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Summary

Motivated by the increasing demand for storage density and high-speed data re-

trieval in magnetic recording systems, efforts are underway investigating detection

approaches that have optimum or close-to-optimum performances with low compu-

tational complexity and high detection speed. In this thesis, we study generalized

partial response target design and post-processing approaches for signal detection

in high-density magnetic recording channels with jitter noise. We also investi-

gate the performance of sliding block Viterbi detector in the context of high-speed

detection.

We consider high-density perpendicular magnetic recording channels with jitter

noise and propose a novel approach to jointly design optimum generalized partial

response (PR) target and linear equalizer. A new cost function, which accounts

for the data-dependent nature of jitter noise, is developed based on minimum

mean square error criterion. Using the step response based channel model, we

derive expressions for the statistics required to compute the optimum equalizer and

target in the presence of jitter noise. We present an approach for doing simulations

as well as analytical computations for the jitter noise channel, without resorting

to the widely used Taylor series approximations. We present computational and

vi



simulation results to show that the targets designed by our approach give significant

bit error rate (BER) performance improvement over the targets designed without

accounting for the jitter under high jitter conditions. When the targets designed

by our approach are used, there is no sign of error-floor effect for the range of

signal to noise ratios (SNRs) considered.

To further enhance the signal detection performance for perpendicular channels

with jitter noise, we propose a novel two-step post-processing approach for signal

detection. The first step is to identify all the possible error regions from the nor-

mal Viterbi detector (VD) output using a simple threshold-based approach, and

the second step is to re-detect only these regions using approaches that exploit

the data-dependent characteristics of jitter noise. Thus, the resulting complexity

increase is mostly limited to the short length of post-processing regions. Compu-

tational and simulation results show that the post-processing approach can reduce

the complexity of the complicated sequence detection approaches greatly with mi-

nor performance loss or even performance enhancement at certain SNRs.

We also analyze the performance of sliding block Viterbi detector (SBVDet)

for the purpose of designing its key parameters. A detailed algorithm to obtain

characteristics of all the catastrophic and non-catastrophic error events for a VD

without knowing the starting/ending states of its input sequence is presented.

Through the error event analysis and simulation results, we show that SBVDet

can increase the speed of VD without limit and with almost no influence on the

BER performance and error event distribution. An intuitive approach to do error

event analysis for simpler PR targets is also presented.
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Chapter 1

Introduction

In this chapter, we present a brief overview of magnetic recording system. After in-

troducing perpendicular magnetic recording, we will focus on the signal processing

techniques used in recording channels. Thereafter, the motivation and summary

of the research work in this thesis are presented. Finally, the organization of the

thesis is given.

1.1 Magnetic Recording Systems

The advent of the information technology has created a tremendous demand for

mass data storage and high-speed retrieval of digital data. Further, the demand

for storage capacity and signal retrieval speed has been increasing all the time, as

a result of the development of various applications of information technology and

the increasing need to store, transmit and play high-quality multimedia contents.

To serve this need, magnetic recording has played an important role and continu-

ously undergone substantial advancements throughout its history. Magnetic hard

disks have become necessary and irreplaceable components of computers and var-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Block diagram of a digital magnetic recording system.

ious daily applications. The development of current digital media players, such as

IPod, etc., also provides vivid examples of the importance of magnetic recording

to the information age as well as people’s daily lives.

Over the past five decades, breakthroughs in head and media technology have

been the major contributing factors to the spectacular growth in storage capacity.

However, signal processing and coding techniques have also been playing an im-

portant role in providing cost-efficient means to enhance the storage capacity [31].

Hence the research on signal processing for magnetic recording has always been a

promising field.

A block schematic of a magnetic recording system is shown in Figure 1.1.

The user information bits are first fed to an ECC (error control coding) encoder,

which incorporates error detection and correction capabilities into the user bits.

After that, a modulation encoder matches the user data to the recording channel

characteristics, thus reducing the channel distortion effects to improve detection

performance, and to ensure proper working of control loops (e.g. timing/gain

recovery) at the receiver. Following the ECC/modulation encoder, the write circuit

converts the coded data into write current using NRZI (non-return to zero inverse)

modulation technique [31]. The write head then magnetizes the storage medium

to saturation in directions according to the polarity of the write current waveform.

In the readback process, the read head generates voltage output signal, which is

induced by the magnetic flux associated with the transitions in the magnetization

2



CHAPTER 1. INTRODUCTION

pattern on the medium. The front-end circuit in general consists of a low-pass

filter to limit the noise bandwidth, a sampler to generate discrete signals, timing

recovery and gain control circuits, and an equalizer to shape the overall channel

response so that the signal detector is able to recover the stored data reliably.

The data detector recovers the encoded data and passes them to an ECC and

modulation decoder, which recovers the original user information bits.

The signal path from the input of write circuit to output of read head is called

the magnetic recording channel. Since the readback voltage signal reflects transi-

tions in the data pattern stored on the medium, under reasonable conditions, the

magnetic recording channel can be modeled by transition response and the read-

back signal can be modeled as linear superposition of transition responses. It is

obvious that the channel response to an isolated bit at the input is linearly related

to transition response, and thus we can also model the magnetic recording chan-

nel using bit response. From the above, we may say that the magnetic recording

channel resembles a base-band digital communication system with pulse amplitude

modulation (PAM).

The signal read from the magnetic recording channel is corrupted by inter-

symbol interference (ISI), various electronics/media noises, and some non-linear

distortions. In general, all these distortions will increase with increase in recording

density. The purpose of signal processing therefore is to minimize the channel

distortions and recover the information bits as reliably as possible.

Analog peak detection can be used in low-density magnetic recording, but it

cannot provide satisfactory performance when the ISI is high, which is the normal

condition for high-density magnetic recording. Thus, partial response maximum-

likelihood (PRML) detection was introduced in early 1990s [11], which significantly

raised the storage density capability.

Extensive research work has been done for longitudinal recording [31]. However,

3



CHAPTER 1. INTRODUCTION

the perpendicular magnetic recording has better potential for supporting high-

density magnetic recording [21, 22] and the channel characteristics are different

from those of longitudinal recording, and hence the signal processing strategies

need to be re-investigated for perpendicular magnetic recording. Furthermore, at

high densities, the media noise, which is non-linear, data-dependent and colored,

becomes the dominant channel distortion rather than electronics noise which can be

viewed as additive white Gaussian noise (AWGN). Thus, special signal processing

techniques have to be used to take care of the non-linear, data-dependent and

colored media noise. In this thesis, we relocate the media noise problem using

an accurate channel model and focus on optimum joint equalizer-target design to

account for media noise.

Several applications require detection algorithms with low-complexity and high-

speed. To increase the signal detection reliability for high-density magnetic record-

ing, we have to use more complex signal processing techniques, which will result in

high-complexity implementations and speed bottleneck. The high-complexity re-

quirement and speed bottleneck will constraint the applications of advanced signal

processing techniques. Thus, in this thesis, we also look into the implementation

issues and focus on low-complexity and high-speed detection algorithms.

1.2 Perpendicular Magnetic Recording

In magnetic recording systems, areal recording density can be increased by reducing

all physical dimensions proportionally, including bit length, head size, and the

thickness of granular medium, etc., as well as refining the medium micro-structure,

in particular, reducing the size of ferromagnetic grains in the media.

But in current longitudinal recording systems, reducing the bits and grain sizes

may cause the so-called “super paramagnetic effect” [54], thereby limiting the

4



CHAPTER 1. INTRODUCTION

Figure 1.2: Magnetization pattern of storage medium for longitudinal and perpendicular
magnetic recording.

achievable areal density. However, perpendicular recording technique is expected to

provide much greater potential for supporting high-density magnetic recording [22].

As shown in Figure 1.2, in the perpendicular recording, the magnetization direction

on the storage medium is perpendicular to the direction of write/read head. It is

expected to replace the longitudinal recording technology in a few years.

Current longitudinal recording system may achieve storage density as high as

100 gigabits per square inch (Gb/inch2) [48]. On the other hand, using perpendic-

ular recording technology, Hitachi Global Storage Technologies has demonstrated

an areal density of 230 (Gb/in2) [1], which is the highest areal density achieved

to date based on vertical recording. Clearly it represents a doubling of today’s

highest data densities based on longitudinal recording technology.

Besides the promising ultra-high densities and many other advantages [55], per-

pendicular recording also bring more challenges to the medium, read/write heads

and signal processing techniques. In other words, advanced signal processing tech-

niques are also needed to combat the problems arising in perpendicular magnetic

recording systems.

5



CHAPTER 1. INTRODUCTION

1.3 Characteristics of Channel Distortions in

Magnetic Recording

In order to use signal processing techniques to achieve high recording density

with reliable data retrieval, we need to investigate the characteristics of channel

distortions in magnetic recording. The major distortions in recording channels are

linear ISI, noises (electronics and media noises), non-linear distortions, etc.

1.3.1 Linear ISI

Interference corresponds to the presence of signals other than those intended in

the readback signal. In magnetic recording channels, the isolated transition/bit

response spans more than one bit interval, which leads to overlapping of transi-

tion/bit responses due to adjacent transitions/bits. The resulting interference from

adjacent symbols, other than the one in the current position, is called ISI.

At higher densities, the transition/bit responses become much “wider” with

respect to a bit interval, and thus result in severe ISI. Equivalently in frequency

domain, if we observe the bandwidth of the channel, we can see that the normalized

channel bandwidth with respect to bit rate becomes smaller at higher densities,

which also represents increasing ISI.

Full response or partial response equalization is normally used to reduce ISI.

Nonetheless, practical equalizers always result in some residual ISI. The residual

ISI influences the detector performance seriously especially when we use Viterbi-

like maximum likelihood detectors, which we will explain later. Thus, when we

design equalizers and target responses, we always want to minimize residual ISI as

much as possible.

6
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1.3.2 Noise

Channel noise originates in the medium, the head, the head preamplifier, etc. As

a rule, none of these distortions is negligible. Different noise sources can be viewed

as mutually independent.

Head noise and thermal noise in preamplifier, which are sources of electron-

ics noise, can be modeled as additive white Gaussian noise (AWGN). On the

other hand, media noise, which arises due to irregularities and imperfections of the

medium, turns out to be correlated, non-stationary and data-dependent. It can

be modeled by the microtrack model, the signal-dependent autoregressive channel

model and the position jitter and width variation model [24,37].

Media noise is negligible at low recording densities, whereas it becomes the

dominant noise source at high recording densities. Consequently, the equalization

and detection techniques that are developed for channels with significant AWGN

(compared to media noise) cannot be used for data retrieval in high-density sys-

tems. Hence, special signal processing techniques need to be used to take care of

media noise in high-density magnetic recording.

1.3.3 Non-linear distortions

Non-linear distortions refer to the phenomena that violate the linear superposi-

tion principle in magnetic recording channels. As density increases, closely spaced

magnetic transitions start to interact, which results in severe non-linear effects,

such as non-linear transition shift (NLTS), transition broadening, partial erasure,

and overwriting, etc [29]. It is obvious that the non-linear effects will also become

severe at high recording densities. To minimize the non-linearities, we can use mod-

ulation codes such as maximum transition run (MTR) codes to limit consecutive

transitions and write pre-compensation techniques [6].

7
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In summary, almost all distortions become severe at high densities, thus re-

quiring more advanced signal processing techniques. Since non-linear distortions

can be effectively controlled during writing process, we will focus on the receiver

design for recording channels corrupted by linear ISI, electronics noise and media

noise.

1.4 Survey of Existing Work

In this section, we present a brief review of detection techniques for high-density

magnetic recording. The review first focuses on typical PRML schemes which is de-

veloped without considering media noise. Thereafter, optimum detection schemes

and generalized PR targets design approaches to combat media noise are summa-

rized. Finally, we provide a survey of high-speed Viterbi detection.

1.4.1 PRML Detection Techniques

Sequence detector is preferable than symbol-by-symbol threshold detector in mag-

netic recording, in spite of higher complexity and decision delay, because it can

provide much better performance to combat the serious ISI in magnetic recording.

Most of the widely used sequence detectors are based on the principle of

maximum-likelihood sequence detector (MLSD), which is simpler to implement

than maximum-a-posteriori sequence detector (MAP-SD). Further, MLSD and

MAP-SD are equivalent if each possible transmitted sequence is equally proba-

ble. When the channel noise is AWGN, MLSD can be efficiently implemented

using the Viterbi Algorithm (VA). Note that even when the channel noise is not

perfectly AWGN, VA is still preferable because of its high computational efficiency

in spite of small performance loss.

8



CHAPTER 1. INTRODUCTION

In magnetic recording, the Viterbi Detector (VD) is always preceded by a linear

partial response (PR) equalizer, which shapes the channel response into a shorter

predefined target response to help VD and reduce the complexity. Hence it is

called partial response maximum-likelihood (PRML) detector1.

The performance of VD will degrade significantly if the noise level is very high

or the noise samples are highly correlated at VD input. Hence, the design problem

in PRML is to reduce the noise level as well as noise correlation at the input of

VD. This problem can be resolved partially through the design of equalizers and

PR target responses.

The equalizer is meant to match the channel response to some predefined target

response. It can be categorized into zero-forcing (ZF) and minimum mean square

error (MMSE) equalizers [3]. The ZF equalizer has the inherent disadvantage

of noise enhancement and this problem becomes severe in high-density magnetic

recording. Hence, MMSE equalizer is more preferable in high-density recording

systems.

As to the design of target response, standard PR targets with integer coefficients

are normally employed, which are chosen by simple inspection of their match to

the channel response. The widely used PR targets for longitudinal recording are

PR Class 4 (PR4) (1 − D2), extended PR4 (EPR4) (1 + D − D2 − D3), etc.

in the standard form of (1 − D)(1 + D)n, where D denotes 1-bit delay operator

and n is a positive number [49]. For perpendicular recording, the widely used

standard PR targets are those with only positive coefficients such as 1 + 2D+D2,

1 + 2D+ 2D2 +D3, 1 + 2D+ 3D2 + 2D3 +D4, etc [41]. Although PRML systems

based on standard PR targets are easy to implement, the performance degrades

significantly at high recording densities. The reason is these relatively short targets

1Traditionally, in recording systems, the receiver consisting of a PR equalizer followed by VD
is called PRML, even though this receiver is not optimum in the sense of ML since the noise at
VD input is not white.
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do not match the channel response very well, resulting in severe residual ISI, and

hence limiting the detection performance of VD. Moreover, these targets do not

effectively account for the presence of media noise in the channel.

The generalized PR (GPR) targets with real-valued coefficients can match the

channel response more closely and provide better detector performance. Clearly,

this gain is achieved at the cost of increase in complexity, since the real-valued tar-

get coefficients necessitate multiplication of real-numbers as compared to integer-

valued target coefficients. With the development of very large scale integration

(VLSI) systems, this increase in complexity seems to be a minor problem. Hence

extensive research has been focused on design of GPR targets. The widely used

method is to jointly design target response and PR equalizer based on MMSE cri-

terion [35]. To avoid trivial all-zero solutions, some constraint needs to be imposed

on the target, such as monic-constraint, which requires the first tap of the target

to be one, fixed-energy constraint, which requires the energy in the target response

to be one, etc. Among these constraints, the monic-constraint outperforms others

because it can minimize the noise correlation at the VD input. This is because the

forward equalizer in optimum decision feedback equalization (DFE) system can be

viewed as a GPR system with some GPR target satisfying the monic-constraint

that ensures that the noise samples at the detector input is close to AWGN.

Another approach developed to design GPR targets is based on dominant error

events in the VD [9,35]. That is, the target is designed by minimizing the probabil-

ities of the dominant error events at VD output. However, this is a chicken-and-egg

approach to the problem, since changing the target response will change the dom-

inant error events. Nevertheless, it has not been found to outperform the MMSE

approach significantly.

10
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1.4.2 Optimum Detection and GPR Targets Design to
Combat Media Noise

The review in Section 1.4.1 does not consider media noise. However, at high

recording densities, the detection performance of PRML detectors suffer seriously

due to media noise, which is the dominant disturbance in high-density magnetic

recording channels. Unlike the most commonly used noise model of additive white

Gaussian and data-independent electronics noise, as mentioned already, the media

noise is correlated, data-dependent, non-stationary and non-additive in nature [47].

Several approaches have been proposed in the literature to deal with the prob-

lem of degradation in detection performance due to media noise. One sort of

approach is through designing optimum detectors. Moon and Park [34] proposed

a pattern-dependent noise-predictive maximum-likelihood detector. By modeling

the media noise as a finite-order Markov process [24], Kavčić and Moura [23] de-

veloped an optimum sequence detector using optimized branch metrics. Chen and

Trachtenberg [10] proposed an approach that asymptotically becomes ML. Since

optimum detectors usually result in high computational complexity, there have

been several proposals for sub-optimum approaches that are simpler to imple-

ment. For example, modifications in the branch metrics of the VD were proposed

by Zeng and Moon [58] to account for the data-dependent variance of media noise

and by Sun et al. [46] to account for the data-dependent mean of media noise.

Another sort of approach to deal with media noise is through designing GPR

target to minimize the noise correlation since the noise should be white Gaussian

for VD to be optimum. This approach helps to improve the detector performance

significantly compared to standard PR targets with integer coefficients. Caroselli

et al. [7] was the first to employ data-dependent noise prediction for media noise

channels. Moon and Zeng [35] studied the effect of different constraints in the

design of GPR targets for channels with jitter noise. They reported the supe-
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riority of monic constraint (i.e. first tap of the target is set to 1) in dealing

with noise correlation and getting performance close to that of the optimum tar-

get designed by maximizing the so-called “effective SNR” of VD. Oenning and

Moon [37] presented an analytical solution for monic-constrained GPR targets

for Lorentzian model based channels with media noise. An adaptive approach

for designing monic-constrained GPR targets with data-dependent adaptation for

compensating nonlinearities caused by medium and head, was proposed by Zayed

and Carley [57]. Whereas all the references quoted above deal with longitudi-

nal recording, Sawaguchi et al. [45] and Kovintavewat et al. [25] presented target

design approaches for perpendicular recording channels with jitter noise. While

they also use the monic constraint, the targets of Sawaguchi et al. [45] incorporate

DC-suppression of varying degrees in view of the low-frequency disturbances (e.g.

jitter noise, thermal asperity, etc.) in practical channels. Okamoto et al. [39] ex-

tended the data-dependent noise prediction approach to perpendicular recording

to deal with jitter noise. The performance of several standard PR targets (with

integer-valued coefficients) for perpendicular channels with jitter noise was studied

by Okamoto et al. [41].

1.4.3 High-Speed Viterbi Detection

The Viterbi algorithm was first presented as a means to decode convolutional

codes [52], and was later proven to be an efficient algorithm for maximum-likelihood

sequence detection in channels with ISI [19]. Implementation of the Viterbi detec-

tor (VD) mainly comprises three parts: a branch metric computation unit (BMU),

an add-compare-select unit (ACSU), and a survivor memory unit (SMU). The

BMU and SMU can be easily implemented using pipelined structures, while the

ACSU has a data-dependent non-linear feedback loop, which makes the ACSU to

be the bottleneck in high-speed implementations of VD [15].

Various methods have been introduced to break the ACSU-bottleneck. One

12



CHAPTER 1. INTRODUCTION

approach is to transform the structure of ACSU to reduce the length of the critical

path, such as M-step/1-step algorithm, carry-save algorithm, latch-based parallel

ACS method, and a double-state architecture [4, 13, 15–18, 26, 50]; but there still

exists a speed limit decided by the new critical path. The other approach, which is

presented in [5,14,28], uses block-wise parallel implementation to boost the speed.

The “minimized method Viterbi decoding” approach presented in [14] can increase

the speed infinitely, but, each received sample is processed twice by the VD, and

hence the computational complexity is about twice of conventional VD. The “zero-

shift” method presented in [28] requires the information source to insert K zeros

after each block, where K is the memory length of the channel/target/code. Hence

this method results in performance loss due to loss in information rate, unless the

block length is sufficiently large. Further, the “reset method” used in [28] to avoid

the loss in information rate resets the memory content of the Markov source be-

fore transmitting a new subblock. But it may lead to performance loss due to

the insufficient truncation length of the trellis and result in different (and unde-

sirable) error event distribution compared to conventional VD. The sliding block

Viterbi decoder (SBVD) of Black and Meng [5] results in unlimited concurrency

and hence high throughput due to independent block decoding. A look-up table

implementation of the sliding block decoding approach was earlier proposed by

Tzou and Dunham [51]. The SBVD approach does not impose any constraint on

the encoding process in comparison to the approach of Lin and Messerschmitt [28].

Moreover, it is truly a maximum likelihood (ML) decoding algorithm, and hence its

performance upper bounds that of the “minimized method” of Fettweis et al. [14].

Therefore, in this thesis, we focus on the application of sliding block approach

for signal detection on PR equalized magnetic recording channels, which is called

sliding block Viterbi detector (SBVDet) in this thesis.

13
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1.5 Motivation and Summary of

the Present Work

In this thesis, we focus on signal processing techniques for high-density magnetic

recording channels with jitter noise and high-speed implementations of VD. Our

motivation lies in the need for low-complexity and high-speed detection approaches

that have close-to-optimum performances. We design optimum GPR target and

equalizer for perpendicular recording channels with jitter noise, based on MMSE

criterion. We also propose a two-step post-processing approach to improve the

performance of traditional VD approach with minor increase of computational

complexity. We also present an analysis of the performance of SBVDet for magnetic

recording channels for the purpose of designing its key parameters.

1.5.1 Joint Design of Optimum PR Target and Equalizer
for Recording Channels with Jitter Noise

The most commonly used approach for modeling media noise is by incorporating

position-jitter and width-variation in the step response. However, to minimize the

effort required in simulating the readback signal as well as to facilitate analyti-

cally feasible approaches for designing equalizer and target, it has been a common

practice to approximate the step response containing position-jitter and width-

variation by using the Taylor series expansion with terms up to first or second

order [10, 34, 37]. This approximation turns out to be quite inaccurate at high

recording densities and/or with large jitter and width-variation. On the other

hand, without making these approximations, the problem of target design has

never been addressed for media noise channels in the literature. Furthermore, the

simulation of the media noise channel is itself a very tedious task without these

approximations.

14
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Therefore, in this thesis, we re-investigate the GPR target design problem

without approximating the channel model. We introduce a new mean square error

(MSE) based cost function considering media noise, electronics noise, and ISI for

jointly designing the equalizer and target. This cost function accounts for the

data-dependent nature of media noise. We also derive expressions for computing

the statistics required for evaluating the coefficients of the optimum GPR target

and linear equalizer. Computational and simulation results are presented to show

that while the targets designed without accounting for the jitter lead to error-

floor in the bit error rate performance, the targets designed by our approach give

significant performance improvement under high jitter conditions, with no sign of

error-floor effect for the range of SNRs considered.

1.5.2 A Novel Post-Processing Approach for Signal

Detection in Channels with Jitter Noise

The GPR targets and equalizers designed by us are shown to be able to reduce

the effect of transition jitter effectively. However, we observe that the BER per-

formance is still much worse than the case without transition jitter in the channel.

This means that the media noise is still a major disturbance in the channel, and

it motivates us to investigate further approaches to combat media noise combined

with the GPR targets and equalizers designed above.

We look into signal detection approaches that account for the data-dependency

of media noise. As mentioned in Section 1.4.2, there are some optimum detection

approaches to combat media noise. However, the computational complexity of

these approaches is much higher than that of normal VD, and is the main obstacle

in using these approaches in practical hard drive systems. Hence, we aim to develop

new approaches that have close-to-optimum performances with moderate increase

in complexity.
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To improve the BER performances of detectors while avoiding the complexity

increase, we propose a novel two-step post-processing approach in this thesis. The

first step is to identify all the possible error regions from the normal VD output

using a simple threshold-based approach, and the second step is to re-detect only

these regions using approaches that can tackle the data-dependent characteristics of

jitter noise. Thus, the complexity increase is mostly limited to the post-processing

regions, which are quite short in length.

Computational and simulation results show that the post-processing approach

can reduce the complexity of the complicated sequence detection approaches with

minor performance loss or even performance enhancement at different SNRs.

1.5.3 Analysis and Design of Sliding Block Viterbi Detec-
tor for Magnetic Recording Channels

As introduced in Section 1.4.3, the SBVDet approach is quite an advantageous

approach to enhance the detection speed. Therefore, we focus on performance

analysis and key parameter design of SBVDet approach for magnetic recording

channels.

Since the SBVDet is a block-wise detection approach, we present a detailed

algorithm to obtain characteristics of all the catastrophic and non-catastrophic

error events for a VD without knowing the starting/ending states of a sequence.

Through the error event analysis and simulation results, we show that SBVDet can

increase the speed of VD without limit and with almost no influence on the BER

performance and error event distribution. We also present an intuitive approach

to do error event analysis for simpler PR targets.
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1.6 Organization of the Thesis

Chapter 2 presents a detailed overview of signal processing techniques for mag-

netic recording. Joint design of optimum generalized partial response target and

equalizer for perpendicular recording channels with jitter noise is addressed in

Chapter 3. In Chapter 4, we present a novel post-processing approach for sig-

nal detection in high-density magnetic recording channels with transition jitter.

Chapter 5 presents analysis of the performance and the design of key parameters

of sliding block Viterbi detector (SBVDet) for magnetic recording channels. Fi-

nally in Chapter 6, we conclude the work reported in this thesis and present some

possible directions of future work.
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Chapter 2

Background on Signal Processing
for Magnetic Recording

In this chapter, we present an overview of widely used channel models for digi-

tal magnetic recording with and without considering media noise. Based on the

channel models, we focus on the signal processing techniques used in the receiver

design, namely, equalization and signal detection to counter-act the channel distor-

tions in magnetic recording channels. As introduced in Chapter 1, PRML approach

is preferable for magnetic recording, and hence we focus on the partial response

(PR) equalization. After that, we review the various optimum and sub-optimum

signal detection algorithms.

2.1 Discrete-Time Channel Model

In this section, we introduce the widely used approach to model the magnetic

recording channel and some discrete-time channel models with and without consider-

ing media noise.
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Figure 2.1: Block diagram of magnetic write/read processes.

2.1.1 Channel with Electronics Noise

We start modeling the magnetic recording system with electronics noise only, which

is usually considered as AWGN.

Part of the schematic of the magnetic recording system from Figure 1.1 is

redrawn in Figure 2.1. The objective of channel modeling is to obtain a mathemat-

ical expression relating the data bits an to the readback signal r̃(t). The write

circuit converts the coded data an ∈ {+1,−1} into the write current c(t). In this

process, the write circuit can be viewed as a linear pulse modulator, and its impulse

response is an ideal rectangular pulse with duration T and amplitude 1.0, given by

p̃(t) =















1 for 0 ≤ t ≤ T

0 otherwise

(2.1)

where T is the bit interval. Hence, the write current waveform c(t) is a rectangular

pulse sequence with amplitude equal to 1.0 or −1.0, corresponding to the bit se-

quence an. The c(t) drives the write head to magnetize the material on the storage

media to saturation in one of the two directions corresponding to the polarity of

c(t). The read head performs flux-to-voltage conversion, which generates a voltage

signal r̃(t) according to the directions of transitions in the magnetization on the

media, or equivalently, according to the transitions in the sequence an. For the

transition from −1 to +1 (i.e., a positive transition), the read head generates the

waveform 2hs(t), where hs(t) is the step response of the channel. For the transition

from +1 to −1 in an (i.e. a negative transition), the read head generates a wave-

form −2hs(t). When there is no transition in an, the read head generates nothing.
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Figure 2.2: Continuous-time model for magnetic recording channel.

Thus, we may model the magnetic recording channel using the step response hs(t)

as

r̃(t) =
∑

n

(an − an−1)hs(t− nT ) + ṽ(t) (2.2)

where ṽ(t) is the electronics noise, which is AWGN. Equivalently, we may define

the bit response of the channel as hb(t) = hs(t)− hs(t− T ) and model the channel

as

r̃(t) =
∑

n

anhb(t− nT ) + ṽ(t) (2.3)

as depicted in Figure 2.2. Note that we can also define a transition response of the

channel as

htr(t) = 2hs(t). (2.4)

Sufficient statistics for recovering the data bits an from analog readback signal

r̃(t) can be obtained by passing r̃(t) through a matched filter with impulse response

hb(−t) and a symbol-rate sampler to sample the matched-filter output at rate 1/T

samples/sec [19]. But in practice, accurate channel response hb(t) might not be

known, and hence a low-pass filter (LPF) is usually used in place of the matched

filter.

Since the data rate is 1/T , the desired bandwidth is also 1/T . If the bandwidth

of the channel hb(t) exceeds 1/T , over-sampling with a sampler rate 1/Ts (i.e. Ts <

T ) is used instead of 1/T to ensure that the detection performance is insensitive

to the sampling phase [20]. Here Ts is chosen such that the bandwidth of hb(t)
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is less than 1/Ts. Therefore, the equalizer that follows the sampler should be a

fractionally-spaced equalizer (FSE) with tap-spacing Ts < T . For high-density

magnetic recording, the bandwidth of hb(t) is usually less than 1/T , and hence

over-sampling and the associated FSE are not necessary. Since our focus in this

thesis is high-density recording, we shall henceforth use a T -spaced system model.

Since the channel is strictly band-limited to (− 1
2T
, 1

2T
), the front-end consisting

of an ideal low-pass filter in the band (− 1
2T
, 1

2T
) and a bit-rate sampler can also

provide a set of sufficient statistics for recovering the data bits an.

After passing r̃(t) through an ideal low-pass filter of bandwidth 1/T and a

T -spaced sampler, the resulting discrete-time signal r(mT ) can be written as

r(mT ) =
∑

n

anhb(mT − nT ) + v(mT ) (2.5)

where r(t) and v(t) are the low-pass filter outputs corresponding to r̃(t) and ṽ(t),

respectively, and mT denotes the mth sampling instant, with m being an integer.

Let rm, hm and vm denote r(mT ), hb(mT ) and v(mT ), respectively. Thus, we

obtain the discrete-channel model as

rm =
∑

n

anhm−n + vm (2.6)

as depicted in Figure 2.3. Since ṽ(t) is white, the power spectral density of the

filtered noise v(t) is also white in the band (− 1
2T
, 1

2T
). Consequently, the sampled

noise vm is a discrete-time white noise. The power of vm is given by N0

T
where N0

2

is the power spectral density of ṽ(t). Further, vm is also Gaussian since ṽ(t) is

Gaussian.

Based on experimental data, the step response in longitudinal recording is well
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Figure 2.3: Discrete-time model for magnetic recording channel.

modeled by the Lorentzian pulse [33] given by

hs(t) =
Vp

1 +
(

2t
T50

)2 (2.7)

where Vp is half of the base-to-peak amplitude of isolated transition response, and

T50 is the temporal width of the pulse at its 50% amplitude level. T50 is also related

to normalized linear density Dc by T50 = DcT .

In perpendicular recording, the isolated step response is widely modeled either

by an arctangent function [40] as

hs(t) =
Vp

π
arctan

(

2t

T50

)

(2.8)

or by a hyperbolic tangent function [45] as

hs(t) =
Vp

2
tanh

(

ln 3

T50
t

)

(2.9)

where T50 is the time required for hs(t) to rise from −Vp/4 to Vp/4. As before, we

can define the normalized linear density as Dc = T50/T . The channel signal-to-

noise ratio (SNR) is defined as

SNR = 10 log10

(

V 2
op

σ2
v

)

(2.10)
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where Vop = 2Vp and σ2
v is the variance of vn. In this thesis, we will be using the

hyperbolic tangent function based perpendicular channel model.

In practice, we can truncate the sampled bit response of the recording channel,

since the bit response tends to zero as t goes to +∞ or −∞. Thus the resulting

channel model with electronics noise can be written as

rn =
Nc−1
∑

m=0

amhn−m + vn (2.11)

where Nc is the effective length of the sampled bit response hn after truncation.

2.1.2 Media Noise Model

As mentioned in Chapter 1, media noise becomes one of the dominant noise sources

in high-density magnetic recording. Hence, it is important to model the media

noise accurately in the development and study of detection techniques.

Widely used channel models incorporating media noise include the microtrack

model [8], the signal-dependent autoregressive channel model [24] and the position

jitter and width variation model [37]. The starting point for all these models is the

fact that the main physical phenomenon responsible for media noise is the random-

ness associated with the shape of magnetization transitions on the medium [47].

Therefore, we shall focus on the position-jitter-width-variation model because that

is more fundamental and closely related to the physical mechanisms responsible for

generating media noise [30]. Because the position jitter effect is the major media

noise effect and also for the sake of simplicity, we only consider position jitter effect

in this thesis. Therefore, the channel model with media noise can be written as

r(nT ) =
∑

m

bmhs(nT −mT + ∆m) + v(nT ) (2.12)
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where {bm} is the corresponding transition sequence (i.e., bm = am − am−1) with

bm ∈ {+2, 0,−2}, and ∆m is the jitter in the transition at position m. The jitter

sequence {∆m} is modeled as a sequence of independent Gaussian random variables

which are truncated to the region (−T/2, T/2).

For the sake of convenience in doing equalization and performing analysis,

Taylor series based expansion is usually used to simplify the channel model (2.12).

For example, first-order transition jitter model can be written as

r(nT ) =
∑

m

bmhs(nT −mT ) +
∑

m

bm∆mh
p
s(nT −mT ) + v(nT ) (2.13)

where hp
s(nT − mT ) = ∂hs(t)

∂t
‖t=(n−m)T . Thus, (2.13) models the media noise as

data-dependent additive noise. Based on this simplification, analysis of linear

equalization and optimum detection have been done in [34, 37].

However, we know that the first-order approximation based simplified model

(2.13) is acceptable only when the variance of transition jitter is small. But in

high-density magnetic recording, the variance of transition jitter is actually quite

large. Therefore, the first-order model (2.13) is quite inaccurate for high-density

recording. In Chapter 3, we will look at the development of more accurate models.

2.2 Linear Partial Response Equalization

The purpose of equalization is to compensate for the distortions introduced by the

channel on the data. We consider two channel distortions, namely, inter-symbol-

interference (ISI) and channel noise, in this section.

The equalizer can be classified into full response and partial response (PR)

equalizers [3]. Full response equalizer tries to remove all the ISI while PR equalizer

tries to equalize the channel response into some predefined partial response. The
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partial response allows some known ISI to remain over a short-span. In high-

density magnetic recording, PR equalization based PRML system outperforms full

response equalization based approach. This is because the high-density channels

are quite band-limited in nature and hence full response equalization results in

excessive noise enhancement.

Zero-forcing (ZF) and mean square error (MSE) are the two most widely used

criteria for equalizer design [3]. The ZF approach tries to force the unwanted ISI to

zero, but this may result in serious noise enhancement, especially in high-density

magnetic recording. On the other hand, the MSE based approach tries to minimize

the error at the equalizer output, and thus effectively reduce noise enhancement

by allowing some residual ISI to remain at the equalizer output.

There is yet another kind of equalizer called decision-feedback equalizer (DFE),

which is non-linear in nature [33]. The DFE based approach does not utilize the

signal energy completely and has the added disadvantage of error-propagation.

Hence, we will not discuss it further in this thesis.

In the following, we focus on PR equalization which is part of the PRML

approach widely used in magnetic recording.

2.2.1 Zero-Forcing Partial Response Equalization

Figure 2.4 depicts the zero-forcing PR system model. Let {gk} denote the prede-

fined PR target response with G(z) being its z-transform. Similarly, let {wk} and

W (z) denote the impulse response and z-transform, respectively, of the equalizer.

The z-transform of the channel bit response hn is denoted by Hb(z).

The ZF criterion requires the unwanted ISI to be zero, thus we get the optimum

PR-ZF equalizer as

Wo(z) =
G(z)

Hb(z)
. (2.14)
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Figure 2.4: Schematic of zero-forcing partial response equalization. The equalizer W (z)
is chosen such that Hb(z)W (z) = G(z), where G(z) is the PR target.

The resulting equalizer output can be written as

yn =
∑

k

gkan−k + v̂n (2.15)

where v̂n is the noise component at the equalizer output with power spectrum

density (PSD) given by

Φv̂v̂(e
jωT ) =

N0

2
|Wo(e

jωT )|2 =
N0

2

|G(ejωT )|2
|Hb(ejωT )|2 (2.16)

with ω being the frequency in radians/sec.

We can see from (2.16) that the ZF-PR equalizer is in general an infinite impulse

response (IIR) filter, and thus may have the problem of instability. Even if the

filter is stable, the noise enhancement is inevitable for magnetic recording. Since

the channel {hk} is infinitely long while the PR target {gk} is very short in length,

it is almost impossible for |G(ejωT )| to match |Hb(e
jωT )| at all the frequencies.

The mis-match that happens in the frequency regions corresponding to close-to-

zero values of |Hb(e
jωT )| causes severe noise enhancement. Even worse, when the

channel response has intervals of zeros, the PR-ZF might not exist for finite-length

PR target responses.
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Figure 2.5: Schematic of MMSE partial response equalization.

2.2.2 Mean Square Error PR Equalization

To minimize the noise enhancement of ZF equalizers, we now consider equalizers

based on MSE criterion. Figure 2.5 depicts the schematic illustrating MSE based

PR equalization. The delay ‘K’ is meant to account for the delay from channel

input to equalizer output. The equalizer is designed to minimize the mean square

error between the desired output of the equalizer (i.e., target output dn) and the

actual output yn, and hence it is called minimum mean square error PR equalizer

(MMSE-PR).

The error signal en is given by

en = dn − yn

=
∑

k

gkan−K−k −
∑

k

(h⊗ w)kan−k −
∑

l

wlvn−l (2.17)

where ‘⊗’ denotes convolution. Note from Figure 2.5 that the PSD of yn is given

by1

Φyy(e
jωT ) = Φaa|Hb|2 + Φvv (2.18)

where Φvv(e
jωT ) and Φaa(e

jωT ) are the PSDs of vn and an, respectively. Therefore,

1For the sake of convenience, we have left out the argument ‘(ejωT )’ from the frequency-
domain quantities Φaa(ejωT ), Hb(e

jωT ), W (ejωT ), Φvv(e
jωT ), G(ejωT ) and Φyy(ejωT ) on the

right side of (2.18) to (2.22).
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with G̃(ejωT ) = e−jωKTG(ejωT ), the PSD of en is given by

Φee(e
jωT ) = Φaa|HbW − G̃|2 + Φvv|W |2

= |G|2
[

Φaa

∣

∣

∣

∣

Hb
W

G̃
− 1

∣

∣

∣

∣

2

+ Φvv

∣

∣

∣

∣

W

G̃

∣

∣

∣

∣

2
]

= |G|2
[

Φyy

∣

∣

∣

∣

W

G̃
− ΦaaΦ

−1
yy H

∗
b

∣

∣

∣

∣

2

+ ΦaaΦvvΦ
−1
yy

]

(2.19)

which result in the optimum equalizer to be

Wo(e
jωT ) =

ΦaaH
∗
b G̃

Φyy
=

ΦaaH
∗
bGe

−jωKT

Φaa|Hb|2 + Φvv
. (2.20)

where ‘∗’ denotes complex conjugation. Substituting (2.20) in (2.19), we obtain

the optimum error PSD as

Φee(e
jωT ) =

ΦaaΦvv|G|2
Φyy

=
ΦaaΦvv|G|2

Φaa|Hb|2 + Φvv
. (2.21)

From (2.21), we can see that target G(ejωT ) should be chosen such that

|G(ejωT )|2 ∝ Φaa|H|2 + Φvv

ΦaaΦvv
(2.22)

to make the error en white, which means that there is no noise enhancement at

all. But, this would require infinite-length target response. In other words, noise

enhancement and error correlation cannot be avoided completely with finite-length

target responses.

The above analysis is in frequency domain where we assumed infinite-length

equalizer. But in practice, we can only have finite-length equalizers. Thus, it is

important to show the results for finite-length equalization here.

Let Ng, Nw and Nh denote the lengths of target response, linear equalizer and
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channel response, respectively, and

w = [w0, w1, · · · , wNw−1]
T

yn = [yn, yn−1, · · · , yn−Nw+1]
T

g = [g0, g1, · · · , gNg−1]
T

an = [an, an−1, · · · , an−Ng+1]
T . (2.23)

Then, we get

en = dn − yn =

Ng−1
∑

i=0

gian−K−i −
Nw−1
∑

i=0

wiyn−i

= gTan−K − wTyn. (2.24)

Using this, we can get the MSE as

E[|en|2] = E[(dn − wTyn)2]

= E[d2
n] − pTw −wTp + wTRyw

= E[d2
n] − 2wTp + wTRyw (2.25)

where p = E[yndn] and Ry = E[yny
T
n ]. Setting the gradient of E[|en|2] with

respect to w to zero, we can obtain the optimum MMSE solution for finite-length

PR equalizer as

wo = R−1
y p. (2.26)

In summary, MMSE-PR equalizer reduces ISI and noise enhancement at the

same time. In general, it results in better performance than ZF-PR equalizer,

especially at low SNRs. However, as we noted earlier, noise enhancement and

error correlation can not be avoided completely for finite-length target responses.
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On the other hand, optimality of Viterbi detector requires the error en to be

white Gaussian. These remarks lead us to the following problem: How to design

optimum finite-length PR target response and the associated finite-length equalizer

to result in enhanced detection performance from Viterbi or Viterbi-like detectors?

In response to this, we consider the design of target and equalizer in Chapter 3

and the modification of detection strategy in Chapter 4.

2.3 Optimum Signal Detection

In this section, we deal with optimum signal detection. The aim of detection is

to recover the transmitted (or stored) data as reliably as possible. In channels

with memory, it is natural that sequence detectors outperform symbol-by-symbol

detectors. Hence, sequence detectors are widely used in magnetic recording. There-

fore, we also focus on sequence detection in this thesis.

Let the vector y denote the received sequence of samples at the output of the

linear equalizer, and let the vector â denote the corresponding sequence of bit

decisions at the detector output. The goal of a sequence detector is to find the

detected bit sequence â such that the probability of correct decision is maximized.

Thus, the optimum detection criterion is the maximum-a-posteriori (MAP) criter-

ion, which means that the detected sequence is the sequence such that the probabi-

lity Pr(â|y) is maximized.

Using Bayes’ rule, we can write

Pr(â|y) =
p(y|â)

p(y)
(2.27)

where p(y|â) is the likelihood function of receiving y when â is transmitted. The

detection of a based on maximization of the likelihood is called the maximum-
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likelihood (ML) approach for optimum detection. It can be observed that ML

detection is equivalent to MAP detection when all possible transmitted sequences

are equally probable. In general, ML approach is simpler to implement, and hence

it is more preferred in magnetic recording.

2.3.1 ML Sequence Detection and Viterbi Algorithm

The Viterbi algorithm (VA) is widely used for data detection in magnetic recording.

When the error at equalizer output is assumed as AWGN, the VA is an efficient

implementation of maximum likelihood sequence detection (MLSD). We give a

short description of MLSD and VA in this section.

The output signal of linear equalizer can be expressed as2 (see Figure 2.5)

yn =

Ng−1
∑

i=0

gian−i + en = dn + en (2.28)

with

dn = an +

Ng
∑

i=1

gian−i (2.29)

where we assume g0 = 1 without loss of generality.

The MLSD will give the output data vector according to

â = arg
{

max
ã

p(y|ã)
}

(2.30)

where ã is one of the possible transmitted data sequence. For a sequence length N ,

MLSD computes the conditional joint probability density function (pdf) p(y|a) for

each of the 2N possible transmitted sequences and chooses the one that maximizes

the joint pdf.

2For the sake of notational convenience, we suppress the delay K while writing yn and dn.
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If we further assume the error signal en to be AWGN with its variance σ2
e , we

can write

p(y|ã) =
N−1
∏

n=0

p(yn|ã)

=

N−1
∏

n=0

1
√

2πσ2
e

exp

(

−|yn − d̃n|2
2σ2

e

)

=

(

1
√

2πσ2
e

)N

exp

(

−
∑N−1

n=0 |yn − d̃n|2
2σ2

e

)

where d̃n =
∑Ng−1

i=0 giã(n − i). Since σ2
e is a constant and exp(.) is a monotonic

function, maximizing p(y|ã) is equivalent to minimizing

J(ã) =

N−1
∑

n=0

|yn − d̃n|2 = ||y − d̃(ã)||2 (2.31)

which is nothing but the Euclidean distance between the received vector y and the

noiseless ideal equalizer output d̃(ã) computed by assuming ã as the transmitted

data sequence.

Because the number of candidate sequences grows exponentially with N , the

computational complexity required to implement the detector based on minimizing

the Euclidean distance in (2.31) also grows exponentially. Therefore, it is almost

impossible to implement the MLSD using (2.31), even though the detector based

on (2.31) is already much simple compared to that based on (2.30).

The VA is an efficient algorithm for implementing the Euclidean distance min-

imization implied in (2.31). For the channel with finite memory, the noiseless

output can be expressed using a finite-state representation. The principle of VA

is to search for the optimum path through the trellis defined for this finite-state

representation. Figure 2.6 depicts an example of the trellis for a channel with

memory of 2 bits. A continuous line connecting two states represents an input bit
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Figure 2.6: The trellis for a channel with memory of 2 bits. The states of the finite-
state representation are given by S1, S2, S3 and S4, and the transition from one state
to another represents the input data bit an associated with the path (or data sequence)
that passes through this state transition.

to be +1 while a dotted line represents an input bit to be −1. Note that each

possible transmitted data sequence has a corresponding unique path through the

trellis.

Let ak be the kth path through the trellis. Then, define J(ãk) in (2.31) as the

path metric (PM) associated with this path (or, the kth candidate sequence) ak,

and BMk(n) = |yn−d̃k,n|2 as the nth branch metric (BM) associated with ak. Here,

dk,n denotes the noiseless output of the equalizer at instant n corresponding to the

candidate sequence ak. It is clear that the path metric of any candidate sequence

is the sum of all the corresponding branch metrics. Since PMk(l) =
∑l

i=0BMk(i)

is the path metric associated with candidate sequence ak up until the lth instant,
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we can update the path metric as

PMk(l) = PMk(l − 1) +BMk(l). (2.32)

As can be seen from Figure 2.6, each candidate sequence corresponds to one

particular path through the trellis, and we can see that more than one path may

arrive at any particular state at the same time. Assume that paths a1 and a2 pass

through the same state Si at instant m, and let PM1(m) > PM2(m). Consider

a path b from state Si at instant m to the end of the sequence, and let the

path metric associated with b be PMb =
∑N

i=(m+1) BMb(i). We can see that for

any full sequence â1 = {a1,b}, there exists a sequence â2 = {a2,b} such that

PMâ2
(m) < PMâ1

(m). This means that any path which has a1 in its beginning

cannot be the optimum path, and hence all such paths can be eliminated from the

search. Furthermore, this elimination of paths can be done at instant m instead of

instant N . Thus, we can significantly simplify the search process. The path which

results in the minimum partial path metric is called survivor path associated with

the state Si at instant m. During the searching process, we only need to save the

survivor paths for each state, and finally get the overall optimum path at instant

N .

It is clear that the path elimination process described above results in dropping

half of the candidate sequences at each instant. This results in huge savings in

computations and storage. In general, the computational complexity of VA in-

creases linearly with N instead of being exponential. This is the advantage of VA

compared to direct MLSD.

Finally, note that the VA is equivalent to optimum MLSD only when the chan-

nel noise is AWGN. Once this assumption is violated, the performance of VA will

not be optimum or may be degraded badly. Thus, for the PRML system, the error
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signal en at the input to the Viterbi detector (VD) is required to be as close to

AWGN as possible. This requires a better PR target response and equalizer design

so as to result in close-to-white error signal. Or, a noise-whitening filter can be in-

serted between the equalizer and the VD, resulting in the so-called noise-predictive

maximum likelihood (NPML) sequence detector [12]. But NPML makes the effec-

tive channel response different from that defined by the original PR target, and

hence the trellis structure of VD should be changed accordingly.

From the point of view of VD, it is easy to see why we would like to shape the

channel response into a PR target with shorter length. Note that the number of

states in the trellis increases exponentially with the increase of channel memory.

Since the channel response of magnetic recording is usually very long, we need PR

equalization to shorten the channel response so that VD can be employed with

affordable complexity in hardware and computations.

2.4 Summary

In this chapter, we introduced the discrete-time channel model of digital magnetic

recording channel with and without considering media noise. From the introduc-

tion, we can see that more accurate channel model without simplification such

as the Taylor expansion needs to be used to handle the signal detection problem

for high-density magnetic recording. Thereafter, we gave an overview of various

signal processing techniques used in magnetic recording to recover the user bits

reliably. We focused on the widely used PRML approach which comprises a partial

response equalizer and Viterbi detector. Basic concepts related to PR equalizer

and sequence detection were also presented.
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Chapter 3

Joint Design of Optimum PR
Target and Equalizer for
Recording Channels with Jitter
Noise

In this chapter, joint design of optimum generalized partial response (GPR) target

and equalizer for perpendicular recording channels with jitter noise is addressed.

We start with a discussion of a few different approaches for modeling high-density

magnetic recording channels with media noise. Thereafter, we introduce a new

cost function and derive an approach to compute optimum GPR target and equal-

izer based on minimum mean square error (MMSE) criterion. Computational and

simulation results are also presented. We also present some additional comments,

highlighting the distinctiveness of our work reported in this chapter. The work

reported in this chapter has been accepted for publication in IEEE Trans. Mag-

netics [56].

3.1 Models for Channel with Media Noise

The magnetic recording channels are usually modeled by bit response hb(t) or step

response hs(t), where hb(t) = hs(t) − hs(t − T ) and T is the bit period. Since
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the recording channel can be assumed to be band-limited at high densities, we use

bit-rate sampled readback signal in this chapter. The resulting readback signal

samples with only electronics noise can be written as

rn =
∑

m

amhb(nT −mT ) + vn

=
∑

m

bmhs(nT −mT ) + vn (3.1)

where {an} is the recorded bit sequence with an ∈ {−1,+1}, {bn} is the corre-

sponding transition sequence with bn = an − an−1 and bn ∈ {+2, 0,−2}, and vn is

white Gaussian electronics noise with variance σ2
v .

Widely used channel models incorporating media noise include the microtrack

model [8], the data-dependent autoregressive model [24], and the position jitter and

width variation model [37]. We focus on the position jitter and width variation

model in this chapter. Since position jitter effect is the major media noise effect

[36], we only consider position jitter in this chapter. Thus, the readback signal

with media noise can be written as

rn =
∑

m

bmhs(nT −mT + ∆m) + vn (3.2)

where ∆m is the jitter in the position of transition corresponding to bm and {∆m}

are modeled as independent Gaussian random variables truncated to the range

(−T/2, T/2) with mean zero and variance σ2
∆. Clearly, ∆m 6= 0 only if bm 6= 0.

It is easy to note from (3.2) that the presence of jitter causes the duration of

the bits recorded on the medium to be different from T . For example, duration of

the bit am on the medium is given by

Tm = T + ∆m+1 − ∆m. (3.3)

37



CHAPTER 3. JOINT DESIGN OF OPTIMUM PR TARGET AND EQUALIZER

Using this information, we can express the readback signal in terms of the bit

response as

rn =
∑

m

amhb,m(nT −mT − ∆m) + vn (3.4)

where

hb,m(t) = hs(t) − hs(t− Tm) (3.5)

is the bit response corresponding to the bit am of duration Tm. The model (3.4)

is as accurate as (3.2) itself since we did not use any approximations in deriving

(3.4).

For the sake of convenience in generating the readback signal, designing equal-

izer and performing analysis, Taylor expansion is usually used to simplify the

channel model (3.2). For example, first-order approximation of the channel model

with transition jitter is given by

rn ≈
∑

m

bmhs(nT −mT ) +
∑

m

bm∆mhi(nT −mT ) + vn (3.6)

where hi(t) ,
∂hs(t)

∂t
is the impulse response of the channel. Thus the media noise

gets modeled as an additive data-dependent noise. Based on this simplification,

analysis of linear equalization and optimum detection have been done in [34, 37].

We may also derive an approximate model for (3.4), however, using a different

approach. Recall from Section 2.1.1 that the bit response is the convolution of the

channel impulse response hi(t) with the impulse response p̃(t) of the write circuit.

Therefore, we can express hb,m(t) as

hb,m(t) = hi(t) ⊗ p̃m(t) (3.7)

where p̃m(t) is an ideal rectangular pulse of duration Tm (instead of T ) and ampli-
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tude 1.0. Therefore, the Fourier transform of hb,m(t) can be expressed as

Hb,m(f) = Hi(f)P̃m(f) (3.8)

where Hi(f) and P̃m(f) are the Fourier transforms of hi(t) and p̃m(t), respectively,

with

P̃m(f) = Tm
sin(πfTm)

πfTm
e−jπfTm. (3.9)

At high densities, much of the energy in Hi(f) is contained well within the null-

to-null bandwidth of P̃m(f). Therefore, we may approximate Hb,m(f) as [27]

Hb,m(f) ≈ Tm
sin(πfT )

πfT
Hi(f)e−jπfT , (3.10)

whose time-domain equivalent is

hb,m(t) ≈ Tm

T
hb(t). (3.11)

Substituting (3.11) in (3.4), we obtain

rn ≈
∑

m

ãmhb(nT −mT − ∆m) + vn (3.12)

where

ãm = am
Tm

T
. (3.13)

Thus, the approximation amounts to a multiplicative change in the bit-amplitude

and a shift in the bit-position, while the bit response is computed based on the

bit-duration T . The model in (3.12) may be further approximated using Taylor
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expansion to derive a model similar to (3.6) as

rn ≈
∑

m

ãmhb(nT −mT ) −
∑

m

ãm∆mh̃i(nT −mT ) + vn (3.14)

where

h̃i(t) =
∂hb(t)

∂t
= hi(t) − hi(t− T ). (3.15)

Comparing the approximations made in deriving (3.6), (3.12) and (3.14), we can

see that the approximate model (3.12) will be more accurate compared to (3.6)

and (3.14) for large jitter.

The simplified models are acceptable only when the standard deviation σ∆ of

jitter is small enough compared to the bit duration T . But, the jitter becomes

quite large at high densities, thus making the simplified models inaccurate. Hence

in this chapter, we focus on the media noise problem based on the channel model

(3.2), which gives a clearer and accurate picture of the effect of media noise on the

readback signal without any approximations. Even though the exact models given

by (3.2) and (3.4) are equivalent, we choose (3.2) for our study in this chapter

since it leads to some ease in theoretical analysis compared to (3.4), as explained

at the end of Section 3.2.1.

In this chapter, we use the hyperbolic tangent function based perpendicular

magnetic recording channel, given in Section 2.1.1 (see Eq.(2.9)).

3.2 Optimum Joint Target and Equalizer Design

Figure 3.1 shows the block schematic used for the joint design of the GPR target

G(z) and equalizer W (z). For this design, we use the widely used MMSE approach,

that is, by minimizing E[e2n] where E[·] denotes the expectation operator. The
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Figure 3.1: Joint PR equalizer and target design for channels with jitter noise.

equalizer output yn and target output dn are given by

yn = wT rn and dn = gTan, (3.16)

where superscript ‘T ’ denotes transpose, w = [w−K , w−K+1, · · · , wK−1, wK ]T is the

equalizer with length Nw = 2K + 1, g = [g0, g1, · · · , gNg−1]
T is the target with

length Ng, rn = [rn+K , rn+K−1, · · · , rn−K ]T , an = [an, an−1, · · · , an−Ng+1]
T , and the

positive integer K accounts for the delay from channel input to equalizer output1.

First we review the results for recording channels without media noise. Thereafter,

we introduce a new cost function for channels with media noise and derive the

expressions required for computation of the statistics required for designing the

optimum equalizer and target.

For the channel without media noise, the mean square error (MSE) at the

equalizer output is given by [35]

E[e2n] = wTRw + gTAg − 2wTPg, (3.17)

where R = E[rnr
T
n ] is a N × N auto-correlation matrix of the channel output

rn, A = E[ana
T
n ] is a Ng × Ng auto-correlation matrix of the input data an, and

P = E[rna
T
n ] is a N ×Ng cross-correlation matrix between rn and an.

To minimize the MSE in (3.17) while avoiding the trivial solution g = 0 and

1In Chapter 2, we accounted for the delay parameter K in the target path in Figure 2.5.
Making the equalizer noncausal as in Figure 3.1 is equivalent to this.
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w = 0, some constraint needs to be imposed. The widely used monic-constraint

(i.e. g0 = 1) has noise whitening ability since it results in an equalizer that is

equivalent to the forward equalizer of the MMSE solution of decision feedback

equalization [57]. Hence we focus on the design problem using monic-constraint in

this chapter.

The results of the monic constrained MMSE design for channels without media

noise are given by [35]

λ =
1

iT (A − PTR−1P)−1i
, (3.18)

g = λ(A −PTR−1P)−1i, (3.19)

w = R−1Pg, (3.20)

where λ is the Langrange multiplier and i = [1, 0, 0, · · · , 0]T is a vector of length

Ng.

Now we consider the channel model with jitter noise as shown in Figure 3.1.

Since jitter noise is data-dependent and non-stationary, the optimum equalizer and

target should also be data-dependent and hence time-variant, which may require

unaffordable complexity. Also, any statistical computation done on the channel

output will need to incorporate the data-dependence of media noise. On the other

hand, prior to Viterbi detection, we have no idea about the recorded bit sequence

and thus we can not know what are the specific noise characteristics that must be

used for designing the equalizer and target for each instant. Therefore, we use the

following approach to circumvent these issues. We use the squared error averaged

over all possible recorded sequences as our cost function to minimize, which is

given by

ξMSE =
∑

b̄

E[e2n|b̄] Pr(b̄), (3.21)

where {b̄} denotes any possible recorded sequence. Note that this cost func-
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tion combines ISI, electronics noise and media noise into one function. At the

same time, this cost function accounts for the data-dependent nature of the media

noise, with the sequences that result in more jitter noise (i.e. more transitions)

receiving more weightage in the cost function, and vice versa. Thus, even though

the cost function ξMSE and the resulting optimum equalizer and target are data-

independent, the construction of the cost function ensures that the optimum so-

lution is implicitly tuned to respond to the different data sequences in accordance

with the amounts of jitter noise caused by these sequences.

Based on this new cost function, it is straight-forward to see that the optimum

equalizer and target are still given by (3.18)-(3.20) except that the matrices R, P

and A are now defined as

R̄ =
∑

b̄

E[rnr
T
n |b̄] Pr(b̄), (3.22)

P̄ =
∑

b̄

E[rna
T
n |b̄] Pr(b̄), (3.23)

Ā =
∑

b̄

E[ana
T
n |b̄] Pr(b̄). (3.24)

In this chapter, we assume all the data patterns to be equally probable. Hence,

we have Ā = A. Computation of the conditional statistics required for R̄ and P̄

is not a trivial numerical problem and is the major task here. There arise some

issues in this numerical computation process caused by the channel model in (3.2),

which are discussed below.

3.2.1 Truncation of the Step Response

The step response of perpendicular recording channel has infinite length and hence

we need to truncate it while doing simulations. When truncating the step response,

we should ensure that there does not arise any instability or inaccuracy due to
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truncation. Since the step response given by (2.9) does not tend to zero at positions

far from the transition position, we cannot simply truncate the step response to

some range around t = 0.

By comparing the step response and bit response, we can solve the truncation

problem. When we use truncated bit response for simulating perpendicular mag-

netic recording channels, it works fine because the tails of bit response tend to

zero at positions far from the bit position. However, underlying this approach is

a hidden assumption that the input bits before the first bit and after the last bit

are 0. This means that we should have transitions with level +1 or −1 at the

starting bit position and the ending bit position of the data pattern, whereas the

transition levels inside the data pattern are +2,−2 or 0. Therefore, if we add two

extra transitions with levels +1 or −1 at the two ends of the transition sequence

according to the bits recorded, we can use step response to do simulations instead

of bit response. With this change, we can now truncate the step response such

that it reaches saturation on both sides and the length on each side is greater than

the length of the data pattern under consideration.

In the absence of jitter noise, it can be shown that the truncation of step

response is equivalent to truncation of bit response, and hence either step response

or bit response can be used in simulations and computations. When jitter noise

is present, we prefer to use step response instead of bit response because the

responses due to different transitions are independent given a data pattern while

this property does not hold for bit response (see (3.2)-(3.5)).

3.2.2 Computation of Matrices R̄ and P̄

To get the optimum solution, we need to compute the correlation matrices R̄ and

P̄ given by (3.22) and (3.23), respectively. Clearly these can only be obtained

through numerical computations since there are no closed-form expressions.
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In jitter noise dominated high-density perpendicular recording channels, the

matrix R̄ is found to be highly ill-conditioned with some of its eigenvalues close

to zero. Hence, it is important to avoid numerical inaccuracy as much as possi-

ble. Therefore, instead of resorting to data-averaging to estimate the conditional

correlations, we developed a rigorous analytical approach and the solution of which

can be computed numerically. The detailed computation process is as follows.

First of all, we note that by defining the cost function ξMSE in (3.21) as the

averaged squared error over all possible data patterns, the data-dependence and

associated non-stationarity caused by jitter noise are taken care of. In other words,

the data-dependent averaging converts the underlying non-stationary problem into

a wide-sense stationary problem2. As a result, the matrix R̄ is a toeplitz symmetric

matrix. Therefore, to compute R̄, we only need to develop the expression for

E[rkrk−n], where {rn} is the equalizer input given by (3.2). From (3.22), we get

E[rkrk−n] =
∑

b̄

E[rkrr−n|b̄] Pr(b̄). (3.25)

For the sake of convenience, we shall re-write (3.2) as

rk = r̃k + vk =
∑

i

bih(i, k) + vk (3.26)

where r̃k denotes the signal without including the electronics noise and h(i, k) ,

hs(kT−iT +∆i) denotes the step response at the position kT due to the transition

at position iT . Therefore, we get

E[rkrk−n] = φ̃k,n + σ2
vδn (3.27)

2This statement is true only if the data {an} is wide-sense stationary.
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where

φ̃k,n = E[r̃kr̃k−n] =
∑

b̄

∑

i,j

E[bih(i, k)bjh(j, k − n)|b̄] Pr(b̄), (3.28)

with δk = 1 if k = 0 and δk = 0 if k 6= 0.

When i 6= j, h(i, k) and h(j, k − n) are independent, because the transition

jitters at different positions are independent. Thus we need to compute E[h(i, k)|b̄]

and E[h(j, k − n)|b̄] using the probability density function (pdf) of the transition

jitter. The effect of conditioning with data pattern b̄ in E[h(i, k)|b̄] is to know

whether or not there is a transition at position iT . When i = j, h(i, k) and

h(j, k − n) are dependent since they contain the same transition jitter at position

iT . Then we need to compute E[h(i, k)h(i, k − n)|b̄]. Since we assumed that each

data pattern is equally probable, we obtain

φ̃k,n =
1

2Ld−1

∑

b̄

∑

i,j

E[bih(i, k)bjh(j, k − n)|b̄] (3.29)

where Ld is the length of transition sequences considered.

Since each recorded bit is equally probable to be +1 or −1, we can compute

the probability distributions of {bi}. It can be easily shown that

Pr[bi = 2]=Pr[bi = −2] = 1/4 (3.30)

Pr[bi = 0]=1/2 (3.31)

Pr[bi+1|bi = 0]=Pr[bi+1] (3.32)

Pr[bi−1|bi = 0]=Pr[bi−1] (3.33)

Pr[bi+1 = −bi|bi 6= 0]=Pr[bi+1 = 0|bi 6= 0] = 1/2 (3.34)

Pr[bi−1|bi 6= 0]=Pr[bi+1|bi 6= 0] (3.35)
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and the transitions which are not neighbouring to each other are independent.

Hence, substituting (3.30)-(3.35) in (3.29), we get

φ̃k,n =
1

2Ld−1

∑

b̄

∑

i

i+1
∑

j=i−1

E[bibjh(i, k)h(j, k − n)|b̄]

=
1

2Ld−1

∑

b̄

∑

i

i+1
∑

j=i−1

bibjE[h(i, k)h(j, k − n)|b̄]

= 2
∑

i

E[h(i, k)h(i, k − n)]

−
∑

i

E[h(i, k)}E[h(i− 1, k − n)]

−
∑

i

E[h(i, k)]E[h(i+ 1, k − n)]. (3.36)

Thus we see from (3.36) that we do not need to compute the autocorrelation

matrices for each data pattern and sum them up. Instead, we only need to compute

E[h(i, k)] and E[h(i, k)h(i, k−n)] for the transition at position iT . Thus, possible

numerical inaccuracy is highly minimized. Note that E[h(i, k)] is only a function

of k − i, and E[h(i, k)h(i, k − n)] is a function of k − i and k − n− i.

Another thing to note is that each data pattern must start and end with tran-

sitions with amplitude +1 or −1. In other words, b1 and bLd
are equally probable

to be +1 or −1. Thus, the summations in (3.36) will be modified slightly when i

is equal to 1 and Ld. Doing this, we get

φ̃k,n = E[h(1, k)h(1, k − n)] + E[h(Ld, k)h(Ld, k − n)]

+2

Ld−1
∑

i=2

E[h(i, k)h(i, k − n)] −
Ld
∑

i=2

E[h(i, k)]E[h(i− 1, k − n)]

−
Ld−1
∑

i=1

E[h(i, k)]E[h(i+ 1, k − n)]. (3.37)
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Similarly, we can obtain the (p, q)th element of P̄ as

P̄p,q =
∑

b̄

E[rn+K−pan−q|b̄] Pr(b̄)

=
∑

b̄

∑

i

E[h(i, n+K − p)bian−q|b̄] Pr(b̄)

= E[h(n− q, n+K − p)] − E[h(n− q + 1, n+K − p)]. (3.38)

Thus, given the channel step response, jitter pdf and electronics noise power, we

can accurately compute the correlation matrices R̄ and P̄.

3.3 Computational and Simulation Results

As an example, we show here the computational results under the following condi-

tions:

(1)Perpendicular magnetic recording, (2)Effective length of truncated step resp-

onse is 40 bits, (3)Equalizer length Nw = 15, (4)Target length Ng = 5, (5)Linear

density Dc = 2.0, (6)Monic-constraint for target response, (7)Range of transition

jitter is from σ∆/T = 0% to σ∆/T = 10%, (8)At least 1000 error bits are collected

for every estimate of the bit error rate (BER). Conventional Viterbi detector (VD)

with no modifications is used for data detection. The strength of the additive

white Gaussian electronics noise (AWGN) vn is chosen according to the signal to

noise ratio (SNR) defined in Chapter 2 (see Eq.(2.10)). Thus, our SNR definition

includes only the electronics noise.

The optimum GPR targets designed under different jitter variances are shown

in Figure 3.2. The SNR used in this design is 35 dB for all cases. Observe that the

effective target length decreases with increase in jitter. In fact, with 10% jitter,

the optimum target uses only 4 out of the 5 taps provided. Further, the slopes of
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Figure 3.2: Optimal target responses obtained for recording channel with jitter.

the target at the sampling points as well as the bandwidth of the target are seen to

progressively decrease with increase in jitter percentage. These charactersitics are

very desirable to minimize the amount as well as effect of jitter noise at detector

input. Similar observations were reported earlier for longitudinal recording in

[35, 37]. It is also important to note that the target energy keeps decreasing with

increase in jitter, thereby predicting severe degradation in the performance of VD.

In the MMSE and BER performances given in Figures. 3.3 to 3.5, the equalizer

and target are re-optimized for each SNR. Figure 3.3 shows the MMSE, normalized

by the target energy, for different amounts of jitter. Also shown, for the sake of

comparison, is the normalized MSE computed for 5% jitter channel using the

equalizer and target designed for jitter-free case. This curve lies below the MMSE

curve corresponding to 5% jitter channel with corresponding optimum equalizer

and target since the target energy for the jitter-free channel is much higher than

the target energy for 5% jitter channel3, as can be seen from Figure 3.2. What

3If we examine the unnormalized MSE plots corresponding to Figure 3.3, we will find that
the MSE computed for 5% jitter channel using equalizer and target optimized for jitter-free case
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Figure 3.3: Normalized MMSE obtained for recording channel with jitter.

is important to note is that the target optimized for jitter-free case results in an

error-floor in the MSE curve when used on jitter channels. This will lead to similar

error-floor effect in BER performance too. On the other hand, targets optimized

for jitter channels result in monotonically decreasing MMSE, thereby implying that

these targets help to delay the onset of error-floor to much higher SNR values. As

the slopes of these MMSE curves approach zero, we can expect the error-floor to

manifest.

To have a clear idea of the effectiveness of the joint target and equalizer design,

we need to check the BER performance of VD using the targets and equalizers

obtained. Figure 3.44 shows the BER performances using different target responses

and linear equalizers for 3% jitter. Since [1 2 3 2 1] is a widely used standard target

for perpendicular channels [41], we also include the performance of VD with fixed

target [1 2 3 2 1] for the purpose of comparison. The detection performance of

is the highest for all SNRs, which is quite expected. Furthermore, this MSE has its minimum at
SNR=44dB and increases monotonically as SNR is further reduced or increased from 44dB.

4Note that the BER range of interest here is around 10−3 to 10−5, hence we focus on the SNR
regions higher than 30 dB.
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Figure 3.4: BER comparison between designed target responses and fixed target [1 2 3
2 1] for 3% jitter.

VD on a jitter-free channel using a monic-constrained GPR target designed for 0%

jitter is included in Figure 3.4 to serve as a reference for assessing the performance

for other targets. First of all, we note that the performance of fixed target remains

the same whether or not jitter noise is accounted for in the equalizer design. This

shows that the choice of target is highly critical in media noise channels, even as

was observed in [37]. It is also clear from Figure 3.4 that the BER plots for the fixed

target are showing indications of error-floor even as early as 36-38dB. Compared

to this, the monic-constrained GPR targets improve the performance significantly

for channels with jitter, and that too with no indication of error-floor. However,

we note that the performance of the GPR target which is optimized for the jitter

channel is not significantly better than that of the GPR target which is optimized

for jitter-free channel, the gain being just about 0.2-0.3dB. This is mainly because

3% jitter is not large enough to make the overall channel noise strongly data-

dependent in nature, for the range of SNRs considered here. However, we can

expect the effect of jitter to show up if we do the simulation at much higher SNRs.

The simulation conditions chosen for Figure 3.5 help to verify this conjecture.
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Figure 3.5: BER comparison between designed target responses and fixed target [1 2 3
2 1] for 5% jitter.

Figure 3.5 shows the BER performance comparison results for channels with

5% jitter. The advantage of the proposed joint design approach is clearly manifest

in this figure. In particular, the region of interest to us in this chapter is the

very high SNR region where jitter noise is dominant. In this region, the proposed

design approach provides significant improvement in performance while the other

targets exhibit error-floor effect. While the fixed target [1 2 3 2 1] is not even

able to reach a BER of 10−4, the GPR target designed without considering jitter

seems to level off to a BER of 10−5. On the other hand, even at 40dB, there is not

yet an indication of the onset of error-floor for the proposed approach. Thus we

see that the onset of error-floor is much delayed by the GPR target whose design

incorporates the jitter compared to all the other targets.
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3.4 Additional Comments

We shall now comment on some specific aspects of the work reported in this chap-

ter, with the objective of highlighting the distinctiveness of our work from already

published work.

First we comment on the importance of numerical accuracy in the computation

of R̄ and P̄ in Section 3.2.2. Actually, R̄ and P̄ can also be estimated through

data-averaging over a sufficiently large sequence of channel output samples {rn}.

But, the matrix R̄ for jitter dominated perpendicular recording channel turns out

to be highly ill-conditioned. Therefore, since the design equations (3.18) to (3.20)

include matrix inversion operations, any small inaccuracy in R̄ tends to result in

serious impact on the performance. Consequently, the number of samples of rn

needed to keep the estimation error very small becomes excessively large to be

of practical use. On the other hand, by using the expressions developed in this

chapter, we can accurately compute R̄ with very minimum computational and

memory requirements. We may also point out that the use of first-order model

given in (3.6) does not lead to an ill-conditioned R̄. Since all the existing studies

are based on models of the type (3.6), the problem of numerical inaccuracy in the

estimation of R̄ was not encountered.

We choose to use the channel model (3.2) instead of (3.6) in our computations

and simulations in this chapter, since (3.2) is more accurate for high-density record-

ing with transition jitter in the range of 5% to 10%. In fact, for such high jitter, the

first-order model in (3.6) can be grossly in error and the conclusions drawn based

on studies conducted using this model can be misleading. Based on the channel

model (3.2), we also give a rigorous approach to do computations and simulations

using step response instead of bit response. To our knowledge, no work has been

reported in the past on deriving analytical expressions for computing the corre-

lations using the exact model (3.2). There have also been no remarks in existing
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publications on how to do simulation using the exact model (3.2) for perpendicular

recording channels where the underlying step response is of infinite duration. We

also developed a bit response based exact model given by (3.4) for simulating jitter

noise channel. This model makes the simulation effort even easier compared to the

step response based model in (3.2). Further, the approximate model (3.12), which

we developed based on (3.4), is more accurate than the first-order model in (3.6).

The cost function (3.21) used in this chapter accounts for the data-dependence

of media noise in an implicit way even though the expression is data-independent.

It can be seen that sequences with more transitions, which result in more signif-

icant jitter noise effect, will have larger weightage in the cost function, and vice

versa. Thus, the proposed cost function results in a good compromise between

hardware complexity and performance, as an explicitly data-dependent equalizer-

target approach would result in unaffordable complexity levels.

There have been publications on analytical approaches for the design of GPR

target [37, 45]. But, these approaches are based on infinite length equalizers (i.e.

joint design of infinite-length equalizer and finite-length target), even though these

may be replaced/approximated by finite-length equalizers after getting the target.

On the other hand, our proposal is for joint design of equalizer and GPR target

where both the equalizer and target are of finite-length.

In this chapter, the SNR definition (2.10) includes only the electronics noise,

and the effect of transition jitter is measured by the ratio σ∆/T . This is similar to

the approach used in [25,57]. On the other hand, several papers use a different SNR

definition where the noise power is taken as the sum of the powers of electronics

noise and jitter noise, with the jitter noise power computed based on either single

transition or multiple transitions [32, 41, 45]. Since jitter noise and electronics

noise have very different effect on the detection performance, defining the SNR by

adding the powers of these noises may lead to inconsistent results. For example,
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the detection performance for a given SNR could be quite different for two different

compositions (e.g. 25:75, 75:25) of the two noises. For this reason, we choose to

use only the electronics noise in defining the SNR.

Finally, note that our proposal in this chapter is only for designing optimum

equalizer and target. We did not propose any modifications to the detector. On

the other hand, there have been several proposals for developing optimum or sub-

optimum detectors for jitter noise channels, as we reviewed in Section 1.4.2. Our

method is complementary to these proposals for detector modifications. Therefore,

the equalizer and target designed using our approach can be combined with any of

these detection approaches to result in even better performance for data detection

in the presence of jitter noise. In fact, in Chapter 4, we address the problem of

detector modifications for channels with jitter noise.

3.5 Conclusions

In this chapter, we considered high-density perpendicular magnetic recording chan-

nels with jitter noise and proposed a novel approach to jointly design optimum gen-

eralized partial response target and linear equalizer. We investigated the problem

using a step response based channel model without making any approximations

and derived analytical expressions for the statistics required to obtain the optimum

target response and equalizer through minimizing a new MMSE-based cost func-

tion. The resulting GPR targets provide significant gain over targets which are

designed without considering jitter noise. In particular, the GPR targets designed

using the proposed cost function significantly delay the onset of error-floor in the

detection performance compared to other targets.
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Chapter 4

A Novel Post-Processing
Approach for Signal Detection in
Channels with Jitter Noise

In this chapter, we present a novel post-processing approach for signal detection

in high-density magnetic recording channels with transition jitter. We start with

comparing the complexities and BER performances of two sequence detection ap-

proaches with data-dependent mean/variance compensation for the channel noise

and data-dependent noise prediction, respectively, with normal Viterbi detector

(VD). Thereafter, we propose a two-step post-processing approach for signal detec-

tion to combat the jitter noise. The post-processing approach improves the BER

performance of VD significantly with minor increase in computational complexity.

Performance analysis and simulation results are also presented.

4.1 Motivation

In Chapter 3, we presented the design of optimum PR targets and equalizers for

high-density magnetic recording channels with jitter noise. The GPR targets and

equalizers are shown to be able to effectively reduce the degradation in detection

performance caused by transition jitter. However, we observe that (see Figure 3.4)
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the BER performance is still worse than the case without transition jitter. This

means that media noise is still a major disturbance in the channel, and it motivates

us to investigate further approaches to combat media noise combined with the GPR

targets and equalizers designed in Chapter 3.

We look into signal detection approaches that account for the data-dependence

of media noise. As mentioned in Section 1.4.2, there are some optimum detection

approaches to combat media noise. The pattern-dependent noise-predictive ML

detection approach in [34] and the optimum sequence detection approach using

optimized branch metrics in [23] are essentially equivalent. A simpler approach is

to account for the data-dependent mean and variance of media noise in the branch

metrics of normal VD [46, 58]. However, the computational complexity of these

approaches is much higher than that of normal VD, and this is the main obstacle in

using these approaches in practical hard drive systems. Hence, in this chapter, our

objective is to develop new approaches that have close-to-optimum performance

with moderate increase in complexity.

4.2 Existing Signal Detection Approaches to

Combat Media Noise

In this section, we compare the complexity and performances of three existing

detection approaches, which are the normal VD, VD with mean/variance compen-

sation for media noise (VD-MV), and VD with data-dependent noise prediction

(VD-NP).

4.2.1 Computational Complexity

The trellis search algorithms for the three different detection approaches mentioned

above (i.e., normal VD, VD-MV and VD-NP) are essentially the same except that
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the branch metric definitions are different. Thus, we only need to compare the

computation of branch metrics in the three cases. To make a fair comparison and

for simplicity, we assume that the number of states in the trellis is same for all the

three detection approaches.

A. Normal VD

For normal VD, as introduced in Chapter 2, the assumption is that the noise is

AWGN. Therefore, the branch metric at time n for any branch in the trellis is

BMV D,n = |yn − d̃n|2 (4.1)

where yn is the actual equalizer output (or VD input) at instant n and d̃n =

∑Ng−1
i=0 giãn−i is the noiseless output value corresponding to the nth branch on

the particular trellis path defined by the data sequence {ãn}. Thus, computation

of the branch metric requires one subtraction and one multiplication. Here, we

have assumed that the noiseless outputs d̃n are computed before-hand and can be

retrieved from a look-up table.

B. VD-MV

Since media noise is data-dependent, we can modify the branch metric definition in

VD to compensate for the data-dependent mean and variance of the noise samples

[46, 58]. The new branch metric is defined as

BMV D−MV,n =
|yn − d̃n −mn|2

σ2
n

+ ln σ2
n (4.2)
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where mn and σ2
n are the mean and variance, respectively, of the noise sam-

ples which are dependent on the data pattern1 [ãn, ãn−1, · · · , ãn−Ng+1]. Hence,

computation of the branch metric requires three additions/subtractions, one mul-

tiplication, one division and one logarithm.

C. VD-NP

Since the noise samples are data-dependent and correlated, we could make an

estimation of the current noise sample in yn based on the past noise samples by

means of linear prediction, where the predictor coefficients are dependent on the

data-pattern under consideration on the trellis path. To do this, we would need to

incorporate a bank of data-dependent noise predictors in the normal VD [34]. The

linear predictors can be designed based on minimum mean square error (MMSE)

criterion for each data pattern. We get the modified branch metric in the trellis as

BMV D−NP,n =
|yn − d̃n − ên|2

σ̃n
2 + ln σ̃n

2 (4.3)

where ên =
∑n−1

i=n−Np
eifn−i is the estimated noise sample corresponding to path

{ãn} at nth branch, Np is the order of the predictor, [f1, f2, · · · , fNp
] are the pre-

dictor coefficients, en = yn − d̃n is the noise sample at nth branch on path {ãn},

and σ̃2
n is the variance of the residual noise en − ên at the predictor output. Note

that en−1, en−2, · · · , en−Np
are determined by the survivor path associated with the

current branch under consideration. Thus, computation of the branch metric re-

quires Np + 2 additions/subtractions, Np + 1 multiplications, one division and one

logarithm.

In Table 4.1, we summarize the computational complexities of the three differ-

1Strictly speaking, the span of data-dependence need not be limited to
[ãn, ãn−1, · · · , ãn−Ng+1]. Since considering a longer span would lead to exponential in-
crease in trellis size and the associated computations, we restrict the data-dependence span to
[ãn, ãn−1, · · · , ãn−Ng+1].
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Table 4.1: Complexity comparison of branch metric computations for the three detection
approaches VD, VD-MV and VD-NP.

+/− ×
Normal VD 1 1

VD-MV 3 2
VD-NP Np + 2 Np + 2
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Figure 4.1: BER performances of three different detection approaches.

ent detection approaches. It shows that the complexity of VD-MV and VD-NP is

much higher than that of normal VD.

4.2.2 BER Performance

Since VD-MV and VD-NP incorporate the data-dependent characteristics of the

media noise, their resulting BER performances should be better than that of nor-

mal VD. We did some simulations using the 5-tap GPR targets designed in Chap-

ter 3. The SNR is defined as (2.10). Figure 4.1 shows the BER performances

of the three different detection approaches for 5% jitter channel, Np is set to 3

for VD-NP, and at least 1000 error bits are collected for each estimate of BER.

The data-dependent mean and variance used in VD-MV are estimated through

60



CHAPTER 4. A POST-PROCESSING APPROACH FOR SIGNAL DETECTION

��������	 g +
+


������������

��


������������

��


������������

�

������

mN

�

��������������

	�������

�����

��������������

������

�������������������

Figure 4.2: Schematic of the two-step post-processing approach.

collecting a large number of noise samples for each data pattern (here, we collect

over 1.2× 105 noise samples for each data pattern and it is observed that the esti-

mated values have converged well). Similarly, we obtain the data-dependent noise

characteristics that are used to design the data-dependent noise predictors [34].

Figure 4.1 shows that the gain of VD-MV and VD-NP over normal VD is about

1dB at BER of 10−6.

In summary, using VD-MV or VD-NP instead of normal VD, we can improve

the BER performance by about 1dB at the cost of much higher complexity. This

motivates us to explore the development of detection approaches that offer better

trade-offs between BER performance and computational complexity.

4.3 A Two-step Post-processing Approach

To improve the BER performance while avoiding the complexity increase, we

present a novel two-step post-processing approach in this section. The first step

is to identify all the possible error regions from the normal VD output using a

simple threshold-based approach, and the second step is to re-detect only these
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regions using approaches that incorporate the data-dependent characteristics of

jitter noise. Thus, the complexity increase is mostly limited to the post-processing

regions, which are quite short in length.

4.3.1 First Step: Identifying the Possible Error Regions

To identify the possible error regions in the output of normal VD, we generate a

reference signal by passing the output sequence of the normal VD through the ideal

channel whose bit response is the GPR target. Next, we subtract the reference

signal from corresponding real detector input signal, getting

ēn = (an − ān) ⊗ g + ũn + ṽn + κ̃n (4.4)

where {an} is the transmitted data sequence, {ān} is the detected sequence at

normal VD output, g = [g0, g1, · · · , gNg−1] is the GPR target response, and {ũn},

{ṽn} and {κ̃n} are the media noise, electronics noise and residual ISI, respectively,

at normal VD input. When there is no bit error, an − ān = 0, otherwise, (an −

ān) ∈ {+2,−2}. The possible error regions are those where (an − ān) ∈ {+2,−2}.

We want to detect the occurrence of error events in the presence of media noise,

electronics noise and residual ISI. However, if the normal VD makes some error

at certain positions, i.e., the normal VD fails to detect an error event, it is highly

probable that the media noise, electronics noise and residual ISI overwhelm the

signal {ān − an} ⊗ g. Thus, to be able to find out the possible bit error regions

accurately, we need to filter out the distortions out of the signal {ēn}, as much as

possible, in the first place.

Figure 4.3 shows the estimated spectra of the three distortions for 5% jitter

channel with SNR=36dB. In comparison, Figure 4.4 shows the estimated spectra

of the four most dominant error events after passing through the GPR target.
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Figure 4.3: Spectra of residual ISI, electronics noise and media noise at normal VD input
for 5% jitter channel and 36dB SNR.
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Observe that the spectra of the dominant error events are quite different from

those of the distortions in Figure 4.3. Therefore, an optimum filter to retrieve the

energy of the error event present in {ēn} is a filter matched to the error event of

interest.

Thus, the approach to identify the possible error regions is to pass the signal

{ēn} through a bank of matched filters matched to the signal (an − ān)⊗g caused

by dominant error events, followed by a simple threshold detector on the outputs

of matched filters to determine whether the bit position might be in error (see

Figure 4.2).

For any possible bit error position, we may assume that the corresponding

error region includes the bit positions around this bit with length Lp. This is the

region over which re-detection will be done in the second-step of post-processing.

Choosing suitable thresholds for each matched filter output defines the trade-off

between performance gain and complexity. When the threshold is higher, the

number of possible error regions is smaller thus reducing the complexity required

for re-detection, while at the same time the number of undetected error regions

will be larger thus limiting the possible gain in BER performance. Hence, practical

thresholds should be chosen according to the channel under study. In practice, we

can choose the thresholds according to

γth = αtheo (4.5)

where eo is the maximum absolute value in the ideal output signal obtained by

passing the signal (an − ān) ⊗ g through the matched filter matched to itself, and

the ratio αth ∈ (0, 1) is chosen according to the output values of the matched

filters due to real error events. Normally, we can set αth to about 0.5. Whenever

the absolute value of the output of any matched filter at instant n exceeds the

corresponding threshold, the region around instant n with length Lp is identified
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as a possible error region. In other words, the purpose of the matched filters is not

to detect any particular error event that has occurred, instead, the purpose is to

indicate the presence of a possible error.

4.3.2 Second Step: Re-detection of the Possible Bit Error

Regions

After identifying all the possible error regions, the second step of the post-

processing approach is to re-detect the bits in those regions using approaches, such

as VD-MV and VD-NP, that incorporate the data-dependence of media noise.

First, we assume that the detected bits of normal VD outside any possible error

region are reliable, and thus obtain the starting state and ending state of the trellis

for each region. We also obtain the error signal ēn for the bit positions outside this

region, which the predictors in VD-NP use for doing noise prediction.

Next, we re-detect the bits in the possible error regions using VD-MV or VD-

NP approaches. We call these approaches as post-processor with mean and vari-

ance compensation for noise (PP-MV) and post-processor with data-dependent

noise prediction (PP-NP), respectively. From Figure 4.1, we can observe that

the VD-MV and VD-NP outperform the normal VD since they combat the data-

dependence of media noise explicitly. We can expect PP-MV and PP-NP to achieve

BER performances close to VD-MV and VD-NP at a fairly low cost of complexity

increase since we only post-process the data in the post-processing regions and not

the whole sequence.

Since the post-processors take data-dependent media noise characteristics into

consideration during the detection of the bits in the identified possible error regions,

the bit errors within these regions will be corrected within the ability of the post-

processors, which in theory is upper-bounded by the performances of VD-MV and
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VD-NP. However, in practice, the result of this post-processing approach is much

more complicated. We might have right corrections of bit errors, which is good.

On the other hand, we might also miss some real bit error positions during the first

post-processing step. What is even worse is that we might even have some “false

corrections” at the correct bit positions, i.e. the second post-processing step might

result in increasing the bit errors for a given region than at normal VD output.

False correction happens because the bit error positions of VD-MV and VD-

NP are different from those of the normal VD2. Thus, if a post-processing region

corresponds to some bit error positions of VD-MV or VD-NP while not that of

the normal VD, the re-detection of this regions may result in unwanted and wrong

corrections. It is easy to see that this false correction problem will be more severe

at low SNRs than high SNRs. At high SNRs, the bit error positions of VD-MV and

VD-NP are mostly part of those of the normal VD. While at low SNRs, bit error

positions of the three detectors are quite different, which makes the false correction

problem to be quite severe. This problem can not be totally avoided by the post-

processing approach, but can be mitigated by trying to identify the possible error

regions accurately or using conservative criteria for correcting the bits. One ap-

proach is to use more matched filters to increase the accuracy in locating different

error events while avoiding possible false correction regions. Another approach is

to use two post-processors instead of one. Since the bit error positions of PP-MV

and PP-NP at low SNRs are also quite different, if we use both of these post-

processors (TWO-PP approach) for any post-processing region, we may choose to

correct a bit only when both two post-processors agree on this. Of course, we may

lose some performance in correcting the real bit errors in the TWO-PP approach,

but the overall performance can still be improved since most of the false correc-

tions can be avoided. At low SNRs, it was observed that the TWO-PP approach

2The ‘bit error position’ referred to in this statement means positions at which we would have
seen errors if we had processed the complete sequence of equalizer output using these detectors,
as done in Figure 4.1.
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can outperform both PP-MV and PP-NP (see Figure 4.5). At high SNRs, the

problem of false corrections becomes unimportant and the performance loss due to

combining the outputs of two post-processors becomes the dominant effect of the

TWO-PP approach. Hence, the TWO-PP approach is effective only at low SNRs.

4.3.3 Additional Comments

In this section, we provide some comments to distinguish the proposed post-

processing approach presented above with existing parity-based post-processing

(PPP) [38] and soft-output post-processing (SOPP) [42, 44] approaches.

It is a common practice now in magnetic recording systems to use parity check

codes to help identify the occurrence and positions of the dominant error events

and to correct them. Our approach is essentially different from PPP in that no

redundant coding is needed to locate possible bit error positions. Hence code rate

loss is avoided, and the resulting SNR gain can be used to enhance the recording

density of a hard disk system. Also, different from PPP, the matched filters in our

approach need to do only detection of the presence of an error and no classification

of error is required.

Since our two-step post-processing approach is independent of any coding scheme,

any parity check coding scheme can be still used along with our approach. That

is, our approach can be also combined with parity check codes to provide more

performance gains. Parity check codes can be used to determine whether there is

a false correction in the post-processing regions, thus avoiding the false correction

problems. Furthermore, since most of the dominant error events have been located

and corrected in our post-processor, new parity check codes can be designed to fo-

cus on less dominant, mostly longer, error events. The new parity check codes

shall have lower code rate loss, and combined with our post-processing approach,

will provide protection against more error events. Thus, the BER performance can
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be improved more significantly.

Our post-processing approach is also essentially different from the SOPP appr-

oach in [42, 44]. SOPP does data-dependent post-processing for each bit in the

sequence, while our approach works only on a minor part (e.g. 0.77%, see the next

section on simulation results) of the whole sequence. Thus, the complexity of our

approach is much lower than that of SOPP. Note that it is hard to compare the

BER performances of our approach with that of SOPP due to the differences in

channel models and SNR definitions.

4.4 Analysis and Simulation Results

Recall that the motivation for the proposed two-step post-processing approach is to

improve the BER performance of the normal VD at the cost of moderate increase

of computational complexity, or to reduce the complexity of VD-MV and VD-NP

by only processing a small portion of the whole sequence. In this section, we

investigate the computational complexity and BER performance of the proposed

post-processing approaches.

4.4.1 Computational Complexity

The additional computations in the two-step post-processing approach include

passing the VD output sequence through the GPR target, obtaining and pass-

ing the error signal {ēn} through a set of matched filters, and re-detection of the

bits in the post-processing regions.

Table 4.2 lists the computational complexities of the different post-processors,

where Ng denotes the length of target response, Lm denotes the length of matched

filters, Nm denotes the number of matched filters, Np denotes the length of the
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Table 4.2: Complexity of the proposed two-step post-processing approaches, in terms of
the number of operations per branch metric.

PP-MV PP-NP TWO-PP

+/− 1 + Ng+(Lm−1)×Nm

2Ng
1 + Ng+(Lm−1)×Nm

2Ng
1 + Ng+(Lm−1)×Nm

2Ng

+αp × 3 +αp × (Np + 2) +αp × (Np + 5)

× 1 + Ng−1+Lm×Nm

2Ng
1 + Ng−1+Lm×Nm

2Ng
1 + Ng−1+Lm×Nm

2Ng

+αp × 2 +αp × (Np + 2) +αp × (Np + 4)

predictor, and αp denotes the fraction of the overall sequence that is post-processed.

Compare Table 4.2 with Table 4.1, we can see that the complexity increase due to

post-processing is mainly determined by the number of matched filters, matched

filter length and the post-processing ratio αp. However, this also defines a trade-off

here. If we want to reduce αp, we need to use more matched filters with greater

lengths.

4.4.2 BER Performance

The essential idea of our post-processing approach is to detect only a very small

part of the whole sequence using the complicated approaches that account for

the data-dependent media noise, while for most of the sequence, we only use a

normal VD. Thus the BER performance of our post-processing approach is mainly

determined by how well the real error regions are identified, whether the post-

processors can correct the real bit errors and the number of false corrections. The

BER after post-processing can be written as

BERPP = (1 + rf − rc) · BERV D (4.6)

where BERV D denotes the BER of normal VD, rf and rc represent the ratios of

false corrections and right corrections, respectively, over real bit errors.
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Figure 4.5: BER performances of the post-processing approaches.

4.4.3 Simulation Results

In this section, we show some simulation results of the post-processing approach

under the following conditions: perpendicular magnetic recording channel with 5%

jitter and linear density equal to 2.0, the 5-tap GPR targets and linear equalizers

designed in Chapter 3 are used, 3-tap predictors are used for the PP-NP approach,

four matched filters with length 7 matched to the four most dominant error events

of normal VD, and the length of post-processors Lp is set to be 17.

Figure 4.5 shows the BER performances of the post-processing approach. The

BER performances of the normal VD, VD-MV and VD-NP are also shown in

Figure 4.5. At least 1000 error bits are collected for each estimate of BER.

It can be seen from Figure 4.5 that the BER performance of TWO-PP approach

is the best at low SNRs (SNR=36dB), and it is even better than the performance

of VD-MV and VD-NP. This is because the false correction problem is very serious

at low SNRs and can be mostly avoided by the TWO-PP approach. At high SNRs

(SNR>38dB), the false correction problem is not a serious problem. Hence, the
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Table 4.3: Complexity of the post-processing approaches.

+/− ×
Normal VD 1 1

VD-MV 3 2
VD-NP 5 5
PP-MV 1.83 2.0177
PP-NP 1.85 2.0377

TWO-PP 1.87 2.0554

performance of TWO-PP approach is limited and the PP-NP approach performs

best among all the post-processing approaches. It can be seen that the performance

of the post-processing approach is upper-bounded by those of VD-MV and VD-

NP, which is expected. We can also observe that the overall performances of the

post-processing approaches are quite close to those of VD-MV and VD-NP. Thus,

the performance gain over normal VD at a BER of 10−6 is about 1dB, while the

performance loss compared to VD-MV and VD-NP is very small.

From the simulation results, we can also estimate the post-processing ratio

αp = αe × Lp (4.7)

where αe is the ratio of total length of the post-processing regions over the input

bit sequence length, and Lp = 17 is the length of each post-processing region.

At SNR=39dB, we get (from simulations) αe = 4.524 × 10−4, and thus αp =

4.524 × 10−4 × 17 = 0.77%, which means that only 0.77% of the detector input

samples are being post-processed. Table 4.3 lists some numerical results of the

complexities of different detection approaches.

From Table 4.3, we can see that the computational complexities of PP-MV and

PP-NP are almost the same because the post-processing ratio αp is very small.

Even the complexity of TWO-PP is only slightly higher than PP-MV and PP-NP.

It can be seen that the most complex operations, i.e., division and logarithm, are
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reduced by 99.23% in PP-MV and PP-NP compared to VD-NP and VD-MV. The

number of additions is reduced by about 38.7% and 63.2% compared to VD-MV

and VD-NP, respectively. Further, the number of mulplications is increased by

about 100% and reduced by 49.5% compared to VD-MV and VD-NP, respectively.

Since division and logarithm require much more actual computations than addition

and multiplication, the overall complexity is reduced significantly.

In summary, the complexity of the proposed post-processing approach is much

less than VD-MV and VD-NP at the cost of minor performance losses at high

SNRs. At low SNRs, there is almost no performance loss and there might even be

performance enhancement. In other words, we obtain a performance gain of 1dB

over the normal VD at the cost of minor complexity increase.

4.5 Summary

In this chapter, we presented an overview of detection approaches that account

for data-dependent media noise. Thereafter, we proposed a post-processing ap-

proach with three different post-processors. Computational complexities and BER

performances of the two-step post-processing approach were investigated. We also

present some computational and simulation results. It is shown that the post-

processing approach can reduce the complexity of the complicated sequence de-

tection approaches greatly with minor performance loss or even performance en-

hancement at certain SNRs.

72



Chapter 5

Analysis and Design of Sliding
Block Viterbi Detector for
Magnetic Recording Channels

Analysis of the performance and design of key parameters of sliding block Viterbi

detector (SBVDet) for magnetic recording channels are presented in this chapter.

We start with a short introduction of SBVDet approach. Thereafter, we present

a detailed algorithm for doing error event analysis of VD with unknown starting

and ending states. Through the error event analysis and simulation results, we

show that SBVDet can increase the speed of VD without limit and with almost

no influence on the BER performance and error event distribution. Finally, an

intuitive approach to do error event analysis for simple PR targets is also presented.

5.1 Introduction

As introduced in Section 1.4.3, the SBVDet approach is quite an advantageous

approach to enhance the detection speed. Our emphasis, in this chapter, is the

performance analysis of the SBVDet approach on magnetic recording channels.

This is motivated by the fact that the application of SBVDet to PR channels

results in catastrophic and non-catastrophic error events due to the uncertainty
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Figure 5.1: Model of partial response equalized recording channel with Viterbi detector.

associated with the starting and ending states in the trellis for each block. These

events are in addition to the usual events that occur during conventional Viterbi

detection for PR channels where the starting and ending states are known. In this

chapter, through error event analysis, we not only throw light on the performance

of SBVDet, but also provide guidelines for choosing the key parameters of the

SBVDet structure.

We use the conventional hard disk drive systems to illustrate the performance

of SBVDet. For the sake of convenience and without loss of generality, we assume

in this chapter that the recording channel is perfectly equalized to a PR target and

the channel noise at the Viterbi detector (VD) input is additive white Gaussian

noise (AWGN). The resulting model of the recording channel, including the detec-

tor, is shown in Figure 5.1. Here, {an} denotes the sequence of independent and

identically distributed recorded bits, with each bit an being equally probable to be

+1 or -1, and {vn} denotes the AWGN channel noise with power spectrum density

N0/2. Further, {gi, i = 0, 1, · · · , Ng} denotes the bit response of the PR target,

with Ng + 1 denoting the target length. Finally, {ân−∆} denotes the detected bit

sequence, with ∆ being the delay with respect to the input an.

5.2 Sliding Block Viterbi Detector (SBVDet)

In conventional VD, the bit sequence is detected by processing the sequence of re-

ceived samples in a serial manner, sample-after-sample, and the throughput rate is
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Figure 5.2: Sliding block Viterbi detection approach.

limited by the add-compare-select-unit (ACSU). To enhance the detection speed,

we can use a sliding block detection approach as shown in Figure 5.2 [5]. The

received sequence is divided into overlapping blocks of length N with the overlap-

ping period being 2L. The bits in each block are detected independently. The sync

block and trace-back block of length L bits at the beginning and end, respectively,

of each N -bit data block are used to provide the survivor path memory required

to reliably detect the N − 2L bits in the detector block.

Thus, using the sliding block detection approach, the detection speed can be

enhanced according to the number of blocks used. Ideally, the speed can be en-

hanced infinitely by dividing the sequence into arbitrarily short blocks. However,

as we show below, there exist some lower bounds for N and L to ensure reliable

detection performance. The aim of the analysis that we present in this chapter is

to develop a theoretical framework to help in the selection of appropriate values of

N and L for the desired trade-off between complexity and performance. In fact,

our analysis shows that the bounds on N and L are so low that they do not ac-

tually manifest as limitations to achieving practically meaningful high throughput

implementations.

In SBVDet, since the starting and ending states of each block are unknown

prior to detection, we meet with the problems of “synchronization errors” and

“truncation errors”, as stated in [53]. The truncation errors are caused by the
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use of finite survivor depth L. The synchronization errors happen when we try to

detect a sequence with all path metrics at an arbitrary instant before the current

instant set to zero, although setting the metrics at an instant to zero is the best

we can do when we do not have any information on the instants prior to this. It

can be seen from analysis and simulations, as shown in the following sections, that

the effect of these two errors tends to be negligible for bit positions far from the

starting and ending positions. Therefore, by introducing an overlapping period of

length 2L between two consecutive blocks, we can ensure that the whole sequence

can be detected reliably if N and L are large enough. Note that the sync block

and trace-back block in Figure 5.2 are used to handle the synchronization errors

and truncation errors, respectively. Since the two kinds of errors are dual to each

other, it’s clear that we should choose the same length L for both sync block and

trace-back block. Only the bits in detector blocks are viewed as detected bits.

5.3 Performance Analysis of SBVDet

In this section, we investigate the BER performance and error event distribution of

SBVDet. It is desirable that the BER and error event distribution of SBVDet be

close to that of conventional VD, i.e., the detection speed is enhanced with almost

no performance loss. The main part of this analysis is the development of a method

to do error event characterization of SBVDet in the presence of synchronization

and truncation errors. Of particular interest is to understand and expose the effect

of catastrophic and non-catastrophic error events caused by these errors.

As stated in Section 5.2, in the SBVDet approach, we detect each block of bits

independently without knowing the starting and ending states in the underlying

trellis for each block. As a result, this gives rise to two problems: truncation errors

and synchronization errors. These two errors are dual of each other. Therefore, we
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will only consider synchronization errors here. The analysis of the effect of synchro-

nization errors has been done [53] for decoding of convolutional codes which are

not catastrophic1. But, for sequence detection on ISI channels such as in magnetic

recording systems, we cannot use the conclusions in [53] directly. This is because

the commonly used PR targets in magnetic recording result in “catastrophic error

events” in the presence of synchronization errors. These error events are caused

not by the noise but by the synchronization errors, and hence the SNR has no

effect on the correct detection of the data patterns underlying such error events.

Thus, we need to analyze the catastrophic error events to get the BER of SBVDet,

which is different from the analysis in [53]. In addition to the catastrophic error

events, the synchronization errors also cause non-catastrophic error events. Thus,

to be able to investigate the BER performance of SBVDet, we need to consider the

catastrophic and non-catastrophic error events caused by synchronization errors,

in addition to the error events that are caused by noise.

5.3.1 Characterization of Catastrophic and
Non-catastrophic Error Events

Altekar et al. [2] presented “error state diagram” based approaches for doing

error event characterization of conventional VD for certain specific PR channels. In

order to obtain error event characteristics of the SBVDet approach, we extend the

algorithms in [2] in two ways. First, we present the error event characterization due

to synchronization errors which to our knowledge has never been done by others.

Secondly, our approach can be applied to any general PR target, while the approach

in [2] is focused on standard PR targets of the form G(D) = (1 − D)m(1 + D)n,

where D denotes 1-bit delay operator. Our approach consists of 3 steps and the

1A convolutional code is called catastrophic if a finite number of channel errors can cause an
infinite number of decoded bit errors. Some methods have been proposed to avoid catastrophic
codes [53].
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Figure 5.3: Part of the error state diagram for [1 2 2 1] channel.

details of these steps are given below. For the sake of convenience and without

loss of generality, we take the widely used PR target for perpendicular magnetic

recording G(D) = 1 + 2D+ 2D2 +D3 (or, the channel with bit response g=[1 2 2

1]) as an example for illustrating the principles underlying our 3-step approach.

A. Error State Diagram

As a first step to investigating the error event characteristics of SBVDet for a given

PR target, we need to construct the underlying error state diagram. The error state

diagram is a labeled directed graph G. Input error sequences together with their

corresponding squared output error sequences can be described as paths through

this graph. Since the recorded bits belong to the binary alphabet A = {−1,+1},

the corresponding alphabet for input error sequences will be B = {−2, 0,+2}.

Therefore, the number of states of the underlying error state diagram is 3Ng , where

Ng is the channel memory. Thus, there are 33 = 27 states in the error state diagram

for [1 2 2 1] channel and Figure 5.3 shows part of this. The edge label is given in

the form Lin/Lout, where Lin and Lout denote the current input error symbol and

the corresponding squared output error symbol, respectively. Note that it is for

simplicity that we present only part of the error state diagram in Figure 5.3. It is
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straightforward to obtain the complete error state diagram from Figure 5.3.

B. Searching for cycles in the error state diagram and catastrophic error
events

In the presence of synchronization errors, some input error sequences may result

in all-zero output. We call such error sequences as ‘catastrophic error events’

since it is impossible to detect the correct data underlying these error sequences

irrespective of the noise level. It is clear that the spectrum of catastrophic error

events must correspond to the spectral nulls of the channel response and also to

cycles in the graph G where the Lout of each edge in the cycles is zero.

For the [1 2 2 1] channel, we have

1 + 2D + 2D2 +D3 = (1 +D)(1 +D +D2), (5.1)

resulting in spectrum nulls at ω1 = π, ω2 = 2π/3 and ω3 = 4π/3. Therefore,

the spectrum of catastrophic error events associated with [1 2 2 1] channel can be

written as

Fe(e
jw) =

∑

n

2πa0δ(w − π + 2nπ)

+
∑

n

2πa1δ(w − 2π/3 + 2nπ)

+
∑

n

2πa2δ(w − 4π/3 + 2nπ) (5.2)

where δ(w) represents the Dirac delta function and the complex scalars a0, a1 and

a2 correspond to the strength of the spectral lines at frequencies π, 2π/3 and 4π/3,

respectively. Consequently, the corresponding catastrophic error sequence can be
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written as

en = a0e
jnπ + a1e

jn 2π
3 + a2e

jn 4π
3 . (5.3)

Ideally, we can obtain all possible catastrophic error sequences from (5.3) by deter-

mining all possible candidates for the triplet {a0, a1, a2} such that en ∈ {2,−2, 0}

for all n. Each {a0, a1, a2} gives rise to one such error event. Clearly, enumerating

all possible {a0, a1, a2} in this way is very difficult. Therefore, we resort to the

error state diagram and apply a search algorithm to obtain the catastrophic error

sequences.

The search algorithm is as follows. Let C represent the set of cycles in the

graph. Initialize C to empty set and an integer variable i to 1.

1. For each initial state si, search through the labels of all outbound edges.

Initialize the path history P with si.

(a) If every Lout is non-zero, then clear P and restart the searching algo-

rithm from next initial state si+1.

(b) Otherwise, if some Lout is zero for some edge and the edge connects si

to state si,j, then append the path history P with si,j. Check whether

si,j has ever before appeared in P.

i. If si,j has never before appeared in P, then keep the path P and

run the same search algorithm starting from si,j.

ii. If si,j has appeared before in P, it means that a cycle is found from

si,j to si,j. Add this cycle as an entry in C, clear P and restart the

searching algorithm from next initial state si+1.

2. To do the search for cycles from the next initial state si+1, increment i by 1

and go to step (1) if i ≤ 3Ng .

Thus, the whole algorithm finishes when the search has been done for every initial
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state si, i = 1, 2, · · · , 3Ng .

For the [1 2 2 1] channel, there are four cycles and are shown in Figure 5.3 using

bold edges. The cycle associated with the all-zero state corresponds to correct

detection output. The other three cycles correspond to catastrophic error events,

which can not be eliminated by increasing SNR since the “Euclidean distances”

associated with these events are zeros. Therefore, the catastrophic error events

will result in “error-floor” effect in BER.

C. Searching for error fragments and non-catastrophic error events

There are also non-catastrophic error events due to synchronization/truncation

errors. By analyzing these error events, we can arrive at guidelines for choosing

sync/trace-back block length in the SBVDet approach, such that the effect of

synchronization/truncation errors is negligible for the detection of bits in detector

blocks.

We define error fragment as the error sequence which corresponds to some path

in the graph G which starts from any state and ends in some cycle. Note that the

definition here is different from that in [2], where the starting state and ending

state of any error fragment must both be in some cycles. In order to search for

all the error fragments, we use the modified depth-first search algorithm in [2] to

obtain all the error fragments that may start from any state in the graph G.

For illustration, Figure 5.4 lists all the error fragments with squared Euclidean

distance less than 12 for [1 2 2 1] channel. A graph such as this is called “modified

error state diagram” and we denote it by H. The edges of this graph are labeled

as (L)/Lout where L denotes the error fragment with Lout being the associated

squared Euclidean distance. The states which form cycles are shown using “bold”

state-group rings (compare Figure 5.3 with Figure 5.4).

81



CHAPTER 5. ANALYSIS AND DESIGN OF SLIDING BLOCK VITERBI DETECTOR

�����

������
������
������

������
������
������

������
�������

�������� ��������

����	 �����	

�������

�������

����	����	

��������

�������

���������� ����������

�����

�����	

������

����	

�����

�����	

������

����	

�����

����	

�������	

������

����	
�������	

������

����	

�������

����	

Figure 5.4: Modified error state diagram showing error fragments with squared Euclidean
distance less than 12.

We may search for all the error events whose Euclidean distance is below some

limit using the graph H. All the error events end at some cycle in G. Those error

events that end at the all-zero state cycle are called ‘closed error events’, while

other error events are called ‘open error events’. We can run the depth-first search

algorithm again on the modified error state diagram H to obtain all the open and

closed error events with Euclidean distance below some limit. We may also obtain

these error events by applying the depth-first search algorithm on the original

graph G, but its complexity is much higher than that of the above described 3-step

approach.

5.3.2 Lower Bounds on N and L

We shall now outline the approach to arrive at the lower bounds on the block length

N and sync/trace-back block length L. This is done by examining the extra error

probability for each bit position within the block resulting from the catastrophic

and non-catastrophic error events caused by the synchronization/truncation errors.

Based on error event probabilities and distances, we can obtain BER union bound

for each bit position due to these error events.

The error probability Pb for any particular bit position is bounded by the sum

of the probabilities of the error events e which have an error at this particular bit
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position (i.e., the union bound). That is, we get

Pb ≤
∑

e

Pr(e) (5.4)

where the probability of the error event, Pr(e), depends on the probabilities of the

correct and incorrect data sequences ψ and ψ̂, respectively, that make up e:

Pr(e) = Pr(ψ) Pr(ψ̂ | ψ). (5.5)

Since the channel noise is assumed to be AWGN, Pr(ψ̂ | ψ) can be given by [19]

Pr(ψ̂ | ψ) ≤ Q

(

√

d(ψ̂, ψ)/2σ

)

(5.6)

where d(ψ̂, ψ) is the squared Euclidean distance associated with the error event

corresponding to ψ and ψ̂, σ2 = N0/2 is the noise variance (i.e., with T = 1), and

the Q−function is defined by

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt.

Clearly, the probabilities of the error events vary with the corresponding recorded

sequences.

A. Catastrophic Error Events

We shall first consider the effect of catastrophic error events. It can be seen

that every catastrophic error event imposes some constraint on the recorded bit

sequence. For example, an input error symbol −2 can happen only when the

corresponding recorded bit is 1. Thus, the number of recorded bit sequences that
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may result in catastrophic error events is limited. Further, the probability of such

sequences keeps decreasing exponential as the block length N increases.

We take the [1 2 2 1] channel as an example to illustrate the analysis. The

catastrophic error event ±(+2,−2)∞ (i.e. ±(+2,−2) repeated infinitely) happens

only when the recorded bit sequence is (1,−1)∞ or (−1, 1)∞. The error probability

for each bit due to this event is 1/2 since the distance is 0. Assume that each

recorded bit is independent and equally probable to be 1 or −1. Thus, we obtain

the BER union bound due to this catastrophic error event for a block of length N

as

2 × (
1

2
)N × 1

2
.

Similarly, we can obtain the BER union bound considering all the three catastrophic

error events for [1 2 2 1] channel as

B1 =































(1
2
)N+(1

2
)2N/3−1 if N = 3M

(1
2
)N+(1

2
)(2N−5)/3 · N−1

3N
+ (1

2
)(2N−2)/3 · 2N+1

3N
if N = 3M + 1

(1
2
)N+(1

2
)(2N−1)/3 · N+1

3N
+ (1

2
)(2N−4)/3 · 2N−1

3N
if N = 3M + 2

(5.7)

where M = 0, 1, 2, · · · .

Figure 5.5 shows the BER union bound due to catastrophic error events for

different block length N . Clearly, we should choose N large enough such that

the BER due to catastrophic error events is negligible, for example N > 30 from

Figure 5.5.

B. Non-catastrophic Error Events

Next, we shall consider the effect of non-catastrophic error events. The number of

such error events is excessive, so we will not list them explicitly here. Instead, we
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Figure 5.5: BER bound of SBVDet due to catastrophic error events.

focus on the union bound for bit error probabilities due to these error events and

show some numerical results as follows.

Note that the error probabilities for different bit positions are different due

to the error events caused by synchronization/truncation errors. Further, non-

catastrophic error events may arise only for some particular recorded sequences.

Thus, we need to examine all possible recorded sequences to compute the BER for

each bit position.

We know that the non-catastrophic error events due to synchronization errors

impose some constraints on the recorded sequences, the probability of which is

roughly 2−n, where n is the length of the error event. Thus, as n becomes large,

the effect of synchronization errors also becomes negligible.

To give an example, we consider the case when SNR1=14dB, where SNR1 is

defined as

SNR1(dB) = 10 log10

(

Eb

N0

)

(5.8)

where Eb = gTg = 10 is the energy per bit. The BER for conventional VD without
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synchronization/truncation errors is dominated by the error event with minimum

squared distance 16:

Pb,conventional ≈ Q

(√
16

2σ

)

. (5.9)

We can see that the non-catastrophic error events may have smallest squared

distance equal to 4, and hence we can approximate the BER due to one of these

error events as

Pe ≈
1

2n
Q

(

1

σ

)

(5.10)

where n is the length of the error event. Thus, at SNR1 = 14dB and n = 30, we

can obtain that Pe/Pb,conventional ≈ 3.16×10−6. That means the error events longer

than 30 bits are negligible. Since the block length is likely to be greater than 30

(see Figure 5.5), all the open error events are negligible here. In summary, we only

need to consider the closed error events whose length is less than 30.

In the above analyse, we only considered the error events due to synchronization

errors. There are also closed error events due to AWGN electronics noise. In other

words, the error events arising in conventional VD can also arise in SBVDet. For [1

2 2 1] channel, the most dominant error event in conventional VD is “±(+2,−2)”,

whose squared Euclidean distance is 16. The BER due to this error event is given

by (5.9). We should also consider this error event when estimating the BER for

each bit position. We can use (5.4) to obtain an estimate of the BER by considering

the error events of length less than 30 caused by synchronization errors and AWGN

(see (5.9)). Figure 5.6 shows the resulting BER for each bit positions for a block

length of N = 130. Among the error events due to synchronization errors, we

have considered only those with squared distance less than 12 since error events

with smaller distances are most dominant. Observe from Figure 5.6 that the

position-dependent BER has “transient” and “steady state” phases, and it goes

from “transient phase” into “steady state phase” as the bit positions are further

and further away from the start of a block. The BER at “steady state” is mainly
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Figure 5.6: BER bound of SBVDet for each bit position arising from synchronization
errors and AWGN at SNR1=14dB.

determined by the dominant error event of conventional VD, while the effect of

synchronization errors is negligible. Hence, by choosing an appropriate length L

which is large enough, for example L > 15 from Figure 5.6, we may ensure that

the bits in each detector block are detected as reliably as in conventional VD.

From the above analysis, we know that there exist some lower bounds for the

block length N and the sync/trace-back block length L. These lower bounds are

arrived at by imposing the requirement that the increase in BER in SBVDet, com-

pared to conventional VD, caused by synchronization errors is within acceptable

limits. When N and L are chosen according to this, the BER of the bits in each

detector block would be quite close to that of the conventional VD. In other words,

the BER performance of SBVDet would be almost the same as that of conventional

VD (see Figure 5.7).

We can see that the lower-bounds on N and L are really small and they do not

really act as serious hurdles pulling down the speed-enhancement capability of the

SBVDet approach. We also remark that the lower-bound on the block-length N is
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much smaller than that required in [28] to ensure satisfactory BER performance.

5.3.3 Additional Remarks

The method of analysis presented above is a general method that can be used in

PRML systems with any GPR target. We would also like to remark that for some

of the simple PR targets used in magnetic recording, we can do similar analysis

of catastrophic/non-catastrophic error events intuitively without bothering to run

the search algorithm through graphs. We present one such example in Section 5.6

where the PR target is 1 −D.

Finally, we may add that some (if not all) of the catastrophic error events

may be prevented by using appropriate code constraints and/or spectral-null con-

straints, non-symmetric PR targets, etc. Thus, we may have less stringent require-

ments on choosing N and L. To analyze such channels, the method presented in

this chapter can still be used and we only need to modify the error state diagram

accordingly.

In magnetic recording systems, it is now a common practice to use simple

and efficient parity check codes in order to detect and/or correct the dominant

error events at the VD output [43]. For example, even-parity or odd-parity check

codes can be used to detect single bit errors in a block. Thus, it is also very

important to examine the error event distribution for SBVDet. This will not be

a problem intuitively, because the SBVDet is truly a ML detector and the effect

of synchronization/truncation errors is negligible with reasonable choice of N and

L. Thus, the error event distribution in SBVDet will be quite close to that of

conventional VD (see Figure 5.8) and hence the overhead incurred in the use of

parity check codes in SBVDet will be same as that in conventional VD.
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5.4 Simulation Results

To demonstrate the performance of the SBVDet approach and the validity of our

error event analysis, we use the perpendicular magnetic recording system model

shown in Figure 5.1, which uses an ideal model of the PR equalized perpendicular

recording channel. In our simulations, the PR target polynomial is chosen as

G(D) = 1 + 2D + 2D2 +D3 [41]. The variance of AWGN channel noise is chosen

according to the SNR1 defined in (5.8).

The simulation was performed using data sequences of length 4000 bits each.

Each sequence is divided into 40 blocks with the detector block length of each block

being 100 bits (see Figure 5.2). From Figure 5.6, it can be seen that we may take

the length of sync/trace-back blocks as L = 15. Thus, we haveN = 100+2L = 130.

The overall BER performances of the conventional VD and SBVDet are shown

in Figure 5.7. At least 1000 error bits are collected for every estimate of the BER.

It can be seen that the BER performance of SBVDet is almost the same as that

of conventional VD, thus verifying the analysis of Section 5.3. The corresponding

error event distributions at SNR1=14dB are shown in Figure 5.8. It can be seen

that the error event distributions are also almost the same. The error event length

in Figure 5.8 is defined as the length of the error sequence from the first error bit

to the last error bit.

Thus, we may conclude from this simulation example and the analysis given

earlier that SBVDet is able to increase the speed of VD with almost no loss in

BER performance and no change in the error event distribution.
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Figure 5.7: Comparison of BER performances of SBVDet and conventional VD.
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5.5 Conclusions

The SBVDet is an effective approach to enhance the speed of VD. To analyze the

performance and design key parameters of SBVDet for magnetic recording systems,

we have presented an algorithm for characterizing the error events of VD with

unknown starting and ending states. Through numerical and simulation results,

we have shown that the SBVDet approach can be used to overcome the speed

bottleneck without influencing bit error probability and error event distribution if

the block length and overlapping length are chosen properly.

5.6 Appendix: BER Analysis of VD with

Unknown Starting and Ending States

for 1 −D channel

Recall from Section 5.3 that synchronization errors in SBVDet (i.e. inavailability of

path metrics at the start of each block) cause additional error events (catastrophic

and non-catastrophic), compared to conventional VD. A general search algorithm

is presented in Section 5.3 for characterizing these events. In this Section, we show

that for simple channels such as 1−D, we may be able to characterize these events

without going through the complications of constructing error state diagram and

searching the resulting graph.

It can be easily seen that there is only one catastrophic error event for 1 −D

channel and is given by ±(2)∞. This corresponds to the recorded bit sequences

+(1)∞ and −(1)∞. Since the channel outputs for these two sequences are identical,

the VD will not be able to discriminate between these two sequences. Further, this

catastrophic error event cannot be eliminated by increasing the SNR.

With block lengthN (see Figure 5.2), let us assume that we transmit ±{1, 1, · · · , 1}
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while detect it as ±{−1,−1, · · · ,−1}. Then, (5.5) and (5.6) lead to Pr(ψ) = 1
2N

and Pr(ψ̂ | ψ) = 1
2

since d(ψ, ψ̂) = 0. Hence the resulting BER of each bit position

due to this event is given by

1

2N
× 1

2
× 2 =

1

2N
. (5.11)

This means that the BER of every bit position is at least 1
2N even if there is no

noise at all. Thus, if the BER is required to be below 10−6, we need to set the

block length bigger than 20, which is a rough lower bound for the block length.

In practice, we would choose a block length greater than this, since there are also

other kinds of error events which will contribute to the bit error probabilities, as

discussed below.

We shall now consider the case of the extra BER introduced by non-catastrophic

error events caused by synchronization errors. The recorded and detected se-

quences corresponding to these events will have different starting states. The

extra error events with length one and two are listed in Figure 5.9, for recorded

sequences starting from the state “+1”. The symmetric extension to the events

starting from the state “-1” is straightforward. The solid line and dashed line rep-

resent the recorded and detected sequences, respectively, and the numbers above

the lines are the outputs of the channel for the two possible sequences.

We can see that the first bit is wrong in the error events with length one and

the first two bits are wrong in the error events with length two. The extra error

probability of the first bit position introduced by error events with length one can
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Figure 5.9: The non-catastrophic error events with length 1 and 2 for the 1−D channel
caused by synchronization errors.

be obtained as

P1,1 =
1

8
× 4 ×Q

(√
4

2σ

)

+
1

8
× 4 ×Q

(√
20

2σ

)

=
1

2
Q

(

1

σ

)

+
1

2
Q

(√
5

σ

)

. (5.12)

Similarly, the extra error probabilities of the first and second bits introduced by

error events with length two can be obtained as

P1,2 = P2,2 =
1

4
Q

(

1

σ

)

+
1

4
Q

(

3

σ

)

+
1

2
Q

(√
5

σ

)

. (5.13)

We can also get the extra error probabilities introduced by error events with length

three, four and so on, similarly.

At high SNR, the probabilities P1,1, P1,2 and P2,2 are dominated by the term

with Q( 1
σ
). Considering only this dominant term, we get that the extra error
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Figure 5.10: The dominant error event for 1−D channel in the absence of synchronization
errors.

probabilities for the first and second bits as

P1=
1

2
Q

(

1

σ

)

+
1

4
Q

(

1

σ

)

+
1

8
Q

(

1

σ

)

+ · · · = Q

(

1

σ

)

P2=
1

4
Q

(

1

σ

)

+
1

8
Q

(

1

σ

)

+
1

16
Q

(

1

σ

)

+ · · · =
1

2
Q

(

1

σ

)

.

By inspection and induction, we get the extra error probability for the (L + 1)th

bit as

PL+1 =

(

1

2

)L

Q

(

1

σ

)

. (5.14)

Thus, we see that the extra bit error probabilities of different bit positions are

different and the bits nearer to the starting of the block suffer more. We can set

the length of L (see Figure 5.2) to ensure that the extra bit error probabilities in

detector blocks are negligible compared to the BER of the conventional VD. That

is,

PL+1 � Pb,conventional.

For the 1−D channel, the BER of conventional VD is dominated by the error

event with minimum distance as shown in Figure 5.10 and can be obtained as

Pb,conventional ≈ Q

(√
2

σ

)

. (5.15)
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From (5.14) and (5.15), we obtain

L� log2

Q( 1
σ
)

Q(
√

2
σ

)
. (5.16)

Examples of the lower-bound on L given by (5.16) for SNR1 = 12, 13 and 14 dB

are 12, 15 and 19, respectively.
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Conclusion and Future Work

In this thesis, we focused on signal detection approaches for high-density mag-

netic recording channels. There are some existing work on optimum signal detec-

tion techniques. However, the optimum approaches introduce high computational

complexity and speed bottleneck. Therefore, we were motivated to explore the

development of optimum or close-to-optimum signal processing approaches that

have much lower complexity and/or break the speed bottleneck. In particular, we

obtained optimum GPR targets for channels with jitter noise. Thereafter, we pro-

posed a novel post-processing approach which can provide good trade-offs between

BER performance and computational complexity. Finally, we presented the per-

formance analysis and design of key parameters of sliding-block Viterbi detector

to enhance the detection speed of magnetic recording.

In Chapter 1, we presented an overview of magnetic recording systems including

characteristics of channel distortions, and briefly surveyed the existing techniques

on related topics. Our motivation of research was also presented in Chapter 1.

Chapter 2 presented background knowledge on signal processing techniques for

magnetic recording channels. We introduced the discrete-time channel models and

96



CHAPTER 6. CONCLUSION AND FUTURE WORK

the basic principles of equalization and detection in this chapter.

Optimum joint PR target and equalizer design for high-density magnetic record-

ing channel with jitter noise was presented in Chapter 3. A new cost function,

which accounts for the data-dependent nature of jitter noise, was developed based

on minimum mean square error criterion. Using the step response based channel

model, we derived expressions for the statistics required to compute the optimum

equalizer and target in the presence of jitter noise. We also derived a bit response

based model for the jitter noise channel. We presented an approach for doing sim-

ulations as well as analytical computations for the jitter noise channel, without

resorting to the widely used Taylor series approximations. We presented computa-

tional and simulation results to show that while the targets designed without ac-

counting for the jitter lead to error-floor in the bit error rate (BER) performance,

the targets designed by our approach give significant performance improvement un-

der high jitter conditions, with no sign of error-floor effect for the range of signal

to noise ratios considered.

A novel two-step post-processing approach for signal detection in magnetic

recording channels with jitter noise was proposed in Chapter 4. The first step is to

identify all the possible error regions from the normal Viterbi detector (VD) output

using a simple threshold-based approach, and the second step is to re-detect only

these regions using approaches that account for the data-dependent characteristics

of jitter noise. We presented numerical and simulation results which show that the

proposed post-processing approach can improve the BER performances of tradi-

tional VD approach significantly with minor increase in computational complexity.

Sliding block Viterbi detection (SBVDet) approach is an effective approach

that can enhance the detection speed. We presented the performance analysis

and design of key parameters of the sliding block detection approach for magnetic

recording channels in Chapter 5. We presented a detailed algorithm for doing error
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event analysis of VD with unknown starting and ending states. Through the error

event analysis and simulation results, we showed that SBVDet can increase the

speed of VD without limit and with almost no influence on the BER performance

and error event distribution. We also presented an intuitive approach to do error

event analysis for simple PR targets.

Future Work

There are some issues that remain to be solved in the signal detection approaches

that are presented in this thesis for high-density magnetic recording channels with

jitter noise.

1. The MMSE criterion used in this thesis when designing the optimum PR

targets and equalizers is based on the assumption that each transmitted se-

quence is equally probable. The data-dependence of jitter noise is accounted

for in an implicit way. We may modify the MMSE criterion, for example

adding more weight on the data patterns that might result in higher jitter

noise, to provide better suppression of jitter noise when designing the targets

and equalizers.

2. The post-processors used in our two-step post-processing approach are based

on estimated characteristics of media noise. This estimation approach as-

sumed the media noise to be additive on the useful signal. We are not using

the accurate channel model based on transition jitter to estimate the jitter

noise samples. Thus, theoretical/numerical work can be done to develop

better post-processors that account for transition jitter directly instead of

additive jitter noise.

3. Although Viterbi algorithm is still widely used in magnetic recording sys-
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tems, optimum MAP algorithms, such as the BCJR algorithm, will soon

start to be used in practical magnetic recording systems due to the fast

development of VLSI techniques. Thus, practical approaches, especially low-

complexity/high-speed implementations of those complicated and recursive

algorithms will have higher practical values.

We believe that the issues listed above will extend our work to provide better

performances and higher practical values for emerging magnetic recording systems.
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