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ABSTRACT

Most real-time systems allow concurrent execution of different applications

and it is necessary to guarantee that the timing requirement of each appli-

cation is met. One way to ensure this is to compose all the applications

with a unique scheduling paradigm at the system level and modify the ap-

plications to suit the chosen paradigm. But most often, it is desirable to

keep the implemented application and determine the feasibility of schedul-

ing the application in conjunction with other applications. The problem

gets more involved as we try to compose applications that come with their

own scheduling strategy. An alternate approach to compose existing appli-

cations with different timing characteristics is to use a two-level scheduling

paradigm, comprising of a global scheduler at the system level and a local

scheduler for each application. The global scheduler selects the application

that will be executed next and assigns to it a fraction of the total proces-

sor time according to certain criteria and the scheduler is feasible only if

it preserves the temporal guarantees of the local scheduling models. Each

local scheduler schedules tasks within the application. Such hierarchical

composition of schedulers allows for maximum flexibility in the design of

systems with a mix of tasks, each having different timing constraints. A

considerable amount of work has been recently addressed to the analysis

of these kind of hierarchical systems. Various resource reservation schemes

have been proposed and the notion of real-time virtual resources gives a very

flexible parameterization of resource partitions. We propose a generalized
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framework for hierarchical scheduling that permits resource partitioning to

be extended to multiple levels. In constructing the hierarchical scheduling

framework we intend to combine the advantages offered by the notion of

virtual resources with the flexibility of real-time calculus in accommodating

non-standard event models and permitting re-use of unused computation

capacity. The framework handles a wider range of task models and permits

data dependencies among tasks and task groups.

Keywords: component-based design, virtual resources, real-time calculus,

hierarchical scheduling
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1. INTRODUCTION

Component technology has been widely accepted as a methodology for de-

signing large complex systems. Component-based design provides a means

for decomposing a system into components, allowing the reduction of a single

complex design problem into multiple simpler design problems, and finally

integrating the components into the system. The central idea of component

based design is to assemble components into the system without violating

the principle of compositionality such that properties that have been estab-

lished at the component level will also hold at the system level. To preserve

compositionality, the properties at the system level need to abstract the

collective properties at the component level.

Component-based design and development techniques are now being ap-

plied in real-time embedded systems. Owing to the advances in the field

of computer architecture, it is now possible to concurrently execute differ-

ent applications on the same processor. The motivation is to make even

hand-held devices execute general purpose applications by re-using legacy

applications. Thus a real-time system could have many functional compo-

nents (applications) that share a single resource. Each application could

come with its own scheduling strategy. The individual applications are de-

veloped separately and then integrated into the system. During integration

there are two concerns facing the system developer and designer. The tim-

ing constraints of all the tasks within the application should be respected

even after system integration. The individual applications should execute
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in isolation with no interference from other applications. If an application

has more resource requirements, it should not compromise the resource al-

locations to other applications.

When the individual applications have been independently developed

there are two ways to compose the different applications at the system-

level. One way to do composition is to adopt a flat approach, using a

unique scheduling paradigm for the whole system and design all applications

according to the chosen paradigm: then, it is possible to check the schedu-

lability of the whole system by using already existing schedulability analysis

tools. This would require knowing the timing requirements of all tasks in

every application and the generation of a feasible schedule is a cumbersome

task. Sometimes it is necessary to use an already implemented application,

without redesigning it for the new system. In such cases, it is necessary to

guarantee that the application still meets its timing requirements when it is

scheduled along with other applications in the same system. This approach

might pose problems when applications come with their own scheduling

strategy. There is no single scheduler that is best for all kinds of application

domains. For example, applications that are event-triggered are best served

by on-line scheduling algorithms like fixed priority or earliest deadline first;

time triggered applications are best handled by off-line schedulers like TTA

[12]. Thus for composing applications with different temporal requirements

handled by different scheduling policies, the flat composition approach is

not feasible. Moreover this approach is inflexible as it is necessary to know

the temporal requirements of individual tasks of all applications and the

scheduler-design process would have to be initiated all over again anytime

a new application is added to the system.

An alternate way of composing existing applications with different timing
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Fig. 1.1: Hierarchical scheduling model

characteristics is to preserve the application-level scheduling policy, and use

a two-level scheduling paradigm: at the global level, a scheduler selects

which application will be executed next and assigns a fraction of the total

processor time distributed over the time line according to certain criteria.

Each application possesses a local scheduler that selects which task will be

scheduled next. The global scheduler must also protect applications from

one another, such that an application that requires more resources does not

compromise the requirement of other applications. In general, the hierarchy

can be more than two level deep.

A hierarchical scheduling framework can be represented as a tree, or

hierarchy of nodes, where each node represents a scheduling model and re-

source allocation flows from a parent node to its child nodes, as illustrated

in Figure 1.1. Each application along with the application-level scheduler is

considered to be a single component. The system-level scheduler allocates

resources to the individual components with no knowledge of the task-level

details of the components.
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It is obvious that such a hierarchical framework achieves the following

advantages:

• Flexibility: Compositionality allows for maximum flexibility in de-

sign of systems with different real-time applications. In many real-

time systems, there is usually a mix of tasks with mixed constraints,

i.e. some activity might be critical and treated as hard real-time task

(i.e. no deadline must be missed); some other activity is less critical

and nothing catastrophic happens if some constraint is not respected.

However, the quality of service drops with missing more deadlines (soft

real-time tasks). Different scheduling paradigms are used for hard and

soft real-time activities. To compose such applications, it would be

necessary to implement different classes of real-time tasks as different

components, each component with its own scheduling algorithm. Thus

these components could be developed independently.

• Re usability: Compositionality allows reuse of existing applications

without changing their scheduling policy. Suppose we have a compo-

nent that consists of many concurrent real-time tasks, that has already

been developed assuming a fixed priority scheduler, and that compo-

nent needs to be re-used in a new system with earliest deadline first

scheduling algorithm, then the hierarchical composition of applications

would allow the existing application to be re-used and just integrate

it into the system without changing its scheduling algorithm.

• Isolation and Ease of Analysis Each application would just run as

if it is executing on a dedicated resource. The resource sharing will

happen at the higher level in the hierarchy and the application would

have no clue about it. Similarly the resource level scheduler would
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be totally unaware of the timing requirements of the application level

scheduler and is only responsible for allocated time slices according to

some pre-defined criteria to the applications under it. The schedula-

bility at the resource level and at the application level is thus analyzed

independently. A separate scheduling problem is solved at each level of

the hierarchical framework and the schedulability of every component

can be analyzed independently.

In real-time systems research, there has been growing attention to hi-

erarchical scheduling owing to the flexibility and other advantages offered

by such an approach. Figure 1.2 illustrates a part of the scheduling model

with a three level hierarchy. Applications A3 and A4 in the figure are sub-

components of the component application A1. A3 consists of m tasks sched-

uled by the round-robin (RR) scheduling algorithm and A4 consists of n

tasks scheduled by the rate-monotonic (RM) scheduling policy. A3 and A4

are allocated resources R3 and R4 respectively. At the level of application

A1 that schedules A3 and A4 under it using the earliest-deadline-first (EDF),

the scheduler views the resources requirements of the child component as its

workload and schedules it using resource R1.

The hierarchical and compositional framework thus represented, natu-

rally gives rise to component characterization using three parameters: the

resource, workload and the scheduling policy. There are different issues that

need to be addressed in analyzing or constructing such a framework.

• Component demand abstraction: The system-level scheduler han-

dles the individual applications as single entities without knowledge

about the lower level details of the tasks within the applications. To

determine how much fraction of the physical resource each application

should get, the system-level scheduler should know the total timing re-
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Fig. 1.2: Closer view of a hierarchical scheduling model

quirement of the individual applications. Thus within the application

there should be a means of extracting the collective timing require-

ments of all the individual tasks. This collective timing requirement or

collective demand imposed by the application is passed on the system-

level scheduler and the resource supply is determined based on this

demand. Extracting the temporal requirements of individual tasks

and determining the collective demand of a component is called com-

ponent demand abstraction. It is desirable to have tight abstractions

so that the resource requirement is not over-estimated. Thus given

the workloads and the scheduling policies, we could derive the best or

minimal resource allocation for that component that will successfully

schedule the given workload under the given scheduling policy with

minimal wastage of resources or maximum resource utilization.

Given the set of workloads along with the scheduling policies, we could
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solve the component demand abstraction at every level of the hierar-

chy; finally the parent scheduling model could be derived. Thus the

hierarchy would be constructed from the leaf-level tasks of individual

applications.

• Schedulability analysis: Given the set of workloads, scheduling al-

gorithms and the resource allocations, we could determine the exact

schedulability conditions for real-time guarantees. For a given work-

load, the component demand abstraction is solved to give the collec-

tive resource demand under a given scheduling policy for any interval

of time and this demand is represented by a demand bound function

(dbf(t)). From the resource allocation specified, the bound on the

minimum supply of the resource within any time interval could be

determined as the supply bound function (sbf(t)). A necessary and

sufficient condition for scheduling the given workload under the given

resource is to check for dbf(t) ≤ sbf(t), ∀t. Intuitively if the mini-

mum resource supply satisfies the maximum resource demand then the

component is schedulable. Thus it is necessary to come up with tight

bounding functions for the workload and resource models to determine

schedulability.

• Other temporal properties: Given a resource and the tasks along

with their triggering times given as the event model, it should be pos-

sible to compute the timing properties of the processed event stream.

Thus task dependencies could be handled by using this processed event

stream as the event model for the dependent task. Similarly, it should

be possible to compute the computation capacity left over after servic-

ing some workload. This reclaimed service could be used to schedule

some other workload.
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1.1 Resource reservation schemes

The analysis or construction of the hierarchical framework assumes that the

resource allocation is parameterized using some kind of resource model. A

lot of emphasis has been on developing flexible resource reservation schemes

that naturally fit into the hierarchical framework. The notion of real-time

virtual resources [11] proposed by Mok and Feng gives a very flexible rep-

resentation of resource reservation with guaranteed output jitter. The hier-

archical framework proposed by Mok and Feng was based on the bounded-

delay resource partition model introduced in [20]. Shin and Lee extended

this framework to give necessary and sufficient schedulability conditions for

partition-level and application level scheduling with utilization bounds. In

[24] the component demand abstraction problem was defined to be the speci-

fication of the collective timing requirements of the task groups to the higher

level schedulers and so on. A solution to this component demand abstraction

problem was proposed, that abstracts the requirements of a set of indepen-

dent periodic tasks as a periodic resource so that the higher level scheduler

can handle it as a single periodic task. The results presented in [24] were

used in another framework [25] based on the bounded-delay resource model.

The authors have also derived the utilization bounds of the bounded-delay

resource under EDF and RM scheduling.

1.1.1 Drawbacks of previous approaches

The main drawback of the previous approaches is that the workload models

and scheduling algorithms are restrictive. The frameworks accommodate

only workloads composed of independent periodic tasks. To accommodate

a more generalized workload model, it is again approximated to a periodic

task model for the purpose of analysis which leads to loss of accuracy and
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pessimism in timing estimates. The schedulability conditions are derived

for EDF and RM algorithms although many other scheduling policies could

be used. Moreover, these frameworks do not handle data dependencies be-

tween tasks within a task group or between task groups. In the hierarchical

schedulability analysis, the child scheduling models abstract the resource

requirement depending on their workload demands. This resource require-

ment would then form the workload demand of the parent resource model

and the parent model has to find the resource requirement to satisfy this

demand. In this manner, finally the solution to the resource model at the

physical-level, which would be sufficient to schedule all the applications, is

derived. Thus the problem is to find the resource model at the physical

level, given the workloads and scheduling algorithms, using a bottom-up

approach.

1.1.2 Our contributions

We would like to incorporate both top-down and bottom-up approaches to

the construction and or analysis of the hierarchical scheduling framework.

In some cases it would be desirable to determine if a given physical resource

could be partitioned according to some scheduling policy to schedule a given

set of workloads. Thus a top-down approach would be required for such anal-

ysis. It would also be desirable to reclaim unused computation capacity, if

any within the partition to schedule other task groups. This way resource

partitions and workloads could exist on the same level of the hierarchy. We

propose a generalized hierarchical scheduling framework based on the real-

time calculus framework presented in [27][7]. The resource model based on

the real-time calculus framework gives tighter bounds on the resource sup-

ply and allows computation of unused computation capacity so that this
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computation capacity could be supplied to some workload on the same level

or lower level of the hierarchy. Thus the hierarchical framework allows flexi-

ble resource partitioning and resource sharing across levels in the hierarchy.

It can also accommodate non-standard workload models and handle data

dependencies among tasks or task groups. A more precise summary of our

approach to hierarchical scheduling is presented in section 1.3.

1.2 Background

The construction of a hierarchical scheduling framework is to a large extent

dependent upon the resource reservations schemes that allow the various

applications to share the physical resource. A lot of effort has been into

parameterizing the resource allocation such that the availability of the re-

source and additional parameters like the period of the resource are explicitly

amenable to analysis so that resource supply bounds can be derived. Thus

the properties of the resource model should be deducible from the param-

eterization. At every level of the hierarchy, it is desirable that there is no

over-provisioning of resources so that we have maximum utilization. A lot of

research has been directed toward coming up with good resource reservation

schemes. In general resources are classified as:

• Dedicated resources: A resource is said to be dedicated if it is available

to a scheduling component at its full capacity at all times.

• Shared resources: A resource is said to be shared if it is not a dedicated

resource. Depending on the nature of resource sharing we could classify

shared resource as follows:

– Fractional resource: A fractional resource is one that available

to a scheduling component at all times but at a fractional ca-
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pacity. The Generalized Processor Sharing (GPS) [21] approach

is an example of fractional resource model. This is a theoretical

abstraction and there are some approximation methods to make

this model amenable for implementation.

– Partitioned resource: A resource is said to be partitioned if it is

available to a scheduling component at some times at its full ca-

pacity and unavailable at all other times. A partitioned resource

is a shared resource on the basis of time-sharing. The bounded-

delay [20] and periodic resource models [24] are partitioned re-

source models. In the hierarchical scheduling framework, we deal

with partitioned resource models.

The resource allocation at every parent scheduling model acts like a

server providing some amount of resource to the child scheduling models.

Thus roughly speaking, the term server abstraction refers to some crite-

ria for assigning resources to a set of tasks. Various server abstractions

schemes have been proposed in literature. A detailed description of these

server abstraction schemes and their applicability to hierarchical scheduling

frameworks is presented as a part of the literature survey in Chapter 2.

1.2.1 Partitioned resource models

In our work we focus on partitioned resource models. The idea behind

constructing the hierarchical scheduling framework is that each task group

can be analyzed by itself for schedulability assuming the resource from the

parent scheduling model is time-shared amongst the task group in question

and some other task groups that share the same parent model. If the task

group can be considered to be allocated a small fraction of the resource at the

parent level it implies that the resource at the parent-level is time-shared by
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infinite time slicing. Infinite time slicing means that the parent-level resource

is split in such fine time granularity, that it is available at fractional rates

to the task groups. This means the resource would be available to all task

groups at a fractional rate at all times, which in other words is a GPS [21]

approach. The net effect is that each task group has exclusive access to the

resource that is made available at a fraction of the actual rate. But such

infinite time-slicing is impractical due to resource-specific constraints and

context switch overheads incurred using such an approach.

To characterize sharing of resources (without infinite time-slicing) at

fractional rates, Mok and Chen [20] came up with a virtual resource model,

wherein each task group can be viewed to be accessing a virtual resource that

again operates at a fraction of the rate of the physical resource shared by

the group but the rate varies with time during execution. The rate variation

of each virtual resource is given by means of a delay bound D that specifies

the maximum extra time the task group may have to wait in order to receive

its fraction of the physical resource over any time interval starting at any

point in time. In this manner, if we know that an event e will occur within

x time units from another event e′ assuming the virtual resource operates at

a uniform rate and event occurrence depends only on resource consumption,

then e and e′ will be apart by at most x + D time units in real-time. If

infinite time-slicing is possible, the delay bound is zero and this becomes a

fractional resource. In general the delay bound of a virtual resource rate

variation is task-group specific. The characterization of virtual resource

rate variation by means of the delay bound will allow the task models to

be characterized with more general types of timing constraints like jitter.

Virtual resources whose rate of operation variation is bounded are called

real-time virtual resources.
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The rate variation and therefore the delay bound of a real-time virtual

resource is in general a function of the scheduling policy used to allocate the

shared physical resource among the task groups. A simple approach to con-

struct real-time virtual resources that is especially amenable to delay bound

determination is through temporal resource partitioning. Two resource par-

tition models were proposed in [20] and the conditions for schedulability

of task groups within partitions were presented. For simplicity of schedu-

lability analysis, a task group was assumed to consist of a set of periodic

tasks, although the task period could be interpreted as the minimum inter-

separation time in the sporadic task model. Although a resource could refer

to the computation units of a single-processor or a communication bus, the

resource considered in [20] is assumed to be a single processor that is shared

by a collection of tasks. Informally, a (temporal) partition of a resource is

just a collection of time intervals during which the resource is made available

to the task group that is scheduled on the partition. To formalize the notion

of resource partitions, first a resource partition model (static resource parti-

tion) with explicit specification of time intervals is presented below and then

a more generalized representation of the virtual resource (bounded-delay re-

source partition) is described in section 3.1.1 of Chapter 3.

Definition 1: A Static Resource Partition Π is a tuple (Γ, P ), where Γ is

an array of N time pairs {(S1, E1), (S2, E2), · · · , (SN , EN )} that satisfies

(0 ≤ S1 < E1 < S2 < E2 < · · · < SN < EN ≤ P ) for some N ≥ 1, and P

is the partition period. The physical resource is available to a task group

executing on this partition only during time intervals (Si+j×P,Ei+j×P ),

j ≥ 0.

The time intervals where the processor is unavailable to the partition is

called the blocking time of the partition. If we consider a dedicated resource,
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Fig. 1.3: Timing diagram of Static Partition Π1

there is no blocking time and this would be a special case corresponding to

the partition Π = ({(0, P )}, P ).

Definition 2: The availability factor of a static resource partition Π is

a(Π) = (
∑n

i=1(Ei − Si))/P .

The availability factor is the cumulative sum of the time units when the

resource is available within the time period of the resource taken over the

resource period.

In [20] and [11], the availability factor is denoted by α but we use a, to

differentiate it from the arrival curve α of real-time calculus.

Example 1: Π1 = ({(1, 2), (4, 6)}, 6) is a resource partition whose period is

6 and the resource is available from time 1 to time 2 and from time 4 to

time 6 every period as shown in Figure 1.3. The availability factor of the

partition Π is a(Π1) = ((2 − 1) + (6 − 4))/6 = 0.5.

Definition 3: The Supply Function denoted by SΠ(t) of a partition Π is

the total amount of time that it is available in Π from time 0 to time t.

The definition of the supply function applies to any resource model and

it is a monotonically non-decreasing function for t (t ≥ 0). For a static

resource partition the pattern of the supply function is repetitive as the

partition is periodic.

Example 2: Π2 = ({(0, 1), (2, 4)}, 6) is another resource partition as shown

in Figure 1.4 whose available times are the blocking times of partition Π1.
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Fig. 1.4: Timing diagram of Static Partition Π2

Thus a dedicated resource has been partitioned into two, each with availability

0.5. There could be task groups scheduled on each of these partitions.

The schedulability of a task group under the fixed priority scheduling

policy is analyzed by considering the critical time instances. In a classic Liu

and Layland model [18] the worst case scenario or the critical instant is when

a task is requested simultaneously along with all higher priority tasks. For

a partitioned resource model, the worst case scenario occurs when the task

is requested at the start of a blocking time instance. With this observation,

if the first instance of a task is schedulable at the start of every blocking

time interval then it is schedulable on the partition.

If the task group has to be scheduled using a dynamic priority scheduling

policy, the usual utilization bound 1.0 used for EDF scheduling no longer

applies as the resource is not always available. For a static resource partition

as given in the example, the supply function could be computed. Intuitively,

for a task group denoted by G to be schedulable within the resource parti-

tion, the supply function of the resource should be sufficient to handle the

demand imposed by the task group. The discussion pertaining to scheduling

tasks within partitions is presented in section 1.2.2.

The static resource partition model is inflexible and is motivated by a

scenario where the resource is already divided into a set of partitions and

the goal is to schedule task groups in the given partitions. But due to

its simplicity it is more amenable to timing correctness verification and it

suitable for hard real-time systems. A periodic resource partition model
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Fig. 1.5: Timing diagram of a periodic resource Γ(5, 3)

which is still periodic in nature like the static resource partition model, but

does not explicitly specify time intervals, was proposed by Shin and Lee in

[24].

Definition 4: The periodic resource partition Γ is characterized by (Π,Θ),

and guarantees allocation of Θ time units every Π time units.

Example 3: Γ(5, 3) describes a partitioned resource that guarantees 3 time

units every 5 time units as shown in Figure 1.5. The availability factor of

this partition is aΓ = Θ/Π = 0.6

A dedicated resource is a special case of the periodic resource model and

is characterized by Γ(k, k) for any integer k.

The advantage of using a resource model that is periodic in nature, is

that most hard real-time applications are composed of periodic tasks and

the demand imposed by the entire applications can be abstracted as a single

periodic task.

A more generalized resource model called the bounded-delay resource

model was introduced by Mok and Feng [20] and is discussed in detail in

section 3.1.1 of Chapter 3.

Definition 5: The supply bound function denoted by sbfR(t) of a resource

R, is the minimum guaranteed resource supply within any time interval t.

For a periodic resource the supply bound function is calculated as shown

in Figure 1.6.
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Fig. 1.6: Supply bound function of a periodic resource Γ(Π, Θ)

1.2.2 Task model

The simplest task model is the classic Liu and Layland [18] periodic task

model. For real-time systems, the periodic task model and its various exten-

sions have been accepted as a workload model that accurately characterizes

many traditional hard real-time applications, such as digital control and con-

stant bit-rate voice/video transmission. Many scheduling algorithms based

on this workload model have been shown to have good performance and

well-understood behaviors.

Definition 6: A periodic task T is characterized as a tuple (p, e), where p

is the period and e is the worst-case execution requirement of the task.

Definition 7: A task group τ is a collection of n tasks that are to be sched-

uled on a resource partition, τ = {(e1, p1), (e2, p2), · · · , (en, pn)}.

Definition 8: The demand bound function dbfτ,A(t) is the maximum re-

source demand of the task-group τ under the scheduling policy A, in any

interval of time t. In other words, dbf(t) indicates the maximum cumula-

tive resource requirements (recurring instances) of tasks that have both the

arrival times and deadlines within any time interval of duration t.

The demand bound function of a task-group depends on the schedul-

ing policy used to schedule the task-group. For instance, the demand bound
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function of a task-group consisting of periodic tasks under the EDF schedul-

ing algorithm is defined as follows:

dbfW (t) =
∑

Ti∈W

⌊ t

pi

⌋
· ei (1.1)

Similarly under a static priority scheduling algorithm like RM, the demand

bound function of every single task depends on the critical instant demand,

when it is released along with all its higher priority tasks as shown in Eq.

(1.2). Thus if the dbf of every task in the group is met by the resource

supply, then the task-group is schedulable.

dbfFP (Ti, t) = ei +
∑

Tk∈V (Ti)

⌈ t

pk

⌉
· ek (1.2)

where V (Ti) is the set of all tasks having equal or higher priority than Ti.

For a task Ti over a resource model R, the worst-case response time ri(R)

of Ti can be computed as follows:

ri(R) = min{t} : dbfFP (Ti, t) ≤ sbfR(t) (1.3)

1.2.3 Schedulability analysis

Given the task group τ = {Ti = (ei, pi)}n
i=1, the scheduling policy A and the

resource partition R where the task group has to be scheduled, it is possible

to derive the demand bound function dbf(t) of the workload τ given the

scheduling policy A, as discussed in the previous section. From the resource

partition parameters, the supply bound function sbf(t) of the partition, that

guarantees the minimum resource supply within any t time units is calcu-

lated.

The schedulability analysis now just involves checking if the minimum

resource supply can meet the maximum demand imposed by the task group

at all times.
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Fig. 1.7: Scheduling task group {(5, 1), (7, 2)} under EDF policy on partition Π2

For a dedicated resource, the demand bound function has to be satisfied

by the resource at all times. The schedulability condition for a dedicated

resource is as follows:

∀t, dbfτ,A(t) ≤ t (1.4)

On a partitioned resource the schedulability condition becomes:

∀t, dbfτ,A(t) ≤ sbfR(t) (1.5)

For EDF, the schedulability needs to be checked only up to the 2× LCMτ ,

where LCMτ is the lcm of the periods of the tasks in the workload.

∀0 ≤ t ≤ 2 · LCMτ : dbfτ,A(t) ≤ sbfR(t) (1.6)

For fixed priority scheduling, the schedulability condition is given as follows:

∀Ti ∈ τ, ∃0 < t ≤ pi : dbfFP (τ, T, i) ≤ sbfR(t) (1.7)

Example 4: Consider two periodic tasks W1{(5, 1), (7, 2)}, scheduled on

partitions Π2 of Example 2 under EDF. The timing diagram of task exe-

cution would appear as shown in Figure 1.7. The task group executes on the

partition as if it were executing on a dedicated resource.

1.2.4 Hierarchical scheduling framework

One approach to constructing a hierarchical scheduling framework as dis-

cussed in the previous section is through temporal resource partitioning. In
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this approach, the second-level scheduler is responsible only for assigning

partitions (collection of time slices) to the task groups and does not require

information on the timing parameters of the individual tasks within each

task group. The schedulability analysis of tasks on a partition, depends

only on the partition parameters. This enforces the desired separation of

concerns; scheduling at the resource partition (task-group) level and at the

task level are isolated at run time.

A structural overview of virtual resource provisioning is shown in Figure

1.8. At the top level is the physical resource, which is partitioned into several

virtual resources; then, each virtual resource is partitioned recursively into

several lower level virtual resource. Eventually each virtual resource will be

associated with one task group which consists of one or more tasks. The

mapping relation between resource and partitions is 1-to-n; that between

the partition and task group is 1-to-1 and the task-group to tasks is 1-to-n

again. Two classes of resource scheduling problems may be identified in this

structure: one is how to schedule the tasks within a task group; the other is

how to schedule virtual resources on a physical resource.

Thus the real-time virtual resource abstraction supports a universal

paradigm for separating the concerns of proving the correctness of individ-

ual applications and ensuring that the aggregate resource requirements of

the applications can be met as follows: First, determine the timing precision

of event occurrences that is required to establish the desired timing prop-

erties of individual applications. Second, use formal methods or otherwise

to prove the correctness of each individual application by pretending that

it has access to a dedicated resource which operates at a lower rate but has

a delay bound that is adequate for the precision requirements. Third, show

that the resource partition scheme used by the run-time system satisfies
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Fig. 1.8: Overview of the virtual resource structure

the delay bounds. In a nutshell, the real-time virtual resource abstraction

gives us a handle on correctly composing applications with disparate timing

requirements and shared resources.

The real-time virtual resource framework depicts only the structuring of

the resource partitions, and hides the scheduling policy used to schedule the

partitions at every level in the hierarchy. Taking into account the scheduling

policy used to schedule the resources, the framework can then be explicitly

modeled as in Figure 1.2.

At the leaf-levels, the task groups are scheduled on partitions as ex-

plained in the previous section. The next problem is resource-level schedul-

ing, that is scheduling partitions within the parent partition. As seen in Fig-

ure 1.2, the hierarchical framework is structured as a hierarchy of scheduling

models, where a scheduling model M is defined as (W,R,A), where W is the

workload model that describes the workloads (applications) supported in the

scheduling model, R is a resource model that describes the resources avail-

able to the scheduling model, and A is a scheduling algorithm that defines
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how the workloads share the resources at all times. Given multiple schedul-

ing models M1, · · · ,Mn, the goal is to derive the parent scheduling model

MP (WP , RP , AP ). Assuming AP is given, and we consider periodic-resource

model, then the resource model of the child scheduling model Γi(Πi,Θi) is

mapped to a periodic task Ti(pi, ei) and the collection of these periodic

tasks forms the workload WP of the parent scheduling model, such that

WP = {T1(Π1,Θ1), T2(Π2,Θ2), · · · , Tn(Πn,Θn)}. In short, the child par-

titions are treated as the individual tasks of the workload of the parent

scheduling model. If the resource model is not expressed as a periodic re-

source, then there has to be a way of calculating the demand of the resource

model, when treated as the workload.

1.3 Our approach to hierarchical scheduling

The previous approaches to hierarchical scheduling framework, have been

targeted toward deriving the best resource parameters at the top-level of

the hierarchy such that all the child scheduling models are schedulable, and

exact schedulability conditions for scheduling task groups on every resource

reservation scheme proposed. The overall approach to the construction of

the hierarchical scheduling framework is to solve the component demand ab-

straction problem at every level of the hierarchy to derive the parent schedul-

ing model. In this manner the construction and analysis of the hierarchical

framework is bottom-up. In some cases it would also be useful to construct

the hierarchical framework in a top-down manner, having fixed the physi-

cal resource. Then the resource reservation scheme and the resource-level

scheduling policies would have to be derived such that the task groups are

all schedulable. Our hierarchical scheduling framework is an improvement

over the previous models in the following aspects:
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• Generalized resource model: The resource models proposed in

the previous frameworks, have been periodic or sporadic in nature.

A more generalized resource model like the bounded-delay resource

model, gives pessimistic estimates of the minimum resource supply.

Our framework combines the advantages offered by the bounded-delay

resource model with tighter supply bounds from the real-time calculus

framework.

In the construction and analysis of the hierarchical scheduling frame-

work, previous approaches solve the component demand abstraction

problem at every level of the hierarchy and work bottom-up. We

work from the physical resource level and from the task-level, that is

both bottom-up and top-down depending on the scheduling policies

enforced at every level of the hierarchy. Compromising on the isola-

tion property of hierarchical scheduling framework, we aim to maxi-

mize resource utilization by considering the demand imposed by the

task groups in the schedulability analysis, instead of the abstracted

resource supply.

• Remaining computation capacity: In schedulability analysis, the

minimum resource supply and maximum resource demand are con-

sidered and in reality, this leads to over-provisioning of resources. It

would be useful to calculate the remaining computation capacity left

over from a resource partition and pass it on to some other resource

partition in the same level, or at a lower-level in the hierarchy.

The remaining computation capacity could also be used to schedule

some other task group on the same level. We could schedule a mix of

resource partitions and task groups within the same resource partition.

This flexibility makes the scheduling framework very powerful since we
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tend to maximize resource utilization.

• Modeling dependencies: Some existing concurrency models have

been proposed to handle the data dependencies among the tasks sched-

uled on different resource partitions. We propose a solution to this

problem using the real-time calculus framework and illustrate that

the behavior of our model is typically similar to the existing semantics

and the exact temporal properties of the producer and consumer tasks

involved in a dependency are explicitly derived.

• Generalized task models: The task models considered in the pre-

vious approaches are very restrictive. Task groups typically consist of

periodic independent tasks. In reality, not all applications are mod-

eled as a set of periodic tasks. It would be desirable to have powerful

task models, characterizing applications with precise temporal param-

eters. Task models that handle conditional branching and accommo-

date data dependencies among tasks are very powerful. Incorporating

such task models into the scheduling framework, involves deriving the

schedulability condition for scheduling the task group on a partitioned

resource model. In our hierarchical framework, we illustrate the use of

a couple of powerful task models and present the exact schedulability

conditions.

1.4 Report organization

The rest of the report is organized as follows: Chapter 3 is organized into

three main sections: section 3.1 discussing some generalized resource mod-

els, section 3.2 describing the workload model that consists of the event

model explained in section 3.2.1 and two generalized task models in section
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3.2.2. The focus of this work, that is the construction of the hierarchical

framework rests on the concepts explained in sections 3.1 and 3.2, and is

illustrated in section 3.3. The bounded delay resource partition model and

our resource model based on real-time calculus are described in sections

3.1.1 and 3.1.2 respectively of section 3.1, with a comparative analysis of

these two approaches presented in section 3.1.3. The recurring real-time

task model is described in section 3.2.2, the stream-based task model in

3.2.2 and the schedulability conditions are presented in section 3.2.2. The

hierarchical scheduling framework is introduced in section 3.3 and handling

various cases of data dependencies is discussed in section 3.4. An illustra-

tive case-study of a complex real-time system is presented in section 3.5 and

the evaluation of the framework is presented in section 3.5.1. Finally the

contribution of this work is summarized in chapter 4, and future directions

are discussed in section 4.1.



2. RELATED WORK

A general methodology for temporal protection in real-time systems is the

resource reservation framework. The basic idea is that each task is assigned a

server that is reserved a fraction of the processor bandwidth. Thus, by using

a resource reservation mechanism, the problem of schedulability analysis

is reduced to the problem of estimating the computation time of the task

without considering the rest of the system. The various resource reservations

schemes proposed and their use in hierarchical scheduling is discussed in this

chapter.

2.1 Server abstractions

Given the pair (Q,P ) assigned to the server, the worst execution times,

periods and deadlines of the tasks, and the internal scheduling algorithm for

the task group, it is possible to perform a schedulability analysis of a group

of tasks on a server. Saewong et al. [23] presented a response time analysis

of such a hierarchical system. The problem of finding the server parameters

(Q,P ), given the group of tasks, such that the task group is schedulable on

the server is answered by [14][15].

Period, sporadic and deferrable servers The simplest resource reser-

vation policy is the periodic server abstraction [14][15]. Each application is

assigned a server that is characterized by the pair (Q,P ), with the mean-

ing that the server gets Q units of execution every P units of time. Given
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the parameters (Q,P ), it is possible to perform a schedulability analysis of a

group of tasks on the server. The global scheduling mechanism decides when

to schedule the servers and the selected server, by using the local scheduling

mechanism, decides which application task will be executed next. Given an

application composed of periodic (or sporadic) tasks, scheduled by a fixed

priority local scheduler, it is possible to find a class of parameters (Q,P )

that make the application schedulable.

In deferrable servers that are characterized by (Cs, Ts,Ds), where Cs

is the resource reservation in time units, every recurring time interval Ts

before a relative deadline D, the budget is replenished (back to Cs) at the

beginning of every server period. As long as the server has enough budget

it could use it anytime within its period to service requests. This approach

suffers from a phenomenon called deferred execution effect or back-to-back

execution phenomenon (also ‘jitter effect’). In particular, an aperiodic task

could arrive at the latter part of the server’s period and utilizes its budget

just in time for a new server period. Since the budget is replenished, the

aperiodic task grabs the resource (say CPU) for another Cs units of time.

The net result is that 2×Cs units of time were used over two periods ‘back

to back’.

A Sporadic Server is very similar to the deferrable server, except that

the budget is not replenished at the beginning of each period, but after Ts

units of time elapse after the budget is consumed.

Constant Bandwidth Server (CBS) To provide efficient run-time sup-

port for continuous media (CM) applications, a constant bandwidth server

[3] has been proposed. In this any task τi consists of a sequence of jobs

Ji,j, where ri,j denotes the arrival time (or request time) of the jth job of

task τi. Each hard real-time task is characterized by two additional param-
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eters (Ci, Ti), where Ci is the WCET of each job and Ti is the minimum

inter-arrival time between successive jobs, so that ri,j+1 ≥ ri,j + Ti. The

relative deadline of the job is given by di,j = ri,j + Ti. For a soft real-time

task, Ci denotes the average execution time of each job and Ti represents

the desired activation period between successive jobs. The soft deadline

is again di,j = ri,j + Ti. The tardiness Ei,j of a job Ji,j is defined as

Ei,j = max{0, fi,j − di,j}, where fi,j is the finishing time of job Ji,j . To

integrate hard and soft real-time tasks in the same system, hard tasks are

scheduled by EDF algorithm based on their absolute deadlines, whereas each

soft task is handled by a dedicated server, the Constant Bandwidth Server

(CBS).

CBS is characterized by a budget cs and an ordered pair, (Qs, Ts), where

Qs is the maximum budget and Ts is the period of the server. At each instant

a fixed deadline ds,k is associated with the server and initially ds,k is set to 0.

Each served job Ji,j is assigned a dynamic deadline di,j equal to the current

server deadline ds,k and the budget cs is decreased by the amount of time the

job executes. When the budget is exhausted it is recharged to the maximum

value Qs and a new server deadline is generated as ds,k+1 = ds,k +Ts. When

a new job arrives when the server is active the job is enqueued. When a job

finishes execution, the next pending job in queue, is served using the current

budget and deadline, else the server becomes idle.

Total Bandwidth Server (TBS) In order to schedule aperiodic requests

whose arrival times are not known and whose WCETs are known, a fixed

(maximum) percentage Us (server size) of the processor is allocated [26] to

serve aperiodic jobs. When an aperiodic job arrives, it is assigned a deadline

such that the demand created by all the aperiodic jobs in any feasible interval

never exceeds the maximum utilization Us allocated to aperiodic jobs.
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Proportional share (PS) schedulers Proportional share (PS) sched-

ulers [10] are quantum-based approximations of fair schedulers. Some PS

schedulers can guarantee that during any time interval of length t, a thread

with a share s of the total processor bandwidth will receive at least st − δ

units of processor time, where δ is an error term that depends on the partic-

ular scheduling algorithm. This guarantee is called the proportional share

bound error. PS schedulers provide stronger guarantees to applications than

do traditional time-sharing schedulers: they allocate a specific fraction of the

CPU to each thread and have clear semantics during underload, i.e. unused

and unallocated capacity is distributed across processes in proportion to

their allocation.

Hierarchical extensions to the server abstractions An extension

to the CBS was proposed [13] to achieve per-thread performance guar-

antees and inter-thread isolation in certain kinds of multi-threaded real-

time computer systems. Each thread Tj = (Uj , Pj) is characterized by the

worst-case utilization Uj and period Pj . Each thread Tj generates a se-

quence of jobs J1
j , J2

j , . . . ,, with job Jk
j becoming ready for execution at

time ak
j (a

k
j ≤ ak+1

j ,∀j, k) and having an execution requirement of ek
j time

units. If F k
j denotes the time instant at which job Jk

j would complete ex-

ecution, if all jobs of thread Tj were executed on a dedicated processor of

capacity Uj and fk
j denote the time instant at which Jk

j completes execution

under CBS, it is guaranteed that fk
j < F k

j + Pj , i.e, each job of thread Tj is

guaranteed to complete execution under CBS no more than Pj time units

later than the time it would complete if executing on a dedicated processor.

In [9], the authors studied systems that are scheduled using fixed priority

pre-emptive scheduling at both local and global scheduling levels. They gave

the exact response time analysis for hard real-time tasks scheduled under
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periodic, sporadic and deferrable Servers. This analysis provided a reduc-

tion in the calculated worst-case response times of tasks when compared to

previous published work. A similar improvement was also apparent in the

server capacity and replenishment periods deemed necessary to schedule a

given task set. In a comparative study of periodic, sporadic and deferrable

Servers in terms of their ability to guarantee the deadlines of hard real-time

tasks, it was found that the periodic server completely dominates the other

server algorithms on this metric. They extended the schedulability analysis

to hierarchical systems where tasks in disparate applications are permitted

to access mutually exclusive global shared resources. This work also clearly

illustrated the advantages of choosing server periods that are exact divisors

of the task periods, thus enabling tasks to be bound to the release of the

server.

Hierarchical loadable scheduler (HLS) Hierarchical loadable sched-

ulers (HLS) [22] is a system that supports composition of scheduling behav-

iors using hierarchical scheduling, as well as the ability to provide guaranteed

scheduling behavior to application threads at the leaves of the scheduling hi-

erarchy. A guarantee is provided by a scheduler to a scheduled entity (either

a thread or another scheduler) using a virtual processor (VP). A guarantee

is a contract between a scheduler and a scheduled entity regarding the dis-

tribution of CPU time that the VP will receive for as long as the guarantee

remains in force.

A hierarchy of schedulers and threads composes correctly if and only if

firstly, each scheduler in the hierarchy receives a guarantee that is accept-

able to it and secondly, each application thread receives a guarantee that

is acceptable to it. The set of guarantees that is acceptable to a scheduler

is an inherent property of a scheduling algorithm. If acceptable guarantees
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can be assigned to all application threads, the hierarchy is compositionally

correct, otherwise it is not.

Reservation-based operating systems provide applications with guaran-

teed and timely access to system resources. They provide temporal isolation,

i.e. prevent timing misbehavior of one task from interfering with other tasks.

The abstraction of resource isolation should be extended to cover not just a

task boundary, but also collection of tasks, applications, users, network flows

or other high-level resource management entities. A hierarchical reservation

model [23] was proposed where any resource management entity, such as a

task, an application and a group of users, could create a reservation to obtain

resource and/or timing guarantees. Resource requests will be granted only

if the new request and all current allocations can be scheduled on a timely

basis. Each reservation can then recursively create child reservation and be-

come a parent reservation. Different parent reservations can specify different

scheduling policies to suit the needs of their respective descendants. The re-

source isolation mechanism will ensure that each child reservation cannot

use more resources than its allocation. However if a child reservation under

uses its resource allocation, those unclaimed resources can be assigned to

its siblings. The key challenge of such a system is the capability to grant

throughput and latency guarantees to each node in the hierarchy based on

its scheduling policy.

Hierarchical deadline-monotonic scheduler (HDM) The hierarchi-

cal deadline-monotonic scheduler, (HDM) [23], makes some assumptions

about the task models to obtain analytical results. A resource kernel (RK)

allows applications to specify only their resource and time-line demands

leaving the OS kernel to satisfy those demands using (hidden) resource man-

agement schemes. The resource specification uses the (C, T,D) model for
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the reservation of C units of resource time every recurring time interval T

before a relative deadline D. To provide temporal isolation among tasks, the

resource kernel monitors and enforces actual resource used by each reserva-

tion. In the HDM scheduler mode, a child reserve Ri can be created only if

its parent resource Rp(Cp, T p,Dp) has been guaranteed access in a resource

kernel.

The schedulability analysis of HDM involves considering a parent reserve

to be a server that serves requests from its child reserves. The deferrable

server with (Cs, Ts,Ds) allows any of its clients to use its resource any time

within the current period Ts until its budget Cs is exhausted. In order to

avoid back-to-back the sporadic server technique is used but with higher

implementation complexity. Instead of providing periodic replenishment to

the server budget, the sporadic server replenishes the budget based on the

actual time of prior resource usage, such that in the worst-case, a child

reserve behaves like a classic Liu and Layland periodic task.

2.2 Composite schedulability analysis with utilization bounds

Another way of performing composite schedulability analysis is by using

utilization bounds. This is more useful for on line admission test in deciding

whether an arriving event could be admitted into the system such that all

other tasks already queued can still meet their deadlines. In [29], the authors

derive schedulability bounds for a range of workload patterns and schedulers.

By proper parameterization existing utilization bounds for different priority

assignments and task releasing patterns could be derived from the results

presented. The approach adopted here is based on network calculus to derive

a general schedulability bound by solving a minimization problem over the

entire task set population. The problem here is that the task set population
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considered is potentially infinite and the solution requires deriving the worst

case schedulability bound among the entire set.

2.3 Interface-based scheduling approach

Yet another approach to compositional scheduling is to define a compo-

nent interface [28] that describes how the component can be used. The

interface specification is given by the input assumptions that describes the

expectations a component has about other components in the system and

output guarantees that tell other components in the system what they can

expect from this component. The major goal of a component interface is

to provide enough information to decide whether two or more components

can work together properly. But the interface-based real-time system de-

sign approach assumes that we are given a set of the load components and

processing components and the goal is to build the interface of a complete

system by composing all interfaces of the different components. This ap-

proach would be exhaustive for a system with large number of components,

as it would require specifying all the parameters (load, processing) for each

of the components. The components are considered to be made up of inde-

pendent tasks, with periodic or periodic with jitter behavior and deadlines

equal to, less than or greater than the period of invocation. Although the

model guarantees tight bounds, it does not model data dependencies among

tasks in the components.

Along the lines of resource partitioning schemes for hierarchical schedul-

ing, the notion of real-time virtual resources as described in section 1.2.4

of chapter 1. The component demand abstraction problem derives the pa-

rameters for the interface between the parent and child scheduling models.

The hierarchy is constructed bottom-up deriving the interface parameters at
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Fig. 2.1: a) Task graph with tasks t1 = (p, e1) and t2 = (m · p, e2) b) Task and

input signal line for m = 2

every level until the parent resource allocation is derived. The models pro-

posed based on the virtual resources, are restrictive in the workload models

and scheduling algorithms that can be incorporated. The bounded-delay

resource partition model gives more flexibility on partition-level schedule.

The partition delay parameter is most useful for bounding the separation

between event pairs and thus a bound on the output jitter is achieved.

2.4 Handling data dependencies among tasks and task groups

Most hierarchical scheduling frameworks accommodate only task groups

that consist of independent periodic tasks. There are two types of depen-

dencies: one is between tasks in a group i.e., inter-group dependencies and

the other is between tasks in different groups i.e., intra-group task depen-

dencies. There have been various approaches suggested to handle such data

dependencies. In [19] the hierarchical framework based on the periodic re-

source model, is analyzed in the presence of data flow constraints, with two

natural semantics, namely, RTW (Real-Time Workshop) and LET (Logical

Execution Time).

RTW [2] is a code generation tool for MATLAB/Simulink models and
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Fig. 2.2: a) Task graph with tasks t1 = (m · p, e1) and t2 = (p, e2) b) Task and

input signal line for m = 2

LET is the underlying concurrency of the Giotto [6] programming language

based TTA. These semantics are used to handle multi-rate task programs,

where the producer and consumer tasks have different sampling rates. A

hard real-time system based on the sensor-actuator model is a typical system

where such a scenario occurs. The sensor will be sampled at some frequency

and the actuator will be sampled at a different frequency. It is necessary

to ensure data integrity between the sensor and the actuator, so that a

successive triggering of the sensor does not overwrite the values supplied

to the actuator before the actuator finishes execution. It is also necessary

guarantee determinism, so that every successive activation of the actuator,

uses values from the corresponding activation of the sensor.

It is assumed that the task groups are specified with an underlying task

precedence graph giving the producer-consumer relationship between tasks.

RTW generates multi threaded code for a given task graph, one thread per

sample time of the graph. This code runs on an RTOS that offers priority

based pre-emption mechanism. Each task is assigned to a thread based on

its period, and the schedule within a thread is constructed from the task

dependencies. The rate-monotonic (RM) scheduler invokes the generated

code, enabling pre-emption between rates. The data transfer between the
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Fig. 2.3: a) Task graph with tasks t1 = (p, e1) and t2 = (m.p, e2) b) Task and input

signal line for m = 2

producer and consumer is handled by introducing rate-transition blocks,

which acts as a hold/delay block to retain the values written by the pro-

ducer and pass it on to the consumer, thus guaranteeing data integrity and

determinism. An example of such data transfers is shown in Figures 2.1 and

2.2. In RTW, another mode of handling dependencies among tasks called

the asynchronous mode [1] guarantees data integrity but does not ensure

determinism.

The LET semantics on the other hand, logically extends the execution

time of the producer and consumer tasks and makes the exact time of data

transfer predictable. The logical execution time extends from the release to

termination time of tasks, data transfers between tasks happens exactly at

the termination time of the producer task and release time of the consumer

task. An example of data transfer using LET semantics is shown in Fig-

ure 2.3. The LET semantics does not prescribe any particular scheduling

strategy. EDF or a simple round-robin scheduling policy could be applied

as long as the generated code satisfies the LET assumption.

Since the LET logically extends the execution time, the end-to-end la-

tency is higher than in the case of RTW, when there are chains of dependent
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tasks. Since RTW used fixed priority scheduling of tasks to maintain the or-

der of task execution, and LET can be implemented with EDF where prece-

dences are ignored, benefits of better schedulability is turned into tighter

abstraction in compositional scheduling. So in the trade-off between la-

tency and composability, it becomes desirable to exploit the composability

property for tighter abstraction and ease of analysis.

Another approach to modeling concurrency [17] [16] has been to adopt

existing resource sharing protocols like the priority inheritance or priority

ceiling protocols. The BandWidth Inheritance (BWI) protocol proposed in

[17], extends the CBS algorithm [3] to real-time tasks that can access shared

resources via critical sections, by using a technique derived from the Priority

Inheritance Protocol (PIP).

In [4] the authors derive exact expressions for the load of a task group

including the overhead of any synchronization protocol that is used to im-

plement resource sharing. But these approaches give pessimistic bounds on

the waiting time which in turn is derived from the synchronization protocol

used to implement resource-sharing.



3. GENERALIZED HIERARCHICAL SCHEDULING

FRAMEWORK

The hierarchical scheduling framework is constructed from the resource

model used to parameterize the service allocation, and from the workload

model used to describe the temporal properties of the tasks and task-groups

sharing the resource. The resource and workload models are described in

sections 3.1 and 3.2 respectively. These two sections serve as background to

the construction of hierarchical scheduling framework described in section

3.3 and section 3.4 illustrates how techniques from real-time calculus are

used to model intra-group and inter-group task dependencies. Finally in

section 3.5 we present an illustrative case-study of a real-time system using

hierarchical scheduling.

3.1 Resource model

The construction and analysis of the hierarchical scheduling framework is

primarily dependent on the resource model used to partition resources. In

section 3.1.1, we describe a generalized resource partition model called the

bounded-delay resource model proposed by Mok and Feng in [20]. Section

3.1.2 illustrates the service curve representation of resources in the real-time

calculus framework and section 3.1.3 draws up a comparison of the bounding

functions of both models. We illustrate that the bounded-delay model can

be expressed as service curves and vice versa, and also prove that the service
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curves give tighter bounds on resource supply. A detailed description of the

bounded-delay resource model and service curve representation follow.

3.1.1 Bounded-delay resource model

The simplest way to partition resources is to assign a fraction of the physical

resource each to the task groups scheduled on the resource similar to the GPS

[21] approach. But a practical implementation of such a resource reservation

scheme is infeasible and some approximation techniques have been proposed

to make this theoretical resource model amenable to implementation. Based

on this fractional resource model, Mok and Feng [20] proposed the bounded-

delay resource model where the fractional resource allocation is bounded by

a delay parameter.

According to the bounded-delay resource model, if a task group has been

promised a fraction a of a resource, it will receive at least a× t units of the

resource’s time in any interval of t + ∆ for any value of t, where ∆ is a de-

sign parameter, a non-negative number specified by the programmer. The

parameter ∆, called the delay bound of the resource partition is enforced

by the operating system. This approach, directly bounds the jitter on the

rate of service provision of the partitioned resource. Thus a fractional re-

source specification is mapped onto a partitioned resource model by adding

a parameter called the delaybound. Thus if we know that an event e will

occur within t time units from another event e′, assuming that the resource

operates at a uniform rate, and event occurrence depends only on resource

consumption, then e and e′ will be apart by at most t + ∆ time units in

real-time. This permits real-time tasks to be scheduled as if they execute

on dedicated CPUs of almost uniform speed modulo the delay bound ∆.

The delay bound can be specified to stay within bounds of the jitter
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Fig. 3.1: Bounded-delay resource model Π(a, ∆)

tolerances of the task group. The scheduler, partitions the shared resource

to satisfy the delay bound requirements of the different task groups. The

formal definitions of the bounded-delay resource model follow.

Definition 9: The Partition Delay ∆ is defined as the smallest d so that

for any t0 and t1, the following inequality holds:

(t1 ≥ t0), (t1 − t0 − d)a(Π) ≤ (S(t1) − S(t0)) ≤ (t1 − t0 + d)a(Π) (3.1)

where S(t) is the supply function as defined in Definition 3.

Definition 10: A Bounded Delay Resource Partition Π is a tuple (a,∆)

where a is the rate of the partition and ∆ is the partition delay.

The bounded-delay resource is one that is available at a rate of a, with

a maximum delay of ∆ time units. That is, in any interval of t time units,

a× t units of resource allocation is guaranteed in a maximum of t + ∆ time

units.

Definition 11: The supply bound function sbf(t) of a bounded-delay re-

source model Π(a,∆) gives the minimum resource supply guaranteed in any
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interval of t time units and is given by the equation:

sbfΠ(t) =

⎧⎨⎩ a(t − ∆) if (t ≥ ∆)

0 otherwise
(3.2)

An illustration of the bounded-delay model is given in Figure 3.1.

3.1.2 Resource model using service curves

The resource model based on real-time calculus is characterized by the ser-

vice function C(t) analogous to the supply function S(t) of Definition 3.

The service function C(t) ≥ 0 represents the maximum amount of compu-

tation that could be delivered up to time t. Usually processors serving task

requests are considered to be able to deliver a constant amount of computa-

tion per unit time. The more general concept of a delivery curve, which is

inspired by the use of service curves in the networking domain, characterizes

the processor via the minimum amount of computation that is guaranteed

to be delivered in an interval of length δ (actually parameterized as ∆ in the

real-time calculus framework, but we denote it as δ in order to differentiate

it from the partition delay parameter) starting at any arbitrary point in

time.

Definition 12: A computing resource can be described by a service function

C, where C(t) denotes the number of units of computation that could have

been delivered in the interval [0, t).

Definition 13: The service curve denoted as β, of a service function C

is a non-decreasing, non-negative function which satisfies C(t) − C(s) ≥
β(t − s),∀s ≤ t. The upper and lower service curves βu(δ), βl(δ) ∈ R

≥0 of

a service function C(t) satisfy:

βl(t − s) ≤ C(t) − C(s) ≤ βu(t − s),∀s, t : 0 ≤ s ≤ t (3.3)
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Fig. 3.2: Upper and lower service curves corresponding to a function C(t) of a

resource node that processes 1 event per time unit in the interval [0, 2],

only 1/2 an event in [2, 4] (e.g. because of a processor share with another

task), has no computing capability in [4, 5] (e.g. because of an interrupt

handler), and can process 2 events per time unit starting from time 5.

The service curves βu(δ) and βl(δ) can be interpreted as the maxi-

mum and minimum available computing service within any time interval

of length t, respectively. Therefore, given the service function C, we have

βl = minu≥0{C(δ +u)−C(u)} and βu = maxu≥0{C(δ +u)−C(u)}. Figure

3.2 shows an example of upper and lower service curves, corresponding to a

service function C(t).

In case of an unloaded processor, both resource curves may be equal and

represented as straight lines, i.e. βu = βl = δ. A more complicated example

is a time division multiplex bus with the period q. Within this period, a

time units are available for the respective communication channel at a fixed

offset and b bytes can be communicated within the available a time units.

The corresponding service curves are shown in Figure 3.3.
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Fig. 3.3: Upper and lower service curves corresponding to a TDMA communication

bus

For a processor we could apply the TDMA based scheduling policy, and

partition the resource into two, assigning weights w1 and w2. Firstly the

sum of the weights w1 + w2 ≤ 1 and the scheduler works as follows: time is

divided into periods of length P and within any period w1 × P consecutive

units of the processor’s time is allocated to partition 1 and w2×P consecutive

units are allocated to partition 2. Let us first assume that the period P is

infinitesimally small and we neglect the effects of a finite sampling of the

processor cycles. Then the service offered to the two partitions in terms

of processor cycles is calculated as follows: If c is the number of processor

cycles available from the processor per unit time (i.e. c is the frequency of

the processor), then the total service offered by the processor is given by the

service curve βl(δ) = βu(δ) = cδ.

The service offered to partition 1 can be specified by the service curve

βl
1(δ) = βu

1 (δ) = w1cδ. Similarly, the service curve for partition 2 is

βl
2(δ) = βu

2 (δ) = w2cδ. Therefore, the lower and the upper service curves

for both partitions coincide and are straight lines with slopes w1c and w2c

for partitions 1 and 2 respectively. For instance if the number of processor

cycles per period is 1.5 × 106 and the weights are assumed to be w1 = 0.7,

w2 = 0.3, the upper and lower service curves of the partitions coincide as
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Fig. 3.4: Two resource partitions with weights 0.7 and 0.3 are created from a pro-

cessor that offers 1.5 × 106 cycles every unit of time.

shown in Figure 3.4. This is fractional resource allocation also called fluid

model of service allocation similar to the Proportional Share scheduler and

GPS approach.

When the period P has a finite value, the service curves take the form

of a staircase function and the lower and upper curves no longer coincide

and each partition would have service curves similar to the ones shown in

Figure 3.3.

3.1.3 Bounded-delay resource and service curves - A comparison

The bounded-delay resource model could be expressed in terms of service

curves and vice-versa. Given the service function of a resource, it is possible

to derive the delay bound ∆ satisfying the inequality of Eq. (3.1). The

availability rate of the service would be the fractional availability of the

resource over the entire time interval considered.

Example 5: Consider the periodic resource pattern Γ(5, 3) shown in Figure

1.5. The resource pattern guarantees 3 time units of resource allocation,

every 5 time units. The maximum blocking time of such a resource is 2 ×
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Fig. 3.5: Comparison between the supply function, supply bound function and

lower service curve of the resource Γ(5, 3)

(5 − 3) which is 4 times units. This is evident from the interval of resource

availability, in the time interval [0,10]. Thus the delay (∆) of the resource is

∆ = 4. The rate (availability a) of such a resource is 3/5, which is 0.6. The

supply bound function of the resource can thus be calculated using Eq. (3.2).

It is also possible to derive the upper and lower service curves for the same

resource pattern by sliding a window of length t over the entire time window

and recording the maximum and minimum values of service capacity, for all

possible values of t. An illustration of the lower service curve βl and the sbf

of the resource Γ is shown in Figure 3.5.

The lower bounds on resource supply as given by the supply bound

function is pessimistic as can be seen in Figure 3.5.

The supply bound function (sbf) and the lower service curve (βl) are

related as follows:

a × (t − ∆) ≤ βl(t), ∀t ≥ 0 (3.4)

In other words, sbf(t) ≤ βl(t). By definition of sbf , we are guaranteed to

receive at least a× (t−∆) time units of resource availability in t time units.
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Fig. 3.6: Schedulability of {(5, 1), (7, 2)} under the sbf and βl of the resource in

Example 3

If for some t0, βl(t0) < sbf(t0), then it means the lower bound on service, i.e

sbf does not hold at t0, which contradicts the fact that sbf is the minimum

service supply. Thus sbf(t) ≤ βl(t), ∀t ≥ 0. This can also be proven by

considering the delay and the longest unavailable time interval. The delay

∆ is definitely greater than or equal to the longest unavailable time interval

of length say t0, ∆ ≥ t0. There are two cases: all time intervals t such

that, t <= t0 and t > t0. For case 1, we can observe that sbf(t) = 0 by

definition and βl(t) = 0 and thus sbf(t) = βl(t) for all t <= t0. If t0 <= ∆

then also, sbf(t) = 0 and thus is less than or equal to βl(t). But if t > ∆,

sbf(t) = a × (t − ∆) and thus increases linearly with t. While sliding a

window of size t to record the least supply in the range, βl(t), if there is

a region adjacent to the longest blocking time interval of length t0, that

supplies a very low fraction of the resource, then we will see that the delay

would obviously be much higher than ∆. Therefore βl(t) will always record

a value greater than or equal to sbf(t) for all values of t.
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Schedulability analysis Given a partitioned resource model that can calcu-

late its supply bound function accurately and a task group that can calculate

its demand bound function accurately, it is possible to check the schedula-

bility of the task group on the partitioned resource using the conditions

presented in section 1.2.3.

Example 6: Consider the resource given in Example 3 and a workload set

given by two periodic tasks W = {(5, 1), (7, 2)}. The service bounds for this

resource under the bounded-delay partition model and service curve repre-

sentations were computed in Example 5. The demand bound function of

the workload as given by Eq. (1.1) could be computed and the schedulability

condition for EDF could be tested for all t upto 2 · LCMW . As it turns

out this workload is not schedulable under the bounds given by sbf of the

bounded-delay model. But under the lower service curve βl, this task group

is schedulable. The demand bound function and the service bounds of both

the resource models are shown in Figure 3.6.

3.2 Workload model

The term workload model is used in [24] to describe the temporal properties

of the tasks scheduled in the system. The workload model is comprised of

the temporal properties of event arrivals that trigger the task in conjunction

with the temporal properties of the task itself. Every task is associated

with an event arrival pattern that determines the separation time between

successive triggerings of the task. This event arrival pattern is described by

the event model. The previous approaches to hierarchical scheduling dealt

with periodic events. In our hierarchical scheduling framework, we propose

the use of a generalized event model in the form of arrival curves described

in section 3.2.1. Section 3.2.2 briefly describes two task models that handle
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Fig. 3.7: An arrival function that has been generated from a finite size exponentially

distributed event sequence with mean 1

conditional branching and precedence relationship among tasks.

3.2.1 Generalized event model - Arrival curves

A task is typically instantiated by successive timed events. Even concur-

rent instantiations is possible, i.e. there can be a new timed event before

the previous invocation has completed execution. The timing of any event

stream triggering the execution of a task is bounded by an arrival curve

(event model based on real-time calculus) denoted by α. The event model

given by real-time calculus framework accurately captures the characteris-

tics of any arbitrary event stream. Given the trace of an event stream it

is possible to extract a number of parameters which represent the abstract

timing characteristics of the stream.

Definition 14 (Arrival function): An event stream can be described by an

arrival function R where R(t) denotes the number of events that have arrived
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in the interval [0, t).

Depending on the context in which these functions are used, the number

of events may model the number of packets, the number of bytes or the

number of instructions to be performed. Obviously, the function R(t) is

nondecreasing and can be used to accurately describe the incoming events.

Definition 15 (Arrival curves): For a given event stream, let R[s, t) denote

the number of events that arrive in the time interval [s, t). Further assume

that the number of events arriving within any interval of time is bounded

above by a right-continuous non-negative, sub additive function called the

upper arrival curve, denoted by αu. Similarly, a lower bound on the number

of events arriving is given by a lower arrival curve αl. R, αu and αl are

related by the following inequality:

αl(t − s) ≤ R[s, t) ≤ αu(t − s), ∀s < t (3.5)

where αl(0) = αu(0) = 0.

Therefore, αl(δ) and αu(δ) can be interpreted as the minimum and maximum

number of events arriving within any time interval of length δ respectively.

The subadditive property of arrival curves implies that α(s+t) ≤ α(s)+α(t)

for all s, t ≥ 0. Using the max-plus algebra, the maximum and minimum

sub-additive functions smaller than α can be derived for upper and lower

arrival curves. Therefore given the arrival function R, the corresponding

curves can be computed using αl(δ) = minu≥0{R(δ+u)−R(u)} and αu(δ) =

maxu≥0{R(δ + u) − R(u)}. This interpretation of the arrival curves and

arrival functions should suffice for the understanding of rest of the results

presented.

Standard event models like sporadic and periodic with bursts, or other

event streams with known analytical behavior, are special cases of the generic
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Fig. 3.8: The upper and lower arrival curves of the class of event streams with

period p and jitter j

representation using arrival functions and can be represented by appropriate

choice of αl and αu. A non-standard event model is illustrated in Figure

3.7. An example of a periodic with jitter event model expressed as arrival

curves is shown in Figure 3.8.

The arrival curves can be associated with any task or task graph. For a

simple task that has an execution requirement of e time units and deadline

d time units, taking the execution time into account, the demand on the

task becomes, dbf(t) = e · αu(t − d),∀t > d.

A task entering the resource node at time t for processing will experience

a delay d(t) bounded by the following equation

d(t) ≤ max
u≥0

{
min{τ ≥ 0 : dbf(u) ≤ βl(u + τ)}} (3.6)

Let us assume that the tasks execute on a resource modeled by a service

curve βl and parameterized as a bounded-delay resource model (a,∆), where

a is the availability factor of the resource. Consider a fractional resource that

is uniformly available at a fractional capacity a all the time. The group of

tasks each of which has a demand dbfi(t) depending on the arrival curve

αu
i associated with it, is schedulable under EDF, on βl if the largest among

the delays di(t) for every task, when the task group is scheduled on the
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fractional resource, is greater than the partition delay parameter ∆. This is

similar to the virtual time scheduling of the bounded-delay model described

in [20].

From the arrival curve and the processing capacity it is also possible to

derive the properties of the outgoing processed stream. The upper bound

on the processed event stream is denoted by αu′
and it gives the maximum

number of processed events that can be expected in any interval of time.

αu′
(t) = min

0≤u≤t

{
max
v≥0

{
αu(u + v) − βl(v)

}
+ βu(t − u), βu(t)

}
(3.7)

This processed event stream can be used to handle data dependencies among

task as illustrated in section 3.4.

3.2.2 Task models

A task model depicted as a task graph giving the precedence relationships

between the tasks in the group is a more accurate representation of the

way applications are generally modeled. In general any task model that

can accurately calculate the demand bound function can be incorporated

into the hierarchical scheduling framework. We illustrate the use of two

different task models that also handle conditional branching in the hier-

archical framework. Most of the task models, assume that processes are

implemented as straight line code, and within the infinite loop are trans-

formed into periodic or sporadic tasks or generalized multi-frame tasks. But

in many event-driven real-time applications, the timing requirements are

not representable as straight-line code. Instead, the action to be taken,

depends on the current state of the systems and/or the values of certain

external variables which can only be determined at runtime. Hence generic

task models that handle conditional branching of code have been proposed.

We shall briefly introduce two task models here and illustrate their use in
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the hierarchical framework in section 3.3.

Recurring real-time task model

A recurring real-time task model [5] was introduced to permit the represen-

tation of conditional real-time code. A real-time task T is represented by

a task graph G(T ) and a period P (T ). The task graph G(T ) is a directed

acyclic graph (DAG) with a unique source vertex and a unique sink vertex.

Each vertex in this DAG represents a subtask, and each edge represents a

possible flow of control. Each vertex u is labeled by an ordered pair of real

numbers (e(u), d(u)) with the following interpretation: every time subtask u

is triggered, a job is generated with ready time equal to the triggering-time

of the subtask, an execution requirement of e(u) time units and a deadline

of d(u) time-units after the triggering time. Each edge (u, v) is labeled by a

real number p(u, v) denoting the minimum amount of time that must elapse

after vertex u is triggered, before vertex v can be triggered.

Some additional notations include E(T ) that denotes the maximum pos-

sible cumulative execution requirement on any path from the source node to

the sink node of the task graph G(T ), and ρave(T ) that denotes the quan-

tity E(T )/P (T ) called the utilization of the recurring real-time task T . An

example recurring real-time task group is shown in Figure 3.9. The task

graph on the left side of the figure shows a straight-line code with three

subtasks and the task graph on the right side shows conditional code with

four subtasks. The recurring real-time task is instantiated sporadically with

P (T ) being the minimum inter-separation between successive instantiations.

Thus a sporadic event model is considered for the recurring real-time task.

Definition 16: [Demand bound function of a task graph] The Demand

bound function T.dbf(t) is defined as the maximum cumulative execution
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Fig. 3.9: Example recurring real-time tasks

requirement by jobs of a real-time task T that have both ready times and

deadlines within any time interval of duration t.

Definition 17: [Request bound function of a task graph] The request bound

function T.rbf(t) is defined as the maximum cumulative execution require-

ment by jobs of T that have their ready times within any time interval of

duration t.

The algorithm to compute the dbf and rbf of a task group consisting

of a recurring real-time tasks is presented in [5] along with the dynamic-

priority and static priority feasibility tests. The schedulability conditions

are presented in section 3.2.2.

Stream-based task model

The stream-based task model [8] based on the real-time calculus frame-

work was proposed to accurately characterize streaming applications and is

represented by a task graph triggered by an arbitrary event stream. The

important difference between the recurring real-time task model and the

stream-based task model is that, not all individual nodes of the task graph
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have deadlines associated with them. Deadlines are associated with different

paths of the graph, all of which start from the source node.

Formally, an acyclic, directed task graph g = (V,A) consists of nodes

v ∈ V and edges a = (v,w) ∈ A. A node represents a task of the application

and an edge represents a precedence relation between two tasks. There is

a unique source node v0 ∈ V having no incoming edges. To each node

v there are associated two quantities c(v) ∈ R
≥0 and d(v) ∈ R

≥0 ∪ {∞},
which denote the worst case resource demand and the deadline of the task

associated to v, respectively.

The interpretation of the precedence relations and deadlines is defined

by the dynamic model associated with a task graph. A task graph is in-

stantiated by a timed event, for example at time t0 and the release time

of the source task v0 is t0. The execution follows a path (sequence of

nodes) (v0, v1, · · · , vn − 1) through g, where the nodes are connected by

edges (vi, vi+1) ∈ A. The release time of a task vi+1 is the finishing time

of task vi. Each task v requires a maximal resource demand of c(v), given

in terms of the worst case execution time. In general the resource demand

c(v) can be expressed in terms of the number of required processor cycles or

any other reasonable unit that describes the service of the resource (i.e., the

processor on which all the tasks are executed). In addition each task has a

relative deadline d(v) with respect to the instantiation time t0 of g. There-

fore, its finishing time must be equal or smaller than t0+d(v). All the events

in an event stream need not be processed in the same way. Depending on

the type of an event or its associated data, different paths through the task

graph may be chosen. In addition, the processing of each event type might

be associated with a different deadline constraint. If the deadline associated

with a node is ∞ it implies that there are no deadline constraints on the
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Fig. 3.10: An example task graph based on the stream-based task model

path starting from the source node to this node, although there might be

deadlines associated with sub paths of this path. A sample task graph for

g1 ∈ G is shown in Figure 3.10, where G is a set of task graphs.

Computation of dbf and rbf The demand bound function and request bound

function of a task graph based on the stream-based task model are analogous

to the definitions in case of the recurring real-time task model and are defined

as in definitions 16 and 17.

Definition 18: The demand and resource bound sequences are defined as

d̃bf = 〈〈dbf1, δ1〉, 〈dbf2, δ2〉, · · · 〉 and r̃bf = 〈〈rbf1, δ1〉, 〈rbf2, δ2〉, · · · 〉. The

values of these functions can be determined using the operator G
gdbf

(t) de-

fined as follows (the same definition holds for the resource bound sequence

also):

G
gdbf

(t) = max{dbfi|δi ≤ t}∀t ≥ δ1 (3.8)

and G
gdbf

(t) = 0, ∀t : 0 ≤ t ≤ δ1

Every task graph is associated with an arrival function and a corre-

sponding arrival sequence represented as an arrival curve, which gives the
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triggering times of the task graph. The demand of a task graph over multi-

ple instantiations is dependent on the arrival curve associated with the task

graph.

Definition 19: [Composite demand bound function] The demand imposed

by a task graph on multiple instantiations by a sequence of events whose

arrival is bounded by an upper arrival curve within any time interval, is

defined to be the composite demand bound function (dbfC) of the task graph

and is given by

dbfC(t) =
m∑

i=1

(dbfi − dbfi−1) · α(t − δi) (3.9)

where dbf0 = 0.

Definition 20: [Composite resource bound function] The load of a task

graph in terms of its maximum resource requirement on multiple instan-

tiations triggered by an arrival sequence bounded by an upper arrival curve

within any time interval is defined as the composite resource bound function

(rbfC) of the task graph and is given by

rbfC(t) =
m∑

i=1

(rbfi − rbfi−1) · α(t − δi) (3.10)

where rbf0 = 0.

This task model is more pragmatic as it can accommodate an arbitrary

event triggering sequence in the computation of the composite dbf and rbf.

Schedulability conditions

A necessary and sufficient condition for a system composed of tasks with

cumulative demand given by dbf(t), to be dynamic-priority feasible over a
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dedicated resource is that the dbf over any interval length does not exceed

the interval-length.

∀t ≥ 0
∑
T∈Γ

T · dbf(t) ≤ t (3.11)

The schedulability conditions for recurring real-time task model and the

stream-based task model on partitioned resource, with fixed-priority and

dynamic priority scheduling policies are presented below.

Recurring real-time task model In case of partitioned resources that we

consider in hierarchical scheduling frameworks, if we have βl(t) to give the

supply bound of the resource partition, then the feasibility condition of Eq.

(3.11) becomes

∀t ≥ 0
∑
T∈Γ

T · dbf(t) ≤ βl(t) (3.12)

Since it is infeasible to verify this condition for all t ≥ 0, a constant lmt is

derived, that is equal to

lmt =
∑

T∈Γ 2 · E(T )
1 − ∑

T∈Γ ρave(T )
(3.13)

where E(T ) is the maximum execution requirement of the task graph T and

ρave(T ) = E(T )/P (T ). The schedulability condition holds for all t ≥ 0, if

and only if it holds for all t < lmt where lmt is computed as shown above.

Static priority feasibility analysis on a partitioned resource can similarly

be performed by testing the condition:

∀t, sup
0≤t′≤t

{βl(t′) −
∑

Tj∈(Γ\{Ti})
Tj · rbf(t′} ≥ Ti · dbf(t) (3.14)

where Γ\{Ti} refers to the set of tasks with priority higher than Ti. The

assignment of feasible priorities to task graphs is described in [5].

Stream-based task model For static priority scheduling, the task graphs are

ordered in ascending priority and the resource (or the processor) delivers at



3. Generalized Hierarchical Scheduling Framework 67

least β(∆) resource units within any time interval of length δ. For a group of

task graphs G = {g1, g2, · · · gk} and for every gk ∈ G, gk has higher priority

than gk+1, if the schedulability condition, given by

dbfC(t) ≤ sup
0≤λ≤t

{
β(λ) −

k−1∑
j=1

rbfC
j (λ)

}
(3.15)

holds for all graphs gk and for all t > 0, then the set of task graphs is

schedulable under fixed priority scheme. Intuitively, the right hand side

represents the remaining resource capability after the maximum resource

load due to all higher priority tasks has been taken into account. The left

hand side represents the composite demand by the tasks of graph gk.

Similarly, a set of task graphs is schedulable under preemptive dynamic

priority scheduling, if and only if

N∑
k=1

dbfC
k (t) ≤ β(t) (3.16)

holds for all t ≥ 0. Here too, the right hand side represents the accumu-

lated resource demand of all task graphs gk and the left hand side denotes

the available resource capacity. While using EDF scheduling, the relative

deadlines associated with the nodes of a graph might have to be adjusted

(from ∞) in such a way that they are still compatible with the demand

bound function. The new relative deadline of a node vi can be assigned as

the minimum of its specified deadline d(vi) and deadlines of all its direct

and indirect successors in the task graph. In the case of the graph shown in

Figure 3.10, the new deadlines are d(v1) = 10 and d(v4) = 15. The nodes of

this graph can now be scheduled with these deadlines.

Example 8 illustrates scheduling recurring real-time tasks and stream-

based tasks on partitioned resources.
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3.3 Hierarchical scheduling framework

With sufficient background about the resource model and task models seen

in the previous sections, the hierarchical scheduling framework can now

be constructed. Fixing the physical resource at the system-level and the

global scheduler, and given the workload groups and their local schedulers,

the hierarchy can be constructed, working from both the root and the leaf

levels, i.e. from the global scheduler working downwards and from the task

group level working upwards.

At every level the partitioning of resources is done based on the schedul-

ing policy enforced on that partition. For instance consider a TDMA based

scheduler at the system-level. If there are four workload groups, then the

demand imposed by each of these is determined, and the weights w1, w2,

w3 and w4 have to be arrived at such that the task groups are schedulable

under the resulting partitions.

The partitioning and partition scheduling schemes used in the bounded-

delay model could be combined with the lower bounds from the real-time

calculus model. Thus if we have a physical resource to be partitioned using

some scheduling policy, the partitions could be parameterized as bounded-

delay models (ai,∆i). The schedulability of n child partitions parameterized

as (ai,∆i)ni=1 within the parent partition (a,∆), could be verified using the

following conditions:

n∑
i=1

ai ≤ a and ∆i > ∆, ∀i (3.17)

For each partition the lower bound on the service would be represented by

the βl
i based on the real-time calculus framework. This resource supply

bound could be used in the determining the schedulability of the workload

scheduled within the partition.
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Fig. 3.11: Partitioning resources based on the scheduling policy at the virtual

resource-level

Example 7: Consider a dedicated physical resource that has to be parti-

tioned into two, based on a TDMA scheduling policy with period P . The

weights associated with the two partitions are w1 and w2 respectively with

w1 + w2 ≤ 1. The scheduler works as follows: time is divided into pe-

riods of length P and within any period, w1 × P consecutive units of the

processor’s time allocated to partition 1 and w2 × P consecutive units are

allocated to partition 2. Partition 1 could be parameterized as (a1,∆1) where

a1 = w1/(w1 + w2) and ∆1 = P (1 − a1) and partition 2 would be (a2,∆2),

where a2 = w2/(w1 + w2) and ∆2 = P (1 − a2). So the parent partition is

characterized by (a,∆), where a = 1 and ∆ = 0, as we consider a dedicated

resource at the top-level. The child partitions are schedulable on the parent

if the conditions in Eq. (3.17) hold.

In contrast to partitioning based on the scheduling policy only, there are

cases when partitioning depends on the demand imposed by the workloads

scheduled. In the case of a FP/RMS scheduler at the resource-level, parti-

tioning primarily depends on the workloads it schedules. For instance, lets
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Fig. 3.12: Hierarchical scheduling framework

say the physical resource has to be partitioned into two virtual resources

scheduling one task group each, and the virtual resources are scheduled

using FP, with the first partition having higher priority than the second

partition, then the partitioning is done as shown in Figure 3.11. As seen

in the figure the resource supply to the first partition is β1 and it sched-

ules some taskgroup T1 with the event triggering sequence bounded by the

upper arrival curve αu
1 . The computation capacity left in first partition af-

ter processing T1 is calculated as βl′ and is used to scheduled task group

T2 triggered by αu
2 . It is evident that the remaining computation capac-

ity is dependent on the demand of T1. The remaining computation time is

calculated as in Eq. (3.18).

βl′(t) = sup0≤λ≤t{βl(λ) − dbfT1(λ)} (3.18)

A structural overview of an example system with hierarchical schedulers

is shown in Figure 3.12. At the top level is a physical resource which uses



3. Generalized Hierarchical Scheduling Framework 71

Fig. 3.13: Hierarchical scheduling framework - An example

a Fixed-Priority (FP) scheduler as the global scheduler. There are tasks T1

to T20 scheduled at the various levels of the hierarchy. The tasks could be

modeled as a mix of independent periodic tasks, recurring real-time tasks

and tasks based on the stream-based task model, i.e. any task model that is

amenable to accurate computation of the dbf . At almost every level of the

hierarchy it is observed that there is a mix of tasks and resource partitions

managed by local schedulers.

The system-level FP scheduler makes four partitions of the system re-

source and the first and second partitions are managed by EDF and FP

schedulers respectively. The third partition is used to schedule task T1,

while the fourth partition is further handled by a fixed priority (FP) sched-

uler.

Since the FP scheduler determines the partitions based on the demand of

the workloads it schedules, the system should be viewed from the leaf-level
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Fig. 3.14: Schedulability of W1 under V R1

to calculate the cumulative demand. For the first partition the demand

comes from: an EDF scheduler for task group {T3, T4, T5, T6}, and a FP

scheduler with EDF for task group {T16, T17} with higher priority and task

T7 with lower priority. The cumulative demand imposed by this entire group

denoted by dbf1 forms the demand for the first partition. If the schedula-

bility condition given by dbf1(t) ≤ βl(t) holds for all t, where βl(t), is the

lower bound on the total resource capacity of the system, then the unused

computation capacity can be determined using Eq. (3.18).

The computation capacity left over from the first partition denoted by βl′

is passed over to the second partition which is managed by a FP scheduler.

The demand on the second partition denoted by dbf2(t) is from the higher

priority EDF scheduler for task group {T8, T10}, and lower priority task T2.

The computation capacity left over from the second partition denoted by βl′′

is then used to schedule task T1, and after that the remaining computation

capacity denoted by βl′′′ is used for the fourth partition.

The advantage of computing the unused computation capacity can also

be used to dynamically manage resources as evident in the following exam-
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Fig. 3.15: A continuous arrival function defined using piecewise linear segments,

with three pieces starting at t = 0, 2, 6, 13 with slopes 30, 15, 0 and

5 respectively, triggering the arrival of the stream-based task model in

Figure 3.10

ple.

Example 8: Consider the resource partitions V R1 and V R2 as in Figure

3.13. Suppose the top-level TDMA scheduler assigns weights w1 = 0.75 and

w2 = 0.25 in a time period P that is infinitesimally small. We are given

W1 = {T1, T2} and W2 = {(G1, α1)}, where T1 and T2 are two recurring

real-time tasks represented by the task graphs in Figure 3.9 and G1 is the

stream-based task graph in Figure 3.10 triggered by the arrival function α1

given in the Figure 3.15, and all the execution requirements and deadlines

are assumed to be specified in time units. We intend to schedule W1 on V R1

and W2 on V R2. The dbf of the workloads are calculated based on algorithms

for the respective task models. The demand bound functions and the supply

bound functions for partitions V R1 and V R2 are plotted in Figures 3.14 and

3.16. As evident from the figures, V R1 easily schedules the task group with

some scope to reclaim the unused computation capacity, but V R2 is just

enough to schedule the task group W2. The unused computation capacity
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Fig. 3.16: Schedulability of W2 under V R2

from V R1 can be reclaimed as in Eq. (3.18) to form partition V R3 and

a task group W3 consisting of a single periodic task W3 = {(5, 2)} can be

scheduled on that reclaimed resource as shown in Figure 3.17.

The important difference between Mok and Feng’s hierarchical virtual

resource model and our framework is that it is possible to calculate the com-

putation capacity that remains of the partition after processing the workload

scheduled under that partition. The resource characterization using service

curves gives us this flexibility while the bounded-delay resource model be-

ing too generalized in the way resource is parameterized does not have this

advantage. If dbfW is the demand imposed by workload W on the resource

with minimum supply of βl, then the remaining computation capacity βl′

is calculated by Eq. (3.18). This computation capacity could be passed

on to any other resource partition or could just be used to schedule some

workload within the same partition. Thus there could be workloads and

partitions scheduled on the same level. While the real-time virtual resource

framework, requires every task group to be scheduled on a partition cre-
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Fig. 3.17: Schedulability of W3 under reclaimed unused computation capacity from

V R1

ated by abstracting its demand, our framework allows task-groups to be

scheduled on the same level as partitions.

In general if there are n partitions of a resource βl with task groups each

with demand dbfWi scheduled on them, then the remaining computation

capacity of the parent partition could be computed as

βl′(t) = sup0≤λ≤t{βl(λ) −
n∑

i=1

dbfWi(λ)} (3.19)

This is in contrast to the real-time virtual resource framework, where the

schedulability of partitions is done by considering the resource allocations

to the child scheduling models, as the workload of the parent model. In

this framework, we would like to consider the cumulative workload demand

imposed on the child scheduling models to be the workload demand of the

parent scheduling model in order to calculate the unused computation ca-

pacity. In this manner we avoid over-provisioning of resources.
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Fig. 3.18: Model of a simple real-time-system with a controller reading from a sen-

sor and driving an actuator

3.4 Handling data dependencies

Handling data dependencies between tasks in a task group where the entire

task group has a specific sampling rate is straightforward. The layout of

the tasks will be in the form of a task precedence graph either based on the

stream-based task model with a triggering arrival function or a recurring

real-time task model with the invocation period specified. The problem is

more involved if we have task groups with different triggering sequences

involved in a precedence relationship.

A typical scenario is in the case of a hard real-time system that has a

sensor component that takes inputs from the environment and supplies it

to the controller and an actuator component that is driven by the controller

to perform some action depending on the inputs received from the sensor.

The model of such a system is depicted in Figure 3.18. Typically the sensor

and actuator components are not always sampled at the same rate. The

sensor might be sampled at a very high frequency and the controller might
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not signal the actuator on all inputs from the sensor, but only on selective

inputs that need to be acted upon.

Consider an air cooler-heater system, which has a sensor continuously

sampling the temperature of the room and supplying it to the controller.

The controller will do nothing if the temperature is within the threshold

range (typically having an upper and lower threshold). If the controller finds

that the temperature has dropped below the lower threshold then the heater

component is turned on. On the other hand, if the controller finds that the

temperature has gone beyond the upper threshold, the cooler component is

turned on. Thus the actuator is activated at a different rate, while the sensor

is activated at a much higher frequency. Whenever the controller reads

inputs from the sensor and acts on it, the sensor might have had a subsequent

invocation and care should be taken to ensure that the previous values are

not erased. This ensures data-integrity. If the controller is guaranteed to

produce outputs in the order corresponding to the reading of the sensor, that

ensures determinism. The relationship between the controller and actuator

is simply represented as a precedence relation. But the relationship between

the sensor and the controller is more complicated. There has to be some

way to ensure protected data-transfer from sensor to the controller in order

to assure data-integrity and determinism.

To preserve data integrity, it would be desirable to have the producer

(sensor) task triggered periodically and the consumer (controller) task trig-

gered as and when the producer completes execution. The completion of

a subsequent invocation of the sensor would trigger the controller with the

new inputs, but that will be put in the ready queue, until the current in-

vocation completes execution. This would ensure both data integrity and

determinism. Thus the controller is triggered by output event model of the
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Fig. 3.19: Handling data dependencies among task groups using Real-time calculus

sensor component and the output model would not conform to any stan-

dard model as the task groups are executing on partitioned resources. The

real-time calculus framework lends itself naturally these scenarios. The pro-

cessed event stream can be calculated from the resource allocated to the

producer task and the triggering sequence of the producer task. The pro-

cessed event stream is denoted by α′ and the upper and lower bounds of

the processed event stream are αu′
and αl′ respectively. Informally, these

denote the maximum and minimum number of output events in any time

interval. Since we are only interested in the upper bound the Eq. (3.20) can

be used to calculate the upper bound on the processed stream.

αu′
(t) = min{supλ≥0{inf0≤µ<λ+µ{αu(µ)+

βu(λ + t − µ)} − βl(λ)}, βu(t)}
(3.20)

Using this as the triggering sequence for the controller task in our example,

the demand imposed by the consumer task can be determined. The schedu-

lability of the task group consisting of the controller and the actuator tasks

is verified with respect to the partition it is scheduled on.
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Fig. 3.20: An example of complex task dependencies

This is similar to the LET semantics in [19], in the sense that we log-

ically extend the release time of the consumer task to coincide with the

termination of the producer task. The difference here is that we can con-

sider any arbitrary triggering sequence that need not conform to a standard

event model. In addition we also explicitly specify how to derive the output

event sequence. Congruent to the LET semantics, we have successfully re-

moved the dependency between the consumer and producer task and they

can be scheduled as independent tasks now either on the same partition or

on different partitions.

If the sensor and the controller reside on different partitions and are

scheduled by fixed priority scheduling, then the remaining processing ca-

pacity left over after processing the sensor task is modeled as the partition

scheduling the controller task. The remaining computation could be com-

puted as in Eq. (3.18).
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The physical resource that schedules this kind of an application would

be logically structured as shown in Figure 3.19. The physical resource would

be partitioned into two virtual resources. The resource allocation to virtual

resource 1 denoted by βl
1, would virtually be the entire resource allocation

of its parent. The demand imposed by the sensor task is in turn determined

by the event sequence denoted by αu
1 . The resource allocated to resource

partition 2 would be the computation capacity left over after processing

the sensor task, i.e βl′
1 . The demand imposed by the task group containing

the controller task and the actuator task is determined by the processed

event sequence that is derived from βl
1 and αu

1 . The dotted lines in the

figure indicate what values are used in the computation of parameters for

the second partition. This is an example of inter-group data dependency

scheduled using a static priority scheduler.

Intergroup data dependencies The example hierarchical scheduling frame-

work shown in Figure 3.20 illustrates three types of data dependencies be-

tween tasks. The following is an example of intergroup data dependency

amongst task groups on different partitions scheduled using EDF policy.

Fig. 3.21: Intergroup data dependency

Example 9: Task T10 is data dependent on T9 which in turn is data de-

pendent on task T8. While tasks T8 and T10 are scheduled on one partition

using resource β2−1, task T9 is scheduled on a different partition using re-

source β4−1 that is also shared by tasks T11 and T12. The arrival functions
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Fig. 3.22: Intragroup data dependency - scheduling with EDF

of each of these tasks and their grouping their under respective partitions is

shown in Figure 3.21. All tasks are assumed to be represented as stream-

based task models. Task T8 is triggered by an arrival function denoted by

α8 and the processed stream from T8 denoted by α′
8 is the arrival function

that triggers T9. The processed stream from T9 denoted by α′
9 is the arrival

function for T10. The composite dbf as in Definition 19 of tasks T8 and T10

denoted by dbfC
8 (t) and dbfC

10(t) are determined using α8 and α′
9 respectively,

and the schedulability condition is given by (dbfC
8 (t)+ dbfC

10) ≤ β2−1(t), ∀t.

Similarly the composite dbf of tasks T9, T11 and T12 denoted by dbfC
9 (t),

dbfC
11(t) and dbfC

12(t) are determined using α′
8, α11 and α12 respectively and

the schedulability condition in this case is

(dbfC
9 (t) + dbfC

11(t) + dbfC
12(t)) ≤ β4−1(t), ∀t

Intra group data dependencies The hierarchical scheduling framework in

Figure 3.20 also illustrates data dependencies between task groups within

the same partition, intra group data dependencies. Scheduling such tasks

under dynamic and static priority schemes is illustrated below.

Example 10: Tasks T4 and T5 are involved in a precedence relationship such

that task T5 is data dependent on T4. These two tasks along with T3 and T6

are scheduled on an EDF scheduler with resource β1−1. As shown in Figure
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Fig. 3.23: Intragroup data dependency - scheduling with Fixed Priority scheduler

3.22, the composite demand bound function of each of these tasks denoted by

dbfC
3 (t), dbfC

4 (t), dbfC
5 (t) and dbfC

6 (t) are computed using α3, α4, α′
4 and

α6 respectively, and the schedulability condition is given by
6∑

i=3

dbfC
i ≤ β1−1, ,∀t

Example 11: Tasks T18, T19 and T20 are involved in a precedence relation-

ship such that task T20 is data dependent on T19 which in turn is data de-

pendent on T20. These three tasks are scheduled on a fixed priority scheduler

which has lower priority than task T13. As shown in Figure 3.20 assuming

β4−2 to be the resource allocated to the RM scheduler that schedules T13 and

the FP scheduler, β4−2−2 will be the processing capacity left over from β4−2

after scheduling T13, and is passed on to the FP scheduler. The composite

demand bound functions of tasks T18, T19 and T20 denoted by dbfC
18, dbfC

19

and dbfC
20 are determined using the arrival functions α18, α′

18 and α′
19. The

composite resource bound function as in Definition 20 of these tasks would

be denoted as rbfC
18, rbfC

19 and rbfC
20. The schedulability is determined by

using the following equations:

dbfC
18(t) ≤ β4−2−2(t)

dbfC
19(t) ≤ sup

0≤t′≤t
{β4−2−2(t′) − rbfC

18(t))}

dbfC
20(t) ≤ sup

0≤t′≤t
{β4−2−2(t′) − (rbfC

18(t) + rbfC
19(t))}

The actual resource flow to each of the tasks is as shown in Figure 3.23.
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Fig. 3.24: Abstract model of a complex system based on the hierarchical scheduling

framework

3.5 Illustrative case study

The case study real-time system consists of fourteen real-time tasks T1 to

T14, sharing a processor under a scheduling hierarchy as shown in Figure

3.24. The scheduling hierarchy uses a mix of TDMA, Fixed priority (FP),

RM, EDF and RR scheduling. The task set contains a mix of task graphs

based on the recurring real-time task model and stream-based task model

and independent tasks each associated with their own arrival curves. The

properties of the tasks are given in Table 3.1. The task types are indicated

as follows: recurring real-time tasks denoted as R−RT , stream-based tasks

denoted by SB, independent periodic tasks given by PI, and single indepen-

dent tasks associated with arrival curves given by SI. For the stream-based

(SB) and recurring real-time (R−RT ) tasks that are given by task graphs,
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relative deadlines are assumed to be indicated in the task graphs and hence

that column is left blank in the table.

Load Type Arrival
Scheduling

Algorithm

Exec.

Demand

Relative

Deadline

T1 R − RT P1 RR dbfT1 −
T2 SB α2 FP dbfT2 −
T3 SB α3 EDF dbfT3 −
T4 R − RT P4 TDMA dbfT4 −

T5

PI

T51

T52

T53

p51

p52

p53

RM

e51

e52

e53

p51

p52

p53

T6 SI α6 RM e6 d6

T7 SI α7 RM e7 d7

T8 SB α8 EDF dbfT8 −
T9 SI α9 EDF e9 d9

T10 SB α10 EDF dbfT10 −
T11 R − RT P11 FP dbfT11 −
T12 SB α12 EDF dbfT12 −
T13 SB α13 FP dbfT13 −
T14 SB α14 FP dbfT14 −

Tab. 3.1: Temporal properties of tasks in the case-study real-time system of Figure

3.24

At the physical resource level, a TDMA-based scheduler partitions the

resource into four with weights w1, w2, w3 and w4 respectively. Within any

time period P , the processor time is divided into four partitions proportion-
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ate to the weights assigned to each partition as explained in Example 7. For

illustration purpose, let us assume the period to be infinitesimally small,

and considering dedicated service by the processor to be βu(t) = βl(t) = t,

the partitions would each have services represented as linear service curves

β1 to β4, proportionate to the weights assigned to each partition.

The first partition having weight w1 is utilized by a round robin scheduler

scheduling a task T1 and task-group T5 scheduled using RM scheduler. The

RR scheduler partitions the resource supply equally between the RM sched-

uler and task T1. Thus β1−1 and β1−2 are the two partitions that the RR

scheduler creates. Task T1 is a recurring real-time task with sporadic arrival

and its demand is calculated to be dbfT1 and the schedulability condition is

dbfT1 ≤ β1−2

The task group T5 has three periodic tasks T5−1, T5−2 and T5−3, in ascending

order of their periodicity. The entire task group is given a resource allocation

of β1−1. The highest priority task T5−1 utilizes β1−1 and passes on the

remaining capacity β′
1−1 to the other tasks. Task T5−2 consumes β′

1−1 and

passes on the β′′
1−1 to the third task T5−3. The demand bound function

of every task in the group, denoted by dbf(T5, t, T5−1), dbf(T5, t, T5−2) and

dbf(T5, t, T5−3) is computed by taking into account the interference from its

higher priority tasks as given by Eq. (1.2). Along these lines, the demands

of each of the tasks are computed to be

dbf(T5, t, T5−3) = e5−3 +

⌈
t

p5−2

⌉
· e5−2 +

⌈
t

p5−1

⌉
· e5−1

dbf(T5, t, T5−2) = e5−2 +

⌈
t

p5−1

⌉
· e5−1

dbf(T5, t, T5−1) = e5−1
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Fig. 3.25: Partitions 1 and 4 of level 1 of the system in Fig. 3.24

For every task Ti the schedulability condition given by Eq. (1.7) has to be

verified.

The fourth partition of the TDMA scheduler, having weight w4 is used

to schedule a task T4, which is a recurring real-time task having a demand

dbfT4 . The schedulability condition is directly given by

dbfT4 ≤ β4

The resource flow and resource demand for partitions 1 and 4 of the TDMA

scheduler of the hierarchical framework is shown in Figure 3.25. The flow of

resources is given by downward arrows and the demand of the task groups

is indicated by upward arrows.

The second partition of weight w2 of the TDMA scheduler, uses a fixed

priority scheduler and schedules three task groups: a FP scheduler schedul-

ing T6 and T7 (T6 having higher priority than T7), an EDF scheduler with

a task group consisting of T8, T9 and T10, and a task T2. The FP scheduler
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Fig. 3.26: Partition 2 of level 1 of the system in Fig. 3.24

has the highest priority, the EDF has a lesser priority than FP and higher

priority than task T2.

Tasks T6 and T7 are independent tasks with associated arrival curves α6

and α7. While T6 has a bursty arrival pattern, T7 is periodic with jitter and

T6 has higher priority than T7. The execution requirements and deadlines

of the tasks are given in the table. The demand bound function of T6 and

T7 are given by

dbfT6 = e6 · α6(t − d6),∀t > d6

dbfT7 = e7 · α7(t − d7),∀t > d7

The resource allocation from β2 to the FP scheduler is denoted by β2−1 and

in this scenario they are equal. Task T6 utilizes β2−1 and passes on β′
2−1 to

T7.

The computation capacity remaining from the FP scheduler is denoted
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Fig. 3.27: Partition 3 of level 1 of the system in Fig. 3.24

by β′′
2−1 denoted by β2−2 to indicate the resource supply to the second parti-

tion at the second level of the hierarchy, and is given to the EDF scheduler.

Tasks T8 and T10 are based on the stream-based task model and have ar-

rival curves α8 and α10. T9 has a non-standard arrival pattern given by an

arrival curve α9 with piecewise linear segments. The demand imposed by

T9 is given by

dbfT9(t) = e9 · α9(t − d9),∀t > d9

The demand bound functions of the other tasks are given by dbfT8 and

dbfT10 and computed as stated in section 3.2.2. Schedulability is checked by

the inequality

dbfT8 + dbfT9 + dbfT10 ≤ β2−2

The remaining computation capacity β′
2−2 from the EDF scheduler in-

dicated as β2−3 is given to the task T2, whose demand dbfT2 is computed

based on its arrival curve α2.

The resource allocation and the demand imposed by the task groups in
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the second partition of the global TDMA scheduler is shown in Figure 3.26.

The third partition of the TDMA scheduler has a weight w3 and is

partitioned in a complex manner. It schedules two task groups: a fixed

priority scheduler and a task T3. The fixed priority scheduler schedules task

T11 with higher priority and EDF scheduler with lower priority. The EDF

scheduler in turn schedules task T12 another FP scheduler with tasks T13

and T14. Task T11 has a demand dbfT11 and utilizes β3 directly.

The remaining capacity β′
3 is passed on as β3−2 to the EDF scheduler.

Since we are dealing with and FP scheduler under the EDF scheduler, we

now work from the task0-level. The cumulative demand of the tasks T13 and

T14 under the FP scheduler is determined and dbfT14 + dbfT15 is combined

with dbfT12 under the EDF scheduling policy to determine the demand on

the EDF scheduler. This cumulative demand should be met by β3−2 that

comes from the FP scheduler.

Whatever remains of the capacity β3−2 is passed on to the task T3. Task

T3 might also need more resources and the unused computation capacity

from partition 4 might be used too. Although task T3 is shown to be under

the EDF scheduler, the resource allocation from partition 3 goes directly to

the FP scheduler and the subsequent levels and the remaining computation

capacity from partition 3 and partition 4 flow in for task T3.

While having fixed the weights of the TDMA scheduler and working

down, if it is found that some task or task group turns out to be infeasi-

ble to schedule, the weights could be re-adjusted and checked again. This

could also be adjusted by reclaiming the left over computation capacity from

some other partition to be used to schedule the infeasible task group. Thus

having fixed the structure, the analysis involves adjusting the resource allo-

cations to the various partitions such that the entire system turns out to be
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schedulable.

3.5.1 Evaluation of the framework

The system model in the case-study clearly illustrates the flexibility of the

hierarchical scheduling framework. The flexibility of this approach stems

from the mix of various task models, scheduling policies and the ability to

analyze the temporal properties of tasks and resource supplies.

• Task models: The framework accommodates a variety of task models

with arbitrary event triggering patterns. The demand bound function

of such tasks is computed with the temporal properties of the as-

sociated event model, the execution requirement and deadline. The

framework also allows the use of complex task models with condi-

tional branching code like the recurring real-time task model and the

stream-based task model that closely characterize the way applications

are generally modeled.

• Data dependencies: While the task models like stream-based task

models and recurring real-time task models handle data dependencies

amongst tasks that are triggered at the same rate, the ability to com-

pute the temporal properties of the processed event stream aid us in

dealing with task group dependencies with different triggering times.

For instance the tasks T6 and T9 could have been in a precedence re-

lationship and the arrival curve α9 of T9 could be the processed event

stream of α6 of task T6.

• Resource supply bound and utilization: As proven in section

3.1.3, the lower service curve tightly bounds the resource supply. Using

the tight bounds in analysis of the hierarchical scheduling framework
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aims in maximizing utilization. The tighter supply bounds, together

with the ability to reclaim the remaining computation capacity maxi-

mize the utilization of the resource. Supplying the unused capacity to

a different partition, that is tightly scheduling a task group, gives a lot

of flexibility to the placement of tasks in the hierarchical framework.

• Schedulability analysis: The schedulability analysis at different lev-

els of the hierarchy involve using different techniques. As mentioned

in the special note on arrival curves of section 3.2.2 either the virtual

time scheduling introduced in [20], the partition scheduling technique

introduced in [11] given by Eq. (3.17), or the task group scheduling

techniques using demand bound functions dbf could be used. The flex-

ibility to choose the technique most suitable at every level, depending

on the parameters that are easily calculable renders the framework

very powerful.

• Scheduling policies: In addition to the FP, RM and EDF schedul-

ing policies that are usually used in the hierarchical scheduling frame-

works, the use of TDMA and round-robin scheduler are introduced in

our framework. The real-time calculus naturally lends itself to such

scheduling policies as it draws its roots from network calculus theory.



4. CONCLUSION

We have presented a generalized approach to hierarchical scheduling based

on real-time calculus. The scheduling framework also uses techniques estab-

lished by the hierarchical real-time virtual resource framework. The simplic-

ity of partition schedulability and parameterization of the real-time virtual

resources based on the bounded-delay resource partition model have been

combined with the tight supply bounds of the service curve representation

of real-time calculus. In addition to the traditional scheduling policies like

EDF and RM, we also illustrated the use of TDMA and RR scheduling

policies.

We presented techniques to avoid over provisioning of resources by re-

claiming remaining computation capacity left over after processing the work-

load. While abstracting the demands of the child partitions, it is advanta-

geous to consider the demands of the workloads scheduled within the child

partitions, to facilitate the reclamation of the unused computation capacity.

In the hierarchy we allowed tasks and resource partitions to exist at the

same level, as at the parent level, we anyway consider only the cumulative

demand of all the children whether they happen to be partitions or tasks.

This renders flexibility in the placement of tasks in the hierarchy. A single

task with a specific demand bound function computed, can be placed un-

der any partition that loosely schedules its workload with scope for reusing

the remaining computation capacity, provided the cumulative demand after

admitting the task is still met by the partition.
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We presented the use of task models representable as task graphs, to di-

rectly handle data dependencies and precedence relationships among tasks.

For task graphs that are entirely triggered at a particular rate, these task

models suffice to accommodate the precedence relationships in the compu-

tation of demand imposed by the task graph. But for tasks that are sampled

at different rates, we illustrated the computation of the temporal proper-

ties of tasks after they are processed, in the form of output event streams.

Considering the bounds on this processed event stream as the arrival curve

for the dependent task, enables the handling of data dependencies among

tasks. This way, tasks involved in precedence relationships are decoupled

with independent arrival curves and can be scheduled as independent tasks

either on the same partition or different partitions ignoring the precedence

relationships.

4.1 Future Work

In an effort to generalize the hierarchical scheduling framework further, it

would be desirable to derive some utilization bounds permitting online ad-

mission test of task groups. Parallel to the approach in [29] if there is a way

to derive a utilization bound, based on the temporal properties of tasks, a

quick computation of the demand of the new task-group would be all that is

necessary, and adding it to the pre-computed demand of all task-groups in

the system, the new utilization could be checked against the pre-determined

utilization bound.

Exact schedulability conditions for a wider range of scheduling algo-

rithms could be derived. For instance the computation of the demand bound

function of a task group under the Least slack-time first (LSF) or First-come

first-served (FIFO) algorithms and the exact schedulability condition for a
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task group under a given resource model would be beneficial when there is

flexibility in the choice of scheduling policy. The response time of tasks un-

der the various scheduling schemes could also be derived. There has been a

lot of work in response time analysis of tasks under fixed priority scheduling

of hierarchically scheduled systems. A similar analysis in the case of dy-

namic priority scheduling schemes would be very useful. This is especially

beneficial in virtual-time scheduling schemes used for fractional resources.
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