.4. The mesh plot of recovered matrices (a), (b) and (c). 
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 In order to examine the quality of the reconstruction, the recovered matrices were 

compared with the original matrices by calculations of the 2D correlation coefficient 

(corr2). The result is shown in Table 6.1.                                                    

Table 6.1 Comparisons between the recovered results and references 

Simulated matrices Entropy value of Original matrix Entropy value of recovered result corr2 

Random Matrix 14.826 14.285 1.00 

Tri-diagonal Matrix 12.411 12.411 1.00 

Sparse Matrix 2.079 8.331 0.986

 

 There is a noticeable difference between the entropy of the original Sparse Matrix 

(2.0794) and the recovered one (8.3305). The computation error can be shown to arise 

from small non-zeros entries. In the original Sparse Matrix, all of the entries are zeros 

except three points, with the definition of entropy of matrix, the entropy is extremely low. 

But the result of computation inevitably produces very small values instead of zero entries, 

which will result in a large accumulation of entropy. A numerical experiment was carried 

out to calculate the entropy of the projected result from right singular matrices with the 

pure Sparse Matrix as the hypothetical matrix by target transformation technique (chapter 

5, section 5.7). The matrix-wise entropy of the final projected result is 8.7258 with 

summation of fitting errors, 2.519888e-027. A similar calculation of the projected result 

from original mixture matrices with the pure Sparse Matrix as the test matrix produces the 

result with entropy of 8.6872 and error 5.825685e-019. There seems to be some sort of 

sensitivity issues involved. Although very accurate entries are obtained for the individual 

elements of the Sparse Matrix, the entropies remain somewhat different.    
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6.1.2.2. Result of 2D Band-Target Entropy Minimization 

One of the purposes of the simulation of three matrices with discernably different 

features is to test the possibility of utilizing these features to facilitate the recovery. As 

mentioned before, 2D-BTEM is designed to recover patterns with the selected features 

retained in the result.  

From inspection of the right singular matrices, it is apparent that the 2nd right 

singular matrix possesses a unique and prominent feature with a diagonal ridge cross the 

plane. Actually it is quite similar to the first pure matrix component in Figure 6.1, even 

though we don’t have any knowledge about this before the recovery is accomplished.  We 

can easily select this feature, and the first estimated result can be obtained by targeting the 

region with [1 to 3; 1 to 3] or [6 to 8; 8 to 10]ii. This result is shown Figure 6.5a.  It is not 

so obvious to find a practical second feature in the series of right singular matrices (This is 

not often the case; explanation follows in discussion part). A small trick is needed to pick 

out another feature of interest. The third right singular matrix (c) in Figure 6.3 is 

subtracted from the first recovered result (Tri-diagonal Matrix). The latent pattern appears 

when the proper subtraction is performed, at the same time; the feature of Tri-diagonal 

Matrix fades.  A trial and error method can be used here.  Figure 6.5b shows the result of 

subtraction (for better view, the figure was flip upside down by plotting its negative 

transformation as shown in Figure 6.5c), it is clear that another interesting feature with a 

pyramid at the left corner is found. Further band-targeting is now possible. The new 

estimate with a feature located around [7 to 9; 1 to 3] was obtained via 2D-BTEM and 

shown in Figure 6.5d.  

                                                 
ii Consistent with the contour plot of the matrix in MATLAB, in this thesis, the format of  a targeted region 
is represented as [y-coordinate range; x-coordinate range]  
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Obviously without any feature, the Random Matrix can not be targeted out via 2D-

BTEM at present. 

 

Figure 6.5. The mesh plots  of the first 2D-BTEM result (a); the latent pattern found by 
subtracting the third right singular matrix by Tri-diagonal Matrix (b); matrix b 
with sign change (c); the second estimate obtained via 2D-BTEM (d).   

 

6.1.3. Discussion 

Mixing matrices In order to compare the quality of the reconstructions, the original and 

recovered final mixing matrices are compared. A mixing matrix can be recovered by least-

square fit to the original mixture data with the estimated results from 2D Entropy 

Minimization. The final estimated mixing matrix is shown in Eq. 6.2. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

94.090   17.457   3.4671- 
31.363   5.9814   1.1042- 
63.062   11.926   2.4668- 

estimatedA                                      (6.2) 
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For easy visual comparison, each column was normalization by making the second 

row unity. One issue that should be pointed out is that the order of the estimated result 

used in the calculation is not same as the corresponding ones in mixing so rows have to be 

shuffled. So the final estimated mixture matrix is given in Eq. 6.3 and rescaled original 

mixing matrix is given in Eq. 6.4. 

                                        
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3.1399   2.9186  3.0000 
1.0000   1.0000   1.0000 
2.2341   1.9938   2.0107 

_ shiftedestA                                   (6.3) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

2.1217  1.8074  3.0000 
1.0000  1.0000  1.0000 
0.6091  1.7639  2.0107 

mixA                                    (6.4) 

 It is clear that the first column of the original and the calculated mixing matrices 

are very close. Also the middle columns of both matrices are similar, but the last column 

differs. The reason lies in the extremely low contribution of Sparse Matrix to the mixture 

(corresponding to the third column) compared to Random Matrix (corresponding to the 

first column). The maximum value of the entries in Sparse Matrix is 0.4 and most of the 

entries are zeros while the maximum value of Random Matrix is 99 and all entries are 

non-zero. The contribution of Random Matrix component (average value 52.8) is about 

7000 times than the Sparse Matrix (average value 0.008) that would probably make the 

least-square regression to fail to predict precisely the correct weighting due to the ill-

conditioning.  

 Also this is the main reason why it is difficult to find out the second feature in the 

series of right singular matrices. 
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2D BTEM and 2D entropy Minimization Both of these two algorithms were tested in this 

example. It is clear in the example, that the 2D entropy Minimization can be used for 

matrix separation. Each result is extracted one by one and at each step, previous results are 

used to prevent the trivial result from repeating. Also using 2D-BTEM, we can extract the 

specific results for feature that can be detected and targeted in the right singular matrices 

one-at-one-time. 

 A little consideration has been given to applied problems that can be represented 

by different weightings of matrices and which might benefit from inverse solutions of this 

type. There is one area where the present development might have an application. In some 

areas of mathematical physics, there are problems which are represented by operators or 

sets of operators (i.e., in optics, scattering theory etc). Perhaps there are problems where 

one obtains a complex observation which arises from a few sources simultaneously. In 

such problems, if one could vary the contributions, it might be possible to recover the 

operators that are giving rise to the observations.   

 

6.2. The Use of Entropy Minimization for the Solution of Simulated Five-Component 

Spectral Mixture Data  

 

 As shown in the section 6.1, the mixture matrices separation was approached by 

2D Entropy Minimization method which included a sparse matrix, tri-diagonal matrix and 

a random structure matrix. In this section, simulations of absorptive spectra were 

performed in order to illustrating and testing the performance of the entropy minimization 

method. 
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6.2.1. Simulation    

6.2.1.1. Numerical Simulation with 2D Pearson VII Model  

  A simple 5-component system was simulated. It is known that several methods 

have been devised so far to accomplish the peak modeling by means of Gaussian, 

Lorentzian, Voigt, Pearson VII and other models. Pearson VII is one of useful band shape 

functions. As shown in Eq. 6.5,  
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where v denotes wavenumber; 0v  denotes the peak center position; M  denotes the 

Pearson width parameter and K  denotes the amplitude. When M approaches 1, Pearson 

VII resembles a Lorentzian model and it would become Gaussian model when M 

approaches infinity.  

 Obviously, Pearson VII model is more flexible than the Guassian and Lorentzian 

model. For 2-D Pearson VII spectra modeling, the individual 2D peak can be formulated 

as: 
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    (6.6) 

A 2D spectrum can be modeled by superimposing several 2D peaks located in 

different positions. Especially if Mx equal to My, Wx equal to Wy, it would be a symmetric 

peak with exact same shape in x direction and y direction. 
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6.2.1.2. Numerical Simulation of 2D Spectra  

In this study, five 2D spectra, each with size of 100 by 100, were simulated 

according Eq. 6.6.  The positions and parameters were arbitrarily chosen.  Fifteen mixture 

spectra were simulated from these five initial “pure” spectra with a random mixing matrix 

(15 by 5) with “rand” function. Also fifteen sets of noise matrices (normally distributed 

random numbers with mean zero, variance 9 and standard deviation 3, simulated with 

MATLAB function “randn”) with the same array size were added in order to mimic the 

real world data.  

As shown in Figure 6.6, the first five are the pure component spectra without noise. 

A close examination of one of the 15 mixture spectra with added noise (shown in the right 

bottom of Figure 6.6) reveals circa 20 peaks crowding one spectrum with heavy 

overlapping. 

 Note that a new representation method is used – one that resembles NMR. Each 

figure is a composite which has 3 sub-figures, where the large sub-figure is the 2D contour 

map, the left sub-figure is the 1D projection along left-right direction, and the bottom sub-

figure is the projection along up-down direction.  
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Figure 6.6. The contour plot of the five pure simulated 2D spectra (component 1-5) and 
one mixture spectrum with added noise (bottom-right).  
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6.2.2. Result and Discussion 

 Fifteen right singular matrices TV 10010015 ×× were obtained with the SVD procedure 

developed in this thesis. The resulting right singular matrices are shown in Figure 6.7. 

Physically meaningful spectral features were observed in only the first five right singular 

matrices. The sixth matrix is essentially featureless, which holds true for the matrices 

seven-fifteen as well.  The variances of the sixth to 15th right singular matrix were 

calculated and they are 9.5450, 9.4115, 9.2021, 9.0262, 9.0130, 8.9045, 8.7248, 8.6423, 

8.6034 and 8.3909. Their average value of the variance (8.9464) is very close to variance 

of the noise (~9.0) which was added during simulation procedure. It can be interpreted 

that the first five right singular matrices already can explain all the “physical” variance 

(except the noise) in the fifteen sets of data. Additionally, the original fifteen spectra are 

reduced into five right singular matrices which contain almost all useful information. The 

remaining ten are nothing but noise.  Therefore it is reasonable to discard all the other ten 

right singular matrices.  

 From visual inspection of the right singular matrices, several spectral features are 

identified and marked with arrows in Figure 6.7.  
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Figure 6.7. The resultant right singular matrices(1st to 6th). Several spectral features are 
marked with arrows. Note that yet another representation is now introduced 
where the left and bottom 1D projection possess two lines for positive and 
negative contributions.  
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 2D-BTEM was performed using TV 1001005 ××  by targeting observable features in the 

right singular matrices one at one time.   

 Two types of objective functions were implemented. In the first objective function, 

only a volume term is used, but in second objective function, the derivate cost is added. 

Reconstruction results are close, and the former results are presented in Figure 6.8 with 

individually targeted region 1 ([10 to 30; 25 to 35]), region 2 ([10 to 30; 60 to 70]) , region  

3 ([50 to 60; 60 to 70]), region 4 ([62 to 85; 30 to 40]), region 5 ([70 to 90; 80 to 90]) and 

region 6 ([90 to 100; 70 to 75]). It was found that the result from targeting region 4 was 

nearly the same as targeting region 2 since these two targeted features belong to the same 

pattern (they are correlated). Exhaustive searches proved that only five separable and 

irreducible 2D spectral patterns are present. 

  

   



                                                                                                                                 Chapter 6                        

 140

 
Figure 6.8. The resolved spectra via 2D-BTEM by targeting the feature peaks shown in 

right singular matrices 
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 The recovered pure 2D spectra can be used to solve the concentration profile. For 

the purpose of comparing the quality of the reconstructions, the relative concentrations 

were obtained with the 2D-BTEM results and compared with the original mixing matrix.  

As shown in Figure 6.9, the normalized concentration profiles of both the real and 

estimated results are very close. This is a solid evidence for the high quality performance 

of the recovery method. 

2 4 6 8 10 12 14

(a)

(b)

(c)

(d)

(e)

 

Figure 6.9. L2 normed concentration of five components (a, b, c, d and e corresponding 
to the reference components 1-5) associated with the 15 simulated mixtures. 
Circles: original mixing loading. Solid line: estimated loading. 
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6.2.3. Summary  

 It is shown in this simulated example that entropy based spectral reconstruction 

method can be implemented to analyze the linear mixing multi-component mixture 

systems. This encouraged the application to real systems. 

 

6.3. The Application of Entropy Minimization for Blind Source Separation Problems 

in Image Analysis 

 

6.3.1. Introduction 

 Among the various types of 2D data arrays, images represent the most typical 2D 

data arrays, and images are now commonplace in a number of diverse fields such as 

biological research, medical diagnosis, metallurgy, remote sensing etc. The problem of 

exacting the sources in the blind system represents a particularly difficult type of inverse 

problem(Sabatier, 1978), where the only information is the mixture patterns. In the general 

sense, and also in the most challenging form, a priori information concerning either the 

individual source patterns or the number of sources giving rise to the observations are 

unavailable. A variety of approaches have been proposed to solve the associated blind 

source separation problem in the electrical engineering and image processing literature. 

These include high order statistics (Cardoso, 1993), mutual information maximization 

approach (Infomax) (Bell and Sejnowski, 1995), and nongaussianity approach (FastICA) 

(Hyvärinen, 1999 ), etc. It should be noted that a lot of work has been done in this area.  

 As already apparent, entropy can be used as a measure of information. It has been 

used somewhat in image processing, but in a very different way than this thesis uses it. 

Therefore, as an important informatics character, entropy is closely associated with pattern 
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recognition. In this section, for the first time, this 2D entropy minimization algorithm is 

applied to three different types of image blind source separation problems.  The first case 

involves 3 texturally dissimilar black and white images (photographs). The second 

involves 3 geometrically similar color images (photographs). The third case involves 

image enhancement for an underdetermined problem. In the first 2 cases, outstanding 

blind source recovery is achieved and in the last case significant image enhancement is 

observed. These results appeared in Pattern Recognition (Guo and Garland, 2006).  A 

reprint can be found in Appendix E. 

 

6.3.2. Results  

6.3.2.1. Analysis of Texturally Different Images  

Three texturally dissimilar images with size of 128×128 pixels, consisting of a 

building, a fabric and a tile, were downloaded from the MIT VisTex public databaseiii. The 

present reference images have been used by other researchers as a test case for the 

development of other blind source separation approaches (Hashimoto, 2002). Although 

the recovered images are reasonably good, the final recovered images possess quite a few 

visible inconsistencies, and an error rate of 6.2% is stated.  One purpose of this study is to 

compare the performance of Entropy minimization with other methods. 

These color images are stored as a sequence of truecolor RGB triplets, i.e.  

separate red, green and blue layers (in other words, there are 3 matrices associated with 

each color image). Without loss of generality, only the “Red” layer was used as the pure 

images in this study. Three images are displayed in black and white mode in the top row 

of Figure 6.10. Using the same entropy function described in Section 6.1.2.1, the 
                                                 
iii available from http://vismod.media.mit.edu/pub/VisTex/VisTex.tar.gz 
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calculated values of the matrix-wise entropies for these pure images were 533.27 

(Building), 570.50 (Fabric) and 531.59 (Tile).  

 

 

 

 
 
 

Figure 6.10.  Top row: original images from MIT database, the “Red” lay images were 
used as the pure images and displayed in black and white mode. Middle 
row: mixture images.  Bottom row: recovered images. 

 

A random mixing matrix with non-negative entries was generated and is shown in 

Eq. 6.7.   

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0.2308    0.6395    0.6186  
0.3240    0.8876    0.8207  
0.5479    0.7200    0.3202  

A                                  (6.7) 
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The matrix-wise entropies for the mixture images shown in middle row of Figure 

6.10 were 569.3511, 570.3221 and 570.2690, respectively. According to the 2D entropy 

minimization algorithm, SVD was first applied to the unfolded mixture images (3 × 

(128×128)) and right singular matrices were obtained. Three physically meaningful right 

singular matrices were used for matrix-wise 2D- Entropy Minimization. The first 

recovered result was the building image. Further non-similar images were sought using the 

search approach outlined in section 5.5.3. The penalty function adopted here was a 

modified sigmoid function (Eq. 5.16) with parameters a=1e5 and b=2e-4.  

The resulting set of 3 recovered images is shown in the bottom row of Figure 6.10. 

The values of the matrix-wise entropies for these images were 531.55 (Tile), 533.27 

(Building) and 570.52 (Fabric), respectively.  

In Figure 6.10, it is obvious that the recovered images are very similar to the 

original source images in the top row. A least-square fit was performed to project the 

recovered images back onto the mixture data and the resulting mixing matrix was obtained. 

Further, comparison of the quality of the reconstructions is achieved by column 

permutations to re-order the spectra, and column re-normalization. The original and 

calculated mixing matrices are given in Eq. 6.8 and 6.9 and they are very similar.     

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0.4213   0.7205  0.7537
0.5912  1.0000   1.0000
1.0000  0.8111   0.3901

originalA                                  (6.8) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0.4250   0.7205  0.7524 
0.5963   1.0000   1.0000 
1.0000  0.8129   0.4017 

calculatedA                                 (6.9) 
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6.3.2.2. Analysis of Geometrically Similar Images  

After the success of the separation of the texturally dissimilar images, a more 

complex data set is needed to test the proposed image recovery approach. Three 

geometrically similar images, consisting of buildings in Singapore, were used in this 

studyiv. A tall skyscraper is centered in these images with both sides of the image bordered 

by adjacent buildings. Original image files were in truecolor (RGB) with separate red, 

green and blue overlays, and each one was represented by 256×192×3 array. These color 

images are shown in Figure 6.11. Their matrix-wise entropies, which were obtained by 

summing over the 3 RGB layers, were 3411.0, 3364.4 and 3386.9, respectively.  

 
Figure 6.11. Original images in color. PWC Building (left), Republic Building (center), 

CapitaLand Building (right). 
 

A random mixing matrix with non-negative entries was generated and is shown in 

Eq. 6.10.  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0.3093  0.3412  0.6602  
0.7271  0.2897  0.8180  
0.5341  0.3420  0.6449  

A                                          (6.10) 

                                                 
iv These images are archived and down loadable at  http://www.chee.nus.edu.sg/research/chbe_freeware.html 
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The 3 corresponding super-imposed images are shown in Figure 6.12. The values of the 

matrix-wise entropies for these images are obtained by summing over the 3 RGB layers, 

and these were 3590.9, 3576.6 and 3583.7, respectively.  

 
Figure 6.12. Mixture image obtained from mixing matrix A defined in Eq. 6.10. 

 

Each image was unfolded three times according to the 3 RGB layers. After 

unfolding each image, SVD was then applied separately to each of the RGB data sets, and 

hence 3 times to 3 × (256×192) matrices. It is worth noting that there are two different 

approaches to the solution of whole image separation in three lays. First, we can start with 

mixtures in any color layer - red, green or blue. With the recovered images via entropy 

minimization, the mixing matrix is sequentially obtained by mapping back the 

reconstruction image to the mixture. The unmixing/separation matrix, equivalently, the 

inverse of the mixing matrix, can be utilized to separate the other two mixture layers. 

Alternately, the entropy minimization is executed over all the three layers. The final 

reconstruction result is composed of each recovered pure layer in red, green, blue order. 

The latter strategy was adopted here in order to test the performance of the algorithm. 
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To start, the red set of right singular matrices was taken, and a similar procedure 

was used as described in Section 6.3.2.1. This resulted in a set of 3 red images and the 

same general approach was then used for the green and blue data sets independently. The 

red, green and blue data sets for each image were then consolidated to generate the three 

reconstructed truecolor images each with 256×192×3 pixels shown in Figure 6.13. The 

values of the matrix-wise entropies for the images in Figure 6.13 were 3386.9, 3364.4 and 

3411.1, respectively. 

 
Figure 6.13. Reconstructed images in color. 

 

 Table 6.2 depicts the entropies of the different layers for the different images. For 

completeness, details about the sensitivity to the global search during the reconstruction 

procedure are included. It shows that the Republic building possesses the lowest entropies 

of each layer as well as in the sum among the three images. Although the CapitaLand 

Building image has the 2nd lowest entropy in all three RGB layers, its image was always 

recovered first, even though a number of genetic algorithm or simulated annealing 

searches were conducted with random initial values. This suggests the search space was 

very complex in this problem.  
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Table 6.2. The entropies of different layers for different building photos 

Matrix-wise entropies value for three images 

Image Name 
Red layer Green layer Blue layer Sum of 3 layers 

PWC Building 1134.8 1131.9 1144.3 3411.0 
Republic Building 1129.3 1114.5 1120.5 3364.4 

CapitaLand Building  1133.7 1121.5 1131.7 3386.9 

 

The reconstructed images in Figure 6.13 are obviously very similar to the original 

images in Figure 6.11. The red images were used to reconstruct the mixing matrix Ared for 

this set of data. The same general approach was then used for the green and blue data sets 

independently, resulting in mixing matrices Agreen and Ablue. The resulting mixing matrices 

are also very similar to the original mixing matrix.  

 

6.3.2.3. The Underdetermined Problem and 2D-BTEM Method 

It is known that if the number of experimentally measured images happens to be 

less than the number of observable components, then the mathematical problem can be 

considered irrevocably ill-posed and subsequently, it is impossible for a unique solution to 

problem. In this section, band-targeting entropy minimization method is employed in the 

simulated undetermined problem to help extract useful information. 

A new image, consisting of the capital letters NUS, was created as a watermark 

with matrix-wise entropy of 174.4975 (Figure 6.14a). This watermark was imbedded at a 

10% level into each of the three mixture images used in Section 6.3.2.2. An example of a 

mixture image with a 10% watermark is shown in Figure 6.14b. And it is noticed that the 
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watermark is not really discernable at this level of imprinting. The 3 mixture images with 

imbedded watermarks were separated into red, green, blue and SVD performed.  

In order to enhance the watermark intensity with 2D-BTEM, a priori information 

about that the lower left region near pixels x=45-46 and y=40-43 (located in the upper part 

of the letter U) is needed. This coordinate region with an interest feature needs to be 

retained and enhanced after image recovery. With the constraint of retaining the selected 

spectral feature, 2D-BTEM was implemented for the pursuit of enhancing the image 

pattern. The resulting recovered image is shown in Figure 6.14c. The watermark is now 

more prominent, but it cannot be fully recovered due to the underdetermined nature of the 

problem.  

 

Figure 6.14. A simulated watermark (a), an example of a mixture image with a 10% 
watermark (b) and the resultant recovered image (c). 

 

6.3.3. Discussion  

             The results of the determined problem show that with the direct use of the entropy 

function, blind source separation of mixtures is possible. The utility of this approach was 
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further shown using the associated underdetermined problem, where image enhancement 

was achieved.     

             Many forms of entropy are used in the image processing science. The entropy type 

function and objective function chosen in the present contribution are not, by any means, 

the only choices available. Indeed, there are a multitude of entropy (Frieden, 1975; Kapur, 

1993), and entropy type functions that could be used or at least tried on various classes of 

images. Several different definitions of entropy appear in the literature of image 

processing. Starck and Murtagh (1999) had a discussion about entropy functions used in 

image processing, including Burg entropy (Burg, 1978), Freiden entropy (Frieden, 1975), 

Gull and Skilling entropy (Gull and Skilling, 1984). Even though entropy is extensively 

used in image processing, the approach and application here appears to be quite original 

and new.  

 In this analysis, the two-direction derivative function used in the present entropy 

type function would make use of nearest neighbor pixel information. The minimization of 

the randomness between pixel values would be obtained by minimizing the pixel-to-pixel 

variations (the smoothness of local curvature). Also the least randomness would result in 

the retention of a structured pattern here.  

              

 6.4. Summary  

              In this chapter, 2D entropy minimization, which involves a one-spectrum-at-a-

time global search approach, was successfully applied to a set of matrix mixture data set 

generated from three different texture matrices. Further simulated mixture spectra were 

also briefly explored.  
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   In the image reconstruction analysis, the texturally different and the geometrically 

similar images were tested sequentially. The mixture spectra were decomposed using SVD 

and then global stochastic optimization was used to find the first irreducible image pattern. 

Further images were then subsequently reconstructed, by imposing a 2D correlation 

coefficient for dissimilarity to prevent repeated images, until all images were exhaustively 

enumerated. In another test, the watermark was enhanced after targeting the region for 2D-

BTEM. All these results support that 2D entropy minimization algorithm would have the 

potential for a wide variety of applications, including image and spectroscopic analysis.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                 Chapter 7 

 153

Chapter 7 

2D BTEM: Application to Real Experimental Systems 

 

 This chapter emphasizes the development and the application of numerical 

algorithms for pure component reconstruction of 2D NMR spectroscopy and 2D 

fluorescence data. This chapter is divided into two major sections. The first section 

describes the application of the proposed methodology to the 2D NMR systems. In this 

mixture system, we would like to test the 2D-BTEM algorithm on a real multi-component 

mixture spectroscopic data. After that we present the application of 2D-BTEM to 2D 

NMR reaction data. In the second part, 2D fluorescence data is analyzed. A simulation 

data set and an experimental data set are treated in sequence. At the end of this chapter, 

other types of 2D spectroscopic data are discussed. 

  

7.1. Application of 2D Band-Target Entropy Minimization Method (2D-BTEM) to 

2D NMR Data 

 The NMR experimental results used in this section were obtained in collaboration 

with Dr Anette Wiesmat (ICES), Peter Sprenger (Bruker Biospin) at ICES in Singapore 

and Peter Sprenger at Bruker Biospin AG in Zurich, Switzerland.  

 

7.1.1. Introduction   

NMR spectroscopy is an absorption spectroscopy involving the absorption of radio 

frequency electromagnetic waves. And it is one of the most important and most 
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informative analytical techniques available for characterizing the structures of compounds. 

It is now widely used in various studies such as physics, chemistry, biology, material 

science, etc.  

In catalysis study, either heterogeneous catalysis or homogeneous catalysis, NMR 

spectroscopy always is regarded as a very important and fascinating tool for understanding 

the catalysis. Most importantly, NMR spectroscopy can also be used to obtain both 

qualitative and quantitative information of the chemical species in the complex reaction 

system. NMR spectroscopic data will be used to reveal the concentrations of catalytic 

intermediates as well as the reagents and products. It will facilitate the acquisition of 

kinetic data and establishment of the mechanism.  

   

7.1.2. In situ NMR Spectroscopy used in Catalysis 

 In many technical processes, there is a need to study complex multi-component 

mixtures and gain insights into their behaviour during the physical and chemical 

processes. Once the physicochemical behaviour of such mixtures is understood, predictive 

models for their properties can be developed. 

 In situ spectroscopy is a general methodology; it allows on-line investigation of the 

reaction in real time and under real operation conditions without interruption to the 

reaction. With this merit, monitoring chemical reactions (Sarazin et al., 1996) especially, 

complex catalytic reactions (also including the biocatalysts, biotransformation) (Weber 

and Brecker, 2000) by using non-invasive NMR spectroscopy is of growing interest 

(Maiwald et al., 2003; Keifer, 1999; Iggo et al., 1998; Cobb et al., 1996; Kim et al., 1999; 

Maiwald et al., 2004). In situ NMR methodology plays an important role in the 

characterization of organometallic complexes in catalytic reactions.  Firstly, observing 
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intermediates and reactive transients during chemical reaction is essential, as these may 

not be observable once the reaction conditions are changed. Further elucidation of reaction 

mechanisms and catalytic cycles provides rational development and improvement of the 

reaction system. 

  

7.1.3. Two-Dimensional NMR Spectroscopy 

 In the last three decades, NMR spectroscopy has experienced a dramatic 

development in sophistication of instrumentation as well as great progress in signal 

processing. The notion of this new revolutionary technique of 2D NMR was proposed by 

Jeener (1971) in 1971 and later demonstrated by Ernst et al. leading to a tremendous 

increase in the capability of NMR and the subsequent explosion in experimental 

techniques for higher dimensions (Gunther, 1983; Duddeck and Dietrich, 1992; Farrar, 

1987). There are now a large number of experimental 2D techniques including COSY 

(Aue et al., 1976; Piantini et al., 1982), HSQC(Bodenhausen and Ruben, 1980), HMQC 

(Bax et al., 1983), HMBC (Bax and Summers, 1986), TOCSY (Braunschweiler and Ernst, 

1983), NOSEY (Jeener et al., 1979; Kumar et al., 1980), ROESY (Bothner-By et al., 

1984), 2D-INADEQUATE (Bax et al., 1980; 1981) etc. have been widely used for the 

analysis of structurally complex molecules, including the structural determination of bio-

molecules such as proteins, peptides and nucleic acids.  

The use of 2D NMR techniques potentially enables us to obtain, in a single 

experiment, hundreds or thousands of structural constraints, which can ultimately lead to a 

high-resolution structure of the molecule. 2D NMR is routinely used in an ever increasing 

array of specialized experiments designed to aid in spectral assignment and structural 

characterization of macromolecules.  
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Two dimensional NMR spectra show signal intensities as the function of two 

frequencies (fB2 Band f B1B). The fB2 B axis typically depicts P

1
PH frequencies, while the fB1 B axis 

depicts either P

1
PH in homonuclear spectra, or another nucleus (e.g. P

13
PC or P

15
PN) in 

heteronuclear spectra.  The primary advantage of 2D NMR over 1D NMR spectroscopy is 

the resolution enhancement and simultaneous acquisition of certain correlation 

information between the spins which are usually inaccessible from the corresponding 

conventional 1D NMR experiment. Also 2D NMR methods effectively resolve crowded 

regions in the spectrum by mapping the spectral information onto two frequency axes 

rather than the conventional 1D (chemical shift) plot of the spectrum.    

 

7.1.3.1. Homonuclear Correlation Spectroscopy 

Homonuclear correlation experiment is designed to record the correlation of 

protons and homonuclei. In the typical H-H COSY experiment, both of the coordinates are 

the chemical shifts of proton nucleus. The COSY spectrum shows how the protons are 

coupled with other protons as indicated by the coordinates of peak’s position. Other 

homonuclear correlation techniques include, 2D TOCSY(Total correlation Spectroscopy), 

2D INADEQUATE (Incredible Natural Abundance DoublE QUAntum Transfer 

Experiment, which is useful for determining the signals arise from neighbouring nuclei), 

2D NOESY(Nuclear Overhauser Effect spectroscopy, which is useful for giving 

information about interactions between protons that are close in space rather than those are 

connected by a short through-bond) and 2D ROESY (Rotational Nuclear Overhauser 

Effect spectroscopy) .  
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7.1.3.2. Heteronuclear Correlation Spectroscopy 

Apart from protons, chemical compounds normally contain Tother magnetically 

active nucleiT, such as P

15
PN, P

13
PC and other important elements. The heteronuclear correlation 

experiment is similar to the homonuclear experiment with the exception that it concerns 

two different nuclei. Also the second indirectly detected dimension contains chemical shift 

information about the heteronucleus.  The use of these hetero nuclei allows some new 

features in NMR which facilitates structure determination especially of complex 

molecules, for example, bio-molecule or organometallic molecule. For the structure 

elucidation, if the proton nuclei have already been assigned, the additional carbon-13 

proton correlation spectrum will facilitate the assignment of all the protons related to the 

carbons. In the techniques of Heteronuclear Multiple Quantum Correlation (HMQC) and 

the Heteronuclear Single Quantum Correlation (HSQC), the resultant spectrum is shown 

with the P

1
PH and P

13
PC axes being plotted against each other. Heteronuclear Multiple 

Quantum Correlation (HMBC) enables assignments of signals in cases where P

13
PC and P

1
PH 

nuclei are coupled through two or more bonds. 

 

7.1.4. Application of SMCR in NMR 

Most effort in NMR data analysis focus on the FID processing and NMR spectra 

enhancement, for example, linear prediction, DFT (discrete Fourier transform), MEM 

(maximum entropy method) and pattern recognition. As mentioned in the literature review 

in section 2.2.3, few SMCR chemometric techniques have been transferred to applications 

in NMR. The unique characteristics of NMR signals prevent these chemometric 

techniques from being used in most applications.  
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7.1.5. 2D BTEM: Application to Mixture System 

 In this section, we will present the application of the algorithm to 2D NMR 

measurements of solutions containing three solutes. Two types of 2D NMR experiments 

were implemented in this mixture system. They are (1) COSY (H-H Correlation 

Spectroscopy): two dimensional NMR experiment that reveals both direct coupling (but 

not indirect coupling) between protons within a spin system and (2) HSQC ( P

1
PH, P

13
PC 

Correlation Spectroscopy): two dimensional NMR experiment where the fB2B and f B1 Baxes 

depict the frequencies of directly bonded P

1
PH and P

13
PC nuclei, respectively and each peak 

represents an individual, coupled P

13
PC-H group. 

 

7.1.5.1. Experimental Section 

 

Sample Preparation and Measurements 

The samples for NMR were prepared by dissolving varying amounts of 1,5 chloro-

1-pentyne (Aldrich),  4-nitrobenzaldehyde (Aldrich) and 3-methyl-2-butenal (Aldrich) and 

topping with  CDCl B3 B to achieve a total volume of 500ul.  

Seven solutions for NMR measurements were prepared. The reference samples 

were prepared by dissolving 20 µl 1,5 chloro-1-pentyne,  20 mg 4-nitrobeanzaldehyde, 20 

µl 3-methyl-2-butenal in CDCl B3 B and topping up to achieve a total volume of 500ul. 

Therefore three reference solutions were obtained separately. It is worth noting that the 

use of a constant liquid phase volume in all sample preparations was crucial in the 

quantitative aspects of this study.   
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Instrumental Aspects 

 All the spectroscopy data were acquired at 298 K on a Bruker Avance 400 WB 

NMR spectrometer equipped with a 5mm P

1
PH/ P

31
PP/ P

13
PC/ P

15
PN QNP probe with z gradient. All 

the 2D NMR spectra were acquired at 400.13 MHz (P

1
PH) and 100.62 MHz (P

13
PC) with 

standard Bruker-supplied pulse sequences. Two spectra of each solution were measured. 

The spectral parameters were as follows: the P

1
PH spectral width was 5208 (COSY) and 

4807 Hz (HSQC) and for the P

13
PC dimension 20120 Hz, number of scans per increment 2, 

number of t B1 B increments 128, each with 1K acquisition points, and repetition time 1.5s. 

The 2D spectra were processed as 1K-1K complex matrices with unshifted sine weighting 

functions in both two dimensions. The final data set for 2D-BTEM was a 3-array of 

dimension 1024102414 ××A .  

All these experiments were carried out by Dr. Anette Wiesmat and Peter Sprenger 

at Institute of Chemical and Engineering Sciences  (ICES), Singapore. 

  

7.1.5.2. Computation Section   

 

Data Pre-treatment 

 The contour plot of the 2D HSQC NMR spectrum of one mixture solution is 

presented in Figure 7.1 and the complex spectral features of this mixture system are 

clearly presented.  It is clear that for computations involving very large arrays, i.e. matrix 

multiplications, and the computation of the SVD, difficulties can be encountered even on a 

high end workstations with considerable RAM. Moreover, during the implementation of 
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BTEM algorithm, there would be thousands of iterations needed during the stochastic 

optimization/searching technique.  

 

Figure 7.1. The contour plot of the 2D HSQC NMR spectrum of one mixture solution.  

 

  As we see in Figure 7.1, there are only several peaks and most of the regions are 

blank where no significant signal exists. In other words, about 90 percent of the original 

2D spectral data does not contain useful physical information. Therefore, in order to 

decrease the computational burden, only 4 rectangular regions (6 small pieces) containing 

the real physical spectral features (peaks) were taken. The small rectangular regions were 

assembled into a new consolidated data array )107539(14 ××A . 
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Figure 7.2. Only 4 rectangular regions (6 small pieces) containing the real physical 

spectral features (peaks) were used in subsequent analysis. (x and y 
coordinates are shown in channels). 

 

Figure 7.3. The contour plot of one consolidated data set resulting from the small 
rectangular regions (shown in channels). 
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 As shown in Figure 7.3, all the significant signals are now concentrated together in 

the small matrix ( 107539× ). Compared to the original 1024 by 1024 data, only 5.5% 

elements in the original data will be used during the following computational procedure. It 

is clear that using the pre-processed small patches instead of the raw data would facilitate 

the extensive mathematical computation. 

  

2D Wiener Filtering  

An adaptive 2D Wiener filter is commonly used to filter degraded images in image 

processing and was used in the present contribution to filter the experimental 2D NMR 

data. The function WIENER2 is available in MATLAB(1995) which performs 2D 

adaptive noise-removal filtering. Y = WIENER2 (X, [a b]) filters the matrix X using 

pixel-wise adaptive Wiener filtering, using neighbourhoods of size a-by-b to estimate the 

local image mean and standard deviation. In the present study, the parameters a and b 

were set to 10 and 10.  

 

7.1.5.3. Result 

Singular Value Decomposition   

  SVD was performed on the matrix )107539(14 ××A  to obtain the 14 right singular 

vectors in TV )107539(14 ×× . The vector-format right singular vectors are shown in Figure 7.4. 

Different from the normal 1D spectrum, the signals in the 2D plane are sliced and 

connected, producing lots of peaks extending in one line.  After that, concatenation was 

undone. The resulting right singular matrices are shown in Figure 7.6. Physically 

meaningful spectral features were observed in only the first seven matrices. The 8P

th
P matrix 
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is essentially featureless. This holds true for the 9P

th
P-14P

th
P matrices as well. Consequently, 

the 3-way array TV )107539(14 ×× B Bwas reduced to TV 1075397 ×× B Bwhere j is set to seven.  

 

2D-BTEM 

 Both vector-wise and matrix-wise 2D-BTEM were applied in HSQC data. First, 

vector-wise 2D-BTEM was performed by targeting interesting features range from 

channel 25900 to 26100(a), 41980 to 42020(b) and 32293 to 32313(c) individually since 

these features/signals repeat in the series of VP

T
P. These ranges are labelled as a, b and c in 

Figure 7.4 respectively. Three estimated spectra resulted from the vector-wise algorithm 

are shown in Figure 7.5.  

 

Figure 7.4. The vector-formatted right singular vectors resulted from HSQC 
data )107539(14 ××A , Only 1P

st
P-4 P

th
P, 8P

th
P and 11 P

th
P  TV are shown here. Label a b and 

c indicate the interesting features.  
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Figure 7.5. The recovered 1D patterns resulting from the vector-wise algorithm. 

 
 Matrix-wise 2D-BTEM was implemented with TV 1075397 ×× by targeting observable 

features in the seven right singular matrices. They are region 1([355 to 365; 18 to 20]), 

region 2([442 to 448; 94 to 96]) and region 3([125 to 135; 47 to 50]).  Exhaustive searches 

produced only three 2D spectral patterns. These estimates are shown in Figure 7.6(a, b and 

c). 

   After all these three patterns were extracted from the mixture source, the next step 

was to put these patches back to their original position. In other words, these patterns were 

then imbedded into matrices with 10241024×  channels. After imbedding, the resultant 2D 

HSQC estimated pure component spectra and the reference spectra are shown in Figure 

7.7. The spectral estimates appear quite good when compared to authentic experimental 

references.   
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Figure 7.6. The resulting right singular matrices (1P

st
P , 3P

rd
P, 5P

th
P, 8P

th
P and 14P

th
P  are shown only) 

and the exhaustive search results with three patterns(a, b and c).  A negative 
part in the signal is observable in c which is related to the phase problemTP

i
PT. 

                                                 
TP

i
PT The phase problem is a notorious problem in NMR studies. Discussions are continuing with Peter Sprenger 
at Bruker Biospin and with researchers at the ICES on ways to nullify this problem, possibly by a 
combination of hardware / pulse considerations and post processing of data.  
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Figure 7.7. The estimated HSQC spectra and reference spectra. 
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 Moreover, the dual problem for relative concentrations can be solved. Figure 7.8 

shows the relative concentrations as determined by a least-square fit with the reference 

spectra versus the relative concentrations as determined by a least-square fit with the 

estimated pure component spectra. It is noticed that the relative concentrations calculated 

for samples 1-7 are almost the same as 8-14 since samples 8-14 represent the replicate 

measurements (there were seven physical samples, each sample measured twice). The 

calculated concentration profiles are very similar.  

 
Figure 7.8. The relative concentrations for HSQC experiments as determined by a least 

squares fit with the reference spectra (solid line) versus estimated pure spectra 
(dotted line). Top row for 1,5 chloro-1-pentyne(a), middle row for 3-methyl-
2-butenal (b) and bottom for 4-nitrobenzaldehyde(c). 

 

 The 2D COSY measurements were analyzed in a similar manner. Only twelve 

measurements were available (two measurements were outliers). The contour plot of the 

2D COSY NMR spectrum of one mixture solution is shown in Figure 7.9. Only 8 
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rectangular regions containing the real physical spectral features (peaks) were taken. The 

small rectangular regions were assembled into a new consolidated data array )150468(12 ××A .  

 

Figure 7.9. The contour plot of the 2D COSY NMR spectrum of one mixture solution 
(shown in Hz). 

 
 

SVD was performed on the matrix )150468(12 ××A  to obtain the twelve right singular 

vectors in TV )150468(12 ×× . Concatenation was undone. Physically meaningful spectral features 

were observed in only the first seven matrices. Consequently, the 3-array TV 15046812 ×× was 

reduced to TV 1504687 ×× where j is set to seven. Both vector-wise and matrix-wise methods 

were applied to this set of data. Exhaustive searches produced only three 2D spectral 

patterns. These patterns were then imbedded into matrices with 10241024×  channels.  

The resultant 2D COSY estimated pure component spectra and the reference spectra are 
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shown in Figure 7.10. The spectral estimates appear quite good when compared to 

authentic experimental references.  

 

Figure 7.10. The estimated 2D COSY spectra and reference spectra.  
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The dual problem for relative concentrations was also solved. Figure 7.11 shows 

the relative concentrations as determined by a least-square fit with the reference spectra 

versus the relative concentrations as determined by a least-square fit with the estimated 

pure component absorptivities. The calculated concentration profiles are good for the last 

two components but only fair for the 1P

st
P component. This may be due to the somewhat 

higher non-stationary characteristics of COSY versus HSQC. Again, the relative 

concentrations calculated for samples 1-6 are almost the same as the relative 

concentrations of samples 7-12 since samples 7-12 represent the replicate measurements 

(there were 6 physical samples, each sample measured twice). 

 

Figure 7.11. The relative concentrations for COSY experiments as determined by a least 
squares fit with the reference spectra (solid line) versus estimated pure 
spectra (dotted line). Top row for 1,5 chloro-1-pentyne(a), middle row for 3-
methyl-2-butenal (b) and bottom for 4-nitrobenzaldehyde(c). 
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7.1.5.4. Discussion   

 1. Both vector-wise and matrix-wise 2D-BTEM methods can be used in this data 

set. But matrix-wise 2D-BTEM proved to be the preferred computational route, since 

some information is in a sense “lost” during concatenation.  

 Another practical reason is the difficulty to find out the features in the TV  series. 

The resulted 1D spectrum from concatenating will contain huge amount of peaks/feature. 

And it will not be realistic to 1) identify the feature appearing repeatedly in TV  and 2) to 

exhaustive search all the features in the TV  domain. However, it is natural for us to study 

the TV series in matrix format and select the specific regions. In matrix format, the number 

of features/peaks (in 2D shape) is numerable in contrast with the number in the 1D form. 

Matrix-wise 2D-BTEM will produce higher quality spectral estimates generally.          

 2.  Through the comparison of the result of COSY and HSQC, we found that the 

result of HSQC is much better than COSY. This may be due to the somewhat higher non-

stationary characteristics of COSY versus HSQC.  The non-stationary characteristics may 

due to the change of peak position, the change of peak shape, noise and nonlinearity 

introduced by some of the NMR data processing procedures.  

 In the following section, we will discuss how to deal with 2D NMR spectroscopy 

corrupted by the nonlinearity which is induced by the non-stability of peak positions 

during measurements.    

 3. Since the stacks of the 2D NMR data do not belong to the category of tri-linear 

data, the direction application of three-way decomposition, such as PARAFAC, would not 

be suitable for this data set. 
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7.1.5.5. Conclusion 

 An advanced entropy minimization based algorithm for 2D NMR spectroscopic 

data reconstruction has been proposed and verified on real experimental spectroscopic 

data. The quality of the recovered spectra is found to be quite satisfactory when compared 

to references obtained from pure component measurements. Also the calculated relative 

loadings of each component based on the recovered spectra are consistent with the 

loadings calculated from reference spectra. These results have implications for general 

chemical identification of inseparable multi-component mixtures system. Full details of 

the study of 2D NMR data can be found in Journal: Analytical Chemistry (Guo et al., 

2005). A reprint is provided in Appendix F. 

 

7.1.6. 2D BTEM: Application to Reaction System 

 As mentioned before, as a non-invasive analytical method, NMR provides 

information about constituents from the data collected during the reaction. Therefore in 

this section, a reactive multicomponent mixture system was investigated by an HSQC 

experiment. 2D-BTEM was also applied to this data set to verify the methodology.  

 

 7.1.6.1.   Experimental Section 

 Cycloaddition is a kind of reaction in which two or more unsaturated molecules 

react with the formation of a cyclic adduct. In this experiment, the same reaction system 

described in chapter 4, section 4.5.2 was used. The two reagents were 1,3-cyclohexadiene 

97% (Aldrich) and dimethyl acetylenedicarboxylate 99% (Aldrich). Two reactions were 

carried out with different initial ratios of reagents. The temperature for both reactions was 

310K. The 2D HSQC NMR spectra were taken circa every 40 mins.  
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 All the data were acquired on a Bruker Avance 400 NMR spectrometer.  2D 

HSQC were collected. The 2D spectra were processed as 1K-1K complex matrices in both 

dimensions. The final data set with twelve spectra were collected for 2D-BTEM.  

 

7.1.6.2. Computation Section  

 

Data Pre-treatment 

  The same strategy used in section 7.1.5.2 was implemented for reaction data, only 

one rectangular region containing the physical spectral features (peaks) were taken in 

order to lighten the computational burden. The rectangular regions from twelve samples 

were assembled into a new data array 30140112 ××A . In Figure 7.13, the mesh plot and the 

contour plot of one reaction mixture spectrum are shown. 

 A close examination of all these spectra found that all the signals were not 

stationary during the reaction. This characteristic can be shown by examination of the 

tracks of peak centres in mixture spectra during the reaction.  

 From Table 7.1, it is easy to observe that, during the reaction, for example, the Y 

coordinate of the center of peak3 was moving from channel 76 to 79. It means during the 

reaction the signals were not stationary and the peaks were moving around.  This shift 

definitely introduced an unavoidable non-linearity to the system and destroyed the bilinear 

model. Therefore, it was a prerequisite to eliminate or reduce the nonlinearities before 

further consequent analysis. 
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Figure 7.13. The mesh (top) and contour (bottom) plot of one reaction mixture spectrum. 
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Table 7.1. The coordinates of peak centres for the 6 peaks in 12 spectra 

X-coordinate(abscissa) Y-coordinate(ordinate)Spec. 
no. Peak 

1 
Peak 

2 
Peak 

3 
Peak 

4 
Peak 

5 
Peak 

6 
Peak 

1 
Peak 

2 
Peak 

3 
Peak 

4 
Peak 

5 
Peak 

6 

1 50 59 137 227 228 242 97 104 75 342 333 267 
2 50 59 137 227 228 242 98 105 76 343 334 267 
3 50 59 137 227 228 242 98 105 76 343 334 268 
4 50 59 137 227 228 242 99 105 77 343 334 268 
5 50 59 137 227 228 242 99 106 77 344 335 268 
6 50 59 138 227 228 242 99 106 77 344 335 269 
7 50 59 138 227 228 242 100 107 77 344 335 269 
8 50 59 138 227 228 242 100 107 78 345 336 269 
9 50 59 138 227 228 242 100 107 78 345 336 269 
10 50 59 138 227 228 242 101 107 78 345 336 270 
11 50 59 138 227 228 242 101 108 78 346 336 270 
12 50 59 138 227 228 242 101 108 79 346 337 270 

 

 A good 2D alignment method may help to realign all these peaks systematically. 

But it is apparent that the alignment with constant move is impractical since some peaks 

heavily overlap in 2D NMR spectra. 

 A practical approach is to find a suitable model for the 2D NMR spectra. With the 

2D peak fitting we can separate overlapping signals and do further alignment.  

 

2D Peak Fitting 

 The first challenge to do the 2D peak fitting is to determine all the peak centers.  It 

is well known that the residual method (Peakfit v4.0 User’s Manual) and derivative 

method (Kauppinen et al., 1981) can be used to find out the peak center in 1D 

spectroscopy. Unfortunately it is not so easy to implement the above methods in 2D 

spectroscopy. In this study, a simple and easy strategy was used to find out the vertex 
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position of each peak in the 2D coordinates. This consists of projecting along the x and y 

coordinates to help distinguish overlapping peaks.  

 The determination of peak center is often a preliminary requirement for us to 

investigate the shift problem in this series of 2D NMR spectra. Only after obtaining all 

peak center information can we approach subsequent analysis such as curve fitting. The 

curve fitting procedure would be very useful for the removal of nonlinear and noisy 

components from spectra. Curve fitting methods have been widely used to determine the 

area and parameters of absorption bands and to separate overlapping bands in a composite 

contour. 1D curve fitting is a quite common technique used in spectral analysis. 1D 

spectroscopic curve fitting has been investigated in detail (Chen and Garland, 2003; 

Vickers et al., 2001).  But to our knowledge little work has been performed on 2D curve 

fitting problems. In a similar spirit to 1D curve fitting, the least-square method is applied 

to construct the objective function for minimizing spectral difference as shown in Eq. 7.2.  

2
modeltmeasuremen )A-A(f  =Min                                    (7.2)  

 It is known that in an ideal case, each transition in an NMR spectrum should be 

represented by a Lorenzian shape since Lorentzian functions are theoretically related to 

the Fourier transformation of a decaying exponential signal (Carazza, 1976). Therefore, in 

accordance with the characteristic of NMR signals, a 2D Lorenzition model was selected 

as a model for 2D NMR. For 1D spectroscopy, the peak shape function of a Lorentzian 

which is centered about the frequency 0v can be formulated as  
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 where K  denotes its amplitude, 0v  denotes the  peak center parameter and W  is the 

width parameter.  

 In the 2D case, a 2D spectrum can be modelled by superimposing several 2D peaks 

located in different positions. And the expression of a 2D spectrum with n peaks is 

formulated in a more complex form (Eq. 7.4)  
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 For completeness, the Pearson VII 2D model (Ord, 1972) is noted here. (discussed 

in section 6.2.1.1.) Pearson VII model is one of the most useful band shape functions for 

combination models. Obviously, Pearson VII model is more flexible than Guassian and 

Lorentzian model.  

 A 2D spectrum can be modelled as a superposition of several 2D peaks located in 

different positions. After that, an efficient method is needed to solve this fitting procedure. 

Several parameters in the model are needed to be optimized. In this study, the 2D 

Lorenzian model was selected, since less parameter is needed in comparison to the 

Pearson VII model.  

 The conventional gradient-based optimization methods and the stochastic 

optimization methods including GA and SA methods are all available to obtain the final 

optimal band parameters.  
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Singular Value Decomposition 

 After the 2D curve-fitting procedure, a new data array 30140112 ××A  was obtained. SVD 

was performed on the matrix 30140112 ××A  to obtain the 12 right singular vectors in TV )301401(12 ×× . 

Concatenation was undone. Physically meaningful spectral features were observed in only 

the first 5 matrices. The 6P

th
P matrix was essentially featureless. This holds true for the 

others as well.   

 

7.1.6.3. Result  

 From the right singular matrices, it is easy to find the interesting features in the 

data set. By targeting these interesting features, three 2D spectral patterns were recovered 

with the 2D-BTEM algorithm. The estimated 2D spectra are shown in Figure 7.14. It is 

found that in Figure 7.14, (a) and (b) are very similar with reagent (d) and reagent (e). 

And the estimated (c) is the cycloaddition product. 

 The dual problem for relative concentrations was also solved. Figure 7.17 shows 

the relative concentrations as determined by a least-square fit with the reference spectra 

versus the relative concentrations as determined by a least-square fit with the estimated 2D 

spectra. The profiles of the reagents monotonically decreased along the experiment. The 

concentration profile of product is shown as an increasing profile throughout duration of 

the reaction period.   
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Figure 7.14. Estimated spectra (a, b and c) and the reference (d and e). 
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Figure 7.17. The relative concentration profiles. Cross: dimethyl acetylenedicarboxylate; 
Six-point star: 1,3-cyclohexadiene;  Diamond : product. 

 

7.1.6.4. Discussion  

 In a real chemical system, the signals are contaminated by noise. And the peak 

shape would not be symmetric. Especially in NMR there are some phase problems which 

create both positive and negative parts of the spectra. It is apparent that it is a 

straightforward idea to model the entire 2D resonance signals and align them in a 

systematic way. Further work is needed to alleviate the phase problem possibly by a 

combination of hardware/pulse considerations and post processing of data.    

 Also it should be noted that in some cases, the baseplane (two-dimensional 

baseline) would affect the curve fitting process, so it is also important to implement the 

baseline correction if necessary.  
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7.2. Application of 2D Band-Target Entropy Minimization (2D-BTEM) to 

Fluorescence Data 

7.2.1. Introduction   

 In a modern chemical laboratory, it is common that there is a lot of multi-channel 

detector data or multiplexed spectroscopic data which are different from conventional one-

dimensional data. In a simple 2D fluorescence measurement, the excitation/emission 

matrix (EEM) is regarded as a function of both the excitation and emission wavelengths. 

Multidimensional fluorescence measurements circumvent the deficiency of the 

conventional single-wavelength measurement in evaluating multicomponent samples; 

there the latter always results in broad, structureless and severely overlapping spectra 

(Townshend, 1995). Wide applications of multidimensional fluorescence in chemistry 

(Nahorniak et al., 2005) and  environmental science (Muroski et al., 1996; Booksh et al., 

1996) (especially for the identification and quantification of polycyclic aromatic 

hydrocarbons (PAH))(JiJi et al., 1999; Hart et al., 2002), clinical analysis (Olivieri et al., 

2004), drug scienceTP

 
PT(da Silva et al., 2002) and food analysis (Bro, 1998) have made use of 

the sufficient information contained in EEM to differentiate species, detect minute 

perturbations in mixture samples and monitor the chemical and bio-chemical processes. 

The resulting matrix-formatted data obtained from one measurement generally 

possesses more chemical characteristics and chemical information than a 1D 

measurement. As mentioned in section 2.2.2, there are two major categories to consider in 

the mathematical sense: bilinear data and non-bilinear data.                             

The matrix-formatted data of 2D fluorescence in a dilute solution is the prototype 

for ideal bilinear data. Other types of data with “bilinear” structure are LC-MS, GC-MS 
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and HPLC-DAD data (Frenich et al., 2000). Mathematically, an ideal EEM of a single 

fluorophore (matrix Q) can be represented as the outer production of the excitation 

spectrum (vector x) and emission spectrum (vector y) (Eq. 7.10) 

 TxyQ =                                                        (7.10) 

In the case of the mixture with a multiple fluorescent species, it is assumed that the 

measurement is additive over constituents and the response of a mixture sample is the sum 

of the individual constituent response. The Eq. 7.10 is generalized into Eq. 7.11 where I , 

the EEM measurement of the mixture sample, is the sum of s “pure” responses from 

individual species. 

T
ii

s

i
yxQ ∑=                                                      (7.11a) 

or                                       

                                      TXYQ =                                                         (7.11b) 

where X, Y are matrices whose columns ix B Band iy  are vectors representing the excitation 

and emission spectrum of each pure component, respectively. Further, with simplification, 

a collection of fluorescence EEMs for mixture solutions with differing composition can be 

represented by the expression:  

                                                          TXCYQ =                                                   (7.12) 

where Q is the stacks of the EEM measurements (a three-way array), C is a matrix, whose 

element represents the relative concentrations of the constituent in samples. By 

introducing the dimension of concentration, the collections of data with bilinear form as 

Eq. 7.10 produce a trilinear data set.  
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For data with bilinear structure, especially fluorescence EEM data, quite a lot of 

chemometric methods are available. A detailed review of RAFA and GRAM methods can 

be found in chapter 2, section 2.2.2. Besides RAFA and GRAM, Direct Trilinear 

Decomposition (DTLD) also has variety of applications in fluorescence data which 

focuses on the trilinear property of fluorescence EEM data. (Leurgans and Ross, 1992; 

Frenich et al., 2003). In 1990, Neal et al. (1990) proposed a constrained nonlinear 

optimization method to solve the mixture spectra by imposing the constraints of 

nonnegative, diagonal and degree of the overlapping. 

  A collection of matrix-formatted data will lead to a three-way structure, by 

introducing a concentration axis, for example, collecting a series of samples along the time 

direction for a reaction system. Parallel Factor (PARAFAC) analysis was a data analysis 

tool originating from Psychometrics. Inspired by the early work of Cattell (1944), 

Harshman (1970) and Carroll and Chang (1970) independently developed an easily 

interpreted model for fitting an n-linear model to an n-way array. There are a number of 

applications of PARAFAC on fluorescence data (Thygesen et al., 2004; Stedmon and 

Markager, 2005; ChristensenP

a
P et al., 2005; Nahorniak et al., 2005; ChristensenP

b
P et al., 

2005).  Actually, the mathematical model of PARAFAC will be regarded as the three 

dimensional extension of GRAM, and DTLD algorithm.  

In this section, we will present the applications of 2D-BTEM to real experimental 

2D fluorescence EEM data including a simulation data set and an experimental data set 

carried out at our laboratory. Also the comparison of the result of 2D-BTEM with the 

result of the PARAFAC method is depicted.  
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7.2.2. Simulation Data 

Spectra of amino acids which contained in the data set named Claus.mat was 

downloaded form websiteTP

ii
PT .The samples were generated and measured by Claus A. 

Andersson (Bro, 1997). The original data set consisted of five simple laboratory-made 

amino acid samples in phosphate buffered water solution. These samples contained 

different amounts of the amino acids: tryptophan, tyrosine and phenylalanine. All the data 

were acquired on a PE LS50B spectrofluorometer.  Technical parameter: excitation 250-

300 nm, emission 250-450 nm, 1 nm intervals , excitation slit-width of 2.5 nm, emission 

slit-width of 10 nm and a scan-speed of 1500 nm/s. Seven simulated data set were 

produced through multiplying the original data set with a random matrix, also complicated 

by adding white noise. The size of the data array is 7 × 61 × 201. 

 

7.2.2.1. Singular Value Decomposition 

After SVD decomposition, a series of right singular matrices are obtained. In 

Figure 7.18 several right singular matrices and one mixture sample are shown. From 

Figure 7.18 we can directly observe that only the first several right singular matrices are 

relevant, since from the fifth right singular matrix, most of matrices represent noise only. 

 

7.2.2.2. Result 

Accordingly, the series of right singular matrices were truncated and transformed 

appropriately by the criteria of entropy minimization due to 2D BTEM.  

Since these mixture spectra were moderately overlapping, a first derivative entropy 

measurement was used in this case.  The result shows that all the excitation and emission 
                                                 
TP

ii
PT http://www.models.kvl.dk/research/data/Amino_Acid_fluo/index.asp 
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matrices of the pure components in this multi-component system were successfully 

recovered. These three estimated pure spectra are close matches for the pure spectra of 

tryptophan, tyrosine and phenylalanine.  

 

 
 

 Figure 7.18. Mesh plot of some right singular matrices (1P

st
P, 2P

nd
P, 3P

rd
P, 5P

th
P and 7P

th
P) resulting 

from SVD procedure and one simulated mixture data set which consists of 3 
amino acids. (shown in channels) 
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Figure 7.19.  Mesh plots of the estimated pure spectra of the pure components extracted by 
2D BTEM. (shown in channels) 

 

7.2.3. Experimental Data 

7.2.3.1. Experiment Section  

 

Sample Preparation  

First, phosphate buffer was prepared (0.2mol/L, pH7.4): using 9ml NaHB2 BPO4 

(0.2mol/L), and mixing with 81ml Na B2 BHPO4·12HB2 BO (0.2mol/L), then adjusting to pH 7.4. 

This solution was then stored at room temperature.  

Three amino acids: L-tryptophan (99%,T Acros OrganicsT), L-tyrosine (99+%, 

Aldrich) and L-phenylalanine (98.5+%, TAcros OrganicsT ) were dissolved in deionized 

water. Dilute solution should be prepared, since it is important that the concentrations 
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must not be too high. Therefore, the stock solutions: tyroptophan 0.68 mlg /µ , tyrosine 

2.4 mlg /µ and phenylalanine 8.30 mlg /µ  were prepared.  Seven mixture samples were 

prepared according the Table 7.2.  

 

Table 7.2.  The mixing table for preparation of mixture samples with the stock solutions 

Mixing Table        (ml) Sample 
tryptophan   tyrosine phenylalanine phosphate buffer deion. water total vol.

1 0.4 0.9 0.7 1.0 12 15 

2 0.1 0.7 0.4 1.0 12.8 15 

3 0.2 0.2 0.8 1.0 12.8 15 

4 0.3 0.4 0.1 1.0 13.2 15 

5 0.5 0.5 0.5 1.0 12.5 15 

6 0.7 0.6 0.9 1.0 11.8 15 

7 0.9 0.3 0.6 1.0 12.2 15 
 

Apparatus    

Fluorescence spectra were obtained with a Perkin-Elmer LS50B luminescence 

spectrofluorometer. Technical parameter: excitation 200-350 nm, emission 200-450 nm, 

0.5 nm intervals , excitation slit-width of 10 nm, emission slit-width of 10 nm and a scan-

speed of 1500 nm/min.  The spectrometer was interfaced to a computer. Seven mixture 

samples were measured as well as the reference solutions.           

 

7.2.3.2. Data Pretreatment 

Removing Rayleigh Scattering Regions  

It is known that in fluorescence, there are interferences (Townshend, 1995).  

Solvents, containing carbon-hydrogen and oxygen-hydrogen bonds, may produce Raman 
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Scattering bands. Also several background signals and noise including Raman scattering 

from the cuvette windows, Rayleigh scattering from solvent(s) exist. All these 

interferences would cause serious problems in quantitative analysis of fluorescence EEM 

data. Rayleigh scattering as an elastic scattering of exciting light also causes interference. 

Details of Rayleigh scattering and Raman scattering and the background signals can be 

found in references(IngleT et al., 1988; TLakowicz, 1999). Another possible serious 

interference may come from the contamination of the cell with luminescent impurities(JiJi 

and Booksh, 2000). 

 

Figure 7.20. The mesh plot of the pure phenylalanine sample. The 1P

st
P order , 2P

nd
P order 

Rayleigh scattering and Raman scattering are critical background signals.  
 
 

Since the Rayleigh scattering is so strong, it has to be removed. The reason to 

discard the Rayleigh scattering part is that it does not fit in the linear model and would 

destroy the bilinear model. Also the high intensity of Rayleigh scattering sometimes 
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exceeds the limit of measurement. JiJi and  Booksh(2000) discussed the different ways of 

reducing and removing Rayleigh and Raman scattering, and they summarized four 

weighting strategies, namely, hard positive, soft positive, hard negative, and soft negative 

weighting, which either can be used to enhance the interesting signal region or eliminate 

the nonlinear parts. Also Rinnan et al. (2005) modeled the first order Rayleigh scattering 

by rotating and shifting the spectra. 

 In this study, we simply cut the Rayleigh scattering regions and replace them with 

zeros values. Reference spectra after removing Rayleigh scattering regions are shown in 

Figure 7.21. 

 

Figure 7.21. Reference spectra of phenylalanine (a), tyrosine (b), tryptophan(c) and a 
mixture example (d). It is shown that the fluorescence signals are 
prominent after removing some background signals.  
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 It is important to emphasis that in Figure 7.20 the first-order Rayleigh scattering 

and second-order Rayleigh scattering should not be fitted by the linear model. Rather 

these elements must be set to zero values in order not to bias the bilinear model in this 

analysis. Also the original data matrix is truncated into 450250× array (Emission 

wavelength range from 213.5nm to 438nm, Excitation wavelength range from 200nm to 

324.5nm) since the most interesting fluorescence features are already included. As shown 

in Figure 7.21a, the fluorescence signal is prominent after removing some background 

signals in comparison to Figure 7.20. The only undesired part left is the Raman scattering 

which overlaps with some desired signal in Figure 7.21.  

 

7.2.3.3. 2D BTEM 

All the 7 measurement set of mixture matrix data were tested with the 2D-BTEM 

algorithm. First all matrices were decomposed into right singular matrices using SVD. 

Secondly, close examinations of all the right singular matrices indicate many interesting 

features. Thirdly, 2D-BTEM was applied to target the features one by one by manipulating 

these right singular matrices to obtain the pure source matrix in a systematic way. 

The first several right singular matrices are shown in Figure 7.22. The first one 

approximates the average of all mixture spectra. But from the 2P

nd
P one, it is easier to 

identify the interested features shown in the mesh plots. As indicated, the region, A, B, C, 

and D are the interested features which we would like to retain after entropy minimization 

transformation. After the 5P

th
P right singular matrices, no physically meaningful spectral 

features were observed, but always some noisy parts show up at the region E indicated in 

the Figure 7.22 which consists of heteroscedastic noise, i.e. the variance of noise changes 

with the intensity of the signal. Therefore, we can conclude that only the first several right 
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singular matrices are relevant, since from the fifth one, right singular matrices represent 

noises only. Accordingly, the series of right singular matrices are truncated and 

transformed by the criteria of entropy minimization according to 2D BTEM. 

 

 

Figure 7.22. The mesh plots of the 1P

st
P (a), 2P

nd
P (b), 3P

rd
P (c), 4P

th
P (d), 5P

th
P (e) and 7P

th
P (f) right 

singular matrices.  The x and y coordinates are now data channels and z is 
the arbitrary magnitude.  
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7.2.3.4. Result and Discussion  

 The fluorescence EEM spectra of the mixtures of 3 amino acids are highly 

overlapping. But they can be directly recovered by 2D-BTEM method without separation.  

The resultant estimated spectra by individually targeting region A, B, C are shown in 

Figure 7.23. The spectra are fairly good compared to the experimental references in Figure 

7.24.  It is important to note that in the experimental reference, each spectrum still consist 

of the ridges which originates from Raman scattering, but most of the interference signals 

are eliminated in the estimated results from the 2D-BTEM algorithm.  By band-targeting 

the region D, we obtained the approximation of the Raman scattering component, which is 

shown as (d) in Figure 7.23. It is clear that the Raman scattering ridge is the dominant 

contribution. The other feature comes from the heteroscedastic noise which is difficult to 

separate.  

 
Figure 7.23. The four estimated components obtained by 2D-BTEM: tryptophan (a), 

tyrosine (b), phenylalanine (c) and Raman scattering (d).  
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Furthermore, the dual problem for the curve resolution can be solved after 

obtaining all the estimated spectra. The relative concentration profiles determined by a 

least-square fit with the estimated pure spectra versus the authentic experimental 

concentrations are tabulated in Table 7.3.  

Table 7.3. The comparison of reference and recovered concentrations with three 
components and four components 

 
Refer.  Conc. ( mlg /10 7− ) Recovered Conc. (3) Recovered Conc. (4) 

 Sample 
No. Tyro. Phen. Tryp. Tyro. Phen. Tryp. Tyro. Phen. Tryp. Raman 

1 1.44 3.87 0.18 944.92 365.88 364.06 937.33 359.61 359.38 12.49 
2 1.12 2.21 0.05 745.76 249.20 182.10 729.98 236.16 172.37 25.97 
3 0.32 4.43 0.09 354.37 434.15 256.12 330.36 414.31 241.31 39.53 
4 0.64 0.55 0.14 479.37 98.40 302.37 458.59 81.21 289.55 34.23 
5 0.80 2.77 0.23 605.17 297.01 447.17 592.01 286.12 439.05 21.68 
6 0.96 4.98 0.32 718.50 481.67 613.94 711.92 476.23 609.88 10.83 
7 0.48 3.32 0.41 480.41 336.16 786.20 466.91 325.00 777.87 22.23 

 

Since the estimated spectra are normalized according to the 2D-BTEM algorithm, 

the real magnitudes of the pure spectra are left unknown. That is so-called scale ambiguity 

in the curve resolution problem, even though, the comparison can be represented after 

normalization. In Figure 7.24, the relative concentration profiles from a least-square fit 

and the experimental concentration are all normalized by their LP

2
P norm respectively. 

Figure 7.24 indicates that the calculated concentration profiles are quite similar with the 

real experimental concentration profiles. It is worth noting that in the Table 7.3, two sets 

of recovered concentrations are tabulated, one resulted from least-square fit with three 

estimated amino acid’s spectra, and the other resulted from four components including the 

estimated Raman scattering component. Although the number of components used for the 

calculation is different, the concentration results are quite close which can not be 

discerned in the plot (Figure 7.24). The reason may lie in the fact that Raman scattering is 
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a quite distinct component which has little overlapping with other major components, and 

most of its systematic variation can not be explained and replaced with other components.  

 

Figure 7.24. LP

2
P Normalized concentrations associated the seven mixtures. Dotted line 

represents the experimental concentration. Solid line represents the least-
square fit result with three estimated spectra from 2D-BTEM. Dashed line 
represents the least-square fit result with four estimated spectra from 2D-
BTEM. (1) tyrosine, (2) phenylalanine and (3)  tryptophan.  

 
 

 Figure 7.25a shows the residual of one mixture spectrum by extracting these three 

recovered components. It is clear that the residual is close to the fourth component (d) 

shown in Figure 7.23 which is regarded as Raman Scattering. If four components are used 

in the least-square fit, the new residual is equivalent to the nonlinearity which cannot be 

accounted for inside the bilinear model (Figure 7.25b). This idea is further supported by 

calculating the signal recovery of the reconstruction. 94.29% of the signal is recovered 
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with three components and it would reach 97.68 % if the Raman Scattering component is 

included. So even though there is non-linearity imbedded in the data, the estimated pure 

components obtained from 2D-BTEM account for 97.68 % of the total integrated signals 

in the seven mixtures. The high degree of the recovery shows that the most of the 

important components in the system have been extracted. 

 

 

Figure 7.25. The residual of one mixture spectrum extracted by the reconstruction spectra 
with three recovered components (a) and with four recovered components 
(b). 

 

                  
7.2.3.5. Comparison with the PARAFAC (Trilinear Model) 

As mentioned in introduction part, PARAFAC is a multi-way method which 

employs the trilinear model. For comparison, a MATLAB multi-way toolbox (Andersson 

and Bro, 2000) is used to implement the PARAFAC algorithm. It is difficult to determine 

the proper number of components, so an arbitrary guess, three and four are set to the 

PARAFAC modeling. A three-component PARAFAC solution is shown in left column of 

Figure 7.26. Also the four-component solution is shown in right column of Figure 7.26.  
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Figure 7.26. Result from PARAFA model with three components (left) and four 

components (right). 
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Theoretically, the PARAFAC solution should be identical to the real solution if the 

trilinear model is valid. In the PARAFAC, if the trilinear model is valid then the 

calculated core consistency from the test data should be close to 100% (Bro and Kiers, 

2003). In this study, the core consistency was 91.7662% for three components, but only 

48.8129 % for four components. These results counter the “appropriateness” of the 

trilineary model for this data set. The explained variation stated in the program was 

98.9379 % (for three components) and 99.1523% (for four components) respectively – but 

as we see, the pure components are not necessarily correct.  

Figure 7.27 shows one of the residuals of the mixture spectrum resulting from 

subtracting the three major components resulting from PARAFAC model. It is clear that 

the residual is not close to the Raman Scattering and still some fluorescence signals exist.  

 

Figure 7.27. The mesh plot of one residual of a mixture spectrum after subtracting the 
three major components resulting from PARAFAC model. 
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7.2.3.6. Discussion 

 The Rayleigh scattering region with its large magnitude possesses a large part of 

signal; therefore it plays a very important part in the modeling. The Rayleigh and Raman 

scattering will deteriorate the mathematical modeling of the fluorescent spectroscopic 

data. Since the Rayleigh scattering cannot be regarded as a stationary component in the 

bilinear model, thus removing the Rayleigh scattering part will enormously reduce the 

nonlinearity of the data. Even though the Raman scattering still exist as it overlaps with 

the fluorescence signal, the removal of the Rayleigh scattering effects significantly 

facilitate the bilinear modeling and 2D-BTEM algorithm.  

In real world, the theoretical mulitlinearity of the fluorescence data are not totally 

valid, it is apparent that there is nonlinearity which prevents the algorithm from 

performing properly as it is heavily based on assumption of trilinearity. This nonlinearity 

may originate from the troublesome background signals, and noise. Also there are still two 

issues related to the trilinear modeling, the robustness of the algorithm when applied to 

noisy data and the prediction of correct number of the components.    

 

7.2.3.7. Conclusions 

The application of 2D-BTEM on the fluorescence EEM data was successful where 

2D-BTEM has been proved to be a very powerful tool to deconvolute the 2D fluorescence 

spectroscopy. 2D-BTEM has been applied to simulated and experimental spectra. The 

quality of recovered spectra is good compared with experimental references. These results 

have implications for a large variety of intrinsically inseparable multi-component mixtures 

system encountered in science research. 
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7.3. Other Types of 2D Spectroscopic Data 

 Two-dimensional (2D) NMR methods have been subject of great interest in recent 

years because these methods allow measurement of the intra- and intermolecular 

interactions that are central to structure-function relationships in chemical and 

biochemical systems. There are various types of 2D vibrational spectroscopy analogous to 

2D NMR spectroscopy(Wright, 2002), namely, 2D-IR (Zhao and Wright, 2000; Zhao et 

al., 2000), 2D-Raman(Tanimura and Mukamel, 1993; Keunok et al., 2003; Wright, 2002). 

MS-MS is another type of important 2D spectroscopic data.  Mass Spectrometry is 

an important identification tool used in industry and academia for both routine and 

research purpose. It provides accurate molecular weight of the charged ions created from 

the chemical molecules of interest and this information is used to identify of studied 

chemicals. Tandem mass spectrometers (MS-MS) are instruments that have two analyzers 

or more analyzers in a tandem arrangement. It can be used for structural and sequencing 

studies of complex molecules. During the parent ion scanning, the first analyzer allows the 

transmission of all samples mass. The specific fragments ions would be further generated 

by bombarding the sample ions which would be observed by the second analyzer. Tandem 

mass spectrometer is extremely useful to give most unambiguous information than the 

conventional mass spectroscopy which makes it a powerful tool in organic synthesis and 

biomolecules analysis.  

Electron paramagnetic resonance (EPR) TP

 
PTtechnique is also often called ESR 

(electron spin resonance) or EMR (electron magnetic resonance)TP

 
PT(Wertz and Bolton, 

1986). Similar to NMR spectroscopy in the presence of a static magnetic field, instead of 

the absorption of radio frequency electromagnetic waves, EPR is an absorption 

spectroscopy involving the absorption of microwave irradiation and detects species that 
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have unpaired electrons. With a wide range of applications in chemistry, physics, biology, 

and materials science, medical science, EPR (Pluschau and Dinse, 1994; Ren et al., 2004; 

Fauth et al., 1991; Pluschau and Dinse, 1995; Kababya et al., 1996)  are used to probe the 

“static” structure of solid and liquid systems, also the dynamic processes. The 2D EPR is 

natural 2D spectroscopic pattern. 

 

7.4. Summary 

 The focus of this chapter was applying the 2D-BTEM in real experimental 2D 

NMR (HSQC and COSY) data. Also successful application in 2D fluorescence data 

verifies its general applicability. In all these analysis, the resolved spectra and 

concentration profiles are satisfactory when compared with references obtained from pure 

component measurements.   
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Chapter 8 

Three-Dimensional Entropy Minimization Algorithm 

In this chapter, the entropy minimization method is further extended to three-

dimensional version. The potential application of 3D entropy minimization in 

multidimensional Nuclear Magnetic Resonance spectroscopy is illustrated. 

 

8.1. Multidimensional Nuclear Magnetic Resonance Spectroscopy 

NMR is the most powerful tool for determining the structures of the molecules.  

The 1D conventional high resolution NMR spectroscopy can be easily interpreted for 

small molecules. However, using 1D NMR for more complex molecule, the P

1
PH spectra 

will consist of many resonances. The assignment of resonance is proved to be difficult for 

two reasons. First, it is still quite challenging to accurately predict the chemical shift of 

each hydrogen atoms. Second, when the number of resonances in the spectrum increases, 

and heavy overlapping happens, the assignment and the successive analysis of component 

will be complicated.  Resolving the overlapping problem by spreading the information 

along two orthogonal dimensions instead of one axis, 2D NMR is widely used as it 

provides an extraordinary increase of resolution, thus making the analysis of the complex 

spectra possible.  

Further, a 3D NMR experiment can be constructed from a 2D NMR by introducing 

another evolution time and a second mixing period, equivalently, adding the third 

dimension in the resultant data. The first type of 3D experiment can be constructed by 

combining two kinds of 2D experiments, such as HSQC-TOCSY, HSQC-NOESY, and 

TOCSY-NOESY. It consists of correlating the various nuclei either through scalar 
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coupling (COSY, TOCSY, HMQC, HSQC) or through space (NOESY), spreading this 

overlapping along the third chemical shift axis by combining two “classical” 2D 

experiments. The addition of the third (or further, the fourth) dimension would increase 

the resolution of resonance and reduce the overlap due to the smaller chance of signal 

overlaps which are dispersed in an enlarged space.   

Second kind of the 3D experiments is called “triple resonance” (Bax et al., 1990) 

which is a heteronuclear NMR experiment involving 3 (or more) nucleis.  Typically, P

1
PH, 

P

13
PC, P

15
PN and P

31
PP are correlated. The experiments are frequently performed on doubly 

labelled (P

13
PC, P

15
PN) proteins (Oschkinat et al., 1988). It is worthy to note that with the aid 

of the multidimensional NMR technique, four dimensional and even higher dimensional 

NMR is possible. A representation for a 3D NMR spectrum is shown in Figure 8.1. 

 

Figure 8.1. A representation for a 3D NMR spectrum (not actual data). 
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Since the technical consideration relate to the NMR spectrometer, the time needed 

to collect the higher dimensional NMR data set normally is quite long, often many days. 

In practice, the acquisition of FIDs (free induction decay) are truncated, which often 

introduce the distortion and the noise that stretches across the entire spectra. Considerable 

efforts have been invested in the multidimensional NMR data analysis, Linear Prediction 

method (Hoch and Stern, 1996; Stern et al., 2002 ) and Maximum Entropy methods (Zhu, 

1996), filter diagonalization method (Mandelshtam, 2001), etc.(Lin and Hwang, 1993) 

which are widely documented in literature. But to our knowledge, there is still no 

chemometric techniques methods address to the data analysis of the mixture system.   

 

8.2. Visualization of 3D Data  

     It is known that high dimensional data visualization is very important in data 

analysis since it gives a direct view of data. We already discussed the display of a 2D data 

with 3D mesh plot to depict their positions and corresponding intensities. But it is hard to 

directly display data with more than three dimensions. So it is impossible to directly 

display a 3D data and their intensity in a 3-dimension coordinate. Therefore the users 

should understand that the display of data with more than three dimensions has to be 

transformed in some way before they can be rendered.  

 In this section, three-dimension contour plot is employed which is represented as 

an iso-surface graph, that is, a surface in a three-dimensional space where the intensity 

values of each point are the same. An iso-surface is essentially the intersection of a surface 

cutting through a volume of data. For example, as shown in Figure 8.2a, the iso-surface 

graph suggests that the points on the surface of ball region have same value. But still there 

is not an immediate way to show the 3D data and their intensities without anther 



                                                                                                                                 Chapter 8 

 204

additional artificial dimension, for example, color index. In the other words, if data are in 

the form with coordination of x,y,z and intensity, one possible way is that we can represent 

3D data on a plane (using x,y and z coordinates) and use colours to represent their 

intensity.   

 

8.3. Overview of the 3D Entropy Minimization Approach 

 The basic philosophy behind the present methodology is analogous to 2D entropy 

minimization method. The approach consists of three primary stages. 

  First, the series of 3D tensors are systematically arranged into a 2D array which is 

indexed by sample-number of the spectra in one direction, and by unfolding each 3D 

tensor into one vector in another direction. This 2D array is decomposed into orthogonal 

components using PCA (Principal Component Analysis) or SVD (Singular Value 

Decomposition) etc.  

 Secondly, an objective function is created using appropriate entropy like function 

with penalty terms which aim to pursuit the simple pattern corresponding to the minima of 

entropy function.  

 Third, a reliable global optimizer such as simulated annealing or genetic algorithm 

is employed to achieve the objective function minima. The sequential evaluations of these 

minima correspond to the pure pattern present in the observed set of 3D mixtures.  All of 

the following simulations and image reconstructions were conducted using in-house code 

developed in MATLAB.   
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8.4. Numerical Simulations  

 

Figure 8.2. The three simulated objects, namely, a ball (a), a rectangle (b) and a cube(c) 
are shown. At the right corner, an example of the superimposition of these 
three objects is shown as (d). 

 

In this section, two sets of 3D simulations are formulated in order to test the 3D 

Entropy Minimization mixture separation algorithm. 
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Simulation 1:   

Three simulated objectives composed of one ball, one rectangle and one cube were 

used (shown in Figure 8.2). In a 505050 ×× space, the elements inside specific region 

defined by each objective were filling with unity value data and leaving other elements’ 

value with zeros. Mixing procedure is carried out with an arbitrary mixing matrix (5by3) 

which gives the different weighing factors. The superimposition of three different tensors 

with various contributions creates a mixture tensor. Five mixture tensors were fabricated 

in this simulation and one is shown in Figure 8.2d. 

 

Simulation 2:   

In the second simulation, in a 505050 ××  space, the elements inside specific 

region defined by each objective were filling with non-negative random value 

data(simulated with MATLAB function “rand”) and leaving other elements’ value with 

zeros. Again, five mixture tensors were fabricated in this simulation. 

 

8.5. Result 

8.5.1. Simulation 1 

 Five 3D mixture tensors were systematically arranged into a 2D array, and the 2D 

matrix was decomposed by SVD. It is known that the middle diagonal matrix Σ  contains 

the singular values of data and the square of its diagonal elements represent the amount of 

information corresponding to each principal component. In simulation 1, the five singular 

values were 29933, 8064.2, 951.25, 2.2759e-012 and 1.2963e-012 individually. In other 

words, the first 3 right singular arrays already explain all the variance (except from the 

noise) in the 5 sets of data, and by the way, it proves that only three components were 
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embedded inside mixtures in this ideal linear mixing system. The left 2 right singular 

arrays were nothing but the noise originated from computational errors (which are 

validated by their extremely small singular values). Therefore it is reasonable only the first 

three right singular arrays were used. 

 Due to the aforementioned reasons, the resulting right singular arrays can not be 

shown in normal way. Additional colour index is needed to visualize the data. In Figure 

8.3, the three physically meaningful right singular arrays are shown in iso-surface plot. 

 

Figure 8.3. The first four resulting right singular arrays, 1P

st
P (a) 2P

nd
P (b) 3P

rd
P (c) and 4P

th
P (d).  

The greenish part suggests the elements in that region are negative meanwhile 
the elements are positive in the brownish region. 
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 For simplicity, only two colours are used here, the greenish part suggests the 

elements in that region are negative meanwhile the elements are positive in the brownish 

region. The first right singular array shows all the values are negative. In the second right 

singular array, the rectangle object is negative and other parts are positive. Meanwhile, the 

cubic object is negative in the third right singular array. It is reasonable to conclude that 

these three objects are independent and possess different variations. 

 It is shown in Figure 8.3 that the fourth right singular array is filled with 

homoscedastic noise. In order to investigate the data structure of the fourth right singular 

array, histogram plot with the elements in the fourth right singular array was created. 

The histogram graphically summarizes the distribution of the data. First, with 

unfolding, the 3D data set was transformed into a one dimension data. All elements in the 

data set were grouped according to their numeric values. The histogram's x-axis reflects 

the range of values and its y-axis shows the counts of elements that fall within the groups. 

 In Figure 8.4, the histogram of the fourth right singular array (a) and fifth right singular 

array (b) are shown. The histograms show that all these arrays were filled with 

computation errors which have random distribution values range from -5e-3 to 5e-3. 

Therefore, it proves that the aforementioned statement that only the first three right 

singular arrays contain information and they will be used in the sequential reconstruction 

procedure.  

 As discussed, the visual inspections imply that, three patterns are independent. It is 

natural to perform 2D-Entropy Minimization using three right singular arrays by targeting 

the small region inside each observable feature once at one time.  Exhaustive searches 

produced only three 3D patterns which are similar to the original three objects in Figure 
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8.2. They were obtained by individually targeting region 1([19 to 21; 28 to 30; 8 to 10]), 

region 2([7 to 8; 2 to 5; 11 to 13]) and region 3([23 to 25; 34 to 35; 24 to 26]). 

 

Figure 8.4. The histogram of the fourth right singular array (a) and fifth right singular 
array (b). 

 
  Two types of objective functions were implemented. In the first objective function, 

only the term concerning summation of the intensity (equivalently the volume term for 2D 

pattern) was used, but in second objective function, the derivate cost was added. 

Reconstruction results are similar.   

 In order to check the quality of the reconstructed patterns, a least-square procedure 

was performed to project the recovered 3D tensors back onto the mixture 3D data and the 

resulting mixing matrix was obtained. It is clear that the entries of the original mixing 

matrix (Eq. 8.1) and this new mixing matrix (Eq 8.2) differ very slightly.   
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⎟
⎟
⎟
⎟
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⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

75.    120.    153.0  
30.5    193.     53.0  
105.    93.0   133.0  
15.      3.0    33.0  
3.0     32.0     1.0  

originalA                                            (8.1) 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

75.0008   120.0000  153.0000  
30.5012   193.0000  53.0000   

105.0006  93.0000   133.0000  
15.0000   3.0000    33.0000   
3.0002    32.0000   1.0000    

calculatedA                                (8.2) 

 

8.5.2. Simulation 2 

 In simulation 2, similar steps were taken as depicted in section 8.5.1. After SVD 

process, the singular value shown in descending order were 16815, 4796.7, 582.52, 

1.8774e-012 and 3.6866e-013 individually. In other wards, the first 3 right singular arrays 

already can explain all the variance (except from the noise) in the 5 sets of data, and by the 

way, it proves that only three components are embedded inside the mixture (not shown 

here). Therefore it is reasonable only the first three right singular arrays should be used. 

By individually targeting regions inside the three objects, the pure 3D patterns were 

obtained.  Exhaustive searches proved only three 3D patterns exist (not shown here).  

They are all highly consistent with the original pure 3D spectra.  

In the same spirits as simulation 1, the normalized unmixing matrix based on the 

recovered objectives from Simulation 2 were obtain via least-square method (shown in Eq. 

8.10) And the normalized original mixing matrix is shown Eq. 8.11.  Except for the 

column wise order is different; they are identical with present display. 
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⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0.6218    1.0000    0.7143    
1.0000    0.3464    0.2905    
0.4819    0.8693    1.0000    
0.0155    0.2157    0.1429    

0.1658    0.0065    0.0286   

calculatedA                                    (8.10) 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

1.0000    0.6218    0.7143    
0.3464    1.0000    0.2905    
0.8693    0.4819    1.0000    
0.2157    0.0155    0.1429    
0.0065    0.1658    0.0286    

mixingA                                     (8.11) 

   In the study, both simulations showed that the extension of entropy minimization 

algorithm to its three-dimensional mode was very successful. The numerical results were 

good and very accurate pure component spectral reconstructions were obtained. 

 

8.6. Summary 

In this section, the 3D entropy minimization algorithm was initiated. A 

methodology was suggested and successfully tested on a simulated 3D mixture data. The 

purpose of developing a high dimensional data deconvolution algorithm is the exploration 

of large, complex, multi-dimensional scientific data, especially the emerging NMR data. 

By applying and extending ideas from entropy minimization and pattern recognition, we 

are developing a new generation of computational tools and techniques that are being used 

to improve the way in which scientists extract useful information from their data, 

especially the high dimensional NMR mixture spectra. 
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Chapter 9 
Conclusions and Future Work 

 

9.1. Conclusions 

 In the present studies, Minimum-Entropy based pure component spectral 

reconstruction method has been successfully applied to real data, such as, NMR 

spectroscopic data, powder X-ray diffraction data where very accurate pure component 

spectral reconstructions are obtained from mixture data. More importantly, 2D Band-

Target Entropy Minimization algorithm and associated techniques were introduced, these 

methodology development was validated using synthetic spectroscopic data, and were 

further modified and tailored and applied to various real 2D experimental data including 

2D NMR data and 2D fluorescence data. 

Initial work began with the extension of entropy minimization algorithm to 1D 

NMR spectra which possess unique characteristic in comparison with other spectra, such 

as FTIR, Raman spectroscopy. Also four sets of data from different types of homogeneous 

catalytic hydroformylation were investigated. After some modification, BTEM was 

successfully applied for the first time, to sets of acoustic data. 

The second focus was the extension of entropy minimization algorithm to its 

multidimensional mode, and eventually applied to the identification of multidimensional 

data. 2D-BTEM has been successfully implemented to real experimental cases as it is 

shown in chapter 6 and 7, which including the simulated, non-reactive and reactive 

mixture systems. There are two clear benefits of this approach. First, it will certainly 

extend the scope of problems that can be treated in the chemical sciences. In other words, 
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the extension brings enormous opportunities of applying the entropy minimization method 

to various types of data set in chemical engineering fields including various matrix-

formatted data and tensor-formatted data. The second major benefit is that we can now 

more confident to apply the multidimensional spectroscopy in the system identification of 

complex chemical reaction via on-line monitoring and in-situ measurements.  

 

9.2. Future Work 

 Firstly, the simulated 3D pattern recognition in a superimposed system has been 

explored in current studies. However it is very necessary to verify the methodology with 

real data, including various kinds of 3D NMR data, either non-reactive or reactive mixture 

data. Normally the collection of 3D NMR data is hindered by the long duration of the 

measurement, often days. Very recently a 10-100 times advance in data acquisition time 

was made by Kupce and Freeman (2004); this just might allow us to make many 3D 

measurements in the future.    

In the long term, the future work will focus on the system identification of 

multidimensional NMR data (since NMR data is the most directly available and evident 

multidimensional type data). It is believed that there is so much more we can do for the 

real experimental data, even though certainly many efforts should be invested in 

improving the algorithm before its application to the real 3D data set. This domain is 

stimulating and challenging.  

Also using chemometric techniques to explore the large-scale spectroscopic data is 

still a field very much in its infancy. In order to extend chemometric technique to large-

scale data, several barriers must be overcome. The large data manipulation including data 

storage and management is a critical issue that must be addressed first, prior to the 
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application of the chemometric algorithms. Also the visualization of the large scale data, 

the computing resource problem and the complex optimization related to the large data are 

all challenging. 

Secondly, even though, in chapter 4 and chapter 7, 1D and 2D NMR data are 

treated by a various pre-treatment procedure and the results are acceptable. But in the real 

data, the reconstruction algorithm is not sufficient to, the non-linearites generated from 

severe spectral band moving and changing band shape. Also due to the serious non-

linearities, the recovery of minor components having weak signals is sometime quite 

difficult. Further developments which focus on effectively solving the problem of spectral 

non-linearities and retrieving weak signal in NMR spectra are needed. Much effort will 

have to be invested in developing routine and automated programs for correcting the on-

line NMR spectroscopic data. These pre-treated methods are critical to the subsequent 

performance of chemometric methods including BTEM analysis.  
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