
A UML DRIVEN ASIC DESIGN METHODOLOGY AIDED BY AN

AUTOMATED UML-SYSTEMC TRANSLATOR

NAVNEET ARVIND JAGANNATHAN

(B.Eng.(Computer Engineering), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OFMASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

Acknowledgments

I would like to thank the following people for enabling me to see this endeavour through

to fruition.

Dr. Tay Teng Tiow, my supervisor, from whose knowledge and experience I have

gained immensely, for his constant guidance throughout the tenure of this project.

Dr. Ha Yajun, for taking interest in my work, and for his invaluable input at the

outset of this project.

Cheah Yee Keng, an FYP student, who worked with me initially on the UML-

SystemC translator until the allure of wealth (and the event of his graduation) drew

him to a lifetime of drudgery.

Sun Xiaoxin, fellow Master’s student, for his many useful contributions to this

project, and for an ’Ubuntu’ linux CD (which I have yet to try out) he passed to me

once, in a moment of evangelical zeal.

Zhu Xiaoping, who has been my vital link to the DSA lab ever since I converted

to part-time status. He has helped me with administrative issues, delivered messages to

my supervisor, passed on CDs, thesis drafts etc. If I were him, I would ask to be paid.

King Hock, the lab technician, for ensuring that I had computers that worked.

Lastly, the two noisy girls in my lab, (I’m not sure what their names are), whose

animated discussions of their private lives tremendously livened up my dull evenings at

the DSA lab.

ii

Contents

Acknowledgments ii

Summary vi

1 Introduction 2

1.1 SystemC . 4

1.1.1 The SystemC Platform . 4

1.1.2 Review of the SystemC language 5

1.1.3 SystemC Language Architecture 7

1.2 UML . 8

1.2.1 Use case diagrams . 9

1.2.2 Class diagrams . 10

1.2.3 Package and Object diagrams . 11

1.2.4 Sequence diagrams . 13

1.2.5 Collaboration diagrams . 14

1.2.6 Statechart diagrams . 15

1.2.7 Activity diagrams . 16

1.2.8 Component and deployment diagrams 17

1.3 A Survey of Existing and Emerging Approaches 18

1.3.1 Pure HDL based coding . 18

iii

1.3.2 SystemC . 19

1.3.3 MATLAB . 21

1.3.4 SystemVerilog (www.systemverilog.org) 23

1.3.5 UML for hardware design . 24

1.3.6 Model-driven architecture . 26

1.4 Thesis contributions . 27

2 UML Driven design methodology 30

2.1 Modelling styles . 32

2.2 UML constructs employed . 32

2.2.1 Class Diagrams . 34

2.2.2 Statecharts . 36

2.2.3 Activity Diagrams . 36

3 The UML-SystemC Translator 40

3.1 Class Parsing and code generation . 41

3.2 Statechart parsing and code generation 43

3.2.1 Basic translation Schema . 43

3.2.2 Compound Transitions . 44

3.2.3 Hierarchy . 45

3.2.4 History States . 46

3.2.5 Concurrency . 47

4 Case Studies 51

4.1 Experimental Tools . 51

4.1.1 ArgoUML . 51

4.1.2 Rational Rose Enterprise Edition 2002 52

4.1.3 The UML-SystemC Translator 53

iv

4.1.4 Cocentric SystemC Compiler . 53

4.2 Design Implementation . 54

4.2.1 JPEG Encoder . 55

4.2.2 MAC Controller . 61

4.2.3 FIR Filter . 65

4.2.4 FFT . 69

4.2.5 FIFO . 71

4.2.6 VP3 Video Encoder . 75

4.3 A Comparison with HDL Design Flow 164

5 Conclusion 169

v

Summary

Embedded system design is faced with a challenge of increasing complexity. This means

that an increasingly large effort is being expended in the conceptualisation stage of

projects as minor errors in the design stage have the potential of snowballing into ir-

reparable structural flaws in the later stages of a design. The focus of this thesis is on

the hardware side of embedded systems.

Current design methodolgoies employ Hardware Description Languages such as VHDL

and Verilog to describe designs. There has been a recent shift towards using UML (Uni-

fied Modelling language - a high-level modelling language widely used in the software

world to design software systems) for high level system specification for hardware.

This thesis discusses a novel approach to hardware design that falls within the cat-

egory of UML Model-driven hardware design. In our approach, we have made an at-

tempt to move further ahead from mere design specification using UML, towards a more

comprehensive and formalized Model Driven approach through the use of a platform in-

dependent synthesizable language in the form of UML with an automated route to a

SystemC (an increasingly popular VHDL/Verilog -like C++ based hardware description

language) implementation.

We have made an attempt to formalize UML through the use of stereotypes, allow

designers to express designs in high-level terms such as statecharts and activity diagrams

and allow direct translation of these descriptions to synthesisable SystemC code, through

the use of an automated UML-SystemC translator, thus providing a direct path from

UML Model to netlist for the designer.

The work of this thesis covers three main areas, namely, the definition of UML

syntax for describing hardware, building of a UML-SystemC translator to act as a UML

model-compiler to produce synthesisable SystemC code, and creating designs based on

vi

the syntax , using the tool created. Three main ways of representing designs were

defined.We use class diagrams for static structures, and use statecharts and activity

diagrams for dynamic structures. A mixture of these elements was employed depending

on the nature of the design.

vii

List of Tables

2.1 RTL and Behavioural Modelling styles 33

4.1 Designs Created . 55

4.2 JPEG Encoder synthesis settings . 60

4.3 Results obtained from synthesis of JPEG Encoder 61

4.4 MAC synthesis settings . 65

4.5 Results obtained from synthesis of MAC Controller 65

4.6 FIR synthesis settings . 67

4.7 Results obtained from synthesis of FIR Filter (translated and original

Cocentric) modules . 68

4.8 FFT synthesis settings . 71

4.9 Results obtained from synthesis of FFT Module through the translator

compared with the original . 71

4.10 FIFO synthesis settings . 74

4.11 Results obtained from synthesis of FIFO through translator compared

with original . 74

4.12 VP3 Encoder synthesis settings . 164

4.13 Results obtained from synthesis of VP3Encoder modules 165

viii

List of Figures

1.1 SystemC 2.0 Language Architecture . 8

1.2 UML Use Case Diagram . 10

1.3 UML Class Diagram . 11

1.4 UML Package Diagram . 12

1.5 UML Object Diagram . 12

1.6 UML Sequence Diagram . 13

1.7 UML Collaboration Diagram . 14

1.8 UML Statechart Diagram . 15

1.9 UML Activity Diagram . 16

1.10 UML Component Diagram . 17

1.11 Typical HDL Flow . 19

1.12 Typical SystemC Flow . 22

2.1 UML Based Design Flow . 30

2.2 FIR Filter Block Design . 35

2.3 FIR Filter UML Class Diagram . 35

2.4 Serial to Parallel converter statechart . 37

2.5 FFT Activity Diagram . 39

3.1 UML-SystemC Translation Flow . 41

ix

3.2 FIR UML Diagram . 42

3.3 FIR SystemC Code produced by Translator 42

3.4 FIR Statechart diagram Diagram . 47

3.5 FIR Statechart SystemC Code produced by Translator 48

3.6 Statechart illustrating concurrency . 49

3.7 Statechart with AND-states : SystemC Code produced by Translator . . 50

4.1 Use case diagram for the JPEG encoder 56

4.2 A Section of the JPEG encoder design 57

4.3 The Run length encoder of the JPEG encoder 58

4.4 Statechart of the rle1 unit . 59

4.5 Statechart of the rzs unit . 59

4.6 Simulation waveform of JPEG encoder 60

4.7 Use Case Diagram of MAC Controller 62

4.8 Class Diagram of Receiver Block . 62

4.9 Statechart of the Transmitter Block . 64

4.10 Use Case Diagram of FIR filter . 66

4.11 Class Diagram of the FIR Filter . 66

4.12 Statechart of the FIR’s FSM unit . 67

4.13 Activity Diagram of the FIR’s Data path unit 68

4.14 Use case diagram for the FFT module 70

4.15 Class Diagram of the FFT unit . 70

4.16 Activitiy Diagram of the FFT unit . 70

4.17 Use case diagram of FIFO . 72

4.18 Class Diagram of the FIFO . 73

4.19 Activity Diagram of the FIFO . 73

x

4.20 Use Case Diagram of the VP3 Encoder 75

4.21 Class Diagram of the VP3 Encoder Top 79

4.22 Main Activity Diagram of the VP3 Encoder Top 80

4.23 Class Diagram of the PickIntra module 82

4.24 Activity Diagram of the PickIntra module 83

4.25 Class Diagram of the PickModes module 84

4.26 Activity Diagram of the PickModes module 85

4.27 Class Diagram of the UpdateFrame module 88

4.28 Activity Diagram of the UpdateFrame module 89

4.29 Class Diagram of the GetMBIntraError module 91

4.30 Activity Diagram of the GetMBIntraError module 92

4.31 Class Diagram of the GetMBInterError module 94

4.32 Activity Diagram of the GetMBInterError module 95

4.33 Class Diagram of the GetMBMVInterError module 96

4.34 Activity Diagram of the GetMBMVInterError module 97

4.35 Class Diagram of the GetMBMVExhaustiveSearch module 99

4.36 Activity Diagram of the GetMBMVExhaustiveSearch module 99

4.37 Class Diagram of the GetFOURMVExhaustiveSearch module 101

4.38 Main Activity Diagram of the GetFOURMVExhaustiveSearch module . 102

4.39 A Sub Activity Diagram of the GetFOURMVExhaustiveSearch module 103

4.40 Class Diagram of the QuadCodeDisplayFragments module 105

4.41 Activity Diagram of the QuadCodeDisplayFragments module 106

4.42 Class Diagram of the GetIntraError module 108

4.43 Activity Diagram of the GetIntraError module 109

4.44 Class Diagram of the GetInterErr module 110

4.45 Activity Diagram of the GetInterErr module 112

xi

4.46 Class Diagram of the GetSumAbsDiffs module 114

4.47 Activity Diagram of the GetSumAbsDiffs module 115

4.48 Class Diagram of the GetNextSumAbsDiffs module 116

4.49 Activity Diagram of the GetNextSumAbsDiffs module 117

4.50 Class Diagram of the GetHalfPixelSumAbsDiffs module 119

4.51 Activity Diagram of the GetHalfPixelSumAbsDiffs module 120

4.52 Class Diagram of the QuadCodeComponent module 121

4.53 Activity Diagram of the QuadCodeComponent module 122

4.54 Class Diagram of the DPCMTokenizeBlock module 123

4.55 Activity Diagram of the DPCMTokenizeBlock module 124

4.56 Activity Diagram of the TokenizeDCTBlock module of the DPCMTok-

enizeBlock module . 125

4.57 Class Diagram of the PackCodedVideo module 127

4.58 Activity Diagram of the PackCodedVideo module 128

4.59 Class Diagram of the TransformQuantizeBlock module 130

4.60 Activity Diagram of the TransformQuantizeBlock module 131

4.61 Class Diagram of the ClearDownQFragData module 131

4.62 Activity Diagram of the ClearDownQFragData module 132

4.63 Class Diagram of the EncodeDcTokenList module 133

4.64 Activity Diagram of the EncodeDcTokenList module 134

4.65 Class Diagram of the EncodeAcTokenList module 135

4.66 Activity Diagram of the EncodeAcTokenList module 136

4.67 Class Diagram of the PackAndWriteDFArray module 138

4.68 Activity Diagram of the PackAndWriteDFArray module 139

4.69 Class Diagram of the PackModes module 140

4.70 Activity Diagram of the PackModes module 141

xii

4.71 Class Diagram of the PackMotionVectors module 143

4.72 Activity Diagram of the PackMotionVectors module 144

4.73 Class Diagram of the PackToken module 145

4.74 Activity Diagram of the PackToken module 146

4.75 Class Diagram of the SUB8 module . 147

4.76 Activity Diagram of the SUB8 module 148

4.77 Class Diagram of the SUB8 128 module 149

4.78 Activity Diagram of the SUB8 128 module 150

4.79 Class Diagram of the fdct short module 151

4.80 Activity Diagram of the fdct short module 152

4.81 Class Diagram of the quantize module 153

4.82 Activity Diagram of the quantize module 154

4.83 Class Diagram of the MotionBlockDifference module 155

4.84 Activity Diagram of the MotionBlockDifference module 156

4.85 Class Diagram of the SUB8AV2 module 157

4.86 Activity Diagram of the SUB8AV2 module 158

4.87 Class Diagram of the RegulateQ module 160

4.88 Activity Diagram of the RegulateQ module 161

4.89 Class Diagram of the UpRegulateDataStream module 162

4.90 Activity Diagram of the UpRegulateDataStream module 163

4.91 VHDL Design Flow Example using the Synopsys VHDL compiler 166

1

Chapter 1

Introduction

Embedded system design is faced with a challenge of increasing complexity. This means

that an increasingly large effort is being spent in the conceptualisation stage of projects

as minor errors in the design stage have the potential of snowballing into irreparable

structural flaws in the later stages of a design. Complexity is introduced at many stages

- in the overall system design, in hardware/software partitioning decisions, in software

design, in ASIC design and in hardware / software integration.

The embedded system design process can be expressed as follows:

1. Requirements Specifications

2. Definition of System Capabilities

3. Definition of System modules

4. Hardware Software Partitioning

5. ASIC Design and synthesis

6. Software Design and implementation

7. Integration

8. Testing / Debugging

2

There is thus a need for the following:

• A platform independent, gender-neutral, formal and detailed high level represen-

tation of embedded systems.

• Enhanced inter-disciplinary communication - e.g. consideration of sequence dia-

grams showing complex software-hardware interactions to reduce misunderstand-

ings and disagreements between the disciplines earlier and more directly than

would be expected with conventional specification approaches.

• Direct executability of the model, and the adoption of a new style of system

development where the complexity of the system development process is completely

managed via models and not through code.

There have been codesign frameworks proposed before, for example, POLIS (see

Balarin et al., 1997), which is driven by FSM descriptions of modules. The design

methodology proposed in this thesis is part of an overall UML-model driven codesign

framework being created in the DSA laboratory, NUS, where the system is analysed and

modelled using UML constructs such as Use case diagrams, Class diagram, Statecharts,

and Activity Diagrams. The classes are then partitioned into hardware and software

depending on performance requirements before proceeding further downstream to C code

and ASIC synthesis. The focus of this thesis is on ASIC design and implementation

stage of this process. It describes an effort to fuse well established ideas from the

digital hardware and software engineering worlds to achieve the above objectives by

proposing a UML model-driven approach to ASIC design aided by a UML-SystemC

translator that generates synthesizable SystemC (Synopsys, 2002b) code from static

and dynamic platform independent UML representations of hardware designs. The

ASIC design methodology at the highest level support RTL-type designs as well as

behavioural designs depending on the application. It is expected that the methodology

3

will lead to higher productivity by providing a direct route to synthesis from abstract

descriptions of the system such as statecharts and activity diagrams. In addition it

facilitates easier exchange of platform independent models of the system in UML which

is already a universally accepted standard in the software world. Several designs were

created in UML using this methodology and translated to synthesizable SystemC using

the UML-SystemC Translator.

1.1 SystemC

1.1.1 The SystemC Platform

SystemC is the standard design and verification language built on C++ that spans

from concept to implementation in hardware and software and is supported by the

OSCI (Open SystemC Initiative) - see www.systemc.org. The SystemC community

consists of a large and growing number of system houses, semiconductor companies, IP

providers and EDA tool vendors. Many companies function in more than one of these

categories, with each category having compelling reasons for wanting to see SystemC

emerge as a de facto standard. Firstly, it is expected that SystemC will bring order to

the chaos that exists today in the evolving system-level design software arena, with the

emergence of a de facto standard ensuring a stable market for the rapid development of

C++ libraries, models and tools. Second, with high quality commercial tools available

from a variety of vendors, systems houses and semiconductor companies will have an

excellent alternative to creating and supporting their own proprietary libraries and tools.

In other words, SystemC will allow these companies to take advantage of the latest

innovations in C-based design without diverting resources to support their own tools,

focusing instead on their core competencies and competitive strengths. Finally, these

companies will be able to leverage SystemC to share models inside and outside their

4

organizations. IP providers will benefit from the SystemC de facto standard because it

will allow them to provide a single set of models for each of their cores to any systems

house or semiconductor company they do business with. Today, in the absence of any

standard, IP providers are compelled to provide customized versions of their models

to meet the different C-based design environments of their customers. With SystemC,

they can do the work of creating and validating a SystemC model once, and then their

library development work is done. EDA vendors will benefit from the SystemC de

facto standard because it will create a large and stable market for them to compete

in. EDA companies have historically developed and marketed tools based on their own

proprietary design languages. This approach, however, limits innovation, fosters small

and fragmented niche markets, lengthens time to market, requires inefficient learning

curves on designers and imposes substantial risks on customers, given the number of

EDA tool vendors that go out of business each year. SystemC changes all of that for

every vendor competing in the EDA space, allowing each to innovate and create tools

in a format that will soon achieve widespread acceptance.

1.1.2 Review of the SystemC language

The language is comprehensively described in the SystemC Language Reference manual

(see Aboulhamid et al., 2003). SystemC provides a set of modeling constructs that are

similar to those used for RTL and behavioral modeling within an HDL such as Verilog

or VHDL. Similar to HDLs, users can construct structural designs in SystemC using

modules, ports and signals. Modules can be instantiated within other modules, enabling

structural design hierarchies to be built. Ports and signals enable communication of data

between modules, and all ports and signals are declared by the user to have a specific data

type. Commonly used data types include single bits, bit vectors, characters, integers,

floating point numbers, vectors of integers, etc. SystemC also includes support for four-

5

state logic signals (i.e. signals that model 0, 1, X, and Z). An important data type

that is found in SystemC but not in HDLs is the fixed-point numeric type. Fixed-point

numbers are frequently used in DSP applications that target both hardware and software

implementations since floating point operations usually consume too many hardware

resources. An example fixed point operation might be to add two signed numbers that

have three bits of integer precision and four bits of fractional precision and assign the

result to a similar fixed point number. Often users wish to specify rounding and overflow

modes (e.g. saturate or wrap on overflow) when using fixed point numbers. It is easy

and natural to model fixed-point numbers in SystemC, but this is very difficult to do

in software. In VHDL, concurrent behaviors are modeled using processes. In Verilog,

concurrent behaviors are modeled using “always” blocks and continuous assignments.

In SystemC, concurrent behaviors are also modeled using processes. A process can be

thought of as an independent thread of control which resumes execution when some set

of events occur or some signals change, and then suspends execution after performing

some action. In SystemC, there is a limited ability for specifying the condition under

which a process resumes execution: the process can only be sensitive to changes of

values of particular signals, and the set of signals to which the process is sensitive

must be pre-specified before simulation starts. Since processes execute concurrently and

may suspend and resume execution at user-specified points, SystemC process instances

generally require their own independent execution stack. (An equivalent situation in

the software world arises in multi-threaded applications-each thread requires its own

execution stack.) Certain processes in SystemC that suspend at restricted points in

their execution do not actually require an independent execution stack-these processes

types are termed “SC METHODs”. Optimizing SystemC designs to take advantage

of SC METHODs provides dramatic simulation performance improvements when the

number of process instances in a design is large. Hardware signals have several properties

6

that complicate the task of modelling them in software. First, users often want to

simulate hardware signals and registers as being initialized to “X” when simulation

starts. This is useful for detecting reset problems in designs via X propagation techniques

in simulation. In SystemC , this feature is provided within the sc logic and sc lv data

types. Second, hardware signals sometimes have multiple drivers. In this case, a function

is needed to compute a resolved value based on each of the driving values. This function

must automatically be called when any of the driving values changes. For example, when

a signal is driven with a 1 and a Z, the resolved value should be 1, but when driven

with a 1 and a 0, the resolved value should be X. In SystemC, resolved logic signals are

provided to handle this modeling. Third, hardware signals do not immediately change

their output value when they are assigned a new value, either in simulation or in the real

world. There is always some delay (perhaps very small) until the new value assigned

to a signal is made available to other processes in the design. This delay is crucial to

proper modeling of hardware, since it allows, for example, two registers to swap values

on a clock edge. In comparison, two software variables cannot swap values without the

introduction of a third temporary variable.

1.1.3 SystemC Language Architecture

Figure 1.1 summarizes the SystemC 2.0 language architecture. There are several impor-

tant concepts to understand from this diagram.

1. All of SystemC builds on C++.

2. Upper layers within the diagram are cleanly built on top of the lower layers

3. The SystemC core language provides only a minimal set of modeling constructs

for structural description, concurrency, communication, and synchronization.

4. Data types are separate from the core language and user-defined data types are

7

fully supported.

5. Commonly used communication mechanisms such as signals and fifos can be built

on top of the core language.

6. Commonly used models of computation (MOCs) can also be built on top of the

core language.

7. If desired, lower layers within the diagram can be used without needing the upper

layers.

Figure 1.1: SystemC 2.0 Language Architecture

1.2 UML

The Unified Modelling Language (UML) is the industry-standard language for specify-

ing, visualizing, constructing, and documenting the artefacts of software systems (see

OMG, 2003). It simplifies the complex process of software design, making a “blueprint”

8

for construction. Modelling is an essential part of large software projects, and helpful to

medium and even small projects as well. Using a model, those responsible for a software

development project’s success can assure themselves that business functionality is com-

plete and correct, end-user needs are met, and program design supports requirements

for scalability, robustness, security, extendibility, and other characteristics, before imple-

mentation in code renders changes difficult and expensive to make. Using any one of the

large number of UML-based tools on the market, one can analyze an application’s re-

quirements and design a solution that meets them, representing the results using UML’s

standard diagram types. As hardware-software systems become more and more ubiq-

uitous and the demand for an effective universal co-design framework increases, UML

presents itself as an excellent candidate. It also lends itself well to hardware design

which, at high-levels, can be represented using very similar constructs to software. At

the centre of the UML are its nine kinds of modelling diagrams.

1.2.1 Use case diagrams

Use case diagrams describe what a system does from the standpoint of an external

observer. The emphasis is on what a system does rather than how. Use case diagrams are

closely connected to scenarios. A scenario is an example of what happens when someone

interacts with the system. Here is a scenario for a video encoder. “A user changes the

configuration of the video encoder. The system suspends its current operation and

changes its internal settings. ”. A use case is a summary of scenarios for a single task

or goal. An actor is who or what initiates the events involved in that task. Actors

are simply roles that people or objects play. Actors are stick figures. Use cases are

ovals. Communications are lines that link actors to use cases. A use case diagram is

a collection of actors, use cases, and their communications. A single use case can have

multiple actors. This diagram is used in higher levels of the design flow and aids in

9

defining the modules that the system must contain.

Figure 1.2: UML Use Case Diagram

1.2.2 Class diagrams

A Class diagram provides an overview of a system by displaying its classes and the

relationships among them. Class diagrams are static – they display what interacts but

not what happens when they interact. The class diagram in Figure 1.3 models an FIR

filter. The central class is the FIR RTL. Associated with it is the fir fsm which is the

state machine and the fir data.

The UML class notation is a rectangle divided into three parts: class name, at-

tributes, and operations. Names of abstract classes are usually in italics. Relationships

between classes are the connecting links. A class diagram has three kinds of relation-

10

Figure 1.3: UML Class Diagram

ships.

• association

• aggregation

• generalization

A navigability arrow on an association shows in which direction the association can

be traversed or queried. The multiplicity of an association end is the number of possible

instances of the class associated with a single instance of the other end. The class

diagram notation is appropriate for description of static structures in a system. In

a software application this would mean classes and their associations. In a hardware

application this would potentially mean high level modules/entities of the system as

seen in Figure 1.3

1.2.3 Package and Object diagrams

To simplify complex class diagrams, classes are grouped into packages. A package is a

collection of logically related UML elements. Figure 1.4 is a business model in which

the classes are grouped into packages in a typical application of UML.

11

Figure 1.4: UML Package Diagram

Object diagrams show instances instead of classes. They are useful for explaining

small pieces with complicated relationships, especially recursive relationships.

Figure 1.5: UML Object Diagram

Each rectangle in the object diagram corresponds to a single instance. Instance

names are underlined in UML diagrams. Class or instance names may be omitted from

object diagrams as long as the diagram meaning is still clear. Packages can be used to

express libraries of software or hardware components.

12

1.2.4 Sequence diagrams

Class and object diagrams are static model views. Interaction diagrams are dynamic.

They describe how objects collaborate. A sequence diagram is an interaction diagram

that details how operations are carried out – what messages are sent and when. Sequence

diagrams are organized according to time. The time progresses as you go down the page.

The objects involved in the operation are listed from left to right according to when they

take part in the message sequence. Figure 1.6 shows a sequence diagram for making

a hotel reservation. The object initiating the sequence of messages is a Reservation

window.

Figure 1.6: UML Sequence Diagram

Each vertical dotted line is a lifeline, representing the time that an object exists.

Each arrow is a message call. An arrow goes from the sender to the top of the activation

bar of the message on the receiver’s lifeline. The activation bar represents the duration

of execution of the message. The diagram has a clarifying note, which is text inside

a dog-eared rectangle. Notes can be put into any kind of UML diagram. Sequence

13

diagrams once again help to flesh out the functionality of a class by exhaustively defining

various scenarios and therefore all the messages that could possibly pass between any

two instances of a class. This helps the designer to identify what sort of messages a

particular class should handle. This is done upstream.

1.2.5 Collaboration diagrams

Collaboration diagrams are also interaction diagrams. They convey the same informa-

tion as sequence diagrams, but they focus on object roles instead of the times that

messages are sent as opposed to a sequence diagram, where object roles are the vertices

and messages are the connecting links.

Figure 1.7: UML Collaboration Diagram

The object-role rectangles are labelled with either class or object names (or both).

Class names are preceded by colons. Each message in a collaboration diagram has a

sequence number. The top-level message is numbered 1. Messages at the same level (sent

during the same call) have the same decimal prefix but suffixes of 1, 2, etc. according

to when they occur.

14

1.2.6 Statechart diagrams

Objects have behaviors and state. The state of an object depends on its current activity

or condition. A statechart diagram shows the possible states of the object and the

transitions that cause a change in state. With reference to Figure 1.8, “logging in” can

be factored into four non-overlapping states: Getting SSN, Getting PIN, Validating,

and Rejecting. From each state comes a complete set of transitions that determine the

subsequent state.

Figure 1.8: UML Statechart Diagram

States are rounded rectangles. Transitions are arrows from one state to another.

Events or conditions that trigger transitions are written beside the arrows. The initial

state (black circle) is a dummy to start the action. Final states are also dummy states

that terminate the action. The action that occurs as a result of an event or condition

is expressed in the form /action. While in its Validating state, the object does not

wait for an outside event to trigger a transition. Instead, it performs an activity. The

result of that activity determines its subsequent state. UML Statecharts are based on

the statechart notation originally proposed by David Harel (see Harel, 1987). These are

very useful in describing dynamic behaviour of both hardware and software modules in

15

response to various messages.

1.2.7 Activity diagrams

An activity diagram is essentially a fancy flowchart. While a statechart diagram focuses

attention on an object undergoing a process (or on a process as an object), an activity

diagram focuses on the flow of activities involved in a single process. The activity

diagram shows the how those activities depend on one another.

Figure 1.9: UML Activity Diagram

Activity diagrams can be divided into object swim lanes that determine which ob-

ject is responsible for which activity. A single transition comes out of each activity,

connecting it to the next activity. A transition may branch into two or more mutually

exclusive transitions. Guard expressions (inside []) label the transitions coming out of

16

a branch. A branch and its subsequent merge marking the end of the branch appear

in the diagram as hollow diamonds. A transition may fork into two or more parallel

activities. The fork and the subsequent join of the threads coming out of the fork appear

in the diagram as solid bars. Activity diagrams are particularly useful in applications

which cannot be described in a statechart form (eg. Video processing applications) and

demand behavioural or algorithmic descriptions.

1.2.8 Component and deployment diagrams

A component is a code module. Component diagrams are physical analogs of class

diagram. Deployment diagrams show the physical configurations of software and hard-

ware. The following deployment diagram shows the relationships among software and

hardware components involved in real estate transactions.

Figure 1.10: UML Component Diagram

The physical hardware is made up of nodes. Each component belongs on a node.

Components are shown as rectangles with two tabs at the upper left.

17

1.3 A Survey of Existing and Emerging Approaches

1.3.1 Pure HDL based coding

In this approach, Hardware description languages (HDLs) are used to describe the ar-

chitecture and behaviour of digital electronic systems. This is the most widely prevalent

approach to designing digital systems. Hardware description languages have grown in

importance, as digital systems have become more complex, to overcome the tedium of

detailed design at the gate and flip-flop level. The move from transistors and solder, to

netlists, to HDLs is analogous to the move, in the software world, from machine code

to assembly language to high-level programming languages.

An HDL allows a digital system to be designed and debugged at a higher level before

conversion to gate and flip-flop level. Top-down HDL design is most useful in large

projects, where several designers are working concurrently. In such scenarios, HDLs

allow structured development where once the architecture of the design is decided and

major modules defined, work can proceed independently. The most popular hardware

description languages are VHDL and Verilog, with SystemC now emerging as a popular

alternative choice and expected to become the de facto.

HDLs support a mixed-level description where structural or netlist constructs can

be mixed with behavioural or algorithmic descriptions. With this mixed-level capa-

bility, it allows the designer to describe the system at a higher algorithmic level and

then incrementally refine the design to lower levels of abstraction. HDLs have the addi-

tional advantage of excellent support in the form of very advanced compilers to perform

synthesis from high-level descriptions of the design.

An HDL based design methodology has several fundamental advantages over the

older gate-level methodology.

1. It allows design verification via simulation of the HDL code. This allows the

18

designer to test out a variety of architectures and designs before narrowing down

to the final design.

2. Due to the availability of compilers, high level designs can be translated down to

gate level accurately thus improving productivity and reducing circuit design time.

Optimization can also be performed using these tools.

3. HDLs are technology independent descriptions and are much easier to read and

understand than complex netlist or schematic descriptions of circuits.

Shown in Figure 1.11 is a typical HDL design flow employed in designing and syn-

thesising digital circuits.

Figure 1.11: Typical HDL Flow

1.3.2 SystemC

SystemC is an increasingly popular choice for system designers. It was created to address

the system-level design challenges of tool interoperability, team communication, and

component modules creation and distribution. For a detailed description of the language

and the platform, please refer to section 1.1.

SystemC is based on C++, the most popular language with system designers and

19

software engineers. The SystemC classes add the necessary constructs to C++ for

modelling systems and hardware at various levels of abstraction-from abstract untimed

models to cycle-accurate RTL models. (Synopsys, 2002a)

Untimed Functional Level

Algorithms are most easily verified using level of abstraction. At this level models

communicate with each other using FIFO channels accessed using blocked read and

write operations. This level of abstraction helps designers in two ways. Firstly, models

are easy to develop (simple communication and implicit synchronization), and secondly

simulation speed is high because unnecessary details are not modelled at this level.

Timed Functional Level

At this level additional delay annotation are added. This level of abstraction is used to

analyse the effects of latency on system behaviour and system architecture in the early

stages of the design process. Thus this level of abstraction will determine whether the

system generates data on time or will miss deadlines. These models are also used for

early Hardware-Software partitioning analysis. By evaluating the impact of mapping

different modules to hardware(with one delay figure) and software (with another delay

figure) an exhaustive tradeoff analysis can be performed.

Bus Cycle Accurate Level

In this level, also known as the ‘Transaction Level’, the exact implementation of the

communication channels is not modelled, only the behaviour is modelled and expressed

in terms of transactions. This level yield important design factors such as optimisation of

bus utilisation and loading, cache scheme effectiveness, and confirmation of interaction

between hardware and software.

20

Behavioural Hardware Model

This is also known as the Pin - accurate level, and requires the pin-level interface to

be defined for every model. These can be thought of as refined Functional models.

These models can be fully sufficient for verification purposes. However, for the purposes

of synthesis they have to be coded in a subset of SystemC which is synthesisable. The

synthesizable code can be written in either of two flavors, RTL style or behavioural style.

RTL style is preferred when coding the exact register transfer and clocking details.

Behaviour style is preferred when coding an algorithmic expression and allowing the

compiler to propose a solution that performs the desired function.

Register Transfer Level

At the RTL, digital hardware is exactly described in terms of hardware registers, clocks,

latches and combinational logic. RTL allows designers to exactly specify the internal

structure of a silicon component in the detail required for logic synthesis. RTL code is

written in a special RTL coding style (as opposed to the behavioral coding style).

As described earlier SystemC can be used to arrive at a gate-level netlist if coded

using the synthesisable subset of the language. The design flow is shown in Figure 1.12.

1.3.3 MATLAB

MATLAB is a high-performance language for technical computing. It integrates compu-

tation, visualization, and programming in an ensy-to-use environment where problems

and solutions are expressed in familiar mathematical notations. Technical professionals

worldwide rely on MATLAB lo accelerate their research, reduce analysis and develop-

ment time, minimize project costs, and produce effective solutions. It is widely used

in

1. Math and computation

21

Figure 1.12: Typical SystemC Flow

2. Algorithm development

3. Data acquisition

4. Modeling, simulation, and prototyping

5. Data analysis, exploration, and visualization

6. Scientific and engineering graphics

7. Application development, including graphical user interface building

Although it is not strictly used in SoC design, MATLAB has found a use in acceler-

ating research, reducing development time and producing effective solution. In a recent

effort (Xi et al., 2003) the strengths of MATLAB such as stimuli generation, visualisation

and result analysis have been applied to system design using SystemC. Two methods are

used. One is to employ MATLAB as a computation engine. In this scheme, MATLAB

is evoked, executed and terminated from within a SystemC testhench.The SystemC

testbench invokes the MATLAB engine to execute MATLAB commands and functions,

through which the needed stimuli are generated and fed to SystemC model under test.

The output is then collected for analysis and visualization after execution. The other is

22

to use MATLAB as the test I/O for SytemC model. In this manner, the stimuli for the

SystemC model are extracted from MATLAB and output results of the SystemC model

are written to a MATLAB MAT file for comparison and analysis in MATLAB.

1.3.4 SystemVerilog (www.systemverilog.org)

SystemVerilog is the industry’s first unified hardware description and verification lan-

guage (HDVL) standard. SystemVerilog is a major extension of the established IEEE

1364TM Verilog language. It was developed originally to dramatically improve produc-

tivity in the design of large gate-count, IP-based, bus-intensive chips. SystemVerilog

is targeted primarily at the chip implementation and verification flow, with powerful

links to the system-level design flow. Its main extensions over Verilog include: Support

of modeling and verification at the transaction level of abstraction. SystemVerilog’s

Direct Programming Interface (DPI) enables it to call C/C++/SystemC functions, and

vice versa. SystemVerilog is thus the first Verilog-based language to enable efficient

co-simulation with SystemC blocks , an invaluable link between system level design and

chip implementation and verification.

1. A set of extensions to address advanced design requirements. Examples include

modeling interfaces that greatly accelerate the development of bus-intensive de-

signs; removal of restrictions on module port connections, allowing any data type

on each side of the port; extended data types to allow C modeling; enhanced IP

protection by nesting modules locally to their parent module and, consequently,

not visible to other parts of the design.

2. A new mechanism to support assertion-based verification (ABV). In SystemVer-

ilog, assertion information is built into the language, eliminating the need for the

special modules, pragmas or PLI calls used in traditional Verilog. This approach

helps to avoid recoding errors, increase test accuracy, simplify the testbench, and

23

enable test reuse. The full controllability and observability of internal circuit nodes

afforded by ABV can significantly reduce design debug time.

3. New features to support hardware models and testbenches that utilize object-

oriented techniques and testbenches that are eminently re-usable. For example, the

combination of SystemVerilog’s Interface method with object-oriented testbench

creation techniques enables the easy implementation of a powerful constraint-

driven verification methodology.

The application of SystemVerilog to real design problems has demonstrated a sub-

stantial productivity gain due to the reduced amount of code needed to get the same

quality of results from synthesis. SystemVerilog features such as user defined data-types,

multi-dimensional arrays and strong data type checking can effectively adopted by both

Verilog as well as VHDL users (Fitzpatrick, 2004) thus addressing a number of existing

issues with current HDLs.

1.3.5 UML for hardware design

During embedded systems development, the physical, logical, functional and dynamic

requirements and capabilities of the system must be specified, and decisions made re-

garding which portions of the system will be implemented in software, hardware, or

firmware, or whether they will be multitasking, multithreaded, multiprocessor systems

with DSPs, digital logic, etc. Additionally, candidate commercial off the shelf compo-

nents need to be defined in terms of their interfaces and capabilities, again without con-

straining possible solutions. The process of allocating the requirements to the domains

and elements described above must be performed objectively, without assumptions or

preconceptions.

Unfortunately, breaking-down a large problem may cause as many problems as the

problem itself. Systems Engineering practitioners have recently been experimenting

24

with the use of the Unified Modelling Language (UML). Using UML Packages and

Subsystems, a framework is created by the Systems Engineer, which is a dynamic evo-

lutionary environment, providing traceability and consistency. Additionally, by making

use of the UML extension mechanism, essential aspects of Systems Engineering issues

such as concurrency, hardware architecture, and non-functional requirements can also

be addressed. Specialised tools can then be used to access this environment to ensure a

complete solution. It is now possible to analyze and design a system into logical units

so that the allocation process can be successfully completed by creating a framework

of system modes, use cases and concurrency to demonstrate the dynamic capabilities of

the system.

Thus the object-oriented design process has been a hot topic in software development

since it considerably improves productivity and product quality which are also issues

in System on chip design. In (de Jong, 2002) a combination of UML and SDL is used

in the ‘formulation’ phase and the ‘formalization’ phase of the design respectively. The

approach furthers the earlier work done on the use of generic OO methodologies and

structured analysis design in system specification. It combines the informal strengths

of UML with the formal strengths of SDL to propose a comprehensive specification

capturing methodology. In (Drosos et al., 2004), UML and its real-time extension is

used for specification and co-development of the prototype of a HIPERLAN/2. The

SLOOP system-level design process (Qiang et al., 2002, see), for example, makes use of

UML as a specification language for the four models proposed in the methodology for

the designers to use as a reference for implementation. In (Fornaciari et al., 2003) UML

is used for system specification and as a basis for further downstream analysis.(Martin,

2002) is another endorsement of the use of UML as a specification language. Even in the

industry there is an increasing trend towards enforcing systems engineering principles

for embedded systems using UML.

25

1.3.6 Model-driven architecture

We are now at a stage in the development of embedded systems where the complexity

of the software development and the software itself needs to be managed not via code

but via models. This move to a more abstract representation of the system brings many

new challenges to primarily the methodology and the style of system development. For

an early work on using high level descriptions to model hardware for PLAs refer to

(Drusinsky and Harel, 1989).

The Object Management Group’s (OMG) Model Driven Architecture (MDA) is an

initiative towards fully model based software development. However, while the MDA is

aimed at large-scale, enterprise applications, it is also going to be used with embedded

development and need to take into consideration the constraints that are not apparent

or irrelevant larger systems.

In most existing approaches UML is used as an informal specification tool. This is

analogous to the software industry’s movement from high-level languages to a model-

driven architecture. This methodology is expected to offer significant advantages over

previous methods.

1. It allows design verification of the model via simulation of the code generated by

the translator from the UML model. This allows the designer to test out a variety

of architectures and designs before narrowing down to the final model.

2. UML models can be translated down to gate level accurately thus improving pro-

ductivity and reducing circuit design time.

3. UML models are technology independent descriptions and are much easier to read

and understand. This is becoming increasingly important as design complexity

increases and HDL code sizes increase to unwieldy lengths.

26

1.4 Thesis contributions

The design approaches surveyed so far can be classified into three main categories,

1. High level design approaches such as those involving UML that the designer under-

takes to form a top-level picture of the design before starting to code the individual

modules in a lower level language.

2. System-level design such as SystemC and SystemVerilog that increase the expres-

siveness of HDLs so as to provide easier verification through increased levels of

abstraction. A subset of these languages also provides a path to synthesis.

3. HDLs, the traditional approach, which provides a direct path to synthesis but do

not enable higher level visualisations of the design.

The motivation of this thesis, therefore, is to provide an approach to top-level de-

sign that posseses the strength of UML for high-level specification, but with the added

advantage of being able to automatically translate these formal specifications into a

synthesisable form, rather than using them as a loose overview and guideline for design,

thereby, enabling the use of UML as a ‘language’ in itself.

This approach discussed in this thesis is therefore a novel approach to hardware

design that falls within the category of model-driven hardware design. In our approach,

we have made an attempt to move further from mere design specification using UML,

towards a more comprehensive and formalized model driven approach through the use of

a platform independent synthesizable language in the form of UML with an automated

route to a SystemC implementation.

We have made an attempt to formalize UML through the use of stereotypes, allow

designers to express designs in strict high-level terms such as statecharts and activity

diagrams and allow direct translation of these descriptions synthesisable SystemC code,

27

through the use of an automated UML-SystemC translator, thus providing a direct path

from UML Model to netlist for the designer.

The contributions of this endeavour are hence threefold

1. Definition of an exhaustive UML syntax to describe hardware designs, complete

with stereotypes to describe top level hardware modules, instances, signals, vari-

ables, and dynamic elements such as states, activities, and actions

2. Implementation of a model compiler to parse this high level description and trans-

late this description into a synthesisable SystemC description

3. Employment of this high-level design methodology in creating actual designs

The advantages of this approach are :

1. The methodology, by requiring the designer to focus on high-level static and dy-

namic structures, and by helping the designer to perceive the system in terms of

functional abstractions, is expected to result in more coherent and logical designs

(which are synthesisable).

2. It is expected to minimise the build-and-fix loop which is the bane of structured

design and help the designer document his design clearly and stick to it.

3. Elements such as statecharts and activity diagrams have always been useful ways

of looking at systems. However they are rarely used in hardware design as there

is no simple way to ‘code a statechart’, as it were, using HDLs (there are ways to

code ‘state machines’, but they are not as expressive as statecharts). By providing

a path from statechart/activity diagram to synthesis, this methodology enables

the use of these structures for system design.

4. It is also expected to vastly improve the productivity of the designer by melding

the erstwhile planning/design and translation/implementation phases into one step

28

through the use of a model compiler.

In the rest of the thesis we discuss in greater depth this UML-SystemC based de-

sign methodology. In Section 2, we discuss the various UML structures used to design

hardware, the design of the UML-SystemC translator and the translation process. In

section 3 we describe in detail the workings of the translator. In section 4 we draw up a

summary of the designs created using this methodology with a discussion of its relative

merits and demerits with respect to other methodologies and finally in Section 5 we

conclude with a discussion of our experiences.

29

Chapter 2

UML Driven design methodology

The ASIC design methodology discussed in this thesis is part of a broader UML-based

embedded system design framework. The design flow is as shown in Figure 2.1.

Figure 2.1: UML Based Design Flow

The flow of the design process is as follow:

30

1. The entire design splits into two parts from user requirements: functional require-

ments and non-functional requirements. This workflow is primarily concerned with

the functional requirements part. There are of course lots of ongoing research in

the non-functional (mainly constraints) requirements. [Region I]

2. The functional requirements are then modeled by use case modeling, which serves

as a separation of functionalities of the system. [Region II]

3. Details of each use case are then captured by the scenarios involved, which are

represented by sequence diagrams. This is our current research area. We aim to

work out a modeling technique to completely and yet efficiently capture all possible

scenarios. Embedded system designs involve concurrencies. However, there is no

mature notation to model concurrencies in UML yet. So, our research also involves

techniques for concurrency modeling that is convenient to use and unambiguous.

[Region II]

4. Following this phase, is an automated class diagram and state-chart/activity dia-

gram generation phase from scenarios specification. There has been some ongoing

research on this area, but most of them work for simple sequence diagrams and re-

quires quite some input from the designer before the generation. We are carefully

examining their methods, building upon them and finally aim to come out with a

technique that is well integrated with the scenarios modeling part. [Region III]

5. Auto-generated state-charts and activity diagrams are usually just an approxima-

tion of the target system. So, the designer will need to hand modify the generated

state-charts and activity diagrams. This requires the auto-generated chart being

easily understandable and well structured. This requires the syntax to be well

defined and formalized. [Region IV]

6. Finally, the complete UML model is ready to be synthesized. It is passed through

31

the UML-SystemC translator which produces synthesizable SystemC code. Fol-

lowing this the code is synthesised using a SystemC synthesis tool. [Region V]

7. A similar parallel flow also exists for the embedded software with a translator

generating C code from statechart descriptions serving as the tool.

8. Debugging information is provided at each stage starting from the UML descrip-

tions to ensure syntactic correctness. Work has also been done to analyse errors

in the C code and trace the error back upstream.

Research on capturing functional requirements through use cases and generating

sequence diagrams, statecharts and activity diagrams is being carried out by Sun Xi-

aoxin. C Debugging support was added by Arun Thampi. Within this broad design

framework being developed at the DSA lab, the focus of this thesis is the UML class

diagram/statechart and activity diagram syntax definition, and the design and imple-

mentation details of the UML-SystemC translator tool.

2.1 Modelling styles

There are two main modelling styles employed in the design of digital systems, namely,

the RTL modelling style and the Behavioural modelling style. The differences between

the two can be summarized as follows:

2.2 UML constructs employed

The core principle of separating data path and control logic was adhered to. In keeping

with this, two diagrams provided by UML were selected, namely ‘Class diagrams’ for

representation of static (data path) structures, and ‘Statecharts’ (Harel, 1987, see) and

‘Activity Diagrams’ for representation of dynamic (control logic) structures.

32

RTL Behavioural

An RTL model describes registers in
the design and the combinational sys-
tem between the registers.

A behavioural model is a high-level al-
gorithmic description of the model.

The functionality of the system is
specified in terms of a statechart and
a datapath.

The functionality is specified in terms
of when the inputs are read, the opera-
tions performed on the data and when
the outputs are written. Due to its
algorithmic nature activity diagrams
are the best candidate to express these
models.

The model is cycle accurate and al-
lows the designer to specify at exactly
which clock cycle each operation is
performed.

The clock cycle for each operation is
allocated by the compiler during be-
havioural synthesis. The designer can
only define certain constraints.

These descriptions are less intuitive These descriptions are smaller, eas-
ier to capture complex algorithms and
easy to write and understand.

The design is rigid and doesn’t allow
late specification changes.

This form allows architecture explo-
ration without modifying the overly-
ing description and allows late changes
with ease.

This method is used in the following
instances:

• It is easier to conceive of the de-
sign as an FSM and datapath.

• The design is high-performance
and hence complete control is
needed over the architecture

• The design uses complex mem-
ory.

• The design is asynchronous.

This method is used in the following
instances:

• It is easier to conceive the design
as an algorithm. Eg: FFT, DSP
etc.

• The design has a complex con-
trol flow.

Some applications where this style
could be used include FIFOs, and mi-
croprocessors.

Some applications where this style is
used include cellular phones, video
processing applications and DSP ap-
plications.

Table 2.1: RTL and Behavioural Modelling styles

33

2.2.1 Class Diagrams

Class diagrams are widely used to model static software structures in object oriented

systems. They contain elements to represent ‘classes’, ‘objects’, ‘associations’ between

classes, ‘composition’ and ‘aggregation’. These elements when appropriately defined and

used can be rendered synthesizable and directly realized in hardware via SystemC. The

basic building block in representing a SystemC static structure is the SC MODULE. A

SystemC module is a container in which processes and other modules are instantiated.

A typical module can have: (Synopsys, 2002b)

• Single or multiple RTL processes to specify combinational or sequential logic.

These processes are represented as ‘operations’ within a UML class. Appropri-

ate custom stereotypes have been defined to correlate these elements to syn-

thesizable SystemC constructs. For example, an RTL process is assigned the

<<sc method>> custom stereotype.

• Multiple RTL modules to specify hierarchy. A hierarchy can be completely de-

scribed if a language provides facilities for module definition and module instan-

tiation as is done in HDLs such as VHDL/Verilog/SystemC. In our methodology,

corresponding UML structures/stereotypes facilitate this.

• One or more member functions that are called from within an instantiated process

or module. These are merely defined as ’operations’ within the UML class, with

an added <<sc method>> stereotype if the method is a process.

Appendix A describes the UML syntax employed in our methodology with the cor-

responding SystemC construct that it is mapped to. Table 1, below, lists down all

the custom stereotypes used in various hardware representations and the specific UML

element that these stereotypes bind to.

34

Stereotype Applied To Meaning

sc module classes hardware entity

sc instance classes instance of an entity

sc signal attributes signal

sc var attributes variable

sc method operations process

Shown in Figure 2.2 is a block diagram of a Finite Impulse Response encoder core

(supplied with the Synopsys Cocentric Compiler) and in Figure 2.3, the UML represen-

tation of the static structure of this module

Figure 2.2: FIR Filter Block Design

Figure 2.3: FIR Filter UML Class Diagram

As can be seen, every module template is described as a UML class with an <<sc module>>

template. Inputs are assigned an <<sc in>> stereotype, outputs are assigned an

<<sc out>> stereotype. Variables and signals are assigned <<sc var>> and <<sc signal>>

35

stereotypes. When a module in instantiated within another module, it is assigned a com-

posite association with the higher module as can be seen with fir data1 and fir fsm1,

instances of the modules fir fsm and fir data instantiated within the fir top module. The

mapping of ports is done by order. Hence, for example, the four ports of fir fsm1 are

mapped to the I/O ports and signals listed in the <<sc instance>> in that order.

2.2.2 Statecharts

Statecharts are used for dynamic descriptions of RTL designs. A Statechart diagram

can be used to describe the behaviour of instances of a model element such as an ob-

ject. Specifically, it describes possible sequences of states and actions through which

the element instances can proceed during its lifetime as a result of reacting to discrete

events (for example, signals, and operation invocations).(OMG, 2003, see) The seman-

tics and notation described used in UML statecharts are substantially similar to David

Harel’s statecharts(Harel, 1987), with modifications made to make them object oriented.

Statechart notation implements aspects of both Moore and Mealy machines, traditional

state machine models thus making them apt for representation of FSM control logic

in hardware. Please refer to (Drusinsky and Harel, 1989) for a convincing case for the

use of statecharts in hardware design and an example of the early use of statecharts

in designing hardware. In our methodology we use UML statecharts to capture the

behaviour of the system.

Shown in Figure 2.4 is a statechart of a simple Serial to Parallel converter found at

the receiver interface of a MAC controller.

2.2.3 Activity Diagrams

Activity Diagrams are used for dynamic descriptions of behavioural designs. An activity

graph is a variation of a state machine in which the states represent the performance of

36

Figure 2.4: Serial to Parallel converter statechart

actions or subactivities. It represents a state machine of a computation itself. (UML).

Activity Diagrams are used in situations where all or most of the events represent the

completion of internally-generated actions (that is procedural flow of control)

Activity diagrams are widely used to capture procedural flow in business situations,

and are increasingly being used to describe software. The use of activity diagrams to

represent hardware is likely to increase in importance with the increasing use of hardware

to implement complex algorithms that cannot be captured using statecharts. The syntax

used in describing the algorithm are shown below:

37

Stereotype Applied To Meaning

for decisions for loop

if decisions if control structure

while decisions while loop

task activities activity between empty clock cycles

run activities activity continuing from past to next activity

start activities activity starting with empty clock cycle

end activities activity terminating in empty clock cycle

function decl activities function declaration

The activity diagram can capture the functionality of the system to varying degrees

of detail. The designer first starts with a broad picture of the system depicted primarily

through ’high-level’ tasks that hide details. One can then progressively refine this design

to lower levels of detail. Most UML design tools like Rational Rose c©offer the designer

the option to write out text attached to each symbol. Therefore, when describing low

level tasks, the designer can make a choice as to whether he wishes to write out the

details in code, or describe these details by further detailing out the UML diagrams. A

compromise is struck between comprehensibility of the activity diagram and detail.

Either way, the synthesisabilty of the activity diagram through the UML-SystemC

translator offers the designer a smooth transition from the algorithm to final implemen-

tation. It also provides a comprehensible UML description of a complex algorithm by

hiding minor coding details behind a broad algorithmic picture. Shown in Figure 2.5,

is the activity diagram describing a Fast Fourier Transform module supplied with the

Synopsys Cocentric compiler, at a fine level of detail.

38

Figure 2.5: FFT Activity Diagram

39

Chapter 3

The UML-SystemC Translator

The UML-SystemC translator is the key enabler of this design methodology. The soft-

ware was implemented in Java and intended to fulfil the following objectives:

• Provide a direct translation from the UML to SystemC strictly following the syntax

mapping rules detailed in Tables 1, 2 and 3.

• Behave as a ‘UML compiler’ of sorts by identifying errors and possible hazards,

such as incomplete module hierarchies, use of undeclared signals/variables/data

types, incorrect port mapping, contradictory state transitions, isolated states, in-

valid states etc. thus giving the UML model an exhaustive, formal and consistent

shape that would translate into error free SystemC code.

• Providing a faster path from conceptualisation to synthesis.

• Generate efficient SystemC code

The software can be divided into two sections, one engaged in parsing the class

diagrams and the other in parsing the Statecharts and Activity Diagrams. Shown in

Figure 3.1 is the flow of the translation.

40

Figure 3.1: UML-SystemC Translation Flow

3.1 Class Parsing and code generation

The following is a summary of the steps involved in parsing the class diagram to generate

the modules and module hierarchy.

• The XMI file is built into a ’Document’ which is fed as input into the classparser

• The classparser builds a UML model from the data extracted.

• All the data types, modules, instances, ports, signals, variables etc are then ex-

tracted from this UML model and verified. Instances are mapped to the appro-

priate signals.

• The module hierarchy is constructed.

• In the code generation phase, the code generator analyses the static structure and

generates SystemC SC MODULEs and instances with their respective attributes

and operations.

Given in Figure 3.2 is a class diagram and in Figure 3.3, the code generated.

41

Figure 3.2: FIR UML Diagram

Figure 3.3: FIR SystemC Code produced by Translator

42

3.2 Statechart parsing and code generation

This proceeds in a similar way. Various elements, namely states, transitions and actions

are identified in the XMI file and extracted into a UML model. Each statechart is

associated with a particular class/sc module. In the code generation phase, firstly, all

the composite states in the statechart are identified. Note that each composite state

corresponds to one Mealy state machine.

SystemC state machines are implemented in the following ways: (Synopsys, 2002b)

• An SC METHOD process for updating the state vector and a single common

SC METHOD process for computing both the output and the next state logic

• An SC METHOD process for updating the state vector, an SC METHOD pro-

cess for computing the output logic, and a separate SC METHOD process for

computing the next state logic.

• A Moore machine with a single process for computing and updating the next-state

vector and outputs

In our methodology, the Statechart is analysed, all state machines are identified, and

each state machine is represented using the second method. State changes are assumed

to be triggered by signal changes. ’Actions’ can be specified at the entry into or exit out

of a state and also along specific state transitions. These are translated into functions.

Appendix A describes in detail the UML syntax used and the corresponding SystemC

construct that it is mapped to.

3.2.1 Basic translation Schema

The conventional state machine model consists of a set of states, events (interpreted

as signals), transition functions and output functions. Transitions between states are

labelled in as ‘Event[Condition]/Action’. ‘Event’ is a the Boolean event occurring on a

43

signal. ‘[Condition]’ is a Boolean combination of events and is carried into the SystemC

code verbatim. An additional semantic has been defined in our method, namely the use

of the “!” operator before the event to signify “if (Event.read() == false)”.

An action is a function call. Once again, the translator supports an additional seman-

tic here, namely the use of a “;” between function calls to call more than one function.

So “Event[condition]/action1();action2()” will translate into two function invocations

(action1(); and action2();) in SystemC. Statements associated with the function can

also be listed out if the UML tool permits. (In our case, ArgoUML allowed for this.)

Finally, associated with every state, there is one entry action, one exit action, and po-

tentially several actions associated with internal transitions. The rules for translation

of these are similar to other actions.

Initially, the system starts from an Initial state, which is a pseudostate and does not

translate into an actual state in the translation in our implementation.

3.2.2 Compound Transitions

By definition, a transition connects exactly two vertices in the state machine graph.

However, since some of these vertices may be pseudostates-which are transient in nature-

there is a need for describing chains of transitions that may be executed in the context

of a single run-to-completion step (OMG, 2003). Such a transition is called a compound

transition.

Two or more transitions emanating from the same junction point represent a static

branch point. The semantics of static branches is that all the outgoing guards are

evaluated before any transition is taken. In our notation, the choice point is interpreted

to be a dynamic choice point. In this case , the guards of the outgoing transitions are

evaluated at the time the choice point has been reached. The value of these guards may

be a function of some calculations performed in the actions of the incoming transition.

44

Conditions as described earlier are Boolean expressions. There is no exact UML

semantic to express these conditions. The assumption is that the users will input a

condition that can be evaluated successfully by a C++ compiler.

3.2.3 Hierarchy

Statecharts contain three kinds of states, namely, basic states, and composite states

which can be further sub-classified as ‘OR-states’, i.e exclusive states and ‘AND-states’,

i.e concurrent states. All states mentioned in the previous section were basic states.

Basic states are those that have no sub (child) states, i.e. they form the leaf nodes of the

tree. OR-states have child states. In our method, an AND state is assumed to comprise

of two or more OR states executing concurrently. The following figure, illustrates a

statechart with OR-state. In this figure, state TOP is an OR-state consisting of three

sub-state P1, P2, and P3 which are called basic states.

The algorithm employed to translate a hierarchical statechart is as follows:

Firstly all composite states (AND as well as OR) are identified by running through

the tree recursively. Each composite state corresponds to one state machine. The

enumerable states of each state machine are defined as those states that are one level

below the composite state that the state machine is associated with. The OR states

that execute concurrently are clubbed together into a concurrent state.

The algorithm then proceeds something like this:

for all statemachines identified

for all enumerable states of this statemachine

while (state.getSuperState() != NULL)

Append Next State statement(state);

State = state.getSuperState();

45

By this, each state is made aware of events leading out of itself as well as all of its

superstates in the hierarchy. This is an implicit flattening of all states to basic states.

Append Next state statement(state) is carried out as follows:

for all transitions leading out of state

FindActiveState(s)AfterTransition(transition); //In case of AND states usu. many

for all active states

for all state machines in system

if (active state lies within state machine) //at any level below

Find and Append next state of state machine;

else if (active state == state machine compo. state)

Set next state of state machine to init/hist state;

else if (active state is superstate of state machine) //any lvl above

Find and Append next state of state machine;

else

Set state machine next state to idle;

In this function, there are other issues like contradictory transitions and history states

that are tackled. There are other subtle minor issues that are also dealt with but not

detailed in the above pseudocode.

3.2.4 History States

Statecharts feature two kinds of history connectors (pseudostates): shallow history and

deep history. Any form of history introduces an additional element of complexity to the

translation effort. It is dealt with in the following way. Each state has a hasHistory

attribute. Each translated SystemC statemachine has a history state variable associated

with it that stores the last state that this particular state machine was in. Thus at the

46

exit of every state, it history state variable is re assigned.

Also when history states are introduced into a statechart, a few additional details

have to be worked into the previous algorithm to find the next state that each statema-

chine must move into.

Every composite state is assigned a state machine and a history state. Every time

the system enters a state the history state variable of that state machine is set to this

state. With reference to the following figures, let state “Wait” be the active state in

consideration. When triggered by the in valid event the state machine “Top” now moves

into the “Active” state and the state machine “Active” moves into its history state as

seen in the translated code shown in Figure 3.5 illustrating the “next state” behaviour

of the top state machine from Figure 3.4.

Figure 3.4: FIR Statechart diagram Diagram

3.2.5 Concurrency

Concurrency in statecharts is represented in the form of AND-states. All concurrent

states in the AND-state are assumed to be composite states with independent statema-

chines which are simultaneously triggered when the AND-state is entered.

47

Figure 3.5: FIR Statechart SystemC Code produced by Translator

Users are constrained to introduce concurrency into statechart through the use of two

pseudostates, namely fork and join. This is because, 1. Using fork and join pseudostates

can define all the semantics of concurrency in a statechart. 2. In typical UML drawing

tools (Visio, ArgoUML and Rational Rose), users have to user fork and joint notation

to express the concurrency. There is simply no AND-state equivalent item.

Thus, concurrency actually implies dealing with fork and join pseudostates. A fork

state has only one incoming transition and several outgoing transition; a join state has

more than one incoming transition and only one outgoing transition.

In the following figure, when the fork state is reached, it means that the four states

that the fork state branches to are the ‘target’ or ‘active’ states. All the related state

machines are then triggered and operate orthogonally and concurrently as desired. When

a join state is detected, the next state algorithm ensures that the previous state machines

move into idle states because the target state of the join state is the new active state

48

and has no connection with the earlier concurrent states. Given in Figure 3.6, is an

example, and the resulting code in Figure 3.7.

Figure 3.6: Statechart illustrating concurrency

49

Figure 3.7: Statechart with AND-states : SystemC Code produced by Translator

50

Chapter 4

Case Studies

The UML driven methodology described thus far was employed in creating a number

of different designs in UML and synthesising them. Starting from the requirement

specifications and an understanding of the static structure and states/algorithms that

would be needed to implement the system, a preliminary class diagram and statechart

/ activity diagram were first created. These was progressively expanded in detail until

a point was reached where the description was detailed enough to capture the structure

of the entire system and yet sparse enough to avoid unnecessary cluttering through

inclusion of very low-level details. This section illustrates the design process in action

starting from the initial stages to final synthesis results.

4.1 Experimental Tools

Various software tools were employed in the entire flow. Brief descriptions of these tools

follow:

4.1.1 ArgoUML

ArgoUML is a powerful yet easy-to-use interactive, graphical software design environ-

ment that supports the design, development and documentation of object-oriented soft-

51

ware applications (see www.argouml.org for more details).

ArgoUML is widely used by software designers & architects, software developers,

business analysts, systems analysts and other professionals involved in the analysis,

design and development of software applications. Its main features include:

• Support for the following open standards: XMI, SVG and PGML

• 100% Platform independent due to the exclusive use of Java

• Open Source, which allows extending or customizeing.

• Cognitive features like: reflection-in-action, opportunistic design, comprehension

and problem solving

4.1.2 Rational Rose Enterprise Edition 2002

The Rational Rose product family is designed to provide the software developer with

a complete set of visual modeling tools for development of robust, efficient solutions to

real business needs in the client/server, distributed enterprise, and real-time systems

environments.(see Quatrani, 2002) Rational Rose products share a common universal

standard, making modeling accessible to nonprogrammers wanting to model business

processes as well as to programmers modeling applications logic.

The tool provides the capability to

• Identify and design business objects, and then map them to software components

• Partition services across a three-tiered service model

• Design how components will be distributed across a network

• Generate Visual Basic code frameworks directly from your model

• Use reverse engineering to create models from existing components and applica-

tions

52

4.1.3 The UML-SystemC Translator

This tool was described in detail in the previous section. It is essentially a UML Model

Compiler. It is a Java based platform independent tool that accepts XMI 1.0 descriptions

of UML designs (Both the UML tools listed above have the capability to export to XMI

format) and translates it to synthesisable SystemC code. The tool also has a user

friendly GUI and is compatible with XMI outputs generated by ArgoUML and Rational

Rose.It can broadly be split into a parser and a code generator.

4.1.4 Cocentric SystemC Compiler

Once the designs are created in UML and passed through the translator, we obtain

synthesisable SystemC files of the modules. Synopsys’ Cocentric compiler was chosen

to take over the process from here on. CoCentrictm SystemC Compiler synthesizes

hardware from SystemC source code. It is the ideal tool for design teams needing a fast

and high quality path from a system level hardware description coded in SystemC to

gates or a synthesizable Verilog or VHDL RTL description. The designer then continues

adding more detail until the HDL code can be synthesized into a gate-level netlist for

IC implementation. For more information refer to www.synopsys.com.

The important settings in the compiler are

1. The Technology Library which specifies which ASIC technology will be used to

synthesize the design

2. The Synthetic Library, which is a technology independent library of synthetic

components such as adders and multipliers. Each synthetic component from this

library is implemented using the primitive gates from the technology library.

3. The Map Effort which specifies the tradeoff between the speed of synthesis and

the efficiency. Low effort produces the fastest synthesis.

53

4. The IO-mode option specifies how the compiler must handle IO operations while

performing the synthesis. There are two modes, cycle fixed mode where there is

no difference in the I/O behaviour of the behavioural description and synthesized

design, and superstate fixed mode where the logical relationships of read and write

operations are preserved but the compiler is allowed to add clock cycles to lengthen

the time between I/O operations.

5. The hlo resource allocation variable which determines what factors the compiler

takes into account when allocating operators.

4.2 Design Implementation

The list of designs created using the UML driven methodolgy is shown in Table 4.1.

As can be seen a total of six designs were chosen to illustrate the design methodology.

Three designs were RTL designs and three were Behavioural. (For a discussion on the

differences between the two modelling styles please refer to section 3.1)

Of the RTL designs, the three designs chosen were a JPEG Encoder, a Medium

Access Controller, and a Finite Impulse Response filter. The JPEG encoder was chosen

for the intricacy of its static structure. The MAC was chosen to illustrate the design of

control structures using UML.

Of the Behavioural designs, a VP3 video Encoder, an FFT module and a simple

FIFO were designed. The VP3 encoder is a complex design and pushes the limits of

this approach. The algorithms for every module of this design were taken from the

open-source vp3 source code created by On2 Technologies. These were then presented

as activity diagrams to the translator. The FFT, another complex algorithm was also

chosen to illustrate the expressiveness of activity diagrams.

In the next section, we look at each design for its expected functionality, how it was

54

RTL Designs Behavioural Designs
JPEG Encoder VP3 Encoder
MAC Controller FFT

FIR FIFO

Table 4.1: Designs Created

approached, tested and implemented and what tangible results were obtained.

4.2.1 JPEG Encoder

The JPEG Encoder is an excellent example of a structurally and functionally complex

design. It is based on a design by Richard Herveille. To understand the functionality of

this system, we start with a use case diagram in Figure 4.1. This diagram captures, in

lay terms, all the actions that the external actor (in this case, a testbench) can perform

on the system. This helps us to arrive at the external interface for the module. Once

this has been decided, we proceed to the next level of granularity, namely how to convert

the input data into compressed jpeg data.

The design can be conceived as consisting of three main blocks, namely, the DCT

block, Quantization and Rounding Block and the Run Length Encoding. Each of these

blocks is composed of sub-blocks which are further composed of sub-blocks and so on

as shown in Figure 4.1. The interaction between the various modules is controlled by

small statecharts within each block, which defines the states that the block can be in

and how it makes transitions between those states.

Figure 4.2 shows a section of the design.

As can be seen, there are three top-level classes with stereotype “<<sc module>>”.

These classes are templates for these modules. In the JPEG design, the DCT is effec-

tively composed of 8 X 8 DCTU modules. Each DCTUB module contains 8 DCTU ’in-

stances’. Note the by-order port mapping. U and V are indicators of the row and column

of the pixel that particular module processes. Each DCTU contains a “dct cos table”

55

enable/disable

reset

input sample data

input quantisation value

monitor quantisation count

monitor size

monitor run length

monitor amplitudeTestbench

monitor validity of output

 File: D:\VP3_g03b\UML\Thesis\jpeg_usecase.mdl 6:01:29 PM Sunday, July 31, 2005 Use Case Diagram: Use Case View / Main Page 1

Figure 4.1: Use case diagram for the JPEG encoder

56

Figure 4.2: A Section of the JPEG encoder design

to select the coefficient to multiply the data. It supplies the coefficient and data to the

DCT MAC unit, which then performs the multiplication. As the tasks described above

are mainly data flow type of tasks, there is no statechart required.The other section of

the design requires a statechart for coordination, namely the run length encoder. Re-

fer to Figure 4.3, Figure 4.4 and Figure 4.5 for the class diagram and the statecharts

associated with this design.

The Run Length Encoder consists of the rle1 block, which maintains a count of

blocks received and whether they are AC or DC coefficients. It takes the data input and

assigns value to the size, run length and amplitude. The four rzs blocks are present to

implement run lengths greater than 15. As can be seen in the statechart of rle1, it can

exist in two states ‘DC’ and ‘AC’ to signify the type of coefficient being encoded. Since

the first coefficient is DC note how the run length and size are reset. When the ’go’

signal is received, it informs the next unit that a DC term will follow and enables the

data. It then remains in AC state for the next 63 coefficients when it sends out the rlen,

size and amplitude values until the count of 63 is reached where cnt done is triggered

57

Figure 4.3: The Run length encoder of the JPEG encoder

58

Figure 4.4: Statechart of the rle1 unit

Figure 4.5: Statechart of the rzs unit

59

Setting Value
Technology library tc6a cbcore.db
Synthetic library dw01.sldb, dw02.sldb
Map Effort low
Clock Period 10 ns

Table 4.2: JPEG Encoder synthesis settings

and the statechart goes back to the DC state. The rzs blocks have two states S0 and S1.

When a run length of 15 and a size of 0 are received(symbolizing a run length longer

than 16) the statechart goes to state S1 and stays in S1 as long as this is true until it

finally processes the EOB block. The 4 rzs blocks handle upto 3 sequences of the special

symbol as per the specification requirements.

The JPEG encoder UML design was run through the UML-SystemC translator.

The lower level details were filled in and simulations were run. Shown in Figure 4.6

is a section of the simulation waveform. The output was monitored and verified to be

correct.

100ns 150ns 200ns 250ns 300ns

SystemC.ena

SystemC.rst

SystemC.din[7:0]

SystemC.den

SystemC.dout[10:0]

SystemC.dstrb

SystemC.size[3:0]

SystemC.rlen[3:0]

SystemC.amp[11:0]

SystemC.qnt_cnt[5:0]

SystemC.qnt_val[7:0]

SystemC.x[31:0]

SystemC.y[31:0]

SystemC.n[31:0]

SystemC.list_cnt[31:0]

SystemC.clk

0B 10 15 19 1B 10 17 19 1C 1F 1C 16 1B 20 23 1E 1C 1F 21 22 20 1F 20 21 22 1B 21

0

0

000

0E0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3

1313 18 28 1A 18 16 18 31 23 25 1D 28 3A 33 3D 3C 39 33 38 37 40 48 5C 4E 40 44 57 45 37 38 50 6D 51 57 5F 62 67 68 67 3E 4D 71 79 70 64 78 5C 65 6

00000000 00000001 00000002 00000003 00000004 0000

00000001

Figure 4.6: Simulation waveform of JPEG encoder

The design was later synthesized with the settings shown in Table 4.2

The results are shown in Table 4.3. The slack was met. The final gate count shown

in the table includes flip flops and latches and is around 98 K. This is about 98% of the

60

Module ports nets cells refs comb.
area

non-
comb.
area

net
inter-
con
area

total
cell
area

total
area

gate
count

DCT (UMLSC) 35 5743 5709 148 11366 458 62941 11825 74766 96000
QNR(UMLSC) 42 108 57 11 2648 4068 15855 6717 22572 1655
RLE(UMLSC) 38 127 6 3 278 220 11801 498 12300 819
Commercial JPEG2K E
core(Alma Technologies
S.A.) (ASIC 0.18 pro-
cess)

- - - - - - - - - 100K

Table 4.3: Results obtained from synthesis of JPEG Encoder

area occupied by the commercial design and is smaller than a commercially available

JPEG core mainly because this core is minimal and has been designed in RTL style.

The commercial core runs at 150 MHz.

4.2.2 MAC Controller

This design was based on the Xilinx “Ethernet Media Access Controller (EMAC) Spec-

ification” and a MAC Controller design from Infineon TC11lB Peripheral Units User

Manual, which implements the IEEE 802.3 and operates at 100 Mbps or 10 Mbps. The

use case diagram for this design is shown in Figure 4.7.

From this specification we arrive at a design with a transmit and a receive section.

The transmit block consists of three further sub-blocks namely a Transmit FIFO, Core

and Parallel to Serial Converter. The receive block consists of a Serial to Parallel

Converter, a Core and a Receive FIFO. Shown in Figure 4.8 is a section of the UML

design, namely the receiver. As can be seen the top level module is the RxBlock.

This Block is Composed of three instances RxFIFO1, RxCore1,and StoP1 of modules

RxFIFO, RxCore,and StoP respectively. Defined in the diagram also are the inputs,

outputs and internal signals of the top level module and the by-order port-mapping for

the lower level instances.

The Transmit and Receive blocks have been designed in contrasting styles to illus-

61

enable transmitter

enable receiver

input data

monitor tx data

Testbench

monitor rx data

 File: D:\VP3_g03b\UML\Thesis\MAC.mdl 7:19:09 PM Sunday, July 31, 2005 Use Case Diagram: Use Case View / Main Page 1

Figure 4.7: Use Case Diagram of MAC Controller

Figure 4.8: Class Diagram of Receiver Block

62

trate two different approaches. In the transmit block, the three low level instances are

passive components that have functions and processes defined within them that activate

upon certain events. There is a central state machine that runs in the top level module

TxBlock which controls the passive datapath consisting of the TxFIFO, TxCore and

PtoS. Shown in Figure 4.9 is this statechart. The signals triggered by this statechart

activate functions within the desired low level module.

On the other hand, the receive block does not have a central state machine. The

RxBlock is merely a passive top level module that is composed of active low level mod-

ules RxFIFO, RxCore and StoP, each of which has a small state machine running within

it. Shown below is a statechart of the RxCore. As can be seen there are five main states

namely the Pre, Header, Data, CRC and End states and one Error state. There is an

activity that performs processing in each of these states, after which the data is for-

warded to the next module which parallelizes the data. The design was translated to

SystemC and simulated and verified to be correct. The waveform captures the trans-

mission and successful receipt of an ethernet packet. The design was then synthesised

using the settings in Table 4.4. The results are as shown in Table 4.5. An more compre-

hensive open source, Ethernet MAC controller performing similar activities including

Frame Data Encapsulation and Decapsulation, Frame Transmission, and Frame Recep-

tion occupies about 28k gates and 2400 flip-flops. (The opencores design incorporates

numerous other features such as a Wishbone interface etc and a Management module for

a standard IEEE 802.3 media independent interface etc and is hence larger.) Our min-

imal MAC controller is therefore comparable to a bare bones design designed through

other methods.

63

Figure 4.9: Statechart of the Transmitter Block

64

Setting Value
Technology library tc6a cbcore.db
Synthetic library dw01.sldb, dw02.sldb
Map Effort low

Table 4.4: MAC synthesis settings

Module ports nets cells refs comb.
area

non-
comb.
area

net
inter-
con
area

total
cell
area

total
area

gate
count

MAC Controller 16 16 2 2 12730 7303 79472 20034 99506 8k
Ethernet MAC (open-
cores.org)

- - - - - - - - - 28k

Table 4.5: Results obtained from synthesis of MAC Controller

4.2.3 FIR Filter

The FIR filter design is an enhanced version on the Synopsys FIR design supplied as an

example with the CoCentric compiler. The basic structure is shown in Figure 2.2. As is

apparent it is a hierarchical RTL module which contains an statechart inside the fir fsm

module and a datapath inside the fir data module.

Let us now see how one goes about designing this filter. We first start with the use

case diagram as seen in Figure 4.10.

Given these requirements, we firstly define the static structure. It is very simple,

comprising an FSM and a Datapath. The class diagram illustrating the static structure

is shown in Figure 4.11:

Now for the dynamic sections. The module fir fsm, containing the state machines

can be expressed very well using statecharts. The datapath is passive and performs

certain fixed activities when instructed, namely multiplying the input signal samples

with the filter coefficients. It is therefore an excellent candidate for the use of activity

diagrams. Activity diagrams where therefore used to flesh out the design of the datapath

and illustrate the process flow in detail. Very Low level systemc details were filled in

65

enter valid samples

reset module

Testbench

monitor results

 File: D:\VP3_g03b\UML\Thesis\fir_rose.mdl 8:14:51 PM Sunday, July 31, 2005 Use Case Diagram: Use Case View / Main Page 1

Figure 4.10: Use Case Diagram of FIR filter

Figure 4.11: Class Diagram of the FIR Filter

66

Setting Value
Technology library tc6a cbcore.db
Synthetic library dw01.sldb, dw02.sldb
Map Effort low

Table 4.6: FIR synthesis settings

later as the purpose of this design methodology is primarily to design the control system

and data flow for very large and complex systems where low level details are of secondary

importance. Shown in Figure 4.12 and Figure 4.13 is the statechart within the fir fsm

module and the activity diagram within the fir data module.

Figure 4.12: Statechart of the FIR’s FSM unit

The design was translated to SystemC and simulated to verify that it satisfied the

use cases. The design was later synthesised using the settings in Table 4.6. The results

are as shown in Table 4.7:

The UML design was an enhanced version of the original design however still adhering

to the initial use case specification. It provided the additional capability of returning

to its original processing state after an invalid input, instead of resetting it completely.

As can be seen the UML design is larger in size than the original design due to this

enhancement.

67

Figure 4.13: Activity Diagram of the FIR’s Data path unit

Module ports nets cells refs comb.
area

non-
comb.
area

net
inter-
con
area

total
cell
area

total
area

gate
count

FIR Fil-
ter(UMLSC)

68 100 2 2 5918 1625 26500 7544 34044 3.5k

FIR Fil-
ter(CCSC)

68 100 2 2 3015 984 14170 3999 18170 1.6k

Table 4.7: Results obtained from synthesis of FIR Filter (translated and original Co-
centric) modules

68

4.2.4 FFT

The Fast Fourier Transform module is an excellent example of the kind of design that

is more suited to behavioural design than RTL design. The design is based on the FFT

module provided by Concentric.

The FFT is a complex algorithm that is more easily described as a flowchart rather

than as a series of RTL level operations controlled by a state machine. The most

suitable UML construct to express such a design is the Activity Diagram. A good

way to represent the design is to group all operations that must be performed between

any two “wait()”’s together into one <<task>>. The Cocentric behavioural compiler

operates in two modes, ‘IO’ and ‘Superstate’. In the IO mode, the latency between any

two wait() statements is assumed to be one clock cycle. In the Superstate mode, the

region between any two wait()s is assumed to be a ‘Superstate’. This means that the

compiler breaks the tasks found in between the wait()’s into lower levels of granularity

so as to enable it to clock the design at higher speeds. In the first instance the designer

has greater control whereas in the second instance the compiler does.

Shown in Figure 4.14, Figure 4.15 and Figure 4.16 are the use case diagram, class

diagram and the activity diagram of the FFT module respectively.

As can be seen in the activity diagram there are three main kinds of activities namely

<<task>> activities, <<run>> activties and <<end>> activities. Tasks refer to those

activities which are constrained within clock cycles. Ŕunś are not constrained within

clock cycles and éndsśignify the end of several runs. Hence one glance at the figure gives

us an idea of which regions of the design are likely to produce long paths and where one

must focus on to optimize the clock cycle latency. This is especially true if the design is

running in the IO mode.

The design was translated to SystemC and verified. It was later synthesised using

the settings in Table 4.8. The results are as shown in Table 4.9:

69

input data (real, imaginary)

reset module

Testbench

monitor output

 File: D:\VP3_g03b\UML\Thesis\fft.mdl 8:12:23 PM Sunday, July 31, 2005 Use Case Diagram: Use Case View / Main Page 1

Figure 4.14: Use case diagram for the FFT module

Figure 4.15: Class Diagram of the FFT unit

Figure 4.16: Activitiy Diagram of the FFT unit

70

Setting Value
Technology library tc6a cbcore.db
Synthetic library dw01.sldb, dw02.sldb
Map Effort medium
I/O Mode superstate
Clock period 25 ns

Table 4.8: FFT synthesis settings

Module ports nets cells refs comb.
area

non-
comb.
area

net
inter-
con
area

total
cell
area

total
area

gate
count

FFT
(UMLSC)

70 4606 4344 78 14353 5684 79964 20038 100003 7.7k

FFT
(CCSC)

70 4606 4344 78 14353 5684 79964 20038 100003 7.7k

Table 4.9: Results obtained from synthesis of FFT Module through the translator com-
pared with the original

The results obtained through the translator and the orignal design were identical

mainly due to the small size of the design and the fact that the activity diagrams fed

to the translator were faithful to the original design resulting in the overall control

structure and hence the results being the same.

4.2.5 FIFO

The FIFO is another small design based on an example from the Synopsys Cocentric

compiler examples to illustrate behavioural design using UML. Shown in Figure 4.17 is

the use case diagram of this design.

Based on this we arrive at a FIFO that accepts a 32 bit integer value from the input

and writes an integer to the output. The reset port clears all the data in the buffer. The

size of the FIFO is specified by a macro BUFSIZE and the number of bits required to

address it is specified by the LOGBUFSIZE macro. Since the design is behavioural there

is no need to explicitly separate the control logic and the data path. The scheduling is

handled by the lower level compiler. Shown in Figure 4.18 is the class diagram of the

71

read the fifo

write to the fifo

input data

read data

Testbench

monitor buffer status

 File: D:\VP3_g03b\UML\Thesis\fifo.mdl 8:16:52 PM Sunday, July 31, 2005 Use Case Diagram: Use Case View / Main Page 1

Figure 4.17: Use case diagram of FIFO

72

FIFO.

Figure 4.18: Class Diagram of the FIFO

A behavioural description usually contains an infinite loop within which the activity

is described as can be seen in the activity diagram in Figure 4.19.

Figure 4.19: Activity Diagram of the FIFO

The UML design methodology offers the designer the flexibility to express the design

in his preferred level of granularity. In this design, as compared to the previous FFT

design, the activity diagram was fleshed out in greater detail, with more <<runs>> and

73

Setting Value
Technology library tc6a cbcore.db
Synthetic library dw01.sldb, dw02.sldb
Map Effort medium
I/O Mode superstate
Clock Period 10 ns

Table 4.10: FIFO synthesis settings

Module ports nets cells refs comb.
area

non-
comb.
area

net
inter-
con
area

total
cell
area

total
area

gate
count

FIFO
(UMLSC)

70 757 721 37 813 808 6770 1621 8392 721

FIFO
(CCSC)

70 757 721 37 813 808 6770 1621 8392 721

Table 4.11: Results obtained from synthesis of FIFO through translator compared with
original

<<ends>>. The difference between tasks, runs and ends can be summarized as follows

- A <<task>> is constrained on both sides by <<wait>> statements, a <<run>> is

not constrained whereas an <<end́ıs the end of a path and contains a wait statement at

its end. As can be seen, upon starting, the system is first reset. Following this there is

an if-elseif structure. Each path contains some further processing depending on whether

a “read” or “write” instruction was given to the FIFO and finally ends with a write to

the “empty” or “full” outputs. One can therefore clearly see the three main paths in

this design forking out after the reset and leading up from the if - elseif decoder all the

way to the respective final <<end>> activities.

The design was first simulated and then translated, and synthesised using the settings

in Table 4.10 and the results are as shown in Table 4.11

Once again the results were identical as the translator does not introduce any changes

to activity diagram descriptions of control structures such as loops/branches from the

original design.

74

4.2.6 VP3 Video Encoder

This design is based on the open source VP3 software video codec developed by On2

Technologies. Video encoding is best described algorithmically and hence naturally lends

itself to description by activity diagrams. Being an application with a large number of

modules and dynamic complexity it was adopted as an example to illustrate the design

methodology advocated by this thesis. Shown in Figure 4.20 is the use case diagram for

this design. Given this requirement, we start looking into lower level implementation

details of this encoding process. We finally arrive at a list of the methods employed by

VP3 described in the following sections. (The information was taken from the “VP3

Bitstream Format And Decoding Process” online document created by Mike Melanson.)

reset encoder

enable encoder

set frame size

set target bit rate

enable auto key frame

set frame rate

set key frame frequency

set key frame data target

set quality

Testbench

enable quick compress

 File: D:\VP3_g03b\UML\Thesis\vp3_usecase.mdl 10:00:25 PM Sunday, July 31, 2005 Use Case Diagram: Use Case View / Main Page 1

Figure 4.20: Use Case Diagram of the VP3 Encoder

DCT

The discrete cosine transform is performed on each block consisting of 8 X 8 = 64

pixels. The transform produces a list of 64 coefficients such that the first coefficient

(called the DC coefficient) is the largest with subsequent coefficients getting smaller and

smaller. The remaining 63 coefficients are called AC coefficients. This section of the

design requires a large number of multiplications and hence optimisation of this module

can result in large gains in latency and area.

75

Quantisation

This step is performed after the DCT. Quantisation essentially means reducing the

magnitude of the number to be coded by dividing it by a pre-determined factor and

discarding the remainder. The original number is, of course, recovered by multiplying

the quantised data by the same factor. (There is, however, some loss of information in

the process)

Run Length Encoding

In image and video encoding, one often encounters repetitive patterns of numbers. In-

stead of storing each one of these values, run length encoding stores only the repeating

value, and the number of repetitions this value makes thus achieving further compres-

sion. In VP3 Coding RLE is used to record the number of zero value coefficients that

occur before a non-zero coefficient is encountered.

Zigzag Ordering

After DCT and quantisation if performed on the data the samples are not in an optimal

order for run length encoding. Zigzag ordering rearranges the samples to put more zeros

between non-zero samples.

DPCM

Differential Pulse Code Modulation means encoding the difference between successive

values instead of encoding the absolute values. This greatly reduces the magnitude of

numbers to be coded.

76

Motion Compensation

In video encoding applications, instead of encoding the whole frame every time, com-

monalities between successive frames are exploited and portions of previous frames are

copied into the current frame. This technique is combined with DCT and DPCM coding

described earlier as well as fractional pixel motion.

Entropy Coding

This is also known as Huffman Coding. This is a process of reducing the number of bits

used in coding the data by coding more frequently occurring symbols with fewer bits

than symbols that are not likely to occur as frequently.

Variable Length Run Length Booleans

An initial Boolean bit is extracted from the bitstream. A variable length code is ex-

tracted from the bitstream and converted to a count. This count indicates that the next

“count” elements are to be set to the boolean value. Afterwards the boolean value is

toggled, the next VLC is extracted and converted to a count, and the process continues

until all elements are set to either 0 or 1.

Overview

There are three kinds of frames in the VP3 coding process : Intra frames, and Inter

frames. Inter frames are frames which use information from previous Intra frames.

The VP3 coding method encodes all three planes of the frame (Y,U,V) upside down

from the bottom to the top. The first step is to break the video frame into a series

of blocks called fragments. A Superblock encapsulates 16 fragments arranged in a 4X4

matrix. Each plane has its own set of superblocks. VP3 also has a notion of macroblocks.

A macroblock encompasses 4 blocks from the Y plane arranged in a 2X2 matrix, 1 block

77

from the U plane and 1 block from the V plane. Hence a macroblock extends over all 3

planes.

To compress a golden frame, each fragment is tranformed using dct. Each sample

is then quantised and the DC coefficient reduced via DPCM using a combination of

DC coefficients from surrounding fragments are predictors. Then each fragment’s DC

coefficient is entropy coded into the output bitstream followed by each fragment’s first

AC coefficient, followed by each fragment’s second AC coefficient, and so on.

Compressing an inter frame is more complicated. There are 8 coding modes available

for coding an inter frame which the coder can choose between. Each of these modes

involves coding a “fragment difference” from a different frame (either the previous one

or the last golden frame) and from the same coordinate or from the same coordinate

plus a motion vector, rather than a fragment. All these macroblock coding modes and

motion vectors are then encoded in an interframe bitstream.

The following paragraphs explain each of these modules along with the their class

diagram and main activity diagram describing the dynamic behaviour of the module:

VP3 Encoder

This is the top level module of the encoder and interfaces with the memory. This module

contains important global structures for compression and playback. These structures

contains variables related to configuration of the compressor, for holding statistics re-

lated to compression, frame statistics, regulation variables, block selection variables, var-

ious token counts and other variables used in the compression process. It also contains

global motion vector storage variables used by functions in the motion compensation

stage. The static structure of this module is as shown in Figure 4.21.

This module performs initialisations of libraries used, starts up the encoder, creates

an overall control structure and then passes control to lower level modules to continue

78

Figure 4.21: Class Diagram of the VP3 Encoder Top

79

with the encoding process. The main function in this module is the EncodeFrameYUV

function. The activity diagram of this function is shown in Figure 4.22.

Figure 4.22: Main Activity Diagram of the VP3 Encoder Top

As can be seen, the first stage of this function consists of various initialisations fol-

lowed by copying over frame data into the local buffers. Following this is the main section

where the encoding is performed. If the frame is the first frame, the function Compress-

FirstFrame is called. If the frame is a key frame, the function CompressKeyFrame is

called. Otherwise the function CompressFrame is called. Each of functions performs

two important functions one, to decide the coding mode for all fragments and two, to

update the frame. These functions are performed by lower level modules, “PickIntra”,

“PickModes” and “UpdateFrame”.

80

PickIntra

PickIntra is one of the modules below VP3Encoder. This module picks INTRA coding

for each macroblock of the current frame. The UML static structure for this module is

shown in Figure 4.23.

As can be seen this module is a leaf module with no further sub modules. The

activity diagram for the main function of this module is shown in Figure 4.24.

As seen above the function goes through each block in each superblock of the image

and sets the MB coding mode to CODE INTRA

PickModes

PickModes is another module one level below the top level module. The function of this

module is to pick the coding mode for each macroblock of the image. This module is

more comprehensive than PickIntra and is called when the frame has not been designated

a Key frame. Hence this module has to make a choice from among 8 coding modes apart

from also the CODE INTRA mode. Shown in Figure 4.25 is the static structure of the

PickModes module:

It contains a number of lower level modules which are used for computation of error

scores to help the PickModes module decide which coding mode to use for a particular

macroblock. Shown in Figure 4.26 is the activity diagram for the PickModes module.

81

Figure 4.23: Class Diagram of the PickIntra module

82

Figure 4.24: Activity Diagram of the PickIntra module

83

Figure 4.25: Class Diagram of the PickModes module

84

F
ig

ur
e

4.
26

:
A

ct
iv

it
y

D
ia

gr
am

of
th

e
P

ic
kM

od
es

m
od

ul
e

85

The activity diagram is quite complex. It starts with initialisation of variables and

temporary motion vectors , and error scores used later. Various thresholds are set for

decision making. A iterative traversal is then performed through each macroblock of the

frame. If the macroblock is coded we proceed further, otherwise we move to the next

macroblock. Now, the lower level modules are used to find

• The intra coding error

• The golden frame error (difference from the last golden frame or I-frame encoded)

• The (0,0) error with the previous frame encoded

• The error with the previous frame, using the last motion vector used

• The error with the previous frame, using the prior last motion vector used

The best of these errors (the lowest) is remembered at this point. If the best error

is above the required threshold, we must search for a new inter Motion Vector. A

combination of simple and exhaustive searches is used in this calculation depending on

the compression mode and the error computed in relation to the pre-decided threshold

values. A new error value using the new Motion vector is then computed. If the best

error is still above the threshold value, a search is performed for a new motion vector

in the last golden frame encoded. If the error is still above the threshold, the 4 MV

mode is investigated. In this mode, each of the four Y fragments gets its own motion

vector and the U and V fragments share the same motion vector which is the average of

the 4 Y fragment vectors. An error value is computed using this mode. For this to be

considered the best error it must be above a certain threshold. After all the errors have

been computed, the mode which produces the smallest error is chosen and the motion

vectors (where relevant) and coding mode is set. If none of the methods produces a

sufficiently large improvement (as decided by the fixed thresholds), the intra mode is

used as the default coding mode.

86

UpdateFrame

This module is once again one level below the top level module and performs the function

of writing the fragment data to the output file and updating the displayed frame. The

static diagram is shown in Figure 4.27.

As can be seen this module makes use one main lower level module called Quad-

CodeDisplayFragments which performs the important function of encoding, tokenising

and packing the frames. Shown in Figure 4.28 is the activity diagram illustrating the

workings of this module.

87

Figure 4.27: Class Diagram of the UpdateFrame module

88

F
ig

ur
e

4.
28

:
A

ct
iv

it
y

D
ia

gr
am

of
th

e
U

pd
at

eF
ra

m
e

m
od

ul
e

89

The first task is to initialise variables used in the process. Then the bit packing

mechanism is initialised. Following this, any extra frags that are to be updated by the

codec as part of the background cleanup task are copied back. Then the data is encoded

with the help of the lower level module. Next, the “Drop Frame” trigger (measured

in number of bytes) is adjusted by adding in the size of the frame just encoded to the

figure. A Test for overshoot is performed which may require a dropped frame next

time around. If we are already in a drop frame condition but the previous frame was

not dropped then the threshold for continuing to allow dropped frames is reduced. The

BpbCorrectionFactor variable is then updated according to whether or not we were close

enough with our selection of DCT quantiser. Finally the carry over and the key frame

context are adjusted.

GetMBIntraError

This module is one level lower the PickModes module described earlier which assigns

a coding mode to each block by computing various error scores. The purpose of this

module is to calculate a variance score for an intra macro block. Shown in Figure 4.29

is the static structure:

As seen, this module has one lower level module called GetIntraError which performs

the function of finding the intra error for one fragment. Shown in Figure 4.30 is the

activity diagram for the GetMBIntraError module.

The flow of logic is fairly simple as can be seen. The function incrementally adds

together the intra errors for those blocks in the macro block that are coded (Y only)

and returns an “IntraError” for the MacroBlock.

90

Figure 4.29: Class Diagram of the GetMBIntraError module

91

Figure 4.30: Activity Diagram of the GetMBIntraError module
92

GetMBInterError

This module is one level below the PickModes described earlier. The function of this

module is to calculate a variance score for an inter MB with motion vectors.

As in seen in the static structure of the module in Figure 4.31, it has one lower level

module GetInterErr which is used to find the Inter Error for each block. The functioning

of this module is illustrated in Figure 4.32 in the activity diagram:

To start with, pixel offsets of the source buffer and the reference buffer (taking into

account the default motion vector) are computed. Following this a second reference

pointer is computed for odd values of X or Y. We then proceed block by block (Y only)

, and send the source pointer, and two reference pointers for the lower level block to

compute an “inter” error. The block errors are all added up and returned as an “inter”

error for the macroblock.

GetMBMVInterError

This module is once again one level below the PickModes module and its purpose is

to calculate a fresh Motion Vector using a heirachical search. As described earlier, this

module is called when Intra and Inter Errors using the default motion vectors do not

bring about a sufficiently large improvement in error scores. Refer to Figure 4.33 for

the class diagram.

This module has a number of lower level modules namely the GetSumAbsDiffs,

GetNextSumAbsDiffs, GetHalfPixelSumAbsDiffs, GetMBInterError used to calculate

the Sum of Absolute Differences for a block in the current frame with one in a reference

frame, Sum of Absolute Differences at half pixel accuracy (by averaging two pixels in

the reference frame) for a block in the current frame with one in a reference frame, and

to find the MB Inter Error as described earlier. The activity diagram is shown in Figure

4.34:

93

Figure 4.31: Class Diagram of the GetMBInterError module

94

Figure 4.32: Activity Diagram of the GetMBInterError module 95

Figure 4.33: Class Diagram of the GetMBMVInterError module

96

Figure 4.34: Activity Diagram of the GetMBMVInterError module

97

The first stage consists of initialisations. A note is then made of which of the

fragments in the macroblock are coded. Pointers are then set up for the source blocks

and the reference block. The first step is the find the sum of absolute differences between

the source and reference blocks using a (0,0) motion vector.

Following this, we go through a pre-decided number of search steps to search for a

new motion vector. At each search step, we set one pointer to the source pixel and the

reference pointer, in turn, to the 8 surrounding pixels to the (0,0) reference pointer. For

each of these 8 vectors, in each of the numerous search steps, an error score is computed.

The best error and the corresponding motion vector is remembered.

Now the vectors are factored to do the half pixel pass. The reference pointer is set

to the best reference pointer found through the last pass. We then get the half pixel

error for each half pixel offset from this reference pointer location. Finally, we get the

error score for the chosen 1/2 pixel offset as a variance and return the score of the best

matching block.

GetMBMVExhaustiveSearch

This module is one level below the PickModes module and its purpose is to calculate

a macro block Motion Vector using an exhaustive search as opposed to the hierarchical

search adopted by the previous module. Refer to Figure 4.35 for the class diagram.

This module has a number of lower level modules namely the GetSumAbsDiffs,

GetHalfPixelSumAbsDiffs, GetMBInterError used to calculate the Sum of Absolute Dif-

ferences for a block in the current frame with one in a reference frame, Sum of Absolute

Differences at half pixel accuracy (by averaging two pixels in the reference frame) for a

block in the current frame with one in a reference frame, and to find the MB Inter Error

as described earlier. The activity diagram is shown in Figure 4.36.

The first stage consists of initialisations. A note is then made of which of the

98

Figure 4.35: Class Diagram of the GetMBMVExhaustiveSearch module

Figure 4.36: Activity Diagram of the GetMBMVExhaustiveSearch module

99

fragments in the macroblock are coded. Pointers are then set up for the source blocks

and the reference block. The reference pointer is set back in the x and y directions by

a pre-decided “maximum MV extent” which determines the maximum search distance

in half pixel increments that we are allowed to undertake.

To start with, the whole range (MaxMVExtent*MaxMvExtent) of pixels is traversed

by the reference pointer and the sum of absolute differences is found at each point. The

best error and the corresponding motion vector is noted after this process.

The vectors are then factored to 1/2 pixel resolution. The reference pointer is set

to the best pointer found earlier and the the half pixel error for each half pixel offset

is obtained. Finally, the error score for the chosen 1/2 pixel offset as a variance is

computed and we return the score of the best matching block.

GetFOURMVExhaustiveSearch

This module is one level below the PickModes module and its purpose is to calculate a

Motion Vector for each Y block in a macro block using an exhaustive search as opposed

to finding one for the entire macroblock as in the previous module. Refer to Figure 4.37

for the class diagram.

This module has a number of lower level modules namely the GetSumAbsDiffs,

GetHalfPixelSumAbsDiffs, GetMBInterError used to calculate the Sum of Absolute Dif-

ferences for a block in the current frame with one in a reference frame, Sum of Absolute

Differences at half pixel accuracy (by averaging two pixels in the reference frame) for a

block in the current frame with one in a reference frame, and to find the MB Inter Error

as described earlier. The activity diagram is shown in Figure 4.38 and Figure 4.39:

The 4MV mode is only deemed to be valid if all four Y blocks are to be updated.

Hence this is first verified. If this is found to be true, we first reset the error score and

then get the error component from each coded block.

100

Figure 4.37: Class Diagram of the GetFOURMVExhaustiveSearch module 101

Figure 4.38: Main Activity Diagram of the GetFOURMVExhaustiveSearch module

102

Figure 4.39: A Sub Activity Diagram of the GetFOURMVExhaustiveSearch module

103

The process of getting the error component for a particular block is as follows.

Firstly initialisations are performed. Pointers are then set up for the source block and

the reference block. The reference pointer is set back in the x and y directions by the

pre-decided “maximum MV extent” which was described in the previous module.

To start with, the whole range (MaxMVExtent*MaxMvExtent) of pixels is traversed

by the reference pointer and the sum of absolute differences is found at each point for

this particular block. The best error and the corresponding motion vector is noted after

this process.

The vectors are then factored to 1/2 pixel resolution. The reference pointer is set

to the best pointer found earlier and the the half pixel error for each half pixel offset

is obtained. Finally, the error score for the chosen 1/2 pixel offset as a variance is

computed and we return the score of the best matching block.

QuadCodeDisplayFragments

This module is the only module below the UpdateFrame module described earlier. The

purpose of this module is to code the frame using the quad tree method. Refer to Figure

4.40 for the class diagram.

This module has a number of lower level modules as can be seen, namely the Quad-

CodeComponent, DPCMTokeniseBlock, and PackCodedVideo blocks whose function it

is to code the display fragments array of a particular component (plane) of the frame,

tokenise a DCT block, and create an output bitstream repectively.

104

Figure 4.40: Class Diagram of the QuadCodeDisplayFragments module

105

F
ig

ur
e

4.
41

:
A

ct
iv

it
y

D
ia

gr
am

of
th

e
Q

ua
dC

od
eD

is
pl

ay
Fr

ag
m

en
ts

m
od

ul
e

106

Figure 4.41 describes the dynamic behaviour of this module. To start with ini-

tialisations are performed. We then proceed to encode and tokenise the Y, U and V

components with the help of the QuadCodeComponent module. The next few steps are

repeated for each of the three planes (Y,U,V). First we initialize our array of last used

DC Components. We then traverse the whole plane, fragment by fragment. We then

proceed to perform prediction if fragment is coded and is on a non intra frame, or if all

fragments are intra. The prediction is performed as follows. For each block, the original

DC values of the surrounding blocks are found. We also decide which of these fragments

can be used for prediction. Only fragments which are coded and which come from the

same frame as the one we are predicting satisfy this condition. If no suitable predictor

is found around the block we find the nearest one that is coded. If none match we fall

back to the last one. On the other hand if a suitable predictor is found, we compute

a predictedDC value based on the surrounding DC coefficient values and subtract this

value computed from the quantised data.

We then pack the DC tokens and adjust the ones we couldn’t predict. Following this

we bit pack the video data using the packcodedvideo module, and end the bit packing

run. Finally we measure the inter reconstruction error for all the blocks that were coded

for use as part of the recovery monitoring process in subsequent frames.

GetIntraError

This simple module is contained within the GetMBIntraError module described earlier

and performs the function of calculating a variance score for a block. Refer to Figure

4.42 for the class diagram.

This module is a leaf module and contains no further sub modules.

The activity diagram of the module is shown in Figure 4.43 and is very simple. The

function finds the sum of each pixel location and the sum of squares of the difference of

107

Figure 4.42: Class Diagram of the GetIntraError module

108

Figure 4.43: Activity Diagram of the GetIntraError module

109

each pixel with 255. Finally it computes a population variance as mismatch metric.

GetInterErr

This simple module is contained within the GetMBInterError module described earlier

and performs the function of calculating a difference error score for two blocks. Refer

to Figure 4.44 for the class diagram.

Figure 4.44: Class Diagram of the GetInterErr module

110

This module is a leaf module and contains no further sub modules.

111

F
ig

ur
e

4.
45

:
A

ct
iv

it
y

D
ia

gr
am

of
th

e
G

et
In

te
rE

rr
m

od
ul

e

112

The activity diagram of the module is shown in Figure 4.45. Firstly, a mode of

interpolation is chosen based upon on the offset of the second reference pointer. (one

reference / two reference interpolation) If it is a simple one reference interpolation, the

function finds the sum of the difference of each pixel location between the two blocks,

and the sum of the square of the difference of each pixel location between the two blocks

minus 255. For a two reference interpolation, the function finds the sum of the difference

of each pixel location in the source frame with the average of two pixel locations in the

reference frame, and the sum of the square of the value found earlier minus 255. Finally

it computes a population variance as mismatch metric.

GetSumAbsDiffs

This module is contained within a number of higher level modules described earlier

and, as can be expected, performs the function of calculating the sum of the absolute

differences. Refer to Figure 4.46 for the class diagram.

This module is a leaf module and contains no further sub modules.

The activity diagram of the module is shown in Figure 4.47. The functioning is very

simple. The function goes to each pixel in the source and reference blocks and finds the

sum of the absolute difference between the two pixels.

GetNextSumAbsDiffs

This module is contained within a number of higher level modules described earlier

and, as can be expected, performs the function of calculating the sum of the absolute

differences but with a minor difference namely that of having a breakout clause.Refer

to Figure 4.48 for the class diagram.

This module is a leaf module and contains no further sub modules.

The activity diagram of the module is shown in Figure 4.49. The functioning is very

113

Figure 4.46: Class Diagram of the GetSumAbsDiffs module

114

Figure 4.47: Activity Diagram of the GetSumAbsDiffs module

115

Figure 4.48: Class Diagram of the GetNextSumAbsDiffs module

116

Figure 4.49: Activity Diagram of the GetNextSumAbsDiffs module

117

simple. The function goes to each pixel in the source and reference blocks and finds the

sum of the absolute difference between the two pixels. The module stops accumulating

error values when the error value exceeds the best error found so far.

GetHalfPixelSumAbsDiffs

This module is contained within a number of higher level modules described earlier

and, as can be expected, performs the function of calculating the sum of the absolute

differences against half pixel interpolated references. Refer to Figure 4.50 for the class

diagram.

This module makes use of the GetSumAbsDiffs module described earlier.

The activity diagram of the module is shown in Figure 4.51. The reference offset,

or the difference in the locations pointed to by the two reference pointers is calculated.

If this offset is zero, we proceed to find a simple Sum of Absolute Differences making

use of the GetSumAbsDiffs lower level module. If not, the function goes to each pixel

in the source and reference blocks and finds the sum of the absolute difference between

the source pixel and the average of two pixels pointed to by the two reference pointers.

The module stops accumulating error values when the error value exceeds the best error

found so far.

QuadCodeComponent

This module is one of the sub modules of the QuadCodeDisplayFragments module de-

scribed earlier. It codes the display fragments array as a quad-tree starting with 32x32

Super-Blocks, then 16x16 Macro-Blocks, and finally 8x8 Blocks. Refer to Figure 4.52

for the class diagram.

This node has one child , the ’TransformQuantizeBlock’ module whose purpose it

is to DCT transform and quantise the block. The activity diagram of this module is

118

Figure 4.50: Class Diagram of the GetHalfPixelSumAbsDiffs module 119

Figure 4.51: Activity Diagram of the GetHalfPixelSumAbsDiffs module
120

Figure 4.52: Class Diagram of the QuadCodeComponent module

121

shown in Figure 4.53.

Figure 4.53: Activity Diagram of the QuadCodeComponent module

It starts with various initialisations. We then proceed to actually transform and

quantize the image now that we’ve decided on the modes. We parse the image in

quad-tree ordering. For each Superblock in a superblock row , for each superblock in a

superblock column, and for each macroblock in that superblock, we go block by block,

122

checking for whether the block lies in the frame and whether it is coded. If it is we

proceed to transform and quantise the block with the help of the lower level module. If

the block has not got struck off (no MV and no data generated after DCT)we mark it

and the associated MB as coded and create a linear list of coded block indices. Finally,

if this macroblock is marked as coded and we are in the Y plane then the mode list

needs to be updated. We therefore make a note of the selected mode in the mode list.

DPCMTokeniseBlock

This module is another one of the sub modules of the QuadCodeDisplayFragments

module described earlier. It codes a DCT block under the assumption that motion

vectors and modes are defined at the macroblock level. Refer to Figure 4.54 for the

class diagram.

Figure 4.54: Class Diagram of the DPCMTokenizeBlock module

123

As seen above this module is a leaf node and has no further children.

Figure 4.55: Activity Diagram of the DPCMTokenizeBlock module

The main activity diagram is shown in Figure 4.55. To start with, initialisations are

performed. The coding mode for the block is then determined. Once done, we proceed

to tokenise the DCT block. The activity diagram for this process is shown in Figure

4.56.

124

F
ig

ur
e

4.
56

:
A

ct
iv

it
y

D
ia

gr
am

of
th

e
T
ok

en
iz

eD
C

T
B

lo
ck

m
od

ul
e

of
th

e
D

P
C

M
T
ok

en
iz

eB
lo

ck
m

od
ul

e

125

The above activity diagram describes the tokenising process which encodes a DCT

block into a stream of tokens. Most tokens are followed by an additional bits (up to 8

bits of additional data). As described in the overview of VP3, RLE is used to record

the number of zero-value coefficients that occur before a non-zero coefficient. We first

run through the block, searching for a zero run. A short zero run followed by a low data

value is coded as a composite token. If there is a long non-EOB run or a run followed

by a value token ¿ MAX RUN VAL then the run and token are coded separately. The

values are then tokenized as a category value and a number of additional bits that define

the position within the category.

PackCodedVideo

The PackCodedVideo module is another one of the sub modules of the QuadCodeDis-

playFragments module described earlier. It takes the encoded token lists etc. and creates

an output bitstream. Additional restrictions to control bitrate are also applied at this

point. Refer to Figure 4.57 for the class diagram.

PackCodedVideo performs a number of functions which it deputes to a number of leaf

modules shown in the UML static diagram. These are the ClearDownQFragData, En-

codeAcTokenList, EncodeDcTokenList, PackAndWriteDFArray, and PackModes mod-

ules.

As seen in Figure 4.58, we first perform various initialisations and reset the count

of second order optimised tokens. We then calculate the bit rate at which this frame

should be capped and blank the various fragment data structures before we start. If

the frame is not a key frame, we pack the quad tree fragment mapping. We then pack

and code the mode list and motion vectors. Each token is then packed followed by

any outstanding EOB tokens. We then output the optimised DC token list using the

appropriate entropy tables as described in the huffman coding process described earlier.

126

Figure 4.57: Class Diagram of the PackCodedVideo module

127

Figure 4.58: Activity Diagram of the PackCodedVideo module

128

The Ac tokens are then optimised and packed followed by any outstanding EOB tokens

and finally outputted using the appropriate entropy tables.

TransformQuantizeBlock

This is a submodule of the QuadCodeComponent Block which codes a plane of the

frame. The purpose of the block is to transform and quantise a block of data. Refer to

Figure 4.59 for the class diagram.

As can be seen this block performs the transform and quantise process with the

assistance of a number of lower level modules like the SUB8, SUB8 128, fdct short,

quantize, and MotionblockDifference which perform the functions of subtracting 2 8X8

blocks, either from each other or by 128, performing dct on the data and quantising the

data or computing motion block residues.

The activity diagram is shown in Figure 4.60. First initilisations are performed and

pointers initialised to the relevant buffers. Depending on whether it is a Y plane or UV

plane various parameters are set. The coding mode for the block is then found out and

set followed by the selection of the quantiser matrix and other plane related values. If

the coding mode uses motion vectors we call the motionblockdifferences module to find

block differences otherwise we call either the SUB8 or the SUB 128 module to find block

differences depending on coding mode. Finally a 2D DCT transform is performed on

the data and that transformed data is quantised.

ClearDownQFragData

This is a very simple sub module of the PackCodedVideo module. Its function is to clear

down the data structure that is used to store quantised dct coefficients for each block.

Shown in Figure 4.61 and Figure 4.62 are its static and dynamic UML descriptions

respectively.

129

Figure 4.59: Class Diagram of the TransformQuantizeBlock module

130

Figure 4.60: Activity Diagram of the TransformQuantizeBlock module

Figure 4.61: Class Diagram of the ClearDownQFragData module

131

Figure 4.62: Activity Diagram of the ClearDownQFragData module

Its a very simple activity diagram. We merely run through the quantised fragment

data buffer and set the values to zero.

EncodeDcTokenList

The EncodeDcTokenList is a sub module of the PackCodedVideo which as described

earlier is responsible for taking the encoded token lists etc. and creating an output

bitstream. This module in particular performs the function of outputting the DC token

list using the selected entropy method. Refer to Figure 4.63 for the class diagram and

Figure 4.64 for the activity diagram.

This is a leaf node as can be seen.

We start with initialisations. We then analyse the token list to see which is the

best entropy table to use by first working out the number of bits required with each

table option and then working out which table option is best for the Y plane. The DC

Huffman table choice is then added to the bitstream. We proceed to do the same for

the UV plane and finally encode the token list.

132

Figure 4.63: Class Diagram of the EncodeDcTokenList module

133

Figure 4.64: Activity Diagram of the EncodeDcTokenList module 134

EncodeAcTokenList

The EncodeAcTokenList is another sub module of the PackCodedVideo described ear-

lier. This module performs the function of outputting the AC token list using the

selected entropy method.Refer to Figure 4.65 for the class diagram and Figure 4.66 for

the activity diagram.

Figure 4.65: Class Diagram of the EncodeAcTokenList module

This is a leaf node as can be seen.

We start with initialisations. We then analyse the token list to see which is the best

entropy table to use by first working out the number of bits required with each table

option and then working out which table option is best for the Y plane. The AC-Y

Huffman table choice is then added to the bitstream. We proceed to do the same for

135

Figure 4.66: Activity Diagram of the EncodeAcTokenList module
136

the UV plane and finally encode the token list.

PackAndWriteDFArray

This module is a sub-module of the PackCodedVideo module and packs and writes the

list of coded/uncoded blocks.Refer to Figure 4.67 for the class diagram and Figure 4.68

for the activity diagram.

This is a leaf node and has no children.

The workspaces and variables are initialised as usual. We then traverse each block

of each macroblock in each superblock. We check and assign the status of whether it

is fully/partially/not coded. We then first code the list of partially coded Super-Block

using an RLE scheme. Next, the partially coded blocks are skipped and the fully coded

blocks are encoded. Finally the block flags are coded.

PackModes

This is another sub module of the PackCodedVideo module which encodes and packs

the mode list.Refer to Figure 4.69 for the class diagram and Figure 4.70 for the activity

diagram.

This is a leaf node and has no children.

After initialisations are performed, a frequency map for the modes in this frame are

built. The modes are then arranged from the most to the least frequent. All the schemes

are then traversed and a bit score is found for each scheme which basically means the

total bits to code using each available scheme. The best scheme is then outputted into

the buffer. Finally the Mode list is packed and encoded.

137

Figure 4.67: Class Diagram of the PackAndWriteDFArray module
138

Figure 4.68: Activity Diagram of the PackAndWriteDFArray module

139

Figure 4.69: Class Diagram of the PackModes module

140

Figure 4.70: Activity Diagram of the PackModes module

141

PackMotionVectors

This is another sub module of the PackCodedVideo module which encodes and packs

the motion vector list.Refer to Figure 4.71 for the class diagram and Figure 4.72 for the

activity diagram.

This is a leaf node and has no children.

After initialisations are performed,a coding method is first chosen. We then select

an entropy table and then pack and encode the motion vectors.

PackToken

This is another sub module of the PackCodedVideo module which packs a token for

the given fragment.Refer to Figure 4.73 for the class diagram and Figure 4.74 for the

activity diagram.

This is a leaf node and has no children.

After initialisations are performed, the record of what coefficient we have got up to

for this block is updated and the encoded token is unpacked back into the quantised

data array. The record of tokens coded and where we are in this fragment is updated

followed by the counts of tokens coded. If the token is an EOB token, the run length is

incremented followed by checks on the run length size. If the maximum size is exceeded

the EOB run is packed and encoded. If the token is not an EOB token, we mark out

which plane the block belonged to, then note the token, extra bits and huffman table in

the optimised token list.

SUB8

This is a very simple module used to subtract 2 8x8 blocks. It is a sub module of the

transformquantise block described earlier. Shown in Figure 4.75 and Figure 4.76 are its

static and dynamic UML descriptions respectively.

142

Figure 4.71: Class Diagram of the PackMotionVectors module

143

Figure 4.72: Activity Diagram of the PackMotionVectors module

144

Figure 4.73: Class Diagram of the PackToken module

145

Figure 4.74: Activity Diagram of the PackToken module

146

Figure 4.75: Class Diagram of the SUB8 module

147

This is a leaf node and has no children.

Figure 4.76: Activity Diagram of the SUB8 module

The function runs through each pixel of the block and finds the difference between

the pixels of the two blocks and stores the result in a resulting “Difference block” which

is then used as an input to the DCT process.

SUB8 128

This is a very simple module used to subtract 128 from each pixel of a 8x8 block. It is

a sub module of the transformquantiseblock module described earlier. Shown in Figure

4.77 and Figure 4.78 are its static and dynamic UML descriptions.

This is a leaf node and has no children.

The function runs through each pixel of the block and finds the difference between the

148

Figure 4.77: Class Diagram of the SUB8 128 module

149

Figure 4.78: Activity Diagram of the SUB8 128 module

150

pixel and 128 and stores the result in a resulting “Difference block” which is then used

as an input to the DCT process. This converts the data to 8 bit signed (by subtracting

128)and reduces the internal precision requirements in the DCT transform.

fdct short

The fdct short module performs a DCT transform on the data. It is a submodule of

the transformquantiseblock module. The UML diagrams are shown in Figure 4.79 and

Figure 4.80.

Figure 4.79: Class Diagram of the fdct short module

This is a leaf node and has no children.

The activity diagram describes the transform. We first start with the rows. Firstly

some common sums and differences used in the calculation are calculated. Following this

some commonly used product terms are calculated. We then define inputs to rotation

for outputs 2 and 6 and apply rotation for outputs 2 and 6. The same is repeated for

1,7 and 3,5. The exact same procedure is now repeated with the columns.

151

Figure 4.80: Activity Diagram of the fdct short module

152

quantize

The quantize module quantizes a block of pixels by dividing each element by the cor-

responding entry in the quantization array. Output is in a list of values in the zig-zag

order. The module acts on the block to by quantized and outputs the quantized values

in zig-zag order. It is a submodule of the transformquantiseblock module. The UML

diagrams are shown in Figure 4.81 and Figure 4.82.

Figure 4.81: Class Diagram of the quantize module

This is a leaf node and has no children.

The activity diagram describes the module. We simple go through each pixel in the

block and multiply it with the quantising coefficient with the quantised values being

capped at +/-511.

153

Figure 4.82: Activity Diagram of the quantize module

MotionBlockDifference

This is a very simple module used to compute the motion block residues, after filtering

internal edges in the reference block. This is used when the coding mode involves a mo-

tion vector. It is a sub module of the transformquantiseblock module described earlier.

Shown in Figure 4.83 and Figure 4.84 are its static and dynamic UML descriptions.

This module has two children the SUB8 module described earlier and the SUB8AV2

module for calculating block differences.

After initilisations the function calculates a baseline offset for the motion vector,

works out the offset of the second reference position for 1/2 pixel interpolation and

finally decides upon the reference pointers. If the motion vector offset is exactly pixel

aligned we call the SUB8 module to find a simple difference. For fractional pixel Motion

Vectors we call the SUB8AV2 module which uses two pixel values.

154

Figure 4.83: Class Diagram of the MotionBlockDifference module

155

Figure 4.84: Activity Diagram of the MotionBlockDifference module

SUB8AV2

This is a very simple module used to subtract 2 8x8 blocks. It is a sub module of the

MotionBlockDifference block described earlier. Shown in Figure 4.85 and Figure 4.86

are its static and dynamic UML descriptions.

This is a leaf node and has no children.

The function runs through each pixel of the block and finds the difference between

the pixels of the source block and an average of two pixels from the reference block and

stores the result in a resulting “Difference block” which is then used as an input to the

DCT process.

RegulateQ

This is a submodule of the top most module VP3Encoder. If appropriate this function

regulates the DCT coefficients to match the stream size to the available bandwidth

156

Figure 4.85: Class Diagram of the SUB8AV2 module

157

Figure 4.86: Activity Diagram of the SUB8AV2 module

158

(within defined limits). Shown in Figure 4.87 and Figure 4.88 are its static and dynamic

descriptions.

This is a leaf node and has no children.

The function after performing initilisations, traverses the whole Q table and searches

for the best Q for the target bitrate, by getting an estimate of the bytes per block that

will be achieved at the given Q. After finding the optimal Q value, it applies range

restrictions for key frames. Finally, if the quantiser value has changed it is re-initialised.

UpRegulateDataStream

This is a submodule of the top most module VP3Encoder. This function uses up spare

bandwidth when not much is going on to refresh quality. Shown in Figure 4.89 and

Figure 4.90 are its static and dynamic descriptions.

This is a leaf node and has no children.

As is seen above, after initilisations, the number of blocks in an MB is deducted

from the recover block count. This compensates for the fact that once we start checking

an MB we test every block in that macro block. Then Up regulate blocks last coded at

higher Q. Finally, If we have still not used up the minimum number of blocks and are

at the minimum Q then run through a final pass of the data to insure that each block

gets a final refresh.

Verification and Synthesis

The modules were translated to SystemC, the lower level details filled in and the design

was simulated. Pure 640X480 frames captured using a Creative NX Pro webcam were

written to a file. These were then encoded using the encoder and later decoded by the

original VP3 decoder. The images were successfully reproduced and the encoder was

found to be functioning as per expectations.

159

Figure 4.87: Class Diagram of the RegulateQ module
160

Figure 4.88: Activity Diagram of the RegulateQ module

161

Figure 4.89: Class Diagram of the UpRegulateDataStream module

162

Figure 4.90: Activity Diagram of the UpRegulateDataStream module

163

Setting Value
Technology library tc6a cbcore.db
Synthetic library dw01.sldb, dw02.sldb
Map Effort low
Clock Period 10 ns
I/O Mode superstate
hlo resource allocation area only

Table 4.12: VP3 Encoder synthesis settings

The individual modules were all synthesised using Synosys Cocentric compiler with

the settings shown in Table 4.12. A summary of the synthesis results obtained are given

in Table 4.13 along with area of a Theora video encoder being developed for an FPGA

device.

The total gates for all modules is close to 700K comparable to the recently developed

theora video encoder (based on vp3 also) that sits in a 1000k FPGA device used in

the Elphel reconfigurable camera project. The exact gate count for that design is not

available.

4.3 A Comparison with HDL Design Flow

The typical HDL design flow is shown in Figure 1.11. As can be seen, the flow starts with

RTL/Behavioural description. It then proceeds to the Functional simulation, followed

by translation and optimisation and finally the netlist.

In Figure 4.91, an example design flow using VHDL is shown(?). It can be described

as follows.

1. Write a design description in the VHDL language. This description can be a

combination of structural and functional elements

2. Provide VHDL-language test drivers for your VHDL simulator. These drivers

supply test vectors for the simulation and gather output data.

164

Module ports nets cells refs comb.
area

non-
comb.
area

net
inter-
con
area

total
cell
area

total
area

gate
count

slack

ClearDownQFragData 101 2765 2298 76 4180 4677 30198 8858 39056 3035 0.07
DPCMTokenizeBlock 253 5460 5080 159 7460 6254 53859 13714 67573 5822 0.00
EncodeAcTokenList 613 25293 24765 177 30162 28564 221993 58726 280720 25881 0.00
EncodeDcTokenList 613 23398 22870 182 28223 25864 209903 54087 263991 25953 0.00
fdct short 101 52691 51744 193 91424 32375 602122 123814 725922 57844 0.01
GetFOURMVExhaustiveSearch1011 8811 8050 167 13593 13413 104315 27006 131322 9924 0.01
GetHalfPixelSumAbsDiffs 487 8191 7737 121 10366 14246 93617 24612 118229 8469 0.00
GetInterErr 237 10414 10017 147 17762 12487 132612 30250 162863 11923 0.00
GetIntraError 165 2700 2384 81 6818 3244 40045 10062 50107 4138 0.45
GetMBInterError 527 2736 2368 69 6737 4320 43678 11057 54736 4326 0.07
GetMBIntraError 295 1853 1597 62 2090 3367 19492 5458 24950 1763 0.61
GetMBMVExhaustiveSearch 1035 6654 6173 112 8365 11174 74911 19540 94451 6939 0.00
GetMBMVInterError 1277 7198 6772 115 8156 12107 79278 20264 99542 7089 0.00
GetNextSumAbsDiffs 269 12089 8428 230 24433 5895 122381 30329 152710 5288 0.03
GetSumAbsDiffs 237 5189 4777 101 7212 7063 55897 14276 70173 5202 0.01
MotionBlockDifference 1009 3280 2668 75 26889 7653 102342 34542 136885 10683 0.01
PackAndWriteDFArray 549 29195 27041 268 40279 29387 271877 69667 341545 30735 0.00
PackCodedVideo 3011 9537 7932 138 12209 11593 90648 23802 114451 9718 0.00
PackModes 549 20005 19531 173 23517 24541 182857 48058 230915 20942 -0.73
PackMotionVectors 549 40235 39771 207 40775 71777 384351 112549 496904 40902 0.00
PackToken 621 9406 8717 149 11726 17084 106497 28811 135308 9643 0.01
PickIntra 341 4944 4620 104 33396 10213 136073 43611 179684 13803 0.00
QuadCodeComponent 1303 5727 5014 97 5604 10156 55882 15761 71643 5112 0.06
QuadCodeDisplayFragments 4219 54796 52566 231 74776 58164 535152 132962 668093 56928 0.00
quantize 133 16692 15827 163 24898 24331 189480 49230 238710 18981 0.00
RegulateQ 693 36343 34847 197 130463 58027 686330 188528 874821 77595 0.00
SUB8 333 5224 4732 89 6723 8999 57683 15723 73406 5049 0.07
SUB8 128 165 9644 8398 123 13725 14972 104258 28698 132956 9990 1.69
SUB8AV2 365 8408 7906 117 10795 13624 94623 24419 119043 8425 0.00
TransformQuantizeBlock 1514 3537 2934 93 3131 8771 39459 11903 51362 3477 0.00
UpdateFrame 6697 35367 31454 208 123140 45373 575179 168538 743693 61991 -0.37
UpRegulateDataStream 741 17416 16839 167 47476 27995 252960 75472 328432 26627 0.00
VP3Encoder 6644 62217 58631 234 93864 110668 722422 204548 926955 74834 -0.01
Theora FPGA Video En-
coder (4i2i)

- - - - - - - - - sits
in
1000K
de-
vice

Table 4.13: Results obtained from synthesis of VP3Encoder modules

165

Figure 4.91: VHDL Design Flow Example using the Synopsys VHDL compiler

166

3. Simulate the design by using your VHDL simulator to verify the accuracy of the

description.

4. Synthesize the VHDL description with VHDL Compiler. VHDL Compiler per-

forms architectural optimizations, then creates an internal representation of the

design.

5. Use the Synopsys Design Compiler to produce an optimized gate-level description

in the target ASIC library. You can optimize the generated circuits to meet the

timing and area constraints you want. This optimization step must follow the

translation step (step 4) to produce an efficient design.

6. Use the Synopsys Design Compiler to output a gate-level VHDL description. This

netlist-style description uses ASIC components as the leaf-level cells of the design.

The gate-level description has the same port and module definitions as the original

high-level VHDL

HDLs provide higher level constructs than gate-level design. The enable easier veri-

fication. They also enable automatic conversion of these technology independent high-

level contructs like entities, if-else and other C-like control structures, processes/‘always’

blocks, variables/signals/wires/registers, into gates with the help of compilers.

In case of complex designs with a large number of modules design is gaining an

ever-increasing importance. This is where design constructs such as those specified by

UML (class diagrams, activity diagrams/statecharts) help. The design flow proposed in

this thesis is shown in Figure 2.1.

As can be seen the flow begins with the requirement specification, functional specifi-

cation, and scenarios from which the UML model contructs are generated. These UML

models are then translated into synthesisable SystemC contructs (which are at the same

level as traditional HDLs) thus reducing the time taken from design to HDL level.

167

While HDLs are still important at the low level, this method helps to define the

control structure and static structure of the design which is increasingly becoming more

complex to capture. The method is therefore a means to improve productivity and

accuracy at high level. Low level optimisation for area and speed does not fall within

the realm of the methodology.

In terms of coding time, this methodology reduces the design, and translation to

HDL time. It also reduces the number of design iterations through greater focus on

high level specification.

168

Chapter 5

Conclusion

The work of this thesis covered three main areas namely, the definition of UML syntax

for describing hardware, building of a UML-SystemC translator to act as a UML model-

compiler to produce synthesisable SystemC code, and creating designs based on the

syntax , using the tool created. Three main ways of representing designs were defined,

class diagrams for static structures, and statecharts and activity diagrams for dynamic

structures. A mixture of these elements was employed depending on the nature of the

design.

The UML based methodology was found to be an effective method in designing small

as well as large digital systems where preliminary conceptualisation and analysis played

a crucial role. The method was tested on a number of designs, the largest of which was

the VP3 video encoder. The results obtained are comparable to that obtained through

traditional methods. This method does not obviate the need for low level optimisation.

It merely provides tools for a more streamlined approach for defining designs with an

elaborate control structure.

While this effort is a crucial link in the design flow, the upstream requirement spec-

ification and analysis is equally important. In fact it is imperative to find ways to

automate generation of UML diagrams from user requirements and scenarios (which is

169

another area of work in the DSA lab) as very large systems mean very many diagrams,

most of which involve large amounts of repetitive work and which must be automated

for greater productivity. Many UML tools provide scripting options for this purpose

which must be exploited to achieve greater gains in time.

170

Bibliography

El Mustapha Aboulhamid, Mike Baird, and Bishnupriya Bhattacharya et al. SystemC

2.0.1 Language Reference Manual, Revision 1.0. Open SystemC Initiative, 2003.

F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, Jurecska A, L. Lavagno, C. Passerone,

A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-

Software Co-Design of Embedded Systems: The Polis Approach. Kluwer Academic

Press, June 1997.

G de Jong. A uml-based design methodology for real-time and embedded systems. In

Proceedings of the Design Automation and Test in Europe (DATE)02, pages 776–778,

2002.

C Drosos, D Metafas, and G.Papadopoulos. A uml-based methodology for the system

design of a wireless lan prototype. In Proceedings of the Seventh IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing (ISORC04), pages

45–51, 2004.

D. Drusinsky and D. Harel. Using statecharts for hardware description and synthesis.

In IEEE Trans. on CAD, pages 798–807, 1989.

Tom Fitzpatrick. Systemverilog for vhdl users. In Proceedings of the Design, Automation

and Test in Europe Conference and Exhibition (DATE04), pages 1530–1591/04, 2004.

W. Fornaciari, P. Micheli, F. Salice, and L. Zampella. A first step towards hw/sw

171

partitioning of uml specifications. In Proceedings of the Design, Automation and Test

in Europe Conference and Exhibition (DATE’03), page 10668, 2003.

D. Harel. Statecharts: A visual formalism for complex systems. In Science of Computer

Programming, pages 231–274, 1987.

Grant Martin. Uml for embedded systems specification and design: Motivation and

overview. In Proceedings of the Design Automation and Test in Europe (DATE)02,

pages 773–775, 2002.

OMG. OMG Unified Modeling Language Specification. OMG, 2003.

Zhu Qiang, Matsuda Akio, Kuwamura Shinya, Nakata Tsuneo, and Minoru Shoji. An

object-oriented design process for system-on-chip using uml. In Proceedings of the

15th international symposium on System Synthesis, pages 249–254, 2002.

Terry Quatrani. Visual Modeling with Rational Rose 2002 and UML. Addison Wesley

Professional., 2002.

Inc. Synopsys. Synthesizable abstraction levels and Cocentric support. Synopsys, Inc.,

Jan 2002a.

Inc. Synopsys. Describing Synthesizable RTL in SystemC TM. Synopsys, Inc., Nov

2002b.

Chen Xi, Xu Ningyi, and Zhou Zucheng. A methodology for systemc algorithmic model

verification applying matlab. In ASIC, 2003. Proceedings. 5th International Confer-

ence on, pages 294 – 297, 2003.

172

	Acknowledgments
	Summary
	Introduction
	SystemC
	The SystemC Platform
	Review of the SystemC language
	SystemC Language Architecture

	UML
	Use case diagrams
	Class diagrams
	Package and Object diagrams
	Sequence diagrams
	Collaboration diagrams
	Statechart diagrams
	Activity diagrams
	Component and deployment diagrams

	A Survey of Existing and Emerging Approaches
	Pure HDL based coding
	SystemC
	MATLAB
	SystemVerilog (www.systemverilog.org)
	UML for hardware design
	Model-driven architecture

	Thesis contributions

	UML Driven design methodology
	Modelling styles
	UML constructs employed
	Class Diagrams
	Statecharts
	Activity Diagrams

	The UML-SystemC Translator
	Class Parsing and code generation
	Statechart parsing and code generation
	Basic translation Schema
	Compound Transitions
	Hierarchy
	History States
	Concurrency

	Case Studies
	Experimental Tools
	ArgoUML
	Rational Rose Enterprise Edition 2002
	The UML-SystemC Translator
	Cocentric SystemC Compiler

	Design Implementation
	JPEG Encoder
	MAC Controller
	FIR Filter
	FFT
	FIFO
	VP3 Video Encoder

	A Comparison with HDL Design Flow

	Conclusion

