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Summary 

 

Meshfree methods have recently become attractive alternatives for mechanical 

simulations. Many MFree methods have been proposed and developed in order to overcome 

the drawbacks coming with finite element method, which is presently the most popular 

numerical tool for various kinds of engineering problems. Among all these MFree methods, 

Point Interpolation Method (PIM) proposed by Liu G.R. and Gu Y.T. (1999) has achieved 

remarkable progress and exhibited an outstanding performance due to its excellent numerical 

stability and easy imposition of boundary conditions. PIM has been successfully used to solve 

a wide range of engineering problems in two dimensions. The objective of this research 

project is to extend the application of Radial Point Interpolation Method (RPIM), the PIM 

based on radial basis functions, to those engineering problems with the nature of three-

dimension. A complete 3D-RPIM analysis package, which includes pre-processor and post-

processor, is developed using Fortran language, as the final product of this research project. 

The project started from the RPIM 3D shape function formation, followed by 

incorporation of RPIM shape functions into the Galerkin weak form to formulate the system 

equations for 3D solids and ended with examples of RPIM application to some selected 

structural problems. The detail description for each part of work is as follows: 

• The Point Interpolation Method (PIM) with radial-polynomial basis is employed to 

construct MFree shape functions using only field nodes scattered arbitrarily within each 

local domain without any predefined mesh to provide the connectivity among these 

nodes. RPIM is found to be numerically stable for both regular and irregular nodal 

distributions with the created shape functions possessing the Kronecker delta function 

property. Through the example of 3-D function fitting, it is shown that radial basis 

functions of EXP and MQ could be used in the RPIM formation to produce good fitting 
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quality, as long as the preferred ranges of shape parameters are used in the interpolation. 

It is concluded that shape functions with radial-polynomial basis that are obtained by 

PIM are qualified for the MFree analysis. 

• RPIM shape functions are incorporated into the Galerkin procedure to formulate the 

analysis method for 3D solid mechanics. Numerical procedures to perform linear static 

analysis, modal analysis and transient dynamic analysis for 3D solids are developed in 

detail. 

• The accuracy and efficiency of the RPIM solver are verified through static analyses of 

3D solids, via patch test and a benchmark example of cantilever beam. It is found that 

various analysis parameters will affect the performance of RPIM to some extent. By a 

complete parametric study of all these factors, the preferred range of different analysis 

parameters is recommended. 

• The excellent performance of RPIM is demonstrated again through the modal analysis 

and transient dynamic analysis of 3D solids, via the same benchmark example of 

cantilever beam. The Newmark method (constant-average acceleration method) is 

recommended for the various kinds of transient dynamic analysis after a comparison 

study among several direct integration schemes. 

• Finally, the RPIM is shown to be of practical use through much more complex examples 

from industries. An advantage of RPIM to deal with inconsistent meshes is also 

demonstrated. 

By comparing RPIM with FEM and other MFree methods, the main advantages of this 

technique are summarized as follows: 

• It has an excellent numerical stability against the irregularity of nodes, with its solver 

being so robust that it has never failed to generate the analysis solution with desired 

accuracy provided that the correct input is given. 

• Its performance is compatible or faster than that of FEM. Moreover, there is much room 

for RPIM to be improved on its numerical implementation. 
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• It supports the control of solution accuracy through the adjustment of different analysis 

parameters. 

• It can handle the geometrical and physical complexity similar to FEM. 

• It simplifies the model preparation by imposing the minimum requirements on the 

consistency and quality of integration cells (meshes). 

It should be noted that 3D-RPIM is still under development and its potential has not yet 

been explored fully. With the future improvements on several aspects, the performance of 

RPIM will go beyond FEM. 
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Nomenclature 

 

A  eigenvector 

a, b  coefficient vector for basis functions 

b  body force vector 

B  strain matrix 

C  damping matrix 

D  material matrix 

dc  average nodal spacing 

E  Young’s modulus 

f  frequency 

f  local force vector 

F  global force vector 

G  overall structural damping coefficient 

G  combined moment matrix 

k  local stiffness matrix 

K  global stiffness matrix 

L  differential operator 

L  Lagrangian functional 

m  number of polynomial terms 

m  local mass matrix 

M  global mass matrix 

n  number of nodes in local domain 

N  shape matrix 



 

  x 

P  point load 

P0  polynomial moment matrix 

P(x)  polynomial basis 

P(x)  vector of polynomial basis 

q  local displacement vector 

Q  global displacement vector 

r  distance 

ri  radius of influence domain 

rs  radius of support domain 

R0  radial moment matrix 

R(x)  radial basis 

R(x)  vector of radial basis 

t  surface traction 

T  kinetic energy 

u  displacement vector 

U  strain energy 

u0  vector of function values 

W  work done by external forces 

x, x, y, z spatial coordinates 

xQ  quadrature point 

α, β  Newmark parameters 

αc, q  RBF shape parameters 

αi  influence domain size parameter 

αs  support domain size parameter 

∆t  time step 

ε  strain vector 
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εx, εy, εz normal strains 

γyz, γxz, γxy shear strains 

φ(x)  shape function 

Φ(x)  matrix of shape functions 

Γ  domain boundary 

λ  eigenvalue 

ν  Poisson’s ratio 

ρ  material density 

σ  stress tensor 

σvm  Von Mises stress 

σx, σy, σz normal stresses 

τyz, τxz, τxy shear stresses 

ω  circular frequency 

Ω  domain 

Π  total potential energy 
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Chapter 1   Introduction 

 

1.1 Background 

Virtually all phenomena in nature can be described as mathematical equations with the 

aid of the laws of physics. However, the analytical solution of these governing equations, 

most often differential equations relating various quantities of interest, is a formidable task. In 

such cases, approximate methods of analysis provide alternative means of finding solutions. 

Among these approximate methods, the finite element method (FEM) is the most powerful 

tool for the numerical solution of a wide range of engineering problems. In this method of 

analysis, a complex region defining a continuum is discretized into simple geometric shapes 

called finite elements. The material properties and the governing relationships are considered 

over these elements and expressed in terms of unknown values at element corners. An 

assembly process, duly considering the loading and constraints, results in a set of algebraic 

equations. Solution of these equations gives us the approximate behavior of the continuum. 

With the increasing applications in different industries, the following shortcomings 

inherent in FEM are also becoming more and more evident. 

• When handling large deformations, considerable accuracy is lost due to element 

distortions. 

• It is difficult to simulate the crack growth with arbitrary paths that do not coincide with 

the original mesh lines of elements. 

• It is difficult to simulate the breakage of material into a large number of fragments. 

• It is difficult to solve the dynamic contact problems with moving boundary. 

A close examination on these difficulties associated with FEM reveals that they are all 

related to the use of “element” or “mesh”, which is the fundamental component of FEM. As 

long as elements or meshes are used in the numerical solution of the governing equations, the 
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above-mentioned troubles coming with FEM will remain. For example, some re-mesh 

approaches or adaptive mesh schemes have been proposed to deal with these troubles caused 

by FEM. Due to the dependence on elements or meshes as before, none of these modified 

methods could completely solve these problems for FEM without any negative side-effects. 

Moreover, meshing process in FEM is the most time-consuming part of the analysis and 

requires considerable effort from the analyst. Therefore, the idea of eliminating elements or 

meshes has evolved naturally and many element-free methods or meshless methods have been 

proposed. To avoid confusion, all these methods are categorized as meshfree (MFree) method 

hereafter. 

MFree method is a numerical tool to transform the partial differential equations 

governing physical phenomena into a set of algebraic equations without use of elements and 

meshes. In MFree method, the problem domain is firstly represented by a set of nodes 

scattered within the domain and on its boundaries. Unlike FEM, these nodes will not be used 

to build elements. In other words, there is no connectivity between any two nodes. After the 

node generation, the approximate solution over a sub-domain which consists of a few nodes is 

assumed to be a combination of appropriately chosen interpolation functions and 

undetermined coefficients (usually nodal values). Then the algebraic relations among these 

undetermined coefficients are obtained by satisfying the governing equations in strong form 

or weak form over each sub-domain. Finally, these discrete algebraic relations are assembled 

into a set of algebraic equations for the whole problem domain. 

MFree method has great potential to overcome the disadvantages of FEM. Because 

there is no mesh, hence no connectivity among nodes, adaptive schemes can be easily 

implemented. This gives flexibility to add and delete nodes whenever and wherever necessary. 

In stress analysis of solids, for example, additional nodes can be freely added in areas of stress 

concentration without providing their relationship with other existing nodes. In crack growth 

problems, one can easily put more nodes around the crack tip to capture the stress 

concentration with desired accuracy. In addition, the time spent for meshing in FEM can be 
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saved by use of MFree methods, thus the overall efficiency of analysis and simulation 

projects can be greatly improved. 

 

1.2 Literature Review 

Realizing the advantage and potential of MFree method, a lot of research efforts in 

computational mechanics have been devoted to it recently. 

The earliest MFree method is Smooth Particle Hydrodynamics (SPH) based on an 

integral form of kernel interpolation (Lucy, 1977; Gingold and Monaghan, 1977). SPH 

discretizes the state of a system into arbitrarily distributed particles and then applies the kernel 

approximation techniques together with the strong form of governing equations. 

MFree methods had not gained significant progress until Nayroles et al. (1992) used the 

Moving Least Squares (MLS) approximation to construct shape functions for their Diffuse 

Element Method (DEM). 

Based on DEM, Belytschko et al. (1994) proposed and developed the Element Free 

Galerkin (EFG) method in which the MLS approximation was incorporated into the Galerkin 

procedure. In the EFG method, the problem domain is discretized into a set of scattered points. 

The MLS approximation is employed to construct shape functions over a group of points. A 

background cell structure is required to evaluate the integrals in the global Galerkin weak 

forms. Due to the need of background cells for integration, the EFG method is actually a 

“half” MFree method. 

On the contrary, a “truly” MFree method called Meshless Local Petrov-Galerkin 

(MLPG) method was originated by Atluri and Zhu (1998). In this method, local weak form of 

the Petrov-Galerkin residual formulation is used together with the MLS approximation to 

generate the system equations without the need of a background mesh. 

Since MFree methods are relative new compared with the well-developed finite element 

method, they still have some technical problems to be solved. For example, SPH method 

suffers from difficulties to enforce essential boundary conditions. The same problem also 
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happens on EFG method and MLPG method due to the use of MLS approximation. In order 

to ease the imposition of boundary conditions, the Point Interpolation Method (PIM) was 

proposed by Liu G.R. and Gu Y.T. (1999). In this method, the interpolation function using 

polynomial basis or radial basis is forced to pass through each node within the sub-domain. 

Algebraic relations among nodal values are then obtained by satisfying the weak form or local 

weak form of the governing equations over each sub-domain before the final assembly 

process. Because the shape functions created by PIM possess the Kronecker delta property, 

the imposition of essential boundary conditions is as easy as that in FEM. 

In order to make Point Interpolation Method numerically stable for arbitrarily 

distributed points, two significant advances have been achieved over the past years. The first 

is the use of radial basis functions for the shape function construction (Wang and Liu, 2000). 

The second is the invention of a two-stage Matrix Triangularization Algorithm (MTA) (Liu 

G.R. and Gu Y.T., 2001), which can automatically exclude the nodes and the terms of 

polynomial basis to create a nonsingular moment matrix. 

PIM has been successfully used to solve a wide range of engineering problems, such as 

static and free vibration analysis of thin plates (Liu G.R. and Chen X.L., 2001), static and 

dynamic analysis of thin beams (Gu Y.T. and Liu G.R., 2001), numerical analysis of Biot's 

consolidation process (Wang J.G. et al., 2002), static and frequency analysis of two-

dimensional piezoelectric structures (Liu G.R. et al., 2002), incompressible flow simulation 

(Wu Y.L. and Liu G.R., 2003). 

Table 1.1   Characteristics of Typical MFree Methods 

Method Interpolation Technique Governing Equation 

SPH Integral representation Strong form 

EFG MLS Weak form 

MLPG MLS Local weak form 

PIM Point interpolation Weak form or local weak form 

 
The characteristics of different MFree methods are summarized in Table 1.1 for clarity. 
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1.3 Objectives 

As shown in the previous section, the Point Interpolation Method using radial basis 

functions, so-called Radial Point Interpolation Method (RPIM), has an excellent numerical 

stability and has been successfully tested by many examples in two-dimension. The main 

objective of this research project is to extend the application of RPIM to those engineering 

problems in three dimensions. 

The ultimate goal of any numerical method is to become an efficient tool which is 

widely accepted and used by engineers from industries. Hence, another objective of this 

research project is to make the 3D-RPIM as user-friendly as FEM. 

In order to achieve these two objectives, the following tasks are accomplished. 

• Formulate the Radial Point Interpolation Method based on Galerkin weak form of 

governing equations for three-dimensional solids 

• Develop the procedure to perform the static analysis for 3D solids using RPIM 

• Develop the procedure to perform the modal analysis for 3D solids using RPIM 

• Develop the procedure to perform the transient dynamic analysis for 3D solids using 

RPIM 

• Fine-tune the analysis parameters of RPIM to achieve the desired accuracy and 

efficiency 

• Develop the pre-processor and post-processor for the structural analysis of 3D solids 

using RPIM 

 

1.4 Analysis Procedure of RPIM 

Applications of MFree methods range from deformation and stress analysis for various 

kinds of structures to field analysis of heat flux, fluid flow, magnetic flux, seepage, and other 

flow problems. With the advances in computer technology and CAD system, complex 

problems can be modeled with relative ease. In this research project, static and dynamic 
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analyses for three-dimensional solids of complex shapes are used to demonstrate the basic 

procedure of RPIM. 

1.4.1 Geometry Modeling 

With a help of commercial three-dimensional CAD systems like SolidWorks, any 3D 

solid geometry with complex shapes can be easily created and used as the problem domain for 

MFree analysis. 

Actually FEM does this step in a similar way. The complicated solid model is drawn by 

use of commercial CAD packages, and then exported to a file in a specific geometry format. 

The popular geometry formats include ACIS solid model file format (*.SAT File), Parasolid 

solid model format (*.X_T File), STEP, IGES, DXF and numerous CAD native formats. 

Finally, this geometry file is imported into the pre-processor of FEM packages for subsequent 

meshing process. 

1.4.2 Node Generation 

In MFree method, the solid geometry should be represented by a set of nodes scattered 

inside its body and on its surfaces. This step is often called node generation. There is almost 

no dedicated node generator available commercially. Fortunately, the pre-processor of many 

commercial FEM packages can be used to do this job very well. 

In FEM, meshing is performed to discretize the geometry into small elements that are 

connected at nodes. The output of the meshing process includes the element connectivity data 

and nodal-coordinate data. The latter is exactly what we want for the MFree methods. On the 

contrary, the element connectivity data can be safely discarded at this stage. However, in this 

research project, the elements are kept for other purposes also, such as stress contour plots. 

There are two kinds of solid mesh in FEM – hexahedral mesh and tetrahedral mesh. Not 

all solids are hex meshable, so the most important and difficult step in the hex meshing 

process involves dividing the whole solid (often with complex shapes) into simple hex 

meshable parts. In contrast, the tetrahedral mesh can be generated almost automatically for 

solids with any complexity. However, the FEM results via tetrahedral mesh are very poor 
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because of the constant stress field within the element. In other words, a large number of 

tetrahedral elements are required to achieve the same accuracy as hexahedral mesh with much 

fewer elements. 

Because the basic concept of MFree methods is not to use elements, the element shape 

used in the step of node generation will not affect the MFree results theoretically. Therefore, 

the MFree methods can take the full advantage of the automatic Tet-mesher to generate the 

nodes without losing any computational accuracy. In this research project, both Hex-mesher 

and Tet-mesher are used with the former for simple solids and the latter for complex solids. 

1.4.3 Local Domain Construction 

In FEM, the local algebraic equations are obtained by satisfying the governing equations, 

often in a weight-integral sense, over each element. For MFree methods, the formation of 

local algebraic equations has to be carried out over a group of nodes around each specific 

point because there is no element can be used. These nodes as a group can be called the local 

domain of a specific point. Actually the main task of local domain construction is to 

determine how many nodes and which nodes to be included in the local domain of each point 

of interest. 

One simple way to carry out this process of node selection is to assume that each point 

has a support domain around it. All nodes fall inside its support domain are simply selected as 

its local domain. The support domain of a point is usually a ball centered at this point with the 

radius defined as 

rs = αs dc (1.1)

where αs is the support domain size parameter and dc is the average nodal spacing near the 

point. The bigger the support domain size parameter is, the more nodes are included in the 

local domain. Thus the value of support domain size parameter will greatly affect the 

efficiency and accuracy of MFree analysis. According to numerical experiments later, αs = 

1.5 ~ 2.0 for MFree analysis using RPIM will generally yield the satisfactory results. 
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As shown in Equation (1.1), the average nodal spacing dc should be evaluated first 

before we can get the size of support domain. In this research project, a simple method is used 

to estimate the average nodal spacing as 

13

3

−
=

s

s
c n

V
d  (1.2)

where Vs is an estimated volume that is covered by the support domain, and ns is the number 

of nodes within the estimated volume. 

The concept of support domain works well if the nodal density does not vary too 

drastically within the problem domain. Practically, it is possible that the nodal density does 

vary drastically, like solving problems with stress singularity, for example. In such cases, the 

use of support domain may lead to an unbalanced selection of nodes for the shape function 

construction. In the extreme, all the nodes selected could be located on one side relative to a 

point, and the shape functions based on this nodal distribution could result in serious error. To 

avoid errors caused by highly irregular nodal distribution, the concept of influence domain 

can be used. 

The influence domain is defined as the extent of influence a node exerts. For a specific 

point of interest, all nodes with influence domains covering this point will be selected as the 

local domain of this point. The influence domain of a node is usually a ball centered at this 

node with the radius calculated as 

3/1

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

n

j
jii V

n
r α  (1.3)

where αi is the influence domain size parameter, n is the number of elements adjacent to the 

node, and Vj is the volume of each adjacent element. Normally the influence domain size for 

each node is computed immediately after the node generation as a by-product of the meshing 

process. The size of influence domain by this approach varies reasonably in accordance with 

the local nodal density. The higher the nodal density is, the smaller the influence domain size 

becomes. Therefore, nodes near the area of high nodal density are unlikely to be included in 



Chapter 1  Introduction 

  9 

the local domain of a specific point. On the contrary, nodes near an area of low nodal density 

are likely to be selected due to bigger size of influence domain. By this way, unbalanced 

nodal distribution within the local domain can be avoided. 

Similar to the support domain size parameter, the value of influence domain size 

parameter also affects the results of MFree analysis. This will be discussed in detail later. 

Note that three types of domain have been mentioned here. They are support domain, 

influence domain and local domain. As per discussion above, the influence domain goes with 

a node, while the support domain and local domain go with a point of interest. The differences 

among them will be illustrated by Figure 1.1 and Figure 1.2 below. 

 
Figure 1.1   Local Domain Construction via Support Domain 
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Figure 1.2   Local Domain Construction via Influence Domain 

 

The Figure 1.1 shows the local domain construction for a point xQ via the concept of 

support domain. Point xQ has a support domain with radius of rs. Nodes 2 & 3 are inside the 

support domain of xQ, while node 1 is not. So the nodes 2 & 3 are included in the local 

domain of point xQ without node 1. 

The Figure 1.2 shows the identical nodal distribution, but the local domain of the point 

xQ is constructed via the concept of influence domain. Node 1 has an influence radius of r1, 

node 2 has an influence radius of r2 and so on. Node 1 & 2 have their influence domains cover 

the point xQ, so they are included in the local domain. On the contrary, node 3 is not included 

even though it is very close to the point xQ actually. 

Whichever method is used, the collection of nodes selected is called local domain of 

point xQ. In order to make our RPIM suitable for any nodal distributions, the concept of 

influence domain is always used by default in the stress analysis to construct the local 

domains for each point of interest. 
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It should be also mentioned that the Gauss quadrature points of all elements are chosen 

as the points of interest whose local domains to be constructed for the subsequent MFree 

process. In this research project, all the Gauss points are generated together with the nodes as 

another by-product of the meshing process. 

1.4.4 Displacement Interpolation 

After the construction of the local domain for a specific point, the displacement u at any 

point nearby is assumed to be a linear combination ( ∑
=

=
n

i
iiuu

1

φ ) of shape functions φi and 

displacement ui at all n nodes within the local domain. The creation of shape functions is the 

most important difference between MFree methods and the traditional FEM. The way to 

formulate the shape function also distinguishes the different MFree methods. In this thesis, 

the construction of shape functions using RPIM is detailed in Chapter 2. 

1.4.5 Formation of System Equations 

In the solution of a partial differential equation by MFree Radial Point Interpolation 

Method, the equation is put into an equivalent weighted-integral form and the approximate 

solution (field displacement) over the local domain of a specific point is assumed to be a 

linear combination of shape functions and nodal displacements (as described in the previous 

step). After that, algebraic relations among the nodal displacements are obtained by satisfying 

the governing equations in the weighted-integral sense over the local domain of each point. 

Finally, these local algebraic relations for each point are assembled into the global system 

equations. 

The global system equations are a set of algebraic equations for static analysis, 

eigenvalue equations for modal analysis, and differential equations with respect to time for 

general dynamic problems. The procedure for formation of system equations using RPIM is 

detailed in Chapter 3. 
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1.4.6 Solution of Global System Equations 

For static analysis, the displacements at all nodes in the entire problem domain are 

firstly obtained by solving the global system equations using a standard subroutine for linear 

systems. The strains and stresses at all Gauss points and nodes can then be retrieved. 

For modal analysis, the eigenvalues and corresponding eigenvectors of the system are 

obtained using a standard subroutine for eigen systems. 

For transient dynamic analysis, the time histories of displacement, velocity and 

acceleration at all nodes are obtained using direct integration method. 

1.4.7 Visualization of Analysis Results 

The analysis results generated by MFree methods after solving the system equations are 

usually in a form of vast volume of digital data. It is not an easy job to interpret these data and 

verify the structural behavior of the system numerically. Similar to the step of node 

generation, the post-processor of commercial FEM packages can be used to present the MFree 

analysis results graphically. Typically, the deformation, mode shapes and stress contour of the 

3D solids are displayed and captured at this stage. 

For plots of deformation and mode shapes, the nodal displacements from MFree 

analysis results can be directly imported to the FEM post-processor and be displayed properly. 

For stress contour plot, additional data transformation is necessary. In FEM, stresses can be 

treated as a kind of attribute of elements, and they must be parasitized on elements. Hence the 

post-processor of FEM reads the stress results as a kind of elemental data, and displays the 

stress contour via the stress interpolation within each element. As we know, MFree methods 

are element free. In MFree methods, there is no element that can be used to display the stress 

contour. Therefore the stress results from MFree analysis have to be converted to a format 

which is readable by FEM post-processor. 

As mentioned before, the results of stress and strain can be retrieved by MFree method 

at all Gauss points and nodes. It is theoretically and numerically sufficient to define the stress 

distribution within the problem domain, except that this stress distribution can not be 
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displayed by FEM post-processor. Here the mesh created at the step of node generation can 

give its contribution again. In this research project, the Von Mises stresses at all Gauss points 

within a specific element are averaged as per weights of Gauss points. This average Von 

Mises stress can be thought as the equivalent stress for that element, and can be imported to 

FEM post-processor for stress contour plots. In the following chapters, many stress contour 

plots are presented with the mesh lines being displayed also. It does not mean that MFree 

methods calculate the stresses via elements. The meshes (or elements) are just used to display 

the stress contour instead. 

Another reason to present stress in this way is to facilitate the comparison with FEM. In 

the following chapters, FEM results are frequently used to verify the accuracy of MFree 

methods. If both MFree method and FEM can present their stress results in the same interface 

and in the same manner, it will make the comparison more straightforward. 

1.4.8 Comparison with FEM 

The comparison with FEM serves as an important evidence to verify the accuracy and 

efficiency of MFree RPIM. There are some well-known FEM packages available on the 

market. In this research project, the MSC-Nastran version 70.5 is always used, and all 

analysis runs by RPIM and Nastran are performed on the same computer with configuration 

as follows: 

Model  Fujitsu C Series LifeBook 

CPU  Inter Pentium III Mobile CPU 1133 MHz 

RAM  256 MB 

 

1.5 Organization of the Thesis 

In Chapter 1, a brief historical background of MFree methods is given and the 

fundamental concepts of Radial Point Interpolation Method are introduced. 
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In Chapter 2, the procedure to construct MFree shape functions using RPIM is 

developed in detail. The quality of interpolation by RPIM is examined via examples of 3-D 

function fitting. 

In Chapter 3, the formulation of stress analysis for 3D solids using RPIM is produced, 

and the numerical procedure for different types of analysis solutions is described step by step. 

In Chapter 4 and 5, the accuracy and efficiency of RPIM are verified via static analysis 

and dynamic analysis of 3D solids respectively. 

In Chapter 6, RPIM is proved to be of practical use through some real engineering 

examples. A technical advantage of 3D-RPIM to deal with mesh inconsistencies is 

demonstrated by the way. 

In Chapter 7, conclusions of this project and recommendations for future research are 

given. 
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Chapter 2   RPIM Shape Function 

 

In the MFree procedure, construction of shape functions using only field nodes scattered 

arbitrarily within each local domain without any predefined mesh to provide the connectivity 

among these nodes is the most important step where MFree methods differ from the 

traditional FEM principally. 

The Point Interpolation Method (PIM) gets the approximation of a continuous function by 

forcing the interpolation function pass through each scattered node within a local domain. In 

this chapter, shape functions with radial-polynomial basis that are obtained by PIM are proved 

to be qualified for the MFree analysis. 

 

2.1 PIM Formation using Radial-Polynomial Basis 

Consider a continuous function u(x) defined in a domain Ω, which is represented by a set of 

field nodes. Radial PIM with polynomial basis can be employed to interpolate this function 

around a known point xQ using the nodal values at the surrounding nodes that are referred to 

as the local domain of point xQ collectively. 

( ) ( ) ( ) ( ) ( )bxPaxRxxx TT
m

j
jj

n

i
ii bPaRu +=+= ∑∑

== 11
 (2.1)

where ai is the coefficient for the radial basis Ri(x) and bj is the coefficient for the polynomial 

basis Pj(x). These basis functions are defined in the Cartesian coordinate space x = [x, y, z]T. n 

is the number of nodes in the local domain of point xQ, while m is the number of terms used 

for polynomial basis. Usually m < n. 

Vectors shown in Equation (2.1) are defined as follows: 

[ ]Tnaaaa ,,,, 321 L=a  (2.2)
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[ ]Tmbbbb ,,,, 321 L=b  

( ) ( ) ( ) ( )[ ]xxxxR n
T RRR ,,, 21 L=  

( ) ( ) ( ) ( )[ ]xxxxP m
T PPP ,,, 21 L=  

Radial basis Ri(x) is a function of distance ri defined as below: 

( ) ( )iii rRR =x  

( ) ( ) ( )222
iiii zzyyxxr −+−+−=  

ni ,,2,1 L=  (2.3)

There are several forms of radial basis functions widely used by the mathematics community, 

and two of them (Multiquadrics form and Gaussian form) are used to test the 3D RPIM in this 

research project. In order to standardize the shape parameters of radial basis functions for 

Radial Point Interpolation Method, the modified forms of radial basis functions with 

dimensionless shape parameters are adopted as per Table 2.1. 

Table 2.1   Radial Basis Functions with Dimensionless Shape Parameters 

Name Expression ¹ Shape Parameters 

Multiquadrics (MQ) Ri(x, y, z) = [ ri
2 + (αc dc) 2 ] q αc ≥ 0, q 

Gaussian (EXP) Ri(x, y, z) = exp [ - αc ( ri / dc ) 2 ] αc 

¹ dc denotes the average nodal spacing among all nodes in the local domain. 

 
The polynomial basis is built as per Pascal triangle in 3D domain. 

( ) ( ) [ ]L,,,,,,,,,,1,, 222 zyxzxyzxyzyxzyxTT == PxP  (2.4)

The vectors of coefficients a and b in Equation (2.1) are determined by enforcing the 

interpolation to pass through all n nodes within the local domain. 

( ) ( ) ( )∑∑
==

+==
m

j
jkkkj

n

i
ikkkikkkk bzyxPazyxRzyxuu

11

,,,,,, nk ,,2,1 L=  (2.5)

In order to guarantee a unique approximation of the function, the following constraints are 

usually imposed also. 

( )∑
=

=
n

i
iiiij azyxP

1
0,,  mj ,,2,1 L=  (2.6)
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Equations (2.5) and (2.6) can be expressed in matrix form as 
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where u0 is the vector of function values at all n nodes in the local domain. 

[ ]Tnuuuu ,,,, 3210 L=u  (2.8)

The radial moment matrix R0 is defined as 
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The polynomial moment matrix P0 is defined as 
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Because Rk (xi, yi, zi) = Ri (xk, yk, zk), both radial moment matrix R0 and the combined 

moment matrix G are symmetric. The unique solution of Equation (2.7) can be obtained if the 

inverse of matrix G exists. 
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On substitution for a and b, the Equation (2.1) can be re-written as 

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )∑
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The matrix of shape functions Φ(x) is defined as 

( ) ( ) ( ) ( ) ( )[ ]xxxxxΦ nk φφφφ ,,,,, 21 LL=  (2.13)

where each shape function is 
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The derivatives of function u(x) can be represented similarly as 
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where the derivatives of shape functions are 
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nk ,,2,1 L=  (2.16)

For EXP radial basis function shown in Table 2.1, its partial derivatives can be obtained as 

follows: 
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ni ,,2,1 L=  (2.17)

Similarly for MQ radial basis function shown in Table 2.1, its partial derivatives can be 

obtained as follows: 
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2.2 Advantage of RPIM with Polynomial Reproduction 

There is a crucial assumption that the combined moment matrix G is invertible in the 

formation process of RPIM shape functions. Mathematicians have proved that the radial 

moment matrix R0 is always invertible for arbitrary scattered nodes, as long as some specific 

shape parameters are not used. It implies that RPIM without polynomial terms (m = 0, G = R0) 

might perform the task of interpolation very well. However, it is also found that PIM with 

radial basis alone can not produce the linear polynomials exactly, although it can approach the 

polynomials in desired accuracy when the nodes are refined. This can be seen by the fitting 

example in Section 2.4.1 later. In stress analysis for 3D solids, the MFree methods based on 

RPIM without polynomial basis cannot ensure that the states of constant strain and rigid body 

displacement are correctly represented. Therefore, it will not pass the standard patch test, 

which has been widely used to verify the performance of finite element methods. 

In order to let RPIM pass the patch test, Wang and Liu (2001) suggested adding polynomial 

terms up to linear order (m = 4) as basis functions for PIM formation together with the radial 

basis functions. Fitting example in Section 2.4.1 also shows that PIM using radial-polynomial 

basis can approximate linear functions in high accuracy. 

Accordingly, polynomial basis in Equation (2.4) can be simplified as 

( ) ( ) [ ]zyxzyxTT ,,,1,, == PxP  (2.19)

The polynomial moment matrix P0 in Equation (2.10) can also be re-written as 
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In general, the combined moment matrix G based on radial moment matrix R0 in Equation 

(2.9) and polynomial moment matrix P0 in Equation (2.20) is invertible for all practical 

situations. The excellent stability of RPIM against the irregularity of nodes is one of its 

advantages. 

 

2.3 Properties of RPIM Shape Functions 

As long as the moment matrix G is invertible, the RPIM shape functions φi(x) depend 

uniquely on the distribution of scattered nodes within the local support domain. The RPIM 

shape functions have the following properties: 

1. RPIM shape functions are linearly independent in the local support domain because the 

basis functions are linearly independent and G-1 is assumed to exist. 

2. RPIM shape functions possess the Kronecker delta function property, which can be 

stated as 

( )
⎩
⎨
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==

==
njiji

njji
ji ,,2,1,0

,,2,11
L

L
xxφ  (2.21)

This property can be proven as follows: 

Assume 

[ ]Tiu 0,,,,0,00 LL=u  (2.22)

Substituting the above equation into Equation (2.12) yields 

( ) ( ) ( ) iji

n

k
kjkj uuu xxxx φφ === ∑

=1
 (2.23)

When i = j, we have 

( ) iiii uu xφ=  (2.24)

which leads to 

( ) 1=ii xφ  (2.25)

When i ≠ j, we have 
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( ) ijij uu xφ== 0  (2.26)

which requires 

( ) 0=ji xφ  (2.27)

Equations (2.25) and (2.27) indicate that RPIM shape functions possess the Kronecker 

delta function property, which is very important for handling the essential boundary 

conditions. 

3. φi(x) is the partition of unity. 

( )∑
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1
1xφ  (2.28)

As mentioned in Section 2.2, the PIM using radial-polynomial basis can reproduce the 

linear polynomials exactly. Assume a linear function u(x) = c, where c is a constant. We 

should have 

[ ]Tc 1,,1,10 L=u  (2.29)

Substituting the above equation into Equation (2.12) yields 
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11
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which leads to the Equation (2.28). 

4. RPIM shape functions usually possess higher continuity due to the high continuity of 

the radial basis functions. 

 

2.4 3-D Function Fitting 

The quality of interpolation by RPIM is examined via examples of 3-D function fitting, with 

due considerations of the following factors: 

• Complexity of 3-D functions to be fitted 

• With or without polynomial basis 

• Different types of radial basis functions (EXP and MQ) 
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• Different shape parameters of radial basis functions 

• Regularity of field nodes distribution 

• Number of nodes in the local support domain 

All these factors are taken into account through the fitting example as described below: 

Consider a cubic domain of (x, y, z) ∈ [0, 1] x [0, 1] x [0, 1], upon which two functions are 

fitted. The first of them is a linear function defined as 

f1(x, y, z) = 0.5 + x + 2y + 3z (2.31)

The other is a nonlinear function defined as 

f2(x, y, z) = sin(x) cos(y) ez (2.32)

In order to investigate the effect of node distribution on the fitting accuracy, the cubic domain 

is discretized into a set of field nodes in the following patterns: 

Pattern 1 27 ( 3 x 3 x 3 ) nodes evenly distributed 

Pattern 2 27 ( 3 x 3 x 3 ) nodes randomly distributed 

Pattern 3 27 ( 3 x 3 x 3 ) nodes randomly distributed 

Pattern 4 27 ( 3 x 3 x 3 ) nodes randomly distributed 

Pattern 5 512 ( 8 x 8 x 8 ) nodes evenly distributed 

For each pattern of node distribution, the average nodal spacing dc among all nodes in this 

cubic domain is evaluated as per Equation (1.2). 

The fitting of 3-D functions is carried out in the following steps: 

1. Define the sampling grid with 1331 ( 11 x 11 x 11 ) sample points evenly distributed 

within the cubic domain 

2. Calculate the function values and derivatives at all sample points as per function’s 

definition 

3. Loop over all the sample points 

a) Construct the local support domain for each sample point based on the support 

domain size αsdc 
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b) Calculate function values at all nodes within each local support domain as per 

function’s definition and construct the vector of function values u0 

c) Construct the vector of radial basis RT(x) according to the relationship between the 

sample point and each node in the local support domain – Equations (2.2) and (2.3) 

d) Construct the vector of polynomial basis PT(x) for this sample point as per Equation 

(2.19) 

e) Construct the radial moment matrix R0 based on all nodes within the local support 

domain and calculate its condition number – Equation (2.9) 

f) Construct the polynomial moment matrix P0 based on all nodes within the local 

support domain as per Equation (2.20) 

g) Get the combined moment matrix G and calculate its condition number 

h) Get the inverse of the combined moment matrix, i.e. G-1 

i) Approximate the function value at the sample point as per Equation (2.12) 

j) Approximate the derivatives of function at the sample point using the similar 

procedure 

4. Statistical analysis of the fitting accuracy at all sample points 

a) Output the average condition number of the radial moment matrix R0 

b) Output the average condition number of the combined moment matrix G 

c) Calculate the overall fitting error as per formula below 
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error  (2.33)

where fi and if
~

 are function values (or its derivatives) at the sample point i obtained 

by the analytical method and the interpolation method respectively. 
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2.4.1 Fitting of a Linear Function 

The linear function f1(x, y, z) is approximated by RPIM over the cubic domain, which is 

discretized as per nodal pattern 1. A very large value of support domain size parameter is 

assumed so that all 27 nodes are always included in the local support domain of every sample 

point. Both EXP and MQ radial basis functions are used with some typical shape parameters 

to interpolate this linear function. The fitting errors of the function itself and its derivatives 

are summarized in Table 2.2 and Table 2.3. The Table 2.2 shows the fitting quality by RPIM 

without linear polynomial terms, while the Table 2.3 shows the fitting quality by RPIM with 

linear polynomial terms. 

Table 2.2   Fitting of a Linear Function by RPIM without Polynomial Terms 

Radial Basis Condition Fitting Error 

Type αc q Number R f əf/əx əf/əy əf/əz 

EXP 0.6 - 4.73E+02 6.40E-02 5.88E-01 4.08E-01 3.85E-01 

EXP 0.2 - 1.97E+05 2.26E-02 1.67E-01 1.63E-01 1.63E-01 

MQ 0.5 1.3 3.30E+03 6.18E-03 6.65E-02 4.35E-02 3.81E-02 

MQ 1.5 1.9 2.95E+05 1.22E-03 1.06E-02 9.60E-03 9.39E-03 

 
Table 2.3   Fitting of a Linear Function by RPIM with Polynomial Terms 

Radial Basis Condition Fitting Error 

Type αc q Number G f əf/əx əf/əy əf/əz 

EXP 0.6 - 1.39E+03 9.86E-07 5.46E-06 4.35E-06 2.71E-06 

EXP 0.2 - 2.88E+05 1.29E-03 2.15E-03 1.35E-03 5.31E-04 

MQ 0.5 1.3 3.62E+03 7.31E-06 7.04E-05 2.63E-05 1.29E-05 

MQ 1.5 1.9 3.65E+05 2.30E-04 1.09E-03 4.19E-04 8.46E-04 

 
By comparing Table 2.2 and Table 2.3, it can be seen that the fitting error when linear 

polynomial terms are included is at least five times smaller than the corresponding fitting 

error when linear polynomial terms are not included. This indicates that the RPIM without 

linear polynomial terms can not ensure the reproduction of linear polynomials. In other words, 

the linear polynomial terms should be included in the RPIM basis so that the RPIM can 
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approximate the linear functions accurately. The polynomial terms up to linear order (m = 4) 

are always included in the function fittings and stress analyses hereafter unless otherwise 

noted. 

 

2.4.2 Fitting of a Complicated Nonlinear Function 

Through the fitting of a complicated function f2(x, y, z) with the inclusion of all 27 nodes in 

the local support domain of each sample point, the effect of EXP shape parameter is 

investigated firstly, followed by that of MQ shape parameters. Finally, the effect of domain 

size on the fitting quality is also studied. 

 

Effect of EXP shape parameter 

The effect of EXP shape parameter on fitting quality is illustrated in Figures 2.1 to 2.4. The 

findings from these figures are summarized as follows: 

• The condition number of matrix G is close to that of matrix R. This implies that the 

condition of the combined moment matrix G is largely determined by that of the radial 

moment matrix R. 

• The condition number of moment matrix decreases monotonically with the shape 

parameter αc. A large value of α c leads to a small condition number. 

• The fitting error for the function itself reaches the minimum when the shape parameter 

αc around 0.1. However, the condition number of moment matrix is quite large at this 

time. Moment matrix with too large condition number might be ill-conditioned, and 

might lead to large numerical errors when inversed. From the viewpoint of condition 

number only, the shape parameter αc should be big enough to produce a small condition 

number. The preferred range of shape parameter αc can be from 0.2 to 0.6, after a 

compromise between fitting error and condition number. 
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Figure 2.1   Effect of EXP Shape Parameter on Condition Number of Moment Matrix R 
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Figure 2.2   Effect of EXP Shape Parameter on Condition Number of Moment Matrix G 
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Figure 2.3   Effect of EXP Shape Parameter on Fitting Error of Function f 
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Figure 2.4   Effect of EXP Shape Parameter on Fitting Error of Derivative əf/əx 
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• The fitting error for derivatives of the function varies with the shape parameter αc 

similarly as the fitting error for the function itself does. 

• The nodal distribution pattern has little effect on the fitting quality. 

 
Effect of MQ shape parameters 

The effect of MQ shape parameters on fitting quality is illustrated in Figures 2.5 to 2.10. The 

findings from these figures are summarized as follows: 

• The condition number of matrix G is close to that of matrix R. This implies again that 

the condition of the combined moment matrix G is largely determined by that of the 

radial moment matrix R. 

• The moment matrix G and R are singular when q equals an integer. 

• The condition number varies little with shape parameter q, except when q is near an 

integer. 

• The shape parameter αc has a vital effect on the condition number. When αc changes 

from 0.5 to 2.5, the condition number increases about 103 times. 

• The fitting error for the function itself and its derivatives varies with the MQ shape 

parameters in the similar manner as the condition number does, except that the fitting 

error is not that sensitive to the shape parameter αc. 

• The fitting error reaches the minimum when shape parameter q is near but not equal to 

2.0. Similar to the condition number of the moment matrix, the fitting error does not 

change much with the shape parameter q, a wide range of q from 0.0 to 3.5 will give 

reasonable fitting accuracy, as long as integers (singularity of the moment matrix) 

within this range are avoided. 

• A bigger value of shape parameter αc will give better fitting accuracy but bigger 

condition number, which might cause a large numerical error when the moment matrix 

is inversed. The preferred range of shape parameter αc can be from 0.5 to 2.0, after a 

compromise between fitting error and condition number. 

• The nodal distribution pattern has little effect on the fitting quality. 
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Figure 2.5   Effect of MQ Shape Parameters on Condition Number of Moment Matrix R 

(based on regular nodal distribution pattern 1) 
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Figure 2.6   Effect of MQ Shape Parameters on Condition Number of Moment Matrix G 

(based on regular nodal distribution pattern 1) 
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Figure 2.7   Effect of MQ Shape Parameters on Fitting Error of Function f 

(based on regular nodal distribution pattern 1) 
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Figure 2.8   Effect of MQ Shape Parameters on Fitting Error of Derivative əf/əx 

(based on regular nodal distribution pattern 1) 
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Figure 2.9   Effect of MQ Shape Parameters on Fitting Error of Function f 

(based on irregular nodal distribution pattern 2) 
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Figure 2.10   Effect of MQ Shape Parameters on Fitting Error of Derivative əf/əx 

(based on irregular nodal distribution pattern 2) 
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Effect of domain size 

Through the fitting of the complicated function f2(x, y, z) over the cubic domain that is 

discretized into 512 evenly distributed nodes as per Pattern 5, the effect of domain size on the 

fitting quality is investigated with some typical values of RBF shape parameters. The fitting 

results are illustrated in Figures 2.11 and 2.12, from which the findings are summarized as 

follows: 

• The bigger the domain size parameter is, the more nodes are included in the local 

domain for each sample point, and hence the more computer time is necessary for 

interpolation. 

• The condition number of moment matrix G increases monotonically with the domain 

size parameter. 

• The fitting accuracy does not increase with the domain size parameter. The extra fitting 

error coming with the bigger domain size might be from two sources. Firstly, more 

nodes are included for the interpolation with the increase of domain size, thus more 

numerical operations are necessary. The extra numerical error could be caused by the 

increased number of numerical operations. Secondly, the condition number of moment 

matrix also increases with the domain size, and extra numerical error could be caused 

when the moment matrix is inversed. 

• The preferred range of support domain size parameter, with due consideration of both 

fitting error and condition number, is between 1.5 and 1.9. 

• The domain size is a dominant parameter that decides how many nodes will be included 

in the local support domain. The preferred range of nodes number in the local domain is 

from 10 to 30. It will be seen in the following chapters that this recommended range of 

nodes number will yield good results in the stress analysis for 3D solids. 
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Figure 2.11   Effect of Domain Size on Condition Number of Moment Matrix G 
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Figure 2.12   Effect of Domain Size on Fitting Error of Function f 
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2.4.3 Conclusions from Function Fitting 

The following conclusions can be drawn from the above example of 3D function fitting. 

• The linear polynomial basis should be included in the formation of RPIM shape 

functions. 

• The RPIM is numerically stable for both regular and irregular nodal distributions. 

• The preferred number of nodes included in the local domain is from 10 to 30. 

• Both radial basis functions of EXP and MQ could be employed to produce good fitting 

quality, as long as the preferred ranges of shape parameters are used in the interpolation. 

For EXP, the shape parameter is αc = 0.2 ~ 0.6. For MQ, the shape parameter is αc = 0.5 

~ 2.0, q = 0 ~ 3.5 except integers. 
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Chapter 3   Radial Point Interpolation Method 

 

The Radial Point Interpolation Method (RPIM) can be employed to solve a wide range of 

engineering problems governed by differential equations. In this chapter, static and dynamic 

analyses of three-dimensional solids are used to demonstrate the formulation and procedure of 

RPIM. 

 

3.1 RPIM for Solid Mechanics 

3.1.1 Stress and Strain 

A three-dimensional body occupying a volume V and having a surface S. Points in the body 

are located by x, y, z coordinates. The boundary is constrained on some region, where 

displacement is specified. On part of the boundary, distributed force per unit area t, also 

called traction, is applied. The body deforms under the force. 

The deformation of a point x = [x, y, z]T is given by the three components of its displacement. 

[ ]Twvu ,,=u  (3.1)

The distributed force per unit volume, for example, the weight per unit volume, is the vector b 

given by 

[ ]Tzyx bbb ,,=b  (3.2)

The surface traction t, for example, distributed contact force and action of pressure, is given 

by its component values at points on the surface. 

[ ]Tzyx ttt ,,=t  (3.3)

A load P acting at a point i is represented by its three components. 

[ ]T
izyxi PPP ,,=P  (3.4)
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The stress is represented by its six independent components as 

[ ]Txyxzyzzyx τττσσσ ,,,,,=σ  (3.5)

where σx, σy, σz are normal stresses and τyz, τxz, τxy are shear stresses. 

The Von Mises stress which serves as a criterion in determining the onset of failure in ductile 

materials is given by 

( ) ( )2222 3 xyxzyzxzzyyxzyxVM τττσσσσσσσσσσ −−−++−++=  (3.6)

The strain is also represented in a vector form that corresponds to the stresses. 

[ ]Txyxzyzzyx γγγεεε ,,,,,=ε  (3.7)

where εx, εy, εz are normal strains and γyz, γxz, γxy are shear strains. 

 

3.1.2 Strain-Displacement Relations 

The strain-displacement relations hold for small deformations as 

Luε =⎥
⎦
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where L is a differential operator defined as 
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3.1.3 Stress-Strain Relations 

Properties of isotropic material include density ρ, Young’s modulus E and Poisson’s ratio ν. 

For linear elastic materials, the stress-strain relations come from the generalized Hooke’s law, 

which gives 
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Dεσ =  (3.10)

where D is the symmetric (6 x 6) material matrix given by 
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3.1.4 Energy Principle 

In mechanics of solids, our problem is to determine the displacement u of the body described 

above, satisfying the equilibrium equations. Note that stresses are related to strains, which, in 

turn, are related to displacements. This leads to requiring solution of second-order partial 

differential equations. For problems of complex geometries, general boundary and loading 

conditions, variational methods based on energy principle are usually employed to solve the 

partial differential equations. 

We define the Lagrangian functional as 

L = T – U + W (3.12)

where T is the kinetic energy, U is the strain energy and W is the work done by external 

forces. 

The kinetic energy is given by 

∫=
V

T dVuuT &&ρ
2
1

 (3.13)

For solid body of elastic materials, the strain energy is given by 

∫=
V

T dVσεU
2
1

 (3.14)

The work done by external forces is given by 

i
i

T
iS

T

V

T dSdV PutubuW ∑∫∫ ++=  (3.15)
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Substituting Equations (3.13), (3.14) and (3.15) into (3.12) yields 

∫∑∫∫∫ ++++−=
V

T

i
i

T
iS

T

V

T

V

T dVdSdVdV uuPutubuσεL &&ρ
2
1

2
1

 (3.16)

According to the Hamilton’s principle, for an arbitrary time interval from t1 to t2, the state of 

motion of a body extremizes the functional 

∫=
2

1

t

t
dtLI  (3.17)

Mathematically, Hamilton’s principle states 

02

1

=∫
t

t
dtLδ  (3.18)

Substituting for L from Equation (3.16) yields 

02

1

=⎥
⎦

⎤
⎢
⎣

⎡
−+++−∫ ∫∑∫∫∫ dtdVdSdVdV

t

t V

T

i
i

T
iS

T

V

T

V

T uuPutubuσε &&ρδδδδδ  (3.19)

Thus, the well-known Galerkin weak form can be obtained as 

0=+−−− ∫∑∫∫∫ V

T

i
i

T
iS

T

V

T

V

T dVdSdVdV uuPutubuσε &&ρδδδδδ  (3.20)

 

3.1.5 Formulation of RPIM 

As per discussion in Chapter 2, the displacement u at any point of interest xQ can be 

expressed as a linear combination of shape functions φi and nodal displacements ui at all n 

nodes within the local support domain of point xQ. 

[ ] Nqu == Twvu ,,  (3.21)

where q is the nodal displacement vector for all nodes in the local support domain. 

[ ]Tnnn wvuwvuwvu ,,,,,,,,, 222111 L=q  (3.22)

Shape matrix N is defined as 
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Substituting Equation (3.21) into Equation (3.8) yields 

BqLNqLuε ===  (3.24)

where B is strain matrix defined as 

LNB =  (3.25)

Substituting Equation (3.24) into Equation (3.10) yields 

DBqDεσ ==  (3.26)

 

The term corresponding to the point loads in Equation (3.20) can be re-written as i
T

i
Pq∑δ  

where the point load vector Pi should also be re-defined as 

[ ]Tiziyixi PPP 0,0,0,,,,,,0,0,0 LL=P  (3.27)

The Galerkin weak form is applied over the local support domain Ω (with part of boundary Γ 

on the surface S where surface traction t is applied) by substituting Equations (3.21), (3.24) 

and (3.26) into Equation (3.20). This gives 

0=⎥
⎦

⎤
⎢
⎣

⎡
Ω+−Γ−Ω−Ω ∫∑∫∫∫ ΩΓΩΩ

qNNPtNbNqDBBq &&dddd T

i
i

TTTT ρδ  (3.28)

For any possible values of q consistent with the boundary conditions, the equation above can 

be satisfied only if 

∑∫∫∫∫ +Γ+Ω=Ω+Ω
ΓΩΩΩ

i
i

TTTT dddd PtNbNqDBBqNN &&ρ  (3.29)

which leads to a set of local algebraic equations as 

fkqqm =+&&  (3.30)

where the local mass matrix is 
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∫Ω Ω= dT NNm ρ  (3.31)

The local stiffness matrix is 

∫Ω Ω= dT DBBk  (3.32)

The local force vector is 

∑∫∫ +Γ+Ω=
ΓΩ

i
i

TT dd PtNbNf  (3.33)

In short, algebraic equations shown in Equation (3.30) among nodal displacements are 

obtained by satisfying the governing equations in Galerkin weak form over the local support 

domain Ω of each point xQ. Hence the local mass matrix m, stiffness matrix k and force 

vector f are functions of coordinates of point xQ, and need to be integrated over the entire 

problem domain V. Usually this integration is carried out via Gauss quadrature scheme. As 

mentioned in Chapter 1, all Gauss points are generated together with the nodes as a by-

product of the meshing process using commercial FEM packages. After that, the formation of 

local algebraic equations is performed over the local support domain of all these Gauss 

quadrature points. Finally, local algebraic equations for each Gauss point can be assembled 

into a set of global system equations, which is expressed as 

FKQQM =+&&  (3.34)

where M is global mass matrix, K is global stiffness matrix, F is global force vector and Q is 

global displacement vector. 

Equation (3.34) can be used to perform various kinds of stress analysis that are discussed in 

the next section. 

 

3.2 Type of Analysis Solutions 

3.2.1 Linear Static Analysis 

Linear static analysis represents the most basic type of analysis. The term “linear” means that 

the computed response – displacement or stress for example, is linearly related to the applied 
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force. The term “static” means that the forces do not vary with time, or the time variation is 

insignificant and can therefore be safely ignored. 

The system equations for static analysis can be obtained by removing terms related to time 

from Equation (3.34) as 

FKQ =  (3.35)

Before solving the equation above, the essential boundary conditions are usually considered 

first. Similarly to FEM, the boundary condition of specified displacements can be easily 

handled by the penalty approach. 

Assume a boundary condition 

11 aQ =  (3.36)

where a1 is a known specified displacement along the Degree Of Freedom (DOF) No.1 of the 

system. The penalty approach for handling this boundary condition is as follows: 

A spring with a large stiffness C is used to model the support. In this case, one end of the 

spring is displaced by an amount a1. The displacement Q1 along DOF 1 will be approximately 

equal to a1, owing to the relatively small resistance offered by the structure. Consequently, the 

net extension of the spring is equal to (Q1 - a1). The strain energy in the spring equals 

2
11 )(

2
1 aQC −=SU  (3.37)

This strain energy contributes to the total potential energy Π. As a result, 

FQKQQΠ TT aQC −−+= 2
11 )(

2
1

2
1

 (3.38)

The minimization of Π can be carried out by setting əΠ/əQi = 0, i = 1, 2, …, N, where N is 

the total number of DOFs in the system. The resulting global system equations are 
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Here, the only modification to handle Q1 = a1 is that a large number C gets added on to the 

first diagonal element of K and that Ca1 gets added on to F1. 

After repeating the above procedure for all DOFs where displacement boundary conditions 

are specified, the global system equations can be re-written as 

FQK ˆˆ =  (3.40)

where K̂  and F̂  are global stiffness matrix and global force vector after penalty approach 

respectively. 

Standard subroutine LSASF for solution of high accuracy linear system is used to solve the 

Equation (3.40). This standard subroutine provided by Visual Fortran Professional V6.5 can 

solve the real symmetric system of linear equations with iterative refinement. 

Solution of Equation (3.40) yields the global displacement vector Q. Substituting this Q into 

Equation (3.35) gives 

KQF =  (3.41)

The reaction forces can be extracted from this modified force vector F  in corresponding 

DOFs where displacement boundary conditions are specified. 

Upon knowing of displacements at all nodes in the system, the strains and stresses can be 

obtained as per Equations (3.24) and (3.26) respectively. 

 

3.2.2 Modal Analysis 

Modal analysis computes the natural frequencies and mode shapes of a structure. The natural 

frequencies are the frequencies at which a structure will tend to vibrate if subjected to a 

disturbance. The deformed shape at a specific natural frequency is called the mode shape. 

Modal analysis is also called eigenvalue analysis. 

In modal analysis, there is no applied load and the structure has no damping properties. Hence, 

the equation of motion is of the form 

0=+KQQM &&  (3.42)
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For the steady-state condition, starting from the equilibrium state, we set 

tωsinAQ =  (3.43)

where A is the vector of nodal amplitudes of vibration and ω (rad/s) is the circular frequency. 

Substituting Equation (3.42) for Q yields 

MAKA 2ω=  (3.44)

This is the generalized eigenvalue problem 

MAKA λ=  (3.45)

where A is the eigenvector, representing the vibrating mode, corresponding to the eigenvalue 

λ = ω2. The frequency f in hertz (cycles per second) is obtained from f = ω / (2π). 

Before solving Equation (3.45), boundary conditions should be incorporated. Unlike penalty 

approach, the rows and columns corresponding to DOFs where boundary conditions are 

specified can be simply eliminated from the matrix K & M, which gives 

AMAK ~~ λ=  (3.46)

where K~  and M~  are global stiffness matrix and global mass matrix after removing the 

constrained DOFs respectively. 

Standard subroutine GVCSP for eigensystem analysis is used to solve the Equation (3.46). 

This standard subroutine provided by Visual Fortran Professional V6.5 can compute all of the 

eigenvalues and eigenvectors of the generalized real symmetric eigenvalue problem Az = λBz, 

with B symmetric positive definite. 

 

3.2.3 Transient Dynamic Analysis 

Transient dynamic analysis is the most general method for computing forced dynamic 

response. The purpose of a transient dynamic analysis is to compute the behavior of a 

structure subjected to time-varying excitation, which is explicitly defined in the time domain. 

It means that all of the forces applied to the structure are known at each instant in time. 
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Depending upon the structure and the nature of the loading, two different numerical methods 

can be used for a transient response analysis: direct and modal. In direct transient dynamic 

analysis, structural response is computed by solving a set of coupled equations using direct 

numerical integration. 

Damping factor in direct transient dynamic analysis represents the energy dissipation 

characteristics of a structure. In this research project, a damping matrix C is assumed as 

KC
w
G

=  (3.47)

where K is the global stiffness matrix, G is the overall structural damping coefficient, w is the 

frequency of interest in radians per unit time for the conversion of overall structural damping 

into equivalent viscous damping. 

Adding the term of structural damping to the Equation (3.34) gives 

FKQQCQM =++ &&&  (3.48)

Similarly to modal analysis, the boundary conditions should be considered by eliminating the 

rows and columns corresponding to the constrained DOFs from the matrix M, C, K and 

vector F, which yields 

FQKQCQM ~~~~ =++ &&&  (3.49)

where 

M~  : Global mass matrix after consideration of boundary conditions 

C~  : Global damping matrix after consideration of boundary conditions 

K~  : Global stiffness matrix after consideration of boundary conditions 

F~  : Global force vector after consideration of boundary conditions 

Q  : Global displacement vector without constrained DOFs 

Structural responses such as system displacement nQ , velocity nQ&  and acceleration nQ&&  at 

discrete times (n·∆t), typically with a fixed integration time step ∆t, can be computed by 
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solving the hyperbolic equation (3.49) via Newmark integration scheme. In order to start this 

integration scheme, the initial condition 0Q  and 0Q&  at time t = 0 is usually given. 

 

Newmark Method 

The Newmark method is a generalization of the linear acceleration method, which assumes 

that the acceleration varies linearly within the time interval of (t, t+∆t). It is stated as 

( )[ ]1

2

1 221
2 ++ +−
∆

+∆+= nnnnn
tt QQQQQ &&&&& ββ  

( )[ ]11 1 ++ +−∆+= nnnn t QQQQ &&&&&& αα  

(3.50)

The above equations can be simplified as 

( ) nnnnn aaa QQQQQ &&&&&
54131 −−−= ++  

1121 ++ ++= nnnn aa QQQQ &&&&&&  
(3.51)

where 

ta ∆=α1  

( ) ta ∆−= α12  

23
1
t

a
∆

=
β

 

t
a

∆
=
β
1

4  

1
2
1

5 −=
β

a  

(3.52)

Equation (3.49) at time t = (n+1)∆t is 

1111
~~~~

++++ =++ nnnn FQKQCQM &&&  (3.53)

Substituting Equation (3.51) into Equation (3.53) yields 

( ) 163
~~~

+++ naa QCMK  (3.54)
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( ) ( )CQQQMQQQF ~~~
8765431 nnnnnnn aaaaaa &&&&&& ++++++= +  

where 

t
a

∆
=
β
α

6  

17 −=
β
αa  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆
= 2

28 β
αta  

(3.55)

The procedure to perform the Newmark integration scheme is as follows: 

1. 0Q  and 0Q&  are known as initial condition 

2. Compute 0Q&&  as per 0000
~~~~ FQKQCQM =++ &&&  

3. Assume nQ , nQ&  and nQ&&  are known with n = 0 

4. Compute 1+nQ  as per Equation (3.54) 

5. Compute 1+nQ&&  and 1+nQ&  as per Equation (3.51) 

6. Repeat steps 2 ~ 5 for the next time step 

 

In Newmark method, the parameter α and β determine the stability and accuracy of the 

integration scheme. 

Table 3.1   Special Schemes of Newmark Method 

α β Scheme Stability 

1/2 1/4 Constant-average acceleration method Stable 

1/2 1/6 Linear acceleration method Conditionally stable 

1/2 0 Central difference method Conditionally stable 

3/2 4/5 Galerkin method Stable 

3/2 1 Backward difference method Stable 

 
In this research project, the Central Difference Method (CDM) and the constant-average 

acceleration method are used to solve the dynamic equation of motion. 
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3.3 Numerical Implementation of RPIM 

1. Read analysis parameters 

a) Type of Radial Basis Function to be used for RPIM (EXP/MQ) 

b) RBF shape parameters 

c) Influence domain size parameter 

d) Number of Gauss points per element (for hexahedral elements only) 

e) Newmark parameters (for transient dynamic analysis only) 

2. Read analysis model 

a) Analysis title 

b) Analysis type (Static / Modal / Transient dynamic) 

c) Number of mode shapes to be outputted (for modal analysis only) 

d) Time per step (solution interval), number of steps, output interval and damping 

coefficients (for transient dynamic analysis only) 

e) Material properties (Young’s modulus / Poisson’s ratio / Density) 

f) Nodal coordinates 

g) Element connectivity 

h) Boundary conditions 

i) Static nodal loads (for static analysis only) or dynamic nodal loads (for transient 

dynamic analysis only) 

j) DOFs in which time history to be outputted (for transient dynamic analysis only) 

3. Generate Gauss points for each element and calculate weight of each Gauss point 

4. Compute radius of influence domain for each node as per Equation (1.3) 

5. Create material matrix D as per Equation (3.11) 

6. Loop over all Gauss points 

a) Construct the local domain for each Gauss point to include all nodes whose 

influence domains cover this Gauss point 
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b) If the total number of nodes included in the local domain is equal or less than 10, 

the radius of influence domain for all nodes will be increased by 50% temporarily 

and go back Step a) 

c) Calculate the average nodal spacing dc as per Equation (1.2) 

d) Construct shape matrix N as per Equation (3.23) 

e) Construct strain matrix B as per Equation (3.25) 

f) Construct local mass matrix m as per Equation (3.31) 

g) Construct local stiffness matrix k as per Equation (3.32) 

h) Put contribution from local mass matrix m into global mass matrix M 

i) Put contribution from local stiffness matrix k into global mass matrix K 

7. For modal analysis 

a) Eliminate rows and columns corresponding to DOFs in which boundary conditions 

are specified from the global matrix M & K 

b) Compute eigenvalues and eigenvectors using standard subroutine 

c) Recover the full-dimension eigenvectors by putting back DOFs in which boundary 

conditions are specified 

d) Output eigenvalues and eigenvectors required 

8. For transient dynamic analysis 

a) Eliminate rows and columns corresponding to DOFs in which boundary conditions 

are specified from the global matrix M & K 

b) Construct the global damping matrix C as per Equation (3.47) 

c) Perform the Newmark integration scheme and output the displacement time history 

in DOFs of interest 

9. For static analysis 

a) Construct the global force vector F 

b) Modify the global stiffness matrix K and global force vector F as per penalty 

approach 
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c) Solve the global system equations and get the global displacement vector Q using 

standard subroutine 

d) Calculate the total strain energy of the system 

e) Compute Von Mises stresses at all Gauss points 

f) Compute the average Von Mises stress for each element 

g) Compute reaction forces at boundary conditions 

h) Output displacements, stresses and reaction forces 

 

The analysis procedure shown above is coded using Visual Fortran Professional v6.5 and is 

compiled as a solver for the basic class of linear structural analysis problems. Moreover, the 

pre-processor and post-processor for this analysis solver are also developed using Fortran 

language. 
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Chapter 4   RPIM for Static Analysis of 3D Solids 

 

In this chapter, the Radial Point Interpolation Method (RPIM) is verified as an efficient tool 

for static analysis of 3D solids with high accuracy, via patch test and a benchmark example of 

cantilever beam. Meanwhile, the effect of different analysis parameters on the performance of 

RPIM is also investigated thoroughly. Finally, a comparison is made between RPIM and 

traditional finite element method. 

 

4.1 Patch Test 

Patch test has been widely used to test the performance of finite element methods. Passing the 

patch test serves as a sufficient requirement for a numerical method to be qualified for solid 

mechanics problems. The patch has at least one interior node and a linear displacement is 

imposed on all boundaries of the patch in the absence of body force. Satisfaction of the patch 

test requires that displacement at any interior node be given by the same linear function and 

that the strain and stress be constant in the entire patch. 

 
Figure 4.1   A Cubic Patch with Evenly Distributed Nodes 
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As shown in Figure 4.1, a three-dimensional cubic patch is used to test our Radial Point 

Interpolation Method. The patch size is 2 x 2 x 2 in three principal directions with the origin 

at one corner. The displacements are prescribed on all outside boundaries by a linear function 

as 

( )
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

z
y
x

zyxu
6.0
4.0
2.0

,,  (4.1)

The patch is discretized into 125 (= 5 x 5 x 5) nodes evenly distributed over the cube, which 

is assumed to be made of steel material with Young’s modulus E = 2.0x105, Poisson’s ratio ν 

= 0.32. 

 

Two sets of analysis parameters are used to perform this patch test. 

Set 1 - Patch Test via EXP 

Type of Radial Basis Function  EXP 

RBF shape parameters   αc = 0.2 

Influence domain size parameter  1.9 

Set 2 - Patch Test via MQ 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 1.5   q = 1.9 

Influence domain size parameter  1.9 

 

Table 4.1 shows that the displacements at interior nodes are very close to the theoretical 

displacements defined by the linear function in Equation (4.1) with small tolerances. Table 

4.2 shows that the Von Mises stress is almost constant over the whole patch with minor 

fluctuations. However, the errors in displacements and stresses show that RPIM does not pass 

the standard 3D patch test exactly. 
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Table 4.1   Displacements of Interior Nodes in Patch Test 

Interior Nodal Coordinates Theoretical Deflection RPIM - EXP ( α = 0.2 ) RPIM - MQ ( α = 1.5  q = 1.9 ) 

Node X Y Z X Y Z X Y Z Error X Y Z Error 

32 0.5 0.5 0.5 0.1 0.2 0.3 0.10268 0.20212 0.30155 0.83% 0.09696 0.19626 0.29573 1.67% 

33 1 0.5 0.5 0.2 0.2 0.3 0.20074 0.20312 0.30525 1.38% 0.19977 0.19912 0.29929 0.26% 

34 1.5 0.5 0.5 0.3 0.2 0.3 0.29754 0.20069 0.30156 0.06% 0.30316 0.19612 0.29568 0.50% 

37 0.5 1 0.5 0.1 0.4 0.3 0.10272 0.39861 0.30372 0.32% 0.09916 0.39967 0.29895 0.20% 

38 1 1 0.5 0.2 0.4 0.3 0.20089 0.40122 0.30139 0.37% 0.20032 0.39990 0.30130 0.14% 

39 1.5 1 0.5 0.3 0.4 0.3 0.29830 0.39881 0.30354 0.02% 0.30083 0.39973 0.29911 0.04% 

42 0.5 1.5 0.5 0.1 0.6 0.3 0.10079 0.59562 0.30470 0.24% 0.09703 0.60355 0.29605 0.14% 

43 1 1.5 0.5 0.2 0.6 0.3 0.19954 0.59932 0.30169 0.00% 0.20041 0.60141 0.29905 0.13% 

44 1.5 1.5 0.5 0.3 0.6 0.3 0.29857 0.59752 0.30040 0.33% 0.30318 0.60381 0.29532 0.34% 

57 0.5 0.5 1 0.1 0.2 0.6 0.10203 0.20257 0.59786 0.14% 0.09939 0.19939 0.60046 0.02% 

58 1 0.5 1 0.2 0.2 0.6 0.19942 0.20252 0.60306 0.51% 0.19964 0.20164 0.60074 0.16% 

59 1.5 0.5 1 0.3 0.2 0.6 0.29574 0.20158 0.59955 0.25% 0.30004 0.19944 0.59978 0.05% 

62 0.5 1 1 0.1 0.4 0.6 0.10140 0.39968 0.60034 0.04% 0.10116 0.40005 0.60005 0.03% 

63 1 1 1 0.2 0.4 0.6 0.20052 0.40108 0.60057 0.16% 0.19991 0.40035 0.59947 0.03% 

64 1.5 1 1 0.3 0.4 0.6 0.29872 0.39984 0.60091 0.02% 0.29853 0.40054 0.60001 0.04% 

67 0.5 1.5 1 0.1 0.6 0.6 0.10236 0.59742 0.60076 0.12% 0.09978 0.60049 0.60020 0.05% 

68 1 1.5 1 0.2 0.6 0.6 0.20152 0.59948 0.59907 0.07% 0.20014 0.59842 0.60003 0.12% 

69 1.5 1.5 1 0.3 0.6 0.6 0.29955 0.59776 0.59730 0.38% 0.30122 0.60112 0.59984 0.12% 

82 0.5 0.5 1.5 0.1 0.2 0.9 0.10165 0.20129 0.89516 0.46% 0.09704 0.19610 0.90408 0.30% 

83 1 0.5 1.5 0.2 0.2 0.9 0.20141 0.20139 0.90025 0.09% 0.20055 0.19895 0.90156 0.15% 

84 1.5 0.5 1.5 0.3 0.2 0.9 0.30135 0.20206 0.89780 0.12% 0.30384 0.19611 0.90392 0.42% 

87 0.5 1 1.5 0.1 0.4 0.9 0.10104 0.39957 0.89619 0.36% 0.09986 0.39989 0.90137 0.12% 

88 1 1 1.5 0.2 0.4 0.9 0.19978 0.39934 0.89998 0.03% 0.20029 0.39992 0.89873 0.11% 

89 1.5 1 1.5 0.3 0.4 0.9 0.29872 0.39933 0.89838 0.20% 0.30087 0.40005 0.90133 0.14% 

92 0.5 1.5 1.5 0.1 0.6 0.9 0.09966 0.59819 0.89700 0.32% 0.09635 0.60382 0.90436 0.50% 

93 1 1.5 1.5 0.2 0.6 0.9 0.19654 0.59816 0.89640 0.42% 0.20010 0.60098 0.90130 0.15% 

94 1.5 1.5 1.5 0.3 0.6 0.9 0.29303 0.59582 0.89397 0.79% 0.30293 0.60367 0.90442 0.56% 

 
Table 4.2   Statistical Result of Von Mises Stresses in Patch Test 

 EXP ( α = 0.2 ) MQ ( α = 1.5  q = 1.9 ) 

Average VM Stress 52495 52498 

Standard Deviation of VM Stresses 591 432 
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The failure of RPIM to pass the patch test comes from the discontinuity of RPIM shape 

functions. When local support domains for different Gauss points are constructed, the field 

nodes are entering or leaving these local domains abruptly. If a Gauss point were shifted a 

little bit in position, the nodes might jump into or out of its local domain suddenly. Hence the 

RPIM shape functions based on these local domains could be discontinuous. One possible 

solution is the use of constrained energy principle to formulate the RPIM. Another way is to 

use the so-called “nodal integration” techniques (Liu and Zhang, 2005). A simple and 

practical way to reduce the error caused by the discontinuity of the RPIM shape functions is 

through the adjustment of the shape parameters of the radial basis functions used (Liu, 2002). 

Note that passing the standard patch test is a sufficient requirement for a method to be able to 

converge to the true solution as the nodal spacing approaches zero. It is not a necessary 

requirement for a numerical method to converge. The convergence of RPIM is proved in 

Section 4.2.2 via a convergence test instead. 

 

4.2 Effect of Analysis Parameters 

Effect of different analysis parameters used in RPIM is investigated through the error analysis 

actually. The errors introduced into the RPIM solution of static analysis can be attributed to 

three basic sources: 

1. Error due to domain approximation 

2. Error due to displacement interpolation 

3. Error due to numerical computation 

Error due to domain approximation can be greatly reduced by using more nodes to represent 

the problem domain. As for error due to displacement interpolation, RPIM shape functions 

play an important role. The radial basis functions used in RPIM have a wide range of shape 

parameters that may be tuned to minimize the interpolation error. If these parameters are not 

chosen properly, the accuracy of RPIM will suffer. Besides, the number of nodes included in 

the local domain will also affect the interpolation accuracy. The round-off errors in the 
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computation of numbers and errors from the numerical evaluation of integrals are categorized 

as the error due to numerical computation. In RPIM, the number of Gauss points used for the 

domain integration will affect this numerical error and thus the performance of RPIM. 

In order for RPIM to produce an accurate solution of static analysis with errors as small as 

possible, effect of analysis parameters mentioned above should be examined carefully, and 

preferred range of them should be recommended. In this section, all these studies are 

performed through a benchmark example of cantilever beam, which is described below. 

 
Figure 4.2   Cantilever Beam with Uniform Distributed Load at End 

 

• Geometric size of cantilever beam 

Length in Z direction = 200 mm 

Width in X direction = 40 mm 

Height in Y direction = 60 mm 

• Material properties 

Young’s modulus E = 2.0E+5 N/mm2 

Poisson’s ratio ν = 0.32 

• Boundary condition 

Fixed at left end 

• Loading condition 

Fx = 12.0 KN at right end 

 
In order to investigate the effect of nodal distribution on the accuracy of RPIM, this cantilever 

beam is discretized into a set of field nodes in the following patterns: 
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H132-R 132 ( 3 x 4 x 11 ) evenly distributed nodes by Hex-mesher 

H735-R 735 ( 5 x 7 x 21 ) evenly distributed nodes by Hex-mesher 

H735-IR 735 ( 5 x 7 x 21 ) unevenly distributed nodes by Hex-mesher 

T735-R 735 ( 5 x 7 x 21 ) evenly distributed nodes by Tet-mesher 

H2170-R 2170 ( 7 x 10 x 31 ) evenly distributed nodes by Hex-mesher 

H65751-R 65751 ( 21 x 31 x 101 ) evenly distributed nodes by Hex-mesher 

These patterns of nodal distribution are shown in Table 4.3. 

 
The mesh pattern H65751-R is used only by a typical FEM package – MSC-Nastran ver.70.5 

to get a standard solution for the static analysis of this cantilever beam. Due to the super fine 

mesh of pattern H65751-R, the solution from MSC-Nastran can be used as the exact solution, 

upon which all the error analyses are performed. Figure 4.3 shows this standard solution with 

Von Mises stress superimposed on the deflected shape of cantilever beam. 

Before the systematic error analysis for different RPIM parameters, the following two sets of 

analysis parameters are tried to solve this cantilever problem first. 

Set 1 - Trial Run via EXP 

Nodal pattern    H735-R 

Type of Radial Basis Function  EXP 

RBF shape parameters   αc = 0.2 

Influence domain size parameter  1.5 

Set 2 - Trial Run via MQ 

Nodal pattern    H735-R 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 1.5   q = 1.9 

Influence domain size parameter  1.5 

 
The trial solutions via EXP and MQ are shown in Figure 4.5 and 4.6 respectively. The FEM 

solution based on mesh pattern H735-R is also shown in Figure 4.4 for reference. Figure 4.7 

shows the lateral deflection of cantilever beam according to the standard solution, trial run 

No.1 and trial run No.2. 
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Table 4.3   Patterns of Nodal Distribution for Cantilever Beam 

H132-R H735-R 

H735-IR T735-R 

H2170-R H65751-R 
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Figure 4.3   Cantilever Beam Standard Solution by FEM via Super Fine Mesh 

 

 

 
Figure 4.4   Cantilever Beam FEM Solution via Pattern H735-R 
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Figure 4.5   Cantilever Beam RPIM Trial Solution via EXP with α = 0.2 

 

 

 
Figure 4.6   Cantilever Beam RPIM Trial Solution via MQ with α = 1.5 q = 1.9 
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Figure 4.7   Cantilever Beam Lateral Deflection by FEM and RPIM 

 

It can be seen from Figure 4.4 ~ 4.6 that RPIM via EXP, RPIM via MQ, and FEM almost 

generate the identical stress contour and deflection plot. Similar situation also happens on the 

lateral deflection of cantilever beam shown in Figure 4.7. This indicates that the RPIM can 

produce the static analysis solutions as good as that by FEM. On the other hand, it is almost 

impossible to distinguish the effect of different RPIM analysis parameters through the stress 

contour and deflection plots. Therefore, the system strain energy instead is used as the 

measure for the following error analysis. For the example of this cantilever beam, the exact 

value of system strain energy under loads at end is 3.028E+3 N-mm as per FEM solution via 

super fine mesh. 

 

4.2.1 RBF Shape Parameters 

In order to investigate the effect of RBF shape parameters on the accuracy of RPIM without 

influences from other analysis parameters, those parameters are fixed as follows: 

Nodal pattern    H735-R or H735-IR 

Influence domain size parameter  1.5 
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Number of Gauss points per Hex-element 8 

Shape parameter for EXP is studied first, followed by that for MQ. 

 

EXP Shape Parameter 

The effect of EXP shape parameter on RPIM accuracy is illustrated in Figure 4.8. The 

findings from this figure are summarized as follows: 

• For regular nodal distribution, analysis results are not sensitive to the EXP shape 

parameter αc when αc > 0.03. The analysis results worsen rapidly when αc decreases 

beyond 0.03. 

• For irregular nodal distribution, αc has a similar effect on the analysis results except that 

the critical value of αc is around 0.12. 

• Further studies indicate that this critical value of EXP shape parameter αc increases with 

the level of irregularity of nodal distribution. 

• The preferred range of EXP shape parameter αc is from 0.2 to 1.0. This is close to the 

range recommended by 3D function fitting in Chapter 2. 

 

MQ Shape Parameters 

The effect of MQ shape parameters on RPIM accuracy is illustrated in Figures 4.9 and 4.10. 

The findings from these figures are summarized as follows: 

• For regular nodal distribution, small errors are observed when q is around 2.0 for all 

values of αc examined. However, q = 2.0 can not be chosen due to singularity of 

moment matrix. Similar findings can be seen from the 3D function fitting in Chapter 2. 

• For irregular nodal distribution, the optimal value of q changes with αc. 

• The preferred range of MQ shape parameters is αc = 0.5 ~ 2.0, q = 0.4 ~ 2.2 except 

integers. This is also close to the range recommended by 3D function fitting. 
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Figure 4.8   Effect of EXP Shape Parameter α on RPIM Accuracy 
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Figure 4.9   Effect of MQ Shape Parameters α and q on RPIM Accuracy 

(based on regular nodal distribution) 
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Figure 4.10   Effect of MQ Shape Parameters α and q on RPIM Accuracy 

(based on irregular nodal distribution) 
 

4.2.2 Nodal Density – Convergence of Solution 

The nodal pattern H132-R, H735-R and H2170-R that have different nodal densities are used 

together with four typical settings of RBF shape parameters and a fixed influence domain size 

parameter of 1.5 to solve this static problem of cantilever beam. The variation in error of 

strain energy with the characteristic nodal spacing h is plotted on Figure 4.11. It indicates that 

the RPIM solution is convergent to the true solution with the increase of nodal density. 

However, the convergence rate depends on the RBF shape parameters. 
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Figure 4.11   Effect of Nodal Density on RPIM Accuracy 
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Figure 4.12   Effect of Influence Domain Size Parameter on RPIM Accuracy 

(nodes generated by Hex-mesher) 
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Figure 4.13   Effect of Influence Domain Size Parameter on RPIM Accuracy 

(nodes generated by Tet-mesher) 
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4.2.3 Influence Domain Size Parameter 

A series of influence domain size parameters are used together with four typical settings of 

RBF shape parameters and two nodal patterns (H735-R and T735-R) to produce the RPIM 

solutions for this cantilever example. The effect of influence domain size parameter on the 

accuracy and efficiency of RPIM is shown in Figure 4.12 and 4.13. The findings from these 

figures are summarized as follows: 

• Bigger value of influence domain size parameter does not ensure better accuracy, but 

does cause longer computer time and thus lower efficiency. Similar effect of support 

domain size parameter on fitting quality of 3D functions is observed in Chapter 2 also. 

This phenomenon can partially be attributed to the bigger numerical error caused by 

more numerical operations when influence domain size parameter increases. 

• Because the influence domain size of all nodes may have to be increased so as to ensure 

that at least 11 nodes can be included in the local domain of all Gauss points, a little bit 

more CPU time is spent to adjust the influence domain size temporarily when the 

influence domain size parameter is very small (1.3 for Hex-mesh and 2.1~2.4 for Tet-

mesh). 

• The optimal values of influence domain size parameter are 1.5 and 2.7 for Hex-mesh 

and Tet-mesh respectively. As a result, about 11 ~ 30 nodes will be included in the local 

domain of Gauss points for both cases. According to Equation (1.3) that is used to 

calculate the radius of influence domain, larger value of influence domain size 

parameter is needed for Tet-mesh case than that is needed for Hex-mesh case. 

• The contributive factor underlie the influence domain size parameter is the number of 

nodes included in the local domain of Gauss points actually. 
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Figure 4.14   Effect of Number of Gauss Points on RPIM Accuracy 

 

4.2.4 Number of Gauss Points per Element 

In order to investigate the effect of the number of Gauss points per element on the accuracy 

and efficiency of RPIM without disturbances from other analysis parameters, those 

parameters are fixed as follows: 

Nodal pattern    H735-R 

RBF shape parameters   Typical settings 

Influence domain size parameter  1.7 

The error of strain energy and total CPU time are plotted with different number of Gauss 

points per Hex-element on Figure 4.14. It shows that more Gauss points per Hex-element 

does not ensure better accuracy, but does cause longer computer time and thus lower 

efficiency. This phenomenon might be well explained by the increased number of numerical 

operations during the domain integration using more Gauss points. In this research project, 8 

Gauss points and 4 Gauss points are recommended for Hex-element and Tet-element 

respectively. 
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4.3 Comparison between RPIM and FEM 

FEM is presently the most popular numerical tool for mechanical simulations. It is being 

commonly recognized and widely used by engineers from almost all industries. In order to 

have a direct evaluation of RPIM, it is compared with FEM via the same example of 

cantilever beam. 

Table 4.4   Comparison between RPIM and FEM for Cantilever Beam Static Analysis 

MSC-Nastran V70.5 EXP (α = 0.6) MQ (α = 1.5  q = 1.9) 
Mesh Pattern 

Energy Error CPU Time Energy Error CPU Time Energy Error CPU Time 

H132-R 1.65% 25.12 s 13.88% 0.92 s 2.82% 0.90 s 

H735-R 0.66% 26.43 s 4.16% 18.74 s 0.10% 18.60 s 

H735-IR 1.06% 26.49 s 1.23% 22.16 s 6.49% 22.26 s 

T735-R 19.88% 27.18 s 2.95% 37.20 s 0.28% 36.78 s 

H2170-R 0.35% 30.57 s 2.09% 241.2 s 0.01% 243.1 s 

H65751-R 0.00% 5708.2 s - - - - 

Note: Influence domain size parameters are 1.5 and 2.7 for Hex-mesh and Tet-mesh respectively. 
 

RPIM and FEM are used to solve this static problem of cantilever beam. The error of strain 

energy and CPU time are listed in Table 4.4, from which the following are observed. 

• RPIM produces the analysis results with similar level of accuracy as FEM does when 

Hex-mesh is used. 

• RPIM produces much more accurate results than FEM does when Tet-mesh (T735-R) is 

used. 

• For small model with fewer nodes, the RPIM spends less CPU time than MSC-Nastran 

does. However, it is also noticed in Table 4.4 that the CPU time of MSC-Nastran only 

increases from 25.12s to 30.57s when the number of nodes increases by 16 times (from 

132 to 2170). It indicates that MSC-Nastran might spend a part of CPU time to do other 

jobs, like creating database. For small models, this part of CPU time may be 

significantly longer than that used in solving the model, and hence the total CPU time 

used by MSC-Nastran for small models are longer than that used by RPIM. Therefore, it 
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is appropriate to conclude that RPIM and FEM have compatible efficiency in solving 

small models. 

• The RPIM speed drops rapidly when the total number of nodes increases beyond about 

1000. It does not mean that RPIM is slower for big model size. We once studied the 

constitution of the global stiffness matrix for a typical analysis problem and found that 

the global stiffness matrix is a 2D sparse matrix with more than 99% of its elements are 

zeros. Global matrices usually have huge size and take up a large amount of computer 

memory. Hence, none of commercial FEM software (including MSC-Nastran) will store 

the global matrices directly in the memory. They normally make some modifications to 

the numerical methods and store only non-zero elements of global matrices in the 

memory. Actually the same thing could be done in our RPIM, but it is out of the scope 

of this research project. Instead, we make use of hard disk space to compensate the 

computer memory so that RPIM can carry out the analysis for big-size model. The 

numerical operations through hard disk are much slower than that within computer 

memory. When the model is so big that computer memory cannot hold all the data 

(especially global matrices) used by analysis program, RPIM will shift a considerable 

amount of data to the hard disk and perform the numerical operations by frequently hard 

disk reading and writing. This is exactly the reason why RPIM seems slower for 

analysis with big model size. If some numerical modifications were made on RPIM, its 

speed would be faster than that shown in Table 4.4. 

 



Chapter 5  RPIM for Dynamic Analysis of 3D Solids 

  69 

 

Chapter 5   RPIM for Dynamic Analysis of 3D Solids 

 

As described in Chapter 3, RPIM can be used for dynamic analysis of 3D solids as well as 

static analysis. In this chapter, the accuracy of RPIM for dynamic analysis is verified through 

the same benchmark example of cantilever beam. Because of the identical procedure to 

construct the global stiffness matrix by RPIM for both static analysis and dynamic analysis, 

the most analysis parameters recommended by RPIM static analysis in Chapter 4 will be 

directly used for dynamic analysis without any optimization. 

 

5.1 Modal Analysis 

First of all, a standard solution of modal analysis for the cantilever beam is obtained by 

running MSC-Nastran over the fine mesh H65751-R. Mode shapes of the first six orders are 

plotted on Figure 5.1, from which the different vibration modes can be identified as 

Mode 1 Bending about Y-axis with single wave 

Mode 2 Bending about X-axis with single wave 

Mode 3 Twist about Z-axis 

Mode 4 Bending about Y-axis with two waves 

Mode 5 Bending about X-axis with two waves 

Mode 6 Elongation (lengthen or shorten) along Z-axis 

Modal analysis results by RPIM using some typical settings of analysis parameters are 

summarized in Table 5.1 and 5.2, with Table 5.1 for results via mesh pattern H735-R and 

Table 5.2 for results via mesh pattern T735-R. Besides, the results by MSC-Nastran are also 

included for comparison. 
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Figure 5.1   Mode Shapes of Cantilever Beam by Fine Mesh FEM (standard solution) 
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Figure 5.2   Mode Shapes of Cantilever Beam by RPIM (MQ  α = 1.5  q = 1.9  Hex-mesh) 
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Table 5.1   Eigenvalues of Cantilever Beam by RPIM and FEM via Hex-mesh 

 
 

 

Table 5.2   Eigenvalues of Cantilever Beam by RPIM and FEM via Tet-mesh 
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Mode shapes of cantilever beam generated by one of the RPIM runs are plotted on Figure 5.2. 

By a direct comparison between Figure 5.1 and Figure 5.2, it can be concluded that RPIM can 

generate all mode shapes correctly, except that the cantilever beam may deflect in the 

opposite direction for some modes. 

As for the accuracy of modal analysis via RPIM, Table 5.1 shows that RPIM produces the 

modal analysis results with similar level of accuracy as FEM does when Hex-mesh is used. 

However, when Tet-mesh is used, Table 5.2 shows that RPIM is much more accurate than 

FEM. It confirms the similar conclusion from the static analysis in Chapter 4. 

 

5.2 Transient Dynamic Analysis 

Transient dynamic analysis for the cantilever beam that is discretized per mesh pattern H735-

R is performed using RPIM and FEM to produce the time-history of displacement, velocity 

and acceleration at all nodes. Here, only the displacement in X-direction at the center of 

cantilever end (node 718) is plotted for simplicity. 

 

5.2.1 Cantilever under Harmonic Load (without Damping) 

Assume that the load applied at the end of cantilever beam (Fx = 12 KN) varies with a 

function f(t) = sin(ωt), where ω = 160 rad/sec is the frequency of the dynamic load. No 

damping is considered in this case. Both FEM and RPIM are used to solve this dynamic 

problem. For FEM, the time step is fixed at ∆t = 1.0E-4 sec. For RPIM, the analysis 

parameters are chosen as 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 1.5  q = 1.9 

Influence domain size parameter  1.5 

Integration scheme    CDM or Newmark 

Newmark parameters   α = 0.5  β = 0.25 
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The time-history of X-displacement at node 718 is plotted on Figure 5.3. It can be seen that 

CDM with ∆t = 5.0E-6 sec produces results in good agreement with FEM. When ∆t > ∆tcritical 

≈ 1.0E-5 sec, CDM will become unstable. On the contrary, the Newmark method (constant-

average acceleration method) is always stable for any time step. As shown in Figure 5.3, 

Newmark method with ∆t = 5.0E-5 sec and ∆t = 5.0E-4 sec produces very good results. It 

indicates that CDM is conditionally stable and Newmark method (α=0.5, β=0.25) is 

unconditionally stable. However, the numerical error would increase with the time step in 

Newmark method. It can be seen from Figure 5.3 that the accuracy of Newmark method is not 

acceptable when the time step is too big (e.g. ∆t = 5.0E-3 sec). 

Due to the unconditional stability of Newmark method, a big time step can be used with it for 

the forced vibration analysis, thus the computer time can be saved. The Newmark method 

(constant-average acceleration method) is always used by default in the transient dynamic 

analysis hereinafter. 

 

5.2.2 Cantilever under Harmonic Load (with Damping) 

Same harmonic load as before is applied at the cantilever end. However, structural damping is 

considered at this time. The RPIM is used to solve this dynamic problem with the setting of 

analysis parameters as follows: 

Type of Radial Basis Function  EXP 

RBF shape parameters   αc = 0.2 

Influence domain size parameter  1.5 

Integration scheme    Newmark 

Newmark parameters   α = 0.5  β = 0.25 

Time step     2.0E-4 sec 

Overall structural damping coefficient 0.015 

Frequency corresponding to damping  157.08 rad/sec 
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Figure 5.3   Transient Response of Cantilever Beam under Harmonic Load 

(without damping) 
 

 

Cantilever under Harmonic Load with Damping
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Figure 5.4   Transient Response of Cantilever Beam under Harmonic Load 

(with damping, by RPIM) 
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As shown in Figure 5.4, the computed time-history of X-displacement at node 718 is quite 

close to what is expected. 

 

5.2.3 Cantilever under Rectangular Impulse (without Damping) 

 
Figure 5.5   12KN Rectangular Impulse with Duration 100ms 

 

Assume that a rectangular impulse shown in Figure 5.5 is applied at the end of cantilever 

beam without consideration of damping. Both FEM and RPIM are used to solve this dynamic 

problem. For FEM, the time step is fixed at ∆t = 1.0E-4 sec. For RPIM, the analysis 

parameters are chosen as 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 1.5  q = 1.9 

Influence domain size parameter  1.5 

Integration scheme    Newmark 

Newmark parameters   α = 0.5  β = 0.25 

Time step     1.0E-4 sec 

The time-history of X-displacement at node 718 that are generated by FEM and RPIM are 

plotted on Figure 5.6 and Figure 5.7 respectively. By a direct comparison between these two 

figures, it can be concluded that RPIM can carry out the transient dynamic analysis as 

accurate as FEM does. 
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Figure 5.6   Transient Response of Cantilever Beam under Rectangular Impulse 

(without damping, by FEM) 
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Figure 5.7   Transient Response of Cantilever Beam under Rectangular Impulse 

(without damping, by RPIM) 
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5.2.4 Cantilever under Rectangular Impulse (with Damping) 

Same rectangular impulse as before is applied at the cantilever end. However, structural 

damping is considered at this time. Both FEM and RPIM are used to solve this dynamic 

problem with the same damping coefficients. For FEM, the time step is fixed at ∆t = 2.0E-4 

sec. For RPIM, the analysis parameters are chosen as 

Type of Radial Basis Function  EXP 

RBF shape parameters   αc = 0.2 

Influence domain size parameter  1.5 

Integration scheme    Newmark 

Newmark parameters   α = 0.5  β = 0.25 

Time step     2.0E-4 sec 

Overall structural damping coefficient 0.015 

Frequency corresponding to damping  157.08 rad/sec 

The time-history of X-displacement at node 718 that are generated by FEM and RPIM are 

plotted on Figure 5.8 and Figure 5.9 respectively. By a direct comparison between these two 

figures, it can be concluded again that RPIM can carry out the transient dynamic analysis as 

accurate as FEM does. 

 



Chapter 5  RPIM for Dynamic Analysis of 3D Solids 

  79 

 

Cantilever under 100ms Rect Impulse with Damping

-1.20

0.00

1.20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time (sec)

D
is

p-
X 

@
 N

od
e 

71
8 

(m
m

)

 
Figure 5.8   Transient Response of Cantilever Beam under Rectangular Impulse 

(with damping, by FEM) 
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Figure 5.9   Transient Response of Cantilever Beam under Rectangular Impulse 

(with damping, by RPIM) 
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5.2.5 Cantilever under Short Rectangular Impulse (without Damping) 

The time-history plots shown so far are all dominated by the first mode of vibration without 

obvious effect of other modes. This might be attributed to the big dynamic loads we applied. 

By reducing the amplitude of dynamic load or shortening the duration of impulse, effect of 

other vibration modes may be seen clearly via RPIM. 

Here, the rectangular impulse defined in Figure 5.5 is applied at the end of cantilever beam, 

but with very short duration of 2ms. The RPIM is used to solve this undamped dynamic 

problem with the setting of analysis parameters as follows: 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 1.5  q = 1.9 

Influence domain size parameter  1.5 

Integration scheme    Newmark 

Newmark parameters   α = 0.5  β = 0.25 

Time step     2.0E-5 sec 

As shown in Figure 5.10, the computed time-history of X-displacement at node 718 does 

include the minor fluctuations caused by other vibration modes. 
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Figure 5.10   Transient Response of Cantilever Beam under Short Rectangular Impulse 

(without damping, by RPIM) 
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Chapter 6   Numerical Examples 

 

It has been shown in Chapter 4 & 5 that the Radial Point Interpolation Method (RPIM) can be 

used to solve the basic class of linear structural analysis problems in a meshless way. In this 

chapter, RPIM is again verified as an accurate and efficient numerical tool for structural 

mechanics problems through much more complex examples with more practical meaning. 

Moreover, an advantage of RPIM to deal with inconsistent meshes is demonstrated. 

 

6.1 Square Plate with Center Hole 

A relatively simple example is shown first. 

 
Figure 6.1   Square Plate with a Center Hole 

 

As shown in Figure 6.1, a square plate that is made of steel is fixed along one side, and is 

applied with uniform distributed load on the opposite side. Nodes are generated by tetrahedral 
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mesher of FEMAP – the pre-processor for MSC-Nastran. RPIM is used to solve this static 

problem with the setting of analysis parameters as follows: 

Type of Radial Basis Function  EXP 

RBF shape parameters   αc = 0.6 

Influence domain size parameter  2.7 

The Figure 6.2 shows the color plot of the square plate with Von Mises stress superimposed 

on the deflected shape. 

 
Figure 6.2   Static Solution of Square Plate by RPIM 

 

For comparison, MSC-Nastran is also used to generate the same plot as shown in Figure 6.3. 
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Figure 6.3   Static Solution of Square Plate by FEM 

 

It can be seen that RPIM and FEM almost produce the identical plot of stress and deflection. 

Comparison numerically between these two methods is shown in Table 6.1, which indicates 

that RPIM gives similar results for this static problem as FEM does. 

Table 6.1   Static Analysis Results of Square Plate by RPIM and FEM 

 RPIM FEM 

Total Strain Energy 1892.0 1814.5 

Maximum Deflection 0.0777 0.0729 

Maximum Von Mises Stress 148.3 136.7 

 
 

6.2 Riser Connector 

The following example comes from a real offshore project of Floating Production and Storage 

Unit (FPSO). Fluid transfer between FPSO and subsea pipeline is carried out through a kind 

of flexible pipe called riser, which is attached to FPSO shipside by riser connector. A typical 

structure of riser connector is shown in Figure 6.4. 
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Figure 6.4   A Typical Structure of Riser Connector 

 

A shock load on riser connector due to the emergency shut down of subsea pipeline can be 

simplified as a triangular impulse shown in Figure 6.5 below. 

 
Figure 6.5   A Triangular Impulse on Riser Connector 
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Figure 6.6   Simplified Model of Riser Connector 

 

The simplified model of riser connector is shown in Figure 6.6 with the shock load being 

applied on the top flange of riser connector. The boundary conditions are defined at the end of 

I-beams where riser connector is supported by other structures. This riser connector is made 

of steel material with Young’s modulus E = 2.0x105 N/mm2, Poisson’s ratio ν = 0.32. The 

whole model is discretized into 2228 nodes via tetrahedral mesher of FEM pre-processor. 

The structural behavior of riser connector is studied through the static analysis first, followed 

by modal analysis, and finally transient dynamic analysis. 

 

6.2.1 Static Analysis 

In this static analysis, the amplitude 198 KN of the shock load is assumed to be applied onto 

the riser connector statically. RPIM is used to perform this static analysis with the setting of 

analysis parameters as follows: 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 0.5  q = 1.3 

Influence domain size parameter  2.7 
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Before the RPIM results being presented, the standard solution is obtained by MSC-Nastran 

via a fine Tet-mesh with 27072 nodes. This standard solution of static analysis is plotted on 

Figure 6.7, while the RPIM solution and FEM solution via coarse mesh are plotted on Figure 

6.8 and Figure 6.9 respectively. It looks like that RPIM solution shown on Figure 6.8 is more 

close to the standard solution shown on Figure 6.7 than FEM solution shown on Figure 6.9. 

This observation is confirmed by Table 6.2, which shows the comparison of static analysis 

results between RPIM and FEM. The error of RPIM solution is much less than that of FEM 

solution if the same Tet-mesh pattern is used. 

Table 6.2   Static Analysis Results of Riser Connector by RPIM and FEM 

  MFree RPIM MSC-Nastran MSC-Nastran 

  Coarse Mesh Fine Mesh Coarse Mesh 

Strain Energy N-mm 5.024E+04 5.128E+04 4.040E+04 

Maximum Deflection mm 1.041 1.034 0.755 

CPU Time Sec 589 468 39 

 
Even though the present RPIM solver takes much longer time (589 seconds) to get the 

solution than MSC-Nastran does (39 seconds) based on the same Tet-mesh, the RPIM is 

much more accurate. In order for FEM to get the similar level of accuracy as RPIM, much 

more nodes are necessary, thus much longer time (468 seconds) is needed. From this point of 

view, the present RPIM solver is at least comparable with FEM in terms of analysis speed. As 

mentioned in Section 4.3, longer computer time taken by RPIM is actually attributed to the 

slow hard disk operations. If some modifications were made on the numerical method of 

RPIM, its performance could be greatly improved beyond FEM. 
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Figure 6.7   Standard Static Solution of Riser Connector by FEM via Fine Mesh 

 

 

 
Figure 6.8   Static Solution of Riser Connector by RPIM via Coarse Mesh 
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Figure 6.9   Static Solution of Riser Connector by FEM via Coarse Mesh 

 

6.2.2 Modal Analysis 

RPIM is used to perform the modal analysis for the riser connector with the setting of analysis 

parameters as follows: 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 0.5  q = 1.3 

Influence domain size parameter  2.7 

For comparison, the standard solution is obtained by MSC-Nastran via a fine Tet-mesh with 

27072 nodes. This standard solution of modal analysis is plotted on Figure 6.10, while the 

RPIM solution is plotted on Figure 6.11. It can be seen from these two figures that RPIM and 

FEM generate similar mode shapes. The comparison of eigenvalues between RPIM and FEM 

is shown in Table 6.3, which also indicates that RPIM solution for modal analysis is much 

more accurate than that of FEM based on same Tet-mesh. 
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Figure 6.10   Mode Shapes of Riser Connector by FEM via Fine Mesh 

 

 

 
Figure 6.11   Mode Shapes of Riser Connector by RPIM via Coarse Mesh 
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Table 6.3   Modal Analysis Results of Riser Connector by RPIM and FEM 

MFree RPIM MSC-Nastran MSC-Nastran 
Mode No. 

Coarse Mesh Fine Mesh Coarse Mesh 

1 Hz 7.94 7.35 8.79 

2 Hz 16.61 15.71 17.45 

3 Hz 16.68 15.80 17.67 

4 Hz 22.24 20.29 23.65 

 
 

6.2.3 Transient Dynamic Analysis 

Finally, RPIM is used to perform the transient dynamic analysis for the riser connector under 

the triangular impulse defined by Figure 6.5. RPIM analysis parameters are chosen as 

Type of Radial Basis Function  MQ 

RBF shape parameters   αc = 0.5  q = 1.3 

Influence domain size parameter  2.7 

Integration scheme    Newmark 

Newmark parameters   α = 0.5  β = 0.25 

Time step     1.0E-4 sec 

Overall structural damping coefficient 0.2 

Frequency corresponding to damping  62.8 rad/sec 

The time-history of vertical displacement at the center of riser connector top flange is plotted 

on Figure 6.12, which is close to what is expected. 
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Figure 6.12   Transient Response of Riser Connector by RPIM 

 

 

6.3 RPIM with Inconsistent Meshes 

In FEM analysis, if a complex model is formed by several parts and meshes from different 

parts do not match properly at the intersection surfaces, gaps will be contained in the model, 

and serious analysis error will be caused. However, RPIM based on this kind of inconsistent 

meshes can produce good results. This valuable potential of RPIM can be demonstrated in the 

examples below. 

 

6.3.1 Cantilever Beam with Inconsistent Meshes 

At first, let us look at a simple, yet representative example of cantilever beam that is discussed 

in Chapter 4. Here, nodes are generated in two steps, i.e. left half and right half of cantilever 

beam are meshed separately, with inconsistent meshes at the middle plane. This special mesh 

pattern is shown in Figure 6.13. It can be expected that FEM will produce wrong results with 

very high stress concentration at the middle of cantilever beam due to inconsistent meshes. 

However, RPIM with a typical setting of analysis parameters produces reasonable results as 
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shown in Figure 6.14. This solution satisfies all the necessary continuity and consistency 

requirements. The strain energy of 2940.2 N-mm obtained by RPIM based on inconsistent 

meshes is also close to the strain energy of 3027.8 N-mm in the standard solution. 

The correct result by RPIM can be well explained by the basis of MFree methods. As 

described in Chapter 1, mesh is used to generate the nodes in our RPIM. In the process of 

formulating and solving the system equations, the mesh is not used at all. Therefore, 

inconsistent meshes have no effect on the RPIM results. In other words, RPIM can produce 

reasonable results regardless of inconsistent meshes. 

 

6.3.2 Riser Connector with Inconsistent Meshes 

The example of riser connector is used again to show that inconsistent meshes can be safely 

used by RPIM to produce accurate results. As shown in Figure 6.15, the model of riser 

connector is now made of 4 parts, whose nodes are generated separately with mesh 

inconsistency at their intersection surfaces. The static solution, mode shapes and transient 

response of this 4-part model by RPIM are shown in Figure 6.16, 6.17 and 6.18. By 

comparison of these figures with Figure 6.7, 6.10 and 6.12, it can be concluded that 

inconsistent meshes can be used to generate nodes for RPIM analysis without losing any 

accuracy. 

This special feature of RPIM to deal with inconsistent meshes can bring us extra benefit. In 

solving engineering problems for industries, the three-dimensional solids are normally of 

complex shapes, which can be further divided into some sub-parts of simple shapes. It is a 

general procedure for FEM analysts to create the mesh sub-part by sub-part. Inconsistent 

meshes can easily happen on the interface between sub-parts, and thus a lot of time has to be 

spent to avoid these inconsistent meshes. On the contrary, we need not to worry about these 

inconsistent meshes at all if RPIM is used. As a result, the efficiency of our analysis works 

can be greatly improved. 
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Figure 6.13   Cantilever Beam with Inconsistent Meshes at Middle Plane 

 

 

 
Figure 6.14   Static Solution of Cantilever Beam by RPIM via Inconsistent Meshes 
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Figure 6.15   4-Part Model of Riser Connector 

 

 

 
Figure 6.16   Static Solution of Riser Connector by RPIM via Inconsistent Meshes 
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Figure 6.17   Mode Shapes of Riser Connector by RPIM via Inconsistent Meshes 
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Figure 6.18   Transient Response of Riser Connector by RPIM via Inconsistent Meshes 
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Chapter 7   Conclusions and Future Study 

 

7.1 Concluding Remarks 

This research project focuses on the development of Radial Point Interpolation Method 

(RPIM) for 3D solids. The RPIM procedure is coded using Fortran language and is complied 

as a fast and robust solver for the basic class of linear structural analysis problems in three-

dimension. It is verified as an efficient and accurate numerical tool for 3D solid mechanics via 

its application to some analysis examples. Through these studies, the following conclusions 

can be drawn. 

• The Point Interpolation Method (PIM) using radial-polynomial basis is formulated and 

proved to be accurate in constructing the MFree shape functions with the Kronecker 

delta function property. The RPIM is numerically stable for both regular and irregular 

nodal distributions. Through the example of 3-D function fitting, it is shown that radial 

basis functions of EXP and MQ could be used in the RPIM formation to produce good 

fitting quality, as long as the preferred ranges of shape parameters are used in the 

interpolation. 

• RPIM shape functions are employed together with the Galerkin weak form to formulate 

the analysis method for 3D solid mechanics. Procedures to perform the linear static 

analysis, modal analysis and transient dynamic analysis for 3D solids are developed in 

detail. These procedures are coded numerically using Fortran language and are 

complied as an analysis solver for 3D solid mechanics. 

• The accuracy and efficiency of the RPIM solver are firstly investigated through the 

static analysis of 3D solids, via patch test and a benchmark example of cantilever beam. 

It is found that various analysis parameters will affect the performance of RPIM to some 
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extent. By a complete parametric study of all these factors, the preferred ranges of 

different analysis parameters are recommended as follows: 

Shape parameters for EXP  αc = 0.2 ~ 1.0 

Shape parameters for MQ  αc = 0.5 ~ 2.0, q = 0.4 ~ 2.2 except integers 

Influence domain size parameter 1.5 for Hex-mesh and 2.7 for Tet-mesh 

Number of Gauss points  8 for Hex-element and 4 for Tet-element 

By use of analysis parameters within the preferred ranges shown above, RPIM can 

produce analysis solutions with accuracy and efficiency comparable or better, in some 

cases, than FEM. 

• The excellent performance of RPIM is then demonstrated again through the modal 

analysis and transient dynamic analysis of 3D solids, via the same benchmark example 

of cantilever beam. The Newmark method (constant-average acceleration method) is 

recommended for the various kinds of transient dynamic analysis after a comparison 

study among several direct integration schemes. 

• Finally, the RPIM is shown to be of practical use through much more complex examples 

from industries. By the way, an advantage of RPIM to deal with inconsistent meshes is 

demonstrated. 

 

In conclusion, RPIM has better computational performance over FEM on the structural 

analysis of 3D solids, in terms of accuracy, efficiency and convenience. 

 

7.2 Recommendations for Future Study 

It should be noted that 3D-RPIM is still under development and its potential has not yet 

been explored fully. There is much room for improvement on the following areas: 

• Modification can be made on the numerical implementation of RPIM so as to make full 

use of computer resources and thus improve the analysis efficiency further. 
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• RPIM solver for 1D and 2D structures can be incorporated into the 3D-RPIM solver so 

that the combined RPIM solver can be used for problems with mixed dimensionality 

(solids, shells and beams in a single model). 

• RPIM shape functions can be used with other energy principles, such as constrained 

Galerkin weak form or local Petrov-Galerkin weak form, to formulate new varieties of 

RPIM for 3D solids. 

• One of the distinctive features of MFree methods is that they evaluate the field variables 

entirely based on a group of discrete nodes and require no predefined nodal connectivity. 

This is particularly suitable for adaptive analysis. Therefore, the adaptive scheme can 

also be incorporated into the 3D-RPIM formulation so that nodes may be moved, 

inserted and deleted freely during the analysis to capture the stress concentration 

automatically. 

• Having successfully implemented the RPIM on the basic class of linear structural 

analysis problems in three-dimension, the application of 3D-RPIM can be extended to 

the advanced class of structural analysis, such as nonlinear analysis, contact analysis 

and etc. 

• RPIM can be used to simulate other physical phenomena in three-dimension, such as 

heat flux, fluid flow, seepage and etc. 
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