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Summary

With the fast-growing use of XML data on the Web, optimizing XML queries has

become one of the most active and exciting research areas. Developments in query

processing and selectivity estimations of XML data are among the major issues

since they determine data access methods and the best possible execution plans for

complex XML queries respectively. In this thesis, we examine the problem of query

evaluation and selectivity estimations of XML queries, and we develop efficient

approaches for them.

First, we examine how path information in XML data can be utilized to speed

up structural join, which is the core operation in XML query processing. The

proposed solution comprises of a path-based node labeling scheme and a path join

algorithm. The former associates each node in an XML document with its path type

while the latter greatly reduces the cost of subsequent element node join by filtering

out elements with irrelevant path types. In addition, this approach is also efficient

for an important class of XML queries involving structural anti-join. Comparative

experiments demonstrate that the proposed approach is efficient and scalable for

queries ranging from simple paths to complex branch queries, and queries involving



xi

anti-join relationships.

Next, we investigate selectivity estimations for XML queries. We design a

compact statistical method which extracts two highly summarized information,

namely, node ratio and node factor, from every distinct parent-child path in the

XML data. When evaluating an XML query, statistical information is recursively

aggregated to estimate the selectivity of the target node in the query pattern based

on the path independence assumption. Compared with existing solutions, this

method utilizes statistical data that is compact, and yet proves to be sufficient in

estimating the selectivity of XML queries.

To estimate the selectivity of XML queries with order-based axes, such as pre-

ceding and following axes, we utilize the path-based labeling scheme to collect the

path information where XML elements occur and the order information between

sibling XML nodes. The summarized path information and order information are

then applied to estimate the selectivity of XML queries without and with order-

based axes respectively. In addition, we design the path histogram (p-histogram)

and the order histogram (o-histogram) to summarize the path information and the

order information respectively. To reduce the effect of data skewness in the buckets,

both histograms use intra-bucket frequency variance to control their construction.

An extensive experimental study on various real-world and synthetic datasets shows

that the proposed solution results in very low estimation error rates even with very

limited memory space for both XML queries without and with order-based axes.

In summary, this thesis proposes techniques of query processing and query se-

lectivity estimation for XML data. Through an extensive performance study, the

proposed solutions are shown to be efficient and easy to implement, and should be

helpful for subsequent research in XML query optimization.
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CHAPTER 1

Introduction

With the increasing popularity of the World Wide Web and the widespread use

of new technologies for data generation and collection, we are flooded with huge

amounts of fast-growing data and information. The explosive growth comes from

business transactional data, medical data and scientific data, etc. Such data are

collected and stored in numerous distributed repositories. Searching for useful infor-

mation in repositories around the world is beyond human ability without powerful

tools. As a result, people typically retrieve such data using search engines like Ya-

hoo [5] and Google [6] which provide full-text indexing services. The user provides

one or more key words, and the search engine returns the matching documents

which contain these words.

The emerging Extensible Markup Language (XML) Web-standard [8] allows

more sophisticated querying of documents. XML allows description of the semantic

nature of document components, enabling users not only to make full-text queries,

but also to utilize document structure to retrieve more specific data. For example,
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we can find the professor at the department of computer science who has the most

publications among all staff in the university.

The key observation guiding the design of a search engine that supports struc-

tural queries is that an XML document can be viewed as a tree (or graph) whose

nodes represent document items and edges denote the relationship between these

nodes. Searching for useful information can be achieved by evaluating structural

queries posed on XML documents. Given that the cost of scanning XML data to

obtain correct results is extremely high when we process a large amount of data,

especially for Internet-scale XML documents, successful XML query evaluation

hinges on XML query optimization systems.

The XML has become the dominant standard for exchanging data over the

World Wide Web due to its flexible self-describing feature. XML query languages,

such as XPath [10] and XQuery [7], have been proposed for semi-structured XML

data. Both of them use path expressions to traverse irregularly structured XML

data to find the sub-structures that match the given query patterns.

With the increasing amount of XML data and the number of XML applications,

there is a great demand for efficient XML data management systems for managing

complex queries over large volumes of local and Internet-based XML data. As

in relational optimization systems, the major issues in XML query optimization

systems are query processing and query selectivity estimation.

While complicated query processing engines allow users to directly explore the

large amounts of data stored in XML databases, optimizing XML queries with

sophisticated path expressions depends crucially on the ability to obtain effective

compile-time estimations for the selectivity of these expressions over the underlying

XML data. As a result, developing efficient query processing engine and effective

query selectivity estimator unavoidably become the core task for building success-
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ful XML query optimization systems. In the following sections, we provide the

background to these two topics.

1.1 XML Query Processing

The problem of efficient XML query evaluation has received a significant amount

of attention in the database community. Consider the XPath query “book[title =

XML]//authors” as shown in Figure 1.1 that retrieves all the authors of book

which has the title “XML”. This query can be viewed as a tree-structured query

which comprises of a value predicate “title = XML” and two structural relations

“book/title” and “book//authors”, where “/” and “//” denote the parent-child and

ancestor-descendant relationships respectively. Answering this XML query requires

we find all matching node instances in the given XML database.

authors

book

title

XML

Figure 1.1: Example of XPath Query

An naive solution to evaluate the XML query above is to navigate the entire

XML data to find all matching results. Clearly, the cost this method is greatly

expensive for huge XML dataset. In the search for effective and efficient query

evaluation solutions, different approaches employing different techniques to speed

up the query processing have been developed. These techniques can generally

be classified into three categories: Relational-based approaches, Path indexes and

Structural join solutions. Next, we give a brief overview of these techniques.
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Relational-based Approach

Relational database solutions for data storage and query optimization have been

well studied for decades. As a result, using a relational approach to store and

query XML documents has become a natural “shortcut” for XML query processing

since this allows the use of well-established indexing techniques and optimization

methods in relational databases. Thus XML query processing is equivalent to

evaluating SQL queries in relational databases. In this context, many techniques

have been proposed for mapping XML documents into relations and for translating

XML queries into SQL queries over those relations.

In [36, 72], the mapping of XML data to a number of relations is considered along

with translation of a subset of XML queries to SQL queries. However, the structure

of XML data is greatly different from that of relational data. This inherent feature

of XML data produces great difficulty when converting XML to relational data. For

example, it is very difficult to find an efficient way to store the order information

between XML sibling nodes in relations while sibling sequence order is the feature

that exists only in tree-structured XML data.

Subsequent work [21, 34, 70] considers the problem of publishing XML docu-

ments from relational databases, and [20] studies the issue of updating XML data.

However, the fundamental problem of finding a proper way to convert XML data

to relations remains. Therefore, designing an index structure on the original XML

data is necessary. This leads to the design of path index techniques and structural

join solutions.

Path Indexes

XML query languages allow users to navigate arbitrary long paths in a given XML
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tree. However, the cost to traverse the XML data entirely is unacceptably high

in large datasets. Hence, using structural summaries or path indexes to speed up

query evaluation becomes the important issue for XML query processing.

Major path index solutions include DataGuides [38], 1-Index [63], Index Fabric

[32] and BLAS [25]. DataGuides [38] and 1-Index [63] summarize raw paths starting

from the root to node in an XML document. These index structures do not sup-

port branch queries and XML queries involving wildcards and ancestor-descendant

relationships efficiently. Index Fabric [32] utilizes index structure Patricia Trie to

organize all raw paths, and provides support for “refined paths” which frequently

occur in the query workload. These “refined paths” may contain branch queries.

However, if a branch query is not included in the “refined paths”, then a costly

join has to be carried out.

The path index approach BLAS [25] utilizes intervals to represent raw paths

and builds a B+-tree to index these intervals. Given an XML query, BLAS searches

matching path intervals to reduce the sizes of candidate element sets. [25] shows

that BLAS can perform satisfactorily with suffix queries.

Structural Join Solutions

Structural join is a core operation in many XML query optimization methods.

Structural join assumes that the ancestor and descendant nodes involved in a con-

tainment XML query, for example “//article/title”, are provided in two ordered

lists. Then a join between these two lists is carried out to find all matching occur-

rences.

XISS [57] uses a sort-merge or a nested-loop method to process a structural

join. This approach scans the same element sets multiple times in case the XML

data is recursive. The binary structural join algorithm Stack-Tree [17] resolves the
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problem by utilizing an internal stack to store a subset of the data that is likely

to be used later. Hence, only one sequential scan is required for each of the lists

involved in the join, leading to optimal performance. However, Stack-Tree [17] may

still incur unnecessary I/O costs due to the scanning of entire lists, especially in

the case that only a small portion of nodes in the lists satisfy the containment

relationship. This leads to the design of index-based structural join algorithms.

Major index-based binary structural join solutions include the B+-tree [28], one

dimensional R-tree [28], the XB-tree [19] and the XR-tree [43]. Both the B+-tree

and R-tree approaches are proposed in [28]. They utilize the B+tree and R-tree

respectively to index XML data. As expected, the experiment results show that the

B+-tree approach outperforms the R-tree approach since the structure of R-tree

is more suitable for organizing multi-dimensional space data, not one-dimensional

interval data proposed for XML nodes. The XR-tree [43] solution further improves

query evaluation performance by utilizing stab lists to support more efficiently the

operations findDescendants and findAncestors in structural join. The XB-tree

proposed in [19] combines the structural features of both the B+-tree and the R-

tree. Compared with the XR-tree, the XB-tree does not store duplicate copies of

data. This leads to lower update cost and more efficient space utilization.

These index-based approaches can only deal with binary structural joins which

contain just two nodes in the queries. To handle containment queries which in-

volve more than two nodes, holistic twig join methods such as the XB-tree based

TwigStack and the XR-tree based TSGeneric are designed in [19] and [44] respec-

tively. They share the same join algorithm but use different underlying data struc-

tures. Every element in the query pattern is associated with a stack that stores the

possible results. The indexes are useful for skipping sections of the element lists

without missing any match. These holistic join solutions treat an XML query as
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a whole, thus avoiding the decomposition of a twig query pattern and the merging

of intermediate results in most cases.

Finally, note that the classification of these query processing solutions is not

rigid. For example, some path index approaches and structural join solutions can

also be implemented in relational databases. We do not classify these methods into

relational-based techniques because they apply some index structures or access

methods which do not exist in standard relational databases.

1.2 XML Query Selectivity Estimation

With the popular use of XML queries, optimizing XML queries with complex path

expressions depends crucially on the ability to obtain effective compile-time esti-

mates for the selectivity of these expressions over the XML data. As with a re-

lational database, knowing the selectivity of sub-queries can help identify efficient

query execution plans.

Consider the query shown in Figure 1.1 again. We may choose to evaluate the

sub-query “book/title” first or “title/XML” instead. It is obvious that different

query execution plans will produce the different intermediate result sizes and thus

affect the entire evaluation performance of the query greatly. In this case, effective

sub-query selectivity estimation will provide the substantial supports for query

optimization.

The existing research of selectivity estimation [15, 26, 58, 62, 64, 65, 66, 83] fo-

cuses on XML queries without order-based axes, such as preceding and following.

The methods proposed in [15, 58, 62] are based on the Markov models. [62] stores

the frequencies of all paths with length up to k. These values are subsequently ag-

gregated to estimate the node frequency of longer paths. [15] deletes low frequency
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paths given space constraints. The loss of information is compensated by employing

various algorithms such as Suffix-*, Global-* and No-*. XPathLearner [58] utilizes

query feedback to collect statistical information. All these Markov-based solutions

are limited to simple path queries since they do not provide for sibling information

to be collected.

[15] also proposes a path tree which is structurally similar to DataGuides [38].

Low frequency nodes are pruned in the path tree. XSketch [64] extends XML

tree models in [15] to graphs, and considers both simple paths and branch queries.

Based on [64], [66] extends XSketch to support queries with value predicates. The

most recent work [65] considers building histograms on XML tree models.

[26] develops a method to estimate twig queries. A suffix tree is built for all

root-to-leaf paths. Every node in the tree is associated with a hash signature which

denotes the set of nodes on the path rooted at this node. The hash signature is

used to calculate the frequency of twig queries which are merged from multiple

simple paths.

[83] presents a position histogram approach. A two-dimensional position his-

togram is built on either the element tag or element content of each element. A

position histogram join is then carried out to estimate the query result size based

on the node interval containment relationship. Since only containment information

between nodes is captured, this approach cannot distinguish between parent-child

and ancestor-descendant relationships.

1.3 Motivation

In this thesis, we propose XML query processing and selectivity estimation solu-

tions which offer better performance.
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XML Query Processing

The relational database is originally designed for structural relational data, not

for semi-structured XML data. Using relational database approaches to store and

query XML data requires proper mapping methods to convert XML data and XML

queries to relational data and SQL queries respectively. The problem is solved by

path index solutions and structural join based approaches. However, structural

join based solutions treat each element in the lists involved in the join as an in-

dependent unit, and lose the structural relationship between XML elements. This

loss of connection between nodes results in the deterioration of query evaluation

performance when query selectivity is low.

In XML data, the connection between elements is actually represented by paths

which consist of a set of elements. For example, the path query “//university

/department/professor” comprises the elements “university“, “department” and

“professor”. Therefore, if this connection between elements is considered when

evaluating XML queries, the performance of structural join can improve greatly.

However, building simple indexes on raw paths in XML data cannot efficiently

process branch queries as analyzed before. In this thesis, we design a novel path-

based structural join solution that utilizes bit sequences to capture effective path

information to speed up the evaluation of XML queries.

Query Selectivity Estimation

The problem of constructing compact statistical information for flat relational data

has received a significant amount of attention. Several effective solutions have been

proposed, including histogram [68, 67], random sampling [23, 59] and wavelets

[76]. However, estimating the selectivity of tree-structured XML data is a more
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complicated and difficult problem.

Most existing XML query estimators support a limited class of query patterns.

Markov-based models [15, 38, 58] can only estimate linear path queries since they

capture only information on path frequencies. Similarly, the techniques proposed in

[78] and [80] also focus only on linear queries. In [83], the position histogram cannot

distinguish between ancestor-descendant and parent-child relationships. In this

thesis, we design a statistical solution that captures highly compact summarized

information of paths to estimate the selectivity of arbitrary XML query patterns.

In addition, all existing XML selectivity estimators are designed specifically for

XML queries without order-based axes. However, it can be observed that XML

queries with order axes are the frequently used query patterns in ordered tree-

structured XML data. For example, if a book is organized using XML data, the

order of chapters in the book is important and a query can ask for the second chap-

ter of the book. Other examples include data with ordered time domain (temporal

XML) and DNA sequences stored using XML.

The selectivity estimation of XML queries with order-based axes is a challeng-

ing task due to the huge volume of order information that needs to be captured or

summarized. A naive approach to estimating ordered XML queries is to organize

sibling XML nodes as a set of sequences and utilize the substring estimation tech-

niques developed for relational databases to calculate the selectivity [22, 41, 51].

However, this approach inevitably faces two problems. First, the underlying data

structure of XML data is very different from that of relational data, e.g., an ele-

ment tag occurring in a query sequence can be imposed with selection predicates

from the XML tree (the parent, child, ancestor nodes...). Second, string estimation

techniques only process continuous substrings such as %ab% while XML queries

may require discrete sibling node sequences, for example, %a%b%.
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In this thesis, a framework for estimating the selectivity of XML queries with

order-based axes is also described. To the best of our knowledge, this is the first

work to address this needy problem.

1.4 Contribution

This thesis examines major issues in XML query optimization systems. We sum-

marize the main contributions as follows:

• To speed up structural join for XML queries, a novel path-based solution

is introduced. It comprises a path-based labeling scheme and a path join

algorithm. The former associates every node in an XML document with

its path information while the latter greatly reduces the cost of subsequent

element node join by filtering out elements with irrelevant path types.

Besides that, the evaluation of another important class of XML queries, nega-

tion (the XML queries containing not-predicates), is discussed. The extensive

experimental results show that the proposed method is effective and efficient

for both structural join and negation.

• A comprehensive solution to estimate the result size of arbitrary XML query

patterns is developed. Highly summarized information, namely, Node Ratio

(NR) and Node Factor (NF ), from every distinct parent-child basic path is

extracted. When evaluating an XML query, statistical information is recur-

sively aggregated to estimate the frequency of the target node in the query.

Compared with the existing solutions, our method utilizes statistical data

that is compact and yet proves to be sufficient in estimating the selectivity

of queries for regularly distributed XML data.
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For skewed XML data, we design histogram structures based on the inter-

vals of XML nodes to maintain detailed information. Experimental results

indicate that this structure can lead to more accurate estimation of XML

queries.

• A framework to estimate XML queries with order-based axes is proposed.

We use the path-based labeling scheme proposed earlier to aggregate the

path and order information of XML data. Two compact structures, namely,

the p-histogram and the o-histogram, are constructed to summarize the path

and order information of XML data respectively. To reduce the effect of data

skewness in buckets, intra-bucket frequency variance is used to control the

histogram construction.

In addition, effective methods to estimate the selectivity of XML queries

without and with order axes by using the path and order information collected

are developed respectively. An extensive experimental study of the proposed

approach is carried out on various real-world and synthetic datasets. The

results show that the proposed solution results in very low estimation error

rates even with very limited memory space for both XML queries with and

without order axes.

Overall, our proposed approaches provide an effective and efficient framework

for XML query optimization since they greatly improve the performance of XML

query processing and provide accurate query selectivity estimation results.

1.5 Organization of Thesis

The rest of the thesis is organized as follows:
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• Chapter 2 introduces related work about XML query processing and selec-

tivity estimation.

• In Chapter 3, the path-based labeling scheme is introduced. Based on it, we

discuss the query processing of structural join and negation, and compare the

proposed approach with state-of-the-art solutions: the XB-tree based holistic

structural join TwigStack [19], the iTwigJoin [24], the path index approach

BLAS [25] as well as the TwigStackList¬ [86].

• Chapter 4 presents a statistical method for estimating the result sizes of XML

queries by extracting highly summarized information from distinct parent-

child paths of XML data. Experiment results indicate that this approach

requires a very small memory footprint, and yet proves to be sufficient in

estimating query selectivity.

• Chapter 5 develops a framework to estimate the selectivity of XML queries

with order axes. We describe how the path and order information of XML

elements can be captured and utilized to estimate the selectivity of XML

queries.

• Chapter 6 concludes the work in this thesis with a summary of our main

findings. We also discuss some limitations and indicate directions for future

work.
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CHAPTER 2

Related Work

In this chapter, we review the current work on XML query processing and selectivity

estimation. The rest of the chapter first gives an overview of the XML, DTD and

query languages, and then discusses the existing solutions.

2.1 XML, DTD and Query Languages

XML [8] is rapidly emerging as the dominant standard on the Internet since its

self-describing structure provides a simple yet flexible means to exchange data for

different applications. In this section, we simply introduce the data model for

XML, DTD and XML query languages. Further details can be obtained from the

corresponding references.

XML Data Model

XML is a versatile markup language. It is able to label the contents of semi-
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structured documents. Figure 2.1 shows an example of XML data which contains

the information of a movie [3]. A valid XML document can be viewed as a hierar-

chical data structure. It starts with a root node, and contains the nested (possibly)

child nodes. Internal XML nodes could be in the form of elements or attributes,

and leaf nodes may be text nodes. For instance, the example contains the root

element node “Movie”, and it has child nodes “Title” and “Y ear”, and “Y ear”

contains the text leaf node “1999”, etc.

     <Title>Body Shots</Title>
     <Year>1999</Year>
     <Directed_By>
          <Director>Michael Cristofer</Director> 
     </Directed_By>
     <Genres>
          <Genre>Drama</Genre>
     </Genres>
</Movie>

<Movie>

Figure 2.1: Example of XML Data

<!ELEMENT Movie (Title,Year,Directed_By,Genres,Cast)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Directed_By (Director)*>
<!ELEMENT Director (#PCDATA)>
<!ELEMENT Genres (Genre)*>
<!ELEMENT Genre (#PCDATA)>
<!ELEMENT Cast (Actor)*>
<!ELEMENT Actor (FirstName,LastName)>
<!ELEMENT FirstName (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>

Figure 2.2: Example of XML DTD

XML DTD

Document Type Definition (DTD) [9] 1 aims to describe the structure of an XML

1In some other research work, DTD is sometimes alternatively referred to as Document Type
Declaration or Document Type Descriptor
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document. It specifies the XML data structure by listing the names of XML el-

ements and all its sub-elements and attributes. The operators *(zero or more),

+(one or more), ?(optional, zero or one) can also be utilized to represent the num-

ber of occurrences of elements. For example, the DTD shown in Figure 2.2 describes

the XML data structure in Figure 2.1. It specifies that the element “Movie” must

have child nodes “Title” and “Y ear”, etc., and the element “Directed By” may

contain multiple occurrences of the child node “Director”.

More recently, XML Schema [12] has been also proposed to describe the struc-

ture of an XML document. It is an XML-based alternative to DTD and provides

more flexible features to define XML elements. Interested readers may refer to [12].

XML Query Languages

Many XML query languages have been proposed to navigate XML data. Among

them, XPath [10] and XQuery [7] have emerged as the de facto standard query

languages. The core of XPath [10] is the location paths which are utilized to

navigate XML documents. XPath [10] has the following syntax:

PathExpr ::= /Step1/Step2/.../Stepn

Step ::= Axis :: NodeTest Predicate∗

Given an XPath query, the Axis in Step establishes the set of XML nodes that

are reachable via this axis, where NodeTest examines the node name and a set of

Predicates can be imposed on the nodes. For example, two queries issued on the

the XML instance in Figure 2.1 are shown as follows, where “des ::” and “child ::”
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denote descendant and child axes respectively:

Q1 : /des :: Movie/child :: Title

Q2 : /des :: Movie[/child :: Title(text() = “Body Shots”)]/des :: Director

Query Q1 retrieves the titles of all movies and Q2 searches for the director of

the movie with the title “Body Shots”. Note that Q1 and Q2 are referred to as

simple (or linear) query and twig (or branch) query respectively since Q2 requires

that element “Movie” must satisfy two outgoing paths “/child :: Title(text() =

“Body Shots”)” and “/des :: Director”. For simplicity, queries Q1 and Q2 can be

alternatively expressed as:

Q1 : //Movie/T itle

Q2 : //Movie[/T itle = “Body Shots”]//Director

where descendant and child axes are represented as “//” and “/” respectively.

XQuery [7] is also a powerful query language specifically designed for posing

queries against XML data sets to realize its full potential. XQuery is an exten-

sion of XPath [10]. Queries represented by XQuery are expressions, and these

expressions can be combined, creating extremely powerful queries. XQuery expres-

sions have various formats, including path expression, expressions that use opera-

tors and functions, element constructors and for-let-where-order-by-return expres-

sions, which are usually referred to as “FLWOR” expressions, etc. Compared with

XPath, XQuery provides more powerful and flexible methods to support queries

over XML data.

Since XQuery expressions could be the path expressions, any XPath expression

that is syntactically valid and executes successfully will simply return the same

result in XQuery [7]. As a simple example, we can rewrite the query Q1 in XQuery
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syntax by using “FLWOR” expressions as follows; more examples of XML queries

can be found in [11]:

Q1 : For $p In //Movie/T itle

Return $p

2.2 XML Query Processing

We roughly classify the current XML query processing solutions into three classes:

Relational-based approaches, Path indexes and Structural join solutions. We dis-

cuss these techniques below.

2.2.1 Relational-based Approaches

The initial impetus of using traditional relational databases to store and query

XML data arises from the fact that we can leverage the mature access methods

developed for relational databases over decades, such as the indexing structures:

the B+-tree and the R-tree, and the concurrent control mechanisms, etc. The

major literature in this field includes [20, 21, 33, 36, 70, 71, 72, 73].

To work effectively, each of the above techniques must be able to accomplish

three tasks: 1) create appropriate tables to store XML data; 2) map XML data to

the created tables; and 3) convert XML queries to corresponding SQL queries over

these tables. Thus, the XML query evaluation becomes equivalent to evaluating

SQL queries in relational databases.

However, an unavoidable problem existing in relational-based approaches is

finding an “optimal” (if any) way to map XML data into relations. Due to the

different requirements of various applications and the intrinsic complexity of semi-

structured XML data, it is almost impossible to design a set of relational tables
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which can balance storage cost and query evaluation performance very well for all

kinds of applications. For example, a storage-cost optimal solution may generate

too many tables since different types of elements are stored separately. This leads

to query performance deterioration because many costly join operations have to be

carried out when evaluating queries. On the other hand, storing redundant XML

elements may improve query performance but it wastes storage space and thus

incurs extra update costs.

[36] proposes solutions to map edges in XML into relations. The tables records

the Object Ids (oids) of parent and child nodes for all edges. Based on this edge-

mapping method, three storage solutions are developed in [36], namely, Edge Ap-

proach, Binary Approach and Universal Table. Edge Approach uses one table to

store all edges, and one tuple represents one edge. Binary Approach groups all

edges with the same child names into one table. Universal Table solution generates

a single universal table to store all edges. The tuples in this single table are ob-

tained by performing outer joins on all binary tables in Binary Approach. In other

words, each tuple in universal table represents a node-to-leaf path in XML data.

As we have discussed, the universal solution can provide the best query evaluation

performance among the three approaches, but it contains many redundancies.

[33] designs the STORED system for mapping between semi-structured XML

data and a relational data model. The STORED system groups similar XML ele-

ments into one table according to their element types. In addition, an “overflow”

graph is generated to hold those elements which do not match any generated rela-

tional schema. Therefore, the STORED system is a combination of relational and

semi-structured techniques. The system focuses on data mining techniques to gen-

erate a “good” relational schema, which aims to minimize disk space consumption

and reduce query evaluation cost if a query workload is available. It finds building
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such a cost-based optimization system to be an NP -hard problem in the size of

XML data, and employs a heuristic algorithm to generate tables.

In [72], three strategies are proposed to map XML data. They are Basic Inlining,

Shared Inlining and Hybrid Inlining. These mappings differ from one another in

the degree of redundancies. The most redundant one is Basic Inlining, which stores

each distinct element tag as a table, and this table contains all descent nodes of the

element tag as attributes in the table. Shared Inlining avoids the drawback in the

basic technique by representing one XML element node exactly in one table while

the Hybrid Inlining solution attempts to find a balance between Basic Inlining

and Shard Inlining methods. In [72], the authors also show that these mapping

techniques are more efficient than others when evaluating certain XML queries.

[73] proposes a solution similar to inverted-list. The nodes in XML are stored as

regions, and paths are represented as strings in relations. This method is also some-

what similar to structural join, which we will discuss later. However, the authors

do not explore join methods between elements (attributes). Thus we classify this

work as a relational-based solution. In this field , some later studies [20, 21, 70, 71]

consider the problem of publishing relational data as XML.

We highlight here that the above classification of query processing methods is

not rigid. For example, some structural join or path index methods can also be

implemented in a relational database. We do not classify them as relational-based

techniques because the focus of these solutions is not the mapping methods. They

provide some extra indexing structures or access methods which do not exist in

standard relational databases. Next, we discuss path index techniques.
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2.2.2 Path Indexes

Many database researchers have developed path indexes to speed up XML query

evaluation by restricting the search space to a portion of the XML data. Among

them, DataGuides [38] and 1-Index [63] are conceptually similar. Both of them

build the summarized graph structure to index XML paths. In these graphes,

each node represents a path instance which is the concatenation of all node tags

occurring on the root-to-node path in the summarized graph. Therefore, simple

path queries can be simply evaluated by searching the summarized graph and then

retrieving the object ids associated with the nodes.

However, DataGuides [38] and 1-Index [63] suffers two problems. First, they

cannot efficiently process simple queries with partial matching due to the exhaustive

search on the entire index structure, such as XML queries starting with descendant

axes, e.g., //A/B/C, or queries containing “ * ” elements. Second, DataGuides

[38] and 1-Index [63] do not provide direct support for branch queries. Thus, costly

join operations between intermediate results of simple queries must be performed

when evaluating branch queries.

APEX [30] presents a solution to handle the partial matching problem above.

It consists of two structures: a summarized graph and a hash tree. The hash tree

includes all the nodes in the graph, which are called hnodes. Each hnode contains

a hash table and the entries in the hash table point to other hnodes or the nodes in

the summarized graph. When evaluating the partial matching simple XML queries,

APEX first searches the hash table (possibly multiple times), then according to the

results, directly locates the nodes in the summarized graph. This procedure thus

avoids searching the entire graph. In addition, APEX extracts frequently used

paths from the XML data to guide the construction of the summarized graph.

Index Fabric [32] utilizes the index structure Patricia Trie to organize all the
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root-to-node raw paths in the XML data. The raw paths are encoded by using

strings, and these strings are inserted into Patricia Trie. Besides raw path, Index

Fabric also supports the “refined paths”, which are the queries frequently occurring

in the query workload. These “refined paths” can contain branch queries. However,

if a branch query is not included in the “refined paths”, then a costly join has to

be carried out.

[47] studies the problem of building indexes to cover branch XML queries. [47]

shows that Forward and Backward-Index (F&B-Index) can cover all branch path

expressions. Different from DataGuides and 1-Index which group XML nodes with

the same incoming paths, F&B-Index groups nodes with the same incoming and

outing paths. Thus, it can effectively handle branch queries as well as simple

queries. However, an unavoidable dilemma is the size of the F&B-Index being too

big to be useful. To solve this problem, [47] proposes a scheme to explore tradeoff

between size of indexes and size of queries these indexes can cover.

The work in BLAS [25] also utilizes path information (p-labeling) to reduce the

search space for XML elements. BLAS uses XPath to describe query patterns and

employs integer intervals to represent all possible suffix paths (paths that optionally

start with descendant axis followed by a set of child axes). Hence, BLAS performs

best for suffix queries. However, for branch queries and simple queries involving the

ancestor-descendant relationship, BLAS must decompose them into a set of suffix

queries and carry out join operations to “stitch” the intermediate results.

Both the BLAS approach and our proposed path-based solution in this thesis

perform the operations on the paths to pre-filter out unnecessary elements. The

core difference between them is that our method utilizes bit sequences, which con-

tain more information than intervals, to denote paths that actually occur in the

XML datasets. As a result, our proposed solution yields optimal performance for
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simple queries, which are a superset of suffix queries, and produces better results

on branch queries than BLAS does. We explain the details of this comparison in

the experiment section of Chapter 3.

2.2.3 Structural Join Solutions

Structural join is now considered a core operation in XML query processing. The

existing structural join solutions rely on an efficient numbering scheme to quickly

determine the relationship between XML nodes. We shall first provide the back-

ground to the major numbering schemes used in XML, and then discuss the previous

work on structural join.

Numbering Schemes

[57] and [87] propose the interval-based numbering scheme to label XML nodes.

Each node is associated with an interval of the format (start, end). For any two

given nodes x and y, x is the ancestor of y if and only if the interval of x contains

that of y, that is, x.start < y.start < y.end < x.end. The interval labels of XML

nodes can be assigned by carrying out a depth-first tree traversal (see Algorithm

1). During the procedure of tree navigation, each node is attached with a number

when it is visited and this number is increased each time. Note that each node is

accessed twice in Algorithm 1, thus an interval is finally associated with each node.

For example, the XML nodes of a file system in Figure 2.3 are labeled by using

intervals. However, such a statistic interval-based labeling scheme cannot efficiently

support XML data update. Although some space can be reserved when assigning

intervals (as shown in Figure 2.3), part of or even an entire XML document needs

to be re-labeled when update occurs.

[31, 46] designs the prefix-based labeling scheme to process dynamic XML data.
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Figure 2.3: Interval-based Labeling Scheme

Algorithm 1 Interval Assignment
counter = 0;

Assign(Node node){
counter + +;
n.start = counter;
child = node.firstChild();
while child! = NULL do

Assign(child);
child = child.nextSibling();

end while
counter + +;
n.end = counter };
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In this system, the label on an ancestor node is a prefix of the labels of its descen-

dant nodes. In these prefix-based labeling schemes, new nodes can be inserted into

the XML structure without affecting the labels of the existing nodes. The later

work in [82] utilizes prime numbers to label XML nodes, and it further solves the

problem of order update between sibling nodes.

Structural Join

In this part, we use interval-based labels as an example to explain structural join.

Structural join solutions can take advantage of the numbering schemes discussed

above, that is, quickly determining the relationship between any two given nodes.

In such a system, the intervals of all elements (attributes) with the same tags are

stored in an ordered list. When evaluating a query such as A//D where A and

D denote the ancestor node and descendant node respectively, we need to find all

matching pairs of elements (ai,dj) in the lists for A and D which satisfy the interval

containment relationship. This class of queries are also specified as containment

queries [87].

Both [57] and [87] develop join algorithms similar to the standard sort-merge to

evaluate containment queries. [57] designs two basic join algorithms according to

the different data types: EE join (element with element) and EA join (element with

attribute), while [87] proposes the MPMGJN algorithm. However, since XML can

hold nested element structures (recursive elements), EE join and MPMGJN must

carry out a nest loop on the parts of the lists for elements involved in the query

patterns. This leads to performance deterioration especially for highly recursive

XML data due to the multiple scans on the input data. In addition, [57] shows

that the nest loop can be safely avoided in EA join since recursive definition is only

valid for XML elements, but not attributes.
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The state-of-the-art structural join solution, Stack-Tree [17], also takes two

ordered lists as input to evaluate containment queries. By maintaining an in-

memory stack to store the ancestor nodes which may be used later, the two ordered

lists are scanned only once. This greatly improves the performance of structural

join. However, Stack-Tree may still incur unnecessary I/O cost for highly selective

queries since each element in the lists must be accessed before the join can be

carried out.

A simple yet effective approach to skip unnecessary data during scanning is

to construct indexes on the input lists. These indexes aim to efficiently support

functions such as findDescendants and findAncestors that are needed in structural

join. Major index-based solutions for structural join include the B+-tree [28], the

XB-tree [19], and the XR-tree [43].

The B+-tree [28] solution simply builds the standard B+-tree on the start points

of intervals. Figure 2.4 shows the approach which constructs a B+-tree on the start

points of the directory element intervals shown in Figure 2.3. By using B+-tree

range search, this solution can efficiently support the findDescendants operation

in structural join.

57 745
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3, 50

6, 48

10, 45

20, 30

25, 27

55, 58

60, 94

62, 75

70, 72

80, 88

82, 86
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15

Figure 2.4: B+-Tree

The XR-tree [43] is essentially a B+-tree that is built on the start points of
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element intervals. Figure 2.5 shows an example of the XR-tree that has been

constructed for the directory elements in Figure 2.3. Every non-leaf node in the

XR-tree is associated with a stab list. The stab list stores the intervals of element

entries that can cover any key in the non-leaf node. To facilitate search in the

stab lists, each key in the non-leaf node is also associated with the first element

interval in the primary stab list that contains the key. Note that besides storing

an element e in the leaf node, the XR-tree also stores the element in the stab list

of the top-most internal node that contains a key k such that e.start ≤ k ≤ e.end.

Compared with the B+-tree, the XR-tree approach can further efficiently support

findAncestor operations by collecting the ancestor intervals stored in the stab lists.
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Figure 2.5: XR-Tree

[19] puts forth a proposal of the XB-tree which combines the structural features

of both the B+-tree and the R-tree. The XB-tree first indexes the pre-assigned

intervals of elements in a tree structure. From this perspective, the XB-tree is

similar to a one-dimensional R-tree. Next, the XB-tree organizes the start points

of the intervals in the same way as the B+-tree does.

Figure 2.6 illustrates the XB-tree that is constructed for the directory elements

in Figure 2.3. Each internal node maintains a set of regions that completely include

all regions in its child nodes. The regions in the nodes of the XB-tree may overlap
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partially. However, it differs from the R-tree in that the start points are sorted in

a strictly increasing order. In contrast to the XR-tree, the XB-tree does not store

duplicate copies of data. This leads to lower update cost and more efficient space

utilization.

(25, 27)

(6, 48)

(10, 45)

(55, 58)

(80,102)(60,94)(20,58)

(2,95) (20,102)

(2,95) (6,48)

(70, 72)

(62, 75)

(60, 94)

(3, 50)

(2, 95) (20, 30)

(101, 102)

(82, 86)

(80, 88)

Figure 2.6: XB-Tree

All the index-based solutions above focus on binary structural join, that is, the

query pattern only contains two elements. The later holistic solutions extend the

binary structural join to holistic twig join [19, 44, 60, 24].

The holistic solutions TwigStack [19] and TSGeneric [44] aim to process XML

queries involving more than two nodes. Both approaches avoid decomposing a

twig query pattern into a set of binary joins. With a chain of linked stacks to

store the results of each root-to-leaf path, they do not produce a large volume of

intermediate results compared with binary join based solutions, leading to the I/O

optimal performance for most queries among all sequential scan algorithms. In

addition, these two approaches propose different indexing structures XB-tree and

XR-tree respectively to speed up the query evaluation by utilizing the same join

method.

While TwigStack [19] is I/O optimal for the queries with only ancestor-descendant
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relationship, it still may produce large intermediate results for the queries with

parent-child edges. To overcome this limitation, [60] proposes an upgraded holistic

join algorithm, namely TwigStackList. The novel feature in TwigStackList is to

look-ahead read some elements in the streams involved in the query pattern and

catch limited number of these elements to some lists in the main memory. It shows

that the number of elements in the lists is bounded by the length of the longest path

in XML data and this method can produce less intermediate result sizes compared

with TwigStack for the queries with mixed ancestor-descendant and parent-child

relationship.

In TwigStack algorithm [19], each distinct element tag is associated with a

stream containing all elements with this tag. This can be viewed as that an XML

document is partitioned based on the element tags. In [24], the authors propose a

novel holistic join algorithm iTwigJoin which can work correctly on any streaming

(partitioning) method of XML data. The iTwigJoin [24] studies two XML stream-

ing schemes: Tag+Level and Prefix (The XML data is partitioned according to

Tag+Level and Prefix respectively) and shows that choosing the proper partition

methods may greatly affect the query evaluation performance by pruning the irrel-

evant portions of streams. In Chapter 3 of the thesis, we develop a novel labeling

scheme and partition the XML data by using the labels. We demonstrate that

our method can be seamlessly combined with TwigStack or iTwigJoin to efficiently

evaluate XML queries.

Negation

We note that there is another important class of queries in XML data, negation,

which evaluates the negated containment relationship between elements. For ex-

ample, it is needed when we want to archive publications that have not been cited
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before, or when an employer wants to filter out job applicants who do not have

any previous working experience. The following query (expressed by using XQuery

and XPath respectively) finds all the professors from the computer science depart-

ment who have not received any student complaints. The relationship between

professor and complain is negated containment (or not-predicate in XPath).

XQuery

For $p In //dept[/name = “CS”]//professor

Where count($p/complain) = 0

Return $p

XPath

//dept[/name = “CS”]//professor[Not(/complain)]

[16] examines how the binary structural join method can be employed to eval-

uate negation. This solution is similar to the Stack-Tree [17] algorithm. That is,

descendant nodes are scanned, and ancestor nodes that do not contain the descen-

dant nodes are popped from the stack and output. The drawback in [16] is that

much unnecessary data will be accessed especially when the selectivity is low. In

addition, the index techniques proposed for structural join (B+-tree [28], R-tree

[28], XB-tree [19], etc.) cannot be directly applied to process negation since they

are designed to capture the containment relationship between elements, but not

the negated containment relationship.

Evaluating the complicated XML queries (not binary queries) with negation

is also a challenging problem. A naive method is to decompose the given query

pattern into a set of sub-queries which do not contain negation and evaluate them

individually. After that, the evaluation results of these sub-queries are merged to

obtain the final result. Obviously, this approach is not efficient since it may produce
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a large volume of intermediate results.

To solve the problem above, [45] proposes an algorithm called PathStack¬ to

evaluate holistic path queries. PathStack¬ [45] is a generalization of PathStack

[19]. While PathStack [19] associates each query node a stack to temporarily store

the possible results, PathStack¬ associates every query node with either a regular

stack or a boolean stack according to the position of the node in the query. The

novel feature of boolean stack is that the item in stack contains a boolean vari-

able “satisfy” to indicate whether this item satisfies the sub-path rooted at this

node or not. By using the boolean stacks, PathStack¬ avoids decomposing holis-

tic path queries with negation and thus improves the negation query evaluation

performance.

Similarly, TwigStackList¬ [86] extends the TwigStackList algorithm proposed

in [60] to process holistic twig negation queries. Different from TwigStackList [60],

TwigStackList¬ [86] associates each projected node (output node) with a stack

and a list, and maintains a list only for each non-projected node (non-output

node) since non-projected nodes do not contribute to the final results. In addi-

tion, TwigStackList¬ introduces the concept “Negation Children Extension” to

check weather a query node satisfies the sub-tree rooted at this node. As a result,

TwigStackList¬ also avoids decomposing holistic twig negation queries and leads

to the optimal I/O costs.

In this thesis, we design a novel path-based approach to efficiently evaluate both

structural join and negation.
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2.3 XML Query Selectivity Estimation

The optimization of XML queries requires an accurate and compact structure to

capture the characteristics of the underlying data. In this section, we will give an

overview of the existing work on XML query selectivity estimation.

Markov-based methods [15, 58, 62] are proposed to estimate the selectivity of

simple queries, which are usually represented by XPath. In this approach, the

frequencies of all distinct paths in the XML data of length up to k are collected

in a table, where k is called Markov order. Obviously, this table provides the

correct selectivity of queries of length up to k. To estimate the selectivity of query

expressions with longer length m, m > k, we can utilize the frequencies of shorter

paths based on the proper assumption.

Suppose we store the selectivity of all distinct paths up to length 3 (k = 3).

The frequency of query a/b/c/d of length 4 can be calculated as:

f(a/b/c/d) = f(a/b/c) ∗ prob(d|a/b/c)

prob(d|a/b/c) = f(a/b/c/d)/f(a/b/c)

where f(a/b/c) and prob(d|a/b/c) denote the frequency of path a/b/c and the

probability of element d occurring in the path a/b/c respectively. Since the value

of prob(d|a/b/c) is not provided by the system, we assume that an element in the

path depends only on the m− 1 elements before it. Thus, we can obtain:

prob(d|a/b/c) ≈ prob(d|b/c)
prob(d|b/c) = f(b/c/d)/f(b/c)

As a result, it is easy to get:
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f(a/b/c/d) ≈ f(a/b/c) ∗ f(b/c/d)

f(b/c)

Among the Markov-based solutions [15, 58, 62], [62] directly applies the method

introduced above. [58] utilizes query feedback results to collect the statistical in-

formation. [15] deletes low frequency paths given memory space constraints. This

loss of information is compensated by employing various algorithms such as Suffix-

*, Global-* and No-*. Here, the * denotes the deleted low frequency paths. For

example, Suffix-* may use path “A/*” to represent the paths “A/B” and “A/B/C”

while “B” and “B/C” are low frequency suffix paths. Global-* uses * to denote all

deleted paths and No-* does not maintain the information of deleted paths.

[15] proposes an additional solution, path tree, to estimate simple queries. Path

tree is structurally similar to DataGuides [38]. That is, each node in the path tree

represents a path starting from the root to this node, and each node is associated

with the frequency of the path it represents. Similarly, low frequency nodes are

pruned from the path tree and corresponding compensation algorithms, such as

Sibling-*, Level-*, Global-* and No-* are developed.

[26] is the first work to estimate twig queries (bracnch queries). A suffix tree

is built for all root-to-leaf paths. Every node in the tree is associated with a hash

signature which denotes the set of nodes occurring on the path rooted at this node

in XML data. Given a twig query, it is first decomposed into a set of sub-queries

which are called twiglets. The number of matches of each twiglet is calculated

by using the hash signatures in the suffix tree. After that, the twiglet estimation

results are combined to compute the selectivity of the given twig query.

[83] presents a position histogram approach. It utilizes the interval-based num-

ber scheme to label XML nodes. A two-dimensional position histogram is then built

on each element tag, and element interval values are mapped into the predefined
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grids over the position histogram. Given an XML containment query of the format

A//D, a join between the position histograms of elements A and D is then carried

out to estimate the query result sizes based on the interval containment relation-

ship. However, this approach suffers two problem: (a) Since only containment

information between nodes is captured, this approach cannot distinguish between

parent-child and ancestor-descendant relationships. (b) It is not clear how this

solution is to be extended to the XML queries containing more than two elements.

[64] proposes the XSketch model for estimating branch queries. XSketch also

builds the summarized graph structure to represent XML data. The novel feature

in XSketch is that the edges in the summarized graph are optionally associated with

Backward (B) or Forward (F) marks or both (BF). The concept of B (F) edges

are similar to that of the Backward-Index (Forward-Index) we have introduced in

the section on query processing. That is, all instances of the parent node of an F

edge must be the parents of the instances of the child node of this edge in XML

data. Note that this is different from the XPath tree which only groups nodes

with the same incoming paths. Based on the BF edges and proper assumptions,

XSketch can estimate branch queries as well as simple queries. Figure 2.7(a) and

(b) shows an example of an XML instance and the corresponding XSketch model

respectively. Based on [64], [66] extends XSketch to support queries with value

predicates by introducing value distribution summaries.

The latest XSketch-based solution [65] studies the problem of estimating XML

queries which project multiple nodes where all other existing approaches assume

that the given queries only contain one projected node. The difference between

them can be explained with the data in Figure 2.7.

Suppose we issue a branch query as shown in Figure 2.7(c). If this query only

contains one projected node, for example, B, the query selectivity, which is directly
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Figure 2.7: XML Instance, XSketch and XML Query

obtained from XSketch (Figure 2.7(b)), is 4. On the other hand, if nodes B and C

are both projected, the selectivity of this query is the number of all combinations

of B and C if they occur under the same A nodes. Consequently, the selectivity

should be 6 in this case. Obviously, the XSketch model in Figure 2.7(b) cannot

process this query.

To solve this problem, [65] records the additional distribution information of

the outgoing edges of nodes, e.g., the distribution of B and C under A in Figure

2.7(a). Based on the edge distribution which is summarized in the edge histogram,

[65] can estimate XML queries with multiple projected nodes.

However, the XSketch family suffers the problem of construction efficiency. [64]

shows that building an optimal XSketch model is an NP -hard problem. Hence,

it utilizes a greedy refinement strategy to incrementally add complexity to the

existing summary information. As a result, construction time grows quickly when

the statistics increases. We describe details of this part in the experimental section

of Chapter 5.
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CHAPTER 3

A Path-Based Approach for Efficient
Structural Join and Negation

3.1 Introduction

The support of structural join has become the key of efficient XML query process-

ing. In this chapter, we design a novel path-based approach to expedite the struc-

tural join operation. In addition, the proposed approach can also efficiently process

another important class of XML queries, negation. The underlying idea is to as-

sociate path information with each element node in an XML document so that we

can filter out those nodes that clearly do not match the query, and identify a min-

imal set of nodes for the regular structural join between XML nodes. The unique

features and contributions of the proposed approach are:

• A path-based labeling scheme is designed. It assigns a path id to each element

to indicate the type of path on which this element node occurs. The scheme

is compact, and the path ids have a much smaller size requirement compared

to the node ids (see Section 3.6 on space requirement).

• The well-known node containment concept allows the structural relationship
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between any two nodes in an XML document to be determined by their node

labels. Here, we introduce the notion of path id containment and show how

the path labeling scheme makes it easy to distinguish between parent-child

and ancestor-descendant relationships.

• Based on the path id containment, a path join algorithm is proposed as a

preprocessing step before regular node join to filter out irrelevant paths. The

path join algorithm associates a set of relevant path ids to every node in

the query pattern, thus identifying the candidate elements for the subsequent

node join. Experimental results indicate that the relatively inexpensive path

join can greatly reduce the number of elements involved in the node join.

• Different from other structural join index solutions, the proposed path join

algorithm is easily extended to compute negation (i.e., with negated contain-

ment relationship in structural predicates). Experimental results demonstrate

the effectiveness and efficiency of the proposed path-based solution in han-

dling negation.

The rest of this chapter is organized as follows. Section 3.2 presents the path-

based labeling scheme. Section 3.3 and Section 3.4 describes query evaluation on

structural join and negation respectively. Section 3.5 and 3.6 present the experi-

mental results. We conclude in Section 3.7.

3.2 Path-Based Labeling Scheme

In this section, we describe a path-based labeling scheme that assigns a path id to

every element node in an XML document to indicate the type of path on which the

node occurs. Each element node is now identified by a pair (path id, node id). The
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node id can be given using any existing node labeling scheme, e.g., interval-based

[57, 87], prefix [31], prime number [82]. Each text node is only labeled by a node

id.

3.2.1 Path ID

This part introduces the structure, construction and maintenance of path id. Next,

we discuss them respectively.

Structure

The path id is a sequence of bits. We first omit the text nodes from an XML

document. Next, we find the distinct root-to-leaf paths in the XML document,

considering only the tag names of the elements on the paths. We use an integer to

encode each distinct root-to-leaf path in an XML document. The number of bits in

the path id is given by the number of the distinct root-to-leaf element sequences of

the tag names that occur in the XML document. Path ids are assigned to element

nodes in a bottom-up manner as follows:

1. After omitting the text nodes in an XML document, let the number of distinct

root-to-leaf paths in the XML document be k. Then the path id of an element

node has k bits. These bits are initially set to 0.

2. The path id of every leaf element node is given by setting the ith bit (from

the left) to 1, where i denotes the encoding of the root-to-leaf path on which

the leaf node occurs.

3. The path id of every non-leaf element node is given by a bit-or operation on

the path ids of all its element child nodes.
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Figure 3.1: Path-Based Labeling Scheme

Example 3.1: Consider the XML instance in Figure 3.1(a) where the node ids

have been assigned using interval based labeling scheme (the last two numbers).

Figure 3.1(b) shows the integer encodings of each root-to-leaf path in the XML

instance. Since there are six unique root-to-leaf paths, six bits are used for the

path ids.

The path id of the element leaf node F (node id = (8,11)) is 010000 since the

encoding of the path Root/A/B/C/D/F on which F occurs is 2. The path id of

the non-leaf node A (node id = (4,17)) is obtained by a bit-or operation on the path

ids of its child nodes B and C, whose path ids are 010000 and 001000 respectively.

Therefore, the path id of A is 011000. Finally, note that each text node is only

labeled by a node id (interval). 2

Construction

Path ids can be assigned to element nodes via a depth-first tree traversal on an
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XML document. Algorithm 2 gives the details. The function getP id() is called

with the root node as parameter. The function initializes the path id of the node

n to a sequence of 0 bits. If n is a leaf node and occurs on the root-to-leaf path

with the integer encoding i, then the ith bit from the left is set to 1. Otherwise,

the path id of n is the result of a bit-or operation on the path ids of all its child

nodes. The path id of each child node is computed recursively by calling function

getP id().

Algorithm 2 Path ID Assignment

BitSequence getP id(Node n)
{

n.P id = 000...;
if isElementLeaf(n) then

n.P id.ith = 1;
/* i is the encoding of current root-to-leaf path*/

else
child = n.firstElementChild();
while child! = NULL do

n.P id = n.P id | getP id(child);
/* “ | ” denotes the bit-or operator*/
child = child.nextElementSibling();

end while
end if
return n.P id

}

The encoding of a root-to-leaf path can be determined concurrently as the path

ids are assigned. Since an XML document is typically stored in a strict-node-

containment structure, a sequential scan of the XML file is functionally equivalent

to a depth-first tree traversal. Considering Algorithm 1 that assigns node intervals

by using the similar method, the collection of path information and node informa-

tion can be carried out by a sequential scan of the XML data.
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Maintenance

The problem of updating node ids can be solved by using dynamic node labeling

schemes, such as [31], [82]. Here, we only discuss the maintenance of path ids: we

explain by means of three examples.

Example 3.2: Case 1: The updates do not produce new root-to-leaf paths.

In this case, we do not need to relabel any existing path id since all paths remain

unchanged. For example, in Figure 3.1, we can insert a new F node as the child of

node D (node id = (7,12)) or delete node A (node id = (2,3)) without relabeling

the path ids of other nodes. 2

Example 3.3: Case 2: The updates produce a new root-to-leaf path and eliminate

an existing path at the same time.

When some nodes are deleted from or inserted into XML data, new paths may

be created to replace the original paths. To handle this situation, we can simply

modify the corresponding paths in the encoding table. For instance, if F nodes

(node id =(8,11), (22,25)) and their child nodes are deleted from the instance

shown in Figure 3.1, all the paths Root/A/B/C/D/F in XML data are converted

to Root/A/B/C/D, which is a new path in the encoding table. As a result, we

only need to change the path Root/A/B/C/D/F (value = 2) in the encoding table

to Root/A/B/C/D since Root/A/B/C/D totally replaces Root/A/B/C/D/F in

XML documents. 2

Example 3.4: Case 3: The updates produce a new root-to-leaf path, and do not

eliminate any existing path.

If this situation occurs, one more bit must be used to represent the new path,

and the path ids of all nodes occurring in the new path must be relabeled. For

example, the deletion of node F (node id = (8,11)) and its child node will produce
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a new path Root/A/B/C/D, and a new bit (encoding = 7) is then utilized to rep-

resent this path. Therefore, the path ids of the ancestor nodes of F (node id =

(8,11)) must be correspondingly modified. For instance, the updated path id of A

(node id = (4,17)) should be 0010001. 2

Storage

In order to facilitate the direct retrieval of elements with a specified path id, we

design the following storage structure:

1. All the path ids of one element tag comprise the path id list of this element.

2. All the node ids of one element tag comprise the node id list of this element.

In addition, all the node lists of XML elements are linked. For one element

tag, the node list is first clustered by element path ids, and then sorted on

the node ids.

3. Each path id in the path id list points to the first element with this path id.

Node List for APath Lists

Path list Path id

100000

010110

011000A

.......

.......B

node id = (2,3)

.......

node id = (4,17)

node id = (38,39)

node id = (18,35)

Figure 3.2: Storage Structure
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Example 3.5: Figure 3.2 shows how the node labels of the sample XML document

in Figure 3.1(a) are stored. Tag A has four occurrences with three distinct path

ids. Thus the path list of element A contains three path ids, each of which points

to the first element (of tag A) with the same path id. 2

3.2.2 Containment of Path IDs

The well-known node containment concept states that the relationship between

any two nodes in an XML document can be determined from their node labels.

In this section, we introduce the notion of path id containment, which is based

on our proposed path labeling scheme, and we examine the relationship of path id

containment with node containment.

Definition 3.1 (Path ID Containment) Let PidX and PidY be the path ids of

nodes with tags X and Y respectively. If all the bits with value 1 in PidX cover all

the bits with value 1 at corresponding positions in PidY , then PidX contains PidY .

The containment relationship between the path ids can simply be determined

with a bit-and operation. That is, if (PidX & PidY ) = PidY where & denotes the

“bit-and” operation, then PidX contains PidY .

Example 3.6: In Figure 3.1, the path id of A(010110,18,35) contains the path id

of C(010000,20,27). 2

Definition 3.2 (Strict Path ID Containment) Let PidX and PidY be the path

ids of nodes with tags X and Y respectively. If PidX contains PidY and PidX 6=
PidY , then PidX strictly contains PidY .

Example 3.7: In Figure 3.1, the path id of A(010110,18,35) also strictly contains

the path id of C(010000,20,27). 2
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Next, we discuss the relationship between path id containment and node con-

tainment.

Theorem 3.1 Let PidX and PidY be the path ids of two nodes X and Y in an

XML instance respectively. If node X is an ancestor of Y (or node X contains

node Y ), then PidX contains PidY .

Proof: Based on the assignment of path ids, PidX must contain the path ids of all

the child nodes of this X node since PidX is the result of the bit-or operation of all

the child nodes. Similarly, the path ids of the child nodes of X must also contain the

path ids of their own child nodes. This path id containment relationship continues

until the node Y is reached. Thus PidX contains PidY . 2

Example 3.8: In Figure 3.1, the node A(010110,18,35) is the ancestor of node

C(010000,20,27); thus PidA 010110 contains PidC 010000. 2

On the other hand, we can determine the node containment relationship based

on the path ids of the nodes.

Theorem 3.2 Let SX be the set of element nodes labeled with X that have the

same path id PidX , and let SY be the set of element nodes labeled with Y that have

the same path id PidY . If PidX strictly contains PidY , then for each node x ∈ SX ,

x must have at least one descendant y such that the path id of y contains PidY .

Proof: Since PidX strictly contains PidY , then all the bits with value 1 in PidY

must occur in PidX at the same positions. Further, PidX will have at least one

bit with value 1 such that the corresponding bit (at the same position) in PidY is

0. Consequently, elements x (x ∈ SX) will occur in the same root-to-leaf paths as

some elements y, such that the path ids of these y elements contain PidY . As a

result, all x elements must have some elements y as descendants. 2
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Example 3.9: Consider again Figure 3.1. The path id 010110 for node A strictly

contains the path id 010000 for node B. Therefore, each node A (node id = (18,35))

with path id 010110 must be the ancestor of at least one node B (node id = (19,34))

such that the path id (010110) of this B element contains PidB 010000. 2

In the case where there are two sets of nodes with the same path ids, we need

to check their corresponding root-to-leaf paths to determine their structural rela-

tionship. Suppose PidX = PidY , it is obvious there exists at least one ancestor-

descendant relationship between a node x, x ∈ SX and a node y, y ∈ SY . Recall

that a path id, Pid, can be decomposed into a set of root-to-leaf paths, each of

which corresponds to one bit with value 1 in Pid. Thus, the relationship of x and

y can be determined by the relationship of their tags, X and Y , in any one of the

component root-to-leaf paths of PidX (or PidY ).

Example 3.10: For instance, the nodes A and B (node ids (18,35) and (19,34))

in Figure 3.1 have the same path id 010110. We can decompose the path id 010110

into three root-to-leaf paths with the encodings 2, 4 and 5 since the bits in the

corresponding positions are 1. Thus, by looking up any of these paths (in the

encoding table) where nodes A and B occur, we know that all the nodes A with

path id 010110 have B descendants with this path id. 2

In addition, the encoding table can also help determine the exact relationship

(parent-child or ancestor-descendant) between nodes by checking the positions of

tags in the root-to-leaf paths. Note that only one of root-to-leaf paths is needed

since the relationship of the two element tags will be the same in all of them.

Example 3.11: Consider Example 3.10 again. By checking the encoding table, we

can further know that all the nodes A with path id 010110 are parents of B with

this path id since in the corresponding root-to-leaf path, tag A occurs immediately
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before tag B. 2

In summary, if PidX and PidY are the path ids of two sets of nodes X and Y

respectively, we can determine the exact relationship (parent-child, grandparent-

grandchild...) between these two sets of nodes from the encoding table, provided

that a tag name occurs no more than once in any path (e.g., non-recursive XML

elements). For example, suppose nodes X and Y have the same path ids, and

their corresponding root-to-leaf path is “X/Y/X/Y ”. In this case, the structural

relationship between X and Y can only be determined with an examination of their

node labels (node ids).

3.3 Query Evaluation of Structural Join

In this section, we give the details of the proposed path-based solution for evalu-

ating XML structural join. Structural join XML queries evaluate the containment

relationship between nodes. There are two steps in the proposed solution: (1) path

join, and (2) node join. The algorithms for carrying out these two steps are called

PJoin and NJoin respectively.

3.3.1 PJoin

The PJoin algorithm (Algorithm 3) aims to eliminate as many unnecessary path

types as possible, thus minimizing the elements involved in the subsequent NJoin.

Given an XML query modeled using a tree structure T , PJoin retrieves the

set of path ids for every element node in T . Starting from each element leaf nodes

in T , PJoin performs a binary path join between each pair of parent-child nodes.

This process is carried out in a bottom-up manner until the root node is reached.

Finally, a top-down binary path join is performed to further remove unnecessary
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Algorithm 3 PJoin (T )

Input: T - An XML Query.
Output: Path ids for the nodes in T .

1. Associate every node in T with its path ids.

2. Perform a bottom-up binary path join on T .

3. Perform a top-down binary path join on T .

path ids.

A binary path join takes as input two lists of path ids, one for the parent node

and the other for the child node. A nested loop is used to find the matching pairs

of path ids based on the path id containment property. Any path id that does not

satisfy the path id containment relationship is removed from the lists of path ids

of both the parent node and the child nodes.

Example 3.12: Consider the XML query T1 in Figure 3.3(a) where the lists of

path ids have been associated with the corresponding nodes. For simplicity, we

assume that the path ids with the same subscripts satisfy the path id containment

relationship, that is, b1 contains c1, b3 contains d3 and e3, etc. The PJoin algorithm

evaluates the query T1 by first joining the path ids of node B with the path ids of

node C. The path ids c1 and c3 are contained in the path ids b1 and b3 respectively.

Thus, we remove b2 and b4 from the set of path ids of B.

Next, the algorithm joins the set of path ids of D with that of E. This is

followed by a join between the sets of path ids of B and D. The result of the

bottom-up path join is shown in Figure 3.3(b).

Finally, the algorithm carries out a top-down path join on T1, starting from the

root node B. Figure 3.3(c) shows the final sets of path ids that are associated with

each node in T1. Compared to the initial set of path ids associated with each node

in Figure 3.3(a), the PJoin algorithm has greatly reduced the number of elements
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C D

E

{ d3 }

{ e3, e4 }

(b) Result of Bottom−Up Path Join{ b3 }

{ c3 }

B

C D

E { e3 }

{ d3 }

(c) Result of Bottom−Up Path Join

Followed by Top−Down Path Join

B

{ b1, b2, b3, b4 }

{ c1, c3 }

B

C D

E { e3, e4, e5 }

{ d2, d3, d4 }

(a) XML Query T1
{ b3 }

{ c1, c3 }

Figure 3.3: Example of PJoin

involved in the query. The subsequent node join is now almost optimal.

Note that omitting either the bottom-up or top-down tree traversal does not

produce this optimal result. This is because a single tree traversal cannot project

the result of each binary path join to the nodes which have been processed earlier.

In Figure 3.3(b), elements C and E contain unnecessary path ids c1 and e4 com-

pared with final optimal results. 2

Optimization of PJoin

We observe that the PJoin algorithm can be optimized such that only the set of
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path ids for the parent node is updated during the bottom-up binary join, and only

the set of path ids for the child node is updated during the top-down binary join.

This is because a two-phase tree traversal is sufficient to propagate the changes

in the sets of path ids involved in every binary path join into the final path ids

associated with all the nodes in a query. Concretely speaking, in the bottom-up

path join, the path ids of each node must contain all the path ids of child nodes,

and during the procedure of top-down join, the path ids of each node are contained

by its parent node (ancestor nodes). As a result, the final path id set associated

with each node must be the optimal result set.

Example 3.13: With this optimization, the path ids of D and E in Figure 3.3(b)

become {d3, d4} and {e3, e4, e5} respectively, since we only update the path ids of

the parent nodes when joining D and E, B and D. However, the final sets of path

ids for the nodes in the query remain unchanged (see Figure 3.3(c)). 2

3.3.2 NJoin

The output of the PJoin algorithm is a set of path ids for the element nodes in

a given query tree. Elements with these path ids are retrieved for a node join to

obtain the result of the query. Algorithm 4 shows the details of NJoin.

The node join can be performed by using the existing holistic join methods

TwigStack [19] or iTwigJoin [24]. That is, the element nodes are retrieved according

to the path ids obtained from PJoin while all the value (text) nodes are retrieved

directly. Finally, a holistic structural join is carried out on all the lists obtained.

We observe that in structural join solution [19], TwigStack algorithm requires

that the input stream for every node in the query must be an ordered list of node

ids. However, Line 1 of Algorithm 4 produces a set of ordered sublists, each of which

is associated with a path id obtained in the PJoin. Therefore, when performing
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Algorithm 4 NJoin(T )

Input: T - An XML Query.
Output: All occurrences of nodes in T .

1. Retrieve the elements according to the path ids associated with the nodes
in T

2. Retrieve the values imposed on the element nodes.

3. Perform holistic structural join on T .

structural join by using TwigStack [19], we need to examine these multiple sublists

of node ids for an element tag to find the smallest node id to be processed next.

However, if iTwigJoin solution [24] is adopted, we do not need to merge the sublists

of elements purposely since iTwigJoin [24] is specially designed for multiple streams.

3.3.3 Discussion

Path join is designed to reduce the number of elements involved in the subsequent

node join. In this part, we analyze the effectiveness of the proposed path join.

Definition 3.3 (Exact Pid Set) Let P be a set of path ids obtained for a node

N in an XML query T after path join. P is an Exact Pid Set with respect to T

and N if the following conditions hold:

1. for each path id pi ∈ P , the element with tag N and path id pi is a result for

T , and

2. for each path id pj /∈ P , the element with tag N and path id pj is not a result

for T .

Definition 3.4 (Super Pid Set) Let P be a set of path ids obtained for a node

N in an XML query T after path join. P is a Super Pid Set with respect to T and
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N if each element with a tag N in the final result (after node join) is associated

with a path id pi such that pi ∈ P .

Clearly, each element node is associated with its super Pid set after path join.

The result is optimal when these super Pid sets are also the exact Pid sets.

Next, we examine the situations where path join yields exact Pid sets. We

assume that the XML elements are non-recursive.

Simple Path Queries

Suppose query T is a simple path query without value predicates. Then after path

join, each node in T has an exact Pid set associated. This is because all path ids

that satisfy the path id containment property are reserved in the adjacent nodes

of T . Since this containment property is transitive, all path ids of a node N in T

contain the path ids of its descendant nodes, and vice versa. Moreover, the encoding

table for the paths can identify the exact containment relationship (parent-child

or ancestor-descendant) between the nodes in T . Therefore, given a simple path

XML query without value predicates, path join eliminates all elements (path ids)

that do not appear in the final result sets.

D

F

{ 010000 }

{ 010000 }

Figure 3.4: Example of Exact Pid Set

Example 3.14: Consider the query in Figure 3.4, which is issued on the XML in-

stance in Figure 3.1. After path join, all the nodes with path ids remaining (node

ids of D =(7,12) (21,26), node ids of F = (8,11) (22,25)) are the results for the

query. 2
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Branch Queries

If a query T is a branch query, then we cannot guarantee that the nodes on the

branch path have exact Pid sets. This is due to the manner in which path ids

are assigned to elements. In other words, the path id is designed to capture the

containment relationship, but not the relationship between sibling nodes.

E

{ 010000 } { 000100 }

F

{ 010110 }B

(a) Branch Query

D

F

Text "1997"

{ 010000 }

{ 010000 }

(b) Value Predicate

Figure 3.5: Examples of Super Pid Set

Example 3.15: Consider the query in Figure 3.5(a), which is issued on the

XML instance in Figure 3.1. After path join, node F is associated with path

id 010000. However, we see that only F (010000,22,25) is an answer to the query

while F (010000,8,11) is not. This is because we can only detect that 010000 (path

id of F ) is contained by 010110 (path id of B), but do not know whether an F

element with path id 010000 has sibling E. Finally, note that the path id set of B

in Figure 3.5(a) is guaranteed to be an exact Pid set since B has no sibling nodes.

2

Queries with Value Predicates

The path-based labeling scheme only assigns path ids to element nodes, but not

to value (text) nodes. Therefore, given an XML query with value predicates, the

element nodes with the matching path ids (after path join) can only satisfy the

structural relationship, but not the value constraints. As a result, the path id set
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of each node in the query pattern may not be the exact Pid set.

Example 3.16: Figure 3.5(b) shows an XML query with value predicates that

will lead to a super Pid set after path join. The nodes D (010000,21,26) and F

(010000,22,25) in Figure 3.1 are not answers to the query although the path id

010000 occurs in the path id sets of D and F respectively after path join. 2

In summary, for non-recursive XML data, exact Pid sets are associated with

element nodes in simple XML query patterns after path join. Although super

Pid sets are attached to the elements involved in branch queries and queries with

value predicates, these super Pid sets are much fewer than the full path id sets of

elements. In other words, path join still remains efficient in eliminating unnecessary

path ids. This is clearly shown in our experimental section.

3.4 Query Evaluation of Negation

The evaluation of negation is quite different from the evaluation of structural join.

In this section, we first define a model called XQuery tree to model queries involving

negated containment relationships. Then we will present the corresponding path

join and node join algorithms, PJoin+ and NJoin+, for such queries.

3.4.1 XQuery Tree

XML queries are typically viewed as tree patterns. To model queries involving

negation, we augment the query pattern tree with two new features: node projection

and not operator. We call the augmented query pattern tree the XQuery Tree.

Definition 3.5 (XQuery Tree) An XQuery Tree is defined as follows:

1. It is a tree T = (V,E) where V and E denote the set of nodes and edges
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respectively.

2. The single line edge and double line edge denote a parent-child relationship

and an ancestor-descendant relationship respectively.

3. The nodes to be projected are circled.

4. A negated containment relationship between two nodes is specified by putting

the symbol “!” next to the edge. We call such an edge a negated edge.

Projected Tree

!

!

B

A

FE

DC

Figure 3.6: XQuery Tree.

Example 3.17: Figure 3.6 shows an example of the XQuery tree. It specifies a

query that retrieves all the matching occurrences of elements B and C such that B

is not contained in A and B has child nodes C and D while D has a child node E

but does not have a descendant node F . Formally, this query can be represented

by using XQuery as follows:

For $v In //B

Where exists($v/C) and exists($v/D/E) and

count(A/$v) = 0 and count($v/D//F ) = 0

Return {$v} {$v/C}

2
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In this work, we assume that negated edges do not occur between the projected

nodes of a query. This is because such queries are typically meaningless, e.g.,

retrieve all the elements A and B such that A does not contain B. Based on this

assumption, we can deduce that given an XQuery tree T , there exists some subtree

T ′ of T such that T ′ contains all the projected nodes in T and all edges in T ′ are

not negated edges.

Definition 3.6 (Projected Tree TP ) Let T = (V,E) be an XQuery tree, and S

be the set of subtrees T ′ = (V ′, E ′) of T , such that

1. V ′ ⊆ V and

2. V ′ contains all the projected nodes in T , and

3. for any e ∈ E ′, e is not a negated edge.

The largest T ′ in S is defined as the projected tree Tp of T .

Example 3.18: For instance, the projected tree of the XQuery tree in Figure 3.6

is shown within the dashed circle. 2

Given an XQuery tree T , we define the subtree above TP as tree T a
P and the

subtree below TP as T b
P respectively.

Definition 3.7 (Tree T a
P ) Given an XQuery tree T , let R be the root node of TP ,

and e be the incoming edge of R. We define T a
P as the subtree obtained from T -

TR - e, where TR denotes the subtree rooted at R.

Definition 3.8 (Tree T b
P ) Given an XQuery tree T , we define T b

P as the subtree

rooted at C, where C denotes a child node of the leaf nodes of TP .
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Example 3.19: Consider Figure 3.6 again. The nodes A and F form the trees T a
P

and T b
P of T respectively. Note that an XQuery tree T has at most one T a

P and

possibly multiple T b
P . 2

From the above definitions, a tree T a
P or T b

P may contain negated edges. How-

ever, queries with negated edges in T a
P or T b

P may have multiple interpretations.

For example, the query “A does not contain B, and B does not contain C, where

C is the projected node” has different semantics depending on the applications.

In this work, we focus on queries whose subtrees T a
P and T b

P do not contain any

negated edges.

3.4.2 PJoin+

While the PJoin algorithm can efficiently filter out unnecessary path ids for queries

only involving structural join, it does not work well for queries involving negation.

Example 3.20: Figure 3.7(a) shows a query T2 that involves a negated contain-

ment relationship between nodes B and C. The optimal sets of path ids for the

nodes in the query are given in Figure 3.7(c). However, the PJoin algorithm yields

the sets of path ids as shown in Figure 3.7(b). It can be observed that the path ids

c2, d2 and e2 are not eliminated for the projected nodes C, D and E. 2

Now let us examine how the PJoin algorithm processes the query in Figure

3.7(a). We denote the sets of path ids for nodes B and C obtained after Step i as

P i
b and P i

c respectively:

Step 1. Obtain the set of path ids for node C (P 1
c ) after the bottom-up binary

path join between C and D, and C and E. That is, P 1
c = {c2, c3, c4}.

Step 2. Remove the path ids of node B which do not contain any element in P 1
c .

We have P 2
b = {b1}
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(a) XQuery tree T2

{ d1, d2, d3, d4 }

!

A

D

C { c2, c3, c4 }

{ a1, a2 }

(b) PJoin

{ d2, d3, d4 } { e2, e3, e4 }

!

D

C

A

{ c2, c3, c4 }

{ b1 }

{ a1 }

E

B

B

{ e3, e4 }

{ d3, d4 }

{ c3, c4 }

{ b1, b2 }

{ a1, a2 }

E

A

E { e2, e3, e4 }

{ b1, b2, b3 }B

(c) PJoin+

!

D

C

Figure 3.7: Example of PJoin+

Step 3. Update P 2
b by performing a binary path join between A and B. Then P 3

b

= {b1}

Step 4. Remove the path ids of C which are not contained by any element in P 3
b .

We have P 4
c = {c2, c3, c4}

Step 5. Update the path ids of nodes in the subtree rooted at C using the top-

down path join.

P 3
b is a subset of P 2

b since the update in Step 3 is a reduction operation. There-
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fore, P 4
c must be exactly the same as P 2

c (P 1
c ). This is because all the elements in

P 2
c are not contained by any path id in P 2

b , and thus they cannot be contained by

any path id in any subset of P 2
b , which is P 4

b or P 3
b . In fact, the constraint that is

imposed on nodes A and B in Step 3 does not apply to the entire query.

We observe that the proper way to evaluate a negated containment relationship

between path ids is to only update the path ids of the nodes in the projected tree.

This leads to the PJoin+ algorithm.

The basic idea behind PJoin+ (Algorithm 5) is that given a query T , we first

apply PJoin on T a
P and T b

P respectively. Then the path ids of the leaf node of T a
P

and the root node of T b
P are used to filter out the path ids of the corresponding

nodes in TP .

Algorithm 5 PJoin+(T )

Input: T - An XQuery-tree
Output: Path ids for the nodes in T .

1. Associate every node in T with its path ids.

2. Perform PJoin on T b
P and T a

P .

3. Perform a path anti-join between the root node(s) of T b
P and their parent

node(s) if necessary.

4. Perform a bottom-up binary path join on TP .

5. Perform a path anti-join between the leaf node of T a
P with its child node if

necessary.

6. Perform a top-down binary path join on TP .

The input to Algorithm 5 is an XQuery tree T with a set of projected nodes.

We first determine the projected tree TP of T . After that, the PJoin algorithm

is carried out on T b
P and T a

P (if any) respectively. Next, PJoin (Lines 4 and 6)

is performed on TP , but the path ids of the root node(s) of T b
P and the leaf node

in T a
P are utilized to filter out the path ids of their parent node(s) and child node
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respectively.

Note that if the set of path ids for the root node (leaf node) of T b
P (T a

P ) is a super

Pid set but not an exact Pid set with respect to T b
P (T a

P ), then the path anti-join

operation in Lines 3 (5) of Algorithm 5 should be skipped. This is because the

super Pid set of the root node (leaf node) of T b
P (T a

P ) could erroneously remove

path ids from its parent node (child node), and we may miss some correct answer

in the final query results.

Example 3.21: Consider again query T2 in Figure 3.7. The projected tree is the

subtree rooted at node C. A PJoin is first performed on tree T a
P which contains

nodes A and B. The set of path ids for B obtained is {b1, b2}. Next, bottom-up

path join is carried out on TP . Since T a
P is a simple path query without value

predicates, the path id set associated with B is the exact Pid set. Then we can

perform a path anti-join between nodes B and C. This step eliminates c2 from

the path id set of C. Finally, a top-down path join is performed on TP , which

eliminates d1 and d2 from the set of path ids for D, and e2 from the set of path ids

for E. 2

It can be observed that the PJoin+ algorithm is reduced to the PJoin algorithm

when the XML query does not contain any negation. This is because lines 2, 3 and

5 in Algorithm 5 will not be executed and TP is the same as T .

3.4.3 NJoin+

Algorithm 6 shows the details of corresponding NJoin+ method. [86] proposes

a holistic twig join method, namely TwigStackList¬, to evaluate negation. How-

ever, TwigStackList¬ [86] requires that the tree T a
P must be empty since it only

guarantees that each node in TP satisfies the subtree rooted at this node when

evaluating the query. Thus in Algorithm 6, if T a
P is null, we then directly carry out
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TwigStackList¬ [86] to calculate the final results. Otherwise, we first evaluate the

trees T a
P , T b

P and TP respectively, and then merge these intermediate results.

Algorithm 6 NJoin+(T )
Input: T - An XQuery tree
Output: All occurrences of nodes in TP

• If T a
P is null, perform TwigStackList¬ on XQuery tree T .

• Otherwise, perform NJoin on T a
P , T b

P and TP , then merge the intermediate
results.

3.5 Experiments - Part 1

The performance study in this chapter consists of two sections. We first evalu-

ate the existing index structures for XML structural join. Then we examine the

performance of our proposed path-based approach.

In this section, we implement the B+-tree [28], XR-tree [43] and XB-tree [19]

structural join algorithms in Java. We also implement a variant of the XR-tree

that decreases update cost, and call it XR-v. In the original XR-tree [43], all

elements that are stabbed by the keys in one index node are stored in the stab

list of the index node. Since the stab list is an ordered element list, the cost to

maintain a large stab list is high. In XR-v, we store elements that are stabbed by

different keys in separate lists. Although XR-v may increase query cost compared

to the original XR-tree, it is able to decrease update cost when the stab list is large.

Datasets and Query Workload

To control the characteristics of the dataset, we generate synthetic XML data.

The synthetic XML data set only contains two element tags, “Ancestor” and

“Descendant”. Both element tags are recursive elements. In addition, we fix
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the number of “Ancestor” and “Descendant” elements at 240,000 and 480,000

respectively, and vary the selectivity values of both nodes and levels of nestings.

Here, the selectivity values denote the percentage of number of matching elements

to the total number of element. Table 3.1 shows the characteristics of the dataset

generated, and the ranges of values for the parameters. A structural join is then

carried out on the elements “Ancestor” and “Descendant” (A//D) to test the

query evaluation performance. All the experiments are carried out on a Pentium

IV 800 MHz CPU with 1 GB RAM. The page size is 4 KB and we record the

average results of five runs.

Element Number Node Selectivity Nesting
Ancestor 240,000 0.1%-70% 1-220

Descendant 480,000 1%-80% 1-140

Table 3.1: Dataset Characteristics of Experiments 1

3.5.1 Query Evaluation Performance

This set of experiments evaluates the query performance of the various indices. The

I/O cost incurred by structural join is used as the performance metric. All index

structures are built by bulkloading the elements. Node occupancy, except for the

root node, is kept at 50%.

Ancestor Selectivity

We first investigate the effect of low ancestor selectivity. We limit ancestor selectiv-

ity to the range of 0.1%-0.5% while the ancestor and descendent nesting levels, and

descendant selectivity are fixed at 50, 5 and 10% respectively. Figure 3.8(a) shows

the results when we keep the root nodes of the various indices in the buffer while

Figure 3.8(b) presents the results when a 100 KB buffer is used. The XB-tree gives
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the best performance in both situations by avoiding the sequential scans needed in

the B+-tree.

In Figure 3.8(a), the XR-tree and its variant shows the worst performance as

they need to access the stab lists multiple times. The XR-tree (XR-v) benefits

the most from an increasing buffer size. With sufficient buffer, we can pin the

stab list pages in the buffer, and the performance of the XR-tree (XR-v) improves

dramatically (see Figure 3.8(b)).

Figure 3.9 shows the results for higher values of ancestor selectivity: 10%-70%.

Since the “Ancestor” elements involved in the join are uniformly distributed, we

need to access most of the leaf pages in the index structures. Thus, it is not

surprising the I/O costs for both the XB-tree and the B+-tree are almost the same.

When buffer size is increased, and ancestor selectivity is above 40%, the XR-tree

and XR-v outperforms the XB-tree and the B+-tree (see Figure 3.9(b)). Unlike the

B+-tree and the XB-tree which need to access most of the leaf pages, the XR-tree

and the XR-v only access the leaf page that contains the last ancestor element that

covers the descendant element. The rest of the ancestor elements that contain the

descendant element can be obtained from the stab lists which are most likely to be

in the buffer.

Descendant Selectivity

Next, we examine the effect of varying descendant selectivity. The results are

shown in Figure 3.10. Again, the performance of the XR-tree and the XR-v largely

depends on the buffer size for the same reasons given above.

I/O cost does not increase when descendant selectivity is above 10% for all index

structures in both graphs of Figure 3.10. The “Descendant” elements involved in

the join are uniformly distributed in the entire “Descendant” element set. Hence,
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the increasing number of elements involved in the join would not lead to additional

I/O costs.

Nesting Levels

In this experiment, we examine the effect of varying levels of ancestor and descen-

dant nesting. Only the root nodes of the index structures are kept in the buffer.

Figure 3.11(a) shows that increasing the levels of ancestor nesting increases the

size of the stab lists and contributes to the rapid performance deterioration in the

XR-tree (and the XR-v). In contrast, the curves for the B+-tree and the XB-

tree are almost flat. Figure 3.11(b) indicates that the various index structures are

independent of the levels of descendant nesting.

3.5.2 Update Performance

This set of experiments examines insertion and deletion costs. The buffer is turned

off here. The index structures are initially empty, and we randomly insert 160,000

element intervals. Figure 3.12(a) shows the insertion results. The XR-tree has the

highest I/O cost since it has to maintain a set of ordered stab lists. Compared to

the XR-tree, XR-v performs better due to its smaller individual stab lists.

Next, we randomly delete 160,000 elements from the index trees and record

the number of I/Os. Figure 3.12(b) shows the deletion cost. The performance of

deletion comes very near to that of insertion. Considering the characteristics of the

different index structures, the results of the update experiments are as expected.

3.5.3 Space Utilization

Finally, we investigate the space consumption of the various index structures. Each

index is built by bulkloading 240,000 elements, and every node in the index is 50%
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full except for the root node. We only vary the number of nesting levels since this

is the only parameter that may affect space utilization. Figure 3.13 indicates that

the XR-v requires the most storage space due to its individual stab lists. As the

number of nesting levels increases, the space consumption of the XR-tree and XR-v

increase slightly while the sizes of the XB-tree and B+-tree remain stable.

3.5.4 Summary

In this part, we have compared and analyzed the performance of the B+-tree, the

XB-tree and the XR-tree for XML structural join. The experiment results indicate

that all three indexes give comparable performances for lowly recursive (or non-

recurvise) XML data while the XB-tree outperforms the rest for highly recursive

XML data.
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3.6 Experiments - Part 2

This section presents the results of the experiments to evaluate the performance

of the proposed path-based approach. We compare the path-based approach (by

using TwigStack [19] and iTwigJoin [24]) with the state-of-the-art structural join

solution, XB-tree based TwigStack [19], which shows the best performance in the

previous section, and the latest path-based approach, BLAS [25] as well as the

negation solution TwigStackList¬ [86]. All these approaches are implemented in

C++. The operating system is Linux 2.4. The page size is set to 4 KB.

Datasets

Table 3.2 shows the characteristics of the experimental datasets which include the

Shakespeare’s Plays (SSPlays) [1], DBLP [4] and XMark benchmark [2]. Attributes

are omitted for simplicity.

Datasets Size ](Distinct Elements) ](Elements)
SSPlays 7.5 MB 21 179,690
DBLP 60.7 MB 32 1,534,453
XMark 61.4 MB 74 959,495

Table 3.2: Dataset Characteristics of Experiments 2

Query Workload

The query workload used in this section is shown in Table 3.3. The queries com-

prise short simple queries, long path queries, branch queries and queries involving

negation relationships (Q1-Q12).
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Query Dataset
Q1 //PLAY//TITLE SSPlays
Q2 //PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR SSPlays
Q3 //SCENE//STAGEDIR XMark
Q4 //proceedings/booktitle DBLP
Q5 //proceedings[/url]/year DBLP
Q6 //people/person/profile[/age]/education XMark
Q7 //closed auction/annotation[//emph]//keyword XMark
Q8 //regions/australia/item//keyword[//bold]//emph XMark
Q9 //PLAY[ NOT(/PROLOGUE)]/EPILOGUE//TITLE SSPlays
Q10 //dblp/article[ NOT(//url)] DBLP
Q11 //person[ NOT(/creditcard)] XMark
Q12 //people/person[ NOT(/age)]/profile/education XMark

Feature ] Nodes in Result
Q1 short simple path 1068
Q2 long simple path 2259
Q3 short simple path 6974
Q4 short simple path 3314
Q5 short branch query 5526
Q6 long branch query 7933
Q7 long branch query 13759
Q8 long branch query 74
Q9 negation 13
Q10 negation 14
Q11 negation 7618
Q12 negation 9568

Table 3.3: Query Workload



72

3.6.1 Storage Requirements

We first compare the space requirement of our proposed path-based solution with

those of the XB-tree [19] and BLAS [25]. The original BLAS [25] approach is

implemented in the relational database where each tuple in relations represents

one element and the B+-tree index is built on the attribute of p-label. In this

chapter, our implementation of the BLAS groups the same p-labels. These p-labels

are then indexed by using the B+-tree, and each entry in the leaf node points to

the set of XML nodes with this p-label. This slight modification does not affect

query evaluation performance but can reduce the space requirement for BLAS [25].

Figure 3.14 illustrates the structure.

XML nodes

B+−tree for p−labels

Figure 3.14: Implementation of BLAS

In both the XB-tree and the B+-tree, we keep each node half full except for

the root node. The page occupancy for the node lists in the path-based approach

is also kept at 50%. In addition, to be consistent with the XB-tree and BLAS, the

path-based solution also utilizes the interval-based node labeling scheme to assign

node ids. The storage requirements are shown in Table 3.4.

It can be observed that BLAS [25] requires a little less space than our proposed

approach does since it utilizes intervals to represent path information while ours

uses bit sequences. For the path-based solution, the sizes of encoding tables are

very small, and the space required by the path lists is determined by the degree
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Datasets XB-tree BLAS Path-based
SSPlays 8.0MB 6.5MB 6.56MB
DBLP 69.6MB 57.3MB 57.3MB
XMark 40.4MB 32.4M 33.2MB

BLAS
P-Labels D-Labels Total
2.1KB 6.5MB 6.5MB
1.9KB 57.2MB 57.3MB
36.9KB 32.3MB 32.4MB

Path-based
Encoding Tab Path Lists Node Lists Total

0.24KB 5.9KB 6.5MB 6.56MB
0.38KB 9.1 KB 57.2MB 57.3MB
2.90KB 884.2KB 32.3MB 33.2MB

Table 3.4: Space Requirements

Datasets ](Distinct Path) Path Id Size(Bytes)
SSPlays 40 5
DBLP 69 9
XMark 344 43

Table 3.5: Storage for Path Ids

of regularity of the structures of the XML documents (see Table 3.5). Real-world

datasets typically have a regular structure, and thus have fewer distinct paths (40

distinct paths in SSPlays and 69 in DBLP) compared to the 344 distinct paths in

the synthetic XMark dataset. Since the number of bits in the path id is given by

the number of distinct paths, the path ids for SSPlays and DBLP are only 5 and

9 bytes respectively. In contrast, the irregular structure in XMark needs 43 bytes

for the path id.

We also observe that the size of the path lists is relatively small compared with

that of the node lists. Even for the most irregular structure dataset XMark, path

lists size takes only 2.7% of node lists size (884K and 32M respectively). This

feature fundamentally guarantees the low cost of path join.
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Next, we investigate the query evaluation performance of the path-based ap-

proach and compare it with the XB-tree based holistic join [19], BLAS [25] and

TwigStackList¬ [86].

3.6.2 Structural Join

In this set of experiments, we demonstrate the effectiveness of the path-based so-

lution on evaluating structural join queries.

Effectiveness of Path Join

This part examines the effectiveness of the path join algorithm in filtering out

elements that are not relevant for subsequent node join.

A metric called “Filtering Efficiency” is first defined to measure the filtering

ability of path join. This metric gives the ratio of the number of nodes after path

join over the total number of nodes involved in the query. That is, given a query

Q, we have:

Filtering Efficiency =

∑ |Np
i |∑ |Ni|

where |Np
i | denotes the number of instances for node Ni after path join and |Ni|

denotes the total number of instances for Ni in the projected tree of the query.

We also define “Selectivity Rate” to reflect the percentage of nodes in the result

set compared to the original number of nodes involved in the query. Given a query

Q, we have:

Selectivity Rate =

∑ |Nn
i |∑ |Ni|

where |Nn
i | denotes the number of instances for node Ni in the result set after a

node join and |Ni| is the total number of instances for Ni in the projected tree of

the query.
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The effectiveness of path join can be measured by comparing values of Filtering

Efficiency and Query Selectivity of the queries. Based on the definitions of these

two metrics, we can see the closer the two values are, the more effective the path

join is for the query. The optimal case is achieved when Filtering Efficiency is

equivalent to Query Selectivity, indicating that path join has effectively filtered out

all irrelevant elements for the subsequent node join.

Figures 3.15(a) compares Filtering Efficiency with Query Selectivity for queries

Q1 to Q8. Except for queries Q6, Q7 and Q8, the queries have the same values for

the two metrics. This shows that path join has effectively removed all irrelevant

elements for the node join.

Queries Q6, Q7 and Q8 have higher Filtering Efficiency values compared to

Query Selectivity. This indicates that the path join algorithm does not produce

exact Pid sets for the subsequent node join for these queries. As we analyzed in

Section 3.3.3, the Pid sets associated with nodes after path join may not be the

exact Pid sets for branch queries. Since Q6, Q7 and Q8 are all branch queries,

this result is expected. Note that path join still remains efficient in eliminating

unnecessary path types even for branch queries, which can be seen from the close

values of Filtering Efficiency and Query Selectivity of queries Q5, Q6, Q7 and Q8

(all are branch queries, and the two values are the same for Q5).

Figures 3.15(b) and (c) compare the I/O cost and elapsed time of path join and

node join respectively. Both graphs show that the cost of path join is very marginal

for the majority of the queries compared to that of node join. This is because the

size of the path lists involved in the query is much smaller than the size of the node

lists (recall Table 3.4).

In Figures 3.15(b) and (c), the costs of path join for queries Q1 to Q5 are neg-

ligible because of the regular structures of SSPlays and DBLP. Path join is more
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expensive for the queries over the XMark dataset (Q6 to Q8) due to the irregular

structure of the dataset, which results in a larger number of path types and longer

path ids. Among these queries on the synthetic dataset (Q6 to Q8), query Q8 is

the only one where the cost of path join is greater than the node join. This can be

explained by the low selectivity of Q8 (74 nodes in result, Table 3.3), which directly

contributes to the low cost of node join. Finally, the result in Figure 3.15(a) clearly

demonstrates that path join remains effective in filtering out a large number of

elements for queries even with the influence of irregularity in synthetic dataset.

XB-Tree vs. Path-Based Approach

In this set of experiments, we compare the performance of the path-based approach

with the XB-tree based holistic join solution TwigStack [19]. For path based so-

lution, we use both TwigStack [19] and iTwigJoin [24] to carry out the node join.

Given an XML query, the XB-tree based structural join solution TwigStack calcu-

lates the matching instances of all nodes involved in the query pattern. As a result,

we assume that for all queries all nodes involved in the query pattern are projected

nodes.

The metrics used here to measure performance are total number of elements

accessed, I/O cost (the number of pages), and total elapsed time. Figure 3.16 shows

that both path-based approaches (Path-TwigStack and Path-iTwigJoin) perform

significantly better than XB-tree based holistic join. This is because path join is

able to greatly reduce the actual number of elements retrieved as shown in Figure

3.15(a).

We observe that the Path-TwigStack and Path-iTwigJoin have almost identical

query evaluation performances in terms of number of elements accessed, I/O costs

and elapsed time. This is because the pre-processing step, path join, eliminates
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most irrelevant elements. As a result, although the path and level information are

contained in the partitioned streams involved in the node join, the Path-iTwigJoin

cannot reach better performance since almost all elements remained in the streams

contribute to the final results. For this reason, we only use Path-TwigStack method

in the later experiments.

In addition, we note that the underlying data storage structure of the path-

based approach affects the query performance. For queries Q4 and Q5, the I/O

cost is smaller than the number of elements accessed in the path-based approaches

(see Figure3.16(a) and (b)). This is because the path-based approaches cluster

node records according to their paths. This further reduces I/O cost during data

retrieval. In contrast, I/O cost for the XB-tree is determined by the storage dis-

tribution of matching data. In the worst case, the elements to be accessed are

scattered over the entire list, thus leading to high I/O cost.

Effect of Parent-Child Relationships

To examine the effect of parent-child relationships, we replace some ancestor-

descendant edges in queries Q1, Q3 and Q8 with parent-child relationships (see

Table 3.6). Figure 3.17 shows the result.

Query Dataset
Q1pc //PLAY/TITLE SSPlays
Q3pc //SCENE/STAGEDIR SSPlays
Q8pc //regions/australia/item//keyword[/bold]/emph XMark

Feature ] Nodes in Results
Q1pc parent-child 74
Q3pc parent-child 5010
Q8pc parent-child 74

Table 3.6: Parent-Child Queries

The XB-tree based holistic join utilizes the same method to evaluate parent-
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child queries and ancestor-descendant queries. Therefore, XB-tree based holistic

join has the same evaluation performance for parent-child and ancestor-descendant

queries. To avoid incorrect result, each parent-child edge is (inexpensively) verified

before it is output.

In contrast, the proposed path-based approach can check for parent-child edges

during path join. This task is achieved by looking up the encoding table (see Fig-

ure 3.1(b)). In the case where the results of parent-child queries are subsets of

the ancestor-descendant counterparts, the cost to evaluate queries may be further

reduced since fewer elements are involved in the node join. For example, queries

Q1pc and Q3pc have smaller result sets compared to Q1 and Q3 (see Table 3.3)

respectively. Thus Q1pc and Q3pc show better performance in Figure 3.17.

Effect of Value Predicates

Finally, we investigate how the proposed approach and the XB-tree perform for

queries involving value predicates. We add value constraints on queries Q1, Q2,

Q5 and Q6 respectively (see Table 3.7). The results are shown in Figure 3.18.

Query Dataset
Q1v //PLAY//TITLE=“ACT II” SSPlays
Q2v //PLAY/ACT/SCENE/SPEECH/LINE/STAGEDIR=“Aside” SSPlays
Q5v //proceedings[/url]//year=“1995” DBLP
Q6v //people/person[/age=“18”]/profile/education XMark

Feature ] Nodes in Result
Q1v value predicate 111
Q2v value predicate 1044
Q5v value predicate 432
Q6v value predicate 2336

Table 3.7: Value Predicates Queries

When evaluating XML queries involving value predicates, the path-based solu-

tion first carries out a path join to process the structural aspects of the queries.
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To determine the final set of results, the subsequent node join retrieves the value

nodes and the element nodes obtained by the path join. Therefore, the path-based

solution needs to access more nodes to evaluate the value predicates in the queries

compared to the corresponding queries without value predicates. This can be ob-

served in Figure 3.18.

The XB-tree based holistic join solution treats value nodes the same way as

element nodes. The additional value predicates incur more costs during the retrieval

of nodes. However, the value constraints may reduce the total number of element

nodes accessed. This is because the XB-tree approach employs the XB-tree index

to search for matching nodes. Thus, it may skip some element nodes that match

the structural query pattern but not the value predicates. Figure 3.18 shows that

the addition of value predicates have different effects on performance for Q5 and

Q6.

Overall, the evaluation of structural patterns still dominates the query perfor-

mance even for queries involving value predicates. This is shown clearly in Figure

3.18.

In summary, the comparative experiments between XB-tree based holistic join

and our proposed approach demonstrate that the path-based solution outperforms

existing structural join methods for the following reasons:

1. Path join efficiently filters out nodes with path types that are not relevant to

the subsequent node join.

2. The cost of path join is marginal compared to node join in the majority of

queries.

3. Element records are clustered according to path types, which further reduces

I/O cost during element retrieval.
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BLAS vs. Path-Based Approach

In this part, we first give an overview of the BLAS approach [25], and then compare

our proposed solution with BLAS [25].

BLAS Overview. BLAS [25] proposes a p-labeling system to process XML

queries, especially for suffix queries. Suffix queries start with an optional descen-

dant axis followed by a set of child axes. For example, path queries //A/B/C and

/A/C are both suffix queries. From the definition, it can be seen that the suffix

query is a subset of the simple XML query.

BLAS [25] assigns each suffix path (whether it occurs in the XML data or

not) a p-label of the interval format (p1, p2). For any two suffix paths P and

Q, Q is a suffix of P if and only if the p-label of Q contains that of P , that is,

Q.p1 < P.p1 < P.p2 < Q.p2.

In the p-labeling system, each XML node is associated with the p-label of the

root-to-node path where the node occurs, and the B+-tree is used to index all

the p-labels (see Figure 3.14). Given a suffix query P , BLAS [25] first calculates

its p-label interval, then searches the B+-tree to find all paths that have P as a

suffix. Finally, the nodes associated with the result p-labels (root-to-node paths)

are retrieved to answer query P .

Example 3.22: Given a suffix query P = //X/Y with p-label (50,100), the range

search is issued on the B+-tree to find the p-labels which are contained in this

interval. These result p-labels must represent all the paths with P as a suffix

according to the p-label containment relationship. For example, we may get paths

/A/X/Y (60, 79) and /B/X/Y (91, 99). Finally, the set of Y nodes with p-labels

(60, 79) and (91, 99) are retrieved as the results of the given suffix query P . 2
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When a branch query or a simple query containing descendant axes in between

nodes is issued, BLAS [25] first decomposes the given query into a set of suffix

queries, then join the intermediate results of these suffix queries. In [25], three de-

composition methods, namely Split, Push-up and Unfold algorithms are designed,

and Push and Unfold algorithms show better performance than Split method. Since

Unfold relies on XML DTD or Scheme information to optimize queries while Push-

up does not, we adopt the Push-up decomposition method in our comparative

experiments. Figure 3.19 gives an example of Push-up decomposition method and

details can be found in [25].

A set of suffix queriesA branch query

//D/E

//D

//A/B

//A/B/C

E

DC

B

A

Figure 3.19: Decomposing a Branch Query into a Set of Suffix Queries

Comparative Experiments. The assumptions behind BLAS [25] and TwigStack

[19] are different, and hence these two methods are not directly comparable. Given

an XML query, TwigStack [19] calculates the matching instances of all nodes in-

volved in the query pattern, that is, all the nodes are projected nodes. On the

other hand, BLAS [25] considers only the last node reached via axes in the query

as the projected node. Thus it avoids carrying out join between nodes for suffix

queries.

In this part, we compare our proposed solution with BLAS [25] using all the
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structural join queries in Table 3.3 (Q1 to Q8) and assume only the last node in

each query is the projected node. Figure 3.20 shows the comparison results.

We observe that the path-based solution and BLAS [25] have the almost same

performance results for suffix queries (Q2, Q4) since both of them can directly

locate the matching elements with the help of path information. But outside of

suffix queries, path-based solution outperforms BLAS [25] in the following two

aspects:

For simple queries containing descendant axes in between nodes (Q1, Q3), the

path join in the path-based solution can produce the exact path id sets for all nodes

in the query pattern. Since only the last node is the projected node, instead of

carrying out node join, we can directly retrieve result nodes based on the path ids

obtained from path join. In contrast, BLAS [25] must split the descendant axes

and perform the join, which affects query evaluation performance. For example,

the path-based solution can directly retrieve results on query Q3 while BLAS must

carry out the join between the “SCENE” and “STAGEDIR” elements.

For branch queries (Q5-Q8), both approaches must perform join operations.

However, the path join in the path-based solution may generate the smaller candi-

date element sets and have a smaller number of joins. For instance, BLAS [25] de-

composes query Q8 into four suffix queries: //region/australia/item, //keyword,

//bold and //emph, and utilizes p-labels to retrieve the results for the first suf-

fix query. In contrast, path join associates exact pids with the nodes region,

australia, item and keyword which occur on the trunk part of Q8. In addition,

the path id sets associated with the elements bold and emph also satisfy the root-

to-leaf-paths //regions/australia/item//keyword//bold and //regions/australia

/item//keyword//emph respectively due to the method of path join, leading to the

smaller node sets involved in the later node join compared with the full sets used
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Figure 3.20: BLAS vs. Path-Based Solution
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in BLAS [25]. The efficiency of path join on filtering out unnecessary elements for

Q8 can be found in Figure 3.15(a).

Note that the performance results of the path-based solution in Figure 3.20 are

better than its counterparts in Figure 3.16. This is because we avoid performing

node join on simple queries. For branch queries, node join can be carried out on

part of the elements in the query pattern since only one element is the projected

node. The elements involved in node join can be chosen from the trunk path and

all branch paths (one path one selected node). This feature also results in a smaller

number of joins compared with BLAS [25]. For example, in query Q8, only the

node sets of keyword, bold and emph are needed to take part in the node join after

path join.

In summary, our proposed solution outperforms the BLAS [25] approach since

the path-based labeling scheme captures more efficiently the path information

where XML elements occur than p-labels do. Our proposed path join can pro-

duce the exact results for simple queries without join while BLAS can only achieve

this for suffix queries. For branch queries, path join can generate smaller element

sets and fewer joins compared with BLAS [25].

3.6.3 Negation

In this part, we explore the evaluation performance of proposed path-based solu-

tion on negation queries.

Effectiveness of Path Join+

Similar to the structural join part, we first check the effectiveness of path join+. We

still employ the metrics “Filtering Efficiency” and “Selectivity Rate” to measure

the ability of PJoin+ to filter out unnecessary elements. The definitions of two
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metrics are identical to those in structural join part except that we use “PJoin+”

and “NJoin+” to replace “PJoin” and “NJoin” respectively. The result is shown

in Figure 3.21.

As expected, the PJoin+ remains as effective as PJoin dose in structural part.

For queries Q9, Q10 and Q11, “Filtering Efficiency” and “Selectivity Rate” have

the same values (see Figure 3.21(a)). This indicates that path join+ has deleted all

unnecessary elements. In other words, the node join+ followed by will not access

any element that does not contribute to the final results, leading to the optimal

query evaluation performance. Moreover, the I/O cost and elapsed time of path

join+ (see Figure 3.21(b) and (c)) are marginal compared with node join+ for most

queries. This result is consistent with that in structural join part.

Comparative Experiments.

In this part, we compare our proposed solution with TwigStackList¬ [86] by using

all negation queries in Table 3.3 (Q9 to Q12). The node join+ algorithm in our

proposed path-based approach is identical to TwigStackList¬. That is, we use path

join+ to minimize the element candidate sets, then apply the holistic negation join

solution on evaluating queries. Figure 3.22 shows the comparison results.

We observe that the path-based solution outperforms TwigStackList¬ [86] by

using the path join+ algorithm. This is because of the similar reason shown in

structural join part. TwigStackList¬ [86] is specially designed to reduce the inter-

mediate result sizes, and it may access all the elements of the streams involved in

the queries. Our solution, in contrast, only needs to retrieve the elements that pass

the path join+ examination.

For example, path join+ filters out about 95% elements for query Q9 as shown

in Figure 3.21(a). As a result, the node join+ method followed by retrieves much
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less number of elements than TwigStackList¬ does in Figure 3.22(a) which must

read in the full sets of elements when evaluating the query.

3.7 Conclusion

In this chapter, we have presented a new paradigm for processing structural join

and negation in XML queries. The proposed solution includes a path-based label-

ing scheme which associates each element node with path information and a path

join (path join+) algorithm that is able to compute the minimal sets of elements

required for the subsequent node join (node join+). Experimental results clearly

show that the proposed approach outperforms the existing holistic structural join

method TwigStack [19], the path index approach BLAS [25] as well as negation

solution TwigStackList¬ [86].
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CHAPTER 4

A Statistical Query Selectivity Estimator
for XML Data

4.1 Introduction

The optimization of XML queries requires an accurate and compact structure to

capture the characteristics of the underlying data. In this chapter, we develop

a comprehensive solution to estimate the query selectivity of general XML query

patterns, which are the combinations of any linear and twig queries. We extract

highly summarized information, namely, Node Ratio (NR) and Node Factor (NF )

from every distinct parent-child path. When evaluating an XML query, statistical

information is recursively aggregated by using the path-independence assumption

to estimate the frequency of the target node. Compared with the existing solutions,

our method utilizes statistical data that is compact and yet proves to be sufficient

in estimating the selectivity of queries for regularly distributed XML data.

We also propose a method to augment the statistical model with histograms to

reduce estimation errors when the XML data is skewed. We construct histograms

for selected parent-child paths to capture the characteristics of the underlying data
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distribution based on the interval-based numbering scheme that is widely used for

structural join. Experimental results demonstrate the effectiveness of histograms.

The rest of this chapter is organized as follows. Section 4.2 introduces the

background knowledge. Section 4.3 describes the proposed estimation method.

The histogram-based solution is introduced in Section 4.4. Section 4.5 gives the

experimental results. We conclude in Section 4.6.

4.2 Preliminary

4.2.1 Problem Definition

In this chapter, we focus on non-recursive tree structured XML data and XML

queries involving only element structure, that is, queries without value predicates.

In addition, to clarify the projected node in the given XML query, the query pattern

must specify the target element, which is the node whose size we want to estimate.

This is because different nodes may have different cardinalities in the result sets.

For example, the result of the query “//department/professor” may contain one

department and ten professors.

The selectivity estimation problem can be stated formally as follows:

Given a non-recursive XML tree X = (VX , EX) where VX and EX denote the

sets of nodes and edges between nodes respectively, and an XML query Q =

(VQ, EQ) with target node T , VQ ⊂ VX , T ∈ VQ, we estimate the number (se-

lectivity) of elements with tag T satisfying Q in X.

Example 4.1: Given an XML linear query shown in Figure 4.1 (the first query)

and the XML instance in Figure 4.3 with target node C, the selectivity of element

C is two since there are two C occurrences matching the query pattern in the XML

data. 2
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4.2.2 Taxonomy

This section provides the taxonomy of XML queries. In the chapter, the XML

query language, either XPath [10] or XQuery [7], could be used since both of them

have the ability to describe the XML element structure patterns.

Simple Path (Linear Path). Given an XML query Q, if all nodes in Q are

connected sequentially, then Q is called a simple (or linear) path. The relationship

between any two adjacent nodes can be an ancestor-descendant or a parent-child

relationship.

Basic Path. Given a simple path query Q, if Q only contains two nodes, then Q

is called a basic path.

Twig (Branch) Query. If the root node of a given XML query Q has more than

one immediate child nodes, then Q is called a twig (branch) query, or simply a twig.

Simple Twig. Given a twig query Q, if every branch of Q is a simple path, then

Q is known as a simple twig.

General Path. A general path is all the possible combinations of simple paths

and twigs.

Example 4.2: Figure 4.1 illustrates the different queries. The single line and dou-

ble line denote the parent-child and ancestor-descendant relationships respectively.

2
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Figure 4.1: Classification of XML Queries

4.3 Estimation Method

This section describes the building blocks of the proposed query selectivity esti-

mator. In this proposed estimation system, we collect the statistical information

of each basic parent-child path. Given an XML query Q to be estimated, we first

decompose Q into a set of basic paths, then recursively aggregate the statistical

information to estimate the query selectivity. In the rest of this section, we first

introduce the query decomposition and statistics collection, and then present sta-

tistics aggregation methods and the estimation algorithm.

4.3.1 Query Decomposition

Given a general XML query Q, we can decompose it into a linear path and a twig

which represent the “trunk” and “branch” parts of Q respectively. Similarly, the

branch part can be further decomposed into a set of queries Qi, each of which is a

branch of Q. The process is then repeated for each Qi if Qi is not a simple path.

Finally, the resulting set of simple path queries can be transformed into a set of

basic paths.
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Figure 4.2: Decomposing a General Query into a Set of Basic Queries

Example 4.3: Figure 4.2 demonstrates how a general path query can be system-

atically decomposed into a set of basic path queries. 2

4.3.2 Summary Statistics

Given a path query Q in an XML dataset X, we denote the root node in the path

as R and the target node in Q as T . The target node T refers to the node whose

selectivity we want to estimate. We use f(node) to denote the frequency of node

in X and f(node|path) represents the frequency of node occurring on the path in

the dataset X.

Example 4.4: In Figure 4.3, we have f(C) = 4 and f(C|A/B/C/D)=2. 2

In this estimation system, two important summary variables, namely Node Ratio

(NR) and Node Factor (NF ), are captured. The variable NR indicates the ratio

of the number of occurrences of a root node R in some path P to the total occur-

rences of R in an XML dataset while the variable NF gives the average number of

node T for a given root node R in a path P .

Definition 4.1 (Node Ratio - NR) Let X be an XML dataset and P a general
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path in X, and R the root node in P . We define the ratio of the frequency of R in

P to the frequency of R in X as the node ratio NR of R in P , which is given by:

NR(R|P ) = f(R|P )/f(R)

Example 4.5: In Figure 4.3, NR(B|B/C/D) = f(B|B/C/D)/f(B) = 2/2 = 1

and NR(C|C/E) = f(C|C/E)/f(C) = 2/4 = 0.5. 2

Definition 4.2 (Node Factor - NF) Let X be an XML dataset and P a general

path in X, and R and T the root node and target node in P respectively. We define

the ratio of the frequency of T in P to the frequency of R in P as the node factor

NF of T in P . That is:

NF (T |P ) = f(T |P )/f(R|P )

Example 4.6: Consider Figure 4.3 again. We have NR(C|B/C/D) = f(C|B/C/D)

/f(B|B/C/D) = 1 and NR(B|A/B) = f(B|A/B)/f(A|A/B) = 2. 2
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From the above definitions, it is easy to obtain:

f(R|P ) = f(R) ∗NR(R|P )

f(T |P ) = f(R) ∗NR(R|P ) ∗NF (T |P )

The above equations can be utilized to estimate query selectivity. To distinguish

estimated results from actual values, we use SP (R) and SP (T ) to represent the

estimated selectivity of node R and T occurring in the path query P , and we have:

SP (R) = f(R) ∗NR(R|P );

SP (T ) = f(R) ∗NR(R|P ) ∗NF (T |P )
(4.1)

In this estimation system, we capture the frequency of every distinct element

tag, the NR and NF for each distinct basic parent-child path. This information is

then utilized to estimate the selectivity of XML queries.

C
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1 2
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Node Frequency
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Figure 4.4: NR and NF Values for Parent-Child Paths

Example 4.7: Figure 4.4 shows the statistical information collected on the XML

instance of Figure 4.3. For the parent-child paths, the root node R and the target

node T are the parent node and the child node in the path respectively. Note that

from the definitions, we always have NR ≤ 1 and NF ≥ 1. 2

The statistical information in our proposed solution can be collected by simply

carrying out a depth-first tree traversal on the XML data. During this procedure,

the frequencies of each distinct element tag and parent-child path are counted.
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After tree navigation, we then compute all the corresponding NR and NF values.

Since XML data is organized in the tree depth-first format, a sequential scan is

enough to obtain all necessary statistics.

4.3.3 Statistics Aggregation Methods

Next, we explain how the NR and NF information of basic parent-child paths

can be aggregated to estimate the size of the various path queries. The estimation

methods are based on the following assumption:

• Basic Path Independence Assumption: The distribution of a basic path

p in an XML document X is independent of the distribution of other basic

paths. In other words, the distribution of the child node of a basic path only

depends on its parent node.

Example 4.8: In Figure 4.3, the distribution of basic path C/D is independent

of its incoming paths, B/C and A/C, and the sibling path C/E. That is, each C

element contains two child nodes D regardless that the C has parent node B or A,

or child node E. 2

The idea behind the proposed estimation approach is that we recursively aggre-

gate the NR and NF values of basic parent-child paths and then utilize formula

4.1 to estimate the selectivity. There are two aggregation methods: serialization

and parallelization. We introduce the methods below.

Serializing Simple Paths

Suppose we have two simple paths p1 and p2, and their corresponding NR(R1|p1),

NF (T1|p1), NR(R2|p2) and NF (T2|p2), where Ri and Ti are the first and last nodes

in path pi. If the target node T1 has the same label as that of the node R2, we
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can connect the two paths p1 and p2 sequentially and eliminate the redundant

node R2. The result is also a simple path, denoted as p1·p2. For instance, if

p1 = A/B, p2 = B/C, then p1·p2 = A/B/C.

To calculate NR(R1|p1·p2) and NF (T2|p1·p2), we first compute NF (T1|p1·p2).

From the definition of NR and NF , it is easy to see that the accurate value of

NF (T1|p1·p2) should be NF (T1|p1) * (f(T1|p1·p2) /f(T1|p1)). Taking into consid-

eration the Basic Path Independence Assumption, we use f(T1|p2)/f(T1), which is

NR(R2|p2), to replace f(T1|p1·p2)/f(T1|p1). Hence, the value of NF (T1|p1·p2) is

estimated as NF (T1|p1)*NR(R2|p2).

Next, we use two examples in Figure 4.3 to explain how to obtain NR(R1|p1·p2)

and NF (T2|p1·p2).

Example 4.9: Case 1. Estimating SQ(D) where Q = B/C/D.

As introduced above, we have NF (C|Q) = NF (C|B/C) ∗ NR(C|C/D) = 1.

Here, the purpose of NR(C|C/D) is to filter out those C elements which are under

B but do not contain D. If the result NF (C|Q) is greater than or equal to 1

(as shown in this case), then f(C|Q) is greater than or equal to f(B|Q) (by NF

definition). Assuming that all C elements are uniformly distributed under all B

elements, we can deduce that f(B|Q) should remain unchanged as f(B|B/C). As

a result, we set NR(B|Q) = NR(B|B/C). Similarly, we can get NF (D|Q) =

NF (C|Q) ∗ NF (D|C/D). Since the values (after calculation) of NR(B|Q) and

NF (D|Q) are 1 and 2 respectively, we finally get SQ(B) = f(B) ∗ NR(B|Q) = 2

and SQ(D) = f(B) ∗NR(B|Q) ∗NF (D|Q) = 4. 2

Example 4.10: Case 2. Estimating SQ(E) where Q = B/C/E.

We have NF (C|Q) = NF (C|B/C)∗NR(C|C/E) = 0.5. In this case, NF (C|Q)

is less than 1, which violates the definition of NF (the number of the target node

must be greater than or equal to the number of the root node in the same path).
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This shows the addition of path C/E actually filters out not only those C elements

under B, but also B elements as shown in Figure 4.3. To handle this situation, we

set NR(B|Q) = NR(B|B/C)∗NF (C|Q) since NF (C|Q) reduces the number of B

elements. After that, the value of NF (C|Q) is set to 1. This is because we assume

that the remaining C elements (which are not filtered out by the addition of path

C/E) are uniformly distributed under B. Thus, the number of B elements should

be reserved as many as possible and NF (C|Q) must be 1. Similarly, NF (E|Q) =

NF (C|Q) * NF (E|C/E) = NF (E|C/E). Finally, we estimate SQ(B) = f(B) ∗
NR(B|Q) = 1 and SQ(E) = f(B) * NR(B|Q) ∗NF (E|Q) = 2. 2

From the two examples above, we can find that given two simple paths p1,

p2 and their corresponding NR(R1|p1), NF (T1|p1), NR(R2|p2) and NF (T2|p2), if

the value of NR(T1|p1 · p2) is greater than or equal to 1, then some elements T1

occurring in p1 are filtered out with the addition of the path p2. Otherwise, the

number of R1 is reduced. As a result, we summarize the following formula:

Given two paths p1 and p2 where T1 = R2

NF (T1|p1·p2) = NF (T1|p1) ∗NR(T1|p2)

if (NF (T1|p1·p2) ≥ 1)

NR(R1|p1 · p2) = NR(R1|p1)

NF (T2|p1 · p2) = NF (T1|p1 · p2) ∗NF (T2|p2)

else

NR(R1|p1 · p2) = NR(R1|p1) ∗NF (T1|p1 · p2)

NF (T2|p1 · p2) = NF (T2|p2)

(4.2)

This formula can be easily extended to sequentially connect more than two sim-

ple paths and compute the corresponding NR and NF values. Consider the sce-

nario where query Q is composed by p1·p2·p3. . .pn. We first calculate NR(R1|p1 ·p2)



103

and NF (T2|p1 · p2), then in turn compute the next NR and NF until we reach

NR(R1|p1·p2·p3. . .pn) and NF (Tn|p1·p2·p3. . .pn). In practice, if the simple path pi

contains more than two nodes, it would be decomposed into a set of basic paths

which hold only two nodes. The NRs and NF s of parent-child paths can be di-

rectly retrieved from the estimation system. The processing of ancestor-descendant

paths will be discussed later in this section.

Parallelizing Linear Paths

Given a set of simple paths pi, (1 ≤ i ≤ n) and the corresponding NR(Ri|pi), where

Ri is the first node in path pi, if Ri = Rj = R(i6=j; 1 ≤ (i, j) ≤ n), we can combine

all pi into a simple twig where R is the root node and every pi is a branch. For

example, the simple twig query A[/B]/C is constructed from simple paths A/B

and A/C.

There are two possible relationships among the branches in the path obtained:

intersection and union. In the case of intersection, we need to estimate the size of

R that appear in all of pi. Otherwise, the path condition is satisfied if R is the root

node of any one of the li. We denote the intersection and union associations in the

paths as p1∩p2. . .∩pn and p1∪p2. . .∪pn respectively.

If query Q is given by p1∩p2. . .∩pn, then the node ratio NR(R|Q) is computed

from the intersection of all pi:

NR(R|Q) =
n∏

i=1

NR(R|pi) (4.3)

On the other hand, suppose Q is given by p1∪p2. . .∪pn. Given the values of

the corresponding node ratios NR(R|pi) where R is the root node of Q, we have

following formula that is based on set theory:
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NR(R|P ) =
n∑

i=1

NR(R|pi)−
∑

NR(R|pi1)NR(R|pi2) + .....+

(−1)(k−1)
∑

NR(R|pi1)NR(R|pi2)...NR(R|pik)

(1 ≤ (i1,i2...ik) ≤ n; ia 6= ib if a 6= b)

(4.4)

Ancestor-Descendant Basic Paths

Next, we compute the NR and NF of an ancestor-descendant basic path. The

basic idea is that given an ancestor-descendant basic path, we try to “recover” its

parent-child path expression based on the Basic Path Independence Assumption.

This task can be achieved by scanning all basic parent-child paths stored in the

system.

Algorithm 7 Recover Parent-Child Path Expression

Input: An ancestor-descendant path Q = X//Y
Output: Parent-child expression Q′

1. Set Q′ to empty, add node X into Q′ as the root node.

2. Scan all basic parent-child paths: if a path starts with X, attach the child
node in the path as a child node of X in Q′.

3. For each new attached leaf node n (which is not Y ) in Q′, scan the basic
parent-child paths and add the child node of a path if its parent node is
the same as n.

4. Repeat step 3 until no new nodes can be added.

5. Delete root-to-leaf paths in Q′ if the leaf node is not Y .

Algorithm 7 shows how to recover the parent-child path expression. Given an

ancestor-descent query Q = X//Y , we generate a new query Q′ which initially

contains only one node X. Next, all basic parent-child paths are scanned and the

child node of a paths is attached as a child node of X in Q′ if the path starts with



105

node X. After that, we repeat this step for each newly attached leaf node (which

is not a Y node) in Q′ until no new node can be added into Q′. Finally, we delete

all branch paths in Q′ if their leaf nodes are not Y (the child node in the original

ancestor-descendant query Q) and output Q′.

Example 4.11: Suppose we issue the query Q = A//C over the XML instance in

Figure 4.3. Q′ initially contains one A node. After scanning all parent-child paths,

Q′ becomes A[/B]/C. Next, we check the paths to find those which start with node

B. Finally, the output Q′ is A[/B/C]/C. 2

4.3.4 Estimation Algorithm

Based on the summary statistics and the various methods to aggregate them, we

develop an algorithm to estimate the frequency of a target node in a given general

path query. Our generalized estimation technique employs a bottom-up approach

to compute the NR and NF of the nodes, before calculating node frequency in a

top-down manner. This essentially implies that we first decompose a general query

tree pattern into a set of basic parent-child paths, then recursively aggregate the

NR and NF information using the methods described in Section 4.3.3.

We use a simple example below to explain the idea before presenting the details

of the algorithm.

Example 4.12: A path query can typically be expressed as a linear (simple)

path followed by a twig (see Figure 4.1(d)). Assume that we have a general query

Q1 = l1 · t1 with target node T in t1 and the common node between l1 and t1 is C1.

Obviously, SQ1(C1) = f(R1) ∗NR(R1|Q1) ∗NF (C1|Q1) while R1 denotes the root

node of Q1. After computing the selectivity of C1, we can calculate the number of

T as SQ1(T ) = SQ1(C1) ∗NF (T |t1). To obtain NF (T |t1), we need to get the NR
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and NF values of the subtrees of t1 first. As a result, we decompose query Q1 into

a set of sub-queries and collect their NR and NF values in a bottom-up manner.

This leads to the design of Algorithm 8 2

Algorithm 8 calls a function PathStat which returns an object sq containing

the values of NR and NF . Suppose Q is a general path query with root node

Root and target node T . We call the path from Root to T the primary path. The

variable NF list, initially set to empty, stores the NF values of the sub-paths in

the primary path.

Lines 1-5 in function PathStat() check whether T is contained in simple path

portion of the current path Q. If it is, we decompose Q (in function getTargetNode

NRNF (), Algorithm 9) into a linear path l′ (the path from R to T ), and a general

path g′ (the subtree rooted at T ). In order to obtain NR(R|Q) and NF (T |Q), we

recursively call PathStat to determine the NR and NF of l′ and g′ respectively.

A special case occurs when Q is a linear path and T is the last node in Q; then g′

is a single node. Note that this part (Lines 1-5) is only executed once although the

function PathStat() is recursively called.

In Lines 6-25 (Algorithm 8), current query Q may be decomposed or instantiated

into a set of sub-paths depending on its type. To compute the NR and NF of Q, it

is necessary to know the NR and NF of its sub-paths. Hence, PathStat is invoked

recursively (in the functions of Algorithm 9) to determine the NR and NF of every

sub-path until a basic parent-child path or a single node is reached. The NR and

NF of every sub-path is then aggregated to obtain the final result size. Note that

only the NF s of nodes that occur in the primary path are stored in the NF list

(lines 30-31) since the rest of the NF information does not contribute to target

node selectivity estimation.

Example 4.13: Consider the general query Q in Figure 4.5 with target node N .
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Algorithm 8 Estimate Query Selectivity

Input: Query Q with target node T .
Output: Estimated selectivity SQ(T )

1: Initialize NF list = {}, cursor = 0
2: sq = PathStat(Q)

3: SQ(T ) = f(Root) ∗ sq.NR ∗
cursor∏

i=0

ei(ei ε NF list)

Function PathStat(p)

1: if isLinearTwig(Q) and T in linear part then
2: sq = getTargetNodeNRNF (Q)
3: e0 = sq.NF ;
4: return sp

5: end if
6: if isSingleNode(Q) then
7: sq = getSingleNodeNRNF (Q)
8: return sq

9: end if
10: if isBasicParentChild(Q) then
11: sq = getParentNRNF (Q)
12: return sq

13: end if
14: if isBasicAncestorDescendant(Q) then
15: sq = getAncestor(Q),
16: return sq

17: end if
18: if isSimple(Q) then
19: sq = getSimple(Q)
20: return sq

21: end if
22: if isTwig(Q) then
23: sq = geTwig(Q)
24: return sq

25: end if
26: if isLinearTwig(p) then
27: sq = getLinearTwig()
28: Let C be the common node between linear part and branch part
29: if inPrimaryPath(C) then
30: cursor + +
31: ecursor = sq.NF
32: end if
33: return sp

34: end if
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Algorithm 9 Estimate Query Selectivity (Cont)

Function getTargetNodeNRNF (Q)

1: Let R be the root node of Q
2: Let l′ be the simple path from R to T and g′ be the general query pattern

rooted at T
3: sq.NR = NR(R|l′ · g′), sq.NF = NF (T |l′ · g′)
4: /*Calculate NR and NF values of l′ and g′, then serialize them*/
5: return sq

Function getSingleNodeNRNF (Q)

1: sq.NR = 1, sq.NF = 1
2: return sq

Function getParentNRNF (Q)

1: sq.NR = NR(Q), sq.NF = NF (Q)
2: /*NR(Q) and NF (Q) are retrieved from estimation system*/
3: return sq

Function getAncestor(Q)

1: Let Q be the format X//Y
2: Get parent-child expression Q′ by calling Algorithm 7
3: sq = PathStat(Q′) with Y as target node
4: return sq

Function getSimple(Q)

1: Decompose Q into a set of basic path pi(1≤i≤n)
2: Let R and T be the first and last node in Q respectively
3: sq.NR = NR(R|p1 · p2 · ...pn), sq.NF = NF (T |p1 · p2 · ...pn)
4: /*The above values can be calculated by serializing basic paths*/
5: return sq

Function getTwig(Q)

1: Decompose Q into a set of general paths gi(1≤i≤n), every branch of Q is a gi

2: Let R be the root node of Q
3: sq.NR = NR(R|g1 ∩ ...gn), sp.NF = null
4: /*The above values can be calculated by parallelizing paths, note the relation-

ship between paths is intersection/
5: return sq

Function getLinearTwig(Q)

1: Let l and t be the linear and twig parts of Q respectively
2: Let R and C be the first and last node of l respectively
3: /*note C is also the root node of t*/
4: sq.NR = NR(R|l · t), sq.NF = (C|l · t)
5: /*Serializing l and t*/
6: return sq
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Figure 4.5: Estimating Frequency of Node N in Query Q

Then the path from A to N is the primary path (indicated by the dashed line in

Q). Since N does not lie in the linear portion of Q, which is A/B, we recursively

decompose Q until we obtain the path Q0. We store e0 = NF (N |Q0) in the

NF list. On backtracking, we encounter path Q1 which comprises a linear path

and a twig which have node E in common. Since E lies in the primary path, we

store node e1 = NF (E|Q1). Similarly, we put e2 = NF (C|Q2) and e3 = NF (B|Q)

in the NF list. Finally, the ei in the NF list are used to compute the frequency

of node N in Q. That is, SQ(N) = f(A) ∗NR(A|Q) ∗ e3 ∗ e2 ∗ e1 ∗ e0. 2

4.4 Histogram-Based Estimation

The compact statistical approach introduced in the previous section works well

when the data is regularly distributed. However, skewness in the data reduces
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the accuracy of the estimation. Here, regular distribution and skewness mean

whether the paths in XML dataset are distributed independently or correlatively

respectively. In other words, in regularly distributed dataset, the Basic Path In-

dependence Assumption will stand well. For example, in Figure 4.6, the child

nodes C and D are not independently distributed under all the B nodes. This

skewness could be due to the correlation between C and D. That is, C and

D tend to occur together under the same B node. Suppose we issue a query

Q = B[/C]/D (B/C ∩ B/D) with target node B in this XML instance. Since

NR(B|Q) = NR(B|B/C) ∗ NR(B|B/D) = 0.25 according to the parallelization

method, we have estimated SQ(B) = f(B) ∗ NR(B|Q) = 1, while the correct se-

lectivity of node B is 2. This estimation error caused by data skewness becomes

unacceptably high for Internet-scale XML data. In this part, we explore the solu-

tion of building histograms to reduce estimation error.
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Figure 4.6: Example of a Skewed XML Instance and its NR-NF Values
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4.4.1 Histogram Structure

The proposed histogram structure is based on the interval numbering scheme [57,

87]. This scheme facilitates the quick determination of the ancestor-descendant

relationship between any two nodes in an XML document as shown in Figure 4.6.

The basic idea behind is that the interval of a descendant node in a tree is contained

in the intervals of its ancestor nodes. More details of interval based numbering

scheme can be found in [57, 87].

We construct a set of buckets, or a bucket set, on selected parent-child basic

paths to capture the underlying skewed data. The histogram puts “similar” data

into the same bucket to reduce estimation error. A bucket stores the corresponding

intra-bucket root node frequency, the NR value and the NF values.

Example 4.14: Figure 4.7 shows the buckets that are built on the basic paths

B/C, B/D and B/E for Figure 4.6. Each bucket contains the distribution of NR

and NF in the range covered by the bucket. 2

Histogram Construction

In order to decide whether a histogram should be constructed on a basic parent-

child path P , we design an algorithm to detect the distribution of NRs and NF s

of P based on the interval ranges where P occurs (see Algorithm 10).

We introduce two parameters to guide the construction of buckets: Unit Factor

(UF ) and V ariance Factor (V F ). UF controls the granularity of buckets. Let

the interval range of a path P be (P (s), P (e)). Then the granularity of the bucket

range is defined as (P (e)−P (s))/UF , and the range of every bucket built on path

P must be a multiple of this granularity.

The variance factor V F indicates the difference of NR(NF ) between a bucket
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and the overall data. That is, if NR(NF ) in a range is greater than avg(NR)∗V F

(avg(NF ) ∗ V F ) or less than avg(NR)/V F (avg(NF )/V F ), we consider the data

in this range as being significantly different from the average value, which will

trigger the construction of a bucket to cover this range.

Algorithm 10 Tuning Buckets in Histogram

Input: Path P , V F , UF
Output: A set of buckets built on P

1: unit = (P (e)− P (s))/UF
2: /*P (s), P (e) denote the start and end points of P*/
3: B(s) = P (s)
4: B(e) = P (s)
5: /*B(s), B(e) denote the start and end point of a bucket*/
6: bucket status = 15 (binary number ‘1111’)
7: while B(e) < P (e) do
8: unit status = getUnitStatus()
9: if unit status > 0 then

10: if unit status ∩ bucket status > 0 then
11: B(e) = B(e) + unit
12: bucket status = unit status ∩ bucket status
13: else
14: output bucket (B(s), B(e))
15: B(s) = B(e) + 1, B(e) = B(e) + unit
16: bucket status = unit status
17: end if
18: else
19: output bucket(B(s), B(e))
20: B(s) = B(e) + unit + 1, B(e) = B(e) + unit + 1
21: bucket status = 15
22: end if
23: end while

Algorithm 10 constructs the histogram on a path P by scanning all the interval

information of the instances of P . The variables unit status and bucket status are

represented by a 4-bit integer. Each bit indicates a status: high NR, high NF ,

low NR and low NF . In the procedure of scanning, if the status of a unit range is

greater than 1, then the data distribution in this unit is significantly different from
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the average value. If the data distribution in the next unit also differs significantly

from the average value, then we check whether these two units have the same

features, that is, whether both have high (low) NR or NF . This test can be carried

out quickly by a bit AND operation. If the two units have common characteristics,

then we can merge them into one bucket, and use the intersection of their status

as the final bucket status. Otherwise, we simply output the first unit as a bucket

and continue to process the next unit until we finish scanning the entire range of

the path.

Note that the variables V F and UF actually control the bucket’s depth and

width respectively. Both of them directly affect memory usage. When UF increases

or V F decreases, more buckets are constructed in memory.

Histogram Maintenance

An interval-based histogram can be updated by a two-step operation when the

underlying data is modified. The details are given as follows.

1. Rebuild.

Algorithm 10 is called to build new buckets. However, instead of using the

entire range of the given path P , we only need to check the range where the

data updates occur. For example, in Figure 4.7, if updates occur in the first

bucket of path B/E, then we will only rebuild buckets by checking the range

of this first bucket. On the other hand, if updates take place in the area

between the first and second buckets of path B/E, then rebuilding would

be carried out on this “empty” range. Note that an existing bucket may

be deleted after rebuilding if the new data distribution values NR and NF

inside the bucket are very close to the overall NR and NF values.

2. Merge.
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After some new buckets are created, we then check whether these new buckets

have adjacent buckets and they could be merged or not. The adjacent buckets

will be merged to form a new bucket if the statistical information in the new

bucket differs greatly from the average, which is determined by the variable

V F in Algorithm 10.

4.4.2 Estimating XML Queries

When we estimate the selectivity of XML queries by using histogram data, we

generate a new structure which is “compatible” to both the histograms of the

paths needed to be merged (serializing or parallelizing). After that, the histogram

of each path is transformed to the structure of this “compatible” bucket set, and

their intra-bucket NR and NF values can now be aggregated directly.

Definition 4.3 (Compatible Bucket Set) Given a bucket set A built on a ba-

sic parent-child path PA, a bucket set B is compatible with A if all the following

conditions hold.

1. Range covered by adjacent buckets in B must be consecutive.

2. Every bucket in B must be either totally contained in some bucket of A or

totally outside the buckets of A.

3. Entire range covered by B contains the entire range of PA.

Example 4.15: Consider Figure 4.8(a) where a bucket set built on path P2 is

compatible with that built on path P1. However, the bucket set built on path P3

is not compatible with that built on P1. Figure 4.8(b) shows two paths P1, P2 and

a bucket set structure Pc that is compatible to both P1 and P2. Note that Pc has

the minimum number of buckets and the minimum total interval range.
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Figure 4.8: Compatible Bucket Sets

Let us now examine how a bucket set can be converted into a compatible bucket

set. Suppose the bucket set B{b1, b2, ...bn} has been built on some path P where

R is the root node of P , and let bi(rf), bi(s) and bi(e) indicate the root frequency,

start edge and end edge of bucket bi respectively while P (s) and P (e) denote

the minimal and maximal values in the range covered by P . When bucket set

B is converted to its compatible bucket set C, we compute the NR, NF and

root node frequency inside every bucket cj. For each cj, we check whether it is

contained in some bi. If it is, based on the assumption of uniform distribution of
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the intra-bucket data, we have NR and NF of cj equal to those of bi, and the

cj(rf) is bi(rf)∗ (cj(e)− cj(s))/(bi(e)− bi(s)). If cj is not contained in any bi but is

contained in the interval (P (s), P (e)), we assume that the data outside the buckets

is uniformly distributed. Thus we have the following formulae to compute NR,

NF and root node frequency of cj.

cj(rf) =

[f(R)−
n∑

i=1

bi(rf)] ∗ [cj(e)− cj(s)]

P (e)− P (s)−
n∑

i=1

[bi(e)− bi(s)]

cj(NR) =

f(R) ∗NR−
n∑

i=1

bi(rf) ∗ bi(NR)

f(R)−
n∑

i=1

bi(rf)

cj(NF ) =

f(R) ∗NR ∗NF −
n∑

i=1

bi(rf) ∗ bi(NR) ∗ bi(NF )

f(R) ∗NR−
n∑

i=1

bi(rf) ∗ bi(NR)

If cj falls outside the range (P (s), P (e)), then we set the root frequency, NR and

NF to 0.

Algorithm 8 can be slightly modified to estimate queries using histogram data.

We use the following example to explain:

Example 4.16: Consider the twig query Q = A/B[/C/E]/D issued with target

node C. We first decompose the query into a set of basic queries A/B, B/C,

B/D and C/E. When aggregating the NR and NF values, we combine the paths

C/E and B/C before aggregating the histogram data of B/C/E with that of B/D.

This procedure is repeated until we obtain NR(A|Q) and NF (C|Q) of every bucket.

Finally, we summarize the estimated frequencies of C in all buckets and output the

result. 2
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4.5 Experiments

In this section, we examine the accuracy of the proposed estimation approach on

both real-world and synthetic datasets.

The datasets used are IMDB [3], Shakespeare’s Plays (SSPlays) [1], DBLP [4]

and a synthetic XML dataset generated by XMark [2]. The synthetic dataset is

more skewed compared to the real datasets. Table 4.1 gives the characteristics of

the various datasets. Attributes are omitted for simplicity.

Dataset Size (MB) ](Dist Elements) ](Dist Basic Paths) ](Elements)
IMDB 1 12 11 26,045

SSPlays 7.5 21 38 179,690
DBLP 22 26 35 545,658

XMark20 20 74 98 319,815

Table 4.1: Characteristics of Datasets

4.5.1 NR-NF Estimation Method without Histogram

In this part, we check the performance of our proposed solution without building

any histogram. That is, only the NR and NF values of a parent-child path are

utilized to estimate query selectivity.

Summary Collection Time and Statistics Size

Table 4.2 shows the time taken to collect the summarized NR and NF values

and the statistics size for each dataset. As we have expected, the information

collection time is reasonably short since only one sequential scan is needed. When

implementing our proposed method, we encode every distinct element tag and

distinct path. Thus, the total NR-NF usage (without histograms) of the statistics
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is given by:

NR−NF Usage = ]DistinctNodes ∗ 8 + ]DistinctPaths ∗ 12

where eight bytes are used to represent element ID and frequency, and 12 bytes are

applied to represent path ID, NR value and NF value. From the table, we find

that the summary sizes for all datasets are very small due to the highly compact

NR and NF values we capture.

Dataset Summary Collection Time Statistics Size
IMDB 1.1 S 0.23KB

SSPlays 2.8 S 0.63KB
DBLP 8.2 S 0.63KB

XMark20 7.2 S 1.77KB

Table 4.2: Summary Collection Time and Statistics Size

Sensitivity Experiments

This set of experiments investigates the accuracy of our proposed solution on pos-

itive XML queries without building histograms. We generate a set of positive

queries on both real and synthetic datasets. These queries comprise parent-child

linear queries, ancestor-descendant linear queries and parent-child twigs. Table 4.3

shows the workload in this part.

Relative error is employed to measure estimation accuracy in this part. Table

4.4 shows the performance of using the proposed compact statistical information

to estimate the queries.

Overall, memory usage for the statistical information is low (see Table 4.2),

and estimation results for the queries on the real-world datasets (IMDB, SSPlays,

DBLP) are basically very accurate since data in these datasets is typically regularly

distributed. Even for the ancestor-descendant queries, our proposed method can

accurately “recover” the original parent-child expressions. For example, Table 4.5
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Queries Dataset
Q1 //PLAY//TITLE SSPlays
Q2 //PLAY/ACT/PROLOGUE/SPEECH SSPlays
Q3 //PLAY/ACT[/EPILOGUE/STAGEDIR]/TITLE SSPlays
Q4 //PLAY/PERSONAE[/PGROUP]/TITLE SSPlays
Q5 //Movie/Directed By/Director IMDB
Q6 //Cast/Actor/LastName IMDB
Q7 //Movie//Genre IMDB
Q8 //proceedings//editor DBLP
Q9 //dblp/inproceedings/title DBLP
Q10 //australia/item/description/text XMark20
Q11 //open auction/annotation//listitem XMark20
Q12 //listitem/text/emph[/keyword]/bold XMark20

Table 4.3: Query Workload

shows all the parent-child expressions generated by the ancestor-descendant query

Q1 in the workload and the calculated NR and NF values for each path (root

node and target node are “PLAY ” and “TITLE” respectively). This result to-

tally matches the real XML data, clearly showing the effectiveness of our proposed

solution for regularly distributed XML data.

In contrast, the error rate for the synthetic dataset (XMark20) is considerably

higher since the dataset is much more skewed compared to the real-life datasets.

That is, the path-independence assumption does not properly stand for this syn-

thetic dataset.

Comparative Experiments

We also implement XSketch [64] using f-stabilize method and compare its accuracy

and memory usage with our method. We generate 100 positive queries on IMDB,

SSPlays, DBLP and XMark20 respectively using the template described in [64],

i.e., twig queries with linear branch paths, and the target node is the leaf node.

Only the parent-child relationship is used here. The length of the query path ranges
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Queries Estimated size Actual size Error
Q1 1031 1031 0
Q2 12 12 0
Q3 5 4 25.0%
Q4 33 33 0
Q5 520 520 0
Q6 6886 6886 0
Q7 1475 1475 0
Q8 1892 1892 0
Q9 58077 58077 0
Q10 310 315 1.6%
Q11 2052 2148 4.5%
Q12 15 41 63.4%

Table 4.4: Error Rates

Parent-child path NR NF
PLAY/TITLE 1.0 1.0
PLAY/PERSONAE/TITLE 1.0 1.0
PLAY/ACT/TITLE 1.0 5.0
PLAY/ACT/SCENE/TITLE 1.0 20.216
PLAY/ACT/EPILOGUE/TITLE 0.162 1.0
PLAY/ACT/PROLOGUE/TITLE 0.324 1.0
PLAY/INDUCT/TITLE 0.054 1.0
PLAY/INDUCT/SCENE/TITLE 0.054 1.0
PLAY/PROLOGUE/TITLE 0.054 1.0

Table 4.5: Recovering Parent-Child Expressions for Query Q1

from three to 12 nodes.

Figure 4.9 shows the memory usage and average relative error of the two tech-

niques for the various datasets. We observe that both techniques utilize a smaller

amount of memory for the real-life datasets than for the synthetic dataset XMark20.

This is largely because of the relatively regular structures of the real-life datasets.

The regular data distribution in the real-life datasets also leads to a lower error

rate for both methods compared to the synthetic dataset.

For the synthetic dataset, our approach requires a smaller memory footprint

compared to XSketch. The latter requires more memory to achieve a lower relative
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(a) Memory Usage

(b) Error Rates

Figure 4.9: Comparative Experiments
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error. This is because XSketch uses a summarized graph to describe XML data.

For skewed data, it naturally requires higher memory space consumption while

yielding more accurate estimated results.

Scalability

In this part, we investigate the scale-up property of the NR-NF methods when

file size varies. We run the positive queries generated previously on three XMark

[2] datasets with various file sizes (Table 4.6). Table 4.7 shows that relative error

is barely affected by increasing file size. At the same time, there is no increase in

memory usage. This result is expected since varying the sizes of XML files does

not affect the number and distribution of basic parent-child paths.

Dataset Size (MB) ](Dist Elements) ](Dist Basic Paths) ](Elements)
XMark20 20 74 98 319,815
XMark40 42 74 98 639,178
XMark60 63 74 98 959,495

Table 4.6: Characteristics of Datasets for Scalability Test

Dataset Sum Collection Time Statistics Size Error Rate
XMark20 7.2 S 1.77KB 71.0%
XMark40 27 S 1.77KB 68.3%
XMark60 1 Min 54 S 1.77KB 70.2%

Table 4.7: Summary Collection Time, Statistics Size and Error Rate for Scalability
Test

4.5.2 NR-NF Estimation Method with Histograms

In this part, we examine the evaluation performance of the NR-NF approach with

histogram data.

Statistics Size and Sensitivity Experiments
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This set of experiments investigates the accuracy of the proposed histogram solution

with various statistics sizes by using the 100 queries generated in Section 4.5.1 for

each dataset.

0

5

10

15

20

0 100 200 300 400 500 600 700 800 900 1000

M
em

or
y 

U
sa

ge
 (

K
B

)

UF

vf=2
vf=3
vf=4
vf=5

(a) DBLP

0

20

40

60

80

0 200 400 600 800 1000

M
em

or
y 

U
sa

ge
 (

K
B

)

UF

vf=2
vf=3
vf=4
vf=5

(b) XMark20

Figure 4.10: Memory Usage with Histograms

Figure 4.10 shows total memory usage for the DBLP and XMark20 datasets

under varying UF and V F values. The same UF and V F values, e.g., 100 and 3

respectively, are used to scan data of each distinct path, and buckets are constructed

when data skewness is detected.

Total memory usage is given by the summary of the NR-NF and histogram
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sizes. For histograms, each bucket is a 24-byte tuple with intra-bucket data (ID,

root frequency, NR, NF , range.start, range.end).

Total Memory Usage = NR−NF Usage + Histogram Usage

Histogram Usage = ]Buckets ∗ 24
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Figure 4.11: Error Rates with Histograms

As expected, the memory usage of our histogram structure grows as UF in-

creases (Figure 4.10). This is because the value of UF determines the unit width

of buckets. The larger the UF value (the smaller the unit width) is, the larger the
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number of buckets is possibly obtained. On the other hand, the V F parameter de-

termines the “distance” between the skewed data and the overall data. The lower

the value of V F is, the more data would be detected as “skewness” in the XML

files. We observe that UF value has a greater influence on memory requirement

than V F value does. This implies in this histogram structure, bucket width is the

major factor affecting memory space consumption.

Figure 4.11 shows the selectivity estimation errors of queries. There is a cor-

responding reduction in the relative error with the increasing memory usage. In

addition, it can be observed that our proposed technique utilizes a smaller amount

of memory for DBLP dataset compared to that required by the XMark under the

same UF and V F values (see Figure 4.10). This is largely because of the relatively

regular structure of the real-world dataset. This regular data distribution in the

DBLP dataset also leads to a lower error rate (Figure 4.11).

Comparative Experiments

We compare the histogram-based approach with the f-stabilize XSketch solution.

Since the size of the overall NR-NF estimation information of our approach is

much smaller than that of XSketch, we choose the UF and V F values which con-

sume roughly same memory space as XSketch. The comparison result is shown

in Figure 4.12. We observe that our solution has similar values in both mem-

ory usage and error rate when UF and V F are (200,2) and (300,3) respectively.

The XMark dataset is skewed and contains more irregularity than the real-world

datasets. XSketch explicitly stores the graph structure of the XML data, and re-

quires more memory space when the underlying data is irregular. In contrast, the

proposed histogram-based method captures the two variables of basic parent-child

paths, which are independent of the structural complexity of the XML graph. This
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leaves us additional memory space to build histograms to capture data distribution,

leading to improved estimation accuracy.
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Figure 4.12: Histogram-Based Approach vs. XSketch

Statistics Collection Time

In this experiment, we evaluate the cost of constructing summary information for

selectivity estimation. Table 4.8 shows the statistics collection time of the proposed

histogram solution and XSketch [64].

We observe that our proposed method requires much less time to construct the
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Solution Statistics Size Construction Time
DBLP (UF=200, VF=2) 5.82 KB 7.8 S
DBLP (UF=300, VF=3) 6.92 KB 8.1 S

DBLP (XSketch) 7.80 KB 42 S
XMark20 (UF=200, VF=2) 7.00 KB 12.4 S
XMark20 (UF=300, VF=3) 7.21 KB 14.8 S

XMark20 (XSketch) 7.95 KB 1 min 3 S

Table 4.8: Statistics Construction Time

statistical information than XSketch does. This is because for histogram construc-

tion, only one sequential scan on the interval based NR and NF values is required

as introduced in Algorithm 10. Considering the fact that these detailed NR and

NF values are already available in the system (disk-based), which are obtained

when calculating the NR and NF values of the XML dataset first time, this result

is expected.

In contrast, [64] shows that building an optimal XSketch model is an NP -hard

problem. It utilizes a greedy refinement strategy to incrementally add statistics

on the existing summary information. As a result, the construction time grows

quickly when the statistics size increases. In Table 4.8, the worst case happens for

the XMark dataset with the statistics size of 7.95 KB. In addition, this problem

becomes more severe if we further increase the size of statistics. In the experiments

of Chapter 5, we show that the construction time even reaches more than one week

with 90 KB statistics.

Moreover, our proposed solution uses simple structures to store statistical in-

formation, which is obviously easier to implement and maintain than XSketch. In

contrast, XSketch utilizes complex data structure and thus the statistical infor-

mation is more difficult to store and update.
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4.6 Conclusion

In this chapter, we have presented a comprehensive solution for estimating the

result sizes of general XML query patterns. Our system captures highly concise

information, NR and NF , for every distinct parent-child path in an XML dataset.

We have described how the statistical information can be aggregated to estimate

XML query sizes. For skewed XML data, we design interval-based histograms to

capture the underlying data distribution. Experiments on both real-world and

synthetic datasets indicate that our proposed method is able to achieve very low

error rates with a small amount of memory for regularly distributed real-world

XML datasets, and our histogram-based method can increase estimation accuracy

with minimal additional memory requirement. In addition, our proposed solution

uses simple data structures to store the statistical information, which is easy to

implement and efficient on statistics construction.
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CHAPTER 5

A Path-Based Selectivity Estimator for
XPath Expressions with Order Axes

5.1 Introduction

XML is a model of ordered tree that specifies the sequence order of sibling nodes.

The XML query language XPath [10] also supports order-based axes. In XPath

[10], the preceding and following axes describe the sequence of nodes before/after

the context node (excluding any ancestors/descendants). For example, the query

“//Storm/following::Tornado” requires that the element Tornado must occur after

the element Storm. In addition, XPath provides the preceding-sibling and following-

sibling axes to select all preceding or following sibling nodes.

The existing labeling scheme solutions preserve the order information of XML

data, such as interval based solutions [57, 87] and prime number approach [82].

The work in [75] examines how ordered XML can be stored and queried using

a relational database system. However, a key issue that has been neglected in

the literature is how the selectivity of XML queries with order-based axes can be

estimated.
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The selectivity estimation of XML queries with order axes is a challenging

task, given the huge volume of order information that needs to be summarized.

The existing XML selectivity estimators [15, 26, 58, 62, 65, 66, 83] are designed

specifically for XML queries without order axes, and order information is typically

not captured.

In this chapter, we describe a framework for estimating the selectivity of XPath

expressions with order-based axes. To the best of our knowledge, this is the first

work to address the problem of summarizing order information in XML data. The

key contributions are as follows:

1. We use a path encoding scheme to aggregate the path and order information

of XML data. This scheme associates each node in an XML tree with a path

id that indicates the type of the path where the node occurs. Based on the

path ids, the frequencies of element tags and sibling node sequences can be

collected.

2. We design two compact structures, the p-histogram and the o-histogram, to

summarize the path information and order information of XML data respec-

tively. In order to reduce the effect of data skewness in the buckets, we use

intra-bucket frequency variance to control the histogram construction. We

also devise efficient heuristic algorithms for maintaining the histograms.

3. We develop methods to estimate the selectivity of XPath expressions. We

first remove the irrelevant path ids associated with elements involved in a

query. Then the frequency values of the remaining path ids are utilized to

calculate the selectivity.

4. We carry out an extensive experimental study of the proposed approach on

various real-world and synthetic datasets. The results show that the proposed
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solution produces very low estimation error rates for XPath queries even with

limited memory space.

The rest of this chapter is organized as follows. Section 5.2 describes the path

and order information captured. The estimation methods for queries without and

with order axes are introduced in Section 5.3 and 5.4 respectively. We present the

data structure used in Section 5.5. Section 5.6 shows the experimental results. We

conclude in Section 5.7.

5.2 Capturing Path and Order Information

We use the path encoding scheme developed in Chapter 3 to label XML nodes,

that is, each element node is associated with a path id which indicates the path

type where the node occurs. The following example explains:

Example 5.1: In Figure 5.1, the path id of the first leaf node D in the XML

instance is p5 (1000) since the encoding of the path “Root/A/B/D” on which D

occurs is 1. The path id of the first C node (annotated with p3(0011)) is obtained

by a bit-or operation on the path ids of its child nodes E and F , whose path ids

are p2(0010) and p1(0001) respectively. All bit sequences are collected in a path id

table (Figure 5.1(c)). 2

In our proposed estimation system, the path and order information of XML data

are captured in the PathId-Frequency Table and Path-Order Table respectively.

PathId-Frequency Table. Each tuple in the pathId-frequency table represents a

distinct element tag in an XML document, and we aggregate all the path ids and

their corresponding frequencies of each element tag.

Example 5.2: Figure 5.2(a) shows the pathId-frequency table for the XML data



133

4

3

2

1

EncodingRoot−to−leaf

Root/A/B/D

Root/A/C/E

Root/A/C/F

(c) Path Id Table

(a) XML Instance

(b) Encoding Table

Root/A/B/E p3

p2

p1

Int

1111

1100

1011

1010

1000

0100

0011

p4

p6

p5

p8

p7

p9

Bit−Seq

0001

0010

C(p2)

A(p8)

B(p5)

E(p2) D(p5)D(p5) F(p1)

C(p3)B(p8) B(p5)

A(p7)

D(p5) E(p4) D(p5)

B(p5)

E(p2)

A(p6)

Root(p9)

Figure 5.1: Path Encoding Scheme
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in Figure 5.1. Since there are two C elements occurring in the XML document, one

of which is associated with path id p3 and the other one with p2, the entry for C

in the pathId-frequency table comprises the set {(p2, 1), (p3, 1)}. 2

Root
........

C

B

A

Ele

A

B

C

D

E

F

Root (p9,1)

(p1,1)

A

Ele+

+Ele

Ele

Root

for Element B

(b) Path−Order Table(a) PathId − Frequency Table

........

Path Idp8p5

1

2C

B

(p4,1) (p2,2)

(p5,4)

(p2,1) (p3,1)

(p8,1) (p5,3)

(p6,1) (p7,1) (p8,1)

(Path_id, Frequency)

Figure 5.2: Path and Order Information

Path-Order Table. We observe that the order information of XML elements is

related to the types of the paths where the elements occur. Since the path ids

of elements represent their path types, we captures the sibling order information

based on the path ids of elements and these order information is stored in the path-

order table. In this estimation system, each distinct element tag is associated with

a path-order table.

Given an element tag X, each column in its path-order table denotes one path id

on which the elements X occur, and each row represents one element tag in the XML

document. There are two regions in the path-order table, namely, +element and

element+ regions. In the +element region, a grid cell, denoted by g(pathid, tag),

represents the number of elements X with pathid occurring before elements tag.
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In contrast, the grid cell g(pathid, tag) in element+ area denotes the frequency of

X with pathid occurring after elements tag.

Example 5.3: Figure 5.2(b) shows the path-order table for element B in Figure

5.1. There are totally four B elements, but only three out of them have sibling

nodes. Since one B element annotated with p5 (see Figure 5.1) occurs before C,

the cell (p5, C) in the +element area of the table is marked with 1. Similarly, two

B elements with p5 occur after element C, thus the values in the corresponding

cells (p5, C) in area element+ is 2. And all the other cells are empty. 2

Note that if an element with tag X occurs both after and before elements with

tag Y , then the two rows for tag Y in the path-order table of X will count this X

element.

The pathId-frequency table captures all the path ids of each element tag and

their frequencies. This information is utilized to estimate the selectivity of XPath

expressions without order axes (see Section 5.3). The path-order table aggregates

the frequencies of the path ids of the sibling nodes. This information is used to

estimate the selectivity of XPath expressions with order axes (see Section 5.4).

In addition, we design succinct data structures, p-histogram and o-histogram, to

summarize the data in pathId-frequency table and path-order table respectively

(see Section 5.5).

5.3 Estimating Selectivity of Queries with No Or-

der Axes

This section describes our method of estimating simple and branch queries without

order axes. The method is based on a path id join algorithm.
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5.3.1 Path Join

Given an XPath query Q, path join first retrieves a set of path ids and the corre-

sponding frequencies for each element tag in Q from the pathId-frequency table,

then for each pair of adjacent element tags in Q, we use a nested loop to determine

the containment of the path ids in their sets. Path ids that clearly do not contribute

to the query result are removed. The frequency values of the remaining path ids

are utilized to estimate query size. Details of the path join algorithm can be found

in Chapter 3.

B

F

A {(p6,1) (p7,1) (p8,1)}

C

{(p5,4)}

{(p8,1) (p5,3)}

D

{(p2,1) (p3,1)}

{(p1,1)}

(a) Q1, before path id join

B

F

A {(p7,1)}

C

{(p1,1)} {(p5,4)}

{(p3,1)}

D

{(p5,3)}

(b) Q1, after path id join

Figure 5.3: Example of Path Id Join

Example 5.4: Consider query Q1 = //A[/C/F ]/B/D in Figure 5.3(a) issued on

the XML data in Figure 5.1, where the sets of path ids have been associated with

the corresponding nodes. The path id join algorithm evaluates the query Q1 by

removing irrelevant path ids from the nodes in the query. The final result is shown

in Figure 5.3(b). We observe that path id p2 for C is removed from the path id list

because p2 cannot contain the path id p1 for F . Further, path id p6 and p8 for A

are removed since they cannot contain the path id p3 for the child node C, etc. 2

Given an XPath query Q with target node n (the node whose selectivity is to

be estimated), we denote the selectivity for n as SQ(n) and the sum of frequencies

of the remaining path ids after the path id join for n as fQ(n).
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5.3.2 Estimating Simple Queries

A simple XPath query Q is of the basic form /n1/n2/.../ni where / and ni denote

the child axis and label of node respectively 1. The following theorem computes

the selectivity of simple XPath queries:

Theorem 5.1 After path id join is applied on a simple query Q, the summarized

frequency value fQ(n) of node n is the same as the selectivity SQ(n), that is:

SQ(n) = fQ(n) (5.1)

Proof: After a path id join, only the path ids that satisfy the path id containment

relationship are associated with the nodes involved in the query. Therefore, fQ(n)

must be equal to SQ(n). 2

Example 5.5: Consider the query “//A//C” issued on the XML instance in Figure

5.1. After a path id join, the sets of path ids that are associated with A and C are

{p6, p7} and {p2, p3} respectively. From the corresponding frequencies, we know

that the selectivity for both A and C are 2. 2

5.3.3 Estimating Branch Queries

We define a branch query pattern Q as /n1/.../ni[/ni1/.../nil]/ni+1.../nm. The

path /n1/.../ni is the trunk part while the paths /ni1/.../nil and /ni+1.../nm are

the branch parts of the query. XPath provides different formats, such as q1[/q2]/q3

or q1[/q2][/q3] to specify the position of the target node whose selectivity is to be

estimated. In this work, we standardize the branch query pattern as q1[/q2]/q3

where qi is a simple query, and explicitly specify the target node.

1The relationship between nodes is not necessarily a parent-child relationship
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Given a branch query Q = q1[/q2][/q3], if the target node n occurs in the

trunk part q1 of the query, then according to Theorem 5.1, we have SQ(n) = fQ(n).

However, if n occurs on the branch part q2 or q3 of Q, then fQ(n) may over-estimate

SQ(n). This is because path ids are designed to directly capture the parent-child and

ancestor-descendant containment relationship, but not the relationship between

sibling nodes.

{ (p1,1) }

FE

C { (p3,1) }

{ (p2,2) }

(a) Q2, after path id join

{ (p2,2) }

C { (p2,1) (p3,1) }

E

(b) Q′2, after path id
join

Figure 5.4: Estimating Selectivity of Branch Query

Example 5.6: Figure 5.4(a) shows a branch query Q2 = //C[/E]/F issued on

the XML instance in Figure 5.1. The target node E is circled. The path id join

associates node E with a path id set {(p2, 2)}. Figure 5.1 shows that only one

E element with path id p2 is the answer. The other E element is not in the

result because the path id p2 of its parent C has been removed during the path id

containment test between C and F . Note the estimation result for C is in fact the

exact answer. 2

Example 5.6 shows that if the target node n is in the branch part of a query

Q, fQ(n) may over-estimate the selectivity. However, if the target node n occurs

in the trunk part of Q, then fQ(n) is the correct selectivity value. To compensate

for this over-estimation, we devise a method which utilizes the correct selectivity

information of other nodes to determine the selectivity of the target node occurring

in the branch parts. This method is based on the following assumption:
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• Node Independence Assumption: Given a branch query Q = q1[/q2]/q3

with target node n in the branch part q2, the distribution of node n on q2

in the XML data is independent of the distribution of all other nodes in the

other branch path, i.e., q3, on which n does not occur.

Example 5.7: Suppose we issue two queries Q1 = //A[/B]/C and Q2 = //A/B on

the same XML document. Based on the Node Independence Assumption, we have

SQ1(B)/SQ1(A) ≈ SQ2(B)/SQ2(A) since the distribution of B under A is independent

of the distribution of node C which occurs on the other branch. 2

We now discuss the estimation method for branch queries. Suppose the target

node n belongs to the branch q2 of Q. To estimate SQ(n), we generate a simple

query Q′ = q1/q2 from Q by ignoring the branch q3. The results of ni (the last

node of q1) on query Q is a subset of that of ni on Q′ since Q has an additional

branch q3. Correspondingly, the results of nodes occurring on q2 of Q also decrease.

Based on the Node Independence Assumption, we can infer that SQ(n)/SQ(ni) ≈

SQ′(n)/SQ′(ni). Since Q′ is a simple query, we can obtain the correct selectivity

values of n and ni in Q′ based on Theorem 5.1, i.e., SQ′(n)= fQ′(n) and SQ′(ni) =

fQ′(ni). In addition, SQ(ni) = fQ(ni) since ni is in the trunk part of Q. Thus, we

obtain the following formula to calculate SQ(n):

SQ(n) ≈ fQ′(n) ∗ fQ(ni)/fQ′(ni) (5.2)

Example 5.8: We continue from Example 5.6. Consider the query Q2 in Figure

5.4(a) where node C is the last element node in the trunk part (which corresponds

to ni in Formula 5.2), and E is the target node n. We generate a new query Q′
2 by

cutting off the branch path where the target node does not occur (see Figure 5.4(b)).

After a path id join on both queries, the values of fQ2(C), fQ′2(C) and fQ′2(E) are 1,
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2 and 2 respectively. Therefore, we estimate SQ2(E) as fQ′2(E) ∗ fQ2(C)/fQ′2(C) = 1.

2

The error bounds of the proposed estimation method if the target node n occurs

in the branch part is [fQ(ni), f ′Q(n)], where ni is the last element label in the trunk

part q1 of Q. The upper bound of SQ(n) is fQ′(n) because fQ(ni) is always smaller

than or equal to fQ′(ni) in Formula 5.2. The lower bound of SQ(n) is fQ(ni), which

occurs when each node instance ni has only one descendant n (fQ′(n) = fQ′(ni)).

5.4 Estimating Selectivity of Queries with Order

Axes

Building on the techniques described in the previous section, we now discuss the

selectivity estimation of queries with order axes. We first present the techniques to

estimate queries with preceding-sibling and following-sibling axes, and then discuss

how to extend these methods to estimate queries with preceding and following axes.

5.4.1 Preceding-Sibling/Following-Sibling Axis

An XPath query with order axes can be denoted as ~Q = q1[/q2/folls :: q3] (or

q1[/q2/pres :: q3]) where folls (pres) represents a following-sibling (preceding-

sibling) axis. ~Q requires that both branches q2 and q3 occur under q1, and the

entire path expression q2 happens before (after) q3 in an XML instance. We de-

note the counterpart query without order axes of ~Q as Q = q1[/q2]/q3. Q can be

generated from ~Q by removing the order axes in ~Q.

Recall that the path-order table stores the sequence information of sibling nodes.

Hence, given an XPath query ~Q = q1[/q2/folls :: q3], we can use the path-order

table to compute the selectivity of sibling nodes in ~Q, i.e., the first nodes of q2 and
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q3. The results of these sibling nodes are then utilized to compute the selectivity

of the other nodes occurring in the query.

The estimation method to determine the selectivity of the target node depends

on whether the target node occurs in the branch part or the trunk part of the query.

Case 1: Target Node in Branch Part

We first consider the situation where the target node on the branch part is also

a sibling node. Then we extend the estimation method to handle queries where the

target node is in the branch part but is not a sibling node.

Consider the query ~Q = q1[/q2/folls :: q3] with target node ni+1 (the first node

of q3). Path id join is first applied on ~Q (or Q = q1[/q2]/q3). Next, if we directly use

the remaining path ids of ni+1 to retrieve the frequency values from its path-order

table, we may over-estimate the selectivity. This is because in the path-order table

for ni+1, there is no path id condition imposed on the element ni1 (the first node

of q2, the sibling node of ni+1). However, in the query ~Q (or Q), we require that

ni1 must occur in the query pattern q1/q2. To overcome this problem, we make the

following assumption:

• Node Order Uniformity Assumption: Given m elements X such that

they are the sibling nodes of Y and ms out of m X elements occur before (or

after) Y , these ms X elements are uniformly distributed in all m X elements.

That is, if we randomly select m′ from m X elements, there will exist m′
s X

elements which occur before (or after) Y , such that m′/m ≈ m′
s/ms.

We generate a simplified query ~Q′=q1[/ni1/folls :: q3] from ~Q by deleting the

branch part q2 except for its first node ni1. Then we compute the selectivity

S ~Q′(ni+1) and the selectivity of nodes in its counterpart Q′= q1[/ni1]/q3 without

order axes.
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For query Q′ = q1[/ni1]/q3, we have SQ′(ni+1) (which is m in the Node Order

Uniformity Assumption) elements tagged with ni+1 that satisfy Q′ and are siblings

of ni1, where S ~Q′(ni+1) (which is ms) elements tagged with ni+1 occur after ni1. If

we select SQ(ni+1) (which is m′) elements from the results of ni+1 on Q′, we will

have SQ(ni+1)/SQ′(ni+1) ≈ S ~Q(ni+1)/S ~Q′(ni+1) (S ~Q(ni+1) is m′
s). Thus, we get:

S ~Q(ni+1) ≈ S ~Q′(ni+1) ∗ SQ(ni+1)/SQ′(ni+1) (5.3)

The selectivity values SQ(ni+1) and SQ′(ni+1) can be estimated using the es-

timation method for branch queries (Section 4.3). The correct S ~Q′(ni+1) can be

retrieved from the path-order table for ni+1 as follows: After the path id join on

Q′, for each remaining pid associated with ni+1, we retrieve g(pid, ni1), i.e., the

number of ni+1 elements with path id pid that occur after ni1 from the path-order

table for ni+1. Then the summary of all such g(pid, ni1) is the selectivity of ni+1

for ~Q′ according to the definition of path-order table.

Note that the value S ~Q′(ni+1) obtained is the accurate selectivity of ni+1 in

~Q′. This is because after path id join, the path ids associated with ni+1 represent

the correct result set for ni+1 in the simple query q1/q3. In addition, the correct

frequency value for ni+1 with these path ids which occur after ni1 are recorded in

the path-order table for ni+1. As a result, the retrieved value must be the correct

S ~Q′(ni+1).

Example 5.9: Figure 5.5(a) shows a query ~Q1=A[/C[/F ]/folls :: /B/D] with

target node B. The simplified query ~Q′
1 = A[/C/folls :: B/D] is shown in Figure

5.5(b). The nodes in Figure 5.5 are annotated with the remaining path ids after a

path id join. The value of S ~Q′1
(B), which is 2, is retrieved from the path-order table

for B (see Figure 5.2(b)) with element tag C and path id p5 which is the remaining

path id in Figure 5.5(b). The values of SQ1(B) and SQ′1(B) are estimated as 1.3
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Figure 5.5: XPath Query with Order Axes

and 2.6 respectively by using the estimation method without order axes. Finally,

S ~Q1
(B) = S ~Q′1

(B) ∗ SQ1(B)/SQ′1(B) = 2 ∗ 1.3/2.6 = 1. 2

Next, we consider the query ~Q with the target node n where n occurs in the

branch part but is not the sibling node ni1 or ni+1. Suppose that n occurs in q3.

In order to utilize the selectivity of ni+1 to estimate the selectivity of n, we make

the following assumption:

• Node Containment Uniformity Assumption: Given mx ancestors X

and my descendants Y in an XML dataset, we assume that all the elements

Y are uniformly distributed under all their ancestors X. That is, if we ran-

domly select m′
x out of mx elements X, these X elements will contain m′

y Y

descendants, such that m′
x/mx ≈ m′

y/my.

The Node Containment Uniformity Assumption can be applied when ni+1 and

the target node n correspond to the X and Y in the assumption respectively.

Thus, we get S ~Q(ni+1)/SQ(ni+1) ≈ S ~Q(n)/SQ(n). Recall that S ~Q(ni+1)/SQ(ni+1) ≈

S ~Q′(ni+1) /SQ′(ni+1) (Equation 5.3). This gives us S ~Q(n)/SQ(n) ≈ S ~Q′(ni+1)/SQ′(ni+1),

and we have:

S ~Q(n) ≈ SQ(n) ∗ S ~Q′(ni+1)/SQ′(ni+1) (5.4)
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Example 5.10: Consider again the query ~Q1 in Figure 5.5(a). Suppose the target

node is now D. Then S ~Q1
(D) is estimated as SQ1(D) ∗ S ~Q′1

(B)/SQ′1(B) = 1.3 ∗ 2/2.6

= 1, where the value of S ~Q′1
(B) = 2 is retrieved from the path-order table for B,

and SQ1(D) and SQ′1(B) are estimated as 1.3 and 2.6 respectively. 2

Case 2: Target Node in Trunk Part

When the target node n occurs in the trunk part q1 of ~Q, it is obvious that

the selectivity S ~Q(n) must not be larger than SQ(n), the upper bound of S ~Q(n). In

addition, we can further optimize the estimation with order information.

We observe that when the order axes of ~Q is imposed on the query Q, some

elements ni1 (the first node of q2) that do not satisfy the order axes will be elimi-

nated from the query result sets. According to the Node Containment Uniformity

Assumption, these eliminated ni1 elements are uniformly distributed under all el-

ements n that satisfy the query Q (without order axes), and so are the remaining

elements ni1. Thus, we can deduce that the elimination of element ni1 as a result

of imposing the order axis does not affect the selectivity SQ(n) if the number of re-

maining elements ni1, i.e., S ~Q(ni1), is greater than or equal to SQ(n). When S ~Q(ni1)

is less than SQ(n), each element n in ~Q has at most one descendant ni1, and thus

the value of S ~Q(n) is estimated as S ~Q(ni1). Similarly, we can optimize the upper

bound estimation with S ~Q(ni+1).

As a result, given a query ~Q where the target node n occurs in the trunk part,

we have:

S ~Q(n) ≈ min( SQ(n), S ~Q(ni1), S ~Q(ni+1) ) (5.5)
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5.4.2 Preceding/Following Axis

The techniques to estimate queries with a preceding-sibling (following-sibling) axis

can be easily extended to process queries with a preceding (following) axis. The

basic idea is that we can convert a query with a preceding (following) axis into

a set of XPath expressions involving only preceding-sibling (following-sibling) axes

according to the path ids of the node associated with a preceding (following) axis

after path id join. Then the estimation result is given by the sum of the selectivity

of the set of path expressions. The following example illustrates:

Example 5.11: Consider the query //A[/C/foll::D] (foll denotes following axis)

with target node D issued on the XML data of Figure 5.1. The path id join asso-

ciates nodes A, C and D with path id sets {p6, p7}, {p2, p3} and {p5} respectively.

We check the path id p5 of node D. Since only the first bit of p5(1000) is 1, the

path between A and D must be A/B/D (look up encoding table with value 1). As

a result, the given query can be converted to a query with a following-sibling axis:

//A[/C/folls::B/D]. 2

5.5 Data Structures

The pathId-frequency table and the path-order table are implemented by the p-

histogram and o-histogram respectively. Since both histograms are constructed

from the path ids of the element nodes in an XML document, we need a quick

way to access these path ids. This task is achieved with the use of a binary tree

to index path ids. This section describes the path id binary tree, p-histogram and

o-histogram.
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5.5.1 Path ID Binary Tree

We use a binary tree to index path ids. The structure of the binary tree is defined

as follows:

1. The left and right edge in the binary tree represent the bit 0 and 1 respectively.

2. Each leaf node represents a path id, which is specified by the id (integer)

associated with the node.

3. The bit sequence of the path id at each leaf node can be obtained by con-

catenating bits of all edges from the root node to this leaf node.

4. The id attached with an internal node is the largest path id in its left subtree.

If the left subtree of an internal node is empty, this node is attached with an

integer that is less than the least value in its right subtree.
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Figure 5.6: Path Id Binary Tree

Example 5.12: Figure 5.6 shows the binary tree of the path ids in Figure 5.1(c).

The leftmost internal node is assigned the value 0 while the least path id value in

its right subtree is 1. The leaf node with id 2 denotes the path id 0010 which is
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obtained by concatenating the bits of all edges in the path from the root to the

leaf. 2

To find the bit sequence of a given path id, we can simply navigate down the

binary tree starting from the root node. During this process, we compare the given

path id with the ids of the internal nodes, and visit the left child if the given value

is not greater than the id of the node, or the right child otherwise. After reaching

the leaf node, the concatenation of the bits of all edges traversed is the bit sequence

of the given path id.

The binary tree can be compacted without losing the path id information. The

idea is that if a left (right) subtree of an internal node only contains left (right)

edges, we remove this left (right) subtree and its incoming edge. This is because

this left (right) subtree only represents a subsequence containing all 0 (1) bits.

Example 5.13: Consider Figure 5.6 again. All the dotted edges and the nodes

under them can be safely removed from the binary tree. 2

5.5.2 P-Histogram

To summarize pathId-frequency information, a p-histogram is built for each distinct

element tag. Each bucket in a p-histogram contains a set of path ids and their

average frequency value. To reduce the data skewness inside a bucket, we require

that the frequency variance of each bucket is not larger than a given variance

threshold v. Given a set of pathid-frequency pairs (pi, fi) for one element tag, the

frequency variance vb of a bucket is defined as follows:

vb =

√
(f1 − avgf)2 + ..(fk − avgf)2

k
,
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where fi denotes the frequency of a path id pi, and k is the number of path ids in

the bucket, and avgf =
∑

fi/k.
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Figure 5.7: P-Histogram

Example 5.14: Figure 5.7 shows two p-histograms built on the same pathid-

frequency list with different given variance values, 0 and 1. Note that the variance

with value 0 indicates the intra-bucket frequency must represent the correct fre-

quency values of the corresponding path ids. 2

Construction

Building a perfect variance optimal histogram (V-Optimal) is beyond the scope

of this paper. Here, we give a simple yet efficient heuristic algorithm to build a

p-histogram (see Algorithm 11).

The p-histogram construction algorithm takes the pathId-frequency list for an

element e and a variance threshold v as input. This pathId-frequency list is first

sorted according to frequency values. Next, we scan the list and find the longest sub-

list such that its frequency variance is not greater than the given threshold v. The

data in the longest sublist detected is then used to build a bucket. This detect-and-
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Algorithm 11 P-Histogram Construction

Input: PathId-frequency list for element e and variance threshold v
Output: P-histogram for element e

1. Sort the pathId-frequency list according to the frequency values.

2. Create a bucket b. Scan and add the path ids into b until the intra-bucket
variance is larger than the given v.

3. Repeat step 2 until scanning of the pathId-frequency list is complete.

build procedure is repeated until we have completely scanned the pathId-frequency

list.

Example 5.15: Figure 5.7 shows the two p-histograms constructed using Algo-

rithm 11 with variance values 0 and 1 respectively. 2

Maintenance

When the underlying pathId-frequency data is modified, two simple steps can be

utilized to update the associated p-histogram.

Step 1: Merge. If updates occur outside any bucket of the p-histogram, we

merge the updated data with the adjacent buckets. If the updated data happens

to be in some buckets, this step is ignored.

Step2: Split. For any bucket whose variance is greater than the defined variance

bound value, we call Algorithm 11 by passing the intra bucket data. This step

produces several new buckets which satisfy the intra-bucket variance requirement.

5.5.3 O-Histogram

The o-histogram summarizes path-order information. We observe that the path-

order table is very sparse since the frequencies in the majority of the cells are 0 (or

empty). We only need to store the cells with non-zero values.
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A bucket in the o-histogram has the format of (x.start, y.start, x.end, y.end,

frequency) where the first four variables of the bucket describe a bounding box

in the path-order table and the variable frequency denotes the average frequency

value of all cells in this box. Similar to the p-histogram, the o-histogram also uses

frequency variance to reduce intra-bucket data skewness.
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Figure 5.8: O-Histogram

Example 5.16: Figure 5.8 shows an o-histogram that is built on the given path-

order table with variance 1. This o-histogram has four buckets and they cover all

the non-empty cells in the table. 2

Construction

Algorithm 12 shows the details of constructing the o-histogram. First, we sort

the given path-order table according to the alphabetical order of the element tags

and the path id order generated in the p-histogram. The sorted element tags and

path ids are then encoded using integer numbers. The purpose of this step is that

given a bounding box (x.start, y.start, x.end, y.end), we can find the corresponding

element tags and path ids.
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Algorithm 12 O-Histogram Construction

Input: Path-order table for element e and variance threshold v
Output: O-histogram for element e

1. Sort path-order table:

• Element tags: alphabetical order.

• Path ids: Path ids order in p-histogram for e.

2. Scan non-empty cells in path-order table to get a bounding box (bucket)
as follows:

• Extend the current cell to a row of cells.

• Extend this row to a box of cells.

• In each of the extension steps, the intra-bucket variance is not larger
than the given v.

3. Repeat step 2 until we finish scanning all non-empty cells.

Next, all the non-empty cells in the path-order table are scanned row-wise.

For each non-empty cell, we extend it to a possible maximal box such that the

frequency variance of the cells within the box is less than or equal to the given

variance threshold.

The detection of the maximal box is performed in two steps. First, we extend

the current cell to a row of cells. This extension stops if we encounter an empty

cell, or the next cell is inside some other well-built bucket. Second, this row of

cells is extended to a box by adding the rows above this row to the bucket until an

empty-row (all cells are empty) is reached. In each step of the extension, we must

guarantee that the variance in the box (or in just one row) is not larger than the

given variance value.

Example 5.17: The o-histogram shown in Figure 5.8 is built by using Algorithm

12 with the variance value 1. After sorting the element tags and path ids, we check
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the cell (3,2) and extend it to a row (3,2,4,2) and box (3,2,4,3) respectively. Next,

we scan the rest of the non-empty cells. We ignore the cell (4,2) since it is already

in the existing bucket. After that, bucket 2 is built on the single cell (2,3), etc. 2

Maintenance

As with the p-histogram, we have two steps merge and split to update the o-

histogram. We merge the updated data and the adjacent buckets into some bigger

bounding boxes, and then rebuild buckets on these new boxes. Note that if there are

no buckets adjacent to the updated data (surrounded by empty rows and columns),

we can directly carry out the split step on the data to build new buckets.

5.6 Experiments

We carry out experiments to evaluate the performance of the proposed techniques

in terms of memory space requirement, summary construction time and estimation

accuracy.

Datasets

We use both real-world and synthetic datasets. Table 5.1 shows the characteris-

tics of the datasets: Shakespears’s Play (SSPlays) [1], DBLP [4] and XMark [2].

Attributes are omitted for simplicity.

Dataset Size ](Distint Eles) ](Eles)
SSPlays 7.5 MB 21 179,690
DBLP 65.2 MB 31 1,711,542
XMark 20.4 MB 74 319,815

Table 5.1: Characteristics of Datasets

Query Workload
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We first generate 4000 simple and 4000 branch queries without order axes for each

dataset. The simple queries are generated by randomly selecting the subsequences

of the root-to-leaf paths from the encoding table. The branch queries are produced

by merging any two of these subsequences if they have common nodes. The query

sizes (number of nodes) vary from three to 12. Duplicate queries and negative

queries are removed to obtain a reasonable average relative error.

Datasets Without Order With Order
Simple Branch Total

SSPlays 188 2328 2516 1168
DBLP 202 1013 1215 646
XMark 1358 2686 4044 1654

Table 5.2: Query Workload

Next, we generate queries with order axes by fixing the order between the

sibling nodes of the generated branch queries and then eliminating negative ones

from them. Table 5.2 shows the number of queries obtained. Note that for simple

and branch queries without order axes, we randomly select their target nodes. For

queries with order axes, we randomly select one node in the trunk part as well as

in the branch part.

5.6.1 Memory Space Requirement

We first evaluate the space requirement of the encoding table and path id binary

tree. Table 5.3 shows the results.

We observe that the sizes of encoding tables are very small for all datasets. To

show the space savings of the binary tree, we also give the size of the path id table.

The real-world datasets (SSPlays and DBLP) require very limited space even if we

do not use binary tree. This is due to their regular structures, and hence, fewer

number of distinct paths (40 and 87 respectively). In contrast, the binary tree
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is able to save about 78% of the space requirement for the XMark dataset. This

is because XMark has a large number of distinct paths, leading to long path ids.

Many large subtrees containing only left (or right) edges can be trimmed off from

the binary tree.

Dataset ](Dist Paths) Pid Size (Byte) ](Dist Pid)
SSPlays 40 5 115
DBLP 87 11 327
XMark 344 43 6811

Dataset EncTab (KB) PidTab (KB) Pid Bin-Tree (KB)
SSPlays 0.24 0.92 0.93
DBLP 0.39 3.60 2.97
XMark 2.90 299.7 67.3

Table 5.3: Space Requirement of Encoding Table and Path Id Binary Tree

Next, we examine the memory requirement of the p-histogram and o-histogram.

Figure 5.9 shows the memory usage of the p-histogram at varying intra-bucket

variance values. We see that all the datasets have similar curves. The p-histogram

memory usage decreases when the variance value is varied from 0 to 4. The dataset

XMark needs more memory space compared to the other datasets since it has more

element tags and distinct path ids.

Figure 5.10 shows that o-histogram memory usage for all three datasets de-

creases as o-histogram intra-bucket variance grows. Comparing memory curves,

the p-histogram and the o-histogram require nearly the same memory space for

the SSPlays and XMark datasets while we see a sharp increase of memory usage

from p-histogram to o-histogram for the DBLP dataset. This is because the data

distribution in DBLP is shallower and wider than in the other datasets. As a result,

the large number of sibling nodes in DBLP generates more order information to be

stored.
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5.6.2 Summary Construction Time

In this experiment, we evaluate the cost of constructing summary information for

selectivity estimation. Table 5.4 shows the construction time of the proposed so-

lution and XSketch [64] for queries without order axes. In our proposed solution,

the XMark dataset requires the longest time for the path information to be sum-

marized since it has the most number of distinct root-to-leaf paths. We observe

that the p-histogram construction time is almost negligible for all three datasets.

This is because our algorithm scans the path-frequency information only once to

build the p-histogram (Algorithm 11).

Proposed Path-Based Solution
Dataset Collecting P-Histo P-Histo

Path Time Size Construct Time
SSPlays 1.6 S 0.55 ∼ 0.75 KB <0.001 S
DBLP 78.4 S 1.4 ∼ 2.1 KB <0.001 S
XMark 246.2 S 20.4 ∼ 24.6 KB <0.001 S

XSketch
Dataset Collecting Statistics Statistics

Summary Time Size Construct Time
SSPlays 32.3 S 1.6 ∼ 2 KB 2 ∼ 3 S
DBLP 390.7 S 4.8 ∼ 5.8 KB 19 ∼ 30 S
XMark 197.7 S 90 ∼ 95 KB > 1 Week

Table 5.4: Summary Construction Time for Queries without Order Axes

In contrast, [64] shows that building an optimal XSketch model is an NP -hard

problem as introduced in Chapter 4. Hence, it utilizes a greedy refinement strategy

to incrementally add statistics on the existing summary information. As a result,

the construction time grows quickly when the statistics size increases. In Table

5.4, the construction time of the XMark dataset with the statistics size of 90-95

KB even reaches more than one week, which is unacceptable in practice. Note that

we ensure the summary size of XSketch is approximately the same as the total
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memory size of our solution, that is, the summary of the encoding table, the path

id binary tree and the p-histogram.

Dataset Collecting O-Histo O-Histo
Order Time Size Construct Time

SSPlays 2.2 S 1.2 ∼ 1.8 KB 0.002 ∼ 0.003 S
DBLP 4574.8 S 7.4 ∼ 12.7 KB 0.02 ∼ 0.03 S
XMark 2347.2 S 11 ∼ 21.3 KB 1.2 ∼ 2.1 S

Table 5.5: Summary Construction Time for Order Data

Table 5.5 presents the construction time for order data. Compared with Table

5.4, the order data collection consumes more time for all three datasets due to

the huge amount of order information that needs to be captured. Similar to the

p-histogram, the o-histogram building algorithm remains efficient because of the

simple one-scan construction method.

5.6.3 Estimation Accuracy of Queries without Order Axes

In this section, we evaluate the accuracy of the proposed solution on XPath queries

without order axes, and we compare our approach with XSketch [64].

Figure 5.11 shows the estimation accuracy for queries without order axes. The

memory usage in the x-axis corresponds to the memory usage in the y-axis of

the p-histogram in Figure 5.9. The last data points, which correspond to p-

histogram.variance = 0, show the correct selectivity obtained for simple queries. We

observe that the error of branch queries is very low (less than 7% for all datasets)

when the p-histogram variance is zero. Simple queries have a lower estimation error

than branch queries do. The larger estimation error of the branch queries arises

from the estimated data (bucket frequency). Further, branch queries may not sat-

isfy the Node Independence Assumption.
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Comparison with XSketch

We also compare the proposed estimation method with XSketch [64] for queries

without order axes. Figure 5.12 shows the total memory usage of our approach

(encoding table, path id binary tree and p-histogram). Note that the curves for

our method are shorter than that for XSketch. This is because maximal memory

usage occurs when the p-histogram variance is 0 (corresponding to the last data

points of the curves) for our method. We observe that if sufficient memory space

(corresponding to p-histogram variance from 0-2) is available, our method outper-

forms XSketch. XSketch shows more accurate results with low memory usage.

This is because our solution requires a minimum space to store the encoding table

and path id binary tree, and additional memory space (p-histogram) increases esti-

mation accuracy, leading to a significant decrease in estimation error. In contrast,

XSketch captures the summarized structure of XML data, which does entail the

minimum memory requirement that our method does. Hence, it can work under

low memory space and has a relatively flat estimation error curve.

Comparison with NR-NF Solution

This part compares the proposed path-based estimation method with the NR-

NF approach which uses a fixed V F value (V F = 2) and various UF values

(100 < UF < 1500) to control histogram construction. Figure 5.12 shows the

results. We observe that for NR-NF approach, memory usage and estimation

accuracy hit their limits when the UF value is greater than 1000. That is, the

NR-NF approach cannot further detect data skewness when the granularity of a

bucket assumes some small value (the bigger UF is, the smaller granularity is). As

a result, the NR-NF solution consumes less memory space than the p-histogram

solution does as shown in the graph. In contrast, the p-histogram method first col-
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lects detailed statistical information (pathId-frequency table) and then compresses

it by building histograms. This is totally different from the NR-NF solution,

which extracts highly summarized data and then adds complimentary data skew-

ness information. Therefore, the p-histogram method requires more memory space

and can finally reach more accurate estimation results with adequate space. We

also observe that for regular real-world datasets, the NR-NF approach is sufficient

to provide accurate selectivity estimation while the p-histogram can achieve more

satisfying results for synthetic XML data.

5.6.4 Estimation Accuracy of Queries with Order Axes

Next, we examine estimation accuracy for queries with order axes. Figure 5.14

shows the average relative error (target nodes in branch parts) when the memory

usage of the o-histograms varies. We set the variance of the p-histogram at 0, 1, 5

and 10, and plot four curves in each graph. We see that when the exact frequency

values are stored in the p-histogram (p-histogram.variance=0 ), the relative errors

for the three datasets are smaller than 10% at o-histogram variance 2 (the o-

histogram memory usages are 1.4KB, 9.8KB and 14.8KB respectively for the three

datasets), and the error rate can be further reduced to less than 6% when o-

histogram variances are 0 (the memory usages are 1.8KB, 12.7KB and 21.3KB

respectively).

The accuracy curves for the SSPlays and XMark datasets are relatively flat at

high p-histogram variance. This indicates that if the pathId-frequency information

is not accurate (high p-histogram variance values), we cannot improve the esti-

mation accuracy by setting smaller o-histogram variance (for more accurate order

information). The curves for the DBLP dataset are very flat, indicating that this

dataset is not sensitive to o-histogram variance in all values of p-histogram vari-
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Figure 5.13: P-Histogram vs. NR-NF Histogram
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ance. This is because more memory space is required to store order information

for the DBLP dataset compared to path information.

Figure 5.15 shows the estimation accuracy results when the target nodes occur

in the trunk parts of the queries. We observe that the estimation is reasonably

accurate at low p-histogram variances even if we set a high o-histogram variance

(low o-histogram memory usage). Compared with Figure 5.14, we can achieve lower

estimation error for the SSPlays and XMark datasets at low p-histogram variance

values and low o-histogram memory usage (see Figure 5.15). This is because we use

Equation 5.5 to estimate the selectivity which is the smallest value of the results

of two order-based and one non-order-based queries. With the low p-histogram

variance value, we can obtain accurate results for queries without order axes, which

compensates for the loss of detailed order information.

Overall, the experimental results demonstrate the effectiveness of the proposed

techniques which yield low estimation error while requiring a very limited amount

of memory. We also show that the proposed techniques typically perform well when

p-histogram variance is set at 0-2 and o-histogram variance is set at 0-4.

5.7 Conclusion

In this chapter, we design a uniform framework to estimate the selectivity of both

XPath expressions with and without order axes. We capture the path information

where the element occurs and utilize a join based method to estimate queries with-

out order axes. The order information of each element tag is summarized with the

use of a path-order table. We design two novel histograms, namely, the p-histogram

and the o-histogram, to summarize the path information and order information re-

spectively. We carry out extensive experiments to evaluate the proposed method.
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For queries without order axes, our proposed solution shows it has more accurate

estimation results with sufficient available memory space and needs much more

less summary construction time compared with existing approach. Moreover, to

the best of our knowledge, this is the first work that provides estimation solution for

queries with order axes. Experimental evaluation on both real-world and synthetic

datasets clearly demonstrates the effectiveness of our proposed approach.
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CHAPTER 6

Conclusion

With the development of the Internet, the World Wide Web is rapidly embracing

XML as a new standard for data representation and exchange on the Web. As

a result, XML query optimization becomes one of the most active and exciting

research areas in the database community.

In XML query optimization systems, all query processing solutions rely on a

pattern-specification language, such as XPath [10] or XQuery [7], that allows path

navigation and branching through the XML data in order to reach the desired data

elements. Building effective index structure to speed up XML query evaluation

naturally becomes the core of query processing approaches. On the other hand,

optimizing such queries depends crucially on the existence of concise structures that

enable accurate compile-time selectivity estimates for complex path expressions

over XML data. This thesis has described novel approaches for these two important

components in the XML query optimization system: XML query processing and

selectivity estimation.
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6.1 Summary of Main Findings

This section summarizes the main findings of the thesis. We discuss the contribu-

tions to query processing and selectivity estimation respectively.

6.1.1 XML Query Processing

Among the existing techniques to evaluate XML queries, structural join is the de-

facto standard in that this method fundamentally solves the problem of specifying

the containment relationship between nodes by utilizing join operation. Based on

the structural join method, numerous approaches to processing XML queries have

been developed, including the stack-tree [17], the B+-tree [57], the R-tree [57],

the XB-tree [19], etc. However, all these approaches fail to produce a satisfying

performance, especially for Internet-scale XML data. This motivates the proposal

of a more efficient solution for XML query processing.

Based on the observation that the paths in an XML document play crucial

roles in connecting elements, we have designed a novel XML labeling scheme and

a corresponding path join algorithm. The path-based labeling scheme associates

each element in an XML document with a pair (path id, node id) while the path

join algorithm eliminates irrelevant path types which do not contribute to the final

result sets.

We have performed extensive experiments to check the query performance of the

proposed path-based solution. The comparison of the proposed approach against

the state-of-the-art access method, the XB-tree based holistic join TwigStack [19]

and the path index approach BLAS [25] demonstrate with certainty that our pro-

posed path-based solution significantly outperforms the other two methods due to

the ability of path join to efficiently eliminate unnecessary path types. This can be
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explained as follows:

First, path list size is much smaller than node list size. This is expected since

path ids capture summarized path information while node ids specify the detail of

each node. The small size of path lists guarantees the low cost of path join.

Second, path ids essentially capture the information of paths in which the el-

ement nodes occur. As discussed in the algorithm, path join generates sets of

elements that are as minimal as possible. In the case of simple queries, the path

types associated with element nodes can be reduced to an exact path id set. For

branch queries, path id join generates candidate element sets that are smaller than

those generated by BLAS [25].

6.1.2 XML Query Selectivity Estimation

There is a long stream of literature on XML query selectivity estimation. Early

work in the area supports a limited class of XML queries, simple queries. Examples

of such work include the Markov-based solutions [15, 62, 58], the path-tree [15], and

position histogram [83] etc. The more recent work has focused on the selectivity

estimation for branch queries (twig queries). Examples include the solution in [26]

and the XSketch family [64, 65, 66]. However, XSketch family suffers the problem

of expensive construction time due to the complicated underlying data structure

employed.

In this thesis, we have proposed two approaches of XML query selectivity

estimation. The first solution extracts two pieces of summarized information:

Node Ratio and Node Factor from distinct parent-child paths. Given an XML

query, we have designed an effective and efficient method to aggregate the sum-

marized information based on the proper Basic Path Independence Assumption

to calculate query selectivity. The experimental results show that this solution
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requires very little memory space, but yet provide accurate estimation results for

regularly distributed real-world XML data. For skewed XML data, histograms are

built to effectively capture the distribution of the underlying data.

The second estimation approach utilizes the path-based labeling scheme pro-

posed for query processing to collect the statistical information of XML nodes.

Compared with the first solution, this approach consumes more memory space but

provides more accurate estimation results. In addition, this solution, to the best of

our knowledge, is the first work to address the problem of estimating XML queries

with order-based axes. We have designed a succinct data structure, o-histogram to

capture the huge order information existing in XML data. Extensive experiments

clearly demonstrate the efficiency of the proposed solution.

6.2 Future Work

While this thesis has presented efficient approaches to XML query processing and

selectivity estimation, a number of issues need to be further investigated:

• First, three approaches proposed in the thesis have focused on tree structured

XML data, and further study can be conducted to extend these solutions to

handle graph-based XML models. Since the graph models of XML data

contain more information (ID references) than tree models do, we expect the

proposed path-based labeling scheme to be revised to collect ID references

information between XML element nodes. The path information collected

can help in the processing of XML queries with ID references.

• Second, both query selectivity estimators proposed in the thesis have focused

on XML queries without value predicates. This is because both solutions do

not capture the distribution information of text values. To overcome this



172

problem, text value distribution information should be properly summarized

and combined into the selectivity estimation methods.

• Third, one open problem of selectivity estimation is how XML queries with

aggregation functions should be handled. For example, we may want to find

all the professors in the university who have more than 10 publications in the

past year. This query contains the aggregation function “count()”, and all

existing XML estimation methods cannot process this case. To handle this

class of queries, we should capture more detailed distribution information of

XML elements.
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