
Synthesis of Multiprocessor Architectures for Multimedia

Applications

Dinesh Kunchamwar

(B.E. (Hons.) Computer Science)

Supervised by

Samarjit Chakraborty

Weng Fai Wong

A THESIS SUBMITTED FOR A DEGREE OF MSC(BY RESEARCH) COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Abstract

Streaming applications typically consist of a large number of tasks, each of which can be mapped

onto a different processor on a Multi-processor System on Chip (MPSoC) platform. This gives rise

to a large design space (whose size can be exponential in the number of tasks in the application).

Previous work on design space exploration for this problem use evolutionary algorithms which do

not guarantee optimality and are too time-consuming because of the need for full-system simulation.

This problem has also been formulated as Integer Linear Programming problem assuming constant

execution requirements. However high degree of burstiness in the arrival rate of streams and high

variability in the execution demand of the data items, make those approaches inadequate. In this work

we present a depth-first design space exploration technique which breaks down the process of system

simulation into many task level simulations. The results of the task level simulations are represented

using Variability Characterization Curves (VCCs) which are based on theory of network calculus.

We formulated an algorithm which explores the design space in a depth first manner and combines

the VCCs of task mappings along the explored path using purely analytical methods. The algorithm

avoids exhaustive searching of the design space by using certain timing conditions and upper bounds

on the costs to prune some portions of design space. We take the multi-objective optimization ap-

proach for this problem and device a technique that is capable of finding a pareto optimal front. This

allows the designer to make trade-offs among various design goals to quickly narrow down the choice

of various architecture design parameters. We implemented our scheme and performed a case study

based on the MPEG-2 decoder application. We demonstrated the usefulness of our multi-objective

technique using two objectives: the silicon area required to realize the MPSoC system and power

requirements of the system. For this case study,76% of the design space was pruned due to the timing

and upper bound conditions which translated into74% saving in the running time of the algorithm.

ACKNOWLEDGEMENTS

I feel deeply indebted to my supervisors Dr. Weng Fai Wong and Dr. Samarjit Chakraborty,

without their support, guidance and constant motivation this thesis would not have been possible. I

would like to sincerely thank them for allowing me to learn from their knowledge and experience and

for their patience and encouragement which helped me to get through difficult times.

I thank my thesis committee members: Dr. Tulika Mitra and Dr. Wei Tsang Ooi, who evaluated

my Graduate Research Paper and provided valuable suggestions during thesis proposal presentation.

Special thanks to all fellow students in the Embedded Systems Lab who shared their expertise and

helped me in times of need. Thanks to Yanhong and Balaji for help on SimpleScalar, Priya, specially

for help on latex, Unmesh, Yuan Yi, and Ramkumar for sharing their thoughts and experiences and

Linh for her kind words.

Thanks to all my friends at hong leong for all the happiness and fun that we shared. I deeply

appreciate all the moral support Laura provided and thank her for being with me. I express my sincere

gratitude towards my parents for being constant source of motivation and for the values they have

inculcated in me.

CONTENTS

1. Introduction . 8

1.1 Related Work . 12

1.2 Contributions . 13

1.3 Organization of the thesis . 15

2. Choice of Application Model . 17

2.1 Task Precedence Graph . 17

2.2 Process Networks . 19

3. Variability Characterization of Streaming Applications 20

4. Design Space Exploration . 23

4.1 Problem Description . 23

4.2 Analytical Framework . 25

4.3 Estimating buffer size requirements . 27

4.4 Conditions for pruning design space . 28

5. MPEG2 Case Study . 30

5.1 Candidate architectures . 32

5.2 Initial Simulation . 34

5.3 Obtaining service curves from simulation trace . 34

5.4 Overview of Depth First DSE algorithm . 35

5.5 Choice of objective functions . 37

5.5.1 Cost model for Chip-space requirements . 40

5.5.2 Chip-space estimation for on-chip buffers 41

Contents 5

5.5.3 Estimating Power consumption of candidate architectures 43

5.6 Experimental Results and analysis . 45

6. Conclusions and Future Work . 49

Appendix 55

A. Config file parameters for ppc604 like processor (source:SimScal) 56

B. Microarchitectural Configurations . 58

C. Base configuration file . 63

D. Scripts for running the SimpleScalar simulations . 65

E. Scripts for running the Wattch simulations . 67

F. Details of Pareto Optimal Solutions . 68

LIST OF FIGURES

1.1 Streaming Application . 9

1.2 Overview of DSE technique . 14

2.1 Task Precedence Graph . 18

2.2 Kahn Process Network . 19

3.1 Application Model . 20

4.1 Example Design Space . 27

5.1 Experimental Framework . 31

5.2 MPEG2 Application Model . 31

5.3 Depth First DSE pseudo code . 36

5.4 Depth First DSE program flow . 38

5.5 Pareto Optimal Front creation . 39

5.6 Points connected by line represent the Pareto Optimal front. Other points shown by tri-

angles are other feasible solutions dominated by some solution on the pareto-optimal

front. Silicon costs are on horizontal axis and power costs on vertical axis. 45

5.7 Pareto Optimal Solution H . 47

5.8 Pareto Optimal Solution K . 48

F.1 Pareto Optimal Solution B . 68

F.2 Pareto Optimal Solution J . 69

F.3 Pareto Optimal Solution P . 69

LIST OF TABLES

5.1 Microarchitectural parameters and their different values 33

5.2 Transistor counts of different candidate architectures 42

5.3 Power costs of different candidate architectures . 44

5.4 Performance statistics for MPEG2 case study . 46

B.1 Microarchitectral Configurations . 59

B.2 Microarchitectral Configurations (Cont.) . 60

B.3 Microarchitectral Configurations (Cont.) . 61

B.4 Microarchitectral Configurations (Cont.) . 62

1. INTRODUCTION

Streaming application domain consists of a wide variety of applications from embedded systems

(e.g. cell phones, hand held computers), desktop applications (e.g. real-time encryption, software

radio, graphics packages) and high performance servers (e.g. network packet processors, cell phone

base stations, software routers). Designing and implementing efficient HW/SW systems for these

applications has been the focus of research for many researchers due to the huge commercial impact

these systems create. With the increasing use of streaming media in hand held devices and increasing

performance demand of applications running on these devices, it becomes more important for a sys-

tem designer to utilize the system resources to the fullest. Although existing design methodologies for

the HW/SW co-design of embedded systems can be applied to these systems, due to the ever growing

complexity of the applications they may not be as efficient. Many multimedia streaming applications

have to handle a highly compressed stream of media content. Most of the compression techniques

exploit the similarity between successive frames in order to achieve more compression, and this simi-

larity is not constant throughout the length of media. Highly compressed portions of the media need

more processing for decoding and less compressed portions the less. Thus, for such media the de-

coder has to face the variable processing demand of the different portions of the stream. The system

design methodologies can exploit this variability to optimize the system performance and resource

utilization. Traditional design methodologies, hence, must be upgraded by taking into account these

changing nature of applications.

In a streaming application, a potentially infinite stream of data items enters the system, a number

of tasks are performed on each data item before the output is sent to an output device. Typically the

tasks performed on data items are independent and communicate with each other by FIFO channels.

Each task reads data items from its input channel in a FIFO order, does some processing and writes

the resulting data into the input channel of the next task. Due to this data dependent behavior of tasks,

they can be mapped to a different processing element (PE) in a multiprocessor system. Portions of

1. Introduction 9

Fig. 1.1: Streaming Application

memory can be allocated as the FIFO channels. Both, the PE which writes to a channel and the PE

which reads from the channel should share the memory allocated to the channel.

System-on-chip multiprocessors are widely used to implement these streaming applications due

to their advantages in terms of performance, power, cost, and design turn-around time. In order to

realize these advantages to the fullest, it is necessary to have an efficient design methodology which

addresses the two aspects of the system design. First, efficiently mapping of tasks in the application to

available computation units and second, designing an optimal communication network. In this work

we concentrate on the first aspect.

Typically, a number of different processing tasks constitute a streaming application. Every task

may have different processing requirements in terms of sheer processing power or control-intensiveness

and computation intensiveness. Depending on these requirements, different processing architectures

may be suitable for different tasks. For example, DSP’s are most suitable for tasks which have reg-

ular computational loops where as general purpose processors are best for control intensive tasks.

Further, in some streaming applications (e.g multimedia decoders) processing requirements are in-

put dependent, in which case the processing requirements vary for different portions of the stream.

1. Introduction 10

For example the execution time required for decoding different frames of a mpeg2 decoder is highly

variable. Further, with the advances in processor technology, ever growing number of processors are

becoming available for mapping of tasks. Thus the system designer is faced with the difficult task of

mapping the tasks on processing units in order to optimize overall system performance. In order to

make the systems commercially feasible, cost of the overall system (in terms of silicon area and/or

power consumption) must also be taken into account. This problem has been addressed mainly in

2 different aspects: 1) Given fixed amount of silicon resources, find the mapping such that system

performance is maximized and overall system can be implemented on given amount of silicon. 2)

Given an application specification with minimum performance requirements, find the mapping such

that overall system can be implemented with minimum cost (silicon area or power). In first, the cost

of resources acts the constraint and performance as the goal function. This approach is most suitable

for network packet processors, or cell phone base stations etc. since network traffic might go up in

future and it is desirable to push as much traffic as possible. However in this work, we take the second

approach, where performance requirements act as constraints and overall costs of the system acts as

the optimization function. This approach is more suitable for multimedia applications for which the

output performance requirements are fixed (e.g. 20 frames/sec for video decoders).

Our technique uses initial simulation of tasks on individual processor types in order to estimate the

worst case bounds on the execution requirements of the application. Using some results from the the-

ory of network calculus, it is possible to combine the worst case bounds for many task-processor map-

pings to find the effective worst case bounds. This results in significant simulation time savings as fol-

lows. If T is the number of tasks in the application andn is the number of candidate architectures, the

total simulation time required is:
∑

0<i<T

∑
0<j<n tij , wheretij is the time required for simulating

ith task onjth processor. Lettmax = max(tij) ∀i, ∀j. Then
∑

0<i<T

∑
0<j<n tij ≤ tmax × T × n,

which isO(nT). On the other hand if we explore the design space exhaustively and perform system

level simulation for each design point, thentotal simulation time ≤ tmax × T × nT which is

O(TnT). However the designer, with his experience, may be able to quickly eliminate some proces-

sors which are not suitable for some tasks. After such elimination, letni < n be the number of proces-

sors on which taskTi can be mapped. In this case the design space has
∏

ni, ni < n ∀i design points,

andsimulation time ≤ tmax × T ×
∏

ni for exhaustive design space exploration with full system

1. Introduction 11

level simulation. However with the task level simulation approachsimulationtime ≤ tmax ×
∑

ni.

It should be noted, however, that a full system simulation allows a more accurate estimation of per-

formance as well as communication delays. The task level simulations are aimed only at performance

estimation and are based on the assumption that once task mapping is done, a suitable communication

network can be designed. This approach of independently exploring computation and communication

architectures has been followed by many researchers as mentioned in Section 1.1.

We used a depth-first approach for design space exploration, with every level in the design tree

representing a mapping decision for a task and the number branches at every level representing the

number of possible mappings. The cost of the explored path is computed by adding the costs of the

candidate architectures chosen for tasks on the path. By candidate architecture we mean a processor

with some microarchitectural properties like cache sizes, decode/issue widths etc. All commercial

processors can be uniquely described by these microarchitectural properties. Hence we find it is more

convenient to define the candidate architectures using their microarchitectural details.

A MPSoC designer is often faced with the challenge of designing systems with more than one

design goals in mind. For example, in [31] performance of access network, performance of backbone

network, and cost savings are used as objective functions. In [7] silicon cost of the system has been

used as the objective function. One could imagine many more objectives like power, threshold etc.

which could be of practical use to the designer. Further these objectives may be conflicting with

each other, optimizing on one objective may result in degradation on the other objectives. In such

a situation, it is essential for the designer to be able to evaluate trade-offs between different design

points. Our DSE technique is capable of handling this multi-objective scenario and can produce a

Pareto-Optimal front for a given set of objectives.

We used MPEG2 decoder application as the target application and implemented our scheme to

find the pareto optimal front with mainly two objectives in mind: the architecture cost of the system

and the average power consumption of the system. The architecture costs for different candidate

architectures were derived from an empirical cost model described in [30] and the power numbers

were obtained from Wattch simulator [2]. Our experiments prove the usefulness of the scheme.

1. Introduction 12

1.1 Related Work

Traditionally, most commercial SoCs are platform based [26, 16]. PROPHID [15] multiprocessor

architecture, for example, is a bus based architecture with a general purpose processor for control

processes and a number of Application Domain Specific (ADS) processors for performing tasks in

the applications. ECLIPSE [26, 27] is another such heterogeneous SoC platform aimed at imple-

mentation of multimedia applications. They consist of a predefined communication architecture with

a possibility of customizations in terms of choice of processing units, scheduling policies on the

processing units, and on-chip buffer size requirements. One of the popular approaches for application

design for platform based systems has been a cyclic process of performance estimation and tuning the

platform for the application. Many evolutionary algorithm based techniques are developed for this

purpose[31]. Many of these perform full system-level simulation [25] which makes them very time-

consuming. Many trace-based simulation techniques are developed in order to reduce the simulation

time [17, 34]. SPADE [33] is a method and a tool in which applications and architectures are mod-

eled in such a way that mapping of applications onto architectures, prior to architecture/application

co-simulation, can be easily done. The co-simulation is trace-driven. The execution of the application

generates traces of symbolic instructions, and these instructions are interpreted by the architecture

thus revealing timing behavior. The TD cosimulation is fast because the architecture does not process

the actual data. However the evolutionary approach does not guarantee optimality of the solution.

In DSE of multiprocessor SoC systems, many possible mappings of tasks onto different processors

(e.g. GP, DSP, ASIC, FPGA) is possible. In order to find outhow gooda particular mapping is, there

is a need for metrics which characterize each type of PE. In this context, the work in [28] finds

out theaffinity of each task toward different types of processors. An affinity of 1 indicates a perfect

matching and 0 indicates no match. Given the source code for a task, they perform static analysis

to find out metrics likeControl Flow Complexity (CFC), Loop Ratio (LR)etc. A high value of CFC

identifies a task which has lot of control flow and less computation. These tasks are suitable for GPPs.

On the other hand a high value of LR indicates that the task is computationally intensive with lot of

regular computations. These tasks are more suitable for DSPs. There are many more such metrics and

weighted average of all metrics is taken to arrive at a global affinity value.

Ever growing demand of system performance forces the system designers to integrate more and

1. Introduction 13

more processing elements in a single SoC to meet the performance requirement. Many researchers [12,

24, 14, 11] have proposed a new system design paradigm for such high performance SoCs, which

involves separation between (1) function and architecture and (2) between communication and com-

putation. Adopting this paradigm, design methodology proposed in [12], models the system behavior

as a composition of function blocks and maps the function blocks to the processing elements of pre-

defined target architecture. Separation between computation and communication in system design

allows the system designer to explore the communication architecture independently of component

selection and mapping.

An important aspect of system design is the representation of application using appropriate ap-

plication model. Most of the work in the direction of HW/SW co-design [13, 4, 3, 18, 29] treats

the application as a Task Graph [13, 3]. The tasks in such a task graph have data dependencies and

a task can execute only when all its dependencies are satisfied. SoC design for such task graphs is

typically solved as a scheduling problem. However as the applications become more and more com-

plex, the number of tasks in the task graph grows rapidly. Representation of the applications using

task-graphs thus becomes more cumbersome. Of late, Kahn Process Networks [10] have been used

more popularly as the Model of Computation (MoC).

Synthesis of multiprocessor architecture for KPNs has been addressed in [8, 7, 6, 23, 19, 5]. The

mapping problem is formulated as an ILP [8, 7] and thus produces optimal solution. However they

assume fixed processing requirements for the tasks and regular memory access pattern, which may

not be realistic in case of multimedia applications.

1.2 Contributions

In this thesis, we present an innovative design space exploration (DSE) method using depth first

exploration approach. Figure 1.2 depicts an overview of our method. We use Kahn Process Networks

to model the applications. The aim of the DSE is to find the optimal mapping of processes (or tasks) to

processing units (or candidate architectures). Our technique can handle multi-objective optimization

scenario and produces a Pareto-Optimal front. The designer can use the pareto-optimal front to choose

trade-offs between different objective functions. We use a simulation based performance estimation,

which is not a new technique. However our approach is novel in that we perform simulation at the

1. Introduction 14

Fig. 1.2: Overview of DSE technique

1. Introduction 15

task level rather than system level. This gives the system designer flexibility of modifying a task and

simulating only that task again. In this thesis, we used variability characterization curves or VCCs [21]

to model the variability in the execution demand of multimedia applications. An overview of VCCs

is also given in Chapter 3. Thus the mapping found by our algorithm is more accurate as compared

to previous techniques which assume constant execution demand. The execution trace obtained from

simulation, which essentially records the number of processor cycles required for each activation of

a task, is used to find the VCCs for each(Task, Processor) pair. Once these individual curves

are obtained, we use purely analytical methods from the theory of Network Calculus [1] to combine

the individual VCCs for each task in order to estimate the overall system performance. Our depth-

first approach for searching the design space allows us to incrementally combine VCCs depending

on which path is chosen for further searching. We show that it is possible to prune away certain

portions of the design space using conditions specified in terms of timing constraint of the application

which is another important contribution of this work. This leads to faster design space exploration

without compromising the optimality of the solution. Thus our technique combines the advantages of

ILP based techniques which guarantee optimality and the full system simulation based evolutionary

techniques which are more accurate in performance estimation. We also compute the minimum buffer

sizes required to prevent buffer overflows. Thus the optimal solution found by our DSE technique not

only guarantees required output rate but also guarantees that none of the buffers overflow.

1.3 Organization of the thesis

The two most common models of computation (MoCs), the Task Precedence Graph and Kahn

Process Networks are discussed in Chapter 2. This chapter also discusses the advantages and dis-

advantages of the two MoCs and why we choose the later in this work. Chapter 3 describes the

Variability Characterization Curves (VCCs) and how they can be used to represent the worst case

characteristics of the on-chip traffic of data items created by the execution of different tasks. In Chap-

ter 4, we develop an analytical framework using the VCCs for our design space exploration problem

and provide some conditions which help us in pruning of the design space. Chapter 5 describes the

experiments we performed in order to validate the usefulness of our DSE technique. We performed

two sets of experiments, one using different cache configurations of the MIPS processor and another

1. Introduction 16

using different frequencies for the same processor. However it should be noted that our technique is

fairly generic and can be applied to any processor architecture, subject to the availability of a simula-

tion framework for that architecture. Chapter 6 summarizes the main contributions of this thesis and

concludes.

2. CHOICE OF APPLICATION MODEL

The main goal of application modeling is to use suitable Models of Computation (MoCs) for

specifying a multi-media applications. Ideally, the MoC should allow a succinct representation of

the application so that the inherent parallelism is exposed and can be exploited when mapping it

an architecture. Two distinct models are generally used to describe streaming applications or parallel

applications - Task Precedence Graph (or directed acyclic graphs) and Process Networks. Synthesis of

optimal application specific multiprocessor architectures for DAG based periodic task graphs with real

time processing requirements has been extensively studied in literature [4, 3, 18, 29] from cost as well

as power optimization point of view. However, synthesis for process networks is not widely explored.

The approaches for DAG based task graphs rely on static scheduling and solve the synthesis problem

which essentially consists of architectural resource allocation, binding of application components to

architecture, and scheduling. This approach can also be used for process networks as well by unrolling

inner loops of processes and decomposing it in the form of a periodic DAG based task graph. Such

an approach might lead to a very large size graph for most of the real life applications making the

approach impractical.

2.1 Task Precedence Graph

In a task precedence graph, nodes represent the tasks and the directed edges represent the exe-

cution dependencies as well as the amount of communication. DAGs are commonly used in static

scheduling of a parallel program with tightly coupled tasks on multiprocessors. For example, in the

task precedence graph shown in Figure 2.1, task n4 cannot commence execution before tasks n1 and

n2 finish execution and gathers all the communication data from n2 and n3. For most applications,

a task precedence graph can model the program more accurately because it captures the temporal

dependencies among tasks.

2. Choice of Application Model 18

Fig. 2.1: Task Precedence Graph

Formally, A parallel program can be represented by a directed acyclic graph (DAG)G = (V,E),

whereV is a set ofv nodes and E is a set ofe directed edges. A node in the DAG represents a task

which in turn is a set of instructions which must be executed sequentially without preemption in the

same processor. The weight of a nodeni is called the computation cost and is denoted byw(ni). The

edges in the DAG, each of which is denoted by(ni, nj), correspond to the communication messages

and precedence constraints among the nodes. The weight of an edge is called the communication cost

of the edge and is denoted byc(ni, nj).

Synthesis of application specific architecture for an application described using DAG has been

solved as resource allocation, binding of application components to resources and scheduling problem

in [13].

The objective of scheduling is to minimize the completion time of a concurrent application (such

as streaming) by properly allocating the tasks to the processors. In a broad sense, the scheduling prob-

lem exists in two forms:staticanddynamic. In static scheduling, which is usually done at compile

time, the characteristics of a parallel program (such as task processing times, communication, data

2. Choice of Application Model 19

Fig. 2.2: Kahn Process Network

dependencies, and synchronization requirements) are known before program execution. A parallel

program, therefore, can be represented by a node- and edge-weighted directed acyclic graph (DAG),

in which the node weights represent task processing times and the edge weights represent data depen-

dencies as well as the communication times between tasks.

2.2 Process Networks

We specify media-processing applications as a set of concurrently executing tasks that exchange

information solely by unidirectional streams of data. A directed graph with a node for each task and

an edge for each data stream represents the structure of the application. Process network, introduced

by Kahn in [10], is popularly used as the model of computation (MoC) for specifying these kind

of applications. A Kahn process network (KPN) consists of executableprocessesthat communicate

point-to-point over unbounded FIFOchannelsand synchronize by means of blocking reads. Figure

2.2 shows an example of KPN.

We chose Kahn Process Networks as application model due to the fact that Kahn models nicely

fit with the dataflow application domain (to which most of multimedia applications belong) and that

they aredeterministic. The latter means that the same application input always results in the same ap-

plication output. So, the functionality of a Kahn application is not affected by architectural latencies,

i.e. the application behavior is architecture independent.

3. VARIABILITY CHARACTERIZATION OF STREAMING APPLICATIONS

We model streaming applications using the model depicted in Figure 3.1. The application consists

of T tasks (or processes),P1, P2, ..., PT . Each taskPi has an input bufferBi which is a FIFO channel

of fixed capacity. These buffers are used to store the input stream temporarily until it is consumed by

the processor. Each taskPi can be imagined as an infinite loop. At the beginning of each iteration

it reads a data item from its input bufferBi. The body of the loop performs some processing on this

data item and finally the output data item is written to the input buffer of the next task i.eBi+1. The

output of the last task is written to theplayout bufferB. A real-time client (RTC) such as a audio or

video output device consumes data items from playout buffer at a fixed rateC (e.g. 20 fps for a video

device).

For the sake of generality, we consider any multimedia stream to be made up of a sequence of

stream objects. A stream object might be a bit belonging to a compressed bit stream representing a

coded video clip, or a macroblock, or a video frame, or an audio sample—depending on where in the

architecture the stream exists. For example, in case of an MPEG-2 decoder the stream objects are

nothing but the macroblocks which constitute the frames in the video.

Variability characterization curves (VCCs) are used to quantify best-case and worst-case charac-

teristics ofsequences. These can be sequences of consecutive stream objects belonging to a stream,

sequences of consecutive executions of a task implemented on a PE while processing a stream, or

sequences of consecutive time intervals of some specified length. A VCCV is composed of a tuple

Fig. 3.1: Application Model

3. Variability Characterization of Streaming Applications 21

(V l(k),Vu(k)). Both these functions take an integerk as the input parameter, which represents the

lengthof a sequence.V l(k) then returns alower boundon some property that holds forall subse-

quences of lengthk within some larger sequence. Similarly,Vu(k) returns the correspondingupper

boundthat holds forall subsequences of lengthk within the larger sequence. Let the functionP be a

measureof some property over a sequence1, 2, If P (n) denotes the measure of this property for

the firstn items of the sequence (i.e.1, . . . , n), thenV l(k) ≤ P (i+k)−P (i) ≤ Vu(k) for all i, k ≥ 1.

For every input bufferBi, letxi(t) which represent the number of data items arriving in the buffer

in an interval of time from0 to t. We define arrival curveαi = (αu
i , αl

i) for ith task as:

αu
i (∆) = supt≥0{xi(t + ∆)− xi(t)}∀∆ ≥ 0

αl
i(∆) = inft≥0{xi(t + ∆)− xi(t)}∀∆ ≥ 0

αu
i (∆) (upper arrival curve) denotes the maximum number of data items arriving inBi during any

interval of length∆ andαl
i(∆) (lower arrival curve) denotes the minimum. Thus using arrival curves

we can capture the worst case burstiness of the streams arriving in the buffers.

Similarly with every taskPi we associateyi(t) which represents the number of data items processed

by the task in an interval of time from0 to t. And the service curveσi = (σu
i , σl

i) is defined as:

σu
i (∆) = supt≥0{yi(t + ∆)− yi(t)}∀∆ ≥ 0

σl
i(∆) = inft≥0{yi(t + ∆)− yi(t)}∀∆ ≥ 0

σu
i (∆) (upper service curve) denotes the maximum number of data items processed within any

interval of length∆ andσl
i(∆) (lower service curve). Thus using service curves we can estimate

worst case service guarantees for an incoming stream.

In this work, we want to ensure that the streaming application produces its expected real-time

output even in the presence of the worst case arrival rateαl
i and worst case service rateσl

i. Thus we

use only the lower arrival curves and service curves in the rest of the paper. And for the simplicity of

notation we useαi andσi instead ofαl
i andσl

i respectively.

Using standard results from the theory of network calculus[1], we computeαi+1(∆) as:

3. Variability Characterization of Streaming Applications 22

αi+1(∆) = (αi ⊗ σi)(∆)∀i (3.1)

where, for any two functionsf andg, the min-plus convolution off andg is given by(f ⊗ g)(t) =

infs:0≤s≤t{f(s) + g(t− s)}.

The minimum buffer size required to prevent the input buffer ofith task from overflowing can be

calculated as:

Bi = sup∆≥0{αi(∆)− αi+1(∆)} (3.2)

And the minimum playout buffer size required to prevent overflow can be calculated as:

Bp = sup∆≥0{αp(∆)− C(∆)} (3.3)

Please refer to [1] and [21] for the detailed derivation of these results. Thus the total on-chip buffer

required to prevent any of the buffers from overflowing is computed as:

B =
T∑
1

Bi (3.4)

These Variability Characterization Curves (VCCs) have been used [21] in order to identify sys-

tem level design trade-offs for multimedia processing SoC platforms. We use VCCs to characterize

each task when mapped to different processing units, and identify the optimal mapping of tasks to

processing units.

4. DESIGN SPACE EXPLORATION

4.1 Problem Description

Streaming applications consist of a sequence of tasks, each of which has a different processing

requirements. Some tasks are control intensive for which general purpose processors like MIPS or

ARM are most suitable. On the other hand DSPs are more suitable for tasks which are computa-

tionally intensive. At a much lower level, each processor is characterized by some microarchitectural

parameters like issue and decode width, number of integer and floating point ALUs, instruction and

data cache sizes, RUUs, LSQs etc. A task in a streaming application may run more efficiently one

setting of these microarchitectural parameters and less for another setting. Further, the designer of a

SoC system can choose to run the processors at different frequencies in order to save power and at

the same time meet the execution requirements of the application. This gives rise to a design space

which has a sizenT , if T is the number of tasks andn the number of different candidate architectures

on which they can be mapped to. For the sake of generality, we define each candidate architecture by

using the microarchitectural parameters mentioned above, rather than using names of the processors.

It should be noted that, almost all commercial processors can be represented using these microarchi-

tectural parameters. For example, Appendix A shows the parameters that describe a processor similar

to PowerPC604 (source: simscal [30]). None of the previous works [8, 7, 31] in this direction have

considered the microarchitectural details. In Section 5.5 we describe how these microarchitectural

properties help us in accurately estimating the costs associated with each candidate architecture.

The goal of this work is to propose a design space exploration method which finds the optimal

mapping ofT tasks onto any of then candidate architectures in the architecture library. Potentially

there could be more than one optimality criteria, each optimality criteria being one of the objective

functions of our multi-objective framework. One of the outcomes of our DSE is a Pareto-Optimal

front of solutions, which is nothing but the set of all design points which are notdominatedby any

4. Design Space Exploration 24

other design point. The formal definition of Pareto-optimality is as follows:

If C is a set of all cost vectorsc ∈ Rk where isk is the number of objectives, then a cost vector

c ∈ C dominatesd ∈ C, if ci ≤ di, ∀ i ∈ (0, k − 1) andcj < dj for at least onej ∈ (0, k − 1). A

cost vector is Pareto-Optimal if it is not dominated by any other cost vector.

The pareto-optimal front allows a system designer to identify trade-offs between different design

objectives like cost, power, on-chip buffer size etc. It should be noted that to be a candidate for

inclusion in the pareto-optimal front, the solution has to first satisfy the timing requirements of the

application.

The target SoC platforms are assumed to consist of a number of processing elements (PEs) con-

nected by a point-to-point communication network (e.g. RAW [22]) so that the communication con-

flicts are minimized. The PEs are assumed to have local memories that can fit the input FIFO buffers

for the tasks mapped to them thus memory access conflicts are minimized. Thus the mapping prob-

lem of tasks to processing units can be addressed independently of the design of communication or

memory architecture. Extensive research [12, 24, 14, 11] in the the direction of communication and

memory architecture for SoCs shows that these assumptions are safe. They are also in keeping with

the latest trends in SoC design methodology which divide the system design in two phases: 1)Map-

ping of tasks to processing units, and, 2) design of memory and communication architecture, of which

we address the first in this work.

In summary, our problem setup consists of anapplicationmodeled as a Process Network along

with the desired output rateC for that application, andArchitecture Libraryof all types of processors

available for mapping along with the cost of each type of processor. It should be noted that the service

curvesσij for each (Taski, Processorj) pair are available in advance through initial simulation

of tasks on processors. Eachcandidate solutionis a n-tuple of the form(M1,M2, ...,MT), where

the value of each mapping variableMi points to a candidate architecture in the architecture library,

clearly1 ≤ Mi ≤ n, ∀ i. Each candidate solution refers to a leaf node in the design space. We refer

to intermediate nodes (non-leaf) as partial solutions. Apartial solutionis essentially a n-tuple of the

form (M1,M2, ...,MT) with 1 ≤ Mi ≤ n, ∀ i ≤ t, for somet < T andMi = 0, ∀ i > t.

VLSI technology dependent factors such as total maximum silicon area (Cmax) available for sys-

tem implementation and total maximum power (Pmax) available to the system, are taken as external

4. Design Space Exploration 25

inputs to our framework. We useCmax andPmax as conditions for pruning certain portions of the

design space. Every time we go one step deeper in the design space, we apply these conditions to the

partial solution. If the cost of the partial solution exceedsCmax or the total power consumption ex-

ceedsPmax then the search along that path is abandoned. These upper bounds can be used to restrict

the search within practical limits of realizing the MPSoC.

4.2 Analytical Framework

Using the result 3.1 recursively we computeαp, the rate of arrival of data items at the playout

buffer, as:

αp(∆) = ((...(α1 ⊗ σ1)⊗ σ2)...⊗ σT)(∆) (4.1)

The timing constraint for successful execution of this application can be specified as:

αp(∆) ≥ C.∆, ∀ ∆ > 0 (4.2)

We define:

• Infeasible Solution: A mapping for which above timing constraint is not satisfied.

• Feasible Solution: A mapping for which above timing constraint is satisfied.

• Optimal Solution: A Feasible solution which has the least cost.

In the above discussion, the service curves depend on the mapping of a task on a processing unit.

For example,σ11 (in caseT1 is mapped to processor type 1) is not the same asσ12 (in caseT1 is

mapped to processor type 2). We use binary decision variablesxij , which is true whenith task is

mapped tojth processor type. We write the above equations as :

αi+1(∆) = (αi ⊗ σi1)(∆).xi1 + ... + (αi ⊗ σin)(∆).xin

= (αi ⊗ (σi1.xi1 + ... + σin.xin))(∆)

And the rate of arrival of data items in the playout buffer can be expressed as:

4. Design Space Exploration 26

αp(∆) =((...(α1 ⊗ (σ11.x11 + σ12.x12 + ... + σ1n.x1n)

⊗ (σ21.x21 + σ22.x22 + ... + σ2n.x2n))

...

⊗ (σt1.xt1 + σt2.xt2 + ... + σtn.xtn))(∆)

≥ C(∆), ∀ ∆ > 0

This serves as a feasibility condition for solutions. Any design space exploration method can use

this condition to evaluate candidate solutions from the design space. We discuss the advantages and

disadvantages of several search techniques and propose our depth-first-search algorithm.

• Evolutionary Algorithms: They have mainly two parts, a mechanism for choosing potential

solutions from the entire population of solutions, and a mechanism that evaluates the ’fitness’ of

these potential solutions. The feasibility condition mentioned above can serve as the mechanism

to evaluate the fitness of a design point. However the mechanism for choosing the potential

solutions is ad-hoc and may not lead to the optimal solution.

• ILP: There have been attempts to come up with an ILP formulation for this mapping problem.

However the ILP formulation is made possible due to the assumption that the tasks have fixed

execution requirement. Also they assume a regular memory access pattern. However the execu-

tion requirement for most multimedia applications has a lot of variability. The above feasibility

condition accounts for variability through the use of variability characterization curves such as

arrival curves and service curves. Due to the non-linear nature of the variability curves, an ILP

formulation becomes impossible.

• Proposed Algorithm (DepthFirstDSE): The design space can be represented as a tree of height

T (number of tasks), withn (number of different processing units) child nodes per node except

the leaf nodes. Every level in the tree represents a mapping decision for a task. Due to the

sequential flow of data items through the application, the mapping of a task determines the

arrival curve of data items for the next task which in turn decides the mapping for that task and

so on. Thus a depth-first approach for searching this design space is the most suitable.

4. Design Space Exploration 27

Fig. 4.1: Example Design Space

For example, usingT = 2, n = 2 in the feasibility condition above and re-arranging the terms,

we get:

αp(∆) = ((α1 ⊗ σ11 ⊗ σ21).x11.x21+

(α1 ⊗ σ11 ⊗ σ22).x11.x22+

(α1 ⊗ σ12 ⊗ σ21).x12.x21+

(α1 ⊗ σ12 ⊗ σ22).x12.x22)(∆)

≥ C(∆), ∀ ∆ > 0

It can be seen thatαp is made of 4 terms, each corresponding to a path in the tree which also

represents a solution in the search space. It is easy to see that, in case ofT tasks andn processor types,

αp is made ofnT terms, each corresponding to a unique path in the design space and representing a

possible mapping instance. It should be noted that, mapping for a task decides the Arrival Curve of

data items for the next task. This indicates the suitability of our depth-first approach for design space

exploration.

4.3 Estimating buffer size requirements

Using the results from theory of network calculus, the minimum buffer size required to prevent

the input channel ofTi from overflowing can be calculated as:

Bi = sup∆≥0{αi(∆)− αi+1(∆)} (4.3)

4. Design Space Exploration 28

whereαi is the arrival rate of streaming objects at the input channel ofTi and it depends on which

processor the task is mapped to. And the minimum playout buffer size required to prevent overflow

can be calculated as:

Bp = sup∆≥0{αp(∆)− C(∆)} (4.4)

Thus the total buffer cost of a solution is:

B = Bp +
T∑
1

Bi (4.5)

This buffer size estimate depends on service rates for the tasks which depend on the type of

processor the task is mapped to. This buffer size can used to measure thegoodnessof a mapping,

less the buffer size better is the mapping. It is well known that SRAM based components such as

caches etc. occupy significant portion of silicon chip in modern processors. In a MPSoC with many

processing units on a single die of silicon, it becomes even more important to minimize the buffer

sizes. Later in Section 5.5.1 we describe how estimates from Equation 4.5 are used as part of the

overall silicon chip-space requirements of the system.

The actual chip area numbers (Cj ’s) can be obtained from the data sheets of the processors or

can be derived from a well defined cost model. We have discussed some of these cost models in

Section 5.5. The cost model for our second objective function: power consumption of the system is

also discussed in the same section.

4.4 Conditions for pruning design space

As we explore the design space with a depth first approach, it is possible to eliminate some portions

of the tree without having to go down to the leaf nodes. We introduced some conditions at each level

in the design tree. If these conditions are satisfied at any node in the tree then part of the tree rooted

at that node is eliminated. This may improve the running time of the algorithm significantly.

We used mainly two types of conditions at each level in the design space. The first is based on

timing properties of the stream. We check ifα(∆) < C.∆, ∀ ∆ > 0. This condition implies that

the output rates of processors along this path of the design space are too weak to satisfy the overall

4. Design Space Exploration 29

performance requirement of the application i.eαp(∆) ≥ C.∆, ∀∆ > 0. Thus all the solutions in the

part of the design space rooted at this node can be safely eliminated in order to save running time.

The second type of conditions we used were based on certain technology dependent upper bounds

on the overall costs of the solutions. Our multiobjective approach considers many types of costs

like silicon chip area, power consumption etc. Each of these costs has a upper limit, for example,

silicon requirements of the MPSoC are limited by the maximum number of transistors that can fit on

a single die of silicon (max silicon cost) or availability of maximum power supply for the system

(max power cost). At each level in the design tree we check if the costs of path explored so far are

greater than the upper bounds and in that case we abandone the search along that path.

As will be discussed in the experimental results, these conditions cause significant improvement

in the running time of the algorithm.

5. MPEG2 CASE STUDY

Our experimental setup is as shown in Figure 5.1. We used MPEG2 decoder as an example

multimedia application for our experiments. We partitioned the application into 3 tasks: VLD, IQ,

and IDCT+MC as the third task. Each task is simulated on different candidate architectures using

SimpleScalar simulator and a simulation trace is obtained. For the experimental verification of our

technique, we choose different microarchitectural configurations as the candidate architectures, de-

scribed in more detail in Section 5.1. Thesimulation traceis essentially contains the the number of

processor cycles required for each activation of the tasks. It should be noted that, although we need

to simulate the tasks on each of the candidate architectures, this has to be done only once. Moreover

in the context of industrial development of applications which happens in an incremental fashion with

small changes to some of the tasks in the application, this simulation has to be carried out only on

the modified tasks. Thus this technique will save valuable simulation time, as compared to other DSE

techniques which require full system simulation.

Simulation traces are then passed on to the trace2sigma utility that we implemented which con-

verts the traces into the service curves by counting the number of macroblocks decoded per unit of

time. If service curves for different frequencies need to be obtained, then trace2sigma should be run

many times with different frequency parameters.

Each candidate architecture is associated with two types of costs - silicon chip space required

and the power consumed. These two act as the two objective functions of our multi objective opti-

mization. We used a chip-space estimation model described in [30] to evaluate the first cost function

and Wattch [2] to evaluate the second cost function. The designer’s goal is to minimize both types of

costs. However it may not always be possible to minimize both costs, which results in many trade-offs

between the two costs. Our search algorithm keeps track of all these trade-offs and represents them in

the form of a Pareto-optimal front. Section 5.5 describes the cost models in more details.

The service curves and the cost numbers from the cost functions are then passed on to the Depth-

5. MPEG2 Case Study 31

Fig. 5.1: Experimental Framework

Fig. 5.2: MPEG2 Application Model

FirstDSE algorithm. This algorithm uses feasibility condition mentioned in Section 4.2 to ascertain

if one of thenT possible mappings of tasks on to the candidate architectures satisfies the perfor-

mance requirements of the application (mpeg2 in this case). Once a mapping is found to satisfy the

performance constraint, the costs associated with the mapping are computed by adding the costs of

each individual candidate architecture which constitutes the mapping. Each mapping that satisfies the

performance constraint is evaluated using multiple objective functions. The algorithm checks for the

pareto-optimality of the mapping using the multiple objective functions. The final outcome of the

algorithm is the pareto-optimal front which allows one to decide trade-offs between many types of

costs associated with the MPSoC system.

5. MPEG2 Case Study 32

All the necessary information about the performance requirements of the application is available

in the form of the service curves. The system designer has to provide the information about the cost of

each architecture in the architecture library and the desired output rate (C) at the playout buffer. All

this information is then passed on to the DepthFirstDSE algorithm, which finds the least cost mapping

for each task such that the application as a whole produces output at the desired rateC.

5.1 Candidate architectures

Having decided to use SimpleScalar for our simulations, which allows microarchitectural cus-

tomizations through a configuration file, simulating different candidate architectures could be easily

done by setting different microarchitectural parameters in the configuration file. Some of these para-

meters are listed below:

• fetch:ifqsize<size> - Instruction fetch queue size

• decode:width<#instructions> - Decode bandwidth

• issue:width<#instructions> - Issue bandwidth

• ruu:size<size> - size of the Register Update Unit

• lsq:size<size> - size of Load Store Queue

• cache:il1<#blks>:<blksize>:<assoc>:<repl policy> - Level 1 instruction cache configura-

tion

– <#blks> : Number of cache blocks

– <blksize> : Cache block size (bytes)

– <assoc> : Cache associativity

– <repl policy> : Replacement policy (e.g least recently used (LRU))

[Similarly for il2, dl1, dl2 caches]

• res:ialu<#ialu> - number of integer ALUs

• res:imult<#imul> - number of integer multiplier/dividers

5. MPEG2 Case Study 33

Decode : IssueBandwidth Il1Cacheblks Il1blksize IntALUs FPALUs RUUSize LSQsize

2:2 16 32 2 2 16 8

4:4 32 64 4 4 8 4

Tab. 5.1: Microarchitectural parameters and their different values

• res:fpalu<#fpalu> - number of floating point ALUs

• res:fpmult<#fpmul> - number of floating point multiplier/dividers

...

Many real processors can be emulated by setting appropriate values for the parameters in the config-

uration file. For example, Appendix A shows a configuration file which emulates PowerPC604 like

processor.

From the microarchitectural parameters mentioned above, we chose some parameters which we

feel are closely related to the performance of the task. We defined our candidate architectures using

different combinations of values for the chosen set of parameters. Table 5.1 shows the parameters and

their different values. Allowing two different values for each parameter results in 128 (2×2×2×2×

2× 2× 2) different microarchitectural configurations. The possible values of parameters were chosen

by looking at some existing processor architectures. For example, most superscalars have decode and

issue width of 2 or 4 ([22]). Similarly we were conservative in choosing the size and number of I-

cache blocks, due to small size of the application in question, the MPEG2 decoder, and the presence

of regular loops in the code. We believe that choosing bigger I-cache sizes might result in almost all

code being able to fit into the I-cache and if that happens there will not be significant performance

difference between two configurations. Number of integer and floating point ALUs and RUU and LSQ

sizes were also chosen after looking at configurations of some real processors (Appendix A). Detailed

listing of configurations is attached in Appendix B. Appendix C shows an example of a SimpleScalar

configuration file. Configuration files for all of the 128 candidates can be reproduced by using data

from appendix B. We feel that this design space is big enough for validating the usefulness of our

technique. It is worth mentioning here that in [31] only four architectures (ARM, PowerPC,µengine,

DSP) were considered. Another work in this direction [7] also considers 4 arbitrary architectures, and

does not even mention any of the microarchitectural details.

5. MPEG2 Case Study 34

5.2 Initial Simulation

Any design technique that relies on simulation as a means of performance estimation, is faced with

the problem of selectingrepresentative workload, which is a well recognized problem in the domain of

multiprocessor SoC design. Ideally, each implementation of an application on a MPSoC architecture

has to be evaluated for a large number of possible inputs. However, this is an expensive process since

the simulation involved for each input might require a considerable amount of time [32]. It is necessary

for the designer to able to choose smallrepresentativeset of inputs from a large library. A systematic

solution for this is proposed in [20]. This work is based on the hypothesis that all the characteristics of

multimedia streams that influence the performance of a MPSoC platform architecture, are related to

theirvariability. Given a library of multimedia streams, they classify two streams assimilar if both of

them exhibit the same kind of variability with respect to execution time requirements and input/output

rates as mentioned above. Once all similar workloads have been recognized, it is enough only to

simulate one of these workloads. Following the rigorous workload selection process mentioned in

this work is beyond the scope of this thesis, hence we use a sample video clip for our experiments.

However it should be noted that the clip used is long enough and is representative of the behavior of

all video clips as far as the worst case properties like service curves are concerned.

5.3 Obtaining service curves from simulation trace

Service curves of each candidate architecture are obtained using the trace2sigma utility that we

implemented. It takes as input the simulation trace and produces the number of macroblocks processed

per unit of time. Since trace2sigma allows us to specify the processor frequency, the service curves

for different frequencies can be derived easily. For example, if frequency specified is 10 MHz then we

count the number of macroblocks that are processed in first107 processor cycles, next2 ∗ 107 cycles

and so on (assuming a second as the unit time, however if a ms is used as the unit then trace2sigma

samples the trace at every104 processor cycles). This gives usyi(t) as mentioned in Chapter 3. And

the derivation ofσ(∆) is straightforward as described in the same chapter.

We assume that the output device consumes data from the playout buffer at 20 frames per second,

which is the value of C in this case. According to MPEG2 standard, each macroblock is of size

5. MPEG2 Case Study 35

16 × 16 pixels. For a MPEG2 video clip with resolutionW ×H pixels, the number of macroblocks

per frame isW×H
16×16 . Thus an output rate of 20 fps translates toW×H

16×16 × 20 macroblocks per sec. All

our experiments were performed using this output rate.

5.4 Overview of Depth First DSE algorithm

Central to our DSE technique is a simple depth-first DSE algorithm that we implemented. Fig-

ure 5.3 shows the pseudo-code for this algorithm. This is a recursive depth-first search algorithm

which takes as input aPartialSolutiondata structure, which stores the mapping of some or all of the

tasks. This data structure is nothing but an array of size equal to the number of tasks. The value of

each element in the array indicates the mapping for that tasks. For example, ifx[i] = j thenith task

is mapped tojth candidate architecture.x[i] = 0 means mapping decision forith task has not been

made. First call to DepthFirstDSE is made by themain function withx[i] = 0∀i, which means none

of the tasks have been mapped.

DepthFirstDSE first checks if thePartialSolution x is a leaf node in the design space (i.e.

x[i] = 0∀i). If it is then it computes theα’s at the input of each FIFO buffer by using theσ’s

corresponding to the candidate architectures chosen by the solution and applying the analytical results

mentioned in Chapter 4. Once theα at the input ofplayout bufferis calculated, it checks if the

application satisfies the real-time output constraint (α(∆) ≥ C × ∆, ∀ ∆ > 0), whereC is the

rate at which real-time output device consumes streaming objects (macroblocks in this case) from

the playout buffer. If this condition is satisfied, which means that this is a feasible solution, then the

costs of this solution are computed. A solution is made of mapping of tasks to candidate architectures

and each candidate architecture may have different types of costs associated with it. The costs which

are specific to candidates are calculated by invoking the cost models for each of them and adding up

the results. As described in Section 5.5.2 later, the on-chip buffers used for communication between

processing units also contribute to certain costs such as silicon chip space requirements. The estimated

buffer cost is computed by functionbufferCost()and added to the overall silicon cost.

If the PartialSolution x is not a leaf node in the design space (not all the tasks are mapped) then

it tries to map the next unmapped task onto all possible candidate architectures. For every possible

mapping of the next task, first it checks for a timing condition. The functionTimingCondition()

5. MPEG2 Case Study 36

Void DepthFirstDSE(PartialSolution x) {
 If x is a leaf node in the design space {
 // x[j] > 0 for all j
 Compute the arrival rate α at the playout buffer;
 If(αp(Δ) >= C*Δ for all Δ > 0){ // solution satisfies performance constraint
 cost1 = costModel1 (x); // invokes costModel1 for x[1], ..., x[T] and returns sum
 ...
 costm = costModelm (x); // invokes costModelm for x[1], ..., x[T] and returns sum
 // above costs depend on costs of individual candidate architectures
 // some other costs like buffer costs depend on mapping of two consecutive tasks
 cost_buff = bufferCost(x);
 // buffers contribute to silicon chip-space requirements
 // assuming cost1 is silicon chip-space requirement of candidate architectures
 cost1 += cost_buff;
 if(isParetoOptimal(cost1, cost2, ..., costm))
 // checks if the cost vector is pareto-optimal
 // if yes, it is inserted to Pareto Front
 insertIntoParetoFront(x, cost1, cost2, ..., costm);
 }
 }
 else { // x is a partial solution; x[j] > 0 for 0<=j<=k; x[j] = 0 for k<j<=n
 for(i=1;i<=nArchitectures;i++) {
 update x such that next unmapped task is mapped to ith candidate architecture;
 if(TimingCondition(x))
 ; // this path will not lead to a solution that satisfies the output rate requirements
 else {
 cost1 = costModel1 (x); // invokes costModel1 for x[1], ..., x[k] and returns sum
 ...
 costm = costModelm (x); // invokes costModelm for x[1], ..., x[k] and returns sum
 // since x is a partial solution, compute buffer costs for tasks which are mapped

 cost_buff = bufferCost(x);
 // assuming cost_1 is the silicon chip space
 cost1 += cost_buff;
 if(cost1 > max1 OR cost2 > max2 ... OR costm > maxm) {

 ; // Costs of solutions along this path exceed some technology dependent
 // upper bounds though these solutions satisfy timing requirements,
 // they can not be implemented using prevalent fabrication technology
 }
 else
 // call recursively with updated solution
 DepthFirstDSE(x);
 }
 }
 }
}

Fig. 5.3: Depth First DSE pseudo code

5. MPEG2 Case Study 37

essentially implements the checkα(∆) < C.∆, ∀ ∆ > 0 mentioned earlier in Section 4.4. Next, the

costs of thePartialSolution are computed and compared against some technology dependent upper

limits, which is the second condition mentioned in Section 4.4. If any of these costs exceed these

upper bounds then search along this path is abandoned. These upper bounds give the designer a way

of eliminating solutions which are too costly to be implemented. It should be noted that these upper

bounds are external inputs to this algorithm and represent some industrial cost constraints. For exam-

ple, maximum number of transistors that can fit on a single die of silicon using a particular fabrication

technology or maximum power usage allowed for the system. With these two conditions, timing con-

dition and upper bounds on costs, exhaustive exploration of the design space can be avoided. The

first condition helps us eliminate solutions that are not powerful enough to match the performance re-

quirements of the application where as the second conditions eliminates solutions that are too costly.

Figure 5.4 shows flowchart representation of the same algorithm. As the algorithm explores the de-

sign space it finds pareto-optimal solutions and adds them to the pareto optimal front. Figure 5.5

outlines the pseudo-code for two functions, first,isParetoOptimal() which checks if a new solution

is pareto-optimal and second,insertIntoParetoFront() which actually inserts the solution into the

pareto-front.insertIntoParetoFront() has mainly two parts, first part simply adds the new solution

to the existing set of pareto-optimal solution. The second and equally important part checks if there

are any solutions in the set which are dominated by the newly added solution. If any such solution

is found then it is removed from the set. This is necessary because a solution which is dominated by

another solution can no longer be part of the pareto-optimal front.

5.5 Choice of objective functions

Some researchers have formulated the mapping of tasks to processors as an ILP [7] using silicon

chip area as the single objective function. This single objective approach may not be adequate since

system design for MPSoCs often involves many design objectives. The objectives could be conflict-

ing such that optimizing on one objective compromises the other design objectives. Keeping this in

mind we decided to take the multi-objective approach in this thesis. Researchers [31] working in the

direction of DSE of MPSoCs have used different objectives like network performance and cost sav-

ings. Many more objectives that are critical to the system design are throughput, power usage of the

5. MPEG2 Case Study 38

Fig. 5.4: Depth First DSE program flow

5. MPEG2 Case Study 39

struct ParetoSolution {
 PartialSolution *x;
 int cost_1;
 int cost_2;
 …
 int cost_m;
 struct ParetoSolution *next;
};
ParetoFront is the set of pareto optimal solutions;
int isParetoOptimal(<cost_1, cost_2, … cost_m>) {
 ParetoSolution ps;

 If(ParetoFront is empty) // this means any solution is pareto optimal
 return 1;
 ps = first solution in ParetoFront;
 while(there are more solutions in ParetoFront){
 if(ps dominates <cost_1, cost_2, … cost_m>) {
 //Dominated by some solution already in the pareto-optimal front
 // this means input vector can not be pareto-optimal
 return 0;
 }
 ps = next solution in ParetoFront;
 }
 return 1;
}

void insertPareto(PartialSolution x, <cost_1, cost_2, … cost_m>) {
 ParetoSolution ps1, ps2;
 ParetoSolution ps = new ParetoSolution(x, <cost_1, cost_2, … cost_m>);

 Add ps to ParetoFront;

 //New solution inserted to ParetoFront

 // following code removes all solutions in the ParetoFront which are dominated
 // by newly added solution
 // this is necessary to maintain the pareto-optimality of each solution in ParetoFront
 ps1 = first solution in ParetoFront;
 while(there are more solutions in Pareto Front){
 if(ps dominates ps1){
 remove ps1 from ParetoFront;
 }
 ps1 = next solution in ParetoFront;
 }
}

Fig. 5.5: Pareto Optimal Front creation

5. MPEG2 Case Study 40

system etc. In order to demonstrate our multi-objective approach we narrowed down to two objective

functions: silicon chip-space requirements and the power usage of the system. It should be noted

however that our technique in general can handle any number of objectives, subject to the availability

of appropriate cost models for those objectives.

5.5.1 Cost model for Chip-space requirements

For one of the objective functions, silicon chip area, we must estimate the chip-space requirements

of MPSoC including the processing elements and the communication elements such as the buffers.

We considered many ways to estimate the chip-space requirements for processing elements, including

information from datasheets of real processors. However it was found that many manufacturers do

not mention this information, probably because the chip area varies depending on the fabrication

technology used. For example, chip area required for a processor on a 0.5 micron technology is

different from area required for the same processor on 0.18 micron technology. We also considered

some empirical cost models like SimpleFit [22], which are based on chip areas of some commercial

processors. By fitting a quadratic function to the data for real processors, this model defines the silicon

cost as a function of issue width. However sophisticated, this model is not of much use because

of following reasons: first, its based only on one microarchitectural parameter i.e issue width, and

second, the possible values of issue width are limited to 1, 2, or 4 even for latest superscalars.

It should be noted that building a cost model which takes into consideration all the microarchi-

tectural parameters mentioned in Section 5.1 is not a simple task. Among all the components that

account for chip area, some are SRAM based and have a well known implementation. For example,

data and instruction caches, register sets, etc. It is easy to estimate the chip area for these components

using analytical models. Since the chip area for 1 bit of SRAM is known, total area can be easily

computed by multiplying it with the memory size of the component and adding some fixed cost for

the structural implementation. However, some other components such as functional modules (adders

and multipliers etc.) are much complex in implementation. Chip area for these components can only

be computed using empirical methods, i.e. by using transistor counts for some well known imple-

mentations and extrapolating using word width as a parameter. Naturally these estimations are not as

accurate as the analytical models. Another set of components, like buses and arbiters, it is even more

5. MPEG2 Case Study 41

difficult to estimate the chip area because it depends on the actual layout of the other components on

the chip. The chip space requirements for these components can best be estimated as a percentage

overhead after adding chip space for all other components.

Considering these difficulties a hardware complexity estimation model, SimScal [30] has been de-

veloped. SimScal is based on sim-outorder simulator of SimpleScalar. It takes as input SimpleScalar

microarchitectural parameters like cache size, decode and issue width, number of integer and floating

point ALUs, RUU and LSQ sizes, branch predictors and memory ports, and estimates the transistor

count and the chip area required. To the best of our knowledge, this is the only chip space estimator

which takes into account such a wide range of microarchitectural parameters and is proved to be fairly

accurate.

We estimated the silicon chip-space for each of our candidate architectures using SimScal esti-

mation model. Appendix B summarizes the microarchitectural parameters that define our candidate

architectures and Table 5.2 shows the corresponding silicon cost measured in transistor counts.

5.5.2 Chip-space estimation for on-chip buffers

On-chip buffer also contribute significantly to silicon chip-space requirements of an MPSoC.

In the context of streaming applications these buffers are first-in-first-out buffers with one proces-

sor reading from it and another writing to it. Analytical model for estimating transistor counts of

such FIFO buffers can be easily constructed using an approach similar to SimScal’s analytical model

for I-cache transistor count estimation. SimScal assumes four transistors per SRAM bit of memory

(TransSRBit = 4), two transistors per write port (TransWP = 2) and one transistor per read port

(TransRP = 1). Assuming one read and one write port per buffer bit, the transistor count per buffer

bit can be calculated as:TransBuffBit = TransSRBit + TransWP + TransRP .

Buffer size calculated by Equation 4.5 is measured in terms of numbers of data items, for example

macro-blocks in case of MPEG2 decoder. The size of MPEG2 pixel is16 × 16 pixels. Each macro-

block occupies16× 16×ColorDepth bits of buffer space, whereColorDepth is the number of bits

required to represent each pixel. Using this data, the total transistor count for on-chip buffers can be

estimated as:TransBuff = TransBuffBit×B×16×16×ColorDepth, whereB is the buffer

size calculated by Equation 4.5. Here all the terms exceptB are constants. The proposed algorithm

5. MPEG2 Case Study 42

no. Trans.count no. Trans.count no. Trans.count no. Trans.count

1 2345125 33 2307957 65 2337741 97 2300677

2 2551155 34 2504115 66 2543203 98 2496275

3 2373685 35 2336517 67 2366301 99 2329237

4 2579715 36 2532675 68 2571763 100 2524835

5 2376485 37 2339317 69 2369101 101 2332037

6 2582515 38 2535475 70 2574563 102 2527635

7 2433605 39 2396437 71 2426221 103 2389157

8 2639635 40 2592595 72 2631683 104 2584755

9 2484363 41 2439483 73 2475843 105 2431083

10 2690521 42 2635705 74 2681433 106 2626745

11 2512923 43 2468043 75 2504403 107 2459643

12 2719081 44 2664265 76 2709993 108 2655305

13 2515723 45 2470843 77 2507203 109 2462443

14 2721881 46 2667065 78 2712793 110 2658105

15 2572843 47 2527963 79 2564323 111 2519563

16 2779001 48 2724185 80 2769913 112 2715225

17 2513758 49 2468878 81 2505238 113 2460478

18 2719916 50 2665100 82 2710828 114 2656140

19 2542318 51 2497438 83 2533798 115 2489038

20 2748476 52 2693660 84 2739388 116 2684700

21 2545118 53 2500238 85 2536598 117 2491838

22 2751276 54 2696460 86 2742188 118 2687500

23 2602238 55 2557358 87 2593718 119 2548958

24 2808396 56 2753580 88 2799308 120 2744620

25 2652516 57 2600164 89 2642860 121 2590644

26 2858674 58 2796386 90 2848450 122 2786306

27 2681076 59 2628724 91 2671420 123 2619204

28 2887234 60 2824946 92 2877010 124 2814866

29 2683876 61 2631524 93 2674220 125 2622004

30 2890034 62 2827746 94 2879810 126 2817666

31 2740996 63 2688644 95 2731340 127 2679124

32 2947154 64 2884866 96 2936930 128 2874786

Tab. 5.2: Transistor counts of different candidate architectures

5. MPEG2 Case Study 43

treatsTransBuffBit × 16 × 16 × ColorDepth as a scaling factor and uses it to compute the

transistor counts for different buffer sizes corresponding to different mappings of tasks to processing

units. This transistor count is then added to the sum of transistor counts for each candidate architecture

that constitutes a mapping to arrive at the overall transistor count for a mapping.

5.5.3 Estimating Power consumption of candidate architectures

Accurately estimating the power requirements of candidate architectures is necessary to able to

differentiate and choose between them. We relied on Wattch [2] power simulator for these power es-

timates. Wattch is composed of different parameterizable power models for different types of compo-

nents that make up the processor. It uses per cycle resource usage counts from a cycle-level simulator

like SimpleScalar and invokes power models for the resources accessed in each cycle. It generates

detailed statistics on power usage by each component as well as the overall power usage.

We used Wattch to find the power consumption by each of the 128 candidate architectures. Among

the outputs generated by Wattch, we used the output avgtotal power insn cc3 to evaluate the power

cost associated with a candidate architecture. This output parameter represents the average power per

instruction which is a good measure of the power hungriness of a processor. Table 5.3 summarizes

the power costs in units of Watts (Joules/Sec). We assume that the power consumed by the MPSoC

is equal to addition of power consumed by each candidate separately. Wattch itself takes a similar

approach, as it estimates the power consumed by each component (like ALU, buses etc.) separately

and adds them to find total power and it has been demonstrated to be reasonably accurate. Thus in

the context of MPSoC system with many processors on a die of silicon, the total power can be ap-

proximated by adding power estimates for individual processors. Of course, on-chip communication

network also consumes some amount of power and may contribute to some inaccuracy in power esti-

mates. However our goal here is to be able to compare different possible combinations of processors

using power as the criteria. Thus the inaccuracies due to on-chip communication network may be

assumed to cancel out each other in the comparison. With this second objective in place, the designer

can choose design points with low power consumption as well as can identify trade-offs between the

two objectives, the silicon chip-space and power requirements.

5. MPEG2 Case Study 44

no. avg.power/insn no. avg.power/insn no. avg.power/insn no. avg.power/insn

1 11.97911 33 12.99732 65 14.32321 97 10.917

2 12.65286 34 13.69015 66 12.12976 98 11.23352

3 13.10566 35 10.40271 67 12.35679 99 14.22612

4 10.52442 36 10.74853 68 13.13113 100 15.12567

5 10.70429 37 14.95595 69 13.57614 101 12.65724

6 13.82946 38 15.45465 70 10.69141 102 13.09034

7 14.55188 39 12.93051 71 10.88843 103 13.5684

8 12.25111 40 13.2075 72 15.13805 104 14.3896

9 12.57125 41 13.19031 73 12.04725 105 11.2198

10 13.12747 42 14.11305 74 15.42152 106 10.12687

11 14.57249 43 14.60719 75 13.15984 107 11.59544

12 13.60451 44 11.10565 76 13.26504 108 15.52379

13 10.8265 45 11.22023 77 14.31185 109 15.88443

14 11.06283 46 15.50096 78 14.61354 110 13.70145

15 15.13756 47 16.14119 79 11.48042 111 13.80251

16 15.35552 48 13.33628 80 11.65808 112 14.75102

17 13.30246 49 13.65861 81 15.70674 113 15.24726

18 13.22945 50 14.59685 82 15.98366 114 12.03709

19 14.31436 51 13.89681 83 13.58371 115 12.19327

20 14.59844 52 15.06411 84 12.54377 116 16.09167

21 11.64969 53 11.41189 85 13.59999 117 10.42491

22 11.97501 54 11.54705 86 14.81504 118 16.79948

23 11.67012 55 13.29828 87 15.05845 119 14.13889

24 15.70942 56 13.77497 88 11.80866 120 14.35498

25 16.25589 57 11.73639 89 11.83269 121 15.25696

26 13.73902 58 12.02966 90 13.69041 122 15.90206

27 13.85732 59 12.65886 91 14.25541 123 12.37245

28 14.8207 60 13.13942 92 12.25163 124 12.55795

29 15.11534 61 10.39438 93 12.55374 125 13.28925

30 11.98386 62 11.5992 94 13.09474 126 13.70432

31 12.04513 63 10.71625 95 13.21816 127 11.84595

32 12.5092 64 13.83612 96 13.75536 128 13.72209

Tab. 5.3: Power costs of different candidate architectures

5. MPEG2 Case Study 45

30

32

34

36

38

40

42

10 10.5 11 11.5 12 12.5 13 13.5 14
Millions

A

B X

E
D

C
 F

G
H

I
Y

JPareto-optimal front
K

L M
N O

P

Fig. 5.6: Points connected by line represent the Pareto Optimal front. Other points shown by triangles are

other feasible solutions dominated by some solution on the pareto-optimal front. Silicon costs are on

horizontal axis and power costs on vertical axis.

5.6 Experimental Results and analysis

The pareto-optimal front generated by a particular run of our algorithm is shown in Figure 5.6.

Standard output rate for MPEG2 application is around 20 fps. This translates to around6 mac-

roblocks/ms for the sample video clip which we used for experiments. TheColorDepth for the

video clip was32. Thus using the analytical model mentioned in Section 5.5.2 the silicon cost of on-

chip buffers per macroblock comes to57344. This scaling factor along with Equation 4.5 was used

by the depthFirstDSE algorithm to estimate the silicon costs of the on-chip buffers.

Overall running time of the algorithm was about 18 minutes on Ultra Sparc III CPU (750MHz)

running SUN OS 5.8. The design space was explored in a depth first manner with the maximum depth

being3 which equals the number of tasks in the application. TheTimingCondition was not satisfied

at22 nodes at depth1 and9587 points at depth2. Each node at depth1 has128×128 leaf nodes as its

5. MPEG2 Case Study 46

Timing Condition Upper Bound Conditions

Nodes pruned at level 1 22 0

Nodes pruned at level 2 9587 17

% of design space pruned 75.7 0.1

Tab. 5.4: Performance statistics for MPEG2 case study

descendants since each node has128 child nodes. Similarly, each node at depth2 has128 leaf nodes

as its descendants. Thus the22 nodes at depth1 and9587 nodes at depth2 represent75.7% of the

design space which is pruned by theTimingCondition. The second condition which checks certain

upper bounds on the costs contributed to only0.1% of the pruning since it was not satisfied at only17

nodes at depth2 in the design space. However, these upper bounds are external inputs to the algorithm

and are either technology dependent or represent some industrial standards, and for the experimental

validation we had chosen pessimistic upper bounds (max silicon cost = 15 million transistors

andmax power cost = 40W). Nevertheless they demonstrate how search space can be restricted

to solutions which are practically feasible to be implemented. In summary, about76% of the design

space was pruned by timing and upper bound conditions. The running time of the same algorithm

without these conditions was around 69 minutes which indicates74% time savings which is almost

proportionate with the pruned design space. In figure 5.6 pointsA to P represent the pareto-optimal

front. The points shown by triangles are solutions which are dominated by some point on the pareto-

optimal front. For example, it can be seen very easily that solutionX is dominated by solutionG

and solutionY is dominated by solutionL. SolutionA, which is on pareto-optimal front does not

dominateX andO does not dominateY . HoweverA andO are on the pareto-optimal front since

they are not dominated by any other solution (see definition of pareto-optimality in Section 4.1). The

pareto front in figure 5.6 can be broadly divided into three segments, solutionsA to F in first segment,

solutionsG to L making the middle segment andM to P constituting the last segment. The average

silicon cost of a solution in third segment is17% higher than that of the other segments whereas

solutions in first segment are on average14.5% more expensive in power as compared to the rest of

the solutions. A designer having ample silicon resources can look at third segment for a potential

solutions. The first segment can be looked at if the designer can afford higher power consumption.

The solutions in middle segment are on average14% cheaper in terms of silicon costs and6% more

5. MPEG2 Case Study 47

Decode BW = 4
Issue BW = 4

Il1 Cache Blks = 16
Il1 Blk Size = 64

Int. ALUs = 2
FP ALUs = 2
RUU size = 8
LSQ size = 8

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 64

Int. ALUs = 4
FP ALUs = 4
RUU size = 8
LSQ size = 8

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 32

Int. ALUs = 2
FP ALUs = 2

RUU size = 16
LSQ size = 4

B1: 172032 B2: 2351104 B3: 516096 B4: 688128

VLD IQ IDCT+MC

Silicon Cost: 2532675
Power Cost: 10.74853

Silicon Cost: 2688645
Power Cost: 10.71625

Silicon Cost: 2369101
Power Cost: 13.57614

Fig. 5.7: Pareto Optimal Solution H

expensive in power costs as compared to solutions in third segment. A designer can trade-off extra

power resources for reduction in silicon costs by switching from segment three to the middle segment.

Similar trade-offs can be made between the first two segments since middle segment is12% cheaper

in terms of power costs and5.5% more expensive in terms of silicon costs as compared to solutions

in first segment.

Once a broader segment of the pareto-front has been identified, the solutions could be looked more

closely for their microarchitectural details and on-chip buffer requirements. For example, figures 5.7

and 5.8 show the details of solutionsH andK respectively. Both solutions choose the same microar-

chitectural configuration for task IQ but choose different configurations for VLD and IDCT+MC.

SolutionH chooses a higher decode/issue BW for task VLD as compared to the same by solutionK.

On the other handK assigns bigger level 1 I-cache size and RUU size for the same task. It can be

seen that though solutionK is more expensive in terms of overall silicon costs, it is actually cheaper

in silicon costs of only processing units. This could be explained by higher contribution of buffers to

the silicon cost (38.2%) of solutionK as opposed to only33% in case of solutionH. Appendix F

lists other pareto optimal solutions. This analysis clearly suggests that the pareto-optimal front and

detailed description of pareto-optimal solutions give us a lot of insight into various aspects of system

design and trade-offs between multiple conflicting objectives.

5. MPEG2 Case Study 48

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 64

Int. ALUs = 2
FP ALUs = 2

RUU size = 16
LSQ size = 4

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 64

Int. ALUs = 4
FP ALUs = 4
RUU size = 8
LSQ size = 8

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 16
Il1 Blk Size = 32

Int. ALUs = 2
FP ALUs = 2
RUU size = 8
LSQ size = 4

B1: 860160 B2: 2408448 B3: 860160 B4: 458752

VLD IQ IDCT+MC

Silicon Cost: 2426221
Power Cost: 10.8884

Silicon Cost: 2688645
Power Cost: 10.71625

Silicon Cost: 2300677
Power Cost: 10.917

Fig. 5.8: Pareto Optimal Solution K

6. CONCLUSIONS AND FUTURE WORK

In this work we proposed an innovative design space exploration technique for mapping of stream-

ing applications to multiprocessor SoC platforms. All previous work in this direction can be catego-

rized into two parts: 1)Evolutionary techniques that use full/symbolic system simulation, which have

the obvious advantage of being accurate in performance estimation, and 2) ILP based techniques

which have the advantage that they guarantee optimality of the solutions. Our technique essentially

combines the advantages of these two extremes without incurring any of the disadvantages. Evolu-

tionary techniques are heuristic based and can not guarantee optimality. Unlike that, our technique

explores the design space in a systematic depth-first manner and prunes parts of the design space only

when none of the solutions in that part of the tree can satisfy real-time performance requirements of

the application or exceed technology dependent upper bounds. For the MPEG2 case study that we per-

formed, these conditions result in76% pruning of design space and74% time savings. Our technique

avoids the drawbacks of ILP techniques which assume fixed performance requirements and support

only one objective function. Performance estimation technique we used is fairly accurate since we

simulate each task on each candidate architecture and model the variability in execution requirements

using theory of network calculus which is broadly used in networking domain for performance esti-

mation and modeling.

An important feature of our DSE technique is that it obviates the need for system level simulation

which is very time consuming. Instead the process of simulation is broken down to the task level.

This gives the designer flexibility of modifying a single task without affecting the entire system.

Commercially the applications are developed in incremental fashion, with small changes at a time.

Thus our method could prove very useful in real world SoC development because there is no need for

a system level simulation every time a small change is performed.

The most useful outcome of the technique we presented is the multi-objective pareto-optimal

front. The pareto-optimal solutions represent trade-offs between various design objectives of MP-

6. Conclusions and Future Work 50

SoC design. We demonstrated this technique using two objectives: minimization of silicon costs and

minimization of power consumption of the overall application. The pareto-front generated by our

depth-first design space exploration algorithm could be used to identify solutions with minimum sili-

con or power costs. By using the pareto-front, extra silicon resources could be traded for lesser power

consumption or excess power availability could be traded for reduction in silicon costs in a systematic

way. Other important outcomes of the proposed technique are detailed microarchitectural descrip-

tions of the pareto-optimal solutions as well as minimum buffer sizes required to prevent overflows,

which are necessary inputs for implementation of an MPSoC. Though we used only two objectives

in our case study of MPEG2 application, more objectives can easily be added provided appropriate

cost models for those objectives are available. The depth first DSE algorithm outlined in this work

can be easily extended to any other multimedia streaming application. We conclude that the proposed

technique is useful for synthesis of multiprocessor architectures for multimedia applications.

Future Work: Although our DSE technique is innovative and efficient, we feel that simulation tech-

nique that we use is tedious. For example, the MPEG2 application code that we use is monolithic

piece of code written keeping uniprocessor in mind. This makes the process of simulation of individ-

ual tasks cumbersome because we have to manually split the application into tasks. If the applications

are implemented in a stream programming language then it will greatly simplify the process of initial

simulation because these stream programming languages have a clear division between the tasks in

the application. In this context we would like to mention that work is already in progress at MIT on

implementation of MPEG2 decoder in a stream programming language called StreamIt [9].

BIBLIOGRAPHY

[1] J.-Y. L. Boudec and P. Thiran.Network Calculus - A Theory of Deterministic Queuing Systems

for the Internet. Lecture Notes in CS, Springer, 2001.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level power

analysis and optimizations. InISCA ’00: Proceedings of the 27th annual international sympo-

sium on Computer architecture, pages 83–94. ACM Press, 2000.

[3] J.-M. Chang and M. Pedram. Codex-dp: Co-design of communicating systems using dynamic

programming.IEEE Transactions on CAD, pages 732–744, July 2000.

[4] B. P. Dave, G. Lakshminarayana, and N. K. Jha. Cosyn: Hardware software cosynthesis of

heterogeneous distributed embedded systems.IEEE Transactions on VLSI Systems, pages 92–

104, 1999.

[5] E. de Kock. Multiprocessor mapping of process networks: a jpeg decoding case study. In15th

international symposium on System Synthesis, pages 68–73. ACM Press, 2002.

[6] E. A. de Kock. Yapi: Application modelling for signal processing systems. In37th Design

Automation Conference, pages 402–405. IEEE, 2000.

[7] B. Dwivedi, A. Kumar, and M. Balakrishnan. Synthesis of application specific multiprocessor

architectures for process networks. In17th International Conference on VLSI Design, page 780.

IEEE Computer Society, 2004.

[8] B. K. Dwivedi, A. Kumar, and M. Balakrishnan. Automatic synthesis of system on chip multi-

processor architectures for process networks. In2nd IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, pages 60–65. ACM Press, 2004.

Bibliography 52

[9] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger, J. Wong,

H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for communication-exposed

architectures. In10th international conference on Architectural support for programming lan-

guages and operating systems, pages 291–303. ACM Press, 2002.

[10] G. Kahn. Semantics of a simple language for parallel programming.Proc. of Information

Processing, August 5-10:471–475, 1974.

[11] S. Kim, C. Im, and S. Ha. Schedule-aware performance estimation of communication architec-

ture for efficient design space exploration. In1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, pages 195–200. ACM Press, 2003.

[12] S. Kim, C. Im, and S. Ha. Efficient exploration of on-chip bus architectures and memory allo-

cation. In2nd IEEE/ACM/IFIP international conference on Hardware/software codesign and

system synthesis, pages 248–253. ACM Press, 2004.

[13] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task graphs to

multiprocessors.ACM Comput. Surv., 31(4):406–471, 1999.

[14] K. Lahiri, A. Raghunathan, and S. Dey. Efficient exploration of the soc communication archi-

tecture design space. InIEEE/ACM international conference on Computer-aided design, pages

424–430. IEEE Press, 2000.

[15] J. Leijten, J. van Meerbergen, A. Timmer, and J. Jess. Prophid: a data-driven multi-processor

architecture for high-performance dsp. InEuropean conference on Design and Test, page 611.

IEEE Computer Society, 1997.

[16] J. Leijten, J. van Meerbergen, A. Timmer, and J. Jess. Prophid: a heterogeneous multi-processor

architecture for multimedia. InInternational Conference on Computer Design, page 164. IEEE

Computer Society, 1997.

[17] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere. System level design with spade:

an m-jpeg case study. InIEEE/ACM international conference on Computer-aided design, pages

31–38. IEEE Press, 2001.

Bibliography 53

[18] J. Luo and N. K. Jha. Low power distributed embedded systems: Dynamic voltage scaling and

synthesis. InInternational Conference on High Performance Computing (HiPC), December

2002.

[19] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya. Automatic generation of application-

specific architectures for heterogeneous multiprocessor system-on-chip. In38th Design Au-

tomation Conference, pages 518–523. ACM Press, 2001.

[20] A. Maxiaguine, Y. Liu, S. Chakraborty, and W. T. Ooi. Identifying ”representative” workloads

in designing mpsoc platforms for media processing.2nd IEEE Workshop on Embedded Systems

for Real-Time Multimedia, 2004.

[21] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning soc platforms for multimedia

processing: identifying limits and tradeoffs. In2nd IEEE/ACM/IFIP international conference

on Hardware/software codesign and system synthesis, pages 128–133. ACM Press, 2004.

[22] C. A. Moritz, D. Yeung, and A. Agarwal. Simplefit: A framework for analyzing design trade-

offs in raw architectures.IEEE Transactions on Parallel Distributed Systems, 12(7):730–742,

2001.

[23] T. Parks.Bounded scheduling of process networks. PhD thesis, University of California, EECS

Dept., Berkeley, CA, 1995.

[24] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Fast exploration of bus-based on-chip commu-

nication architectures. In2nd IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, pages 242–247. ACM Press, 2004.

[25] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf, and E. F. Deprettere. Exploring

embedded-systems architectures with artemis.IEEE Computer, 34(11):57–63, 2001.

[26] M. Rutten, J. van Eijndhoven, E. Jaspers, P. van der Wolf, O. Gangwal, and A. Timmer. A

heterogeneous multiprocessor architecture for flexible media processing.IEEE Design & Test of

Computers, 19(4):39–50, July-August 2002.

Bibliography 54

[27] M. Rutten, J. van Eijndhoven, and E.-J. Pol. Robust media processing in a flexible and cost-

effective network of multi-tasking coprocessors. InEuromicro Conference on Real-Time Systems

(ECRTS), 2002.

[28] D. Sciuto, F. Salice, L. Pomante, and W. Fornaciari. Metrics for design space exploration of

heterogeneous multiprocessor embedded systems. In10th international symposium on Hard-

ware/software codesign, pages 55–60. ACM Press, 2002.

[29] D. Shin and J. Kim. Power-aware scheduling of conditional task graphs in real-time multiproces-

sor systems. InInternational Symposium on Low Power Electronics and Design (ISLPED),

August 2003.

[30] M. Steinhaus, R. Kolla, J. L. Larriba-Pey, T. Ungerer, and M. Valero. Transistor count and chip

space estimation of simple-scalar-based microprocessor models. InWorkshop on Complexity-

Effective Design, 2001.

[31] L. Thiele, S. Chakraborty, M. Gries, and S. Kunzli. A framework for evaluating design tradeoffs

in packet processing architectures. In39th Design Automation Conference, pages 880–885.

ACM Press, 2002.

[32] G. V. Varatkar and R. Marculescu. On-chip traffic modeling and synthesis for mpeg-2 video

applications.IEEE Transactions on Very Large Scale Integrated Systems, 12(1):108–119, 2004.

[33] V. Zivkovic, E.Deprettere, P. van der Wolf, and E. de Kock. Design space exploration of stream-

ing multiprocessor architectures. InSiPS, 2002.

[34] V. D. Zivkovic, E. de Kock, P. van der Wolf, and E. Deprettere. Fast and accurate multiprocessor

architecture exploration with symbolic programs. Inconference on Design, Automation and Test

in Europe, page 10656. IEEE Computer Society, 2003.

APPENDIX

A. CONFIG FILE PARAMETERS FOR PPC604 LIKE PROCESSOR

(SOURCE:SIMSCAL)

A. Config file parameters for ppc604 like processor (source:SimScal) 57

B. MICROARCHITECTURAL CONFIGURATIONS

B. Microarchitectural Configurations 59

No. DecodeBW IssueBW il1CacheBlks il1BlkSize IntALUs FPALUs RUUsize LSQsize

1 2 2 16 32 2 2 16 8

2 4 4 16 32 2 2 16 8

3 2 2 16 64 2 2 16 8

4 4 4 16 64 2 2 16 8

5 2 2 32 32 2 2 16 8

6 4 4 32 32 2 2 16 8

7 2 2 32 64 2 2 16 8

8 4 4 32 64 2 2 16 8

9 2 2 16 32 4 2 16 8

10 4 4 16 32 4 2 16 8

11 2 2 16 64 4 2 16 8

12 4 4 16 64 4 2 16 8

13 2 2 32 32 4 2 16 8

14 4 4 32 32 4 2 16 8

15 2 2 32 64 4 2 16 8

16 4 4 32 64 4 2 16 8

17 2 2 16 32 2 4 16 8

18 4 4 16 32 2 4 16 8

19 2 2 16 64 2 4 16 8

20 4 4 16 64 2 4 16 8

21 2 2 32 32 2 4 16 8

22 4 4 32 32 2 4 16 8

23 2 2 32 64 2 4 16 8

24 4 4 32 64 2 4 16 8

25 2 2 16 32 4 4 16 8

26 4 4 16 32 4 4 16 8

27 2 2 16 64 4 4 16 8

28 4 4 16 64 4 4 16 8

29 2 2 32 32 4 4 16 8

30 4 4 32 32 4 4 16 8

31 2 2 32 64 4 4 16 8

32 4 4 32 64 4 4 16 8

Tab. B.1: Microarchitectral Configurations

B. Microarchitectural Configurations 60

No. DecodeBW IssueBW il1CacheBlks il1BlkSize IntALUs FPALUs RUUsize LSQsize

33 2 2 16 32 2 2 8 8

34 4 4 16 32 2 2 8 8

35 2 2 16 64 2 2 8 8

36 4 4 16 64 2 2 8 8

37 2 2 32 32 2 2 8 8

38 4 4 32 32 2 2 8 8

39 2 2 32 64 2 2 8 8

40 4 4 32 64 2 2 8 8

41 2 2 16 32 4 2 8 8

42 4 4 16 32 4 2 8 8

43 2 2 16 64 4 2 8 8

44 4 4 16 64 4 2 8 8

45 2 2 32 32 4 2 8 8

46 4 4 32 32 4 2 8 8

47 2 2 32 64 4 2 8 8

48 4 4 32 64 4 2 8 8

49 2 2 16 32 2 4 8 8

50 4 4 16 32 2 4 8 8

51 2 2 16 64 2 4 8 8

52 4 4 16 64 2 4 8 8

53 2 2 32 32 2 4 8 8

54 4 4 32 32 2 4 8 8

55 2 2 32 64 2 4 8 8

56 4 4 32 64 2 4 8 8

57 2 2 16 32 4 4 8 8

58 4 4 16 32 4 4 8 8

59 2 2 16 64 4 4 8 8

60 4 4 16 64 4 4 8 8

61 2 2 32 32 4 4 8 8

62 4 4 32 32 4 4 8 8

63 2 2 32 64 4 4 8 8

64 4 4 32 64 4 4 8 8

Tab. B.2: Microarchitectral Configurations (Cont.)

B. Microarchitectural Configurations 61

No. DecodeBW IssueBW il1CacheBlks il1BlkSize IntALUs FPALUs RUUsize LSQsize

65 2 2 16 32 2 2 16 4

66 4 4 16 32 2 2 16 4

67 2 2 16 64 2 2 16 4

68 4 4 16 64 2 2 16 4

69 2 2 32 32 2 2 16 4

70 4 4 32 32 2 2 16 4

71 2 2 32 64 2 2 16 4

72 4 4 32 64 2 2 16 4

73 2 2 16 32 4 2 16 4

74 4 4 16 32 4 2 16 4

75 2 2 16 64 4 2 16 4

76 4 4 16 64 4 2 16 4

77 2 2 32 32 4 2 16 4

78 4 4 32 32 4 2 16 4

79 2 2 32 64 4 2 16 4

80 4 4 32 64 4 2 16 4

81 2 2 16 32 2 4 16 4

82 4 4 16 32 2 4 16 4

83 2 2 16 64 2 4 16 4

84 4 4 16 64 2 4 16 4

85 2 2 32 32 2 4 16 4

86 4 4 32 32 2 4 16 4

87 2 2 32 64 2 4 16 4

88 4 4 32 64 2 4 16 4

89 2 2 16 32 4 4 16 4

90 4 4 16 32 4 4 16 4

91 2 2 16 64 4 4 16 4

92 4 4 16 64 4 4 16 4

93 2 2 32 32 4 4 16 4

94 4 4 32 32 4 4 16 4

95 2 2 32 64 4 4 16 4

96 4 4 32 64 4 4 16 4

Tab. B.3: Microarchitectral Configurations (Cont.)

B. Microarchitectural Configurations 62

No. DecodeBW IssueBW il1CacheBlks il1BlkSize IntALUs FPALUs RUUsize LSQsize

97 2 2 16 32 2 2 8 4

98 4 4 16 32 2 2 8 4

99 2 2 16 64 2 2 8 4

100 4 4 16 64 2 2 8 4

101 2 2 32 32 2 2 8 4

102 4 4 32 32 2 2 8 4

103 2 2 32 64 2 2 8 4

104 4 4 32 64 2 2 8 4

105 2 2 16 32 4 2 8 4

106 4 4 16 32 4 2 8 4

107 2 2 16 64 4 2 8 4

108 4 4 16 64 4 2 8 4

109 2 2 32 32 4 2 8 4

110 4 4 32 32 4 2 8 4

111 2 2 32 64 4 2 8 4

112 4 4 32 64 4 2 8 4

113 2 2 16 32 2 4 8 4

114 4 4 16 32 2 4 8 4

115 2 2 16 64 2 4 8 4

116 4 4 16 64 2 4 8 4

117 2 2 32 32 2 4 8 4

118 4 4 32 32 2 4 8 4

119 2 2 32 64 2 4 8 4

120 4 4 32 64 2 4 8 4

121 2 2 16 32 4 4 8 4

122 4 4 16 32 4 4 8 4

123 2 2 16 64 4 4 8 4

124 4 4 16 64 4 4 8 4

125 2 2 32 32 4 4 8 4

126 4 4 32 32 4 4 8 4

127 2 2 32 64 4 4 8 4

128 4 4 32 64 4 4 8 4

Tab. B.4: Microarchitectral Configurations (Cont.)

C. BASE CONFIGURATION FILE

instruction fetch queue size (in insts)
-fetch:ifqsize 4
extra branch mis-prediction latency
-fetch:mplat 3
speed of front-end of machine relative to execution core
-fetch:speed 1
branch predictor type {nottaken|taken|perfect|bimod|2lev|comb}
-bpred bimod
bimodal predictor config (<table size>)
-bpred:bimod 2048
2-level predictor config (<l1size> <l2size> <hist_size> <xor>)
-bpred:2lev 1 1024 8 0
combining predictor config (<meta_table_size>)
-bpred:comb 1024
return address stack size (0 for no return stack)
-bpred:ras 8
BTB config (<num_sets> <associativity>)
-bpred:btb 512 4
speculative predictors update in {ID|WB} (default non-spec)
-bpred:spec_update <null>
instruction decode B/W (insts/cycle)
-decode:width 4
instruction issue B/W (insts/cycle)
-issue:width 4
run pipeline with in-order issue
-issue:inorder false
issue instructions down wrong execution paths
-issue:wrongpath true
instruction commit B/W (insts/cycle)
-commit:width 4
register update unit (RUU) size
-ruu:size 16
load/store queue (LSQ) size
-lsq:size 8
l1 data cache config, i.e., {<config>|none}
-cache:dl1 dl1:128:32:4:l
l1 data cache hit latency (in cycles)
-cache:dl1lat 1
l2 data cache config, i.e., {<config>|none}
-cache:dl2 ul2:1024:64:4:l
l2 data cache hit latency (in cycles)
-cache:dl2lat 6
l1 inst cache config, i.e., {<config>|dl1|dl2|none}
-cache:il1 il1:8:8:1:l
l1 instruction cache hit latency (in cycles)
-cache:il1lat 1
l2 instruction cache config, i.e., {<config>|dl2|none}
-cache:il2 dl2
l2 instruction cache hit latency (in cycles)
-cache:il2lat 8
flush caches on system calls
-cache:flush false
convert 64-bit inst addresses to 32-bit inst equivalents
-cache:icompress false

C. Base configuration file 64

memory access latency (<first_chunk> <inter_chunk>)
-mem:lat 18 2
memory access bus width (in bytes)
-mem:width 8
instruction TLB config, i.e., {<config>|none}
-tlb:itlb itlb:16:4096:4:l
data TLB config, i.e., {<config>|none}
-tlb:dtlb dtlb:32:4096:4:l
inst/data TLB miss latency (in cycles)
-tlb:lat 30
total number of integer ALU’s available
-res:ialu 4
total number of integer multiplier/dividers available
-res:imult 1
total number of memory system ports available (to CPU)
-res:memport 2
total number of floating point ALU’s available
-res:fpalu 4
total number of floating point multiplier/dividers available
-res:fpmult 1
profile stat(s) against text addr’s (mult uses ok)
-pcstat <null>
operate in backward-compatible bugs mode (for testing only)
-bugcompat false

D. SCRIPTS FOR RUNNING THE SIMPLESCALAR SIMULATIONS

echo microconfig 1 >> microconfig_data/timing
date >> microconfig_data/timing
./sim-outorder -fetch:ifqsize 2 -decode:width 2 -issue:width 2

-cache:il1 il1:16:32:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16
-lsq:size 8 -max:inst 100000000 -redir:sim microconfig_data/microconfig1_data
/home/dinesh/mpeg2/out/mpeg2d in0.m2v

date >> microconfig_data/timing
sleep 5
mkdir microconfig_data/config1
mv ws_met* . * microconfig_data/config1

echo microconfig 2 >> microconfig_data/timing
date >> microconfig_data/timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:16:32:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16
-lsq:size 8 -max:inst 100000000 -redir:sim microconfig_data/microconfig2_data

/home/dinesh/mpeg2/out/mpeg2d in0.m2v
date >> microconfig_data/timing
sleep 5
mkdir microconfig_data/config2
mv ws_met* . * microconfig_data/config2

echo microconfig 3 >> microconfig_data/timing
date >> microconfig_data/timing
./sim-outorder -fetch:ifqsize 2 -decode:width 2 -issue:width 2

-cache:il1 il1:16:64:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16
-lsq:size 8 -max:inst 100000000 -redir:sim microconfig_data/microconfig3_data

/home/dinesh/mpeg2/out/mpeg2d in0.m2v
date >> microconfig_data/timing
sleep 5
mkdir microconfig_data/config3
mv ws_met* . * microconfig_data/config3

...

...

echo microconfig 126 >> microconfig_data/timing
date >> microconfig_data/timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:32:32:1:l -res:ialu 4 -res:fpalu 4 -ruu:size 8
-lsq:size 4 -max:inst 100000000 -redir:sim microconfig_data/microconfig126_data

/home/dinesh/mpeg2/out/mpeg2d in0.m2v
date >> microconfig_data/timing
sleep 5
mkdir microconfig_data/config126
mv ws_met* . * microconfig_data/config126

echo microconfig 127 >> microconfig_data/timing
date >> microconfig_data/timing
./sim-outorder -fetch:ifqsize 2 -decode:width 2 -issue:width 2

-cache:il1 il1:32:64:1:l -res:ialu 4 -res:fpalu 4 -ruu:size 8
-lsq:size 4 -max:inst 100000000 -redir:sim microconfig_data/microconfig127_data

/home/dinesh/mpeg2/out/mpeg2d in0.m2v
date >> microconfig_data/timing
sleep 5

D. Scripts for running the SimpleScalar simulations 66

mkdir microconfig_data/config127
mv ws_met* . * microconfig_data/config127

echo microconfig 128 >> microconfig_data/timing
date >> microconfig_data/timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:32:64:1:l -res:ialu 4 -res:fpalu 4 -ruu:size 8
-lsq:size 4 -max:inst 100000000 -redir:sim microconfig_data/microconfig128_data

/home/dinesh/mpeg2/out/mpeg2d in0.m2v
date >> microconfig_data/timing
sleep 5
mkdir microconfig_data/config128
mv ws_met* . * microconfig_data/config128

E. SCRIPTS FOR RUNNING THE WATTCH SIMULATIONS

echo microconfig 1 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 2 -decode:width 2 -issue:width 2

-cache:il1 il1:16:32:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16
-lsq:size 8 -max:inst 100000000 -redir:sim microconfig1_data
mpeg2/out/mpeg2d in0.m2v

date >> timing
echo microconfig 2 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:16:32:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16 -lsq:size 8
-max:inst 100000000 -redir:sim microconfig2_data
mpeg2/out/mpeg2d in0.m2v

date >> timing
echo microconfig 3 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 2 -decode:width 2 -issue:width 2

-cache:il1 il1:16:64:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16 -lsq:size 8
-max:inst 100000000 -redir:sim microconfig3_data
mpeg2/out/mpeg2d in0.m2v

date >> timing
echo microconfig 4 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:16:64:1:l -res:ialu 2 -res:fpalu 2 -ruu:size 16 -lsq:size 8
-max:inst 100000000 -redir:sim microconfig4_data
mpeg2/out/mpeg2d in0.m2v

date >> timing

...

...

echo microconfig 126 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:32:32:1:l -res:ialu 4 -res:fpalu 4 -ruu:size 8 -lsq:size 4
-max:inst 100000000 -redir:sim microconfig126_data
mpeg2/out/mpeg2d in0.m2v

date >> timing
echo microconfig 127 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 2 -decode:width 2 -issue:width 2

-cache:il1 il1:32:64:1:l -res:ialu 4 -res:fpalu 4 -ruu:size 8 -lsq:size 4
-max:inst 100000000 -redir:sim microconfig127_data
mpeg2/out/mpeg2d in0.m2v

date >> timing
echo microconfig 128 >> timing
date >> timing
./sim-outorder -fetch:ifqsize 4 -decode:width 4 -issue:width 4

-cache:il1 il1:32:64:1:l -res:ialu 4 -res:fpalu 4 -ruu:size 8 -lsq:size 4
-max:inst 100000000 -redir:sim microconfig128_data
mpeg2/out/mpeg2d in0.m2v

date >> timing

F. DETAILS OF PARETO OPTIMAL SOLUTIONS

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 64

Int. ALUs = 2
FP ALUs = 2

RUU size = 16
LSQ size = 4

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 64

Int. ALUs = 2
FP ALUs = 4
RUU size = 8
LSQ size = 8

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 32

Int. ALUs = 2
FP ALUs = 2

RUU size = 16
LSQ size = 4

B1: 860160 B2: 2121728 B3: 172032 B4: 344064

VLD IQ IDCT+MC

Silicon Cost: 2426221
Power Cost: 10.8884379

Silicon Cost: 2557359
Power Cost: 13.2982827

Silicon Cost: 2369101
Power Cost: 13.5761438

Fig. F.1: Pareto Optimal Solution B

F. Details of Pareto Optimal Solutions 69

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 32

Int. ALUs = 4
FP ALUs = 2
RUU size = 8
LSQ size = 8

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 64

Int. ALUs = 4
FP ALUs = 4
RUU size = 8
LSQ size = 8

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 16
Il1 Blk Size = 32

Int. ALUs = 2
FP ALUs = 2
RUU size = 8
LSQ size = 4

B1: 1605632 B2: 1892352 B3: 286720 B4: 229376

VLD IQ IDCT+MC

Silicon Cost: 2470843
Power Cost: 11.2202328

Silicon Cost: 2688645
Power Cost: 19.7162568

Silicon Cost: 2300677
Power Cost: 10.9170079

Fig. F.2: Pareto Optimal Solution J

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 32
Il1 Blk Size = 32

Int. ALUs = 2
FP ALUs = 4
RUU size = 8
LSQ size = 4

Decode BW = 4
Issue BW = 4

Il1 Cache Blks = 16
Il1 Blk Size = 32

Int. ALUs = 4
FP ALUs = 2
RUU size = 8
LSQ size = 4

Decode BW = 2
Issue BW = 2

Il1 Cache Blks = 16
Il1 Blk Size = 32

Int. ALUs = 2
FP ALUs = 2
RUU size = 8
LSQ size = 4

B1: 229376 B2: 4071424 B3: 630784 B4: 1204224

VLD IQ IDCT+MC

Silicon Cost: 2491839
Power Cost: 10.4249136

Silicon Cost: 2626746
Power Cost: 10.1268764

Silicon Cost: 2300677
Power Cost: 10.9170079

Fig. F.3: Pareto Optimal Solution P

