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SUMMARY 

 
 

 
A PD is a localized electrical discharge that partially bridges the insulation between 

conductors. It causes progressive deterioration of the insulation and eventually leads to 

catastrophic failure of the equipment. Measurement and identification of PD signal are 

thus crucial for the safe operation and condition-based maintenance of Gas-insulated 

Substations (GIS). However, high-level noises present in the signals limit the accuracy 

of diagnoses from such measurements. Hence, denoizing of PD signals is usually the 

first issue to be accomplished during PD analysis and diagnosis.  

 

In the first part of this thesis, a “wavelet-packet” based denoizing method is developed 

to effectively suppress the white noises. A novel variance-based criterion is employed 

to select the most significant frequency bands for noise reduction. Parameters 

associated with the denoizing scheme are optimally selected using genetic algorithm.  

 

Using the proposed method, successful and robust denoizing is achieved for PD 

signals having various noise levels. Successful restoration of the original waveforms 

enables the extraction of reliable features for PD identification.  

 

Traditionally, phase-resolved methods are employed for PD source recognition and 

corona noise discrimination. Although the methods have been extensively applied to 

diagnose the insulation integrity of high-voltage equipments such as generator, 

transformer and cable, they have significant limitations when applied to GIS in terms 

ix 



of speed and accuracy. Therefore, new methods are developed in the second part of 

this thesis to solve the problems with phase-resolved methods. 

 

To improve the efficiency and accuracy of PD identification, various PD features are 

extracted from the measured UHF signals. The first category of PD features, namely 

ICA_Feature is extracted using Independent Component Analysis (ICA). The method 

is seen to reduce the length of the feature vector significantly. Thus improvement on 

the efficiency of the classification is achieved. Using ICA_Feature, successful 

identification of PD is achieved with limitation of small “between-class” margins due 

to the time-domain nature of ICA.  

 

Features extracted using wavelet packet transform (WPT_Feature) form the second 

category of PD features. A statistical criterion, known as J criterion is employed to 

ensure that the features with the most discriminative power are selected. Taking 

advantage of the additional frequency information equipped with wavelet packet 

transform, WPT_Feature exhibits a large margin between feature clusters of different 

classes, which indicates good classification performance.  

 

Owing to the compactness and high quality of the extracted features, successful and 

robust PD identification is achieved using a very simple MLP network. Particularly, 

MLP with WPT-based pre-processing achieves 100% correct classification on test and 

on data obtained from different PD to sensor distances. This verifies the robustness of 

the WPT-based feature extraction. Moreover, both the WPT and ICA based PD 

diagnostic methods are potentially suitable for online applications. 
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CHAPTER 1⎯ INTRODUCTION 
 

CHAPTER 1 

INTRODUCTION 

 

The background of this research is introduced first. The importance of partial discharge 

(PD) detection, PD measurement system in gas-insulated-substation (GIS), various 

noise reduction methods for PD signals and the methods for PD source recognition are 

reviewed.  The objectives, scope and contributions to knowledge of the research are 

described. Finally, an outline of the thesis is given.  
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CHAPTER 1⎯ INTRODUCTION 

1.1 BACKGROUND OF THE RESEARCH 

A significant trend in the development of electrical power equipment over the years 

has been the increase of equipment operating voltage. This has given rise to the need 

for more reliable insulation systems and subsequently the need to detect the 

degradation of such systems through diagnostic measurements. In the past couple of 

years, increasing attention has been paid to the development of such tools. Among the 

various diagnostic techniques, partial discharge (PD) measurement is generally 

considered crucial for condition-based maintenance, as it is nondestructive, non-

intrusive and can reflect the overall integrity of the insulation system. Thus, a good 

understanding of the PD phenomenon is the basis of this diagnostic system. 

 

A PD is a localized electrical discharge that partially bridges the insulation between 

conductors [1]. PD may happen in a cavity, in a solid insulating material, on a surface 

or around a sharp edge subjected to a high voltage. An electrical stress that exceeds the 

local field strength of insulation may cause the formation of PD. Each discharge event 

damages the insulation material through the impact of high-energy electrons or 

accelerated ions. This could, with time, lead to the catastrophic failure of the 

equipment. PD occurring in insulation systems may have different natures depending 

on the type of defect. Since the degree of harmfulness of PD depends on its nature [2], 

recognition of the PD source is fundamental in insulation system diagnosis. 
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CHAPTER 1⎯ INTRODUCTION 
1.1.1 Introduction to Gas-insulated Substation 

Over the last 30 years, gas-insulated substations (GIS) have been used increasingly in 

transmission systems due to their many advantages over conventional substations 

which include space saving and flexible design, less field construction work resulting 

in shorter installation time, reduced maintenance, higher reliability and safety, and 

excellent seismic tolerance characteristics. Aesthetics of a GIS are far superior to that 

of a conventional substation due to its substantially smaller size. Therefore, GIS has 

become an indispensable part of transmission networks for many years. Fig. 1.1 shows 

an indoor GIS of 230 kV located at Senoko Road, Singapore. 

 

 

Fig. 1.1 A 230 kV indoor GIS in Singapore 

 

GIS is a very complicated system that consists of busbars, arresters, circuit breakers, 

current and potential transformers, and other auxiliary components as illustrated in Fig. 
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CHAPTER 1⎯ INTRODUCTION 
1.2. These components are enclosed in a grounded metal enclosure which is filled with 

sulfur hexafluoride (SF6).  Epoxy resin spacers are used to hold the conductor in place 

within the enclosure as shown in Fig. 1.3.  

 

 

Fig. 1.2 Sectional view of the structure of a 300 kV GIS 

 

High Voltage Conductor

Grounded Enclosure

SF6 Gas Resin Spacer  

Fig.1.3 GIS test chamber 
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CHAPTER 1⎯ INTRODUCTION 
 

1.1.2 Condition Monitoring of Gas-insulated Substation 

It is crucial to maintain electrical equipment in good operating condition and prevent 

failures. Traditionally, routine preventive maintenance is performed for such purposes.  

With the increasing demands on the reliability of power supply, the role of condition 

monitoring systems become more important, as reliance on preventive maintenance 

done at a predetermined time or operating interval will be reduced and maintenance is 

only carried out when the condition of the electrical equipment warrants intervention. 

This will give the user financial benefits of reduced life cycle costs, improved 

availability due to fault prevention and the ability to plan for any outages required for 

maintenance [77].  

 

Traditionally, various methods have been developed for condition monitoring of 

electrical equipment such as transformer, generator and GIS. Gas-in-oil analysis and 

on load tap changer monitoring are the key techniques for transformer condition 

monitoring [78]. The classical monitoring techniques applied in power generators 

include vibration and air-gap flux monitoring [79]. For GIS, the parameters to be 

monitored include partial discharge, gas density, gas quality, voltage, current, circuit 

breaker (CB) position, CB contact erosion, CB spring status and surge arrester leakage 

current. Among these parameters, CB position and contact erosion have been 

monitored to prevent failure [80-81].  
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In recent years, there has been a great deal of new development in GIS monitoring 

techniques, among which partial discharge detection [3-7] is found to be the most 

important method as PD is an indicator of all dielectric failures in the initial stages. 

This thesis focuses on the detection and identification of PD activities in GIS. 

 

1.1.3 PD in SF6  

Sulfur hexafluoride (SF6) gas has been used as a popular insulation material since its 

dielectric strength is twice as good as air and it also offers excellent thermal and arc 

interruption characteristics [28]. However, conducting particles may cause PD in SF6 

and lower the breakdown voltage of a GIS considerably. The likely causes of such 

contamination are debris left from the manufacturing and assembly process, 

mechanical abrasion, movement of the central conductor under load cycling and 

vibration during shipment. Even with a very high level of quality control, it appears 

that a certain level of particulate contamination is unavoidable. Therefore, 

investigation of PD activities in SF6 is imperative for the condition monitoring of GIS. 

 

The common defects in GIS include free conducting particles, surface contamination 

on insulating spacers and protrusions on conductor [7-10] as illustrated in Fig. 1.4. 

These defects enhance the local electric field, leading to partial discharge and 

ultimately a complete breakdown. Corona, which is regarded as an important source of 

noise is also reviewed in this section. 
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 7

 

Fig. 1.4 Common defects in GIS. (1) protrusion on conductor, (2) free conducting 
particle, (3) particle on spacer surface. 

 

Free Conducting Particles 

Contamination of GIS with metallic particles occurs either in the field, during 

operation or during assembly in the plant. The particles can reduce the breakdown 

voltage significantly due to partial discharge. Therefore, it is of great interest to 

identify such defects through analysis of PD signals. 

 

When a free conducting particle, such as a piece of swarf, is exposed to the electric 

field in a GIS, it becomes charged and experiences an electrostatic force. The 

electrostatic force may be sufficient to overcome the particle’s weight, so that the 

particle moves under the combined influence of the electric field and gravity. The 

particle may return to the enclosure at any point on the power frequency wave and a 

“dancing” motion is observed. When the particle moves, it periodically makes contact 

with the grounded enclosure, and a discharge occurs with every touch. The breakdown 
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occurs when the particle approaches, but is not in contact with the busbar. There is a 

critical particle-to-busbar spacing where the system breakdown voltage is a minimum. 

Apart from the movement of the particle, there are a number of factors that affect the 

degree of harmfulness of a free particle, such as the shape and size of the particle, 

applied voltage level, etc. Long, thin and wire-like particles are more likely to trigger 

breakdown than spherical particles of the same material [8].  

 

As breakdown will only occur when a particle is lifted and approaches the busbar, 

various techniques have been developed for permanently deactivating or removing 

particles from the active region during high voltage testing [85, 86]. For instance, an 

adhesive can be employed at the low field enclosure in conjunction with a low field 

trap. Other techniques for preventing particle movement include applying insulating 

coatings on the enclosure, using magnetic fields and coating the particles with a 

dielectric layer [86]. Although probability of breakdown is reduced due to the above-

mentioned measures which decrease the number of free particles in the chamber, 

particle-initiated breakdown is still unavoidable in GIS due to the particles generated 

during operation. 

 

Particle on Spacer Surface 

A free metallic particle tends to migrate towards a spacer surface under the influence 

of the applied field [30]. Electrostatic forces or grease on the particle may then attract 

the particle to the surface, which could lead to a partial discharge. Thus, the gas-

insulator interface is often considered as the weak point in a high voltage system [29]. 

During the design of such a system, the maximum operating voltage is often limited by 
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the voltage rating of insulating supports rather than the dielectric strength of the SF6 

gas. This voltage rating is highly dependent on surface conditions and the presence of 

any contamination which may initiate partial discharge. Sources of contamination 

include fixed metallic particles, grease and trapped charge [10]. 

 

A particle on the spacer is in contact with a surface that will store charge near the 

particle ends. The accumulated charges can then lead to high field concentration on the 

surface of spacer. Therefore, particles on the spacer can reduce the flashover voltage 

significantly.  

 

Protrusion on Conductor 

A sharp metallic protrusion on a busbar enhances the local electric field. If the local 

electric field exceeds some critical value, there is a localized breakdown of the SF6 gas 

which causes discharges that could lead to complete breakdown. This type of defect is 

usually considered to be the most critical one that defines the critical PD level [29].  

 

For a protrusion on the busbar, three distinct phases of discharge activities can be 

identified namely diffuse glow, streamer and leader discharge. However, the glow 

discharge is not detectable using UHF measurement as the PD current magnitude is 

small and the frequency components are too low for UHF excitation. On the other hand, 

leader discharge is only observed at high voltages prior to breakdown. Hence, PD data 

is measured from streamer phase in this work. 
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Air Corona 

Corona is a discharge phenomenon that is characterized by the complex ionization 

which occurs in the air surrounding high voltage transmission line conductors outside 

the GIS at sufficiently high levels of conductor surface electric field. It is usually 

accompanied by a number of observable effects, such as visible light, audible noise, 

electric current, energy loss, radio interference, mechanical vibrations, and chemical 

reactions. Corona signals propagate through the busbar and are detected by the sensors.  

 

1.1.4 PD Measurement in Gas-insulated Substation 

It is well known that GIS breakdown is invariably preceded by PD activities inside the 

GIS chamber. Therefore, detection and identification of PD activities allow action to 

be taken at the appropriate time so that potential failure may be prevented. To ensure 

safety operation, the GIS should be checked for partial discharge during its 

commissioning tests, and then monitored continuously while in service to reveal any 

potential fault condition. 

 

Associated with PD activity in GIS are a number of phenomena which may be 

monitored. These include light output, chemical by-products, acoustic emission, 

electrical current and UHF resonance. In the acoustic method, vibration transducers are 

attached on the outside of the GIS chambers. They are then able to detect the pressure 

waves caused by PD. However, too many transducers would be needed if a complete 

GIS is to be monitored in service. Alternatively, optical measurements have the 

advantage of great sensitivity, but they are unsuited for practical use because of the 

large number of optical couples needed. Efforts have also been made on detecting 
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chemical changes in SF6, but this technique appears to be too insensitive for PD 

detection in GIS [3].  

 

For many years, the conventional electrical method, IEC 270, has been well developed 

and widely used in detecting PD activities in cables, transformers, generators, and 

other equipment. The typical frequency range of this type of measurement is 40 kHz to 

1 MHz. Fig. 1.5 shows the typical measurement circuit of the IEC 270 method. A 

coupling capacitor is placed in parallel with the test object and the discharge signals 

are measured across the external impedance.  

 

 
(a) 

 
(b) 

Fig. 1.5 PD measurement circuit of IEC 270 method 
(a) Coupling device in series with the coupling capacitor;  (b) Coupling device in 

series with the test object 
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U~: High-voltage supply 

Zmi: Input impedance of measuring system 

CC: Connecting cable 

OL: Optical link 

Ca: Test object 

Ck: Coupling capacitor 

CD: Coupling device 

MI: Measuring instrument 

Z: filter 

 

One of the main advantages of this method is that a very broad scale of experience has 

been obtained through years of practical applications. In addition, the measurement can 

be calibrated to assure that the same result is obtained from two different systems that 

are used to measure the same sample. However, there are three major drawbacks 

associated with this method which make it inappropriate to be applied in GIS [3-6]. 

Firstly, the IEC 270 method needs an external coupling capacitor which is not 

normally provided in GIS. Hence, the method can not be employed on the GIS in 

service. Secondly, the sensitivity of the method depends on the ratio of the coupling 

capacitance to the capacitance of the test object. The total capacitance of a GIS is large. 

Therefore, the method has insufficient sensitivity for a complete GIS. Thirdly, such a 

low frequency method is not suitable for field application on GIS as a result of 

excessive interferences as shown in Fig. 1.6. 
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Fig. 1.6 Various noises travel through the GIS conductor via bushing 

 

To address the abovementioned issues, ultra-high-frequency (UHF) method was 

introduced for PD measurement in GIS [2, 5-6] and is adopted in this study. The UHF 

ranges from 300 MHz to 1.5 GHz. This technique involves the use of coupling sensors 

for extracting the UHF resonance signals that are excited by PD current occurring at a 

defect site within the GIS. Since the UHF signals propagate throughout the GIS with 

relatively little attenuation, it is sufficient to fit sensors at intervals of about 20 m along 

the chambers to achieve a sufficiently high sensitivity. In addition, UHF method 

possesses better noise suppression capability than IEC 270 method due to its high 

operating frequency. According to the time domain properties, the noises encountered 

during on-site PD measurement in GIS can be broadly divided into three classes: 

sinusoidal continuous noise, white noise and stochastic pulse-shaped noise [11-12]. 

The sinusoidal continuous noises include radio broadcasting, power frequency, 

harmonic, and so on. These interferences have a frequency range from power 



CHAPTER 1⎯ INTRODUCTION 
frequency up to VHF ranges (30 MHz to 300 MHz). However, they do not produce 

electromagnetic waves within UHF ranges (300 MHz to 1.5 GHz). Thus sinusoidal 

continuous noises can not be detected by the UHF sensor and are not considered in this 

study. . However, the other two types of noise contain both low frequency and high 

frequency components. Thus, advanced noise reduction techniques have to be 

developed for suppressing the residual noises in UHF signals.  

 

1.1.5 Overview of the UHF PD Monitoring System for GIS 

Based on UHF PD measurement, a PD monitoring system usually consists of several 

functional components as shown in Fig. 1.7. The function of each component is briefly 

described as follows [82]: 

 

1. UHF Measurement.  

Data acquisition is usually performed through internal or external UHF sensors. 

The recorded data are then transferred and stored on a PC hard drive for further 

analysis.  

2. Noise reduction.  

It is well-known that environmental noises present on the GIS site would cause 

distortion in the measured signals. Therefore, sufficient noise suppression is a 

pre-requisite for any on-site PD evaluation and analysis.  

3. Partial discharge fingerprints construction. 
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To achieve effective insulation diagnosis, it is highly desired to extract 

discriminative features from the original UHF signals. Examples of PD 

fingerprints include phase-resolved PD patterns and point on wave.  

4.  Air corona discrimination. 

Air corona is the most important form of interference in the PD monitoring 

system of GIS. Therefore, discrimination between SF6 PD and air corona is the 

basis for PD source recognition and location.  

5. PD source recognition. 

The degree of harmfulness is dependent on the type of defect. Thus, identifying 

the source of SF6 PD is crucial for risk assessment. 

6. PD location. 

Once a critical SF6 PD is detected, it should be located quickly so that it can be 

corrected in time.  

7. Alarm or message. 

When a harmful PD is detected, it is desired that some form of alarm is 

triggered, such as sound or light. In the case of recognition of source and 

location, a message may be displayed, indicating the type of defect or the 

distance between PD site and the measurement point. Based on the message 

and the operating conditions, risk assessment can be done by an engineer or an 

expert system that have the complete knowledge of the GIS. 

 

In many commercial PD monitoring systems for GIS, some of the components, such as 

PD location are not included. This may be due to the lack of practical methods and the 
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complicated structures of GIS. In such commercial systems, the UHF signals created 

by partial discharge are detected by couplers positioned throughout the substation. The 

signals are then passed via coaxial cables to a local processing unit where they are 

amplified, filtered and digitized. Subsequently, the processed data is transferred and 

saved in a central PC, where a PD diagnostic software is usually installed. By running 

the software, various PD patterns are built for data obtained from each sensor and used 

by an experienced engineer or artificial intelligence software to assess the risk of 

defects in GIS. 

 

In this thesis, various components of a PD monitoring system, namely noise reduction, 

feature extraction, air corona discrimination and source recognition have been featured 

as illustrated in Fig. 1.7.  

 

 

Fig. 1.7 A typical PD monitoring system 
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1.1.6 The Necessity of Noise Reduction and Discrimination 

Although an increase of the signal to noise ratio (SNR) can be achieved to some degree 

by using UHF measurement as discussed in Section 1.1.4, the noises present in the 

signals are still too massive to achieve accurate diagnosis from such measurements 

[23]. This limitation can cause delays in employing appropriate remedial measures, 

leading to further deterioration of the GIS insulation or a total breakdown.  

 

White noises widely exist in the high voltage laboratory and on site. They are Gaussian 

distributed in time domain and uniformly distributed in frequency domain. Therefore, 

it is impossible to effectively eliminate white noise using any time or frequency 

methods. Fig. 1.8 shows a measured UHF PD signal buried in excessive white noise. It 

can be seen that the PD signal has been distorted and it is impossible to gauge the 

condition of the insulation based on such a signal.  

 

 

Fig. 1.8 Partial discharge signal buried in white noises 
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Air corona occurs in the form of stochastic pulse-shaped noise at the bushing of the 

GIS. It is therefore not so harmful to GIS insulation. However, the signal is usually so 

intense that enough UHF components are fed into the busbar to give an unacceptably 

high noise level. It is difficult to distinguish this kind of interference due to the 

similarities between SF6 PD and air corona. The amplitudes of corona signals are often 

comparable to or even bigger than those of PD as illustrated in Fig. 1.9. Therefore, 

discrimination of air corona is crucial for PD detection and source recognition. 

 

 

Fig. 1.9 Comparison of SF6 PD and air corona. (a) SF6 PD; (b) air corona. 
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1.1.7 The Necessity of PD Source Recognition 

When PD is detected in the insulation system of GIS, it is crucial to identify the type of 

the defect promptly, as the degree of harmfulness of PD is dependent on its source [87].  

 

 As distinct from partial discharge occurring in solid or liquid dielectrics for generators 

and transformers, PD in SF6 exhibits unique breakdown characteristics as illustrated in 

Fig. 1.10. It can be seen that both PD inception and breakdown voltage increase with 

the gas pressure in region I. In region II, breakdown voltage decreases with increasing 

pressure, while inception voltage keeps going up. Above a critical pressure Pc, 

breakdown voltage is seen to coincide with inception voltage, meaning that PD in SF6 

leads to breakdown very fast. This suggests that the PD diagnostic system must be able 

to detect and identify the PD source in time so that breakdown can be prevented. 

However, the widely adopted PD diagnosis method, namely phase-resolved PD (PRPD) 

pattern analysis requires a long time for signal measurement and formation of PRPD 

patterns. Thus, it may not meet the requirement for GIS application. In addition, this 

approach can not be applied to DC power transmission system, where phase reference 

is not available. With the increasing application of DC transmission, PD identification 

in such systems becomes more and more important. There is therefore an urgent need 

to develop a new method for fast and reliable classification of SF6 PD. Detailed review 

of PRPD pattern analysis and its application is given in Section 1.3.  
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Fig. 1.10 Breakdown characteristics of SF6 

 

1.2 REVIEW OF NOISE REDUCTION AND DISCRIMINATION 

In this section, previous works on reduction of white noise and discrimination of 

corona are reviewed.  

 

1.2.1 Removal of White Noise 

Firstly, methods of eliminating white noises are reviewed. In this thesis, denoizing 

refers to the process of suppressing white noises.  

 

The various techniques for white noise reduction include filtering, spectral analysis 

and Wavelet Transform (WT) [13], among which filtering and spectral analysis are 
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based on Fast Fourier Transform (FFT). Fast Fourier Transform and its inverse give a 

one-to-one relationship between the time domain and the frequency domain [14]. 

Although the spectral content of the signal is easily obtained using the FFT, 

information in time is however lost. Fig. 1.11 shows the FFT of a measured PD signal. 

As illustrated in Fig. 1.11 (b), FFT only gives the frequency components of the PD 

signal. Since white noises are uniform distributed in frequency domain, it is impossible 

to remove white noises using FFT without significant distortion in the original PD 

signal. Therefore, additional time information is crucial for PD signal denoizing and 

detection due to its non-periodic and fast transient waveform in time domain.   

 

 

Fig. 1.11 Fast Fourier Transform of UHF PD signal (a) PD signal; (b) FFT of (a). 

 

In recent years, wavelet transform has been proposed as an alternative to Fourier 
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Transform [13], [15-17] for PD signal denoizing. Wavelets are functions that satisfy 

certain mathematical requirements and are used in representing data or other functions. 

Using their practical implementation known as wavelet filter banks, discrete wavelet 

transform (DWT) maps the data into different frequency components, and then studies 

each component with a resolution matched to its decomposition level. As illustrated in 

Fig. 1.12, DWT processes PD signal at different time-frequency resolutions so that 

both frequency and time characteristics can be studied simultaneously. In addition, the 

energy of PD signal is concentrated in a few large decomposition coefficients, while 

the energy of white noise is spread among all coefficients in wavelet domain, resulting 

in small coefficients [83, 84]. Therefore, it is feasible to remove white noises in 

wavelet domain with little distortion by employing a thresholding method.  DWT thus 

suppresses white noise within the PD signals more effectively than Fourier based 

methods.  

 

Although DWT has advantages over traditional Fourier methods in analyzing PD 

signals, there is still a drawback with DWT, namely the poor frequency resolution at 

high frequencies as shown in Fig. 1.12. It can be seen that only the low frequency 

components are decomposed further at each level. The high frequency components, 

such as “D1”, are however used for denoizing without further decomposition. It has 

therefore caused difficulties in estimating the noise components at high-frequency 

subbands due to the low frequency resolution. In particular, when the measured PD 

signal has a very low signal to noise ratio (SNR), the wavelet transform based methods 

could have a poor performance. On the other hand, Wavelet Packet Transform (WPT) 

overcomes the shortcoming with DWT by further splitting the high frequency 

components as well, which gives much finer resolution in high frequencies. 
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Therefore, a WPT-based method that automatically determines noise levels in various 

frequency components is developed in this research project to address the issues with 

DWT-based methods as reviewed below. 

 

 

Fig. 1.12 Discrete Wavelet Transform of PD signal 

 

Various denoizing methods are discussed in [13] with a special focus upon the 

wavelet-based method. The method first decomposes the PD signal into several detail 

components, each containing a set of decomposition coefficients. Subsequently, 

components that are dominated by noises are discarded. Thresholding is then 

performed on the decomposition coefficients of retained components, followed by the 

reconstruction of the denoized signal. Although the feasibility of applying wavelet 

transform to PD signal denoizing is studied, the denoizing performance in terms of 

signal-to-noise ratio and distortion is however not fully investigated as only graphic 
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results are presented without any numerical calculation. Furthermore, the selection of 

detail components for reconstruction is based on observation, which is not robust for 

all applications. Therefore, an automated method should be developed.    

 

In [15], a DWT-based approach is employed to denoise PD signals. A global threshold 

that based on standard deviation is used to remove noise components in all frequency 

bands. However, noise components at various frequency bands can have different 

standard deviation. Therefore, the method with a global threshold can encounter 

problems when applied on-site.   

 

In [16-17], the issues associated with the wavelet-based PD denoizing methods, such 

as wavelet selection and threshold estimation are investigated. However, one threshold 

is applied to all detail coefficients at the first decomposition level that corresponds to 

high-frequency bands. Noise levels corresponding to high-frequency bands could be 

different. Thus, further investigation of time-frequency features at high-frequency 

bands should be required for PD signal denoizing.  

 

 

1.2.2 Discrimination of Corona Interference 

Discrimination of corona from SF6 PD is another important issue to be addressed. In 

[18-19], a wavelet-based method is employed to suppress the corona noise. The 

method first decomposes the signal measured from IEC 270 method into components 

corresponding to non-overlapping frequency bands. Subsequently, the resulted 

components are examined for PD or corona domination by observation or a specific 

criterion derived from the frequency characteristics of PD and corona. Results show 
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that the method works well on the data obtained from the low-frequency measurement. 

However, the frequency contents of PD and corona signals obtained from UHF 

measurement are overlapped. This means that it is difficult to determine whether a 

component is dominated by PD or corona. Therefore, the method may not work on 

UHF resonance signal. Moreover, the method can not be applied online as the 

discrimination process is not automatic.  

 

In [20], a method based on phase-resolved pulse-height analysis is proposed to 

separate corona from PD signal. The method is however not applicable to UHF signal, 

as the fingerprint is derived from PD charge which is not available from UHF 

measurement.  

 

Methods based on neural networks are proposed in [21-23] to classify PD and corona.  

Using the measured signals or phase-resolved PD patterns as input, various neural 

network structures are constructed and trained for discrimination of corona. These 

methods however do not provide a detailed discussion on feature extraction, which is 

crucial for neural network design and its classification performance. Moreover, the 

neural networks employed in [21-23] have very complicated structures, which prevent 

them from online application due to the slow response. Hence, there comes the need to 

develop a new scheme for discrimination of corona and PD.  
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1.3 REVIEW OF PARTIAL DISCHARGE SOURCE 

RECOGNITION 

Traditionally, the approach using phase-resolved PD (PRPD) patterns has been widely 

employed to monitor partial discharge activities [23-25]. Here the total charge 

transferred during a discharge and the time or ac phase at which the discharge occurs 

are measured. In addition, the total number of PD events occurring within a time 

interval is counted. Based on these parameters, PRPD pattern analysis investigates the 

PD magnitude and/or PD repetition rate in relation to voltage ac cycle, which is 

equally divided into a certain number of windows. Typical PRPD patterns, 

accumulated over a number of cycles, are shown in Figs. 1.13 and 1.14.  
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Fig. 1.13 Two-dimensional PRPD patterns (a) PD repetition rate against phase; (b) PD 
amplitude against phase 

 

 

Fig. 1.14 Three-dimensional PRPD pattern 
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A variation of PRPD known as point-on-wave (POW) analysis is also commonly 

employed in UHF PD source recognition in GIS [3, 26-27]. POW is different from 

PRPD in that only a specified frequency range is scanned for PD occurrence. In other 

words, it is a narrow-band approach. The PD amplitude is then recorded with respect 

to the phase angle to build up the POW over a large number of power cycles.    

 

In [3, 23-27], features are extracted from the PRPD or POW patterns using envelop 

extraction, statistical methods, orthogonal transforms, unsupervised neural networks or 

fractals method. Subsequently, various classification schemes are developed to identify 

defects based on the extracted features. However, results of these methods show large 

classification error due to the variety of the patterns produced by defects of the same 

type as shown in [26]. Another major drawback with these approaches is that they 

require signals measured within a few seconds or even longer to form the PRPD or 

POW patterns before feature extraction and classification. On the other hand, PD can 

progress very quickly from initiation to breakdown in GIS, particularly in high-

pressure SF6 for working voltages at 300 kV and above. In addition, more than one 

type of PD can take place in the GIS chamber during the forming PRPD or POW 

patterns [3]. This has resulted in inaccurate PRPD or POW patterns and lead to further 

misclassification. There is therefore an urgent need to develop a fast and reliable 

diagnosis method for source recognition of PD.  
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1.4 OBJECTIVES AND CONTRIBUTIONS OF THE THESIS 

Through the background review, the traditional denoizing and source recognition 

methods are considered to be insufficient to provide fast and reliable diagnosis of 

insulation system in GIS. Thus, in contrast to the PRPD- or POW-based methods, a 

novel scheme based on UHF signals with duration of several hundred nanoseconds is 

developed in this thesis as shown in Fig. 1.15. As data are collected in much shorter 

windows, the possibility of encountering more than one type of discharge signals 

during measurement and subsequent classification is very small. In addition, the short 

data acquisition time enables the development of fast PD diagnosis system which can 

be potentially applied online. Therefore, the problems with PRPD- and POW-based 

methods are basically solved through the use of UHF signal directly.  

 

1.4.1 Objectives of the Project 

As reviewed in Section 1.1.3, it is hard to achieve reliable PD diagnosis if signals with 

high level of white noises are employed in the classification process. Regarding the 

issue of corona noise discrimination, since it is a classification problem in nature, it 

can be considered together with the source recognition of SF6 PD. Moreover, the PD 

fingerprints derived from UHF signals have to be established as little work has been 

done in this area. Therefore, following objectives are set for this thesis: 

 

(1) To develop an effective denoizing method that is able to suppress excessive 

white noise and restore the original PD signal with little distortion. 

(2) To establish a wide range of PD parameters from UHF signals as a solid base 

for current and future work on PD pattern recognition. 
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(3) To select features with the largest discriminating power to form compact and 

high-quality PD fingerprints, so that the speed and classification performance 

are improved significantly. 

(4) To investigate the robustness of the PD features on various measuring 

conditions. 

 

As UHF PD measurement is employed in this research instead of the traditional IEC 

270 measurement, modeling of the UHF PD signal involves modeling of signal 

propagation in GIS using numerical transient electromagnetic field analysis, which is 

another area of research. Therefore, modeling of UHF PD signal is not included in this 

research. 
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Fig. 1.15 PD diagnosis procedures 
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1.4.2  Author’s Main Contributions 

The contributions of this project are summarized as follows: 

 

(1) To build a novel PD diagnosis software system based on UHF signals with 

short duration, so that the speed and classification accuracy can be greatly 

improved. The new method is also promising for other applications such as PD 

diagnosis in DC power transmission system, where phase reference is not 

available. All the algorithms developed in this thesis have been tested with 256 

sets of data measured in the laboratory of TMT&D Co. 

(2) To develop a novel wavelet-packet-based method for effective PD signals 

denoizing.  

(3) To optimize the parameters of wavelet-packet-based denoizing method to 

achieve best denoizing performance. 

(4) To introduce new waveform-based PD fingerprints to classify PD source of 

different types. 

 

1.5 OUTLINE OF THE THESIS 

The overall structure of this thesis is illustrated in Fig. 1.16. Content of each chapter is 

briefly described as follows: 

 

Chapter 1 provides brief background information about PD and its measurement in 

GIS. Previous works on noise reduction and source recognition of PD signals are 

reviewed. Based on this, the objectives of current project are outlined with the 

contributions made by the author. 
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Chapter 2 studies the denoizing of UHF PD signals using wavelet packet transform. A 

novel variance-based criterion is developed to select the best tree from wavelet packet 

decomposition tree for improving the denoizing. Selection of other denoizing 

parameters is also studied based on overall performance. Results from different 

denoizing methods are presented and compared. 

 

Chapter 3 addresses the issue of optimal parameters selection for wavelet-packet-based 

denoizing. A method based on genetic algorithm is proposed to automatically optimize 

the set of denoizing parameters. Denoizing performance of the optimized parameters is 

compared with those obtained in Chapter 2.  

 

Chapter 4 and Chapter 5 develop novel methods for PD feature extraction based on 

UHF signals with short duration. In Chapter 4, a time-domain technique known as 

Independent Component Analysis (ICA) is employed to perform the feature extraction. 

ICA is first introduced through a comparison with the well-known Principal 

Component Analysis. Subsequently, ICA-based feature extraction method is described 

followed by experimental results. 

 

Chapter 5 proposes a time-frequency domain method for PD feature extraction, which 

is based on the wavelet packet transform. Firstly, the wavelet-packet-based method is 

described followed by a discussion of parameters selection for feature extraction 

purpose. Then numerical results are presented and the necessity of denoizing is 

justified. Lastly, the relation between wavelet-packet PD features and Fast Fourier 

Transform (FFT) PD features is clarified. 
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Chapter 6 implements a simple multilayer perceptron (MLP) neural network to classify 

PDs based on the extracted PD features. Firstly, a general introduction to neural 

networks is given. Secondly, training and test of the MLP is studied with discussions 

on the network parameters selection. Lastly, the usefulness and effectiveness of the 

extracted features are proved by results of comparative studies. 

 

Chapter 7 investigates the robustness of selected PD features on data measured under 

various conditions. A general scheme for ensuring the robustness of PD identification 

within the test GIS section is first described, and is followed by its implementation in 

ICA- and wavelet-based methods. Numerical results are then presented and discussed. 

 

Chapter 8 contains the conclusions and recommendations for future work. 
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Fig. 1.16 Overall structure of this thesis 
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CHAPTER 2  

DENOIZING OF PD SIGNALS IN WAVELET PACKET 

DOMAIN 

 

In Chapter1, the background information about PD and its measurement has been 

introduced. Previous research on noise reduction and PD source recognition has been 

reviewed and a novel PD diagnosis scheme has been proposed. In this chapter, 

denoizing of UHF PD signals using wavelet packet transform is studied. First, wavelet 

packet transform and the general wavelet-packet-based denoizing scheme are briefly 

reviewed. Secondly, the proposed denoizing scheme is described with special 

emphasis on a novel approach for best tree selection.  Lastly, numerical results are 

presented and discussed. 
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2.1 INTRODUCTION  

As reviewed in Chapter 1, wavelet-based methods do not perform well in denoizing 

PD signal due to the poor frequency resolution at high frequencies with wavelet 

transform. On the other hand, the wavelet packet transform (WPT) [31] describes a 

rich library of bases (wavelet packets) with an arbitrary time-frequency resolution for 

overcoming the drawback.  By applying linear superposition of wavelets, desirable 

properties of orthogonality, smoothness, and localization of the mother wavelets are 

retained.  

 

Based on WPT, a general method was proposed in [31] and implemented in a software 

package [42] for signal denoizing. However, the method is found in this work not 

applicable to PD signals in terms of noise level reduction and restoration of the 

original waveform, as it was only developed and tested on standard waveforms, such 

as sine waves.  The major drawback of the method is that the criterion employed for 

selecting PD dominated decomposition components may cause loss of critical PD 

information, leading to poor denoizing performance. An outline of the general method 

and its shortcomings is given in Section 2.2.2 and 2.2.3 respectively.  

 

To address the above-mentioned issue with the general denoizing method, a novel 

variance-based criterion is proposed in Section 2.3.2 for selecting the most effective 

components from the wavelet-packet-decomposition tree.  Moreover, a scheme is 

proposed in the flowchart of Fig. 2.1 for determination of the “best” choice of 

denoizing parameters, such as wavelet filters, decomposition level and thresholding 

parameters, in terms of noise reduction and original signal restoration. A 
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comprehensive database containing 256 data records was built for developing and 

verifying the new denoizing method as well as the new PD source identification 

methods, which will be discussed in chapters 4 to 7. Data were collected by TMT&D 

from a test section of an 800 kV GIS [89], where PD of various types and locations 

were initiated by applied voltages of various values. Details of the equipment 

specifications and experimental set-up are given in Appendix A. Numerical results are 

shown in Section 2.4 to compare the performance of various denoizing parameters and 

methods, where signal-to-noise-ratio (SNR) and correlation coefficient (CC) are 

employed to evaluate noise reduction and signal restoration respectively.  

 

In Fig. 2.1, a mechanism is also proposed for verifying the performance of determined 

denoizing parameters on new data by dividing the measured signals into a training set 

and a test set, using which a genetic-algorithm-based method is developed in Chapter 3 

to optimize the entire set of denoizing parameters.  
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Fig. 2.1 Proposed denoizing scheme 
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2.2 WAVELET PACKET TRANSFORM AND THE GENERAL 

WAVELET-PACKET-BASED DENOIZING METHOD 

2.2.1 Introduction to Wavelet Packet Transform 

Wavelet packet transform (WPT) is a direct expansion from the DWT pyramid tree 

algorithm (Fig. 2.2(a)) to a binary tree (Fig. 2.2(b)), where each branch of the tree has 

two sub-branches. It is the generalization of DWT in that both the low-pass and the 

high-pass output undergo splitting at the subsequent level. Therefore, WPT is seen to 

have the capability of partitioning the high-frequency bands to yield better frequency 

resolution. The equations of WPT under level j are defined as: 

 

1,2 ,( ) ( ) (2 )j
j n j n

m
k h m mω ω+ =∑ k−

k−

                                                                      (2.1) 

 

1,2 1 ,( ) ( ) (2 )j
j n j n

m
k g m mω ω+ + = ∑                                                                       (2.2) 

 

where h, g are the low-pass and high-pass decomposition filter respectively. , ( )j n kω  

represents the kth decomposition coefficient at node (j,n), namely the nth node of level j. 

Fig. 2.3 shows the 3D plot of the decomposition coefficients corresponding to the 

WPT binary tree of Fig. 2.2(b).  

 

The complete binary tree resulted from WPT contains many nodes. It follows that the 

terminal nodes (leaves) of every connected binary subtree of the complete tree form an 

orthogonal basis of the signal space. Therefore, to achieve the best denoizing 

performance, there is a need of choosing the best nodes subset (best tree) for 
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representing a signal in wavelet packet domain. A review on the DWT and the 

generalized WPT is given in Appendix B. 

 

 

Fig. 2.2 The decomposition tree structure of (a) DWT and (b) WPT 
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Fig. 2.3 3D plot of decomposition coefficients in WPT tree 

 

Typical applications of WPT include biomedical engineering [32-33], signal [34] and 

image [35] processing. Recently, WPT has been successfully applied to various fields 

in power system, such as power system disturbances [36-38], energy measurement [39] 

and fault identification [40].  However, only a limited number of publications on the 

application of WPT to PD analysis have been reported.  In [41], WPT was employed to 

compress PD data.  
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2.2.2 Introduction to the General Denoizing Method 

A brief introduction of the general method is given in this section. Fig. 2.4 shows the 

procedure of the denoizing method. 

 

 

Fig. 2.4 Procedure of the standard denoizing method 

 

The standard method is started by creating a “father” node from a given PD signal. 

Then the best tree decomposition (splitting process) is carried out as follows: 

 

(1) Compute the entropy of the decomposition coefficient vector of the "father" 

node based on a predetermined entropy function. Denote the entropy value 

[42] by . fC

(2) Split the "father" node into two "child" nodes by one-step-DWT using a 

predetermined wavelet.  

(3) Compute the entropies of the decomposition coefficient vectors of the 

"child" nodes, denoted by  and  respectively.  1cC 2cC
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(4) Compare with the sum of  and . If  is larger, the "child" nodes 

are kept. Otherwise, the "child" nodes are discarded.  

fC 1cC 2cC fC

(5) Choose the next node at the current decomposition level as the "father" node 

and go to step (2).  If all the nodes at the current level have been split, go to 

next level and select the leftmost node as the "father" node.  Then go to step 

(2).  If the last node of level J-1 has been examined where J is the specified 

decomposition level, the process stops.   

 

Many entropy functions can be used in the above process, such as Shannon entropy, 

logarithm of the "energy" entropy, threshold entropy, and so on [42]. The Shannon 

entropy is used in the present experiment due to its proven suitability for wavelet 

packet analysis [43]. 

 

After decomposition, white noises are removed in wavelet packet domain by 

thresholding of the decomposition coefficients. Finally, the denoized signal is 

reconstructed by wavelet packet reconstruction. 

 

2.2.3 Shortcomings of the General Method 

The method in [31] provides optimal representation of a signal by minimizing the 

mean-square-error for a given set of data.  It however does not provide an optimal 

choice of nodes for denoizing weak PD signals that are corrupted by high-level noises 

due to significant loss of PD information during the splitting process, as described 

below. The splitting stops prematurely and both of the "child" nodes are discarded 

when the entropy of the "father" node is smaller than the sum of the entropies of the 

two "child" nodes.  There is no checking on the entropy of individual child nodes.  
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This would cause information loss representing the features of the PD. In addition, the 

best tree structure resulted from the splitting has to be constructed every time when a 

new PD signal is presented. This is inefficient as the tree structure can be determined 

from a set of typical PD signals and kept unchanged for all the signals that are going to 

be processed. Thus, a more efficient PD denoizing strategy is required to address these 

issues. 

 
 

2.3 A NEW WAVELET-PACKET-BASED DENOIZING 

SCHEME FOR UHF PD SIGNALS 

2.3.1 Introduction 

A novel variance-based criterion is developed for selecting the best tree from wavelet-

packet-decomposition tree for denoizing PD signals.  The comprehensive scheme 

proposed in the flowchart of Fig. 2.1 is further described as follows.  Measured PD and 

corona signals are first divided into two sets, namely the training and test sets for 

selecting and verifying the denoizing parameters respectively.  The training set is used 

to determine the optimal parameters required for the remaining denoizing process.  The 

optimal wavelet for the wavelet packet decomposition is first selected, and followed by 

the selection of decomposition level. The selection of best decomposition tree is then 

performed.  Parameters related to thresholding are set.  The test set is entered at a 

much later part of the proposed scheme of Fig. 2.1.  The process of signal 

decomposition and coefficients thresholding are applied to both the training and test 

sets.  Finally, the denoized signal is reconstructed and the denoizing performance is 

evaluated by signal-to-noise ratio (SNR) and Correlation Coefficient.  Another round 

of training will be carried out, should the post-denoizing performance be below a pre-
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determined performance level. The method is seen to capture the features of PD 

signals better than the earlier methods [13, 15-17, 42] and thus has a better denoizing 

performance. 

 

2.3.2 Parameters Setting for Denoizing 

In order to achieve the best denoizing performance, it is crucial to set the parameters 

associated with the denoizing scheme properly. However, since PD signals 

corresponding to various defects exhibit different characteristics such as waveform and 

frequency content, optimal parameters for signals of one class may not perform well 

on the signals of other classes. For instance, wavelet “db4” achieves good performance 

on corona signals but fails to denoise SF6 PD signal of free particle. Therefore, signals 

of each class should ideally have their own set of optimal parameters. In practice, 

however, the class information is unknown at first. Thus the parameters should be set 

by using a set of training signals with all existing types of PD and corona signals, so 

that they can denoise all types of signals relatively well.  With this in mind, a training 

set that contains 24 UHF signals, 6 from each class of PD and corona signals, is 

constructed to determine all the parameters except the best tree structure. The best tree 

structure is determined using an extended training set of size 48, which contains the 

original training set and 24 white noise signals. Details of finding the best parameters 

are discussed in the following subsections. 

 

A. Selection of wavelet for wavelet packet decomposition (WPD) 

There are two important issues for the WPD that affect the denoizing performance, 

namely: the selections of optimal wavelet and decomposition level.  
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The first task to be accomplished with the training set is to identify the optimal wavelet 

(Fig. 2.4), which best describes a set of PD signals. In this thesis, a method based on 

minimum-prominent-decomposition coefficients [44] is extended to choose the optimal 

wavelet from a set of candidate wavelets, such as Daubechies, Symlets, Coiflets and 

Biothogonal wavelets. The flowchart of the method is shown in Fig. 2.5.  

 47



CHAPTER 2⎯ DENOIZING OF PD SIGNALS IN WAVELET PACKET DOMAIN 

 

Fig. 2.5 Flowchart of best wavelet selection 
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For each candidate wavelet, the method first decomposes the jth PD signal of the 

training set into wavelet packet domain down to a predetermined level of 5 as shown in 

Fig. 2.6. Secondly, the mean value of the absolute values of detail coefficients is 

calculated for each decomposition level and then summated across all the five 

decomposition levels forming ηj. The value η is computed for all the other signals in 

the training set and summated to give Γ .  The value of Γ  indicates how closely the 

candidate wavelet is describing the PD signals. A small Γ  indicates good performance 

of the candidate wavelet. The procedure is then applied to all the other wavelets. The 

wavelet giving the lowest Γ  is chosen as the best wavelet. As a result, the 'sym8' 

wavelet is obtained from the training set.  The effectiveness of the above procedure is 

illustrated in Fig. 2.7. As observed, the shape of the selected wavelet, which results in 

the smallest Γ , best represents the PD signal that is resulted from a free particle. 

Similar results are obtained on the other type of PD and corona signals.  
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Fig. 2.6 WPD tree structure with a decomposition level of 5 
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Fig. 2.7 Comparison of wavelets (a) db2; (b) bior3.3; (c) sym8; (d) PD signal. 

 

B. Selection of decomposition level for denoizing  

After its selection, the best wavelet performance at different decomposition levels is 

evaluated using the signal-to-noise ratio (SNR) and Correlation Coefficient (CC). SNR 

is a measure of signal strength relative to background noise. The ratio is usually 

measured in decibels (dB).  On the other hand, CC is a measure of similarity between 

denoized and original PD signals. Therefore, to effectively suppress the noises and 

restore the original PD signal with little distortion, large values of SNR and CC are 
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desired. As a result, a decomposition level of 5 is selected from the evaluation.  

Numerical results leading to the selection of the optimal wavelet and the 

decomposition level are further discussed in Section 2.4.  

 

C. Proposed method for best tree selection 

In order to effectively denoise PD signals, it is crucial to prune the original WPD 

(wavelet-packet-decomposition) tree of Fig. 2.6.  The objective is to retain the 

“effective” nodes to best characterize the PD signals in the training set and to remove 

the “non-effective” nodes that are highly corrupted by white noise.  The tree structure 

after pruning will be used for denoizing signals of both the training and test sets.   

 

To evaluate the effectiveness of the nodes, a “union tree” is first constructed as in Fig. 

2.8. Each node of the union tree is the union of the corresponding nodes in the WPD 

trees of all the signals in the extended training set, which consists of 24 PD signals and 

24 white-noise signals. For convenience, nodes of the union tree are numbered as in 

Fig. 2.9. 
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Fig. 2.8 Construction of the union tree 
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Fig. 2.9 Numbered union tree 

 

A performance index is then required to measure the level of white noise at each node 

during the best tree selection. Figs. 2.10 (a) and (b) show the wavelet-packet-

decomposition coefficients of a measured PD signal and a white noise signal 

respectively. Each grid in the figure represents a node of original WPD tree. It can be 

seen that the decomposition coefficients of white noise have small and similar 

magnitude in all the nodes, while decomposition of PD signal results in large 

coefficients in the PD-dominated nodes. Therefore, if a node of the original WPD tree 

is dominated by all the PD signals in the extended training set, then the coefficients in 

the corresponding node of the union tree have the largest standard deviation as shown 

in Fig. 2.11(a). Fig. 2.11(b) shows the case where the node is partially dominated by 

PD and (c) illustrates a noise-dominated node. It is seen that the standard deviation of 

the coefficients of a node in the union tree, which is defined as global standard 
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deviation, reflects the degree of PD domination of the node. It is thus computed for 

each node of the union tree to evaluate its effectiveness.   

 

Fig. 2.10 Wavelet-packet-decomposition coefficients of (a) PD signal; (b) white noise 
signal. 
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Fig. 2.11 Nodes of the union tree (a) node 50 – dominated by PD; (b) node 53 – 
partially dominated by PD; (c) node 34 – dominated by noise. 
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The global standard deviation λn for the nth node of the union tree is given as: 
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where  

    = the decomposition coefficient vector of nnc th node of the union tree.  

                = the mean of .   µ
nc nc

                M   = the number of coefficients in nth node.  

                 n    = number of nodes. Runs from 1 to 62 for a decomposition level of 5.  

 

Fig. 2.12 shows the calculated global standard deviations for nodes of the union tree. 

Nodes with small global standard deviations that are marked with (*) in Fig. 2.12 are 

thus considered white-noise corrupted and to be removed from the original WPD tree.  

Only nodes with large global standard deviations that are marked with (o) are retained 

in the best tree structure due to strong PD domination.   
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Fig. 2.12 Global standard deviations on each node of the union tree  

 

Aside from having large global standard deviations, nodes retained from the above 

procedure must meet the orthogonality condition [45].  The method of bi-directional 

priority registration (BPR) is proposed here to meet the condition, using which a 

complete pruning of the original WPD tree is performed to obtain the best tree as 

follows: 

 

(1) Calculate for each node in the union tree its global standard deviation as in Fig. 

2.12.  Rank the nodes in descending order of the magnitude of their global 

standard deviations.   

(2) Remove those nodes from the ranking in (1), whose global standard deviations 

are below a predetermined value (set to 0.001 in this study based on extensive 
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study).  

(3) Starting from i = 1 on the node with highest global standard deviation. 

(4) Trace back the family tree of node i, and remove all father node(s) from the 

current ranking. 

(5) Remove all the child nodes of node i from the ranking. 

(6) Descend to the next node in the current ranking, i = i+1.  Go to step 7 if it goes 

beyond the end of ranking.  Otherwise go to (4). 

(7) The resulted ranking will provide the best tree structure.  

 

 

Fig. 2.13 shows the obtained best tree, using which denoizing of PD signals is carried 

out.  Comparative studies of the overall denoizing performance with other proposed 

methods are presented in Section 2.4. 
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Fig. 2.13 Best decomposition tree structure 

 

D. Thresholding parameters selection 

In the denoizing scheme, denoizing is carried out by first removing the white-noise 

corrupted nodes from the original WPD tree.  Further denoizing is carried out by 

applying thresholding to the decomposition coefficients of each retained node in the 

best tree.  Note that the energy of white noise presented in the measured signal will be 

spread out evenly among all coefficients, resulting in small decomposition coefficients. 

On the other hand, the energy of the underlying PD signal will be compacted into a 

small number of large decomposition coefficients. Based on this idea, either the soft or 

hard thresholding [46-47] can be used to suppress the noise further. 
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Hard thresholding removes all decomposition coefficients, which are below a certain 

threshold value. In addition to hard thresholding, soft thresholding shrinks all 

remaining coefficients according to some linear law.   

 

Fig. 2.14 shows results from soft and hard thresholding the decomposition coefficients 

of node (4,7) of the best decomposition tree. Fig. 2.14(a) shows coefficients before 

thresholding. The large coefficients in Fig. 2.14(a) represent PD components whereas 

the remaining coefficients represent the white noise. Figs. 2.14(b) & (c) show the 

processing results of soft and hard thresholding respectively. 

 

 
Fig. 2.14 Coefficients thresholding (a) original decomposition coefficients at node 

(4,7); (b) after soft thresholding; (c) after hard thresholding. 
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In the present application, determination of the threshold is a crucial issue.  Algorithms 

for calculating the threshold include Stein's unbiased risk estimate, fixed form 

threshold, minmax criterion and a mixed selection rule [48].  The chosen selection rule 

is a mixture of the first two algorithms, namely Stein's unbiased risk estimate and fixed 

form threshold. The noise level of the signal is first estimated. If the SNR is small, 

fixed form threshold is employed as Stein's unbiased risk estimate is not effective in 

such cases. Otherwise, Stein's unbiased risk estimate is used to calculate the threshold. 

The mixed selection rule is adopted here due to its proven suitability for signals with 

different SNRs [48].   

 

2.3.3 Denoizing of PD Signals 

A. Signal decomposition and coefficients thresholding 

After the parameters are set, the PD signals are first decomposed using the selected 

wavelet filters and best tree structure. Starting from the original signal (topmost node), 

the decomposition is performed by high-pass or low-pass filtering followed by 

downsampling process as shown in Fig. 2.15. According to the best tree structure, this 

process is repeated for other nodes in the best tree from top to bottom. 
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Fig. 2.15 One-step decomposition 

 

The decomposition coefficients are then processed by thresholding using parameters 

determined in Section 2.3.2 (D). As illustrated in Fig. 2.14, the coefficients are 

processed by either soft or hard thresholding using the threshold that is calculated 

based on the determined threshold calculation rule. 

 

B. Wavelet packet reconstruction 

After thresholding, the decomposition coefficients of the terminal nodes in the best tree 

are used to reconstruct the denoized signal. As illustrated in Fig. 2.16, reconstruction is 

the inverse process of decomposition. It starts from the terminal nodes and ends in the 

topmost node (denoized signal). The algorithm of reconstruction is given by: 

 

, 1,2( )  ( 2 ) ( ) ( 2 ) ( )j n j n j n
m m

k H m k m G m k mω ω + += − + − 1,2 1ω +∑ ∑    (2.4) 
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where H,G are reconstruction filters and ωj,n(k) is the kth coefficient at node (j,n).  The 

denoized signal is the sum of all the components reconstructed from the terminal nodes 

in the best tree.  

 

 

Fig. 2.16 One-step reconstruction 

 

C. Performance testing 

After the denoized signal is reconstructed, denoizing performance is assessed. If the 

performance on training set is satisfactory and the assessment on test set is better than 

or close to the average performance on the training set, the parameters determined in 

Section 2.3.2 are accepted. Bad performance is probably due to: 

 

(1) Signals in training set are not able to cover the variety of the PD waveforms. 

Therefore, more PD signals have to be measured under the same condition as 
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the under-performed signals and used to extend the training set. 

(2) Denoizing parameters are selected individually. Therefore, there is no 

guarantee of optimal selection of the complete set of parameters. To solve this 

problem, a method optimising the entire set of parameters is developed in 

Chapter 4. 

 

2.4 RESULTS AND DISCUSSIONS 

Results obtained from various choices of denoizing parameters are presented and 

discussed in this section. The signal-to-noise-ratio (SNR) and correlation coefficient 

(CC) as in equations (2.5) & (2.6) are employed to evaluate the denoizing performance.  
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where Y and R denote the denoized and original PD signals respectively. Y and R  

denote the mean values of Y and R respectively.   
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Due to the limitation of space, only denoizing results of PD signals resulted from free 

particle are shown in this section. Similar results are obtained for other types of PD. 

Fig. 2.17 shows a typical noise-free PD signal (free particle) obtained with noise 

control in a shielded laboratory. To verify the effectiveness of the proposed method, 

signals of various SNR are generated by superimposing artificial white noises of 

different levels on the noise-free signal. As the noise-free signal and noise content are 

known in advance, SNR and CC can be calculated accurately. Apart from the 

generated signals, results obtained from measurement without noise control are also 

presented in Section 2.4.4.  

 

 

Fig. 2.17 Original PD signal  

 

2.4.1 Wavelet and Decomposition Level Selection 

To verify the effectiveness of the wavelet selection method described in Section 2.3.2 

(A), performance of candidate wavelets is compared in Table 2.1 for a PD signal 

having SNR of 0dB. The‘sym8’ wavelet is seen to achieve the largest SNR and CC 

after denoizing, which confirms the effectiveness of the wavelet selection method 

described in Section 2.3.2 (A).   
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Table 2.1 Impact of wavelet filters on SNR and Correlation Coefficient 

 

Wavelet SNR after denoizing 
(dB) 

Correlation 
Coefficient 

‘db2’ 15.2 0.86 

‘db4’ 15.7 0.86 

‘db6’ 16.8 0.90 

‘db8’ 17.5 0.92 

‘db10’ 16.9 0.90 

‘sym2’ 15.6 0.88 

‘sym4’ 16.0 0.90 

‘sym6’ 17.6 0.92 

‘sym8’ 18.3 0.96 

‘sym10’ 17.9 0.94 

‘coif2’ 16.2 0.89 

‘coif3’ 16.4 0.90 

‘coif4’ 15.8 0.87 

‘coif5’ 16.0 0.88 
 
 

 

Figs. 2.18 & 2.19 show the impact of decomposition level on the denoizing 

performance. Both SNR and CC after denoizing hardly increase when the 

decomposition level gets beyond 5.  Similar results are obtained for PD signals having 

different SNRs.   

 

 66



CHAPTER 2⎯ DENOIZING OF PD SIGNALS IN WAVELET PACKET DOMAIN 

 67

 
Fig. 2.18 Impact of decomposition level on SNR 

 

 
Fig. 2.19 Impact of decomposition level on Correlation Coefficient 
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2.4.2 Best Tree Selection 

Three methods for forming the decomposition tree structure are compared, namely: the 

DWT-based method, the standard entropy-based-WPT method (Ent-WPT) (Section 

2.2.1) and the proposed variance-based-WPT method (Var-WPT). In Figs. 2.20-2.22, 

PD signals having different noise levels are studied. As shown in Fig. 2.17, PD occurs 

solely between 65 ns and 230 ns. In all cases, wavelet-packet-based methods lead to 

tree structures, which better perform than that from the wavelet-transform-based 

method due to the higher frequency resolution in high-frequency subbands. Among the 

wavelet-packet-based methods, the tree structure formed by the Var-WPT method is 

seen to remove the noise more effectively than that from the Ent-WPT method for all 

three noise levels.  Even in the most severe case where the noise energy is ten times 

PD energy, the Var-WPT method effectively suppresses the noise and restores the 

original PD signal. Although the DWT-based method and Ent-WPT method are 

effective to some extent, their performance is much inferior as in Table 2.2.  The Var-

WPT method leads to the largest SNR and CC after denoizing for all three noise levels.  

This shows that the Var-WPT method outperforms the other two methods on both 

noise reduction and PD signal restoration.  

 

The Var-WPT method is seen to increase the SNR values of all PD signals to a very 

narrow range after denoizing. Similar observation is made on the CC values. These 

results suggest that the performance of Var-WPT method is robust for PD signals of 

different noise levels.   
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Fig. 2.20 A comparison of the denoizing performance for PD signal with SNR=10 dB. 

(a) Noisy signal; (b) result of DWT-based method; (c) result of Ent-WPT method; 
(d) result of Var-WPT method 
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Fig. 2.21 A comparison of the denoizing performance for PD signal with SNR=0 dB 
(a) Noisy signal; (b) result of DWT-based method; (c) result of Ent-WPT method; (d) 

result of Var-WPT method 
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Fig. 2.22 A comparison of the denoizing performance for PD signal with SNR= -10 dB 
(a) Noisy signal; (b) result of DWT-based method; (c) result of Ent-WPT method; (d) 

result of Var-WPT method  
 

Table 2.2 Comparison of SNR and CC values of different methods  
 

SNR of 
Noisy PD 
Signals 

Denoizing 
Approach 

SNR of 
Denoized PD 
Signals (dB) 

Correlation 
Coefficient 

DWT 15.2 0.86 
Ent-WPT 15.6 0.88 SNR = 10 dB 
Var-WPT 19.0 0.98 

DWT 9.8 0.82 
Ent-WPT 12.5 0.87 SNR = 0 dB 
Var-WPT 18.3 0.96 

DWT 2.0 0.69 
Ent-WPT 8.8 0.84 SNR = -10 dB 
Var-WPT 17.5 0.93 
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2.4.3 Thresholding Parameters Selection 

Impact of the threshold calculation rule (Section 2.3.2 (D)) is illustrated in Table 2.3.  

Both the SNR and CC after denoizing take high values from the use of the mixed 

selection rule, beyond those from other methods.  Thus, the effectiveness of mixed 

selection rule to determine the threshold value is verified.  

 

Table 2.3 Impact of threshold calculation rule on SNR and Correlation Coefficient 
 

Algorithm SNR of noisy 
PD signal (dB) 

SNR after 
denoizing (dB) 

Correlation 
Coefficient 

-5 8.5 0.84 

0 11.4 0.86 1 

5 15.0 0.90 

-5 13.9 0.89 

0 13.3 0.89 2 

5 13.8 0.88 

-5 4.2 0.78 

0 12.1 0.86 3 

5 19.7 0.97 

-5 17.6 0.94 

0 18.3 0.96 4 

5 20.2 0.98 

1: Stein’s unbiased risk estimate; 2: fixed form threshold; 3: minimax criterion; 4: 
mixed selection rule 

 

Performances of the soft and hard thresholding are compared in Fig. 2.23. Fig. 2.23(a) 

shows a noisy PD signal. Figs. 2.23(b) and (c) show the denoizing results by applying 

soft and hard thresholding respectively. The correlation coefficients resulted from soft 
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and hard thresholding are 0.86 and 0.93 respectively, which indicate the effectiveness 

of the latter method over that of the former. The better performance of the hard 

thresholding is also confirmed by the observation of Figs. 2.23(b) and (c), which is 

seen to result in less distortion than soft thresholding. Hence, hard thresholding is used 

in all studies.   

 

 
Fig. 2.23 Denoizing results of soft and hard thresholding 

(a) Noisy PD signal; (b) result of soft thresholding method; (c) result of hard 
thresholding method 
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2.4.4 Performance on PD Signal Measured Without Noise Control in 

Laboratory 

Fig. 2.24 shows denoizing result of a typical PD signal measured without noise control. 

As observed, the measured signal in Fig. 2.24 (a) exhibits similar waveform to those 

generated artificially. The Var-WPT method with properly selected parameters is seen 

to suppress the noises effectively. 

 

 

Fig. 2.24 Denoizing result of PD signal measured without noise control 
(a) Measured signal; (b) denoized signal 
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2.5 CONCLUDING REMARKS 

Denoizing of PD signals is the first issue to be accomplished during PD detection and 

diagnosis.  In this chapter, a novel variance-based criterion is employed to construct 

the best tree from wavelet packet tree for PD signals denoizing.  Experimental results 

indicate that the implementation of the Var-WPT method results in successful 

restoration of PD signals during denoizing with a significant reduction in the noise 

level.  Results show that the proposed method offers better denoizing compared to 

DWT and WPT with the standard entropy-based criterion.  Furthermore, the method is 

robust for PD signals having various SNR levels and restores weak PD pulses from 

high noises.   

 

Besides the best tree, selection of other parameters associated with the denoizing 

scheme is also studied and discussed. However, the parameters are considered 

separately, which may result in bad overall performance. Thus, optimal selection of a 

complete set of parameters is further investigated in Chapter 3. 
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CHAPTER 3 

OPTIMAL SELECTION OF PARAMETERS FOR 

WAVELET-PACKET-BASED DENOIZING 

 

 

In this chapter, a method based on genetic algorithm (GA) is developed to address the 

issue of optimal denoizing parameters selection. It begins with a summary of the 

parameters to be optimized, followed by the construction of fitness function. 

Subsequently, the GA optimization method is described with detailed discussion on its 

control parameters. Lastly, numerical results are presented and compared with those 

obtained in Chapter 2. 
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3.1 INTRODUCTION 

To achieve good denoizing, it is crucial to select the denoizing parameters optimally, 

such as mother wavelet, decomposition level and thresholding related parameters. 

Although some denoizing results are presented in [13, 15], there is very little 

discussion about how to select the optimal parameters. Hence, a general solution of 

finding the optimal parameters is highly desirable. In [16], the cross-correlation 

coefficient is used as a criterion for wavelet selection and the estimation of threshold is 

discussed. However, the parameters are individually considered and the selection of 

decomposition level is not studied. Moreover, the selection of wavelet is just based on 

the simulated signals. Therefore, the method proposed in [16] does not guarantee the 

optimal choice of parameters for denoizing measured PD signals.  

 

In Chapter 2, a method based on minimum-prominent-decomposition coefficients is 

proposed to select the best wavelet. Other parameters are selected based on subsequent 

assessment of denoizing performance. However, there is no guarantee of optimal 

selection of the complete set of parameters as they are considered individually rather 

than holistically. Moreover, considering parameters individually tends to be time-

consuming, as the selection process is often not automatic. To overcome these 

drawbacks, an optimization method is required to automatically optimize the entire set 

of parameters resulting in the best denoizing performance. Among a few Evolutionary 

Algorithms, such as Genetic Algorithm (GA), Genetic Programming (GP), Evolution 

Strategy (ES) and Evolutionary Programming (EP), GA is chosen for this application 

due to its simple concept and easy implementation. Moreover, GA has been proved to 

be sufficient for this application by experimental results in Section 3.6. 
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3.2 DESCRIPTION OF THE PROBLEM 

The wavelet-packet-based denoizing scheme as in Fig. 2.1 is used to denoise PD signal. 

Before denoizing of PD signals, parameters associated with the denoizing scheme must 

be determined first (blocks A-D of Fig. 2.1). These parameters include wavelet, 

decomposition level, best tree structure, soft or hard thresholding, threshold estimation 

rule and threshold processing rule. The last three parameters are required for 

thresholding (block D). Among the parameters, the construction of best tree structure 

has been studied and a variance-based method is proposed in Chapter 2. The method is 

adopted here for constructing the best tree. GA is employed to select the remaining 

parameters to further improve the denoizing by searching through all possible 

combination of the parameters. 

 

Table 3.1 shows the parameters to be optimized. Four wavelet families, namely 

Daubechies wavelets, Symmlet wavelets, Coiflet wavelets, and Biorthogonal wavelets 

are short-listed for selection due to their proven applicability [42, 45]. Total number of 

candidate wavelets is thus sixty-four. The decomposition level to be selected is from 1 

to 8.   
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Table 3.1  Parameter ranges 

Parameter Range of Parameter Subtotal 

Wavelet 

Daubechies (db) 1-22, 
Symmlet (sym) 1-22,  
Coiflet (coif) 1-5, 
Biorthogonal (bior) 1-15 

64 

Decomposition 
Level 1-8 8 

Soft or Hard 
Thresholding 

Soft thresholding,  
hard thresholding 2 

Threshold 
Estimation Rule 

Stein's unbiased risk estimate, 
fixed form threshold,  
minmax criterion,  
mixed estimation rule 

4 

Threshold 
Processing Rule 

No processing,  
global processing,  
node dependant processing 

3 

 
 

3.3 DENOIZING PERFORMANCE MEASURE AND FITNESS 

FUNCTION 

To effectively denoise PD signal, the performance of the set of parameters used must 

be evaluated by some common criteria. The objectives of denoizing are to effectively 

suppress the noises and restore the original PD signal with little distortion. The signal-

to-noise-ratio (SNR) and correlation coefficient (CC) as in equations (2.5) & (2.6) are 

thus employed to evaluate the performance.  

 

As illustrated in Fig. 3.1, SNR and CC are sometimes conflicting. Their combination is 

therefore used in the GA fitness function for consistent evaluation of the overall 

denoizing performance.   
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Fig. 3.1 Relation between SNR and CC 

 

The original definition of SNR of equation (2.5) allows negative values to be taken due 

to the logarithmic computation, which makes it impossible to be used in the GA fitness 

function. Therefore, another version of SNR (m_SNR) is defined as 

 

( )_
(

Ener
)

gy Rm SNR
Energy R Y

=
−  ,                                                                             (3.1) 

 

where Y and R denote the denoized and original PD signals respectively. Obviously, 

the value of m_SNR is always positive. Subsequently, the GA fitness function 

corresponding to each signal in the training set is defined as the combination of 

m_SNR and the original CC, which may take various forms such as: 
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CC+

_ *g m SNR CC=                                                                                              (3.2) 

 

or 

 

_g m SNR CC= +                                                                                             (3.3) 

 

However, GA is not able to converge when fitness function in equation (3.2) is used. 

Therefore, only equation (3.3) is considered as the fitness function. Since the m_SNR 

usually takes a much larger value (about twenty times) than CC, the fitness values 

calculated by the above formulas are governed by m_SNR. Therefore, only a high 

signal-to-noise-ratio is guaranteed by optimizing the fitness function in equation (3.2) 

or (3.3). The correlation coefficient is however neglected during GA optimization. As 

a result, the obtained parameters may lead to effective suppression of noise, but large 

distortion could be observed. To tackle this problem, the fitness function of equation 

(3.3) is modified as: 

 

0.05* _g m SNR=                                                                                (3.4) 

 

where the coefficient of 0.05 is used to set the two components of g in the same range. 

Considering all signals in the training set, the GA fitness function is finally: 

 

1

1 ( )
N

i
fitness g i

N =

= ∑                                                                                             (3.5) 
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where N is the number of signals in the training set. 

 

3.4 PARAMETER OPTIMIZATION BY GA 

In this section, GA is first reviewed briefly. Subsequently, application of GA in finding 

the optimal denoizing parameters is investigated, followed by the discussion of GA 

control parameters selection. 

 

3.4.1 Brief Review of GA 

GA is a global search method utilizing the principle of natural selection and genetics. 

The method starts from a randomly generated population (potential solutions) whose 

performance is evaluated by a fitness function. Based on the evaluation, a new 

population is created from the process of reproduction, crossover and mutation. The 

process is iterated until the stop criteria are met [49]. A comprehensive review of GA 

theory is given in Appendix C. 

 

As an optimization method, GA has the advantages of flexibility imposed on the 

search space, easy implementation, fast convergence, and so on. GA has been 

successfully applied to many fields in electric power engineering [50-52]. Recently, it 

has also been applied to PD analysis [53-55]. In [53-54], GA is used to optimize the 

parameters of classifiers for PD pattern recognition.  In [55], GA is applied to calculate 

the optimal parameters of a transformer model.  
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3.4.2 GA Optimization 

For GA optimization, the denoizing parameters shown in Table 3.1 must be 

represented in binary form. Therefore, they are coded in a string of 14 binary bits as in 

Fig. 3.2.  

 

 

Fig. 3.2 GA coding string 

 

For the implementation of GA, the roulette wheel approach is adopted here in 

reproduction. The single-point crossover is applied to randomly paired sub-strings with 

a probability Pc.  To ensure diversity during evolution, mutation is performed for each 

bit in the population with a probability Pm.  

 

The GA flowchart for denoizing parameters optimization is shown in Fig. 3.3 and a 

description of the major steps is as follows: 

 

(1) Prepare the training set that is the same as that used in Chapter 2. 
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(2) Randomly generate an initial population. 

(3) Denoise each PD signal of the training set using the parameters determined by 

each individual of the current population. 

(4) Calculate the fitness of each individual on the entire training set by taking the 

mean of its fitness on each signal and save the best solution. 

(5) If the stop criterion is met, use the best solution so far as the optimal one and 

end the program. Otherwise, continue step (6). 

(6) Create intermediate population by copying the individuals of current 

population in proportion to their fitness. 

(7) Apply crossover and mutation to the individuals of the intermediate 

population to create the next generation, and then go to (3). 

 

3.4.3 Selection of Control Parameters for GA 

There are a number of control parameters associated with the application of GA, such 

as the population size (Np), crossover probability (Pc) and mutation probability (Pm). 

It is crucial to investigate the influences of these parameters, as they have significant 

impact on the performance of GA.  
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NO
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Fig. 3.3 GA flowchart 
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A. Population size Np 

The population size of GA defines the number of candidate solutions in each 

generation. Choosing a suitable population size is a fundamental consideration for GA 

application. If the size of population is too small, GA may converge prematurely due 

to the insufficient information given on the searching space. On the other hand, a large 

population requires more evaluations per generation, which may result in an 

unacceptably slow rate of convergence. In this study, a relatively small population size 

(Np=8) is employed first. Then, the population size is increased until a consistent 

solution is found. 

 

Fig. 3.4 shows the performance of GA using population size of 8, 16 and 40. It can be 

seen that GA converges to a sub-optimal solution when a small population size (Np=8) 

is employed. In the cases of Np=16 and Np=40, similar performance is achieved, 

which is better than the case of Np=8.  

 

Table 3.2 shows the computation time of GA with various Np. As observed, the 

computation time is proportional to Np. Although more iterations are required for the 

case of Np=16 than that of Np=40, GA converges faster in the former case, as less 

evaluations are performed at each iteration. In a word, the population size of 16 leads 

to a good tradeoff between performance and computation time, and thus is chosen for 

the optimization task in this study. 
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Fig. 3.4 Effect of population size Np 

 

Table 3.2 Computation time of GA with various population sizes 

Population size (Np) Iterations Computation time (sec) 

8 32 102 

16 48 306 

40 35 675 

 

B. Crossover probability (Pc) 

The crossover probability controls the frequency with which the crossover operator is 

applied. The higher the crossover probability, the more quickly new individuals are 

introduced into the population. If an unnecessary high crossover probability is taken, 
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the individuals with good performance may be discarded and the improvement of 

performance may not be achieved. On the contrary, if the crossover probability is too 

low, the search may stagnate prematurely due to the low exploration rate. Thus, a 

proper crossover probability must be selected experimentally.  

 

Fig. 3.5 illustrates the effect of using different crossover probability in the GA 

optimization. It can be seen that GA with Pc of 0.75 gives the best performance. In the 

other two cases, where Pc takes 0.95 and 0.55 respectively, GA converges to much 

lower fitness values. Thus, Pc is set to 0.75 for all the subsequent experiments. 

 

 

Fig. 3.5 Effect of crossover probability (fixed Pm = 0.15, Np = 16) 
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C. Mutation probability (Pm) 

Mutation is another operator applied to the individuals to create a new generation. It 

increases the variability of the new generation to prevent GA from stagnating on local 

extreme. The selection of mutation probability is problem dependent. For many 

problems, a low mutation rate is suggested, as a high level of mutation could yield an 

essentially random search [49, 56]. However, a growing number of works indicate that 

mutation plays a more important role for certain applications and thus a high mutation 

probability is required [57, 58]. In this thesis, Pm is determined by comparative studies.  

 

Fig. 3.6 illustrates the performance of GA with various Pm. It is seen that a mutation 

probability of 0.15 leads to the best performance. Neither a higher Pm (=0.3) or a 

lower Pm (=0.01) gives satisfactory result. Therefore, Pm=0.15 is chosen for the 

optimization. 

 

D. Other issues related to GA application 

The choice of initial population has impact on GA convergence.  GA could converge 

sub-optimally with bad starting point. Since initial populations are generated randomly, 

one solution to this problem is to run GA several times to check consistency.   

 

Another issue related to GA optimization is the criteria used to stop the GA program. 

In this study, two criteria are adopted as follows: 

 

(1) When the maximum number of generations (Ns) is reached, the GA program 

stops. Ns is set to 1000 in this study. 
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(2) GA stops when the best fitness saturates over a number of generations.  

 

 

 

Fig. 3.6 Effect of mutation probability (fixed Pc = 0.75, Np = 16) 

 

3.5 PERFORMANCE TESTING  

After parameters optimization using the training set, the performance of the parameters 

is assessed on the test set. If the assessment is better than or close to the average 

performance on the training set, the obtained parameters are accepted. Otherwise, 

possible reasons for having bad performance are as follows: 
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(1) The signals in training set are not able to cover the variety of the PD waveforms. 

Therefore, more PD signals that belong to the same class as the under-

performed signals have to be measured and used to extend the training set. 

(2) GA could have converged sub-optimally due to badly chosen GA parameters. 

Therefore, GA parameters have to be adjusted. 

 

After proper measures are taken, GA is executed with the updated parameters and 

training set (Fig. 3.3).  

 

3.6 RESULTS AND DISCUSSIONS 

In this section, results from GA are presented and compared with those obtained from 

the method presented in Chapter 2. The same training and test set as in Chapter 2 is 

used here.  

 

Fig. 3.7 shows the convergence of GA and the denoizing performance using 

intermediate parameters obtained during convergence. GA takes 48 iterations and 

about five minutes on the Pentium-IV to converge. It improves the denoizing 

effectively and continuingly during convergence.  The choice of the GA fitness 

function and control parameters is thus verified. As observed, the denoizing 

performance is improved as the fitness value increases.  
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Fig. 3.7 GA convergence and denoizing performance of intermediate parameters 
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Table 3.3 shows the parameters obtained at intermediate stages of convergence. Stage 

(a) corresponds to the highest fitness value (convergence), whose parameters are 

optimal for the given set of training data.  Parameters obtained from Chapter 2 with the 

same training set are shown in Table 3.4.  It can be seen that the decomposition level 

and thresholding method obtained by stage (a) and the method in Chapter 2 are the 

same while other parameters are different. Stage (a) and the method in Chapter 2 both 

recommend the same wavelet family (Symmlet), but different members of the family.  

This indicates that the minimum-prominent-decomposition coefficients method as 

adopted in Chapter 2 is effective although not optimal.  In all study cases, the Symmlet 

family fits the PD signals better than other wavelet families.  

 

Table 3.3 GA intermediate parameters 
 

 fitness Wavelet Decomposition 
level 

Soft or hard 
thresholding

Threshold 
estimation 

rule 

Threshold 
processing 

rule 

(a) 3.8 sym6 5 hard fixed form 
threshold 

node 
dependant 
processing

(b) 2.7 coif2 5 soft 
mixed    

estimation 
rule 

node 
dependant 
processing

(c) 1.2 db10 8 hard 

Stein's 
unbiased 

risk 
estimate 

global 
processing

 
 

Table 3.4 Parameters obtained from the method in Chapter 2 
 

Wavelet Decomposition 
level 

Soft or hard 
thresholding

Threshold 
estimation rule

Threshold 
processing rule

sym8 5 hard mixed 
estimation rule

global 
processing 
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The GA-based method and the method in Chapter 2 are further compared in Fig. 3.8, 

with Fig. 3.8 (a) showing the noisy PD signal. Figs. 3.8 (b) & (c) show the denoized 

signals using parameters obtained by the method in Chapter 2 and GA respectively.  

As observed, parameters obtained by GA suppress the noise and restore the original 

PD signal far more effectively. The SNR values correspond to Fig. 3.8 (b) & (c) are 

16.7 and 19.1 and CC values are 0.93 and 0.97 respectively.  These results confirm the 

better performance of the parameters obtained by GA. Similar results are obtained 

from other signals taken from the test and training sets.  

 

 

Fig. 3.8 Performance comparison of GA and the method in Chapter 2  
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3.7 CONCLDING REMARKS 

The performance of the denoizing scheme is largely dependent on how the scheme 

parameters are determined. In this chapter, a GA-based method is developed to 

optimize the parameters associated with the wavelet-packet-based denoizing scheme. 

Numerical results indicate that the GA-based method ensures optimal denoizing in 

terms of successful restoration of the original PD signal with significant reduction in 

the noise level. The method enables automatic and fast determination of parameters.  

Denoized signals can then be used to develop a reliable diagnosis system for 

recognizing corona and SF6 PD resulted from various defects. 
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CHAPTER 4 

PD FEATURE EXTRACTON BY INDEPENDENT 

COMPONENT ANALYSIS 

 

 

This chapter explores the application of Independent Component Analysis (ICA) in PD 

feature extraction. To ensure reliability of the extracted features, a process known as 

pre-selection is first introduced. Secondly, Independent Component Analysis is 

reviewed through a comparison with the well-known Principal Component Analysis. 

Subsequently, ICA-based feature extraction method is described with discussions on 

the selection of parameters for implementing ICA. Lastly, numerical results are 

presented and discussed. 

 

 96



CHAPTER 4⎯ PD FEATURE EXTRACTION BY INDEPENDENT COMPONENT ANALYSIS 

4.1 INTRODUCTION 

For condition monitoring of GIS, it is crucial to recognize the source of the harmful 

PD activities in SF6 and the unharmful air corona in a fast and reliable manner. The 

key component of such a PD diagnosis system is to extract the most effective and 

reliable PD features from the measured raw data, so that satisfactory performance can 

be achieved in the subsequent classification task. Fig 4.1 illustrates various methods 

for extracting PD features. As reviewed in Chapter 1, the traditional PRPD and POW 

approaches have noticeable limitations in terms of speed and classification 

performance. Therefore, methods using UHF signals measured within hundreds of 

nanoseconds are developed for PD identification in this study. In this chapter, time-

domain techniques namely independent component analysis (ICA) and principal 

component analysis (PCA) are employed to perform the feature extraction. In Chapter 

5, a wavelet-packet-based method is proposed for extracting the most discriminating 

features from time-frequency domain. Using the features extracted by ICA- or 

wavelet-packet-based method, a neural network is trained and tested in Chapter 6 for 

classifying a new set of measured data. Data measured one metre away from PD 

source as in Table A.1 are employed in Chapters 4,5 and 6 for developing the PD 

identification system. The robustness of extracted PD features on data measured from 

other PD-to-sensor distances is investigated in Chapter 7, where a re-selection and re-

training scheme is proposed. 
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Fig. 4.1 Methods for extracting PD features 

 

The ICA-based PD feature extraction is illustrated in Fig. 4.2. In the current study, the 

original waveforms of UHF signals are crucial for source recognition, as the feature 

extraction and classification are based on the time-domain signals only. However, due 

to the excessive white noises, the original waveforms are often distorted or even buried 

under the noise. In Chapters 2 and 3, the problem of white noise has been successfully 

tackled by applying the wavelet packet denoizing on each measured waveform as 

shown in Fig. 4.2, which makes the subsequent recognition of PD source an easier task 

to be accomplished.  
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Fig. 4.2 Flowchart of ICA-based PD feature extraction  

 

Air corona is often regarded as another form of noise in PD monitoring system of GIS. 

Since corona signal is very similar to SF6 PD signal, it often leads to misclassification, 

which may result in wrong decision. Therefore, it is of great importance to correctly 

classify PD and corona. To reduce the response time of the PD diagnosis system, 

source recognition of SF6 PD and the discrimination of corona and SF6 PD are 

considered together in this study, so that no second judgment is needed. In the 

following text, “PD identification” refers to classification of all types of SF6 PD as 

well as air corona, except specified. 

 

Another issue related to the waveform-based PD identification, as illustrated in Fig. 4.3, 

is the time shift of PD signal. Figs. 4.3 (a) and (b) show two sections of the measured 

PD signal. They are captured by two windows with the same length but a shift in time. 

In practice, the time shift between measured signals is caused by changes in noise 
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levels during measurement or setting of the oscilloscope. Since the statistical measures 

used in this study such as negentropy, kurtosis and skewness are subject to time 

translation, the values of these measures are different for signals in Figs. 4.3 (a) and (b). 

Such a difference may cause difficulties in extracting PD features and the subsequent 

classification task. Hence, a process known as pre-selection (Fig. 4.2) is employed to 

cancel the “time shift” effect by capturing a segment with a predetermined length 

starting from the initial surge of the signal. The process thus ensures the signals to 

have the same set of features upon a signal pattern with all possible time shifts. Details 

of the pre-selection process are given in Section 4.2.  

 

 
Fig. 4.3 Signal shift in time 

 

After denoizing and pre-selection, the PD identification task is performed in two steps, 

namely feature extraction and classification. Each set of pre-selected signals has 

 100



CHAPTER 4⎯ PD FEATURE EXTRACTION BY INDEPENDENT COMPONENT ANALYSIS 
typically a length of 1000. It is highly desirable to compress the pre-selected signal to a 

smaller working set (features) in order to improve the efficiency of PD identification 

without sacrificing much of the discriminating power of the original signal. In this 

chapter, a time-domain technique known as Independent Component Analysis (ICA) is 

employed to perform the data compression as shown in Fig. 4.2. The compressed data 

set, known as the ICA_feature, is formed by projecting the pre-selected signal onto the 

directions of independent components. Using the compressed working set, 

classification of PD is carried out by a neural network (Chapter 6). Denoizing of PD 

signals has been studied in previous chapters. Salient features of the other blocks in Fig. 

4.2 are discussed in the following sections. 

 

4.2 PRE-SELECTION  

To perform the pre-selection, a threshold determined by background noise level is 

employed to detect the starting point of PD event (big oscillation) as shown in Fig. 4.4. 

Since most of the white noises have been removed during the process of denoizing as 

shown in Fig. 4.4(b), it is feasible to detect the starting point by applying a fixed 

threshold (=0.5 mV). The length of the pre-selected signal is set to 1000 points to 

capture the entire waveform of PD event. Fig. 4.5(b) shows a typical pre-selected UHF 

signal that is used in the following feature extraction process. 
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Fig. 4.4 Detecting the starting point of PD event (a) measured signal; (b) denoized 

signal 

 

Fig. 4.5 Pre-selection of UHF signal (a) before pre-selection; (b) after pre-selection 
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4.3 REVIEW OF INDEPENDENT COMPONENT ANALYSIS 

Independent component analysis (ICA) is a linear transformation method, which 

transforms the observed signals into statistically independent components [59-60]. ICA 

has been applied to image processing [61-62], biomedical engineering [63] and signal 

processing in radio communications [64]. It has also been applied to load estimation in 

electric power system [65], where ICA is used to separate the individual customer load 

profiles from the branch flows.  In this research, ICA is used in the new application of 

feature extraction.   

 

4.3.1 Comparison of PCA and ICA 

Principal component analysis (PCA) involves a mathematical procedure that 

transforms a number of correlated variables into a smaller number of uncorrelated 

variables known as principal components. The first principal component accounts for 

as much of the variability in the data as possible, and each succeeding component 

accounts for as much of the remaining variability as possible. Thus, the objectives of 

PCA are as follows: 

 

1. To reduce the dimensionality of the data set. 

2. To identify meaningful underlying features of the given data set. 

 

The mathematical technique used in PCA is called eigen analysis. A comprehensive 

review of PCA is given in [66]. 
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ICA can be considered as a generalization of PCA. Both ICA and PCA linearly 

transform the measured signals into independent or principal components, which are 

ranked in descending order according to the variance of their corresponding 

projections.  The key difference between ICA and PCA is however in the nature of 

components obtained. The goal of PCA is to obtain principal components, which are 

uncorrelated.  However, components obtained from ICA are statistically independent, 

which is a stronger condition than uncorrelated in terms of independency of the 

components.  Separability of features in the measured data is affected by factors such 

as the frequency response of sensor, the PD source and path of propagation, which are 

statistically independent.  A comparison of the numerical results from ICA and PCA 

are given in Section 4.5, which clearly favor the former.   

 

4.3.2 Introduction to ICA 

Fig. 4.6 illustrates the basic form of ICA, which denotes the process of taking a set of 

measured signal vectors, X, and extracting from them a set of statistically independent 

components, Y. Thus, the ICA problem is formulated as   

 

Y WX=                                                                                                                  (4.1) 

 

where W is the transformation matrix.  
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Fig. 4.6 Schematic representation of ICA 

 

In (4.1), both the independent components Y and matrix W are unknown. Therefore, 

the independent components must be found iteratively by maximizing the 

independency with respect to W. In this study, an algorithm known as FastICA is 

adopted for implementing the ICA [67]. According to the Central Limit Theorem, the 

independency of components can be measured from the statistical property, known as 

“nongaussianity”. In FastICA, a criterion known as “negentropy” is employed to be a 

quantitative measure of nongaussianity.  Maximizing the negentropy with respect to W 

results in the independent components.  Figs 4.7-4.10 show an example that 

demonstrates the effectiveness of FastICA and the negentropy criterion. Fig. 4.7 shows 

the two basic signals that are generated independently. The basic signals are then 

linearly combined to simulate the measured signals (X) as illustrated in Fig. 4.8. Using 

X as the input of FastICA, the independent components are estimated one by one. As 

shown in Figs. 4.9-4.10, the independent components are found in four and three 

iterations respectively by maximizing the negentropy (J). As observed, the estimated 

components are almost the same as the original ones. Thus, the effectiveness of 

FastICA for finding independent components is verified. Key features of ICA and its 

implementation - FastICA are reviewed in Appendix D. 
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Fig. 4.7 Basic signals 

 
Fig. 4.8 Measured signals (X) 
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Fig. 4.9 Process of finding the first independent component (a) 1st iteration (J= 

4.2797); (b) 2nd iteration (J= 5.7788); (c) 3rd iteration (J= 8.0597); (d) 4th iteration 
(J= 11.1297).  

 

 
Fig. 4.10 Process of finding the second independent component (a) 1st iteration (J= 

4.6197); (b) 2nd iteration (J= 7.4563); (c) 3rd iteration (J= 10.9805). 
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4.4 FEATURE EXTRACTION BY ICA 

The process of ICA-based feature extraction is carried out in two stages: 

 

1. Identification of most dominating independent components.  

2. Construction of ICA-based PD features.   

 

The process is carried out with the aim of reducing the length of the working data for 

subsequent PD identification to be automated by a neural network (Chapter 6). 

 

4.4.1 Identification of Most Dominating Independent Components 

The most dominating independent components for compressing the pre-selected 

signals are identified.  The FastICA algorithm (Appendix D) is adopted to first find all 

the independent components from a chosen set of eight pre-selected signals.  The total 

number of independent components is the same as the number of chosen signal sets.  

The chosen signal sets and the obtained independent components are shown in Fig. 

4.11 and Fig. 4.12 respectively.   
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Fig. 4.11 Chosen signal sets for calculating independent components (1)-(2) corona; 
(3)-(4) particle on the surface of spacer; (5)-(6) particle on conductor; (7)-(8) free 

particle on enclosure. 
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Fig. 4.12 Independent components obtained from FastICA  

 

Each chosen set of signals xi, i=1,2,…,8 is thus a linear combination of the 

independent components:  

 

8

,
1

           1,2,...8i i j j
j

a i
=

= ⋅ =∑x ICAPD
                                                       (4.2) 

 

where  
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ICAPDj = the jth independent component obtained by FastICA that has a size of 

1*1000. j runs from 1 to 8.  

  = the projection of i,i ja th signal set (xi) on the direction of jth component. 

Thus   form a vector of 1*8 for each signal x,i ja
i.  

 

Subsequently, the variance of the projections onto the pth independent component is 

defined as 

 

8
2

,
1

1 ( )
7p i p

i
Var a µ

=

= −∑ p
                                                                                      (4.3) 

 

where  

 

,i pa  = the projection of ith signal set on the direction of pth component.  

 pµ  = the mean of the vector .  1, 2, 8,[ , ,... ]p p pa a a

 

In Fig. 4.12, all ICAPDj are ranked in descending order according to the variance of 

their corresponding projections as shown in Table 4.1. 
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Table 4.1 Variance of projections of all the eight independent components 

Independent 
Components 

Variance of the 
projections 

ICAPD1 0.2028 

ICAPD2 0.1885 

ICAPD3 0.0329 

ICAPD4 0.0228 

ICAPD5 0.0215 

ICAPD6 0.0188 

ICAPD7 0.0164 

ICAPD8 0.0067 

 

Following the same idea used in PCA-based method, any ICAPD with small variance 

(<0.05 in this thesis) in the corresponding projections is discarded for having 

negligibly small discriminating information. As a result, only the first two independent 

components in Fig. 4.12 are retained to represent the set of 8 chosen signals.  

 

4.4.2 Construction of ICA-based PD Feature 

Altogether 80 measured signals are to be compressed by projecting them onto the two 

most dominating independent components by the following equation: 

 

,_ ,   m=1,2,...,80; n=1,2.T
m n m nICA Feature = •All_Signal ICAPD

         (4.4) 

 

where  

 

All_Signalm = the mth set of measured data each of a size 1*1000.   
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T
nICAPD   = the transpose of the nth component  and has a size of                       

1000*1.   

nICAPD

     m = the number of measured data sets, which runs from 1 to 80.  

      n = the number of most dominating independent components, which 

runs from 1 to 2.   

 

The size of the extracted feature set “ICA_Feature” is thus 80 * 2 that is much smaller 

than the size of pre-selected signal sets 80*1000.  

 

4.4.3 Selection of Control Parameters for FastICA 

Associated with the FastICA algorithm, there are a number of control parameters to be 

determined, such as the number of input signals, approximation of negentropy and the 

stopping criteria. It is crucial to investigate the influences of these parameters, as they 

have significant impact on the performance of FastICA.  

 

A. Number of Input Signals (Number of Independent Components) 

The number of input signals, that is the same as the number of independent 

components resulted from FastICA, must be set properly to ensure the correctness of 

the obtained independent components and fast convergence of the algorithm.  

 

If the number of inputs is too small, there will not be enough information of PD signals 

for FastICA to compute the independent components correctly. On the other hand, if 

there are too many inputs, it will take longer time for the algorithm to converge. In 
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addition, since only the most dominating components are useful for the subsequent 

feature construction task, it is not necessary to compute too many independent 

components as most of them result in projections with small variances.  

 

Since there are four classes of signals under investigation, the number of inputs should 

be at least four to cover the varieties of the measured signals. Based on waveforms of 

the typical signals, the number of inputs is set to eight (two from each class) to make a 

good tradeoff between accuracy of the resulted components and the convergence speed. 

 

B. Approximation of Negentropy 

As introduced in Section 4.3.2, negentropy is employed in FastICA as a measure of 

nongaussianity to maximize the independency between components. However, it is 

computationally very difficult to calculate negentropy directly, as an estimate of the 

probability density function is required [59]. Therefore, it is highly desired to use 

simpler approximations of negentropy.   

 

In general, the approximation of negentropy for a random vector t is formulated as 

 

2( ) [ { ( )} { ( )}]J t E G t E G v≈ −                                                                (4.5)  

 

where  
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  E = expectation operator. 

v  = a Gaussian variable of zero mean and unit variance.  

  G = any non-quadratic function [59].  

 

Therefore, choosing function G differently results in different approximations of 

negentropy.  As suggested in [67], the following choices of G have proved very useful 

in many applications. 

 

2
1 exp( 2)G u= − −  

2 log ( cosh( ))G = u                                                                                         (4.6) 

4
3

1
4

G u=  

3
4

1
3

G u=  

 

where u is the component vector under investigation. These functions are conceptually 

simple, robust and fast to compute. Thus, their performances on PD signals are studied 

and compared in this thesis. 

 

To compare the performances of the approximated negentropies, the sum of variances 

of projections onto the first two independent components, denoted by ϑ , is employed 
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as the evaluation criterion. The larger theϑ  value, the better the performance of the 

corresponding approximated negentropy in terms of discriminative power. Following 

procedure is then used to compare the approximated negentropies with different 

function G. 

 

(1) Use the chosen set of signals as input of FastICA as in Section 4.4.1. Set i=1. 

(2) Set Gi as the function used to calculate the approximated negentropy in 

FastICA algorithm. 

(3) Run FastICA to find all the independent components. 

(4) Compute the variances ( , ) of the projections onto the first two 

independent components using equation 4.3.  

1
iVar 2

iVar

(5) Compute . 1 2
i i

i Var Varϑ = +

(6) Set i=i+1. If i<5, go to (2). 

(7) Find the best G that results in the largest ϑ , namely max( )
i

opt iG
G ϑ= . 

 

Table 4.2 shows the performances of approximated negentropies with different G 

functions. It can be seen that G1 achieves the largest ϑ  value that indicates the best 

discriminative ability.  G1 is thus adopted in the process of finding the independent 

components. 
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Table 4.2 Variances of projections and ϑ  corresponding to different G functions 

Function 1Var  2Var  ϑ  

G1 0.2082 0.1885 0.3913 

G2 0.2092 0.1387 0.3479 

G3 0.2016 0.0914 0.293 

G4 0.2022 0.1142 0.3164 

 

 

C. Stop Criteria 

Since FastICA is an iterative algorithm, some criteria must be applied to stop the 

program. In this thesis, two criteria are adopted as follows: 

 

(1) The algorithm stops when the maximum number of iterations is reached. It is 

set to 1000 in this study. 

(2) FastICA stops when the change of components saturates over a number of 

iterations.  

 

The FastICA program stops when either of the above criterions is met. 
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4.5 RESULTS AND DISCUSSIONS 

In this section, low-dimensional feature spaces formed by ICA-based feature extraction 

method are first presented and compared with those constructed by PCA-based method.  

Subsequently, the impact of white noise levels on the feature clusters and the 

convergence performance of FastICA algorithm are illustrated.  

 

4.5.1 Comparison of PCA- and ICA-based Methods 

Results from the ICA-based feature extraction are presented and compared with results 

from PCA-based method. The effectiveness of using the most dominating independent 

component (1st ranked) is shown in Fig. 4.13 (a). The effect of using a less dominating 

independent component (6th ranked) is shown in Fig. 4.13 (b), which shows poor 

separability among PD sources.  This indicates that the independent components, with 

large variances in the corresponding projections, capture the fundamental 

characteristics of SF6 PD and corona.  Thus the features associated with these 

components are able to discriminate the defects effectively. 
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Fig. 4.13 ICA features corresponding to (a) ICAPD1 and (b) ICAPD6

 

To compare the performances of ICA- and PCA-based methods, feature extraction 

using PCA is carried out based on the following procedure: 
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(1) Use PCA to find the most dominating principal components, which result in the 

largest variances in the corresponding projections. 

(2) Project 80 pre-selected signals onto the two most dominating principal 

components, which is similar to the process described in Section 4.4.2. 

 

Figs. 4.14 (a) and (b) show the two most dominating independent components, while 

the most dominating principal components are illustrated in Figs. 4.14 (c) and (d). It is 

seen that the components obtained by ICA and PCA are quite different. This indicates 

that although there are some seeming similarities between PCA and ICA, they are 

essentially different statistical methods. 

 

Fig. 4.14 Most dominating (a)-(b) independent components and (c)-(d) principal 
components  
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The performances of PCA- and ICA-based methods are first compared in Table 4.3.  

As observed, both of the variances obtained from independent components take much 

larger values than those obtained from principal components. This suggests that the 

features extracted by ICA-based method should lead to better classification due to 

more discriminative power introduced by independency of the features.  

 

Table 4.3 Variances of projections onto the most dominating independent and principal 
components 

 
 

1Var  2Var  

Independent components 0.2082 0.1885 

Principal components 0.1698 0.0893 

 

 

Fig. 4.15 further compares the performance of ICA- and PCA-based feature extraction.  

Features obtained from ICA are seen to cluster distinctly according to the four sources, 

although clusters corresponding to “spacer” and “enclosure” are close to each other 

due to the similarity of the two types of PD as shown in Figs. A.3 (b) and (d).  Features 

of “spacer”, “conductor” and “enclosure” resulted from PCA are seen to overlap with 

each other.  This indicates that the ICA-based feature extraction outperforms PCA-

based method due to superior statistical properties of the former components.  
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Fig. 4.15 Feature clusters formed by (a) ICA features (b) PCA features  
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4.5.2 Need for Denoizing 

In this section, the need for first removing white noises is demonstrated by 

investigating the impact of different background noise levels on the results of ICA-

based feature extraction. 

 

Table 4.4 shows the average convergence time of FastICA when signals of different 

SNR levels are used as its input. It can be seen that the convergence time gets longer as 

the noise level gets higher. The convergence time increases significantly due to the 

more computation time required in the process of maximizing negentropy. In the worst 

case, where the SNR of input signals is -5, the algorithm is not able to converge within 

the pre-determined maximal iteration. 

 

Table 4.4 Average convergence time 

Noise Level SNR=17  
(after denoizing) SNR=0 SNR= -5 

Convergence Time (s) 1.911 3.207 * 183 

*: In this case, FastICA is not able to converge in 1000 iteration. (Section 4.4.3 – C). 
Convergence is observed at 9800 iteration. 

 

Fig. 4.16 illustrates the feature clusters obtained from ICA-based method with input 

signals of different noise levels. As shown in Fig. 4.16 (a) where the SNR of input 

signals is 0, features of “spacer” and “enclosure” are seen to overlap with each other, 

although features of “corona” and “conductor” are still well separated. The worst case 

(SNR= -5) is shown in Fig. 4.16 (b), where the features are all mixed up. It is 

impossible to discriminate PD source correctly using these features. Thus, it is 

imperative to remove the white noises before the features are extracted. 
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Fig. 4.16 Feature clusters formed by ICA-based method. Noise level of input signals is 
(a) SNR=0; (b) SNR= -5. 

 124



CHAPTER 4⎯ PD FEATURE EXTRACTION BY INDEPENDENT COMPONENT ANALYSIS 
 
 

4.6 CONCLUDING REMARKS 

In order to improve the efficiency and accuracy of PD identification, it is crucial to 

extract the most dominating features of measured UHF resonance signals. In this 

chapter, a method using Independent Component Analysis is developed for such 

purpose. Experimental results show that the extracted features form distinct clusters 

according to different sources, which indicates that good classification performance 

may be achieved by using such features. White noises present in the measured signals 

are seen to have deteriorated the discrimination ability of the extracted features. The 

importance of denoizing is thus verified.  
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CHAPTER 5 

PD FEATURE EXTRACTION BY WAVELET PACKET 

TRANSFORM 

 

 

In previous chapter, a typical time-domain method, namely ICA-based method is 

developed for extracting PD features. However, the method forms feature clusters with 

small margin between “enclosure” and “spacer”. To extract features with higher 

quality, a time-frequency-domain method, which is based on the wavelet packet 

transform, is proposed in this chapter. Firstly, the wavelet-packet-based method is 

described, followed by discussions of parameters selection for feature extraction 

purpose. Secondly, numerical results are presented and the necessity of denoizing is 

justified. Lastly, the relationship between PD features extracted by Wavelet Packet 

Transform and Fast Fourier Transform is discussed.  
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5.1 INTRODUCTION 

In Chapter 4, ICA-based PD feature extraction method is developed with limited 

success. Although features resulted from ICA form distinct clusters, the margin 

between the clusters of “spacer” and “enclosure” is too small to ensure a low 

misclassification rate on new data. The reason of having close clusters is that the time 

domain signals of the two types of PD have similar waveforms. As a result, the 

features extracted by ICA, which is a time domain method, tend to be close to each 

other. To solve this problem, not only time domain but also frequency domain 

information should be considered.  

 

One advantage of using wavelet-based techniques to decompose a signal is that 

wavelet transform allows us to examine different time-frequency resolution 

components in a signal. Therefore, more effective features may be extracted by using 

such techniques including discrete wavelet transform and wavelet packet transform. 

Wavelet packet transform of a signal results in a full decomposition tree that offers 

better frequency resolution than the partial tree formed by discrete wavelet transform. 

Therefore, in this chapter, a wavelet-packet-based scheme is proposed to extract PD 

features as shown in Fig. 5.1. The first two blocks in the scheme, namely denoizing 

and pre-selection have been discussed in previous chapters. Salient features of the 

other blocks are discussed in the following sections.  
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Fig. 5.1 Flowchart of wavelet-packet-based PD feature extraction scheme  

 

5.2 WAVELET-PACKET-BASED FEATURE EXTRACTION 

In this section, the major steps of wavelet-packet-based feature extraction method, 

namely wavelet packet decomposition, feature measure and feature selection, are 

described. 

 

5.2.1 Wavelet Packet Decomposition  

To extract characteristic information from time domain UHF signals, they are first 

decomposed into the wavelet packet domain, forming wavelet-packet-decomposition 

(WPD) trees. Since there are totally 80 UHF signals used for developing the method, 
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80 WPD trees are formed by performing the decomposition. The wavelet packet 

decomposition is set on a decomposition level of 5 (Fig. 5.2) and the “db9” wavelet 

packets based on the effectiveness of the obtained features. The selection of 

decomposition level and wavelet filters is discussed in Section 5.3.  
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Fig. 5.2 WPD tree of level 5 (Copy of Fig. 3.8 for reference)  

 

Each node in the WPD tree represents a set of decomposition coefficients which 

correspond to a certain frequency band as shown in Fig. 5.3. The topmost node 

contains the pre-selected signal which has a sampling frequency of 4 GHz. According 

to the Nyquist theory, the highest frequency content contained in the nodes is up to 2 

GHz, namely half of the sampling frequency . Therefore, one level of decomposition 

results in two nodes that have spectra of 0-1 GHz (

0f

00
4
f

− ) and 1-2 GHz ( 0 0

4 2
f f
− ) 

respectively. As illustrated in Fig. 5.3, frequency span of each father node is the union 

of that of its child nodes.  
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Fig. 5.3 Frequency span of nodes in the WPD tree 

 

5.2.2 Feature Measure 

Wavelet packet decomposition enables time-frequency analysis of the PD signals 

based on the decomposition coefficients. However, direct manipulation of a whole set 

of decomposition coefficients is prohibitive as the space normally has very high 

dimensionality. For instance, a five-level WPD (Fig. 5.2) of a pre-selected signal 

results in 5000 (5*1000) coefficients. Therefore, appropriate features must be defined 

based on the WPD coefficients to reduce the dimensionality and retain the time-
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frequency characteristics of the decomposition coefficients. Features defined according 

to nodes known as node feature are discussed in this section.  

 

A. Node kurtosis 

Kurtosis is a statistical parameter describing the shape of a data distribution. It is a 

measure indicating whether a data distribution is more or less peaky than the normal 

distribution. As shown in Fig. 5.4, data with high kurtosis tend to have a distinct peak 

near the mean, decline rather rapidly, and have heavy tails. Data with low kurtosis tend 

to have a flat top near the mean rather than a sharp peak. 

 

 

Fig. 5.4 Data distribution with different kurtosis values 
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Node kurtosis is defined as the kurtosis of the decomposition coefficients of each node 

(j,n) in the WPD tree as in equation 5.1.  
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where   

 ,j nK  =  node kurtosis of node (j,n).  

,j nω  = the WPD coefficients vector corresponding to node (j,n) in the 

decomposition tree. 

, ,j k nϖ  = the kth coefficient of node (j,n).  

 ,j nN  = the length of the coefficients vector ,j nω .  

  ,j nµ  = mean value of coefficients vector ,j nω . 

  ,j nσ  = standard deviation value of coefficients vector ,j nω .  

 

Since normal distribution has a kurtosis value of three, the minus three in the above 

equation means normalization according to normal distribution.  

 

 

B. Node skewness 
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Skewness is another distribution-shape-related statistical parameter. It characterizes the 

degree of asymmetry of a distribution around its mean. As illustrated in Fig. 5.5, 

skewness is zero for a symmetrical distribution, positive if it is heavier towards the 

left-hand side and negative if it is heavier towards the right-hand side.  

 

Node skewness is defined as the skewness of decomposition coefficients of each node 

(j,n) as in equation 5.2. 
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where   

 ,j nS  =  node skewness of node (j,n).  

 

The other variables in the above equation have the same meaning as in equation 5.1. 

Comparing equation 5.1 with equation 5.2, it is seen that they have similar structure in 

mathematical formula. The difference is only in the order of formula, where kurtosis 

has an order of 4 and skewness is of order 3. However, they have completely different 

statistical property. 
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Fig. 5.5 Data distribution with different skewness values 

 

Taking advantage of the time information provided by wavelet packet transform, node 

kurtosis and node skewness describe the distribution shape of the decomposition 

coefficients locally in a specified frequency band at each node. They enable detailed 

time-frequency analysis of the UHF signals. Thus, they are considered as important 

local features for PD identification.  

 

C. Node energy 
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The wavelet packet power spectrum provides us with information about the local 

spectral content of the signal. The local wavelet packet power spectrum corresponding 

to each node (j,n) is defined as  

 

2

,
1

,j n jP
N

ω= n                                                                                                       (5.3) 

 

where  

,j nω  = the WPD coefficients vector corresponding to node (j,n) in the 

decomposition tree.   

      N =  length of the signal.   

 

To reduce the computation complexity, the normalization factor 1/N in (5.3) is omitted 

in our analysis.  The modified wavelet spectrum is named as “node energy” [68], and 

is denoted as  

 

2

, ,j n j nE ω=                                                                                                                               (5.4) 

 

D. Node median and node mean 

Mean and median are two types of measures for central tendency. Median is a measure 

of the "middle" of the data. For an odd number of data points arranged in ascending 

order, median is actually the middle value, and for an even number of data points it is 
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the value halfway between the two middle data points. Mean is computed by adding all 

the numbers in the set and dividing the sum by the number of elements added. For a 

given set of data, these measures may be very close or may be quite different, 

depending on how the data are distributed. 

 

Node median and node mean are defined in the same way of the previous node features. 

They are computed by taking the median and mean of the decomposition coefficients 

of each node as in equation 5.5 and 5.6 respectively. 
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where 

 y  = sorted coefficients vector of node (j,n). 

 N = length of the coefficients vector of node (j,n). 
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where  

 , ,j k nϖ  = the kth coefficient of node (j,n).  
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Node kurtosis, node skewness, node energy, node median and node mean are 

computed for each node in a WPD tree. As illustrated in Fig. 5.6, these calculated 

features form five feature trees, namely the kurtosis tree, skewness tree, energy tree, 

median tree and mean tree, in association with each WPD tree. For example, each node 

of the energy tree contains the energy value of the coefficients in the corresponding 

node of WPD tree. Since each feature tree contains 62 nodes, the total number of node 

features for a PD signal is 310 (=62*5), which is much smaller than the number of 

WPD coefficients (=5000).  

 

 

Fig. 5.6 Construction of feature trees 
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5.2.3 Feature Selection  

One of the crucial issues in classification is the curse of dimensionality [69].  

Therefore, a low-dimensioned feature space is highly desired to ease the design of 

classification system and improve its generalization properties. Although the node 

features extracted from the WPD coefficients have reduced the number of features, the 

dimensionality of the feature space is still too high to achieve satisfactory speed and 

classification performance. In addition, the existence of undesired features makes the 

classification unnecessarily difficult. Therefore, feature space must be further reduced 

by discarding the features that have little discrimination information. Only those 

features that preserve maximum class separability are selected to be used in the 

classification process. In this study, the criterion based on within- and between-class 

scatter is modified to be the measure of discrimination ability of individual node 

features. 

 

The within-class scatter value (Sw) measures the scatter of feature vectors of different 

classes around their respective mean values. The between-class scatter value (Sb) is 

defined as the scatter of the conditional mean values around the overall mean value.  In 

this thesis, the Sw and Sb of a node feature of type t for an L-class problem are defined 

as follows: 
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where  

              t =  the type of feature such as energy, kurtosis, and so on.  

2 ( , )c j nσ  = the variance of features of type t at node (j,n) across the signals 

belonging to class c. 

 ( , )c j nη   =  mean value of features of type t at node (j,n) for class c.   

   ( , )tj nη  =  mean value of features of type t at node (j,n) for all signals. 

            =  the number of signals belonging to class c.  cN

            =  the number of total signals that is 80 in this study.  N

 

Then a criterion, known as J criterion for feature selection is defined as: 
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                                                                                           (5.9) 

 

The between-class scatter value indicates how far the features of different classes are 

separated. On the other hand, the within-class scatter value shows the compactness of 

the feature cluster corresponding to each class. In order to have a good separability for 

classification, large between-class scatter and small within-class scatter are desired. 

Therefore, a large  value indicates that features of type t at node (j,n) form a 

good feature set.   

( , )tJ j n
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To illustrate and verify the effectiveness of the J criterion, equations 5.7 and 5.8 are 

simplified by considering the 2-class case as follows: 
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where 1 2
3 2

N N
C

N
=  is a constant. 1( , )tj nη  and 2 ( , )tj nη  are mean values of features of 

type t at node ( ,  for class 1 and 2 respectively.)j n

 

It is seen from equations (5.10) and (5.11) that Sw and Sb are in proportion to the sum 

of the variances and the distance of the means respectively. Therefore, the smaller the 

variances and the larger the distance of means, the better the features’ class 

separability.  

 

The effectiveness of the J criterion is illustrated in Fig. 5.7. Fig. 5.7 (a) shows the case 

where the feature clusters have means that are far from each other, but they are still not 

well-separated due to their large variances. On the other hand, the means of feature 

clusters in Fig. 5.7 (b) are too close to have a good separability, although the clusters 
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are compact. Fig. 5.7 (c) is the worse case where the mean values are close and 

variances are large. As observed, the feature clusters are almost overlapped. An 

example of good separability is shown in Fig. 5.7 (d), where feature clusters with 

compact distribution are separated in the distance. Therefore, it can be concluded that a 

small Sw and a large Sb lead to good features for classification. Thus the use of J 

criterion is justified. 

 

To select the best features, J values of all the 310 (62*5) nodes in the feature trees are 

calculated using the J criterion. Features with the largest J values are selected to be the 

input of the neural network (Chapter 6).  
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Fig. 5.7 Effectiveness of the J criterion
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5.3 DETERMINATION OF WPD PARAMETERS 

Associated with the wavelet packet decomposition, there are two parameters to be 

determined, namely decomposition level and wavelet filters. These parameters have 

significant impact on the feature calculation and selection. Thus, the selection of these 

parameters is investigated in this section.  

 

5.3.1 Level of Decomposition 

As the time-frequency features are defined according to nodes of WPT tree, the 

number of candidate features is proportional to the number of nodes in the 

decomposition tree. Therefore, a low decomposition level results in less candidate 

features, which may not include the best features. Thus, it is preferred to apply a 

decomposition level as high as possible.  

 

On the other hand, when decomposition level gets higher, the algorithm will get slow 

dramatically. Therefore, it is crucial to select a suitable decomposition level that makes 

a good tradeoff between number of candidate features and the speed. Table 5.1 shows 

the effect of choosing different decomposition level. It can be seen that a 

decomposition of 5 achieves sufficient number of features as well as acceptable speed. 

Therefore, a decomposition of 5 is used for feature extraction.  
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Table 5.1 Selection of decomposition level  

Decomposition level Number of features Time (min) 

1 10 0.5 

2 30 2.6 

3 70 7.0 

4 150 10.5 

5 310 25.5 

6 630 123.6 

7 1270 425.0 

8 2550 935.5 

 

5.3.2 Best Wavelet for Classification Purpose 

Criteria used to measure the suitability of a wavelet are application dependent. In 

Chapters 2 and 3, “minimum prominent decomposition coefficients” and denoizing 

performance indicators such as SNR and CC are employed as the wavelet selection 

criteria for denoizing.  However, these criteria do not reflect the classification ability of 

a wavelet, as class information is not considered in the selection process.  

 

For classification, the wavelet which leads to maximal separation of classes in the 

feature space is the best choice. Therefore, the J criterion defined in Section 5.2.3 is 

used to select the best wavelet. The procedure leading to the determination of best 

wavelet is as follows: 

 

(1) Select a wavelet from a set of candidate wavelets that have not been examined. 

Set the decomposition level to 5. 

(2) Perform wavelet packet decomposition on all 80 data as in Section 5.2.1. 

(3) Construct feature trees according to Section 5.2.2. 
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(4) Calculate J values for all the nodes in five types of feature trees according to 

Section 5.2.3. 

(5) Summate the first five largest J values and denoted as Jsum. 

(6) If all the candidate wavelets have been examined, go to (7). Otherwise, go to 

(1). 

(7) Compare Jsum and the largest J values corresponding to different wavelets and 

choose the one with the largest Jsum value. 

 

Using above procedure, largest J values and Jsum corresponding to candidate wavelets 

are computed and shown in Table 5.2. It can be seen that the use of wavelet “db9” 

results in the largest Jsum, which in turn leads to the most discriminating features. The 

best wavelet for denoizing, namely “sym6” wavelet is seen to have an inferior 

performance in terms of discrimination ability. Thus, “db9” is employed in the feature 

extraction process.  

 

Table 5.2 Largest J values corresponding to candidate wavelets 

wavelet largest J 2nd largest 3rd largest 4th largest 5th largest Jsum

db1 11.1472 8.9926 8.9214 5.1801 5.0376 39.2790

db2 8.7717 6.4077 5.1951 4.6426 4.5084 29.5255

db3 8.6536 8.53 7.4543 7.2913 6.8793 38.8084

db4 11.6558 10.6842 9.0882 8.7225 7.7441 47.8948

db5 10.0822 8.8847 8.3091 7.1419 5.1006 39.5185

db6 8.9007 7.6649 6.6189 5.6495 5.5355 34.3695

db7 9.2279 9.0119 7.5341 6.633 6.3431 38.7501

db8 9.065 8.4025 7.749 7.2971 7.2311 39.7446

db9 12.1435 11.8492 8.6009 8.5927 8.0492 49.2355
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db10 11.0247 8.2442 7.4261 6.5047 6.0645 39.2642

sym4 9.162 8.9113 8.7878 7.9445 6.5349 41.3406

sym5 9.3107 8.4964 8.0997 7.4842 7.3544 40.7455

sym6 9.0327 8.9521 8.1455 7.2787 6.302 39.7110

sym7 8.8172 8.4305 6.9262 5.8794 5.5216 35.5750

sym8 9.0529 8.391 8.3408 8.2732 8.241 42.2990

sym9 9.4052 8.1913 6.2384 5.5362 5.1012 34.4723

sym10 9.196 7.1077 6.1544 6.068 5.6584 34.1846

coif1 11.3313 9.2107 8.0681 7.6744 7.2843 43.5689

coif2 11.03 10.1664 9.5728 8.7226 7.9131 47.4049

coif3 9.0115 8.8234 7.6481 7.1127 7.0737 39.6694

coif4 8.8934 8.4061 8.0776 7.2761 6.6866 39.3399

coif5 8.9401 6.8749 6.5338 6.1461 5.2337 33.7286
 

5.4 RESULTS AND DISCUSSIONS 

Results obtained from the wavelet-packet-based feature extraction method are 

presented and discussed in this section. The effectiveness of the extracted features is 

first verified. Subsequently, impact of wavelet and white noise levels is investigated. 

Lastly, the relationship between node energy and power spectrum is clarified.  

 

5.4.1 Effectiveness of Selected Features 

Extracted by the wavelet-packet-based method, ten features (WPT_feature) with the 

largest J criterion values are summarized in Table 5.3. It is seen that seven out of ten 

selected features are distribution-shape-related features, namely node kurtosis and 

node skewness. This indicates that the distribution-shape-related node features are 

more effective in PD identification.  

 146



CHAPTER 5⎯ PD FEATURE EXTRACTION BY WAVELET PACKET TRANSFORM 
 

The frequency ranges of selected features show that both high-frequency and low-

frequency decomposition coefficients contain discriminating information. Particularly, 

the selection of features defined on nodes at the right-hand side of WPD tree, such as 

(5,21), (5,19) and (5,20), suggests that wavelet packet transform is more suitable than 

discrete wavelet transform for this study, as these nodes do not exist in the tree 

structure formed by discrete wavelet transform. 

 

As shown in Table 5.3, the feature with the largest J value is the node kurtosis of node 

(5,21) that corresponds to frequency range of 1.3125 to 1.375 GHz. This means that 

the sharpness of decomposition coefficients distribution of the particular frequency 

range exhibits the largest difference between signals of SF6 PD as well as air corona.  

 

Table 5.3 Features extracted by wavelet-packet-based method (WPT_feature) 

serial no. feature J value frequency range (Hz) 

1 (5,21)kurtosis 12.1435 1.3125 G – 1.375 G 

2 (1,0)skewness 11.8492 0 – 1 G 

3 (5,1)energy 8.6009 62.5 M – 125 M 

4 (5,19)skewness 8.5927 1.1875 G – 1.25 G 

5 (5,0)kurtosis 8.0492 0 – 62.5 M 

6 (3,0)kurtosis 7.7291 0 – 250 M 

7 (5,20)median 7.5266 1.25 G – 1.3125 G 

8 (5,11)skewness 6.6111 687.5 M – 750 M 

9 (4,0)skewness 6.5075 0 – 125 M 

10 (4,2)energy 6.1892 250 M – 375 M 
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The effectiveness of the extracted features is shown in Figs. 5.8 – 5.10.  Fig. 5.8 shows 

the number of wavelet-packet-decomposition coefficients whose values fall into evenly 

partitioned ranges. Taking Fig. 5.8(a) as an example, the first range is [-0.02, -0.018], 

the second range is [-0.018,-0.016], the third range is [-0.016,-0.014], and so on. There 

is one decomposition coefficient falling into [-0.02,-0.018] (first range) as shown in 

Fig. 5.8(a). Fig. 5.8 illustrates the distribution of air corona and SF6 PD at node (5,21) 

that is selected by the maximal class separability criterion. These distributions exhibit 

different shapes and distribution-related features associated with the decomposition 

coefficients at node (5,21) should be well separated.   

 

Fig. 5.8 Distribution of wavelet-packet-decomposition coefficients at node (5,21) 
corresponding to (a) air corona; (b) particle on the surface of spacer; (c) particle on 

conductor; (d) free particle on enclosure  
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Figs. 5.9 (a) and (b) show the kurtosis values of wavelet-packet-decomposition 

coefficients of SF6 PD and air corona at node (5,21) and (4,15) respectively, while 

J(5,21)kurtosis is much larger than J(4,15)kurtosis.  As observed, the kurtosis values 

corresponding to “conductor”, “spacer”, “enclosure” and “corona” samples are well 

separated at node (5,21), and not as well separated at node (4,15).  This justifies the 

use of J criterion for selecting the features. 

 

Fig. 5.9 Kurtosis values of wavelet-packet-decomposition coefficients of UHF signals 
(a) at node (5,21); (b) at node (4,15) 
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Figs. 5.10 and 5.11 demonstrate the feature clusters formed by the first and last two 

pairs of extracted features in two-dimensional spaces respectively. As observed, 

features in Fig. 5.10 are better separated than in Fig. 5.11 due to the greater J values of 

the first four features. In Figs. 5.11 (a) and (b), overlapping of feature clusters is 

observed, which indicates inferior classification performance. Thus, the use of J 

criterion value as the indicator of separability is verified. 

 

Moreover, it is seen that the margin between feature clusters in Fig. 5.10 (a) is much 

larger than that of ICA-formed feature space as in Fig. 4.15 (a). This suggests that 

WPT-based method outperforms ICA-based method due to the additional frequency 

information. The effectiveness of selected features will be further studied in Chapters 6 

and 7. 
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Fig. 5.10 Feature spaces formed by wavelet-packet-based method. (a) 1st and 2nd 
selected features; (b) 3rd and 4th selected features  
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Fig. 5.11 Feature spaces formed by wavelet-packet-based method (continue). (a) 7th 

and 8th selected features; (b) 9th and 10th selected features  
 

 152



CHAPTER 5⎯ PD FEATURE EXTRACTION BY WAVELET PACKET TRANSFORM 
 

5.4.2 Impact of Wavelet Selection 

In Section 5.3.2, a method based on J criterion is employed to select the best wavelet 

for feature extraction. As a result, the “db9” wavelet is selected by the method for 

having the best discrimination ability. The impact of the choice of different wavelet 

filters on the effectiveness of selected features is further discussed in this section by 

comparative study.  

 

Table 5.4 shows the best features obtained from “sym6” and “db9” wavelet. It can be 

seen that the wavelets result in the selection of completely different node features. Figs. 

5.12 (a) and (b) further illustrate the feature spaces resulted from “sym6” and “db9” 

wavelet respectively. It can be seen that the features extracted by “sym6” are not as 

well-separated as those extracted by “db9”. This indicates that although “sym6” is the 

best wavelet for denoizing, it is not suitable for feature extraction. Thus, the use of J 

criterion is further verified as “sym6” gives a smaller Jsum value than “db9” as in Table 

5.2.  

 

Table 5.4 Features extracted by “sym6” and “db9”  

wavelet best features J value frequency range (Hz) 

(4,10)kurtosis 9.0327 1.25 G – 1.375 G 
“sym6” 

(4,2)skewness 8.9521 250 M – 375 M 

(5,21)kurtosis 12.1435 1.3125 G – 1.375 G 
“db9” 

(1,0)skewness 11.8492 0 – 1 G 

 153



CHAPTER 5⎯ PD FEATURE EXTRACTION BY WAVELET PACKET TRANSFORM 

 154

 

Fig. 5.12 Feature spaces formed by the best features obtained from (a) “sym6” wavelet; 
(b) “db9” wavelet 

 



CHAPTER 5⎯ PD FEATURE EXTRACTION BY WAVELET PACKET TRANSFORM 
 

5.4.3 Need for Denoizing 

The impact of background noise on the performance of wavelet-packet-based feature 

extraction is studied in this section.  

 

Figs. 5.13 (a) and (b) illustrate the impact due to medium background-noise insertion 

(SNR=0) and high background-noise insertion (SNR=-5) on separability of the features, 

which have been extracted using the “db9” wavelet with denoized data (SNR=17). As 

shown in the feature clusters of [(5,21)kurtosis, (1,0)skewness], the features of different 

classes are seen to become more and more overlapped, as the noise level gets higher 

and higher.  

 

To investigate the impact of noise levels on the feature extraction process, signals of 

different SNRs are employed for calculating node features and forming the feature 

spaces. As illustrated in Table 5.5, fewer features defined on high frequency band are 

selected when signals corrupted by high level noises are employed in the wavelet-

packet-based feature extraction. This indicates that the node features computed from 

decomposition coefficients of high frequencies are more affected by noises. 

Furthermore, it is seen that the J values of obtained features are smaller than those in 

Table 5.3, where denoized signals are used. This suggests that denoizing improves 

discriminative ability of the extracted features. 
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Fig. 5.13 Impact of noise levels on the features selected in Section 5.4.1. (a) SNR=0; 
(b) SNR=-5. 
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Table 5.5 Features extracted from signals of different SNR levels 

SNR = 0 SNR = -5 
Serial no. 

feature J value feature J value 

1 (1,0)skewness 9.5232 (4,0)skewness 5.1781 

2 (5,0)kurtosis 8.5458 (3,0)kurtosis 4.1951 

3 (5,1)energy 7.9701 (2,0)kurtosis 4.1788 

4 (3,0)skewness 7.5755 (5,1)energy 4.1379 

5 (4,0)skewness 6.6046 (5,0)kurtosis 3.8543 

6 (3,0)kurtosis 4.965 (2,0)skewness 3.479 

7 (5,4)kurtosis 4.8702 (3,0)skewness 3.3888 

8 (5,21)kurtosis 4.8486 (5,4)kurtosis 3.1177 

9 (4,2)energy 4.4572 (5,0)energy 3.1093 

10 (2,0)kurtosis 4.1856 (4,2)energy 3.0972 

 

 

The feature spaces are then constructed using features with highest J values as 

highlighted in Table 5.5. Figs. 5.14 (a) and (b) show the best feature spaces obtained 

from signals with SNR levels of 0 and -5 respectively. It is seen that the features 

extracted from such signals are not well separated in both feature spaces. Furthermore, 

as the noise level gets higher, the quality of obtained feature clusters gets worse. 

Therefore, it is crucial to suppress white noises present in the measured signals before 

feature extraction and classification. 
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Fig. 5.14 Feature spaces obtained from signals of different SNR levels. (a) SNR=0; (b) 
SNR=-5. 
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5.4.4 Relationship between Node Energy and Power Spectrum 

As each node in the WPD tree contains decomposition coefficients of certain 

frequency band, node energy represents energy of the corresponding frequency band in 

wavelet domain. Therefore, there is a need to clarify the relationship between energy in 

wavelet domain and in Fourier domain.  

 

To investigate the relationship between node energy and energy in Fourier domain, the 

power spectrum of a PD signal of type “spacer” is first built using Fast Fourier 

Transform (FFT) as shown in Fig. 5.15. Subsequently, energy values in Fourier 

domain are calculated for 62 frequency bands corresponding to the nodes of WPT tree. 

They are computed from the power spectrum by summing up the square of FFT 

coefficients of each frequency band, forming FFT_energy (1*62). FFT_ energy is then 

compared with node energy that is computed from wavelet-packet-decomposition 

coefficients (Section 5.2.2 C). As illustrated in Fig. 5.16, node energy is almost the 

same as FFT_ energy. Therefore, it can be concluded that the Fourier domain energy 

analysis is equivalent to node energy analysis, which is seen to be not sufficient for PD 

identification as shown in Fig. 5.10 (b). The time-frequency information equipped with 

wavelet packet transform is thus crucial for the current study. 
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Fig. 5.15 Power spectrum obtained from FFT 

 

 

Fig. 5.16 Comparison of node energy and FFT_energy 
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5.5 CONCLUDING REMARKS 

This chapter proposes a novel wavelet-packet-based feature extraction method to 

tackle the difficulties encountered by ICA-based time domain method. Results show 

that the feature clusters formed by the wavelet-packet-based method exhibit much 

larger between-class margin than ICA-based method, which indicates a better 

classification performance.  

 

Comparative studies on features extracted from data with different noise levels show 

that high level of white noises worsens the performance of the features. Among 

features derived from decomposition coefficients, distribution-shape-related node 

features are seen to be more effective than the other node features, such as node energy. 

Further investigation of the relationship between node energy and power spectrum 

reveals that Fourier domain energy analysis is equivalent to node energy analysis. Thus, 

it can be concluded that wavelet-packet-based method outperforms methods solely in 

time or frequency domain due to its time-frequency characteristics.  
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CHAPTER 6 

PARTIAL DISCHARGE IDENTIFICATION USING 

NEURAL NETWORKS 

 

 

In previous chapters, high quality partial discharge features, namely ICA_feature and 

WPT_feature, have been established from UHF signals through denoizing and feature 

extraction. Based on the feature clusters as illustrated in Fig. 5.10 (a), PD identification 

can be performed by experienced engineers. However, it is difficult to evaluate the 

measured data by humans when the database gets larger and larger. On the other hand, 

it has been found that the artificial neural networks perform more effective and reliable 

classification than engineers, especially when multilayer perceptron (MLP) neural 

network is employed [23, 26, 72].  Thus, a MLP neural network with a back-

propagation (BP) learning rule is implemented in this chapter to automatically classify 

a new set of measured data among SF6 PD and air corona. Firstly, training and test of 

the MLP is studied with discussions on the network parameters selection. 

Subsequently, the usefulness and effectiveness of the extracted features are proved by 

results of comparative studies. 
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6.1 CLASSIFICATION USING MLP NETWORKS 

In the past decades, several network architectures such as multilayer perceptron [26], 

self-organizing map [70] and modular neural network [71] have been adopted to 

classify PD sources of different types. In [72], three different types of neural networks, 

namely multilayer perceptron, self-organizing map and learning vector quantization 

network are studied and compared. In this study, multilayer perceptron (MLP) is 

chosen due to its proven powerfulness and effectiveness for PD classification [72]. 

 

A brief introduction to MLP networks is first given in this section. Subsequently, the 

construction and training of MLP are discussed. Lastly, the generalization issue of 

MLP networks is studied. 

 

6.1.1 Brief Introduction to MLP 

A multilayer perceptron is a network of simple neurons called perceptrons. MLP 

consists of an input layer, one or more hidden layers and an output layer of neurons, 

which perform the processing tasks through a nonlinear activation function. Each 

neuron has many inputs but only one output that is applied to every neuron in the next 

layer. Each connected pair of neurons is associated with an adjustable weight. The 

MLP network is trained using the back-propagation algorithm, which modifies the 

weights to get desired output by means of the gradient search technique.  

 

There are three distinctive characteristics of the multilayer perceptron: 
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1. There is a nonlinear activation function associated with each neuron and the 

function must be smooth. The presence of nonlinearities is important because 

otherwise the input-output relation of the network could be reduced to that of a 

single-layer perceptron.  

2. The network contains one or more layers of hidden neurons, which enable the 

network to learn complex tasks by extracting progressively more meaningful 

features from the input vectors.  

3. The neurons are fully interconnected so that any element of a given layer feeds 

all the elements of the next layer. 

 

It is through the combination of these characteristics together with the ability to learn 

from experience through training that the MLP derives its computing power. A review 

of MLP is given in [66]. 

 

6.1.2 Constructing and Training of MLP  

To achieve the best classification performance, MLP must be properly constructed and 

trained with a suitable algorithm. The parameters to be determined when constructing 

and training a MLP include number of hidden layers, type of neuron, number of 

neurons in input, hidden and output layer, training algorithm and training stopping 

criteria. The selection of these parameters has significant impact on the performance of 

MLP network. Thus, details of selecting these parameters are discussed in this and next 

section. 
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A. Number of Hidden Layers 

In general, the more hidden layers MLP contains, the more powerful the MLP is. 

However, too many hidden layers will slow down the MLP. In addition, unnecessarily 

large number of hidden layers may result in overfitting to the training data, which 

could lead to a bad classification performance on new data [66]. On the other hand, as 

the PD classification problem has been significantly simplified by using the extracted 

features, MLP with one hidden layer is seen to be powerful enough for current 

application. Thus, the number of hidden layers is set to one.  

 

B. Number of Neurons in Input, Hidden and Output Layer 

In this study, the classification problem involves four classes, namely “spacer”, 

“conductor”, “enclosure” and corona. Therefore, the number of output neurons is set to 

two to represent all the classes as shown in Table 6.1. Since the outputs of MLP rarely 

give exactly the target of 0 or 1 on each output neuron, the PD pattern is deemed to 

have been correctly classified if the error on each output neuron is within 0.2. For 

instance, if the output of MLP is (0.88, 0.15) when a signal of particle on conductor is 

presented (ideally the output should be (1,0)), it is treated as correctly classified.  

 

The number of neurons in input layer equals to the number of features used as the 

input of MLP. Therefore, it is determined in Section 6.3 by comparative studies on the 

performance of using different number of extracted features.  
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As the number of neurons in hidden layer is closely related to the generalization issue 

of MLP, it will be discussed in the next section. 

 

Table 6.1 Representing four classes by two output neurons 
 

Classes Output of 1st neuron Output of 2nd neuron 

Corona 0 0 

Spacer 0 1 

Conductor 1 0 

Enclosure 1 1 

 

 

C. Type of Neuron 

The type of a neuron is characterized by the type of activation function used in the 

neuron. There are three functions commonly employed in MLPs, namely log-sigmoid, 

tan-sigmoid and the linear function as shown in Fig. 6.1. For this study, the log-

sigmoid function is preferred as the relationship between input and output of MLP is 

nonlinear and output of 0 or 1 is expected on the neurons in output layer. Thus, log-

sigmoid type neurons are employed in all of the layers.  
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Fig. 6.1 Activation functions. (a) log-sigmoid; (b) tan-sigmoid; (c) linear. 

 

D. Training Algorithms 

There are quite a few back-propagation algorithms available to be used to train the 

MLP. Table 6.2 shows the algorithms compared in this study. A comprehensive review 

of these algorithms is given in [73]. 
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Table 6.2 Training algorithms 

 
Algorithms Description 

Basic gradient 
descent 
(traingd) 

Weights and biases are updated in the direction of the negative 
gradient of the performance function. 

Gradient 
descent with 
momentum 
(traingdm) 

A variation of the basic gradient descent algorithm. Momentum 
allows the network to ignore small features in the error surface. 
Thus, it prevents the network from getting stuck in a local 
minimum. 

Adaptive 
learning rate 

(traingda) 

Another variation of the basic gradient descent algorithm. The 
learning rate changes during the training. 

Adaptive 
learning rate 

with 
momentum 
(traingdx) 

A combination of adaptive learning rate and momentum. 

Resilient back-
propagation 

(trainrp) 

The sign of the gradient is used to determine the direction of the 
weight update. The size of the weight update changes according 
to the sign of gradient for successive iterations. 

Conjugate 
gradient 

(trainscg) 
Weight update is performed along conjugate direction. 

Quasi-Newton 
(trainbfg) 

An alternative to the conjugate gradient method. It often 
converges faster than conjugate gradient method. 

Levenberg-
Marquardt 
(trainlm) 

A variation of Quasi-Newton method. 

 

Fig. 6.2 compares the convergence performance of the training algorithms. It can be 

seen that MLP is not able to converge within 1000 epochs when trained with ‘traingd’, 

‘traingdm’ and ‘traingda’. On the other hand, the resilient back-propagation (‘trainrp’) 

algorithm is seen to achieve the best convergence and thus adopted in this study. 

Details of the resilient back-propagation algorithm are given in Appendix E.  
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Fig. 6.2 Performance of training algorithms 

 

E. Training Stopping Criteria 

Training of the MLP stops when either of the following criteria is met. 

 

(1) When the maximum number of iterations is reached. It is set to 1000 in this 

study. 

(2) When the mean squared error (MSE) between the network outputs and the 

target outputs drops below the goal, which is set to 0.01 in this study.  
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F. The Used MLP 

To perform PD identification, a three-layer (one hidden layer) MLP network with a 

back-propagation training algorithm known as resilient back-propagation is adopted to 

achieve fast convergence during training.  Fig. 6.3 shows the structure of the used 

MLP.   

 

 

Fig. 6.3 Three-layer MLP for classification 
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After extensive studies, the configuration of the MLP network is set as in Table 6.3. It 

can be seen that a very simple MLP is able to perform PD identification successfully 

due to the high quality of the extracted features. 

 

Table 6.3 Parameters of the used MLP 

Parameters Setting 

Type of neuron Log-sigmoid 

Number of neurons in output layer 2 

2 (when ICA_feature is used) 
Number of neurons in input layer 

3 (when WPT_feature is used) 

5 (when ICA_feature is used)   
Number of neurons in hidden layer 

7 (when WPT_feature is used) 

 

 

6.1.3 Generalization Issue of MLP 

The objective of designing a neural network classifier is to achieve correct 

classification of new data after training. Therefore, it is crucial to ensure minimum 

generalization errors when designing the MLP.  Generalization is influenced by three 

factors:  

 

(1) the size and dimension of the training set,  

(2) the architecture of the neural network, and  

(3) the physical complexity of the problem at hand [66].  
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Clearly, the third factor is application-oriented.  As far as the first factor is concerned, 

an effective feature extraction, such as the ICA-based or WPT-based schemes, will 

ensure good generalization by reducing the length of each training vector in the 

training set.   

 

The extracted feature set (ICA_Feature or WPT_feature) is usually divided into two 

sets for determining the weights during the MLP training and estimation of 

generalization error during testing.  One way of forming the training and test sets is to 

randomly divide the ensemble into two sets. A better method for estimating the 

generalization error, known as “leave-one-out”, is chosen to avoid the possible bias 

introduced by relying on any particular test or training set after division.  The method 

is chosen because it maximizes the size of the training set by employing all the 80*N 

(N denotes the length of each feature vector) data for training the MLP weights.   

 

As illustrated in Fig. 6.4, the method first splits the feature set (size of 80*N) into a 

training set (size of 79*N) and a test set (size of 1*N). Then the MLP is trained using 

the 79*N training set and tested with the 1*N test set. The mean squared error on test 

set is calculated and denoted as e1. The above process is then applied to all the other 

combinations of training and test sets. As a result, 80 values of mean squared errors (e1, 

e2… e80) of the test sets are obtained.  Subsequently, the generalization error Etest is 

calculated by averaging (Fig. 6.4).  Once the generalization error is computed, training 

is re-applied on the 80*N data set to determine the MLP weights.  
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Fig. 6.4 Illustration of the “leave-one-out” approach 

 

Generalization of MLP also depends on the number of neurons in the hidden layer. If 

there are not enough neurons in the hidden layer, the MLP network may not have 

sufficient discriminative power to correctly classify the signals. On the other hand, if 

too many neurons are used in hidden layer, the MLP may overfit the training data, 

leading to large error on the new data. Therefore, experiments are also carried out with 
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different numbers of hidden neurons. The number, which gives the smallest 

generalization error, is chosen for classification (Section 6.3).   

 

6.2 RESULTS AND DISCUSSIONS 

Experimental results using various features as input of MLP are presented and 

compared. Determination of the best MLP network structure is investigated by 

comparative studies. 

 

6.2.1 Using Pre-selected Signals as Input 

To justify the effectiveness of the feature extraction schemes, classification 

performance of MLP that uses the pre-selected signals as input is first studied. Without 

performing feature extraction, the number of input neurons is the same as the length of 

pre-selected signal, namely 1000.  

 

The best number of hidden neurons is chosen according to the minimum generalization 

error calculated by the “leave-one-out” method as described in Section 6.2.3. Table 6.4 

summarizes the results obtained from using different number of hidden neurons. The 

generalization error obtained from using different number of hidden neurons is shown 

in Fig. 6.5. It can be seen that the MLP with 14 hidden neurons offers the best 

generalization performance with respect to both the mean squared error and number of 

misclassified patterns. Even in the best case, however, there are still seventeen patterns 

out of eighty not classified correctly during testing.  
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After determining the structure of MLP, it is trained using all the 80*1000 data. As 

illustrated in Fig. 6.6, the training converges in 70 epochs, taking 58.6 seconds on 

Pentium-IV. 

 

Table 6.4 Generalization performance of MLP using pre-selected signals as input 
 

Number of 
neurons in 

hidden layer 

Averaged 
convergence 

epochs 

Generalization 
mean squared 

error 

Number of 
Misclassified 

patterns on test 

2 1281 0.0669 23/80 
4 161 0.0467 20/80 
6 85 0.0434 19/80 
8 85 0.0396 19/80 
10 82 0.0387 18/80 
12 79 0.0369 17/80 
14 73 0.0320 17/80 
16 63 0.0375 17/80 
18 59 0.0382 17/80 
20 51 0.0396 18/80 
22 48 0.0386 18/80 
24 47 0.0401 18/80 
26 45 0.0421 19/80 
28 49 0.0392 18/80 
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Fig. 6.5 Generalization error of using pre-selected signals as input 

 

Fig. 6.6 Mean squared error during training when using pre-selected signals as input  
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6.2.2 Using ICA_feature as Input 

Using ICA_feature as input, the MLP has two input neurons, which correspond to the 

two most dominating independent components. The impact of number of hidden 

neurons is summarized in Table 6.5. The generalization error of using ICA_feature is 

illustrated in Fig. 6.7. As observed, the best generalization performance is achieved 

when the number of hidden neurons is set to 5. In the best case, there are two patterns 

misclassified on test set, which is much better than the result obtained from using pre-

selected signals without data compression. In addition, misclassification only occurs 

among SF6 PD. There is no pattern of corona misclassified as SF6 PD, and vice versa. 

 

Table 6.5 Generalization performance of MLP using ICA_ feature as input 
 

Number of 
neurons in 

hidden layer 

Averaged 
convergence 

epochs 

Generalization 
mean squared 

error 

Number of 
Misclassified 

patterns on test 

2 408 0.0522 11/80 

3 125 0.0284 5/80 

4 101 0.0223 3/80 

5 85 0.0121 2/80 

6 80 0.0156 2/80 

7 78 0.0145 2/80 

8 75 0.0230 3/80 

9 72 0.0175 2/80 

10 72 0.0234 3/80 

11 70 0.0219 3/80 

12 73 0.0258 4/80 

13 70 0.0218 3/80 

14 69 0.0245 3/80 

15 71 0.0229 3/80 
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Fig. 6.7 Generalization error of using ICA_feature as input 

 

Using the 80*2 feature set, training of the MLP converges in 82 epochs as shown in 

Fig. 6.8, which takes one second on Pentium-IV.  

 

The performance of using additional independent components (>2) is also studied and 

the results are summarized in Table 6.6. It can be seen that using additional 

independent components does not seem to improve the performance of the MLP in 

terms of speed and classification accuracy due to the dominance of the two most 

dominating independent components.  
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Fig. 6.8 Mean squared error during training when using ICA_feature as input  

 

Table 6.6 Performance of using more independent components 
 

Number of 
used 

independent 
components 

Number of 
neurons in 
input layer 

Best 
number of 
neurons in 

hidden 
layer 

Training 
convergence 

time (s) 

Generalization 
MSE 

Number of 
Misclassified 
patterns on 

test 

3 3 5 1.26 0.0146 2/80 

4 4 5 1.51 0.0139 2/80 

5 5 9 1.69 0.0136 2/80 

6 6 5 1.37 0.0181 3/80 

7 7 7 1.35 0.0130 2/80 

8 8 5 1.83  0.0203 3/80 
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6.2.3 Using WPT_Feature as Input 

Based on comparative studies, the number of input neurons of MLP is set to four, 

which corresponds to the first four WPT features, namely (5,21)kurtosis, (1,0)skewness, 

(5,1)energy and (5,19)skewness. Table 6.7 shows the generalization performance of various 

network structures using the first four WPT_feature as the network input. As illustrated 

in Fig. 6.9, the best generalization performance is achieved when the hidden layer 

consists of seven neurons. In this case, minimal-mean-squared error is achieved and no 

pattern of test set is misclassified.  

 

Table 6.7 Generalization performance of MLP using the first four WPT_feature  
 

Number of 
neurons in 

hidden layer 

Averaged 
convergence 

epochs 

Generalization 
mean squared 

error 

Number of 
Misclassified 

patterns on test 

2 408 0.0236 3/80 

3 152 0.0221 3/80 

4 70 0.0118 1/80 

5 64 0.0114 0/80 

6 45 0.0115 0/80 

7 41 0.0098 0/80 

8 39 0.0102 0/80 

9 37 0.0116 1/80 

10 34 0.0110 0/80 

11 31 0.0114 0/80 

12 30 0.0112 0/80 

13 29 0.0115 0/80 

14 28 0.0112 0/80 

15 28 0.0106 0/80 
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Fig. 6.9 Generalization error of using WPT_feature as input 

 

Using the 80*4 feature set, training of the MLP converges in 40 epochs as shown in 

Fig. 6.10. It takes 1.02 second on Pentium-IV.  

 

The performance of using different number of WPT features as input is also studied. 

The MLP is not able to converge during training when only one feature is used as the 

input of MLP. Thus, at least two features are required to classify PD. Table 6.8 shows 

the classification performance of using two features chosen from Table 6.2 as the input 

of MLP. It can be seen that the features with higher J values result in better 

classification. This verifies the use of J criterion for selecting the most effective 

features.  
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Fig. 6.10 Mean-squared error during training when using WPT_feature as input 

 

Table 6.8 Classification performance of features in Table 6.2 

Input of 
MLP 

Training 
convergence 

time (s) 

Generalization 
MSE 

Number of 
Misclassified 
patterns on 

test 
1st& 2nd 
feature 0.95 0.0111 0/80 

3rd & 4th 

feature 1.14 0.0115 0/80 

5th & 6th 
feature 5.344 0.0118 1/80 

7th & 8th 
feature 18.872 0.0230 3/80 

9th & 10th 

feature 22.094 0.0280 4/80 
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The effectiveness of additional features is investigated as shown in Table 6.9. Using 

the first two features in Table 6.2 as the benchmark, the performance of adding other 

features is evaluated by the improvement of generalization. It is seen that only the third 

and fourth features that have large J values improve the classification performance. 

Therefore, the J value of the fourth feature (=8.5927) is defined as the critical J value 

(Jcr) to determine the effectiveness of a feature. Table 6.10 shows the performance of 

using different number of WPT features as input. In coincidence with the results in 

Table 6.9, the first four features leads to the best performance in terms of 

generalization MSE as highlighted. Using additional features does not seem to improve 

the performance of the MLP. Therefore, the first four features in Table 6.2 are selected 

for PD classification. 

 
Table 6.9 Performance improvement by the additional feature 

Additional 
input of MLP

J value of the 
additional 

feature 

Generalization 
MSE 

Improvement 
of 

generalization 
MSE 

Number of 
Misclassified 

patterns on test 

3rd feature 8.6909 0.0098 0.0013 0/80 

4th feature 8.5927 0.0102 0.0009 0/80 

5th feature 8.0492 0.0113 -0.0002 0/80 

6th feature 7.7291 0.0114 -0.0003 0/80 

7th feature 7.5266 0.0114 -0.0003 0/80 

8th feature 6.6111 0.0115 -0.0004 0/80 

9th feature 6.5075 0.0115 -0.0004 0/80 

10th feature 6.1892 0.0117 -0.0006 0/80 
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Table 6.10 Performance of using different number of WPT features  

 

Number of 
WPT 

features 

Number of 
neurons in 
input layer 

Best 
number of 
neurons in 

hidden 
layer 

Training 
convergence 

time (s) 

Generalization 
MSE 

Number of 
misclassified 
patterns on 

test 

2 2 5 0.95 0.0111 0/80 

3 3 7 1.04 0.0098 0/80 

4 4 7 1.02 0.0096 0/80 

5 5 6 1.005 0.0112 0/80 

6 6 5 1.036 0.0113 0/80 

7 7 6 1.005 0.0112 0/80 

8 8 10 1.12 0.0113 0/80 

9 9 11 1.088 0.0114 0/80 

10 10 9 1.026 0.0113 0/80 
 

 

6.2.4 Performance Comparison 

Table 6.11 compares the performance of using different type of PD features as input of 

MLP. As observed, both speed and the generalization performance are much better 

when the input vectors are first reduced in length by ICA- or WPT-based feature 

extraction before feeding into MLP. The MLP using WPT_feature is seen to 

outperform that using ICA_feature due to the larger margin between feature clusters 

formed by WPT.  

 

As illustrated in Table 6.11, MLPs using WPT_feature and ICA_feature take only 

0.186 s and 0.164 s respectively to identify a new set of data. The methods are 

therefore potentially suitable for online applications. 
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Table 6.11 Comparison of performance of using different type of features  

 

Input type Generalization 
MSE 

Training 
convergence 

time  
(sec) 

*Time needed to 
classify a new set 

of data  
(sec) 

Pre-selected 
signals 0.0320 58.6 2.541 

ICA_feature 0.0121 1 0.164 

WPT_feature 0.0098 1.02 0.186 

*: Including all the processes, namely denoizing, feature extraction and MLP 
classification 

 

Table 6.12 compares the performance of the method developed in this research with 

methods proposed in other published works. In [3, 23], phase-resolved (PRPD) 

patterns are used as the PD features. Thus, at least a few seconds are required to form 

the patterns. In addition, the computing time of the denoizing and classification 

algorithm has to be added to the total identification time in [3, 23]. During the forming 

PRPD patterns, more than one type of PD can take place in the GIS chamber, which 

may lead to further misclassification as indicated by ‘<’ in Table 6.12. 

Table 6.12 Comparison of performance of different identification methods 

Method Correct classification rate Speed (sec) 

In this thesis 100% 0.186 

In reference [3] < 95% > 1 

In reference [23] < 85% > 1 
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6.3 CONCLUDING REMARKS 

In this chapter, a MLP neural network is implemented in a computer program to 

improve the reliability and speed of PD identification and automate the classification 

process. Results show that MLP with a simple structure is able to classify PD 

successfully due to the compactness and high quality of the features extracted by ICA- 

or WPT-based method. Comparative studies indicate that ICA- and WPT-based feature 

extraction improve the performance of MLP. Particularly, MLP with WPT-based 

preprocessing achieves 100% correct classification on test, which verifies the 

effectiveness of the WPT-based feature extraction. Moreover, both the WPT- and ICA-

based methods correctly classify between corona and SF6 PD. This verifies the noise 

rejection capability of these methods. 
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CHAPTER 7 

PERFORMANCE ENSURENCE FOR PD 

IDENTIFICATION  

 

 

This chapter proposes a general scheme for ensuring the robustness of PD 

identification within the test GIS section. The scheme is first described, followed by its 

implementation in ICA- and WPT-based methods. Numerical results are then 

presented and discussed. 
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7.1 INTRODUCTION 

In previous Chapters 4, 5 and 6, the methods of feature extraction and PD 

identification are developed and verified for data measured one metre away from PD 

source within the test GIS section as described in Appendix A. When applied outside 

the test GIS section, features extracted from the above database may not work well due 

to excessive changes in GIS configuration, sensor type, rated voltage, SF6 gas pressure, 

sampling rate and etc. Robustness of the extracted features and proposed classifier 

should however be ensured for all PD activities within the test GIS section. The 

scheme as in Fig. 7.1 is thus designed for re-selection of the features and re-training of 

the proposed classifier, should the variations of measurement conditions in the test GIS 

section be excessive. As PD can occur at any position within the GIS chamber, the 

impact of PD-to-sensor distance is focused in this Chapter. A comprehensive database 

containing 176 data records as shown in Table A.3 are measured for verifying the 

features extracted by ICA-based and WPT-based method. Salient features of the 

scheme are discussed in the following section. Numerical results showing the 

robustness of the PD features are presented and discussed in Section 7.3. 
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Fig. 7.1 General scheme for selecting features for PD identification 
Condition I: Measurement at one metre away from PD source 

Condition II: Measurement at other distances 
 

7.2 PROCEDURE FOR ENSURING ROBUSTNESS OF 

CLASSIFICATION 

According to Fig. 7.1, the general procedure for ensuring robustness of PD 

classification is given as follows: 

 

1. Calculate PD features using ICA-based or WPT-based method for data 

measured one metre away from the PD sources (Condition I). 

2. Assess the effectiveness of features by their classification capability on data 

with one metre PD-to-sensor distance, forming feature set (Z). 
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3. Calculate features using ICA-based or WPT-based method for data measured at 

various other distances (Condition II). 

4. Assess the effectiveness of features in feature set (Z) by their classification 

capability on data measured under Condition II. 

5. If satisfactory performance is obtained in step 4, feature set (Z) and the original 

MLP are employed for identifying data measured under Condition II. 

Otherwise, go to step 6. 

6. Features are re-selected and MLP is re-trained using all the data of one metre as 

well as other distances. 

 

 

Re-selection of ICA_feature and WPT_feature for assuring the robustness of PD 

identification is discussed in the following sections. Details of ICA- and WPT- based 

feature extraction methods are given in Chapter 4 and 5 respectively. After feature re-

selection, MLP must be re-trained using the re-selected features according the 

procedure described in Chapter 6.  

  

7.2.1 Re-selection of ICA_feature 

To re-select features from the extended database that consists of 80 data with one 

metre PD-to-sensor distance and 176 data of other distances, the most dominating 

independent components are first identified from the extended database using FastICA. 

The input of FastICA consists of a chosen set of twelve signals with all PD types and 

all PD-to-sensor distances as shown in Fig. 7.2. The obtained independent components 

are illustrated in Fig. 7.3.  
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Fig. 7.2 Chosen signal sets for calculating independent components from extended 
database (1)-corona; (2)- particle on the surface of spacer; (3),(5),(7),(9),(11)- particle 

on conductor; (4),(6),(8),(10),(12)- free particle on enclosure.  
PD-to-sensor distance: (1)-(4) one metre ; (5)-(6) 2.5 m; (7)-(8) 4.6 m; (9)-(10) 6 m; 

(11)-(12) 7.8 m. 
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Fig. 7.3 Independent components obtained from FastICA for extended database 
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To identify the most dominating independent components, the variance of their 

corresponding projections are calculated for the set of twelve signals according to 

equation 4.3 and shown in Table 7.1. As highlighted in Table 7.1, two independent 

components with highest variances in the corresponding projections are selected for 

calculating ICA features for all the 256 sets of data according to equation 4.4. As a 

result, the size of the extended ICA_feature is 256*2. The classification performance 

of the re-selected ICA_feature is evaluated in Section 7.3.1 (B). 

 

Table 7.1 Variance of projections of the independent components in Fig. 7.3 
(For signals of all PD types and all PD-to-sensor distances) 

Independent 
Components 

Variance of the 
projections 

ICAPD1 0.2465 

ICAPD2 0.1763 

ICAPD3 0.0489 

ICAPD4 0.0224 

ICAPD5 0.0208 

ICAPD6 0.0200 

ICAPD7 0.0158 

ICAPD8 0.0089 

ICAPD9 0.0075 

ICAPD10 0.0068 

ICAPD11 0.0064 

ICAPD12 0.0047 
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7.2.2 Re-selection of WPT_feature 

All the 256 sets of data with all PD types and all PD-to-sensor distances are first 

decomposed into wavelet packet domain, forming 256 wavelet packet decomposition 

(WPD) trees. The ‘db9’ wavelet is verified to be the most effective wavelet for 

classification for the extended database as highlighted in Table 7.2. It results in the 

largest Jsum that indicates the best discriminating capability. The level of 

decomposition is set to 5 according to Section 5.3.1. 

 

Table 7.2 Largest J value of candidate wavelets for extended database 

wavelet largest J 2nd largest 3rd largest 4th largest 5th largest Jsum

db1 10.0856 9.1245 8.3664 6.0312 5.6563 39.264 
db2 7.0786 6.9758 5.0234 5.012 4.2765 28.3663
db3 8.6245 8.4653 7.3424 7.2756 6.6654 38.3732
db4 11.1456 10.0475 9.4579 8.9878 8.1575 47.7963
db5 10.1421 8.8542 8.4636 7.4263 4.7445 39.6307
db6 9.5325 8.0945 6.7543 5.2351 4.5754 34.1918
db7 9.3223 8.8945 7.5641 6.8753 6.0985 38.7547
db8 9.0435 8.2873 7.8633 7.3546 7.1468 39.6955
db9 12.2098 11.2892 8.941 8.6021 7.955 48.9971
db10 11.0021 8.2235 7.3621 6.5431 5.9878 39.1186
sym4 9.1456 8.9673 8.8043 7.9253 6.5454 41.3879
sym5 9.2978 8.5003 8.1023 7.4675 7.2564 40.6243
sym6 9.0298 8.9465 8.1423 7.3034 6.2344 39.6564
sym7 8.8168 8.4289 6.9312 5.8256 5.4896 35.4921
sym8 8.9234 8.3765 8.3234 8.2745 8.2405 42.1383
sym9 9.3869 8.2023 6.2406 5.4852 5.0984 34.4134
sym10 9.1923 7.2342 6.0967 6.0574 5.6456 34.2262
coif1 10.9939 9.3241 8.0456 7.6574 7.1121 43.0431
coif2 10.8934 10.0252 9.4344 8.7687 7.6733 46.795 
coif3 8.992 8.7686 7.6546 7.0675 6.7832 39.2659
coif4 8.8914 8.2463 8.0422 7.1389 6.3574 38.6762
coif5 8.9131 6.7842 6.5368 6.0797 5.4356 33.7494
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Subsequently, node features defined in Section 5.2.2 namely node kurtosis, node 

skewness, node energy, node median and node mean are calculated for all nodes in 

WPD trees, forming feature trees as illustrated in Fig. 5.6. The classification capability 

of node features are then evaluated using J criterion that is defined in equation 5.9. 

Table 7.3 shows the node features with the highest J values. Comparing with Table 5.2, 

it can be seen that the extracted features are identical and only their sequence in the 

tables are slightly different. This suggests that WPT features are robust for data having 

different PD-to-sensor distances. In addition, the first four features in Table 7.3 have J 

values larger than the critical J value (Jcr) defined in Section 6.3.3, which indicates 

good classification capability. Classification performance of the features in Table 7.3 is 

further assessed in Section 7.3.2 (B). 

 

Table 7.3 Features extracted from extended database using WPT 

serial no. feature J value frequency range (Hz) 

1 (5,21)kurtosis 12.2098 1.3125 G – 1.375 G 

2 (1,0)skewness 11.2892 0 – 1 G 

3 (5,1)energy 8.941 62.5 M – 125 M 

4 (5,19)skewness 8.6021 1.1875 G – 1.25 G 

5 (5,0)kurtosis 7.955 0 – 62.5 M 

6 (5,11)skewness 7.3879 687.5 M – 750 M 

7 (5,20)median 7.1258 1.25 G – 1.3125 G 

8 (3,0)kurtosis 6.9012 0 – 250 M 

9 (4,0)skewness 6.326 0 – 125 M 

10 (4,2)energy 6.2094 250 M – 375 M 
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7.3 RESULTS AND DISCUSSIONS 

The robustness of PD features extracted by ICA- and WPT-based method is verified in 

this section using the proposed scheme as in Fig. 7.1.  

 

7.3.1 Robustness of ICA-based Feature Extraction 

The performance of original ICA_feature and MLP is first assessed on extended 

database. Subsequently, results of re-selected features and re-trained MLP are 

presented and discussed. 

 

A. Using original ICA_feature and MLP 

ICA features for each set of new data are calculated by projecting it onto the two most 

dominating independent components obtained in Section 4.4.1 using equation 4.4. As a 

result, 176*2 features are obtained from new data. Fig. 7.4 shows the original feature 

clusters together with the features calculated from the new data.  It can be seen that the 

original cluster boundaries are still valid for all the four cases. This indicates that the 

impact of PD-to-sensor distance is not significant. However, when the distance 

between PD source and sensor extends to 7.8 m, the margin between feature clusters of 

“enclosure” and “spacer” gets small, which may affect the classification performance 

of neural network. Therefore, re-selection of ICA_feature and re-training of MLP may 

be required. 
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Fig. 7.4 Impact of distance between PD source and sensor on original ICA_feature 

(a) 2.5 m; (b) 4.3 m; (c) 6 m; (d) 7.8 m. 
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The performance of MLP trained with the original ICA features as in Chapter 6 is 

investigated with data obtained from the four PD-to-sensor distances. As illustrated in 

Table 7.4, an overall classification performance of 93.75 % is achieved. In the worst 

case, where the PD-to-sensor distance is 7.8 m, six out of fifty patterns are 

misclassified. In all the misclassified cases, patterns of “enclosure” are classified as 

“spacer”. This may be due to the small margin between ICA feature clusters of 

“enclosure” and “spacer” as shown in Fig. 4.15. 

 

Table 7.4 Performance of original MLP with ICA_feature on data having different PD-
to-sensor distances 

 

Distance (m) Number of misclassified 
patterns 

Correct classification 
rate 

2.5 1/50 98 % 

4.3 2/38 94.7 % 

6 2/38 94.7 % 

7.8 6/50 88 % 

Subtotal 11/176 93.75 % 
 

 

Table 7.5 shows the MLP performance on data with different PD-to-sensor distances 

using more independent components. It can be seen that using additional independent 

components does not improve the performance of the MLP in terms of overall and 

worst case correct classification rate. 
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Table 7.5 Performance on data with different PD-to-sensor distances using more 

independent components 
 

Number of used 
independent 
components 

Overall correct 
classification 

rate 

Correct 
classification rate 
in the worst case 

3 93.75 % 88 % 

4 93.75 % 88 % 

5 93.75 % 88 % 

6 93.18 % 86 % 

7 93.18 % 86 % 

8 93.18 % 86 % 

 

 

B. Re-selection of ICA_feature and re-training of MLP 

To improve classification performance of the MLP, ICA features are re-selected from 

the extended database according to the procedure described in Section 7.2.1. Fig. 7.5 

shows the feature clusters obtained from the re-selected ICA_feature with a size of 

256*2. It is seen that the features of different classes are better separated in Fig. 7.5 

than in Fig. 7.4, which indicates improvement on classification.  

 

Using re-selected features as input, the MLP is re-trained and re-tested on the extended 

database. During re-training, the convergence speed and network structure remain the 

same as in Chapter 6. On the other hand, the performance of the updated MLP on 

testing has been improved as shown in Table 7.6. As observed, the most obvious 

improvement is obtained for the case of 7.8 metre PD-to-sensor distance. In addition, 
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the overall performance is also improved by 3.4%. It is shown in Table 7.7 that using 

additional independent components does not improve the performance of the re-trained 

MLP. 

 

 

Fig. 7.5 Feature clusters formed by re-selected ICA_feature for extended database 
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Table 7.6 Generalization performance of re-trained MLP with re-selected ICA_feature 

 

Distance (m) Number of misclassified 
patterns 

Correct classification 
rate 

1 2/80 97.5% 

2.5 1/50 98 % 

4.3 1/38 97.4 % 

6 1/38 97.4 % 

7.8 2/50 96 % 

Subtotal 7/256 97.3 % 
 

 

Table 7.7 Performance of re-trained MLP using more independent components  
 

Number of used 
independent 
components 

Overall correct 
classification 

rate 

Correct 
classification rate 
in the worst case 

(distance = 7.8 m) 

3 97.3 % 96 % 

4 97.3 % 96 % 

5 97.3 % 96 % 

6 97.3 % 96 % 

7 97.3 % 96 % 

8 97.3 % 96 % 

9 96.9% 94 % 

10 96.9% 94 % 

11 96.9% 94 % 

12 96.9% 94 % 
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7.3.2 Robustness of WPT-based Feature Extraction 

The impact of PD-to-sensor distance on the WPT features is studied using data 

measured from various PD-to-sensor distances. Node features selected by the wavelet-

packet-based method are calculated for the 176 sets of additional data measured from 

other PD-to-sensor distances as shown in Table A.2. 

 

A. Using original WPT_feature and MLP 

Fig. 7.6 shows the original features calculated from data measured one metre away 

together with the features calculated from the new data. The updated feature clusters 

are seen to be robust and well segregated for all these four distances. This suggests that 

the feature extraction method is robust for data having different PD-to-source distances.  
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Fig. 7.6 Impact of distance between PD source and sensor on original WPT_feature. (a) 
2.5 m; (b) 4.3 m; (c) 6 m; (d) 7.8 m. 
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Table 7.8 shows the corresponding J values for these four distances, which are higher 

or close to Jcr (Chapter 6) indicating a good classification performance. 

 

Table 7.8 Updated J values of the selected features 
 1st feature 2nd feature 3rd feature 4th feature 

2.5 (m) 12.1328 11.8245 8.6005 8.5927 

4.3 (m) 12.1134 11.8109 8.6003 8.5925 

6 (m) 11.9907 11.7854 8.5896 8.5925 

7.8 (m) 11.9124 11.7565 8.5899 8.5922 
 

 

The performance of MLP trained with the data measured one metre away from source 

is tested with data obtained from the four PD-to-sensor distances.  As shown in Table 

7.9, an overall performance of 98.3% has been achieved, which is better than that 

obtained from original ICA-based MLP. In addition, only two patterns are 

misclassified in the worst case. 

 

Table 7.9 Generalization performance of the original MLP on data with different PD-
to-sensor distance 

 

Distance (m) Number of Misclassified 
patterns 

Correct Classification 
Rate 

2.5 0/50 100 % 

4.3 0/38 100 % 

6 1/38 97.4 % 

7.8 2/50 96 % 

Subtotal 3/176 98.3 % 
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B. Re-selection of WPT_feature and re-training of MLP 

As shown in Tables 7.3 and 5.2, the re-selected WPT features are the same as the 

original features. However, improvement in classification can be achieved by re-

training the MLP using extended database. As shown in Table 7.10, the re-trained 

MLP is able to classify all the data correctly, regardless of the changing of PD location. 

Thus, it can be concluded that WPT-based method outperforms ICA-based method in 

terms of classification accuracy. 

 

Table 7.10 Generalization performance of re-trained MLP with WPT_feature 
 

Distance (m) Number of misclassified 
patterns 

Correct classification 
rate 

1 0/80 100 % 

2.5 0/50 100 % 

4.3 0/38 100 % 

6 0/38 100 % 

7.8 0/50 100 % 

Subtotal 0/256 100 % 
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7.4 CONCLUDING REMARKS 

In this chapter, a general scheme is proposed for ensuring the robustness of PD 

identification within the test GIS section. Re-selection of features and re-training of 

MLP are employed for quality assurance. Numerical results show that the proposed 

scheme of re-selection and re-training improves the performance of both ICA- and 

WPT-based classifiers. In particular, the re-trained WPT MLP achieves 100% correct 

classification on all the data, regardless of the changing of PD location.  
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

 

This chapter concludes the study on PD denoizing and identification in GIS system 

which has been presented in the former chapters. Based on the results of this research, 

the conclusions are summarized and followed by recommendations for future work. 
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8.1 CONCLUSION 

GIS has been used worldwide for many years because of its low maintenance and 

compact size. This has made it an attractive option in many applications. However, on 

the downside, GIS has problems relating to the sharp deterioration of the dielectric 

strength of its insulation gas (SF6) due to PD. On the other hand, PD is caused by the 

extreme field intensity being built around the sharp edge of small particles which may 

attach to the bus conductor, the enclosure or the insulation spacer. In industry 

applications, these faults could be attributed to mechanical faults during manufacture, 

protrusions on the enclosure, the HV conductor as well as free moving particles.  

Hence, the extreme field intensity caused by particles may produce PD inside the GIS, 

which may lead to the failure of the system.  

 

Preventing the failure of a GIS requires a reliable and efficient PD measuring and 

diagnostic technique, which is able to detect and identify signals from harmful defects.  

Thus, a prompt warning message can be given before the breakdown occurs. However, 

the two major issues associated with such diagnostic systems, namely influence of 

noise and the extraction of effective features from measured data, must be addressed to 

achieve a successful diagnosis of PD activities in GIS. In this thesis, a novel PD 

diagnostic system is developed based on UHF signals with special emphasis on 

denoizing and feature extraction from the PD signal. 
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8.1.1 Denoizing of PD Signals 

In practice, it is impossible to achieve reliable diagnosis of insulation in a highly noisy 

environment. Hence, denoizing of PD signals is usually the first issue to be 

accomplished during PD analysis and diagnosis.  

 

In this research project, a “wavelet-packet” based method with a novel variance-based 

criterion is employed to construct the best tree to denoise the UHF signal. The new 

criterion automatically selects the most PD dominated components from the wavelet-

packet-decomposition tree for signal reconstruction. This leads to good denoizing 

performance. Various methods were developed for selecting parameters associated 

with the denoizing scheme, such as wavelet filters and decomposition level. Among 

them, the method based on the genetic algorithm is able to optimally select a complete 

set of parameters by evaluating the performance of the parameters holistically. SNR 

and correlation coefficient are employed for selecting denoizing parameters to ensure 

restoration of the original PD signal during denoizing with a significant reduction in 

the noise level.  

 

It has been shown that the proposed method offers better denoizing compared to DWT 

and WPT with the standard entropy-based criterion. Using the proposed method, 

successful and robust denoizing is achieved for PD signals having various SNR levels. 

Successful restoration of the original waveform facilitates the subsequent pre-selection 

process and enables extraction of reliable features for PD identification.  

 

In this research, external corona discharge is considered as one of the typical pulse-

shaped noises and addressed in this thesis. In practical GIS, if other pulse-shaped 
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noises, such as switching over-voltages, are present and produce significant signals 

within UHF ranges, the MLP neural network will label them as ‘unknown signals’. In 

such cases, further investigation of the noises maybe required. However, drastic 

changes should not be required for the proposed method. 

 

8.1.2 Feature Extraction for PD Source Recognition  

Traditionally, phase-resolved methods such as PRPD are employed for PD source 

recognition and corona noise discrimination. Although these methods have been 

extensively applied in industries to evaluate the insulation integrity of HV equipments 

such as generator, transformer and cable, they have significant limitations when 

applied to GIS in terms of accuracy and speed. Hence, new methods are developed in 

this research project to solve the problems with phase-resolved methods. 

 

Various PD features are derived from UHF signals and form a solid basis for current 

and future work on PD identification. The first category of PD features, namely 

ICA_Feature is extracted in the time domain using Independent Component Analysis. 

Using ICA_Feature, successful identification of PD is achieved with limitation of 

small “between-class” margins due to the time-domain nature of ICA. White noise 

present in the measured signals is seen to reduce the discriminating capability of the 

extracted features. This shows the importance of denoizing. When the distance 

between PD source and UHF sensor varies, re-selection of the ICA_feature and re-

training of MLP are seen to have improved the correct classification rate to 97.3%, 

which ensures the robustness of the proposed method. 
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Features extracted in the time-frequency domain using the wavelet packet transform 

(WPT_Feature) form the second category of PD features. Taking advantage of the 

additional frequency information included with the wavelet packet transform, 

WPT_Feature exhibits a large margin between feature clusters of different classes, 

which indicates good classification performance. Among subcategories of 

WPT_Feature, “distribution-shape” based node features are more effective than other 

node features such as node energy. Based on this it can be concluded that the wavelet-

packet-based method outperforms methods which operate solely in the time or 

frequency domain (FFT) due to its time-frequency characteristic. The best wavelet for 

feature extraction is “db9”, which is different from that used for denoizing namely 

“sym8”. This indicates that the selection of wavelet is application-dependent. 

Investigation of the impact of noise levels on the effectiveness of features confirms 

that denoizing is crucial for reliable feature extraction and classification. For various 

PD-to-sensor distances, the same set of features is selected by WPT-based method. 

However, re-training of the MLP improves the classification performance, which 

verifies the re-selection and re-training scheme for quality assurance.  

 

Owing to the compactness and high quality of the extracted features, successful and 

robust PD identification is achieved using a very simple MLP network. Particularly, 

MLP with WPT-based preprocessing achieves 100% correct classification on all PD 

activities at all location within the given GIS configuration after re-training. This 

verifies the robustness of the WPT-based feature extraction. The methods developed in 

this project can be used either as a stand-alone system or as a supplement to the 

existing PRPD system to improve its performance. Moreover, both the WPT- and ICA- 

based PD diagnostic methods are potentially suitable for online applications. 
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8.2 RECOMMENDATIONS FOR FUTURE WORK 

Although significant progress has been made in achieving better diagnosis of 

insulation integrity of GIS, there is still space for further expansion and improvement: 

 

(1) Other PD-causing Defects in GIS 

Major PD-causing defects [7, 10] in SF6 have been considered in this research. 

However, PD may also be caused by cavity or metallic intrusion within an epoxy resin 

support barrier. Although the possibility of encountering these defects is very low in 

practice [90], further investigation of these defects may be required to develop a 

comprehensive PD diagnostic system. 

 

The amplitude and rise time of PD current pulses produced by defects in solid differ 

from those produced in SF6 due to the different nature of the insulation material [7, 90, 

91]. On the other hand, the shape of PD current pulses determines the waveform of 

corresponding UHF signals [92]. Thus, UHF signals excited by PD in solid and PD in 

SF6 should have very different waveforms and time-frequency characteristics. This 

indicates that good classification may be achieved without drastic changes on the 

methods developed in this thesis. Re-selection of features and re-training of MLP may 

be required to achieve satisfactory identification. 

  

Apart from PD-to-sensor distance, dimension and shape of the particle may affect the 

measured UHF signals. In this research, however, a typical particle which can cause 

PD of critical amplitude without leading to immediate breakdown is employed to 
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simulate the defects. Although the dimension and shape of the defect may change the 

shape of PD pulse, this has no significant influence on the basic principle of the 

proposed techniques. Re-selection of features and re-training of MLP may be required 

to achieve satisfactory identification. 

 

(2) Speed Improvement 

In this research project, the entire PD denoizing and identification scheme is developed 

using Matlab language on a PC platform. Since Matlab is an interpreted language 

instead of a compiled language (such as C), its speed will always lag behind that of a 

custom program written in a language like C. Therefore, converting the Matlab 

programs into C or C++ will shorten the response time of the diagnosis system. Further 

improvement of the speed may be achieved by implementing the scheme on a Digital 

Signal Processor (DSP). 

 

(3) Extension to Other GIS Configurations 

The new PD denoizing and identification methods are developed and tested for a 

simple GIS configuration, which consists of a straight-through busbar, enclosure and 

two spacers. However, there are more complicated GIS configurations such as T 

junction, gas circuit breaker and disconnector in practical GIS systems. Therefore, the 

performance of the methods developed in this project should be verified for these 

configurations. Further development of the proposed methods may be required on new 

measured data to ensure satisfactory performance for the practical GIS system. 

 

(4) Study on PD Location 
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In contrast to (2), measured PD data can be further classified in terms of source 

location. Once a harmful PD is detected and recognized, it is crucial to locate it in the 

GIS tank in a fast manner, so that necessary maintenance can be arranged promptly. 

Although the location of PD source can be roughly determined through identification 

of the defect type, it is not sufficient to provide obvious guidance for maintenance and 

repair due to the complicated structures and huge size of GIS. Therefore, precisely 

locating the PD source based on UHF measurement should be further investigated in 

the future study. To determine PD location, data measured from one channel is not 

sufficient, as the time delay information is crucial to the location problem. Hence, data 

that is synchronously measured from at least two channels is fundamental for future 

work.   
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APPENDIX A  

UHF Measure of Partial Discharge in GIS 

 

Partial discharges produce a series of current pulses with sub-nanosecond durations, 

and each pulse generates an electromagnetic signal (Fig. A.1) that propagates through 

the GIS in the UHF range (300 to 1500 MHz). The UHF resonance signals are then 

picked up by a UHF coupler as in Fig. A.1. In this appendix, the equipment used for 

PD measurement at TMT&D [89] is first introduced, followed by the experimental set-

up. 

 

Fig. A.1  Typical UHF signal corresponding to single PD current pulse. (a) PD current 
pulse; (b) UHF signal results from a PD current pulse shown in (a). 

 

 224



A.1 Equipment Specifications 

Equipment Parameter Description 

Inner diameter 180 mm 

Outer diameter 880 mm 

Length 10.3 m 

SF6 pressure 0.2 MPa 

Test Chamber 

Spacer cone type (x 2) 

Type Conical type UHF coupler 

Frequency 200 MHz to 1.3 GHz 

Sensitivity 0.5 pC 

Inner diameter 43.4 mm 

Outer diameter 100 mm 

Operating -25 to 70 degree Celsius 

Sensor 

Relative humidity 95% RH 

Model Tektronix TDS784D 

Bandwidth 1 GHz 

No. of channels 4 

1 channel: 4 GS/s 

2 channels: 2 GS/s Sampling rate 

3 or 4 channels: 1 GS/s 

Digital oscilloscope 

Maximum record 8M 

Model Toshiba Tecra A2 

CPU Pentium M Processor 715, 1.50 GHz

Memory 256 MB 

Hard disk 40 GB 

Notebook PC 

Display 15.0” XGA TFT LCD 

Table A.1 Equipment Specifications 
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A.2 The UHF Sensor 

Based on the configuration of Fig. A.2, a conical UHF coupler is employed to detect 

PD signals. The disk size of the conical coupler must be arranged according to the 

frequency range of interest, since it determines the frequency characteristics of the 

coupler. On the other hand, the modes of pulse propagation along a coaxial system are 

the combination of the transverse electric and magnetic (TEM) mode, the transverse 

electric (TE) mode and transverse magnetic (TM) mode respectively. According to the 

configuration of the GIS section under test, PD pulse propagating in TEM mode may 

peak at around 100 MHz or upwards while pulses in TE or TM modes may peak in the 

range of 700 – 1100 MHz [88]. However, the mode of propagating pulse is dependent 

on whether the location of the PD source is on the bus conductor. Therefore, in order 

to have full coverage over the frequency range of the pulse propagating modes, the 

coupler with disk diameter of 43 mm is selected for the measurement. 

 

Fig. A.2 The layout of the test setup with a section of an 800 kV GIS 
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A.3 Experimental Set-up 

UHF resonance signals used for the present study are measured from an 800 kV GIS 

chamber that has a total length of 20 m [89]. The test chamber is formed by isolating 

a 10.3 m section of the GIS using gas-tight conical epoxy barriers. It is filled with SF6 

gas at 0.2 MPa for the entire test. Power frequency is 50 Hz.  

 

To detect the UHF signals caused by PD, an internal coupler electrode type sensor is 

incorporated into a hatch cover plate on the side of the test chamber. In addition to the 

sensor, the measuring system consists of a 3-meter long coaxial cable and a high-speed 

digital oscilloscope (TDS784D) enabling the system to acquire the high frequency 

components of the UHF signal as shown in Fig. A.2. The characteristic impedance of 

the sensor is 50 Ω, which is the same as the characteristic impedance of the cable and 

the oscilloscope. The triggering voltage of the digital oscilloscope is set to a level well 

above the background noise, enabling the capture of large UHF signals. The sampling 

rate of the oscilloscope is fixed at 4 giga-samples per second when measuring and 

recording the UHF signals.  

 

To generate PD in SF6, artificial defects are made using an aluminium needle with its 

length and section diameter of 10 and 0.2 mm respectively. As illustrated in Fig. A.2, 

the needle is placed on but not fixed to the enclosure to simulate the free particle. For 

the other two defects, it is either attached to the busbar or spacer surface using the 

minimum amount of cyanoacrylate adhesive, ensuring that the ends of the needle are 

clean and in contact with the surfaces. The distance between the needle and the sensor 

varies from 1 to 7.8 m to study the impact of signal attenuation.  
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The system is energized using a 2300 kV, 10 MVA single phase metal-clad 

transformer. Test voltage varies in the range from 40 to 160 kV rms. The PD inception 

voltages for the defects of free particle, particle on conductor and particle on the 

surface of spacer are 73, 110 and 158 kV rms respectively. 

 

As illustrated in Fig. A.1, UHF signals excited by a single PD current pulse are 

measured for this study. The UHF signals usually last for several hundred nanoseconds. 

Typical waveforms of measured signals (including corona) and their frequency content 

obtained from Fast Fourier Transform (FFT) are shown in Figs. A.3 and A.4 

respectively. In this study, data measured one meter away from the PD source, as 

shown in Table A.2, are used for developing the denoizing and source recognition 

method. In addition, the robustness of developed method is verified using data 

measured from other PD-to-sensor distances as shown in Table A.3. 
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Fig. A.3  Typical waveform of measured signal (a) corona; (b) particle on the surface 
of spacer; (c) particle on conductor; (d) free particle on enclosure. 

 

  

 

 229



 

Fig. A.4  Frequency content of measured signal (a) corona; (b) particle on the surface 
of spacer; (c) particle on conductor; (d) free particle on enclosure. 

 

 

Table A.2 Data measured one meter away from PD sources 

Defect/noise Number of signals 

Corona 14 

Particle on the surface of spacer 30 

Particle on conductor 20 

Free particle on enclosure 16 
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Table A.3 Data measured from other PD-to-sensor distances 

Defect Distance from PD source 
to sensor (m) Number of signals 

2.5 30 

4.3 30 

6 30 
Particle on conductor 

7.8 30 

2.5 20 

4.3 8 

6 8 

Free particle on 
enclosure 

7.8 20 

 

 

 
 
 
 
 
 
 

 
 

 
 

 231



APPENDIX B  

Discrete Wavelet Transform (DWT) and Wavelet Packet 

Transform (WPT) 

 

The Discrete Wavelet Transform of a discrete signal ( )f x  is defined as 

 

,
1

1 2( )
22

jN

j k jj
x

x kf xω ψ
=

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
∑                                                                (B.1) 

 

where N is the length of the discrete signal . j and k represent the scaling 

(decomposition level) and shifting (translation) constant respectively. j runs from 1 to 

j

( )f x

max, which is given by m a x2 j N≤ .  2
2

j

j

x kψ
⎛ −
⎜
⎝ ⎠

⎞
⎟  is the scaled, shifted wavelet function 

(baby wavelet) of the original mother wavelet ( )xψ .  The resultant wavelet coefficients 

thus reflect the resemblance between the signal and the baby wavelet. 

 

The wavelet function 2
2

j

j

x kψ
⎛ −
⎜
⎝ ⎠

⎞
⎟  is comparable to the sine or cosine basis functions in 

Fourier Transform. There are two characteristics required for any function to be 

considered as a mother wavelet:  

1. The function must have zero average; 

2. The function must decay quickly at both ends.  

There are actually a large number of functions with such features available. However, 

the Mallat algorithm of DWT, which has been applied in this research, demands 

additional requirements as discussed below.   
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In 1988, a new DWT algorithm, which provides fast wavelet decomposition and 

reconstruction, was developed by Mallat [45]. Fig B.1 illustrates this wavelet 

decomposition algorithm. It is actually a classical scheme in the signal processing 

community, known as a two-channel sub-band coder using the conjugate quadrature 

filters or quadrature mirror filters (QMF) [45]. It decomposes the original signal  

into coefficients of low-frequency (approximation coefficient or cA

( )f x

i) and high-

frequency (detail coefficient or cDi) components.  

 

 

Fig. B.1 Fast DWT algorithm 

 

According to the algorithm, there are two properties that allow the mother wavelet 

( )xψ  in equation A.1 to have this fast algorithm: 

1. Existence of a scaling function ( )xΦ ; 

2. Orthogonal results of the wavelet transform. 

Though there are many wavelets available, only several wavelet families possess these 

properties, such as the Symlet, the Coiflet and the Daubechies.  

 

The scaling function ( )xΦ  is used to generate a pair of high-pass and low-pass filters, 

namely the g and h in Fig B.1. Using these filters, DWT generates the cAi and cDi at 
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different levels. The decomposition coefficients are obtained by convolving the 

original signal  (or cA( )f x i) with high-pass filter or lower-pass filter. In this algorithm, 

when a signal passes through the two filters concurrently, double amount of data will 

be produced. By discarding every other data coming out of the filters, the signal is 

downsampled. Though this downsampling process introduces distortion known as 

aliasing, it has been proved that the effect is completely eliminated by employing the 

appropriate filters [45].  

 

To reconstruct the original signal, the inverse discrete wavelet transform (IDWT) is 

carried out involving two steps as the decomposition, namely the upsampling and 

filtering of the wavelet coefficients. The upsampling process means lengthening a 

signal component by inserting zeros between samples. Subsequently, the upsampled 

coefficients will be input into the reconstruction filters to generate the reconstructed 

signal.  

 

The wavelet coefficient cAi contains lower half frequency content of the 

decomposition filter input, and the corresponding cDi contains the upper half 

frequency content. In addition, these coefficients is well localized in time domain, so 

that both time and frequency information of the original signal are kept. Furthermore, 

the coefficients have greater resolution in time for high frequency components and 

greater resolution in frequency for low frequency components of a signal. The highest 

frequency content contained in the wavelet coefficients is up to 
2
0f

, where f0 is the 

sampling frequency of the original signal. This limitation is attributed to the Nyquist 

sampling criterion. Fig. B.2 shows the coverage of the time –frequency plane for the 

DWT coefficients.  
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Fig. B.2 The coverage of the time-frequency plane for DWT coefficients 

 

DWT coefficients of four level decompositions are illustrated in Fig. B.2. As observed, 

cD1 contains from 
2
0f

 to 
4
0f

 content of the original signal, and has high resolution in 

time. cD2 contains from 
4
0f

 to 
8
0f

 content of the original signal, and has lower 

resolution in time (half that of cD1). In brief, as the decomposition level increases, the 

time resolution decreases, while the frequency resolution increases.  

 

The wavelet packet analysis is a generalization of wavelet decomposition that offers a 

richer signal analysis. In the wavelet decomposition procedure, the process of splitting 

into low-frequency and high-frequency components is only applied to the 

approximation components. The detail components are never re-analyzed. In the 

wavelet packet situation, each detail component is also split into two parts using the 

same approach as in approximation splitting. This enables the analysis of high 
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frequency components of the original signal in a higher resolution. Therefore, the 

wavelet packet transform is applied to denoizing and feature extraction in this research. 
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APPENDIX C 

Genetic Algorithm 

 
 

Genetic algorithms (GAs) were formally introduced in the United States in the 1970s 

by John Holland at University of Michigan. They are search algorithms based on the 

mechanics of natural selection and natural genetics. The fundamental principle is that 

the fittest member of a population has the highest probability for survival. Generally, 

GAs have the following components [49]: 

 

1. A genetic representation for potential solutions to the problem; 

2. A way to create an initial population of potential solutions; 

3. An evaluation function that rates solutions in terms of their fitness; 

4. Genetic operators that alter the composition of offspring during reproduction; 

5. Values for the various parameters used by GA, such as population size, 

probabilities of applying genetic operators, and so on. 

 

In each candidate solution, the decision variables to the problem can be binary-coded 

and concatenated as a string (chromosome). Strings are grouped into sets known as 

populations. Successive populations are called generations. GAs first form an initial 

population randomly. Then each string is evaluated to find its fitness by substituting 

into the fitness function. Based on the merits of different strings, a new set of strings 

(population) is created using GA operators, namely reproduction, crossover and 

mutation. The above process is iterated until a pre-specified stop criterion such as the 

maximum number of generations has been reached. Details of the GA operators are 

discussed in the following sections. 
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C.1 Reproduction 

The reproduction operator involves choosing a number of individuals according to 

fitness that will be used for breeding. The purpose of reproduction is to give more 

reproductive chances to those individuals that have high fitness values. This can be 

implemented in many ways, such as the roulette wheel selection [74] and tournament 

selection [75].The roulette wheel selection is adopted in this research. 

 

The idea behind the roulette wheel selection technique is that each individual is given a 

chance to become a parent in proportion to its fitness. It is called roulette wheel 

selection as the chances of selecting a parent can be seen as spinning a roulette wheel 

with the size of the slot for each parent being proportional to its fitness. Obviously 

those with the largest fitness (slot sizes) have more chance of being chosen.  Thus, it is 

possible for one member to dominate all the others and get selected a high proportion 

of the time. Roulette wheel selection can be implemented as follows: 

 

1. Sum the fitness of all the population members. Call this TF (total fitness). 

2. Generate a random number n, between 0 and TF. 

3. Return the first population member whose fitness added to the preceding 

population members is greater than or equal to n. 

 

C.2 Crossover 

Crossover is a process that randomly takes two reproduced strings (parents) and 

exchanges portions of the strings to generate two new strings (offspring) with a 
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predetermined crossover probability. The purpose of the crossover operator is to 

combine useful parental information to form new and hopefully better performing 

offspring. Such an operator can be implemented in the following three ways. 

 

1. Single point crossover.  

The strings of the parents are cut at some randomly chosen common point and 

the resulting sub-strings are swapped. For instance, if P1=1 1 0 | 1 0 1 1,         

P2=1 0 1 | 0 0 1 0, and the crossover point is between the 3th and 4th bits 

(indicated by “|”), then the offspring would be O1=1 1 0 | 0 0 1 0 and          

O2=1 0 1 | 1 0 1 1. 

2. Two point crossover.  

The strings are thought of as rings with the first and last bit connected, namely 

wrap-around structure. The rings are cut in two sites and the resulting sub-rings 

are swapped. For example, consider two strings P1=1 | 1 0 0 | 0 0 1,             

P2=0 | 1 0 1 | 1 1 0, and the crossover points are between 1st and 2nd bits and 

between 4th and 5th bits. In this case, it generates two strings:                       

O1=1 | 1 0 1 | 0 0 1 and O2=0 | 1 0 0 | 1 1 0. 

3. Uniform crossover.  

Each bit of the offspring is selected randomly from the corresponding bits of 

the parents.  

 

The single point crossover is employed in this research. 
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C.3 Mutation 

Selection and crossover alone can obviously generate a large amount of differing 

strings. However, depending on the initial population chosen, there may not be enough 

variety of strings to ensure the GA sees the entire problem space. Or the GA may find 

itself converging on strings that are not quite close to the optimum it seeks due to a bad 

initial population. Above issues are addressed by introducing a mutation operator into 

GA. Mutation randomly alters each bit with a small probability, typically less than 1%. 

This operator introduces innovation into the population and helps prevent premature 

convergence on a local maximum. 
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APPENDIX D 

Independent Component Analysis and FastICA Algorithm 

 

Independent Component Analysis (ICA) is a statistical technique for finding hidden 

factors that form sets of measured signals. In the most fundamental ICA model, the 

measure data are assumed to be linear or nonlinear mixtures of some unknown latent 

components, and the mixing system is also unknown. The unknown components are 

assumed to be statistically independent of each other - hence the name Independent 

Component Analysis. ICA algorithms are able to estimate both the unknown 

independent components and the mixing matrix from the measure data with very few 

assumptions as follows [59]: 

 

1. The unknown components are assumed statistically independent. 

2. The unknown components must have nongaussian distributions. 

3. The unknown mixing matrix is assumed to be square. 

 

In this research, it is reasonable to make such assumptions, as the factors that affect the 

measured signals such as sensor response, propagation path and defects are 

independent and usually nongaussian distributed.  

 

In practice, there are several approaches to find the unknown independent components, 

which use certain statistical properties of the components, such as nongaussianity, 

temporal structure, cross-cumulants and nonstationarity [76]. In this research, the 
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nongaussianity of unknown components is utilized in the implementation of ICA, 

known as FastICA algorithm.  

 

The nongaussianity of a vector can be measured by its higher-order statistics such as 

kurtosis, skewness and negentropy. The negentropy is adopted in this thesis due to its 

proven robustness to noises [59]. However, it is computationally very difficult to 

calculate negentropy directly, as an estimate of the probability density function is 

required. Therefore, it is highly desired to use simpler approximations of negentropy. 

The approximated negentropy for a random vector y is defined as  

 

2( ) [ { ( )} { ( )}]J y E G y E G v≈ −
                                                             (D.1) 

 

where  is a Gaussian variable of zero mean and unit variance and G is any non-

quadratic function.  

v

 

To find the independent components, the approximated negentropy of the potential 

solution  is maximized by FastICA which is based on a fixed-point iteration 

scheme. Denote by g the derivative of the function G used in (D.1). Then the FastICA 

algorithm is given as follows: 

Tw x

 

(1) Pre-process observed signals to obtain x by centering and whitening.   

(2) Let N denote the number of independent components. Set counter t = 1. 

(3) Initialize  randomly. tw

(4) Let . { ( )} { '( )}T T
t t tw E xg w x E g w x w← − t
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(5) De-correlate outputs by . 

1

1
( )

t
T

t t t j
j

w w w w w
−

=

← −∑ j

(6) let /t tw w w← t . 

(7) If not converge, go back to 4. 

(8) let t = t + 1. 

(9) If , go back to 3. Otherwise, stop. t N≤

 

In practice, the expectations in FastICA are replaced by their estimates, namely the 

sample means.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 243



APPENDIX E 

General Introduction to Neural Networks 

 
 

A neural network is an information processing paradigm that was inspired by the way 

biological nervous systems, such as the brain, process information. The field goes by 

many names, such as connectionism, parallel distributed processing, neuro-computing, 

natural intelligent systems, machine learning algorithms, and artificial neural networks. 

It is an attempt to simulate the multiple layers of simple processing elements called 

neurons within specialized hardware or sophisticated software. Each neuron is linked 

to its neighbors with varying coefficients of connectivity that represent the strengths of 

these connections. Learning is accomplished by adjusting these strengths to cause the 

overall network to output appropriate results.  

 

The function of neural networks is largely dependent on the network structure that is 

determined by the way neurons connected. There are basically four types of 

connections as follows: 

 

1. Feedforward connections: 

In this network structure, data from neurons of a lower layer are propagated 

forward to neurons of an upper layer via feedforward connections. Multilayer 

perceptron is a typical feedforward neural network. 

2. Feedback Connections: 
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Feedback networks bring data from neurons of an upper layer back to neurons 

of a lower layer. This type of connection is usually employed in neural-

network-based controller.  

3. Lateral Connections: 

Neurons of the same layer are interconnected. One typical example of a lateral 

network is the self-organizing map. 

4. Time-delayed Connections: 

Delay elements may be incorporated into the connections to yield temporal 

dynamics models. They are more suitable for temporal pattern recognitions. 

 

One of the most interesting properties of a neural network is the ability to learn from 

its environment in order to improve its performance over time. Generally, the learning 

methods of neural networks can be classified into two categories: 

 

1. Supervised learning: 

In supervised learning, the desired output pattern corresponding to an input is 

presented to the network during training in order to guide learning. The 

network learns in the training phase by having its weights adjusted such that the 

actual network output becomes more similar to the desired network output. 

Thus, the desired output acts as an external teacher in this type of learning.  

2. Unsupervised learning: 

This type of learning uses no external teacher and is based upon only local 

information. It is also referred to as self-organization, in the sense that it self-
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organizes data presented to the network and discovers their emergent collective 

properties. 
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APPENDIX F 

Resilient Back-propagation Algorithm 

 
 
The choice of the learning rate η for the standard back-propagation algorithm in 

equation E.1, which scales the derivative of the error function, has an important effect 

on the time needed until convergence is reached.  

 

( ) ( )t
ij

ij

Ew t
w

η ∂
∆ = −

∂                                                     (E.1) 

 

If η is set too small, too many steps are needed to reach an acceptable solution. On the 

contrary, a large learning rate will possibly lead to oscillation, preventing the error to 

fall bellow a certain value. 

 

On the other hand, MLP networks typically use sigmoid transfer functions in the 

hidden layers. The functions are characterized by the fact that their slope must 

approach zero as the input gets large. This causes a problem when using steepest 

descent to train a MLP network with sigmoid functions, since the gradient can have a 

very small magnitude leading to a small learning rate; and therefore, cause small 

changes in the weights and biases, even though the weights and biases are far from 

their optimal values.  

 

The basic principle of Resilient Back-propagation Algorithm is to eliminate the 

harmful influence of the size of the partial derivative on the learning rate. This 

algorithm considers the local topology of the error function to change its behaviour. As 
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a consequence, only the sign of the derivative is considered to indicate the direction of 

the weight update. The size of the weight change is exclusively determined by a 

update-value : 
( )t

ij∆
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-=0.5, η+=1.2 in this thesis). 

lue is not influenced by the magnitude of the derivatives, but 

f the sign of two succeeding derivatives. Every time the partial 

ponding weight changes its sign, which indicates that the last 

the algorithm has jumped over a local minimum, the update-
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value  is decreased by the factor η-. If the derivative retains its sign, the update-

value is slightly increased in order to accelerate convergence in shallow regions. Thus, 

Resilient Back-propagation Algorithm generally converges much faster than other 

back-propagation algorithms. 

)(t
ij∆
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