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Summary 

The protein p10 is a truncated form of p35nck5a, a Cdk5 activator. The cleavage of p35 to p25 

and p10 under neurotoxic conditions is thought to possibly contribute to neuronal apoptosis in 

Alzheimer’s disease. The work included in this thesis focused on the role of p10 in apoptosis. 

First, plasmids with p10 cDNA were amplified in bacteria system. Then, the plasmids were 

delivered into different mammalian cells including Cos-7, HEK293, PC12 and Neuro-2a and 

p10 fusion proteins were overexpressed in these cells. The influences of p10 overexpression in 

these mammalian cells were subsequently monitored and studied using a number of 

biotechniques such as fluorescence microscope, western-blot, immunohistochemistry, 

flowcytometry and so on. As a result, it was found that overexpression of p10 induced 

significant cell injury and DNA fragmentation in different mammalian cells. The outcome of 

this research may lead to an improved understanding of the mechanism of neuronal death in 

Alzheimer’s disease. 
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1.1 General introduction of Alzheimer’s disease 

 

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease characterized by 

loss of function and death of nerve cells in several areas of the brain leading to loss of 

cognitive function such as memory and language (Whitehouse et al., 2000). It is the 

most common cause of dementia although it can be the result of a variety of other 

processes such as Parkinson’s disease, AIDS, head trauma, and alcohol dependence. 

Patients of AD typically show cognitive impairments leading to characteristic self-care 

deficits at the end-stage of which they may be unable to walk, to chew or swallow food. 

Moreover, the cognitive deterioration is often accompanied by mood deterioration as 

patients may develop depression, anxiety, or delusions (Whitehouse et al., 2000). AD 

ranks fourth in the cause of death among adults. It will slowly rob its victims of 

liveliness, savings and dignity. As suggested by epidemiological studies, “up to 4 

million people in the United States have AD or a related dementia” (Blechman and 

Brownnell, 1998). Experts estimate that 22 million people around the world will be 

afflicted with the disease by 2025. Yet, until now there is no effective way to cure the 

disease. 
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1.2 Brief research history of AD 

 

AD was first recognized in 1907 by Alois Alzheimer, a German physician, in his 

publication, “A Characteristic Disease of the Cerebral Cortex” (Alzheimer 1907). In 

his paper, he described “a 51-year-old woman from Frankfurt who had exhibited 

progressive cognitive impairment, focal symptoms, hallucinations, delusions, and 

psychosocial incompetence” (Whitehouse et al., 2000). From then on, the scientific 

concept of AD has undergone a continuous advancement as skills and technologies of 

scientific research improve. AD was first characterized by clinicians as a pattern of 

progressive cognitive impairment. It was originally used to describe presenile dementia 

and later extended to the dementia among the elderly. The second important step of the 

concept of AD was the clear characterization of the disease state. The term dementia, 

which predates AD, means an organic mental disorder characterized by a general loss 

of intellectual abilities involving impairment of memory, judgment and abstract 

thinking as well as changes in personality. It was differentiated from mental retardation 

because dementia requires normal intellect which is impaired after the onset of the 

disease. Dementia was also differentiated from delirium, which was characterized by 

reduced ability to maintain attention to external stimuli and disorganized thinking as 

manifested by rambling, irrelevant or incoherent speech. Then the development of the 

techniques to examine brain tissues made it possible to develop theories about etiology 

and corresponding therapeutic strategies. As an example, the effective silver staining 

techniques are crucial to the discovery of neurofibrillary tangles which are the hallmark 
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of AD. Later electron microscopy showed more details of the plaques and tangles not 

possible with a microscopy to the researchers. Meanwhile, the advancement of 

neurochemistry especially about characterization of neurotransmitters threw new light 

on the AD research. The success in Parkinson disease was modeled by AD researchers. 

In Parkinson disease, the neurotransmitter dopamine was considered related to the cell 

loss in the substantia nigra. The compounds capable of increasing the dopamine level 

were discovered to effectively reduce the clinicopathologic symptoms. In AD, the loss 

of chemical markers for the neurotransmitter acetylcholine was found. So the 

application of increasing the acetylcholine level was developed several years later and 

brought some benefits for AD patients. Thus AD as a clinical entity changed into a 

neurochemical entity. Now with the emergence and advancement of molecular biology, 

AD is regarded as a genetic disease. Early onset AD patients were found to have at 

lease one other family member with the disease. Strong genetic mutations on some 

genes cause a predisposition to AD. For instance, researchers discovered that plaques 

and tangles appeared in the brains of Down syndrome patients when they lived beyond 

the age of 40. Many also developed a dementia. As Down syndrome is caused by an 

extra copy of 21st chromosome, researchers managed to find mutations in this 

chromosome causing AD in certain families (Head and Lott, 2004). As another 

example, the gene for apolipoprotein E (APOE) which locates on the 19th chromosome 

is also considered to link to AD (Harwood et al., 2002). People with homozygote for 

the APOE-4 allele are more at risk for AD while those with APOE-2 less so. 
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In summary, the characterization of AD develops from the anatomic/pathologic level to 

the neurochemical/neurotransmitter level and now to the molecular/genetic level. Since 

the recognition of AD, what we think of it has changed tremendously. Although we 

have already improved the diagnosis and treatment of AD, it remains to be discovered 

how biological and social factors interact to cause AD which may lead researchers to 

find methods to effectively cure and even prevent AD. 

 

1.3 Psychopathological Symptoms and Syndromes of AD patients 

 

Major depression is “a syndrome characterized by a sustained dysphoric mood, a 

change in self-attitude toward worthlessness, feelings of helplessness or guilt, and a 

general pessimism” (Terry et al.,1994). These moods are often accompanied by loss of 

interest in activities in the absence of external precipitants and change in eating habits, 

insomnia, early morning wakening, decreased sexual drive, fatigue and suicidal 

thoughts. It was reported that the major depression syndrome occurs in 15% to 20% of 

AD patients. The depressive syndrome often occurs early during the progress of the 

disease, most often within the first 3 years. Depressed AD patients are more likely to be 

institutionalized than nondepressed ones and have higher mortality rates. 

Anxiety, irritability, and restless overactivity emerge at a later stage of AD. Sometimes 

the syndrome appears alone and sometimes secondary to major depression, delusions, 

or hallucinations. For example, some patients have the anxious, irritable syndrome as a 

result of their concern of having lost something. So they wander about and aimlessly 

5 



search through drawers and closets. Some patients rise anxiety for fear of losing track 

of their caregivers. So they may persistently follow their caregivers around the house. 

Delusion is another common psychopathological symptom among AD patients. 

Delusions are “false ideas that are impervious to persuasion, are idiosyncratic and 

preoccupying, and affect the person’s behavior” (Terry et al.,1994). It was reported that 

40% of AD patients experienced delusions during the illness. The most common 

delusion they experience is that somebody is stealing things from them. There are other 

delusion examples. In one example, a patient insisted that he was 10 years younger than 

birth record indicated and repeatedly tried to contact the appropriate authorities to 

correct it. Some patients thought that their spouses were their mothers or their children 

their siblings, or they even failed to recognize their family members. Some patients 

claimed that the house they were living in was actually not their home and that they 

must return home, or that there were other people living in the house. In AD, delusions 

normally occur during early to middle stage of the illness which is 2 to 4 years after 

onset on average. Sometimes AD patients show aggressive behavior when caregivers 

try to stop them from acting on the delusions. 

Hallucinations are false perceptions occurring without any true sensory stimulus. The 

patients may see, hear, smell or feel things that are not present. Hallucinations in AD 

are generally signs of rapid decline of recognition and rapid deterioration of the disease. 

In addition to abnormal moods, beliefs, and perceptions, abnormal behaviors can be 

directly observed from AD patients. Deterioration of many learned behaviors occurs 

about 2 to 3 years after the onset of the syndrome. This phenomenon is believed to be 
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associated with the spread of neuropathological changes to the parietal lobes. These 

learned behaviors include socially appropriate behaviors such as the ability to speak, 

write, calculate, dress, bathe, and toilet which will be gradually lost during the progress 

of AD. Moreover, some complex behaviors such as driving an automobile, making a 

plan, and cooking meals deteriorate early in the disease course. All of the above 

behavior impairments can be described as aphasia and apraxia (Terry et al.,1994). 

Aggression was reported in 20% to 57% of the cases. The majority of the cases were 

directed toward other people or objects. The aggressive behaviors can be caused by 

environmental antecedents, as when a patient is confined against his/her will. The 

aggression behaviors are often accompanied by various behaviors such as crying, 

cursing or hitting. 

Many AD patients have repetitive behaviors which mean they continuously repeat 

some actions without satisfying themselves or concluding the actions. For example, 

some patients start to walk and refuse to rest. They just want to walk but have no idea 

where they are walking to. Some patients clap their hands on and on, others fold and 

refold laundry over and over. They may perform these actions continually for hours. 

Although they seem to have a purpose in mind to do so, they cannot articulate what the 

purpose is (Terry et al.,1994). 

Finally, AD patients display many other behaviors which are not yet well defined. For 

example, agitation is used for various behaviors that have different antecedents. 

Similarly, the word wandering describes behaviors with various forms and arises from 

different situations. The patients may wander because they have the delusion of having 
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lost something and search for it, or because they are driven by a vague purpose in mind 

mentioned in repetitive behaviors above. 

All the psychopathological symptoms are thought to be associated with the course of 

AD as AD is an abnormal condition spread through the brain. Although researchers 

managed to describe the pattern of cognitive symptoms at different stage of AD, the 

relationship between the pattern of noncognitive symptoms and the course of the 

disease remains to be elucidated. 

1.4 Molecules implicated in the pathogenesis of Alzheimer’s disease 

 

There are two hallmarks of AD: neurofibrillary tangles (NFTs) and neuritic plaques 

(NPs). So far, the relationship between the NFTs and NPs is still unclear and under 

intensive investigations although much information has been extracted from both of 

them. 

NFTs are a compact filamentous network occupying the whole of the cytoplasm in 

certain classes of cell in the neocortex, hippocampus, brainstem, and diencephalons. 

The number of the tangles, as seen in postmortem histology, correlates with the degree 

of dementia during life. NFTs are formed by paired helical filaments (PHFs). And the 

major component of PHFs is hyperphosphorylated tau protein, a microtubule-associated 

protein (Ihara et al., 1986). In normal conditions, this protein takes part in the assembly 

of microtubules, the stabilization of microtubules, and connecting them with other 

cytoskeletal filaments. The equilibrium between phosphorylations and 

dephosphorylations of tau modules is important for maintaining normal function of 
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cytoskeleton and consequently axonal morphology. Hyperphosphorylation of tau is 

believed to initiate the pathological process. Following that, cross-linkages among tau 

proteins occur and insoluble fibrils that cannot be degraded by parent cell form. Then 

they begin to accumulate and crowd in the cell body. 

 

Figure 1.1 Schematic drawing summarizing immunostaining of the phosphorylation-

dependent anti-tau antibody AT8, compared with the corresponding Gallyas silver 

staining of developing neurofibrillary tangles. The progression of pathological changes 

of the neuronal cytoskeleton is shown from the group 1 to group 5 (Whitehouse et al., 

2000). 

 

The newly developed antibody, AT8 that binds to phosphorylated tau protein provides a 

way to observe the process of the cytoskeletal changes (Figure 1.1). Firstly, the tau 

protein is still soluble and nonargyrophilic. It fills the perikaryon and dendrites and 
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axon. In this pretangle stage, NFTs composed of abnormal phosphorylated tau protein 

have not appeared. The nerve cell maintains its normal shape. This kind of cells first 

appears at certain site of AD-related lesions with initial changes in the cytoskeleton in 

the absence of beta-amyloid deposits and other obvious pathological lesions. Later, 

cross-linked and argyrophilic precipitates start to occur. The distal segments of the 

dendrites turn to twisted and dilated and probably detach from the proximal stem. 

Meanwhile, NFTs appear in the cell body. In the final stage of the deterioration, after 

years of development in the cells the NFTs gradually become less and less densely 

twisted and lose much of their argyrophilia until completely disappeared. 

As mentioned above, tau protein is an essential element of PHFs. The phosphorylation 

and dephosphorylation status of tau appear to influence the protein’s structure and 

conformation which determine its binding ability to tubulins and the capacity to 

assembly microtubules. The tau protein has different phosphorylated sites in PHFs from 

Alzheimer brains (Figure 1.2). 
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Figure 1.2 Schematic representations of the tau protein domains and its phosphorylation 

sites, indicating the hyperphosphorylated sites (rectangles in red) found in paired 

helical filaments in AD. Tau hyperphosphorylations block its capacity to modulate 

cytoskeletal dynamics and promote tau self-aggregation into PHFs and tangles. The 

microtubule binding repeats are denoted by R1 through R4 (Maccioni et al., 2001).  

 

Two tau protein kinases, TPK I and TPK II, were found to be the most two possible 

kinases responsible for the tau hyperphosphorylation in the formation of PHFs 

(Ishiguro et al., 1992; Arioka et al., 1993). Most of the 10 major phosphorylation sites 

of tau in PHFs are phosphorylated by the two TPKs. TPK I was also called glycogen 

synthase kinase 3β (GSK3β) while TPK II consists of two subunits, an activator subunit 

p35 and a catalytic subunit cyclin-dependent kinase 5 (Cdk5). TPK I can phosphorylate 

those tau proteins that are already phosphorylated to certain extent, but it can not 

phosphorylate completely dephosphorylated tau. In contrast, TPK II can phosphorylate 
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both. The phosphorylation of tau by TPK I can induce an apparent molecular weight 

shift and the formation of the PHF epitope while TPK II cannot. But prior 

phosphorylation of tau by TPK II may enhance TPK I phosphorylation. So it is believed 

that the two TPKs cooperate in both normal functions and pathological processes 

(Imahori et al., 1997). 

Another hallmark of AD, neuritic plaques are formed mainly by a 4-KDa peptide with a 

significant beta structure called beta-amyloid (Aβ). The Aβ peptide is derived from the 

amyloid precursor protein (APP) by proteolytic cleavages (Figure 1.3). 

 

 

 

Figure 1.3 Schematic representation of the amyloid precursor protein major domains, 

indicating the sequence of the 4-KDa Aβ peptide (in orange) cleaved by secretases 

(Maccioni et al., 2001). 

APP is a single transmembrane polypeptide with its N-terminal facing extra cellular 

space and C-terminal inside cytosol (Kang et al., 1987). It is highly conserved during 

evolution and expressed by all mammals already sought. Moreover, it is not a neuron 
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specific protein as many other brain cells and peripheral cells also express APP. It 

comprises a heterogeneous group of polypeptides which are caused by alternative 

splicing process. The largest splicing form contains 770 amino acids as shown in Figure 

1.3. It has a signal peptide near N-terminal for translocation and a motif homologous to 

the Kunitz-type of serine protease inhibitors (KPI) (Kitaguchi et al., 1988). The 

transmembrane domain is near the C-terminal. It is posttranslationally modified through 

the secretory pathway during and after which it undergoes a variety of proteolytic 

cleavages by secretases. Then the cleaved APP products of the secretases can be 

secreted into the extra cellular space or kept in cytosol. The cleavage sites of α-

secretase and β-secretase are just on the N-terminal side of transmembrane domain 

while that of γ-secretase is interestingly in the middle of transmembrane domain. 

Normally APP is cleaved by α, γ-secretase or alternatively by β, γ-secretase. Aβ is one 

of the products of β, γ-secretase (Maccioni et al., 2001). 

Normally there are two Aβ variants: Aβ (1-40) and Aβ (1-42) because γ-secretase cuts 

APP at residue 711 or 713. However, Aβ (1-42) has a much higher capacity to self-

aggregate and forms amyloid plaques (Pike et al., 1995). Although Aβ generation was 

previously assumed to be a pathological event, recent researches reveal that Aβ 

production is a normal metabolic process. Actually, it can be detected in cerebrospinal 

fluid and plasma of healthy cells throughout life. The normal functions of APP and its 

cleaved products remain to be further discovered. But a number of possible functions 

have been attributed. For example, the isoforms that contain the KPI domain may play 

a role in the inhibition of prohormone thiol protease (Hook et al., 1999). They may also 
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have the function of cellular adhesion and neuroprotection. Moreover, several recent 

studies suggest that APP may be a membrane cargo receptor for Kinesin-I and might 

help to connect Kinesin-I with certain subset of axonal transport vesicles (Maccioni et 

al., 2001). 

The gene for APP is on chromosome 21. Mutations within the sequence coding for Aβ 

cause higher Aβ production or increasing of its ability to self-aggregate which 

consequently generates amyloid plaques. The anomalous amyloid deposition was 

shown to clearly associate with the pathogenesis of AD. 

 

1.5 Cdk5/p35 pathway and Alzheimer’s disease 

 

Cdk5 is a serine/threonine kinase and belongs to the cyclin-dependent kinase (Cdk) 

family (Lew et al., 1995). It was first identified around 1991 and purified from bovine 

brain in 1995 since which it has been under intensive research on its potential role in 

diseases. Although Cdk5 is expressed in many tissues, its activity is detected nearly 

only in brain extracts. Moreover, Cdk5 shows a phosphorylation site specificity similar 

or identical to the cell cycle regulatory kinase, cdc2 kinase. So it was originally named 

as neuronal Cdc2-like protein kinase. Cdk5 displays 60% homology to Cdk1 (Fang and 

Newport, 1991; Meyerson et al., 1991). Similar to other Cdks, monomeric Cdk5 shows 

no enzymatic activity but unlike other Cdks, it is not regulated by cyclins. Its activation 

requires association with either of the two brain specific regulatory proteins called p35 
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and p39 which have little sequence similarity to cyclins although p35 assumes a cyclin-

like fold suggested by structural studies (Tsai et al., 1994; Tang et al., 1995). 

The normal roles for Cdk5 in the brain already known associate with neuronal 

migration, axon growth and synaptic function (Smith et al., 2001). 

Neuronal migration:  some studies dealing with the homozygous deletions in the p35 

and Cdk5 genes showed that Cdk5 is likely to be involved in neuronal migration (Chae 

et al., 1997; Ohshima et al., 1996). In the normal cortex, neurons are organized into six 

different layers. Newly differentiated postmitotic neurons migrate through certain 

routes to form the six layers. One of the well-studied routes is displayed by neurons 

derived from epithelium in the cortical ventricular zone (Parnavelas et al., 2000). These 

cells migrate via the process of radial glia and take the positions in the cortex in an 

“inside-out” form. That is, newly formed neurons in the outermost layers migrate 

through previously formed layers and form the inner layers. However, the “inside-out” 

layer form is inverted in p35-/- mice. The migration of newly formed neurons is 

disturbed and they tend to pile up under previously formed neurons. Although p35-/- 

mice are quite vulnerable to early lethality, they can be fertile and live up to adulthood. 

But Cdk5-/- mice die in embryogenesis or at birth which suggests that p35 alone is not 

capable of maintaining all Cdk5-dependent functions. The migration defect among 

cerebella neurons without Cdk5 was proved to be cell autonomous which may be 

evidence that Cdk5 plays a role in the migrating cells (Ohshima et al., 1999). That mice 

with mutations in p39 show no obvious abnormalities suggests p35 may substitute p39 

to some extent. Nevertheless, mice with mutations in both p35 and p39 die before birth 
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showing the same brain abnormalities as in Cdk5-/- mice (Elledge et al., 1991). This 

indicates that p35 and p39 together are necessary and enough to play Cdk5 regulating 

role in neuronal migration. Whether p35 and p39 bear different substrate specificities 

remains to be studied, but cell fractionation experiments discover that they may appear 

in different subcellular sites (Humbert et al. 2000a&b). 

Axon growth and extracellular signals: p35 and Cdk5 knockout mice show defects in 

fasciculation in some axon tracts (Kwon et al., 1999). Several relevant experiment 

results also point to the possibility of Cdk5’s direct role in axon growth. Firstly, both 

Cdk5 and p35 are in axon growth cones (Nikolic et al., 1999). Secondly, neurons with 

Cdk5 activity inhibited display reduced ability to grow axons. Thirdly, disrupting Cdk5 

function results in errors in axonogenesis. In addition to axon growth, Cdk5 activity is 

also shown to involve in many extracellular signal pathways such as cadherin pathways 

and non-receptor tyrosine kinases pathways. Moreover, studies on Cdk5 interactions 

and its substrates are uncovering the roles of Cdk5 in terms of cytoskeleton systems. 

Synaptic functions: p35 knockout mice have lowered threshold for lethal seizures. And 

Cdk5, p35, and p39 are present in synaptic membranes subcellular fractions. What is 

more, immunogold labeling experiment shows that p39 localizes to pre- and 

postsynaptic compartments (Humbert et al. 2000b). All of the above point to the 

potential role these kinases may play in synaptic function. Consistently, Cdk5 is also 

found to function at synapses. 

As Cdk5 activity is involved in so many cell processes, it is natural to assume that Cdk5 

activity is tightly regulated in neurons. Actually, several papers have indicated that the 
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Cdk5 regulatory protein, p35, may be highly regulated by its subcellular localization 

and stability (Patrick et al., 1999;Lee et al., 2000). Deregulation of Cdk5 activity 

especially the hyperactivity of Cdk5 is proved to be toxic to neurons and may 

contribute to such neurodegenerative disease as Alzheimer’s disease. 

Among so many Cdk5 substrates, just a few of them turn out to be the candidates 

responsible for AD. One is β-catenin as it interacts with presenilin-1 protein. Mutations 

of the presenilin-1 gene are the main reason of familial, early-onset AD. Mutant 

presenilin-1 shows reduced ability to interact with and stabilize β-catenin, causing it to 

be increasingly degraded (Zhang et al., 1998). Interestingly, AD patients with mutant 

presenilin-1 also display reduced β-catenin levels. As phosphorylation of β-catenin by 

p35/Cdk5 influence the association of presenilin-1 and β-catenin (Kesavapany et al., 

2001). The deregulation of this pathway may associate with the cause of AD. Another 

major candidate is tau, a microtubule-associate protein. Neurotoxic molecule β-amyloid 

(Aβ) induces cleavage of p35 to two subunits, p25 and p10 which is mediated by a 

calcium-dependent cysteine protease called calpain (Lee et al., 2000). Association of 

p25 and Cdk5 forms the Cdk5/p25 complex which displays higher ability than 

Cdk5/p35 complex to phosphorylate protein tau. Since hyperphosphorylated tau is well 

known to be the major component of paired helical filaments (PHFs) which form 

neurofibrillary tangles (NFTs), one of the two hallmarks of Alzheimer’s disease, 

Cdk5/p35 regulation pathway becomes one of the hottest research topics on 

Alzheimer’s disease. The tau protein is capable of inducing microtubule (MT) assembly 

under normal conditions. It is surmised that hyperphosphorylation of tau may interrupt 

17 



its MT assembly ability and thus disrupt cytoskeleton leading to neuron degeneration. 

Actually, several groups have reported that tau is essential to Aβ induced neurotoxicity 

process which involves increase of the Cdk5 activity while MT-stabilizing reagent like 

taxol decreases Aβ toxicity (Rapoport et al., 2002; Li et al., 2003). What’s more, 

morphological analysis suggests that neurons with mouse or human tau expressed 

degenerate in the presence of Aβ while tau-depleted neurons display no signs of 

degeneration in the presence of Aβ. All the above evidences point to the important role 

tau protein has played in the Aβ-induced neurotoxicity leading to neurodegeneration in 

the central nervous system. (Fig. 1.4) 

As p35 and p39 are the only known Cdk5 activator so far and their expression level is 

the main determinant of the Cdk5 activity, it is necessary to explore the metabolism of 

p35 and p39. As mentioned previously, p35 and p39 are almost exclusively expressed 

in differentiated neuronal cells. When neuronal cells PC12 are differentiated by nerve 

growth factor, the expression of p35 can be quickly induced and enhanced by 

extracellular stimuli such as neurotrophic factors, especially those acting via the 

ERK/Egr pathway (Harada et al., 2001). However, p35 is a short-lived protein in vivo 

and its degradation determines the life span. It was reported that the phosphorylation of 

p35 by Cdk5 served as a signal for ubiquitination and degradation by proteasomes 

(Patrick et al., 1998). Thus, the phosphorylation of p35 by Cdk5 plays an 

autoregulatory role on Cdk5 activity. Under certain conditions, calpain is activated and 

cleaves p35 to p25 and p10 which is thought to be probably implicated in the 

cytotoxicity in AD brains. On the other hand, the expression of p39 is similar to p35 in 
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adult brains. Moreover, the proteolytic pathway and cleavage of p39 is also similar to 

that of p35. The cleaved products of p39 are p29 and p10 but it is not known whether 

they are detected in pathological neurodegenerative neurons. 

Why is p25 more toxic than p35? What is the mechanism that p25 leads to 

neurodegeneration? One group proposes that since p35 contains an N-terminal 

myristoylation signal motif that anchors p35 to cell membranes (Liu et al., 2003), p35 

may be confined to certain part of the neurons and under spatial regulation (Patrick et 

al., 1999). p25 is the C-terminal part of p35. Abnormal conversion of p35 to p25 may 

increase p25 level and dislocate p25 causing Cdk5 sequestered from normal regulation 

system and concentrated at abnormal sites. Thus, Cdk5 may phosphorylate substrates 

not normally phosphorylated by it or hyperphosphorylate its substrate such as tau 

protein. It is also reported that p25 is more stable than p35. So the increased ratio of 

p25/p35 may somewhat contribute to the abnormal increased Cdk5 activity in the AD 

patients’ brains both by mislocalization of p25 and by prolonged existence of p25. (Fig. 

1.4) 
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Fig. 1.4 The possible deregulation of Cdk5/p35 pathway: the cleavage of p35 to p25 

induced by Aβ toxicity is followed by the formation of Cdk5/p25 complex which 

hyperphosphorylates tau proteins because of dislocation of p25 and prolonged existence 

of p25. Hyperphosphorylated tau proteins tend to self-aggregate and reduce the ability 

to assembly microtubules that consequently causes disruption of cytoskeleton leading 

to neuronal cell death. 

 

However, the theory of p25 in AD brains encounters many problems. For example, 

opposing results have been reported in terms of whether conversion of p35 to p25 

causes hyperphosphorylation of tau protein. One group has shown that overexpression 

of Cdk5/p25 complex in cos-7 cells gives higher tau phosphorylation than that of 

Cdk5/p35 complex (Patrick et al., 1999). But another group has proved that the 

cleavage of p35 to p25 in rat neuronal cells is accompanied by increased activity of 

Cdk5 but not by tau hyperphosphorylation (Kerokoski et al., 2002). On the contrary, 

tau phosphorylation decreases at multiple sites. Inhibition of calpain in neuronal cells 
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treated by glutamate toxicity has no obvious effect on tau phosphorylation which 

implies that calpain-mediated processes including cleavage of p35 to p25 do not 

contribute to tau phosphorylation. Moreover, Takashima and his colleagues have 

reported that overexpression of p25 in rat neuronal cells does not show altered 

phosphorylation of tau proteins (Takashima et al., 2001). In another example, there are 

conflicting results on p25 levels in AD brains. On one hand, Tsai and her colleagues 

reported that compared to control brains p25 level accumulated by 20-40-fold in seven 

out of eight AD brains (Patrick et al., 1999). This group also showed later that mean 

p25/p35 ratios were about 1.7 and 5 for control and AD brains respectively (Tseng et 

al., 2002). One the other hand, Tandon and his colleagues pointed out that no elevation 

of p25 levels was found in the 22 AD brains tested (Tandon et al., 2003). On the 

contrary, p25 immunoreactivity appeared lower in AD brains. Their results are 

compatible with other ones showing that there is no difference in p25/p35 ratios 

between control and AD brains (Takashima et al., 2001; Taniguchi et al., 2001; Yoo et 

al., 2001). So the mechanism that underlies AD brain may be more complicated. But I 

notice that among the literature of the Cdk5/p35 pathway, when talking about the 

cleavage of p35, almost all attention was drawn to p25, the C-terminal cleavage 

fragment of p35. Another cleavage subunit p10 has been long neglected by researchers. 

As implied in the previous passage, p10 is the N-terminal cleavage fragment of p35. 

And the N-terminal regions of p35 were reported to be responsible for its binding to 

other intracellular components such as cell membrane (Dhavan et al., 2001), nuclear 

proteins (Qu et al., 2002), and possibly Golgi apparatus (Paglini et al., 2001), forming 
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large complex in vivo. However, whether binding of p35 to the larger complex is the 

only function of p10 before cleavage is not clear. Moreover, what happens to p10 after 

cleavage is not known yet. 

 

1.6 Alzheimer’s disease and aging 

 

The phenomenon of aging can be defined as the gradual changes in the structure and 

function of animals that occur with the passage of time, that do not result from disease 

or other gross accidents, and that eventually lead to the increased probability of death as 

the animal grows older. It has long interested scientists for obvious reasons. People 

long to know why higher life forms especially humans inevitably age and die. Are 

aging and death just unfortunate negative characteristics that natural selection has 

endowed many life forms by accident or positive strategies of lives for continuous 

survival as species instead of as individuals? Is it possible to avoid both of them? 

Unfortunately, all the questions above seem far from being answered. We are still too 

ignorant to wholly uncover this mystery. However, with endless effort and myriad 

insightful exploration, scientists have shed more and more light on this topic. 

The aging process should be viewed as an extreme complexity that arises from and is 

influenced by both genetic and environmental factors throughout the life span and 

probably transgenerationally. It is not the result of a single molecular process. We may 

take the nervous system as an example. The condition of the nervous system is the 

result of infinite genetic and environmental events. Throughout a human’s life, the 
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influence of hereditary determinants is subject to various environmental influences such 

as social environment (e.g., the increased risk of depression and mortality after the 

death of a spouse) and nutrition (e.g., some research on rodents showed that diet 

restriction is associated with slowing of aging processes) and so on. Moreover, the 

impact of the genetic and environmental factors may vary greatly. Some are temporary 

while others are life-long existing and cumulative. Some are reversible while others are 

irreversible. So each individual is the product of myriad factors interwoven with a 

unique pattern. 

Despite individual variations in the aging process, there is an overall consistency in the 

characteristics of aging which is called a canonical pattern of aging. For instance, an 

age-related loss of germ cells and hormone-producing follicles is the main cause of 

sterility at midlife. There are many other canonical aging changes of mammals such as 

the accumulation of aging pigments in nondividing cells, the decrease of striatal 

dopamine receptors, and the proliferation of smooth muscle cells in blood vessel walls 

and so on. The identification of the canonical aging changes and further research on 

why and how they happen may be a promising way to understanding the phenomena of 

aging. And we may have another way to achieve this goal by the research about age-

related diseases such as Alzheimer’s disease for such disease provides us a chance to 

compare normal human tissues with abnormal ones and subsequently find certain 

factors that may be responsible for the diseases. As the diseases are age-related, thus we 

find a way to sieve through myriad factors and pick out candidates associating with age 

and finally to find out which ones are responsible for age. 
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Now here is an important question: how is Alzheimer’s disease related to aging at the 

molecular level? So far, there is no widely accepted answer but Chen et al., have put 

forward a promising theory based on comprehensive works of their own and others 

(Chen et al., 2001). They propose that the hallmarks of AD, plaques and tangles, are 

“the results of metabolic inefficiency (especially in Ca2+ signaling), a natural event in 

aging.” Just like that of cholesterol deposition, aging itself may trigger the formation of 

plaques and tangles. When the progress is enhanced by risk factors, it can lead to late-

onset sporadic Alzheimer’s disease. The details of the theory are summarized below: 

 

 

1. Metabolic inefficiency is a natural event in aging 

Aging process is currently thought to be controlled and pushed by a “genetic clock” 

which is not fully identified yet. But an obvious expression of aging may be the decline 

of energy metabolisms after about age 30 which consequently slowdown myriad 

metabolic pathways. The metabolic slowdown then consequently leads to many signs 

of aging in the body which intensify throughout the following years. With the 

accumulation of the changes, numerous aging markers appear such as hair graying, 

bone loss, cholesterol deposit, plaques and tangles. 

 

2. Mechanism of amyloid plaque formation 

Plaques and tangles are the most obvious markers in aging and AD brain, according to 

this theory, their appearance is simply due to inefficient normal processing of APP and 
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tau respectively. Now let’s consider APP first. In vivo, APP is processed by two 

pathways: normal α-processing during which APP is cleaved by α-secretase, or 

amyloidogenic processing by β- and γ-secretase (Figure 1.3). The three possible 

mechanisms for Aβ overproduction during aging are: (i) APP gene overexpression; (ii) 

overactivation of both β- and γ-secretase; and (iii) inactivation of α-secretase. The first 

one has been studied and largely ruled out as a common cause of the disease. The 

second one seems promising. However, it can hardly provide a necessary rationale: 

why and how can β- and γ-secretase become overactivated during normal aging? As 

amyloid plaques are apparently a natural event during normal aging, any proposed 

mechanisms that cannot be ultimately explained by normal aging have to be logically 

ruled out. Then the most reasonable model for Aβ overproduction is the third scenario: 

α-secretase inactivation. Because secreted APP (APPs) is just one of the myriad 

secretory proteins that are physiologically released for normal function such as cell 

growth, differentiation or maintenance. When cell growth and other normal processes 

slowdown during aging, naturally so will the secretion of APPs. The reduction of APPs 

secretion in turn causes the accumulation of the APP which prone to be increasingly 

attacked by other proteases such as β- and γ-secretase. Thus, Aβ overproduction 

appears during aging and because of aging. 

 

3. Mechanism of tangle formation 

According to this theory, the inefficient normal degradation of tau is responsible for 

tangle formation. Cytoskeleton is a dynamic system within the cells as the temporary 
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break-up and reconstitution of the cytoskeleton is required during cell growth, division 

and differentiation. Proteolytic degradation is known to be involved as an essential step 

in this process. Obviously, direct proteolysis of the major cytoskeleton proteins such as 

actins and tubulins is too disruptive. Instead, proteolysis is normally operated on the 

cytoskeleton cross-linking proteins such as filamin, fodrin or tau. In addition, these 

proteins also undergo a dynamic phosphorylation-dephosphorylation process which 

may change their vulnerability to protease degradation. In this model, tau undergoes a 

regulatory process in response to Ca2+ signals in neurons through life. But during aging, 

basic metabolisms including Ca2+ signaling may decline which consequently inactive 

many Ca2+-dependent enzymes. Some of those enzymes may be responsible for the 

phosphorylation status of tau or even degradation of it. Thus, the reason of tau 

hyperphosphorylation and accumulation in aging brains is traced back to aging itself. 

 

1.7 Programmed cell death in Alzheimer’s disease 

 

Programmed cell death (PCD) is activated by an indigenous cell signaling system 

leading to self-destruction. This process is essential during multicellular development, 

organ morphogenesis, tissue homeostasis and immuno-defence against infected or 

damaged cells (Vila et al., 2003). The death of cells by PCD is often marked by a series 

of morphological changes such as cell shrinkage, membrane blebbing, nuclei 

condensation and then fragmentation, releasing small membrane-bound apoptotic 

bodies (Lodish et al.,2000). So the term PCD is often referred to as “apoptosis”, a 
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Greek word that means “falling off” as in leaves from a tree, although apoptosis is just 

one morphological form of PCD. In contrast to necrosis which is defined by cell 

swelling and bursting, releasing intracellular contents which may damage surrounding 

cells and often cause inflammation, apoptotic cells do not release constituents into 

extracellular milieu. The generated small apoptotic bodies are generally phagocytosed 

by other cells. So PCD normally serves as a safe way to clear unneeded cells in 

multicellular organisms. In the mammalian nervous system, PCD controls the number 

of neurons as the majority of nerve cells generated during development also die by 

PCD during development. However, under pathological conditions, PCD may 

contribute to the nerve cells loss in neurodegenerative diseases such as Alzheimer’s 

disease. Aβ, the central molecule in AD was shown to directly induce apoptosis of 

cultured neurons and inhibition of particular members of the caspase family has been 

reported to partially or completely protect cells against Aβ-induced apoptosis in vitro. 

So research of PCD in AD may help to understand the reason of nerve cell loss in AD 

brains and even find ways to prevent and cure the disease. 

 

1.8 Objectives of the present study 

 

Cdk5/p35nck5a is one of the candidates responsible for the hyperphosphorylation of tau 

protein which is the main component of the AD hallmark, neurofibrillary tangles. 

Under neurotoxic conditions, p35 is cleaved to p10 and p25. While p35 and p25 have 
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received intensive studies on their functions and relationships with AD, the role of p10 

is little understood. 

So the main object of the present study was to explore the influence of p10 

overexpression on the mammalian cells. All the materials and methods used are listed 

in Chapter 2 and Appendices. Chapter 3 focuses on the work of plasmids amplification 

which serves as preparatory work for p10 overexpression study. Then, Chapter 4 

explores the influence of p10 overexpression on different mammalian kidney cells 

including Cos-7 and HEK293. Subsequently, Chapter 5 further examines the influence 

of p10 overexpression on neuronal cells. Finally, the significance of my research and 

future work are discussed in Chapter 6. 
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2.1 Materials 

 

2.1.1 Media 

All culture media used are listed in Appendix A. Culture media and serums were kept 

in 4˚C fridge respectively for long-term storage. The amount of serum was calculated 

and mixed with culture medium freshly immediately before each experiment. 

 

2.1.2 Bacteria and Mammalian cell lines 

Escherichia coli:  

The competent E.coli for transformation was kept in -80˚C until usage. The detailed 

information of the E.coli used is listed in Appendix A. 

 

Mammalian cell lines: 

All the cell lines used were purchased from American Type Culture Collection (ATCC) 

and cultured in corresponding complete growth medium with 1% Penicillin 

Streptomycin at 37˚C, 5% CO2. For long-term storage, cells were suspended in 

corresponding complete growth medium with 5% (v/v) DMSO and kept in liquid 

nitrogen. All subculture and cell treatment experiments were performed in a Bio-

Hazard Class II hood (Gelman, 1892-02) to prevent bacteria contamination. 

a. Cos-7 (ATCC, CRL-1651) 

Complete growth medium: DMEM with 10% fetal bovine serum 

b. HEK293 (ATCC, CRL-1573) 

30 



Complete growth medium: DMEM with 10% fetal bovine serum 

c. PC12 (ATCC, CRL-1721) 

Complete growth medium: DMEM with 10% fetal bovine serum and 5% horse serum 

Differentiation growth medium: DMEM with 1% fetal bovine serum and 0.5% horse 

serum 

d. Neuro-2a (ATCC, CCL-131) 

Complete growth medium: DMEM with 10% fetal bovine serum 

 

2.1.3 Cell culture conditions 

The mammalian cells were grown as monolayer in 25 cm2 polystyrene flasks in 

complete growth medium with 1% Penicillin Streptomycin in a 37˚C incubator with a 

water-saturated 5% CO2 condition. 

 

2.1.4 Plasmids 

The plasmids used are listed in Appendix B. All original and amplified plasmids were 

stored in TE buffer at -20˚C. 

 

2.1.5 Solutions and Kits 

All solutions and Kits used are listed in Appendix C. 

2.1.6 Other materials 

Information of all other materials is mentioned in the “Methods” section. 
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2.2 Methods 

 

2.2.1 Bacteria transformation 

For each transformation, a tube of DH5-αE.coli solution was taken out from -80˚C 

and thawed on ice. During the waiting period, the water bath was turned on and set to 

stable at 42˚C. Meanwhile, a 14 ml round bottom Falcon tube (BD Falcon, 352057) 

was pre-chilled in ice. When totally thawed, the bacteria solution was pipetted into the 

Falcon tube followed by addition of original plasmid (about 0.5µg). Then, the tube was 

incubated on ice for 30 minutes. After that, the tube was incubated in 42˚C water bath 

for 90 seconds to heat shock the bacteria followed by 2-minute incubation on ice. Next, 

1ml LB broth was added into the bacteria-plasmid mixture and bacteria were cultured 

for 1 hour at 37˚C on a shaker (160-180 rpm). To get single colony, 50µl bacteria-

plasmid mixture was spread onto an agar plate with antibiotics (1% agarose, 25-

30µg/ml antibiotics) which subsequently was incubated overnight at 37˚C in a Biocell 

1000 incubator (SPD Scientific Pte Ltd). 

 

2.2.2 Small-scale plasmid extraction by GFX Micro Plasmid Prep Kit 

For small-scale plasmid extraction, a single colony was picked up by a tooth pick and 

inoculated into 2ml LB broth containing antibiotics (about 25µg/ml). Then bacteria 

were left to grow overnight at 37˚C with shaking (180rpm). The next day, the 

overnight culture was transferred to a 14 ml Falcon tube and centrifuged at 14,000 rpm 

for 30 seconds to pellet bacteria. After supernatant was removed, 150µl of Solution I 
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was added in to suspend bacteria pellet by vortex. Until bacteria were totally suspended 

in Solution I, 150µl of Solution II was added in to lyse the bacteria. To avoid of 

breaking bacterial genomic DNA, solutions were mixed by inverting tubes gently 

instead of vortex. The mixture was incubated at RT for 3 minutes before adding 300µl 

of Solution III. After 3-minute incubation on ice the mixture was centrifuged at 14,000 

rpm for 5 minutes. In this step, most of the cell components including proteins and 

genomic DNA were pelleted while plasmids remained in the supernatant. Subsequently, 

the supernatant was transferred to a GFX column and incubated at RT for 1 minute 

followed by centrifugation at 14,000 rpm for 30 seconds. The plasmids were supposed 

to bind in the column after this step. Next, the flow-thru was discarded and the column 

was washed once with 400µl wash buffer. After washing step, the column was 

centrifuged twice at 14,000 rpm for 1 minute to get rid of residual ethanol. To make 

sure the residual ethanol was removed completely, the column was air-dried by waving 

for 10 times. Then the column was transferred to a 1.5 ml tube followed by addition of 

50µl of ddH2O to dissolve the plasmids. The column was incubated at RT for 1 minute 

and centrifuged at 14K rpm for 1 minute. Finally, the DNA concentration was 

measured by a spectrophotometer (BioSpec-1601, Shimadzu Pte Ltd). As a rule of 

thumb, the yield of small-scale plasmid extraction is between 15µg-25µg for each 

plasmid. DNA solution was stored at -20˚C. 
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2.2.3 Large-scale plasmid extraction and purification by HiSpeed Plasmid Midi Kit  

For large-scale plasmid extraction, the single colony was first inoculated into 5ml LB 

broth containing antibiotics (about 25µg/ml) and left to grow overnight at 37˚C with 

shaking (180rpm). The overnight culture was then transferred to 100 ml LB broth 

containing antibiotics (about 25µg/ml) and left to grow for about 10 hours at 37˚C with 

shaking (180rpm). After culture, the bacteria cells were pelleted by centrifugation at 

4,000 rpm (JA14 as the rotor) for 10 min at 4˚C using Avanti J-20 XP centrifuge 

(Beckman Coulter). Then the supernatant was discarded and the bacterial pellet was 

resuspended in 6 ml Buffer P1. Until bacteria were totally suspended by vortex, Buffer 

P2 was added in and mixed gently but thoroughly by inverting the tube 4 to 6 times. 

The mixture was then incubated at RT for 5 minutes followed by addition of 6 ml pre-

chilled Buffer P3 to lyse the cells. Again, the solutions should be mixed gently by 

inverting the tube 4 to 6 times instead of vortex. After the solutions were mixed 

thoroughly, the lysate was poured into the barrel of the QIAfilter Cartridge and 

incubated at RT for 10 minutes. During the waiting period, 4 ml Buffer QBT was added 

into a HiSpeed Midi Tip to equilibrate the column by gravity flow. When the 

incubation time was end, the cell lysate was filtered through the QIAfilter Cartridge and 

transferred into the equilibrated HiSpeed Midi Tip. Next, the cleared lysate was 

allowed to enter the resin by gravity flow. In this step, the plasmids were supposed to 

bind in the resin. Subsequently, the HiSpeed Midi Tip was washed by 20 ml Buffer QC 

before the plasmids were eluted with 5 ml Buffer QF. In the next step, DNA plasmids 

were precipitated by 3.5 ml room-temperature isopropanol for 5 minutes. During the 
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incubation period, a QIAprecipitator Midi Module was attach onto the outlet nozzle of 

a 20 ml syringe and placed over a waste bottle. Then the elute/isopropanol mixture was 

transferred into the 20 ml syringe and filtered through the Module using constant 

pressure. In this step, the plasmids were supposed to be further purified and bind in the 

QIAprecipitator Midi Module. After that, the Module was washed by 2 ml 70% ethanol 

and air-dried by pressing the air through the Module repeatedly. Before the next step 

began, the outlet nozzle of the QIAprecipitator should be dried with absorbent paper to 

prevent ethanol carryover. In the final step, Buffer TE was filtered through the Module 

to elute DNA plasmids into a 1.5 ml tube. This step was repeated once to ensure the 

maximum yielding amount. DNA concentration was measured by the 

spectrophotometer. As a rule of thumb, the yield of large-scale plasmid extraction is 

between 150µg-250µg for each plasmid. DNA solution was stored at -20˚C. 

 

2.2.4 Restriction endonuclease digestion of the DNA plasmids (Table 2.1) 

To perform restriction endonuclease digestion, the components showed in Table 2.1 

were added into a 1.5 ml tube in the sequence from left to right. For EcoR I digestion, 

EcoR I buffer and EcoR I enzyme were required. For double digestion, besides EcoR I 

buffer and EcoR I enzyme, Not I enzyme was required. (The enzyme should be added 

the last and proceed immediately to the next step.) When all the components were 

added in, the digestion solution was incubated at 37˚C water bath for 1 hour. After 

completion, the solution should be subject to DNA electrophoresis immediately. 
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ddH2O(µl) plasmid(ng) EcoR I  Enzyme(u) total(µl) 
  buffer(µl)   

top to 10 500  1 5 to 6  10 

Table 2.1 The components and amount required for restriction endonuclease digestion.  

 

2.2.5 DNA gel electrophoresis 

Seakem LE agarose (Cambrex, 50004) was mixed with about 50 ml TAE buffer and 

melt by a microwave for 1 minute (The amount of the agarose used was calculated 

according to the percentage of the gel. In my work, I used 1% or 1.5% gel). After 

melting, the agarose solution was poured into the DNA gel tray. About half an hour 

later the agarose solution was cool down and form agarose gel. Then about 200ng 

plasmids were mixed with 6X DNA loading buffer including Sybr-green forming 1X 

DNA loading solution which was subsequently loaded into the agarose gel. The DNA 

gel was run in Sub-Cell GT System (Bio-Rad, 170-4481) at 70 voltages for about 1 

hour. After the end of the electrophoresis, the results were checked and photos were 

taken by ChemiGenius2 System (SynGene Corp.). Finally, the data were analyzed by 

the software GeneSnap 6.03. 

 

2.2.6 Subculture of the mammalian cell lines 

When the confluence of the cell lines in the flask reached 90% or more, cells was 

subcultured to maintain their viability and normal features. Firstly, complete growth 

medium with 1% PS was prepared and 0.5% Trypsin solution was diluted 4 times with 

1X PBS forming 0.125% Trypsin solution (For PC12 subculture, Trypsin is not 
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needed). Then the freshly prepared growth medium and PBS was warmed up to 37˚C 

in water bath. Next, original medium in the T-flask (Nunc, 156340) was removed and 

cells were rinsed with 6ml 1X PBS once. After removal of PBS, 1ml 0.125% Trypsin 

solution was added in and the cells were subject to Trypsin digestion at RT for 2-10 

min until cells were not tightly attached to the flask bottom. Then 6 ml pre-warmed 

growth medium was added in and the cells were completely suspended by pipetting. 

Subsequently, 0.7ml or1.5ml cell suspension was aliquoted to a new flask and top up to 

6ml with new growth medium. So the subculture ratio was 1:4 or 1:8. In some cases, 

cells were to be seeded into the multidishes for treatment. Then cell concentration 

would be measured by a hemacytometer (Sigma, Z359629) before seeding. At last, the 

new flask was maintained in the cell culture incubator (Binder Corp.) at the condition 

of 37˚C, 5% CO2 until the next subculture. 

 

2.2.7 Mammalian cell line transfection experiments 

a. Transfection by FuGENE 6 (24 well plate) 

Firstly, 1µl FuGENE 6 reagent was diluted in 100µl serum-free medium. Then 0.5µg 

DNA plasmid was added into diluted FuGENE 6 reagent. The mixture was incubated at 

RT for 20 minutes. In order to prevent antibiotics entering the cells and causing cell 

injury, cell medium was changed to anti-biotics free medium (500µl/well) before 

adding the FuGENE/DNA mixture into the wells (100µl/well). Finally, cells were 

incubated at 37˚C, 5% CO2 for 24-48 hours. 
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b. Transfection by Gene Porter 2 (24 well plate) 

Firstly, 5µl Gene PORTER 2 transfection reagent was diluted in 20µl serum-free 

medium. Meanwhile, 1µg DNA plasmid was diluted in 25µl DNA diluent and 

incubated at RT for 3 minutes. Then DNA solution was mixed with Gene PORTER 2 

transfection reagent and the mixture was incubated at RT for 10 minutes. During this 

period, cell medium was changed to antibiotics-free medium (250µl/well). Next, 

DNA/Gene PORTER 2 mixture was added into the wells (50µl/well). Finally, cells 

were incubated at 37˚C, 5% CO2 for 24-72 hours. 

 

c. Transfection by GeneJammer (24 well) 

Firstly, 3µl GeneJammer transfection reagent was diluted in 100 µl of sterile, room 

temperature, serum-free, antibiotics-free DMEM. The diluted solution was incubated at 

RT for 5 to 10 minutes. Then 1µg DNA plasmid was added in and the mixture was 

incubated at RT for another 5 to 10 minutes. During this period, the original medium in 

the wells was removed and replaced by150µl fresh serum-containing but antibiotics-

free medium. Next, transfection mixture was added into the wells (100µl/well) and the 

whole plate was gently rocked for mixing. After that, the cells were incubated at 37˚C, 

5% CO2 for 3 hours before addition of 250µl/well serum-containing medium. Finally, 

the cells were incubated at 37˚C, 5% CO2 for further 24-72 hours. 
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d. Transfection by MBS Mammalian Transfection Kit (24 well plate) 

Firstly, DNA plasmid was diluted in ddH2O forming 45µl solution in a 1.5 ml tube. 

Then 5µl solution 1 and 50µl solution 2 were added in and mixed. The mixture was 

incubated at RT for 10 to 20 minutes before transfection. During this period, the 

original medium was removed and replaced by medium with 6% solution 3 

(500µl/well). Next, precipitate in the DNA suspension was resuspended by pipette and 

50µl of the DNA suspension was slowly added into the wells in a dropwise manner. 

The plate was swirled once for mixing well. In the next step, the cells were incubated 

for 3 hours at 37c, 5% CO2. After that, the medium was removed and replaced by 

complete growth medium without antibiotics. Finally, the cells were incubated at 37˚C, 

5% CO2 overnight. 

 

e. Transfection by TransIT-Neural Transfection Reagent Kit (24 well plate) 

In the first step, 1µl TransIT-Neural Reagent was diluted in 100µl OPTI-MEM. The 

diluted solution was incubated at RT for 5 minutes. Then 0.5µg DNA plasmid was 

added in and mixed by gentle pipetting. Subsequently, the reagent-DNA mixture was 

incubated at RT for 10 minutes. After the incubation, the transfection solution was 

added into the wells (100µl/well) and the plate was gently rocked for mixing. At last, 

the cells were incubated at 37˚C, 5% CO2 for 24-48 hours. 
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f. Transfection by Lipofectamine 2000 (24 well/ 6 well plate) 

Firstly, complete growth medium without PS was prepared (500µl/24 well, 2ml/6 well) 

and warmed up to 37˚C in water bath. Then 1µl Lipofectamine reagent was diluted in 

50µl OPTI-MEM for each 24 well or 4µl Lipofectamine reagent was diluted in 250µl 

OPTI-MEM for each 6 well. Then diluted solution was incubated at RT for 5 minutes. 

Next, 1µg DNA plasmid was diluted in 50µl OPTI-MEM for each 24 well or 4µg DNA 

plasmid was diluted in 250µl OPTI-MEM for each 6 well. The diluted DNA solution 

was incubated at RT for 3-5 minutes. After that, the two diluted solution was mixed 

together and incubated at RT for 20 minutes. During this period, the cell medium was 

changed to complete growth medium without antibiotics (500µl/ 24 well or 2ml/6 well). 

When the reagent-DNA mixture was ready, it was added into the wells directly (100µl/ 

24 well, 500µl/ 6 well). Then the cells were incubated for indicated time at 37˚C, 

5%CO2. For kidney cell lines, medium with transfection reagent was removed and 

replaced by complete growth medium without antibiotics the next day. For neuronal 

cell line, medium with transfection reagent was removed and replaced by complete 

growth medium without antibiotics 3 hours after adding transfection reagent because 

neuronal cells were more sensitive to the transfection reagent. 

 

g. Transfection by Transfectin reagent (24 well and 6 well plate) 

Firstly, 1 µg DNA plasmid was diluted in 50 µl of DMEM for each 24 well or 4µg 

DNA plasmid was diluted in 250 µl of DMEM for each 6 well. Then 1 µl Transfectin 

lipid reagent was diluted in 50 µl of DMEM for each 24 well or 4 µl Transfectin lipid 
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reagent was diluted in 250 µl of DMEM for each 6 well. For high transfection 

efficiency, polystyrene tubes (BD Falcon, 352054) were used to hold Transfectin lipid 

reagent. Next, the diluted DNA and the diluted Transfectin lipid reagent were combined 

together and incubated at RT for 20 minutes to allow DNA-Transfectin lipid reagent 

complexes to form. Subsequently, the DNA-Transfectin lipid reagent complexes (100 

µl/24 well or 500 µl/6 well) were added directly into each well. The plate was rocked 

gently for mixing. To ensure the interaction of the complexes with the cells at the 

bottom, the whole plate was centrifuged at 1000 rpm for 5 minutes by Eppendorf 

centrifuge 5810R (B. Braun Singapore Pte Ltd). Finally, the cells were incubated for 

indicated time at 37°C and 5% CO2. For kidney cell lines, medium with transfection 

reagent was removed and replaced by complete growth medium without antibiotics the 

next day. For neuronal cell line, medium with transfection reagent was removed and 

replaced by complete growth medium without antibiotics 3 hours after adding 

transfection reagent. 

 

2.2.8 Harvest cells in 6-well plate for Western-blot using RIPA buffer method 

At indicated time after transfection, the cells were harvested for Western-blot analysis. 

Specifically, the growth medium was removed and pre-chilled RIPA buffer was added 

(150µl/well). The cells were then scraped down in RIPA buffer completely and cell 

lysate was stored at -20˚C overnight. The next day, cell lysate was thawed on ice and 

centrifuged at 13k rpm for 15 minutes at RT by Micro Centaur Centrifuge (SANYO). 

Then the supernatant was carefully transferred to a fresh tube and stored at -20˚C or -
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80˚C. On the other hand, 25µl of 5X SDS loading buffer with β-mercaptoethanol was 

added into each pellet and mixed by vortex. The pellet sample was then heated at 

100˚C for 10 minutes and stored at -20˚C or -80˚C. 

 

2.2.9 Determine protein concentration of the samples in RIPA buffer 

Before Western-blot analysis, the protein concentration should be measured by RC DC 

protein assay kit. Firstly, 5 µl of DC Reagent S was added to each 250µl of DC Reagent 

A forming Reagent A’. Then a protein standard for the standard curve was prepared as 

shown in Table 2.2. Subsequently, 25 µl of each standard and sample was added into 

the microfuge tubes. Then 125 µl RC Reagent I was added into each tube and mixed by 

vortex. The tubes were incubated at RT for 1 minute. Next, 125 µl RC Reagent II was 

added into each tube and mixed by vortex. The tubes are centrifuged at 13K rpm for 10 

minutes. Then the supernatant was discarded followed by addition of 127 µl Reagent 

A’ to each tube. The tubes were incubated at RT until precipitate was completely 

dissolved. In the next step, the tubes were vortexed and 1ml of DC Reagent B was 

added into each tube. Then the tubes were vortexed again immediately and incubated at 

RT for 15 minutes. Finally, the absorbance at 750nm was read by the 

spectrophotometer (Beckman, DU 640B). 

RIPA buffer (µl) 10mg/ml BSA (µl) protein standard (µg/µl) 
100 0 0.0  

95 5 0.5  

90 10 1.0  

85 15 1.5  

80 20 2.0  

Table 2.2 Protein standard is prepared from BSA (10mg/ml) and RIPA buffer freshly. 
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2.2.10 SDS-PAGE and Western-blot analysis 

The samples were denatured by heating at 100˚C for 5 minutes and mixed with 5X 

SDS loading buffer with β-mercaptoethanol forming 1X protein solution. Then the 

samples and protein standard were stacked and resolved by SDS-PAGE. After that, 

proteins were transferred from gel to PVDF membrane in transfer buffer. The blot was 

then blocked in 10 ml blocking buffer. After the TBST washing steps the blot was 

incubated in desired primary antibody and secondary antibody. Finally, the blot was 

incubated in chemiluminescent substrate (West Femto or West Pico, Pierce) according 

to manufacturer’s instructions and chemiluminescence was detected by ChemiGenius2 

System (SynGene Corp.) and data were analyzed by the software GeneSnap 6.03.  

 

2.2.11 Immunohistochemistry and DNA staining by Hoechst 33342 (24 well) 

About 48 hours after transfection experiment, the medium was removed and 4% 

paraformaldehyde (300µl/ well) was applied to fix the cells for 20 minutes at RT. Cells 

were then rinsed with PBS thrice (300µl/well) and treated with100mM NH4Cl 

(250µl/well) at RT for 1 minute. Cells were rinsed with PBS thrice again and incubated 

with 0.2% Triton-X 100 (250µl/well) at RT for 30 minutes to permeate the cell 

membrane. After removal of Triton-X 100, cells were blocked in 10% goat serum 

(250µl/well) for 1 hour followed by primary antibody (anti-cmyc, 1:250 in goat serum, 

250µl/well) at 4˚C overnight. The next day, primary antibody was removed and cells 

were rinsed by PBS thrice followed by secondary antibody (goat-anti-rabbit, 1:2000 in 

goat serum, 250µl/well). After 2 hour incubation, cells were rinsed by PBS thrice and 
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nuclei were stained by Hoechst 33342 solution (5µg/ml) at RT for 10 minutes. Finally, 

results were checked and fluorescence photos were taken by a fluorescence microscope 

(Leica DM IRB). Data were analyzed by the software: Leica QFluoro. 

 

2.2.12 Harvest cells in 6-well plate for FACS analysis 

At indicated time after transfection, cells were harvested for FACS analysis. Firstly, a 

tube with 4.5 ml 70% ethanol was chilled in ice. Then the cell medium was carefully 

removed and cells were totally suspended in PBS (2ml/well). Subsequently, cell 

suspension was transferred to 15ml tube and centrifuged at 300X g-500X g for 5 

minutes. Next, cells were resuspended in PBS (0.5ml/tube) and transferred to pre-

chilled 70% ethanol. In order to fix the cells thoroughly, the cell fixative solution was 

stored at -20˚C overnight. The next day, the tubes were centrifuged at 300X g-500X g 

for 5 minutes and supernatant was discarded. Then the cell pellet was washed with PBS 

(2ml/tube) and tubes were centrifuged again at 500X g for 5 minutes. After the 

supernatant was discarded, cell pellet was resuspended in PI staining solution with 

RNase (500µl /tube) and DNA was stained by PI. In order to reduce the cell clumps, 

cell suspension was filtered through a 22-gauge needle and then incubated at RT for 30 

minutes. At last, FACS analysis was performed by a flowcytometer machine (Beckman 

Coulter, Elite cytometer) and data were analyzed by the software: WinMDI 2.8 
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2.2.13 PC12 differentiation experiment 

Before cell seeding, the plates were coated with Poly-D-Lysine (0.1mg/ml, 500µl/well) 

and incubated at 37˚C overnight. The next day, Poly-D-Lysine solution was removed 

and wells were washed with Milli-Q water (500µl/well) once. After removal of the 

Milli-Q water, the plates were air-dried in the hood. When the plates were ready for 

seeding, PC12 cells were suspended in differentiation growth medium with 100ng/ml 

NGF and seeded into the coated plates (300µl/24 well or 1.5ml/6 well). Finally the cells 

were incubated at 37˚C, 5% CO2. For differentiation experiment performed after 

transfection, about 24 hours after transfection the culture medium was changed to 

differentiation growth medium with NGF (100ng/ml) and the incubation of cells were 

continued at 37˚C, 5% CO2. 

 

2.2.14 Statistical analyses 

The unpaired Student’s t-test was performed to determine the statistical significance of 

difference. A probability (p) value of less than 0.05 was considered as statistical 

significance. 
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CHAPTER THREE 
 

AMPLIFICATION OF THE PLASMIDS 
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3.1 Introduction 

 

The present study sought to explore the influence of overexpression of p10, a 98-

amino-acid protein, on different mammalian cells which required the delivery of p10 

cDNA into the cells. To achieve this goal, two different plasmids were chosen as the 

vehicles and the plasmids with the p10 cDNA insert were engineered by Dr. Robert 

Qi’s group (UST, Hongkong) and sent to me as a gift.  

 

The first plasmid named as pEGFP-N3 vector encodes a red-shifted variant of wild-

type GFP as a reporter which has been optimized for brighter fluorescence and higher 

expression in mammalian cells (refer to Appendix B for more information). Moreover, 

the pEGFP-p10 plasmid was generated by inserting the p10 cDNA at the C-terminus of 

GFP gene. The second plasmid called pCI-neo-myc mammalian expression vector was 

modified from pCI-neo vector by engineering two myc tags between two restriction 

sites, Sal I and Not I (refer to Appendix B for more information). The myc tag encodes 

eleven amino acids which is only 1.2 KD and can be expressed in different protein 

contexts and still be recognizable. So it is now widely used in western-blot technology, 

immunoprecipitation, and flowcytometry and therefore very useful for monitoring 

expression of recombinant proteins in bacteria, insect cells and mammalian cells 

(Terpe, 2003). In addition, the pCI-p10-myc plasmid was constructed by inserting the 

p10 cDNA between two restriction sites, EcoR I and Sal I.  
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However, the amount of original plasmids available was just several micrograms each 

which were far less than the required amount for transfection experiments. So the 

original plasmids should be amplified as the preparatory work for p10 overexpression 

studies. In this work, the bacteria E. coli served as the plasmid transformation and 

amplification host. And HiSpeed Plasmid Midi Kit was applied for the plasmids 

extraction and purification. In order to estimate the amplification accuracy, 

endonuclease digestion and DNA electrophoresis were also included in the work. 

 

In summary, the present chapter aimed at the amplification of the four original plasmids 

including pEGFP-N3 vector, pEGFP-p10, pCI-neo-myc vector, and pCI-p10-myc. 

Once amplified, the four plasmids would be delivered into different mammalian cells 

for overexpression experiments. 
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3.2 Results and Discussion 

 

3.2.1 Bacteria transformation 

E. coli strain DH5α served as the host for plasmids amplification (refer to Appendix A 

for more information). About 0.5µg original plasmid each was used for transformation 

of bacteria and the transformation experiment was carried out according to the method 

described in 2.2.1. Transformed bacteria solution was spread on agar plate and cultured 

at 37˚C overnight with Kanamycin as selection marker for pEGFP plasmids and 

Ampicilin for pCI plasmids. The next day, about several decades of bacteria single 

colonies appeared sporadically throughout the agar plate suggesting that the 

transformation efficiency ranged over 500-1000 transformants/µg DNA. 

 

3.2.2 Bacteria culture 

Single colonies of transformant were picked up and cultured in LB broth with 

antibiotics (25-30µg/ml) at 37˚C on shaker (about 180rpm). The bacteria growth status 

was estimated by checking the turbidity of bacteria culture solution. At the beginning, 

the bacteria culture solution was almost transparent. Bacteria culture was considered 

complete and ready for plasmids extraction and purification when culture solution was 

opaque which generally took about ten hours. 
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3.2.3 Plasmids extraction and purification 

Plasmids were mainly extracted and purified by HiSpeed Plasmid Midi Kit according to 

the method described in 2.2.3. Normally DNA concentrations were between 0.15mg/ml 

to 0.25mg/ml and total DNA yielded was between 150µg to 250µg for each plasmid. 

 

3.2.4 Digestion of the plasmids by EcoR I and DNA electrophoresis 

To compare the size of the original plasmids with the amplified ones, EcoR I restriction 

enzyme was used to cut all the plasmids at the single site: A630A631T632T633 followed by 

DNA electrophoresis. As already known, pEGFP-N3 vector is 4.7 KB at length and p10 

cDNA insert is about 300 base pairs. So theoretically, pEGFP-p10 is about 5 KB. The 

DNA electrophoresis after EcoR I digestion revealed that original pEGFP plasmids and 

corresponding amplified ones were about the same size and the sizes of the plasmids 

were totally consistent with theoretical ones (Fig3.1). On the other hand, pCI-neo-myc 

vector is 5.4 KB at length and pCI-p10-myc 5.7 KB theoretically. The results matched 

quite well with theoretical ones suggesting both the correctness of the plasmids and 

accuracy of the amplification process (Fig 3.2).  
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Figure 3.1 DNA gel showing original and amplified pEGFP plasmids digested by 

restriction enzyme EcoR I. DNA was stained by SYBR Green and the position of the 

plasmids is indicated by the black arrows on the right. A 1KB DNA marker on the left 

line shows that the sizes of the plasmids are correct. 
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Fig 3.2 DNA gel showing original and amplified pCI plasmids digested by restriction 

enzyme EcoR I. DNA was stained by SYBR Green and the position of the plasmids is 

indicated by the black arrows on the right. A 1KB DNA marker on the left line shows 

that the sizes of the plasmids are correct. 
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3.2.5 Double digestion of pCI plasmids by EcoR I and Not I followed by DNA 

electrophoresis 

To further confirm that the amplified pCI-p10-myc contained the p10 cDNA at the 

proposed site, amplified pCI-neo-myc vector and pCI-p10-myc were double digested 

by EcoR I and Not I. The plasmids before and after double digestion were subject to 

electrophoresis on a DNA gel together (Fig 3.3). Notably, after double digestion, pCI-

p10-myc released a DNA fragment about 400 base pairs according to the 100bp DNA 

marker. As a control, the pCI-neo-myc vector released no DNA fragment after double 

digestion suggesting that the DNA fragment released by pCI-p10-myc could not be part 

of the vector. Moreover, there were about 100 base pairs between EcoR I and Not I in 

the pCI-neo-myc vector (refer to Appendix B for the vector information).  p10 cDNA 

was about 300 base pairs. Theoretically the DNA fragment released after double 

digestion should be about 400 base pairs which matched with the result perfectly. By 

the way, it turned out that after digestion the vector ran slower than itself before 

digestion. The reason may be that before digestion the vector existed as a super coil 

plasmid while after digestion it was cut at two sites and turned into a more lineated 

form which ran slower than the super coil form in the agarose gel. 

In summary, the result confirmed that the amplified pCI-p10-myc plasmid contained 

the p10 cDNA at the proposed site. 
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Fig 3.3 DNA gel showing the pCI plasmids before and after double digestion by EcoR I 

and Not I. p10 gene insert was released after double digestion while pCI-neo-myc 

vector released no DNA fragment. 

 

3.3 Conclusion 

The four plasmids including pEGFP-N3, pEGFP-p10, pCI-neo-myc and pCI-p10-cmyc 

were amplified from several micrograms to about two hundred micrograms. The 

amplification may be accurate shown by restriction enzyme digestion and DNA 

electrophoresis.  
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CHAPTER FOUR 
 

OVEREXPRESSION OF p10 MEDIATES 

DEATH OF KIDNEY CELLS 
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4.1 Overexpression of GFP-p10 mediated death of Cos-7 cells 

 

4.1.1 Introduction 

To deliver genes into the cells and make them expressed, generally there are two sorts 

of methods: recombinant virus-based technologies and non-viral transfection methods. 

Compared to virus-based technologies, non-viral transfection methods have the 

advantage of easier to use, less toxic, and not constrained to delivering plasmids below 

a relatively small size. However, it is well-known that the transfection efficiency of 

postmitotic neurons by non-viral method is quite low (Washbourne and McAllister, 

2002). Moreover, to examine the influence of overexpression of p10 in mammalian 

cells, high transfection efficiency is required. At the first stage of present study, Cos-7 

was chosen as the p10 overexpression host. Cos-7 is a cell line derived from CV-1 cell 

line by transformation with an origin defective mutant of SV40 which codes for wild-

type T antigen. It is a kidney cell line from African green monkey and an optimal 

transfection host.  

To obtain the highest transfection efficiency, altogether six transfection kits were tested 

which included Lipofectamine 2000, TransIT-Neural, GeneJammer, GenePORTER 2, 

MBS Mammalian Transfection Kit and FuGENE 6. Among them Lipofectamine 2000 

was found to achieve the highest transfection efficiency (about 25%-30%) in Cos-7 

together with low cytotoxicity, so this kit was selected to perform all the transfection 

experiments in subsequent work unless specially indicated. Lipofectamine 2000 reagent 

is a cationic lipid. When mixed with DNA, it interacts with the negatively charged 
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phosphate backbone of DNA to form the DNA-lipid complex which is capable of 

passing through the cell membrane. Thus Lipofectamine 2000 reagent serves as a 

vehicle for DNA to enter the nuclear for expression. 

 

4.1.2 Results 

4.1.2.1 48 hours after transfection, GFP-p10 fusion proteins were overexpressed in Cos-

7 cells 

About 48 hours after transfection, cells were harvested in RIPA buffer. Protein 

concentration of each sample was determined by RC DC Protein Assay Kit. 30 µg 

proteins of each sample were loaded into SDS-PAGE gels and the final results were 

shown in Fig 4.1. Altogether four antibodies were used in this experiment. The anti-

GFP antibody recognized the epitope on the GFP protein. In Fig 4.1A, no band was 

detected in non-transfection sample while GFP bands appeared in vector control 

samples. Meanwhile, a GFP band and a 37KD GFP fusion protein band appeared in 

pEGFP-p10 sample. In Fig 4.1B, anti-n20-p35 antibody which recognizes the N-

terminal region of p35 detected no band in either non-transfection sample or vector 

control sample while a band appeared at the same position as that of the GFP fusion 

protein band in Fig 4.1A. This confirmed that the 37KD band in pEGFP-p10 sample 

stood for the band of GFP-p10 fusion protein. Moreover, an anti-c19-p35 antibody 

which recognizes the C-terminal region of p35 did not detect any band as expected (Fig 

4.1C). Finally, an anti-α-tubulin antibody was used to confirm that there were about 

equal amount of protein in each line (Fig 4.1D). 
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Fig 4.1 Western-blot analysis of the expression of the pEGFP plasmids in Cos-7 cells 

using (A) anti-GFP, (B) anti-n20-p35, (C) anti-c19-p35 and (D) anti-α-tubulin as 

internal control. 
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4.1.2.2 GFP-p10 overexpression in Cos-7 caused the change of whole cell 

morphology

 

Fig 4.2 The change of GFP-p10 expressing cell morphology shown by GFP green 

fluorescence photos about 48 hours after transfection of Cos-7 with (A) pEGFP-N3 

vector control and (B) pEGFP-p10. 

 

While the morphology of Cos-7 overexpressing GFP vector control appeared normal, 

those overexpressing GFP-p10 displayed obvious abnormal whole cell morphology as 

shown in Fig 4.2. Cos-7 is a fibroblast-like cell line with obvious lamellipodia and is 
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adherent to the tissue culture plate (Fig 4.2A). But most of the cells expressing GFP-

p10 shrank and displayed round cell morphology. Some even lost attachment to the 

plate (Fig 4.2B). These phenomena suggested that the expression of GFP-p10 in Cos-7 

cells may disrupt cytoskeleton system and subsequently change the whole cell 

morphology. Moreover, the intensity of the abnormal morphology phenotype 

corresponded to the intensity of the GFP fluorescence suggesting that the cell 

morphology may also be influenced by the GFP-p10 expression level. 

 

4.1.2.3 Cos-7 overexpressing GFP-p10 also displayed abnormal nuclei which indicated 

that they were probably undergoing apoptosis 

To confirm those small round cells with GFP-p10 were really unhealthy or even dead, 

48 hours after transfection cells were fixed by 4% paraformaldehyde and nuclei were 

stained by the DNA dye, Hoechst 33342. In Fig 4.3, vector expressing cells showed 

normal nuclei morphology while those overexpressing GFP-p10 showed obvious 

abnormal nuclei such as nuclei deformation, condensation and fragmentation (Fig 

4.3D). As DNA fragmentation is one of the features of apoptosis, this result suggested 

that overexpression of GFP-p10 may lead to apoptosis. 
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Fig 4.3 The abnormal nuclei of Cos-7 cells overexpressing GFP-p10 shown by 

fluorescence photos with higher magnification than those in Fig 4.2. Cells transfected 

with pEGFP-N3 vector control are shown in (A), (C), (E) from the same view while 

cells transfected with pEGFP-p10 are shown in (B), (D), (F) from the same view. White 

arrows in (D) indicate the abnormal nuclei which appear deformed, condensed or 

fragmented. 
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4.1.2.4 Abnormal nuclei rate of GFP-p10 expressing cells was significantly higher than 

that of GFP expressing cells 

 

Fig 4.4 Cells expressing GFP-p10 displayed significantly higher abnormal nuclei rate 

than those expressing GFP alone.  

 

Abnormal nuclei rate assay was performed on the cells expressing pEGFP and pEGFP-

p10. Only GFP fluorescence positive cells were counted and nuclei were scored as 

abnormal only when nuclei appeared fragmented or condensed or deformed together 

with abnormal cell morphology as shown in Fig 4.3B. Values were mean±s.d. of three 

independent experiments. At least 300 cells were counted for each value. One-side 

student T test was done and **p<0.01 comparing to vector control. About 40% of the 

cells expressing GFP-p10 displayed abnormal nuclei which was about eight times that 

of the cells expressing GFP alone suggesting the high toxicity of p10 to Cos-7 cells. 
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4.1.2.5 FACS analysis revealed higher cell death rate in cells subject to pEGFP-p10 

transfection than those subject to vector control transfection 

To further assess the cell death rate, the flow cytometry technique was applied on 

FACS (Fluorescence Activated Cell Sorter) analysis. For active proliferating cells like 

Cos-7, normally all the cells are in the four phases of cell cycle: G1, S, G2 and M. The 

DNA amount in a single G1 cell is close to each other for the same cell type. When G1 

cells enter S phase, the DNA amount increases continuously until cells reach G2 phase 

in which cells double the DNA amount. As shown in Fig 4.5A, the X axis stands for the 

DNA amount in a single cell and Y axis stands for the number of the cells. As G1 and 

G2 are long, and the amount of the DNA in these two phases is stable two peaks 

appears in the Fig 4.5A standing for G1 and G2 cells. When cells die by apoptosis, 

small DNA fragments are generated and tend to leak out of the cell after fixation and 

membrane permeation. In FACS analysis the cells with less DNA amount than G1 cells 

are called subG1 cells which are scored as dead cells. 

Comparing panel (A) and (B) in Fig 4.5, cell death rate was a little higher among Cos-7 

cells subject to pEGFP-p10 transfection than that of those subject to vector control 

transfection. This difference seemed to be contributed by the small peak in subG1 field 

as highlighted in the ellipse in Fig 4.5B. This suggested the increased DNA 

fragmentation rate among the cells subject to pEGFP-p10 transfection. Values in Fig 

4.5C were mean±s.d. of three independent experiments. Ten thousand cells were 

counted for each value. One-side student T test was done and *p<0.05 comparing to 

vector control. 
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Fig 4.5 FACS analysis of the cell death rate. Panel (A) and (B) show the representative 

FACS pictures of Cos-7 cells subject to pEGFP-N3 and pEGFP-p10 transfection 

respectively. 

 

 

 

4.1.3 Discussion 

In this stage, evidence was collected that overexpression of GFP-p10 mediated toxic 

effect to Cos-7 cells by impairing the integrity of the cytoskeleton and probably 

inducing apoptosis. Compared to vector control, overexpression of GFP-p10 changed 

both the whole cell and nuclei morphology significantly as revealed by Fig 4.2-Fig 4.5.  
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By the way, there seems to be a discrepancy between the data in Fig 4.4 and Fig 4.5 as 

the abnormal nuclei rates differ about 35% in immunocytochemistry cell counting 

while the death cell rates only differ about 5% using FACS. Actually this is 

explainable. In abnormal nuclei rate assay only GFP positive cells were counted while 

in FACS analysis all the cells including GFP negative cells were counted. The 

transfection efficiency in Cos-7 is about 20%-30% which means the subG1 difference 

revealed by FACS analysis should be multiplied by a coefficient around 5 to reveal the 

true difference between transfected cells. Moreover, a part of the cells overexpressing 

GFP-p10 showing deformed nuclei which would be scored in abnormal nuclei assay 

may not be scored in FACS analysis because the small DNA fragments may not have 

been generated yet. Taken the above two facts into consideration, it is assumed that the 

data in Fig 4.4 and Fig 4.5 are generally consistent with each other. 

The results raise the possibility that p10 is a toxic protein to mammalian cells. If this 

can be confirmed and proved to be true, it may contribute in explaining the neuronal 

cell death in AD brains as during such abnormal environment p10 is a product as well 

as p25 by activation of calpain and cleavage of p35. p10 may play a role in neuronal 

cell loss in AD. 

However, there are at least two alternative explanations to the toxicity of GFP-p10. 

First, GFP protein is 27KD and is larger than p10. When GFP fuses with p10, p10 may 

somehow change the conformation of GFP and it is possible that the newly formed 

GFP contributes to the cytotoxicity instead of p10. Second, the attachment of GFP to 

the N-terminal of p10 may change the conformation of p10 protein. Possibly, it is the 
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new conformation of p10 which does not exist in vivo that is responsible for the 

cytotoxicity. So to rule out the above two possibilities, p10-cmyc fusion protein would 

be overexpressed in Cos-7 to check whether the same toxic effect would be generated. 

 

4.1.4 Conclusion 

Overexpression of GFP-p10 in Cos-7 cells generated abnormal whole cell and nuclei 

morphology suggesting apoptosis. However, whether the toxic effect was mediated by 

p10 needed to be confirmed by p10-cmyc overexpression in Cos-7 cells. 

 

 

 

4.2 Overexpression of p10-cmyc also mediated death of Cos-7 cells 

 

4.2.1 Introduction 

As stated in the previous section, the GFP-p10 overexpression in Cos-7 cells mediated 

cell death but whether the toxic effect was due to the in vivo function of p10 protein 

remained a question. Two alternative explanations were put forward in 4.1.3. To rule 

out the alternative explanations and prove the toxic effect was really due to the function 

of p10, cmyc tag was applied to form the p10-cmyc fusion protein in Cos-7 by the same 

transfection method and condition. Compared to GFP tag, the cmyc tag had two 

advantages. First, the cmyc tag attached to the C-terminal of p10 which influenced the 

original structure of p10 less than the N-terminal tag. Second, the cmyc tag protein was 
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only 1.2 KD which was far smaller than the GFP protein (Terpe, 2003). This ensured 

the minimum influence of the tag to the structure and function of p10. So in this stage, 

the p10-cmyc fusion proteins were generated and expressed in Cos-7 cells to confirm 

the toxic effect of p10 protein. 

 

4.2.2 Results 

4.2.2.1 48 hours after transfection, p10-cmyc fusion proteins were overexpressed in 

Cos-7 cells 

Cos-7 cells were subject to transfection and harvest. The protein concentrations of the 

samples were determined by RC DC protein assay. 20µg proteins of each sample were 

loaded into SDS-PAGE gels and the final results were shown in Fig 4.6. Altogether 

four antibodies were used in this experiment. Anti-cmyc antibody recognized the 

epitope of the cmyc tag. In Fig 4.6A, no band was detected in non-transfection Cos-7 

samples. Unfortunately, the small myc band could not be seen in vector transfected 

samples because the myc protein was too small to be retained on PVDF membrane. But 

the band of p10-cmyc was clearly shown in pCI-p10-myc samples. This fusion protein 

band was confirmed by anti-n20-p35 antibody which recognized the N-terminal portion 

of p35 (Fig 4.6B). Moreover, an anti-c19-p35 antibody which recognized the C-

terminal region of p35 did not detect any band as expected (Fig 4.6C). Finally, an anti-

α-tubulin antibody was used to confirm that there were about equal amount of protein 

in each line (Fig 4.6D). 
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Fig 4.6 Western-blot analysis of the expression of the plasmids in Cos-7 cells using (A) 

anti-cmyc, (B) anti-n20-p35, (C) anti-c19-p35 and (D) anti-α-tubulin. 

 

 

4.2.2.2 Cos-7 overexpressing p10-cmyc displayed both abnormal whole cell and nuclei 

morphology just like those observed in GFP-p10 overexpressing cells 
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Fig 4.7 The representative fluorescence and transmission photos from the same view 

showing the abnormal whole cell and nuclei morphology in the p10-cmyc 

overexpressing Cos-7 cells. (A) Immunocytochemistry of cmyc showing the abnormal 

morphology of p10-cmyc overexpressing cells. (B) Hoechst staining showing the 

apoptotic-like pyknosis nuclei in p10-cmyc overexpressing cells. (C) Transmission 

view.  

 

As cmyc protein did not generate fluorescence by itself, immunocytochemistry was 

performed according to the protocol described in 2.2.11. Unfortunately, cmyc tag was 
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too small to retain in the cells after membrane permeation and washing steps in 

immunocytochemistry process. So it was hard to check morphology of vector 

expressing cells in fluorescence microscope. Nevertheless, p10-cmyc overexpressing 

cells were clearly shown in fluorescence microscope after immunocytochemistry and 

the abnormal whole cell and nuclei morphology were displayed just like those in 

pEGFP-p10 overexpressing cells. The condensed and fragmented nuclei as indicated by 

white arrows in Fig 4.7B again suggested that p10-myc expression in Cos-7 cells lead 

to cell death probably by apoptosis. 

 

4.2.2.3 FACS analysis revealed higher cell death rate in cells subject to pCI-p10-cmyc 

transfection than those subject to vector control transfection 

FACS analysis was performed after the transfection of pCI-p10-myc. As shown in Fig 

4.8, Cos-7 cells subject to pCI-p10-myc transfection displayed higher cell death rate 

than those subject to vector control. This difference was contributed by the small peak 

in subG1 field as highlighted in the ellipse in Fig4.8B. This suggested the increase of 

the DNA fragmentation rate among the cells subject to pCI-p10-myc transfection. 

Values in Fig4.8C are mean±s.d. of three independent experiments. Ten thousand cells 

were counted for each value. One-side student T test was done and *p<0.05 comparing 

to vector control.  
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Fig 4.8 Quantification of the cell death rate by FACS analysis. Panel (A) and (B) show 

the representative FACS pictures of Cos-7 cells subject to pCI-neo-myc and pCI-p10-

myc transfection respectively. 

 

4.2.3 Discussion 

In this stage, evidence that p10-myc overexpression in Cos-7 cells also mediated cell 

death were collected. This data confirmed that the toxic effect was caused by p10 and 

ruled out the two alternative explanations mentioned in 4.1.3. Revealed by fluorescence 

microscope photos, most of the p10 overexpressing cells displayed cell shrinkage and 

round shape and some part of them did not show abnormal nuclei. This suggested that 

the p10 overexpression might be followed by the collapse of the cytoskeleton event 
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which subsequently triggered some downstream signal pathways and finally led to 

nuclei degradation. Moreover, as some p10 overexpressing cells displayed membrane 

blebbing in addition to nuclei fragmentation, both of which are typical apoptosis 

markers, it is proposed that the p10 overexpressing cells may die by apoptosis. 

However, it remained a question whether the toxic effect of p10 was just an accident in 

Cos-7 cells or not. To answer this question, another cell line called HEK293 would be 

used for p10 overexpression experiments in the next stage.  

 

4.2.4 Conclusion 

Overexpression of p10-cmyc confirmed the toxic effect of p10 in Cos-7. p10 

overexpressing caused the disruption of cytoskeleton and possibly induced apoptosis in 

Cos-7. 
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4.3 Overexpression of p10-cmyc mediated death of HEK293 cells 

 

4.3.1 Introduction 

In the previous work, the evidences were collected to prove that overexpression of p10 

mediated Cos-7 cells death. However, Cos-7 cells were from green monkey and they 

may differ much from human cells. It was necessary to further explore whether the 

toxic effect of p10 also applied to human cells or was it just an accident in Cos-7 cells. 

So in this stage, a human cell line HEK293 was subject to transfection experiments and 

the influence of the p10-myc overexpression was studied. Like Cos-7, HEK293 is also 

a kidney cell line and often serves as a transfection host. Moreover, the conditions for 

cell culture and transfection are also similar. After transfection the influence of the p10 

overexpression in HEK293 cells would be evaluated by fluorescence microscope and 

abnormal nuclei assay. 

 

4.3.2 Results 

4.3.2.1 48 hours after transfection, p10-cmyc fusion proteins were overexpressed in 

HEK293 cells 

HEK293 were subject to transfection and were harvested 48 hours later. Protein 

concentrations of the samples were determined by RC DC protein assay kit. 30µg 

proteins of each sample were loaded into SDS-PAGE gels and the final results were 

shown in Fig 4.9. Altogether four antibodies were used. In Fig 4.9A, no band was 

detected in non-transfection Cos-7 samples. The small myc band could not be seen in 
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vector pCI-neo-myc samples as the reason mentioned previously (refer to 4.2.2.1). The 

band of p10-cmyc was clearly shown in pCI-p10-myc samples. This fusion protein 

band was confirmed by anti-n20-p35 which recognized the N-terminal portion of p35 

(Fig 4.9B). Moreover, an anti-c19-p35 antibody which recognized the C-terminal part 

of p35 did not detect any band as expected (Fig 4.9C). Finally, an anti-α-tubulin 

antibody was used to confirm that there were about equal amount of protein in each line 

(Fig 4.9D). 

 

 

Fig 4.9 Western-blot analysis of the expression of the plasmids in HEK293 cells using 

(A) anti-cmyc, (B) anti-n20-p35, (C) anti-c19-p35 and (D) anti-α-tubulin 

4.3.2.2 HEK293 overexpressing p10-cmyc also displayed both abnormal whole cell and 

nuclei morphology 
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To detect cmyc positive cells, immunocytochemistry was performed 48 hours after 

transfection. Like Cos-7, normal HEK293 cells exhibited scattered morphology with 

prominent lamellipodia. But p10-cmyc overexpressing HEK293 showed cell shrinkage 

and round cell shape reminiscent of Cos-7 cells overexpressing p10 (Fig 4.10). 

Moreover, nuclei condensation and fragmentation was detected suggesting apoptosis. 

This was consistent with the data shown in Fig 4.7 and suggested that the same 

influence that the overexpression of p10 applied on Cos-7 also applied on HEK293, the 

human cells. 

 

4.3.2.3 Abnormal nuclei assay revealed high abnormal nuclei rate among HEK293 

expressing p10-cmyc 

From the data in Table 4.1, it was found that about 35% of the p10-cmyc positive 

HEK293 cells displayed abnormal nuclei. Actually a large part of the p10-cmyc 

positive cells only generated weak fluorescence suggesting low level of p10-cmyc and 

these cells tended to show normal nuclei. Taking this fact into consideration, the 

abnormal nuclei rate among p10-cmyc overexpressing cells could be higher than 35%. 

These data again suggested that p10 overexpressing might be quite toxic to HEK293 

cells. 

 rate1(%) rate2(%) rate3(%) mean(%) SD(%) 

p10-

cmyc 
34.8 35.7 33.3 34.6 1.2 

Table 4.1 The abnormal nuclei rate in p10-cmyc positive HEK293 cells. Data were 

collected from three independent assays. 
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Fig 4.10 The representative fluorescence and transmission photos from the same view 

showing the abnormal whole cell and nuclei morphology in the p10-cmyc 

overexpressing HEK293 cells. (A) Immunocytochemistry of cmyc showing the 

abnormal morphology of p10-cmyc overexpressing cells. (B) Hoechst staining showing 

the apoptotic-like nuclei in p10-cmyc overexpressing cells. (C) Transmission view.  
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4.3.3 Discussion 

In this stage, overexpression of p10-cmyc in HEK293 cells caused similar toxic effect 

as observed in Cos-7 cells which suggested that the toxic effect of p10 also applied to 

human cells. Nevertheless, a weak point of the result was the lack of the data from 

vector transfected cells. As a matter of fact, cmyc tag itself was only 1.2KD large. It 

could not be retained on the PVDF membrane for Western-blot detection. In addition, 

after immunocytochemistry it was often washed away from the cells and making it 

harder to get a fluorescence photo. That is why the abnormal nuclei assay cannot be 

performed here. But fortunately the whole cell morphology could be easily observed by 

transmission view. In vector control well, no obvious cytotoxicity was found. 

Moreover, no one ever reported that cmyc tag itself could influence the cells and caused 

any toxic effect. In summary, the results showed that p10 was a toxic protein to 

HEK293. 

However, p35nck5a is a neural-specific protein, so does its derivative p10 which means 

the kidney cells may never encounter p10 in vivo. So is the toxic effect of p10 to the 

kidney cells just artificial accident which does not applied to the neuronal cells? To test 

this possibility, the neuronal cell line should be used in the next stage of the study. 

 

 

4.3.4 Conclusion 

Overexpression of p10-cmyc in HEK293 confirmed that the toxic effect of p10 also 

applied to human cells. 
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5.1 Overexpression of GFP-p10 mediated cell death in neuronal cell line PC12 

cells. 

 

5.1.1 Introduction 

In the previous chapter, evidence was collected that overexpression of p10 mediated 

death of mammalian kidney cells. However, p35nck5a is a neural-specific protein and is 

not endogenously expressed in the kidney cells (Li et al., 2000; Qu et al., 2002). So the 

kidney cells may never encounter p35nck5a derived p10 protein in vivo which raises the 

suspicion that the toxic effect of p10 is just an artificial accident. In order to test this 

possibility, neuronal cell lines were used to collect p10 overexpression data in this 

chapter. 

PC12 cell line is derived from a transplantable rat adrenal pheochromocytoma which 

responds reversibly to nerve growth factor (Greene et al., 1976). Within several days of 

exposure to NGF, PC12 cells cease to multiply and begin to extend branching varicose 

process similar to those produced by sympathetic neurons in primary cell culture. PC12 

cells also synthesize and store the catecholamine neurotransmitters dopamine and 

norepinephrine. Since the generation of PC12 cell line, it has been widely used as a 

model system for neurobiological and neurochemical studies. It was reported that NGF 

induced p35nck5a expression in PC12 cells within 24 hours (Harada et al., 2001). 

Interestingly, PC12 cells are able to express endogenous p35nck5a but before NGF 

treatment the endogenous p35nck5a are nearly undetectable by immunoblotting. The 

properties of the PC12 described above make it a good model system for the present 
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study because the results from PC12 should be more reliable as they are more like 

neurons than Cos-7 and HEK293 while endogenous p35nck5a in non-differentiated PC12 

cells may not largely influence the p10 overexpression results. 

 

5.1.2 Results 

5.1.2.1 48 hours after transfection, GFP-p10 fusion proteins were overexpressed in 

PC12 cells 

Altogether four antibodies were used in this experiment. In Fig 5.1A, no band was 

detected in non-transfection PC12 samples while GFP bands appeared in vector control 

samples. Meanwhile, both GFP and GFP fusion protein bands appeared in pEGFP-p10 

samples. On the other hand, anti-n20-p35 detected a GFP fusion band at the same 

position as that in Fig 5.1A which confirmed that this band stood for GFP-p10 fusion 

protein. Moreover, an anti-c19-p35 antibody did not detect any band as expected (Fig 

5.1C). Finally, an anti-α-tubulin antibody was used to confirm that there were about 

equal amount of protein in each line (Fig 5.1D). 
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Fig 5.1 Western-blot analysis of the expression of the plasmids in PC12 cells using (A) 

anti-GFP, (B) anti-n20-p35, (C) anti-c19-p35 and (D) anti-α-tubulin. 
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5.1.2.2 PC12 overexpressing GFP-p10 also displayed abnormal nuclei 

 

 

Fig 5.2 The abnormal nuclei of PC12 cells overexpressing GFP-p10 shown by 

fluorescence photos. Cells transfected with pEGFP-N3 vector control are shown in (A), 

(C), (E) from the same view while cells transfected with pEGFP-p10 are shown in (B), 

(D), (F) from the same view. White arrows in (D) indicate the abnormal nuclei which 

appear condensed or fragmented. 
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Compared to control cells, some of the GFP-p10 expressing cells displayed condensed 

or fragmented nuclei as highlighted by the white arrows in Fig 5.2D. Moreover, many 

cells displayed shrunk round cell bodies as shown in Fig 5.2F which was one of the 

features of apoptosis. 

 

5.1.3 Discussion 

In this stage, GFP-p10 fusion proteins were expressed in non-differentiated neuronal 

cell line PC12 and pyknosis nuclei were observed. The result suggested that the p10 

toxic effect was not limited to kidney cells and also applied to neuronal cell line. The 

overexpression of GFP-p10 in PC12 seemed to cause the same abnormal nuclei 

phenomenon as those in Cos-7 and HEK293 (Fig 4.3 and Fig 4.7) which suggested that 

the overexpression of p10 may trigger the same downstream cell death process. 

Moreover, this toxic effect may not be just an artificial accident as PC12 cells are 

capable of expressing endogenous p35nck5a when they are differentiated by NGF.  

 

5.1.4 Conclusion 

Overexpression of GFP-p10 in neuronal cell line PC12 led to abnormal nuclei 

suggesting cell death. This phenomenon was similar to those observed in Cos-7 and 

HEk293 cells which may indicate that the p10 toxic effect was not an artificial accident 

and may happen in vivo. 
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5.2 Overexpression of GFP-p10 interfered with PC12 differentiation 

 

5.2.1 Introduction 

In the previous stage, overexpression of GFP-p10 in non-differentiated PC12 cells was 

proved to cause abnormal nuclei and probably lead to cell death. As mentioned before, 

non-differentiated PC12 cells respond to NGF and differentiate to neuron-like cells. On 

differentiation, they express some neuro-specifc proteins such as p35nck5a which 

subsequently activate Cdk5. The differentiation process may trigger and activate a 

neuro-specifc protein network. The study of the p10 overexpression on the PC12 

differentiation may give more information on the p10 influence of the neuronal cells. 

 

5.2.2 Results 

5.2.2.1 PC12 was differentiated to neuron-like cells by NGF 

In Fig 5.3 A, C ,E, non-differentiated PC12 cells generally showed cell bodies with 

very short or nearly no axon projection. The morphology of the non-differentiated 

PC12 cells did not change from day 1 to day 3. On the other hand, differentiated PC12 

cells displayed obvious axon projection since day 1 as shown in Fig 5.3 B, D, F. As 

time went by, the axon shafts grew longer and longer and tended to form a complex 

network among each other similar to the neuron network. Moreover, most of the 

differentiated PC12 cells ceased to divide as the confluence of the cells from day 1 to 

day 3 did not increase much while non-differentiated PC12 cells multiplied much 

faster. 
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Fig 5.3 Differentiated PC12 cells were cultured in complete growth medium with 

100ng/ml NGF while non-differentiated PC12 cells were cultured in complete growth 

medium only. Non-differentiated PC12 from day 1 (day 1 means 1 day after treatment) 

to day 3 were shown in A, C, E and differentiated PC12 in B, D, F.  

5.2.2.2 NGF treatment induced PC12 to express p35nck5a 
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Western-blot analysis showed that non-differentiated PC12 cells expressed no 

detectable p35nck5a while endogenous p35nck5a appeared on the membrane since 1 day 

after NGF treatment (Fig 5.4 A). Anti-β-actin was used as internal control (Fig 5.4 B). 

 

Fig 5.4 Western-blot analysis of p35nck5a expression in PC12 cells using (A) anti-c19-

p35 and (B) anti-β-actin. 

 

5.2.2.3 PC12 differentiation process was interfered by GFP-p10 overexpression 

Cells were subject to transfection for about 24 hours. Then differentiation reagent was 

added. Another 24 hours later, photos were taken. Axon projection appeared normal in 

vector samples suggesting GFP alone did not influence PC12 differentiation much (Fig 

5.5 A, C). However, most of the GFP-p10 expressing cells did not respond to NGF 

well. Instead of extending axon branches from the cell body, cells tended to shrink and 

aggregate to form clumps. 
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Fig 5.5 The whole cell morphology shown by fluorescence and transmission photos. 

Vector transfected cells were shown in fluorescence photo (A) and transmission photo 

(C) from the same view. pEGFP-p10 transfected cells were shown in  fluorescence 

photo (B) and transmission photo (D) from the same view. 

 

 

5.2.3 Discussion 

In this stage, PC12 cells were subject to NGF differentiation after transfection and the 

results showed that GFP-p10 overexpression might interfere with the PC12 

differentiation process. There may be two reasons for this GFP-p10 interference 
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phenomenon. First, the cells did not respond to NGF differentiation because they had 

already initiated a death process such as apoptosis that interfered with the 

differentiation process. Second, the cytoskeleton systems had collapsed as suggested by 

the shrinking round cell morphology. The collapse of the cytoskeleton systems made 

the axon projection impossible. 

So far following p10 overexpression, two major phenomena had been observed, 

shrinking round cell morphology and abnormal pyknosis nuclei. However, the two 

phenomena seemed not to happen at the same time because a large part of the cells with 

abnormal whole cell morphology did not show abnormal nuclei. It was assumed that 

the whole cell morphology changed before nuclei morphology, which means that the 

collapse of the cytoskeleton systems was probably an earlier event than abnormal 

nuclei. Moreover, it was possible that the former induced the latter. 

5.2.4 Conclusion 

NGF induced PC12 differentiation to neuron-like cells and the overexpression of GFP-

p10 might interfered with this differentiation process probably by causing the collapse 

of the cytoskeleton systems. 

 

5.3 Caspase-3 was not cleaved in pEGFP-p10 overexpressed Neuro-2a cells 

 

5.3.1 Introduction 

In the previous section, pEGFP-p10 was overexpressed in a neuronal cell line, PC12 

and seemed to induce cell injury. The pyknosis nuclei suggested that apoptosis might 
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be involved in this cell injury phenomenon. There is a diversity of groups of molecules 

involved in the apoptosis pathway. One set of mediators implicated in apoptosis comes 

from the aspirate-specific cysteinyl protease family called caspases. Among the family 

members, caspases-3 is considered as a key mediator of apoptosis of mammalian cells. 

Original caspase-3 exists in the cells as an inactive proenzyme. On initiation of the 

apoptosis, other enzymes may cleave caspases-3 and turn it into a smaller protein, 

which is active caspases-3. As there was no good antibody available for detecting 

active caspase-3 in PC12 cells, I used neuro-2a cells instead for western blot analysis to 

check whether caspase-3 was activated after p10 overexpression. 
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5.3.2 Results and discussion 
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Fig 5.6 Western-blot analysis of the expression of the pla

Caspase-3 in Neuro-2a cells using (A) anti-GFP, (B) anti-n

(D) anti-caspase-3, and (E) anti-α-tubulin. 
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Original caspase-3 is a 32KD proenzyme. On activation, caspase-3 can be cleaved and 

release a 17KD fragment. Fig 5.6 showed that no 17KD fragment of Caspase-3 was 

detected after the overexpression of pEGFP-p10 in the Neuro-2a cells. The indigenous 

caspase-3 levels remained unchanged although through fluorescence microscope (data 

not shown) it was found that Neuro-2a cells overexpressing pEGFP-p10 displayed the 

same abnormal whole cell morphology as PC12 cells. The result suggested that the 

overexpression of p10 might cause cell injury in a caspase-3 independent manner. 

 

5.3.3 Conclusion 

Indigenous caspase-3 was not cleaved in pEGFP-p10 overexpressing Neuro-2a cells 

which suggested that the cell injury mediated by p10 may be caspase-3 independent. 
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6.1 General discussion 

One of the major features of Alzheimer’s disease (AD) is the progressive cell loss in 

several areas of the brain. An understanding of the molecular mechanism of the 

abnormal neuronal cell death will provide invaluable insights into the cause of the 

disease and may even help to find the cure of the disease. Moreover, as all other 

neurodegenerative diseases such as Parkinson’s disease, Huntington’s disease, and 

Amyotrophic Lateral Sclerosis are marked by the loss of nerve cells, the study of 

neuronal cell death in AD may benefit the research of the other neurodegenerative 

diseases. Therefore, the present study sought to explore the influence of the 

overexpression of p10, a truncated form of p35nck5a which is possibly implicated in 

neuronal cell death in AD, on different mammalian cells including neuronal cell lines. 

The Cdk5/p35 pathway is recently a hot research topic in terms of the molecular 

mechanism of AD for the complex is a major candidate responsible for the 

hyperphosphorylation of tau proteins which ultimately form neurofibrillary tangles, the 

hallmark of AD. Under such neurotoxic conditions as in AD brains the protease calpain 

is abnormally activated and mediates the cleavage of p35 to p25 (Lee et al., 2000). 

Many scientists believe that the association of p25 with Cdk5 causes the abnormal 

activation of Cdk5 and leads to tau hyperphosphorylation (Patrick et al., 1999; 

Ahlijianian et al., 2002). However, conflicting evidences were accumulated against the 

p25 theory (Takashima et al., 2001; Kerokoski et al., 2002; Tandon et al., 2003). 

Moreover, it is still not clear about the relationship between tau hyperphosphorylation 

and neuronal cell death. 
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In Chapter 4, it was shown that overexpression of p10 mediated cell death in kidney 

cell lines. This is an interesting new finding as no report exists to relate p10 to cell 

death. Notably, p10 is a product of the cleavage of p35 by calpain under certain 

neurotoxic conditions. It was previously thought to be membrane-bound and confine 

p35 to certain compartment of the cells before cleavage because p10 contained a 

conserved myristoylation sequence (Patrick et al., 1999). But the fate of p10 after p35 

cleavage has not been studied. It is possible that p10 is proteolysed and cleared by 

proteasomes since they are also responsible for the clearance of p35 (Patrick et al., 

1998). Moreover, it was reported that proteasome functions were impaired in AD brains 

(Keller et al., 2000). Therefore, p10 may be accumulated in AD brains for at least two 

reasons. On one hand, calpain is abnormally activated (Saito et al., 1993) and produces 

more p10 proteins than normal. On the other hand, proteasome activity is decreased and 

leaves more p10 proteins uncleared.  

More interestingly, it was reported that there was no detectable Cdk5 expression in 

Cos-7 (Qu et al., 2002) and barely detectable Cdk5 expression in HEK293 (Li et al., 

2000). This means that p10 is capable of mediating cell death independent of Cdk5 

activity. Actually, Cdk5 activity is intensively regulated in terms of the life or death 

choice (Shelton and Johnson, 2004). Sometimes Cdk5 showed pro-apoptotic functions 

(Patrick et al., 1999; Zhang and Johnson, 2000; Weishaup et al., 2003; Zhang et al., 

2002) but sometimes it displayed anti-apoptotic functions (Li et al., 2003; Li et al., 

2002; Kerokoski et al., 2001). So it seems that Cdk5 and its many downstream 

substrates interplay in a convoluted network to keep balance between life and death. A 
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huge force may be required to drive the whole network out of the track and sliding 

down to death which seems not possible. On the other side, p10 is not a kinase, as far as 

we know, and may not be subject to intensive regulation in vivo which gives it more of 

a chance to accumulate in vivo. Therefore, it is conceivable that the cleavage of p35 

frees p10 besides p25 to initiate its toxic effect on the cells and the accumulation of p10 

may contribute to neuronal cell death in AD brains. 

If p10 has toxic effect, how is it brought about? Here I propose that the key may lie in 

the myristoylation signal at the N-terminal of the protein p10. The myristoylation is a 

post-transcriptional modification mediated by the cytosolic enzyme, N-

myristoyltransferase (Boutin, 1997). This sort of modification is absolutely specific to 

the N-terminal amino acid glycine in proteins. Previous studies have shown that 

myristoylation not only greatly favors the association of the protein to a membrane, but 

also makes the protein in close contact with its substrates, cofactors, and “receptors” 

which subsequently drives the cellular signaling chain forward. Interestingly, one study 

suggested that certain myristoylation may activate an additional death signaling 

pathway (Kim et al., 1995). Moreover, a Glycine to Alanine mutation at the N-terminal 

of p35 which abolishes the myristoylation signal reduced the rate of fragmented nuclei 

in neurons from 20% to about 10% which implied the involvement of myristoylation 

signal in neuronal cell death (Patrick et al., 1999). Therefore, it is possible that the 

cleavage of p35 produces free p10 which subsequently initiates a death signaling 

pathway and finally leads to cell death. 
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6.2 Future work 

The present study reveals the toxic effect of p10 overexpression in mammalian cells 

and opens a new research topic in terms of the molecular mechanism of neuronal cell 

death in Alzheimer’s disease. To make the p10 story clearer, some of the following 

work is listed below. First, it is worthwhile to compare the p10 level in Alzheimer’s 

brains with control brains and see whether p10 proteins are accumulated in Alzheimer’s 

brains because the result may directly link p10 story to Alzheimer’s disease. Second, 

the effect of p10 overexpression in primary neurons needs to be explored in the future. 

Although lipofection efficiency of primary neurons is quite low, application of a newly 

developed and commercially available product called Nupherin-neuron may solve this 

problem (Subramanian et al., 1999). The absence of nuclear envelope breakdown and 

the low probability of transport across the nuclear pore complex in nondividing cells 

like primary neurons are major obstacles to efficient lipofection. Nupherin-neuron 

consists of a cationic peptide fused to a nonclassical nuclear localization sequence 

which helps to target the lipid-DNA complex to nuclei and facilitates the entry of the 

complex into the nuclei. And it was reported that the application of Nupherin-neuron 

together with lipofectant increased the lipofection efficiency of rat hippocampal 

neurons from less than 0.5% to more than 20% (Ma et al., 2002). Therefore, the high 

lipofection efficiency of non-dividing cells achieved by Nupherin-neuron paves the 

way for p10 overexpression experiments in primary neurons. Finally, the generation of 

a G2A mutation which abolishes myristoylation on the p10 protein may provide a good 
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research tool for further research of the function of myristoylation signal on p10 and its 

relationship to cell death. 
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Appendix A: Culture Media 

1. Cell culture media and serum (all sterilized): 

DMEM (Sigma, D1152) 

Fetal Bovine Serum (Hyclone, ch30160.03) 

Horse Serum (Sigma, H1270) 

 

2. Bacterial media: 

LB broth: LB powder (Sigma, L3152) dissolve in Milli-Q water (25g/L), autoclave at 

121˚C for 20 min. 

Agarose for LB broth: Agar Granulated (DIFCO, 214530), supply as 1% (w/v) in LB. 

 

3. E.coli strain: 

strain name: DH5α 

strain genotype: SupE44 placU169 (φ80lacZρM115) hsdR17 recA1 endA1 gyrA96 

thi-1 relA1 
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Appendix B: Plasmids 

1. pEGFP-N3 vector (BD Clontech, 6080-1): 
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2. pCI-neo Mammalian Expression vector (Promega, E1841): 

 

Two myc tags were engineered between the restriction sites Sal I and Not I: 
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Appendix C: Solutions and Kits 

1. Solutions and Kits used in DNA amplification: 

Kanamycin solution (Sigma, K0129), 10mg/ml. 

Ampicillin solution (Aldrich, 271861), 50mg/ml. 

GFX Micro Plasmid Prep Kit (Amersham Biosciences, 27-9601-01): 

HiSpeed Plasmid Midi Kit (Qiagen, 12643): 

Isopropanol solution (Sigma, I-9516) 

100% ethanol (MERCK, K31218583), diluted by ddH2O to form 70% ethanol. 

EcoR I enzyme (Promega, R6011) 

10X EcoR I buffer (Promega, R008A) 

Not I enzyme (Promega, R6431) 

10X TAE buffer (NUMI): 0.4M Tris base, Glacial Acetic acid, 0.01M EDTA 

1 Kb DNA Ladder (New England BioLabs, N3232S) 

6X DNA blue loading dye (Promega, G1881) 

Sybr-green (Molecular Probe, S-7567) 

 

2. Solutions used in cell culture: 

DMSO (Sigma, D8418) 

Penicillin-Streptomycin (Sigma, P3539) 

Trypsin EDTA (Invitrogen, 25300-054) 

10X PBS (NUMI): 80g/l NaCl, 2g/l KCl, 14.4g/l Na2HPO4, 2.4g/l KH2PO4, diluted to 

1X PBS by Milli-Q water and autoclaved at 121˚C for 20 min before using. 

109 



7S Nerve Growth Factor (Calbiochem, 480354) 

Poly-D-Lysine (Sigma, P0899) 

 

3. Solutions and Kits used in transfection: 

OPTI-MEM I Reduced Serum Medium (Invitrogen, 22600) 

FuGENE 6 Transfection Reagent (Boehringer Mannheim, 85180421) 

GenePORTER 2 (Gene Therapy Systems, T202007) 

GeneJammer (STRATAGENE, 204130-21) 

MBS Mammalian Transfection Kit (STRATAGENE, 200388) 

TransIT-Neural (Mirus, NL1004) 

Lipofectamine 2000 (Invitrogen, 11668-019) 

TransFectin Lipid Reagent (Bio-Rad, 170-3350) 

 

4. Solutions and Kits used for Western-blot: 

RIPA buffer: 10mM Tris-HCl pH7.4, 1%NP40, 0.5% sodium deoxycholate, 150mM 

NaCl, 1mM EDTA, 2mM EGTA, 0.1% SDS, 25mM sodium fluoride, 2mM sodium 

orthovanadate, 10mM sodium pyrophosphate, Protease inhibitor tablet (Roche, 

1873580) 

5X SDS loading buffer: SDS 1g, 1M Tris-HCl pH6.8 3.125ml, Sucrose 5g, 

Bromophenol Blue 0.01g, Milli-Q water 3ml. 

β-mercaptoethanol (Sigma, M6250) 

RC DC protein assay kit (Bio-Rad 500-0120) 

110 



BSA (Sigma, A4503) 

Resolving Gel and Stacking Gel: 

Resolving Gel Stacking Gel 

Milli-Q water 
Milli-Q 

water 

30% 

Acrylamide/Bis 

30% 

Acrylamide/B

is 

Resolving Gel 

buffer 

Stacking Gel 

buffer 

10% APS 10% APS 

TEMED TEMED 

5X electrophoresis buffer (NUMI): 15.1g/l Tris base, 72g/l Glycine, 5g/l SDS. Dilute 

by Milli-Q water to 1X before using. 

Precision Plus Protein Dual Color Standards (Bio-Rad, 161-0374) 

Prestained SDS-PAGE standards, Low range (Bio-Rad, 161-0305) 

10X Tris/Glycine buffer: Tris 30.3g, Glycine 144.13g, Milli-Q water top up to 1L. 

Transfer buffer: 10X Tris/Glycine buffer 100ml, Milli-Q water 700ml, methanol 200ml. 

5X TBS: 30.285g Tris base, 43.83g NaCl, 5M HCl adjust pH to 7.5, Milli-Q water top 

up to 1L. Diluted by Milli-Q water to 1X before using. 

TBST: 1L 1X TBS, 1ml Tween-20 (Baker, X251-07). 

Blocking buffer: 4% skimmed milk, 1% BSA in TBST. 

Stripping buffer (CHEMICON, 60513) 

 

Primary antibodies (diluted in TBST with 5% BSA): 

Anti-GFP (Roche, 181460) 1:1000 

Anti-n20-p35 (Santa Cruz, Sc-821) 1:1000 
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Anti-c19-p35 (Santa Cruz, G302) 1:1000 

Anti-α-tubuin (Sigma, T5168) 1:1000 

Anti-cmyc (Santa Cruz, H201) 1:500 

Anti-β-actin (Sigma, A5316) 1:1000 

 

Secondary antibodies (diluted in blocking buffer): 

Goat-anti-rabbit IgG (Bio-Rad, 170-6515) 1:10,000 

Goat-anti-mouse IgG (Bio-Rad, 170-6516) 1:10:000 

 

Chemiluminescent substrate: 

West Pico (PIERCE, 34080) 

West Femto (PIERCE, 34095) 

 

5. Solutions for immunohistochemistry, DNA staining and FACS analysis: 

8% paraformaldehyde (Sigma, P6148): 16g paraformaldehyde dissolve in Milli-Q 

water. Heat to 55 to 60˚C and add 2M NaOH until solution clears. Filter through a 

single use syringe filter. Dilute to 4% in PBS before using. 

100mM NH4Cl: 0.27g NH4Cl dissolve in 50ml PBS 

0.2% Triton-X 100: Triton-X 100 (Merck, 11869) dissolve in PBS 

Goat Serum (Gibco, 16210-07): dilute in PBS before using 

Anti-cmyc (Santa Cruz, H201) 1:250 

Goat-anti-rabbit FITC conjugated 488 (Molecular Probe, 84132-1) 1:2000 

112 



Hoechst 33342 (Sigma, B2261): dilute to 5µg/ml in PBS before using 

PI staining solution: 0.1% Triton-X 100, 0.2 mg/ml Rnase A (Sigma, R6513), 20µg/ml 

Propidium Iodide (Sigma, P4170) in PBS.  
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