
CONTRIBUTIONS TO THE CONSTRUCTION AND DECODING

OF NON-BINARY LOW-DENSITY PARITY-CHECK CODES

NG KHAI SHENG

NATIONAL UNIVERSITY OF SINGAPORE

2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48629417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTRIBUTIONS TO THE CONSTRUCTION AND DECODING

OF NON-BINARY LOW-DENSITY PARITY-CHECK CODES

NG KHAI SHENG

(B.Eng.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

Acknowledgements

First of all, I would like to express my sincere thanks and gratitude to my super-

visor, Dr. Marc Andre Armand, for his invaluable insights, patience, guidance and

generosity throughout the course of my candidature. This thesis would not have

been possible without his support.

My thanks also go out to my friends and lab mates in the Communications

Laboratory, for the many enjoyable light-hearted moments and the occasional get-

togethers. In particular, I would like to extend my thanks to Tay Han Siong and

Thomas Sushil John, whose friendship, great company and encouragement have

helped me through some rough times; and to Zhang Jianwen, for the many thought

provoking and fruitful discussions. I would also like to thank my pals from my

undergraduate days, Koh Bih Hian and Ng Kim Piau for their friendship.

My gratitude goes to the Department of Electrical and Computer Engineering,

National University of Singapore, for providing all the necessary resources and giving

me the opportunity to conduct such exciting and cutting edge research.

Last, but not least, I would like to thank my parents for their unwavering support

and love.

i

Contents

Acknowledgements i

Contents ii

Summary vii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Early Codes . 1

1.2 State-of-the-Art Error Correction . 3

1.3 Scope of Work . 4

1.4 Contribution of Thesis . 5

1.5 Thesis Outline . 5

ii

CONTENTS iii

2 Low-Density Parity-Check Codes 7

2.1 Background . 7

2.2 LDPC Fundamentals . 7

2.2.1 Regular LDPC Codes . 7

2.2.2 Irregular LDPC Codes . 9

2.3 Tanner Graph Representation of LDPC Codes 10

2.4 Some Factors Affecting Performance 11

2.4.1 Sparsity . 12

2.4.2 Girth . 13

2.4.3 Size of Code Alphabet . 14

2.5 Construction of LDPC Codes . 14

2.5.1 Gallager’s Constructions . 15

2.5.2 MacKay’s Constructions . 15

2.5.3 Ultra-light Matrices . 16

2.5.4 Geometric Approach . 16

2.5.5 Combinatorial Approach . 17

2.5.6 Progressive Edge-Growth (PEG) Tanner Graphs 17

2.6 Research Trends . 18

CONTENTS iv

2.6.1 Codes over Larger Alphabets 18

2.6.2 Reduction of Encoding and Decoding Complexity 18

2.6.3 Implementation and Application 19

3 Decoding of LDPC Codes 20

3.1 Gallager’s Original Decoding Algorithm 20

3.2 The Non-Binary MPA . 20

3.2.1 The Row Step . 21

3.2.2 The Column Step . 26

3.2.3 Worked Example . 30

3.2.4 Complexity of the FFT . 35

4 Mixed Alphabet LDPC Codes 41

4.1 Background . 41

4.2 Some Earlier Mixed Alphabet Codes 42

4.3 Construction of Mixed Alphabet LDPC Codes 43

4.4 Determining Column and Row Subgraph Alphabet 49

4.4.1 Column Alphabet Information 49

4.4.2 Row Alphabet Information . 50

CONTENTS v

4.5 Decoding Mixed Alphabet LDPC Codes 50

4.5.1 Complexity of Decoding Mixed Alphabet LDPC Codes 52

4.6 Simulations . 54

4.6.1 System Model . 55

4.6.2 Simulation Results . 56

4.7 Concluding Remarks . 66

5 Multistage Decoding of LDPC Codes over Zq 68

5.1 Background . 68

5.2 Structure of Linear Codes over Rings 69

5.2.1 Epimorphism of elements in Zq 71

5.3 MPA for LDPC codes over Zq . 72

5.3.1 The Column Step . 73

5.3.2 The Row Step . 74

5.4 m-Stage Message Passing Decoding 75

5.5 Complexity Analysis . 78

5.5.1 Fixed Components . 78

5.5.2 Variable Components . 79

5.6 2m-ary Signal Space . 80

CONTENTS vi

5.7 Worked Example . 83

5.8 Simulation Results . 85

5.9 Concluding Remarks . 89

6 Conclusion 91

6.1 Thesis Summary . 91

6.2 Recommendations for future work . 92

A Tables of pj(0), pj(1) and refined pj for worked example 94

B BER Performance of codes for different β values 97

Summary

Low-density parity-check (LDPC) codes are well known for their near Shannon limit

performance and are at the forefront of research. Much of the earlier existing work

done on LDPC codes in the literature involved large block lengths over binary alpha-

bets. Richardson and Urbanke showed that increasing the size of the alphabet of the

LDPC code leads to a corresponding improvement in bit error rate (BER) perfor-

mance. Indeed, the computer simulation results of Davey and MacKay have shown

that LDPC codes over GF(4) and GF(8) outperformed their binary counterparts

over an additive-white-Gaussian-noise (AWGN) channel.

In the first part of this thesis, we present a novel method of constructing LDPC

codes over mixed alphabets. In this method, we take a sparse matrix consisting

of disjoint submatrices defined over the distinct subfields of a given field and link

their associated subgraphs together. This is done by adding non-zero entries to the

matrix. We also present a modified message passing algorithm (MPA), which takes

into account the different row and column subgraph alphabets. This will reduce the

number of redundant computations during decoding. Simulation results show that

the codes constructed using the proposed method yields slight improvement in BER

performance over their single alphabet counterparts with slight increase in decoding

complexity.

In the second part, we present a multistage decoding approach for decoding

of LDPC codes defined over the integer ring Zq, where q = pm, p is a prime and

vii

SUMMARY viii

m > 1. We make use of the property that for an integer ring Zq, the natural

ring epimorphism can be applied Zq 7→ Zpl : r 7→ ∑l−1
i=0 r(i)pi with kernel plZq

for each l, 1 ≤ l ≤ m, where
∑m−1

i=0 r(i)pi is the p-adic expansion of r. Then we

perform decoding using a modified MPA on each homomorphic image of the code.

Computer simulations on codes over Z4 and Z8 of moderate length and rate half

over the AWGN channel with binary-phase shift-keying (BPSK) modulation show

that this multi-stage approach offers a coding gain of about 0.1 dB over a single

stage decoding approach. For the case of a m-ary PSK modulation, we observe a

slightly smaller coding gain (compared to BPSK modulation) over the single stage

approach.

List of Figures

2.1 Parity-check matrix for Gallager’s (20, 4, 3) code 8

2.2 Tanner graph for (20, 3, 4) Gallager LDPC matrix 11

2.3 Fragments of equivalent parity-check matrices over (left) F4 and (right)

F2 and comparison of their corresponding graph structure [10] 12

2.4 Matrix representation of cycles of length 4 (H4) and 6 (H6) 13

3.1 Check node ci with k code nodes xjl
connected to it. 22

3.2 Code node xj with j check nodes cil connected to it. 28

4.1 Parity check matrix form of a grouped mixed code. 43

4.2 Equivalent bipartite graph. 47

4.3 System model used for simulation. 56

4.4 BER Performance of mixed alphabet codes and codes over GF(4) and

GF(8). 58

4.5 BER Performance of long length mixed alphabet codes with different

N2 and codes over GF(4) and GF(8). 61

ix

LIST OF FIGURES x

4.6 BER performance of mixed codes and binary codes and codes over

GF(4). 62

4.7 BER Performance of long length mixed alphabet codes with different

N2 and code over GF(4) with QPSK modulation. 63

4.8 Fading channel model. 64

4.9 BER Performance of mixed alphabet codes and code over GF(4) and

GF(8) over the Rayleigh fading channel. 65

5.1 Constellation diagrams for 4-PSK and 8-PSK 81

5.2 BER performance of Z4 codes under BPSK modulation 86

5.3 BER performance of Z8 codes under BPSK modulation 87

5.4 BER performance of Z4 codes under 4-ary PSK modulation 88

5.5 BER performance of Z8 codes under 8-ary PSK modulation 89

5.6 BER performance of Z8 code of length 500 for different values of β . . 90

B.1 BER performance of Z4 code of length 1000 for different values of β . 97

B.2 BER performance of Z4 code of length 500 for different values of β . . 98

B.3 BER performance of Z8 code of length 1000 for different values of β . 98

List of Tables

3.1 Arrangement of message vector elements for F8. 26

3.2 Arrangement of message vector elements for F16. 27

3.3 Intrinsic symbol probabilities pj calculated using channel’s soft output. 31

3.4 qj1 values of entries in the first row of H after rearrangement. 32

3.5 Results of FFT on qj1 for j = 1, 2, 5 and 8. 32

3.6 Transformed check-to-code node messages Rj1 for j = 1, 2, 5 and 8. . 33

3.7 Estimated posterior probabilities qj after one iteration. 33

3.8 Estimated posterior probabilities qj after two iterations. 34

3.9 Process of forward backward multiplication for 4-element vector. . . . 39

4.1 Increase in arithmetic operations required to decode mixed codes 1

and 2 and F8 codes over F4 codes of similar Nbin per iteration 59

5.1 Intrinsic symbol probabilities pj calculated using channel output . . . 84

A.1 Intrinsic symbol probabilities pj(0) calculated using initial pj 94

xi

LIST OF TABLES xii

A.2 Intrinsic symbol probabilities pj after first refinement 95

A.3 Intrinsic symbol probabilities pj(1) calculated using refined pj 95

A.4 Intrinsic symbol probabilities pj after second refinement 96

Chapter 1

Introduction

In 1948, Shannon published his seminal work on the Noisy Channel Coding The-

orem [40]. In it, he proved that if information is properly coded and transmitted

below the channel capacity, the probability of decoding error can be made to be ar-

bitrarily small. Since then, much research has been devoted to finding codes which

can be transmitted at as close to the the channel capacity as possible. In the re-

maining of this chapter, we briefly review several known constructions of earlier

error-correcting codes as well as the current state-of-the-art codes, putting Low-

Density Parity-Check (LDPC) codes in perspective. We then follow with the scope

of work, the contribution of this thesis as well as the thesis outline.

1.1 Early Codes

One of the earliest papers on the construction of codes was presented by R. W. Ham-

ming in [20], 2 years after Shannon’s paper. In it, Hamming demonstrated a method

for the construction of single error detecting and single error correcting systematic

linear block codes. He defined systematic block codes as codes in which an input

block of K (information) symbols is mapped to an output block of N (code) symbols.

1

CHAPTER 1. INTRODUCTION 2

The first K symbols of the output block is associated with the input block, while

the remaining N − K output symbols are used for error detection and correction.

This class of codes are known today as Hamming codes.

Since then, some of the other codes discovered include the Bose-Chaudhuri-

Hocquenghem (BCH) codes [6] [5] as well as the ubiquitous Reed-Solomon (RS)

codes [36], which is a special case of BCH codes. Unlike Hamming codes, both BCH

and RS codes are multiple-error-correcting codes. Both codes are popular due to

their ease of implementation and good performance.

Convolutional codes were first introduced by Elias in 1955 [13]. The convolution

code is similar to linear block codes in that they map an input block of K symbols

to an output block of N symbols. However, the output block depends not only on

just the inputs, but also on previous input blocks. This means that the encoder has

memory. The maximum number of previous input blocks which an output symbol is

dependent upon is known as the constraint length. Constraint length 7 convolutional

codes have been used for satellite communications [28].

Convolutional codes can approach the Shannon limit as the constraint length

increases, but the computational complexity of the (Viterbi) decoding algorithm is

exponential in the constraint length.

Later, information was first encoded using a RS code, with the resulting code-

word encoded via the convolutional encoder. Constructions such as the above where

the output of one encoder is encoded again by another are known as concatenated

codes [15]. For several years, these RS outer codes concatenated with convolutional

codes gave the best practical performance for the Gaussian channel.

CHAPTER 1. INTRODUCTION 3

1.2 State-of-the-Art Error Correction

Turbo codes were discovered by Berrou et al. [3] in 1993. Their near Shannon limit

performance over the additive white Gaussian noise (AWGN) channel brought about

a renewed vigour in the search for other such high-performance codes. In [3], the

turbo encoder consists of two binary rate 1
2

convolutional encoders in parallel. The

input to one of the encoders is a pseudo-random permutation of the input to the

other. The constituent convolutional codes are systematic. During turbo-encoding,

the systematic bits produced by one of the convolutional codes are discarded.

The decoding algorithm consists of the modified Viterbi decoding algorithm

applied to each constituent code, with the output a posteriori estimates from one

decoder being used as input to the other. Decoding consists of several iterations of

this message passing algorithm.

Low-Density Parity-Check (LDPC) codes were first discovered by Gallager more

than four decades ago in 1962 [16]. He also gave a description of an iterative decod-

ing algorithm for such codes. However, due to its high decoding complexity (relative

to the technology then), it remained largely forgotten until its recent rediscovery by

MacKay [31]. LDPC codes have a simple description and a largely random struc-

ture. Its impressive performance, coupled with a relatively low decoding complexity

(compared to Turbo codes) has attracted much attention from the research commu-

nity. In fact, the world’s best code is an irregular LDPC code (with block length

N = 107) of rate 1
2
, falling short of the Shannon limit by just 0.04dB [9].

Another class of high performance codes are the repeat and accumulate (RA)

codes that were studied by Divsalar et al. [12]. The encoding of RA codes comprises

of two parts. The first part repeats a length K information sequence w times and

performing pseudo-random permutation of the length wK sequence. The resultant

block is then encoded by a rate 1 accumulator. The code can then be decoded using

CHAPTER 1. INTRODUCTION 4

a belief propagation decoder.

Such codes provide surprisingly good performance, although the repetition code

is useless on its own. The RA code can perform to within 1 dB of capacity of an

AWGN channel when the rate approaches zero and the block length is increased [12].

These state-of-the-art codes have several characteristics in common. They have

a strong pseudo-random element in their construction and can be decoded via an it-

erative belief propagation decoding algorithm. Also, they have shown near Shannon

limit error-correction capabilities.

1.3 Scope of Work

In the first part of this thesis, a method of constructing LDPC codes over mixed

alphabets is proposed. This is done using a sparse matrix containing disjoint sub-

matrices over distinct subfields of a given field and linking the associated subgraphs

together by adding non-zero entries to this matrix.

We also present a modified decoding algorithm which takes into account the

different alphabet of distinct code word coordinates.

The codes constructed here are of rate R = 0.5 and of short block length where

N = 1000 and 2000 bits. We investigate their bit error rate (BER) performance

over the AWGN channel with binary-phase shift-keying (BPSK) modulation. The

BER results are compared against those of their single alphabet counterparts.

In the second part, we present a multi-stage decoding approach for LDPC codes

defined over the integer ring Zq, where q = pm, p is a prime and m > 1. We make

use of the property that the natural ring epimorphism Zq 7→ Zpl : r 7→ ∑l−1
i=0 r(i)pi

CHAPTER 1. INTRODUCTION 5

with kernel plZq for each l, 1 ≤ l ≤ m, where
∑m−1

i=0 r(i)pi is the p-adic expansion of

r ∈ Zq.

We apply the multi-stage decoding algorithm to LDPC codes over Z4 and Z8 of

block length N = 500 and 1000 symbols. We investigate the BER performance of

this decoding approach over the AWGN channel with both BPSK as well as q-ary

PSK modulation. The BER results are compared against those of the conventional

single-stage approach.

1.4 Contribution of Thesis

The contribution of this thesis is the presentation of a class of mixed alphabet

codes and the study of their performance against their single alphabet counterparts.

Another contribution is the modified decoding algorithm. This modified decoding

algorithm helps to streamline the decoding process and eliminates redundant com-

putations.

Another major contribution of this thesis is the presentation of the multi-stage

approach to decode LDPC codes over Zq. We also present a method to partition the

q-ary signal space such that the elements of Zpm coinciding modulo pl+1 are grouped

together, as this will minimise the probability of decoder error in the multi-stage

approach.

1.5 Thesis Outline

In Chapter 2, a basic description of binary and non-binary LDPC codes will be

presented. It summarises the fundamentals of LDPC codes as well as their repre-

sentations via the Tanner Graph (Bipartite Graph) as well as the properties of good

CHAPTER 1. INTRODUCTION 6

LDPC codes. Some popular methods of constructing good LDPC codes as well as

current popular research areas will also be discussed.

Chapter 3 describes the decoding of binary and non-binary LDPC codes via the

message-passing algorithm (MPA). The MPA will be described in detail for the non-

binary case. For the nonbinary MPA, the fast Fourier transform is used to reduce

decoding complexity. The decoding complexity (in terms of the number of arithmetic

operations required per iteration)the Fourier transform method is discussed as well.

Chapter 4 starts off with a brief exposition on mixed alphabet codes. Two

currently existing codes over mixed alphabets are presented and discussed. The

method of constructing the proposed novel mixed alphabet code is presented in de-

tail. Also, we demonstrate that for such codes, distinct code coordinates are defined

over different alphabets. A modified MPA which takes into account the different

row and column alphabet sizes to reduce the number of redundant computations is

then presented. A brief description of the system model, simulation set-up as well

as the simulation results of the BER for the proposed mixed alphabet codes against

their single alphabet counterparts for different block lengths is presented.

In Chapter 5, we begin by giving a brief exposition on the structure of codes

defined over the integer ring Zq. An MPA (modified from that presented in Chapter

3) for decoding LDPC codes over Zq is shown. The multi-stage decoding algorithm

based on this modified MPA is then presented. Computer simulation results of the

BER for codes over Z4 and Z8 of moderate lengths and rate half over AWGN with

BPSK as well as q-ary modulation decoded using our multi-stage approach are shown

and compared against the BER of the same codes decoded using the conventional

single-stage MPA.

Chapter 6 concludes the thesis and recommends possibilities for future work.

Chapter 2

Low-Density Parity-Check Codes

2.1 Background

LDPC codes are a class of linear error-correcting block codes. Linear codes use a

K × N generator matrix G to map blocks of length K messages m to blocks of

length N codewords c. The set of codewords C are defined as the null space of the

(N −K)×N parity-check matrix H of full rank, i.e. cHT = 0, c ∈ C.

2.2 LDPC Fundamentals

2.2.1 Regular LDPC Codes

As the name suggests, LDPC codes are defined in terms of their parity-check matri-

ces H which contain mostly zeroes and only a small number of non-zero elements. In

his paper [16], Gallager defined regular binary (N, j, k) LDPC codes to have block

length N with exactly j ones in each column and exactly k ones in each row.

7

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 8

A regular non-binary (or q-ary) LDPC code can be defined in a similar manner

to the regular binary LDPC code, with the only difference being that for a non-

binary (N, j, k) LDPC code C defined over Fq = GF(q = pm), the code coordinates

cj ∈ {0, 1, . . . , αq−2}, 1 ≤ j ≤ N , where α is primitive in Fq.

In this case, every parity-check equation (a row of the parity-check matrix H)

involves exactly k code symbols, and every code symbol is involved in exactly j

parity-check equations. The restriction that j < k is needed to ensure that more

than just the all-zero codeword satisfies all of the constraints. The total number of

non-zero elements in H is Nj = (N − K)k. For a full-ranked H, the code rate is

then R = 1− j
k
. For R > 0, it is important that j < k. The regular (20, 3, 4) binary

LDPC parity check matrix provided by Gallager [16] is shown in Figure 2.1.

H =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1




.

Figure 2.1: Parity-check matrix for Gallager’s (20, 4, 3) code

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 9

The two lower sections of H are column permutations of the first section. Note

that for the given matrix, not all rows are linearly independent since rows 10 and 15

are linearly dependent on the remaining rows. The remaining 13 rows are linearly

independent and hence, the rank of H is 13.

A new full ranked parity-check matrix H′ can be defined by eliminating the

redundant rows from H. However, the number of ones in k columns of H′ would

decrease each time a redundant row is removed so that H′ would no longer obey

the regularity of a regular LDPC matrix. Hence, an LDPC code could often be

described by a rank-deficient but regular parity-check matrix.

By studying the ensemble of all matrices formed by such column permutations,

Gallager proved several important results. These include the fact that the error

probability of the optimum decoder decreases exponentially for sufficiently low noise

and sufficiently long block length, for fixed j. Also, the typical minimum distance

increases linearly with block length.

2.2.2 Irregular LDPC Codes

For binary irregular LDPC [37] codes, the matrix is still sparse, however not all rows

and columns contain the same number of ones. Every code node (please refer to

Section 2.3 for explanation on Tanner graph terminology) has a certain number of

edges which connect to check nodes, similarly so for check nodes. For an irregular

code’s parity-check matrix as well as its bipartite graph, we say that an edge has

degree i on the left (respectively, right) if the code (respectively, check) node it is

connected to has degree i. Suppose that an irregular graph has some maximum

left degree dl and some maximum right degree dr. The irregular graph can be

specified by the sequence (λ1, λ2, . . . , λdl
) and (ρ1, ρ2, . . . , ρdr) where λi and ρi

are the fractions of edges belonging to degree-i code and check nodes, respectively.

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 10

Further a pair of polynomials λ(x) =
∑dl

i=2 λix
i−1 and ρ(x) =

∑dr

i=2 ρix
i−1 can be

defined to be the generating functions of the degree distributions for the code and

check nodes, respectively. The nominal expression for rate R of the code is given by

R = 1−
R 1
0 ρ(x)dxR 1
0 λ(x)dx

.

2.3 Tanner Graph Representation of LDPC Codes

Any parity-check code (including an LDPC code) may be specified by a Tanner

graph [45] [27]. For an (N, K) code, the Tanner graph is a bipartite graph consisting

of N “code” nodes associated with the code symbols, and at least N −K “check”

nodes, associated with the parity-check symbols. Each code node, (respectively,

check node), corresponds to a particular column, (respectively, row), of H. For an

(N, j, k) parity-check matrix, each code node has degree j is connected to j check

nodes, while each check node has degree k and is in turn connected to k code nodes.

An edge exists between the ith check node and the lth code node if and only if

hil 6= 0, where hil denotes the entry of H at the ith row, lth column.

The Tanner graph for the LDPC matrix provided by Gallager is illustrated

below.

In Figure 2.2, the code nodes (also known as variable nodes) are circular and

denoted by xj for 0 ≤ j ≤ N − 1 (in this case, N = 20) and the check nodes are

squares and denoted by ci for 0 ≤ i ≤ N −K − 1 (in this case, N −K = 15). The

connection between code node j and check node i is called an edge and denoted eji

For the case of a non-binary LDPC matrix (respectively, Generator matrix) H

(respectively, G) defined over F2m , each non-zero hi,j (respectively , gi,j) ∈ F2m can

be represented by its m ×m binary matrix [10]. Multiplication of a symbol xj by

hi,j is equivalent to matrix multiplication (mod 2) of the binary string for xj by

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 11

x
1

x
12

x
13

x
14

x
15

x
16

x
17

x
18

x
19

x
0

x
10

x
9

x
8

x
7

x
6

x
5

x
4

x
3

x
2

x
11

c
1

c
11

c
10

c
9

c
8c

7
c

6
c

5
c

4
c

3c
2

c
12

c
13

c
14c

0

Figure 2.2: Tanner graph for (20, 3, 4) Gallager LDPC matrix

the matrix associated with hi,j. By replacing each symbol in the q-ary matrix H

(respectively, G) by the associated binary m × m blocks, the binary matrix H2

(respectively, G2 that is m times as large in each direction is obtained. To multiply

a q-ary message m by G, we can form the binary representation of m, multiply by

G2 and take the q-ary representation of the resulting binary vector.

Figure 2.3 shows a fragment of a non-binary matrix over F4 and its equivalent

binary representation over F2 as well as their respectively Tanner graphs.

The Tanner graph gives a complete description of the structure of the LDPC

matrix H. It will be shown in Chapter 3 that the decoding algorithms work directly

on this bipartite graph.

2.4 Some Factors Affecting Performance

Since its rediscovery, LDPC codes have been the subject of intense research. How-

ever, they are still not well understood. However, there are a few parameters that

will improve the performance of the code.

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 12

1 0 1 0 0 0

0 1 0 1 0 0

0 1 0 0 1 1

1 1 0 0 1 0

c
1

c
2

x
3

x
2

x
1

c
11

c
22

c
21

c
12

x
11

x
12

x
21

x
22

x
31

x
32

c
1

c
2

c
11

c
22

c
21

c
12

x
11

x
12

x
21

x
22

x
31

x
32x

3
x

2
x

1

2

1 1 0

0

2

1

1 2

Figure 2.3: Fragments of equivalent parity-check matrices over (left) F4 and (right)

F2 and comparison of their corresponding graph structure [10]

2.4.1 Sparsity

The decoding computational complexity is proportional to the sparsity of the parity-

check matrix. The lesser the number of non-zero elements in the row (and column),

the fewer the computations required for decoding. However this is subjected to

j ≥ 2. Another inherent reason why j ≥ 2 will be apparent in the following sections.

The increase in the row weight k will also impair the performance of the LDPC

code. This is because each check node now has more neighbours and is less confident

about each neighbour’s state [10].

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 13

2.4.2 Girth

A cycle in a bipartite graph is defined as a closed path of distinct edges that begins

and ends at the same node. The girth of the graph is defined as the smallest cycle

in the graph.

The shortest possible cycle in a bipartite graph is a length 4 cycle. Length 4

cycles are manifested in H as four ‘1’s that lie at the corners of one of its submatrices.

This means that between 2 columns of H, there are 2 pairs of entries coinciding on

the same row. As shown in Figure 2.4, H4 has a cycle of length 4. On the other

hand, H6 shows a matrix representation of a cycle of length 6. After all short cycles

of length 4 are removed from a random parity-check matrix H, the girth of the

resultant parity-check matrix H′ is at least 6.

H4 =




.

. . . 1 . . . 1 . . .

. . .
...

. . .
... . . .

. . . 1 . . . 1 . . .

.




H6 =




.

1 . . . 1

...
...

...
...

...

1 1

. 1 . . . 1

.




Figure 2.4: Matrix representation of cycles of length 4 (H4) and 6 (H6)

It is important to remove short cycles in the LDPC matrix as they have a

negative impact on the decoding algorithm. The decoding algorithm used (to be

explained in greater detail in Chapter 3) attempts to calculate the posterior prob-

ability in an iterative fashion. These short cycles cause the results to be highly

skewed after a few iterations, since the same information is reused. Thus, the es-

timated posterior probabilities are not accurate. On the other hand, large girth

results in reduced dependency in the decoding algorithm and also allows for better

approximation to the true posterior probability [27].

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 14

The removal of short cycles is particularly crucial in the case of j = 2 columns.

In such cases, the minimum Hamming distance dmin will be severely affected. A

code has minimum distance dmin if and only if every dmin − 1 columns of H are

linearly independent and some dmin columns are linearly dependent [33]. [47] states

that for j = 2, dmin = Gmin/2 for a binary LDPC code, where Gmin is the girth. If

short cycles of length 4 are not removed for j = 2, then dmin = 2. Low minimum

distance will also degrade the performance of the codes.

2.4.3 Size of Code Alphabet

Richardson and Urbanke showed in [38] that increasing the size of the code alphabet

could lead to a corresponding increase in performance in terms of BER improvement.

Davey and MacKay [10] [11] constructed codes over GF(8) and GF(4) of rates 1/4

to 1/2 and showed via simulations that such codes offer up to 0.4dB and 0.2dB of

coding gain over their binary counterparts respectively on an AWGN channel. It is

reasonable to expect the results to hold for other code rates as well.

Nevertheless, such improvement in performance comes at the expense of in-

creased decoding complexity.

2.5 Construction of LDPC Codes

LDPC codes can be described in terms of their random sparse parity-check matrices,

making it easy to construct LDPC codes of any rate. Many good codes can simply be

constructed by specifying the column and row weight, and creating a random matrix

subject to those constraints. To design good LDPC codes, we need to consider the

factors listed in Section 2.4 as well. Here, we review some construction methods.

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 15

2.5.1 Gallager’s Constructions

In [16], Gallager constructed regular LDPC codes where the columns and rows had

fixed weights j and k respectively. The parity-check matrix was divided into j equal

sized submatrices, each containing a ‘1’ in each column. The first submatrix was

constructed in some predetermined manner. The subsequent j−1 submatrices were

random permutations of the first. An example of Gallager’s original (20, 3, 4) code

was shown in Section 2.2.

2.5.2 MacKay’s Constructions

In [31], MacKay wanted to keep the number of short cycles present in the bipartite

graph representing the parity-check matrix to a minimum. Short cycles of length 4

was removed by ensuring that any pair of columns in H has an overlap of at most

one non-zero entry.

MacKay also showed that reducing the overall weight of the matrx via the

introduction of some weight 2 columns can improve decoding, but measures must

be taken to reduce the probability of low-weight codewords. MacKay described the

following construction methods for matrices with no cycles of length 4.

Construction 1A In this particular construction, the column weight j are fixed

at a constant value (say, j = 3). H is then constructed at random keeping the

weight per row as uniform as possible. Overlap of non-zero entries between

any pair of columns is kept to a maximum of one.

Construction 2A As per 1A, except up to (N−K)/2 of the columns have weight 2.

These weight 2 columns are constructed in the form of two (possibly truncated)

identity matrices of size (N −K)/2× (N −K)/2, one above the other.

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 16

Construction 1B, 2B Some carefully chosen columns from a 1A or 2A matrix are

deleted, so that the bipartite graph of the matrix has no short cycles of length

less than some length Gmin (say, Gmin = 6)

2.5.3 Ultra-light Matrices

In Construction 2A and 2B, MacKay used a maximum of (N − K)/2 weight 2

columns. Any more makes low weight codewords unacceptably likely, leading to

increased decoding errors (undetected errors). With non-binary codes, more weight

2 columns can be included before encountering such problems. The constructions we

will be using to construct our codes is a modification of Construction 2A mentioned

above, arranging N −K weight 2 columns in a staircase fashion [35].

2.5.4 Geometric Approach

Yu Kou proposed a geometric approach for constructing LDPC codes [26]. In it,

four classes of codes are constructed based on the lines and points of Euclidean and

projective geometries over finite fields. The codes constructed using these methods

had good minimum distances and their corresponding Tanner graphs had girth of

size 6.

Heng Tang et al. [44] also proposed using algebraic methods for constructing

LDPC codes based on parallel and cyclic properties of lines of Euclidean and pro-

jective geometries. Five classes of quasi-cyclic and cyclic codes were generated.

These codes have large girth and various minimum distances. They performed well

under iterative decoding and have low encoding complexity.

For more information on finite geometries, the reader is referred to [28].

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 17

2.5.5 Combinatorial Approach

In recent years, the combinatorial approach for constructing LDPC codes have been

gaining popularity. The codes are well structured, and have low-complexity imple-

mentation.

Vasic [46] makes use of balanced incomplete block designs (BIBDs) for the con-

struction of LDPC codes. Johnson [24] constructs irregular quasi-cyclic LDPC codes

derived from difference families. In [25] she constructs high-rate LDPC codes based

on the incidence matrices of unital designs, making use of the fact that unital designs

exist with incidence matrices which are rank deficient, giving rise to the high-rate

LDPC codes with large number of parity-check equations.

Several common characteristics in LDPC codes constructed using combinator-

ial design are that their corresponding bipartite graphs have girth 6, they can be

designed to be of very high rate (R ≥ 0.8) and of relatively short length. They also

perform well under iterative decoding.

2.5.6 Progressive Edge-Growth (PEG) Tanner Graphs

Xiao-Yu Hu [23] presented a simple but efficient method for constructing Tanner

graphs having a large girth in a best-effort sense by progressively establishing edges

between code and check nodes in an edge-by-edge fashion, also known as the PEG

construction.

Given the number of code nodes N , the number of check nodes (say N − K),

and the code-node-degree sequence, an edge-selection procedure is started such that

the placement of a new edge on the graph has as small an impact on the girth as

possible.

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 18

The PEG construction is a general, non-algebraic method for constructing graphs

with large girth. Simulation results show that LDPC codes from PEG construction

significantly outperform randomly constructed ones [23]. A construction similar to

the PEG method was presented in [47].

2.6 Research Trends

2.6.1 Codes over Larger Alphabets

Prior to [11], [10] and [38], studies were on LDPC codes defined over the binary

alphabet. The improvement obtained in increasing alphabet size has motivated

research in the design of LDPC codes defined over various alphabets. Sridhara and

Fuja [43] studied the performance of LDPC codes over groups and rings with coded

modulation, while Erez and Miller [14] focused on the code construction techniques

of LDPC codes over Zq and their corresponding maximum-likelihood performance.

2.6.2 Reduction of Encoding and Decoding Complexity

One major criticism concerning LDPC codes have been their apparent high encoding

complexity. This is due to their random nature, which means they have no specific

characteristics that may be exploited by hardware. The several works [41] [29] [32]

have attempted to address this issue. However, the methods proposed results in

performance loss when compared to a standard LDPC code.

In [39], an efficient encoding method was proposed and has linear encoding

complexity in the block length (compared to the previous quadratic complexity in

the block length).

CHAPTER 2. LOW-DENSITY PARITY-CHECK CODES 19

Decoding of non-binary LDPC codes over GF(q) becomes prohibitively complex

as the size of the alphabet increases. The decoding complexity is O(q2/p) where q is

the size of the field, and p its characteristic. Currently, the largest field of practical

interest for q-ary LDPC codes is GF(16) [42].

However, several recent works have proposed to reduce the decoding complexity

of non-binary LDPC codes. Barnault [2] modified the MPA such that the compu-

tational complexity of decoding LDPC codes over GF(q) so that complexity scales

as q log2(q). Using such an algorithm, he was able to simulate the performance of

LDPC codes defined over GF(256), however details of his algorithm were not given

in [2]. Wymeersch proposes a log-domain decoding algorithm for LDPC codes over

GF(q). This is similar to the log-likelihood ratio (LLR) decoding for binary LDPC

codes. He also proposed a non-binary analogue of the of the min-sum algorithm us-

ing LLRs. [42] proposes a log-domain FFT decoding algorithm to reduce decoding

complexity.

2.6.3 Implementation and Application

LDPC codes show a lot of promise and potential due to its good performance as

well as low decoding complexity which is linear in the block length. There has been

a lot of interest in the VLSI implementation of the LDPC decoder. Another area of

interest is in magnetic recording as well as in wireless communications.

Chapter 3

Decoding of LDPC Codes

3.1 Gallager’s Original Decoding Algorithm

In [16], Gallager described a simple iterative hard-decision binary decoding scheme

(also known as the bit-flipping algorithm). This scheme, while not performing as

well as the MPA, is less computationally complex and requires lesser memory and

might still be useful in practice.

For such a decoding scheme, the decoder computes all the parity checks and

then changes any code coordinate that is contained in more than some fixed number

of unsatisfied parity-check equations. Using these new values, the parity checks are

recomputed, and the process is repeated until the parity checks are all satisfied. This

means that if the number of unsatisfied parity-check equations which a code symbol

xj participates in exceed a threshold, then the symbol is “flipped”, xj = xj ⊕ 1.

3.2 The Non-Binary MPA

An iterative probabilistic decoding algorithm known as the MPA or sum-product

algorithm (SPA) is used to decode LDPC codes. The MPA works by iteratively

20

CHAPTER 3. DECODING OF LDPC CODES 21

passing probabilistic messages in a graph and can be used to evaluate extrinsic

and posterior probabilities based on intrinsic probabilities and the structure of the

Tanner graph representation of the parity-check matrix H.

During the decoding process, the code and check nodes receive messages from

their neighbouring nodes via the edges between them and perform computations

subject to the constraint of the node at hand before passing the computed messages

to the next set of neighbours. For a regular LDPC code, a code node, say xj, waits

for messages to arrive from j − 1 check nodes say ci1 , ci2 , . . . , cij−1
, along j − 1

edges, computes a corresponding message and sends it to the 0th check node ci0 via

the one remaining edge (i.e. the 0th edge). It then waits for ci0 to send a return

message. Upon the arrival of this message, it proceeds to send further messages to

ci1 , ci2 , . . . , cij−1. The MPA is said to complete one iteration once two messages has

passed over every edge, one in each direction [27].

For an LDPC code over Fq, a parity-check constraint corresponding to the ith

row of the parity-check matrix H has the form

hi,j0xj0 + hi,j1xj1 + · · ·+ hi,jk−1
xjk−1

= ci, (3.1)

where xjl
and ci are variables associated with the code nodes and check nodes re-

spectively; all scalar additions and multiplications are over Fq. Equation (3.1) is

represented graphically in Figure 3.1.

3.2.1 The Row Step

The decoding process involves two main steps: a column step and a row step. It

is convenient to express the channel output, i.e. the a priori probabilities of the

code nodes, as column vectors denoted by pj = [p0
j p1

j . . . pαq−2

j]T , where pξ
j is the

CHAPTER 3. DECODING OF LDPC CODES 22

=

=

=

1j
x

2j
x

1kj
x

+ =
0j

x

1,i j
h

1, ki j
h

2,i j
h

0,i j
hi

c

Figure 3.1: Check node ci with k code nodes xjl
connected to it.

probability that the jth code node is equal to ξ ∈ Fq. Column operations involve the

computation of code-to-check node messages qji from check-to-code node messages

rji (both interpreted as column vectors of length q) and the pj. Row operations

involve the computation of check-to-code node messages rji from the code-to-check

node messages qji for which there is no closed-form expression when q 6= 2.

To compute the rji, the edges of a parity-check node are considered in pairwise

fashion. Consider the code nodes xj1 and xj2 in Figure 3.1. Labelling their combined

output as Shi,j1
xj1

+hi,j2
xj2

, the probability that Shi,j1
xj1

+hi,j2
xj2

= ξj ∈ Fq may be

expressed as

P (Shi,j1
xj1

+hi,j2
xj2

= ξj) =
∑

ξk∈Fq

P (Shi,j1
xj1

= ξk)P (xj2 = h−1
i,j2

(ξj − ξk)). (3.2)

CHAPTER 3. DECODING OF LDPC CODES 23

Extending (3.2) to include all edges yields the recursive relation,

P (Shi,j1
xj1

+hi,j2
xj2

+···+hi,jk−1
xjk−1

= ξj)

=
∑

ξk∈Fq

P (Shi,j1
xj1

+hi,j2
xj2

+···+hi,jk−2
xjk−2

= ξk)P (xjk−1
= h−1

i,jk−1
(ξj − ξk)). (3.3)

Fourier Transform Decoding

The left hand side of (3.3) is equivalent to computing r
ξj

j0i. The right hand side

of (3.2) is essentially a discrete convolution. Hence a suitable transform can be

used to reduce the number of computations required, since it is well-known that

convolution is converted to point-wise multiplication in the transform domain. The

choice of transform operator depends on the code alphabet. For F2m , the appropriate

transform is the Hadamard transform matrix H2m . Correspondingly, for the check

node shown in Figure 3.1, the transformed version Rj0i of the message rj0i to be

passed from ci to xj0 is

Rj0i =
k−1∏

l=1

H2mqjli, (3.4)

where multiplication is taken component-wise. To obtain the rj0i, one simply per-

forms the inverse transform

rj0i = H−1
2mRj0i. (3.5)

In (3.4) and (3.5), the weights hi,j1 , hi,j2 , . . . , hi,jk−1
of the edges were assumed to

be unity and thus omitted. In the case of edges with non-unity weights, the vector

elements in qjli for l ∈ {0, 1, . . . , k − 1} are appropriately rearranged according to

hi,jl
and the resulting vector has the form q′jli

= [q0
jli

q
h−1

i,jl
jli

. . . q
h−1

i,jl
αq−2

jli
]T . Hence, for

the case of non-unity edge weights, we rewrite (3.4) as

Rj0i =
k−1∏

l=1

H2mq′jli
. (3.6)

Example 1 A message qjli = [q0
jli

q1
jli

qα
jli

qα2

jli
]T over F4 (where α is primitive) is

passed through an edge hi,jl
= α2. The resultant message after passing through the

edge is q′jli
= [q′0jli

q′1jli
q′αjli

q′α
2

jli
]T = [q0

jli
qα
jli

qα2

jli
q1
jli

]T .

CHAPTER 3. DECODING OF LDPC CODES 24

As can be seen from the example above, the effect of hi,jl
performs a cyclic shift

of the elements in the message vector qjli when the message elements are arranged

in ascending powers of α.

The arrangement of the message elements (after rearrangement by non-unity

weights of the edges) however need to be changed when performing the Fourier

transform. Consider the simplest case of a check node ci connected to 3 code nodes

xj1 , xj2 , and xj3 with unit edge weights defined over F8 where the primitive polyno-

mial p(x) = x3+x+1. If the messages are arranged in ascending powers of α (where

α is primitive), i.e. qjli =
[
q0
jli

qα
jli

qα2

jli
qα3

jli
qα4

jli
qα5

jli
qα6

jli
qα7

jli

]T

for 0 ≤ l ≤ 2. Using (3.5)

will not provide a consistent solution for rj0i.

Example 2 Consider the case where xj1 = α and xj2 = 0. At the zeroth iter-

ation, we have pjl
= qjli for 0 ≤ l ≤ 2, i.e. qj1i = [0 1 0 0 0 0 0 0]T and qj2i =

[1 0 0 0 0 0 0 0]T . From (3.5), we have rj0i = [0 1 0 0 0 0 0 0]T as expected.

However, when xj1 = α and xj2 = 1, qj1i = [0 1 0 0 0 0 0 0]T and qj2i = [0 0 0 0 0 0 0 1]T .

(3.5) gives rj0i = [0 0 0 0 0 0 1 0]T instead of the correct [0 0 0 1 0 0 0 0]T since α + 1 =

α3. (3.5) also yields the same result (rj0i = [0 0 0 0 0 0 1 0]T) for when xj1 = α2 and

xj2 = α4, where α2 + α4 = α.

From example 2, the ordering of message elements is non-trivial. We solve a

system of equations to find an appropriate arrangement of message elements for F8.

We first set a message vector to be
[
qb0
jli

qb1
jli

qb2
jli

qb3
jli

qb4
jli

qb5
jli

qb6
jli

qb7
jli

]T
for 0 ≤ l ≤ 2,

where bi ∈ F8 are unknowns for 0 ≤ i ≤ 7 . We want to arrange the message

elements such that (3.5) gives rj0i =
[
rb0
j0i r

b1
j0i r

b2
j0i r

b3
j0i r

b4
j0i r

b5
j0i r

b6
j0i r

b7
j0i

]T
.

Solving the following

rj0i = H−1
8 (Qj1iQj2i) (3.7)

CHAPTER 3. DECODING OF LDPC CODES 25

for bi given the constraint that rj0i =
[
rb0
j0i r

b1
j0i r

b2
j0i r

b3
j0i r

b4
j0i r

b5
j0i r

b6
j0i r

b7
j0i

]T
and

[
qb0
jli

qb1
jli

qb2
jli

qb3
jli

qb4
jli

qb5
jli

qb6
jli

qb7
jli

]T
where Qjli = H2mqjli for l = 1, 2 gives the following

solution: b0 = 0, b1 = 1, b2 = α, b3 = α3, b4 = α2, b5 = α6, b6 = α4 and b7 = α5.

For the case of F16, we can define a message vector as [qb0
ji qb1

ji qb2
ji qb3

ji qb4
ji qb5

ji qb6
ji qb7

ji

qb8
ji qb9

ji qb10
ji qb11

ji qb12
ji qb13

ji qb14
ji qb15

ji]T , where bi ∈ F16, for 0 ≤ i ≤ 15. The appropriate

arrangement of vector elements for Fourier transform is b0 = 0, b1 = 1, b2 = α,

b3 = α4, b4 = α2, b5 = α8, b6 = α5, b7 = α10, b8 = α3, b9 = α14, b10 = α9, b11 = α7,

b12 = α6, b13 = α13, b14 = α11, b15 = α12. This arrangement is for when the primitive

polynomial p(x) = x4 + x + 1.

An element a ∈ F2m can be expressed in several ways: in terms of powers of

the primitive element α, in polynomial form, a =
∑m−1

i=0 aix
i, where ai ∈ F2 and as

a m element binary vector, [a0 a1 . . . am−1] where the elements are the polynomial

coefficients.

Instead of determining the appropriate arrangement of elements of the message

vectors by solving (3.7) for the required field order, we realise that we can also

arrange the elements in their ascending binary order. This is apparent when we

look at the arrangement of elements of the message vectors for F8 and F16. If we

rewrite the elements of the fields in their binary representations (instead of the

powers of the primitive element), we can see that the it is ascending in the binary

representation. Tables 3.1 and 3.2 illustrate this.

From the above, we see that 2 rearrangements of the message vector elements

are required per iteration. The first rearrangement is due to the non-binary edge

weights hi,j, to obtain q′ji. The second is required for the Fourier transform decoding

to function properly, as illustrated above. With a slight abuse in notation, the

rearranged vector is denoted as q′ji as well. Similarly, upon the inverse Fourier

transform, the elements of check-to-code node message (again, with slight abuse

in notation, we denote this as rji) are arranged in ascending binary value. We

CHAPTER 3. DECODING OF LDPC CODES 26

power of α binary form

qb0
ji q0

ji q000
ji

qb1
ji q1

ji q100
ji

qb2
ji qα

ji q010
ji

qb3
ji qα3

ji q110
ji

qb4
ji qα2

ji q001
ji

qb5
ji qα6

ji q101
ji

qb6
ji qα4

ji q011
ji

qb7
ji qα5

ji q111
ji

Table 3.1: Arrangement of message vector elements for F8.

rearrange the elements of the check-to-code node message in ascending powers of α,

to obtain the rji as defined in the earlier part of this section. We choose to arrange

the elements in our messages in ascending powers of α because of the convenience

it gives when dealing with edges of non-unity weights.

The transform operator is dependent on the non-binary alphabet used. As we

saw from above, for alphabets defined over Galois fields of characteristic 2, F2m ,

the transform operator is the Hadamard transform of size 2m. Alternatively, for

an alphabet defined over the cyclic additive group Zq, the appropriate transform

is a discrete Fourier transform. This will be further discussed in Chapter 5. An

algorithm for decoding LDPC codes over Zq obtained from modifying the MPA for

decoding LDPC codes over Fq is presented as well.

3.2.2 The Column Step

Figure 3.2 gives a graphical representation of a code node xj connected to j check

nodes.

CHAPTER 3. DECODING OF LDPC CODES 27

power of α binary form

qb0
ji q0

ji q0000
ji

qb1
ji q1

ji q1000
ji

qb2
ji qα

ji q0100
ji

qb3
ji qα4

ji q1100
ji

qb4
ji qα2

ji q0010
ji

qb5
ji qα8

ji q1010
ji

qb6
ji qα6

ji q0110
ji

qb7
ji qα10

ji q1110
ji

qb8
ji qα3

ji q0001
ji

qb9
ji qα14

ji q1001
ji

qb10
ji qα9

ji q0101
ji

qb11
ji qα7

ji q1101
ji

qb12
ji qα6

ji q0011
ji

qb13
ji qα13

ji q1011
ji

qb14
ji qα11

ji q0111
ji

qb15
ji qα12

ji q1111
ji

Table 3.2: Arrangement of message vector elements for F16.

A code node specifies all relevant variables to be equal. For the code node xj

connected to j check nodes and ξ ∈ Fq, this condition is

h−1
i0,jci0 = h−1

i1,jci1 = . . . = h−1
ij−1,jcij−1

= ξ. (3.8)

The code-to-check node message qji0 from xj to ci0 can be easily computed and

is given by the expression

qji0 = γpj

j−1∏

l=1

rjil , (3.9)

where γ denotes an appropriate normalisation constant used throughout this thesis.

Again, the edge weights are all assumed to be unity and thus omitted. In the case

CHAPTER 3. DECODING OF LDPC CODES 28

+

+

+

1i
c

2i
c

1ji
c

= +
0i

c

1

1

,i j
h

j
x

0 ,i j
h

1

1

,ji j
h

2

1

,i j
h

j
p

Figure 3.2: Code node xj with j check nodes cil connected to it.

of edges with non-unity weights, the vector elements in rjil for l ∈ {0, 1 . . . , j −
1} are appropriately rearranged according to the h−1

il,j
and has the form r′jil =

[r0
jil

r
hil,j

jil
. . . r

hil,j
αq−2

jil
]T . We can then rewrite (3.9) as

qji0 = γpj

j−1∏

l=1

r′jil , (3.10)

The main steps of the MPA for a code over F2m may be summarised as follows:

• Step 0. Initialisation. The intrinsic probability vector pj and the check-to-

code node message vectors rji are initialised. Set rji = [r0
ji r

1
ji . . . rα2m−2

ji]T =

1
2m [1 1 . . . 1]T , and iteration number l = 1.

• Step 1. Column Step. The code-to-check node message qji is given by

qji = γpj

∏

i′∈M(j)\{i}
r′ji′ , (3.11)

CHAPTER 3. DECODING OF LDPC CODES 29

where M(j) = {i : hi,j 6= 0} denotes the set of indices of the ci corresponding

to the parity-check constraints which the code node xj participates. Then qξ
ji

denotes the probability that xj = ξ ∈ F2m , conditioned on the information

obtained via the ci′ for i′ ∈ M(j) \ {i} (i.e., the check nodes connected to xj

other than ci) and channel output pj.

• Step2. Row Step. The check-to-code node messages rji are computed as

follows:

Rji =
∏

j′∈L(i)\{j}
H2mq′j′i, (3.12)

and

rji = H−1
2mRji

where L(i) = {j : hi,j 6= 0} denotes the set of indices of the xj that participate

in the ith parity-check constraint.

• Step 3. Computing the output. An estimate of the posterior probabilities is

first computed by setting

qj = pj

∏

i∈M(j)

r′ji

An estimate x̂j of the jth code symbol is then given by x̂j = arg max0≤ξ≤α2m−2{qξ
j}.

• Step 4. Checking the halting condition. The decoder checks if the codeword

estimate x̂ found in Step 3 is in the null space of H, i.e., x̂HT = 0. If so,

the decoding process is terminated, otherwise, l = l + 1 and Steps 1 to 3

are repeated. If the algorithm completes a prescribed maximum number of

iterations (i.e., l = lmax) and no valid codeword has been found, a decoding

failure is declared.

CHAPTER 3. DECODING OF LDPC CODES 30

3.2.3 Worked Example

In this section, the iterative decoding over F2m will be described in detail with a

worked example. The example will illustrate the process of obtaining a systematic

generator G from a parity-check matrix H over F4 as well as the decoding process

when transmitting over the AWGN channel.

Considering the sparse N = 10, K = 5, j = 2 parity-check matrix

H =




0 1 α 0 0 α 0 0 1 0

α 0 0 1 α2 0 α 0 0 0

α2 0 α 0 0 1 0 1 0 0

0 0 0 1 0 0 0 1 α α2

0 α 0 0 1 0 α2 0 0 1




,

which yields the corresponding systematic generator matrix

G =




1 0 0 0 0 α2 1 0 1 α2

0 1 0 0 0 α 0 α α α

0 0 1 0 0 α2 0 1 α2 0

0 0 0 1 0 0 α2 0 0 α

0 0 0 0 1 0 α 0 0 0




.

Assuming that a length 5 message vector m = [1 α2 α2 0 α2] is encoded to a

length 10 codeword vector x = [1 α2 α2 0 α2 0 0 α α α]. This codeword is then mapped

onto bits for binary-phase shift-keying (BPSK) transmission over the AWGN chan-

nel. The probability of each received symbol being one of the four possible states

is calculated using the soft channel output and listed in Table 3.3. The first col-

umn on the left is the codeword coordinate index, the first row on top lists all the

possible states. At the end of every iteration, for a received coordinate, the symbol

state having the highest estimated posterior probability is chosen as the estimated

CHAPTER 3. DECODING OF LDPC CODES 31

j 0 α α2 α3 = 1 Hard Decision Value Result

0 0.0161 0.0003 0.0174 0.9662 1 Correct

1 0.0094 0.0104 0.5173 0.4629 α2 Correct

2 0.0487 0.0068 0.1159 0.8285 1 Error

3 0.8099 0.1676 0.0039 0.0187 0 Correct

4 0.0005 0.1296 0.8662 0.0036 α2 Correct

5 0.9831 0.0003 0.0001 0.0165 0 Correct

6 0.5506 0.4452 0.0019 0.0023 0 Correct

7 0.0276 0.9201 0.0508 0.0015 α Correct

8 0.5554 0.0596 0.0373 0.3477 0 Error

9 0.2609 0.7230 0.0118 0.0043 α Correct

Table 3.3: Intrinsic symbol probabilities pj calculated using channel’s soft output.

transmitted symbol (i.e., a hard decision is made) and is compared with the actual

transmitted one to see if it is the correct decision.

The hard decision received word is determined as r = [1 α2 1 0 α2 0 0 α 0 α]. As

can be seen, the third and ninth symbols are erroneous.

Using the parity-check matrix H and the intrinsic probability vectors pj, the

code-to-check node message vectors qji are initialised to the respective pj since the

initial check-to-code node message vectors rji are uniformly distributed.

The next step is to compute the check-to-node messages rji. The computation

of the check-to-node messages of the first row of H (i.e. rj1 for j = 1, 2, 5 and 8) is

shown. First, the involved qj1 are rearranged according to the non-zero edge weights

h1,j. Table 3.4 shows the rearranged elements in qj1 for j = 1, 2, 5 and 8.

Prior to the FFT of the above messages, the elements are permuted to the

appropriate arrangement to perform the FFT. The results of the FFT of the code-

to-check node messages are shown in Table 3.5. The transformed code-to-check node

CHAPTER 3. DECODING OF LDPC CODES 32

j 0 α α2 α3 = 1

1 0.0094 0.0104 0.5173 0.4629

2 0.0487 0.8285 0.0068 0.1159

5 0.9831 0.0165 0.0003 0.0001

8 0.5554 0.0596 0.0373 0.3477

Table 3.4: qj1 values of entries in the first row of H after rearrangement.

messages are denoted as Qji where

Qji = H4qji. (3.13)

We can compute Q11 as follows,

Q11 =




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







1

0.4629

0.0104

0.5173




=




1

−0.9604

−0.0554

0.0532




.

This constitutes the first row of Table 3.5.

j Q0
j1 Q1

j1 Qα
j1 Qα2

j1

1 1 -0.9604 -0.0554 0.0532

2 1 0.7545 -0.6707 -0.8890

5 1 0.9993 0.9663 0.9669

8 1 0.2300 0.8063 0.1854

Table 3.5: Results of FFT on qj1 for j = 1, 2, 5 and 8.

After the FFT, the transformed check-to-code node messages Rji are computed

according to (3.4). The results are given in Table 3.6. The inverse FFT is then

performed according to (3.5) to obtain the check-to-code node messages rji. The

elements of rji are then rearranged so that it is in ascending powers of α.

CHAPTER 3. DECODING OF LDPC CODES 33

j R0
j1 R1

j1 Rα
j1 Rα2

j1

1 1 0.1734 -0.5226 -0.1594

2 1 -0.2207 -0.0432 0.0095

5 1 -0.1666 0.0300 -0.0088

8 1 -0.7241 0.0359 -0.0457

Table 3.6: Transformed check-to-code node messages Rj1 for j = 1, 2, 5 and 8.

When the above described process has been performed repeatedly for all rows,

the update of the all the check-to-code node messages rji for all i is complete for

this iteration.

The next step calculates the estimated posterior probabilities qj. The posterior

probability for the jth code symbol is the product of all the check-to-code node

messages rji in the column as well as the intrinsic probability pj from the chan-

nel. Table 3.7 shows the estimated posterior probabilities obtained after the first

iteration.

j 0 α α2 α3 = 1 Hard Decision Value Result

0 0.0256 0.0000 0.0101 0.9643 1 Correct

1 0.0057 0.0103 0.8861 0.0979 α2 Correct

2 0.0216 0.0018 0.8908 0.0858 α2 Correct

3 0.9820 0.0063 0.0108 0.0009 0 Correct

4 0.0001 0.0994 0.8998 0.0007 α2 Correct

5 0.9900 0.0002 0.0001 0.0097 0 Correct

6 0.9362 0.0629 0.0001 0.0008 0 Correct

7 0.0090 0.9257 0.0405 0.0248 α Correct

8 0.0540 0.0533 0.0464 0.8462 1 Error

9 0.5402 0.4218 0.0359 0.0021 0 Error

Table 3.7: Estimated posterior probabilities qj after one iteration.

CHAPTER 3. DECODING OF LDPC CODES 34

Comparing the results between Tables 3.3 and 3.7, we can observe that the third

erroneous symbol has been corrected. However, eighth symbol remains incorrect

while the ninth symbol becomes erroneous as well. However, the eighth symbol is

decoded as a 1 while the ninth symbol can be considered to be marginally incorrect

since q0
9 and qα

9 values are quite close to each other. Since the estimated codeword

x̂ is not a valid codeword, the decoder performs another iteration. The estimated

posterior probabilities after the second iteration are listed in Table 3.8.

j 0 α α2 α3 = 1 Hard Decision Value Result

0 0.0218 0.0000 0.0048 0.9734 1 Correct

1 0.0092 0.0065 0.7368 0.2475 α2 Correct

2 0.0334 0.0019 0.8571 0.1076 α2 Correct

3 0.9797 0.0141 0.0020 0.0043 0 Correct

4 0.0001 0.0427 0.9561 0.0011 α2 Correct

5 0.9915 0.0004 0.0000 0.0081 0 Correct

6 0.9123 0.0865 0.0005 0.0007 0 Correct

7 0.0036 0.9404 0.0494 0.0066 α Correct

8 0.0647 0.7244 0.0009 0.2100 α Correct

9 0.4406 0.5462 0.0108 0.0025 α Correct

Table 3.8: Estimated posterior probabilities qj after two iterations.

From Table 3.8, the second iteration has corrected the remaining erroneous

symbols left over from the first iteration. The codeword estimate x̂ satisfies the

parity-check matrix H (i.e., x̂HT = 0). Thus, the decoder will claim that a valid

codeword has been found, terminating the decoding process.

CHAPTER 3. DECODING OF LDPC CODES 35

3.2.4 Complexity of the FFT

The use of the FFT technique in the decoding of non-binary LDPC codes reduces

the complexity significantly. This section evaluates the complexity in terms of the

number of additions and multiplications required.

The FFT technique is used mainly in the row step in the updating of the check-

to-code node messages rji, in 2 steps: the FFT and inverse FFT of the code-to-check

node messages qji (to Qji) and Rji (to rji), respectively, and the computation of Rji

from the various Qji. We shall first look at the computation complexity required

for the FFT and the inverse FFT operations.

FFT and Inverse FFT Complexity

The Fourier transform F of a function f over F2 is given by F 0 = f 0 + f 1, F 1 =

f 0 − f 1. This can be rewritten in matrix form as


 F 0

F 1


 =


 1 1

1 −1





 f 0

f 1


 .

Transforms over F2m can be viewed as a sequence of binary transforms in each of m

dimensions. For F8 we have




F 0

F 1

F 2

F 3

F 4

F 5

F 6

F 7




=




1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1







f 0

f 1

f 2

f 3

f 4

f 5

f 6

f 7




. (3.14)

CHAPTER 3. DECODING OF LDPC CODES 36

Due to the symmetric property of the matrix in (3.14), the complexity of imple-

menting FFTs can be done using 2m log2(2
m) additions [18]. For F8, 8 × 3 = 24

additions are required. The derivation of this figure is as follows. Firstly, the fol-

lowing quantities are computed,

(f 0 + f 1)

(f 2 + f 3)

(f 4 + f 5)

(f 6 + f 7) (3.15)

(f 0 − f 1)

(f 2 − f 3)

(f 4 − f 5)

(f 6 − f 7).

The operations listed in (3.15) requires 8 additions. The quantities computed

in (3.15) are then used to compute the following next set of quantities,

(f 0 + f 1) + (f 2 + f 3)

(f 0 + f 1)− (f 2 + f 3)

(f 4 + f 5) + (f 6 + f 7)

(f 4 + f 5)− (f 6 + f 7) (3.16)

(f 0 − f 1) + (f 2 − f 3)

(f 0 − f 1)− (f 2 − f 3)

(f 4 − f 5) + (f 6 − f 7)

(f 4 − f 5)− (f 6 − f 7).

The second set of operations listed in equation (3.16) requires another 8 addi-

tions. Finally, the quantities obtained in equation (3.16) can be used to compute

CHAPTER 3. DECODING OF LDPC CODES 37

the final result of the FFT.

(
(f 0 + f 1) + (f 2 + f 3)

)
+

(
(f 4 + f 5) + (f 6 + f 7)

)

(
(f 0 − f 1) + (f 2 − f 3)

)
+

(
(f 4 − f 5) + (f 6 − f 7)

)

(
(f 0 + f 1)− (f 2 + f 3)

)
+

(
(f 4 + f 5)− (f 6 + f 7)

)

(
(f 0 − f 1)− (f 2 − f 3)

)
+

(
(f 4 − f 5)− (f 6 − f 7)

)
(3.17)

(
(f 0 + f 1) + (f 2 + f 3)

)− (
(f 4 + f 5) + (f 6 + f 7)

)

(
(f 0 − f 1) + (f 2 − f 3)

)− (
(f 4 − f 5) + (f 6 − f 7)

)

(
(f 0 + f 1)− (f 2 + f 3)

)− (
(f 4 + f 5)− (f 6 + f 7)

)

(
(f 0 − f 1)− (f 2 − f 3)

)− (
(f 4 − f 5)− (f 6 − f 7)

)
.

The final step in (3.17) requires another 8 additions. Summing all additions

required in the 3 steps, the total number of additions is 23 log2(2
3) = 24. Likewise,

the inverse FFT will also require the same number of additions. However, normali-

sation is required during the inverse FFT since H−1
2m = 1

2m H2m . Hence a further 2m

multiplications are required. Thus, the overall complexity required in the FFT and

inverse FFT of a message is 2m+1 log2(2
m) additions and 2m multiplications.

Computation of Rji

After all the code-to-check node messages are transformed, the transformed check-

to-code node messages Rji can then be computed using (3.4), which can be more

efficiently computed using forward-backward multiplications. This method is illus-

trated below.

Given a 4-element vector denoted by [Aold Bold Cold Dold], we would like the up-

date each element in the vector with the product of other elements within the vector

CHAPTER 3. DECODING OF LDPC CODES 38

to obtain an updated vector [Anew Bnew Cnew Dnew], where

Anew = Bold · Cold ·Dold,

Bnew = Aold · Cold ·Dold,

Cnew = Aold ·Bold ·Dold,

Dnew = Aold ·Bold · Cold. (3.18)

Direct evaluation of equation (3.18) requires (k − 2) · k multiplications, where k is

the number of elements of the vector, in this case k = 4 and 8 multiplications are

required. Note that equation (3.18) is analogous to the computation of Rji. We

can see that the number of multiplications required in direct evaluation increases

drastically as k increases. If the forward-backward multiplication technique is used,

the total number of multiplications required is 3k. The number of multiplications

increases linearly with respect the number of elements in the vector. The linear

complexity with respect to the number of vector elements makes this technique very

suitable for the computation of Rji of LDPC codes. The computation of the updated

vector using forward-backward multiplication is shown in Table 3.9. Note that the

technique requires a temporary variable, denoted temp. Summing the number of

multiplications in Table 3.9, a total of 3k multiplications are required to compute a

particular state. For F2m , there are 2m states, a total of 3(2m)k multiplications are

required.

For a regular (N,K) LDPC code over F2m , a single row of H has |L(i)| non-

zero entries; hence a total of 4|L(i)|(2m) multiplications and 2m+1|L(i)| log2(2
m)

additions are required to compute the rji. For all N − K rows, a grand total of

4(N−K)|L(i)|(2m) multiplications and 2m+1(N−K)|L(i)| log2(2
m) additions are re-

quired to compute all the rji per iteration. Since we have (N−K)|L(i)| = N |M(j)|,
the total number of computations can also be re-expressed as 4N |M(j)|(2m) multi-

plications and 2m+1N |M(j)| log2(2
m) additions.

The update of the code-to-check node messages qji will also involve forward

CHAPTER 3. DECODING OF LDPC CODES 39

Operation Value of temp Value of updated entry

Initialise temp = 1 1 –

Anew = temp 1 Anew = 1

temp = temp · Aold Aold

Bnew = temp Aold Bnew = Aold

temp = temp ·Bold Aold ·Bold

Cnew = temp Aold ·Bold Cnew = Aold ·Bold

temp = temp · Cold Aold ·Bold · Cold

Dnew = temp Aold ·Bold · Cold Dnew = Aold ·Bold · Cold

temp = temp ·Dold Aold ·Bold · Cold ·Dold

Reset temp = 1 1

Dnew = Dnew · temp 1 Dnew = Aold ·Bold · Cold

temp = temp ·Dold Dold

Cnew = Cnew · temp Dold Cnew = Aold ·Bold ·Dold

temp = temp · Cold Dold · Cold

Bnew = Bnew · temp Dold · Cold Bnew = Aold · Cold ·Dold

temp = temp ·Bold Dold · Cold ·Bold

Anew = Anew · temp Dold · Cold ·Bold Anew = Bold · Cold ·Dold

temp = temp · Aold Dold · Cold ·Bold · Aold

Table 3.9: Process of forward backward multiplication for 4-element vector.

backward multiplication. Thus, another 3|M(j)|(2m) multiplications are required

per column of H. A total of 3|M(j)|(2m)N multiplications is required to compute

all qji per iteration.

On average, the computational complexity associated with the decoding of one

code symbol is 7|M(j)|(2m) multiplications and 2m+1|M(j)| log2(2
m) additions.

In this chapter, we have shown how non-binary LDPC codes over Fq can be

decoding using the MPA. We have also shown the decoding complexity (in terms of

CHAPTER 3. DECODING OF LDPC CODES 40

multiplications and additions) required per iteration of such codes. In the following

chapter, we will present our work on mixed alphabet codes and show how particular

combinations of alphabets and constructions can lead to improved performance over

their single alphabet counterparts.

Chapter 4

Mixed Alphabet LDPC Codes

4.1 Background

In the most general form, the consideration for the MPA assumes that the messages

to each edge come from symbols defined over different alphabets [27]. However,

most codes studied (e.g. BCH and RS codes) have symbols of different coordinates

defined over the same alphabet.

One of the factors affecting the performance of LDPC codes listed in Chapter

2.4 is the size of the code alphabet. [11] [10] showed via simulations that LDPC

codes defined over F4 and F8 outperformed their binary counterparts at the expense

of higher decoding complexity.

Motivated by the potential of obtaining higher coding gains from larger code

alphabets, while keeping the corresponding increase in decoding complexity man-

ageable, we introduce a novel code construction method for LDPC codes over mixed

alphabets. For such codes, the parity-check equations and the code coordinates (i.e.

the rows and columns of H, respectively) can be defined over different alphabets.

The code is constructed such that there are a small number of code coordinates de-

fined over a larger alphabet, keeping the remaining over a smaller one. A modified

41

CHAPTER 4. MIXED ALPHABET LDPC CODES 42

decoding algorithm to exploit this property to eliminate redundant computations is

proposed in Section 4.5.

4.2 Some Earlier Mixed Alphabet Codes

Two earlier codes defined over mixed alphabets were found in a literature review.

They are the Chinese Remainder Theorem (CRT) code [17] and the Mixed Covering

codes [34] [21].

The CRT code is one which is defined over mixed number fields. The CRT states

that a positive integer m is uniquely specified by its remainder modulo k relatively

prime integers p1, p2, . . . , pk, provided m <
∏k

i=1 pi. Consequently, a “message” (an

integer) m can be encoded by its list of residues modulo N relatively prime integers

p1 < p2 < . . . < pN . This redundant expression of m yields an (N,K) CRT code

which can correct up to e < N−K
2

errors. While such a code has different coordinates

defined over different alphabets, its parity-check matrix is not sparse. Consequently,

application of the MPA to decode such codes would require too much computation

to be practically viable.

Another example of earlier mixed alphabets codes are mixed covering codes

[21] [34], where the focus was mainly on single-error-correcting perfect codes over

mixed fields of short block length. It was proposed in [34] that coordinates defined

over different alphabets be grouped together giving a parity-check matrix H of the

form shown in Figure 4.1. The M sub-matrices A1, . . .Am are defined over distinct

alphabets. Thus the null space of each sub-matrix is a code over a distinct alphabet.

As H has a disjoint structure, the associated Tanner graph comprises of M disjoint

subgraphs, each corresponding to one of the M sub-matrices. Consequently, the

code symbols over the different alphabets do not interact, and in turn, there is no

CHAPTER 4. MIXED ALPHABET LDPC CODES 43

A
1

A
2

A
M-1

A
M

0

0

Figure 4.1: Parity check matrix form of a grouped mixed code.

change in individual code characteristics. The parameters of the code defined by H

are

N =
M∑
i=1

Ni, K =
M∑
i=1

Ki, and d = min
1≤i≤M

{di}, (4.1)

where Ni, Ki and di are the length, dimension and minimum distance, respectively

of the code corresponding to Ai.

Mixed covering codes can be applied in problems of distribution of resources,

possibly in coding of speech (although it is not clear whether it has been used in

practice). Such codes (systems) are also widely used especially among football pool

gamblers in the Nordic countries [34].

4.3 Construction of Mixed Alphabet LDPC Codes

One major difficulty of designing codes over mixed alphabets is in ensuring closure

of the underlying pair of binary operations (“+” and “×”) over the various fields

concerned. Our approach is to construct codes with information symbols defined

over F2b and F2d with some of the parity check symbols over their smallest common

extension field, F2m . The extended field is a much larger alphabet than its subfield

and a constraint defined over such an alphabet would require greater computation

CHAPTER 4. MIXED ALPHABET LDPC CODES 44

during decoding. To keep decoding complexity at a manageable level, the number

of parity check elements defined over the extended field is therefore kept low.

Consider (N1−K1)×N1 and (N2−K2)×N2 matrices A1 and A2. The elements

of A1 are from F2b , while the elements of A2 are from F2d . Also, consider a matrix

H = [hi,j] comprising of A1 and A2 arranged such that H =


 A1 0

0 A2


, K1 < N1

and K2 < N2. It is convenient to write N = N1 + N2 and K = K1 + K2. We will

assume A1 and A2 to have full rank with the the linearly independent columns of

A1, (respectively, A2) located in the last N1−K1, (respectively, N2−K2) columns.

A1 and A2 are interpreted as the parity-check matrices of two codes, one over F2b ,

the other over F2d .

Suppose the 2 disjoint subgraphs of H are connected by adding edges from the

code nodes of the subgraph associated with A1 to the check nodes of the subgraph

associated with A2 until each check node of the latter subgraph is connected to at

least one code node of the former subgraph, by taking the edges hi,j to be non-zero

elements of the alphabet over which A1 or A2 is defined, where 0 ≤ j ≤ N1− 1 and

N1−K1 ≤ i ≤ N1+N2−(K1+K2+1). With a slight abuse of notation, we denote the

resulting matrix


 A1 0

HE A2


 by H as well. The columns of H are then permuted

such that the resulting matrix H′ has the form [C1 | C2] where C1 and C2 are

(N−K)×K and (N−K)×(N−K) matrices, respectively. More specifically, C1 has

the form


 C1A1 0

HE1 C1A2


 such that [C1A1 HE1]

T is composed of K1 columns from

[A1 HE]T while [0C1A2]
T is composed of K2 columns from [0A2]

T . Similarly, C2

has the form


 C2A1 0

HE2 C2A2


 such that [C2A1 HE2]

T is composed of the remaining

N1−K1 columns from [A1 HE]T and [0C2A2]
T is composed of the remaining N2−K2

columns from [0A2]
T . Moreover, A1 = [C1A1|C2A1] and A2 = [C1A2|C2A2]. The

inverse of C2 has the form


 C−1

2A1
0

B C−1
2A2


 where B = −C−1

2A2
HE2C

−1
2A1

with

CHAPTER 4. MIXED ALPHABET LDPC CODES 45

entries coming from F2m . (Note: By expressing all matrix entries as elements of

F2m , all scalar multiplications and additions involved in evaluating a product or

summation of matrices obey the multiplicative and additive laws of F2m .) By our

previous assumption, C−1
2 is well-defined.

The mixed code C can be defined by parity-check matrix H′ and has K1 messages

over F2b and K2 messages over F2d . We can reduce H′ to its systematic form [IN−K |
−PT] from [C1 | C2], where IN−K is the N ×K by N ×K identity matrix and

−PT = C−1
2 C1 =


 C−1

2A1
C1A1 0

BC1A1 + C−1
2A2

HE1 C−1
2A2

C1A2


 .

Correspondingly, we can write the systematic generator G as G = [IK | P], where

IK is the K ×K identity matrix. Hence, we can express G as

G =


 IK1 0 (C−1

2A1
C1A1)

T (BC1A1 + C−1
2A2

HE1)
T

0 IK2 0 (C−1
2A2

C1A2)
T




=


 IK1 0 PA1 P′

0 IK2 0 PA2


 (4.2)

where [IK1|PA1] and [IK2|PA2] are the systematic generator matrices of the codes

corresponding to A1 and A2, respectively and P′ = −(BC1A1 + C−1
2A2

HE1)
T is

defined over F2m .

One implicit assumption made above is that the mixed code C is linear. The

individual code coordinates are restricted and defined over certain alphabets (i.e.,

F2b , F2d or F2m). In our case, the first K1 code coordinates are defined over F2b , the

subsequent K2 code coordinates are defined over F2d with the remaining N1 − K1

and N2−K2 code coordinates defined over F2b and F2m , respectively. If we define Gq

as the additive subgroup of Fq, then C is a subgroup of the additive abelian group

V = GK1

2b GK2

2d GN1−K1

2b GN2−K2
2m . By strict definition, a linear block code of length N

with K message symbols form a K-dimensional subspace of the vector space of all

the N -tuples over the field. We may, however, view our code C as linear, even though

CHAPTER 4. MIXED ALPHABET LDPC CODES 46

C does not have a basis. The inner product of the elements of V , (u0 u1 . . . uN−1)

and (v0 v1 . . . vN−1) is well defined and can be expressed as the sum
∑N−1

i=0 uivi and

obeys the additive and multiplicative laws of F2m . Thus, we can invoke the idea

of the dual code in this way where the generator matrix of the dual code of C can

be completely specified by H′ which is also the valid parity-check matrix for C1.

The code rate of C is given by
PK−1

j=0 log2 smjPN−1
j=0 log2 sxj

where smj
(respectively, sxj

) denotes the

order of the alphabet of the jth message (respectively, code) coordinate.

Example 3 Let α be primitive in F64 so that A1 =


 1 α21 0 1 0

0 α42 α21 0 1


 and

A2


 α9 1 0 1 0

0 α45 α54 1 α27


 are full-ranked matrices over F4 and F8, respectively.

We use HE =


 0 0 0 α42 0

1 0 0 0 0


 to connect the code nodes of the subgraph

associated with A1 to the check nodes of the subgraph associated with A2 and obtain

H =




1 α21 0 1 0 0 0 0 0 0

0 α42 α21 0 1 0 0 0 0 0

0 0 0 α42 0 α9 1 0 1 0

1 0 0 0 0 0 α45 α54 1 α27




.

The columns of H are then appropriately permuted so that C2 is non-singular. This

yields

H′ =




1 α21 0 0 0 0 1 0 0 0

0 α42 α21 0 0 0 0 1 0 0

0 0 0 0 0 α9 α42 0 1 1

1 0 0 α54 α27 0 0 0 1 α45




.

1The inferences, insights and equations of the above 2 paragraphs, of viewing the mixed codes

as linear codes, were contributed and derived, respectively, by Dr. M. A. Armand. The author

gives his thanks and gratitude to Dr. M. A. Armand for allowing him to use his work in this thesis.

CHAPTER 4. MIXED ALPHABET LDPC CODES 47

The corresponding generator matrix in standard form is

G =




1 0 0 0 0 0 1 0 α58 α12

0 1 0 0 0 0 α21 α42 α36 α54

0 0 1 0 0 0 0 α21 0 0

0 0 0 1 0 0 0 0 α45 α45

0 0 0 0 1 0 0 0 α18 α18

0 0 0 0 0 1 0 0 α45 1




.

The equivalent bipartite graph is shown in Figure 4.2. Note that c0, c1 ∈ F4 while

c2, c3 ∈ F64.

c
0

c
1

c
2

c
3

x
0

x
1

x
2

x
3

x
5

x
4

x
6

x
7

x
8

x
9

21

21

42 42

45

54
27

9

0

0

0

0

0

0

0

Figure 4.2: Equivalent bipartite graph.

Message blocks have the form (m0,m1,m2,m3,m4,m5) where m0,m1,m2 ∈ F4

and m3,m4,m5 ∈ F8. From the non-zero elements of G, it can be observed that

the codeword (x0, x1, . . . , x9) ∈ C has x0, x1, x2, x6, x7 ∈ F4, x3, x4, x5 ∈ F8 and

x8, x9 ∈ F64. Hence, C has rate 0.6 and it’s codewords are elements of G3
4G3

8G2
4G2

64.

In practice, we may generate H as a single random binary matrix with certain

constraints on the column and row weights. To construct codes with good perfor-

mance, [35] suggests the use of (N−K)
2

to N − K weight 2 columns arranged in a

staircase fashion. For rate half codes, if we take N −K columns to be of weight 2,

CHAPTER 4. MIXED ALPHABET LDPC CODES 48

the remaining K columns should be of weight 3, while the row weight should be set

to 5, to give good performance, [37]. This binary matrix can be generated in 2 steps.

Firstly, we generate a binary matrix where the non-zero elements are arranged in a

staircase fashion [35]. Then we randomly generate another matrix, having column

weight 3 and row weight of approximately 3. The binary H is then obtained by

concatenating these 2 submatrices together. We check that this binary matrix is

of full rank 2. If the matrix is not of full rank, we regenerate the matrix until the

full rank condition is achieved. If the binary H is full rank, then this means that

the binary A1 and A2 are full rank as well. To obtain a non-binary matrix, the

non-zero elements of a small section of the submatrix of H formed by the weight

2 columns are replaced by non-zero elements of F2d to give us the non-binary A2.

The remaining non-zero elements of H are then replaced by non-zero elements of F2b

(respectively, F2b or F2d) to yield the non-binary submatrix A1 (respectively, non-

binary HE). The non-zero elements are drawn from their respective fields based on

a uniform distribution. It is important to ensure that A1 and A2 are of full-rank.

For the (N−K)×(N−K) matrix C2, there always exists an (N−K)×(N−K)

matrix Ω such that ΩC2 = C2R, where C2R is the reduced matrix row equivalent

to C2. We can find Ω by adjoining IN−K to the left of C2 to form an (N −K) ×
2(N − K) matrix [IN−K | C2]. We can then reduce C2 by performing elementary

row operations on all of [IN−K | C2] to eventually arrive at [Ω | C2R]. This produces

Ω with ΩC2 = C2R. If C2R = IN−K , then Ω = C−1
2 and this means that both A1

and A2 are full rank. If C2R 6= IN−K , C2 has no inverse and is not of full rank. This

means that A1 and A2 are not of full rank. In the case where A1 and A2 are not of

full rank, the above steps of regenerating non-binary A1 and A2 are repeated again.

In the MPA, the concept of the girth of the graph is crucial in estimating the

posterior probabilities. If A1 and A2 do not have short cycles of length 4, careful

selection of code nodes from A1 to connect to the check nodes of A2 will not affect

2This can be done by using the “gfrank” function in MATLAB.

CHAPTER 4. MIXED ALPHABET LDPC CODES 49

the girth of the resulting graph.

4.4 Determining Column and Row Subgraph Al-

phabet

From example 3, we see that code coordinates are defined over different alphabets.

In this subsection, a method to determine the column (code) and row (parity-check)

alphabet information.

4.4.1 Column Alphabet Information

Prior to combining the codes and adding edges between the disjoint subgraphs

defined by A1 and A2, we have the alphabet information of both codes say A1

and A2, where A1 (respectively, A2) is an N1 (respectively, N2) element vector.

A1 = [F2b . . .F2b], while A2 = [F2d . . .F2d]. Upon combining the codes, we have

A = [A1|A2].

We apply the same permutation on A as applied on H to obtain H′, giving us

A′. Upon obtaining G from H′, we can proceed to determine the code coordinate

alphabet of the code. To achieve this, we consider the first K elements of A′ and

examine the non-zero elements in each of the columns of the systematic G (from the

Kth to (N−1)th column). For the jth column, for 0 ≤ i ≤ K−1, if all the non-zero

gi,j ∈ F2b (respectively F2d) and the corresponding A′(i) = F2b (respectively, F2d),

then A′(j) = F2b (respectively, F2d), where gi,j is a non-zero entry in the ith row,

jth column of G.

On the other hand, if any gi,j ∈ F2d while the corresponding A′(i) = F2b and

vice versa, then A′(j) = F2m .

CHAPTER 4. MIXED ALPHABET LDPC CODES 50

Repeating this for K ≤ j ≤ N − 1, we obtain all the code coordinate alphabet

information.

4.4.2 Row Alphabet Information

To determine the alphabet which ci (i.e. the ith row of H) is defined, for 0 ≤ j ≤
N − 1, if all non-zero entries hi,j ∈ F2b (respectively, F2d) and the corresponding

A′(j) = F2b (respectively, F2d), the check node ci ∈ F2b (respectively, F2d).

On the other hand, if for any hi,j /∈ F2b (respectively, F2d), while the correspond-

ing A′(i) = F2b (respectively, F2d), then the check node ci ∈ F2m .

4.5 Decoding Mixed Alphabet LDPC Codes

If 2m-tuple probability vectors were used for all code-to-check node and check-to-

code node messages, redundant computations would be performed. The MPA can

be modified by providing the decoder with alphabet information of the row and

column subgraphs. Prior to performing message passing, the decoder checks the

alphabet over which a column or row is defined. In this way, the fact that only some

of the subgraphs are defined over the extended alphabet is exploited.

Most of the changes to the MPA are in Step 0. In this set, the decoder now selects

the number of bits to be considered as one symbol according to the code coordinate

alphabet information and computes the intrinsic probability information.

If xj is defined over F2b , then

pj =

[
p0

j p1
j pα

(2m−1)

(2b−1)

j . . . pα
(2b−2)

(2m−1)

(2b−1)

j

]T

.

CHAPTER 4. MIXED ALPHABET LDPC CODES 51

Else if xj is defined over F2d , then

pj =

[
p0

j p1
j pα

(2m−1)

(2d−1)

j . . . pα
(2d−2)

(2m−1)

(2d−1)

j

]T

.

Else if xj is defined over F2m , then

pj =
[
p0

j p1
j pα

j . . . pα2m−2

j

]T

.

Likewise, the check-to-code node messages are initialised according to the row

subgraph alphabet information.

If the ci is defined over F2b then set {r0
ji} = 1

2b and

{rαk

ji } =
1

2b
for k ∈ {0, 2m − 1

2b − 1
, . . . , (2b − 2)

2m − 1

2b − 1
}.

Else if ci is defined over F2d then set {r0
ji} = 1

2d and

{rαk

ji } =
1

2d
for k ∈ {0, 2m − 1

2d − 1
, . . . , (2d − 2)

2m − 1

2d − 1
}.

Else if ci is defined over F2m then set {r0
ji} = 1

2m and

{rαk

ji } =
1

2m
for k ∈ {0, 1, 2, . . . , 2m − 2}.

In Step 1, the qji are still computed using (3.11). The difference is that now,

qji,pj and rji are column vectors of lengths 2b, 2d or 2m, depending on the alphabet

over which the corresponding column and row subgraphs are defined.

Correspondingly in Step 2, if the ci is defined over F2s where s ∈ {b, d, m} then

rji = 1
2s H

−1
2s

(∏
j′∈L(i)\j H2sqj′i

)
.

The changes needed in Steps 3 and 4 are trivial and hence not mentioned here.

CHAPTER 4. MIXED ALPHABET LDPC CODES 52

4.5.1 Complexity of Decoding Mixed Alphabet LDPC Codes

The complexity of implementing a q-point IFFT message passing is q log2(q) addi-

tions and q multiplications [4]. A q-point FFT requires the same number of additions

(Note that the FFT requires no multiplications over a field of characteristic 2). For

a parity-check constraint with |L(i)| participating code nodes computation of the rji

for ith parity-check constraint will require a total of 2|L(i)|q log2(q) additions and

4|L(i)|q multiplications [10]. If the ith check node is defined over F2s , for s ∈ {b, d},
the above changes in the MPA reduces the number of additions and multiplications

needed to compute rji by a factor of 2m−s m
s

and 2m−2, respectively, over a check

node with the same row weight defined over F2m .

Hence, the number of computations required for the computation of all the rji

per iteration is
∑N−K−1

i=0 4|L(i)|2si where si ∈ {b, d, m} and the check node ci is

defined over F2si while the number of additions required is
∑N−K−1

i=0 2si|L(i)|2si . On

the other hand, the number of multiplications required for the computation of all

the qji per iteration is
∑N−1

j=0 3|M(j)|2sj where sj ∈ {b, d, m} and the code node xj

is defined over F2sj .

A regular (N, K) mixed code where N = N1 + N2 and K = K1 + K2 will have

N1 code symbols over F2b , K2 code symbols over F2d and N2−K2 code symbols over

F2m . Such a code requires 4|L(i)|[2b(N1 −K1) + 2m(N2 −K2)] multiplications and

2|L(i)|[b2b(N1−K1)+m2m(N2−K2)] additions to compute all the rji per iteration

and 3|M(j)|[2bN1 + 2dK2 + 2m(N2−K2)] multiplications to compute all the qji per

iteration. In particular, for a regular mixed (N,K) mixed code where N = N1 + N2

and K = K1 (i.e., K2 = 0), of equivalent binary length3 Nbin(= bN1 + mN2) of

which Kbin(= bK1) are information bits,

4|L(i)|
[(

Nbin −Kbin −N2m

b

)
2b + N22

m

]
(4.3)

3By binary length of a code, we mean the length of the code measured in bits.

CHAPTER 4. MIXED ALPHABET LDPC CODES 53

multiplications and

2|L(i)|
[(

Nbin −Kbin −N2m

b

)
b2b + N2m2m

]
(4.4)

additions are required to compute all the rji per iteration. Further, the number of

multiplications required to compute all the qji per iteration is

3|M(j)|
[(

Nbin −N2m

b

)
2b + N22

m

]
. (4.5)

On the other hand, a regular (N, K) single alphabet code over F2s (N = N1 and

K = K1) of equivalent binary length Nbin = sN and Kbin = sK requires

4

(
Nbin −Kbin

s

)
|L(i)|2s (4.6)

multiplications and

2

(
Nbin −Kbin

s

)
|L(i)|s2s (4.7)

additions to compute all the rji per iteration. The number of multiplications required

to compute all the qji per iteration is

3
Nbin

s
|M(j)|2s (4.8)

where s ∈ {b, d, m}.

To compute the increase in arithmetic operations required to compute all the rji

(respectively, qji) per iteration for the regular (N = N1 + N2, K = K1) mixed code

over the regular (N = N1, K = K1) code over F2b of the same binary length, rate,

row weight distribution {|L(i)|}N−K−1
i=0 and column weight distribution {|M(j)|}N−1

j=0 ,

we simply divide (4.3) by (4.6) (respectively, (4.5) by (4.8)) to obtain the fractional

increase in the number of multiplications required to compute all the rji (respec-

tively, qji) per iteration for the former code over the latter one. Similarly we divide

(4.4) by (4.7) to obtain the fractional increase in the number of additions required

to all the compute rji per iteration of the former code over the latter code. Hence,

the regular (N = N1 + N2, K = K1) mixed code requires

1 +
N2

Nbin −Kbin

(b2m−b −m) (4.9)

CHAPTER 4. MIXED ALPHABET LDPC CODES 54

times more multiplications and

1 +
N2m

Nbin −Kbin

(2m−b − 1) (4.10)

times more additions per iteration to compute all the rji and

1 +
N2

Nbin

(b2m−b −m) (4.11)

times more multiplications per iteration to compute all the qji than a regular (N, K)

code over F2b .

We can see that for a given {|L(i)|}N−K−1
i=0 , {|M(j)|}N−1

j=0 , Nbin, b and m, (4.9),

(4.10) and (4.11) are linear in N2. Also, we can see that the terms on the right hand

side of the “+” denote the percentage increase in the respective arithmetic operation

required for the mixed alphabet code due to the presence of the N2 parity-check

symbols over F2m over its single alphabet counterpart of the same binary length.

4.6 Simulations

In this section, we investigate the BER performances of the mixed alphabet codes via

simulations. We present a code with all information symbols and most parity-check

symbols defined over F4 with the remaining parity-check symbols defined over F64.

Simulation results showed that the code outperformed an LDPC code defined over

F4 for both binary block-lengths of 1000 and 2000 bits. Codes with all information

symbols and most parity-check symbols defined over F4, with a varying number of

remaining parity-check symbols defined over F16 are also presented here. Simulation

results showed that the codes outperformed an LDPC code over F4 for the binary

block length of 6000. We present another code with all information symbols and

most parity-check symbols defined over F2 with the remaining parity-check symbols

defined over F8 as well. Simulation results show that the code outperformed an

LDPC code over its single alphabet counterpart over F2 for both block lengths of

CHAPTER 4. MIXED ALPHABET LDPC CODES 55

1000 and 2000 bits as well. Note that the parity-check matrices of all codes simulated

here have an average column weight of M(j) = 2.5 (half the columns are of weight

3, the other, of weight 2) and row weight L(i) ≈ 5, where the weight 2 columns are

arranged in a staircase function.

We then compare the decoding complexity of our proposed mixed alphabet codes

over their single alphabet counterparts.

We begin with a brief description of the system model.

4.6.1 System Model

For the simulations, BPSK and QPSK modulation were used and AWGN was added

to the signals. The intrinsic probability input (to the LDPC decoder) are the nor-

malised conditional probabilities calculated from the channel output. The system

model is shown in Figure 4.3. The LDPC encoder takes a length K message vec-

tor m to a length N codeword vector x. The codeword is then passed through a

symbol-to-signal mapper, mapping it to a signal block b to be transmitted. After

these signals pass through the channel, the received block y is then decoded by a

channel decoder.

Defining the channel output by yk = bk + nk, where yk (respectively, bk) is the

kth received bit (respectively, transmitted bit) and nk is a zero mean normal random

variable with variance σ2 = No

2
(where No is the single-sided noise power spectral

density), the likelihood values for the kth received bit yk are given as

p(yk|bk = 1) =
1√

2πσ2
exp

(−(yk − 1)2

2σ2

)
, (4.12)

p(yk|bk = −1) =
1√

2πσ2
exp

(−(yk + 1)2

2σ2

)
. (4.13)

CHAPTER 4. MIXED ALPHABET LDPC CODES 56

LDPC encoder
Symbol-to-signal

mapper
AWGN channel

AWGN channel

decoder

Signal-to-symbol

demapper
LDPC decoder

m x b

y

x̂ b̂m̂

Figure 4.3: System model used for simulation.

The binary likelihood values needs to be converted to the non-binary likelihood

values. Since the channel is memoryless, intrinsic input to the decoder is defined as

p(yi|xi = a) = p ([yi1yi2 . . . yim]|[xi1xi2 . . . xim] = [a1a2 . . . am])

=
m∏

j=1

p(yij |xij = aj), (4.14)

where yi is the ith received symbol and a = [a1 a2 . . . am] is the binary representation

of the symbol.

4.6.2 Simulation Results

Performance of codes using BPSK modulation

In this section, the performance of our mixed alphabet codes is compared against

their single alphabet counterparts decoded using the MPA on an AWGN channel,

with BPSK modulation. Here we focus on codes of rate one-half. Thus, all the

parity-check matrices H of all the codes simulated here have an average column

weight of 2.5 (half the columns are of weight 3, the remaining half, of weight 2) and

CHAPTER 4. MIXED ALPHABET LDPC CODES 57

row weight approximately 5. The weight 2 columns of all the parity-check matrices

are arranged in a staircase function. We then perform column permutation of H to

yield H′, which is then used to obtain the systematic generator G.

Starting with a 234 × 482 matrix A1 over F4 and a 6 × 6 matrix A2 over

F64, a code (mixed code 1) which maps a 4-ary message block of length 248 to a

codeword comprising 482 code symbols over F4 and 6 code (parity) symbols over F64

is generated. Similarly, starting with a 486×980 matrix A1 over F4 and a 5×5 matrix

A2 over F64, we generate a code (mixed code 2) which maps a 4-ary message block of

length 494 to a codeword comprising 980 code symbols over F4 and 5 code (parity)

symbols over F64. Notice that for both codes, K2 = 0 and so their generator matrices

have the form [IK1 | PA1 | P′], i.e., each code is in fact a code over F4, extended by

adding a small number of redundant symbols over F64; also note that in this case,

the elements of HE are drawn from F4. We thus compare their BER performance

against their single-alphabet counterparts over F4 of similar length (in bits) and

rate. As Figure 4.4 shows, both mixed codes offer an additional coding gain of

about 0.07dB over their F4 counterparts. For completeness, the BER performance

of F8 codes of similar binary length and rate were simulated and compared against

those of the F4 codes. We see that the F8 codes offer an additional coding gain of

0.24 dB over their F4 counterparts for both code lengths simulated, as Figure 4.4

shows. Due to the nature of multiplications being more costly than additions in

a hardware implementation, we shall only consider the number of multiplications

required for decoding in the following analysis.

The F4 code of binary length 1000 bits requires 20000 multiplications to compute

all the rji and 15000 multiplications to compute all the qji per iteration; while the

F4 code of binary length 1990 requires 39760 multiplications to compute all the rji

and 29850 to compute all the qji per iteration. Table 4.1 shows the increase in

multiplications required to perform the row and column steps per iteration as well

as the overall increase in multiplications for mixed codes 1 and 2 as well as the F8.

CHAPTER 4. MIXED ALPHABET LDPC CODES 58

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

Mixed code1
Code over GF(4) (N=1000bits)
Mixed code 2
Code over GF(4) (N=1990bits)
Code over GF(8) (N=999bits)
Code over GF(8) (N=1989bits)

Figure 4.4: BER Performance of mixed alphabet codes and codes over GF(4) and

GF(8).

These quantities may be obtained using the expressions given in Section 4.5.1.

From the last column of Table 4.1, we see that mixed code 1 and 2 required

24% and 10.2% more multiplications, respectively, than their F4 counterparts of

the same binary length. This is the penalty incurred for 0.07 dB of coding gain.

However, we see that the F8 codes require about 33% more multiplications than

their F4 counterparts, whilst obtaining a coding gain of 0.24 dB. Thus, our mixed

codes, particularly mixed code 2, provide a performance-complexity trade-off.

We also generate mixed codes of longer lengths (Nbin = 6000) having code sym-

bols defined over F4 and F16. Starting with a 1490 × 2990 matrix A1 over F4 and

a 5 × 5 matrix (N2 = 5) A2 over F16 with elements of HE drawn from F16, a code

which maps a 4-ary message block of length 1500 to a codeword comprising of 2990

code symbols over F4 and 5 code (parity) symbols over F16 is generated. Similarly,

CHAPTER 4. MIXED ALPHABET LDPC CODES 59

Code Nbin Kbin b, m N2 increase in

row multipli-

cations

increase in

column mul-

tiplications

overall

increase in

multiplica-

tions

mixed

code 1

1000 496 2, 6 6 6200

(32.0%)

2340

(15.6%)

8749

(24.0%)

mixed

code 2

1990 988 2, 6 5 5120

(12.9%)

1950

(6.0%)

7070

(10.2%)

F8

code

999 501 -, 3 - 6560

(32.8%)

4980

(33.2%)

11540

(33.0%)

F8

code

1989 996 -, 3 - 12520

(31.5%)

9930

(33.3%)

22450

(32.3%)

Table 4.1: Increase in arithmetic operations required to decode mixed codes 1 and

2 and F8 codes over F4 codes of similar Nbin per iteration

we generate 4 other codes for N2 = 10, 15, 20 and 25; these codes map 4-ary mes-

sage blocks of length 1500 to codewords comprising of 2980, 2970, 2960, 2950 code

symbols over F4, respectively, and 10, 15, 20 and 25 code (parity) symbols over

F16, respectively. We compare the BER performance against their single-alphabet

counterparts of F4 of the same Nbin and rate. As Figure 4.5 shows, we see improve-

ments in the BER performance of the mixed code as N2 increases from 5 to 25. The

mixed code with N2 = 25 offers an additional coding gain of 0.065 dB over its F4

counterpart. Comparatively, the F8 code offered 0.125 dB of coding gain over the

F4 code.

The F4 code of Nbin = 6000 requires 120000 multiplications to compute all the

rji and 90000 multiplications to compute all the qji per iteration. Per iteration, the

mixed codes with N2 = 5, 10, 15, 20 and 25 require 120800, 121600, 122400, 123200,

124000 multiplications, respectively, to compute all the rji and 90300, 90600, 90900,

91200, 91500 multiplications, respectively, to compute all the qji. This translates

to an overall increase in complexity of 0.524%, 1.05%, 1.57%, 2.10%, 2.62%, respec-

CHAPTER 4. MIXED ALPHABET LDPC CODES 60

tively, over the F4 counterpart. On the other hand, the F8 code requires 160000

multiplications to compute all the rji and 120000 multiplications to compute all the

qji per iteration. This translates to an overall increase in complexity of 33.3%.

From the above, we can see that with only 25 F16 symbols, our code managed

to outperform the F4 code by more than half the gap between the F4 and F8 codes

at the expense of a negligible increase in decoding complexity.

We can attribute this drastic reduction in computational complexity to two

factors. For the mixed codes of longer block lengths, we set d = 4 instead of d = 6.

This greatly reduces the number of multiplications required to compute the rji and

qji for the rows and columns that are defined over F2d . Secondly, with the longer

block length, the multiplications required to compute the rji and qji for the N2 rows

and columns over F2d is much smaller in proportion to the total number required,

since N1 is now much larger.

We then generate mixed codes over having code symbols defined over F2 and

F8. Starting with a 490 × 990 matrix A1 over F2 and a 5 × 5 matrix A2 over

F8, a code (mixed code 3) which maps a binary message block of length 500 to a

codeword comprising of 990 code symbols over F2 and 5 code (parity) symbols over

F8 is generated. Similarly, we generate a code (mixed code 4) which maps a binary

message block of length 1000 to a codeword comprising 1985 code symbols over F2

and 5 code (parity) symbols over F8 from a 985 × 1985 matrix A1 over F2 and a

5 × 5 matrix A2 over F8. Again, K2 = 0 and elements of HE are drawn from F2

for both codes. We compare their BER performance against their single alphabet

counterparts over F2 of the same binary length and rate (the parity-check matrices

of the binary codes are obtained using the method described in Section 4.3 for

obtaining the binary H). As Figure 4.6 shows, both mixed codes offer an addition

coding gain of about 0.06 dB over their F2 counterparts. We can also interpret the

above as mixed codes 3 and 4 reducing the gap between the F4 codes previously

CHAPTER 4. MIXED ALPHABET LDPC CODES 61

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
10

−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

B
E

R

F
4
 code

Mixed code (N
2
 =5)

Mixed code (N
2
 =10)

Mixed code (N
2
 =15)

Mixed code (N
2
 =20)

Mixed code (N
2
 =25)

F
8
 code

Figure 4.5: BER Performance of long length mixed alphabet codes with different

N2 and codes over GF(4) and GF(8).

considered and the F2 codes by 0.06 dB.

For binary LDPC codes, it is well known that decoding is performed in the

logarithmic domain using log-likelihood ratios (LLR’s) and involves only additions.

Hence, we do not consider the increase in complexity when decoding mixed codes

3 and 4 compare to their F2 counterparts. Instead, we compare the complexity of

these mixed codes with respect to their F4 counterparts.

For regular mixed codes where a code over F2 of length N1 is extended with N2

symbols over F2d and forms a subgroup of GN1
2 GN2

2d , if the row and column subgraphs

defined over F2 are decoded in the logarithmic domain, the number of multiplications

required to compute all the rji and qji per iteration is 2dN2(4|L(i)|+ 3|M(j))|. For

both mixed codes 3 and 4, the total number of multiplications required to compute

all the rji and qji per iteration is 1100. This is just 3.14% and 1.58% of the total

CHAPTER 4. MIXED ALPHABET LDPC CODES 62

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

Mixed code 3
Code over GF(2) (N

bin
=1000)

Code over GF(2) (N
bin

=2000)

Mixed code 4
Code over GF(4) (N

bin
=1990)

Code over GF(4) (N
bin

=1000)

Figure 4.6: BER performance of mixed codes and binary codes and codes over

GF(4).

number of multiplications required to compute all the rji and qji per iteration for

the F4 codes of binary length 1000 and 1990 respectively. This further supports our

claim that our mixed codes provide a performance-complexity trade-off.

Performance of codes using QPSK modulation

In this section, we analyse the performance of the mixed codes against their single-

alphabet counterparts over the AWGN channel using QPSK modulation. We com-

pare the BER performance of the Nbin = 6000 mixed codes with N2 = 5, 10, 15 and 25

against their single-alphabet counterparts over F4 of the same length and rate. We

see from Figure 4.7 that the performance of the codes using QPSK modulation is very

similar to when BPSK modulation was used. The mixed codes with N2 = 15 and 25

CHAPTER 4. MIXED ALPHABET LDPC CODES 63

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
10

−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

B
E

R

F
4
 code

Mixed code (N
2
=5)

Mixed code (N
2
=10)

Mixed code (N
2
=15)

Mixed code (N
2
=20)

Mixed code (N
2
=25)

F
8
 code

Figure 4.7: BER Performance of long length mixed alphabet codes with different

N2 and code over GF(4) with QPSK modulation.

offer additional coding gains of 0.05 and 0.064 dB over the F4 code, respectively.

Performance of codes under uncorrelated fast-fading Rayleigh channel

In this section, the system model illustrated by Figure 4.3 in Section 4.6.1 is mod-

ified as follows. The AWGN channel and AWGN channel decoder are changed to

the uncorrelated fast-fading Rayleigh channel and uncorrelated fast-fading Rayleigh

channel decoder, respectively.

In our case, we assume the fading model shown in Figure 4.8 , which is widely

used in evaluating the performance of error-correcting codes [30] [48].

Hence, the received signal can be written as yk = akbk +nk, where the coefficient

ak is a random variable which follows the Rayleigh distribution with probability

CHAPTER 4. MIXED ALPHABET LDPC CODES 64

k
a k

n

k
b k

y

Figure 4.8: Fading channel model.

density function (pdf) f(a) = 2a exp (−a2), with E[a] = 0.8862 and E[a2] = 1; and

nk is the zero-mean AWGN with variance σ2 = No

2
. For the uncorrelated Rayleigh

fading channel, the conditional pdf of the channel output is [22]

p(yk|bk, ak) =
1√

2πσ2
exp

(−(yk − akbk)
2

2σ2

)
. (4.15)

We can see that (4.15) is essentially the same as (4.12) and (4.13), except that we

need to account for ak in the former.

In the case where we have exact side (or state) information (SI), we have per-

fect knowledge of the Rayleigh random variable a and can evaluate (4.15) directly.

However, in the case where no SI is available, we follow [19] and assume that p(y|b)
is Gaussian distributed in the region of the most probable y and use

p(yk|bk) =
1√

2πσ2
exp

(−(yk − E[a]bk)
2

2σ2

)
. (4.16)

to estimate the conditional pdf of y, where E[a] is used to evaluate the channel SI.

We compute the non-binary likelihood values to the decoder as per (4.14).

We compare the BER performance of the Nbin = 6000 mixed codes with N2 = 15

and 25 against their single-alphabet counterparts over F4 of the same length and rate.

As Figure 4.9 shows, the mixed code with N2 = 15 and 25 offer additional coding

gains of about 0.07 and 0.1 dB, respectively, over the F4 code. We also simulate the

performance of a F8 code of similar Nbin and rate and compare it against that of the

F4 code. We see from Figure 4.9 that the F8 code offers an additional coding gain

of 0.15 dB over its F4 counterpart.

CHAPTER 4. MIXED ALPHABET LDPC CODES 65

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7
10

−5

10
−4

10
−3

10
−2

E
b
/N

0
 (dB)

B
E

R

F
4
 code

Mixed code (N
2
 =5)

Mixed code (N
2
=10)

Mixed code (N
2
=15)

Mixed code (N
2
=20)

Mixed code (N
2
=25)

F
8
 code

Figure 4.9: BER Performance of mixed alphabet codes and code over GF(4) and

GF(8) over the Rayleigh fading channel.

Over a Rayleigh fading channel, the codes suffer an approximate performance

drop of about 3 dB compared to their performance over the AWGN channel. How-

ever, codes over larger sized alphabets continue to outperform codes with smaller

sized alphabets. We see this from the order of performance of the codes; the mixed

codes outperform their single-alphabet counterpart over F4 and the F8 code outper-

forms both the mixed codes and the F4 code. In addition, it is interesting to note

that an additional coding gain of 0.1 dB (respectively, 0.15 dB) was obtained for the

mixed (respectively, F8) code with N2 = 25 over its F4 counterpart, while the same

code managed an additional coding gain of 0.065 dB (respectively, 0.125 dB) over

the F4 code over the AWGN channel. Once again, the mixed code with N2 = 25 F16

symbols managed to outperform the F4 code by more than half the gap between the

F4 and F8 codes at the expense of a negligible increase in decoding complexity, this

time, over the uncorrelated, fast fading Rayleigh channel.

CHAPTER 4. MIXED ALPHABET LDPC CODES 66

The above results show that the coding gain obtained by our mixed codes over

their single-alphabet counterparts, over the uncorrelated, fast fading Rayleigh chan-

nel is more than that obtained over the AWGN. This indicates that our the structure

of the mixed codes might make them more attractive for use over the uncorrelated,

fast fading Rayleigh channel than their single-alphabet counterparts, especially since

the increase in decoding complexity is negligible. Furthermore, we might expect

our mixed codes to perform better over their single-alphabet counterparts over the

Rayleigh fading channels in the presence of SI.

4.7 Concluding Remarks

To summarise, a novel construction for LDPC codes over mixed alphabets has been

presented, along with a modified MPA to decode these codes efficiently. Our com-

puter simulations have further shown that the proposed code construction method

may be used to obtain improvements in BER performance over single-alphabet

LDPC codes at the expense of correspondingly slight increase in decoding com-

plexity.

Also, we have observed that, for codes of short block length, our method of

mixing code symbols from alphabets of different cardinality does not always lead to

performance improvements. For example, we have found that an F4 (respectively,

F2) code can outperform the same code extended with F16 (respectively, F4) parity-

check symbols. On the other hand, an F4 (respectively, F2) code extended with

F64 (respectively, F8) parity-check symbols can outperform the original code over

F4 (respectively, F2), as our simulations show. In addition, we also observe that

in the case where improvement in performance has been obtained, increasing the

proportion of code symbols from the larger alphabet does not necessarily lead to

further improvements in performance. This is similar to the observation made by

CHAPTER 4. MIXED ALPHABET LDPC CODES 67

Davey and MacKay [11] that codes defined over larger alphabets do not necessarily

outperform codes defined over smaller alphabets.

However, as we increase the block length of the mixed codes and the non-zero

elements of HE are drawn from the non-zero elements of F16, we noticed that our

F4 code extended with F16 parity-check symbols can outperform its single-alphabet

counterpart over F4, as our simulations show. We also observe that as we increased

the value of N2 from 5 to 25, there was a corresponding increase in performance,

with the mixed code of Nbin = 6000 and N2 = 25 giving us an additional coding

gain of 0.065 dB over the F4 code of the same Nbin and rate; whilst the additional

coding gain obtained by the F8 code over its F4 counterpart is 0.125 dB. This is

more consistent with our intuitive predictions that as one increases the number

of parity-check coordinates over the extended alphabet, one will see corresponding

improvement in performance.

Chapter 5

Multistage Decoding of LDPC

Codes over Zq

5.1 Background

In [38], Richardson and Urbanke showed that increasing the alphabet size of the

LDPC code leads to a corresponding improvement in BER performance. Davey

and MacKay showed via computer simulations that well-designed LDPC codes over

GF(4) and GF(8) outperformed their binary counterparts over the AWGN channel.

Deepak and Sridhara studied the construction of LDPC codes over Zq matched to

signal sets in [43]. However, their focus was more on construction of LDPC codes

over groups and rings for coded modulation. Erez and Miller also made a study of

LDPC codes over Zq in [14]. Their main concern on the code construction and their

corresponding maximum likelihood performance.

Motivated by the improved error-correcting capability of alternant codes over

Z2m under multistage list decoding approach of [1], we develop a multistage message-

passing analogue for LDPC codes over Zq. We achieve this by exploiting the under-

lying algebraic structure (natural ring epimorphism) of linear codes over Zq.

68

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 69

We proceed with a brief review of the properties of linear codes over Zq.

5.2 Structure of Linear Codes over Rings

An integer ring Zq does not possess the properties of the finite field. The character-

istics of a linear code C over Zq needs to be defined properly. The following theorem

by [7] helps to shed some light on the properties of such a code.

Theorem 5.2.1 Let Zq be the ring of integers modulo q. More precisely, Zq is the

quotient ring Z/qZ and let C ⊂ (Zq)
N . The following statements are equivalent:

1. C is a subgroup of (Zq)
N .

2. There exists an integer R (0 ≤ R ≤ N), a set of linearly independent vectors

{x0, x1, . . . , xR−1} ⊂ (Zq)
N , and a set of nested ideals of Zq (not necessarily

distinct)

Zq > a0Zq > a1Zq > . . . > aR−1Zq > {0}

such that C can be written as the direct sum

C =
R−1⊕
i=0

aiZqxi. (5.1)

3. There exists a unique lattice Λ, qZN < Λ < ZN , such that C ' Λ/qZN .

Given any set [Λ/qZN] of coset representatives, C can be written as C =

[Λ/qZN]modq.

The set (Zq)
N of N -tuples from Zq is a Zq-module, and a linear code over

Zq means any Zq sub-module of (Zq)
N . We equip (Zq)

N with the inner product

v · w = v1w1 + . . . + vNwN evaluated in Zq, and define the dual and self-dual codes

in the usual way.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 70

If we write q = pm, for any prime p and positive integer m, we have the ring

Zpm , which is the quotient ring Z/pmZ. An element r ∈ Zpm may be expressed in

its p-adic form as sum r = r(0) + r(1)p + r(2)p2 + · · · + r(m−1)pm−1 =
∑m−1

i=0 r(i)pi,

where r(i) ∈ Zp.

A non-zero linear code C over Zpm , for m finite, has a generator matrix of the

form [8]:

G =




IK0 A01 A02 · · · A0,m−1 A0m

0 pIK1 pA12 · · · pA1,m−1 pA1m

0 0 p2IK2 · · · p2A2,m−1 p2A2m

· · · · · · · ·
0 0 0 · · · pm−1IKm−1 pm−1Am−1,m




,

where the columns are grouped into blocks of sizes K0, K1, . . . , Km−1, Km and the

Ki are nonnegative integers summing to N , and IKi
is the Ki ×Ki identity matrix.

The code C then consists of all codewords [v0 v1 v2 . . . vm−1]G, where each vi is a

vector of length Ki with components from Zpm−i , so that C contains pK codewords,

where K =
∑m−1

i=0 (m− i)Ki.

The code C with generator G is said to have a dual code C⊥ with generator

matrix of the form

G⊥ =




B0m B0,m−1 · · · B02 B01 IKm

pB1m pB1,m−1 · · · pB12 pIKm−1 0

p2B2m p2B2,m−1 · · · p2IKm−2 0 0

· · · · · · · ·
pm−1Bm−1,m pm−1IK1 · · · 0 0 0




,

where the column block sizes are the same as in G. In analogy with linear codes

over fields, we define the parity-check matrix of C as H = (G⊥)T .

A code C over Zpm is a Zpm free-module if K1 = K2 = . . . = Km−1 = 0. In this

case, a free code over Zpm has a systematic generator matrix.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 71

5.2.1 Epimorphism of elements in Zq

We let Rl = Zpl+1 for 0 ≤ l < m such that pm = q. Thus, we have R0 = GF(p) (or

Fp) and Rm−1 = Zq. An element r ∈ Zq has a unique p-adic expansion and we can

define the ring epimorphism Zq 7→ Zpl+1 : r 7→ ∑l
i=0 r(i)pi with kernel plZq for each

l. Similarly, we can denote a code over Zpm as Cm−1 and its parity-check matrix,

Hm−1.

We can then extend this notation to Cm−1 and Hm−1 in a natural way and

obtain Cl and Hl, where Cl is an LDPC code over Rl with parity-check matrix Hl.

Note that Cl has the same dimension as Cm−1.

For our code construction, a (N,K) LDPC code over Rm−1 can be designed

by constructing a sparse (N − K) × N parity-check matrix Hm−1, with non-zero

elements drawn from the units of Rm−1. The (N − K) rows of Hm−1 are linearly

independent and Cm−1 has dimension K. Since the entries of Hm−1 are units of

Rm−1, the bipartite graph of Cl is identical to that of Cm−1 except that its edge

weights are given by the corresponding edge weights of the latter graph reduced

modulo pl+1.

Example 4 An (8, 4) code C2 over R2 i.e., Z8, has parity-check matrix

H2 =




0 0 3 1 1 7 0 0

3 5 0 0 0 1 7 0

0 7 7 1 0 0 1 7

5 0 0 0 7 1 0 1




.

We reduce the elements of H2 modulo 4 and obtain

H1 =




0 0 3 1 1 3 0 0

3 1 0 0 0 1 3 0

0 3 3 1 0 0 1 3

1 0 0 0 3 1 0 1




,

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 72

where H1 is the parity-check matrix of the (8, 4) image code C1 over R1.

We further reduce the elements of H2 modulo 2 and obtain

H0 =




0 0 1 1 1 1 0 0

1 1 0 0 0 1 1 0

0 1 1 1 0 0 1 1

1 0 0 0 1 1 0 1




,

where H0 is binary image of H2 and is also the parity-check matrix of the (8, 4)

image code C0 defined over R0.

5.3 MPA for LDPC codes over Zq

We decode LDPC codes over Zq using the MPA as well. Similar to the case of

LDPC codes over Fq illustrated in Chapter 3, the decoder input is the set of a

priori probabilities of the code nodes and is expressed as column vectors pj =

[p0
j p1

j . . . pq−1
j]T where pξ

j is the probability that the jth code node is equal to ξ ∈ Zq.

Column operations now involve the computation of the code-to-check node mes-

sages qji = [q0
ji q

1
ji . . . qq−1

ji]T where qξ
ji is the probability that the jth code node, xj,

has the value ξ, given the information obtained via the i′th check node, ci′ for all

i′ ∈ M(j) \ {i} where M(j) = {i : hi,j 6= 0}.

On the other hand, row operations involve the computation of check-to-code

node messages, rji = [r0
ji r

1
ji . . . rq−1

ji]T where rξ
ji is the probability that the ith check

node, ci, is satisfied when the value of the xj is fixed to be equal to ξ, i.e.,

∑

j′∈L(i′)\{j}
hi′,j′xj′ − xj = 0

and the other code nodes are independent with probabilities given by qξ
j′i for j′ ∈

L(i) \ {j} where L(i) = {j : hi,j 6= 0}.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 73

Prior to the computing of the qji (respectively, rji), the elements of rji′ (re-

spectively, qj′i) are permuted according to h−1
i′,j (respectively, hi,j′) such that the

resulting vector has the form r′ji′ = [r0
ji′ r

hi′,j
ji′ . . . r

hi′,j(q−1)

ji′]T (respectively, q′j′i =

[q0
j′i q

h−1
i,j′

j′i . . . q
h−1

i,j′ (q−1)

j′i]T). Note that if hi′,j (respectively, hi,j′) is equal to the multi-

plicative identity of Zq, then r′ji′ = rji′ (respectively, q′j′i = qj′i). We initialise each

rji = q−1[1 1 . . . 1]T .

5.3.1 The Column Step

Consider the column step corresponding to the code node xj, we consider ci′ for all

i′ ∈ M(j) \ {i}, which is in turn connected to the set of code nodes defined by L(i′).

The constraint defined by ci′ is expressed as

∑

j′∈L(i′)\{j}
hi′,j′xj′ + hi′,jxj = ci′ , (5.2)

where additions and multiplications are defined over Zq. For a check node constraint

to be satisfied, ci′ = 0 and we can rewrite (5.2) as

∑

j′∈L(i′)\{j}
hi′,j′xj′ − (−hi′,jxj) = 0. (5.3)

From (5.3), we have the simple equality
∑

j′∈L(i′)\{j} hi′,j′xj′ = −hi′,jxj. This

means that if xj assumes a particular value ξ, i.e., if xj = ξ, then
∑

j′∈L(i′)\{j} hi′,j′xj′ =

−hi′,jξ. The combined information converging upon xj from all the check nodes ci′

for all i′ ∈ M(j) \ {i} has to be equivalent to −hi′,jxj. Hence, updating qji can be

accomplished by the following expression

qξ
ji = γpξ

j

∏

i′∈M(j)\{i}
r
−hi′,jξ

ji′ .

In the case of a code defined over a field of characteristic two, i.e. F2m such that

ξ ∈ F2m , then ξ = −ξ so that qji is updated according to the expression as given

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 74

in (3.11) in Chapter 3. For the case of codes over Zq, ξ 6= −ξ, so we update qji

according to the relation

qji = γpj

∏

i′∈M(j)\{i}
wji′ (5.4)

where wji′ = [r0
ji′ r

hi′,j(q−1)

ji′ r
hi′,j(q−2)

ji′ . . . r
hi′,j
ji′]T . If hi′,j is equal to the multiplicative

identity of Zq, then wji′ = [r0
ji′ r

(q−1)
ji′ r

(q−2)
ji′ . . . r1

ji′]
T .

5.3.2 The Row Step

For the row step corresponding to the ith check node, the analysis given in Section

3.2.1 of Chapter 3 is still applicable where all variables are now defined over Zq, i.e.

in (3.2), all ξj and ξk ∈ Zq. Likewise, the Fourier transform decoding illustrated in

Chapter 3 can be used to compute the check-to-code node messages for codes over

Zq with the use of a suitable transform operator.

For Zq, the appropriate transform is the q×q discrete Fourier transform operator,

denoted as Fq = [fab] =
[
exp

(
2πj
q

ab
)]

for 0 ≤ a, b ≤ q − 1 and j =
√−1. For a

code over Z2, the Fourier transform operator is F2 =


 1 1

1 −1


 which is the 2× 2

Hadamard matrix H2, since Z2 = F2. The Fourier transform operator for Z4 is

F4 =




1 1 1 1

1 j −1 −j

1 −1 1 −1

1 −j −1 j




.

Note however that the Fourier transform technique works only when the non-zero

element of the parity-check matrix has a well-defined multiplicative inverse. This

is because when the rji is passed through a non-unity edge hi′,j, the elements are

rearranged according to h−1
i′,j.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 75

Hence the transformed version Rji of the message rji to be passed from ci to xj

is written as

Rji =
∏

j′∈L(i)\{j}
Fqq

′
j′i. (5.5)

To obtain rji, one simply performs the inverse transform

rji = F−1
q Rji. (5.6)

Finally, an estimate x̂j of the jth code symbol is given by x̂j = arg max0≤ξ≤q−1{qξ
j}

where the qξ
j are the estimated a posteriori probabilities of the code nodes, which is

computed using the following expression

[q0
j q1

j . . . qq−1
j]T = γpj

∏

i∈M(j)

wji. (5.7)

One then checks if the codeword estimate x̂ found is in the null space of H, i.e.,

x̂HT = 0. If so, the decoding process is terminated, otherwise, the above steps are

repeated. If the algorithm completes a prescribed maximum number of iterations

and no valid codeword has been found, a decoding failure is declared. Note that r′ji

replaces wji in (5.7) if the code alphabet is F2m .

5.4 m-Stage Message Passing Decoding

In this section of the thesis, we present the multi-stage message passing algorithm

to decode LDPC codes over Zq. The decoder works by decoding the code Cm−1 over

Rm−1 in m stages, by decoding each homomorphic image of the code, Cl over Rl,

for l = 0, l = 1 until l = m − 1. Since this decoding algorithm entails decoding

at m stages, the lth stage will have its own set of check-to-code node and code-

to-check node messages, denoted as rji(l) = [r0
ji(l) r1

ji(l) . . . rpl+1−1
ji (l)]T and qji =

[q0
ji(l) q1

ji(l) . . . qpl+1−1
ji (l)]T , respectively, where both rji and qji are pl+1 element

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 76

column vectors. It will also have its own a priori probability inputs, denoted as

pj(l) = [p0
j(l) p1

j(l) . . . ppl+1−1
j (l)]T .

At the lth stage, we initialise the values of the check-to-code node messages

rji(l) as well as the a priori probability messages pj(l) of the code nodes associated

with Cl using rji(l − 1), a refinement of the a priori probability messages pj of the

code nodes associated with Cm−1 and the estimated codeword x̂(l− 1) found at the

(l − 1)th stage.

When l = 0, rji(0) is initialised as a uniform distribution, i.e rji(0) = p−1[1 1 . . . 1]T

while pj(0) is obtained according to the initial a priori probabilities pj obtained from

the channel output. The lth stage decoding is successful if a valid estimated code-

word is obtained, i.e. x̂(l)HT
l = 0. We can make use of the information obtained

from this stage to update the pj and this is done with the use of an appropriate

scaling factor β, where 0 < β < 1. Assuming that the jth estimated code symbol

is ξ, i.e., x̂j(l) = ξ ∈ Rl and Ξ ∈ Rl+1 such that Rl+1 7→ Rl : Ξ 7→ ∑l−1
i=0 Ξ(i)pi 6= ξ,

we update pj such that pΞ
j = βpΞ

j . (Note that β = 0.5 is used in our simulations

as it gave the best simulation results for the various β values used - refer to Figure

5.6.) The resulting pj is then normalised and this serves as a refinement of the a

priori probabilities of the code nodes of Cm−1. We can then compute the a priori

probability input for the next stage pj(l + 1) from this refined pj. The expression

below shows how pj(l + 1) is computed from pj, for each ξ ∈ Rl+1,

pξ
j(l + 1) =

∑

Ξ∈Rm−1,
Pl

i=0 Ξ(i)pi=ξ

pΞ
j

1. (5.8)

To initialise the rji(l) from the preceding stages, for 0 < l < m and for all Ξ ∈ Rl

1An underlying assumption is that x̂(l) and the transmitted codeword are the same after reduc-

tion by pl+1. Otherwise, we will be degrading rather than improving pj . The idea of the scaling

factor β and (5.8) were contributed and derived, respectively, by Dr. M. A. Armand. The author

gives his thanks and appreciation to Dr. M. A. Armand for allowing him to use his work in this

thesis.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 77

such that
∑l−1

i=0 Ξ(i)pi = ξ ∈ Rl−1, we set

rΞ
ji(l) = γrξ

ji(l − 1). (5.9)

The main steps of the multistage message-passing algorithm may be summarised

as follows:

• Step 0. Initialising Stage 0. Set l = 0. The intrinsic probability vector pj and

rji are initialised. The pj is initialised based on the given channel output and

pj(0) =
∑

Ξ∈Rm−1,Ξ(0)p0=ξ pΞ
j for ξ ∈ R0, while rji(0) is initialised as a uniform

distribution, i.e. rji(0) = p−1[1 1 . . . 1]T . Proceed to Step 1.

• Step 1. Decoding at Stage l. Using the modified MPA described in Section

5.3, we compute a codeword estimate x̂(l) of the image code Cl over Rl. If

l = m− 1, exit; else, proceed to Step 2.

• Step 2. Initialising Stage l + 1. If x̂(l)HT
l = 0, then update pj, initialise

rji(l+1) and compute pj(l+1) as described above. Then set l = l+1 and return

to Step 1. If x̂(l)HT
l 6= 0, then initialise rji(m−1) in the following fashion: for

all Ξ ∈ Rm−1 such that
∑l

i=0 Ξ(i)pi = ξ ∈ Rl, set rΞ
ji(m − 1) = γrξ

ji(l). Then

set l = m− 1 and return to Step 1.

For the case of p-ary modulation, we are then transmitting the coefficients of

the p-adic expansion of the code symbols. Such a modulation requires m uses of

the channel for the transmission of one symbol over Rm−1. In such an instance, it is

obvious that pj(l) can be computed from the first l+1 channel outputs corresponding

to each code symbol, without the need for pj. (Note that we have assumed that

the transmission of the code symbol begins with the zeroth coefficient of the p-adic

expansion, followed by the first and so on.) In this case, the multistage approach

can be simplified. The simplifications are straightforward and are thus omitted.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 78

5.5 Complexity Analysis

In this section we consider the increase in decoding complexity of the multistage

approach over the single-stage counterpart. The increase in complexity involves two

components: the fixed components and the variable components.

The fixed components are the additional arithmetic operations incurred at the

beginning and the end of the decoding stages, when we update the pj at the end of

stage l, the initialisation of rji(l) based on rji(l − 1), and initialisation of pj(l + 1)

based on pj.

On the other hand, the variable components deal with the arithmetic operations

required to perform the row and column computations to decode the homomorphic

images Cl for l = 0, 1, . . . , m − 2. We consider this to be a variable component

since the total number of operations depends on the number of iterations required

to perform the decoding.

5.5.1 Fixed Components

We begin by first considering the number of multiplications required to update pj

at the end of stage l, for l = 0, 1, . . . , m − 2 for an (N, K) code defined over Zq

where q = pm for p a prime. At the lth stage, we would require Npm
(
1− p−(l+1)

)

multiplications by the scaling factor, β and an additional pm multiplications for

normalisation purposes to obtain the refined pj. Hence, over all the relevant m− 1

stages (starting from stage 0), we require a total of

Npm

m−2∑

l=0

(
1− p−(l+1)

)
(5.10)

multiplications to initialise pj over all the relevant stages.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 79

Next, we consider the number of multiplications required to initialise rji(l) based

on rji(l − 1). At the end of the (l − 1)th stage, the check-to-code node messages

rji(l− 1) are column vectors of length pl, while the check-to-code node messages of

the next stage rji(l) are column vectors of length pl+1. The relationship between

rji(l) and rji(l − 1) has already been defined in (5.9). It is then easy to see that

the number of multiplications required to initialise one rji(l) from its corresponding

rji(l − 1) is the pl+1 multiplications required for normalisation. Thus, the total

number of multiplications required to initialise all the check-to-code node messages

over all m− 1 stages (starting from stage 0) is

m−2∑

l=0

N−K−1∑
i=0

pl+2|L(i)|. (5.11)

Finally, we consider the number of additions required to initialise pj(l +1) from

pj from the 0th stage to the (m−1)th stage. At the lth stage, we require pm−p(l+1)

additions to compute one pj(l). Subsequently, the total number of additions required

to compute all N pj(l) over m− 1 stages (starting from stage 0) is

N

m−2∑

l=0

p(l+1)(pm−(l+1) − 1). (5.12)

5.5.2 Variable Components

For the variable components, we first consider the complexity of implementing the

q-point FFT/IFFT pair based on the q× q Fourier transform operator Fq = [fab] =[
exp

(
j2π
q

ab
)]

where 0 ≤ a ≤ q − 1, 0 ≤ b ≤ q − 1, j =
√−1 and p = 2. Note

that since Fq has complex elements in it, complex arithmetic operations will be

required to perform the FFT/IFFT operations. The FFT/IFFT pair will require

2q log2 q complex additions and 6 and 18 complex multiplications for q = 4 and

q = 8, respectively.

Using the forward-backward algorithm to evaluate all the rji of a check node i

with |L(i)| participating code nodes requires 3|L(i)|q complex multiplications.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 80

Thus, for a (N,K) code over Z4 (respectively, Z8), the total number of complex

multiplications required per iteration to update all the rji is 18
∑N−K−1

i=0 |L(i)| (re-

spectively, 42
∑N−K−1

i=0 |L(i)|). On the other hand, the number of real multiplications

required to perform the column operations remains as 4q
∑N−1

j=0 |M(j)|.

5.6 2m-ary Signal Space

To perform multistage message-passing algorithm with q-ary modulation, we propose

a method of partitioning the signal space, specifically, we focus on 2m-ary PSK

modulation.

In a multistage decoding environment, errors from previous stages can propagate

through the subsequent stages and lead to decoder errors. To reduce the occurrence

of such errors to as low a level as possible, we want to maximise the probability that

when a decision is made about the value of a code node over Cl for l < m− 1, it is

the same value as the transmitted code symbol of the corresponding code node of

Cm−1 modulo pl+1. The signal space will be partitioned such that the signal points

corresponding to Ξ ∈ Rm−1 mapping to the same values via the ring epimorphism
∑l−1

i=0 Ξ(i)pi = ξ ∈ Rl−1 are grouped together.

Consider the case of Z4, the constellation diagram is shown in Figure 5.1(a). We

can see that the elements of 0 and 2 of Z4 occupy the upper half while the remaining

elements, 1 and 3 of Z4 occupy the lower half of the constellation. This arrangement

allows 0 and 2 (1 and 3) to be paired together since their binary images coincide

modulo 2. From the constellation, we see that each element is represented by a 2

element binary vector, where each element of the vector represents the coefficient of

the 2-adic expansion of the corresponding element of Z4. With the arrangement of

the elements in Figure 5.1(a), we have a Gray-coded constellation. We can extend

this grouping of signal sets for other alphabets Z2m .

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 81

Figure 5.1(c) shows the proposed constellation diagram for Z8. We can obtain

this from the constellation over Z4 in Figure 5.1(a) by reinterpreting the elements

as elements of Z8. In this case, we have the elements 4 and 6 in the upper half of

the constellation since 0, 2, 4 and 6 map to the binary image of 0 modulo 2, while

the elements 5 and 7 are in the lower half of the constellation since 1, 3, 5 and 7

map to 1 modulo 2. 6 lies in the upper left quadrant with 2 since they map to the

same element (i.e., 2) modulo 4. Likewise ,4 lies in the same region as 0 in the upper

right quadrant because they coincide to the same element (i.e., 0) modulo 4. 7 and

5 lies in the same quadrants as 1 and 3 respectively, due to similar reasons.

Q

I

00 (0)10 (2)

01 (1)11 (3)

(a) 4-PSK (c) 8-PSK

Q

I

101
(5)

011
(3)

000
(0)

110
(6)

111
(7)

001
(1)

100
(4)

010
(2)

Q

I

00 (0)10 (3)

01 (1)11 (2)

(b) conventional QPSK

EsEs Es

Figure 5.1: Constellation diagrams for 4-PSK and 8-PSK

For both the proposed and conventional 4PSK constellations of Figures 5.1(a)

and 5.1(b), respectively, without loss of generality, if the signal s corresponding to the

jth code symbol xj of code C1 is 01, the symbol transmitted is 1. The transmission

here is performed over the AWGN channel with single-sided noise power spectral

density N0 and symbol energy Es. The probability that the signal falls within the

decision region of 01 is
[
1−Q(

√
Es

N0
)
]2

, where Q(x) = 1√
2π

∫ ∞

x

exp(−y2

2
)dy. In this

case, pj = [p0
j p1

j p2
j p3

j]
T is computed from the channel output and is reliable.

The probability of the received signal falling within the decision region of 00 and

11 is
[
1−Q(

√
Es

N0
)
]
Q(

√
Es

N0
). For the case where the signal falls into the decision

region of 00, for the proposed 4-PSK constellation, we have the situation that p0
j(0) >

p1
j(0), where p0

j(0) = p0
j + p2

j and p1
j(0) = p1

j + p3
j . In this scenario, the probability

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 82

input pj(0) = [p0
j(0) p1

j(0)]T to the zeroth stage decoder is not reliable. This is the

same if we were to use the conventional 4-PSK constellation.

For the case of the received signal falling within the decision region of 11; if

the proposed 4-PSK constellation is used, we have p0
j(0) < p1

j(0) and thus, pj(0)

would be reliable in this case. If the conventional 4-PSK constellation were used,

the situation where p0
j(0) > p1

j(0) would still be encountered, and the pj(0) obtained

would remain unreliable.

Finally we consider the case where the received signal falls into the decision

region of 10. The probability that the received signal falls into the decision region

of 10 is Q(
√

Es

N0
)2. Hence, pj(0) will be unreliable if the proposed constellation

is used. On the other hand, pj(0) obtained from that of the conventional 4-PSK

constellation would be reliable. It is important to note however, that the probability

of the received signal falling into the decision region of 10 is much smaller than

that of the received signal falling into the decision region of either 00 or 11 (since[
1−Q(

√
Es

N0
)
]
Q(

√
Es

N0
) À Q(

√
Es

N0
)2). Hence the received signal is more likely to

fall into the decision region of either 11 or 00 than 10.

Hence, we can see that the proposed constellation provides a more reliable pj(0)

(compared to the conventional 4-PSK constellation) which in turn reduces the prob-

ability of decoding error at the zeroth decoding stage. This reduction in decoding

error at the zeroth decoding stage in turn reduces the overall likelihood of decoding

error for the two stage decoder since errors propagating from the zeroth stage to the

first stage are suppressed.

This analysis can be extended to larger sized integer rings.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 83

5.7 Worked Example

In this section, we use a worked example to illustrate the concepts and implemen-

tation of the proposed multi-stage decoding algorithm to decode LDPC codes over

Zpm .

The corresponding systematic generator matrix to the parity-check matrix H2

in Example 4 is

G =




1 0 0 0 0 0 3 3

0 1 0 0 4 4 1 0

0 0 1 0 3 0 6 5

0 0 0 1 5 6 6 7




.

Assuming that a length 4 message vector m = [7 1 4 3] is encoded to a length 8

codeword vector x = [7 1 4 3 7 6 0 6]. Each element of the codeword is then mapped

to its corresponding signal according to a −π
8
-shifted version of the 8-PSK constel-

lation diagram in Figure 5.1(c) and transmitted across the AWGN channel. For this

example, we assume that SNR = 4dB and Eb = 1. Note that the code is of rate

one-half. The transmitted signal is

s =

√
3

2


 − 1√

2
1√
2

1√
2
−1 − 1√

2
0 1 0

− 1√
2
− 1√

2
1√
2

0 − 1√
2

1 0 1


 .

The received value from the AWGN channel is

y =


 −0.5021 1.4417 1.3973 −1.2336 −1.5817 −0.4713 0.8656 0.0979

−0.5485 −0.5677 0.3295 −0.699 −0.7512 1.8561 0.2359 0.8134


 .

The probability of each symbol being one of the eight possible states is calculated

using the channel output and is tabulated in Table 5.1. (Please refer to Appendix

A for subsequent tables of pj(0), pj(1) as well as the refined pj.)

Using this set of pj as input to the stage 2 decoder and decoding over R2, we find

that the decoder is unable to give a correct codeword estimate after 50 iterations.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 84

j ξ = 0 ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6 ξ = 7 Hard Decision

Value

Result

0 0.0003 0.0082 0.0055 0.1465 0.0001 0.1948 0.0002 0.6444 7 Correct

1 0.5289 0.4653 0.0000 0.0000 0.0033 0.0024 0.0000 0.0000 0 Error

2 0.7360 0.0141 0.0000 0.0000 0.2488 0.0000 0.0010 0.0000 0 Error

3 0.0000 0.0000 0.0651 0.8145 0.0000 0.0006 0.0003 0.1195 3 Correct

4 0.0000 0.0000 0.0009 0.3957 0.0000 0.0024 0.0000 0.6010 7 Correct

5 0.0000 0.0000 0.2143 0.0002 0.0035 0.0000 0.7820 0.0000 6 Correct

6 0.5938 0.0447 0.0002 0.0000 0.3484 0.0007 0.0123 0.0000 0 Correct

7 0.0081 0.0002 0.0992 0.0024 0.2324 0.0000 0.6576 0.0000 6 Correct

Table 5.1: Intrinsic symbol probabilities pj calculated using channel output

We attempt to see if our multistage decoder will be able to perform the decoding

successfully. We set l = 0 and compute pj(0) from pj based on (5.8). The pj(0)

shown in Table A.1 is used as input to the stage 0 decoder. Note that the rji used

for this stage is uniformly distributed. After 1 iteration, the codeword estimate

computed by the decoder is x̂(0) = [1 1 0 1 1 0 0 0]. Since x̂(0)HT
0 = 0, x̂(0) ∈ C0

and decoding at stage 0 is considered to be successful and is terminated. We then

proceed to refine pj from x̂(0). This refined pj is shown in Table A.2. We then

proceed to compute pj(1) from the first refined pj and set l = 1. The pj(1) obtained

is shown in Table A.3 and is used as the input to the stage 1 decoder. At the end of

the first iteration, the decoder outputs the codeword estimate x̂(1) = [3 1 0 3 3 2 0 2].

Again, since x̂(1)HT
1 = 0 and x̂(1) ∈ C1, decoding at stage 1 is considered to be a

success and terminated. We then use x̂(1) to refine pj and this second refined pj is

shown in Table A.4.

We set l = 2 and let the second refined pj be the input to the stage 2 decoder

(we now decode over R2). At the end of the second iteration, the decoder outputs

the codeword estimate x̂(2) = [7 1 4 3 7 6 0 6] and x̂(2)HT
2 = 0. Since x̂(2) = x, we

have successful decoding.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 85

From this example, we have illustrated that the multi-stage approach can correct

errors which were previously uncorrectable using the conventional single-stage MPA.

5.8 Simulation Results

In this section, we compare the performance of our multi-stage decoding scheme

against that of the single-stage MPA on an AWGN channel under different various

modulation schemes. We focus on codes over Z4 and Z8 of rate one-half and length

500 and 1000. The parity-check matrices of all the codes simulated here have an

average column weight of 2.5 and row weight of approximately 5. It is shown in [35]

that such matrices do not have short cycles of length 4. Further, each instance of

the MPA in our simulations iterates at most 50 times.

Under BPSK modulation, the multi-stage offers 0.1 dB of coding gain over the

single-stage MPA for both the Z4 and Z8 codes, as Figures 5.2 and 5.3 show. We

further show that under 4-ary (respectively, 8-ary) PSK modulation corresponding

to the constellation diagram shown in Figure 5.1(a), (respectively, Figure 5.1(c)),

our multi-stage decoder offers a coding gain of about 0.07 dB of coding gain over

the single-stage MPA for both Z4 (respectively, Z8) codes, as shown in Figure 5.4

(respectively, Figure 5.5).

We see from Figures 5.2 to 5.5 that the coding gain obtained remains the same

for a Z4 and Z8 code. We can infer that, for a code Cm−1 over Rm−1, the main

contributor of additional coding gain is stage 0. In addition, as we increase the

number of stages m, such that m →∞, the incremental coding gain contributed by

each additional stage after stage 0 will diminish to zero. This is due to the property

of the descending chain of ideals of Rm−1,

Rm−1 ⊃ pRm−1 ⊃ p2Rm−1 ⊃ . . . ⊃ pmRm−1 = {0}

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 86

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

N=500, Single−stage
N=500, Multi−stage
N=1000, Single−stage
N=1000, Multi−stage

Figure 5.2: BER performance of Z4 codes under BPSK modulation

which comes into play at each stage of the decoding process. Stage l will attempt to

correct the errors which stem from plRm−1 \pl+1Rm−1. Plainly put, (on average) the

higher stages will have lesser errors to correct and this accounts for the diminishing

additional coding gains provided by the higher stages 2.

We then consider the increase in complexity as we move from single-stage decod-

ing to the multistage approach using the expressions obtained in Section 5.5. The

increase in complexity to decode the code Cm−1 using our multistage approach over

the single-stage approach is just the number of arithmetic operations required to de-

code its homomorphic images Cl for l = 0, 1, . . . , m− 2. In our discussion, we shall

only consider the increase in complexity in terms of the increase in multiplications

required since multiplications are typically more costly than additions.

2The inferences, insights and equations of the above paragraph were contributed and derived,

respectively, by Dr. M. A. Armand. The author gives his thanks and gratitude to Dr. M. A. Ar-

mand for allowing him to use his work in this thesis.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 87

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

N=500, Single−stage
N=500, Multi−stage
N=1000, Single−stage
N=1000, Multi−stage

Figure 5.3: BER performance of Z8 codes under BPSK modulation

For the Z4 code of length 500 (respectively, 1000), the number of complex multi-

plications required to compute all the rji and real multiplications to compute the qji

per iteration is 22500 (respectively, 45000) and 20000 (respectively, 40000), respec-

tively. By similar analysis, the Z8 code of length 500 (respectively, 1000) requires

52500 (respectively, 105000) complex multiplications and 40000 (respectively, 80000)

real multiplications to compute all the rji and qji, respectively.

If we fix the maximum number of iterations at which the MPA terminates to

be 50, the Z4 codes of length 500 and 1000 require 5.5 × 106 and 11 × 106 real

multiplications3, while the number of real multiplications required to decode the Z8

codes of length 500 and 1000 is 12.5× 106 and 25× 106, respectively.

Decoding the binary images of the codes in the logarithmic domain requires

3The real and complex multiplications have been summed together, with each complex multi-

plication replaced by 4 real multiplications.

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 88

1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

N=1000, Single−stage
N=1000, Multi−stage
N=500, Single−stage
N=500, Multi−stage

Figure 5.4: BER performance of Z4 codes under 4-ary PSK modulation

only additions. Hence, the increase in complexity to decode the Z4 codes in 2 stages

is solely due to the updating pj at the end of stage 0 and initialising rji(1) at the

beginning of stage 1, i.e., due to the fixed components. From (5.10) and (5.11),

the total number of real multiplications required to perform the 2 tasks are 8000

and 16000 for the Z4 codes of length 500 and 1000, respectively. The two tasks

contribute to a marginal increase of 0.15% in decoding complexity over the single-

stage decoding, in exchange for 0.07 to 0.1 dB of additional coding gain.

For the Z8 codes, the fixed components are now the updating of pj at the

end of the 0th and 1st stage, as well as initialising rji(1) and rji(2). The variable

component is the decoding of the Z4 image of the code at stage 1. For the Z8 codes

of length 500 and 1000, the number of real multiplications required to perform the

fixed components is 28000 and 56000, respectively, while decoding of the Z4 images

require 5.5 × 106 and 11 × 106, respectively. The increase in complexity over that

of the single-stage is thus 44.22%. This represents a sharp increase in decoding

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 89

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8
10

−5

10
−4

10
−3

10
−2

E
b
/N

o
 (dB)

B
E

R

N=500, Single−stage
N=500, Multi−stage
N=1000, Single−stage
N=1000, Multi−stage

Figure 5.5: BER performance of Z8 codes under 8-ary PSK modulation

complexity, when compared to their Z4 counterparts, for similar improvements in

coding gain.

Finally, Figure 5.6 shows the effect of varying β on the BER performance of the

Z8 code of length 500. The values of β range from 0.1 to 0.9 in increments of 0.1.

As Figure 5.6 indicates, the values of β corresponding to increasingly worse BER

performance are: 0.5, 0.4, 0.6, 0.3, 0.7, 0.8, 0.2, 0.1 and 0.9. We note that β has

a similar effect on the BER performance of the other codes considered here. (The

corresponding BER graphs of the remaining 3 codes are shown in Appendix B.)

5.9 Concluding Remarks

In this chapter, we present a multistage MPA-based decoding algorithm for LDPC

codes over Zpm . We showed that our proposed algorithm outperformed its con-

CHAPTER 5. MULTISTAGE DECODING OF LDPC CODES OVER ZQ 90

5.75 5.8 5.85 5.9 5.95 6 6.05 6.1 6.15 6.2 6.25

10
−3.9

10
−3.8

10
−3.7

10
−3.6

10
−3.5

10
−3.4

10
−3.3

10
−3.2

E
b
/N

o
 (dB)

B
E

R

β = 0.5
β = 0.1
β = 0.2
β = 0.3
β = 0.4
β = 0.6
β = 0.7
β = 0.8
β = 0.9

Figure 5.6: BER performance of Z8 code of length 500 for different values of β

ventional single-stage counterpart via computer simulations. This improvement in

performance comes at the expense of increased decoding complexity. A complexity

analysis shows that the increase in decoding complexity is considerable for larger

values of m, i.e., for m > 2.

However, we also saw the diminishing additional coding gain provided by the

higher stages and provided a rationale for it. Stage 0 provided the most signifi-

cant amount of coding gain, compared to the subsequent stages. We thus propose

a complexity-performance compromise where, for a code over Zpm , we perform de-

coding using only 2 stages: first decoding at stage 0, then followed by decoding at

stage m− 1. This method allows us to skip the intermediate stages and reduces the

decoding complexity by a significant amount, at only an insignificant detriment to

performance.

Chapter 6

Conclusion

In this chapter, we summarise the work done as well as the discoveries made in

the course of our work. We highlight some of the contributions made to the area

of non-binary LDPC codes. In addition, we also include, in the final section of this

chapter, recommendations for possible future research stemming from our work.

We begin with a summary of the thesis.

6.1 Thesis Summary

In Chapter 2, we gave a brief introduction as well as general terminologies used

to describe LDPC codes in general. LDPC codes over various alphabets were also

introduced. The factors affecting the performance of LDPC codes were also given

and the code construction methods available to design good codes were presented.

In Chapter 3, a detailed description of the decoding algorithm (MPA) used to

decode non-binary LDPC codes was presented. This MPA makes use of the Fourier

91

CHAPTER 6. CONCLUSION 92

transform to reduce decoding complexity. A complexity analysis (in terms of the

number of arithmetic operations required per iteration) was also given.

In Chapter 4, we introduced our mixed alphabet codes and gave a detailed de-

scription of the codes. We also gave a method for the construction of our codes.

A modified decoding algorithm adapted from the MPA described in Chapter 3 ex-

ploiting the property that distinct code coordinates and parity-check constraints

are defined over different alphabets was presented. This modified MPA reduces the

number of redundant computations required to decode our mixed codes. Further we

provided a complexity analysis to compare the decoding complexity of our mixed

codes compared to their single alphabet counterparts. We also show via computer

simulations that our mixed codes outperformed their single-alphabet counterparts

and offer a performance-complexity trade-off.

In Chapter 5, we presented our work on multistage decoding of LDPC codes over

Zq. We modified the MPA presented in Chapter 3 for codes defined over Zq, and

adapt it for decoding in a multistage environment. A method to partition the 2m-ary

signal space to minimise the probability of an erroneous decoding decision from an

earlier stage propagating through the subsequent stages was proposed so that the

multistage decoder can function with 2m-ary PSK modulation. We also showed the

increase in complexity as we go from the single-stage to multistage approach. Our

computer simulations showed that the multistage approach is indeed superior to the

single-stage approach and offers a performance-complexity trade-off as well.

6.2 Recommendations for future work

In this section, we make some suggestions for future research that can be done based

on the work done within this thesis.

CHAPTER 6. CONCLUSION 93

For our work on mixed codes, we managed to find combinations of alphabets

that combine well with each other, yielding improvement in BER performance over

their single alphabet counterparts. However, we also noticed that other combina-

tions do not yield improvements. In fact, they perform poorer than their single

alphabet counterparts. Further research can be undertaken to better understand

this phenomenon.

Appendix A

Tables of pj(0), pj(1) and refined pj

for worked example

j ξ = 0 ξ = 1 Hard Decision

Value

Result

0 0.0061 0.9939 1 Correct

1 0.5322 0.4678 0 Error

2 0.9858 0.0142 0 Correct

3 0.0653 0.9347 1 Correct

4 0.0009 0.9991 1 Correct

5 0.9998 0.0002 0 Correct

6 0.9546 0.0454 0 Correct

7 0.9973 0.0027 0 Correct

Table A.1: Intrinsic symbol probabilities pj(0) calculated using initial pj

94

APPENDIX A. TABLES OF PJ(0), PJ(1) AND REFINED PJ FOR WORKED EXAMPLE 95

j ξ = 0 ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6 ξ = 7 Hard Decision

Value

Result

0 0.0002 0.0082 0.0027 0.1470 0.0000 0.1954 0.0001 0.6464 7 Correct

1 0.3603 0.6341 0.0000 0.0000 0.0023 0.0033 0.0000 0.0000 1 Correct

2 0.7412 0.0071 0.0000 0.0000 0.2506 0.0000 0.0010 0.0000 0 Error

3 0.0000 0.0000 0.0336 0.8420 0.0000 0.0007 0.0001 0.1236 3 Correct

4 0.0000 0.0000 0.0004 0.3959 0.0000 0.0024 0.0000 0.6013 7 Correct

5 0.0000 0.0000 0.2144 0.0001 0.0035 0.0000 0.7820 0.0000 6 Correct

6 0.6076 0.0229 0.0002 0.0000 0.3564 0.0003 0.0126 0.0000 0 Correct

7 0.0081 0.0001 0.0993 0.0012 0.2327 0.0000 0.6585 0.0000 6 Correct

Table A.2: Intrinsic symbol probabilities pj after first refinement

j ξ = 0 ξ = 1 ξ = 2 ξ = 3 Hard Decision

Value

Result

0 0.0002 0.2036 0.0029 0.7934 3 Correct

1 0.3626 0.6374 0.0000 0.0000 0 Error

2 0.9918 0.0071 0.0010 0.0000 0 Correct

3 0.0000 0.0007 0.0338 0.9656 3 Correct

4 0.0000 0.0024 0.0004 0.9972 3 Correct

5 0.0035 0.0000 0.9964 0.0001 2 Correct

6 0.9639 0.0232 0.0128 0.0000 0 Correct

7 0.2408 0.0001 0.7579 0.0013 2 Correct

Table A.3: Intrinsic symbol probabilities pj(1) calculated using refined pj

APPENDIX A. TABLES OF PJ(0), PJ(1) AND REFINED PJ FOR WORKED EXAMPLE 96

j ξ = 0 ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6 ξ = 7 Hard Decision

Value

Result

0 0.0001 0.0046 0.0015 0.1639 0.0000 0.1090 0.0001 0.7209 7 Correct

1 0.2201 0.7745 0.0000 0.0000 0.0014 0.0041 0.0000 0.0000 1 Correct

2 0.7443 0.0036 0.0000 0.0000 0.2516 0.0000 0.0005 0.0000 0 Error

3 0.0000 0.0000 0.0171 0.8567 0.0000 0.0003 0.0001 0.1257 3 Correct

4 0.0000 0.0000 0.0002 0.3964 0.0000 0.0012 0.0000 0.6021 7 Correct

5 0.0000 0.0000 0.2147 0.0000 0.0018 0.0000 0.7834 0.0000 6 Correct

6 0.6187 0.0116 0.0001 0.0000 0.3629 0.0002 0.0064 0.0000 0 Correct

7 0.0046 0.0001 0.1130 0.0007 0.1324 0.0000 0.7492 0.0000 6 Correct

Table A.4: Intrinsic symbol probabilities pj after second refinement

Appendix B

BER Performance of codes for

different β values

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

10
−3

E
b
/N

o
 (dB)

B
E

R

β = 0.5
β = 0.1
β = 0.2
β = 0.3
β = 0.4
β = 0.6
β = 0.7
β = 0.8
β = 0.9

Figure B.1: BER performance of Z4 code of length 1000 for different values of β

97

APPENDIX B. BER PERFORMANCE OF CODES FOR DIFFERENT β VALUES 98

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

10
−4

E
b
/N

o
 (dB)

B
E

R

β = 0.5
β = 0.1
β = 0.2
β = 0.3
β = 0.4
β = 0.6
β = 0.7
β = 0.8
β = 0.9

Figure B.2: BER performance of Z4 code of length 500 for different values of β

5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 6

10
−3.9

10
−3.8

10
−3.7

10
−3.6

10
−3.5

10
−3.4

10
−3.3

10
−3.2

E
b
/N

o
 (dB)

B
E

R

β =0.5
β =0.1
β =0.2
β =0.3
β =0.4
β =0.6
β =0.7
β =0.8
β =0.9

Figure B.3: BER performance of Z8 code of length 1000 for different values of β

Bibliography

[1] M. A. Armand and O. de Taisne, “Multistage list decoding of generalized Reed-

Solomon codes over Galois rings,” IEEE Commun. Lett., vol. 9, pp. 625–627,

July 2005.

[2] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),”

in Proc. IEEE Inform. Theory Workshop, March 2003, pp. 70–73.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon-limit error-

correcting coding and decoding: Turbo codes,” in Proc. 1993 IEEE Int. Conf.

Commun., May 1993, pp. 1064–1070.

[4] R. E. Blahut, Theory and practice of error control codes. Addison-Wesley

Publishing Company, 1983.

[5] R. C. Bose and D. K. Chaudhuri, “Further results on error correcting binary

group codes,” Inform. Contr., vol. 3, pp. 279–290, September 1960.

[6] ——, “On a class of error correcting binary group codes,” Inform. Contr., vol. 3,

pp. 68–79, March 1960.

[7] G. Caire and E. Biglieri, “Linear block codes over cyclic groups,” IEEE Trans.

Inform. Theory, vol. 41, pp. 1246–1256, September 1995.

[8] A. R. Calderbank and N. J. A. Sloane, “Modular and p-adic cyclic codes,”

Designs, codes, and cryptography, no. 6, pp. 21 – 35, 1995.

99

BIBLIOGRAPHY 100

[9] S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the

design of low-density parity-check codes within 0.0045db of the Shannon limit,”

IEEE Commun. Lett., vol. 5, pp. 58–60, February 2001.

[10] M. C. Davey, “Error-correction using low-density parity-check codes,” Ph.D

dissertation, Univ. Cambridge, December 1999.

[11] M. C. Davey and D. J. C. MacKay, “Low-density parity-check codes over

GF(q),” IEEE Commun. Lett., vol. 2, pp. 165–167, June 1998.

[12] D. Divsalar, H. Jun, and R. J. McEliece, “Coding theorems for ’turbo-like’

codes,” in Proc. 36th Allerton Conf. on Commun., Control, and Comp., 1998,

pp. 201–210.

[13] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. 3, pp. 37–46, June

1955.

[14] U. Erez and G. Miller, “The ML decoding performance of LDPC ensembles

over Zq,” IEEE Trans. Inform. Theory, vol. 51, pp. 1871–1879, May 2005.

[15] G. D. Forney, Jr., Concatenated codes. MIT Press, Cambridge, Mass., 1966.

[16] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory,

vol. IT-8, pp. 21–28, January 1962.

[17] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering with errors,” in

Electronic Colloquium on Computational Complexity, vol. 62, 1998, pp. 1–27.

[18] F. Guo, “Low-density parity-check coding,” Ph.D mini thesis, Univ. Southamp-

ton, June 2002.

[19] J. Hagenauer, “Viterbi decoding of convolutional codes for fading- and burst-

channels,” in Proc. Int. Zurich Seminar Digital Commun., Zurich, Switzerland,

March 1980, pp. 1–7.

BIBLIOGRAPHY 101

[20] R. W. Hamming, “Error detecting and error correcting codes,” Bell Syst. Tech.

J., vol. 29, pp. 147–150, 1950.

[21] M. Herzog and J. Schonheim, “Linear and nonlinear single-error-correcting per-

fect mixed codes,” Inform. Contr., vol. 18, pp. 364–368, 1971.

[22] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis and code opti-

mization of low-density parity-check codes on Rayleigh fading channels,” IEEE

J. Select. Areas Commun., vol. 19, pp. 924–934, May 2001.

[23] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive edge-growth Tanner

graphs,” in Proc. IEEE Globecom Conf., November 2001, pp. 995–1001.

[24] S. J. Johnson and S. R. Weller, “A family of irregular LDPC codes with low

encoding complexity,” IEEE Commun. Lett., vol. 7, pp. 79–81, February 2003.

[25] ——, “High-rate LDPC codes from unital designs,” in Proc. IEEE Globecom

Conf., December 2003, pp. 2036–2040.

[26] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes basd

on finite geometries: A rediscovery and new results,” IEEE Trans. Inform.

Theory, vol. 47, pp. 2711–2736, November 2001.

[27] F. R. Kschichang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–519, Febru-

ary 2001.

[28] S. Lin and D. J. Costello, Jr., Error control coding: fundamentals and applica-

tions. Prentice-Hall, Englewood Cliffs, N.J., 1983.

[29] M. Luby, M. Mitzenmacher, A. Shokrollahi, and V. Stemann, “Practical loss-

resilient codes,” in Proc. 29th Annual ACM Symp. Theory of Computing, 1997,

pp. 150–159.

BIBLIOGRAPHY 102

[30] P. Ma, D. Yuan, X. Yang, and H. Zhang, “High-rate LDPC codes in image

transmission over Rayleigh fading channel,” in First IEEE Consumer Commu-

nications and Networking Conference, January 2004, pp. 357–360.

[31] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”

IEEE Trans. Inform. Theory, vol. 45, pp. 399–433, March 1999.

[32] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of constructions

of irregular Gallager codes,” IEEE Trans. Commun., vol. 47, pp. 1449–1454,

October 1999.

[33] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes.

North-Holland, Amsterdam, 1977.

[34] P. R. J. Österg̊ard, “Constructions of mixed covering codes,” Helsinki Univ. of

Tech., Digital Systems Lab., report 18, December 1991.

[35] L. Ping, W. K. Leong, and M. Phamdo, “Low density parity check codes with

semi-random parity check matrix,” IEE Elect. Lett., vol. 35, pp. 38–39, January

1999.

[36] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” SIAM

J. Appl. Math., vol. 8, pp. 300–304, June 1960.

[37] T. J. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching low-density parity-check codes,” IEEE Trans. Inform. Theory,

February.

[38] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check

codes under message-passing decoding,” IEEE Trans. Inform. Theory, vol. 47,

pp. 559–618, February 2001.

[39] ——, “Efficient encoding of low-density parity-check codes,” IEEE Trans. In-

form. Theory, vol. 47, pp. 638–656, February 2001.

BIBLIOGRAPHY 103

[40] C. E. Shannon, “A mathematical theory of communications,” Bell Syst. Tech.

J., vol. 27, pp. 379–423, 1948.

[41] S. Sipser and D. Spielman, “Expander codes,” IEEE Trans. Inform. Theory,

vol. 42, pp. 1710–1722, November 1996.

[42] H. X. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC

codes for magnetic recording,” IEEE Trans. Magn., vol. 39, pp. 1081–1087,

March 2003.

[43] D. Sridhara and T. E. Fuja, “Low-density parity-check codes over groups and

rings,” in Proc. IEEE Inform. Theory Workshop, October 2002, pp. 163–166.

[44] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, “On algebraic construc-

tion of gallager and circulant low-density parity-check codes,” IEEE Trans.

Inform. Theory, vol. 50, pp. 1269–1279, June 2004.

[45] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

Inform. Theory, vol. 27, pp. 533–547, February 1981.

[46] B. Vasic and O. Milenkovic, “Combinatorial constructions of low-density parity-

check codes for iterative decoding,” IEEE Trans. Inform. Theory, vol. 50, pp.

1156–1176, June 2004.

[47] L. Wei, “Several properties of short LDPC codes,” IEEE Trans. Commun.,

vol. 52, pp. 721–727, May 2004.

[48] X. Yang, D. Yuan, P. Ma, and H. Zhang, “Performance of LDPC codes in

image transmission over Rayleigh fading channel,” in International Conference

on Communication Technology, vol. 2, April 2003, pp. 1444–1446.

