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V 

Summary 

Biological information is complex due to numerous ways how biological entities 

affect each other. Human comprehension of this information is easier if the information is 

in a graphic form. However, different biological problems require different types of 

information to be presented and thus graphical information is dependent on the type of 

problem in question and equally on the type of data from which the representation is 

generated. In this study I focused on preparation of data for graphical representation and 

graphical presentation of information for several transcription regulation problems. The 

problems investigated were: a/ annotation of human promoters by transcription factor 

binding sites (TFBSs), b/ distribution of DNA motifs in a set of sequences, c/ networks of 

genes and associated TFBSs or motifs. In this process, a database of annotated human 

promoters with interactive graphical representation of the promoter content is developed 

where user can visualize distribution of individual TFBSs and pairs of TFBSs across the 

promoter and also find basic information on the TFBSs. Two novel heuristic models 

(based on expectation maximization and genetic algorithm) to identify motifs by ab-initio 

approach were developed and implemented. This allowed for the visualization of the 

distribution of motifs found across set of sequences and within individual sequences. 

Moreover, this served as a basis for producing data from which graphical representation 

of transcriptional regulatory networks were derived. The results developed in this study 

have been proven useful for the analysis of several transcription regulation problems as 

they allowed for inspection of complex relation between TFBSs/motifs and 

promoters/genes through relatively simple graphical representation. 
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 Chapter 1 Introduction 

1.1 Background 
 

The last decade has witnessed the dawn of a new era of ‘silicon-based’ biology. It 

is the first time that it became possible to investigate and make comparative analyses of 

complete genomes. In its broadest sense, genome analysis is underpinned by a number of 

pivotal concepts concerning structural properties of DNA and RNA, regulatory elements, 

transcription, RNA processing, translation, processes of evolution, mechanism of protein 

folding and, crucially, the manifestation of protein function.  

Currently, the completion of the Human Genome Project has generated huge 

amounts of genomic data. Additionally, other sequencing projects of other model 

organisms have also produced vast quantity of biological information. However, most of 

the genome data are ambiguous and uncharacterized, which become the major obstacle 

and challenge for the studies in molecular biology. 

Biological processes themselves are very complex and involve interaction of 

numerous entities. For example, a gene can be activated only after specific biochemical 

conditions are provided in the cell. These involve numerous transcription factors (TFs) 

and the polymerase complex. Transcription initiation of gene A will require several TFs 

to interact with the promoter of gene A. Thus, genes that produce these TFs have to be 

active earlier, as their final protein products, TFs, are required in this transcription 

initiation process, and so on. This is just a short snapshot of a very simplistic description 

of just one of the fundamental processes in cell biology, the gene transcription initiation. 

As can be seen, even in this simplistic explanation, many components are involved. To be 

able to analyze such complex information and some aspects of their mutual relationships, 
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it is convenient to present information graphically in some suitable form. Unfortunately, 

this is not an easy task and, moreover, the convenience of such graphic presentation is 

problem specific. 

Currently, great effort has been invested into suitable graphical representation of 

relevant information in bioinformatics, so as to cater for the various needs in biology 

research. Examples are system for the pathway processes for biological networks [38], 

structural gene and protein modeling [39, 40, 41], TF association information [14], etc. 

These systems utilize different graphical techniques and software to visualize the data 

and information.  

In the field of molecular biology, the current research drive is towards 

understanding of relationships between different participants in various biochemical 

processes [1]. One of the most interesting, but equally one of the most complex and yet 

insufficiently understood processes is transcription regulation. It is great challenge for a 

biologist to comprehend to the full extent the complexity of these processes and to be 

able to identify the major players that are involved in the process. In the last two decades 

a lot of research has focused on the identification of the regulatory regions, promoters, 

enhancers, silencers, of various genes in many species [2]. Identification of gene 

promoters has been recognized as an important practical and research problem and a 

necessary step in understanding the underlying genetic regulatory mechanism. It also 

complements new gene discovery, as well as the reconstruction of transcriptional 

regulatory networks for genes of interest. 
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Ambiguities and lack of information in the text-format of biological data are a 

major problem for biologists to infer correct interpretation. Therefore, nowadays, there 

has been a significant progress in visual representation of biological data. The great 

interest in this field is because it does provide the human-readable diagrammatic 

visualization of relations between the examined entities, which is more convenient and 

more suitable for human interpretation. To illustrate the point, let us consider situation in 

Fig 1.1 that depicts association between genes A, B and C. Genes A and C are not 

directly associated, but both of them are associated to gene B. Consequently, one can 

hypothesize that A and C are associated indirectly via gene B. Moreover, one can 

hypothesize that gene B plays an important role in the link between A and C. One typical 

situation for this would be if B represents a TF that controls both gene A and gene C.  

 

Figure 1.1 Illustration of the potential association of genes A and C viua interconnecting 
gene B. 

 

Although situation in Fig 1.1 is relatively simple, it demonstrates that suitable 

representation of data can enhance our ability to analyze that data and infer interesting 

possible relationships, which can further be subjected to more detailed analysis. One 

issue more that is worth mentioning in the context of graphical presentation of data is that 
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graphical presentation enhances our ability to observe complex structures in the relations 

contained in data. 

This study focuses on graphical presentation of information related to 

transcription regulation. Analysis of genes regulatory regions involves both wet-lab 

experiments and frequently computational analyses. Wet-lab experiments are 

unfortunately laborious and expensive, and they are not that efficient and effective at 

large-scale for tasks of identification of genes regulatory regions in the uncharacterized 

genomic sequence. Thus, computational methods can substantially support and accelerate 

this process. One of the key problems in characterizing regulatory regions is 

identification of TF binding sites (TFBSs). These are short DNA segments that bind TF 

regulatory proteins. We can computationally predict many TFBSs with the aim to 

generate shortlist candidates for experimental verification. However, not every predicted 

TFBS will be subjected to experimental verification as there will be tens of thousands 

predicted across a large genome. Thus, one has to shortlist the most interesting ones. One 

way to evaluate which of the many predictions represent the interesting ones, is to try to 

analyze what is the collection of genes that contain such TFBSs and do they have 

something else in common. It is also possible of cross-check the list of such genes with 

results from specific microarray studies to see if such genes show similar behavior. But, 

while it is easy to say ‘try to analyze’ the set of genes, it does not reveal the way how to 

do this. One approach that can help a lot is to try to present the relations that such genes 

have between themselves with links through TFs whose binding sites are found in genes’ 

promoters, such as, for example in Fig. 1.2 
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Figure 1.2 Illustration of the associations between the genes through TFs whose binding 
site are found in the genes’ promoters. The oval nodes represent TFs, while octagonal 
nodes represent target genes. The case corresponds to the mouse data. 

 

We also observe one other important problem. If one is interested to consider two 

genes associated with each other if their protein products are sufficiently similar 

(homology) then such two genes would be presented as two linked nodes, so very simple 

graphical representation. Such graphical representation would reflect association through 

gene product similarity and simple graphical representation will suffice. However, if one 

is interested in analyzing the transcriptional molecular mechanism that can provide such a 

link between these genes, then far more complex graphical representation results. Then, 

in addition to the genes of interest, we will also see TFs that potentially control them. 

Moreover, the data to be used for such graphical presentation has to contain such 

information. For example, even the best graphical representation software will not be able 
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to show links of genes and TFs that control them if the input data does not contain such 

information. Thus, we can conclude that graphical presentation is topic-specific 

(problem-specific), as it is suited to the goals of the analysis and it is also intimately 

intertwined with the data we provide for such representation. 

The focus of this study is graphical presentation of predicted promoter elements 

(PEs) in promoter regions. PEs represent motifs and TFBSs found in the DNA sequence, 

as well as the DNA strand where they are found. So, a PE that relates to NF-kappaB TF 

that binds on the + DNA strand of one promoter could thus be denoted as NF-kappaB/+1. 

Of course, we can add more information such as the exact DNA location of the NF-

kappaB motif. Promoter function is the result of the simultaneous effect of many 

composite functional modules involving numerous and specific combinations of PEs and 

their interaction with the available TFs, that is, two similar structural promoters might 

have different functional behaviors in terms of expression patterns of their respective 

genes depending on the internal organization of their PEs within their promoters. So, 

analysis of promoters is not a simple computational sequence-matching problem, because 

it not only involves the identification of potential PEs among the sequences, but also 

relies on the correlations of PEs among different promoters and consequently different 

genes. This, on the other hand, brings us directly to the utility of the graphical 

presentation of the part of that information, since tabular/text-type of information 

presentation will not be easy for interpretation. For example, if one wants to present 

interaction relations of the type as given in Fig 1.2 in the tabular/text format, it will be 

cumbersome and almost impossible to infer many connections between genes and 

numerous potential associations of TFs and genes in case there are a great number of 
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genes involved. Graphical representation, on the other hand, simplifies such insights in 

many cases. 

Before one can graphically present information about promoters and the potential 

regulatory networks they determine, PEs have to be identified within promoter sequences. 

There are a number of computational techniques that have been proposed in the past to 

identify such elements. The techniques generally can be divided into two categories, 

namely, general PE and specific PE identification. The different aims for the 

identification methodologies will result in different predictions relative to the specificity 

and sensitivity of the identification method that is applied.  

To extract the PEs effectively, local and global alignment techniques are 

developed mathematically to resolve the motif-mining problems. Different applications 

have been implemented in the BLAST [43], ClustalW [28], etc. These applications have 

become effective and reliable tools for the biologists to understand and analyze the 

biological information among sequences. However, these methods are not efficient for 

identification of short DNA sequences, such as TFs. For that reason many other 

specialized methods were developed. One set of such techniques deals with identification 

of short motifs from a set of DNA sequences [46]. The other group of techniques uses 

mapping of TFBSs for which models exist in the form of position weight matrices [45]. 

 

1.2 Research goals and assumptions 

This study aims at developing the suitable way to present graphically information 

related to PEs and more broadly transcription regulation, and associated with these the 
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methods to generate suitable data that can enable such graphical presentation. Therefore, 

the objectives of this research are to develop systems with the following functionalities: 

a) to perform the effective and efficient PE mining based on a heuristic algorithm 

b) to develop a suitable graphic representation of the basic PE/promoter information 

c) to develop graphical representation of networks for PEs identified in promoters. 

 

The research project could be decomposed into two main research problems, each 

of which consists of several sub-problems as following: 

1) Detecting the homogenous motifs among the sequences that include: 

 a/ developing heuristic algorithms (expectation maximization and genetic 

 algorithm) to extract the motifs; 

   b/ applying hidden Markov model (HMM) to generate the background sequences; 

 c/ determining the optimal motif prediction based on a statistical model. 

2) Developing graphical applications for specific biological information presentation to: 

a/ convert the text format of a biological database related to promoter annotation 

into format that allows for direct graphic representation; 

b/ generate the graphic report for PEs, associated with the heuristic algorithm for 

motif detection; 

c/ construct some types of biological interaction networks related to transcription 

regulation problems, such as networks of genes linked through common PEs 

found in their promoters. 
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There are several main contributions of this research: 

1) A database of annotated promoters with graphical presentation of the promoter 

content for a subset of human promoters is developed.  

2) Two new efficient algorithms for determination of motif by ab-initio approach 

were developed; this served as a basis for generation of transcriptional regulatory 

networks. 

3) A system for generating graphical presentation of transcriptional regulatory 

networks that can use motifs determined by ab initio methods or mapped TFBSs, 

is developed. 

 

For the problem of identification of motifs by the ab initio approach we need to 

introduce the following assumptions related to the prediction process and promoter 

functionality: 

1. A TF binds to a family of mutually very similar binding DNA sequences (these 

sequences we denote as homogeneous binding sequence set). 

2. Heuristics is a suitable methodology for identifying PEs. 

3. Promoters with similar structures contain many of the same PEs and their 

combinations.  

Based on these assumptions, the heuristic algorithms were developed. 

1.3 Layout of the thesis 

The first chapter gives an introduction to the problem and explains the 

background and the research goals.  
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The second chapter is an overview of molecular biology topics of interest to 

problems in this study, especially those for the functionalities of promoters. Also, that 

chapter describes current bioinformatics/computational methodologies for promoter 

analysis. 

In the third chapter, novel heuristic methods used to extract motifs from DNA 

sequences are described. Extensive research has been carried out to optimize the heuristic 

algorithms with control parameters. This is followed by the other developments and 

discussion of optimization for Hidden Markov Model and other statistical measures used. 

Based on the developed theoretical model, the computation results are presented to show 

the effects of different parameters and used to optimize the system to extract good motifs 

from the data.  

In the fourth, fifth, and sixth chapters, the development of graphical applications 

is presented. Different graphical presentation techniques to describe the relationship of 

the TF and genes have been analyzed. Chapter 4 describes the diagrammatic graphical 

database presentation. Some web-base applications for the graphical reports associated 

with the heuristic algorithms are presented in Chapter 5. An interaction PEs-promoter 

network is explained and illustrated in Chapter 6. 

The seventh chapter discusses the result of the developed motif search heuristic 

algorithms in terms of accuracy and efficiency, as well as comparison with some other 

methods. Moreover, we also comment the graphical presentation applications and 

techniques that we developed.  

Finally, the last chapter presents general conclusions of this study, followed by a 

possible future work.  
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Chapter 2 Literature Review 
 

As mentioned in Chapter 1, our interest is to explore the suitable graphical 

presentation techiques to visualize the complex biologicial information, especially in the 

topic of transcription regulation. Thus the fundmental knowledge on molecular biology 

and graphical tools are essential to assist us to develop the effective applications to cater 

for the current problems. In this chapter, we have literaturally reviewed on the basis of 

molecular biology, especially the transcription process. The computation algorithms to 

prepare motifs have been studies. Moreover, we also discussed the current graphical 

packages and their applications in the bioinformatics. 

 

The field of molecular biology is related to macromolecules and macromolecular 

mechanisms that are found in living organisms. Examples of such mechanisms could be 

the molecular nature of gene including gene replication, mutation, and expression. The 

field of molecular biology is synthesis of many other fields including genetics, physics, 

chemistry, medicine, etc. that were focused on the problems of the structure and function 

of genes [3].  

Several key discoveries have denoted various phases of molecular biology: 

• Cellular basis of heredity (chromosomes). 

• Molecular basis of heredity (DNA double helix). 

• Informational basis of heredity (mechanism of decoding information contained in 

genes and discovery of recombinant DNA). 
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• Finally, genome sequencing and large-scale throughput technologies that enable 

insights into gene identification and gene structure. 

After sequencing of the human genome that is completed in 2003, the current task 

is to understand and analyze that human genome sequence. This is complex and long-

term task. In line of this, in our research, the correlation of TFs and genes were 

investigated by means of heuristic and statistic approaches and convenient graphical 

presentations of these results have been developed. The graphical format for result 

presentation makes the analysis of these results, inference of new information, and 

inference of relations between the involved entities, more convenient than non-graphical 

format or reports. 

2.1 Basic of Molecular Biology 

Cells are the basic units of living organisms, with the exception of viruses whose 

structure and function are different from cells. All cells are divided into two types: 

prokaryotic cells and eukaryotic cells. 

The eukaryotic cell contains organelles, which are defined as membrane-bound 

structures such as nucleus, mitochondria, chloroplasts, endoplasmic reticulum (ER), 

Golgi apparatus, lysosomes, vacuoles, peroxisomes, etc. Prokaryotic cells do not have 

organelles. Eukaryotes are the organisms made up of eukaryotic cells.  They include 

protista, fungi, animals and plants.  Prokaryotes include archaebacteria and eubacteria, 

which are single-cell organisms.  

The genome is the complete set of genetic information inherited from the parents 

and comprises all the genes. The genome is physically presented in term of DNA, in 

which genes play a vital role by acting as a blueprint for the production of RNA and 
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proteins through the gene expression process. The gene expression involves a sequence 

of reactions between various molecules such as DNA, RNA and proteins. A eukaryotic 

organism contains the complete genome in the nuclei of most of the cells. In this study, 

we focus on the control factors for the gene expression in the process called transcription. 

2.1.1 DNA structure 

A DNA molecule consists of two strands, which are holding together by the 

hydrogen bonding between their bases and form a 3-D structure called double helix [3] as 

shown in Fig 2.1. DNA sequence has directionality (from 5’ end to the 3’ end) and in 

databases such sequences are usually presented in the 5' to 3' directions. 

 

Figure 2.1 Presentation of a double helix structure and chemical compound representation 
[4] 

 
The basic unit of DNA is a nucleotide, which comprises sugar-phosphate 

backbone and one of the four bases adenine (A), cytosine (C), guanine (G) and thymine 
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(T) as illustrated in Fig 2.2. A and G nucleotides (classified as purines) contain a pair of 

fused rings, while C and T (classified as pyrimidines) contain only one ring. 

 

Figure 2.2 Features of nucleotide: phosphate, pentose and base [4] 

In the helix strand, double hydrogen bond is formed between T and A in the 

different strands, while C forms a triple hydrogen bond with G between the strands. 

Hence, only one strand is used to represent the double strand sequence features, because 

the opposite strand is complement to the other.  

Human genome has size of 3 x 109 base pairs (bp) that approximately make 2 

meters in length [3]. However, it is presented in a highly compact form of chromosomes 

through the various levels of packaging [3]. 

 

2.1.2 Gene 

Genomic sequence consists of different structural patterns, which are also known 

as genomic features. It includes genes, regulatory elements, repetitive elements, etc., 

which may have specific functional and biological significance for the functionality of 

cells. 

Genes are regions of DNA sequence that encode information essential for the 

synthesis proteins and other molecules that are necessary for the correct functioning of 
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cells. Gene segment may be divided into regulatory and transcribed region. The 

regulatory region does not show a clear position relationship relative to the transcribed 

region. But they are essential for the expression of genes products (peptide or RNA). The 

transcribed region consists of exons and introns. Exons encode a peptide or functional 

RNA. Introns are separators that frequently contain regulatory elements necessary for 

transcription. Introns will be removed after transcription. The boundary between the 

exons and introns contain specific signals where splicing occurs. Splicing depends on the 

condition, which may result in different closely related proteins being expressed. 

Schematic presentation of a gene segment is shown in Fig. 2.3. 

  
 

Figure 2.3 General organization of the DNA sequence. Only the exons encode a 
functional peptide or RNA. The coding region accounts for about 3% of the total DNA in 
a human cell [6] 

2.1.3 Regulatory factors 

Transcription of every gene is controlled through different regulatory regions, 

such as promoters, enhancers and silencer, which perform different functions during gene 

expression. These regions contain binding sites for various regulatory factors, TFs, which 

get bound and bind to the available TFBS and in this way regulate gene expression. 

However, each TF may have alternative binding sites with different affinities depending  
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on the biological and chemical conditions in the cell. So, gene expression shows different 

characteristics during different cellular conditions. 

TFs are proteins that may have multiple binding sites with different levels of 

affinity for a TF [2]. The effect that TF may exert to the gene expression is not only 

determined by the location and orientation of individual TFBS, but also by their context 

and the relative distances between them and other TFBSs [7].  

2.1.4 TF binding sites 

TFBSs are small sequence regions consisting of 5-25 bp where TFs bind to 

regulate and/or initiate transcription. They are present in the promoter region and 

upstream regulatory sequences. They sometimes show specific pattern with respect to 

location and orientation within the promoter sequences. 

2.1.5 Promoter Fundamentals 

A promoter can be considered a DNA segment mainly responsible for gene 

transcription. The promoter is recognized by RNA polymerase and TFs, which then 

initiate transcription. Promoters also represent the demarcation region to denote which 

genes should be used for messenger RNA creation and consequently control which 

proteins will be produced in a cell. 

A promoter could be structurally divided into three parts: core, proximal and 

distal promoters, according to their positions in the sequences [7]. 
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Figure 2.4 A typical structure of promoter showing binding sites and promoter modules. 
[7] 

 

Core promoter is the promoter segment, which is to determine the precise 

transcription start site. It is usually located at -35 to +35 region of promoter and contains 

binding sites of general TFs involved in initiation of transcription like TATA box , Inr 

(initiator), BRE (TFIIB recognition element) , DPE (downstream core promoter element). 

Each of these motifs has specific function in the process of transcriptional regulation. 

However, these elements appear in most of core promoters, but not all. 

The proximal promoter is the region, which is in the immediate vicinity of the 

minimum promoter site (roughly from −250 to +250 nt). The proximal promoter contains 

the functionally important regulatory controls. CCAAT box is an example of TFBS 

located in the proximal promoter. 

Distal promoter is the region on the DNA upstream of the proximal promoter 

where regulatory TFs bind. It may be located thousands of bps away from the TSS 

(Transcription Start Sites). The distal promoter can consist of binding sites for any of TFs. 

Enhancer is the DNA regions which are usually rich in TFBSs and/or repeats. 

They enhance transcription of the responsive promoter independent of orientation and 



   

18 

position. Silencer is also the DNA region far away from the TSS, but it decreases the 

transcription.  

2.1.6 Gene expression and transcription mechanism 

Gene expression is the process by which a gene's information is converted into the 

structures and functions of a cell. It is a multi-step process. Here we only focus on the 

transcription process. Figure 2.5 shows main gene expression steps. 

 

Figure 2.5 Process of Eukaryotic Gene expressions 

 

Transcription:  Transcription represents the first stage of gene expression, when a DNA 

sequence is enzymatically copied by an RNA polymerase to produce a complementary 

RNA. In the case of protein-encoding DNA, transcription is the beginning of the process 

that ultimately leads to the translation of the genetic code (via the mRNA as an 

intermediate product) into a functional peptide or protein.  
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Basics about Transcriptional control in general: 

Understanding the mechanism of gene transcription is essential for us to 

investigate and explore important parts of the gene control factors. The transcription 

mechanism involves various proteins (TFs, TAFs (transcription accessory factors), and 

GTFs (general TFs)), their complexes, and RNA polymerase II, which form an assembly 

known as transcription initiation complex (TIC) for transcription initiation. 

Initiation of transcription requires the enzyme RNA polymerase and TFs. Any 

protein that is needed for initiation of transcription, but not itself part of RNA polymerase, 

is defined as TF.  

Initially, in transcription initiation requires that the different TFs bind to upstream 

promoter and enhancer sequences and form a multiprotein complex. Then, this complex 

directly or indirectly attracts to the core promoter a Polymerase II that is complexed with 

some GTFs. Transcription is initiated by this initiation complex.  

The following is the simplistic model of transcription initiation process. 

• TFs get attached to TFBSs in promoters, enhancer or silencer regions [7]. TFs may be 

activators or repressors to regulate the transcription process.  

• TAFs complex with TFIID (transcription factor IID) macromolecule, whose TBP gets 

bound to the TATA box and thus determines the location of the TSS in the core 

promoter.  

• Polymerase II gets complex with other GTFs and gets bound to the core promoter to 

form TIC. TIC is the key complex to initiates the transcription. 
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Figure 2.6 Assembly of the activator/promoter complex on the proximal and core 
promoter region. a) Schematic representation of the proximal promoter with these 
specific TF binding sites and the core promoter represented by the TATA box (black 
triangle) and the initiator region (INR). The transcription start site (TSS) is indicated by 
the angled arrow. b) Binding of the TFs and the TFIID complex (including the TAA box 
binding protein TBP). TBP binding induces a 90 ْ bend in the promoter DNA. c) 
Subsequently the polymerase II/GTF complex is loaded to yield the complete initiation 
complex. [7] 
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2.2 Bioinformatics 

Bioinformatics utilizes the computation technique to explore efficiently the 

molecular biology in a large-scale fashion. It involves different techniques that enable 

highly efficient sequence data manipulation and database searches. One of the key 

challenges of bioinformatics is to handle the voluminous sequence information and to 

design more efficient analysis tools to manipulate the data [1], so as to enable sequence 

information into relevant biological knowledge 

In our work, motif recognition with heuristic algorithms and promoter structure 

predication are developed to study the content of promoter in the genomic environment. 

The content of promoters enables us to generate information to reconstruct transcriptional 

regulatory networks. Therefore, two key areas that are focus of this study are motif 

prediction and presentation of the gene correlation information through promoter content. 

2.2.1 Motif Prediction 

Motif discovery is one of the key problems related to analysis of regulatory 

regions. In this study we use computational methodology to automatically discover motif 

families from a set of DNA sequences. We extract the candidate motifs and construct the 

representation of approximate distribution of such patterns in the set of sequences from 

which motifs are extracted.  

Since 1980s many approaches have been developed for motif discovery 

attempting to locate regulatory elements. Probabilistic and combinatorial algorithms are 

dominant methods to determine TF-binding motifs common between the sequences. 

MEME [9, 10], AlignACE [11] and CONSENSUS [12] are examples of some of the best 
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known systems for identification of DNA motifs. Many other methods are also known 

[46]. Here we explain properties of some of these systems. 

 

a) MEME: Expectation Maximization 

MEME (http://meme.sdsc.edu/meme/website/meme.html) [9, 10] utilizes the 

finite mixture model (MM) to classify the given data set. MM is a probabilistic model 

with two parts. One part is the motif model (with probability λ1) that describes the 

distribution properties of the motif (with position weight matrix of nucleotide frequencies 

θ1 = (f1, f1,…, fw); and the other is the background model (with probability λ2 = 1 - λ1)) 

which describes the properties of the background subsequences. 

The algorithm in MEME is an extension of the expectation maximization (EM) 

technique for fitting finite mixture models developed in [9,10]. The EM algorithm makes 

use of the concept of missing data. Starting from an initial motif, MM iteratively obtains 

a better motif through the E-step (Expectation step) and the M-step (Maximization step). 

The E-step calculates the expected log likelihood over the conditional distribution of the 

missing data. The M-step updates the over model parameters by maximizing them from 

the probabilistic results of the E-step. 

There are some further developments of the algorithm in following MEME. The 

unsupervised learning of multiple motifs and methods of combining motif match scores 

have been implemented to enhance the search function and improve the accuracy of the 

prediction results. Therefore, MEME is considered as superior to the other methods by its 

prediction accuracy, but has the drawback of taking enormous computation time. 
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b) AlignACE: Gibbs Sampling 

Developed by genomics researchers at Harvard Medical School, AlignAce 

(http://atlas.med.harvard.edu/) employs the Gibbs sampling algorithm that scans non-

coding nucleic acid sequences at high resolution for motifs that occur with non-random 

frequency. This algorithm is built into a multi-level sequence analysis program that 

highlights gene-specific regulatory elements for further analysis. 

Gibbs sampling in statistics is a technique for generating random variables from a 

marginal distribution indirectly, without having to calculate the density [12]. This 

approach is based on elementary properties of Markov Chains. Initially, AlignACE 

obtains the number of occurrences of certain nucleotide Mkj in specific motif position by 

selecting the random locations {a1,…,an} in different sequences {x1,…,xn}. Then it starts 

iteration by predictive updating and near optimum sampling. The predictive update is to 

remove certain sequence xi in the data set and recomputed model Mkj. The near optimum 

sampling is to sample a new random position over the background and obtain the 

optimum value. AlignAce offers both efficiency and convenience. Its high signal-to-noise 

ratio preferentially reduces false positives in the program output, while iterative masking 

uncovers multiple, distinct sequence motifs within a single data set. 

 

c) CONSENSUS: Matrix of consensus pattern 

CONSENSUS is a matrix-based pattern discovery for DNA or protein sequence 

sets [12]. It uses greedy multiple alignment algorithm to search for a motif alignment, 

which maximizes the information content score of the model. The CONSENSUS first 

randomly selects one sequence as start sequence, and extracts subsequences with fixed 
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length l as  single pattern motifs; then it catches the right signals of the motif model 

through the top Q (where Q is a user-designated parameter, the default Q in 

CONSENSUS is 1000) pair-wise pattern similarities between this start sequence and one 

of the remaining sequences; after that, it iteratively assembles the top Q signals into 

multiple similarities by adding more and more pattern instances from different sequences 

with a greedy selection algorithm. The time complexity of this algorithm is O (nm2 + 

Qn2ml), where n is the number of sequences in the data set, and m is the average length 

of sequences.  

 

2.2.2 Graphical presentations of various biological information 

Graphical presentation is an effective and efficient approach to describe the 

biological information or other complex information where a lot of interconnections 

appear, or when information is complex. For presenting complex information graphically, 

we can use, for example, color, size, shape, line thickness, line forms and types, arrow, 

and position to present various attributes of information. In our work, one of the 

objectives is to present the association of TFs and motifs and their target genes in a 

graphical format.  

Different ways of graphical presentations have been developed and integrated into 

various bioinformatics systems to enhance interpretation of the results. For example, 

JASPAR [13], DTFAM [14], CellDesigner [41], and UCSC browser [42] do provide a 

vivid graphical description of relevant biological information. In what follows we present 

several systems that use various forms and approaches to present graphic information 

suited to the problems of their particular interest. 
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a) JASPAR 

JASPAR [13] (http://jaspar.cgb.ki.se/) is an open-access database of annotated, 

high-quality, matrix-based TFBS profiles for multi-cellular eukaryotes. It presents the 

basic information as the so-called sequence logo [52]. An example is depicted in Fig. 2.7. 

 

Figure 2.7 Matrix based TF profile [13] 

It utilizes the SockEye [63] visualization tool to present the TF profile, as shown 

in the following diagram. In the JASPAR, logos are a visual representation of a profile, 

based on Shannon information content [13], in which maximal conservation amounts to a 

information content of 2 bits for a single position. There is other information provided in 

the JASPAR interface, such as ID, class, supergroup, etc. 

 

b) DTFAM (DRAGON TF ASSOCIATION MINER) 

DTFAM [14] (http://research.i2r.a-star.edu.sg/DRAGON/TFAM_v2/index.html) 

is a web-based system to provide information about potential association of TFs with 

terms from the four well-controlled vocabularies so as to help biologists infer unusual 
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functional associations. It was developed in Institute for Infocomm Research, Singapore. 

It uses the Graphviz software to generate graphical presentation.  

 

Figure 2.8 Association of e different terms defined in PubMed documents. Documents 
were collected based on query “antimicrobial toll”. Antimicrobial peptides are important 
component of innate immune system in vertebrates. Gene with produce them are mainly 
controlled through the toll-like receptor pathway of which NF-kappaB is one of the key 
regulators. Text-mined information conveniently presents such associations. 

 

DTFAM analyses the connections (associations) between the all terms and 

expressions found in the selected documents and generates one or more association map 

networks. The association of vocabularies is based on their co-occurrence in the same 

PubMed document. The nodes of the generated graphs represent the terms from the 

selected vocabularies. TF names are presented by the ellipsoidal nodes with yellow 

background. Diseases are represented by ellipsoidal nodes with gray background. Terms 

from gene ontology (GO) categories are represented by rhomboidal shapes with 

biological processes having green background, molecular functions with nodes having 

light blue background, while cellular components are represented with nodes having 

magenta background. All nodes provide links to a set of related PubMed documents with 

color-marked terms to allow for user’s inspection and assessment of the relevance of 

proposed associations. This system has made this task easier for the user by providing 

links to the documents used, and we also color-highlighted the terms used in the analysis. 
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c) CellDesigner 

CellDesigner is a structured diagram editor for illustrating gene-regulatory and 

biochemical networks. Networks are drawn based on the process diagram, with graphical 

notation system proposed by Kitano [41], using the Systems Biology Markup Language 

(SBML), a standard for representing models of biochemical and gene-regulatory 

networks. Networks are able to link with simulation and other analysis packages through 

Systems Biology Workbench (SBW).  

A process diagram is a state transition diagram with complex node structures. It 

consists of two classes of vertexes and edges, which represents the state of the entities. In 

this software, the process of the diagram graphically represents the state transitions of the 

molecules involved, which could illustrate the interactions and associations of the 

bindings for the molecular species more intuitively. 

 

Figure 2.9 The snapshot of the CellDesigner 3.0 [41] 
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d) ENSEMBL 

Ensembl (http://www.ensembl.org) is a software system that produces and 

maintains automatic annotation on selected eukaryotic genomes. It is a joint project, 

which is developed by European Bioinformatics Institute (EBI) and the Wellcome Trust 

Sanger Institute (WTSI).  

 

Figure 2.10 Snapshot of the multicontigview expression in ENSEMBL [42] 

The most prominent annotation to the website is multicontigview, which allows 

regions of genome sequence from multiple species to be viewed aligned to each other. 

Besides making these alignments accessible to a wider audience, multicontigview allows 

the alignment of as many genomes as desired and is able to show in a single display both 

DNA similarity and putative ortholog relationships. Multicontigview is complementary to 

the display of regions of conservation in contigview. Whereas the latter is useful to 
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identify important regions in a single genome, multicontigview allows researchers to 

compare annotation between genomes to look for places where annotation may be 

missing.  

Comment on the previous work on graphical presentation 

There is no universal solution to simply present complex biological information. 

Different applications have been developed for the specific bioinformatics problems 

being more suited to the problem of interest. Systems equipped by graphical presentation 

of some aspects of information usually enhance human-readability and comprehension, 

with clear and unambiguous graphical presentation. However, most of the software 

systems lack interaction and flexibility that can enhance usability and can help easier 

interpretation of complex biological knowledge. 

2.2.3 Graph drawing packages and applications 

Graph drawing is the approach to provide the graphical presentation. In 

mathematics and computer science, graphs could be understood as the representation in 

form of dots (nodes, vertices) and edges (arcs, links) connecting of the dots. Graphs can 

be classified as directed and undirected, depending on whether an edge is assigned an 

orientation [47]. Presentation of information via graphs is studied in computer science 

and includes graph theory, geometry, topology, visual languages, visual perception, 

information visualization, computer-human interaction, and graphic design [47]. It 

utilizes topology and geometry to derive visual and haptic representations from a dataset.   

Graph drawing is suitable for those applications where it is crucial to visualize 

structural information in visual graphic format. Indeed, advances in graph drawing are the 
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key factors in such technological areas as Web applications, E-commerce, VLSI circuit 

design, information systems, software engineering, computational cartography, 

bioinformatics, and networking. Therefore, great effort has been spent on algorithms and 

applications on the geometric representation of graphs and networks. Thus, significant 

progress has been made in development of software to visualize the graph and networks. 

The  softwares are listed briefly as under: 

• Graphical library, such as OpenGL [60] and GD [48] 

• Programming languages, such as SBML (Systems Biology Markup Language) 

[59] and VRML (Virtual Reality Modelling language) [49],  

• The computer aided design tools, such as SolidDesigner [61], AutoCAD [62], etc.  

There are no universal solutions for various types of applications and all different 

aspects that users may want to have, so these libraries, languages and modeling tools are 

designed to cater for the different purposes. 

Currently, very few graphical drawing applications cater for expression of 

biological information. Our study focuses on the graphical drawing applications in 

bioinformatics, especially for representation of information related to transcription 

regulation. However, our objective is not to develop the libraries or software to represent 

the biological data, but to utilize the existing graphical drawing languages and libraries to 

generate suitable graphical presentation to visualize such complex biological information. 

The following paragraphs explain some widely used library packages and languages used 

in bioinformatics. 
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1. OpenGL 

OpenGL (Open Graphics Library) is a software interface to graphics hardware, 

which is governed by the OpenGL Architecture Review Board (ARB) [60]. OpenGL is 

the premier environment for developing portable, interactive 2D and 3D graphics 

applications, which involves a set of procedures and functions to interface with the 

hardware.  

Since released in 1992, OpenGL has become the industry's most widely used and 

supported 2D and 3D graphics application programming interface (API), bringing 

thousands of applications to a wide variety of computer platforms. OpenGL fosters 

innovation and speeds application development by incorporating a broad set of rendering, 

texture mapping, special effects, and other powerful visualization functions. The well-

specified OpenGL standard has language bindings for C, C++, Fortran, Ada, and Java. It 

can be supported on UNIX workstations, Windows 95/98/2000/NT and MacOS PC. It is 

a useful and important tool for developers to access geometric and image primitives, 

display lists, model transformations, etc. 

 

2. GD Library 

GD is an open source code library to create images [48]. GD is developed in C 

language and it is also has interface with Perl, PHP and other languages. GD can create 

PNG, JPEG and GIF images, among other formats. It is used to generate charts, graphics, 

thumbnails, etc. The GD is common and popular package for the web-based graphical 

application because PNG and JPEG formats generated by this library are commonly 

accepted formats for inline images by most browsers. Thus, this library package is an 
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essential component to be incorporated in generation of visual tools for representing 

biological information in the web-based applications, like in databases. 

 

3. VRML (Virtual Reality Modeling language) 

VRML is a standard file format for representing 3-dimensional (3-D) interactive 

vector graphics, designed particularly with the web application. This language is 

conceptualized in 1994, and developed by a lot of researchers [49,50]. It allows to build a 

series of visual images into web settings with which a user can interact by viewing, 

moving, rotating, and otherwise interacting with an apparently 3-D scene. 

VRML is a tool that enables representation of a 3-D polygon with effects like 

surface color, image-mapped textures, transparency and so on. VRML when installed, 

facilitates URLs (web browsers) to convert a text file containing information in terms of 

vertices and edges (co-ordinate information) of a 3-D polygon to graphical image. 

Moreover, VRML allows user to dynamically change or add animations, sounds, lighting, 

and other aspects of the virtual world.Therefore, it has applications in creation of 

graphical tools in the domain of bioinformatics.For example, SockEye [63] and 

ENSEMBL [44] utilize this tool. 

 

4. Graphviz 

Graphviz [37] is open source graphic visualization software developed by AT&T. 

Different from the previously mentioned softwares and libraries, Graphviz focuses on the 

applications of the graph layout, which is to visualize the structural information as 

diagram of abstract graphs and network. 
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Graphviz consists of implementations of various common types of graph layout. 

These layouts can be used via a C library interface, stream-based command line tools, 

graphical user interfaces and web browsers. It possesses the characteristics, which allows  

graph manipulation and supports for a wide assortment of graphical features and output 

formats. With this functionality, programmers can query, modify and display graphs 

using high level language like Java, Perl etc.  

Many bioinformatics applications employ Graphviz to produce graph layouts, in 

order to assist biologists to understand complex domain information or to perform the 

interpretation of the data. Protein Interaction Extraction System (PIES) [51] and DTFAM 

[14] are the examples of complex applications that utilize this software in bioinformatics 

domain. 

 

The objects analyzed in bioinformatics are complex biological entities, structures 

and processes. No universal solution in graphics representation can express the 

complexity of gene and protein sequence information effectively. Thus, we have 

attempted different approaches to cater for the different needs that biologists have in 

relation to a particular topic like transcription regulation. In our work, we utilized the GD 

library to visualize the TFBSs near the TSS in the database, and we have made use of the 

Graphviz package to present the networks between the PEs and the genes. 
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Chapter 3 Ab-initio Motif Discovery 

3.1 A broader context of motif discovery: Gene Finding 

Motif discovery is one of the important steps in understanding the genome of a 

species once it has been sequenced. It can be used in gene finding, which is the area of 

bioinformatics that is concerned with algorithmically identifying stretches of DNA 

sequence that are biologically functional and represent domains that are transcribed. This 

especially includes protein-coding genes, but may also include other functional elements 

such as RNA genes and regulatory regions. 

Determination whether a sequence is functional should be distinguished from 

determining the function of the gene or its product. The latter still demands in vivo 

experimentation through gene knockout and other assays, although current genomics and 

bioinformatics are making it increasingly possible to predict the function of a gene based 

on its sequence alone. Today, with comprehensive genome sequence and powerful 

computational resources, motif discovery has been redefined as a largely computational 

problem. The comprehensive computation algorithms are useful tools to prepare the data 

for the graphical presentation in our study. 

There are a number of computational techniques which have been proposed to 

solve the gene finding problem. Genarally they could be classified into three different 

groups: 

a) Extrinsic Approach 

The target genome is searched for sequences that are similar to extrinsic evidence 

in the form of the known sequence of a messenger RNA (mRNA) or protein product. 
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Given an mRNA sequence, it is possible to derive a unique genomic DNA sequence from 

which it was transcribed. When a protein sequence is available, a family of possible 

coding DNA sequences can be derived by reverse translation of the genetic code. Once 

candidate DNA sequences have been determined, it is a relatively straightforward 

algorithmic problem to efficiently search a target genome for matches, complete or 

partial, exact or inexact. BLAST is a widely used system designed for this purpose. [15] 

 

b) ab initio Approach 

Ab initio gene finding is a systematically searched methodology for certain signs 

of protein-coding genes in genomic DNA sequences. These signs can be broadly 

categorized as either signals, specific sequences that indicate the presence of a gene 

nearby, or content, statistical properties of protein-coding sequence itself. Ab initio gene 

finding might be more accurately characterized as gene prediction, since extrinsic 

evidence is generally required to conclusively establish whether a putative gene is 

functional. 

 

c) Comparative Genomics Approach 

This approach is based on the principle that the forces of natural selection cause 

genes and other functional elements to undergo mutation at a slower rate than the rest of 

the genome, since mutations in functional elements are more likely to negatively impact 

the organism than mutations elsewhere. Genes can thus be identified by comparing the 

genomes of related species to detect this evolutionary pressure for conservation. 
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Our research focuses on algorithm development and specific computational 

methods for the ab-initio motif detection in DNA and protein sequences. However, ab 

initio gene finding in eukaryotes, especially complex organisms like humans and mouse, 

is considerably more challenging for several reasons:  

First, the promoter and other regulatory signals in these genomes are more 

complex and less well-understood than in prokaryotes, making them more difficult to 

reliably recognize.  

Second, splicing mechanisms employed by eukaryotic cells mean that a particular 

protein-coding sequence in the genome is divided into several parts (exons), separated by 

non-coding sequences (introns). (Splice sites are themselves another signal that 

eukaryotic gene finders are often designed to identify.) For example, a typical protein-

coding gene in human might be divided into a dozen exons, each less than two hundred 

base pairs in length, and some as short as twenty to thirty. These splicing mechanisms 

affect the accuracy of gene prediction significantly. 

Therefore, ab-initio gene finders for both prokaryotic and eukaryotic genomes 

typically use complex probabilistic and computational linguistic models, especially 

heuristic algorithms, in order to combine information from a variety of different signal 

and content measurements. So, in our work, the heuristic algorithm and the local 

alignment method are implemented to construct the motif discovery system. 

 

3.2 Heuristic Algorithms in Motif Discovery 

Two fundamental goals in computer science are searching algorithms with 

hopefully good run times and with hopefully good or optimal solution quality. A heuristic 
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is an algorithm that optimizes both of these goals; for example, it usually finds pretty 

good solutions within a reasonable run time. It could be one of the best computational 

methodologies to analyze the large scale sequence data accurately within an optimum 

time. 

Generally, biological sequences which belong to a group of functionally related 

genes or proteins, usually contain a number of sequence patterns which are shared among 

many and sometimes all members of the functional group. A typical example represents 

promoters of a group of co-expressed or co-regulated genes which contain many common 

transcriptional regulatory elements which also share similar positional organization 

(order and distances of transcriptional elements). For this project we propose to use a set 

of heuristic algorithms to determine the most consistent set of regulatory patterns in 

functionally related groups of biological sequences (either DNA or proteins).  

In my work, the heuristic methods, genetic algorithm (GA) and expectation 

maximization (EM), are implemented to achieve both the speed of extraction and 

consistency of extracted motif groups. These methods can find direct application in 

discovery of TFBSs, and more generally, in determination of functional patterns in 

DNA/RNA and in proteins. 

3.2.1 Expectation Maximization (EM) Algorithm 

EM algorithm is an algorithm to estimate maximum likelihood of parameters in 

probabilistic models, where the model depends on unobserved (latent) variables. EM 

alternates between performing an expectation (E-step), which computes the expected 

value of the latent variables, and a maximization (M-step), which computes the maximum 
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likelihood estimates of the parameters given the data and setting the latent variables to 

their expectation [16]. 

It can be shown that EM iteration does not decrease the observed data likelihood 

function, and that the only stationary points of the iteration are the stationary points of the 

observed data likelihood function. In practice, this means that an EM algorithm will 

converge to a local maximum of the observed data likelihood function. 

In our work, EM is used to estimate the probability density of the most popular 

patterns within a set of DNA sequences. The optimal motifs are predicted with pattern 

matching score function and the population of the motifs among the sequences. EM 

algorithm iteratively augments the motif data by guessing the values of the optimal score 

and population with the sequence, and then re-estimates the parameters by assuming 

the “best” value for the motif group. In order to model the probability density of the data 

effectively, most likelihood function was implemented to choose the initial value that 

has highest converged likelihood value [17, 18]. The threshold coefficient for 

information content (IC) has been applied to improve the efficiency and accuracy of the 

search approach. 

 

a. E-step (Expectation): Computing the Q(θn+1|θn)   

E-step computes the expected likelihood for the complete data (Q) where the 

expectation is taken from the computed condition distribution θn of the latent variables 

θn+1 (i.e., the hidden variables) given the current settings of parameters and observed 

(incomplete data).  
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Q is the expected likelihood for the complete data set; in our systems, it is defined 

as the optimal coefficient between the IC and the size of motifs group. The IC 

represents the consensus of the group of motif patterns, because we believe the motifs 

with same biological functionality possess the similar pattern. Besides the similarity of 

the pattern, the large population is also one of the important factors that we are interested 

in.  We believe, the more frequently the similar patterns appear the sequences, the 

stronger the biological signal they represent. 

To obtain the Q factor among the sequences data, position weight matrix (PWM) 

is formed according to the group of consensus patterns observed, and the Q can be 

derived from the PWM. PWM is the pattern matrix, which enables representing 

nucleotide low/high affinity in different positions. The following example illustrates 

PWM of one group (6) motif patterns.  

Table 3.1: Align pattern extracted from sequences 

 
 
 
 

 
 
 
 
Conversion of PWM with the aligned patterns as Table 3.2 

Table 3.2: PWM of the align motifs 

 
 
 
 
 
 

 
 

Motif  1  2  3  4  5  6  7  8  9  10 
# 1  A  G  A  T  G  G  A  T  G  G  
# 2  T  G  A  T  T  G  A  T  G  T  
# 3  T  G  A  T  G  G  A  T  G  G  
# 4  A  G  A  T  T  G  A  T  C  G  
# 5  T  G  A  T  G  G  A  T  T  G  
# 6  T  G  A  T  G  G  A  T  T  G  

Nucleotides   1  2  3  4  5  6  7  8  9  10 
A 2 0 6 0 0 0 6 0 0 0 
C 0 0 0 0 0 0 0 0 1 0 
G 0 6 0 0 4 6 0 0 3 5 
T 4 0 0 6 2 0 0 6 2 1 
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Normalized PWM obtained from the aligned patterns 

Table 3.3: Normalized PWM 
 
 
 
 
 
 
 

The IC, which is the similarity of the patterns, could be translated into the PWM 

mathematically.  
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G: the total number of sequences 

Pi, j : the element of the PWM 

pi, j : the element of the normalized PWM 

i, j: column and row for the corresponding PWM 

The element of normalized PWM could be obtained from the raw one with the 

formula (3). Then the formula (1) will determine IC of the motif group. The Q factor is 

the optimum value with the size of the motif group (G) and their similarity (IC). It 

represents the expected likelihood of the consensus motifs among the sequences.  

 

 

Nucleotides   1  2  3  4  5  6  7  8  9  10 
A 0.33 0 1 0 0 0 1 0 0 0 
C 0 0 0 0 0 0 0 0 0.17 0 
G 0 1 0 0 0.67 1 0 0 0.50 0.83 
T 0.67 0 0 1 0.33 0 0 1 0.33 0.17 
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b. M-step (Maximization): Maximizing Q(θn+1|θn) with respect to θn  

With the expected Q factor obtained from the E-step, the M-step re-estimates all 

the parameters by maximizing it. The corresponding new estimate (θn+1|θn) is expected to 

lie closer to the location of the nearest local maximum of the likelihood. For our analysis, 

the new group of patterns is obtained regarding the PWM sot as to improve the similarity 

of the motif patterns with the defined θthreshold.  

)|(max*
nQ θθθ =         (4) 

thresholdθθ >*          (5) 
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L: length of the motif 
 

The most similar patterns are extracted to construct the new group of motif, with 

the score θ* of the patterns regarding to the normalized PWM (Table 3). Then the score 

of the pattern would be obtained by comparing the pattern with the PWM. 

With the formula (4), to maximize the IC, the pattern with the best score will be 

chosen to construct the next group motif to proceed to the next E-step. The following 

examples illustrate how the patterns are converted to θ* according to the normalized 

PWM mathematically.  

(AGATGGATGG) θ* = (0.33 + 1 + 1 + 1 + 0.67 + 1 + 1 + 1 + 0.5 + 0.83)/10 = 0.833 

(ACTGGGATCT)  θ* = (0.33 + 0 + 0 + 0 + 0.67 + 1 + 1 + 1 + 0.17 + 0.17)/10 = 0.434 

(TCGATCTACT)   θ* = (0.67 + 0 + 0 + 0 + 0.33 +0 +1 + 0 + 0.17 + 0.17)/10 = 0.234 

 
In order to maximize the Q(θ|θn), the threshold of the score (Sth) has been 

implemented to preventing the patterns with low score being extracted into the next 
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group of motifs. For example, if the Sth was set to 0.85, the score of three patterns 

discussed previously are below the threshold, therefore, they would not be chosen. The 

threshold value is very important to maintain the expected likelihood Q value during the 

search, and affect the accuracy of prediction.   

Another parameter ‘zero-elimination’ is applied on the M-step to enhance the 

maximization of the Q factor. This parameter will improve searching for the Q effectively 

and enhance the searching speed. The zero-elimination is used to eliminate those patterns 

containing the nucleotides, whose Pi,j is equal to zero in the PWM. For example for PWM 

from Table 3.3, pattern (ACATGGAGG) can not be chosen, because second nucleotide 

C in the motif is zero in the normalized PWM.  

 
c. Initialization Function and iteration 
 

The EM algorithm has a general convergence property via the Jensen’s inequality 

[19]. Simply speaking, it can be shown that the Q is improved each iteration of M-step. 

But EM algorithm is a hill-climbing approaching, thus it can only be guaranteed to reach 

a local maxima.  

However, in the biological data, multiple maxima, pseudo-motifs, exist among the 

sequences. It is often required to identify the global maxima within the multiple local 

ones to obtain the actual motifs. In order to reach the global maxima, it depends on where 

the start point is, therefore, the concept of K operator is induced to carefully optimize the 

initial condition. 
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The algorithm randomly initiates different PWM, and chooses the highest 

converged one as the initial value according to the K operator. This initial value selection 

with the heuristically likelihood function can locate a rough region where the global 

optima exists, and then starting with this Q value, expectation and maximization method 

are implementing to search for a more accurate optima.  

The iteration is controlled by the complete likelihood coefficient ζ, which is 

assumed to be known. Overall expectation and maximization steps would be stop once 

the likelihood reaches the level of ζ. However, the assumed ζ value might not be practical 

for all the cases. Because the EM is heuristic algorithm, if starting point K is too low to 

achieve ζ, the search of patterns will become extremely slow or fall into one infinite loop. 

To prevent this condition happening, in our system, one iteration parameter is applied to 

stop the iteration once the number of iterations exceeds certain threshold. So, the program 

will re-initiate another approximate region for search until it can locate the motif group, 

which could meet the criteria of the complete likelihood of ζ. 

 

Pseudo-code EM 

Choose initial PWM randomly  

Repeat EM  

 Estimate the likelihood Q factor from the PWM 

 Maximize Q(θn+1|θn) respecting to θn with threshold Sth  

 Constructe the new PWM with Q(θn+1|θn) 

Until terminating condition (see below) 
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Terminating condition 

• Budgeting: allocated computation time used up  

• A motif group is found that satisfies minimum criteria 

• Combinations of the above 

3.2.2 Genetic Algorithm (GA) 

GA is a search technique used in computer science to find approximate solutions 

to combinatorial optimization problems. GA is a particular class of evolutionary 

algorithms that use techniques inspired by evolutionary biology such as inheritance, 

mutation, selection, and recombination (or crossover). 

GA is typically implemented as a computer simulation in which a population of 

abstract representations of candidate solutions to an optimization problem evolves toward 

better solutions. So GA is a population heuristics [20]. The heuristic evolution starts from 

a population of completely random individual motifs and happens in generations. In each 

generation, the fitness of the whole motif population is evaluated, multiple individuals are 

stochastically selected from the current population (based on their fitness), modified 

(mutated or recombined) to form a new generation. 

In our research, only gene patterns among the sequences data, which are fittest, 

will reproduce and create a new population, and eliminate the other vice versa. This is 

performed in the second step (Selection). The idea behind is that "good" sections of the 

parents will combine to produce even fitter children in the Crossover step. Although 

many of the children created in this way will not be sufficiently successful to survive the 

next selection, some will. Last, the survivors will continue mutating to enlarge the fitness 

function to pass the next selection. 
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a. Fitness Function 

A fitness function Q is a particular type of objective function that quantifies the 

optimality of a solution in a GA so that that particular solution may be ranked against all 

the other ones. In our work, the fitness function is represented by the the optimal 

coefficient between the IC and the size of motifs group, which is identical to the Q 

factor in the EM model. 

Another parameter, nucleotide mismatch, is induced to measure the fitness of the 

motif group. Nucleotide mismatch indicates the number of nucleotides different from the 

current reference motif sequence which the algorithm will tolerate while grouping motif 

sequences. Its function is similar as the threshold coefficient Sth in EM, which eliminates 

the motif patterns with low score (high mismatch).   

 

b. Selection 

Selection is biased towards elements of the initial generation which have better 

fitness, though it is usually not so biased that poorer elements have no chance to 

participate, in order to prevent the solution set from converging too early to a sub-optimal 

or local solution.  

For individual, the less mismatch pattern possesses comparing to the reference 

motif, the fitness score is higher. Considering the population of pattern (gene) with 

associated fitness, the mean-fitness is obtained from the population.  

∑
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1         (8) 

Every individual pattern will be copied to the new population, at frequency 

proportional to its fitness (relative to the average fitness). For example, if the average 
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fitness is 5.76, and the fitness of an individual pattern is 20.21, and then we have 

20.21/5.76 = 3.51. This individual pattern will be duplicated 3 times and also it will have 

another probability of 0.51 to have one more copy in the new population. On the other 

hand, the pattern with low fitness score has low probability to duplicate itself in the 

selection section. With these concepts, the size of the population changes dynamically to 

converging to the high fitness pattern in our implementation. 

 

c. Crossover 

Crossover (or recombination) operation is performed upon the selected 

population. In our GA has a single tweakable probability (0.85) of crossover, which 

encodes the probability that two selected patterns will actually react. A random number 

between 0 and 1 is generated, and if it falls below the crossover probability, two points 

are swapped on the parent patterns; otherwise, the two parent patterns are propagated into 

the next generation unchanged. Crossover results in two new child patterns, which are 

added to the second generation pool. This process is repeated with different parent 

patterns until there are an appropriate number of candidate solutions in the second 

generation pool. 

In our implementation we use a two-point crossover, where we randomly select 

two positions in parent patterns, swap the nucleotides in the selected position between the 

two parents pattern. The following diagram illustrates the process of crossover when the 

probability triggers the change. 
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Figure 3.1 Features of two point crossover 

 

d. Mutation 

Mutation is to create new offspring pattern, which is controlled by a fixed, very 

small probability (0.008) of mutation (Pm). A random number between 0 and 1 is 

generated; if it falls within the Pm range, the new pattern is obtained by randomly altering 

bits in the parent pattern. It is an element to generate new offspring to maintain the 

divergence in the population search process. The following example demonstrates how 

the mutation function is applied. 

 

 

 

 

Figure 3.2 Features of one point mutation 

 

Functionality of crossover and mutation in heuristics 

The crossover and mutation operators allow the GA to avoid local minima by 

preventing the population of motifs from becoming too similar to each other, thus 

slowing or even stopping evolution. This is the reason that we choose a random (or semi-

GCATGGCTTA GCGTGGCGTA 

TAGGCTAGGC TAAGCTATGC 

Crossover 

GCATGGCTTA

GCCTGGCTTA

Mutation
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random) population as starting, instead of one fittest of the population, in generating the 

next ones. 

 

Pseudo-code GA 

Choose initial pattern population 

Repeat 

 Evaluate the individual fitness of a certain proportion of the population 

         Select best-ranking individuals to reproduce 

         Mate pairs at random 

         Apply crossover operator 

         Apply mutation operator 

Until terminating condition (see below) 

 

Terminating conditions often include: 

• Fixed number of generations reached  

• Budgeting: allocated computation time used up  

• An individual is found that satisfies minimum criteria  

• The highest ranking individual's fitness is reaching or has reached a plateau such 

that successive iterations are not producing better results anymore.  

• Combinations of the above 
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3.2.3 Statistical Approaches 

Building an accurate predictive motif model is essential to be able to differentiate 

likely motifs from the target group from spurious ones. This is an important step towards 

understanding gene regulation in the computation biology, as motifs could be real TFBSs. 

Therefore, statistical approaches are induced to enhance the capabilities to filter out 

spurious patterns. In our research, Hidden Markov Model [21] and statistical measures, 

such as P-value and E-value [22, 23], are implemented in the system as the measures of 

the statistical significance of motifs. 

 

a. Hidden Markov Model (HMM) 

In our work, hidden Markov model (HMM) is used to statistically describe a 

background sequence. This statistical description can be used for sensitive and selective 

motif search. 

HMM is a probabilistic model composed of a number of interconnected states, 

each of which has an observable output [24], for example, the motif in our case. 

Transitions among the states are governed by a set of probabilities called transition 

probabilities. In a particular state an outcome or observation can be generated, according 

to the associated probability distribution. It is only the outcome that is visible to an 

external observer, but not the state, and therefore states are “hidden” to the outside; hence 

the name Hidden Markov Model. 

In order to define an HMM completely, following elements are needed.  

• The number of states of the model, N.  
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• The number of observation symbols in the alphabet, M.  

• A set of state transition probabilities }{ ija=Λ . 

 ,,1},|{ 1 Njiiqjqpa ttij ≤≤=== +    (9) 

where tq denotes the current state. 

Transition probabilities should satisfy the normal stochastic constraints,  

0>ija  and 1
1

=∑
=

N

j
ija , where Nji ≤≤ ,1    (10) 

• A probability distribution in each of the states, )}({ kbB j= .  

}|{)( jqvopkb tktj === , Nj ≤≤1  and Mk ≤≤1  (11) 

where kv denotes the kth observation symbol in the alphabet, and to is the current 

parameter vector. 

Following stochastic constraints must be satisfied.  

0≥jb  and 1
1

=∑
=

N

j
jb , where Nj ≤≤1  and Mk ≤≤1  (12) 

• The initial state distribution, }{ iππ = , where, 

Niiqp ti ≤≤== 1},{π      (13) 
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Therefore, the compact notation is used, },,{ πλ BΛ= , to denote HMM with 

discrete probability distributions. 

The discrete HMM is implemented to generate one background sequence to 

determine the probability that the predicated motif appears in the model sequence. Hence, 

in our work, the states are defined as: 

• Initial nucleotide state distribution,π , is generated randomly by the system. 

• The order of observation in HMM, k , is defined by the user. In our work, it is 

represented the length of motif, which can predict the next nucleotide type 

possibility. 

• State transition probabilities ija , is obtained from the nucleotide possibility 

distribution of the foreground target sequences or specific sequence, which is 

input target background sequence defined by user. 

• Distribution state, )(kbj , is the nucleotide appearance possibity with the known 

k  order motif. 

 

With the clear properties definition, the HMM table could be generated. Hence, 

Table 3.4 is the illustration of the 2nd order HMM table, from which the transition state of 

next nucleotide could be predicted. 
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Table 3.4: Normalized PWM 

 A C G T 
AA 0.186074 0.298308 0.322131 0.193487 
AC 0.18435 0.297301 0.322757 0.195593 
AG 0.186168 0.300044 0.320398 0.19339 
AT 0.185172 0.299291 0.321089 0.194448 
CA 0.18658 0.29839 0.321971 0.193059 
CC 0.184659 0.298784 0.322031 0.194526 
CG 0.186991 0.298732 0.320724 0.193554 
CT 0.185396 0.299841 0.321248 0.193514 
GA 0.185422 0.297259 0.322015 0.195304 
GC 0.186125 0.297871 0.32137 0.194633 
GG 0.185399 0.299894 0.320885 0.193822 
GT 0.186053 0.298779 0.321261 0.193908 
TA 0.185587 0.298737 0.31935 0.196326 
TC 0.185115 0.299285 0.32076 0.19484 
TG 0.185106 0.299598 0.321791 0.193504 
TT 0.186112 0.299274 0.322004 0.192609 

 

The background sequence enhances the motif searching features, in term of 

sensitivity and specificity. One of the parameters, extinction ratio of the motif in the 

target and background sequences, is the control factor to distinguish the validity of the 

motif in the background sequences. Therefore, it can statistically eliminate those spurious 

patterns, which are extracted in the heuristic algorithm. Moreover, the state transition 

probabilities, which are generated from user target background sequence, could be 

specific for certain groups of motifs. 

 

b. Statistical and Analytical Measures 

With the background sequence generated from the HMM, it is interesting and 

important to express the motif’s significance. Therefore, some statistical and analytical 

parameters, such as e-value and p-value, are induced to describe the significance of the 

motifs. 
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E-value (Expected value) 

In probability, the e-value of a random variable is the sum of the probability of 

each possible outcome of the experiment multiplied by its payoff ("value"). Thus, it 

describes the likelihood that a motif with a similar score will occur in the sequences by 

chance. The smaller the e-value, the more significant the alignment appears with the 

group of patterns relative to the background set.  

If X, motif, is a discrete random variable with N values x1, x2, ... and 

corresponding probabilities p1, p2, ... which add up to 1, then E(X), expected motif 

appearance possibility in the background sequence, can be computed as the sum or series  

∑
=

=
N

i
ii xpXE

1
)(        (14) 

The e-value functions to filter out those motifs beyond the threshold, which have 

high score (frequency) in the background, because we assume the motifs should have 

significant score in the target sequences instead of the background. 

 

P-value 

In statistics, p-value is the probability that an associated null hypothesis is true 

given a particular set of observations [25]. Typically, this is the probability that a 

particular set of observations can be explained entirely by chance. A cut-off is normally 

set below which the p-value indicates that the null hypothesis is false and it implies that 

the observations cannot be explained by chance alone.  

Assume the background sequences have N annotated ones of which K have the 

specific classification of interest (e.g. possess the same motif). Then the probability that a 

randomly selected background sequence has that classification is p = K /N. If a particular 
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cluster has n classified sequences, of which k have the classification of interest, it is 

important to determine the probability of observing k or more random events of 

probability p from a set of n. Thus, intuitively, the p-value may be computed from the 

Hyper-geometric Distribution [26]: 
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If a particular cluster and classification combination pass the p-value criterion, 

this indicates that it is accepted statistically the number of observed occurrences of the 

classification in the cluster cannot be explained by chance, i.e. the cluster is statistically 

biased towards the classification. 

A significantly smaller p-value criterion would be required for sequences clusters 

based on less reliable data, such as expected. Because the relationship between sequence 

and function is so well established empirically, the null hypothesis is implicitly false, and 

less statistical evidence is required to establish selective bias than with other clustered 

data.  

Experimentally, the value of 0.01 was found by manual examination of borderline 

classification outcomes on a large test dataset; values for other types of clustered data can 

be determined by similar mechanisms. It is suggested that different p-value criteria be 

used depending on the reliability of the clustered data. 
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3.3 Overall program flow-chart 

The program flow chart that implements any of these two algorithms is depicted 

in Fig 3.3. Program flow blocks consist of two main portions: instruction and decision 

block.  

 

Figure 3.3 Main program flow-chart 

Instruction block: it is the procedure for the software to operate and manipulate the data  

• Extract the sequence segment: to specify and obtain the sequence segment, 

which the user is interested in. 
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• Select the heuristic methods: to choose the suitable algorithm to extract the 

homogenous motifs from the sequences’ segment 

• Define criteria: to set the parameters for the heuristic algorithm, for example, 

threshold for the EM, expected motif length, and etc. The parameters are very 

important for the system to predict the motif group accurately. 

• Execute the pattern search heuristically: to run the heuristic search on the 

patterns by following the criteria for the algorithm. 

• Evaluate the pattern statically: to compute e-value and p-value in the 

background sequence by statistically approach, such as HMM 

• Generate Report: to generate the graphical and text format report to describe the 

pattern groups and their parameters. 

Decision block: it is the defined criteria for the program to execute the instruction 

• Optimum Pattern: to evaluate the pattern whether is optimal among several 

searches by comparing the statistical score and the fitness among the population. 

It stops when it reach optimal point, otherwise, it continues searching. 

• Next pattern: to check whether the next pattern search is still required. It will 

continue searching when the number of patters is incomplete. 
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Chapter 4 Transcription Start Site Viewer (TSSViewer) 
 

The long-term objective of gene regulation is to enhance our understanding of 

transcription process by elucidating its key components and their functional relationships. 

Bioinformatics analysis of promoters can significantly contribute to this goal. However, 

the promoters contain a large number of elements (PE) that appear in various 

combinations of different promoters. Moreover, currently no PE common to all 

promoters are yet found. So, the promoter structure is characteristic for a smaller gene 

groups, likely those that are co-regulated. Transcriptionally co-regulated genes are those 

whose transcription is controlled by very similar set of TFs. Consequently, such genes 

can more frequently co-express together. But since there are numerous PEs that can be 

detected computationally, it is a headache for biologist to analyze such data for a large 

number of promoters. Therefore, the system for visualization of promoter content and 

promoter structures is of a great practical utility. We developed one such supporting 

system that is implemented in a database of human promoters as a valuable tool for 

biologists to analyze and interpret the complex and huge volume of promoter data. 

 

4.1 Problem Statement 

Presentation of PEs near TSS in a strand is one of complicated problems in the 

bioinformatics study, because PEs could appear in various combinations. Thus, a lot of 

information is essential to describe PEs in a way that it may be useful for biological 

interpretation. This information includes the actual PE pattern, the combination of PEs, 

motif location, over-representation relative to the background sequences, etc. Although 
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such information could be provided in the text format database, it is cumbersome to 

address the problem of simple inspection of promoter content in a systematic manner. For 

example, one PEs (or combination of PEs) with close (or overlapping) location to another 

PE is not easy to express and observe in tabular form, while it is simple to do it through 

visual presentation. Therefore, a suitable, comprehensive and systematic presentation 

approach is essential for biologists to analyze and interpret PEs, their positional 

distribution and their associated information.  

Thus we define the problem we intend to solve:  

1. Design a suitable method to present PEs, their positional arrangements, and their 

associated key information for graphic application in a promoter database. Enable 

interactive information reading. 

2. Develop a system to automate generation of graphic files suitable for integration 

in a promoter database. 

 

4.2 Objectives 

Realizing the difficulties in the biological information, it is recognized that a 

graphical representation is essential to describe the complicated composition of PE and 

their positional arrangement in the initial phase of project. Specifically, it is suitable to 

have ability to present the content of promoters and its organizational features expressed 

in terms of PEs, combinations of PEs, and their distributions, so that such compositions 

can be analyzed visually.  
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4.3 System Description 

TSSViewer is the system for visual presentation of information about regulatory 

patterns found computationally in the promoter regions of different genes. The graphical 

presentation provided is flexible and portable and enables an effective inspection of 

promoter database for detailed analysis of promoter properties. This system describes the 

relationship between the positions and structure of PEs in the selected promoter 

indicating also their relation to the Transcription Starting Site (TSS). Such information is 

essential and fundamental for analyzing the causes of the gene expression, and in 

determining the importance of PE and their relation to gene functions. 

 

TSSViewer is developed as a perl program. It is integrated into the Dragon 

Regulome (Hs) Database (Dragon REGHSdb)  

(http://research.i2r.a-star.edu.sg/DRAGON/REGHsdb/). Dragon REGHSdb is the first 

database of the Dragon suite of tools and databases, which focus on the transcriptional 

regulatory motifs in the promoter region covering [-250, +50] positions relative to TSS. 

This database includes information about 1800 promoters of human genes. All TSSs are 

collected from the Eukaryotic Promoter Database (EPD) [53]. In order to view the 

promoter content it was necessary to develop a graphical interface for Dragon REGHSdb, 

so that promoter structure of promoters in the database is available for inspection. The 

graphical images, which describe promoter contents, were generated by TSSViewer and 

they also contain information on the type of TFBS, its location, and strand. The graphical 

interface built in the database allows for the interactive work with the graphic promoter 

content files.  
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4.4 Software Description 

To generate files that contain graphical representation of promoter content, we 

developed TSSViewer program. This program is mainly used in the Linux and Unix 

operating systems. The software is developed in Perl and uses the GD library [48], one of 

the graphical tools for image creation. Among other formats, the GD library could 

generate PNG, JPEG and GIF images. TSSViewer system used this library to convert text 

database description into the image formats. 

 

Besides the images generation, TSSViewer software also includes the several 

other functionalities, such as data acquisition and generation of html files. Data 

acquisition is necessary to obtain and classify the TFBSs into different groups according 

to their associated information, such as position and strand, etc. Moreover, the html file, 

associated with the image, is used to label TF information using the Javascript technique. 

This Javascript method enables that some attributes of information are presented in the 

pop-up window, which makes the presentation more interactive. 

 

4.5 File Format 

PEs in the Dragon REGHSdb, which are the input data for the TSSViewer system, 

are obtained by filtering predictions produced by the Match program [54] of Biobase, 

Germany, and are based on the TRANSFAC database (public version 6.0) [55].  

 



   

61 

The input database consists of the TFBSs, which are mapped to human promoter 

sequences obtained from the Eukaryotic Promoter Database (EPD). The input file is 

presented in a text format. 

Sample dataset input text  

 

Figure 4.1 Snapshots of the TFBSs description entry 

The input data contains different information: 

1. The segment start (StartPos = -250) indicating where the promoter region 

considered starts (that is 250 nt before the TSS); the ending position of the 

segment (EndPos = 50) that indicate that the analyzed segment ends 50 nt after 

TSS. 

2. The range of the over-representation index (ORI) [57] of PE relative to the 

background data. In the Fig.4.1, this information indicates that ORI ranges from 

1.449 to 400. 

 

If the PE is made up of single TFBS then: 

3. The name of the file that contains initial results of mapping of PE to promoter 

sequence. 
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4. It indicates the strand where TFBS is found (+1 or -1 stand for positive or 

complementary strand, respectively).  

5. The name of TFBS pattern found is shown. 

6. It provides the actual location of the TFBS expressed relatively to the known 

TSS.  

7. Also, it shows ORI for the specific PE. 

 

If the PE is made up of two TFBSs that are detected within certain prespecified 

distance (in the case of Dragon REGHSdb this distance was maximum 50 nt), then 

information is given first for the one TFBS followed by the other TFBS. The ORI value 

is given for the pair of such elements and it is given as the last number in the row (Fig 

4.1). 

 

Visualization dataset output is presented as a form of html file, which is linked to the 

image file that describes the TFBS information. 

 

Figure 4.2 Snapshots of the output file 
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Generally, the image representation as given by an example if Fig. 4.2, can be 

divided into five portions, 

 

1. Top layer. This portion contains the labels for indication of the range of ORI based 

on color. Several square boxes are presented each colored differently. Next to the 

box the actual numerical range of ORI is given. These colors are used to color 

individual PE. For example: means that all PEs represented with this 

color are 15 to 20 times over represented as compared to the background sequences. 

The term UNIQUE means that PE with that color was not found in the background 

sequences, but only in the promoters. 

2. The line symbolically represents DNA segment. The numbers on the line indicate 

the position relative to TSS location, that is, the number of nucleotides upstream or 

downstream as shown below: 

 

TSS: arrow indicates the direction of the gene. 

-50: 50 nucleotides upstream of TSS. 

50: 50 nucleotides downstream of TSS. 

3. The rectangular boxes indicate single PE. These are the TFBS which are mapped to 

the positive or negative strand. Their color indicates the range of ORI for that PE. 

Their length approximately corresponds to the actual PE length expressed relatively 

to the length of promoter segment analyzed.  

4. When pair of PEs is found, they are presented as a pair of rectangular boxes linked 

with a straight line. Their color indicates the range of ORI for that pair of PEs. 
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5. When the mouse cursor is positioned on the PE that is on the graphical presentation 

of promoters, it activates the pop up block that displays the associated PE and pair 

of PEs in more details. Examples of how these displayed information blocks may 

look are given below. The pop up windows contain the actual positions of TFBS 

given in square brackets, TFBS strand, TFBS name and ORI. If it describes a pair 

of PEs, then it contains information for individual PE, as well as ORI for the pair. 

 

Figure 4.3 The content of pop up windows 

 

4.5 Program Flow 

In this section we present and describe the flow chart of TSSViewer program. The 

flow chart is depicted in Figure 5.4. The block diagram consists of the file information 

and the instructions to manipulate the files. 

File Information: These are the files manipulating in the program. It composes of the 

input and output files. 

• Input File: This is the data file, which contains the TFBS as shown in Fig 4.1. 

• Images / HTML file: These are the output files generated for the program. the 

image file, which contains the information for the PEs near the TSS as shown in 

Single TF Information Pair TFs Information 
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the Fig 4.2, and the HTML file, which contains the information for the each PEs 

with the pop-up window in the Javascript, as shown on the 4.3. 

Start

Data Acquisition

TF/GENE Classification

Image/html Files
Generation

Input File

Images HTML File

 

Figure 4.4 TSSViewer Program Flow Chart 

Instruction: The procedures in the program, which is to acquire data, classify the 

information and generate the graphic output.  

• Data Acquisition: to acquire the PEs / genes information from the input files. 

• TF/Gene Classification: to classify PEs / gene based on their transcriptional 

relation shown in the input file. 

• Image/html Files Generation: to visualize and present the relation between PEs 

and the associated genes in format of graph and html files, with the assistant of 

the GD library. 
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4.6 Comment on TSSViewer 

As discussed and illustrated in the previous sections, it was found that the 

graphical presentation of promoter content provides a valuable utility for biologists as 

they can analyze positional distribution of motifs by which promoters are annotated. 

Moreover, one can inspect the type of motif by moving the mouse over that element 

block. Even more, combinations of two PE that are found within the maximal mutual 

distance of 50 nt found in promoters could also be inspected.  

Such insights are not possible through tabular representation of data. 

Consequently, the database with such visual representation of promoter content enables 

different means for biologist to get insight into promoter structure of his target gene 

groups.  
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Chapter 5 MotifBuilder and the web application 
 

Besides the heuristic algorithms to obtain the motifs, in this study we developed 

software for interactive visual presentations of biological data in MotifBuilder system. It 

is also used as a part of input for the graphical representation of transcription regulation 

networks described in Chapter 6.  

5.1 Problem Description 

The heuristic models in Chapter 3 have been introduced as the tool to extract 

families of mutually very similar motifs from the sequences of interest. Information about 

these motifs could be vital for biologists to distinguish them from the spurious DNA 

patterns contained in the sequences. If the analyzed sequences are promoters, then the 

extracted motif families have high likelihood to correspond to potential TFBSs. Thus, it 

is essential to describe these potential TFBSs information not only as a family but also as 

individual patterns. Also, there is an issue of arrangements of such elements when 

analysis of co-regulated or promoters of orthologous sequences are analyzed. Even 

though the tabular presentation could provide the exhaustive information, it is not easy 

and comprehensive for the user to visually inspect and scan the statistic measures 

associated with motifs so as to identify the potential TFBSs. Thus, the graphic 

presentation is necessary to complement the tabular one in description of the motif 

distribution along the sequences.  
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5.2 Objectives 

The system we name MotifBuilder, was developed to provide reports in tabular 

and graphic form to present motif information. Compared to the exhaustive tabular 

presentation, the visualization reports are convenient to represent specific and complex 

information of the potentially important biological patterns found in multiple sequences 

(such as putative TFBSs, their cumulative distribution and distribution along individual 

sequences). This way, we may inspect for example, the preservation of arrangement of 

motifs found in a set of sequences.  

 

5.3 MotifBuilder Description 

Dragon MotifBuilder (DMB) (http://research.i2r.a-

star.edu.sg/DRAGON/Motif_Search/) is the analytical system for determining sets of 

homogeneous patterns from a set of unaligned or aligned sequences and for graphical 

presentation of the found motifs. The system is developed with the C and Perl languages, 

and is compatible with different operating systems, such as Unix, Linux and Windows.  

DMB consists of two main portions. One is the heuristics based computation and 

data extraction, while the other is the data summary report. The first portion, heuristic 

computation, aims to extract the pattern information with algorithms which have been 

developed and described in Chapter 3. The summary report is the portion that describes 

and represents the pattern information and their cumulative distribution, as well as 

distributions across the analyzed sequences. The motif report consists of two types of 

reports: tabular and graphical.  
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5.4 Motif Report 

The motif data in text form focus on the expression on the individual patterns 

appearance in the sequences. Therefore, the motifs are identified as a group which has a 

high pattern similarity, and the actual motif patterns are presented and described in the 

report too. 

Motif report produces two html files that contain different text format information. 

One of the reports for the motif group patterns is shown as the following Figure 5.1, 

which aims to provide the individual pattern information. 

 

Figure5.1 Motif report from the heuristically search 

 

The explanation of the annotation in reports page from Figure 5.1 is as follows: 

1. Denotes a specific motif pattern which belongs to the conserved motif group 

2. Denotes a specific sequence in which the motif pattern is found 

3. The start and end position of the motif in the sequence 

4. The strand of the DNA sequence where the motif is found, +1  forward strand; 

-1  complementary strand. 

5. The sequence orientation, d  direct orientation; i  inverse orientation 
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The other file presents the summary report form in term of PWM for the motif 

family. The other relevant information for the motif family is also presented such as 

statistical measures, p-value, e-value and information content for the group of motifs. 

 

Figure5.2 Tabular representation of the PWM for a motif family in the html file 

 

Figure 5.2 presents the total number of motifs found as belonging to this motif 

family, and the percentage occurrence relative to the total number of sequences. Second 

row describes the consensus pattern of such motif family. For example, CTATAAA, is 

the consensus pattern obtained for the motif group as a whole. The selected threshed 

coefficient for the algorithm to extract the motif group is also shown. Additionally, we 

present some statistical measures such as e-value and p-value, which are used to describe 

the over-presentation of the motif family in the target sequences as opposed to the 

background sequences. PWM is constructed to express the similarity and consensus of 

the motif group. The consensus nucleotides for each position are given, sometimes 

indicating alternative nucleotides (the most abundant bases). The information content for 
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each of the positions for the PWM, as well as the information content for the overall 

family is presented.  

 

5.5 Visual Presentation of Motif Information 

All graphical information for a motif family is classified and presented into two 

catalogues, according to the cumulative motif group position distribution and the 

distributions of individual motifs across all sequences. 

 

For the individual motif population, the positions for the group of patterns are 

identified and summarized as the distribution list in Figure 5.4. The percentage of the 

specific position bins are annotated on the diagram. 

 

Figure 5.3 Starting position distribution list for one group of motifs 

 

This position distribution chart illustrates the rough position distribution of 

members of the motif family and in some cases makes it possible to identify motifs that 

show high bias in the positional distribution. This is of particular relevance in the case 



   

72 

when the original sequences are aligned because then the positional bias is an unexpected 

event, and likely could be related to biological significance. For example, the well known 

cases of TFBSs that show strong positional bias are TATA box, downstream promoter 

element, GC box, Sp1 [57].  

On the left side of the graph we present the information about positional bins, 

such as (751-775) that indicates the segment of the sequences, where the motif appears. 

The data on the right side indicates the percentage of the motifs that occurs in the specific 

positional bin. The center bar chart visualizes the percentage according to the data at right. 

 

 

Figure 5.4 HTML expression format for the position distribution chart 

 

The position distribution chart is produces as a simple HTML file. Although it is 

not convenient for precise graphical presentation it provides a fast and effective solution 

to express the complex problem simply. The graph is constructed with the table form in 

HTML, as shown in the example in Figure 5.4.  
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The other motif distribution diagram in MotifBuilder is related to representation 

of the distribution of motifs in the set of sequences from which motifs are identified. If 

motifs are selected form a group of promoters that are related and whose sequences are 

aligned relative to TSS, then we would expect to observe in many cases some 

preservation of the promoter content between the promoters. This could be reflected as 

the preservation of the distribution of some of the motifs and preservation of their mutual 

distances. But the only convenient way to observe such preservation is through the visual 

representation of promoter context. So, this motif distribution diagram provides the 

overall foothold of the potential TFBSs and their locations in promoters, and it could help 

biologists to inspect, analyze and discover the actual biologically relevant motifs with 

their position correlation. 

 

Figure 5.5 Motif distribution in the promoter region [-250,-1] relative to TSS, for mouse 
H4 histone gene group. 

 

Figure 5.5 represents the positional distribution of motifs identified by 

MotifBuilder in a set of 127 sequences of mammalian species (man, mouse and rat). The 

regions covered the range of [-250,-1] relative to the TSS location [56]. They contain 127 

histone gene sequences with 19 H1, 29 H2A, 32 H2B, 23 H3 and 24 H4 histone type. We 

found that the five mammalian histone gene groups (H1, H2A, H2B, H3 and H4) have 
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mutually distinct, prominent and strongly conserved regions with motif modules in the 

upstream region of the TSS. Moreover, they are also reasonably well conserved across 

the same species. In the Fig 5.5, the sequences are from mouse H4 histone gene. These 

sequences show strong similarity in terms of motifs and their positional distribution. The 

motifs identified correspond to the known TFBSs. For example, motif 1 identifies the 

CCAAT box, and motif 3 identifies TATA box. What is important for us to notice is that 

identified motifs show strong preservation of positions relative to TSS across promoter 

sequences. This is one potential indicator that motifs do not appear randomly distributed 

and thus suggest that they may be biologically active, which is true in our case.  

In the motifs distribution diagram along the sequences as shown in Figure 5.5, the 

motif are presented in the corresponding sequences proportionally to their location 

relative to the sequence length. For explanation,  means the third reported motif and 

“+” indicates that the motif is found on the forward strand (“-” means complementary 

strand), while “d” indicates that the pattern appear in the direct orientation, while “i” 

indicates that the pattern appears as inverted sequence. Additionally, different colors 

associated with the label help to more easily distinguish different motif groups, 

particularly when we present a large number of motif groups. Motif distribution diagram 

is also constructed as the HTML table.  

Besides the two different distribution diagrams, another Perl program, 

MBConvert, could translate the text form MotifBuilder report into the input format of 

TFMapper, which another system for graphical representation of transcription regulation 

information that will be explained in Chapter 6. Therefore, the interconnection network 
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of the motifs and their sequences could be presented with the TFMapper system as 

illustrated in Fig 5.6. 

 

Figure 5.6 Interconnection Network between the motifs and sequences 

 

5.5 Visual Presentation of Motifs 

In the DMB system, one of the modules caters for visual presentation of motifs 

that are identified. The flow chart of the section of this module that generates reports 

(which contain graphic presentation of motifs) is depicted in Figure 5.7. The blocks in the 

flow chart are described below: 

Data block consists of the input and output data reports, which present the motif 

information  

• Input data obtained from “Heuristic Search”: This block is used to find out the 

homogenous motif with the guide of the heuristic algorithms, as discussed in 
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Chapter 3. The intermediate results of produced by this activity serve as input to 

report generation module. 

• Output file “HTML file” and Image File: These are two different formats in 

presenting the motifs information, the HTML is for the tabular one, as described 

in Fig 5.1; the image format is for the distribution diagram, as shown in Fig 5.3 

and 5.5. 

Main block consists of the procedure blocks to generate the text report and 

visualize it. 

• Generate the text report: This block is used to collect all the motifs found out by 

the heuristic search, and present them in the html format, as shown in Fig 5.1 and 

5.2. All these text reports could be directly viewed with the internet browser. 

 

• Translate into image file: This block is used to visualize the text format file, and 

generate the graph presentation for these text files, as shown in the Fig 5.3 and 5.5. 

Start

Heuristic Search

Generate the text report

Translate into image files

HTML Files

Images

 

Figure 5.7 Schematic presentation of the module for generation of reports that contain 
graphics. 
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5.6 Web-based Application 

Dragon Motif Search Tool (DMST), for extracting and presenting sets of compact 

patterns from a set of unaligned sequences has been developed with heuristic algorithm in 

format of web-based application. This application is integrated with four different 

heuristic methods for motif clustering. Besides the two algorithms which are introduced 

in Chapter 3, two other methods, such as 'tabu' search [28, 29, 30] and simulated 

annealing [31, 32, 33, 34, 35], are also implemented. The algorithms share certain 

similarities with genetic algorithm approach, but do not operate on generated populations 

of patterns. 

 

 

Figure 5.8 Snapshot of the Dragon motif search tool 

This web-based tool can be directly applied in determination of potentially 

functional patterns in DNA. The system is available as a public web application free for 
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academic and non-profit users and can be found at http://sdmc.i2r.a-

star.edu.sg/DRAGON/Motif_Search/. 

5.6.1 Dragon Motif Search Tool 

The DMST aims to provide a free-access tool for the biologists to analyze the 

biological sequences. Therefore, the web-browser is used to acquire the sequences and 

pass it to server for the analysis, and then the report would be mailed to the users. 

 

5.6.2 Procedures and Operations of Dragon Motif Search Tool 

The main page of the tool is shown in Fig 5.8. The operation of the tool could be 

divided into the following procedure. 

a) Input File preparation. 

In order to use this tool, users should provide a set of aligned or unaligned 

sequences in the FASTA format [36]. These sequences can be either pasted to the main 

sub-window provided, or the ASCII file in the user’s computer, which contains FASTA 

sequences, can be browsed through the smaller sub-window below the main one by using 

the ‘browse’ key. After pressing the ‘submit’ key the file or pasted sequences will be 

transmitted to the server and further processed.  

 

b) User Email Information 

Due to the long consuming time to run the heuristic search, users should provide 

their e-mail address, so that they could receive the report of searching results. Without 

this email information, the system will not produce any output.  
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c) The other options provided for all implemented methods include: 

c.1 motif length; the default is 8 nucleotides; ranging from 4 to 30 nucleotides. 

c.2 number of motifs (motif groups) in the report; the default is one; 

c.3 if the sequences are aligned, then it is possible to select the segment for submitted 

sequences to be analyzed; for this users need to check the square box before the ‘User 

specifies segment for analysis’ and then select the start and end positions of 

sequences for the analysis. 

c.4 an option to either eliminate a sequence if it contains a pattern which will be included 

in a group, or to mask by ‘N’s such a pattern; to select these options users have to use 

‘radio’ buttons; the default is ‘eliminate sequence’. 

c.5 the checkbox to induce the double-stranded search for all the algorithms. 

 

d. Specific algorithm selection  

d.1. EM 

The default method in the DMST is ‘Expectation Maximization’ algorithm since 

it is efficient to obtain the analysis results. In the EM-based algorithm the pattern will be 

included in the group if its matching with the position weight matrix (PWM) generated 

from the previously selected patterns is above the selected threshold. In this case users 

additionally can select: 

d.1.1. the threshold, which ranges from 0 to 1; the default value is 0.75. 

d.1.2. average Information Content threshold, which ranges from 0 to 2; the default value 

is 0.85 
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d.2. Genetic algorithm, Tabu Search and Simulated Annealing 

d.2.1. select the maximum number of nucleotide mismatches allowed for a new pattern to 

be included in a group; 

d.2.2. use option (by means of radio-buttons) to select the mode of operations of these 

algorithms so as to allow that exactly one pattern be selected from each sequence 

during iterations, or that maximally one pattern (the best) from a sequence be 

included in the group if it satisfies the required conditions, or that any number of 

patterns from a sequence could be included in the group if they satisfy the required 

conditions. 

5.7 Other Applications 

Additionally, the report pages of DMST have been integrated into the Dragon 

Explorer of Estrogen Responsive Gene Functionality (DEERGF http://research.i2r.a-

star.edu.sg/DRAGON/FERGDB1_0/).  

In the example given below in Figure 5.9 a, DMST has identified motifs in three 

ortholog promoter sequences for gene ATF3 (activating transcription factor 3, which 

represses transcription from promoters with ATF binding elements [58]) from human, 

mouse and rat. A typical question of interest to biologist is what are motifs that are 

common between the members of the ortholog group and are the positional organizations 

of motifs preserved. It can be observed that the block of four motifs remain conserved 

between human and mouse (Figure 5.9b), showing that the motifs are also preserved 

relative to their positional. The blank parts of the promoter sequence represent positions 

where other identified motifs are located but these have not been found common between 

the two promoters. Thus biologists have a clear picture about what are common motifs in 
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these ortholog sequences, but also have an idea about distribution of other motifs. 

Moreover, when we look for the common motifs between human and rat, we find that 

they share one motif more (motif 13) which does not appear in mouse orttholog.  

 

Figure 5.9a 

 

Figure 5.9b 

 

 

Figure 5.9c 

Figure 5.9. Snapshot of the promoter content of ATF3 ortholog genes. In the case of 
human and rat (5.9c) there are more common promoter elements that have preserved 
positional organization, than is the case when human, mouse and rat are considered (5.9b). 
This suggests mouse specific solution in promoter composition for the ATF3 gene.  
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This example illustrates how useful systems of this type could be and how 

graphical representation makes convenient medium for biologist to get insight into 

promoter features. 
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Chapter 6 TFMapper  

With the increased interest in understanding biological networks, such as protein-

protein interaction networks and gene regulatory networks, methods for generating such 

networks and then representing them becomes increasingly important. It is our interests 

to develop tools which could generate the network map out of genes and the PEs that 

potentially control them, so as to obtain a putative transcriptional regulatory network. 

However, this transcriptional regulatory network is not difficult to unravel and present 

because the complex relation between the TFBSs and the associated genes. Thus, one 

simple but effective network program has been developed in our study. This section 

presents such development that generates transcriptional regulatory networks suitable for 

analysis of role of PEs in control of various genes. 

 

6.1 Objectives of the Development 

It is our objective to develop TFMapper system that aims to assist biologists to 

reconstruct parts of transcriptional regulatory network. This system utilizes the promoter 

content based on the input data files produced by other systems that map important PEs 

to the promoter. Then, TFMapper will be designed to analyze this information, extract the 

interconnection between the PEs and genes, and provide the graphic layout to illustrate 

the relationship between the genes and TFs. The system needs be developed as a 

Windows application. It aims to be an effective and efficient solution to suggest the 

correlation of genes and TFs. 
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6.2 Software Description 

With the clear design objective, TFMapper was developed as a novel graphic 

program, which makes use of the Graphviz [37] package for drawing associated graphs. 

TFMapper is a stand-alone software with the graphical user interface. It, however, 

requires input data files in specific format (as described in Chapter 5). Then it uses these 

files to generate layout of the graphic network. Basically, the software consists of 

modules for:  

• acquiring data,  

• manipulation of data,  

• graphical layout generation 

• graphical user interface (GUI).  

The system is developed in Visual C++ 6.0, which is compatible with the 

Windows operating system. Compared with the previously described two graphic 

presentation programs (in Chapters 4 and 5), this system emphasizes more on presenting 

information that makes connection between the genes.  

 

The GUI of the TFMapper is shown in Figure 6.1. This GUI generally is 

composed of five different portions that deal with various types of information required 

or generated by the system: 

 

1. File Information:  

This part collects information about the input and output files and their 

directories. 
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2. Number of TFBSs shared by the genes: 

This is information that users supply. For the genes that will later be selected 

by the user, the link between them will be characterized by at least the number 

of TFBS motifs shared by the promoters of these genes. These will be 

displayed on the layout. 

3. List of name box for the TFBSs and genes, and user specified TFBSs and genes:  

Double clicking the specified TFBS list box displays the number of gene with 

selected TFBSs. 

4. Number of genes with the selected TFBSs: 

Double click the TFBS checkbox and the number of genes with selected TFs 

will be shown in the textbox. 

5. Utility function keys:  

There are several keys provided to help user in specific tasks. These are 

a. Get TFBS: to extract all TFBSs patterns from the input data. 

b. Select/ Remove: to choose or delete the highlighted TFBS/gene. 

c. Generate: to generate the image with the information. 

d. Reset: to reset all the information in the list box. 

e. Refresh Gene: to update the corresponding gene information with the 

known TFBSs. 

f. View: to view the images generated by the program. 
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Figure 6.1 Graphical user interface of the TFMapper 

 

6.3 Working Principle 

Users need to provide one input data file which contains information about TFBSs 

and genes they are controlling. User has a possibility to select TFBSs he/she is interesting 

investigating, and all genes that are putatively controlled by more than a specified 

number of the selected TFBSs, will be extracted. Certain non-obvious TFBSs relationship 

between the extracted genes and TFBSs that have not been selected will also become 

available and presented in graphic layout. For example, TFBSs associated with the user 

specified genes will be shown in the graph, and interconnection relationship of these 

TFBSs and other genes will also be shown. 
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6.4 Using TFMapper software 

Below we provide list of instructions how to use TFMapper. 

• Click the input file Browse button to identify the input file path. 

• Click the output directory Browse button to specify the output file directory. 

• Fill in the output file name without any extension in the output name textbox, 

because the output file extension is defined svg format in the system. 

• Click the Get TF button to extract all the TFs from the input file and list on the left-

top list box. 

• Highlight the specific TF in left-top list box 3.a, and press the Select button to 

choose the TF to present in the relationship map. Then the TF will be put into the 

right top list box 3.b. 

• Press the Refresh Gene and the genes with the selected TFs in the list box 3.b. will 

be automatically extracted and listed on the left bottom list box 3.c. 

• Highlight the selected TF in the right-top list box 3.b, and press the Remove key to 

remove the TF if user would not like to choose the TF presenting in the map. 

• Double click the selected TF in the list box 3.b, the number of genes with the 

selected TF will be displayed.  

• Highlight the select gene and press Select key if more detail need be shown in the 

map for specific gene in the left-bottom list box 3.c. Then the specific gene will 

present on the right bottom list box 3.d . 

• Press the Generate button to generate the image according to information genes and 

TFs that user define. 

• Press the Reset button to reset all the information in the list-box. 
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• Press the View button to view the image. 

 

6.5 Input / Output File Information 

The input data shares the same format as the one in the TSSViewer, as shown in 

Fig 4.1 as in Chapter 4. TFMapper classifies the TFBSs according to the genes they are 

putatively controlling and translate them into the format of the input file for Graphivz as 

in Fig 6.2. 

 

Figure 6.2 Translated Input file for Graphviz. 

 

The input file for Graphviz contains the relation of TFBSs and genes. When user 

specifies genes and TFBSs of interest, the system will extract the relevant information for 

relationship network reconstruction. In the network the specific shapes and colors are 

assigned to TFBS and to genes. 
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Once the input file for Graphviz has been generated, the TFMapper system will 

execute the Graphviz to generate the network image. In the network, the text term 

description for the features will be decoded as illustrated in Figure 6.3. 

 

Figure 6.3 Relation network for genes and TFBSs 

 

This network is generated following a typical question that biologist may have in 

transcription regulation. A specific gene (T04F076A190E) is selected together with some 

number (in our case seven) TFBSs of specific interest. We want to find out other genes 

that contain the same set of TFBSs and also to see other information of relevance to 

transcription regulation. 

Below we provide explanation of the content of network depicted in Figure 6.3. 

Octagon Nodes 

The nodes presented as octagons correspond to the genes. They may appear in two 

colors. 

• Violet color  user specified gene; for example T04F076A190E in Fig 6.3 
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• Green color  other genes found that share with the originally selected gene in 

their promoters the set of seven TFBSs required by the user.  

 

Ellipse Nodes 

Elipse nodes correspond to TFBSs that are found in the promoters of genes present in 

the graph. They also may appear in different colors. 

 

• Yellow color  TFBS is one of the TFBSs that the user has selected and it is 

shared by some other genes. Examples in Fig.6.3 are dl, PITX2 and Hb, etc. All 

these PEs control the transcription of T15F03E4A886, T11R04F46CCB, and 

T04F076A190E genes. 

• Navy color  TFBS that is common to the presented genes but was not specified 

by the user in the specific list box 3.b; such as Brn2<>DBP. 

• Light blue color  TFBS found in promoter of the user selected gene, but it is 

not shared by the other genes found by the system. Examples are LEF1 and E12 

which control the transcription of the T04F076A190E, but not the other two genes.  

 

In the layout, all relations and characteristics between TFBSs and genes are given 

in terms of different features and interconnection. This visual presentation provides the 

more comprehensive and convenient insight into the relation of TFBSs and genes than it 

could be possible to get using tabular approach. Moreover, user can change the selection 

of genes and TFBSs and inspect different network of interconnections.  
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6.6 Program Flow chart 

Here we present in Figure 6.4 the flowchart of the program implemented in the system 

and describe functions of each component block. Generally it can be specified as the 

instruction and data block. 

Start

Acquire Data
Information

Classify the relational
genes/TF

Generate Text Report

Execute the Graphviz

Generate Images

Images
 

Figure 6.4 Program flow chart for TFMapper 

Main Instruction block is to illustrate the program procedures to acquire data and 

visualize the network of gene and their associated TFBSs. 

• Acquire Data information: This block acquires PEs/genes information from the 

input files, whose format is as shown in Fig  4.1.  

• Classify the relation of gene/TF: This block collects and classifies PEs based on 

their association to genes, and select PEs and associated gene. 

• Generate the Text Report: This block produces the report for PEs and their 

controlled genes on one text report, which follows the format of Fig 6.2. 
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• Execute the Graphviz: This block calls the Graphviz package with the image 

parameters setting to produce graphic layout. 

• Generate Images: This block converts the text report into graphic images, for 

example Fig 6.2, to the image file, as shown in the Fig 6.3. 

File information consists of the input data file imported by the user, and the output one 

is the images file for the network. 

• Images File: The image, contains the connection of genes and the associated PEs, 

as shown in Fig 6.3. 

6.7 Applications of TFMapper 

This section is based on an unpublished study [76]. Here, we show how visual 

presentation of network data can be useful in analyzing complex relations between genes 

and their transcriptional regulators. We will illustrate this on the example of epithelial 

ovarian cancer. This cancer is one of the most deadly gynecological cancers and there is 

no cure for it yet. If it is not diagnosed early, the mortality is rather high [64]. Moreover, 

it is very difficult to diagnose it early. Thus, it is of interest to search the effects that 

epithelial ovarian cancer may cause and through these effects to attempt to identify genes 

that are involved. Since these genes are never active alone, but are always part of bigger 

gene networks, it is of interest to find out those genes that are likely to be co-regulated in 

epithelial ovarian cancer. Such genes could be good targets for further investigation as 

potential diagnostic markers or even as drug targets.  

  

We used a recent microarray study of gene expression in patients with epithelial 

ovarian cancer [65]. From all genes expressed, we selected those that were very highly 
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expressed (more than 5 fold). There were in total 19 such genes. For these genes we 

determined promoters by using H-invitational database [74]. We were able to find 

promoters for 17 out of 19 genes initially selected. Then we determined promoters 

covering region [-800,+200] relative to the estimated TSS. Using all available matrix 

models for TFBSs contained in TRANSFAC Professional database ver. 7.4 [67] and 

mapped them to the promoter sequences. The thresholds for mapping were based on the 

minSUM profiles for matrix models [54]. These thresholds in are optimized to provide the 

minimum sum of false positive and false negative predictions of binding sites. Then, the 

promoter content of 17 overexpressed genes was compared to that of human promoters 

from H-invitational database. We determined the over-representation index (ORI) using 

method from [57]. All TFBS mapped to promoters were ranked according to decreasing 

ORI values. We used for annotation of 17 promoters only those TFBSs that had ORI >= 

1.5. The resulting file is given in Appendix 1.  

 

Then we generated a network of all genes from the set of 17 highly expressed that 

have at least five common PEs. This network is given in Fig. 6.5.  
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Figure 6.5. A subnetwork of interconnected genes from group of 17 very highly 
expressed in epithelial ovarian cancers. The link between the genes is made only if they 
share at least five PEs in their promoters. 
 

Although there are no rules how to group genes into subnetworks we can observe 

that KRT18 and KRT8 (genes from keratin group) form one small network with attached 

PAX8, ELF3, MUC1 and WFDC2 genes. The other small network could the one around 

MMP12 (matrix metallopeptidase 12) gene that associates CP and EVI1. In this 

consideration we looked also into the functionality of these genes. Keratin genes from the 

group of 17 genes we considered (KRT8, KRT13, KRT18) are well known for their 

involvement in the integrity of epithelial cells and, moreover, they are implicated in 

epithelial cancers [66]. Matrix metallopeptidase genes from the group of 17 genes 

(MMP9, MMP10, MMP12) are involved in destruction of extracellular matrix during 

normal physiological processes but also in diseases and cancer metastasis [75]. These two 
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gene groups (keratins and matrix metallopeptidase) are involved in different processes 

relative to cancer state and thus are likely to be part of different gene regulatory networks.  

 

In order to find out what in more details what are members of such potential two 

subnetworks and to try to infer what may be their transcriptional regulators, we applied 

TFMapper to the 17 genes we analyzed. The gene networks are presented in Fig. 6.6 and 

Fig. 6.7.  

 

 

Figure 6.6. The network of genes that are highly expressed in epithelial ovarian cancer 
shown with PEs that potentially control these genes. The network is generated by 
TFMapper using four PEs (TCF11(+), AREB6(-), XPF-1(-), Kr(+)) as seed PEs. 
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Analysis of the keratin gene group (in our case KRT8 and KRT18) subnetwork 

(Fig.6.6) and their specificity that do not appear in matrix metallopeptidase group 

(MMP9 and MMP12) (Fig.6.7), revealed that the keratin group contains PE AREB6(-) 

(i.e. AREB6 binding site on ‘-‘ strand) that does not appear in matrix metallopeptidase 

group. For this reason it appears that keratin promoters have as a characteristic feature 

[96] AREB6(-) and at least one other PE such as TCF11(+), XPF-1(-) and Kr(+). Thus, 

the set of genes that associate with keratin group are LCN2, MUC1, WFDC2, ELF3, 

PAX8, E2F5. All six genes are implicated in various cancers [68, 69, 70, 71, 72, 73]. The 

last three genes (ELF3, PAX8, E2F5) are TFs for themselves. 

 

Figure 6.7. A larger gene network that contain a subnetwork of genes associated with 
matrix metallopeptidase group.  
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For matrix metallopeptidase related network (Figure X3) we can observe that the 

associated genes (that are not part of the keratin group) have very different promoter 

content characterized by either AREB6(+) and BR-C Z4(-), or Evi-1(+) and XPF-1(-), 

thus including CCNE2, CP and EVI1 genes.  

 

The purpose of this section was to show how graphical presentation can help in 

analysis of associations of complex structures such as gene regulatory networks in a case 

of one particular disease. It is interesting to note that graphical presentation of potential 

associations of genes through their PEs revealed a lot of information that will be difficult 

to infer from tabular presentation.  
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Chapter 7 Discussions and Comments 

7.1 Heuristic System Performance 

The heuristic methods and the statistical parameters, which are discussed in 

Chapter 3, have been integrated and implemented as one motif prediction system, Dragon 

MotifBuilder [27]. This system was developed with C language, and it could be 

supported in different operating system. System performances, in term of efficiency and 

precision, are discussed in this chapter. 

 

Before we compared our system with other systems, we performed a similar 

analysis on three motif search algorithms for human histone promoters [56] on different 

systems discussed on Chapter 3. The results suggest that MEME may provide more 

accurate predication of regulatory elements than the other two programs, AlignACE and 

CONSENSUS. AlignACE has a better speed performance over other two programs on 

simulated samples. However, all these search models are developed on the local 

alignment principle. Therefore, MEME is considered as one of the best performance 

system for the motif detection. Thus we did the comparison on motif detection by 

evaluating MEME and our DMB with same dataset. 

7.1.1 Efficiency 

The aim of motif prediction system is to provide the efficient solution to obtain 

the homogeneous groups of motif in large subsets of sequences in reasonable time. This 

homogeneous group of motifs can be helpful to predict the new motifs. To evaluate this 
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purpose, the system is applied to analyze a set of 8694 promoter sequences in double-

stranded search, which covers [+1,+100] relative to transcription start sites, and locate the 

top 20  ranking motif with high average information content. The experiments were 

evaluated on a Window XP PC with 1.8 GHz processor and 512 Mbytes memory.  

The criteria and results for the search experiment are:  

Table 7.1 Search criteria for EM and GA for comparison 

 Expectation Maximization Genetic Algorithm 
random initial Yes Yes 

Threshold expected θth = 0.82 mismatch  = 1 
No. motif 20 20 

motif length (nts) 8-12 9 
motif occurrence  one/zero per sequence one/zero per sequence 

HMM Yes No 
p-value Yes No 
e-value Yes No 

time (mins) 456 918 
sequence coverage 8332/8694 4568/8694 

IC range 8.96 – 15.85 13.44 -16.52 
 

Generally, the EM has more efficient searching feature, and high population of 

the motif. However, the GA shows good characteristic of information content. All of 

these features are determined by the characteristic of the algorithms. The EM is one 

method to achieve local optimal point, but GA is a global search technique. So the EM 

always terminates once it could get the optimal motif. But the characteristics of GA, such 

as mutation and cross over, allow the new element to break through the local optimal 

point. Therefore, it may take GA more time to obtain one global optimal point. 
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Figure 7.1 Report for motifs obtained 

For illustration purposes, the snapshot of fragment of the EM search report was 

shown as the Fig 7.1. The summary information of this motif group contains the binding 

site of GC box. It is present in 4006 out of 8694 sequences, and appears significant biased 

on the sequence position. The high information content suggested that the motif group is 

highly homogeneous. Moreover, the homogenous motif group appears to have 

completely conserved nucleotides at 6 positions.  
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Some other experiments [27], also shows that the algorithms are rather efficient to 

analyze the large scale dataset, such as 18,326 human promoter sequences with more than 

54 million nucleotides. Additionally, on average, about 25% of motifs found with the 

software do not belong to the already known transcription factor binding sites and 

represent the potentially new binding sites in the analyzed promoters. 

 

7.1.2 Precision 

Besides the speed of processing data, the precision of the prediction is also one of 

the most important parameters in the system. So the comparison was experimented 

between our software and MEME. MEME is considered as one of the currently best 

motif discovery systems in term of specificity and sensitivity. So MEME was selected as 

the candidate to compare with our tool. 

 

In the experiments, promoter sequences from two antimicrobial peptide families: 

Cathelicidin and Proenkaphalin were considered and we compared the motifs found in 

these two families based on the motif search programs. We were able to determine 

precise promoters for three ortholog sequences in each antimicrobial peptide family. 

These sequences are selected from human, mouse and rat. Experimental studies and prior 

TFBS predictions for cathelicidin promoters for the human, mouse and rat species report 

presence of NF-kappaB, NF-IL6, LF-A1, NFI, TCF, VDR,Sp1, AP2, PU.1, IL-6-RE 

binding sites. For proenkaphalin, the reported functional sites were: AP-1, NF1, TATA, 

AP2, NF-KB, MZF-1, NF-Y. 
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The criteria and results are shown as following: 

Table 7.2 Search criteria for MEME, EM and GA for comparison 

 MEME Expectation Maximization Genetic Algorithm 
Random initial N.A. Yes Yes 

threshold N.A expected θth = 0.88 mismatch  = 1 
No. motif 20 10 20 

motif length (nts) 10-15 10-15 10 
cathelicidin 4/9 6/9 3/9 

proenkaphalin 3/9 7/9 4/9 
 

The computation results show better prediction accuracy among the different 

systems with the experimental ones, although DMB with expectation Maximization 

algorithm has detected the largest proportion of previously known TFBSs. As a 

conclusion, the predicting accuracy of these systems does not change significantly for 

different family of promoters. 

 

7.2 Comments on graphical representation 

Three different graphical representation approaches have been developed to 

visualize the promoter content data, and assist biologists to capture the information 

effectively, and improve the quality of analysis.  

 

All the software possesses the following features: 

1) Interactivity: 

The interactive presentation is an impressed and effective approach; 

especially in web-based graphical applications. The JavaScript is used to enhance 

such interactive presentation. The graphical images for viewing the promoter 
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structure provided pop up window according to the on mouse effect. The popup 

message contains all the information about Transcription Factor Binding site, 

such as strand location and overrepresentation.  

 

2) Effective representation: 

The main goal for motif visualization is to provide effective representation 

contrast to classical text format information. The protein-motif network layout 

simplifies the complicated correlations between the promoters, and presents 

further motif information, which might not be aware by the analyzers at the initial 

stage. The motif position distribution chart is illustrated in the heuristic algorithms, 

which could further detect consensus pattern with the position significance 

assumption.  Moreover, different colors used in the images are easy for user to 

identify the range of overrepresentation and observe the factors systematically.  

 

3) Flexibility for multiple operational systems 

The visualization tools are requested to operate in different operational 

system. So the programs were developed with perl or C languages, which could 

be supported by different operatingl systems. The compatibility and flexibility of 

the programs for different systems also allows it to function in the web-based 

application, which is one of the main utility for bioinformatics. 
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Chapter 8 Conclusion and Further work 

The completion of the Human Genome Project in 2003 has generated a huge 

volume of the genome sequences and produced vast quantity of biological information, 

which lead scientists to recognize the importance to present and characterize these data. 

Visual representation of biological data offers more convenient and more suitable insight 

into data to facilitate human interpretation, because it can provide human-readable 

diagrammatic visualization of relations from the ambiguous data. Even though great 

effort has been invested into graphical representation of information in bioinformatics [13, 

14, 40, 41], the difficulties still remain in the presentation of the biological information 

due the complexity of the connection between entities [41]. 

 

Therefore, this study focused on exploring the suitable ways to present specific 

types of biological information as graphic. This specific information is related to PEs, 

and more broadly to transcription regulation. It is tightly associated with methods to 

generate data that can enable such graphical presentation. Moreover, it is also essential 

for us to develop systems to prepare the data for this purpose. Thus, in our work, we have 

developed several convenient ways for suitable presentation of specific, transcription 

regulation related, biological information, and developed some simple but effective 

presentation methods to enrich the biological content by visualizing the TFBSs/motifs, 

composition of promoters and their associated genes. Moreover, we have developed one 

accurate and efficient motif search application with the heuristic algorithms. 
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In the graphical presentation of biological information, we have attempted 

different approaches by utilizing various graphical packages to express the transcription 

regulatory relation.  

• One graphical interface database (Dragon REGHSdb), which describes the 

transcriptional regulatory motifs in the promoter region, has been developed with 

the graphical tool TSSViewer. This database with such visual representation of 

promoter content enables different means for biologist to get insight into promoter 

structure of his target gene groups, which cannot be provided in the traditional 

tabular expression. 

• Another system, DMB, has been developed to generate the graphical report for 

PEs, which are obtained in the heuristic algorithm. This system has been 

published as the web-application, which allows the users to easily figure out the 

putative TFBSs, their cumulative distribution and distribution along individual 

sequences with the graphical approach.. 

• TFMapper was developed as one effective solution to generate small-size 

transcriptional regulatory networks suitable for the analysis of roles of PEs in 

control of various genes. This visual presentation provides the more 

comprehensive and convenient insight into the relation of TFBSs and genes than 

it could be possible to get using tabular approach. 

 

For preparing the data for the graphic presentation, we have developed the 

efficient heuristic methods to detect the homogenous motif groups in large scale 

biological sequence sets, and applied the statistic measures for selection of the motifs. 
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This system has been compared with other systems, such as MEME [9, 10]. It achieves 

better performance in term of accuracy and speed than the other methods. Therefore, the 

shortlist motif groups, which are obtained by this system, would be helpful for the 

biologists to identify and discover the transcription information easily. 

Even though the graphic representation provides a comprehensive and simply 

presentation for the TFBSs and their associated gene, it is lack of the interactive 

animation which could enhance the presentation effect. Thus, some other interactive 

graphical packages, such as SBML [59] and VRML [49], may be considered as the 

further development tool to complement this. Moreover, the heuristic algorithms in the 

data preparation system are still sensitive to certain parameters setting, which affect the 

accuracy of the predication. For example, EM is quite sensitive to the initial maxima 

obtained in the search, and it sometimes stops searching when it reaches a local maxima. 

In order to overcome the sensitivity and maintain the stability of the search, more 

complicated statistical and possibility model should be implemented as part of the 

heuristics algorithm. 

However, the preparation and presentation of the biological information is not a 

simple computer science topic. It required a deep understand on the biological problems. 

Moreover, no universal solution has been established for all the problems. But in our 

study, we have successfully developed the graphical presentation systems, which cater 

for presentation of various TFBSs/motifs, promoters and their associated genes. 

Additionally, the data preparation system, DMB, was developed and evaluated as one of 

the precise and efficient system to identify the homogenous motifs. All the work we have 
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done is only a start, we need continue exploring the approaches to present and 

characterize the biological data. 



   

108 

References 

1. Attwood T. K, Parry-Smith D. J (1999) Introduction to bioinformatics, Prentice Hall 

2. Fickett .J.W, Hatzigeorgiou A.G (1997) Eukaryotic promoter recognition Genome 

Research.:7:861-878 

3. Alberts, Bruce, A. Johnson, J. Lewis, Raff .M, Roberts K, and Walter P (2002), 

Molecular Biology of the Cell. Fourth Edition. New York: Garland.  

4. http://www.blc.arizona.edu/Molecular_Graphics/DNA_Structure/DNA_Tutorial.HT

ML 

5. http://en.wikipedia.org/wiki/Chromosomes 

6. http://www.web-books.com/MoBio/Free/Ch3F.htm 

7. Werner T (1999) Models for predition and recognition of eukaryotic promoters, 

Mamalian Genome, 10:165-168 

8. Boysen C, Simon M.I, Hood L.E (1997). Analysis of the 1.1 M-b human alpha/delta 

T-cell receptor locus with bacterial artificia chromosome clones. Genome Research 

7:330-338 

9. Bailey T.L, Elkan C (1994). Fitting a mixture model by epxectation maximization to 

discover motifs in biolpolymers. In Proceedings of the 2nd International Conference 

on Intelligent Systems for Molecular Biology, Vol. 2: 28-36. AAAI Press. 

10. Bailey T.L, Elkan C (1995). Unsupervised learning of multiple motifs in biopolymers 

using expectation maximization. Machine Learning, 21:51-80. 

11. Hughes J .D, Estep .P .W, Tavazoie S, Church G.M (2000). Compuational 

identification of Cis-regulatory elemtens associated with groups of functionally 



   

109 

related genes in Saccharomyces cerevisiae. Journal. Molecular. Biology Vol. 

296:1205-1214 

12. Helden J. V, Andre B, Collado-Vides J, (2000) A web site for the computational 

analysis of yeast regulatory sequences. Yeast, Vol.16: 177–187. 

13. Sandelin A,Alkema W, Engstrom P, Wasserman W.W, Lenhard B (2004), JASPAR: 

an open-access database for eukaryotic transcription factor binding profiles. Nucleic 

Acids Research Vol 32: 91-94 

14. Pan H, Zuo L, Choudhary V, Zhang Z, Leow SH, Chong FT, Huang Y, Ong VW, 

Mohanty B, Tan SL, Krishnan SP, Bajic VB. (2004) Dragon TF Association Miner: a 

system for exploring transcription factor associations through text-mining. Nucleic 

Acids Res. 2004 Jul 1;32 (Web Server Issue): 230-234 

15. Parra G, Agarwal P, Abril J.F, Wiehe. T, Fickett J.W, Guigo. Roderic. (2003) 

Comparative gene prediction in human and mouse. Genome Research. Jan; 13, 108-

117 

16. Bilmes. J (1997) A gentle tutorial on the EM algorithm and its application to 

parameter estimation for gaussian mixture and hidden markov models, Technical 

Report, University of Berkeley, ICSI-TR-97-021 

17. Smola. A, Moon TK (1996) The expectation-maximization algorithm, IEEE Trans 

Signal Processing. 1996 Nov; 47-60 

18. Lafferty. J. Notes on the EM algorithm. Online article. 

(http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/11761-s97/www.tex/em.ps) 

19.  McLachlan .G.J, Krishnan T. (1997) The EM Algorithm and Extensions. John Wiley 

and Sons, Inc. 



   

110 

20. L Yang, E Huang, VB Bajic (2004), Some implementation issues of heuristic 

methods for motif extraction from DNA sequences, International.Journal.of 

Computing System.Signals, 5(2) 

21. R. Dugad and U.B. Desai (1996), “A Tutorial on Hidden Markov Models,” Published 

Online. http://vision.ai.uiuc.edu/dugad/guestbook/addHMMguest.html. May 1996. 

22. http://www.ch.embnet.org/CoursEMBnet/Exercises/statistics.html 

23. http://www.people.virginia.edu/~wrp/cshl98/Altschul/Altschul-1.html#ref10 

24. A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler (1994), Hidden 

Markov models in computational biology: Applications to protein modeling. 

Journal.of Molecular. Biology , 235:1501--1531, February 

25. http://www.isixsigma.com/dictionary/P-Value-301.htm 

26. Beyer, W. H. CRC (1987) Standard Mathematical Tables, 28th ed. Boca Raton, FL: 

CRC Press, pp. 532-533. 

27. E Huang, L Yang, R Chowdhary, A Kassim, VB Bajic (2005), An algorithm for ab 

initio DNA motif detection, Chapter 4 in Information Processing and Living Systems, 

World Scientific, 611-614,  

28. F Glover (1989) Tabu Search - Part I. ORSA Journal on Computing, 1: 190-206 

29. F Glover (1990) Tabu Search - Part II. ORSA Journal on Computing, 2: 4-32 

30. F Glover, M Laguna (1997) Tabu Search, Kluwer Academic Publisher 

31. RW Eglese (1990) Simulated annealing: a tool for operational research, European 

Journal of operational Research, Vol. 46, No. 3. June 15: 271 – 281. 

32. M Fleischer (1995) Simulated annealing: past, present, and future, pages: 155 – 161, 

ACM Press, New York, NY, USA 



   

111 

33. S Kirkpatrick, C Gelatt, M. Vecchi (1983) Optimization by Simulated Annealing. 

Science, 220(4598): 671-680. 

34. D.S Johnson, C.R Aragon, LA McGeoch, C Schevon. (1989) Optimization by 

Simulated Annealing: An Experimental Evaluation. Operations Research, 37(6): 865-

892. 

35. C Tovey. (1988) Simulated annealing. American Journal of Mathematical and 

Management Sciences, 8(3&4): 389-407. 

36. D.W Mount. (2001). Bioinformatics: Sequence and Genome Analysis , Cold Spring 

Harbor Laboratory Press, New York. Chapter 2 & 3. 

37. E.R. Gansner (2004). Drawing graphs with Graphviz. 

http://www.graphviz.org/Documentation.php 

38. E. Segal, M. Shapira, A. Regeve, D. Pe’er, D. Bostein, D. Koller and N. Friedman 

(2003), Module networks: identifying regulatory modules and their condition-specific 

regulators from gene expression data. Nature Genetics, volume 34, p. 166-176 

39. Kohn KW, et.al Molecular Interaction Maps of Bioregulatory Networks: A General 

Rubric for Systems Biology, Mol Biol Cell. 2005 Nov 2 

40. Kitano, H.(2003), A Graphical Notation for Biological Networks. BioSilico, 1: p.169-

176. 

41. Kitano, H.et.al. (2005) Using process diagrams for the graphical representation of 

biological networks, Nature Biotechnology 23(8), 961 - 966  

42. D. Karolchik, R. Baertsch, M. Diekhans, T. S. Furey, A. Hinrichs, Y. T. Lu, K. M. 

Roskin, M. Schwartz, C. W. Sugnet, D. J. Thomas, R. J. Weber, D. Haussler and W. J. 



   

112 

Kent, (2003), The UCSC Genome Browser Database, Nucleic Acids, Vol. 31 (1): 51 

– 54 

43. Altschul,SF., Gish,W., Miller,W., Myers,E.W and Lipman,D.J. (1990) Basic local 

alignment search tool. J. Mol. Biol., 215,403 -410 

44. T. Hubbard, D. et al (2005), Ensembl 2005, Nucleic Acids Res. Jan Vol 33 Database 

issue: 447 – 453 

45. Gary D. S (2000), DNA binding sites: representation and discovery. 

Bioinformatics.Vol. 16(1): 16 -23 

46. M. Tompa et al (2005), Assessing compuational tools for the discovery of 

transcription factor binding sites, Nature Biotechnology. Vol 23(1): 137 -144 

47. G.D. Battista, P. Eades, R.Tamassia, I. G. Tollis (1999), Graph Drawing: Algorithms 

for the Visualization of Graphs. Prentice Hall. 

48. http://www.boutell.com/gd/ 

49. Hartman, J. et al. (1996). The VRML 2.0 Handbook, Building Moving Worlds on the 

Web Addison Wesley. 

50. R. Lea, K. Matsuda and K Miyashita (1996), Java for 3D and VRML Worlds, New 

Riders Publishing, Indianapolis Indiana. 

51. Wong, L, et al (2001), PIES: Protein Interaction Extraction System, Pac Symp 

Biocomput:520-31. 

52. Crooks GE, Hon G, Chandonia JM, Brenner SE ,(2004).WebLogo: A sequence logo 

generator, Genome Research, 14:1188-1190 

53. Cavin Périer, R., Junier, T., Bucher, P.(1998). The Eukaryotic Promoter Database 

EPD, Nucleic Acids Res.26, 353-357. 



   

113 

54. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E. 

(2003). MATCH: A tool for searching transcription factor binding sites in DNA 

sequences, Nucleic Acids Research. July 1;31(13):3576-3579. 

55. http://www.gene-regulation.com/pub/databases.html 

56. R Chowdhary, R. Ayesha Ali, W Albig, D Doenecke and VB Bajic (2005),  Promoter 

modeling: The case study of mammalian histone promoters, Bioinformatics, 

21(11):2623-2628 

57. VB Bajic, V Choudhary, CK Hock,  Content analysis of the core promoter region of 

human genes, In Silico Biology, 4:109-125, 2004  

58. Son MY, Kim TJ, Kweon KI, Park JI, Park C, Lee YC, No Z, Ahn JW, Yoon WH, 

Park SK, Lim K, Hwang BD (2002), ATF is important to late S phase-dependent 

regulation of DNA topoisomerase IIalpha gene expression in HeLa cells, Cancer 

Letter Vol. 184(1):81-88 

59. Hucka M, Finney A, et al. (2003), The systems biology markup language (SBML): a 

medium for representation and exchange of biochemical network models, 

Bioinformatics. March 1; Vol. 19(4):524-31 

60. http://www.opengl.org/ 

61. Klaus-Peter Fahlbusch,  Thomas D. Roser (1995), HP PE/SolidDesigner: dynamic 

modeling for three-dimensional computer-aided design; Hewlett-Packard Journal 

62. http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=2704278 

63. S B. Montgomery, et al, (2004) Sockeye: A 3D Environment for Comparative 

Genomics, Genome Research Vol.14:956-962 



   

114 

64. Cannistra SA, (2004) Cancer of the ovary, New England Journal of Medicine, 351, 

2519-2529 

65. Shridhar,V. et al. Genetic analysis of early- versus late-stage ovarian tumors, Cancer 

Research 61, 5895 – 5904 

66. Trask, D.K., Band, V., Zajchowski, D.A., Yaswen, P., Suh, T., and Sager, R. (1990) 

Keratins as markers that distinguish normal and tumor-derived mammary epithelial 

cells. Proceedings of the National Academy of Sciences, USA 87: 2319-2323 

67. Matys, V et al (2003). TRANSFAC (R): transcriptional regulation, from patterns to 

profiles. Nucleic Acids Research. Vol. 31, 374-378. 

68. Croce,M.V et.al (2003) Tissue and serum MUC1 mucin detection in breast cancer 

patients. Breast Cancer Research Treat. 2003 Oct;81(3):195-207 

69. Hellstrom I, Raycraft J, Hayden-Ledbetter M, et al (2003). The HE4 (WFDC2) 

protein is a biomarker for ovarian carcinoma. Cancer Research, 63: 3695-3700 

70. Hanai, J. et al. (2005) Lipocalin 2 Diminishes Invasiveness and Metastasis of Ras-

transformed Cells, Journal of Biological Chemistry, 280 13641-13647 

71. Vaishnav, Y.N. et al (1999) Differential regulation of E2F transcription factors by 

p53 tumor suppressor protein, DNA Cell Biology 18, 911-922 

72. Kroll TG, Sarraf P, Pecciarini L, et al.(2000) PAX8-PPARγ1 fusion oncogene in 

human thyroid carcinoma. Science; 289:1357-60 

73. Galang, C.K., MullerW.J., Foos,G.,Oshima, R.G, Hauser, C.A. (2004) Changes in the 

expression of many Ets family transcription factors and of potential target genes in 

normal mammary tissue and tumors, Journal of Biolgocial Chemistry 279, 11281-

11292  



   

115 

74. Imanishi T. et al. (2004) Integrative annotation of 21,037 human genes validated by 

full-length cDNA clones. PLoS Biol. Jun;2(6):e162. Epub 2004 Apr 20. 

75. Hijova E. Matrix metalloproteinases: their biological functions and clinical 

implications. Bratisl Lek Listy. 2005;106(3):127-32. 

76. K Narasimhan, VB Bajic, Ma Choolani (2005) Unpublished result. E2F5 in blood: 

potential marker for epithelial ovarian cancer. 



   

116 

Appendix 1:  

StartPos:-800 EndPos: 200 
MinCoef:1.537900 MaxCoef:2.968200 
================= 
Hsu2000d500_1381_res.mh 
>mRNA|PAX8| 
X69699;S77906;S77905;S77904;NM_013992;NM_013953;NM_013952;NM_013951;NM_
003466;L19606;BC001060|LocusID|7849|Chromosome|2|Strand|-
|Tss|10001(114131642)|ChroPos|114130643-114141643|length|11000 
================= 
-1   XPF-1"                        -716..-707      1.968300         10 
+1   Kr"                           -612..-603      2.292000          7 
-1   XPF-1"                        -591..-582      1.968300         10 
+1   TCF11"                        -501..-489      1.982600         10 
-1   AREB6"                        -186..-178      1.561700          8 
+1   AREB6"                        -164..-156      2.968200         10 
+1   Kr"                           -36..-27       2.292000          7 
 
================= 
Hsu2000d500_1676_res.mh 
>mRNA|CA2|Y00339;NM_000067;M36532;J03037;BC011949|LocusID|760|Chromosom
e|8|Strand|+|Tss|10001(86450886)|ChroPos|86440886-86451886|length|11000 
================= 
+1   Evi-1"                        -796..-782      1.537900          7 
-1   XPF-1"                        -731..-722      1.968300         10 
+1   TCF11"                        -583..-571      1.982600         10 
-1   XPF-1"                        -349..-340      1.968300         10 
 
================= 
Hsu2000d500_195_res.mh 
>mRNA|KRT18|X12883;X12881;X12876;NM_199187;NM_000224;CD106591;BG753529;
BC020982;BC009754;BC008636;BC004253;BC000698;BC000180;AK129587|LocusID|
3875|Chromosome|12|Strand|+|Tss|10001(51628906)|ChroPos|51618906-
51629906|length|11000 
================= 
-1   XPF-1"                        -793..-784      1.968300         10 
+1   Kr"                           -726..-717      2.292000          7 
-1   AREB6"                        -593..-582      1.561700          8 
-1   GBF"                          -383..-375      2.073100          4 
-1   BR-C Z4"                      -367..-355      2.220100          8 
-1   BR-C Z4"                      -362..-350      2.220100          8 
-1   BR-C Z4"                      -361..-349      2.220100          8 
-1   BR-C Z4"                      -360..-348      2.220100          8 
-1   BR-C Z4"                      -359..-347      2.220100          8 
-1   BR-C Z4"                      -358..-346      2.220100          8 
-1   BR-C Z4"                      -357..-345      2.220100          8 
-1   BR-C Z4"                      -356..-344      2.220100          8 
-1   BR-C Z4"                      -355..-343      2.220100          8 
-1   BR-C Z4"                      -354..-342      2.220100          8 
+1   Kr"                           -178..-169      2.292000          7 
-1   XPF-1"                        -145..-136      1.968300         10 
+1   TCF11"                          -5..8         1.982600         10 
+1   AREB6"                          70..78        2.968200         10 
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================= 
Hsu2000d500_1963_res.mh 
>mRNA|WFDC2|X63187;NM_080736;NM_080735;NM_080734;NM_080733;NM_006103;AF
330262;AF330261;AF330260;AF330259|LocusID|10406|Chromosome|20|Strand|+|
Tss|10001(44783802)|ChroPos|44773802-44784802|length|11000 
================= 
+1   TCF11"                        -688..-676      1.982600         10 
-1   GBF"                          -556..-548      2.073100          4 
+1   AREB6"                        -510..-502      2.968200         10 
-1   BR-C Z4"                      -492..-480      2.220100          8 
-1   GBF"                          -390..-382      2.073100          4 
+1   AREB6"                          -2..10        2.968200         10 
-1   AREB6"                         121..132       1.561700          8 
 
================= 
Hsu2000d500_245_res.mh 
>mRNA|LCN2|X83006;NM_005564;CA454137;BX644845;BF354583;BC033089;AW77887
5|LocusID|3934|Chromosome|9|Strand|+|Tss|10001(126287762)|ChroPos|12627
7762-126288762|length|11000 
================= 
+1   Evi-1"                        -789..-775      1.537900          7 
-1   AREB6"                        -751..-740      1.561700          8 
-1   XPF-1"                        -746..-737      1.968300         10 
-1   AREB6"                        -398..-390      1.561700          8 
-1   AREB6"                        -224..-216      1.561700          8 
-1   AREB6"                        -118..-107      1.561700          8 
-1   AREB6"                          -4..9         1.561700          8 
 
================= 
Hsu2000d500_257_res.mh 
>mRNA|KRT8|X98614;X74929;X12882;U76549;NM_002273;M77025;M34225;M26512;B
C063513;BC011373;BC008200;BC000654|LocusID|3856|Chromosome|12|Strand|-
|Tss|10001(51585106)|ChroPos|51584107-51595107|length|11000 
================= 
-1   BR-C Z4"                      -644..-632      2.220100          8 
+1   TCF11"                        -501..-489      1.982600         10 
+1   Evi-1"                        -273..-259      1.537900          7 
+1   AREB6"                        -149..-137      2.968200         10 
+1   Kr"                           -116..-107      2.292000          7 
-1   AREB6"                         -82..-70       1.561700          8 
-1   XPF-1"                         185..194       1.968300         10 
 
================= 
Hsu2000d500_2599_res.mh 
>mRNA|CP|X04136;NM_000096;M13699;M13536;AK095290|LocusID|1356|Chromosom
e|3|Strand|-|Tss|10001(150260501)|ChroPos|150259502-
150270502|length|11000 
================= 
+1   TCF11"                         -760..-748      1.982600         10 
+1   Evi-1"                         -696..-682      1.537900          7 
-1   BR-C Z4"                       -684..-672      2.220100          8 
+1   Evi-1"                         -656..-642      1.537900          7 
+1   Evi-1"                         -484..-470      1.537900          7 
+1   TCF11"                         -437..-425      1.982600         10 
-1   BR-C Z4"                       -126..-114      2.220100          8 
 
================= 
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Hsu2000d500_2874_res.mh 
>mRNA|E2F5|Z78409;X86097;U31556;NM_001951|LocusID|1875|Chromosome|8|Str
and|+|Tss|10001(86164279)|ChroPos|86154279-86165279|length|11000 
================= 
+1   TCF11"                         -635..-623      1.982600         10 
-1   AREB6"                         -584..-576      1.561700          8 
+1   AREB6"                         -118..-107      2.968200         10 
 
================= 
Hsu2000d500_2947_res.mh 
>mRNA|ELF3|U97156;U73844;U73843;U66894;NM_004433;BX537368;BC003569;AF51
7841;AF017307;AF016295|LocusID|1999|Chromosome|1|Strand|+|Tss|10001(199
265329)|ChroPos|199255329-199266329|length|11000 
================= 
-1   BR-C Z4"                       -671..-659      2.220100          8 
-1   AREB6"                         -645..-637      1.561700          8 
+1   TCF11"                         -442..-430      1.982600         10 
-1   XPF-1"                         -109..-100      1.968300         10 
+1   Kr"                              41..50        2.292000          7 
-1   GBF"                            131..139       2.073100          4 
 
================= 
Hsu2000d500_2972_res.mh 
>mRNA|EVI1|X54989;S82592;NM_005241;BX647613;BX640908;BC031019;AK025934;
AF487424;AF487423;AF164157;AF164155;AF164154|LocusID|2122|Chromosome|3|
Strand|-|Tss|10001(170185005)|ChroPos|170184006-170195006|length|11000 
================= 
-1   GBF"                           -746..-738      2.073100          4 
-1   BR-C Z4"                       -568..-556      2.220100          8 
-1   BR-C Z4"                       -484..-472      2.220100          8 
+1   AREB6"                         -335..-327      2.968200         10 
+1   AREB6"                          -91..-83       2.968200         10 
-1   BR-C Z4"                         87..99        2.220100          8 
-1   BR-C Z4"                         92..104       2.220100          8 
-1   BR-C Z4"                        154..166       2.220100          8 
 
================= 
Hsu2000d500_339_res.mh 
>mRNA|MMP10|X07820;NM_002425;BT007442;BC002591|LocusID|4319|Chromosome|
11|Strand|-|Tss|10001(102189075)|ChroPos|102188076-
102199076|length|11000 
================= 
-1   BR-C Z4"                       -441..-429      2.220100          8 
+1   AREB6"                         -358..-346      2.968200         10 
-1   BR-C Z4"                       -347..-335      2.220100          8 
 
================= 
Hsu2000d500_3600_res.mh 
>mRNA| CLDN4 
|NM_001305;BC000671;AK126462;AK126315;AK124076;AB000712|LocusID|1364|Ch
romosome|7|Strand|+|Tss|10001(72657289)|ChroPos|72647289-
72658289|length|11000 
================= 
+1   Evi-1"                         -334..-320      1.537900          7 
-1   XPF-1"                          -49..-40       1.968300         10 
 
================= 
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Hsu2000d500_371_res.mh 
>mRNA|MUC1|X80761;X52229;X52228;U60261;U60260;U60259;NM_182741;NM_00245
6;M32739;M32738;J05581;AY466157;AY327600;AY327599;AY327598;AY327597;AY3
27596;AY327595;AY327592;AY327591;AY327590;AY327589;AY327588;AY327587;AY
327586;AY327585;AY327584;AY327583;AY327582;AF348143|LocusID|4582|Chromo
some|1|Strand|-|Tss|10001(152379450)|ChroPos|152378451-
152389451|length|11000 
================= 
-1   XPF-1"                         -717..-708      1.968300         10 
-1   XPF-1"                         -337..-328      1.968300         10 
+1   Kr"                            -214..-205      2.292000          7 
+1   AREB6"                         -122..-111      2.968200         10 
+1   AREB6"                         -115..-104      2.968200         10 
-1   AREB6"                           88..99        1.561700          8 
+1   Evi-1"                          186..200       1.537900          7 
 
================= 
Hsu2000d500_7408_res.mh 
>mRNA|MMP12|NM_002426;L23808|LocusID|4321|Chromosome|11|Strand|-
|Tss|10001(102283395)|ChroPos|102282396-102293396|length|11000 
================= 
+1   Evi-1"                         -602..-588      1.537900          7 
-1   BR-C Z4"                       -474..-462      2.220100          8 
-1   BR-C Z4"                       -436..-424      2.220100          8 
-1   BR-C Z4"                       -416..-404      2.220100          8 
-1   BR-C Z4"                       -402..-390      2.220100          8 
+1   Evi-1"                         -343..-329      1.537900          7 
+1   TCF11"                         -165..-153      1.982600         10 
-1   XPF-1"                           60..69        1.968300         10 
-1   BR-C Z4"                        152..164       2.220100          8 
 
================= 
Hsu2000d500_7578_res.mh 
>mRNA|MMP9|NM_004994;J05070;BC006093|LocusID|4318|Chromosome|20|Strand|
+|Tss|10001(45322968)|ChroPos|45312968-45323968|length|11000 
================= 
+1   Kr"                            -621..-612      2.292000          7 
+1   AREB6"                         -238..-230      2.968200         10 
+1   AREB6"                           -1..11        2.968200         10 
 
================= 
Hsu2000d500_7850_res.mh 
>mRNA|PCNA|NM_182649;NM_002592;M15796;BU626265;BG612192;BC062439;BC0004
91|LocusID|5111|Chromosome|20|Strand|-
|Tss|10001(5102269)|ChroPos|5101270-5112270|length|11000 
================= 
+1   TCF11"                         -474..-462      1.982600         10 
 
================= 
Hsu2000d500_9191_res.mh 
>mRNA|CCNE2|NM_057749;NM_057735;NM_004702;BC020729;BC007015;AF112857;AF
106690;AF102778;AF091433|LocusID|9134|Chromosome|8|Strand|-
|Tss|10001(95864064)|ChroPos|95863065-95874065|length|11000 
================= 
+1   AREB6"                         -681..-669      2.968200         10 
-1   XPF-1"                         -416..-407      1.968300         10 
-1   XPF-1"                         -349..-340      1.968300         10 
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+1   Kr"                              29..38        2.292000          7 
-1   XPF-1"                          126..135       1.968300         10 
 
 
================= 
SUMMARY 
================= 
Files Processed :17 
Files having selected TFs :17 
Files discarded due to N :0 
Files discarded due to GC :0 
GC max :1.000000   GC Min:0.000000 
 


