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Summary 

This thesis describes a project to develop a virtual environment for simulating the 

grasping and inserting of a micro-needle using a Virtual Reality (VR) based training 

system.  The project is part of the development of a Virtual Reality (VR) based training 

system for microsurgery in collaboration with the National University Hospital (NUH).  

While a realistic environment is important for any virtual learning, a complex task such 

as microsurgery can be better taught by decomposing it into several simple dexterity 

primitives. And these primitives are designed based on identified features which are 

significant to the given task.  In particular, the ability to properly grasp a suturing 

needle is identified as an important skill/subtask in microsurgery. A suturing needle is a 

tiny curved needle used to suture blood vessels and tissues in microsurgery. It is easily 

deformable because of its minute size. In addition, the curvature inherent to a suturing 

needle further increases the complexity when grasping with a needleholder. Hence, 

significant skill is required to grasp a suturing needle without deforming or breaking it. 

Also, as the workspace for any microsurgerical operation is restricted, the surgeons are 

usually required to suture at a variety of orientations. And when suturing at an unnatural 

angle, the surgeons are required to be able identify a suitable grasping orientation and 

position, and to perform a proper grasp before inserting the micro-needle.   

In this project, a physics engine to simulate a virtual environment of the microsurgery is 

developed and a set of teaching modules is implemented to train the suturing subtask of 

grasping and inserting of a micro-needle.  In addition, a haptic needleholder is 

fabricated and used by the user to manipulate the micro-needle and suture in the virtual 

environment. Computationally efficient and realistic models of the needle, needleholder 
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and the suture/thread are developed and implemented in a series of tutorials to train 

grasping and insertion of the virtual needle in the virtual environment. In addition, a 

library of APIs which permit rapid generation of custom modules is developed.  These 

APIs are able to generate the various customized virtual objects and co-ordinate their 

interactions with the needleholder.  

The haptic needleholder is modified from an actual needleholder and integrated with the 

Phantomtm haptic device.  The main modification done to the needleholder-stylus is the 

integration of a displacement sensor to provide sensory information on the state of the 

jaws of the needleholder and an estimate of the pressure applied on the grasped object.  

This haptic needleholder is used as an interface to the VR system. 

The final setup together with the training modules developed using the library is tested 

on some subjects. Preliminary observations and results obtained show that extremely 

curved needles are harder to grasp and manipulate, but with more practice on the VR 

system, the difficulties arising from the differences between needles decrease.  
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1 Introduction 

1.1 Microsurgery 

Microsurgery is a form of surgery performed on minute body structures or cells with the 

aid of a microscope and other specialized instruments, such as a micromanipulator [1].  It is 

one of the leading medical practices and is used in vascular and neurosurgery, in 

traumatology, eye surgery and other branches of medicine where microscopes are used. In 

particular, microsurgery is used extensively for complex reconstruction of limbs in trauma, 

tumor resection, bone and joints, nerve, blood vessels, and for birth deformities. 

An operating microscope, fine instruments, micro-suture and intensive trainings are 

required in order to perform precision acts required in a microsurgery. A typical 

microsurgery for hand reconstruction (example, trauma due to industrial accidents) 

involves trimming of severed blood vessels with typical diameter of 1mm and rejoining or 

modifying them to re-establish blood flow that is required for healing. The entire operation 

is usually done under the microscope with a magnification of x10 ~ x20. 

Operating under magnification is a unique experience as the surgeon has to rely on purely 

visual cues in an entirely different environment. This can lead to mistakes and also requires 

a significant amount of training before the surgeon can perform any act with any precision. 

In this environment, tremors are greatly amplified and any mistakes will prove especially 

grave, as the tissues under operation are especially small and fragile. Hence, it is very 
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important that techniques are developed to minimize the tremor and for training to be 

conducted to accustom the surgeons to the unique conditions in microsurgery. 

There are numerous factors which contribute to a good suture in microsurgery, one of 

which is the correct grasping of the micro-needle. The micro-needle is easily deformed; 

hence it is important that excessive force is not used when grasping the micro-needle. 

Moreover, it is important that the micro-needle is grasped at a proper orientation and on a 

specific region. This is because both the grasp orientation and region will greatly influence 

the ability to perform a proper suturing motion. 

 

1.2 Motivation 

1.2.1 Training of Microsurgery 

The current training system for microsurgery generally involves a combination of practical 

observation of actual microsurgery by experienced practitioners, educational videos on 

proper techniques and postures, and actual practices on lab rats and medical cadavers. 

There are several problems with the current system. It is difficult for the students to 

properly observe any surgery as the viewing ports are still constrained by the available 

workspace for the operation. There may be numerous cases where the hand or instrument 

of the surgeon will block the view port of the camera whereas in a virtual environment, 

only the tips of a forceps or needleholder are rendered while non-essential objects such as 

the surgeon’s hand and the main body of the forceps or needleholder are filtered out.  
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Another problem is that preparation of a microsurgery practical requires significant amount 

of setup, which include booking of the surgical room, and pre-preparation of the surgical 

instruments. However with a virtual reality system, the training can be conducted with 

minimal preparations such as powering up the workstation and initializing the software. 

Considerable expenses are also required for even a basic microsurgery course. This is 

mainly because expensive consumables, like micro-needles, micro-sutures, lab rats are used 

in every single lesson. Moreover, obtaining medical cadavers for practice is relatively 

expensive and difficult. A typical basic microsurgery course lasts 40 hours and cost 

US$1500 [3]. On the other hand, a virtual reality system does not have any consumables 

other than electricity. Hence, the only expenses for virtual reality training are the initial 

setup cost and general maintenance. 

1.2.2 Training Grasping and Inserting of Micro-needle 

The main motivation of the entire project is to develop a more effective complementary or 

alternative training system for microsurgery. And the project described in this thesis is a 

part of the bigger project as mentioned above.  

As described previously, the main task in microsurgery is to rejoin severed blood vessels 

which require the use of micro-manipulators, micro-suture and micro-needles. And one of 

the important prerequisites in good suturing is a proper grasping of the micro-needle with 

the needleholder. Thus the motivations of this project are to develop a system to train the 

student in recognizing and performing the correct grasping of a micro-needle.  
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1.3 Decomposition of a Complex Microsurgical Task 

In order to develop a cost effective and feasible training system, the key micro-

manipulation tasks required in microsurgery were identified and broken down into several 

unique dexterity primitives [4,5,10,28]. The project described in this thesis is to develop the 

dexterity primitive to train grasping and inserting of a micro-needle. This approach is vastly 

different from established methodology employed by most groups [6,7].   

1.3.1 Complex Microsurgical Task 

A microsurgical task typically involves suturing of a severed blood vessel with diameter of 

1 mm. The microsurgeon will first grasp the micro-needle with the needleholder. Next, he 

will insert the micro-needle into specific locations on the soft tissues. And finally, he will 

tie off the suture using the forceps and the needleholder. The entire task is done under a 

microscope. 

The complex suturing task was broken into various dexterity primitives because studies 

suggest [8] that humans may form internal models of these primitives, in which these 

primitive can then be combined to perform more complex tasks. It is generally easier and 

faster to learn simple primitives before actually performing complicated tasks, and is being 

used in numerous teaching methodologies. A good example would be typing, where the 

students are required to practice typing individual sets of seemingly nonsensical letters 

before practicing typing out complete sentences. 
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Hence as shown in Figure 1.3-1, three main subtasks had been identified from this complex 

suturing procedure. They are namely,  

• Grasping and Inserting of the micro-needle 

• Precision Manipulation of the micro-instruments 

• Loop formation and knot tying of micro-suture 

 

Figure 1.3-1 Breakdown of complex microsurgical task into dexterity primitives [4] 

1.3.2 Grasping and Inserting of the micro-needle 

Thus far, an analytical collision detection between a needle and a tube, together with a 

multi-scaled mesh had been developed by Wang [4,5]. The needle-tube collision is required 

to train the curved motion required in suturing with the micro-needle, while the multi-
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scaled mesh improves the efficiency of the general tissue-needle collision required in the 

trainer. This project complements what Wang had done so far by developing the dynamic 

behaviors of the micro-needle, which is required to simulate the grasping of the micro-

needle; in what Wang had done thus far, the micro-needle was always assumed to be 

grasped initially. 

1.3.3 Precision Manipulation of the Micro-instruments 

As the surgery was done under microscope, tremor and a precise manipulation of the 

micro-instruments play a significant part in a good suture. Several simple dexterity 

primitives like manipulating a ring around a hoop had been developed previously.  

1.3.4 Loop formation and knot tying of micro-suture 

Loop formation and knot tying of the suture is another important aspect of microsurgery. 

Significant works had been done by Ankur Dhanik to model a realistic behavior of a micro-

suture [28]. 

 

1.4 Grasping and Inserting in Microsurgery 

The main objective in this project is to develop a training system to teach grasping and 

inserting of the micro-needle. Hence it is necessary to understand the correct technique in 

grasping and inserting the micro-needle. 
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1.4.1 Anatomy of a Micro-Needle 

 

Figure 1.4-1 Photograph of a suturing micro-needle 

As shown in Figure 1.4-1, a suturing micro-needle can be broken down into 3 main parts, 

the point, the body, and the swage. The point of a needle consists of the portion from the tip 

of the needle to the maximum cross-section of the body.  The body of the needle consists 

of the majority of the needle. It is important for interaction with the needle holder and the 

ability to transmit the penetrating force to the point. The needle factors affecting this 

interaction include needle diameter and radius, body geometry, and stainless steel alloy. 

These components determine the needle-bending moment, ultimate moment, surgical-

yield moment, and needle ductility. The swage is the continuation of the needle onto the 

suture, as in the needle and suture is one continuous entity [14]. The typical shape of a 

needle can be from ¼ ~ 5/8 of a full arc. 

Swage 

Point 

Body 

1 mm 



 8 

1.4.2 Grasping Procedure 

A typical method to grasp the needle is to grasp it at the distal portion of the body, one half 

to three quarters of the distance from the tip of the needle, depending on the surgeon's 

preference. Grasping of the needle at its proximal or distal extremities is avoided in order to 

prevent damage to the suture. The needle should be held vertically and longitudinally 

perpendicular to the needle holder. The pressure applied should be sufficiently firm that the 

needle do not slip during insertion, but not overly excessive such that straightening or 

deformation of the needle occurs [13]. The ideal pressure would be a light but firm contact 

with the needle throughout the suturing process.  

The grasping of the needle at an incorrect position and/or pressure could potentially 

damage the needle, making it unusable (and thus increasing the overall operation time). 

The grasping of the needle at an incorrect position and/or orientation on the other hand will 

result in difficulties when maneuvering to a proper insertion position. 

The procedure to a good grasping of a micro-needle can be summarized as follow: 

• Identify the proper grasping location on the needle 

• Approach at a proper orientation such that the needle is vertically and longitudinally 

perpendicular to the needle holder 

• Grasp the needle with the minimal pressure required to prevent slippage during 

insertion  
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1.4.3 Inserting Procedure 

The needle should always penetrate the tissue at a 90° angle, which minimizes the size of 

the entry wound and promotes eversion of the tissue edges. The needle should be inserted 

1-3 mm from the wound edge, depending on tissue thickness. The depth and angle of the 

suture depends on the particular suturing technique. In general, the 2 sides of the suture 

should become mirror images, and the needle should also exit the tissue perpendicular to 

its surface [13].  

The procedure to a good insertion of a micro-needle can be summarized as follow: 

• Identify suitable insertion locations on the tissue 

• Position the needle such that it will penetrate the tissue at 90° angle 

• Insert the needle in a curvilinear motion such that the needle body in contact with 

the tissue is always perpendicular 

• Release the needle when it is firmly attached to the tissue, and when further 

insertion is difficult 

• Grasp the needle on the other side of the tissue and continue the insertion with a 

curvilinear pulling motion where the needle would exit the tissue perpendicularly 
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1.5 Methodology 

A Virtual Reality (VR) based system was selected as the alternative/complementary 

medium to train microsurgery. The various techniques required in microsurgery were 

broken down into simpler dexterity primitives, which are then taught separately in a virtual 

environment. In order to improve learning, a Phantomtm Desktop in a Reachin setup was 

selected as the template for the training system. The Reachin setup imitates an actual 

microsurgical setup relatively closely, and the Phantomtm Desktop is used as a spatial input 

device for system. The Phantomtm Desktop is a haptic device capable of detecting 6 DoF 

movement and producing 3 DoF haptic cues, which can be used to generate pseudo-realism 

environment to influence learning [9,10,11]. A surgical needleholder was modified with a 

displacement sensor and integrated with the Phantomtm Desktop to provide addition inputs, 

such as jaws position and pressure of the needleholder. The needleholder is one of the 

major instruments used in microsurgery, to grasp and manipulate various microsurgical 

objects such as micro-needles and micro-sutures.  

In this project, other than developing a device driver for the DVRT displacement senor, 

various algorithms were investigated to simulate the virtual dynamics of various 

microsurgical objects. Collision detection was identified to be a bottleneck for 

computational time. Hence optimization techniques were investigated to improve detection 

efficiency. These algorithms and techniques were then implemented into a physics engine 

in a form of a C++ static library. The static library comprises of a lists of APIs which can 

be used to quickly develop customized virtual environments for microsurgical training. The 

library is able to generate and co-ordinate the interactions between the computationally 
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efficient and realistic models of the needle, needleholder and the suture/thread. A series of 

customized modules was developed using the static library.  These tutorial modules were 

designed to train the students in the dexterity primitive of grasping and inserting a micro-

needle. A combination of visual and haptic cues was also used in the simulator to improve 

the effectiveness of the training system. In addition, stereoscopic graphics were also 

implemented for the system [21]. The developed training modules were able collected 

several key data such that performance reviews can be done after a training session. A trial 

run was conducted with the developed system to test the functionality of the software. 

 

1.6 Contributions 

In this project, the following objectives have been achieved, 

• A physics engine, in a form of a C++ static library, to simulate and generate virtual 

environments for microsurgery has been developed. 

• A series of tutorial modules to train the subtask of grasping and inserting a micro-

needle has been developed using the above mentioned static library. 

• A fixture to integrate the needleholder, DVRT, and Phantomtm Desktop, has been 

fabricated. 

• A driver for DVRT to communicate with the physics engine has been developed. 

• A trial run to verify the functionality of the system has been conducted.   
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1.7 Organization 

The organization of the thesis is as follows:  

In Chapter 1, a brief introduction to microsurgery, and the motivation and methodology of 

the project were presented. Related sub-projects were also briefly described. 

In Chapter 2, an overview on the VR-based system and its physical setup were described.  

In Chapter 3, the development of a modified needleholder for the VR-based trainer was 

described. 

In Chapter 4, the various collision detection algorithms and virtual dynamics used in the 

physics API library were described. 

In Chapter 5, the implementation of the various algorithms into a physics API library was 

described. 

In Chapter 6, the performance of the physics library was presented. In addition, the various 

modules developed for training grasping and inserting were described. The key factors for 

performance evaluation of the students were also described and a trial run was conducted 

with the training software. 

In Chapter 7, the conclusion and future works for this project are described. 
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2 Virtual Reality Based Training System 

In this project, virtual reality integrated with haptic feedback was selected as the alternative 

mode of training for microsurgery. In this chapter, the various advantages and 

disadvantages of a virtual reality training system are being discussed. In addition, the 

training system setup and its components are also presented. 

2.1 Background 

Computer related technologies have advanced significantly in the past few decades. Virtual 

reality (VR) environment is one application of such technology and it has tremendous 

potential for surgical trainings [6, 7, 15, 16]. A VR environment is a simulation of the real 

world environment that is generated by computer software. The human user interacts with 

the VR environment via an interface generally consisting of the keyboard, mouse, monitor 

and perhaps a haptic device. 

There are numerous advantages in using a VR trainer over the traditional training methods 

of practicing on cadavers and lab rats. A VR trainer requires very little setup time – one just 

needs to switch on the machines and run the program. A VR-based system also not requires 

significant resources and space – one just need a workstation with its human-machine 

interface, and the only significant expense is the electricity consumed by the setup. A VR-

based system can also keep track of the progress of individual students, which then can be 

used as teaching aids and to improve the training methodology of the system. Moreover, it 

is entirely safe for the students, as there is little or no negative consequences when mistakes 
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are made in a VR environment – no precautions or clean up required for a VR-based 

trainer. Although a VR trainer has numerous advantages, one of the main challenges is to 

develop a realistic tactile interface with the virtual environment. Figure 2.1-1, shows 

pictures of microsurgical training on rats versus on a VR training system. 

 

Figure 2.1-1 Microsurgical training on rats versus on VR training system 

Other than the various interface devices described in previous chapters, a VR-based trainer 

also requires a physics engine to simulate dynamic behaviors of virtual objects used in a 

virtual microsurgery. A physics engine is essentially a library of APIs which detect and co-

ordinates the numerous collisions between various virtual objects and implements their 

resultant dynamic behaviors.  
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2.2 System Setup 

The main component of a VR-based trainer is the workstation and the typical user input 

devices are the keyboard and/or the mouse. However, to properly train the students with 

virtual reality, a realistic environment is essential. Hence, an input device that can simulate 

the feel of holding a needleholder and/or forceps (which are the tools commonly used in 

microsurgery) is required. To further improve the realism of the training, the simulator was 

developed as a stereoscopic software setup in the form of a Reachin Display, where with 

the aid of a pair of stereoscopic glasses, the students will be able to experience the virtual 

environment in 3D. 
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2.2.1 Reachin Setup 

 

Figure 2.2-1 Reachin Display [31] 

The Reachin Display was selected as the interface setup for the VR-based trainer. A 

Reachin Display setup is as shown in Figure 2.2-1. It consists of a multi-scan stereoscopic 

monitor positioned in such a way that the image generated will be reflected by a high grade 

surface mirror (to reduce ghosting effects). A haptic device is then positioned below the 

mirror such that the actual spatial position of its stylus synchronizes with its reflected 

image in the mirror. This setup is able to replicate the actual microsurgery setup quite 

closely. 

 

Stereoscopic Monitor 

Mirror 

Phantomtm Desktop 
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2.2.2 Phantom
tm

 Desktop 

 

Figure 2.2-2 Sensable Phantomtm Desktop  

As shown in Figure 2.2-2, the Phantomtm Desktop by Sensable was selected as the haptic 

device for the Reachin Display. The main function of a haptic device in this VR-based 

trainer is to provide 6 DoF spatial inputs (3 for position, 3 for orientation) to the virtual 

environment, which can then simulate and display the virtual interactions between the user 

and the environment. 

The Phantomtm Desktop was selected because it possesses 3 DoF positional sensing, 3 DoF 

orientation sensing, portable design and a compact workspace ideal for microsurgery. In 

addition, the Phantomtm is able to provide a force feedback of up to 1.75 N. This force 

feedback with a suitable bandwidth is required to provide a more realistic environment and 

potentially assist learning. 
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The user can interact with the virtual environment via the Phantomtm desktop’s stylus, such 

that the user provides the virtual position and orientation of the virtual needleholder via the 

stylus. However, in microsurgery there is an additional DoF – the movement of the jaws of 

the needleholder. Hence, a surgical needleholder was modified and integrated with the 

Phantomtm Desktop. The development of the modified needleholder will be further 

described in Chapter 3 of the thesis. Additional information of the Phantomtm Desktop can 

be found in Appendix A. 
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3 Modified Needleholder 

The haptic device was not sufficient to provide a good interface for the virtual reality based 

training system. An actual surgical needleholder was modified with a displacement-sensor 

and integrated into the haptic device. In this chapter, the need for a customized input device 

was discussed.  The design of the fixture to integrate the DVRT, needleholder, and 

Phantomtm Desktop together was presented. In addition, the methodology to estimate jaw 

angle and pressure is presented. The chapter concludes with a description of a program 

developed to calibrate the modified needleholder. 

3.1 Background 

While the Phantomtm Desktop is capable of providing the spatial position and orientation of 

the virtual needleholder, the stylus however does not have the “feel” of an actual 

needleholder used in microsurgery. Hence, an actual needleholder integrated to the stylus 

would probably improve the realism of the simulation. 

Although the Phantomtm stylus is equipped with a button which can be adapted to simulate 

the jaws movement of the virtual needleholder, it does not provide the full degree-of-

freedom required. The button is only capable of providing a binary input (jaws open / jaws 

close), whereas we need an input that is able to represent the analog movement of the jaws. 

Moreover, one of the training objectives of the simulator is train the students in their 

control of the applied jaws pressure. Excessive force in grasping will result in a poor grip 



 20 

or a deformed micro-needle. Hence, it is obvious that a binary button input simulating the 

closing of the jaws of the needleholder is wholly insufficient and unrealistic. 

As show in Figure 3.1-1, a subminiature Differential Variable Reluctance Transducer 

(DVRT) by MicroStrain was introduced into the system. The main function of the DVRT is 

to measure the displacement of the needleholder’s grips, and thus the jaws separation 

angles can be computed. The DVRT has a stroke length of 8 mm and resolution of 1.9 

micron (See Appendix B). Hence, an actual surgical needleholder was modified to include 

a DVRT, and then integrated with the Phantomtm Desktop, to provide a more realistic 

interface with the virtual environment. 

 

Figure 3.1-1 MicroStrain subminiature DVRT and DVRT reader 
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3.2 Modified Needleholder 

The surgical needleholder is a tool used by microsurgeons to manipulate and grasp various 

surgical objects such as micro-needles and microsutures, in order to perform various 

techniques required in a microsurgery. As mentioned previously, in order to improve 

realism in the input device, an actual surgical needleholder was modified to be adapted 

onto the stylus of the Phantomtm. The DVRT sensor was also integrated into the 

needleholder, such that, the displacement sensor is able to provide real-time input of the 

jaws separation angles. Thus a fixture to hold the DVRT and mount the needleholder onto 

the stylus was designed and fabricated as shown in Figure 3.2-3 .  

The fixture comprises of three main components, the stylus adaptor, the DVRT adaptor, 

and the needleholder adaptor as shown in Figure 3.2-1 and Figure 3.2-2. The stylus fixture 

is a two-piece clamps with circular jaws, which is used to tighten around the body of the 

stylus. The dimension of the jaws was designed such a way that it slightly smaller than the 

diameter of the stylus’s body. Additionally, screw threads are included such that the 

adaptor can be bolted onto the needleholder adaptor.  

The DVRT adaptor is made up of a pair of swiveling holders with a through-bore. The core 

and shaft of the DVRT are tightened to the holders through the use of screws at the side of 

the holders. The main reason that the holders are free swiveling (free rotation in the z-axis) 

is to permit the freedom of movements for the DVRT shaft and core when the needleholder 

is being manipulated. This is because the needleholder is pivoted as shown in Figure 3.2-1, 

and any movements of the needleholder handles will be circular in nature, thus the adaptors 
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must be able to rotate to maintain a smooth sliding motion between the shaft and the core 

of the DVRT. Similar to the stylus adaptor, the holders are pivoted onto the needleholder 

adaptor. 

The last component in the fixture is the needleholder adaptor. As its name suggests, the 

main function of the adaptor is to attach the rest of the components onto the needleholder. 

It comprises of a pair of holders which can be screwed onto the handles of the needleholder 

(screw threads are drilled onto the handles). The holders each has a platform to serve as 

attachment base for the other two components of the fixture. The detailed technical 

drawings for the fixtures can be found in Appendix C. 

 

Figure 3.2-1 Engineering Drawing of the Modified Needleholder 

DVRT Sensor Core 

Stylus Fixture 

Surgical Needleholder 

Needleholder jaws DVRT Sensor Shaft 
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Figure 3.2-2 Engineering Part Drawing of the Fixture Components 

 

Figure 3.2-3 Modified Needleholder integrated with Phantomtm Desktop and DVRT 

Stylus Adaptor Fixture 

DVRT Core Adaptor Fixture 

DVRT Shaft Adaptor Fixture 

Needleholder Adaptor Fixture 
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3.3 Jaws Angle and Pressure Inputs 

Other than the 6 DoF spatial inputs (position and orientation) from the Phantomtm Desktop, 

there are two additional inputs from the DVRT: the jaws angle and jaws pressure. A win32 

API device driver was written such that the voltage output of the DVRT can be obtained 

via the RS232 port and translated into the jaws angle and pressure.  

It is obvious that the needleholder grips separation is directly related to the jaws angle. 

However, it isn’t as obvious how the jaws pressure can be predicted from this separation 

value. As shown in Figure 3.3-1, when the jaws are being closed entirely, there is still a 

slight gap between the two grips. If sufficient force is being applied to the grips, the gap 

separation decreases. Thus, the jaws pressure can be predicted from the decrease.  

 

Figure 3.3-1 Estimating Jaws Pressure 

Open Jaws Completely 

Closed Jaws 

Separation gap 

Applied Force Applied Force 
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Figure 3.3-2 Setup for Calibration of DVRT and Needleholder  

As shown in Figure 3.3-2, an Instron machine was used to calibrate the DVRT and the 

needleholder. In order to calibrate the DVRT, the DVRT core and shaft were fitted onto the 

immobile and mobile fixture of the Instron machine respectively. The Instron machine was 

programmed to move the DVRT shaft with a constant displacement step. The voltage 

reading from the DVRT was recorded via a device driver, for each displacement step of the 

shaft. These voltage values were than plotted against the displacement values as shown in 

Figure 3.3-3. From the plot, it was verified that both the linearity (≈100%) and resolution of 

the DVRT were comparable to its specifications and within the requirements of this 

project. The irregularity at the beginning of the graph was due to the fact that the effective 

stroke length of the DVRT is 8 mm while the displacement measurement was conducted 

over a length of 10 mm. The voltage-extension factor obtained from the plot was used in 

the device driver written for the DVRT so that real-time displacement values can be 

Instron 

Machine 

DVRT 

Extension 

Instron 
Machine 

Instron 

Machine 

Needleholder 

Extension 

Instron 
Machine 
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Figure 3.3-3 DVRT Calibration Graph (in volts versus millimeters) 

Similarly, a calibration was done on the needleholder to determine the force exerted by the 

jaws of the needleholder. As shown in Figure 3.3-2, the Instron machine was used to 

measure the reaction force on the handle of the needleholder as it was depressed down. It 

can be found that about 0.2 N of force is required to just close the jaws as shown in Figure 

3.3-1 while approximately 10 N of force is required to close the needleholder’s handles 

completely. The reaction force from the Instron machine was plotted against the the 

movement of the needleholder’s handles as shown in Figure 3.3-4. 
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Figure 3.3-4 Force Calibration Graph (in newton versus millimeters) 

Using basic geometry calculations and the conservation of moment, the approximate force 

experienced at the tip of the needleholder and the corresponding displacement of the 

DVRT, can be calculated and is plotted as shown in Figure 3.3-5. And by using the graph 

as a lookup table, the approximate force exerted by the needleholder on the needle can be 

predicted by the device driver. And by observing the force readings while grasping an 

actual micro-needle, it was found experimentally that a good grasping pressure would be 

approximately 0.6 N. 
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Jaws Force (N) vs DVRT Displacement (mm)
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Figure 3.3-5 Jaws Force Calibration Graph (in newton versus millimeters) 
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4 Dynamics and Algorithms 

Rigid body and particle mechanics are used to simulate the dynamic behaviors of the 

virtual objects found in the training system. This chapter is separated into two main 

sections, dynamics and algorithms. The various assumptions and equations used to 

simulate the virtual dynamics are described in this chapter. In addition, the various collision 

and data management algorithms are also presented.  

4.1 Virtual Dynamics 

4.1.1 Rigid Bodies Representation 

Most of the virtual objects in the VR-based trainer are modeled as rigid bodies. A rigid 

body occupies a volume of space and has a particular shape, both of which are fixed. And 

since a particle is defined as a body whose spatial extent and internal motion and structure, 

if any, are irrelevant in a specific problem, any rigid body can be represented as a system 

of particles, at which, particle mechanics can then be applied to model rigid body 

behaviors [20, 27]. In short, a rigid body can be represented by the position vectors of a 

set of particles. 

As a rigid body can only undergo translations and rotations, we can define the shape of the 

rigid body in a form a system of particles in a fixed space called body space. Given the 

geometric description (reference positions of all the individual particles) of a rigid body 

previously, we can then transform this description (positions of all the individual particles) 

into the world space using the translation vector x(t) and the rotation matrix R(t) 
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experienced by the body. Hence, the position vectors of all the particles in the rigid body 

can be obtained using the Equation 4.1 below. 

)()()( txptRtr ii +×=  (4.1) 

where 

ri(t) is the position vector of the particles of the rigid body in world space at time t, 

pi is the reference vector of the particles of the rigid body in body space (with reference to a 

the center of mass of the body), 

R(t) is a 3x3 Rotation matrix defining the total rotation (about the center of mass) 

experienced by the object in world space at time t, 

And x(t) is the translation vector defining the total linear movement experienced by the 

body in world space at time t. 

Typically, the center of mass of the rigid boy is used as the reference origin to describe its 

geometric shape (reference positions of the particles). As such, the translation vector x(t) 

and rotational matrix R(t) corresponds to the position vector, and orientation of the rigid 

body respectively. 
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Figure 4.1-1 Representation of a Rigid Body in world space via body space description [27] 

4.1.2 Dynamic Behaviors 

In order to simulate the dynamics of a virtual object, we need to be able to predict its 

behavior (e.g. position and orientation) at each discrete time step. And in order to predict 

the position and orientation of an object with time, the dynamic properties of the objects 

that are required. These properties include the linear acceleration, the angular acceleration, 

the linear velocity, and the angular velocity. Hence, the dynamic behaviors of the virtual 

object can be typically represented with several ordinary differential equations (ODE) of 

the form 

),( txfx =&  (4.2) 

where  
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f(x,t) is a known function (i.e. it can be evaluated given x and t), 

x is the state of the system (e.g. position vector of the center of mass, orientation of the 

object),  

and x&  is x’s time derivative (e.g. velocity vector of the object, angular velocity of the 

object). 

Hence, predicting the dynamic behavior of a virtual object is an initial value problem. For 

the case of simulating a virtual environment, numerical solutions with discrete time steps 

are used, such that, we can use the derivative function f to calculate the approximate change 

in x, ∆x, over a time interval, ∆t, then increment x by ∆x to obtain the new value. Hence, we 

have to perform derivative evaluation at each time step to predict the state of the virtual 

object at the next time step. One of the simplest and commonly used numerical methods is 

called the Euler’s method. 

4.1.3 Euler’s Method 

Euler’s method simply computes x(t0+h) by taking a step in the derivative direction, 

)()( 000 txhxhtx &+=+  (4.3) 

where 

x0 is the initial state (e.g. position vector at time t0), 

and h is the step size parameter (e.g. magnitude of the time interval, dt). 
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4.1.4 Linear Velocity 

As a rigid body can be represented by a position vector and orientation matrix, the next step 

is to be able to express these state variables over time. And as mentioned previously, we 

can define the position derivative using Euler’s method. This variable is known as the 

linear velocity. 

)()()()( 0000 tvttvttvttx && ∆+=∆+=∆+  (4.4) 

where 

v(t0) is the linear velocity vector at time t0, 

)( 0tv& is the linear velocity vector derivative (acceleration) at time t0, 

and ∆t is the time step size for each computational loop. 

 

4.1.5 Angular Velocity 

Other than translational motion imparted by the linear velocity, a rigid body can also spin 

or rotate. Just as the linear velocity describes the position of the rigid body over time, the 

angular velocity vector, ω(t), describes the orientation of the rigid body over time. The 

angular velocity, ω(t), comes in a form of a vector where its unit direction represents the 

direction of the axis of rotation, while its magnitude represents the how fast the rigid body 

is rotating. And the orientation derivative can be computed as follows, 
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)()()( tRtwtR ×=&  (4.5) 

where 

ω(t) is the angular velocity vector at time t, 

R(t) is the 3x3 orientation matrix at time t, 

And )(tR& is the derivative of the 3x3 orientation matrix. 

 

 

Figure 4.1-2 Physical representation of a Rotation Matrix, R(t) [27] 

4.1.6 Particle Velocity 

In our representation, a rigid body is represented as a system of constrained particles. So 

other than the linear velocity, which essentially describes the motion of the center of mass 

of the rigid body, we also need to find the velocity of individual particles in the system. 
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)()()()( tvtptwtp ii +×=&  (4.6) 

where 

)(tpi
& is the derivative of the position vector of the particles of the rigid body at time t,  

pi(t) is the reference vector of the particles of the rigid body in body space at time t, 

ω(t) is the angular velocity vector of the rigid body at time t, 

and v(t) is the linear velocity vector of the rigid body at time t. 

4.1.7 Force and Torque 

A rigid body can be represented by a 3x3 orientation matrix and the position vector of its 

center of mass. When subjected to multiple external moments or forces at different points 

on the body, the problem can be simplified by reducing these moments and/or forces into a 

single resultant torque and force at its center of mass. The dynamics of the object can be 

then computed by simply applying Newton’s 2nd Law of motion as shown in sections 4.1.8 

and 4.1.9. 
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Figure 4.1-3 Representation of Force and Torque on rigid body 

The torque τi(t), experienced by the rigid body is the same throughout the particle system, 

while a force fi(t),  acting on particle pi, is reduced into a force f(t) acting on the center of 

mass and a torque τ(t). 

)()( tftf i=  (4.7) 

)()( tfpt ii ×=τ  (4.8) 

Hence the total force and torque experienced by the rigid body can be calculated as follows, 

)()( tftf iΣ=Σ  (4.9) 

iii tfpt ττ Σ+×Σ=Σ ))(()(  (4.10) 
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4.1.8 Linear Acceleration 

We can see that the linear velocity is influenced by its time derivative, also know as the 

linear acceleration. And the linear acceleration is directly related to the forces experienced 

by the rigid body. 

gravity
mass

tf
tvta i +

Σ
==

)(
)()( &  (4.11) 

4.1.9 Angular Momentum 

Angular velocity is used to describe the orientation of the rigid body over time, and is 

directly related to the angular momentum. Angular momentum measures the rigid body’s 

tendency to continue rotating. The angular momentum is defined as, 

)()()( ttItL ω=  (4.12) 

where 

L(t) is the angular momentum vector of the rigid body, 

I(t) is a 3x3 matrix for the moment of inertia of the rigid body in world space, 

And ω(t) is the angular velocity vector of the rigid body. 

 

Hence the angular velocity at time t, can be determined as follows, 
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)()()( 1 tLtIt −=ω  (4.13) 

And using Euler’s method, the angular momentum L at time t0+∆t, can be determined as 

follows, 

)()()( 000 tLttLttL &∆+=∆+  (4.14) 

where 

L(t0) is the angular momentum vector at time t0, 

)()( 00 ttL τΣ=&  is the derivative of the angular momentum vector at time t0, 

Στ(t0) is the vector representing the total torque experienced by the rigid body, 

and ∆t is the time step size for each computational loop. 

4.1.10 Damping 

As we are simulating a real world environment, damping should be implemented. The 

effect of damping is to bring a moving object to rest in the absence of other influences. A 

side-benefit is that damping improves numerical stability. In this case, we applied an ideal 

viscous drag force to damp linear motion of the object as follows.  

)()( tvktf d−=  (4.15) 

where 
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f(t) is the linear drag force vector experienced by the rigid body, 

kd is the linear drag coefficient, 

and v(t) is the linear velocity vector of the rigid body.  

 

Similarly, an ideal angular drag force is also applied to damp the rotational motion of the 

object as follows.  

)()( tkt ωτ τ−−−−====  (4.16) 

where 

τ(t) is the angular drag force vector experienced by the rigid body, 

kτ is the angular drag coefficient, 

and ω(t) is the angular velocity vector of the rigid body.  

 

4.2 Collision Detection 

Having described the representation of a rigid body in virtual environment, the next 

problem is to model the interactions between the various virtual objects, namely the micro-

needle and the needleholder. However, before we can model the interactions of the virtual 
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objects, we need to be able to determine if there is any interaction in the first place. Hence, 

there is a need for real-time interactive collision detection [25]. 

4.2.1 Sphere-Sphere Collision 

 

Figure 4.2-1 Sphere-Sphere Collision 

The most basic of all collision detection is the sphere-sphere collision. Given a sphere s1 

with a radius r1, and a sphere s2 with a radius r2, we can determine if there will be collision 

between the 2 spheres, and if so, the penetration value γ. 

)()()( 121221 pppprr −•−−+=γ  (4.17) 

where 

γ must be greater than zero, and 

p1 and p2 are the position vectors of the spheres respectively. 

S1 S2 

p2 p1 

γ 

Distance between 2 points 
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Collision occurs when γ is greater or equal to zero. This collision detection is used for 

determining if there are collisions between the bounding spheres of the various objects in 

the virtual environment. It is also used to determine if there are collisions between the 

idealized point masses of the virtual suture. 

4.2.2 Sphere-Edge Collision  

 

Figure 4.2-2 Sphere-Edge Collision 

The shortest distance between two geometries is usually used to determine if collision 

occur. The shortest possible distance between a sphere and an infinite straight line is simply 

the perpendicular distance between the two. As shown in Figure 4.2-2, this is however not 

always true between a sphere and a line segment/edge as it is possible for pc the position 

vector nearest to the sphere, to lie outside of the line segment. And thus the nearest point to 

the sphere lies on p1 or p2 of the line segment. 
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Hence, the first step in the algorithm is to determine if pc lies within the edge. As shown in 

Figure 4.2-2, v20 is the vector from p2 to p0, and v21 is the vector from p2 to p1, while n is the 

normal vector between the two geometries. It can be observed that if 2121200 vvv <•<  

then pc will lie along the edge. And if |n| < R, then collision will occur, where pc is 

approximated to be the point of collision. The value of |n| and pc can be calculated using the 

following equations. 

21212020 )( vvvvn •−=  (4.18) 

2121202 )( vvvppc •+=  (4.19) 

In contrast, if 02120 <• vv , then pc lies nearer to p2 and we do a sphere-sphere collision of 

the sphere with the point p2 (with radius zero). 

Similarly if 212120 vvv >• , then pc lies nearer to p1 and we do a sphere-sphere collision of 

the sphere with the point p1 (with radius zero). 

The main application of this algorithm is to detect the collision between the bounding 

spheres of the virtual needle and the edges of the virtual needleholder. The discretisation of 

the virtual needle will be described in Section 4.2.9. 
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4.2.3 Sphere-Plane Collision 

 

Figure 4.2-3 Sphere-Plane Collision 

A plane rp can always be defined by a unit normal vector n, and a plane constant c. 

cnrp =•  (4.20) 

Hence the shortest distance of a point to the plane s,   

cnps −•= 0  (4.21) 

And if 0rs ≤ , then collision occurs. 

The main application of this algorithm is to detect the collision between the bounding 

spheres of the virtual needle and the planar surfaces of the virtual needleholder. The 

discretisation of the virtual needle will be described in Section 4.2.9. 
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4.2.4 Point in Polygon Collision Detection [25] 

 

Figure 4.2-4 Point-in-Polygon Detection 

As seen in Figure 4.2-4 above, it can be seen that if the point p lies within the triangle, the 

cross product between the successive vectors v0i, v1i, v2i, etc … in an anti-clockwise 

direction will all produce a normal vector in the direction of the plane normal vector n, 

such that, 

0)( 1 >•× + nvv ixxi  (4.22) 

However, this is not true if the point lies outside the plane, such that at least one of the 

cross product vectors will be in the opposite direction to the normal vector n. For the 

example shown in Case (b) of Figure 4.2-4, it can be obviously seen that the direction of 

cross product vector of v2i and v0i is into-the-plane, in contrast to out-of-plane of the 

polygon’s normal vector n. 

0)( 2 <•× nvv oii  (4.23) 
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In short, if none of the angles between successive vectors are more than 180º then the 

projection of the point pi onto the plane of the polygon will lies within the polygon 

boundaries. Next, the perpendicular distance of the point to the polygon plane is 

determined (as in Section 4.2.3). And if the value is less than a pre-determined threshold 

value, the point can be considered to have collided with the polygon plane. The point-in-

polygon collision detection is important as few of the virtual surfaces are of the infinite 

plane variety. 

4.2.5 Sphere-Polygon Collision Detection 

 

Figure 4.2-5 Sphere-Polygon Detection 

The actual collision detection for the discretised needle and the jaws of the needleholder are 

done using the sphere-polygon collision detection, which is actually a combination of the 

sphere-edge, sphere-plane, and point-in-polygon collision detections. The discretised 

needle is essentially a collection of bounding spheres (see Section 4.2.9) while the 

(a) Case 1: ps lies inside polygon (b) Case 2: ps lies outside polygon 

pS 

pS 
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needleholder is broken down into a collection of polygon planes. Each polygon plane is 

defined as a planar surface constrained by three or more edges.  

As shown in Figure 4.2-5, it is possible for a sphere to touch a polygon plane while its 

center of mass is outside the polygon. Hence in order to properly perform Sphere-Polygon 

collision detection, additional checks must be performed to detect the collision between the 

sphere and edges of the polygon when the sphere center of mass is outside the polygon. 

Hence the pseudo codes for the Sphere-Polygon collision detection algorithm is as follow: 

1. Perform Sphere-Plane check 

2. If true, perform Point-in-Polygon check, else no collision 

3. If true, collision exists, else perform Sphere-Edge check for all the edges of 

the polygon 

4. If true, collision exists, else no collision 
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4.2.6 Dynamic Sphere-Polygon Collision Detection 

 

Figure 4.2-6 Dynamic Sphere-Polygon Collision 

As the dynamic behaviors of virtual objects are calculated in discrete time steps, the main 

problem of the sphere-polygon collision detection algorithm is that if the velocity of the 

sphere is very high, the sphere might pass through the plane without getting close to the 

plane (as the distance moved by the sphere is very large in a single time step). Hence, this 

collision detection uses a through ray algorithm instead. 

As shown in Figure 4.2-6, if the sphere is within the polygon and the displacement of the 

sphere to plane is positive for the previous time step, and the same sphere is still within the 

polygon and the displacement is now instead negative for the current time step, then 

collision can potentially occur. And the time of collision tc, can be approximate to   
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+
+=

10

0

0  (4.24) 

where  

tc is the approximated time of collision, 

t0 is the time of collision before collision, 

∆t is the discrete time step, 

If the approximated time of collision is known, the approximated position and orientation 

of the polygon plane can be extrapolated, and the appropriate approximations for the 

Sphere-Polygon collision response can be then performed.  

4.2.7 Line-Line Collision Detection [22] 

 

Figure 4.2-7 Line-Line Collision 
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Given two infinite lines L1 and L2, 

supspL ++++==== 01 )(:  (4.25) 

tvqtqL ++++==== 02 )(:  (4.26) 

where 

p0 and q0 are some arbitrary position vectors, 

u and v are some arbitrary directional vectors, 

and s and t are some arbitrary constants 

Defining sc and tc as some unique arbitrary values for the constants s and t such that the 

points p(sc) and q(tc) are closest to each other, it can be observed that 

vuwqpw ccccc tsts −−−−++++====−−−−==== 0)()(  (4.27) 

where  

w0 = p0-q0,  

And if the two lines are not parallel, then the vector wc is uniquely perpendicular to both the 

lines such that, 

0====•••• wu c  (4.28) 
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0====•••• wv c  (4.29) 

Hence, we can derive the following equations, 

wuvuuu cc ts 0)()( ••••−−−−====••••−−−−••••  (4.30) 

wvvvuv cc ts 0)()( ••••−−−−====••••−−−−••••  (4.31) 

Solving the above equations, we can obtain the unique points p(sc) and q(tc) where 
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====  (4.32) 
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====  (4.33) 

Hence, we can obtain |wc|. And if we assume the two lines are actually cylinders with 

radius r1 and r2. Then collision occurs between the two cylinders if 21 rrwc ++++<<<< . 

However, this is not a very useful algorithm as infinite cylinders do not actually exist. 

4.2.8 Edge-Edge Collision Detection [22] 

We can define the edges E1 and E2 as 

supspE ++++==== 01 )(:  where 0 < s < 1 (4.34) 
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tvqtqE ++++==== 02 )(:  where 0 < t < 1 (4.35) 

where  

p0 and q0 are some arbitrary position vectors, 

u and v are some arbitrary directional vectors (not unit vectors), 

|u| and |v| are the lengths of E1 and E2 respectively, 

and s and t are some arbitrary constants with values ranging from 0 to 1 

Similar to Section 4.2.7, the two mutually closest points p(sc) and q(tc) in E1 and E2 

respectively can be calculated. However unlike collision between two infinite lines, it is 

possible for the points p(sc) or/and q(tc) to lie(s) outside their respective line segment, 

resulting in that the shortest perpendicular distance between the two line segments to be 

impossible. 

Hence, instead we need to perform a minimization problem on |w|2, which is a quadratic 

function of s and t. This minimization can be represented as a parabaloid over the (s,t)-

plane as shown in Figure 4.2-8, with the global minimum at w(sc,tc) computed previously. 

The parabaloid is a monotonic increasing function with a global minimum C (found 

previously) which lies outside the region G (where the edges E1 and E2 are defined). Hence 

in order to determine if there are any contacts between the two edges, the local minimum in 

the region G must be found. 
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Figure 4.2-8 Parabaloid over the (s,t)-plane 

This local minimum can be determined by observing the visible edges of the boundary of 

region G. This is because the parabaloid is monotonic increasing, thus the local minimum 
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for region G should lie on the boundary edges (e.g., Visible edge A and B). And the local 

minimum for each visible edge can be calculated as follows 

0)0,( ========stw
ldt

d
 , 0),0( ======== stw

lds

d
 (4.36) 

 

And by comparing the absolute magnitudes of the local minimums of each edges, we can 

determine the local minimum for the region G. And , which is the vector describing the 

shortest distance between the two edges. Similarly, both the edges can be represented as 

cylinders with radius r1 and r2. And collision occurs if 21 rrw ++++<<<< . This collision 

detection is used to determine the interaction of a cylinder with the needleholder’s jaws. 

4.2.9 Bounding Volume Hierarchy (BVH) 

 

Figure 4.2-9 Discretisation of micro-needle 

Discretised spheres 

with 50% overlap 
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As it is very difficult to represent a 3D virtual needle as a continuous equation, the virtual 

needle is instead discretised into a string of overlapping spherical point masses as shown in 

Figure 4.2-9. The diameter of each sphere is of the exact same value as the corresponding 

point on the virtual needle, and each consecutive sphere are placed closely together (50% 

overlap) to create a smoother surface. Hence in order to perform complete collision 

detection, each and every point masses of the virtual needle need to undergo at least one 

collision detection check. This can prove to be very computationally expensive [19]. For 

example, the virtual jaws of the needleholder has 8 planes and 12 edges, and assuming the 

needle is discretised into 100 point masses, in a single loop will requires at least 2000 

checks. And each collision detection check typical has more than 5 operations. Hence the 

number of mathematical operations required just for collision detection between the 

needleholder and needle would exceed tens of thousand. However, with the 

implementation of a Bounding Volume Hierarchy (BVH), collision detection checks can be 

significantly reduced. 

A BVH is simply a tree of bounding volumes. The bounding volume at a given node 

encloses the bounding volumes of its children. The bounding volume at the lowest level in 

the tree usually encloses one or more geometric primitives. In this project, the BVH used is 

the Bounding Sphere Hierarchy (BSH). A bounding sphere is used to enclose the entire 

virtual needle. This bounding sphere is placed at the topmost level of the BSH tree, and a 

branch is allocated to the bounding sphere. The virtual needle is then broken up into 

segments and placed into two or more smaller bounding spheres. These bounding spheres 

are then placed on the branch of the topmost bounding sphere. And each virtual needle 
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segments in each leaf (bounding spheres) is further broken up and placed in successively 

smaller leaves. These smaller leaves are then placed on the branches of their precedent 

leaves. This is essentially repeated until a specified number of levels are reached or when 

the virtual needle cannot be further broken up. For example, in Figure 4.2-10, a 4-level 

BSH tree is constructed for the virtual needle. The top level of the tree comprises of two 

level 2 leaves, while each level 2 leaf comprises of two level 3 leaves, and each level 3 leaf 

contains two level 4 leaves. Finally, the lowermost leaf will contain a collection of point 

masses of the virtual needle. 

As mentioned previously, the advantage of using the BSH is that the computation of 

collision detection can be significantly reduced. This is because if the initial collision 

detection check failed against the bounding sphere of a particular node, then there will not 

be any collision between the jaws and the children of the node, hence eliminated the need 

to perform further checks with the children. 
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Figure 4.2-10 Four-Levels BSH on micro-Needle 

4.2.10 Constructing a Bounding Sphere Hierarchy (BSH) 

Given a system of particles, we can construct a BSH as shown in Figure 4.2-11, by first 

finding the center of mass of the system, then computing the minimum possible radius 

required to enclose the entire system. This resultant bounding sphere is the level 1 or parent 

node of the sphere tree.  

Next, the particle that is furthest from the parent node is chosen as the starting point to 

grow the level 2 sphere leaf. All the nearby particles are tested to see if they are within the 

bounding sphere (with half the radius of its parent as the initial threshold value) 

surrounding the particle. The new local center of mass is computed and the sphere leaf 
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shifted to this new position. This is repeated until no new particles can be added into the 

leaf. After which the optimal (minimum) radius of the leaf is then calculated. There will be 

particles that are not enclosed by the 1st sphere leaf because of the initial threshold radius. 

Hence, an additional level 2 sphere leaf is generated in the similar manner. This process is 

repeated until all the particles are enclosed in level 2 sphere leaves.  

One all the level 2 sphere leaves are generated, level 3 sphere leaves will be generated in 

each of the level 2 sphere leaves in the similar manner. This process is repeated for 

progressive levels until any one of the conditions is fulfilled, 

• Only a single particle exists in the sphere leaf,  

• The number of particles in the sphere leaf is less than an arbitrary value specified 

by the user 

• The level of the sphere leaf has reached an arbitrary value specified by the user 
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Figure 4.2-11 Constructing a Bounding Sphere Tree 
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4.3 Collision Response 

Having determined the interactions between the virtual objects, we now have to model the 

interaction behaviors of these objects. This is also known as the collision response. The 

main importance of collision response is to prevent penetration between objects, and 

impulsive behaviors are used to model these behaviors [20, 27]. 

 

 

Figure 4.3-1 Collision between two objects 
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As shown in Figure 4.3-1, there are numerous ways for two objects to collide with each 

other. And in of the cases, by Newton’s Law of Restitution, we can write out 

nen vvvv
BABA

••••−−−−−−−−====••••−−−− )()( 1122  (4.37) 

nen vv
ABAB

•−=• 12  (4.38) 

where 

v1
A is the initial velocity of the center of mass of A, 

v2
A is the resultant velocity of the center of mass of A, 

v1
B is the initial velocity of the center of mass of B, 

v2
B is the resultant velocity of the center of mass of B, 

 v1
AB is the initial relative velocity between the center of mass of A and B, 

v2
AB is the resultant relative velocity between the center of mass of A and B, 

e is the coefficient of restitution, 

and n the normal vector of the collision. 

 

From Figure 4.3-1(a) & (c), it is obvious the normal vector n is parallel to the normal of the 

colliding planes. However for case (b), there is no clear collision vector, and in the case of 
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this project, the collision vector n is taken to be parallel to the relative velocity between the 

center of mass of the two objects. This is assumed for the cases of vertex-vertex, vertex-

edge, edge-edge collisions.  

As the objects are assumed to be rigid bodies, we can obtain  

APAAAP
rvv ××××++++==== ω222  (4.39) 

BPBBBP
rvv ××××++++==== ω222  (4.40) 

where 

v2
AP, v2

BP are the resultant velocity of the respective objects at the collision point P (e.g. 

velocity of point P on Object A after collision occurs),  

v2
A, v2

B are the result velocity of the respective objects at the center of mass, 

ω2
A, ω 2

B
 are the resultant angular velocity of the respective objects,  

and rAP, rBP are the position vector of the collision point. 

 

We also know that impulse is essentially the force experienced by the objects over a time 

∆t, hence we have the following equations 

m
vv

A

AA j
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×+= −

ωω  (4.41) 
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m
vv

B

BB j
−= 12 , )(1

12 jrI BPB

BB
×+= −

ωω  (4.42) 

where 

v2
A, v2

B
 are the resultant velocity of the respective objects, 

v1
A, v1

B
 are the initial velocity of the respective objects, 

ω2
A, ω 2

B
 are the resultant angular velocity of the respective objects, 

ω 1
A, ω 1

B
 are the initial angular velocity of the respective objects, 

j is the impulse experienced by the colliding objects,  

IA
-1, IB

-1
 is the 3x3 inverse matrix of the moment of inertia about the center of mass of the 

respective objects in world space, 

and mA, mB are the mass of the respective objects. 

 

Hence, by substituting all the above equations into Newton’s Law of Restitution, we can 

obtain an expression for the Impulse j, 
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Once the impulse j, is computed, then impulsive forces can be applied on both bodies, to 

determine the resultant linear velocities and angular velocities. 
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5 Implementations 

The algorithms described in previous chapters were implemented into a library of APIs. In 

this chapter, the capability of the C++ static library developed is described. In addition, the 

implementation of various unique behaviors observable in microsurgery is also described.  

5.1 Physics Engine 

A physics engine is essentially a library of APIs to implement and co-ordinate the dynamic 

behaviors of various virtual representations of objects found in microsurgery. In this 

project, the physic engine was written into a form of a C++ static library. A static library is 

essentially just a collection of object files that are linked into the program during the 

linking phase of compilation, and is not relevant during runtime. In this form, it is easy and 

convenient for other software engineers to develop their own virtual environments by 

linking to the static library. In addition, the C++ Standard Template Library (STL), which 

is a general-purpose C++ library of algorithms and data structures, was used to develop a 

customized STL container for the purpose of holding the various data required for the 

physics calculation and implementation. The main input device for the system in this 

project is the Phantomtm Desktop, and it is provided with the GHOST® (General Haptic 

Open Software Toolkit) SDK. The GHOST® SDK is a powerful C++ tool kit used to 

develop virtual and haptic environments. It also possesses the drivers and API to 

communicate with the haptic device. Hence, the physics engine was developed such that it 

is complementary with the GHOST® SDK. 
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The main concerns in developing a VR-based system are the realism of the environment 

and the computational expenses required. Various literatures on simulating dynamics of 

rigid bodies were studied [20,27] and implemented. Virtual objects like the micro-needle 

and needleholder were assumed to be rigid bodies. And by representing a rigid body as a 

system of particles, the virtual dynamics/behaviors of the virtual objects can be simulated 

using particle mechanics. In addition, interactions that will occur in microsurgery can be 

simulated by implementing collision detection and responses. Various algorithms for 

collision detections were studied and implemented [22,25,26,27]. An architecture was 

developed to co-ordinate and simulate the dynamic behavior between the various virtual 

objects in the VR based system.  

The main reason for concern in computation expenses is because typical VR software runs 

in two loops, the graphics loop and the haptic loop, and in order to have a realistic haptic 

feel, it is a requirement that the haptic loop runs at 1 kHz or higher. This is equivalent of 

having a maximum computational time of 1 ms per loop. As computational time depends 

on the number of mathematical operations, it is essential that the number of operations in a 

single loop be kept to the minimum.  

In the course of developing the engine, it was found that collision detections between 

objects took up most of the computational time, such that it took more than 1 ms 

(requirement for haptic interface) to check if there was collision between the needleholder 

and the needle. And it was found that a boundary sphere hierarchy can greatly reduce the 

computational time, by optimizing the amount of collision detection required [19]. 
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5.2 Grasping and Needle Insertion 

The main objective of the static library is to model the required behavior for the grasping of 

the micro-needle and the insertion of the micro-needle into the tissue. Hence, other than the 

generic collision between the needleholder and the micro-needle, customized functions are 

also written to simulate some of the special events in grasping and insertion.  

5.2.1 Collision Detection between Needleholder and Needle 

The needleholder is primarily modeled as a pair of customizable triangular jaws and the 

needle a set of particle with radius. The initial collision detection check is the bounding 

sphere of the jaws against the BSH of the needle. All probable collision particles are stored 

in a customized STL container, where dynamic sphere-polygon collision checks are carried 

out. And if all the grasping conditions are fulfilled, no collision responses are implemented 

and the collision detection routine ends. 

 The conditions for a successful grasp are 

• There exists a left penetration and right penetration on a single particle 

• The left penetration and right penetration of the jaws on the needle should not differ 

by more than 10% 

• The particle with the greatest overall penetration is chosen as the grasped point 
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However, if no successful grasping occurs, the particle with the greatest penetration 

(earliest instant of collision) for each of the planes of the jaws, is selected as the colliding 

particle. In each case, collision response as mentioned in the previous section is 

implemented for each particle.  

5.2.2 Realignment of needle during Grasping 

 

Figure 5.2-1 Twisting during Grasping 

As shown in Figure 5.2-1, it is possible for a needle to be orientated differently from the 

jaws when grasped. This results in a snapping or realignment of the needle. In order to 
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simulate this effect, the differences in orientation have to be computed. The unit vectors of 

Jaw-Axis, Axis-Tip, and Needle vectors, v1, v2, v3, and vn respectively are retrieved from 

the physics engine. The vector component parallel to v2, in vn is removed such that 

22 )( vvvvv nnn ••••−−−−==== . This is because rotation in this direction is constrained and physically 

impossible (if the grip is firm). And by performing dot products  11 cosθ====•••• vvn  and 

33 cosθ====•••• vvn , the differences in orientation with respect to v1 and v2 can be calculated 

and a restoring force implemented to simulate the snapping effect when the jaws closes on 

the needle. Figure 5.2-2 illustrates the realignment of the needle in the demo program. 

 
(i) Instant just before grasping 
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Figure 5.2-2 Realignment of needle during grasping 

5.2.3 Twisting of needle during Insertion 

  

Figure 5.2-3 Reaction force on needle during Insertion 

As shown in Figure 5.2-3, when the angle of insertion is large, a significant resistive force 
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demonstrated in the demo program in Figure 5.2-4. This phenomenon is simulated by 

applying a reaction force on the needle about the grasped point. A constraining force is also 

applied to prevent the motion of the grasped point. This constraining force can be varied 

depending on the pressure applied on the needleholder (which is provided by the DVRT 

mounted on the needleholder). 

 

 

Figure 5.2-4 Twisting of needle during Insertion 

(ii) Instant just after contact with surface 

(i) Instant before contact with surface 
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5.2.4 Force feedbacks during Grasping and Insertion 

The physics engine computes the impulsive forces experienced by the needleholder due to 

collision with other virtual objects using Equation (4.42). These forces are then transmitted 

to the haptic device after a scaling. The scaling constant is a variable specified by the user. 

This is because in reality, the forces experienced in microsurgery are minimal and can be 

generally ignored. However, it may be useful to scale up the force feedbacks to create a 

pseudo-realistic learning environment (e.g. a more sensitive environment). 

As shown in Figure 5.2-3, a reaction force is exerted on the needle during insertion. The 

magnitude of this reaction force is set to be approximately proportional to the angle of 

insertion as shown in Figure 5.2-5. A threshold value is specified by the user at which the 

reaction force is render null to simulate a smooth and easy insertion. This threshold value 

represents the correct range of values for the angle of insertion, for a proper insertion. It is 

to be noted that different relationships between the reaction force and the angle of insertion 

can also be implemented to study their effects on learning. This force experienced by the 

needle is approximated onto the needleholder, which is then scaled and transmitted to the 

haptic device. 



 72 

    

Figure 5.2-5 Reaction force vs. Angle of Insertion 

5.3 Simulation Architecture 

A typical update loop for the simulation would be as follows, 

• Perform BSH collision detection between all the virtual objects to obtain objects 

that are in close proximity 

• Perform detailed collision detection between these viable objects  

• Implement collision responses to the colliding objects 

• Update all the virtual bodies 

o Compute the total forces and torque experienced by the body 

o Apply damping to the body 

o Compute the linear acceleration of the body 
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o Compute the linear velocity of the body 

o Update the position of the center of mass 

o Compute the angular momentum 

o Compute the angular velocity 

o Update orientation of the body 

o Compute the position vectors for all the particles in the system in world 

space 

• Next loop 

5.4 Library Architecture 

A static library in C++ was developed for the VR-based trainer. The main function of the 

static library is to provide a collection of APIs to develop the individual modules for the 

VR-based trainer. Essentially, the main object classes that is required to develop a 

customized virtual environment, are as follow 

• A Collider class which handles the interactions between the various virtual objects 

• A Needle object class which represents the micro-needle in the VR environment 

• A Suture object class which represents the micro-suture in the VR environment 

• A Jaws object class which represents the needleholder in the VR environment 

• A Surface object class which represents the soft tissue for suturing in VR 

environment 

The typical procedure in modeling a module is as follows, 
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• Declare a Collider object 

• Use the various API in Collider to generate the various virtual objects 

• Insert the update function call at the haptic loop 

• Insert the draw function call at the graphic loop 

Collider Class - The collider class is the wrapper class to generate the various virtual 

objects and co-coordinating the collision detection and responses between various objects. 

It is also responsible for the graphic rendering of the objects and environment. 

 

Jaws Class - The jaws class is the representation of the virtual needleholder. It is essentially 

compose of a list of dynamic planes and edges. Most of the collision detection are 

implemented in this class. 

Needle Class - The needle class is the representation of the virtual needle. It is a child of the 

rigid body class. It also has a sphere tree. 

Suture Class - The suture class is the representation of the virtual suture. It is compose of a 

list of point masses and spring. It also has a sphere tree and self collision is implemented. 

Surface Class - The surface class is the representation of the virtual tissue. It is compose of 

a plane and the collision detection and response with the needle is implemented here. 
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Dynamic Plane Class - The dynamic plane class is essentially a container to hold two 

instants of a plane at any one time. It is required for the collision detection functions in the 

jaws class. 

Plane Class - The plane class is just the basic representation of a plane.  

Rigid Body Class - The rigid body class is the parent class for most of the virtual objects. 

The generic dynamic behaviors are implemented in this class. 
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6 Results and Analysis 

In this chapter, the performance of the physic engine was tested and verified to be 

satisfactory. The effectiveness of the BSH algorithm was also studied and presented. As 

part of the project, a series of training modules were developed to train the subtask of 

grasping and inserting a micro-needle. In this chapter, the scenario and requirements for 

each module is presented, and the procedure to evaluate the performance of the student is 

also presented. A trial run with the software is also being described.   

6.1 Performance of Physics Engine 

As the computational ability of the workstation is finite, it is very important that the 

number of mathematical operations is kept at the minimum, while maintaining the high 

realism required for good virtual learning. In the following sections, tests were conducted 

to investigate the effectiveness of a BSH, and to verify that the physics engine is able to 

complete their calculations within a haptic loop (<1ms).  

6.1.1 Bounding Sphere Hierarchy (BSH) 

As shown in Table 6-1, it can be seen that the addition of a sphere tree, literally cuts down 

the mean collision computational time by 50%. Although higher depth sphere tree 

generally decreases the computational time, but it depends greatly on the type of 

interaction, as a greater depth signifies more checks but also more elimination. 
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Table 6-1 Computational time for Sphere Trees (sample size 10,000) 

Sphere Tree 0 Level 3 Levels 4 Levels 5 Levels 

Generation (ms) NA 0.18609 0.27188 0.29920 

Collision Detection (ms) 0.73~1.1 0.15~0.93 0.16~0.94 0.15~0.63 

Mean Collision Detection (ms) 0.92713 0.38867 0.49025 0.29138 

6.1.2 Computational Time per Haptic Loop 

As the VR-based trainer is integrated with a haptic device, there is a requirement that the 

simulation is at least 1 ms, as realistic forces require at least a frequency of 1 kHz. As 

shown in Table 6-2, the computational time for simulating a virtual dynamical environment 

is only 0.61344 ms. This verify the capability of the physic engine. 

Table 6-2 Mean computational time for 1 loop (sample size 10,000) 

Type Computational time per loop (ms) 

Virtual Dynamic 0.61344 

Graphic Rendering 2.86280 

All the above tests are done on an Intel® Pentium® 4 CPU 2.6 GHz, with 1 GB RAM. 

6.2 VR Training Software 

The main objective of this project is to develop VR training software to teach the subtask of 

grasping and inserting a micro-needle. The following sections describe the various modules 
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that were developed (using the physics engine developed in Chapter 5) to train the 

subtasks. The entire training simulation is developed for both stereoscopic and non-

stereoscopic display. 

6.2.1 Grasping of a Needle 

A demonstration module as shown in Figure 6.2-1 was developed to help the student 

familiarize himself with the virtual environment of the trainer. Two virtual spheres and a 

virtual cylinder were presented for practice for manipulating or grasping.  

 

Figure 6.2-1 Demonstration Module 

6.2.2 Basic Grasping Module 

A Basic Grasping Module as shown in Figure 6.2-2 was developed as the next module of 

the grasping series. In this module, the key learning objective is to grasp the simplified 

needle at the correct location. The desired grasp location is customizable and is displayed 
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as the red region on the simplified model of the micro-needle. The main purpose of using a 

simple geometry in this module is to slowly introduce the student to the concept of 

grasping in virtual reality.  

 

Figure 6.2-2 Basic Grasping of a simplified needle 

6.2.3 Advanced Grasping Module I 

The next module in the grasping series is the Advanced Grasping Module I as shown in 

Figure 6.2-3, Figure 6.2-4, Figure 6.2-5 and Figure 6.2-6. The purpose of this module is to 

train the student’s coordinate such that he is able to accurately maneuver the needleholder 

to any desired position and grasp properly. A realistic needle is presented and the student is 

required to practice grasping the needle at the highlighted location. Three different types of 

micro-needles are available for practice. And as the basic module, the desired grasping 

location is customizable by the instructor. 



 80 

However, unlike the basic module, the dynamics of the needle model is vastly different. 

Due to the curved geometric of the suturing needle, rotation of the needle is a problem. 

Moreover, it is desirable that the needle is grasped vertically and longitudinally 

perpendicular to the needle holder. And to prevent tissue damage, the needle should be 

grasped only using the tips of the needleholder. 

Visual color cues are displayed when the needle is being successfully grasped.   

• A red needle represents the grasp point is wrong and the student is not grasping 

with the jaws tips. 

• A pink needle represents the grasp point is wrong but the student is correctly 

grasping with the jaws tips. 

• A yellow needle represents the grasp point is correct but the student is not grasping 

with the jaws tips. 

• A green needle represents the grasp point is correct and the student is grasping with 

the jaws tips. 
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Figure 6.2-3 Incorrect grasp point and not grasping with tips 

 

Figure 6.2-4 Incorrect grasp point but grasping with tips 
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Figure 6.2-5 Correct grasp point but not grasping with tips 

 

Figure 6.2-6 Correct grasp point and grasping with tips 

6.2.4 Advanced Grasping Module II 

The final module in the grasping series is the Advanced Grasping Module II as shown in 

Figure 6.2-7, a free hanging needle is presented and the student is to practice grasping the 
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needle under gravity. Similar to Advanced Module I, color cues are provided feedback 

about the student’s grasp. In addition, the student has to control his grasping force, as show 

in Figure 6.2-8, excessive force on the needle will trigger a visual cue, whitening of the 

jaws.  

After successfully grasping the needle, the student has to move the grasped needle to a 

randomly generated destination point and hold it at that location for 10 seconds (the point 

will turn to green when the needle is position close to the point and reverts back to blue 

after 10 seconds as shown in Figure 6.2-9. Throughout the motion, the pressure on the 

needle should not exceed a customizable level. The objective of this module is to train the 

student in maintaining a correct grasping force and the ability to accurately maneuver the 

needle to a desired location.  
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Figure 6.2-7 Advanced Module II 

 

Figure 6.2-8 A good grasp but excessive force is used 
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Figure 6.2-9 Moving the grasped needle to a specific point and holding it there 

6.3 Grasping of a Suture  

A separate module to train grasping of a micro-suture was also developed. In this module 

as shown in Figure 6.3-1, the student is presented with a hanging suture and he is instructed 

to grasp the edge of the suture and maneuver it to a randomly generated destination point. 

As in the advanced module II, the student should maintain a proper grasping force 

throughout the motion. 
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Figure 6.3-1 Grasping and moving a suture to desired point 

6.4 Insertion of a Needle  

The suturing series is developed to train the student in inserting a micro-needle after 

grasping. In these modules, it is noticeable that if the needle was grasped incorrectly, 

numerous difficulties will arise while inserting the needle.  

The suturing module combines the subtask of grasping and inserting of the needle. The 

student is presented with a hanging needle and a tissue surface at different orientation (flat, 

right sloping, left sloping). The student is to grasp the needle successfully and insert the 

needle at a randomly generated insertion point on the surface of the tissue. 

If the student attempts to insert the needle at an incorrect penetration angle, the needle will 

be deflected upward, reflecting the effect of a large reaction force twisting the alignment of 

the needle or even deforming the needle.  
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After penetration, the student is to maintain an almost perpendicular penetration angle with 

respect to the surface. Deviations will trigger a haptic cue resisting the continuing 

penetration of the needle. 

If the needle is released in the midst of penetration, the needle will remain “stuck” to the 

surface, and the student is able to manipulate the needle in a limited manner (however, this 

will result in a bigger tissue tear). The student is able to grasp the needle again and continue 

with the insertion. 

Throughout the insertion process, the “tear” on the tissue is being tracked and represented 

as red regions on the surface. 

 

Figure 6.4-1 Insertion of the needle result in tissue tears 
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Figure 6.4-2 Limited manipulation when the needle is left on the surface  

6.5 Performance Evaluation  

An important part of training is performance evaluation of the student. And in order to 

properly evaluate the performance of any grasping or suturing practices, key traits of a 

good/bad practice should be identified and used as a basis for evaluation.  

6.5.1 Grasping 

The traits of a good grasp are that the micro-needle should be grasped vertically and 

longitudinally perpendicular to the needle holder without excessive force. And in addition, 

grasping should not occur at the micro-needle’s proximal or distal extremities and the tips 

of the needleholder should not exceed the body of the micro-needle to avoid damaging 

tissues behind the micro-needle. 
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Hence, a highlighted region was created for each of the virtual needles used in the trainer 

where a function was written to check if the grasping occurs in the highlighted region. A 

check to evaluate the distance of the tips of the needleholder to the needle was also 

incorporated and the force applied to grasp the needle tracked. And with these information 

returned by the software, a color-coded feedback cue can be displayed to the student. 

6.5.2 Wound Size 

The wound size generated when the needle was inserted into the surface was chosen as 

another evaluation factor for insertion performance. This is because the deviations of the 

needle (due to tremors or poor techniques) during insertion, reflects the amount of tissue 

trauma inflicted during the surgery. As different needles have varying sizes, it is a more 

accurate gauge of performance if the wound size is represented as a percentage of the 

needle size. The wound size can be obtained as the software tracks the motion of the needle 

through the surface. It is to be noted that this is a geometric assumption for the wound size 

as no material properties effects are considered in the simulation.   

6.5.3 Penetration Angle 

The angle the needle makes with the surface as it penetrates the surface can also be used as 

another performance gauge. This is because as the needle passes through the tissue, it will 

drag/pull the surrounding tissues as it moves. And the greater the angle the needle makes 

with the tissue, the greater the drag, and hence the tissue trauma. Hence, the penetration 

angle was tracked by the software throughout the motion and can be presented as a graph. 
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6.6 Trial Run with VR Training Software 

The training tutorials were installed onto the completed training system, with the Reachin 

setup. The main objective of the trial run is to ensure that the training system is functioning 

properly and to identify and correct any bugs in the software. 

6.6.1 Methodology 

A trial run with 3 subjects was conducted with the training modules described previously. 

Two of the subjects were totally new to virtual reality and microsurgery, while the third had 

undergone a basic course in microsurgery and practiced significantly on the virtual reality 

trainer. 

The subjects were instructed verbally on the proper techniques in grasping and inserting the 

micro-needle. They were then allowed to familiarize themselves with the virtual 

environment for at least 30 minutes; they were required to practice grasping and 

manipulating spheres, cylinders and needles. 

A variety of needles (type 2/8, 3/8 and 4/8) and surfaces (left sloping, right sloping and flat) 

were used to train the subjects. Both observations and raw data were collected. 
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6.6.2 Data Collection 

The VR-based trainer provides numerous data which can be compiled and presented so that 

the instructor is able to gauge the performance of the students. Wound size and Penetration 

angles are some of the results that can be obtained from the raw data. Some examples of 

typical results provided by the software are shown below. Figure 6.6-1 demonstrates the 

results of a well inserted needle. Figure 6.6-2 demonstrates a poorly inserted needle. 
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Entry Penetration: Subject3-Surface1-Needle1
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Figure 6.6-1 Subject3: Insertion#3 of 2/8 Needle on Flat Surface 
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Entry Penetration: Subject2-Surface2-Needle2
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Figure 6.6-2 Subject2: Insertion#2 of 3/8 Needle on Right Sloping Surface 
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Observations and Results 

The less experienced subjects had most difficulties with extremely curved needles, and 

required numerous attempts before successfully grasping the needles. They also have great 

difficulty in perceiving the angle of the needle with the surface or the needleholder. On the 

average they took more attempts and a relatively long time (1~5 minutes, not inclusive of 

unsuccessful attempts) to complete a single suture successfully.  

The more experienced subject only exhibit slight difficulties with extremely curved needles 

and in some cases performed better with the extremely curved needle. Hence, it can be 

hypothesized that with sufficient training in the system, the difficulties arising from the 

curvature of the micro-needle can be overcome. The experienced subject also required less 

attempts before successfully grasping the needles and was able to accurately judge the 

angle the needle is making with the surface or the needleholder. He was also able to 

perform a successful suture with a single attempt and with significantly less time (< 1 

minute).  

6.6.3 Discussion 

As this is only a trial run to test the operation of the system, there were insufficient results 

available for analysis. However, it can be observed that most of the subjects had problem 

perceiving and judging the angle the needle makes with the surface or the needleholder, it 

is recommended that an additional module is to be developed to train the students in 

estimating angles.  
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7 Conclusion 

7.1 Virtual Reality based Trainer 

A virtual reality based training system to train grasping and inserting of the micro-needle 

was developed in this project.  A Reachin Display was used as the setup for the training 

system, while a Phantomtm Desktop was used as the spatial/orientation input and haptic 

feedback for the trainer. In addition, a modified needleholder with a displacement sensor 

was integrated with the Phantomtm Desktop.  

7.2 Physics Engine 

A library of APIs was developed for the system such that rapid generation of customized 

training modules is possible. The library of APIs can generate and co-ordinate interactions 

of customized virtual objects (found in microsurgery) with the needleholder (and the 

Phantomtm desktop). The various models of the virtual objects found in the library are, the 

virtual jaws (needleholder), needle, suture, sphere, cylinder and surface. In each of the 

models except for the virtual suture, rigid body dynamics were implemented. For each of 

the virtual objects, effective collision detection and response were studied and 

implemented. One of the algorithms used to optimized computational time is the Boundary 

Sphere Hierarchy (BSH). A wrapper class was also developed to supervise the general 

interactions between the virtual objects, and each loop (iteration) of the simulation was able 

to complete within 1 ms which is the requirement for haptic interface. 
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7.3 Training Modules 

A series of tutorial software to train grasping and inserting of micro-needle was also 

developed using the library mentioned previously. It was able to display various cues to 

inform the user of his performance e.g. did he grasp at the correct point. It was also able to 

track and store a variety of information which can be analyzed and used to determine the 

performance of the student by the instructor.  

7.4 Trial Run 

Using the setup and software mentioned previously, a trial run with 3 subjects was 

conducted and initial results are encouraging. Detailed information on the trial run can be 

found in Chapter 6 and Appendix D and E. 

7.5 Future Works 

Although the API library has most of the objects that can be found in microsurgery, it is 

still by no means complete. The virtual surface is relatively basic, and should be 

implemented with a multi-scale mesh [4] to better simulate the soft tissue commonly found 

in microsurgery. In addition, visco-elastic behaviors of the blood vessel tissue can be 

integrated into the multi-scale mesh. In addition, the virtual surface should be readily 

described into any form, such as a smooth flat flap, or a cylindrical flap, etc. This would 

allow the development of more advanced training modules. 
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Currently, the virtual needle is modeled as a rigid body with the assumption that it will not 

experience deformations of any form. However in reality, the micro-needle deforms when 

it is grasped or inserted improperly. A better and more realistic approach would be to 

implement the deformation effects for the virtual needle. For example, a virtual coarse 

grained finite elements (FE) mesh for the virtual needle can be implemented in parallel 

with the current needle model. This is to allow a basic analysis on the stress-strain 

experienced by the virtual needle during the virtual surgery. And thus, a scoring function 

can be developed based on the stress-strain field of the needle, together with existing 

criteria (e.g. grasp location, pressure, etc). Alternatively, the force and impulse experienced 

by the virtual needle can also be recorded and analyzed offline. In additionl, environmental 

effects like electrostatic effects, and viscous effects due to environmental fluids can also be 

implemented to improve the realism of the simulation. 

Lastly, as one of the observations during the trial run was that the subjects had difficulties 

in judging the angle between the needle and the surface/needleholder.  It is recommended 

that an additional module, to train estimating of angles, to be incorporated into the training 

system.  
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Appendices 

A. Phantom™ Desktop Technical Specifications 

 

Force feedback workspace   ~6.4 W x 4.8 H x 4.8 D in. 
  > 160 W x 120 H x 120 D mm. 

Footprint  
(Physical area   device base   occupies on   desk) 

  5 5/8 W x 7 1/4 D in. 
  ~143 W x 184 D mm. 

Weight (device only)   6 lbs. 5oz. 

Range of motion   Hand movement pivoting at wrist 

Nominal position resolution   > 1100 dpi. 
  ~ 0.023 mm. 

Backdrive friction   < 0.23 oz. (0.06 N) 

Maximum exertable force at   nominal   (orthogonal 
arms)   position 

  1.8 lbf. (7.9 N) 

Continuous exertable force   (24   hrs.)   0.4 lbf. (1.75 N) 

Stiffness   X axis > 10.8 lbs. / in. (1.86 N / mm.) 
  Y axis > 13.6 lbs. / in. (2.35 N / mm.) 
  Z axis >8.6 lbs. / in. (1.48 N / mm.)  

Inertia (apparent mass at tip)   ~0.101 lbm. (45 g) 

Force feedback   x, y, z 

Position sensing 
  [Stylus gimbal] 

  x, y, z (digital encoders) 
  [Pitch, roll, yaw (± 3% linearity   potentiometers) 

Interface   Parallel port 

Supported platforms   Intel-based PCs 

GHOST® SDK compatibility   Yes 

3D Touch™ SDK   compatibility   Yes 

Applications   Selected Types of Haptic Research, 
the   FreeForm®   Modeling™, and the 
FreeForm®   Modeling Plus™ systems 
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B. Subminiature DVRT Technical Specifications 

 8, 24, and 38 mm (standard resolution) 

 6 mm (high resolution) Linear Stroke 

Lengths 
 500 microns or less depending on your required resolution spec. (nano 
resolution) 

 +/- .4% over 6 mm (max. 8mm stroke) 

 +/- .7% over 8 mm (max. 8mm stroke) 

 +/- .6% over 24 mm (max. 24mm stroke) 

 +/- .17% over 8 mm (max. 24mm stroke) 

 +/- .3% over 24 mm (max. 38mm stroke) 

 +/- .7% over 38 mm (max. 38mm stroke) 

 +/- 1.2% over 6 mm (high res. 6mm stroke) 

Nonlinearity 

 +/- .4% over 3 mm (high res. 6mm stroke) 

Sensitivity  1 volt/mm typ. (for 8 mm stroke) 

Signal to noise 
4200 to 1 (with filter 3 dB down at 900 Hz, standard resolution; 
466 to 1 (unfiltered) 

 1.9 microns (standard version 8mm stroke) 

 5.7 microns (standard version 24mm stroke) 

 0.6 microns (high resolution 6mm stroke) 
Resolution 

 10 nanometers (nano resolution optimized for 200 microns of stroke with filter 

3 dB down at 80 Hz) 

Frequency response  7 Khz (unfiltered) -contact us for faster response reqirements. 

Temp. coeff. offset  .002% / degree C (typical) 

Temp. coeff. span  .030% / degree C (typical) 

Hysteresis  +/- 1 micron 

Repeatability  +/- 1 micron 

Synch. demod. 

input 
 +/- 7 volts min. @ 10 milliamps/rail 

Synch. demod. 

output 
 +/- 4 volts typ., buffered line out 

approx. 3.5 times linear stroke 

~29 mm for 8 mm stroke 

~84mm for 24 mm stroke 
Overall body length 

~118 mm for 38 mm stroke 

Outside Diameter 4.76 mm (3/16 inch) 

Housing material 300 series stainless steel (SS); 400 SS optional, 5/16-24 threaded 

Leadouts 45 cm (18"), multistranded, shielded, SS reinforced, teflon insulated 

Connectors sensor: keyed Lemo 4-pin 

Strain relief Stainless steel center conductor for tensile strain relief 

Operating 

temperature 
- 55 to 105 degrees C (standard); -55 to 175 degrees C (high temp. option) 
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Core weight 350 milligrams (for 8 mm stroke) 
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C. Modified Needleholder Fixtures Technical Drawings 
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D. Trial Run Details 

 

D1. Test Subjects  

Three subjects were involved in this preliminary study, of which, one of them had practiced 

more intensively with the simulator than the other two. It is regrettable that there is no 

medical student or surgeon among the test subjects. The two less experienced subjects are 

notated as Subject 1 and Subject 2, while the more experienced subject is notated as 

Subject 3. 

It can be noted that Subject 2 had great difficulties in performing the insertion with the 

more curved needle. The results from Subject 2 are generally inconsistent despite numerous 

attempts.  

 

D2. Needle Types  

Three types of needle were used in this experiment, namely a 2/8, 3/8 and 4/8 needles, 

where the fraction before the needle represents the fraction encompassed by the arc of the 

needle. The needles are notated as Needle 1, Needle 2, Needle 3 respectively.  

It can be noted that only Subject 3 had done any experiment with Needle 3. This was 

because despite much practices, both Subject 1 and 2 were unable to perform any 

successful insertion with Needle 3.  
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D3. Surfaces  

Three types of surfaces were used in this experiment, namely a flat, left sloping and right 

surfaces. These surfaces are simplistic planar models of the soft tissues. The surfaces are 

notated as Surface 1, Surface 2, Surface 3 respectively. 

 

D4. Wound Size and Penetration Angle 

The results that are used in the experiment to gauge the performance of the subjects are the 

wound size and penetration angle. The wound size is essentially the area on the surface that 

had been disturbed by the needle. A large wound size would represent a poor suture as 

significant tissue damage had been done to the blood vessel. The wound size is represent as 

a percent of between the largest distance of the edge of the wound to its center and the 

radius of the needle body. 

The angle of penetration throughout the insertion is also an important factor. If angle 

deviates significantly from 90°, there will be significant pull of the needle on the tissue 

which will result in additional tissue damage. And in this experiment, instead of the angle 

of penetration, the cosine of the angle of penetration was used, such that, a zero would 

represent a perfect insertion, while a one is the worse possible insertion.  
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D5. Observations 

Throughout the experiment, it can be generally observed that a more curved needle posed a 

greater difficulty to the inexperienced subjects. The left sloping surface also posed a 

significant problem, particularly when using Needle 2. 

The inexperienced subjects generally take around 5~15 minutes to perform a single suture, 

while the more experienced one take around 1 minute. 

Inexperienced subjects seemed to find great difficulties in perceiving the orientation of the 

needle with respect to the needleholder and surface, despite the stereoscopic vision. Most 

of the unsuccessful insertions are due to their inability to determine the orientation of the 

needle with respect to the surface.  

This problem is further aggravated by the fact that their inability to perceive the needle 

orientation resulted in an improper grasp (as in the needle is not grasped in a correct 

orientation) which make it even more difficult to determine the orientation of the needle 

point with respect to the surface. 

 

D6. Wound Size versa Needle Type and Surface Type 

As shown in Figure D-1, it can be observed that for Subject 2, significantly bigger wounds 

were created when a Needle 2 was used. However for Subject 1 and 3, the increases in 

wound size were not significant except for the case a flat surface for Subject 1. In fact, for 
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Subject 3, there was a slight decrease in wound size for a right sloping surface with Needle 

3. 

Ignoring the inconsistent results from Subject 2 for Needle 2, it can also be observed that 

Needle 1 generally performed better on a flat surface, while Needle 2 and 3 performed 

better on a sloping surface. 

 

Wound Size (%) vs Surface Type
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Figure D-1. Wound Size resulted wrt Surface Slope and Needle Type 
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D7. Penetration Angle versa Needle Type and Surface Type 

As shown in Figure D-2, it can be observed that generally maintain a correct penetration 

angle was harder with a more curved needle. It can also be observed that the Left Sloping 

surface was significantly more difficult for all three subjects, although less so for the more 

experienced Subject 3. 
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Figure D-2 Mean Penetration Angle wrt Surface Slope and Needle Type 
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D8. Discussion 

From the results of this experiment, it is plausible to hypothesize the following points: 

• Inexperienced students have difficulty in perceiving orientations (angle) in virtual 

environment. 

• Inexperienced students have more difficulties with an extremely curved needle, 

which will decrease with practice. 

• Left sloping surface is more difficult to suture, this is probably because the suturing 

motion is awkward for right handed students. 

Having observed the difficulty in perceiving orientations in virtual environment, it is 

desirable to develop an additional module to train the students in identifying orientations. 

As noted previously, with training an extremely curved needle will not pose great difficulty 

to the surgeons. A more curved needle is generally useful for suturing where the direction 

of approach is restricted by the workspace, a more curved needle is better at piercing a 

sloped surface, however, it is harder to maintain the correct angle once the tissue is pierced. 

 


