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Summary

This thesis examines the XPath query evaluation and optimization in XML databases.

The evaluation cost of an XPath query is a function of both the query size (in terms of

the number of axis steps) as well as the complexity of axis step evaluation. Existing

approaches to optimize XPath query evaluation have focused on query minimization

techniques to reduce the number of query steps, access methods and processing algo-

rithms to reduce the evaluation cost of axis steps. This thesis presents a novel approach

to optimize XPath query evaluation by rewriting an input query using a set of composite

axes.

In this thesis, we have designed the specialized navigational axis(SNA), which can be

used to rewrite an input query to access much fewer elements to compute the evaluation

results. At the same time, we have designed the novel composite axis Region Axis(RA),

which is mainly used for rewriting the wildcard steps in XPath queries, whose evaluation

is generally expensive. After rewriting the query with RA, we can generally skip the

wildcard steps in the query and greatly improve the evaluation performance. We also

provide a set of rewriting rules for the RA as well as the constraints to make the rewriting

keep the equivalence. Note that we could combine both the SNA and RA into the query

rewriting.

v



SUMMARY vi

By rewriting with both SNA and RA, an optimized query not only has fewer steps,

but the composite-axis steps can also be more efficiently evaluated than the replaced

steps. We have conducted comprehensive experiments and the results demonstrate sig-

nificant performance improvement using our proposed optimization and evaluation tech-

niques.
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Chapter 1

Introduction

XML is the de facto standard language for data representation and exchange, thus lots of

data have been stored in the XML format. XPath[26], as the core mechanism of several

popular languages for processing XML data, such as XSLT[8] XQuery [5], attracts lots of

research interest for its processing and optimization. Efficient XPath evaluation would

greatly benefit other applications based on the XPath. Much research effort has been

addressed on the efficient XPath evaluation[31, 1, 6, 20] and optimization. The opti-

mization mainly includes two aspects, either optimizing the order of evaluation[29, 21]

or transforming the XPath into equivalent form suitable for processing. For transfor-

mation, considering the importance of the query size to the evaluation cost, shown to

be exponential relationship in [11], minimization of XPath has been one of the research

focus [22, 10, 24, 12, 2]. Eliminating the reverse axes to make the XPath looking forward

suitable for streaming processing has been conducted in[23] with two sets of rewriting

rules. In[16], Helmer et al rewrite the XPath into algebra expression and then pipeline

the evaluation.

To more efficiently evaluate the XPath queries, we have introduced the composite

1



CHAPTER 1. INTRODUCTION 2

axis, specialized navigational axes (or SNAs for short). SNA is essentially a composition

of a navigational axis with a pruning optimization to produce a specialized axis that can

be more efficiently evaluated. The pruning optimization is derived from the semantics

of the other navigational axes that are structurally related to the axis being optimized

in the query. As SNAs can be evaluated more efficiently, a query can be optimized by

replacing each navigational axis step in the query with an appropriate SNA step. For

example in the evaluation of the XPath query “/Desc::a/Foll::b”, we just need to fetch

the leftmost node “a” for the evaluation of the second query step “/Foll::b”. Therefore,

the query could be rewritten with our SNA as“Desclb::a/Foll::b”. Clearly, with the help

of SNA , much fewer elements in the data would be accessed.

Most recent work regarding XPath optimization as in [7] minimizes the wildcard

steps in the XPath. A wildcard step is an XPath step with the wildcard node tag,

such as “Parent::*” and “Preceding::*”. For convenience or necessity, wildcard has been

wildly used in the XPath, such as in[23], which is used to remove the reverse axes and

it is used to represent some hidden elements in [9].For example, when querying against

the secured XML views in the forms of DTDs, some element labels would be intention-

ally substituted by the wildcard in case of leaking any inform that the client issuing

the query has no access permission. In more general cases, wildcards are used to rep-

resented a set of elements that we don’t care about. For example, we may want to

query the works of an actor regardless whether it is film or TV paly as in the XPath

queries “child::works/child::film/child::name” and “child::works/child::TV/child::name”.

Actually, the queries could be expressed with the single query with the wildcard step

as “child::works/child::*/child::name” to get access all the works of the actor. Wildcard

step is generally very expensive for the evaluation, as it brings ambiguity for the XPath
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evaluation, resulting in the necessity to pre-load all the XML data into the main memory

for evaluation, thus damaging the scalability. Even worse, large amount of intermediate

results would greatly deteriorate the evaluation efficiency. Take the simple XPath query

“/Dec::*/Dec::a” for example, if the context node is the root, then all the nodes in the

XML tree need to be accessed and for each node, its descendant nodes need to be checked

whether the tag name is “a”. The research work conducted in [7] is not complete and

general enough, as it could only partially remove wildcards in the XPath with the help

of the layer axis in the vertical axis steps and it has no way to process the more general

XPath composed of both vertical and horizontal axes. Even for the vertical wildcards

steps, still some common cases could not be processed by the layer axis, not to say effi-

ciently. Therefore though the layer axis is the first effort touching the wildcard issue, it

is far from efficiently eliminating all the wildcards.

In this thesis, we introduce another composite axis called RegionAxis to remove the

wildcards in the XPath according to the rewriting techniques. The evaluation based on

the rewritten XPath would be more efficient and scalable, for the size of the rewritten

XPath would be minimized as well as the ambiguity produced by the wildcard would be

removed, making selectively loading possible for processing data of huge size that gen-

erally could not be hold by the main memory. To clearly present the idea of wildcards

removing approach based on rewriting techniques, we would give the following exam-

ple for illustration. In the query with XPath “/presibling::*/presibling::a”, it would be

rewritten into the following form as : /R{i, j, h, l}::a, in which R{i, j, h, l} is the basic

form of RegionAxis. With the new form, one step evaluation would be enough instead

of two consecutive steps. More importantly, there is no need to store the intermediate

results, usually huge, in the consecutive evaluation for the wildcard steps.



CHAPTER 1. INTRODUCTION 4

1.1 Contributions

In this thesis, we present a novel approach to optimize XPath query evaluation by rewrit-

ing an input query with a set of composite axes. Our contributions are summarized as

follows:

• We design a novel composite axis, named specialized navigational axis (or SNA for

short), to rewrite XPath queries for efficient evaluation. SNAs fully exploit the

properties of the XPath axes and combine pruning techniques with the axes to

enable the evaluation access much fewer elements.

• We design another novel composite axis, named region axis (or RA for short),

to rewrite the wildcard steps in XPath query to optimize the query evaluation

with a set of rewriting rules. To maintain the equivalence of the query rewriting,

constraints and their updating rules are also provided.

• We present a systematic approach to rewrite XPath queries with both the SNAs

and RAs, thus making the queries efficiently evaluated. We have done comprehen-

sive experiments with our rewriting algorithms based on both the SNAs and RAs,

to examine the efficiency improvement for query evaluation.

1.2 Organization

This thesis is organized as follows. Initially, we introduce the related work in Chapter 2.

Then Chapter 3 presents some basic definitions and notations to facilitate the following

presentation. Our new composite axes, namely, specialized navigational axes and region

axes, are presented, respectively, in Chapters 4 and 5. Chapter 6 presents rewriting
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algorithms that combine both types of new axes and describes implementation issues.

Chapter 7 presents our experimental evaluation of the proposed optimizations. Finally,

we present our conclusions in Chapter 8.



Chapter 2

Related Work

Lots of research effort has been conducted in the XPath optimization, while most is

related to minimizing the XPath [22, 10, 24, 12, 2, 4], optimizing the order of evaluation

[29, 21] and efficient evaluation strategies[6, 27, 25, 20] or index structures [19] . Not

much work is related to the rewriting techniques for the XPath except [23, 16]. [23]

presents the two separate complete sets of rewriting rules, based on which the XPath

with reverse axes could be rewritten into equivalent reverse axis free forms. The rewritten

XPath is more suitable for processing streaming XML data. The research effort in [16]

rewrites the XPath into equivalent algebraic expression which could avoid duplication in

the processing to pipeline the XPath evaluation.

2.1 Structure Join Order Selection

As value-based join order selection is at the heart of the relational query evaluation, struc-

ture join order selection [21, 29]is central to the query optimization of XML database. No

matter what kinds of join algorithms [31, 20] have been adopted, join order selection is

6
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always one core step for the query evaluation. Wu et al [29] introduce five different kinds

join order selection algorithms for XML query optimization. The intuitive algorithm used

for join order selection as in relation database is based on Dynamic Programming(DP),

which grantees the best solution but not that efficient. Improvement for DP is the Dy-

namic Programming with Pruning(DPP)states that DPP is guaranteed to be suboptimal

or would reach the deadend. Even though with the pruning, the optimization might still

be expensive. Then some heuristics are used for the DPP to make aggressive pruning

such as limiting the number of intermediate results considered(DPAP-EB) and only con-

sidering left-deep plans(DPAP-LD). Fully-pipelined(FP) algorithm only considers the

non-blocking query plans and is guaranteed to select the cheapest non-blocking query

plan which is fast enough.

2.2 Query Minimization

Till now, the major research work of XPath optimization has been focused on the

minimization[22, 10, 24, 12, 2, 4]. In the XPath evaluation, the query size is considered

as the main determinant of the efficiency as proved by three experiments with different

XPath processors: XALAN, XT and IE6 [11]. The results show that the time cost of

the query evaluation is exponential to the size of queries. Therefore it is important to

minimize the XPath. The basic idea of XPath minimization is to identify and eliminate

the redundant steps in the paths. There are mainly two kinds of redundancy [3]:

• Constraint independent. In a general XPath, some components may be inherently

redundant such as that being subsumed by some other components. For example,

“ find some classroom with 40 students and with more than one student”. We can
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easily see that the condition “with more than one student” is redundant.

• Constraint dependent. In XML document, the DTD always builds some inherent

constraints for the data structure such as required child, required descendant and

co-occurrence, an irredundant query may become redundant with the presence of

the integrity constraint.

The first research effort on minimizing the tree pattern query is conducted by Wood

in [28], considering just a fragment of the XPath, which does not include descendent

relationship. This kind of XPath is called simple XPath expression. The complexity of

minimizing query using simple XPath expression has been shown to be polynomial to

the size of the query.

Amer-Yahia et al [2] prove that for a tree query Q, there is always a unique minimal

query based on the isomorphism, no matter whether there is integrity constraint or not.

Theoretically, whatever way we use to remove the redundant nodes, finally we would get

the isomorphous minimal query. The algorithms provided in [2] are built on the basis of

endomorphisms from which we can get the following property: A node v of a query Q is

redundant iff there is an endomorphism on Q that is not identity on v. Tree pattern

query in XML document is closely related to the conjunctive query in classical relational

database, where the minimization has been generally accepted as a NP-complete problem.

While in the XML document, there are some limitations for the tree pattern query and

integrity constraints reducing the complexity of the algorithm to polynomial time [2].

Prakash Ramanan et al [24]provide even better polynomial time bounded algorithm for

minimizing query with or without integrity constraints. The basic idea for the algorithms

is based on the simulation and the algorithm shows that the time complexity is O(N4)

with the presence of the three integrity constraints and even better O(N2) without the
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co-occurrence constraint.

It is exciting that polynomial time algorithms [28, 2, 24] have been designed for tree

pattern query in XML document within some fragments of XPath. However a general

class of queries may contain branchings, label wildcards and have descendent relationship.

[28] processes simple XPath expression without including descendent relationship form-

ing the fragment XP {/,[],∗}, while [2, 24] provide efficient algorithms for XP XP {/,[],//} in

polynomial time. Lots of research work has shown that the minimization of tree pattern

query within fragments combined with any two of the three features has efficient algo-

rithms. However, for the fragment containing all the three features, the minimization

is NP-complete which has been proved in [22]. Since it is difficult to design efficient

algorithms for minimizing query within the fragment XP {/,[],∗,//}, two kinds of problems

appear:find an efficient containment algorithm that is always sound, but not necessarily

complete and find a sound and complete algorithm that is EXPTIME in general, but

is provably efficient in special cases. [22] builds an algorithm based on the automata

and mainly implements the transformation from tree pattern to regular tree language

according to the ranking tree. Miklau et[22] also identifies two parameterized classes

of queries for which containment is achieved efficiently, and shows that even with the

bounded parameters, containment is NP-complete. The research work done in [10] is

also on the fragment of XP {/,[],∗,//}. Flesca et al [10] provides the proof for that: the

decision problem whether the minimal size of a query Q is greater than K is NP-complete.

And again they make some more improvement for the two problems mentioned in [10]:

they give an complete and sound algorithm works in exponential to the size of the pattern

to be minimized based on the idea of subpattern and adopts the top-down strategy. Also

in [10], they give an special case within the fragment XP {/,[],∗,//} that could achieve the
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minimization in polynomial time.

2.3 Optimization Based on Rewriting Techniques

As mentioned before, another important research direction for the optimization of XPath

is based on the rewriting techniques. What it needs to do is not just for minimization

while keeping the equivalence, but to make the transformed XPath have some specified

property that would facilitate the evaluation.

2.3.1 Eliminating Wildcard Steps

Most related work is in [9], which is the first effort addressing the wildcard problem and

try to minimize the wildcard steps in the XPath. Chan et al propose a complementary

approach of rewriting the XPath based on the layer axis to minimize the wildcard steps

in the XPath composed of pure vertical axes. Layer axis is new composite axis designed

in [9] with the basic form of L[i,j], which represents the descendant nodes that are “i”

to “j” levels lower than the context node or nodes. Layer axis is mainly for handling

the wildcard steps combined with the vertical axis. Take the XPath “/chi::*/chi::b”

for example, the rewritten XPath has the following form as “L[2,2]::b”. Clearly, with the

Layer axis, the XPath queries are possible to be rewritten into the equivalent wildcard free

queries, saving the expensive wildcard step evaluation. However, the rewriting algorithm

for the Xpath queries based on layer axis is not general and complete enough, as it could

only handle the XPath composed of purely vertical axes; even for this kind of XPath, the

algorithm could not eliminate all the wildcards. Extended Layer axis has been presented

to handle complex XPath queries with parent and child axes, while it still can not handle
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all the cases with vertical axes in the XPath, at the same time, it is expensive to evaluate

the Extended Layer axis.

2.3.2 Eliminating Reverse Axes

[23] presents the algorithms based on two separately complete sets of rewriting rules for

transforming the location paths with reverse axes into reverse-axis-free forms. In[18], effi-

cient processing algorithms have been provide for each kind of axis in the XPath. Though

efficient, many of the algorithms are built on knowledge of the whole data graph, espe-

cially for reverse axes.This strict constraint for XML data greatly limits the application of

the algorithms and efficiency of the XPath processing especially for data-centric applica-

tions to be handled in the main memory. As reverse axes have blocked the stream-based

processing, the straightforward solution is to eliminate the reverse axis to make the XPath

looking forward. Rewriting the XPath to be reverse axis free shows better performance

in terms of both the time and memory cost than other techniques such as store more

information and so on.

The basic concept for rewriting axis is to transform the XPath with reverse axes into

another equivalent form constructed with just forward axes.Equivalence for two paths is

defined as follwoing: Take any two paths P1 and P2, R1 and R2 are the nodes set located

by the two paths separately, if R1 ≡ R2, P1 is equivalent with P2.

According to the fundamental concept of equivalence, [23] builds up two separate

sets of rewriting rules for all the reverse axes: General equivalence set and Specific

equivalence set. Based on the two sets of rewriting rules, Olteanu et al [23] gives an

intuitive algorithm for implementing the transformation. The basic idea is simple: use

a stack to record all the location steps and start from the end of the path, whenever
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meeting a reverse axis, it would rewrite the path with the corresponding equivalence

rules until all the reverse axes have been removed. Each set of the rewriting rules based

on the algorithm could eliminate all the reverse axes with different steps. For the general

equivalence rule set, the rewriting results would include lots of expensive joins which are

not easy for later processing, while the specific equivalence rule set would usually result

in a larger size for the output as well as requiring worst exponential time complexity.

[23] makes a general comparison and show that which rule set combined with algorithm

is better may depend on the practical paths.

2.3.3 Removing Duplication and Pipelining

Similarly as removing reverse axes, Helmer et al [17] optimize the XPath by rewriting it

into algebraic expressions suitable for generating code directly. The basic idea for this

paper is to rewrite each individual local step into its equivalent form which could be

processed by pipelining. One of the core considerations in the rewriting is to handle the

duplications. For some axes, even the input is duplicate-free, the output would have some

duplications which hesitate the pipelining. So Helmer et al [17] build several equivalence

rules based on the idea of step function, which transforms the axes into some algebraic

forms which would avoid the duplications. The motivation of their approach to enable

a pipelined evaluation of the XPath query shares similarity with our SNAs. However,

we differ significantly in our approach of rewriting queries with these axes/operators.

In particular, our approach of query rewriting with SNAs simply substitutes a normal

axis step with an appropriate SNA, which does not change the number of query steps.

In constrast, their approach of rewriting to enable a pipeline evaluation can introduce

additional query steps (as part of new predicates) which could transform an input linear
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path query to a more complex tree-pattern query. Furthermore, new wilcard steps can

be introduced into the rewritten query in their rewriting.

The idea of removing redundant context nodes was also discussed in [15, 13, 14].

However, the pruning approach presented there involves a two-step procedure: an axis

step is first evaluated to generate a set of output nodes, which are then pruned before

evaluating the next axis step. In contrast, our approach of pruning using composite SNAs

actually enables the evaluation of the initial step to be combined with the subsequnt

pruning in a single step, which can be more efficiently implemented. In addition, our

approach is also more general, as optimization with SNAs can be applied to a branching

step that takes into account of the semantics of all the child-steps of the branching step.



Chapter 3

Preliminaries

XPath is generally composed of several axis steps, either of vertical axes or horizontal

axes, according to its relative locating area in the XML tree to the context node. Vertical

axes mainly include: child, parent, ancestor and descendant. Semantically, vertical axes

refer to the elements vertical to the context node in the XML tree. Take the context node

“3” in Figure 3.1 for example, its child node set is {8, 9, 10, 11, 12} and its descendant

includes the child node set as well as the subset {20, 21, 22, 23}. The parent of the context

node is {1} and the ancestor set is the same as the parent of the context in this scenario.

Horizontal axes include preceding sibling, following sibling, preceding and following axes.

As shown in Figure 3.1, still take node “3” as the context , the pre-sibling node set is {2}

and the following-sibling node set is {4,5}. Preceding and following axes usually cover

lots of elements, and the node sets are {4, 5, 6, 7, 17, 18, 19} and {2, 13, 14, 15, 16,

24, 25, 26, 27, 28, 29 } respectively. Note that, the preceding contains the pre-sibling

and the following contains the following-sibling. In this thesis, we consider the class of

XPath queries that are formed using only the following axes: self, child, descendant,

parent, ancestor, preceding, following, descendant-or-self and ancestor-or-self (which are

14
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Figure 3.1: XPath axes

abbreviated to self, child, desc, par, anc, prec, foll, ancos, and descos, respectively). Note

that descos, and ancos, which combine the vertical axes with the self-explained self axis

are still denoted as vertical axes. The axes child, desc, foll and descos are called forward

axes, while the axes par, anc, prec, and ancos are called reverse axes.

At the same time, we would like to call child and desc axes as “Down” axis and par

and anc axes as “Up” axes. Some “Down” axes followed by some “Up” axes would form

a “Up-Down” pattern in the XPath. We refer to a step with axis χ as a χ-axis step. This

fragment of XPath is syntactically defined as follows:

q ::= χ :: l | χ :: ∗ | q/q | q[q],

where l is an XML tag, ∗ is the wildcard, and ‘/’ and ‘[.]’ denote concatenation and

qualifier, respectively. This fragment does not contain the union, negation, and the

logical or operator. Observe that logical and is implicitly supported: q[q1 and q2] is

equivalent to q[q1][q2].

Given an XPath query q, one can represent q by an unordered rooted tree, denoted

by Tree(q), where each step si in q is represented by a node vi in Tree(q) such that there

is an edge (vi, vj) in Tree(q) if steps si and sj are “consecutive” steps in q of the form

si/sj or si[sj ]. Observe that there could be zero or more qualifier expressions between si
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and sj (or [sj ]) in q. Given two steps si and sj in q, we say that sj is a child step of si

(or equivalently, si is a parent step of sj)
1 if vj is a child node of vi in Tree(q). Given a

query node vi, we use χ(vi) to denote the axis associated with qi.

A step si in q is said to be a branching step if its corresponding node vi in Tree(q)

has out-degree of at least 2. Furthermore, if the branching step is also a wildcard step

(i.e., its nodetest is *), then we refer to it as a branching wildcard step, abbreviated as

B*-step. A wildcard step that is not a B*-step is abbreviated as NB*-step (for non-

branching wildcard step). In the tree representation of the XPath query q, nodes that

are underlined indicate the selected nodes to be returned as the query result.

Given an axis-step α::τ , we use αk::τ to denote the sequence of steps with α::τ

preceded by (k − 1) steps of α::*; i.e.,

αk::τ ≡ α::* / · · · / α::*
︸ ︷︷ ︸

k−1

/α::τ

Given a node v in a data tree T , we use level(v) to denote the level of v in T ,

which is defined to be 1 if v is the root node; otherwise, its level is one more than its

parent’s level. We use δ(x, y) to denote the difference in levels between nodes x and y;

i.e., δ(x, y) = level(x)− level(y). We define the height of v, denoted by ht(v), as ht(v) =

maxv′∈V {level(v′)} − level(v)}, where V is the set of descendant leaf nodes of v. Thus,

level(v) and ht(v) represent the maximum vertical distances between v and respectively,

the top-most and bottom-most nodes reachable from v. More generally, for a given set

of nodes V , we define the height of V , denoted by ht(V ), as ht(V ) = maxv∈V {ht(v)}.

In the XPath, an axis step could be the consecutive step of its preceding step of

form s1/s2 or as a prediction step as of form s1[s2]. An axis step is called linear step if it

1A child (parent) step is not to be confused with a child-axis (parent-axis) step!
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just has one consecutive step or one predicate step, otherwise, it is named as branching

step, denoted as B-step. Linear step is represented as NB-step. Wildcards could appear

in any kind of axes steps as well as in either B-step or NB-step. If we refer a step with

axis χ as χ-axis step, then one wildcard step could be expressed as χ::*. If the wildcard

is in the linear step, it is called linear wildcard step asχ::*/χ1::a orχ::*[χ1::a], otherwise

asχ::*[[χ1::a][χ1::b]], it is called branching wildcard step. For example, the wildcard step

in /Chi::a /Dec::* /Pre-sib::b is linear step in, while the wildcard step is branching step

in XPath child::*[Pre-sib::a][Chi::b][Dec::c].

For any given XPath, the evaluation starts from the original context nodes (usually

the root of the XML element tree), then for each axis step, we make the evaluation

according to the axis step against the context nodes and the result returns as a node set.

The returned node set would be the context for the consecutive axis step. It is clear that

the evaluation of each axis step would reach a certain area in the XML tree according

to the definition of the axes, and the evaluation of the XPath is actually the navigation

in the XML tree. Finally the navigation would reach the area that contains the final

results.



Chapter 4

Specialized Navigational Axes

To reduce the evaluation cost of axis-steps, we propose a new set of specialized navi-

gational axes (SNAs), each of which is a composition of an axis step with a pruning

optimization.

We define four new variants of the self axis, denoted by self t self b, self lb, and

self rb, which for a given set of context nodes S, selects, respectively, the top-most,

bottom-most, left bottom-most, and right bottom-most nodes defined as follows:

self t = {v ∈ S | 6 ∃ v′ ∈ S, v′ is an ancestor of v}

self b = {v ∈ S | 6 ∃ v′ ∈ S, v′ is a descendant of v}

self lb = {v ∈ self b | 6 ∃ v′ ∈ self b, v′ precedes v}

self rb = {v ∈ self b | 6 ∃ v′ ∈ self b, v′ succeeds v}

For each variant of the self axis selfx, where x ∈ {t, b, lb, rb}, and an axis α, where

α ∈ {desc, foll, prec, anc}, we can define a new composite axis, denoted by αx, as follows:

αx::τ = α::τ / selfx::∗

We refer to these new axis variants as specialized navigational axes (or SNAs). Note that

18
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α

αt+b

αt+lb+rb
αb

αt+lb αt+rb αlb+rb

αt αlb αrb

Figure 4.1: Relationship among SNAs of α axis

ancb, anclb, and ancrb are all trivially equivalent to anc.

For each axis α, where α ∈ {desc, foll, prec, anc}, we can combine its SNAs using

the union operator to provide five additional specialized axes denoted by αlb+rb, αt+b,

αt+lb, αt+rb, and αt+lb+rb. Here, αx+y+z means αx ∪ αy ∪ αz. The relationship

among the SNAs can be captured by a partial order as shown in Fig. 4.1, where there is

a directed path from one axis X to another axis X ′ iff the set of nodes selected by X is

a superset of those selected by X ′.

4.1 Rewriting with SNAs

Our algorithm for rewriting a query into an equivalent query using SNAs is shown in

Algorithm 1. It uses a function M(α, α′) that takes a pair of axes (α, α′), where α = χ(v),

α′ = χ(v′), and v′ is a child node of some query node v, and computes the SNA for v:
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Algorithm 1 Rewrite-SNA (q)

Input: query q

1: for each query node v in a bottom-up traversal of q do

2: if (v is a non-output step) then

3: S = {M(χ(v), χ(v′)) | v′ is a child node of v}

4: χ(v) = LUB(S)

5: return q

M(α, α′) =







αb if α′ = anc,

αt if α′ = desc,

αrb if α′ = prec,

αlb if α′ = foll,

α otherwise.

(4.1)

More generally, if v has multiple child nodes, then χ(v) = LUB(S), where S =

{M(χ(v), χ(v′)) | v′ is a child node of v} is the set of all SNAs of v’s child nodes. Here,

LUB is a function that computes the lowest upper bound of S w.r.t. the partial order

Fig. 4.11.

Example 1.1 Consider the XPath query q = prec::a[anc::b]/desc::c. Since M(prec, anc) =

precb and M(prec, desc) = prect, we have χ(prec :: e) = LUB({precb, prect}) = prect+b.

Therefore, the step prec::a in q can be optimized to prect+b::a, which can be evaluated

more efficiently than prec::a. ¤

Based on Eq. (4.1), the axis of a query node v cannot be specialized if one of its

child node (say v′) has an axis type child or par. Nevertheless, it might still be possible

1For example, LUB({αt, αb}) = α
t+b

.
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to specialize v in some cases if v′ has exactly one child node (say v′′) such that the path

v′/v′′ can be transformed into an equivalent step (for the purpose of specialization) using

the following rules:

T1. chik::*/desc::τ ≡ desck+1::τ

T2. chi::*/anc::τ ≡ ancos::τ

T3. park::*/anc::τ ≡ anck+1::τ

T4. chi::*/par::*/β::τ ≡ β::τ

Example 1.2 Consider the XPath expression q = foll::a/chi::*/par::*/chi::*/desc::*. By

Eq. (4.1), the step foll::a cannot be specialized. However, by applying the rule T4 to

q, q becomes transformed to q′ = foll::a/chi::*/desc::*; and applying rule T1 to q′, we

obtained q′′ = foll::a/desc2::*. Now, Eq. (4.1) is able to specialize the foll axis in q′′ to

followt. Therefore, q can be optimized to followt::a/chi::*/par::*/chi::*/desc::*. ¤

The overall approach to rewrite a query with using SNAs proceed by traversing the

query nodes in q in a bottom-up manner. For each query node v visited, if v is of axis

type child or par, the rules T1-T4 are applied if possible to transform v to a form so that

it can facilitate subsequent specializations. Furthermore, if v is not an output node, then

Eq. (4.1) is applied to v as described above.



Chapter 5

Region Axis

In this chapter, we present another composite axis called the region axis to rewrite a

wildcard path query into a single axis step. A wildcard path query (or WP-query) refers to

a sequence of axis steps where all the steps (except possibly for the last step) are wildcard

steps. The ability of the region axis to concisely express a WP-query as a single step can

be used as to optimize more complex queries with wildcard steps. More generally, queries

involving wildcard steps can be broadly classified into two types: branching wildcard

queries (B∗-query) and non-branching wildcard queries (NB∗-query). A wildcard query

is a B∗-query if it has a branching step that is also a wildcard step; otherwise, it is a

NB∗-query. Thus, WP-queries are a special case of NB∗-queries.

We start by examining properties of WP-queries. Conceptually, a WP-query selects

a region of nodes S (w.r.t. a context node c) such that each node in S is reachable from

c via a sequence of “typeless” navigational axis steps. We first give an introduction of

the basic data model for the region axis in Section 5.1 , then we characterize the different

types of node regions in Section 5.2; and then present the region axis starting from the

simplest form in Section 5.3, followed by a more general form in Section 5.4. Finally, we

22
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Figure 5.1: Data model for region axis

present the most general form that supports constraints in Section 5.5.

5.1 Data Model and Labeling

XML data of tree structure is generally organized into layers. Layer axis[7], which is based

on the level information could naturally represent the vertical axes steps, such as child,

parent axes. However, Layer axis could not be easily used to represent the horizontal

axes. To efficiently evaluate the horizontal axes, more information such as labeling is

needed. Range based labeling scheme mainly focuses on the vertical relationships, such

as descendant-ancestor and parent-child. Here we introduce a new labeling scheme, fence

labeling, as in Figure 5.1. The basic idea for fence Labeling scheme includes the following

two principles:

1. All leaf nodes are labeled sequentially from left to right.

2. Label of each node is the smallest of its descendants.

With this fence label, each node could be represented by the set (label,level). For example

in Figure 5.1, (8,2) represents the node with label 8 in level 2 (root is in the level 0). As

no same labels would appear in the same level, each set represents one unique element
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in the XML tree. The process for the fence labeling, as that for range based labeling

scheme, could be achieved in a single parse of the XML data.

The fence label is much more concise with one label for each node and the size of the

fence label is bounded by the leaf nodes number. More importantly, fence label could

horizontally locate nodes in the XML tree bounded by O( h)(h is the height of the XML

document), and node locating is essential for navigating in the XML tree. For example,

the searching of node(5,2) starts from the leaf node level and finding the leaf node with

label 5 as (5,3) would cost constant time O(1) according to the implementation in the

following section. Then along the linked path from leaf to root, node(5,2) could be found

with the cost O(h). While locating a node with range based label would always resort

to binary search with the cost O(lgn)( n is the number of nodes in level l).

5.1.1 Fence Definition

Horizontally, a XML tree could be considered to be composed of several paths from the

leaf node to the root. We would like to call each path with the fence label as a fence.

According to the fence labeling scheme, each fence could be decided by the leaf node label

of its path, since each node label of one path is the largest among the labels of the same

level less or equal to the leaf node label of that path. Thus the leaf node label is called

the ID of the fence. The labels of the elements in that fence are called fvalue, denoted

as fvalue(fence ID, level),which could be determined by the fence and the level as follows:

fvalue(i,l) =







0 i=1

max(label(n)),

where, label(n) < i&level(n) = l i> 1
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fvalue( i,l)returns the largest one among the labels that are less than or equal to i in level

l. So, in all, fence ID determines one fence in the XML tree and the fence plus the level

would decide the fvalue.

For example, the fence from leaf node(6,3) to the root is determined by the leaf

node label 6(fence ID),named as fence(6), and fence(6) is composed of the following

labels:“6,5,4,1”(bottom-up). Obviously, all the labels of the elements in fence(6) are less

than ‘6’. These labels are the fvalue of the fence in each level, for example, ‘5’ is the

fvalue of fence(6) in level 2 and is the largest one of the labels that are less than or equal

to the ID ‘6’ in level 2. Take fence(12) for example, it is made up of “12,11,10,1” and

fvalue(12,1) is ‘10’. Note that, fence label is for the element node and fvalue is for the

fence.

5.2 Characterizations of Node Regions

To appreciate and understand the design the region axis, we first analyze the various

types of node regions that can result from WP-queries. Our analysis reveals that the

node region selected by a WP-query can be classified into four main types. A node region

is defined to be regular region if it satisfies two properties:

(P1) the nodes selected at each level are contiguous in the sense that there can not be

any non-selected node (i.e., “hole”) that lies between two selected nodes at some

level; and

(P2) the region has a “smooth contour” in the sense that for every pair of leftmost (or

rightmost) selected nodes v and w in the region, where v is one level above w, v is

either a leaf node or a parent of w.
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Figure 5.2: Examples of node region types

A node region that does not satisfy (P1) is said to be a holey region; and a node

region that does not satisfy (P2) is said to be an irregular region. A node region that

satisfies neither of the properties is said to be a holey irregular region.

Example 2.1 Fig. 5.2 illustrates the three main types of node regions with WP-queries

on a data tree w.r.t. a context node c: (a) (par::* / prec::*) the hatched region is regular;

(b)(foll::* / child::* ) the gray region is irregular because its leftmost boundary node at

level 3 is not a child of its leftmost boundary node at level 2; and (c)(par::* / desc::* /

par::*) the black region is holey because there is a non-selected node (i.e., the context

node c) between two selected nodes at level 3. If the step par::* is evaluated w.r.t. the

gray region, the outcome is a holey irregular region that consists of the last 2 nodes at

level 2, and the last five nodes at level 3 (excluding the last fourth node). ¤

The type of node region selected by a WP-query can be characterized by the following

result.

Theorem 5.2.1 Let Rq denote the node region selected by a WP-query q. Then

1. Rq is regular only if q has only forward-vertical-axis steps or has only reverse-
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vertical-axis steps.

2. Rq is holey only if q has at least one reverse-vertical-axis step.

Proof 5.2.1 we have explicitly and separately explained the the properties about region

axes in the above theorem.

1. Evaluate CR(context region) with forward-vertical-axis to get the new region R, ∀

node n ∈ R except the nodes in the top level of R, ∃ node α∈ CR, n is the descendant or

child of α. Therefore we can say that R is a regular region. Similarly when we apply the

revers-vertical-axis on the CR, we would also get the regular region. However, when we

apply following axes on CR, it would be easy to find that ∃ α and β on the left edge of

R and α is not descendant or ancestor of β. Similar case would happen to the preceding

axis.

2. Evaluate CR(context region) with the following axis to get a new region R. ∃

node α ∈ CR, ∀ node n in the XML tree, if label(n)>label(α), then n ∈ R. Clearly, R

is a region with no holes. Similar case would happen to the preceding axis. When we

evaluate CR with forward vertical axis, as ∀ node m ∈ CR has a parent or an ancestor

node except for the nodes in the top level of CR. Therefore, all nodes in R is part of the

final result. However, some nodes in CR may not have child nodes. When we evaluate

CR with reverse vertical axis to get a new region R, there may exist some node α that α

should not belong to the final result, which may result in holy for the region. In all, if q

has no reverse-vertical-axis step, the node region reached by q would never be holey.

Based on the above analysis, we now present three forms of the region axis (from

the simplest to the most general): the basic form can specify regular regions, the gener-

alized form can additionally specify irregular regions, and augmenting constraints to the
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generalized form can further specify holey regions.

5.3 Basic Form

An XML document tree could be split horizontally with fence and vertically with the

level, thus forming a grid. Our region axis is based on using a m× n grid to identify the

nodes in in a document tree T with n levels and m fences as illustrated in Fig. 5.2. The

fences are labeled consecutively from 1 to m starting from the leftmost leaf node based

on the fence labeling schema. We use id(v) to refer to the fence label of a leaf node v.

Each node v in T can be referred by a pair (i, ℓ) as discussed before, where i ∈ [1, m]

and ℓ ∈ [1, n]; and it means v is the ancestor of the leaf node w with id(w) = i, and

level(v) = ℓ. Note that the above definition is well defined only when level(w) ≥ ℓ. For

notational convenience, we assume that if level(w) < ℓ, then (i, ℓ) refers to a “virtual”

descendant node of w at level ℓ. Clearly, a node v in T could be referred in k different

ways if v is the ancestor of k distinct leaf nodes in T .

Given a node v identified by (i, ℓ), we use idmin(i, ℓ) or idmin(v) to denote the fence

label of the leftmost descendant leaf node of v, which is also the fence value of v; i.e.,

idmin(v) = idmin(i, ℓ) = min{id(v′) | v′ is a descendant leaf node of v}. Similarly, we use

idmax(i, ℓ) or idmax(v) to denote the fence label of the rightmost descendant leaf node of

v. We use idint(v) to denote the interval [idmin(v), idmax(v)].

Example 3.1 Consider again the data tree in Fig. 5.2, where for each node v, level(v) ∈

[1, 4] and id(v) ∈ [1, 13]. For the node marked c, we have idmin(c) = 5, idmax(c) = 6, and

idint(c) = [5, 6]. Thus, c can be referenced by (5, 3) or (6, 3). ¤ The
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region axis is defined w.r.t. to some context node, say c = (i, ℓ). The simplest form of

the region axis is given by R(i1, i2, ℓ1, ℓ2), where 1 ≤ i1 ≤ i2 ≤ m and 1 ≤ ℓ1 ≤ ℓ2 ≤ n.

This form enables regular regions to be concisely specified and is defined as follows:

R(i1, i2, ℓ1, ℓ2) = {v ∈ T | id(v) ∈ [i1, i2], level(v) ∈ [ℓ1, ℓ2]} (5.1)

Referring again to the example in Fig. 5.2, the hatched regular region can be specified as

R(1, 3, 2, 4). However, the basic form of the region axis is inadequate to specify irregular

regions as illustrated below.

Example 3.2 Consider the gray irregular region in Fig. 5.2. Observe that it is incorrect

to specify it with R(7, 13, 3, 4) because this specification includes two additional nodes,

(7, 3) and (8, 3), which are not in the gray region. ¤

5.4 Generalized Form

To increase the expressiveness of the region axis to handle irregular regions, instead of just

being integer values, both i1 and i2 in R(i1, i2, ℓ1, ℓ2) need to be generalized to be integer

expressions involving constants, variables, and functions. Specifically, w.r.t. a context

node c = (i, ℓ), each of i1 and i2 in R(i1, i2, ℓ1, ℓ2) must be of one of the following forms:

(1) an integer constant value, (2) the value i, (3) the value ℓ, (4) a level variable, denoted

by $L, that ranges over [ℓ1, ℓ2], or (5) an integer expression involving any combination

of integer constants, i, ℓ, and $L, with possibly addition and subtraction arithmetic

operators as well as the functions idmin(·, ·) and idmax(·, ·). For clarity, we use f1($L)

(resp., f2($L)) in place of i1 (resp., i2) when the first (resp., second) parameter in R(·) is

an integer expression that involves the variable $L. Therefore, R(f1($L), f2($L), ℓ1, ℓ2)

is defined as follows:

R(f1($L), f2($L), ℓ1, ℓ2) =

ℓ2⋃

$L=ℓ1

{(i′, $L) | i′ ∈ [f1($L), f2($L)]} (5.2)
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M(π, α)::τ ≡ π::* / α::τ

Axis Region axis π

α R(i1, i2, ℓ1, ℓ2) R(f1($L), f2($L), ℓ1, ℓ2)

prec R(1, idmin(i2, $L) − 1, 1, n) R(1, idmin(i′, $L) − 1, 1, n),

i′ = max
$L∈[ℓ1,ℓ2]

{idmin(f2($L), $L)}

foll R(idmax(i′, $L) + 1,m, 1, n), R(idmax(i′, $L) + 1,m, 1, n),

i′ = idmax(i1, ℓ2) i′ = min
$L∈[ℓ1,ℓ2]

{idmax(f2($L), $L)} − 1

par R(i1, i2, ℓ1 − 1, ℓ2 − 1) R(f1($L + 1), f2($L + 1), ℓ1 − 1, ℓ2 − 1)

anc R(i1, i2, 1, n − 1) R(f1($L + 1), f2($L + 1), 1, n − 1)

child R(idmin(i1, $L), idmax(i2, $L − 1), ℓ1 +

1, ℓ2 + 1)

R(f1($L − 1), idmax(f2($L − 1), $L −

1), ℓ1 + 1, ℓ2 + 1)

desc R(idmin(i1, ℓ2), idmax(i2, ℓ1)−1, ℓ1+1, n) R(f1($L − 1), f ′

2($L), ℓ1 + 1, n),

f ′

2($L) = max
ℓ∈[ℓ1+1,$L]

{f2(ℓ + 1)}

Table 5.1: Rewriting rules for region axis M(π, α)

5.4.1 Rewriting Rules

Given a region-axis step s1 = π::* and a navigational-axis step s2 = α::τ , we use M(π, α)

to denote a function to rewrite s1/s2 into a single region-axis step; i.e.,

M(π, α)::τ ≡ π::* / α::τ (5.3)

The rewriting rules of the function M(π, α)( π is a region axis, α ∈ {prec, foll, par, anc,

child, desc}) are defined Table 5.1. For clarity, Table 5.1 shows the rewritings for both

the basic as well as generalized form of the region axis π in the left and right columns,

respectively. We illustrate the application of the rewriting rules with the following

example.
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Example 4.1 Consider the WP-query foll::* / child::* w.r.t. the context node c in

Fig. 5.2 which selects the gray irregular region. We explain how this WP-query can be

rewritten into a single region-axis step using Table 5.1. Observe that the step foll::*

w.r.t. c = (6, 3) is equivalent to R(6, 6, 3, 3)::* / foll::*. This sequence is first rewritten

into R(idmax(6, $L) + 1, m, 1, n)::*. Finally, R(idmax(6, $L) + 1, m, 1, n)::* / child::* is

rewritten into R(idmax(6, $L − 1) + 1, idmax(13, $L − 1), 2, 4). ¤

However, note that the generalized form still can not capture holey regions as illus-

trated by the following example.

Example 4.2 Consider the black holey region in Fig. 5.2. Applying the rewriting rules in

Table 5.1 to rewrite par::* / desc::* / par::* w.r.t. context node c, we have par::* w.r.t.

c = R(6, 6, 2, 2); R(6, 6, 2, 2) / desc::* = R(4, 7, 3, 4); and finally, R(4, 7, 3, 4) / par::* =

R(4, 7, 2, 3). However, the specification of R(4, 7, 2, 3) for the black region is incorrect as

it includes the extra node (6, 3) corresponding to the “hole” between two selected nodes

at level 3. ¤

5.5 Generalized Form with Constraints

To further enhance the expressiveness of the region axis to specify holey regions, we

extend the region axis with additional constraints to enable specification of non-selected

nodes that fall between selected nodes at the same level.

Recall from Example 4.2 the generalized region axis is unable to exclude the “hole”

in the holey region in Fig. 5.2. One simple way to address this limitation is to augment

the specification with additional constraints; in particular, Example 4.2 can be fixed by
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adding a “height” constraint as follows:

{v ∈ R(4, 7, 2, 3) | ht(v) ≥ 1}

which states each selected node in the region R(4, 7, 2, 3) must have a height of at least

one.

More generally, we extend the region axis specification to RC(i1, i2, ℓ1, ℓ2), where C

denote a set of constraints. In other words,

RC(i1, i2, ℓ1, ℓ2) = {v ∈ R(i1, i2, ℓ1, ℓ2) | v satisfies C} (5.4)

For notational simplicity, we sometimes omit the four parameters in the region axis spec-

ification when they do not matter and simply refer to the region axis as RC . Furthermore,

any reference to v in C refers to a selected node in R.

Consider a WP-query q = s1/ · · · /sk. Note that C is initialized to empty at the

start of the rewriting of q; i.e., q ≡ R∅(i, i, l, l) /s1/ · · · /sk, where (i, l) represents a

context node. As the rewriting progresses, the first height constraint is added to C when

the first reverse-vertical-axis step is rewritten in q. More generally, consider the rewriting

of R∅::* / αi::τ , where α ∈ {par, anc} and i ≥ 0. We have

R∅::* / αi::τ ≡ R′
C ::τ (5.5)

where R′ = M(R, αi) and C = {ht(v) ≥ i}. Here, the constraint in C states that a

selected node in R′ must have a height of at least i.

Conceptually, the region axis RC now consists of two parts: the first part R defines

the region of the selected nodes, and the second part C specifies the additional constraints

that the selected nodes must satisfy. Therefore, we now also need to update C when

merging a region-axis step πC ::* with another axis step α::τ . Thus, the rewriting of
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πC ::* / α::τ into the single region-axis step π′
C′ ::τ consists of two modifications: (1)

the updating of the region axis from π to π′ which is handled by the function M(π, α)

defined in Table 5.1; and (2) the updating of the set of constraints from C to C ′ which

is handled by a new function U(πC , α). In other words, we have

πC ::* / α::τ ≡ π′
C′ where π′ = M(πC , α) and C ′ = U(πC , α) (5.6)

5.5.1 Height Constraint

As shown in the Example 4.2, height constraint is necessary to keep the region axis

expression correct. To facilitate the expression, we have introduced the Rk(v) for the

region axis. Assume v represents the node (i, l), R(v)=R(i, i, l, l) and Rk(v)=Rk(i, i, l +

k, l + k). With this notation,the query q2 = R(v(i, l)) :: ∗/par ::η2 , where l ≥ 1, is

equivalent to

{v
′

∈ R−1(v)::η2 | ht(v
′

) ≥ 1}

according to the semantic of the height constraint.

The height constraint is meant to make sure that each node selected must have

one descendant node. Except this simple case for height constraint, we need to specify

some constraints on the height of both the selected nodes as well as their ancestors.

Example 5.1 The query q3 = R(i, i, l, l) :: ∗/par :: ∗ /par :: ∗ /chi ::η3,where l ≥ 2, is

equivalent to

{v
′

∈ R−1(v)::η3 | ht(R−1(v
′

)) ≥ 2}

¤

Here, the constraint is specified on the parents of the selected nodes to make sure
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that each selected node must have a descendant node that is two level below. Note

that the constraint on R−1(v) is not equivalent to the following height constraint on v:

ht(v) > 1. Therefore, it is necessary to support the height constraints on the ancestors

of the selected nodes.

For a query with descendant axis, the height constraint becomes more complex and

general.

Example 5.2 The query q4 = {v ∈ R(i, j, l, h)::* | ht(v) ≥ h} / desc::η4 is equivalent to

{v
′

∈ R(i, j, l + 1,maxl)::η4 | ∃ r ∈ [l − ht(v
′

), h − ht(v
′

)], ht(R−r(v
′

)) ≥ h} (5.7)

¤

Note that there is a little difference between the height constraints for layer axis

and region axis. As an layer axis Ll represents some nodes that are l levels below the

context node. However, it shows that the current nodes are in l level of the document

tree for R(i, j, l, l). Both height constraints specify that each selected node v must have

some ancestor node u that is r level above v such that the height of w is at least h.

To formally express the height constraints, we have introduced the cexp to denote

the integer expression defined in terms of integer constraints as well as “+” and “-”. We

have used exp1 and exp2 as the integer expressions defined in terms of level(v) as well

as “+” and “-”. Then a height constraint φ on a selected node v can be specified as one

of the following two forms:

F1 ht(Rcexp) ≥ exp1;

F2 ∃ i ∈ I φ, where I = [exp1, exp2] is an range of consecutive integers, and φ is a height

constraint of the form (F1).
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Note that the above form of height constraint is the same as that for the layer axis

and the only difference is that of exp1 and exp2 as in the above example 5.2.

5.5.2 Horizontal Constraint

More generally, height constraints are not enough to keep the evaluation of region axes

correct for queries with horizontal axes.

Example 5.3 Let’s consider the simple query q5 = R(v(i, l)) :: ∗/par :: ∗/pre ::η2. Before

the evaluation of the preceding axis step , we have already produced one height constraint

C. Then in the final step evaluation, we would get the result as R(1, idmin(i, $L)−1, 1, n)

according to the rewriting rules in Table 5.1. However, the rewriting rules have left

constraints out, which is not correct and we need to add the constraint as:

{v ∈ R |∃v
′

, v
′

satisfies C; minId(v) < minId(v
′

)}

R represents the set of nodes selected by the XPath or the result set. ¤

Here, the new constraint specifies that any node in R must have one node that

satisfies the constraint C on its right side, which actually expresses the semantics of the

preceding axis step. We would call this kind of constraint as horizontal constraint (HC

for short).

More generally, the horizontal constraint has two kinds of forms which are separately

produced by preceding axis and following axis:

F3 {v ∈ R |∃v
′

, v
′

satisfies C; minId(v) < minId(v
′

)}

F4 {v ∈ R |∃v
′

, v
′

satisfies C; minId(v) > minId(v
′

)}
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R is the selected node set and C is the constraint before. Note that C could be any

form of F3 and F4 or height constraint F1 and F2.

As our notion of height constraints are similar to those introduced in [7], we have

introduced similar forms Rk(v) as the layer axis to facilitate the height constraint. Ac-

tually we have R(v)=R(i,i,l,l)and Rk(v) = R(i,i,l+k,l+k) for v is the node(i,l). Then the

query q2 = R(v(i,l))::*/par::η2 , where l ≥ 1, is equivalent to

{v ∈ R−1(v)::η2 | ht(v) ≥ 1}

according to the semantic of the height constraint. Similarly, the query q4 = {v ∈

R(i, j, l, h)::* | ht(v) ≥ h} / desc::η4. This query is equivalent to

{v
′

∈ R(i, j, l + 1,maxl)::η4 | ∃ r ∈ [δ(v, vc) − h, δ(v, vc) − l], ht(R−r(v
′

)) ≥ h} (5.8)

5.5.3 Update of Constraints

According to the update of the constraint Cupdate=U(πC , α), each constraint C
′

should

be composed of two parts represented as C
′

= Cupdate ∪ Cnew; where Cupdate denotes

the set of updated constraints in C
′

, and Cnew is the set of new constraints as defined by

the above rules. Note that the updating for region axes adopts the similar idea as that

for the layer axes. The updating of C to Cupdate is independent of the generation of any

new height constraint in Cnew. Moreover, each constraint in C is updated independently

of the other updates.

As we both have vertical axes and horizontal axes, there are four kinds of cases for

updating the constraints. To simplify the discussion, let us consider p = RC ::* / χ::η

1. C is height constraint and χ is one of the vertical axes. This case is similar as that

for the layer axes and would be discussed in the following.
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2. C is height constraint and χ is one of the horizontal axes. The updating for this

case would produce the HorizontalConstraint as shown in the example 5.3.

3. C is HorizontalConstraint and χ is one of the horizontal axes. This case is the

similarly as case 2 and produces HorizontalConstraint.

4. C is HorizontalConstraint and χ is one of the vertical axes. This case has two

different situations. If χ is child axis or descendant axis, then constraint S would

not be changed. If χ is parent axis or ancestor axes and assume the original

Horizontal Constrains C as {v ∈ R |∃t, minId(v) > t} , the updated constraint

would be as follows:

{v ∈ R |∃t, maxId(v) < t}

While if the C is {v ∈ R |∃t, minId(v) > t}, then even if χ is parent axis or ancestor

axes, the updating would not have any effect on the constraint C .

For case 1, we could generally adopt the updating rules presented in Table 5.2. While

there is a special kind of queries we need to pay special attention to. We find that if

the consecutive wildcard steps in the XPath have two or more “Up-Down” patterns, the

updating could becomes complex. If the “Up-Down” patterns are all formed of childand

paraxes, the updating is simple and we could adopt the rules in Table 5.2 for updating.

If the “Up-Down” patterns are composed only of ancanddescaxes, the updating is also

easy as shown in the following example.

Example 5.4 Considering the XPath “/anc::* /desc::* /anc::* /desc::*” and the con-

straint for the context of this XPath is “ht(v)>t”, then the constraint after evaluation

the whole XPath is simply updated as {ht(r) > (t + 1), r is the root}. ¤
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Note that the updated constraint is just specified for the root and there is no need

for us to check the selected nodes.

However, when the “Up-Down” patterns are composed of all of the four vertical axes,

the updating could be complex, especially in the case that there is a descendant axis in the

“Down” part of the pattern and there is no ancestor axis in the “Up” part of the pattern.

Example 5.5 Considering updating the height constraint for the XPath “par2::* /desc::*

/par3::* /desc::*” and assuming the constraint for the context is ht(v) > t, the height

constraint would be updated as {∃ r ∈ [l − ht(v
′

), h − ht(v
′

)], ht(R−r+3(v
′

)) ≥ t + 2.} (l

and h are the level range for nodes reached by the step par2::*). After the processing

of the last step “desc::*”, the height constraint is updated as {∃ r
′

∈ [l
′

− ht(v
′′

), h
′

−

ht(v
′′

)],∃ r ∈ [l − ht(R−r
′

(v
′′

)), h − ht(R−r
′

(v
′′

))], ht(R−r+3(R−r
′

(v
′′

))) ≥ t + 2.}. (l
′

and h
′

are the level range for nodes reached by the step par2::* /desc::* /par3::*). In

the height constraint,R−r
′

(v
′′

) would get a node v
′

in the height constraint before the

updating. ¤

Though the height constraint for the consecutive “Up-Down” patterns in the XPath

is complex as shown in the example, this kind of scenario seldom appears in real XPath

queries.

5.6 Rewriting Wildcard Queries

In this chapter, we present our approach to optimize wildcard queries by minimizing the

number of wildcard steps via query rewriting with the region axis. We first consider

rewriting to eliminate NB∗-steps, followed by rewriting to minimize B∗-steps.



CHAPTER 5. REGION AXIS 39

Updating Constraint R(i, j, l, h)(S)::* / χ::η ={v
′

∈ R
′

| v
′

satisfies Snew &Supdate }

Axis S={ht(R−kv(i, l)) ≥ t} S={∃ vx(ix, lx)∈ Rcon satisfies ix≤ d &

ht(R−k(vx)) ≥ t; minId(v)≤ ix }

prec ∃ v
′′

(i
′′

, l
′′

)∈ R(i,j,l,h), satisfies i
′′

≤ i &

ht(R−kv
′′

) ≥ t; minId(v
′

) ≤ i
′′

;

∃ vx(ix, lx)∈ Rcon satisfies ix≤ d &

ht(R−k(vx)) ≥ t; minId(v)≤ ix-1;(Rcon

is the context area in S)

foll ∃ v
′′

(i
′′

, l
′′

)∈R(i,j,l,h)(i′ = idmax(i, l))

satisfies i
′′

≥ i
′

&ht(R−k(v
′′

)) ≥ t;

minId(v
′

)≥ i
′′

;

∃ vx(ix, lx)∈ Rcon v
′′

(i
′′

, l
′′

)∈R(i,j,l,h),satisfies

ix≤ d & ht(R−k(vx))≥t; minId(v
′′

)≤ ix &

minId(v
′

)>minId(v
′′

);

par ht(R−kv
′

(i
′

, l
′

)) ≥ t+1; ∃ vx(ix, lx)∈ Rcon satisfies ix≤ d &

ht(R−k(vx)) ≥ t; minId(v)≤ ix ;

anc ∃ r ∈ [ht(v
′

) − h, ht(v
′

) − l],

ht(R−k(v
′

)) ≥ t + r;

∃ vx(ix, lx)∈ Rcon satisfies ix≤ d &

ht(R−k(vx)) ≥ t; minId(v)≤ ix ;

child ht(R−k−1v
′

(i
′

, l
′

)) ≥ t; ∃ vx(ix, lx)∈ Rcon satisfies ix≤ d &

ht(R−k(vx)) ≥ t; minId(v)≤ ix ;

desc ∃ r ∈ [l − ht(v
′

), h − ht(v
′

)],

ht(R−k−r(v
′

)) ≥ t;

∃ vx(ix, lx)∈ Rcon satisfies ix≤ d &

ht(R−k(vx)) ≥ t; minId(v)≤ ix ;

Table 5.2: Basic updating Rules

5.6.1 Eliminating NB∗-Steps

The rewriting algorithm (shown in Algorithm 2) is rather straightforward: it traverses

the query tree top-down and rewrites away any wildcard steps encountered by applying

the rewriting functions M(., .) and U(., .).
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Algorithm 2 Eliminate-NB∗-Steps (q)

Input: query q, where each step sj = αj ::τj

1: for (each step si visited by a top-down traversal of q) do

2: if (the parent-step sj of si is a NB∗-step) then

3: R′ = M(αj , αi)

4: C ′ = U(αj , αi)

5: replace si/sj in q with R′
C′ ::τi

6: return q

Example 6.1 Consider the query q4 in Fig. 5.3(d). The NB∗-step child::* in q4 be

rewritten using the region axis to the query q5 in Fig. 5.4(e), where the context node for

evaluating the NB∗-step is assumed to be (i, l). ¤

5.6.2 Minimizing B∗-Steps

In contrast to NB∗-steps, the elimination of B∗-steps is more complex and requires query

rewriting with additional type of constraints (to be discussed in Section 5.6.3). In this

section, we present a simpler and more efficient first approach to minimize B∗-steps in a

query. Although this approach might not completely eliminate all B∗-steps, its advantage

is that can be more efficiently implemented.

The rewriting algorithm (shown in Algorithm 3) tries to minimize the B∗-steps in

an input query by applying rewriting rules to convert B∗-steps to NB∗-steps.

We have identified seven rewriting rules (R1 to R7), each of which is represented

by a column in Table 5.3, to rewrite an input query q (shown in the top row) to an

equivalent transformed query q′ (shown in the bottom row) such that the B∗-step s in
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Algorithm 3 Minimize-B∗-Steps (q)

Input: query q

1: while (q can be transformed by some rule Ri from Table 5.3) do

2: apply rule Ri to rewrite q

3: return q

q (shown as a boxed node) is transformed into a step s′ in q′ (also shown as a boxed

node), where s′ has one fewer child-step than s. For simplicity, we use a triangle symbol

to denote a subtree of zero or more steps in a query.

For example, rule R1 rewrites q into q′ such that the B∗-step s = desc::* in q is

converted into the step s′ = child::* in q′. If s had only one child-step (i.e., the white

subtree is actually empty), then the rewriting has eliminated the B∗-step in q; otherwise,

q′ (with a reduced fan-out for its B∗-step) could be further transformed by applying other

rules.

Note that in rule R2, the function f(τ, τ ′) returns a wildcard if both τ and τ ′ are

wildcards; otherwise, if only τ is a wildcard, then τ ′ is returned (and vice-versa). If both

τ and τ ′ are distinct element names, then the query’s result is empty. Due to space

constraint, we omit the correctness proofs for the rewriting rules.

Example 6.2 Consider the query q1 in Fig. 5.3(a). The B∗-step child::* can be rewritten

away by applying rule R2 to obtain the equivalent query q2 in Fig. 5.3(b) which has only

NB∗-steps. ¤
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foll::*

child::*

par::A

desc::*

desc::C prec::D desc::E

desc::B

desc::F

foll::A

desc::*

desc::C prec::D desc::E

child::*

desc::B

desc::F

(a) q1 (b) q2

foll::A

desc::*

desc::C

anc::*

prec::D desc::E

child::*

desc::B

desc::F

foll::A

desc::*

desc::C

anc::*

prec::D

foll::*

desc::E

child::*

desc::B

desc::F

(c) q3 (d) q4

Figure 5.3: Example of query rewriting with composite axes

5.6.3 Eliminating B∗-Steps

In this section, we present an approach to completely eliminate B∗-steps by rewriting

using a new type of constraints called inclusion constraints. In contrast to Algorithm

Minimize-B∗-Steps discussed in the previous section, which only minimizes the number

of B∗-steps, the new approach can completely reduce all B∗-steps to NB∗-steps; however,

the tradeoff of this aggressive approach is that it incurs run-time overhead to enforce the

inclusion constraints. We first illustrate the key idea of this method with an example.
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foll::A

desc::*

desc::C

anc::*

prec::D

foll::*

desc::E

R(...)::B

desc::F

foll
t
::A

desct::*

descb::C

ancrb::*

prec
lb

::D

foll
t
::*

desc::E

Rt(...)::B

desc::F

(e) q5 (f) q6

Figure 5.4: Example of query rewriting with composite axes, where R(...) = R(idmin(i, l),

idmax(i, l) − 1, l + 1, n)

s: desc::*

s1: desc::τ

T

s: desc::*

s1: desc::τ

s′1: anc::*

T

(a) q (b) q′

Figure 5.5: Eliminating B∗-steps with inclusion constraints

Example 6.3 Consider the query q in Fig. 5.5(a) with a B∗-step labeled as s and one

of its child-step labeled as s1. Observe that the B∗-step s can not be removed by the

rewriting rules in Table 5.3. To convert step s into a NB∗-step, we can push the subtree

rooted at one of its child-steps, say T (as shown in Fig. 5.5(b)), to become part of the

subtree of another of its child-step (s1 in this example) through a new step s′1 = anc::*

(shown as a boxed node), where the axis of s′1 is the reverse of that of s1. This rewritten

query q′ is clearly a more general query than q. To preserve the equivalence of q′ and q,

we need to specify an inclusion constraint, denoted by s′1 ⊑ s (indicated in Fig. 5.5(b)

by a dashed arrow from s′1 to s), to ensure that each data node selected by s′1 is included
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in those selected by s. ¤

As the above example suggests, a B∗-step s with k child-steps s1, · · · , sk can be

“linearized” into a NB∗-step by sequentially pushing each child-step si into the subtree

of child-step si−1, i ∈ [2, k]. For each step si being pushed, a new widlcard-step s′i−1 is

added so that si−1 is the parent-step of s′i−1, and s′i−1 is in turn the parent-step of si.

Corresponding to each newly introduced wildcard-step s′i−1, a new inclusion constraint

given by s′i−1 ⊑ s′i−2 is also added1.

Thus, in general, each B∗-step s (with k child-steps) can be converted into a NB∗-

step by adding k − 1 new NB∗-steps together with their corresponding inclusion con-

straints. The newly added NB∗-steps can subsequently be rewritten away using Algo-

rithm Eliminate-NB∗-Steps; details of how this can be performed efficiently together

with inclusion constraint checking is discussed in Section 6. The overall algorithm is

given in Algorithm 4.

Example 6.4 Consider the query q2 in Fig. 5.3(b), where the B∗-step desc::* can not

be reduced to a NB∗-step using the previous approach. One approach to eliminate this

B∗-step is shown in Fig. 5.3(c) and Fig. 5.4(d). First, as shown in Fig. 5.3(c), a new

NB∗-step anc::* is added as child-step of desc::C (with an inclusion constraint indicated

by the dashed arrow from anc::* to desc::*); the other two child-steps of desc::* are

relocated to become child-steps of the new NB∗-step. The transformation from q2 to

q3 reduces the branching factor of the wildcard-step. Finally, as shown in Fig. 5.4(d),

a similar procedure is applied to rewrite q3 to q4 generating yet another NB∗-step and

inclusion constraint. Now q4 has only NB∗-steps. ¤

1Note that s′0 refers to the initial B∗-step s itself.
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Algorithm 4 Eliminate-B∗-Steps (q)

Input: query q

1: initialize the set of inclusion constraints I to be empty

2: for (each step si visited by a top-down traversal of q) do

3: if (si is a B∗-step) then

4: let L = {si,1, · · · si,k} be the child-steps of si

5: choose a step si,j ∈ L

6: let s′i,j be a new wildcard-step with axis equal to the reverse of the axis of si,j

7: insert s′i,j to become a child-step of si,j

8: for (each si,k ∈ L, si,k 6= si,j) do

9: relocate si,k to become a child-step of s′i,j

10: add a new constraint s′i,j ⊑ si into I

11: return (q,I)
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R1 R2 R3 R4

α::τ

desc::*

par::τ ′

α::τ

child::*

par::τ ′

α::τ

par::*

par::τ ′

α::τ

child::*

anc::τ ′

α::τ

descos::τ ′

child::*

α::f(τ, τ ′)

child::*

α::τ

par2::τ ′ par::*

α::τ

ancos::τ ′ child::*

R5 R6 R7

α::τ

par::*

anc::τ ′

α::τ

anc::*

par::τ ′ anc::τ ′′

α::*

child::τ

α::τ

anc2::τ ′ par::*

α::τ

anc::*

par::τ ′

ancos::τ ′′

α::*

child::τ

par::*

Table 5.3: Rewriting Rules to eliminate branching wildcard steps



Chapter 6

Rewriting with Composite Axes

In this chapter, we present the rewriting algorithm based on the composite axes: SNAs

and RAs. To efficiently implement the rewriting algorithm, we would introduce some

interesting implementation issues in the later section.

6.1 Rewriting Algorithm

Putting together all the four rewriting algorithms that we have introduced, Fig. 6.1 shows

the sequence of rewriting an input query q into q′.

The first step tries to convert as many of the B∗-steps in q as possible into NB∗-

steps by applying the simple rewriting rules in Table 5.3. If this step fails to completely

eliminate all the B∗-steps, the second step applies a more aggressive and complex rewrit-

ing method using inclusion constraints. After all the B∗-steps have been reduced to

NB∗-steps, we use the third step to optimize the evaluation of the remaining steps by

replacing them with more efficient, specialized axis steps when applicable. Finally the

47
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Step 1 Step 3 Step 4

q
Minimize

B∗-Steps

Specialize

Axis Steps

Eliminate

NB∗-Steps

q′

Eliminate

B∗-Steps

Step 2

Figure 6.1: Rewriting with composite axes

fourth step eliminates the NB∗-steps by merging with the non-wildcard steps in q. We

could apply the partial loading strategy when wildcard steps are removed.

Note that,B∗-steps are the most complex part of the query for the evaluation, there-

fore, our algorithm transfers B∗-steps into NB∗-steps to prepare for further optimiza-

tion. The transferring algorithm generally introduces lots of the inclusion constraints

for checking in the evaluation period, so Minimize-B∗-Steps is applied first to mini-

mize the inclusion constraints checking resulting from the following B∗-steps eliminating

algorithms by minimizing the B∗-steps first. After the first two steps, only NB∗-steps

are left. Our algorithm only specializes the non-wildcard axis steps, as all the wildcard

steps would be rewritten by the our final step. Note that we could better specialize axes

steps if we apply the axis specializing algorithm before wildcard steps are rewritten, as

we could generally exploit more usefully information to further optimize our specialized

axes. However, we could not make any specialization based on the region axis resulting

from rewriting the wildcard steps. As shown in the Example 1.2, we could specialize the

step “foll::a” as follt :: a according to the specializing algorithm. However, if we rewrite

the wildcard steps first, we would get the “foll::a/R(. . . )”, where we can not apply the
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Figure 6.2: Data structure for region axis

SNA for “foll::a”. Note that the specialized axis step would not affect the wildcard step

rewriting, as the specialized axis is for locating the nodes that we need to fetch for a step

in a certain region. This region is not affected by any specialized axis step.

The running example that we have been referring to in Figs. 5.3 and 5.4 show how a

query q1 can be transformed into q6. Clearly, each of these NB∗-steps can be eliminated

by composing with its child-step. However, note that the inclusion constraints associated

with these NB∗-steps still need to be checked at evaluation time.

6.2 Implementation Issues

In this section, we describe some of the interesting implementation details related to

query evaluation using the proposed composite axes.
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6.2.1 Checking of Inclusion Constraints

The main challenge in the evaluation of region axis is the run-time checking of inclusion

constraints (if they are present). This, however, can be efficiently handled by simply per-

forming “intersection” operations on the region specification expressions corresponding

to the wildcard steps without actually having to physically evaluate the wildcard steps

to identify the matching data nodes. For example, consider query q3 in Fig, 5.3(c), where

there is an inclusion constraint stating that anc:* ⊑ desc::*. Assume that there is a set of

context nodes S for evaluating desc::*. The checking of the inclusion constraint proceeds

as follows. Since there is an inclusion constraint involving step desc::*, we first “evalu-

ate” (at the rewriting level) step desc::* w.r.t. each context node (i, l) ∈ S by simply

deriving a region expression that corresponds to R(i, i, l, l) / desc::* thereby obtaining a

set E of region expressions, where |E| = |S|. Next, we evaluate the step desc::C w.r.t.

S by physically evaluating the region-axis expression corresponding to desc::* / desc::C

to obtain a set of output nodes S′, which will serve as context nodes for step anc::*.

At this point, since we need to check the inclusion constraint (which also involves step

anc::*), we again perform a rewriting-level evaluation, this time for anc::* w.r.t. each

of the context nodes in (i′, l′) ∈ S′ to obtain a region-axis expression that corresponds

to R(i′, i′, l′, l′) / anc::* thereby obtaining another set E′ of region expressions, where

|E′| = |S′|. With the two collections of region expressions E and E′, we can check the

containment constraint by taking each e′ ∈ E′ and checking if there exists some e ∈ E,

where the intersection of the two region expressions e and e′ are non-emtpy. If it is indeed

non-empty, the constraint is satisfied, and the qualifying region expression e ∩ e′ is used

later as a context node to evaluate the two child-steps prec::D and desc::E.

To summarize, the above inclusion constraint checking idea is efficient as it does
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not require physical evaluation of any wildcard steps; instead, wildcard steps are logi-

cally evaluated by deriving a region expression (w.r.t. each context node) which can be

efficiently achieved using the region-axis rewriting function.

6.2.2 Evaluating Region Axis

After eliminating the wildcard steps, the XPath would be rewritten with the form of

region axis. Therefore, it is critical to efficiently evaluate the region axis. As the XPath

query evaluation is based on main-memory representation of the XML document tree,

we have formed a new crossed link structure as well as the tree structure in the one SAX

based pass of the document tree as shown in Figure 6.2. For each node, it has the link

to its parent and child vertically, if present, as shown with solid lines in Figure 6.2. At

the same time, each node links to the first node on its left and right, if present, within

the same level, as shown with horizontal dashed line. Thus the whole tree becomes a

cross linked structure. To facilitate the evaluation, all the leaf nodes are indexed with

a simple array. Take the evaluation of the basic region axis form R(4, 7, 3, 4) in Fig

6.2 for example, we would use the array index to locate the start position at the node

n(4, 4) and end position at the node n(7, 4) with O(1) complexity. Then, we could go

up from the n(4, 4) and n(7, 4) separately along the vertical links to reach levels range

[3,4] in the region with O(lg(h))( h is the height of the tree). In this example, we have

already started from the level 4. Therefore, the nodes in level 4 between the node n(4, 4)

and the node n(7, 4) would be returned according to the horizontal links. Similarly, the

region part( the nodes) in level 3 could also be returned. Even for the general form of

region axis, the complexity for locating the region is O(h× lg(h)) complexity. Clearly, it

is known that the height of XML document tree is generally low.
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6.2.3 Optimized Partial Data Loading

One of the advantages of eliminating wildcard steps in a query is that it enables an efficient

query evaluation strategy that can selectively load only a portion of the data nodes into

main memory based on the set of element labels that actually appear in the input query.

This can alleviate the scalability problem faced by XPath query evaluators that uses a

main-memory representation of the input XML data (e.g., DOM-based implementations).

We refer to the conventional approach of loading the entire document into main-memory

for evaluation as the complete loading approach and refer to the alternative, more efficient

approach (that is feasible for wildcard-free queries) as the partial loading approach. To

evaluate our region axis, we can not just load the nodes that have the labels in the query,

which could result in some ambiguous problems.

Example 2.1 Assume the black nodes in the Figure 6.2 have the tag a appearing in

the query q, and assume one context for the “desc :: a” in the q is “R(4, 9, 2, 4) :: ∗”,

when apply the evaluation of the step “desc :: a” with the context according to rules in

Table5.1, we need the information of the node n(9, 2) to determine the new region for

search nodes with tag a. Clearly, we have no information of n(9, 2) without loading it

into the memory. ¤

Actually, what we need to load into memory includes two parts: all the nodes with

the tags appearing in the query and all the nodes that are ancestors of some nodes loaded

into the memory. As shown in the Figure 6.2, all the black nodes are necessary to load

and we also need to load the grey nodes into the memory. It is obvious that still lots

of nodes would not be loaded into the memory compared with the completely loading

strategy.
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However, in the following case, we can not apply our partial loading strategy: when

there is height constraint C in the XPath followed by some horizontal axes. This is be-

cause that we need some node n that satisfying the C to produce the new horizontal

constraint, however, it is rather possible n does not have the tag appearing in the query,

in which case, the query evaluation would not be exact correct without loading all the

nodes into the memory.

Example 2.2 In the evaluation of the XPath “desc::a /par::* /anc::* /chi::* /foll::*/prec::b”,

we would need a height constraint “C” before the “foll::*” step. However, according to

the height constraint updating rules for the horizontal axes, we need to get some node

“n” that satisfies “C”, which node may be not “a” or “b”. In this case, the partial loading

strategy would result in the problem of finding “n”. ¤

Therefore, in the implementation, we need to make a simple check whether the

height constraint (if any) would appear before the horizontal constraint, in which case

we would not apply the partial loading strategy. Note that, this check is conducted in

the procedure for rewriting the XPath query. In the query rewriting, whenever we find

horizontal axes appearing in the query, we would check if there is some height constraint

C produced before this horizontal axis.

6.2.4 Implementing the SNA

To process the SNA, we have built an additional structure that links the nodes with the

same tag according to the document order. That link contains two part: each node links

to its first descendant node with the same tag (descendant − link) as the gray dotted

curves shown in figure 6.2 and each node links to its first following node with the same

tag (following− link), as the dark dashed curves shown in Figure 6.2. Note that, all the
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dark nodes in Figure 6.2 have the same tag. For example, each node with the tag name

“a” are linked with its descendent that has the tag name “a” and also has link to its first

following node with tag “a”. Note that this structure could be efficiently implemented

in the one pass of the document.

With the linked structure, we could efficiently evaluate the specialized axes steps.

To evaluate the αrb, we need to search along the “following − link” for the first node

with tag “α” that is covered by the desired region axis. Then we need to check whether

the current node has some descendant node with the same tag in this region along the

“descendant − link”. This step would cost lg(n) assuming the link for “α” contains

n nodes. Similarly we could evaluate the αlb. It is a little more complex to evaluate

the αt and αb, however, the basic idea is the similar, search for the nodes in the region

covered by the axis along the following − link and then check its descendant along the

descendant− link and fetch all the nodes that satisfy the requirement of the specialized

axis step.

Example 2.3 In Figure 6.2, assume the region is R(4, 9, 2, 4) and the black nodes have the

desired tag name α. Then the αrb returns n(4, 3); αlb returns n(9, 3); αb returns {n(7, 3),

n(4, 3), n(9, 3)} and αt returns {n(7, 3), n(4, 2), n(9, 3)} according to their definitions.

¤



Chapter 7

Performance Study

To verify the effectiveness of our proposed rewriting optimizations, we conducted an

experimental performance study using the XMark benchmark data [30]. Our results

indicate that our proposed optimizations achieve a significant performance improvement

over traditional evaluation methods for XPath queries.

7.1 Experimental Setup

Data Sets: We used the XMark benchmark data [30] for our experiments and generated

four data files of size 70MB, 110MB, 165MB, 240MB, and 300MB. The number of element

nodes contained in these files are, respectively, about 1.1 million, 1.7 million, 2.4 million,

3.6 million and 4.8 million.

Queries: We generated XPath queries using the XMark benchmark schema by varying

the following parameters: the number of linear wildcard steps, the number of branching

wildcard steps and non-wildcard branching steps.

55



CHAPTER 7. Performance Study 56

Experiment 1. To investigate the effect of the number of consecutive NB*-steps

(denoted by nwc) in the linear XPath query, we have used the XPath query Q1: “desc::site

/desc::*(1) /prec::*(2) foll::*(3)/desc::personref”; for nwc = k, k ∈ [0, 3], and we added

the NB*-steps gradually according to the order shown in the bracket. For example, the

query for nwc = 1 is “desc::site/desc::* /desc::personref”. Note that there would be no

height constraint in the evaluation of Q1.

Experiment 2. To examine the effect of the height constraint for the query eval-

uation with the region axis, we have used another query Q2: “desc::site/desc::* /foll::*

/anc::*/desc::personref”. Q2 is similar as Q1 except using different axes steps, which

introduce the height constraint in rewriting XPath queries with region axes.

Experiment 3. In this experiment, we have examined the effect of the number

of the branching non-wildcard steps (denoted by nb). We gradually produce the experi-

ment queries from Q3: “desc::personref/prec::* /chi::* /foll::person [pre::item/desc::mail]

/anc::site” by varying nb; for nb = 0, the query is formed from Q3 by eliminating all its

predicate steps, and for nb > 0, nb copies of Q3 are concatenated to form the query.

Experiment 4. As we know that RA only works for optimizing the wildcard steps

in the XPath, while SNA could be applied to the general axes steps. To clearly show the

effect of the SNA for the evaluation of XPath queries especially for the non-wildcard steps,

we have examined the evaluation performance of the query Q4, which is a modification

of Q3 to have more non-wildcard axes steps and complex non-wildcard branching steps

rather than wildcard steps: “desc::personref/prec::* /pre::item/prec::time /foll::person

[desc::email] [foll::closed auction /desc::price] /anc::site” by varying the nb. With the

first query resulting from Q4 as “desc::personref/prec::* /foll::person” having nb = 0, for

nb > 0, nb copies of Q4 are concatenated to form the query.
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Experiment 5. We examine the effect of the number of B*-steps (denoted by

nbwc) in experiment 5 with the query Q5: “desc::personref /foll::* /prec::people /chi::*

[chi::gender] [foll::city][prec::item] /anc::site”. Q5 is similar to Q3 except that the wild-

card steps in Q5 are B*-step and there is no B*-step in Q3. We generate other experiment

queries with Q5 according to the following approach: for nbwc = 0, the query is formed

from Q5 by eliminating all its predicate steps, and for nbwc > 0, k copies of Q5 are

concatenated to form the query.

Experiment 6. To examine the scalability of our approaches, we have evaluated

a simple query Q6 “desc::site /desc::* /desc::keyword” with the data of varied size from

70MB to 300MB. The results are shown in experiment 6.

Algorithms. We compared the various proposed methods Lα
β , where L ∈ {P, F} indi-

cates whether partial loading (P ) or full loading (F ) is being used; α indicates whether

SNAs are being used (α = sna if SNAs are used; otherwise, α is empty); and β indicates

whether RAs and rewriting optimized are being used (β = ra if only RAs are used,

β = rw if only rewriting is used, β = ra + rw if both rewriting and RAs are used, or

β is empty, otherwise).Note that if L = P , then β must contain ra. The conventional

evaluation, which is denoted by F . is implemented based on MinContext in [12].

The performance metric used is the response time which comprises of two com-

ponents: the document parsing time as well as the evaluation time. The parsing time

includes the time to parse and load the data into main memory (either partially or fully).

The evaluation time refers to the actual time required to evaluate the input query using

the loaded data.

Our experiments were conducted on a 2.6 GHz Intel Pentium IV machine with 1
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Figure 7.1: Varying nwc

GB of main memory running Windows XP; and all algorithms were implemented using

Java.

7.2 Experimental Results

Experiment 1. Fig. 7.1 compares the performance as nwc is varied. For the two methods

that used RAs to eliminate wildcard steps (i.e., P sna
ra and Fra), their performance is

independent of nwc demonstrating the effectiveness of rewriting away wildcard steps,

with P sna
ra giving the best performance. Comparing P sna

ra and Fra, Fra improves over F

(the conventional approach) by a factor of up to 1.9, while P sna
ra improves over F even

more by a factor of up to 3.0. The main reason for the improvement of P sna
ra is due to

partial data loading. The parsing time turns out to be the dominant component of the

total evaluation cost for both P sna
ra and Fra, the partition in the total response time keeps

nearly constraint with increasing the consecutive wildcard steps. This is due to the effect

of the our approach in rewriting the XPath. While for F , the parsing time is about 90%
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Figure 7.2: Varying nwc

of the total cost when Nnc = 0 and it reduces to about 40% for experiment when Nnc = 3

due to the higher querying cost for queries with wildcard steps. The use of SNAs for this

simple query turns out to be not too significant; in fact, we observed similar performance

for both P sna
ra and Pra (not shown on the graph). Comparing the performance of Fra

and F sna, the results indicate using RAs is more effective than SNAs since the savings

from eliminating wildcard steps are relatively more significant. Note that the B*-step

minimization step S1 was not applied here since query Q1 does not have any branching

wildcard steps.

In experiment 1, we have checked the memory cost for the F and P . The Fra in the

evaluation of Q1 loads around 0.08M nodes into the memory and the total memory cost

is about 52MB, while the Pra loads about 1.1M nodes into the memory and it takes about

160MB of total memory size. Therefore, the partially loading strategy could dramatically

reduce the number of nodes loaded into the memory, thus reducing the total memory

cost for the query evaluation.



CHAPTER 7. Performance Study 60

Experiment 2. The evaluation performance of Q2 is shown in Fig. 7.2. Note that,

the evaluation time cost for Q2 has the similar trend as that for Q1, which tells that the

height constraint in the evaluation of Q2 has not affected much of the total performance

of the evaluation.

 0

 10

 20

 30

 40

 50

 60

 70

 80

3210

R
es

po
ns

e 
tim

e 
(s

ec
)

nb

F
Fsna

Pra
Fra

Psna
ra

Figure 7.3: Varying nb

Experiment 3. Fig. 7.3 compares the performance as nb is varied. Similar to the

results in Fig. 7.1, the methods that uses RAs performed better than those that do not,

with P sna
ra giving the best performance. Again here, the conventional approach F has

the worst performance with a response time of about 120s when nb = 3 (not shown on

the graph).

Experiment 4. In this experiment, we emphasize on examining the efficiency

of SNA for the non-wildcard steps in the XPath. Clearly, F sna achieves much better

performance than the Fra and Pra for the queries with fewer wildcard steps as for Q4 in

Fig. 7.4. However, considering query evaluation performance for Q3 in Fig. 7.3 , which

has many wildcard steps and fewer non-wildcard steps, Fra and Pra work better than

the F sna does. Note that in in Fig. 7.4, the query for step 0 has fewer non-wildcard
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Figure 7.5: Varying number of branching wildcard-steps

step which enables Fra and Pra achieve better performance than F sna. Therefore, we

could conclude that using Fra or Pra for XPath queries with more wildcard steps achieves

better performance and could beat F sna, while on the other hand, Fra or Pra will not

show good performance for XPath queries with fewer wildcard steps, for which cases

F sna achieves better performance. Since both the SNAs and RAs could benefit XPath

query evaluations, we combine these two composite axes into the P sna
ra , which has shown
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the best performance in both Fig. 7.3 and Fig. 7.4.
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Experiment 5. Fig. 7.5 compares the performance when nbwc is varied. Again

here, we see that P sna
ra outperforms F significantly. Since Q5 has B*-steps, the rewriting

optimization (step S1) to minimize B*-steps becomes applicable. Comparing P sna
ra with

P sna
ra+rw, we observe that the additional use of step S1 (i.e., P sna

ra+rw) improves P sna
ra slightly.

This is due to the fact that for P sna
ra , the loading time is the dominant component of the

response time.

Experiment 6. Finally, Fig. 7.6 compares the cost of evaluating the linear query

Q6 (with a single NB*-step) as the data size varies. Observe that the performance

gap between P sna
ra and F widens with increasing data size. For the largest data file,

the response time for F is actually 243s (not shown on the graph). The results also

demonstrate that P sna
ra is scalabile compared to F . Similar to the case for query Q1 (in

Fig. 7.1), the performance of P sna
ra is actually similar to Pra (not shown on the graph) as

the effectiveness of SNAs is limited for the simple query.
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Conclusions

In this thesis, we have presented a novel approach to optimize the evaluation of XPath

queries by rewriting an XPath query using a set of composite axes: specialized naviga-

tional axis(SNA) and region axis(RA). Using the composite axes can not only reduce the

number of query steps, but they are also more amenable to efficient implementations.

Each SNA is essentially a composition of a traditional navigational axis with a

pruning operator into a single axis. This integrated axis can be evaluated much more

efficiently than sequentially evaluating each of the composed steps. This optimization

is particularly effective for “far-reaching” axis steps that evaluates to a large data area

and/or involving wildcard nodetest. With the help of SNA, much fewer elements of the

XML document would be accessed in the evaluation of the XPath queries. From another

perspective, SNA applies the pruning optimizations ahead of the real evaluation of the

axis step.

We have proposed the fence labeling scheme for tree structure XML document to

be split horizontally. Based on the fence and level, each XML tree could form a grid.
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Therefore, region axis is proposed on the base of grid to enable wildcard steps in a query

to be eliminated, which results in very efficient query evaluation. For the region axis, we

have presented the basic forms and general forms to express a region in the XML tree

structure. We have also designed our algorithms to rewrite XPath queries using region

axes. To keep the XPath rewriting maintain the equivalence, constraints are introduced

to combine with the region axes and a set of constraint updating rules are also provided.

With the composite axes SNA and RA, XPath query rewriting approach is designed,

in which both the SNA and RA are fully exploited according to the property of XPath

queries. The effectiveness of all these optimizations and composite axes for the XPath

rewriting are demonstrated by our experimental results.

Our current work in this thesis still can not handle all the axes in the XPath, such as

sibling-related axes, which could generally break the region. For example, it is difficult to

use one regular region to express the result area represented by the XPath “desc::*/foll-

sibling::*”. As part of our future work, we intend to further explore the query rewriting

with composite axes for a larger fragment of XPath that includes sibling-related axes.

We are expecting to combine more complex constraints with the region axis to eliminate

the sibling-related axes using the rewriting techniques.
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