

SAFA: Stack And Frame Architecture

BY
Soo Yuen Jien

(B.Sc (Hon) NUS, M.Sc NUS)

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

AT
DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING
NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgment

First and foremost, I would like to thank my supervisor, Professor Yuen Chung

Kwong, for suggesting such an interesting research topic. His knowledge and insight

on the subject has guided me through many thorny issues. More importantly, his

kind words have given me more confidence in the research direction.

I wish to express my gratitude to my research review committee members,

Professor Teo Yong Ming and Associate Professor Wong Weng Fai. They have

frequently pointed out blind spots in my research method, steering the research

from potential pitfalls.

Last but not least, I would like to thank my wife, my parent and family

members for their unfailing support and encouragement.

ii

Summary

Superscalar execution of computer instructions exists in many forms, which can be

grouped roughly into two major camps: the hardware approach with examples like

Alpha, PowerPC, x86 etc; the software approach with heavy reliance on compilers

e.g. VLIW, EPIC etc. However, these approaches shares many characteristic and

can be studied under a cohesive framework, which we termed as General Tagged Ex-

ecution Framework. By exploiting the commonality of the approaches, it is possible

to apply a combination of subsets of techniques under a different context.

Specifically, we investigated the feasibility of adapting some well studied

techniques to a stack-oriented architecture. The research concentrates on two ma-

jor areas of a stack architecture, namely high level language support and low level

instruction execution. In the first area, improved control flow and data structure

support are studied. For the low level instruction execution, superscalar and spec-

ulative execution techniques are incorporated. As a platform for experimenting

with these mechanisms, we designed and implemented a simulator for a new stack

architecture, named as SAFA (Stack And Frame Architecture).

Contents

1 Introduction 1

1.1 General Tagged Execution Framework 4

1.2 The SAFA Architecture . 6

1.3 Objectives of Our Work . 8

1.4 Overview of Thesis . 9

2 Literature Survey 10

2.1 Introduction . 10

2.2 Objectives . 10

2.3 Stack Based Architecture . 12

2.3.1 Burroughs Family B5000-B6700 12

2.3.2 Hewlett-Packard HP3000 . 13

2.3.3 Intel iAPX432 . 14

2.3.4 INMOS transputer . 15

2.3.5 Java Virtual Machine and picoJava implementation 17

2.3.6 Conclusion . 18

2.4 Register-Based Superscalar Architecture 20

iii

CONTENTS iv

2.4.1 Alpha Family . 20

2.4.2 PowerPC Family . 23

2.4.3 Conclusion . 25

2.5 Summary . 26

3 High Level Language Support 27

3.1 Control Flow . 28

3.1.1 Procedure Activation . 28

3.1.2 Repetitive Execution with Counter 33

3.2 Data Structure . 38

3.2.1 Array . 38

3.2.2 Linked List . 41

3.3 Object Oriented Language . 43

3.3.1 Object Representation . 44

3.3.2 Dynamic Method Dispatching 46

3.4 Additional Benefits of Frame Register 52

3.4.1 Context Sensitivity . 52

3.4.2 Prefetching . 57

3.5 Summary . 59

4 Low Level Execution Support 60

4.1 Overview of Instruction Dependencies 62

4.1.1 Data Dependence . 62

4.1.2 Name Dependence . 63

CONTENTS v

4.1.3 Control Dependence . 65

4.2 Coping with Data and Name Dependence 66

4.2.1 Tomasulo’s Scheme . 66

4.2.2 Adaptation for SAFA . 71

4.3 Coping with Control Dependence . 85

4.3.1 Branch Prediction and Speculative Execution in General . . . 85

4.3.2 Branch Prediction and Speculative Execution in SAFA 88

4.3.3 Limitation of Speculative Execution in SAFA 95

4.4 Coping with Frequent Memory Movements 97

4.4.1 Local Data Access in SAFA 100

4.5 Advances in Java Technology . 114

4.5.1 Comparison: SAFA vs Java Processors 118

4.6 Influence of General Tagged Execution Framework 120

4.7 Summary . 121

5 Benchmark Environment 122

5.1 Hardware - SAFA Simulator . 122

5.1.1 Fetch Unit . 125

5.1.2 Decode Unit . 125

5.1.3 Issue Unit . 126

5.1.4 Execution Units . 128

5.1.5 Frame Registers Unit . 128

5.1.6 Branch Predictor Unit . 129

CONTENTS vi

5.1.7 Overall System . 130

5.1.8 Verification of SAFA Simulator 131

5.2 Software - Assembler and Cross-Assembler 134

5.3 Benchmark Programs . 136

5.3.1 Sieve of Erathosthense . 137

5.3.2 Bubble Sort . 138

5.3.3 Fibonacci Series . 139

5.3.4 Quick Sort . 140

5.3.5 Test Score Accumulation: Array and List 141

5.3.6 Linpack - Gaussian Elimination 142

5.4 Hardware Parameters . 144

5.5 Instruction Type and Execution Time 146

5.5.1 Derivation of Instruction Execution Time 146

5.6 Summary . 147

6 Benchmark Results 148

6.1 Benchmark Notation . 148

6.2 High Level Language Support . 151

6.2.1 Data Structure Support: Array 151

6.2.2 Data Structure Support: Array of Records 155

6.2.3 Data Structures Support: Linked List 159

6.3 Low Level Instruction Support . 165

6.4 Various Benchmarks: Single Execution Unit 166

CONTENTS vii

6.4.1 Fibonacci Series . 167

6.4.2 Sieve of Erathosthense . 171

6.4.3 Bubble Sort . 175

6.4.4 Quick Sort . 177

6.4.5 Linpack: Gaussian Elimination 180

6.5 Various Benchmarks: Multiple Execution Units 184

6.5.1 Bubble Sort . 184

6.5.2 Linpack Benchmark . 187

6.6 Various Benchmarks: Local Data Access Optimization 190

6.6.1 Fibonacci Series . 191

6.6.2 Sieve of Erathosthense . 195

6.6.3 Quick Sort . 199

6.6.4 Bubble Sort . 203

6.7 Conclusion . 207

7 Topical Benchmarks 208

7.1 Large Application . 209

7.1.1 Benchmark Result . 212

7.2 Instruction Folding . 215

7.2.1 SAFA vs Instruction Folding 219

7.2.2 SAFA with Instruction Folding 222

7.3 General Purpose Register Machine 225

7.4 Conclusion . 230

CONTENTS viii

8 Conclusion 231

8.1 Contribution . 231

8.2 Future Work . 233

Appendices 245

A SAFA Assembly Code and Assembler 245

A.1 Frame Register Instructions . 247

A.2 Direct Memory Access Instructions 251

A.3 Integer Instructions . 252

A.4 Floating Point Instructions . 254

A.5 Branching Instructions . 257

A.6 Stack Manipulation Instructions . 261

A.7 SAFA Assembler Introduction . 264

A.7.1 Syntax for Procedure . 264

A.7.2 Syntax for Data Values . 265

A.7.3 Built in Assembly Macros . 268

A.7.4 Sample Translation . 270

A.7.5 Using the assembler . 271

B SAFA Simulator 272

B.1 Simulator in Plain Text . 272

B.1.1 Configuration File . 274

B.1.2 Statistic File . 274

CONTENTS ix

B.1.3 Memory Dump and CPU State 279

B.2 Simulator with GUI . 281

B.2.1 Main Control Panel . 283

B.2.2 Components Window . 286

C SAFA Benchmark Programs 297

C.1 Sieve of Erathosthense . 297

C.2 Bubble Sort . 299

C.3 Bubble Sort: Frame Register Version 301

C.4 Fibonacci Series . 303

C.5 Quick Sort . 304

C.6 Student Array: Conventional Array Access 306

C.7 Student Array: Frame Register and Index 307

C.8 Student Array: Frame Register and Offset 308

C.9 Student List: Conventional Linked List Traversal 309

C.10 Student List: Frame Register and Index 310

C.11 Student List: Frame Register and Offset 311

C.12 Linpack Benchmark . 312

List of Figures

1.1 Tagged Execution Framework. 4

3.1 Dynamic Dispatching in OOLs . 50

3.2 Object Representation in SAFA . 51

4.1 Simple Architecture without Tomasulo’s Scheme 67

4.2 Simple Architecture with Tomasulo’s Scheme 69

4.3 Control Dependence Example 1: if-else 86

4.4 Control Dependence Example 2: while loop 86

4.5 Prediction Level Example . 88

4.6 Single Level Prediction . 92

4.7 Multiple Level Prediction . 94

4.8 Machine State before Branch . 109

4.9 Machine State at Point A . 109

4.10 Sun Microsystems picoJava Block Diagram 115

5.1 SAFA Components Diagram . 124

6.1 Bubble Sort(50 Numbers): Comparison 152

x

LIST OF FIGURES xi

6.2 Bubble Sort(50 Numbers): Conventional Array Access Instruction

Composition . 153

6.3 Bubble Sort(50 Numbers): Frame Registers Version Instruction Com-

position . 153

6.4 Student Array (100 Records): Comparison 156

6.5 Student Linked List (100 Records): Comparison 162

6.6 Fibonacci Series. Fib(10) : Speed Up 170

6.7 Fibonacci Series: Composition . 170

6.8 Sieve of Erathosthense (100 Numbers) : Speed Up 173

6.9 Sieve of Erathosthense: Composition 173

6.10 Bubble Sort (50 Numbers) : Speed Up 176

6.11 Quick Sort (50 Numbers) : Speed Up 178

6.12 Quick Sort: Composition . 178

6.13 Linpack Benchmarks : Speed Up . 181

6.14 Linpack Benchmarks: Composition 181

6.15 Bubble Sort (50 Numbers) : Multiple Execution Units - Speed Up

Comparison . 185

6.16 Linpack Benchmark (15 x 15): Multiple Execution Units - Speed Up

Comparison . 188

6.17 Fibonacci Series: Local Variable Access - Speed Up Comparison . . . 192

6.18 Fibonacci Series: Local Variable Access - Execution Time Comparison 192

6.19 Fibonacci Series: Local Variable Access (Stack Frame) Instruction

Composition . 194

LIST OF FIGURES xii

6.20 Fibonacci Series: Local Variable Access (Operand Stack) Instruction

Composition . 194

6.21 Sieve of Erathosthense: Local Variable Access - Speed Up Comparison195

6.22 Sieve of Erathosthense: Local Variable Access - Execution Time Com-

parison . 196

6.23 Sieve of Erathosthense: Local Variable Access (Stack Frame) Instruc-

tion Composition . 196

6.24 Sieve of Erathosthense: Local Variable Access (Operand Stack) In-

struction Composition . 198

6.25 Quick Sort: Local Variable Access - Speed Up Comparison 200

6.26 Quick Sort: Local Variable Access - Execution Time Comparison . . . 200

6.27 Quick Sort: Local Variable Access (Stack Frame) Instruction Com-

position . 202

6.28 Quick Sort: Local Variable Access (Operand Stack) Instruction Com-

position . 202

6.29 Bubble Sort: Local Variable Access - Speed Up Comparison 204

6.30 Bubble Sort: Local Variable Access - Execution Time Comparison . . 204

6.31 Bubble Sort: Local Variable Access (Stack Frame) Instruction Com-

position . 206

6.32 Bubble Sort: Local Variable Access (Operand Stack) Instruction

Composition . 206

7.1 Compress (4000 bytes Text) - Speed Up Comparison 214

7.2 Compress (8 kbytes Binary) - Speed Up Comparison 214

7.3 Fibonacci Series : SAFA with Folding - Speed Up 223

LIST OF FIGURES xiii

7.4 Sieve of Erathosthense: SAFA with Folding - Speed Up 223

7.5 Quick Sort: SAFA with Folding - Speed Up 224

7.6 Bubble Sort: SAFA with Folding - Speed Up 224

8.1 Ideas Relationship in SAFA . 234

A.1 Syntax for a Procedure in SAFA Assembly Code. 265

A.2 Layout of a Procedure Stack Frame 266

B.1 Sample Configuration File . 275

B.2 Sample Statistic File (Part1) . 276

B.3 Sample Statistic File(Part2) . 277

B.4 Sample Statistic File (Part 3) . 278

B.5 Sample Memory Dump File (Partial) 279

B.6 Sample CPU Trace File (Abridged) 280

B.7 SAFA Simulator GUI v1.5 Screen Shot 282

B.8 Main Control Panel GUI . 283

B.9 Fetch Unit GUI . 286

B.10 Decode Unit GUI . 287

B.11 Issue Unit GUI . 289

B.12 Frame Register Unit GUI . 291

B.13 Branch Predictor Unit GUI . 293

B.14 Execution Unit GUI . 294

B.15 Memory Unit GUI . 295

List of Tables

4.1 Speculative Consumption of Result 96

4.2 Confirmation of Prediction PL j . 96

4.3 Handling Misprediction at PL j . 96

6.1 Bubble Sort 50 Numbers: Conventional Array Access 154

6.2 Bubble Sort 50 Numbers: Using Frame Register 154

6.3 Student Array (100 records) Benchmark: Conventional Array Access 157

6.4 Student Array (100 records): Using Frame Register (version 1) 157

6.5 Student Array (100 records): Using Frame Register (version 2) 158

6.6 Student Linked List (100 records): Conventional Linked List Traversal 163

6.7 Student Linked List (100 records): Using Frame Register and Index . 163

6.8 Student Linked List (100 records): Using Frame Register and Offset . 164

6.9 Fibonacci(10) = 55. Total Recursive Calls = 177 169

6.10 Sieve of Erathosthense: 100 Numbers 174

6.11 Quick Sort: 50 Numbers. Total Recursive Calls = 43 179

6.12 Linpack(5): Solve 5 x 5 floating point matrix using Gaussian Elimi-

nation. 182

xiv

LIST OF TABLES xv

6.13 Linpack(10). Solve 10 x 10 floating point matrix using Gaussian

Elimination. 182

6.14 Linpack(15). Solve 15 x 15 floating point matrix using Gaussian

Elimination. 183

6.15 Bubble Sort (50 Numbers): Multiple Execution Units - Comparison . 186

6.16 Linpack Benchmark (15 x 15): Multiple Execution Units - Comparison189

6.17 Fibonacci Series : Local Variable Access - Comparison 193

6.18 Sieve of Erathosthense: Local Variable Access - Comparison 197

6.19 Quick Sort: Local Variable Access - Comparison 201

6.20 Bubble Sort: Local Variable Access - Comparison 205

7.1 Compress (4000bytes Text): Summary 213

7.2 Compress (8kbytes Binary) - Summary 213

7.3 Folding Benchmarks without LDM: Summary 219

7.4 Folding Benchmarks with LDM: Summary 219

7.5 SAFA vs Instruction Folding (without LDM): Summary 221

7.6 SAFA vs Instruction Folding (with LDM): Summary 221

7.7 Bubble Sort(250) on SimpleScalar: Non-Optimized 229

7.8 Bubble Sort(250) on SimpleScalar: Optimized 229

7.9 Bubble Sort(250) on SAFA with LDM 229

Chapter 1

Introduction

“The number of transistors on an Integrated Chip will double every 18 months.”,

these are the words of the widely known Moore’s Law 1 due to Gordon Moore in 1965.

This observation, amid doubts and speculations, has held true for several decades,

witnessing exponential growth of both component count and structural complexity

of electronic chips. As an example, consider the first fully-electronic programmable

computer ENIAC in 1940s, which had a mammoth foot print of 9 by 15 meters.

Nowadays, even a handheld calculator of 9 by 15 centimeters has more computing

power.

However, the ability to cramp more components into an ever decreasing

space was only partially responsible for the increase in computing power. Transistors

are just the raw building material that must must be harnessed into a meaningful

design. Computer architecture completes the picture by imposing the structure on

the raw components for better and more efficient computation, which usually takes

the form of a set of machine instructions.

The execution of a machine instruction in a Von Neumann Machine2 is fre-

quently compared to a production line in the real world, for example, the automobile

1One of the many formulations.
2Computer with independent but interconnected memory and execution unit

1

CHAPTER 1. INTRODUCTION 2

assembly line. Just as a car undergoes several assembly stages, an instruction goes

through several well defined stages as well, generally:

1. Fetch: To bring an instruction from the memory store into the execution core.

2. Decode: Determine the operation(s) to be performed as indicated by the

instruction.

3. Execution: Execute the operation(s) required.

4. Write Back: The result of the execution is recorded.

The similarity between the real world assembly line and the minute one in

the Central Processing Unit allows many useful techniques to be shared. One good

example would be the pipeline process. By splitting the procedure of car assembling

into several stages, multiple cars at various stages can be worked on at the same

time. Consider a simple scenario: a car assembly line with four stages where each

stage takes one day can be expected to finish 12 cars in 15 days.

However, the pipelining in CPU does not yield such a speed up usually.

There are two main reasons:

1. Inter-Dependency between Instructions: Unlike individual cars on the

assembly line, machine instructions are usually inter-related. For example, an

instruction may depend on the previous one for producing the needed data.

In this case, the latter instruction must wait until the former instruction is ex-

ecuted before proceeding. Such relations restrict the order of the execution as

well as impose delays in execution, and prevent many parallelizing techniques

from running at full steam.

2. Limited Resources: Because of resource limitations, a CPU may not be able

to accommodate more instructions running at the same time. These resources

include registers (or similar structures to hold data), execution units, etc.

CHAPTER 1. INTRODUCTION 3

A large number of techniques have been proposed to mitigate these re-

strictions. The famous Tomasulo’s Scheme [38] was proposed to enable dynamic

scheduling of instructions, thereby curbing the dependency problem mentioned. By

renaming registers (also known as tagging), the operands and result of an instruc-

tion are associated with a tag (or virtual register number) instead of a real physical

register. Since real physical registers now can be utilized more freely by having dif-

ferent tags as needed, resource dependency problems would be less frequent. With

dynamic scheduling and register renaming, it is now possible to process (issue) more

than one instruction in a clock cycle. This technique has been the backbone for quite

a number superscalar (multi-issue) architectures. Although the Tomasulo’s Scheme

requires relatively complicated hardware implementation, little special attention is

needed from compilers.

Reminiscent of the heated debate of RISC3 and CISC4 in the 80’s, another

approach that requires more sophisticated compilers but relatively simple hardware

has been proposed. The Very Long Instruction Word (VLIW) architecture de-

pends on the compiler to extricate (disentangle) inter-dependent instructions and

group independent instructions into a parallel package (also known as an instruc-

tion word/bundle). Since there is no dependency between instructions in a package,

they can be executed simultaneously without further checking. As succinctly put

by the Online Byte Magazine, “VLIW is basically a software- or compiler- based

superscalar architecture. ”

The two approaches mentioned spark off enthusiastic research into the re-

spective areas with abundant results. At first glance, they seem quite different from

each other, with distinct emphasis on separate part of the instruction execution.

However, we feel that it would be beneficial to put them under a common cohesive

framework. This conceptual framework is presented in the next section.

3Reduced Instruction Set Computer
4Complex Instruction Set Computer

CHAPTER 1. INTRODUCTION 4

1.1 General Tagged Execution Framework

By extracting the commonality between the approaches, we find that there is a

underlying common conceptual framework, as shown in the Figure 1.1.

1.
Instruction

Stream

10011010
00101111
10111100
11000011
00000001
10100101
10011010
00101111
10111100

2.
Dependency
Resolution

3.
Scheduling

4.
Execution

5.
Clean Up

10011010

 00101111

10111100

Produce

Produce

Consume

10011010
 00101111

10111100

Time 1:

Time 2:

A
d

d

0x01 0x01

0x02

Figure 1.1: Tagged Execution Framework.

As can be seen in the framework, we start with a stream of instructions in

stage one going into the framework. Instruction dependency checking is performed in

stage two. Producer instructions pick up a fresh tag to identify their future results,

while consumers instructions collect operands (identified by tags). Instructions can

be said to have lost their original form at this stage, and become a more general

execution package, which describes a manipulation based on tags. In stage three, an

execution package that is considered ready based on a set of criteria get scheduled.

The readiness criteria can differs from system to system. The actual execution

happens in stage four. Finally, in stage five, execution results will be stored, tags

and other resources will be released.

This conceptual framework captures quite a number of existing computer

architectures. Since one or more stages preceding the execution stage in the figure

above can be implemented either in hardware or software, a number of interesting

models arise. For example, for a superscalar (multi-issue) machine that employs

Tomasulo’s Scheme (e.g. PowerPC, Alpha), the second and third stage would be

implemented by a Reorder Buffer and Common Data Bus in hardware and the fourth

CHAPTER 1. INTRODUCTION 5

stage would be a superscalar pipelined execution engine.

For a VLIW architecture, (e.g. IA64 EPIC), the second and third stage

would be performed in software (the compiler), with limited scheduling in hardware

and the fourth stage would be a EPIC execution engine to process instruction bun-

dles. A dynamically scheduled VLIW machine would have both 2nd and 3rd stage

in hardware, with an EPIC-like execution engine.

Also, it is interesting to note that the type of instruction set does not

matter in this framework. As instructions pass through the tagging stage and are

transformed into an execution package as described previously, similar techniques

at the later stages are equally valid. Traditionally, different types of instruction

set (commonly known as 0-, 1- and 2- operands instructions) requires their own

specialized hardware for execution. With this framework, however, it is possible to

consider the possibility of utilizing previously used techniques on a wide range of

instruction sets, all producing tagged instructions that produce/consume data via

virtual registers.

Based on this observation, we decided to study the feasibility of applying

tagging to the stack-oriented instruction set. The benefits for this choice are two

fold:

1. Traditionally, stack-oriented machines suffered the most under the problems

mentioned. The fading of stack machines from the computer architecture scene

can be largely attributed to the fact that stack machines fail to incorporate

new parallelizing techniques devised for other platforms.

2. Recent popularity of the programming language Java and its underlying virtual

machine (JVM), which is a stack based machine, have rekindled interest in this

area.

With this in mind, we introduce the Stack And Frame Architecture,

SAFA.

CHAPTER 1. INTRODUCTION 6

1.2 The SAFA Architecture

Traditionally, a pure stack-based instruction set is also known as the 0-address or 0-

operand instruction set. As opposed to the general-purpose register instruction set,

where the operands of an operation (stored in registers) are stated explicitly in the

instruction, or the accumulator instruction set, where one of the operands is stated

explicitly and the other is assumed in the accumulator implicitly, the stack-based

instruction set assume that the operands exist on a stack and consequently does not

carry any explicit operand[1].

In the 70s, when main memory storage was a scarce and expensive resource,

stack based machines enjoyed popular acceptance because of the compact binary

code produced. Besides, the stack is also a natural data structure used frequently

in high-level programming language (HLP) execution, e.g. activation records of

procedural languages, simple variable scoping etc. However, the limitation of stack

machines become apparent when better and more efficient instruction execution

techniques, like superscalar execution, pipelining etc were found to be inapplicable.

In [27], the limitation of the stack machine is summarized as:

The stack oriented architectures has passed from the scene because

it is difficult to speed execution of such a processor because the stack

pointer manipulations become a bottleneck.

The other major disadvantage of the stack instruction set is the poor exe-

cution support for data structure, for example array indexing. Since the array is one

of the most frequently used data structures, inefficient support of these operations

seriously handicaps the stack architecture.

However, recent development in the field shows that a stack architecture

still has its attractiveness. For example, Java, one of the fastest growing program-

ming languages, is implemented on top of a virtual machine, the Java Virtual Ma-

chine (JVM)[14]. The designers have chosen the stack architecture for the JVM

CHAPTER 1. INTRODUCTION 7

because of the simplicity in design as well as the compact binary size produced[13].

Hardware implementation of JVM, the picoJava[10][11] architecture, shows that it

is possible to overcome some of the inherent disadvantages of a stack architecture.

For our project, we have devised a set of mechanisms that concentrate on

the two following areas:

1. High Level Language Support:

• Instructions with hardware support for HLP execution, especially sub-

routine entrance and exit, variable scoping and stack frame accesses.

• Improved data structure and control flow support for HLP.

2. Low Level Instruction Support:

• Hardware stack structure that uses tagged execution to support Instruc-

tion Level Parallelism, ILP.

• Speculative execution of stack instructions.

• Retention of frequently accessed data in CPU core to minimize memory

access.

Although these ideas/mechanisms are mostly self-contained and applicable to other

suitable architectures, we need a flexible independent platform to introduce all of

them for experimentation. The SAFA architecture is thus designed as a means to

experiment with the ideas mentioned, as well as to study the interaction between

them. Detailed explanations will be given in the relevant chapters, according to the

categorization above: High Level Language support in Chapter 3, and Low Level

Instruction execution in Chapter 4.

CHAPTER 1. INTRODUCTION 8

1.3 Objectives of Our Work

We shall see that the ideas in SAFA architecture are able to overcome the weaknesses

of stack architectures, while strengthening the advantages. These mechanisms would

be able to provide:

1. Good instruction level parallelism without the heavy compiler optimization

usually needed in GPR machines.

2. Good support for high level programming languages, including procedure ac-

tivation and array indexing.

3. More expressive instructions that allow compact binary code size.

4. Optimized local data access.

The SAFA architecture, as a complete package, has the following advan-

tages:

1. General purpose yet providing hardware alternative to the Java Virtual Ma-

chine.

2. A possible choice as an embedded processor because of its good performance

with simple hardware implementation and compact binary size.

Also, by showing that tagging stack-based instructions within a more gen-

eral architecture, the usefulness of the general execution framework proposed in

the last section could be established. With this framework in place, more cohesive

studies of the topic can be made in the future.

CHAPTER 1. INTRODUCTION 9

1.4 Overview of Thesis

An overview of the remaining chapters in this thesis is given below:

Chapter 2 Gives a short related literature survey.

Chapter 3 Discusses the ideas we adapted in SAFA to improve high level language

support.

Chapter 4 Explains the ideas we adapted to improve low level execution of stack-

oriented instructions.

Chapter 5 Lay out the setup of the benchmarking.

Chapter 6 Presents the benchmark results of the SAFA simulator. Several repre-

sentative programs are executed to exploit the various new hardware features.

Chapter 7 Presents several topical benchmark studies to provide a broader per-

spective.

Chapter 8 Concludes the thesis by summarizing the contribution of work done.

Possible future continuation work is also discussed.

Chapter 2

Literature Survey

2.1 Introduction

This chapter summarizes the literature survey we have done as related to our re-

search proposal. The methodology as well as the objectives of the survey is given

in the Section 2.2. Detailed information for each of the included machines is pre-

sented, along with comparison of our proposed alternative. A brief conclusion that

summary of the survey is presented in Section 2.5.

2.2 Objectives

As mentioned in Chapter 1, in addition to studying the general applicability and

potential of a tagged execution, our project also aims to research the possibility

and feasibility of designing a stack machine that is efficient at the instruction set

level and provides good support for executing high level programming languages.

Hence, a survey on past machine architectures would serve as both guideline and

comparative framework for our design. With this in mind, we have cast our net

into the past few decades to study a few architectures that have one or more of the

following features:

10

CHAPTER 2. LITERATURE SURVEY 11

0-Address Instruction Set As stated in [1], 0-address instruction set machine,

which is usually considered as the pure stack machine, utilizes a stack for

evaluating expressions. Most instructions assume the operands needed for

carrying out the operations reside on a stack (whether in CPU hardware or

memory). This makes stack machines very different from general purpose

registers machines.

High Level Language Support As early as the 1970s, designers of machine ar-

chitecture have realized the importance of good support for executing high

level language programs[6]. Efficient instruction level execution cannot guar-

antee good overall performance of a CPU, if the support for high level language

construct likes variable scoping, method/function invocation, information hid-

ing/protection etc is lacking or poorly implemented.

Superscalar Register Based Machine If tagging can be applied to stack-oriented

instructions, it is argued in Chapter 1 that normal execution mechanism and

technique employed in register-based machines may be equally applicable to

our design. It would be useful to study a few typical register-based superscalar

machines to look for useful structure and/or technique.

The case studies will be grouped into:

1. Stack based machine, reported in Section 2.3.

2. Register based machine, reported in Section 2.4.

CHAPTER 2. LITERATURE SURVEY 12

2.3 Stack Based Architecture

Information for stack machines proved to be scarce, mainly due to fact that stack

machine has fallen out of the mainstream architectures for the past few decades.

Four machines have been selected for our study.

2.3.1 Burroughs Family B5000-B6700

History

Brief Information: Developed by Burroughs Corporation, starting in 1961 (for

B5000)[8].

Design of Instruction Set: Pure stack instruction set which takes 0 operand for most

of the instructions.

Features of Processor Architecture

• Display registers to keep track of the activation records to reflect the current

lexical scope of executing program. Facilitates non-local variable accessing.

• 4 registers to store top of stack data.

• Top and base of stack tracked by registers.

High Level Programming Language Support

• Influenced by Algol60 and Cobol.

• Operating System support. E.g. Linked-list search instruction, for ease of

memory management, interrupt handling mechanism.

• Tagged Memory words that describe type/meaning of a memory word, facili-

tate Memory Protection.

CHAPTER 2. LITERATURE SURVEY 13

• Descriptors that can used for array access mechanism and hardware bound

checking. Also simplifies dynamic array allocation.

• Activation records stored on stacks. Both static and dynamic links are kept

as a linked list and maintained by hardware when procedure is entered/exited

to facilitate access to parent/caller information.

• Virtual Memory Support.

• Multitasking support.

• Data Structure support.

• Allows efficient process splitting/spawning (B6500/B7500), by establishing

and maintaining a tree structure that stores multiple stacks (the Saguaro Stack

System). Two independent jobs/process can share part of same stack.

2.3.2 Hewlett-Packard HP3000

History

Brief Information: Developed by Hewlett Packard, in 1976[27][9].

Design of Instruction Set:

• Takes in 1 operand and assume the other operands (if any) reside on stack.

Can be considered a stack/accumulator hybrid.

• A number of addressing modes.

• A few instructions that does not conform to the stack paradigm (e.g. allowing

execution results to be stored directly to memory etc).

• Does not give direct access to variables declared in enclosing blocks.

CHAPTER 2. LITERATURE SURVEY 14

High Level Programming Language Support

• Influenced by Algol60 and Burroughs Family.

• Registers to keep track of stack (top of stack in memory, top of stack in registers

etc).

• General linked list traversals instruction provided.

• Activation records kept as stack.

2.3.3 Intel iAPX432

History

Brief Information: Developed by Intel Corporation, in Year 1981[7].

Design of Instruction Set:

• No user addressable registers.

• Instruction fetches its input operands offset from an object (in Memory).

• 0-3 operands, expressed in 2 parts: object selector + displacement.

• Expression evaluation carried out on operand stack.

High Level Programming Language Support

• Influenced heavily by Ada

• Based on the observation that HLP relies heavily on a particular data struc-

ture, the directed graph. E.g. Object is a node, and reference to object is an

arc to this node. Implements directed graph (akin to linked list) in hardware

design.

CHAPTER 2. LITERATURE SURVEY 15

• Object-oriented representation for program execution. Several key types of

object below.

• Compiled code information encapsulated by a Domain Object.

• Context of a executing procedure, includes information of addressing info

(scoping), operand stack for expression evaluation, static link (enclosing block

of scope), dynamic link (caller’s context) etc.

• A doubly linked list of context objects is maintained, with functionality similar

to activation records.

• Process Object to store information of execution state of a program, so as to

facilitate suspension and resumption of process easily.

• CPU internal registers to hold the current process, context, domain object

descriptor for efficient access.

• Access rights are embedded in object descriptor and enforced by hardware.

• Refinement Object that implements public/private property of object attributes.

• Caters mainly for the Ada programming language, which organize program

into package (similar to class in OOP). Supports easy implementation of OOP

languages.

2.3.4 INMOS transputer

History

Brief Information: Developed by INMOS (now ST Microelectronics), starting from

1984[62][39]. A number of models were developed, which can be categorized into

three groups:

1. 16-bit T2 series

CHAPTER 2. LITERATURE SURVEY 16

2. 32-bit T4 series

3. 32-bit T8 series with 64-bit IEEE 754 floating-point support

Design of Instruction Set:

• 8 bits RISC instruction set with 4 bits opcode and 4 bits operand.

• Can be extended by interpreting the operand as extra opcode bits.

Features of Processor Architecture

• A single transputer consists of a RISC sequential processor, on chip memory

and a 4-ways inter-processor communication system.

• Multiple transputer can be connected in different topology to form parallel

system.

• Only 3 general registers A, B and C, which are treated as stack by the in-

struction set (A is the stack top). Arithmetic operations are performed using

A and B implicitly.

• Other than general registers, there are also a workspace memory pointer, an

instruction pointer and an operand pointer which refers to the on chip memory.

• High speed on chip memory helps to overcome the limited number of general

registers in the INMOS transputers.

High Level Programming Language Support

• Intended to be programmed by the OCCAM programming language.

• Occam supported concurrency and channel-based inter-process or inter-processor

communication as a fundamental part of the language.

CHAPTER 2. LITERATURE SURVEY 17

• As such, the INMOS transputers are designed specifically with this language

in mind [62].

2.3.5 Java Virtual Machine and picoJava implementation

History

JVM is the virtual machine designed by Sun Microsystem to execute Java byte code

programs independently across different platforms. So far, two hardware implemen-

tations have been produced by Sun Microsystem[10][11]. There are a number of

hardware extensions in recent years, for example, the ARM Jazelle[63], which have

moderate success in embedded devices.

Brief Information: Developed by Sun Microsystem, in 1997 (picoJava I) and 1999

(picoJava II).

Processor Architecture

Design of Instruction Set:

• Pure 0-address instruction set.

• All instructions except memory load/store instructions take 0 data addresses

and operate on top of stack.

• Specific set of instructions for different data types.

• Provides instructions that access local variables in a block directly.

• A few fairly high level instructions to facilitate method invocations.

• Byte size (8 bits).

Design of CPU:

CHAPTER 2. LITERATURE SURVEY 18

• 6 stage pipeline with 64 entry stack cache

• Instruction folding for top of stack operations, to improve speed and efficiency.

• Hardware stack drizzle unit to load/store part of memory from/to memory

automatically.

• Most common used instructions in hardware, complex instructions are mi-

crocoded. Only a few very complicated ones trapped and emulated in soft-

ware.

High Level Programming Language Support

• Designed specifically for JAVA

• Thread synchronization, garbage collection support in hardware.

• Supports method invocation and hiding of loads from local variables.

• Utilizes stack frame to store information about executing threads, acts as

activation record.

• Operand stack size is pre-calculated and space is allocated in stack frame to

facilitate suspension/resumption of threads.

• Above items gives good support to OOP in general.

2.3.6 Conclusion

Stack machines surveyed showed a few common trends:

• Stack structure is very good at supporting certain high level programming

language constructs, e.g. variables scoping, function/procedure entrance/exit.

• Although receiving praise (especially from the academic field), stack machines

generally perform poorly in actual sales. For example, the Intel iAPX432 was

CHAPTER 2. LITERATURE SURVEY 19

considered as the “machine of the future” by many [7], but it failed badly to

sell. This is mainly due to the fact that stack machines are much more compli-

cated than other machines, which usually shows in slow product development,

higher price and/or poorer performance.

• Because of the complexity and difficulty in speeding the execution of stack

instructions, most machine architecture designers prefer the alternative design

(e.g. general purpose register architecture). In those architectures, depen-

dency detection, pipelining, super scalar execution of instructions can be done

much more easily[27].

CHAPTER 2. LITERATURE SURVEY 20

2.4 Register-Based Superscalar Architecture

Since Register-Based Architectures has been the mainstream for almost as long

as the history of computer architecture, a huge number of processor designs have

been proposed and implemented. To narrow our search, we only concentrate on

architectures that are:

RISC-Based RISC-based architecture has the added advantage of simple and un-

cluttered design compared to CISC based architecture. This allows us to

concentrate on the main features that are relevant.

Superscalar We have chosen to implement a superscalar stack machine. Naturally,

superscalar architecture will provide us with important ideas.

Speculative Another well-developed idea on register based architecture, which

would shed light on our design.

Long Life Quite a number of architectures simply fade out of the main stream after

a short period of time. Though not necessarily being the best designs, long

lived processor families also allow us to compare each successive generation to

see the evolution of certain ideas.

2.4.1 Alpha Family

History

The DEC Alpha (also known as Alpha AXP) is a 64-bit RISC microprocessor

originally developed and fabricated by Digital Equipment Corp (DEC). This archi-

tecture family is frequently touted as the proof of superiority of manual design as

opposed to automated design. The Alpha chips consistently showed that manual

design can lead to a simpler and cleaner architecture [39]. Besides, the Alpha AXP

also posted excellent performance that is almost unrivaled in its generation [20]. A

CHAPTER 2. LITERATURE SURVEY 21

cluster of 4096 Alpha Processors currently (2004) powers the 6th fastest supercom-

puter in the world [26]. Sadly, the Alpha AXP family tree is finally ended at EV7 in

year 2004, where HP (who bought Compaq, which in turn bought DEC) officially

announced the end of production line.

The DEC Alpha family includes the following chips (excluding chips that

were never fabricated and minor variations):

1. Alpha 21064 (EV4) in Year 1992.

2. Alpha 21164 (EV5) in Year 1995.

3. Alpha 21264 (EV6) in Year 1998.

4. Alpha 21364 (EV7) in Year 2003.

This survey is mainly based on the older and simpler Alpha 21164.

Processor Architecture

The main features of the Alpha AXP Architecture is summarized in [17] as a

scalable RISC architecture, supporting 64-bit addresses and data types, and deeply

pipelined, superscalar designs that operate with a very high clock rate. The AXP

designers strive for simplicity over functionality, such as eliminating branch delay

slots, register windows etc, in exchange for efficient superscalar implementation.

Alpha 21164

The 21164 pipeline length varies from 7 stages for integer execution to 9 stages for

floating point execution, up to 12 stages for on-chip memory access and a variable

number of additional stages for off-chip memory access [18]. The first 4 stages

(known as instruction pipeline in AXP architecture) which deals with instruction

CHAPTER 2. LITERATURE SURVEY 22

decoding and issuing, are the same for all instructions. Since we are interested in

Superscalar technique, this would be the part that we concentrate on.

Stage S0 (the first stage in the instruction pipeline) fetches a blocks of

four instructions from instruction cache and performs preliminary decoding. Stage

S1 mainly checks for flow control instruction (branching, subroutine enter/exit),

calculates the new fetch address and updates the instruction cache accordingly.

In stage S2, instructions are steered to an appropriate function unit, a pro-

cess called instruction slotting [19]. The slotter process can slot all four instructions

in a single cycle if the block contains a mix of integer and floating point instructions

that can be issued together. In other word, this stage resolves all structural hazards

and issues as many as possible instruction to Stage S3. The slotting appears to

be similar to the VLIW packaging process, albeit the former is dynamic, the latter

static.

Stage S3 performs dynamic conflict checks on the set of instructions ad-

vanced from S2. Basically, this stage contains a complex register scoreboard to check

for read-after-write and write-after-write register conflicts. This stage also detects

function-unit-busy conflicts.

Alpha 21264

According to [21], Alpha 21264 has similar stages to Alpha 21164. However,

there are a few notable differences. First, register renaming is deployed to expose

instruction parallelism. This is stated as the fundamental to the 21264’s out-of-order

techniques.

Also, advanced branch prediction is added. A number of branch predictions

methods are known that work pretty well. However, the accuracy of prediction is not

universal and different algorithms work well on different types of branches. Hence,

instead of using a fixed prediction algorithm, the 21264 employs a hybrid approach

that combine two different algorithms, picking the better one dynamically[20]. It

CHAPTER 2. LITERATURE SURVEY 23

is important to note that whenever prediction fails (the wrong path is taken), the

21264 enters a mispredict trap, which basically stops all in-flight instructions, flushes

the instruction pipeline and restarts from the correct path.

2.4.2 PowerPC Family

History

The PowerPC (Power Computing) began life from the IBM’s POWER (Power

Optimization With Enhanced RISC) architecture, which was introduced with the

RISC System/6000 in early1990 [39]. This architecture specification is the result of

the three-way collaboration AIM, which involve three big names in the industry,

Apple, IBM and Motorola. The first chip of the PowerPC family, 601 was released

in Year 1994. A number of variations on the basic chip were later released as

PowerPC 602, 603 and 604. The first 64bit implementation, the 620, was released

in Year 1995. Later chips were used by the Apple Macintosh machine:

1. 750 (PowerPC G3) in Year 1997

2. 7400 (PowerPC G4) in Year 1999

3. 970 (PowerPC G5) in Year 2003

Besides from the Apple Macintosh machine, PowerPC chips are also a

favorite choice for embedded computer designers, in particular the PowerPC 620.

Processor Architecture

The original POWER architecture incorporated common characteristics for RISC

architectures: fixed length instructions, load/store only memory access, separate

registers for integer and floating point operations. Also, the POWER architec-

tures is functionally partitioned, which facilitated the implementation of superscalar

designs[23].

CHAPTER 2. LITERATURE SURVEY 24

When the PowerPC architecture was extended into the 64bits realm, there

were several major changes:

1. The designers removed niche instructions that were deemed too complicated.

2. A set of simpler, single precision floating-point operations were added.

3. A more flexible memory model, allows software to specify how the system

performs memory accesses.

PowerPC 620

The 620 pipeline has 5 stages for integer instruction: fetch, dispatch, execute, com-

plete and write-back. For other type of instructions, a variable number of stages is

needed, briefly Floating Point Instruction takes 8, Load Instruction takes 7, Store

Instruction takes 9 and Branch Instruction takes 4. The main execution character-

istic of the 620 is that Instructions are dispatched in program order, are executed

out-of-order, and are completed in order [24]. As with the Alpha AXP architecture,

we are concerned mainly with the fetch and dispatch stage.

The fetch stage access the instruction cache to bring up to 4 instructions

into a 8-entry FIFO buffer. The first four (the older four) are referred to as dispatch

buffer which is accessed by the dispatch stage directly, and the other four entries

are the instruction buffer. The 620 also associates seven pre-decode bits with each

instruction which contains executions information like GPR1 file usage, execution

unit needed etc. These pre-decode bits eliminates the need for a separate decode

pipeline stage.

During each cycle, the dispatch stage examines the four instructions in the

dispatch buffer and attempts to dispatch them to reservation stations in appropriate

execution units. Inter-instruction dependencies are identified and an attempt is

made to read the source operand from the architectural register files or from the

1General Purpose Register

CHAPTER 2. LITERATURE SURVEY 25

rename buffers. Note that the 620 assigns rename buffer for results produced by an

instruction. Subsequent instructions that depends on this result are given a tag to

identify that particular rename buffer.

Since execution can occur out-of-order, a 16-entry reorder buffer is used to

keep track of the instruction order (the program order) as well as the state of the

instructions. A reorder buffer entry is associated with each dispatched instruction.

A completion flag is recorded when the instruction finished its execution, which will

be used to ensure program order.

The 620 employs a Branch History Table method for branch prediction.

Prediction is made based on the past history of a particular branch instruction.

Static branch prediction, where a bit in the instruction along with the direction of

the branch determines the outcome of the prediction, can be turned on by software

to take the place of the BHT method[24].

Speculative execution is made possible by maintaining the results in tempo-

rary storage, such as rename buffers, reorder buffers and shadow registers (registers

that are invisible/unaccessible to programmer). When misprediction occurs, the

completion logic kicks in and purges all speculative results.

2.4.3 Conclusion

The superscalar machines survey has taught us several important lessons:

1. Multi-Issue (Superscalar) Execution depends on the architecture abil-

ity to disentangle the static and dynamic dependencies between instructions.

Tagging or renaming is a widely employed solution.

2. Instruction Supply is important in Superscalar design. Because of the mul-

tiple instructions dispatched every clock cycle, a constant supply of of instruc-

tions from the fetching stage is vital.

CHAPTER 2. LITERATURE SURVEY 26

3. Branch Prediction in a superscalar setting is viable. However, two problems

must be solved efficiently for this technique to be worthwhile: keeping track

of speculative results and cleaning up misprediction.

These considerations have considerably influence our design for SAFA.

2.5 Summary

The two surveys outlined in this chapter have given us much material to help design

our architecture. Although the architectures surveyed comes from radically different

design, we found that there are complementing traits between the two groups. The

stack machines survey has shown very clearly the disadvantages of the stack oriented

architecture, but at the same time points out the undeniable fact that stack structure

is one of most utilized data structure in high level language. The register machines

survey, on the other hand, showed that there are some very well studied techniques

that can improve instruction level parallelism. However, these machines have little

specialized support for high level language. Guided by these observations, we have

laid out our design of a new stack machine SAFA, in search for a stack architecture

that provides good high level language support and performs well at the machine

level. The architectural details which will be covered in the next few chapters.

Chapter 3

High Level Language Support

The original purpose of computer programming languages is to provide a more

human friendly interface leading to the lowest level of hardware instructions. In

the beginning, Assembly Languages were basically thinly veiled human readable

machine code. The close relationship between the language and the hardware reflects

the need of maximum efficiency in execution since processing power comes at a

premium. However, that also renders the language to be restricted, awkward to use

and machine dependent.

As computing power increased, the possibility of allowing more flexible and

expressive programming language emerged. Programming language design shifted

from machine-centric to human-centric. These languages, usually termed as High

Level Programming Languages to distinguish them from the low level counterparts,

represent richer paradigms to organize the data and control of a program. The

HLPs, being further away from the machine code conceptually, relies on compilers

to translate them into machine executable code. This frees the HLPs from the

restriction of any single machine and further enhances the flexibility of the language.

With the growing importance of HLPs, new design in computer architec-

ture must take high level language support into consideration. Providing specialized

hardware for high level construct has greatly influenced the design of some computer

27

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 28

architectures. For example, from the older schools of architecture we have the Bur-

rough architecture, which utilized the display registers (Section 2.3.1) for efficient

procedure invocation. For the more recent architectures, the Intel Pentium x86

architecture provides the MMX (multimedia extension) for video, computer graph-

ics processing. There are even attempts to based computer architecture on high

level language paradigm, for example, the Intel AIX (Section 2.3.3) which actually

embodies object oriented concepts.

For SAFA, we consider the HLP support in two main areas, control flow

and data structure, which are discussed in the following sections.

3.1 Control Flow

There are two major forms of control flow in most HLPs, procedure1 activation, and

selective execution (branching and looping).

3.1.1 Procedure Activation

In HLPs, program code is usually organized into manageable modules e.g. Pro-

cedures/Functions in procedural imperative languages, Methods in object-oriented

languages to allow better modularity and code re-usability. Hence, one of the most

frequently used operations in HLPs is to transfer the thread of control from one mod-

ule to another, e.g. function call, method invocation etc. According to [27], in a

typical PASCAL program, the frequency of procedure activation (function call) can

be as high as 15%, the third highest after assignment (45%) and branching (29%).

Compared to function calls, assignment and if-then-else are relatively simpler oper-

ations . These operations can easily be mapped to a few low level instructions. By

providing maximum efficiency in the instruction level, these operations can then be

executed with satisfactory speed. On the other hand, function calls require more

1also known as module, coroutine or function

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 29

complicated mechanism for efficient execution.

There are two major tasks during procedure activation. In addition to the

mechanism of transferring and bookkeeping of threads of control, accessing scoped

variable also requires attention. For procedural HLPs, there are at least two level

of scoping, one for the so called Global Variables (accessible in the whole program),

and Local Variables (specific to each module)2. For object oriented HLPs, there

are at least two more scopes: the class variables (specific to each class) and the

object variables (specific to each object, i.e. instances of each class). The extra

scopes in object oriented HLPs can be taken as an extension from the procedural

counterparts, where class variable is similar to global variable in a class, and object

variable is similar to local variable specific to each object. We will first consider the

scoped variables in procedural HLPs.

During the execution of a procedure, both type of variables may be ac-

cessed. However, a local variable in a procedure is not visible or accessible from the

outside. Hence, an efficient mechanism for accessing variables in different scopes,

and also access protection is needed.

The information needed for the activation of a procedure is usually collected

in a record called an activation record or stack frame[29]. This record is created

at runtime when a procedure is about to be entered. Usually it is allocated on

the memory stack or heap according to different designs. A number of the more

important information items kept is listed as follows:

Control Link Also known as dynamic link, points to the stack frame of the run-

time caller.

Access Link Also called as static link, points to the lexical host (parent) of the

current procedure.

2Languages that support nested procedures will have more scoping levels, like Pascal, Algol60

etc

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 30

Saved State any process state information of the caller procedure, used for re-

sumption of the caller procedure.

Parameters Actual parameters for the activation of the current procedure.

Local Variables Storage space for local variables of the current procedure.

The two links: dynamic and static, play important role in procedure activa-

tion. By following the control link, the return address and information of the caller

relevant to the procedure can be determined when the current procedure finishes.

By using the access link(s), the non-local variables in parent or global scope can be

accessed. Since these two links are utilized heavily during execution, it is natural

for architecture designer to provide hardware support for them. For most general

purpose register machines, only a single register is used to store the address of the

activation record. This register is given different name in different architecture, for

example, the frame pointer in the x86 architecture. The two links are then accessed

via offsets from this register.

Although a single register is sufficient for bookkeeping purpose, accessing

out of scope variables would require extra computation since the access links need

to be traversed repeatedly to reach the required scope. Other architecture designers

tried to provide more sophisticated support to cut down the execution time. For

example, the Burroughs line provides an array of 32 Display Registers, which is

used to store the addresses of activation records at each lexical scope level[37]. The

content of each register is adjusted automatically upon entering/exiting to/from a

procedure. Accessing scoped variable is then translated into a single access of the

register array at the required lexical scope level3.

SAFA follows a similar scheme, but with the following differences:

1. Less registers. The total number of registers (named as frame register) used

for bookkeeping the activation frames is only four. Each of the four frame

3to be precise, an offset must also be added

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 31

registers has a specific role, which will be covered later.

2. More information is stored in each register. Most of the other architectures opt

to store only the address of the starting (or ending) of the activation records

in the registers. SAFA choose to encode more information, which includes

the starting address, the total number of data elements and size of elements

among others4.

In most high level programming languages, there are four activation frames

are of greater interest during execution. These four frames are:

Global Frame describes global information (the outermost lexical scope).

Caller Frame describes the caller of the current procedure. Also the destination

of return when current procedure finishes.

Host Frame describes the lexical parent of current procedure, mostly used for

accessing non local variables.

Own Frame describes the current running procedure.

As for languages that allows nested procedure, the information stored in

the host frame can be used to locate the predecessor frames for non-local variables

in various lexical levels. However, this scheme would be slower than other imple-

mentations, for example, the display registers scheme, since multiple traversals are

needed. More frequent access to a non-local frame can however be accommodated

by utilizing additional frame registers, as will be discussed later.

The decision of limiting the frame registers to 4 for procedure activation can

be viewed as a compromise between flexibility and hardware economy. By providing

more frame registers, the CPU may give better performance only when dealing with

nested procedure languages. However, the complexity and size of the frame registers

will certainly take their toll on CPU space and circuitry complexity. On the other

4other fields will be discussed in the next section

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 32

hand, the added information of each register provides added benefits like hardware

detection of illegal access (by using the limit of each frame) and other checking with

reasonable amount of register complexity.

To give a clearer picture of the scheme adopted by SAFA, consider the

following Pascal -like program.

Program P

Procedure A()

Procedure B()

begin

.... // Point Beta

end // end of B

begin

B()

end // end of A

Procedure C()

begin

... // Point Alpha

A()

end // end of C

begin // main procedure

C()

end // end of P

Upon the initiation of the program P, the four frame registers have the

following information:

Frame Register Pointing to

Global P

Caller nil

Host nil

Own P

Since we are executing the main procedure, the current frame would point

to P, which is also the global frame. When we reach Point Alpha in procedure C,

the frame registers would now contain:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 33

Frame Register Pointing to

Global P

Caller P

Host P

Own C

Since the main procedure called C, the Caller Frame points to frame P. P

also happens to be the lexical parent of C. When the Point Beta in procedure B is

reached, we will now have:

Frame Register Pointing to

Global P

Caller A

Host A

Own B

The procedure A is the caller as well as the host of procedure B. By using

the Global Frame Register and the Host Frame Register, the procedure B can easily

access global variables (defined in the program scope) or parent’s variables (defined

in procedure A).

Since the content of the frame registers is managed automatically by hard-

ware upon procedure entry and exit, compiler writers can utilize the machine in-

structions provided to gives optimized access to variables in different scopes.

3.1.2 Repetitive Execution with Counter

Repetitive execution, commonly known as looping, represents another kind of major

control flow in HLPs. It is no exaggeration to say most programs spend most

time looping. For this section, we concentrate on a particular subclass of repetitive

execution: loops with counter. Most loops will ends the execution upon meeting

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 34

some condition. For loops with counter, the ending condition is specified with

numerical values, usually in the form of checking a variable against a fixed upper-

bound. For example:

For I = 1 to 10 //Loop Header

Do Something //Loop Body

The for-loop above terminates when the variable I exceeds 10. This par-

ticular form of loop enjoyed heated research about optimizing it mainly because of

its frequent appearance, usually to do with array/matrix manipulation. By exam-

ining the example, we can see that there are two major components in a loop with

counter. The loop header is basically to maintain bookkeeping information about

the number of iterations. The loop body, on the other hand, contains the main

computations. Various methods are proposed to optimize each of the components.

In this section, we concentrate on the possible optimization of the loop

header. For stack-oriented machine, the updating and validating of the loop header

can be performed as follows:

//Assume:

// I is a local variable in stack frame

// I = 1 initially

start:

Load I

Load 10

If_Greater done //terminates the loop

...

... //loop body

Load I //load I again

Add //Increment I

Store I //store the new value

Goto start

done:

The multiple memory operations for updating I render the code above

clumsy and slow. The JAVA programming language, trying to overcome this prob-

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 35

lem, specifically includes an instruction iinc, which directly update a local variable

in stack frame5.

The design of the frame register in SAFA, although not aiming at this

problem, provides a different kind of optimization. Before we delve any deeper,

the complete description of all the fields in a frame register will be given. A frame

register consists of five fields:

Field Usage

Base Starting address of a block of consecutive memory locations

Interval Number of elements skipped for each iteration

Index The position of the current element accessed

Limit Upper bound of the memory region

Size Size (in bytes) of each of the element

The three fields: Interval, Limit, Index was originally developed for data

structures in HLPs (discussed in the next section). In loops with counters, the same

three fields can be borrowed to keep track of the looping information. With the help

of these fields, a simple loop in SAFA can be written as:

//Assume:

// The fields in FR1 (frame register 1) is used.

// limit is set to 10

// index is set to 1

// Interval is set to 0

start:

Cmp_Index_Limit FR1 //compare the limit and index

If_Greater done //terminates the loop

...

... //loop body

Increment_Index FR1 //increase index

Goto start

done:

5iinc is more like a macro, it itself does not represent any execution speed up

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 36

The fields Interval can be used for loop counter that jump in stride. For

example:

For I = 1 to 10, Step 2 //Loop Header, I = 1,3,5,7...

Do Something //Loop Body

Since the Increment Index instruction actually performs

Index = Index + (Interval + 1)

The loop can be represented by the exact same code, except the Interval is changed

to 1.

//Assume:

// The fields in FR1 (frame register 1) is used.

// limit is set to 10

// index is set to 1

// Interval is set to 1

start:

Cmp_Index_Limit FR1 //compare the limit and index

If_Greater done //terminates the loop

...

... //loop body

Increment_Index FR1 //increase index

Goto start

done:

If the update of the variable does not follow a fixed stride, then the index

can be loaded on the stack for manipulation directly. For example:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 37

//Assume:

// The fields in FR1 (frame register 1) is used.

// limit is set to 10

// index is set to 1

start:

Cmp_Index_Limit FR1 //compare the limit and index

If_Greater done //terminates the loop

...

... //loop body

Load_Index FR1 //load index to stack

... //manipulate the index

Store_Index FR1 //store the index back to FR1

Goto start

done:

There are two advantages of using the frame registers for bookkeeping in

a loop. Firstly, the frame register reside in the CPU and offers much better access

speed. Secondly, the resultant code is more compact. Admittedly, this would be

an overkill if the three fields are specifically designed just for handling this type

of loops. In this case however, the three fields are actually designed for multiple

purposes (Section 3.2). So, this can be viewed as “side benefits” of the frame

registers instead of the main reason.

The limitation of using the frame registers in this way can be summarized

as follows:

1. The upper-bound of the limit and index fields is 65535.

2. The upper-bound of the Interval is 255.

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 38

3.2 Data Structure

The two major kind of data structures in HLPs are:

Array Easily the most commonly used data structure, provide a indexed access to

a collection of homogeneous data in consecutive memory space. The number

of elements in an array is fixed at the point of array creation.

Linked List A more flexible data structure, provide the ability to build an open-

ended collection of possibly heterogeneous data via memory pointer (memory

address). Memory dereferencing is used to traverse and access the desired data

item.

Next, the two major data structures above will be inspected in the light of

SAFA implementation.

3.2.1 Array

Arrays are frequently used for mathematical operations (e.g. matrix manipulations,

fast Fourier transform etc), or as the building block for other data structure (e.g.

stack, queues etc). This is also one of the area where the stack architectures of the

past draw most criticism. Array indexing, i.e. accessing the elements in an array,

requires frequent operation of a particular value (the base of the array), which is

not suitable for a stack. Consider the case where the elements in an array are

accessed sequentially, we will need to compute the location of the next element in

the memory by computing Base + (SizeOfElement × PositionOfElement). In a

GPR machine, these operations can be optimized by keeping the base of the array

in a register and invoking addressing modes designed for array access. However, in

a stack machine, the base address has to be loaded/moved to the top of the stack

for each of the operations, resulting in great overhead.

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 39

Frame registers in SAFA can be used to cope with the array indexing prob-

lem. Recall that the five fields of a frame register capture the essential information

of a memory region with consecutive elements: the starting address, the number and

size of elements in the region, the current index, limit and interval of the element

accessed. Any data structure with similar properties can be represented efficiently

by a frame register. In this case, array would be a prime candidate.

With the hardware (frame register) in place, we will first look at the asso-

ciated machine instructions. Major type of operations are listed below:

1. Load current array element to stack

2. Store element at top of the stack to the current position

3. Increase the index by one stride (i.e. take interval into consideration) by using

the formula NewIndex = Index + Interval + 1.

4. Decrease the index by one stride.

5. Compare index to limit and leaves result on stack.

As can be seen, these operations provides a good foundation for building

complex array accessing operations. We will briefly study some of these operations

next.

Array of Records

The obvious extension from basic array of simple data items is array of records. A

record is just a enumeration of heterogeneous data. For example, a student record

would contain the name, matriculation number, age, and test score. To represent a

cohort of students, an array of student records would be sufficient.

Assume the storage requirement for the record is as follows:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 40

- Name = 20 bytes

- Matric Number = 4 bytes

- Age = 2 bytes

- Test score = 2 bytes

For an array of 20 students, we can calculate the average score by perform-

ing the following operations:

Total = 0

For I = 0 to 19

Total = Total + Student[I].Score

Average = Total / 20

The access of score Student[I].Score would require codes as follows in a

stack-oriented architecture:

Load I

Load 28 //Size of a record

Multiply

Load 26 //Offset to test score

Add

Load Student //the base address of the array

Add

Derefenrece // Memory access

Surprisingly, for a GPR machine, the code is almost as wordy:

Multiply R1, 28, R2 //R1 stores I, R2 = R1* 28

Add 26, R2, R2 //Offset R2 = R2 + 26

Add R3, R2, R2 //R3 stores base address, R2 = R3 + R2

Load [R2], R4 //Load the score to register R4

For SAFA, there are at least two ways to handle this scenario and both

are arguably better than either version described. The first version represents the

student array as a array of 560 (28*20) elements, where each element is a single

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 41

byte. The index is initialized to 26, which is the test score for the first student. The

interval can then be set to 28 (the length of 1 record). With these information, along

with the base address stored in a frame register, the access code is much simpler:

Load_Halfword FR1 //read 2 bytes from frame register 1

Index_Increment FR1 //advance index, add 28 (size * interval)

The second version is based on the simple observation that each student

records has the same layout. So the same offset will get the test score of any student

provided the base address is adjusted accordingly. So, a frame register is used to

represent a single student record, with size set to 28 bytes, and index set to 26

as offset for test score. The basic idea is to change the base of the second frame

register to the next record for each iteration as explained. The SAFA pseudo code

is as follows:

Load_Halfword FR1 //load halfword from current index of FR1

Add_Base FR1,28 //add 28 to the base address of FR1

Obviously, the first solution is faster and more economic in term of code

size. However, the second version allows more general access pattern. For example,

if random access is needed, i.e. no regular pattern to the record desired, then the sec-

ond version can easily cope with the change by changing the base accordingly. More

importantly, however, is the clear advantage of frame registers over its counterpart

in other architectures.

3.2.2 Linked List

As opposed to array, where number of elements is fixed, linked list provides more

flexibility by allowing easy insertion and deletion. Also, the number of elements

can be extended at runtime as long as there are enough memory space. These

advantages come at a price, elements in linked list must be allocated separately, and

linked together via pointers (memory addresses). With the elements spread out in

memory space, it is harder to traverse in linked list compared to array.

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 42

Consider the student result example in Section 3.2.1, we can add one more

data item, a pointer to the next element, to accommodate linked list. The high level

pseudo code to traverse and collect the test scores of all students is as follows:

Total = 0

StudentNum = 0

CurStudent = FirstStudent //CurStudent is a pointer

While (CurStudent != NULL)

Total = Total + CurStudent->Score

CurStudent = CurStudent->Next //points to next student

StudentNum = StudentNum + 1

Average = Total / StudentNum

We will look at both the access of the field test score as well as the more

interesting and time consuming code, the traversing of records.

For a stack-oriented machine, the psuedocode is:

Load CurStudent //Assume CurStudent stored as local variable

Load 26 //Offset to test score

Derefenrece //Memory access

.... //Accumulate the total

Load CurStudent

Load 28 //Offset to test score

Add

Derefenrece //Memory access

Store CurStudent

The weakness of stack machine is compounded by the need to repeatedly

read in CurStudent. The GPR machine, on the other hand, fare slightly better by

the ability to retain a frequently used value in register:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 43

Add 26, R1, R2 //R2 stores the address. Offset R2 = R1 + 26

Load [R2],R3 //Load the score

.... //Accumulate the total

Add 28, R1, R2 //Next record, R2 = R1 + 28

Load [R2],R1 //load the next address into R1

For SAFA, the solution is based on the second version of code discussed in

the array section. As a brief summary, a frame register is used to represent a single

student record, with size set to 32 bytes (including the pointer), and index set to 26

as offset for test score. The basic idea is to change the base of the frame register to

the next record in the linked list. The SAFA pseudo code is as follows:

Load_Halfword FR1 //load halfword from current index of FR1

.... //Accumulate the total

Load_Word_Offset FR1,28 //load word from FR1 + 28, the next base

Set_Base FR1 //Set the current base.

The SAFA code is more compact compared to all other versions. Its im-

provement over conventional stack code is clear.

3.3 Object Oriented Language

Arguably, the object oriented paradigm is a significant advance in programming

language design. By integrating data and the functions that operate on them into

a tight, access controlled package, object oriented languages allows cleaner code

organization compared to the conventional procedural languages. As its progenies

like C++, CLOS, Java etc gain wide acceptance, it would be beneficial for a CPU

architecture to provide support for Object Oriented Languages (OOLs).

A full treatment of this subject under the context of CPU architecture

support is not done due to the scope and depth of the subject. We will concentrate

on the two most important features in the OOLs:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 44

- The representation of an object.

- The dynamic dispatching for polymorphic methods.

3.3.1 Object Representation

At the lowest level, the OOLs can be viewed as a extended version of simple record

(or structure). In addition to data values, methods6 are also grouped into the same

representation. The declaration of this information is usually termed as class, where

an actual instantiation a class is known as object. Consider the following class in a

pseudo language:

class Simple

{

int i_;

void Method()

{

int local;

local = i_ + 3;

i_ = local *2;

}

}

Since each object of the class Simple has its own version of the variable i

(known as object variables), the invocation of the method Method must explicitly

state the associated object. For example:

Simple objSimple;

objSimple.Method(); //Method invocation

The code above shows one possible syntax: Method is invoked in the con-

text of objSimple.

6similar to functions or procedure

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 45

For actual implementation of such languages, the objects are realized as

records, which contains the variables (i in the example). The method is simply

converted to a normal procedure invocation, except that the object reference (the

memory address of object) is passed in as parameter. As discussed previously (Sec-

tion 3.1.1), in a procedural framework, the frame registers can be set up to access the

stack frames of Global, Caller, Host and Own. In OOLs framework, the Global and

Caller frames remained unchanged, while the Host frame can be altered to point to

the associated Object. The frame pointer Own remains pointing to the stack frame

of the current running method.

We will now give pseudo codes for the Method() on stack-oriented machine,

GPR machine and also SAFA for comparison.

For stack-oriented machine:

Load This //"This" is the object reference

Load 0 //offset for the object variable i_

Dereference //load i_ from memory

Load 3

Add

Store local //"local" is store as local variable

Load local

Load 2

Multiply //the final result now on stack

Load This

Load 0 //offset for the object variable i_

Store_to_Memory //store the final result to i_

For GPR machine:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 46

//Assume: R1 = object reference

// R2 = "local", memory location is FP+4

// FP = frame pointer

// R1+0 = i_ of this object

Load 0[R1],R3 //0[R1] = R1 + 0 (offset)

Add R3,3,R2

Store R2,4[FP] //4[FP] = FP + 4 (offset)

Multiply R2,2,R3

Store R3,0[R1] //Store the final result to i_

For SAFA:

//Assume: Host FP (HFP) = object reference

// Own FP (OFP) = method’s stack frame

// OFP + 4 = "local" memory location

Load_Word_Offset HFP,0 //Load i_

Load 3

Add

Store_Word_Offset OFP,4 //Store the result to "local"

Load_Word_Offset OFP,4

Load 2

Multiply

Store_Word_Offset HFP,0 //Store i_

In this case, the GPR and SAFA code is similar in term of execution steps,

i.e. fewer than the conventional stack-oriented code. However, the SAFA code size,

typical of a stack oriented code, is more compact as most instructions are 0-operand.

3.3.2 Dynamic Method Dispatching

The other important characteristic of OOLs is inheritance and polymorphism. In

particular, method polymorphism, which gives OOLs a powerful feature over other

languages, pose a serious challenge to language implementor. The premise of method

polymorphism is simple: “The most specialized method according to the class type

of the object must be invoked”. A method is specialized if a subclass (children

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 47

class) implements its own version of a method that exist in the superclass (parent

class). e.g.

class Parent

{

void Method();

}

//Class Children inherit from Class Parent

class Children: public Parent

{

void Method(); //specialized Method

}

For this simple class declaration, we have two different versions of Method()

which requires Method Resolution. The resolution of method invocation in the form

Obj.Method() is simple: the type of the object Obj selects the correct version of the

method Method. This can done statically during compilation.

However, since reference to the object of Parent class are allowed to hold

object reference of Children class (also known as subtype property), the method

invocation resolution of the form ObjRef->Method()7 is much harder. Consider the

following two invocations:

Parent* ObjRef;

Parent p;

ObjRef = &p; //ObjRef points to ’p’ object

ObjRef->Method(); //Parent’s Method() should be invoked

Children c;

ObjRef = &c; //ObjRef points to ’c’ object

ObjRef->Method(); //Children’s Method() should be invoked

7Using C++ like pseudo code, where ObjRef is a pointer to object

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 48

The second invocation must call the Method() defined by the Children

class8 to conform with polymorphism. This resolution cannot be done statically,

hence the name “dynamic method dispatching”.

Method dispatching is a widely studied field. We consider only a subclass of

the problem single dispatching which is implemented in the languages like C++, Java

etc, where only methods with the same parameters type and return type (i.e. same

method signature) are considered for dynamic method dispatching. The other type

of dispatching Multiple Dispatching deals with polymorphism of different method

signatures which is only supported in a few languages like CLOS.

In Java Virtual Machine implementation, dynamic dispatching is usually9

achieved by method table[15]. The method table is a class specific data structure,

usually implemented as array, that contains references to compiled method code.

Since the method resolution for a class is fixed, this information can be generated

during compilation time and will be loaded as part of the executable. An object

now contains object variables as discussed previously and also the reference to the

associated method table. When a method is invoked, the object reference is followed

to reach the object representation. Then, the method table is used to determine the

address of the appropriate method code.

Consider a slightly more elaborated example:

8For C++, the word virtual should be added in front of the method declaration
9The JVM specification did not give specific design on this

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 49

class Parent

{

void Method();

void MethodParent();

}

//Class Children inherit from Class Parent

class Children: public Parent

{

void Method(); //specialized Method

void MethodChildren();

//Note: MethodParent() is also inherited

}

With the method table implementation, the object p and c in the previous

example can be represented as shown in Figure 3.1.

Thus, the dynamic method dispatching boils down to the following require-

ments:

1. Representation of an object.

2. Dereferencing an object pointer.

3. Go through the method table to find the method code address.

As discussed, an object can be represented with the use of a frame register

in SAFA. Since the method table is basically an array of records, the searching can

be performed with the help of frame register(Section 3.2.1). To add the method table

to an object representation, information like size of elements, number of elements

must be stored along with other object information:

A method record should contains at least two parts:

1. The method signature, usually represented as string. In this example, an

integer containing unique method index is used instead to facilitate discussion.

Assume to be 4 bytes.

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 50

Method Table Ptr

Object Variables

Method Table Ptr

Object Variables

Object P
(Reference)

Object C
(Reference)

Statically Generated InformationDynamically Allocated
Information

Method

MethodParent

Method

MethodChildren

Children Class
Method Table

Index Code Addr

Index Code Addr

Index Code Addr

Parent Class
Method Table

Index Code Addr

Index Code Addr

Figure 3.1: Dynamic Dispatching in OOLs

2. The memory address of the associated compiled method code. Assume to be

4 bytes.

Dynamic dispatching can be performed in SAFA via the following (psue-

docode):

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 51

Method Table

... ...

Index Code Addr
Method Table Ptr

Object Variables

Statically Generated Information
Dynamically Allocated

Information

Object Reference

Frame Information

Address

Limit Index

Size Interval

Frame Information

… ...

Index Code Addr

Compiled

Code

Compiled

Code

... ...

Figure 3.2: Object Representation in SAFA

//Assume:

// FR1 = object reference

// FR1 + 0 = Frame information for method table

// FR2 = method table reference

// Method table contains records of:

// Offset 0: Method Index

// Offset 4: Method Address

// The desired MethodIndex, MI is on stack

Load 0

Load_Next_FRM FR1 //Load frame info for method table

Store_FRM_Info FR2

Duplicate //duplicate MI for comparison

Load_Word_Offset FR2,0 //load the method index

If_equal done

Add_Base FR2,8 //Advance FR2 to the next record

done:

Load_Word_Offset FR2,4

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 52

As can be seen, most problems in OOLs involved some basic data structures

like record and array. With good support for these structures in SAFA, the more

advanced features can be implemented with little hassle.

3.4 Additional Benefits of Frame Register

In this section, several additional benefits of employing frame register are discussed.

3.4.1 Context Sensitivity

Context sensitivity, also known as context awareness, is the ability to understand and

react accordingly to the environment. Just as a multi-meaning English word may

only be interpreted correctly if we know the full sentence, computer instruction must

also be executed according to the context. In most machines, the context is explicitly

recorded/specified at any time. For example, from the stack frame, we would know

the parameters, local variables, caller of the current executing procedure.

Since instructions are grouped together logically, it is clear that the context

of adjacent instructions would most likely be the same. For example, consider the

following code in a GPR machine:

//Calculating R1 = (4+R1) * 10

Add R1,4,R1

Multiply R1,10,R1

....

The R1 is repeatedly used, it would be useful if the instructions “know”

implicitly that R1 is the register (the context) they should be working for. A context

sensitive version of the same code would read:

//Calculating R1 = (4+R1) * 10

Add R1,4 //"know" that destination is R1

Multiply 10 //"know" that source and destination is R1

....

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 53

However, context sensitive instructions are not realistic in GPR machines

for several reasons:

- The size of instruction is usually fixed in GPR machine. There is no real push

to save instruction space.

- Context sensitive instruction is not needed, since the context is always explic-

itly spell out in the instruction.

- The register usage for adjacent instructions may be wildly different, although

they form the same context.

The last point shows that it is important to capture a larger context that

only changed slowly over time for context sensitivity instructions. In SAFA, the

target is clearly instructions that deal with frame registers. Recall the discussion in

the last few sections, frame registers are used to represent large data structure. The

nature of these data structure, as well as the relatively higher cost of setting up a

frame register, indicates that frame register instructions would be prime target for

context awareness.

Consider the case of scaling the array elements by a factor:

//Scale all elements by 10

For I = 0 to 9

Array[I] = Array[I] * 10

In SAFA, with the help of frame register, the code to scale one element

can be written as:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 54

//Assume:

// FR1 = array reference

1.start:

2. Load_Element FR1

3. Load 10

4. Multiply

5. Store_Element FR1

6. Increment_Index FR1 //advance to the next element

7. Cmp_Index_Limit FR1 //compare the limit and index

8. if_not_equal start //jump back to start

Lines 2,5,6 and 7 all operates on the same frame register FR1. For line

2, it serves as a “trigger” that setup the context so that subsequent frame register

instructions can follow suit. So, if the instructions at line 6 and 7 (line 5 is excluded

for the reason discussed next) can be made context sensitive, then the code can be

shortened to:

//Assume:

// FR1 = array reference

1.start:

2. Load_Element FR1

3. Load 10

4. Multiply

5. Store_Element FR1

6. Increment_Index //advance to the next element of FR1

7. Cmp_Index_Limit //compare the limit and index of FR1

8. if_not_equal start //jump back to start

As opposed to the GPR scenario, context sensitivity in SAFA is worthwhile

because:

- Frames in SAFA represent larger and more stable context that stay the same

for a number of instructions.

- SAFA is a byte code architecture, instruction space is limited.

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 55

Since a context in SAFA is always referring to a particular frame, the

context sensitivity is achieved via the following:

1. Two Frame Register Pointers : Current Frame Pointer (CFP) and Pre-

vious Frame Pointer (PFP). A frame pointer simply records the Frame

Register number, thus “pointing” to a particular frame register. Any context

changing instruction, like loading element, setting frame number explicitly will

change the CFP. While PFP is simply the previous value of CFP.

2. Other non-context changing frame register instructions are assumed to be

implicitly acting on the frame register referred by CFP. These instructions are

now aware of the context they are in.

An important decision for context sensitive instructions is to determine

which are the instructions that trigger the change of context. Obviously, explicit

triggers like “Set the context to Frame Register X” would be prime candidates.

However, there are a few more subtle choices. For example, consider the same array

scaling code fragment, but with the result store in another array:

//Scale all elements by 10

For I = 0 to 9

Array_B[I] = Array_A[I] * 10

Assuming that FR1 points to Array A and FR2 points to Array B, the

SAFA code is as follows:

1.start:

2. Load_Element FR1

3. Load 10

4. Multiply

5. Store_Element FR2

6. Increment_Index FR1 //advance to the next element

7. Cmp_Index_Limit FR1 //compare the limit and index

8. if_not_equal start //jump back to start

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 56

The main question to ask is should we make the “Load Element” and

“Store Element” instructions context trigger? Guided by the spatial locality princi-

ple, loading an element from a frame is usually a good sign that more work would be

done on the same frame. How about storing an element? Now suppose the answer

is positive, the resultant code is a little awkward:

//Assume:

// FR1 = array reference for Array_A

// FR2 = array reference for Array_B

1. start:

2. Load_Element FR1

3. Load 10

4. Multiply

5. Store_Element FR2 //context changed to FR2

6. Set_Frame FR1 //reset the context to FR1

7. Increment_Index //advance to the next element

8. Cmp_Index_Limit //compare the limit and index

9. if_not_equal start //jump back to start

The additional instruction at line 6 must be added to “reset” the context

correctly. Although this example in itself, does not warrant of reverting the earlier

decision, common programming practice tell us that a result is only written after

it is no longer needed. Hence, in SAFA, storing an element into a frame does not

trigger context change, in other words, these instructions are context insensitive.

So, the same code should be modified as:

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 57

//Assume:

// FR1 = array reference for Array_A

// FR2 = array reference for Array_B

1. start:

2. Load_Element FR1

3. Load 10

4. Multiply

5. Store_Element FR2 //no context change

6. Increment_Index //advance to the next element

7. Cmp_Index_Limit //compare the limit and index

8. if_not_equal start //jump back to start

With context sensitivity, the instruction space for the frame instructions

can be cut down significantly. However, there are always programs that defy the

common principles. When the context changes rapidly, explicit instruction to reset

the context must be inserted. This is the main draw back of context sensitive

instructions.

3.4.2 Prefetching

It is a well known fact that there is a huge gap between memory speed and CPU

speed to the tune of several order of magnitudes. The speed of CPU become mean-

ingless if the required instructions or data can not be brought into the CPU in time.

This the main reason that drives many of the designs in computer architecture, like

caching, burst memory access etc.

Prefetching is one of those attempts. There are many situations where

prefetching is useful:

• Start fetching the instruction from a branch target.

• Read the next few records/array elements in an array.

• Read the next record in a memory access (linked list).

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 58

• etc

Prefetching is usually implemented in two forms:

1. Statically, compiler/programmer insert memory fetching code prior to memory

operations. This requires specialized instructions.

2. Dynamically, cpu looks ahead and prefetches instruction/data.

The first form can gives good result but requires additional effort from the

programmer or compiler writer. The second form already exists in most CPU in the

form of prefetching instructions from branch target. However, dynamic prefetching

requires additional logic for the CPU and thus only sees limited application. A CPU

must be able to determine a memory access in advance to initiate the prefetching.

In SAFA, prefetching follows directly from the inclusion of frame registers.

Unlike a GPR machine, where a register may contain either data value or data

address, the frame register in SAFA must be a reference to a piece of memory

space. With this distinction, frame register operations represents opportunities for

prefetching in SAFA.

For example, consider the code for traversing a linked list in the previous

section:

Load_Halfword FR1 //load halfword indexed by FR1

.... //Accumulate the total

Load_Word_Offset FR1,28 //FR1’s base + 28 = base of next record

Set_Base FR1 //Prefetching opportunity

As soon as the base of a frame register is changed, the memory prefetching

can begin from the new address. Since most frame register instructions set the

current frame pointer automatically, this can be used as a signal to trigger the

prefetching.

Although the simplistic dynamic prefetching in SAFA may not yield the

best result compared to other prefetching schemes, it has the benefit of being ac-

CHAPTER 3. HIGH LEVEL LANGUAGE SUPPORT 59

commodated in the implementation, since it resulted directly from the central idea

in SAFA, the frame registers.

3.5 Summary

With the inclusion of frame register, SAFA demonstrated qualitatively good support

for HLPs features. In particular, the two major components of most HLPs: Control

flow and data structures, received extra attention. The proposed frame registers and

its associated operations can be added to any stack-oriented architecture to reap the

same benefits as discussed. In Chapter 6, we have provided quantitative results of

using frame register in HLPs.

Chapter 4

Low Level Execution Support

The biggest hurdle for improving ILP1 in stack oriented architecture is the stack

itself. Inherent dependency on the stack-top access stops many instructions from

parallel execution, since operands required for an operation must reside on top of the

stack. Whenever this condition fails, the execution has to be delayed. For example,

a simple integer add instruction cannot be executed, if one of the two required

operands is not ready (for example, cache miss). The whole execution pipeline has

to wait for the memory operation that brings that missing operand onto the top of

the stack, before new operands can be pushed, or lower elements can be popped.

It is natural to conclude that superscalar execution is not applicable for

stack architecture, since each instruction assumes exclusive control of the top of the

stack for the respective operands. So, even there are multiple execution units, it is

still not possible to execute more than 1 instruction simultaneously. In short, stack

machine exhibits a high level of data dependency. Moreover, unlike the register

based machines, where the data dependency can be identified and resolved using

tagged execution (register renaming) as seen in Section 2.4, there is no clear cut

way of performing the same renaming for stack machine because the lack of source-

destination (producer-consumer) information in the instructions. The succinctness

1Instruction Level Parallelism

60

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 61

of the 0-address stack instruction, which is essential for compact binary size, becomes

its biggest enemy.

Although the odds against the stack architecture seem strong, there are

quite a number of researches that indicate otherwise. For example, [36] shows that

by mapping stack locations to registers thereby relaxing the data dependence, an

ideal execution (perfect pipelining) can yield an average BLP2 of 5.6 in Java Bench-

mark Suite (SPECjvm98). Additionally, under speculative execution, the average

BLP reaches a high 19.8 (assuming perfect branch prediction). Besides, the pop-

ularity of the Java programming language has prompted heated research into aug-

menting the Java Virtual Machine and resulting in actual Java Processors. Some of

these researches are summarized in Section 4.5 for comparison after our ideas are

presented.

We believe that a simple mechanism devised for the register based machine

can solve this problem quite satisfactorily. The Tomasulo’s Scheme[30][38], can be

adapted to transform stack operations into tagged execution as indicated in the

execution framework in Section 1.1. By establishing linkage (relationship) between

these tagged stack instructions, conventional superscalar techniques can be adapted

to support and improve ILP for stack machines. The design and development of

the SAFA scheme is largely guided by the General Tagged Execution Framework

described in Section 1.1. To avoid frequent interruptions in the flow of the main

explanation, a separate section (Section 4.6) is provided at the end of this chapter

to describe the derivation process.

To facilitate discussion, a brief overview of instruction dependencies, which

covers the various relationship between instructions will be provided in the next

section. After which, the superscalar mechanisms deployed along with the necessary

modifications will be presented.

2Bytecode Level Parallelism, i.e. ILP at Bytecode level

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 62

4.1 Overview of Instruction Dependencies

Instruction dependencies are the key stone in study of instruction level parallelism.

A careful study of instruction relationship can determine not only the amount of

parallelism, but also the exact way to extract and exploit this parallelism. According

to [30], this study can tell us:

- If two instructions are parallel, they can be executed without causing any stall,

provided there is enough resources.

- Instructions that are dependent are not parallel, hence cannot be reordered.

The three types of instruction dependences are:

1. Data Dependence: See Section 4.1.1

2. Name Dependence: See Section 4.1.2

3. Control Dependence: See Section 4.1.3

For most of these dependences, a simple program can go a long way in

illustrating the problem. Hence, to better indicate the machine operations, a RISC-

like register based format will be used:

op reg1,reg2,reg3

which means “apply op to reg1 and reg2, then place the result in reg3”.

4.1.1 Data Dependence

Data dependence, or more commonly known as the producer-consumer dependence,

occurs whenever an instruction i produces a result that is used by instruction j.

Instruction j is said to be data dependent on instruction i. This dependence is also

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 63

transitive. If instruction j is data dependent on instruction k, which in turn is data

dependent on instruction i, then instruction j is also data dependent on i.

A simple example would be:

ADD R1, R2, R3 ; Instruction i

ADD R3, R3, R4 ; Instruction j

As can be seen, instruction i produces the result of addition in register R3, which

is used by instruction j. Obviously, instruction i and j cannot be executed at the

same time because of the dependence. An implicit execution order is imposed on

the two instructions, where instruction i must be performed before j.

If we examine this problem from the view point of resource utilization (read

or write a resource, e.g. register or memory location), data dependence will create a

Read after Write (RAW) hazard3. In the example above, if instruction j read the

content of R3 before i manages to put the result in, then j will incorrectly read the

old value.

It is important to know that data dependence is a natural property of

computation (a value is repeatedly transform into a result we need). Hence, data

dependence, or at least, the effect of the dependence must be preserved.

4.1.2 Name Dependence

Name dependence occurs when two instructions use the same register or memory

location (i.e. resource with same name). However, there is no real data flow be-

tween the two instructions as opposed to data dependence. In another words, this

dependence stems from the utilization conflict of resource, which partially is par-

tially caused by scarcity of a particular resource. For example, name dependence

may be created when limited number of registers forced the compiler to reuse the

same register for unrelated instruction.

3Problem that prevent next instruction from executing in parallel[30]

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 64

Between an instruction i and j, there are two possible types of name de-

pendences:

Anti-Dependence

When instruction j writes to a destination, which is read by an earlier instruction

i, anti-dependence is created. The name anti-dependence comes from the fact that

it is the opposite from data dependence.

The following code illustrates anti-dependence:

ADD R1, R1, R2 ; Instruction i

ADD R3, R3, R1 ; Instruction j

This also corresponds to the Write after Read (WAR) hazard. If incorrectly exe-

cuted, instruction i may read the new value produced by instruction j.

Output Dependence

Output dependence is caused by instructions i and j writing to the same register

or memory location. As shown in the example below:

MUL R1, R2, R3 ; Instruction i

ADD R4, R5, R3 ; Instruction j

This is also the cause of Write after Write (WAW) hazard. Incorrect

execution may caused the wrong result to be stored. In the example shown, if

instruction j finishes first, the result in R3 will be overwritten by instruction i.

Since there is no real data dependence in both antidependnce and output

dependence, the instructions involved can be executed in parallel or re-ordered, pro-

vided the name of the resource can be changed. This renaming can be performed

easily enough for registers, which is called register renaming, which is used in virtu-

ally all architectures nowadays.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 65

4.1.3 Control Dependence

As opposed to the previous two types of dependence,which deal mainly with data

values and/or resources, the last type of dependence, Control Dependence study

dependences created by program flow (control flow). In brief, the ordering of an

instruction is study with respect to a branch instruction to ensure that execution

only occurs for instructions in the correct control path.

The basic rules for control dependence are:

1. An instruction i that is control dependent on a branch cannot be moved before

the branch. This movement breaks the dependence and allow instruction i to

be executed regardless of the outcome of the branch instruction.

2. An instruction i that is not control dependent on a branch cannot be moved

after the branch. Clearly, this rule is the reverse of the previous one.

Examine the example below (which is written in a C-like syntax):

s1;

if (condition){

s2;

}

Moving the statement s1 into the if block violate the first rule, whereas moving

the second statement s2 before or after the if block violates the second. The rules

help to preserve the correctness of the execution by imposing a correct ordering of

instructions.

Since most programs are non-linear, which involves multiple control paths,

most instructions are under the influence of one branch instruction or the other.

If control dependence can be weakened, more instructions will be available for ex-

ecution. In particular, program loops represents the biggest potential source of

speedup.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 66

4.2 Coping with Data and Name Dependence

In this section, we concentrate on instructions other than control flow instructions

(any instruction that causes the change of execution path). Since control dependence

is out of the picture, only data and name dependences need to be handled. As

explained in the previous section, true data dependence must be preserved, whereas

name dependence can be removed. So, any mechanism that is designed to exploit

ILP must be able to:

1. Recognize the existence of a dependency.

2. Preserve the ordering of execution in the case of true data dependence.

3. Allow for parallel execution by removing name dependence.

One such mechanism is the famous Tomasulo’s Scheme, which is covered

next. The adaptation for SAFA is presented right after that.

4.2.1 Tomasulo’s Scheme

The original Tomasulo’s scheme was devised in 1967 for facilitating execution of

floating point operations in the computer IBM System/360 Model 91. In the famous

paper[38], R.M.Tomasulo stated that the main idea of his mechanism is

. . . , the objective must be to preserve essential precedences while allow-

ing the greatest possible overlap of independent operations.

The scheme proves to be flexible and effective enough to be extended to other

instructions type and incorporated into other architectures.

The two main concepts in Tomasulo’s Scheme are:

1. Incorporating the reservation station, which is an extension of the operand

buffering.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 67

2. The mechanism CDB (Common Data Bus) and a simple tagging scheme to

preserve precedence while encouraging parallelism.

Decode / Issue Register
Files

0
.

.

.

N

Execution Unit Execution Unit

OPCODE Operand 1 Operand 2 OPCODE Operand 1 Operand 2

Figure 4.1: Simple Architecture without Tomasulo’s Scheme

Figure 4.1 illustrates a simple architecture which does not deploy the Toma-

sulo’s Scheme. In this architecture, an instruction goes through the following step

for execution (starting from the decode/issue stage) :

1. Read the operand(s) from register.

2. The operation along with the operand(s) is passed to a execution unit if an

appropriate unit is available. The operand(s) is then stored in the temporary

storage in the execution unit.

3. Proceed with execution. If a result is produced at the end of the execution, it

is passed back to the register file to be written into destination register.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 68

The steps above seems simple enough, however, it itself cannot handle any

of the RAW, WAW, or WAR hazards mentioned in Section 4.1. The situation may

be improved if a busy bit is included with each register to indicate the availability.

In the issue stage, an instruction would first check the availability of its source

register(s) by checking the busy bit. If the register(s) is ready, then the destination

register would be marked as busy before the instruction and its operands are sent to

the execution unit. If any of the required registers is already marked as busy, then

the instruction has to be stalled. When a result is produced, it is written back to

the register file and the associated busy bit will be reset.

Although this scheme avoided the hazards, it is accomplished by imposing

strict execution order. Any dependence between a pair of instructions will result

in sequential execution (in-order execution). Also, execution may be stalled simply

because the relevant execution unit is busy.

The Tomasulo’s scheme, on the other hand, not only solve the problem

but also allow out-of-order execution. Figure 4.2 shows the same architecture with

Tomasulo’s Scheme deployed.

Ignoring the tags and CDB for the moment, it can be seen that the reser-

vation stations sitting on top on each execution unit are simply multiple set of

the temporary storage from Figure 4.1. This straightforward addition relaxes the

constraint on the availability of execution unit. Instructions now can be issued as

long as reservation stations of the appropriate kind has vacant entry. Since there

are more reservation station entries than execution units, more instructions can be

issued.

The effect of the reservation stations is dampened by the fact that no

instruction can be issued whenever a dependent instruction is decoded. The depen-

dence must be resolved or relaxed if we expect better performance.

First, lets consider the problem of data dependence. As discussed, data

dependence cannot be removed, for program correctness sake. The potential RAW

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 69

Decode / Issue
Register

Files

0
.

.

.

N

Execution Unit Execution Unit

OPCODE Opr1Tag1 Opr2Tag2 OPCODE Opr1Tag1 Opr2Tag2

T

A
G

Figure 4.2: Simple Architecture with Tomasulo’s Scheme

hazard is avoided by the busy bit scheme described. However, the delay can be

further mitigated if the instruction that waits for operand(s) can be somehow issued

without impeding the progress of later instructions. One simple solution is to allow

the instruction to progress to the reservation stations and wait there. To allow for

this solution, there are two additional problems:

1. The instruction must be able to identify the operand(s) even if it is waiting in

the reservation station.

2. When the required operand(s) is ready, it must be brought into the corre-

sponding ”slots” in the reservation stations.

The latter can be easily solved by adding a feedback connection from the output of

execution unit back into the reservation station. This connection is given the name

Common Data Bus (CDB) in Tomasulo’s Scheme. The solution for the former will

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 70

become clear after the following discussion.

Second, lets concentrate on the two type of name dependences to see how

can they be resolved. Both type of the name dependences can be resolved if we can

keep track of the different versions of the value, which is created by each successive

writing. In particular:

• Antidependence, which creates the WAR hazard. If the instruction write

into a new version of the register, then preceding instruction will not get the

wrong value, since it is reading from an old version.

• Output Dependence, which creates the WAW hazard. If an instruction

produced a later version of a register content, then previous version(s) can be

discarded without being written.

As discussed in Section 4.1, this versioning is nothing but register renaming.

But giving a new name to a register, we are, in effect creating a new version of

a register. Also, this new name can be used as identification for operands. In

Tomasulo’s Scheme, this renaming is achieve via tagging, which is to associate an

alternative id to each register. Each tag can be a simple numerical value. With all

the new addition, the execution steps are now:

1. The instruction is associated with a new tag, T to label its destination register

(if any).

2. Check the availability of the operand(s), including source and destination.

(a) If none of them are busy, the instruction can be issued to a free reserva-

tion station of the appropriate type, along with the required register(s)

content.

(b) If source register(s) is busy, the instruction will still be issued. How-

ever, instead of actual register content, the tag(s) associated with the

register(s) is brought over.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 71

3. Busy bit for the destination register is set.

4. The tag of the destination register is set to T.

5. Execution of an instruction can begin as soon as the execution unit is free and

all the required operands arrived.

6. The result, along with the tag T is broadcast on the CDB. Any instruction

that requires the it will be able to identify it using T and picks it up.

7. The register file receive the result and checks for T in the register file. If it

can be found, the corresponding register content is overwritten with the result

and the busy bit unset. The result is simply ignored (discarded) if the tag

cannot be found.

It is simple to see why the Tomasulo’s Scheme remain a powerful mecha-

nism up to this day. The scheme skillfully solves the nagging problems caused by

dependencies while adding minimum complexity to the architecture. In particular:

• Step 2a allows data dependent instruction to be issued without all the operands.

• Step 4 solves the WAR hazard by versioning.

• Step 4 and step 7 in conjunction, solves the WAW hazard.

Adapting Tomasulo’s Scheme for Stack-Oriented execution is presented

next.

4.2.2 Adaptation for SAFA

By adding additional information to the register file (with Tomasulo’s Scheme de-

ployed) discussed in the previous section, we have the centerpiece of the SAFA

execution engine: the Reorder Buffer (RoB). Note that RoB may have different

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 72

usage in other architectures, such as PowerPC (used to reorder completed instruc-

tions according to program order [23]). In SAFA, it is essentially a modified logical

registers file.

The reorder buffer is assumed to have a number of entries, each with a

unique identification number (tag hereafter). Each entry comprises several fields:

Field Description

Operator The instruction to be executed.

Idle/Busy Flag Indicates availability of this entry to store a new instruc-

tion. Abbreviated as I/B.

Free/Committed

Flag

Indicates whether the result of this entry is committed

to a consumer operator or not. Abbreviated as F/C.

Waiting/Available

Flag

Indicates whether the result of the instruction is avail-

able or not. Abbreviated as W/A.

Destination Tag The tag number of the consumer operator, if known.

Left/Right

Operand Bit

Indicates the availability of the left and right operands

of the instruction.

Value The result of the instruction after execution. This field

also doubles up as temporary storage for the left or right

operand value before execution.

To maintain data dependencies between consumer/producer reorder buffer

entries, a stack of reorder buffer tags(Operand Tag Stack, OTS) is used.

All instruction, upon entering execution, are assigned a reorder buffer en-

try. Suppose this instruction needs results from other preceding instructions (i.e. a

consumer), tags are removed from the top of OTS. Likewise, if this instruction pro-

duces result for consumption, its tag is entered into the top of OTS. If an entry has

all its operands ready, then it will be scheduled for execution. When the execution

result is produced, it will be kept in the entry if it is not taken/consumed by the

destination.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 73

As an example, suppose the expression (A−B)×(C+D) is to be executed.

To have a clearer picture of the relationship between the operators in the expression,

it is converted to the polish notation (a.k.a. postfix notation): AB − CD + ×.

Before execution, the 8-entry4 reorder buffer as well as the operand tag stack5 has

the following stack:

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

...
...

...
...

...
...

...

...
...

...
...

...
...

...

1 I F W – – 0 0 –

0 I F W – – 0 0 –

Operand Tag Stack [→]

After the instructions to load A and B have been executed, the state

changes to the following. Take note of the changes for the various fields and operand

tag stack.

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

...
...

...
...

...
...

...

...
...

...
...

...
...

...

2 I F W – – 0 0 –

1 B F W – Load 1 1 @B

0 B F W – Load 1 1 @A

Operand Tag Stack [0, →1]

Since both of the load instructions take only 1 operand (the address), which

4The number of entries is chosen only as example
5→ is used to indicate stack top

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 74

is also present with the instruction, they are ready for execution. In the mean time

the subtraction operator comes in, and consumes the two tags, as follows.

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

...
...

...
...

...
...

...

3 I F W – – 0 0 –

2 B F W – Subtract 0 0 –

1 B C W 2 Load 1 1 @B

0 B C W 2 Load 1 1 @A

Operand Tag Stack [→2]

Suppose the two loads result in cache hits and return the value right away,

then the subtraction operator will be able to proceed. After the load operations

return, their entries are deallocated. When the result of the subtraction returns,

then we will have the following state:

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

...
...

...
...

...
...

...

3 I F W – – 0 0 –

2 B F A – Subtract 1 1 (A − B)

1 I F W – – 0 0 –

0 I F W – – 0 0 –

Operand Tag Stack [→2]

The subsequent operations i.e. the loading and addition of C and D would

be processed in similar fashion, producing the state:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 75

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

6 I F W – – 0 0 –

5 B F A – Add 1 1 (C + D)

4 I F W – – 0 0 –

3 I F W – – 0 0 –

2 B F A – Subtract 1 1 (A − B)

1 I F W – – 0 0 –

0 I F W – – 0 0 –

Operand Tag Stack [2, →5]

When the final multiplication operator is decoded, it can get hold of the

two operands quickly and proceed to execution. At the point in time, we have:

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

6 B F W – Multiply 1 1 –

5 I F W – – 0 0 –

...
...

...
...

...
...

...

1 I F W – – 0 0 –

0 I F W – – 0 0 –

Operand Tag Stack [6]

When the result of the multiplication returns, it will be kept in entry no.6

and be available for consumption.

Although a sequential scenario is presented in the execution above, it is

obvious that this scheme can cater for irregularities too. For example, suppose the

fist two loads (for A and B) results in cache misses, the subtraction that follows will

have to wait, however, the loads for C and D can continue without problem. As an

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 76

illustration, let us suppose that the loading of C and D is successful which results

in the following state:

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

6 I F W – – 0 0 –

5 I F W – – 0 0 –

4 B F A – Load 1 1 (D)

3 B F A – Load 1 1 (C)

2 B F W – Subtract 0 0 –

1 B C W 2 Load 1 1 @B

0 B C W 2 Load 1 1 @A

Operand Tag Stack [2, 3, →4]

At this point, when the addition operator comes in, it can read the operands

and proceed for execution. Meanwhile, let’s suppose that the value of A is finally

loaded from memory. We will have:

tag flags Dest.Tag Operator Left Right Value

7 I F W – – 0 0 –

6 I F W – – 0 0 –

5 B F W – Add 1 1 –

4 I F W – – 0 0 –

3 I F W – – 0 0 –

2 B F W – Subtract 1 0 (A)

1 B C W 2 Load 1 1 @B

0 I F W – – 0 0 –

Operand Tag Stack [2, →5]

As can be seen in the example above, irregularity in the execution pattern

(e.g. cache misses) does not halt the machine, since other instructions can still

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 77

proceed without waiting. Also, it is clear that the above scheme allows simultaneous

execution of more than 1 instruction, if such instructions are available. Hence, this

scheme effectively transforms the reorder buffer into ”multiple logical stacks”, where

each operator keeps track of its own operands in a similar fashion to a data-flow

machine.

Under close scrutiny of the scheme detailed above, we find that there is

still room for improvement. The reorder buffer serves a purpose very close to that

of a register file in a GPR machine. As with its counterpart in GPR machine, it is a

scarce resource that needs to be utilized efficiently. Two improvements are proposed

to improve the utilization of reorder buffer:

1. Reservation Station and Virtual Tag

2. Preemptive Drizzling

Reservation Station and Virtual Tag

As discussed in the Section 4.2.1, reservation is a simple yet effective enhancement

to lessen the pressure on the reorder buffer. The idea of the reservation station is to

dispatch the instruction as soon as it manages to get hold of a reorder buffer entry.

The reservation stations, essentially temporary storage for instructions sits on top

of each execution unit, and will take care of the maintenance of the instructions

assigned. Each entry in the reservation station contains the following information:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 78

Field Description

Own Tag The corresponding tag in the reorder buffer.

Operator The instruction to be executed.

Left/Right

Operand Field

The field consists of:

Type Whether it is a Value or Tag.

Value Store the actual value of operand or the tag of

the operator that will produce the value.

Under this new scheme, when an instruction enters the reorder buffer, it will

pick up its operands, either actual values, or tags of operators producing the values,

and is dispatched to a corresponding execution unit. The reservation station will

wait until an instruction acquires all its operands, before sending it into execution.

When the execution result is ready, it is broadcast to all other reservation station

(the inter-connection usually named as Common Data Bus (CDB)), along with the

owner tag. So, any station entry waiting for this result to proceed will be able to

pick it up.

With the help of reservation station, the demand on actual reorder buffer

entry is lessened. However, since the tag number corresponds to physical location of

reorder buffer entry (i.e. Tag number 0 is the first entry, Tag number 1 the second

etc), the associated entry remains in use until the execution completes. If the tag

number and physical ROB entry are reused as soon as a consumer instruction has

picked up the tags before the result is ready, ambiguity may occur (two results may

be sharing the same tag number) and cause incorrect execution. A closer look should

reveal that this is nothing but the name dependency discussed in Section 4.1.2, where

the Tag number behaves just like a register number. This false dependency may

cause the execution to stall/wait even when there are technically free ROB entries.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 79

As with all name dependency problems, this can be easily solved by attach-

ing virtual tag numbers instead of physical ROB entry numbers to results, i.e. tag

renaming. A pool of virtual tag numbers, usually twice the number of physical ROB

entry is set up. Upon entering the Issuing Stage, a producer instruction grabs a new

virtual tag and attach it to a free ROB entry, thereby creating a virtual-to-physical

mapping. This virtual tag behaves exactly the same as the tag number discussed so

far in other aspects. It is stored in the Tag field of a ROB entry as well as the OTS,

ready to be picked up by consumer instruction. Whenever a virtual tag is picked

up by a consumer, the associated ROB entry can be freed immediately regardless

of the availability of the result, allowing later instructions to utilize it.

A particular virtual tag number will remain in used until the the result is

produced. As discussed, the result will be broadcasted along with the virtual tag

number. Depending on the execution pattern, one of the following scenarios must

be true:

• The consumer for that result has already been dispatched, i.e. the corre-

sponding ROB entry has been freed. The consumer instruction, sitting on

reservation station will pick up the result. Hence, the virtual tag number is

safe to be returned to the pool to be reused.

• The consumer instruction has not been dispatched. The result will be stored

in the corresponding ROB entry. The virtual tag number can only be returned

after the consumer instruction picks up the result.

The two extensions discussed affects the information stored in RoB entry

as some of the information are now implied rather than explicit. The altered RoB

entry now contains:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 80

Field Description

Virtual Tag Stores associated virtual tag number.

Operator Indicates the producer of this entry. Note: this is no

longer needed in actual RoB entry, as all instruction are

issued right away, this is kept for illustrative purposes.

Use Count Indicates the total number of usages for this entry.

Idle/Busy Flag Indicates availability of this entry to store a new instruc-

tion.

Waiting/Available

Flag

Indicates whether the result of the instruction is avail-

able or not.

Value Stores the produced result if the entry is not consumed.

The modified fields are pretty self explanatory, except the Use Count field.

Since a value in RoB may be duplicated via stack manipulation instructions, it is

not efficient to copy a exact replica to take up another RoB entry. The Use Count

field is used instead to simulate this effect instead. When an value is duplicated,

the Use Count of the corresponding RoB entry is simply incremented. At the same

time, the same virtual tag number is pushed into the OTS. This ensures that the

number of copies of a particular virtual tag in OTS matches the Use Count field.

Conversely, when a virtual tag is popped, the Use Count would be decremented.

When the Use Count reaches zero, a RoB entry can be safely removed.

As an example to show the interaction between RoB and reservation sta-

tion, consider the expression A × A − B, with the corresponding pseudo code:

load A //I1

duplicate //I2

multiply //I3

load B //I4

subtract //I5

Assume that I1 is executed successfully, then we have the following RoB:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 81

RoB entry VTag Instruction Use Count Value

7 – – 0 –

... – – 0 –

2 – – 0 –

1 – – 0 –

0 0x03 load 1 3.14

Operand Tag Stack [→0x03]

Note that both virtual tag number 0x03 and the value 3.14 are randomly chosen.

The next instruction I2 will duplicates the value, resulting in the increment of Use

Count and the extra copy of the virtual tag 0x03 in OTS.

RoB entry VTag Instruction Use Count Value

7 – – 0 –

... – – 0 –

2 – – 0 –

1 – – 0 –

0 0x03 duplicate 2 3.14

Operand Tag Stack [0x03, →0x03]

Instruction I3 picks up both the operands and proceed to the reservation

station of integer unit. This reduces the Use Count of 0x03 to zero and results in

the removal of RoB entry 0.

RoB entry VTag Instruction Use Count Value

7 – – 0 –

... – – 0 –

2 – – 0 –

1 0x08 multiply 1 Waiting

0 – – 0 –

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 82

Operand Tag Stack [→0x08]

Own Tag Instruction Left Operand Right Operand

Type Value Type Value

0x08 multiply V 3.14 V 3.14

In the value fields above, V denotes actual value. As the multiply instruc-

tion has all its operands ready, it can go into the execution on next time cycle.

Instruction I4 will be executed next. Suppose the loading of B encounters

a cache miss, then we have the following state:

RoB entry VTag Instruction Use Count Value

7 – – 0 –

... – – 0 –

2 0x01 load 1 Waiting

1 0x08 multiply 1 Waiting

0 – – 0 –

Operand Tag Stack [0x08, →0x01]

Own Tag Instruction Left Operand Right Operand

Type Value Type Value

– – – – – –

Note that the reservation is now empty as the multiply proceeds to execu-

tion. Suppose that the multiply result 9.85 is ready on the next time tick. Then we

have the following state after we issue instruction I5 :

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 83

RoB entry VTag Instruction Use Count Value

7 – – 0 –

... – – 0 –

2 – – – –

1 – – – –

0 0x05 subtraction 1 Waiting

Operand Tag Stack [→0x05]

Own Tag Instruction Left Operand Right Operand

Type Value Type Value

0x05 subtraction V 9.85 T 0x01

The T in the type field represents a unavailable operand. As the operands

of the subtraction instruction are not complete, it will sit in the reservation station

waiting. When the memory unit (not shown) loaded the value of B, it will be

broadcasted along the CDB with the tag 0x01. The reservation station of the integer

execution unit will then pick it up and proceed with the subtraction.

The example above shows that the combined effect of reservation station,

virtual tag number and Use Count to a lesser degree can keep the utilization of

actual RoB entry low.

Preemptive Drizzling

Stack overflowing is a common problem for stack machine. For SAFA, the reorder

buffer faces the same problem. Even with all the improvements discussed, reorder

buffer overflowing would still occur. Since expression may be nested to arbitrary

length, it is always possible to find a computation that causes overflowing. Consider

a ROB with 8 entries, this postfix expression “ABCDEFGHI + + + + + + + +”

occupies all the ROB entries by loading the values of A to H. At this point, the

value of I cannot be loaded because of lack of actual ROB entry. However, none

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 84

of the entries can be freed because the consumer (the addition operator) cannot be

issued before I is loaded.

Stack overflowing is usually solved by moving the bottommost entry, which

is less likely to be used immediately, to the memory. In our example, the ROB entry

containing A will be moved to memory, making space for value of I. When the value

of A is needed, after seven additions, the value of A is brought back from the memory.

The restoration can also happen when the stack is empty.

Although this scheme is elegant and simple, there are still rooms for op-

timization. The timing of the memory operations can be further tightened to give

better performance. Observe that the values in the memory are brought onto the

stack only when the stack is empty or the value is needed. Also, the values are only

moved to memory when the stack is totally full. Since all these value movements

employ lengthy memory operations, it is best to anticipate their occurrence to start

the operation as early as possible.

Following the footstep of picoJava I and II [10][11], we employ preemptive

drizzling in SAFA. The scheme is basically a modification of the timing of the value

movement. Instead of waiting the stack to be full, value can start moving to the

main memory when the stack is 80% full for example. Similarly, values can be

restored as soon as the utilization of stack fall below a threshold, e.g. 20%. These

thresholds are appropriately named as “high water mark” and “low water mark”

respectively in [13].

The effect of these frequent small memory movements (hence the name

drizzling) may not be overwhelming for small reorder buffer (because the margin

between the threshold and absolute is too small), the benefit is obvious when the

reorder buffer gets larger. The latency and the cost of the memory operations is

spread across several time cycles, therefore lessening the effect on execution.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 85

4.3 Coping with Control Dependence

In this section, we will looking at the issue of introducing branch prediction and

speculative execution in SAFA. Control dependence in the context of stack machine

is not an overly well-studied field. Since the traditional stack machines lack the

ability for multiple issuing and more importantly out-of-order execution, coping with

control dependence seems to be the least of their inadequacies. As demonstrated by

the last section, both multi-issue and out-of-order execution are now in the grasp

of stack-oriented machine, it is now essential to look into the realm of speculative

execution.

4.3.1 Branch Prediction and Speculative Execution in Gen-

eral

As mentioned in Section 4.1, most instructions in a program are under influence of a

control decision. Usually, there are several mutually exclusive execution paths in a

program, which are taken according to the result of a conditional branch instruction.

For example, given the program below:

There can be four execution paths, depending on the combination of the

conditions.

cond1 cond2 cond3 Instructions Executed

True True – s1,s2,s3

True False – s1,s2,s4

False – True s1,s5,s6

False – False s1,s5,s7

It is clear that only “free” instruction (s1) can be executed without de-

pending on resolution of a condition, while all other instructions (s2 to s7) have to

wait on one or more conditions. This dependency also means that multi-issuing and

out-of-order execution can not improve the situation in any way.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 86

s1;

if (cond1){

s2;

if (cond2){

s3;

} else {

s4;

}

} else {

s5;

if (cond3){

s6;

} else {

s7;

}

}

Figure 4.3: Control Dependence Example 1: if-else

Other then if-else statement, control dependency also slows down execution

of iterative loops. For example:

while (cond){

s1;

s2;

}

Figure 4.4: Control Dependence Example 2: while loop

If the conditions is true for a number of iterations, we would expect a 4-

issues execution engine to executes close6 to two iterations (two copies each of s1 and

s2) per cycle. However, since s1 and s2 are dependent on the cond, their executions

cannot be started legally until cond is resolved. The resultant throughput therefore,

is disappointing.

As shown by the two examples, instructions with control dependencies can

stall the execution. The fact is that branches and loops are essential mechanics in

6the condition resolution also take up execution slot

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 87

most, if not all programs. In [43], it is found that there are about 10 to 30 percent

branch instructions in a typical program. Additionally, the branch is taken 60 to

70 percent of the time. Confronted with this problem, computer scientists came

up with quite a number of solutions, of which we will concentrate on one strategy:

“guessing”[43][44].

By guessing (predicting) the execution path, the execution can continue

without waiting on the resolution of the condition. For example, in Figure 4.3, we

can assume that path one (where both cond1 and cond2 are true) is more likely

to be taken, and executes s2 and s3 before cond1 and cond2 are resolved. Similar

prediction can be applied for loops, for example (refer to Figure 4.4), we can assume

that the next iteration is going to be executed and send both s1 and s2 into the

execution again.

These predictions will not cause any trouble as long as they turned out to

be correct. When a resolved condition shows that the wrong path has been taken,

backtracking (or unrolling) is needed to undo all mispredicted executions. This

is clearly the hardest aspect of the speculative execution. For instance, in GPR

machines, instructions usually store result into register. If a speculative instruction

overwrites the content of a register, a copy of the previous result must be kept in

case the prediction is wrong. There are a number of well tested solution, for e.g.

having a duplicate set of registers (the shadow registers) in PowerPC 620 (refer

to Section 2.4.2). However, multi-level predictions (during the execution of nested

if-else for example) is still not a simple task.

In a nutshell, there are three major requirements for a computer architec-

ture to enable branch prediction and speculative execution:

1. Ability to indicate that an instruction is speculative.

2. Ability to confirm the instruction if the prediction is correct.

3. Ability to undo the instruction if the prediction is incorrect.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 88

In addition, able to handle multiple level of prediction would be an advantage too.

The solution we proposed for SAFA is presented in the next section.

4.3.2 Branch Prediction and Speculative Execution in SAFA

In some aspects, speculative execution for stack machine is somewhat easier than

in GPR machine. Recall that one of the main hurdles of speculative execution is

the restoration of previous register content should the prediction fails. This implies

versioning of register content. However, in a stack machine, versioning is an inherent

characteristic: each instruction is supposed to produce result to an entirely new

location (the stack top). Should prediction fails, this new result can be simply

removed from the stack.

Nevertheless, restoration after misprediction is still needed for values that

are consumed by speculative instructions. This task can be made simpler by delaying

the removal of a value until the relevant condition is resolved.

Before we delve into the details, lets define an important term that will see

frequent use later on: prediction level. Prediction level is simply a number indicating

the current nested level of speculation. For example:

s1;

if (cond1){

s2;

s3;

if (cond2){

s4;

s5;

}

}

Figure 4.5: Prediction Level Example

The instruction s1 is not under influence of any condition, hence it has a

prediction level of zero, notated as PL0. For s2 and s3, they have a prediction level

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 89

PL1. If the cond1 is still not resolved when cond2 is predicted to be true, then s4

and s5 will have the prediction level PL2. The two important observation about

prediction level are:

1. It is a dynamic number showing the current number of conditions in specu-

lation. In the example above, if cond1 is resolved before the speculation of

cond2, s4 and s5 will have predication level of one not two.

2. All instructions with the same control dependence will have the same predic-

tion level, while the dependent condition is not resolved.

To identify speculative results, we devised the following modification for

SAFA: each Tag in the OTS now has two more fields, a producer prediction level

(PPL), and a consumer prediction level (CPL). The former indicates the prediction

level of the instruction that produce that result, and the latter is the prediction level

of the instruction that consume the result. Since a value on a stack can only be

produced and consumed by one single instruction each, a single field to store the

prediction level for the consumer and producer is sufficient.

A PL register is also added to record the current prediction level. It is

increased whenever a branch (condition) is encountered and reduced to appropriate

level whenever a branch has been resolved. The prediction level starts at zero to

indicate no speculative instructions are underway. An instruction, upon issuing,

will record the current prediction level in the PPL field of its result and mark the

CPL fields of its operand(s). With these information, it is now possible to handle

speculative execution properly.

Consider a result value with PPL of j, when its consumed by by instruction

of k prediction level, there are only two possibilities:

1. k = j implies that the result and the consumer are control dependent on the

same condition. Hence, the result can be safely removed as in the basic scheme

discussed in the previous section.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 90

2. k > j implies that that the consumer instruction is in a deeper control block.

The CPL of the result should be marked with the k. However, it is not removed

because the speculation at level k may be mispredicted.

Note that the condition k < j cannot happen because of the way we handle predic-

tion resolution, which is discussed later.

Observe that since there are now stack values consumed by speculative

instruction, indicated by a non-zero CPL, consumer instruction have to look for the

topmost unconsumed value, instead of just the topmost value.

Prediction Resolution

Eventually, the conditional branch associated with a prediction will be resolved.

The result can either confirm or overturn the prediction, which would have radical

effects on the state of execution. Below, each of the scenario is laid out in details.

Consider the case of single level prediction: speculative instructions have

PL1. During the period of speculation, there may be results produced (marked

by PPL1) or results consumed (marked by CPL1) by these instructions. Upon

the confirmation of the prediction, all PL1 will be reverted to PL0 (the prediction

level of non-speculative execution). Through this act, some of the consumed results

will now have PPL0 and CPL0, these results can then be removed normally from

the OTS as well as any associated RoB entries. Besides, there may be speculative

instructions sitting in reservation stations. The prediction level of these instructions

will be reverted similarly to zero.

This basic scheme holds up surprisingly well even in the context of multiple

level prediction. When a condition associated with PLj is confirmed, instead of

reverting back to PL0, we fall back to the next highest unresolved PLk that is

smaller than j. Similar to the case above, all PLj will be reverted to PLk. This

allows freeing up of more resource, while at the same time maintain the speculative

execution at levels that are either greater or smaller than j.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 91

Correct prediction traditionally is not hard to handle as opposed to mis-

prediction, which require considerably more attention in most machines. In SAFA,

on the other hand, misprediction is handled with similar process as in confirmation

of prediction.

In the case of single level prediction, when the prediction of PL1 is over-

turned, all results produced by the speculative instructions (marked with PPL1),

will be removed. Results consumed by these instructions (marked with CPL1) will

have to be “restored”7 by simply clearing the CPL. Any speculative instructions

caught on the reservation stations will be similarly flushed.

The situation become more delicate when multiple level prediction is con-

sidered. When a misprediction occurs at PLj, speculative instructions as well as

stack values may have PL that is greater or lesser than j. Any speculation with PLk,

where k is larger than j is invalidated by the misprediction, since they are indirectly

control dependent on the condition associated with PLj. Hence, all instructions and

results that are associated with PL larger than j are processed in the same way with

those with PLj. The prediction level of the execution will then revert back to PLk,

which is the highest unresolved prediction level lesser than j. In this way, prediction

that is not dependent on the mispredicted condition (distinguished by PLi, where i

is lesser than j) can continue the speculation undisturbed.

Example of Single Level Speculative Execution in SAFA

For all the subsequent examples, all conditions are predicted as true, i.e. the if block

will be executed.

Consider the case of single level prediction:

Assuming each of the statements consume one and produce one result each,

the Operand Tags Stack initially contains one result after statement s1 is issued,

results are tagged with the statement id for clarity:

7since it is not physically removed in the first place, it is not actually a full restoration

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 92

s1;

if (cond1){

s2;

s3;

}

Figure 4.6: Single Level Prediction

Tag PPL CPL

Top→ s1 0 -

Upon execution of cond1, SAFA enter prediction level one. Statement s2

will be executed with PL1, giving OTS:

Tag PPL CPL

Top→ s2 1 -

s1 0 1

Note that the result of statement s1 is marked but not removed. Statement

s3, similarly, executes with PL1. The OTS should looks like the following:

Tag PPL CPL

Top→ s3 1 -

s2 1 1

s1 0 1

However, the result s2 is clearly removable. Since it is consumed by in-

struction with the same prediction level, it will not be on the stack regardless of the

prediction outcome. So, the actual OTS contains the following instead:

Tag PPL CPL

Top→ s3 1 -

s1 0 1

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 93

Assuming that the cond1 is resolved and confirms our prediction, all PL1

will be reverted to PL0. Resulting in:

Tag PPL CPL

Top→ s3 0 -

s1 0 0

Observe that now the value s1 is now safe to removed, producing the final

OTS:

Tag PPL CPL

Top→ s3 0 -

Suppose the prediction is wrong instead, all results with PL1 will be

purged. Any instructions consumed by instruction of PL1 will be restored by clear-

ing the CPL. The final OTS contains:

Tag PPL CPL

Top→ s1 0 -

In both cases, the OTS contains the correct results as if the speculation

never took place, which supports the validity of our scheme.

Example of Multiple Level Speculative Execution in SAFA

The following code fragment will be used to illustrate multiple level prediction in

SAFA.

Since the first part up to the statement if (cond2) is similar to the previous

example, discussion is resume at that point, with the OTS currently contain:

Tag PPL CPL

Top→ s3 1 -

s1 0 1

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 94

s1;

if (cond1){

s2;

s3;

if (cond2){

s4;

s5;

}

}

Figure 4.7: Multiple Level Prediction

Executing cond2 elevate the prediction level to 2. Statements s4 and s5

will be executed in similar fashion as s2 and s3, resulting in OTS:

Tag PPL CPL

Top→ s5 2 -

s3 1 2

s1 0 1

If cond1 is resolved first and confirms the prediction, PL1 will revert back

to the highest PL that is smaller than 1, which is 0 in this case. Resulting in:

Tag PPL CPL

Top→ s5 2 -

s3 0 2

The value s1 is removed similar to the previous example. The prediction

at PL2 can continues undisturbed.

Suppose cond2 is resolved first instead, and confirms the prediction, PL2

will reverts back to PL1, which gives:

Tag PPL CPL

Top→ s5 1 -

s1 0 1

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 95

Note that the result s3 is removed, which is the correct behavior. Result

s3 will either be purged should the prediction of PL1 be wrong, or consumed by s4

which is already confirmed. Either way, it will not be on the stack. The reversion of

the PPL of s5 to 1 also shows that, with the cond2 confirmed, it is control dependent

on cond1 instead.

Now, lets go back to the state where both of the conditions unresolved, and

look at some alternative scenarios. Suppose cond1 happens to be a misprediction,

all prediction level greater than 1 will be purged. Results consumed by PL greater

or equal to 1 will be restored, giving us the OTS:

Tag PPL CPL

Top→ s1 0 -

The result of s5 is correctly pruned because it is indirectly control depen-

dent on cond1.

If the cond2 is resolved first and contradicts the prediction, only PL2 will

be affected. With some of the results purged, while others are restored according to

the scheme discussed, the OTS gives the following:

Tag PPL CPL

Top→ s3 1 -

s1 0 1

Again, the prediction of PL1 can continue the execution uninterrupted. As

summary to the speculative execution scheme in SAFA, several tables of appropriate

operations are presented below:

4.3.3 Limitation of Speculative Execution in SAFA

The previous section gives a clear picture of the speculative execution in SAFA.

However, there are some limitations in this scheme. Observe that the corner stone

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 96

Condition Operation

PPL < CPL Do nothing.

PPL = CPL Remove the tag and clear associated RoB entry

PPL > CPL Impossible.

Table 4.1: Speculative Consumption of Result

Result with Operation

PPL < j Not affected

PPL = j Revert PL < j

PPL > j Not affected

CPL < j Not affected

CPL = j Revert PL < j, remove if PPL = CPL

CPL > j Not affected

Table 4.2: Confirmation of Prediction PL j

Result with Operation

PPL >= j Purged

PPL < j Not affected

CPL >= j CPL Cleared

CPL < j Not affected

Table 4.3: Handling Misprediction at PL j

of SAFA speculative execution is that inherent “versioning” capability of the stack

items. However, there are instructions that alter other parts of the CPU, for example

a memory store instruction that changes the memory state, or a index increment

instruction that changes the frame register. These operations do not have built in

versioning capability, which make the required roll back operation in speculative

execution hard to implement. Although there are well studied technique in GRP

machines that can be adapted to SAFA, we decided to implement only stack related

speculation. In this way, the benefit of speculation in a stack architecture can be

better understood.

This decision also implies that there are two groups of instructions in SAFA:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 97

those that can be speculated and others that can not be speculated. As mentioned

before, the second group of instructions are those that change a CPU state that

cannot be restored easily. These includes:

- Memory store instructions.

- Field-changing frame register instructions. Memory store instructions via

frame register.

- Procedure entry and exit.

- Local Data Map (discussed in Section 4.4) own wstore instruction, which mod-

ifies the LDM.

The instructions in this group (total 49 instructions) will stall the execution during

speculative execution, as soon as they are decoded. Since majority of the instructions

including memory load and computations are not in this group, there are usually

substantial speculatable instruction after a branch.

4.4 Coping with Frequent Memory Movements

The previous two sections laid down a strategy to disentangle dependencies be-

tween stack instructions to allow parallel execution. However, there is a underlying

assumption about the nature of the instruction stream, namely the instructions

should be mostly stack-to-stack instructions for the discussed strategy to show its

full potential. This implies that any temporary result laying on top of stack should

be consumed by subsequent instructions without the need to be stored away. Among

HLP paradigms, a pure-functional language8 would be a perfect match.

However, given the popularity of imperative HLPs (including procedural

and object oriented languages), the strategy may need to be reviewed. The obstacle

8Each function relies only on the result of previous function, i.e. there is no side effect, no need
to store a intermediate result

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 98

posed by these language is the use of variables for value storage, which may be

accessed and modified frequently throughout a program. As the usage of these

variables does not form any discernible pattern, there may be a huge gap between

the modification and utilization of a value. Consider the following example in C-Like

pseudocode:

void f()

{

float i,j;

i = 3.14; //Instruction A

..... //Intervene Code

.....

j = i * i * 123; //Instruction B

.....

}

Instruction A modifies the value of variable i, which is later accessed in

Instruction B. However, since there can be any number of instructions lying in the

Intervene Code, it is not realistic to assume that the value of i can stay on top of

stack without compiler’s help. A stack compiler can try to do the following:

1. Leaves the value of i on top of stack.

2. Let any new values produced by Intervene Code to pile on top of the value i .

3. Manipulates the stack just before Instruction B to bring i value to the stack

top for subsequent access.

This strategy requires the compilers to be able to keep track of the position

of all temporary values at any time in execution. As can be imagined, this is not

trivial and impossible under certain scenarios. For example, when the Intervene

Code contains a loop or a branch, there is no easy way to keep track of the position

of value i.

Hence, in conventional stack compiler, another approach is taken. All vari-

ables, including procedure parameters, are stored in a temporary memory location,

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 99

usually in the stack frame of the procedure. Any modification of these variables will

be stored away to the corresponding memory location. Access of the variables will

then be translated as memory load operation. In other words, as each instruction

corresponds to an expression tree, the top of an expression tree will be a memory

store operation. Using the popular Java compiler as an example, the code fragment

above would correspond to the following Java assembly code:

Method f()

//i is store as local variable #0

//j is store as local variable #1

ldc #2 <Real 3.14> //Instruction A

fstore_0 //store i

.... //Intervene Code

....

fload_0 //Instruction B

fload_0 //load i

fmul

ldc #3 <Real 123.0>

fmul

fstore_1 //store j

....

By storing away all modifications on variables, Java compiler manages to avoid the

complications posed by the Intervene Code. However, the ease of compilation comes

with a huge cost, namely a huge amount of memory instructions is inserted into the

program. In [45], by sampling across several programs in SpecJVM98 [50] and Java-

Grande[51] benchmark suites, it is shown that there are on average 34% of the total

instructions in a program for the this purpose alone. The memory instructions can

degrade the performance of a program in at least two ways. Firstly, the huge mem-

ory latency delays the execution pipeline, although this can be somewhat mitigated

by data cache. Secondly, the memory access unit can only read or write limited

number of memory locations (also known as access ports) at any time cycle. The

two facts combined can easily force a parallel stream of instructions to be executed

serially.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 100

The most straightforward solution to this problem is to map variables to

registers[45]. A number of different designs on this theme are discussed in Sec-

tion 4.5. For example, the picoJava designed by Sun Microsystems utilize a register

file (stack cache) for stack items, including local variables. A memory load/store of

a local variable is translated to an equivalent read/write of a register. This basi-

cally transform the execution of Java bytecode into register-like execution (more in

Section 4.5). However, there are several shortcomings:

- Multiple instructions that write to local variables cannot be executed in par-

allel as there is no renaming to resolve the data dependency.

- The stack cache is split into two areas: local variables and intermediate com-

putation results. Two registers, VARS and OPTOP are used to keep track of

the two areas respectively. Local variables are mapped as an offset of VARS

register, which requires the local variables to be in consecutive slots in stack

cache.

There are a number of researches aimed to improve on the picoJava design, some of

which are also discussed in Section 4.5. One possible way to solve this under SAFA

architecture will be presented next.

4.4.1 Local Data Access in SAFA

As SAFA has already a good foundation for tagged execution (register renaming),

it is clear that the best way is to map the local variables to an entry in the RoB,

which allows renaming and random access. With the main problem out of the way,

there are only several minor problems to be solved:

1. A way to distinguish a local variable from intermediate computation.

2. A way to indicate a read/write to local variable.

3. A way to setup the local variable on RoB when the procedure is first entered.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 101

4. A way to store these local variables into memory before calling another pro-

cedure.

The first problem can be solved by a simple observation: a temporary

computation result will be consumed immediately, while values of local variables

may not be needed immediately. In SAFA architecture, only entries on the OTS

will be consumed by subsequent instruction. Previously, the virtual tag number of

any value in RoB must exists on OTS. As soon as the virtual tag number is popped

from OTS, the Use Count of the corresponding RoB entry is decremented. A RoB

entry will be deleted if the Use Count reaches zero. So, firstly, we can easily keep

a local variable in RoB by not putting its associated virtual tag number on OTS.

Secondly, when a local variable is needed in computation, the corresponding virtual

tag number can be loaded onto the OTS, and the Use Count of the RoB entry is

incremented at the same time. In this way, the Use Count of a RoB entry that

stores a local variable is always equal to Number of appearances in OTS + 1, which

ensures the RoB entry will not be removed. Likewise, when a new value is to be

stored into a local variable, we can achieve this by simply changing the mapping

(local variable to virtual tag number) and decrement the Use Count of the old entry.

We follow the Java terminology, which groups the parameters and local

variables of a procedure as local data (LD). The LDs, starting from parameters

then followed by local variables, are labeled with a index number starting from zero.

For example:

void f(int a, int b)

int i;

float j;

Then the parameters a and b are labeled as LD 0 and LD 1. The local variable i

and j are labeled as LD 2 and LD 3.

Two new instructions are provided for LD access in SAFA:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 102

Instruction Parameter Description

own wload N Load the corresponding virtual tag

number of LD N onto OTS. Increase

Use Count of the corresponding RoB

entry by 1.

own wstore N Take the virtual tag number on top of

OTS and change the mapping of LD N.

Decrease the old RoB entry by 1.

The mapping between LD and its virtual tag number is kept in an array

Local Data Map (LDM), where LDM [I] gives the virtual tag number for LD I. A

SAFA translation of the code example used previously is given below:

PROC f

//i is store as LD #0

//j is store as LD #1

iwload <f3.14> //I1: immediate load

own_wstore 0 //I2: store to LD 0

....

....

own_wload 0 //I3: load from LD 1

own_wload 0 //I4: load from LD 1

fmul //I5: multiply

iwload <f123.0> //I6: immediate load

fmul //I7: multiply

own_wstore 0 //I8: store to LD 1

....

Before the execution of instruction I1, the corresponding state of RoB,

OTS and LDM are given next.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 103

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 – – 0 – 0 –

1 – – 0 – 1 –

...
...

...
...

...
...

...

Operand Tag Stack [→]

We have the following states after execution of instruction I1 iwload :

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x00 iwload 1 3.14 0 –

1 – – 0 – 1 –

...
...

...
...

...
...

...

Operand Tag Stack [→0x00]

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 104

Next would be the first example of local data map usage. Instruction I2 own wstore

0 changes the state and gives:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x00 own wstore 1 3.14 0 0x00

1 – – 0 – 1 –

...
...

...
...

...
...

...

Operand Tag Stack [→]

Note that the change on LDM and OTS. The RoB entry 0 is protected from deletion

as the Use Count is still one. After execution of I3 own wload 0 and I4 own wload

0 :

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x00 own wstore 3 3.14 0 0x00

1 – – 0 – 1 –

...
...

...
...

...
...

...

Operand Tag Stack [0x00, →0x00]

By loading the virtual tag number of LD 0 onto OTS twice, we now ef-

fectively have two copies of the value 3.14. Note the change of Use Count of the

corresponding RoB entry.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 105

Instruction I5 fmul gives the following state:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x00 own wstore 1 3.14 0 0x00

1 0x05 fmul 1 Waiting 1 –

...
...

...
...

...
...

...

Operand Tag Stack [→0x05]

The instruction fmul will take the two copies of 3.14 by decreasing the corresponding

Use Count, it is then dispatched to the floating point unit. Note that the virtual

tag number 0x05 is chosen randomly to make the example more interesting.

After I6 and I7:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x00 own wstore 1 3.14 0 0x00

1 – – 0 – 1 –

2 – – 0 – 2 –

3 0x0a fmul 1 Waiting
...

...

...
...

...
...

...
...

...

Operand Tag Stack [→0x0a]

The reservation entry for instruction I7 fmul will have the virtual tag 0x05

as the result is not ready, and the value 123.0 loaded by instruction I6. Note that

both RoB entries for instruction I5 and instruction I6 have been deleted as the Use

Count reaches zero.

Finally, the instruction I8 own wstore 0 give the following machine state:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 106

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x00 own wstore 1 3.14 0 0x00

1 – – 0 – 1 0x0a

2 – – 0 – 2 –

3 0x0a fmul 1 Waiting
...

...

...
...

...
...

...
...

...

Operand Tag Stack [→]

Again, by popping the tag from OTS but leaving the Use Count intact,

we have created another local data that is safe from deletion. Note also that the

availability of a value does not affect the execution of own wload or own wstore as

they depends only on virtual tag number but not actual value.

The described scheme gives a satisfactory answer to the first two problems

stated at the beginning of this section. We can now look at the more technical

problems posed.

The solution of setting up the local data for a procedure is related to the

way that a stack frame is constructed during procedure activation. In SAFA, the

caller is responsible for setting up the stack frame, filling in all the required data

items (Section 3.1.1), including the procedure parameters. Hence, when a procedure

is started, the parameters must be loaded from memory to setup the scheme above

correctly. For example, to setup the procedure f above, a few more lines of code are

needed:

PROC f

cfb_wload x24 //I1: Load 1st parameter from memory

own_wstore 0 //I2: store as LD 0

cfb_wload x28 //I3: Load 2nd parameter

own_wstore 1 //I4: store as LD 1

....

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 107

The instruction I1 (refer to Chapter A) loads a word from current frame at offset

0x24 (more details in Section A.7), then I2 will set the value up as LD 0. Similarly,

the next pair of instructions I3 and I4 setup the LD 1. Obviously, as the number

of parameters increase, more extra coding are needed. Whether this overhead is

justifiable largely depends on the number of local variable accesses in a procedure.

One way to reduce these overhead is to modify the handling of a stack

frame. The caller can leave all the actual parameters on the operand stack instead

of storing them into memory and let the callee to set them up. This further reduce

the memory traffic as more items are readily available on operand stack when a pro-

cedure is activated. These two ways of procedure activation are given a quantitative

study in Chapter 6.

As the LDM is shared between all procedures, a caller has to protect its

local data from the callee by sending them into the memory. The operations are

analogous of the setup of local data. For example, to save the two local data of

procedure f, the following code is needed:

....

own_wload 0 //I1: load LD 0

cfb_wstore x24 //I2: store in memory

own_wload 1 //I3: load LD 1

cfb_wstore x28 //I4: store in memory

....

The above code will transfer the current values of local data into the corresponding

location in the stack frame. After calling a procedure, it is now necessary to re-setup

the local data before continuing. Again, these overhead is only justifiable if there

are frequent access of local data.

With the above scheme, it can be seen that all local variable accesses are

now transformed into stack-to-stack instruction that bypass the memory unit. This

should reduce the memory traffic as well as increase the ILP. However, there are a

few drawbacks on this scheme:

1. As each of the local data will stay in the RoB for a long time, this reduce

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 108

the available RoB entries for intermediate computation results. However, the

reservation station scheme should minimize the reliance on actual RoB entry.

2. The current implementation lacks the ability to spill some of the local data

into memory, because the drizzling is based on the OTS entries.

3. As stated in Section 4.3.2, all state changing instructions are currently non-

speculative. The instruction own wstore is not speculatable, while own wload

has no problem.

4. Increase of complexity and on chip storage.

Speculative Execution and Local Data Map

As SAFA allows both speculative execution and local data map, it is important

to study the interaction between these mechanisms to ensure correct program ex-

ecution. As an informal proof, we will look at all possible prediction resolutions

involving a LDM instruction.

Consider the following code fragment:

....

.... //before speculation

if_true end //branch instruction

own_wload 0 //SI1: load from LD 0

ibload 234 //SI2: load value 234

iadd //SI3: add integer

... //PointA

...

end:.... //PointB: Branch Target

....

We assume the LDM is consistent before the speculation, which includes

the following conditions:

- The LDM entries are setup correctly, i.e. each entry map to a existing RoB

entry.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 109

- The Use Count of the RoB entry associated with local data is X, where X ≥ 1.

Depending on the outcome of the branching, speculative execution should

result in the same machine state at either PointA or PointB in a non-speculative

setting. The machine state before the branch instruction is as follows:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wstore X 1000 0 0x03

1 – – – – 1 –
...

...
...

...
...

...
...

Tag PPL CPL

Top→ before

.

Figure 4.8: Machine State before Branch

If the branch if true is taken, then the machine state at PointB would be

the same as Figure 4.8. On the other hand, if the branch is not taken, then the

machine state at PointA is shown in Figure 4.9.

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wload X 1000 0 0x03

1 – – – – 1 –

2 0x0a iadd 1 Waiting 2 –
...

...
...

...
...

...
...

Tag PPL CPL

Top→ 0x0a 0 –

before

Figure 4.9: Machine State at Point A

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 110

Suppose the branch if true is predicted as not taken. The instructions

SI1,SI2 and SI3 are executed speculatively. Upon encountering the branch in-

struction, the prediction level will be increased to 1. The machine state after the

execution of instruction SI1 is shown below:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wload X+1 1000 0 0x03

1 – – – – 1 –
...

...
...

...
...

...
...

Tag PPL CPL

Top→ 0x03 1 –

before

.

Suppose the prediction is resolved at this point, we can then observe the

following changes depending on the resolution outcome. In the case where prediction

is successful, the prediction level PL1 will be restored to PL0.

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wload X+1 1000 0 0x03

1 – – – – 1 –

...
...

...
...

...
...

...

Tag PPL CPL

Top→ 0x03 0 –

before

.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 111

The subsequent instructions SI2 and SI3 will then be executed non-speculatively,

resulting in the following machine state:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wload X 1000 0 0x03

1 – – – – 1 –

2 0x0a iadd 1 Waiting 2 –

...
...

...
...

...
...

...

Tag PPL CPL

Top→ 0x0a 0 –

before

.

As can be seen, this is exactly the same machine state as in Figure 4.9. In

particular, the Use Count is decreased back to X.

Suppose the prediction fails, all entries on OTS with PL1 will be purged.

As a VTag is removed from OTS, the corresponding Use Count will also be de-

creased. The resulting machine state is as follows:

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 112

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wstore X 1000 0 0x03

1 – – – – 1 –

...
...

...
...

...
...

...

Tag PPL CPL

Top→ before

.

This is exactly the same machine state as shown in Figure 4.8, which shows

that any effects of speculative execution are removed correctly.

Since speculation can be resolved at any point in time, lets look at another

two scenarios where the resolution come after the speculative execution of SI3. The

machine state at that point is given below:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wload X 1000 0 0x03

1 – – – – 1 –

2 0x0a iadd 1 Waiting 2 –

...
...

...
...

...
...

...

Tag PPL CPL

Top→ 0x0a 1 –

before

.

It is a near replica of Figure 4.9, where instructions SI2 and SI3 are exe-

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 113

cuted non-speculatively, except the PPL of the iadd is one instead of zero.

In the case where the prediction is successful, the PL1 is simply decreased

to PL − 0. Resulting in the same machine state as in Figure 4.9.

On the other hand, if the prediction is wrong. The result of instruction

iadd will be purged because of its PPL1. The removal of the vtag also decrease the

Use Count of the associated RoB entry, resulting in the machine state:

RoB

Entry

VTag Instruction Use

Count

Value LD

Number

VTag

0 0x03 own wload X 1000 0 0x03

1 – – – – 1 –

2 0x0a iadd 0 Waiting 2 –

...
...

...
...

...
...

...

Tag PPL CPL

Top→ before

.

The RoB entry is subsequently removed and restored the machine state

as in Figure 4.8. Since virtual tag removal upon misprediction is handled just like

normal consumption, the Use Count of the associated RoB entry will be kept in

a consistent state. Besides, as the state changing instruction own wstore is barred

from execution, the LDM can be kept consistent during speculation. The scenario

above should illustrate the process clearly.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 114

4.5 Advances in Java Technology

The central promise of Java technology “Write once, Run anywhere” [13] has an

unexpected impact on the computer architecture scene. To keep the promise, a

Java binary (Java Bytecode Code JBC), unlike other executable, is interpreted

and executed by Java Virtual Machine (JVM). This isolation from actual processor

architecture ensures the portability of JBC, but at the same time, degrades the

performance because of the interpretation overhead. As Java growing ubiquitous,

the pressure for faster execution prompts active research.

One major direction of these researches is to provide an actual Java Pro-

cessor. As surveyed in Section 2.3.5, Sun Microsystems developed and marketed two

Java Processors, picoJava I and picoJava II. The central idea of these processors is

the combination of stack cache and instruction folding [13].

The stack cache is a 64 entries register file that caches the top 64 entries

of the stack. Frequently accessed data like local variables, parameters etc are first

pushed onto the stack. Since the stack cache is actually a register file, this allows

random access of any entry which eliminates the reliance on the stack pointer. The

picoJava design further capitalize on stack cache by introducing the instruction

folding mechanism.

To illustrate this mechanism, consider the JBC fragment:

iload_0 //load local variable 0

iload_1 //load local variable 1

iadd //integer add

istore_2 //store to local variable 2

Assuming that each instruction can be executed in one time cycle, then the above

would requires four time cycles. Since the two local variables are already in the

stack cache, the execution above is grossly inefficient. The first two instructions did

nothing useful, except moving values that is already in CPU core to another location

(the top of stack). Instruction folding is the mechanism that detects such pattern

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 115

(folding group) and translate them into a single GPR-like instruction. For example,

the above can be translated to:

add R0,R1,R2 //Assuming RX stores local variable X

This instruction can then be executed in one cycle. As multiple instructions are

folded into a single instruction, this mechanism is aptly named instruction folding.

The above example is also an example of 4-foldable group as four instructions are

folded.

For actual implementation, the folding logic is added to the decoding stage

in picoJava core, as shown in Figure 4.10. Using a set of grouping rules, the decoded

instructions (up to four instructions) are scanned for foldable sequence. The matched

sequence is then folded into a single GPR-like operation. Because of the limitation

of the matching windows, the 4-foldable is the biggest possible group.

Figure 4.10: Sun Microsystems picoJava Block Diagram

This mechanism relies on the grouping rules, which heavily influence the

possible folding. Since there are a huge number of foldable patterns, only a selected

few are actually implemented because of hardware complexity. The grouping rules

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 116

implemented by picoJava achieves an average of 20% folding rate (percentage of

instructions folded) for typical Java programs[13]. However, in [47], it is noted that

there may be better grouping rules. The research [52] suggest instead of fixed group-

ing rules, instructions that modify either the value or the order of stack items can

serves as anchor instructions of a folding group. As soon as an anchor instruction

is encountered in the folding unit, the preceding instructions are scanned for pro-

ducer(s). In the case that anchor instruction requires a consumer, the immediately

following instruction is checked. A folding group is thus formed starting from the

producer instruction(s) up to the consumer instruction, or in the case of missing

consumer, up to the anchor instruction. After a folding group is formed in this way,

the group is then removed to allow further folding of the remaining instructions.

This technique, named as Operand Extraction Based (OPEX) allows more flexible

folding groups with comparable hardware complexity.

The scanning and matching operations required by instruction folding come

at a cost. In [54], it is found that the Instruction Folding Unit (IFU) falls in the

critical path which decrease the possible clock rate. Both [54][53] suggest moving

the complex logic off the critical path, such that the folding can occur in parallel

with the main pipeline stages.

Adding in superscalar support is the natural next step for the Java Proces-

sors. [54] take a first look by allowing the picoJava execute pipeline stage to execute

independent instructions from a basic block in parallel. The result gathered from

five programs in the specJVM98 [50] benchmark suite is not very encouraging. It is

found that only 7.638% of the instructions on average can be executed in pair, with

highest at 9.88% and lowest at 5.30%. Only negligible percentage of the instructions

can be executed three at a time. The poor performance is attributed to the restric-

tion that any instructions that write to the stack will stall the following instructions

that read from the stack to preserve data dependency. As the stack cache actu-

ally serves two roles: storage of the local variables and frame data; storage of the

operand stack. Since operand stack is allocated after the local variable area, they

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 117

are practically independent of each other. Performance can be improved by allowing

operations acting on different area of the stack cache to proceed in parallel. This

technique is given the name stack disambiguation[54] as it extricate the false depen-

dency on the stack cache. The parallelism increased greatly by this simple addition:

an average of 16.292% of the instructions (highest:21.06%, lowest:11.56%) now can

be executed in pair, and average of 0.74% instructions (highest:0.17%, lowest:2.00%)

can be executed in 3’s.

Following the same line as the stack disambiguation technique, [53] pro-

posed to adapt Tomasulo’s Algorithm[38] for a instruction folding based Java Pro-

cessors. The main ideas of the research are:

1. Use RISC-like register file.

2. Utilize the OPEX instruction folding strategy[52]. When the consumer of a

folding group is missing, a tagged register entry is used as temporary storage.

This tag is later picked by the consumer instruction. This renaming of register

entries decouple the dependency between folding groups and allow multiple

issues.

3. With instruction folding, this design dynamically translate JBC to typical

RISC instructions. This allow utilization of RISC techniques.

4. Employ reservation station of the Tomasulo’s Algorithm to allow instruction

to be dispatched even when the operands are not ready.

As explained before, the OPEX folding strategy will remove a folded group

to allow for recursive folding. However, this may cause pipeline hazards where a

consumer may get issued before a precedent producer. This hazard can be detected

by checking the not yet folded JBC to look for any preceding producer that uses

the same local variable as the consumer of the current folding group. The precedent

producer is then replaced by a folding group that produce the value into a tagged

register entry T. This T is then added as producer in the JBC for further folding.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 118

As an interesting side-note, this design also substantiates our proposed General Tag

Execution framework (Section 1.1). This design opted for a JBC→GPR instruction

translate for the the stage two of the framework (dependency checking). An adapted

Tomasulo’s Algorithm serves as scheduling and dispatching stage. The execution

stage is simply a RISC-like GPR execution core. This shows the power of casting

into existing execution model for well studied techniques.

With the relevant researches described, we present a comparison between

the SAFA architecture and the Java Processors in the next section.

4.5.1 Comparison: SAFA vs Java Processors

Before a feature based comparison is presented, it is illuminating to briefly study

the design philosophy between SAFA and Java Processors. This would give us a

deeper understanding of the choices made. The SAFA design concentrates on a

stack based architecture and try to rein in the inefficiency that such architecture

holds. The Java Processors on the other hand, work under the assumption that

register based architecture is more efficient and concentrates on ways to translate

execution of JBC into register based execution. This is perhaps most apparent in

the instruction folding mechanism, where each folding group map to one register

instruction.

On closer inspection, it can be seen that the instruction folding mechanism

is actually a special case of tagged execution in SAFA. A folding pattern re-establish

the producer-consumer relation for the selected instructions group. As pointed out

before, there are so many foldable patterns that only limited pattern can be fitted

into the decoding logic. The rigidness of the folding pattern and also the limited

number of instructions inspected prevent more instructions to be folded. In SAFA,

on the other hand, the relation between procedure and consumer is reconnected

as the instruction is issued, with the help of operand tag stack. Regardless of the

depth or complexity of the relation, all instructions that reach the execution stage

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 119

would have picked up theirs operands automatically, i.e. “folded”. Also, as pattern

matching is not a trivial operation, it is understandable that the instruction folding

in Java Processor (at least in the two actual hardware picoJava I and II) causes

delay in the execution path. The relatively simpler operation proposed by SAFA

would go toward in lowering the complexity.

The Java Processor architecture proposed by [53] answered some of the

criticism above by introducing new folding strategy and also superscalar execution.

However, as the register renaming is partial, additional logic must be added to

detect and resolve pipeline hazard caused by folding. Register renaming is uniform

in SAFA, where each producer instruction tags a new register entry, which prevents

any extra hazard.

SAFA architecture also proposed a way to provide speculative execution

that is consistent with the central tagged execution. As the speculation in SAFA

is based on the inherent characteristic of stack, speculative execution can be added

conveniently. This feature is not in the most of the Java Processor designs, mainly

caused by power consumption and complexity issues.

Finally, with the local data map scheme, SAFA provides a more flexible

mechanism for local data access as compared to the stack cache approach. The

optimization proposed fit into the basic SAFA architecture easily, ensuring the ap-

plicability of the previously discussed techniques.

On the other hand, Java Processor have one major advantage as instruction

folding is applied at the decode stage, which reduces the number of instructions

issued. In SAFA, since there is no reduction of instruction count at the decode

stage, more instruction must be issued. Hence, it is likely that a higher issue rate is

needed to achieve good performance as compared to Java Processor.

In a nutshell, SAFA can be considered as a viable alternative design for

stack architecture as opposed to Java Processors.

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 120

4.6 Influence of General Tagged Execution Frame-

work

As promised in the opening of this chapter, we will briefly described the process of

arriving at the current design for SAFA guided by the General Tagged Execution

Framework (GTEF) before closing the chapter.

Recalls that Figure 1.1 in Section 1.1 depicted a general multi-stage in-

struction execution process, the General Tagged Execution Framework. This ab-

stract framework shows that by associating the values/operands of an operation

with a tag, we can gain a more general perspective. GTEF concerns with tags,

instead of actual values. An instruction in this abstract machine manipulates tags,

which can either be actual values or temporary identifiers for as yet uncompleted

execution result.

One obvious benefit gained by working through this framework is that we

can pick and match existing well studied mechanisms to complement the intended

design. By mapping each stage in the GTEF with actual hardware mechanism, we

will then get an instance of this framework. The SAFA architecture can serve as a

good example of this process. As one of our main objectives is to derive a superscalar

stack machine, the instruction stream (corresponds to stage one in Figure 1.1) is

obviously going to be stack based. The execution core (stage four in GTEF) is

directly fixed by our decision to allow superscalar execution. Since the instruction

coming out of stage three, specify its operands and results as tags, the fact that we

are dealing with stack based instructions ceased to make any difference. In short,

any execution core capable of executing multiple tagged instructions can be picked.

Looking back at the SAFA architecture, it can be seen that this is exactly what

Tomasulo’s Scheme provided: a superscalar execution core.

With the first and last few stages of the GTEF fixed, the rest of the pieces

fall into place naturally. A dependency resolution and tagging mechanism is needed

CHAPTER 4. LOW LEVEL EXECUTION SUPPORT 121

at stage two, which should establish the dependency between stack based instruc-

tions by tagging. A scheduling mechanism is then needed to dispatch the trans-

formed instruction into the execution core. Now, with hindsight, it is clear that this

is exactly provided the combination of Reorder Buffer Scheme and Operand Tag

Stack.

We do not claim that random picking any existing mechanisms for the

GTEF would miraculously generates a viable design. Obviously, conscious effort

must be taken to pick the correct ideas and iron out any incompatibility especially

in between of two stages. GTEF serves as a guiding light for us to look in the correct

direction and provide a more systematic approach at arriving at a plausible design.

4.7 Summary

This chapter present our main ideas to improve low level execution in a stack-

oriented machine. Adapting well known superscalar ideas in general purpose register

machines, we have shown that multi-issue, out-of-order execution is possible in a

stack machine setting. With data dependency reined in, branch prediction and

speculative execution are now powerful techniques to provide even more opportunity

to improve the performance of our model cpu, SAFA.

Chapter 5

Benchmark Environment

This chapter describes the setup of the benchmarking process. The SAFA “hard-

ware” is covered in Section 5.1 with details such as the hardware/software tools

used. The description, as well as the rationale of the chosen benchmark programs

can be found in Section 5.3.

5.1 Hardware - SAFA Simulator

As SAFA is a new cpu architecture, there is no actual fabricated chip to execute

the SAFA programs. To provide a platform for experimentation, we have imple-

mented a software simulator of the actual hardware. A C++ program is written

as a component level software simulator (a functional simulator [32]) for the SAFA

architecture. This simulator provides accurate per time tick (also know as CPU

cycle) view of the components in the CPU as well as its external memory (RAM)

unit.

The benefits of choosing to implement a software simulator from scratch

are:

• Provide the flexibility to implement/re-implement the components if needed.

122

CHAPTER 5. BENCHMARK ENVIRONMENT 123

• Give a clearer view of the low level details, which may spark off insights to

improve the current design.

Instead of component level software simulator, there are other alternatives,

for example, FPGA (Field Programmable Gate Arrays), VLSI (Very Large Scale

Integration) simulator, Verilog HDL etc. These alternatives provides even more

detailed information of the hardware, usually down to the logic gate level. However,

we did not chose these alternatives because:

• The scale of the SAFA architecture is quite prohibitive to implement on these

alternatives, with generating additional insight into the value or otherwise of

our architectural ideas.

• There are low level details, such as logic gate fan-out, power consumption,

interconnection, layout, clock signal distribution etc, which requires extensive

experience and skill to handle correctly. However, it is important to separate

implementation issues from design issues to keep our aim in view. SAFA

architecture is essentially a new hardware design, which should be observed at

a higher conceptual level to see the benefits of the proposal.

Figure 5.1 shows the Component Level Diagram for the SAFA architecture.

There are a number of parameters (different settings) for each of the component,

which can drastically change the execution in SAFA. Brief explanation for each

component, with the associated parameters, is given next.

CHAPTER 5. BENCHMARK ENVIRONMENT 124

F
ig

u
re

5.
1:

S
A

F
A

C
om

p
on

en
ts

D
ia

gr
am

CHAPTER 5. BENCHMARK ENVIRONMENT 125

5.1.1 Fetch Unit

Fetch Unit has a well-defined task, i.e. to retrieve instructions from the memory unit

to be executed. Although instructions in SAFA are mostly byte size, a number of

memory words (Fetch Size1) are fetched every time tick instead of a single byte. This

allows more instructions to be fetched and stored at every time tick, to fully utilize

the memory bandwidth. The fetch unit may stall under the following conditions:

1. When the next component (the decode unit) is unable to take in any more

new instructions.

2. When a branch instruction is decoded by the decode unit. This behavior

may be modified when branch prediction is turned on (refer to the section on

Branch Predictor).

5.1.2 Decode Unit

After the raw code is fetched, the decoder unit proceeds to decode a number of

instructions (Maximum Decode) and perform the following:

• A number of instructions have associated immediate operands (effectively mak-

ing the instructions multiple byte), such operands are retrieved and passed

along to the next stage. If an operand is not fetched yet, stall until it arrives.

• The unit calculates branch target for branching instructions. It also outputs

a stall signal for the fetch unit if branch prediction is not in effect.

The decode unit may stall under the following conditions:

1. The instruction cannot be fully decoded, since some part of the instruction is

yet not fetched.

1all setting (parameters) uses San Serif font

CHAPTER 5. BENCHMARK ENVIRONMENT 126

2. Run out of fetched raw code.

3. The next stage (Issue) is not yet ready.

To minimize the chance of the stated conditions, an instruction queue with

Instruction Queue Size bytes serves as a temporary storage for fetched raw code.

Since the fetch unit has a throughput of Fetch Size bytes per time tick, filling up

the instruction queue does not take too long. If an immediate operand is needed, it

is likely that it is already in the queue, allowing the decoder to proceed. Also, when

“multiple decode” is enabled, having a instruction queue serves as buffer to lessen

the chance of running out of raw code.

At the end of every cycle, the decoder will make sure that there are at least

enough free space (a memory word, 4 bytes) in the instruction queue, anticipating

the next output of the fetch unit. If the queue is almost full, a halt signal will be

sent to the fetch unit to stall it for the next cycle. The signal will be cleared as soon

as enough room in the queue is freed.

5.1.3 Issue Unit

This is the component that differs from conventional machines. It consists of the re-

order buffer (RoB), modified to implement the multiple logical stacks idea discussed

in Chapter 4, and the operand tag stack (OTS), to keep track of the input-output

dependence between instructions.

This unit is in charge of issuing/dispatching a number of instructions

(Maximum Issue) to respective execution units. The more important aspects of

instruction dispatching are listed below:

• For the operand(s) of an instruction: Pop the require number of operand tag

from OTS. Acquire actual value from RoB entry if the value is available, or

virtual tag number if the value is in transit.

CHAPTER 5. BENCHMARK ENVIRONMENT 127

• For the output of an instruction: Acquire free reorder buffer (RoB) entry/entries

and attach virtual tag number. Push the tag on to operand tag stack.

Since we follow the reservation station scheme (explained Section 4.2.2)

for the execution units, the above steps essentially transforms an instruction into

corresponding reservation station entry. When the execution unit produces result,

it is broadcasted along with the owner tag. Upon receiving any result, the issue unit

performs one of the following action:

- If reorder buffer entry containing the Owner Tag exists, then records the value

into the Value field of the corresponding reorder buffer entry.

- If reorder buffer entry containing the Ownder Tag cannot be found i.e. already

consumed, then the Value is discarded. The Owner Tag is also returned to

the virtual tag pool.

There are four important parameters associated with the issue unit:

Reorder Buffer Size Number of actual entries in the reorder buffer.

Virtual Tags Number Amount of virtual tag (explained in Section 4.2.2) to asso-

ciate with actual RoB entry.

Drizzling Out Threshold When the number of occupied RoB entry exceeds this

number, the preemptive drizzling will triggers (Section 4.2.2) to flush out RoB

entry into external memory space.

Drizzling In Threshold When the number of occupied RoB entry fall below this

number, the flushed RoB entry in the memory (if any) will be brought back

from memory.

CHAPTER 5. BENCHMARK ENVIRONMENT 128

5.1.4 Execution Units

There are a number of different execution units in the SAFA CPU, namely the inte-

ger, float, branch and load/store unit. Although they perform vastly different tasks,

the overall structure is similar. So, only the overall general structure is explained in

this section, without delving into the details.

Each execution unit has an associated reservation station, which is used

to store the instruction dispatched from the issue unit (in the form of reservation

station entry). The reservation station is capable of storing a number (Reservation

Entries) of instructions. When an entry acquired all its operands, it is passed to the

execution unit. If the reservation station has no more free entry at the end of a

cycle, issue unit will be signaled to stop instruction dispatching.

Since different type of instruction takes varying amount of time to com-

plete, we model this effect by giving each execution unit a pipeline stages number

(Pipeline Stages), which represents the number of stages (each takes 1 cycle) an in-

struction has to pass through. For example, by giving the integer unit one pipeline

stage, result will be available after 1 cycle.

When an execution result is produced, it is broadcast to all other execution

units as well as the issue unit.

5.1.5 Frame Registers Unit

This unit can be taken as a specialized execution unit, which in charge of all frame

registers (Chapter 3) related instructions. For these instructions, frame registers is

the shared resource that has to be accessed in a strictly ordered fashion to avoid any

input-output conflict. Because of this, the reservation station for the frame registers

unit is implemented as an ordered queue of size Frame Instruction Queue Size, where

instruction is always taken from the head of queue, regardless of whether there are

other available instructions in other part of the queue. When a frame instruction is

CHAPTER 5. BENCHMARK ENVIRONMENT 129

taken out from the queue, the unit performs the following steps:

1. Mark related frame register(s) as busy. 2. Execute the instruction. 3.

Unmark related frame register(s).

Clearly, the execution must ensures its exclusive hold of related frame

registers under this scheme for correct execution. This scheme, although easy to

implement, has the disadvantage of stalling ready and conflict free instruction in the

queue. Taking this into consideration, the scheme has been modify to the following:

If the head of the queue is not ready, go through the rest of queue from

head to tail to look for ready instruction I that satisfy the follows:

• No earlier instruction in the queue needs the same frame register as I.

• The frame register(s) required is free for I.

If such instruction I can be found, it is schedule for execution following

the exact same steps explained above. This modified scheme is akin to a multiple

queues approach that associates each frame register with an individual queue.

5.1.6 Branch Predictor Unit

As discussed (Section 4.3.2), speculative execution in a stack machine is entirely

possible. The unit responsible for allowing branch prediction and confirmation in

SAFA is the Branch Predictor Unit (BPU). When a branch instruction is decoded,

it is passed along to the BPU, which will predict the outcome according to the

prediction logic. Several prediction strategies are implemented in the simulator,

which includes:

BTFN Backward Taken Forward Not taken[44]. One of the simplest static branch

prediction strategy, where all backward brnaches are predicted as true, while

forward branches are predicted as false.

CHAPTER 5. BENCHMARK ENVIRONMENT 130

BiModal Keep tracks of the behavior for each branch by a 2-bit counters, which is

increased when the branch is taken, and decreased when the branch is not-

taken. Prediction is based on the current value of the counter. If the counter

is more than 1, the branch is predicted as true. Otherwise, the branch is

predicted as false.

GShare One of the most widely used strategy[42]. The global branch pattern is XOR

with the branch address to produce an index. This index, which captures

both the global and local branch information is then used to access a counter

(similar to the BiModal strategy). Again, if the counter is larger than 1, the

branch is predicted as taken.

As most of our benchmarks programs are small to medium in term of execution

time length, the BiModal stratgey is used for the results gathered. The BPU is

also responsible of setting the appropriate system-wide prediction level.

When a branch instruction is resolved, the result is passed along to the

BPU. Depending on the correctness of the prediction, the BPU will send signals

to units involved to either confirm or purge a prediction (refer to Section 4.3.2 for

details).

5.1.7 Overall System

The execution control unit is a single encompassing entity, serves as the linkage

between all the components described. The main functionality of the control unit

is as follows:

• Maintain time tick, where each tick corresponds to 1 CPU cycle.

• Maintain the temporary storage between components, e.g. the output of the

fetch unit for decode unit. These temporary storages are similar to latches in

real CPU.

CHAPTER 5. BENCHMARK ENVIRONMENT 131

• Maintain signal raised by all components.

• Maintain statistics like utilization of each components, instructions executed

etc.

• Provide debug interface and user interface to the emulator.

The execution of the SAFA CPU follows the time-stepped simulation,

where each time step corresponds to 1 cycle. During each time step, there are 2

phases:

1. Clock Edge Up: All components take input from previous stages temporary

storage, and perform the necessary task.

2. Clock Edge Down: All components produce output to be stored in the

temporary storage.

The main reasons of splitting into two phases is as follows:

• Since SAFA is a pipelined CPU, the temporary storage may be overwritten if

we allow component to get input and produce output in a single phase.

• Good for debugging and execution monitoring, since each phase is well defined.

• This scheme is mimics real CPUs more closely.

5.1.8 Verification of SAFA Simulator

As the accuracy and reliability of the benchmarks hinges on the correctness of the

simulator, it is important to give a thorough verification for the simulator. The

verfication process is briefly outlined below.

CHAPTER 5. BENCHMARK ENVIRONMENT 132

Stage 1. Correctness of Single Instruction Execution

During the testing of single instruction, the simplest execution mode is chosen for

clarity and ease of checking. The SAFA Simulator is configured without superscalar

and speculative capabilities. The correctness of an instruction execution can be

checked by the following criteria:

• Number of cycles: As each of the instruction has well defined execution time,

the number of cycles can be checked.

• Machine State: The memory state and internal CPU state (values of various

registers) before and after the execution can be used to ascertain the correct-

ness.

Each SAFA instruction is tested in isolation, starting with the least de-

pendent instructions. There are instructions that cannot stand alone, for example,

the simple integer add instruction requires some ways to load the operands onto the

stack. To isolate the checking, only instructions with no dependency are chosen at

first, e.g. the various load instructions. After these instructions are checked, other

dependent instructions can now be checked. In this fashion, the instructions are

checked according to the depedency chain, which reduce the hassle in pinpointing

the source in case of erroneous execution.

Stage 2. Correctness of Non-Superscalar Non-Speculative Program Exe-

cution

With the correctness of each instruction ensured, simple programs are then written

to test the simulator. These programs contains a loop to stress several interlinked

instructions. As the simulator is still under non-superscalar mode, the execution

takes a regular pattern for each iteration, which helps to calculate the correct total

execution cycles. The program is then set to loop arbitrary number of times and

checked against the calculated number of cycles. Besides, the machine state before

CHAPTER 5. BENCHMARK ENVIRONMENT 133

and after execution are checked and recorded. After confirming the result of the

execution, the machine state generated by the program under this configuration is

important for the various test stages later.

Stage 3. Correctness of Non-Superscalar Speculative Program Execution

Speculation is turned on for this set of testings. The same set of programs used in the

previous stage are executed under this new machine configuration. As speculative

execution may generate irregular execution pattern, calculating the total number

of cycles in advance is no longer possible. Instead, the machine state recorded for

each of the program from previous stage is used to verify the correctness. The

major source of error for speculative execution comes from the incorrect handling of

undoing failed speculation. Using the machine state generated by non-speculative

execution for comparison, any inconsistency is clearly visible.

Different speculation algorithms are tested separately to ensure they gen-

erate similar end state.

Stage 4. Correctness of Supersclar Non-Speculative Program Execution

Similar to the previous testing stage, there is no easy way to calculate the total

cycles in advance, hence manual inspection is required to ascertain the validity of

the simulator under this mode. Programs written for stage 2 are executed for a

single iteration, where the end result for each cycle is inpected. As the simulator

is capable of showing the changes in various units in the system, it is possible to

locate error generated because of supersclar execution.

The programs are then executed with multiple iterations. Manual inspec-

tion is no longer feasible for these executions. Thus, only the final machine state

is chcked. The machine states recorded in stage two proved to be a great help in

weeding out problematic cases.

CHAPTER 5. BENCHMARK ENVIRONMENT 134

Stage 5. Correctness of Supersclar Speculative Program Execution

At this stage, the correctness of the simulator is reasonably verified. Hence, pro-

grams are simply executed under this mode and checked against the machine states

from stage 2.

As with any other program, the correctness of the simulator cannot be

verified by exhaustive checking. However, although there are infinetely many SAFA

programs, they are composed by a much smaller, finite instruction set. So, it is

reasonble to ensure the correctness for each instructions before other testing. Under

the more advance modes of execution, the interplay between instructions are com-

plicated and hard to test. As such, checking against verified results (machine states)

are used as a main form of testing.

5.2 Software - Assembler and Cross-Assembler

To alleviate the difficulty of writing SAFA raw code directly, and also to minimize

programming errors, a simple assembler safaAs is written using yacc (Yet Another

Compilers Compiler) and lex (A lexical analyzer generator). The assembler supports

a imperative procedural paradigm, with each procedure defined as a self-containing

code package. Features of the assembler is summarized as follows:

• Support for symbolic flag for branching.

• Calculation of branch target and reporting error when target is out of range.

• Simple syntax error detection.

The syntax of the SAFA assembly program, as well as the usage of the

safaAs assembler can be found in Chapter A.

Since we have access to the lowest level of architectural knowledge, there

is the temptation to hand optimize the benchmark programs to produce favorable

CHAPTER 5. BENCHMARK ENVIRONMENT 135

execution result. To avoid this, we decided to take assembly programs compiled

by commonly available compilers and convert (cross assembly) into SAFA raw code

instead.

The most widely spread, and maybe even the only stack compiler available

today, is the Java Compiler. Since the Java Virtual Machine is a stack oriented

architecture (Section 2.3.5), there are a lot common instructions in the design which

allow a mostly one-to-one Java-to-SAFA translation. The mapping is so well defined

that a automatic cross-assembler is viable, which is implemented as JaSa (Java to

SAFA cross-assembler). The limitations of this cross-assembler are:

• Only static methods are supported, since supporting object methods requires

a fully fleshed out JVM emulation on SAFA.

• Have no knowledge of SAFA specific features, like frame registers.

• Array-based objects are represented differently in the two platforms, hence

need manual translation.

Using the cross-compilation process, the SAFA program resembles more

a real life program resulted from automatic compilation tools, which may contain

abundant opportunities for optimization. As a simple illustration, consider the

following function:

void f()

{

int i = 0;

i = 3 * i;

i = (4 + i) * 5;

}

Java compiler would simply compiles the above into:

CHAPTER 5. BENCHMARK ENVIRONMENT 136

Method void f()

0 iconst_0 //load constant zero

1 istore_0 //store to the 0th local variable

2 iconst_3

3 iload_0 //load the 0th local variable, i.e. "i"

4 imul

5 istore_0 //store 3*i to "i"

6 iconst_4

7 iload_0 //load "i" again

8 iadd

9 iconst_5

10 imul

11 istore_0 //store "i" again

12 return

It is easy to see that the repeated memory movements for the local variable

“i” represent a major bottleneck. On stack machine and also GPR machine, such

movements can easily be replaced by a single store at the end of all computation

instead. However, unless otherwise specified, the benchmark programs picked for

executions follows the actual java output and are not specifically optimized.

As an aside, a C to SAFA Compiler[41] has also been developed to guage

the applicability of SAFA archietecture for general programming languages. That

compiler attempts to utilize all special features in SAFA with moderate success.

5.3 Benchmark Programs

To test the various aspects of the SAFA architecture, a set of benchmark programs

has been selected. Each program is picked to test a particular or a group of features

proposed by the SAFA architecture, which are described in previous chapters. A

brief overview and psuedocode for each of the benchmark programs is presented

next. The actual SAFA assembly programs are provided in Chapter C for reference.

CHAPTER 5. BENCHMARK ENVIRONMENT 137

5.3.1 Sieve of Erathosthense

This is one of the most commonly used prime number finding algorithms. Given

a range of positive numbers, we can find all the prime numbers in this range by

repeatedly eliminating multiples of known prime number. After each round of elim-

ination, the smallest un-eliminated number would be a prime number, which would

then be used to cancel out others in the next round.

The pseudo-code of this algorithm is presented below:

//An array of N boolean values: True = Eliminated

boolean Range[N]

for i = 1 to N //Initialize all to un-eliminated

Range[i] = False

prime = 2

while prime < N

i = 2;

//eliminate multiples

while i * prime < N

Range[i*prime] = True

i = i + 1

//look for the next prime, i.e.

//the smallest un-eliminated number

prime = prime + 1

while prime < N

if Range[prime] == False

break

prime = prime + 1

This algorithm is chosen to represent a pure integer operation program.

The main operations involved are integer multiplication and division. Refer to Sec-

tion C.1 for actual SAFA assembly code.

CHAPTER 5. BENCHMARK ENVIRONMENT 138

5.3.2 Bubble Sort

This is a popular introductory O(N2) sorting algorithm which can be visualized

easily: compare each number at position X in the array with its neighbor at X + 1

and swap them if the neighbor is smaller. After one round of comparisons, the largest

number will end up at the end of the array. So, the whole array can be sorted by

repeating this procedure N − 1 times. This algorithm can terminate earlier if no

swapping occurs during any of the round, which implies that the numbers are already

in order. SAFA assembly code for this benchmark is listed in Section C.2.

The pseudo-code of the bubble sort is as follows:

//Sort an array A, with N elements.

//Variable:

// "swap" keep tracks of swapping operation

// "end" keep track of the last element to compare

end = N - 1

do {

swap = false

for (i = 1 to end)

if (A[i] > A[i+1])

swap A[i] with A[i+1]

swap = true

//last element in place

end = end + 1

//repeat if there is any swapping

} while (swap == true)

For this benchmark programs, we need a randomized initial array for the

sorting algorithm to work through. The Linear Congruential Generator (LCG)

is picked for random number generation because of its simplicity to use and to

implement. The LCG basically rely on the formula Ni = (a ∗ Ni−1 + c) % m to

generate new number every iteration. The psuedocode is also given for illustration

purpose:

CHAPTER 5. BENCHMARK ENVIRONMENT 139

void LCG (int A[N], int N, int a, int c, int m)

//Fill array A with N random elements.

//Local Variable:

// "N" use to keep track of the current

// random number.

N = 1

for (i = 0 to N - 1)

N = (a * N + c) % m

A[i] = i;

5.3.3 Fibonacci Series

The Fibonacci Series, 0,1,1,2,3,5, . . . , is frequently used as an introduction to recur-

sive function. The N th number in the Fibonacci Series can be calculated easily by

summing the (N − 1)th and the (N − 1)th Fibonacci number. This can be expressed

with the recurrence relation as: Fib(N) = Fib(N − 1) + Fib(N + 2). For a com-

puter program, the formula can be translated almost literally from its mathematical

definition, shown in the following pseudo-code:

int Fibonacci(int N)

{

//Fibonacci(0) = 0

if (N == 0)

return 0

//Fibonacci(1) = 1

if (N == 1)

return 1

//Fibonacci(N) = Fibonacci(N-1) + Fibonacci(N-2)

return Fibonacci(N-1) + Fibonacci(N-2)

}

The pseudo-code given is a recursive solution which requires exponential

number of function calls as N grows. Hence it is a simple yet effective program to test

CHAPTER 5. BENCHMARK ENVIRONMENT 140

procedure activation capability. Look for the SAFA assembly code in Section C.4.

5.3.4 Quick Sort

Quick sort is another popular in-place sorting algorithm that gives O(NlogN) in the

best case. It employ the divide-and-conquer tactic to repeatedly shrink the problem

into smaller but similar sub-problems. The pseudo-code is given as follows:

int Partition(int A[], int N)

{

Pick a pivot P from the array A[]

Split the A[] into two portions, < P or >=P

return the position of P, i.e. middle point

}

void QuickSort(int A[], int Start, int End)

{

if End <= Start

return;

//Split into two portion

Middle = Partition(A, End-Start+1)

//Apply quick-sort to the two portions

QuickSort(A,Start,Middle-1)

QuickSort(A,Middle+1,End)

}

The Quick Sort algorithm has linear number of recursive function calls in

the worst case, however there are more computation per function calls compared to

Fibonacci Series. Hence, it is used to represents typical programs, where there is a

mix of function calls and computations. The SAFA assembly code can be found in

Section C.5.

CHAPTER 5. BENCHMARK ENVIRONMENT 141

5.3.5 Test Score Accumulation: Array and List

To study the usefulness of frame registers in handling high level data structure, a

simple benchmark is designed. Consider the scenario in a school where each stu-

dent is associated with a record, which includes some information like matriculation

number, test scores etc. A simple program can then be written to iterate through

all the students and calculate the total test score for all students. There are at least

two possible ways to group the records: using array or linked list.

To simplify the code, the student record is consider to have two fields: a

matriculation number (an integer) and a test score (also an integer). For the array

version, the pseudo code is given below:

void Accumulate(){

//assume to have 20 students

StudentRecord sa[20]

//Initialize the student record

for i = 0 to 19

sa[i].id = i

sa[i].testScore = random number (0 to 100)

//Accumulate the test score

total = 0;

for i = 0 to 19

total = total + sa[i].testScore

}

The linked list version is similar, except now the student record contain

one more field, a next pointer to the subsequent record:

CHAPTER 5. BENCHMARK ENVIRONMENT 142

public static void main(String args[]){

//head and temp are pointers

StudentRecPtr head, temp

//initialize the head of list to null

head = null

for i = 0 to 19

//Allocate a new student record

temp = new StudentRecord

temp.id = i;

temp.testScore = random number (0 to 100)

//chain up the new record

temp.next = head;

head = temp;

total = 0;

temp = head;

//start from head until null is encountered

while temp != null

total = total + temp.testScore;

temp = temp.next;

}

The optimizations using SAFA’s unique feature are described in the re-

spective sections.

5.3.6 Linpack - Gaussian Elimination

Linpack [40] is one of the predominantly used benchmarks. For example, the web-

site “Top 500 Supercomputers Site” maintain a list of 500 computers [26] in the

world that give highest theoretical peak performance based on this benchmark. It

is basically a program to solve a dense system of linear equations via Gaussian

Elimination. The simplified psuedocode is given as follows:

CHAPTER 5. BENCHMARK ENVIRONMENT 143

void Linpack(M, b, N)

{

//Solve a system of linear equations M * x = b

//represented by a Matrix M of N x N.

//First Step, generate a random matrix M

M = Matgen(N) //details omitted

//Second Step, factorize M into

//upper triangular Matrix, UTM

UTM = Dgefa(M,N)

//Third Step, solves UTM * x = b

//Backward substitution

Solution = Dgesl(UTM,b,N) //details omitted

}

Matrix Dgefa(M,N)

{

//C is the column number

for C = 0 to N-1

R = row entry with aboslute maximum in C

move row R to row C

for L = C+1 to N-1

eliminate row L in C using M[R][C]

return M

}

The Linpack is a computationally intensive program that is designed to

stress the floating point calculation ability of a computer. For example, the factor-

ization of the matrix (the Dgefa function in the pseudo code) involves repeatedly

scaling and displacement of vectors of real numbers, which heavily lean on float-

ing point calculation. This benchmark generates O(N2) floating point operations

for solving a matrix of size N × N . Actual SAFA assembly code is listed in Sec-

tion C.12.

CHAPTER 5. BENCHMARK ENVIRONMENT 144

5.4 Hardware Parameters

As laid out in the previous section (Section 5.1), there are several component pa-

rameters that can adversely affect the execution. In this section, the parameters

used for most of the benchmarks will be listed and explained.

Fetch Unit

Parameter Value

Used

Explanation

Fetch Size 8 Memory access is aligned. However, 4

bytes is too small especially for multiple de-

code/issue.

Decode Unit

Parameter Value

Used

Explanation

Instruction Queue Size 24 Able to store 3 times of the fetch size. So,

fetch unit is less likely to be idle.

Issue Unit

Parameter Value

Used

Explanation

Reorder Buffer Size 32 32 actual entries on the Reorder Buffer

Virtual Tag Number 64 64 Virtual tags to be assigned on the actual

entries

Drizzling In Threshold 4 When more than 28 of the 32 entries is un-

occupied

Drizzling Out Threshold 28 When more than 28 of the 16 entries is oc-

cupied

CHAPTER 5. BENCHMARK ENVIRONMENT 145

Integer Execution Unit

Parameter Value

Used

Explanation

Reservation Entries 4 Able to receive 4 complete/incomplete in-

structions queuing up for execution

Pipeline Stages 2 All integer instructions take 2 time ticks for

executions

Floating Point Execution Unit

Parameter Value

Used

Explanation

Reservation Entries 4 Able to receive 4 complete/incomplete in-

structions queuing up for execution

Pipeline Stages 4 All floating point executions take 4 time ticks

Branch Predictor Unit

Parameter Value

Used

Explanation

Maximum Prediction

Level

3 Maximum number of branch prediction in

flight. When the number of predictions ex-

ceed this number, the fetching and decoding

are stalled to wait for the resolution of the

previous predictions

CHAPTER 5. BENCHMARK ENVIRONMENT 146

5.5 Instruction Type and Execution Time

Each type of instruction in SAFA takes different amount of time ticks to execute.

The table below summarize the execution time for each type of instruction, split

into separate stages during execution life cycle. These parameters are used for most

benchmark results, unless otherwise stated in the respective section.

Instruction Type Fetch-Decode-Issue Execute Total

Integer 3 2 5

Float 3 4 7

Frame

-Memory Operation 3 1 + Exec.Time of

Memory Load/Store

5

-Others 3 1 4

Branch 3 1 4

Memory

-Load 3 1 4

-Store 3 1 4

5.5.1 Derivation of Instruction Execution Time

Although the execution time for various type of instructions are freely adjustable,

an informal derivation is nonetheless helpful in clarifying the parameters chosen. In

particular, the execution time of integer versus floating point instruction warrants

a careful inspection.

For the integer instruction, the number of cycles needed is quite uniform

across most platforms which is in the range of 1 to 3 cycle per integer execution. As

such, an average of 2 cycles was used.

On the other hand, the number of cycles needed for the floating point

instructions has wildly different values in different archictecture. For example, the

CHAPTER 5. BENCHMARK ENVIRONMENT 147

80386 Intel processor used up to 35 cycles for floating point instructions (only the

execution stage), while the Alpha 21264 processor uses only 2 cycles[21]. At this

stage, there is no good reason to assume that SAFA would be a superpipelined

architecture, hence a lower execution cycle is chosen. Among the architectures with

low floating point execution cycle, the Alpha 21264 uses 2 cycles as mentioned, the

PowerPC 620 uses 4 cycles[24]. Additionally, the ratio between integer and floating

point execution cycles approaches 1:2 in these architectures. As the integer execution

cycles have been chosen as 2, the floating point execution cycles takes should double

this amount, which gives 4 cycles.

5.6 Summary

The information in this chapter serves as foundation to monitor the performance of

SAFA architecture. The setup of the SAFA “hardware”, along with the hardware

paramters were summarized. The benchmark programs were discussed together with

pseudocode to prepare for benchmark result discussion presented in next chapter.

Chapter 6

Benchmark Results

To support the proposal of SAFA architecture, various benchmarks were performed

to give a quantitative assessment of the benefits and pitfalls of the design. The

results are split into two broad categories, correspond to the two major aspects of

the SAFA architecture, namely high level language support and low level instruction

parallelism. To ease the discussion, some notational details are first discussed in the

next section.

6.1 Benchmark Notation

For each benchmark, a number of execution models are tested. These model are cho-

sen to give contrast and highlight the benefits and/or pitfalls of the SAFA execution

model. The table below summarize these models:

148

CHAPTER 6. BENCHMARK RESULTS 149

Execution Model Abbreviation Explanation

Strict Execution Strict Simulate conventional stack machine, which

decode and issue 1 instruction per time tick.

Also, the similar enforce the restriction that

the top of the stack must be ready before the

next instruction can be issued.

One decode/issue 1I Execute using SAFA model. Only allow 1

instruction decode/issue per time tick.

Two decode/issue 2I Execute using SAFA model. Allow 2 instruc-

tion decode/issue per time tick. Superscalar

stack execution.

Four decode/issue 4I Execute using SAFA model. 4 instruction

decode/issue per time tick. Superscalar stack

execution

One decode/issue &

Speculative execution

1IBP Similar to 1-Issue, except Branch Predictor

is turned on to allow speculative execution.

Two decode/issue &

Speculative execution

2IBP Similar to above.

Four decode/issue &

Speculative execution

4IBP Similar to above.

There are a lot of data for each benchmarks, but only a few may shed

lights on the particular aspect that we are interested in. To conserve space and

avoid cluttering, abbreviations are used. The data reported and abbreviations used

are listed below.

CHAPTER 6. BENCHMARK RESULTS 150

Data Abbreviation Explanation

Instruction Count Inst.Count Number of instructions decoded. Not neces-

sary executed (e.g. during speculation).

Time Tick - Each time tick represent one CPU cycle.

Instruction Per Time

Tick

IPT Represents the number of instruc-

tions executed per time tick. i.e.

InstructionCount/T imeTick

Decode Unit Idle Per-

centage

Dec.Idle (%) Percentage of total time tick that decode unit

is idle.

Issue Unit Stall Per-

centage

Iss.Stl (%) Percentage of total time tick that issue unit

is idle (i.e. stall).

Integer Execution

Unit Idle (%)

Int Idle Percentage of total time tick that integer unit

is idle. An execution unit is idle if there is

no instruction in pipeline and no instruction

waiting in reservation station. Only relevant

to programs that involve integer executions.

Float Execution Unit

Idle (%)

Float Idle Same as above. For Floating point execution

unit.

Load/Store Unit (%) Mem Idle Same as above. For load and store instruc-

tion (i.e. memory operations).

Prediction Success

Rate (%)

Pred.Success Percentage of correct prediction.

CHAPTER 6. BENCHMARK RESULTS 151

6.2 High Level Language Support

6.2.1 Data Structure Support: Array

As discussed in Chapter 3, conventional stack machine performs poorly when dealing

with array access. In SAFA, on the other hand, the proposed frame register provides

easier management of the array access which should result in both reduction of

memory access and also program footprint (program size). To support the claim,

we set up a comparison between two sets of the bubble sort benchmark. One set of

benchmark, which is translated as close as possible from a equivalent Java program,

uses the conventional array access method. For the other set of benchmark, the

bubble sort program is rewritten to utilize frame register for array access. The

bubble sort is a suitable choice as it involve intensive array element access and

swapping. The exponential growth of the algorithm also guarantee a huge number

of operations with a relatively small array.

The respective results are posted in the two table: Table 6.1 for the con-

ventional bubble sort program; Table 6.2 for the safa enhanced version (refer to

Section C.3). Since low level execution support is not the topic of this section, we

will ignore the significance of superscalar execution.

The first thing that leap to the eyes is the huge different of total instruc-

tions executed (not the total instruction in the program). The SAFA enhanced

version represents a 40 percent reduction (from 75154 to 30770) in total number of

instruction needed. Recall that in Chapter 3, we showed that the frame register

allow much more concise coding. Although the saving for each element access is

miniscule (around 3-5 instructions), the effects pile up quickly in array intensive

program, as in this case.

With the reduction in number of instructions, the execution speed (number

of time tick needed) naturally shows similar improvement. Comparing the two table,

entry by entry, it clearly shows the advantage of frame register support. The result

CHAPTER 6. BENCHMARK RESULTS 152

is summarized in Figure 6.1 To understand the improvement, it is useful to look at

the composition of the instruction type for each of the benchmarks. In Figure 6.2,

it is shown that 10% of the instructions are direct memory operations (load/store

from a stated memory address). Other than that, another 38% is spent on frame

related memory operations, for e.g. updating local variables, accessing parameters

etc. In total, a whopping 48% of the instructions are spent on memory operations.

The memory operations on the SAFA simulator can be considered as very forgiving

since cache hit is assumed. However, the huge number of memory instructions still

take a toll on the overall performance.

On the other hand, the SAFA version (refer to Figure 6.3) contains negligi-

ble direct memory access (less than 1%) since all array accesses are handled through

frame registers. Compound by the fact that the index of the array is stored directly

in a frame register instead of a variable, the overall memory related operations has

been reduced to only 26%. It it also interesting to note that the integer operations

are also reduced (from 40% to 16%). This is mainly caused by the elimination of

memory address calculation.

60

80

100

120

140

160

180

200

220

240

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Conventional
SAFA

Figure 6.1: Bubble Sort(50 Numbers): Comparison

CHAPTER 6. BENCHMARK RESULTS 153

0

5

10

15

20

25

30

35

40

45

0 Int Mem FrmMem Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.2: Bubble Sort(50 Numbers): Conventional Array Access Instruction Com-

position

0

5

10

15

20

25

30

35

40

45

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.3: Bubble Sort(50 Numbers): Frame Registers Version Instruction Com-

position

CHAPTER 6. BENCHMARK RESULTS 154

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

75
15

4
23

15
97

0.
32

5
63

.7
22

0.
00

0
88

.2
16

75
.1

84
N

ot
A

p
p
l.

1-
Is

su
e

75
15

4
12

86
20

0.
58

4
34

.6
77

0.
00

5
40

.5
66

40
.5

84
N

ot
A

p
p
l.

2-
Is

su
e

75
15

4
12

44
45

0.
60

4
60

.7
32

0.
42

0
26

.2
83

30
.9

30
N

ot
A

p
p
l.

4-
Is

su
e

75
15

4
12

25
67

0.
61

3
76

.7
47

2.
13

4
19

.5
78

31
.4

02
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

76
68

9
10

03
86

0.
76

4
0.

01
6

0.
00

6
25

.6
62

27
.3

59
92

.0
02

2-
Is

su
e-

B
P

77
17

7
92

52
1

0.
83

4
11

.3
37

7.
00

1
14

.5
37

11
.9

93
91

.1
00

4-
Is

su
e-

B
P

77
28

3
92

57
0

0.
83

5
16

.5
03

7.
73

6
12

.2
99

12
.0

36
91

.1
00

T
ab

le
6.

1:
B

u
b
b
le

S
or

t
50

N
u
m

b
er

s:
C

on
ve

n
ti

on
al

A
rr

ay
A

cc
es

s

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

30
77

0
85

31
5

0.
36

1
53

.5
44

0.
00

0
94

.1
34

89
.7

29
N

ot
A

p
p
l.

1-
Is

su
e

30
77

0
64

20
6

0.
47

9
38

.2
71

0.
00

9
84

.4
14

86
.3

46
N

ot
A

p
p
l.

2-
Is

su
e

30
77

0
56

94
8

0.
54

0
56

.4
13

0.
00

0
69

.4
93

81
.5

45
N

ot
A

p
p
l.

4-
Is

su
e

30
77

0
57

99
4

0.
53

1
68

.7
57

0.
00

2
61

.2
12

80
.9

64
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

30
77

1
53

84
1

0.
57

2
0.

03
0

0.
01

1
81

.4
14

83
.7

17
92

.0
02

2-
Is

su
e-

B
P

30
77

1
49

50
9

0.
62

2
0.

10
3

0.
00

0
63

.7
58

78
.7

72
92

.0
02

4-
Is

su
e-

B
P

30
77

1
51

07
8

0.
60

2
0.

15
1

0.
00

2
52

.7
96

78
.3

86
92

.0
02

T
ab

le
6.

2:
B

u
b
b
le

S
or

t
50

N
u
m

b
er

s:
U

si
n
g

F
ra

m
e

R
eg

is
te

r

CHAPTER 6. BENCHMARK RESULTS 155

6.2.2 Data Structure Support: Array of Records

With the usefulness of frame register for array support as shown previously, it is

natural to expect that SAFA also provides good support for record arrays. For this

section, the accumulation of test scores across student records in an array is used as

benchmark.

Unlike an array of simple data value, there are several ways to support

access in an array of records as laid out in Section 3.2.1. To observe the differ-

ence between the solutions, three separate benchmarks are conducted. The first

correspond to the conventional stack program (translated from a Java Program).

The second and third respectively shows the two separate way to support array of

record in SAFA. The second benchmark (corresponds to the version 1 described in

Section 3.2.1) represents the whole array as a words (4 bytes) array. Each access to

a record component is calculated/translated into an equivalent element access. The

third benchmark (corresponds to the version 2 described in Section 3.2.1) make use

of an extra frame register that “points” to the currently processed student record.

To move to the next record, an offset (the size of a student record) is simply added

to the base address of this frame register.

The results of the three benchmarks are summarized in the Table 6.3,Table 6.4

and Table 6.5 respectively.

The benchmarks show the similar trend as in the previous section. The

code reduction achieved are 23% for first version and 22% for second version. As

noted before, the instruction counts reduction scale proportionally with the number

of array access. For this benchmark, the number of access is pretty low compared

to bubble sort in the previous section, which results in a smaller reduction rate.

From the view point of execution speed, the SAFA enhanced versions fare

better than the pure stack version, as is apparent from the instruction counts. The

result is summarized in Figure 6.4. As the results showed, there is only very minor

difference between the two ways of representing array of records using frame register.

CHAPTER 6. BENCHMARK RESULTS 156

As the benchmarks do not lean one way or the other, the better or preferred way to

represent an array of records would depends on other issues, like ease of compilation

etc.

4

6

8

10

12

14

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Conventional
SAFA (v1)
SAFA (v2)

Figure 6.4: Student Array (100 Records): Comparison

CHAPTER 6. BENCHMARK RESULTS 157

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

50
23

14
24

8
0.

35
3

61
.8

96
0.

00
0

89
.4

58
70

.4
10

N
ot

A
p
p
l.

1-
Is

su
e

50
23

68
39

0.
73

4
20

.6
17

0.
00

0
42

.8
86

33
.9

67
N

ot
A

p
p
l.

2-
Is

su
e

50
23

55
32

0.
90

8
45

.4
45

0.
00

0
18

.4
92

22
.0

35
N

ot
A

p
p
l.

4-
Is

su
e

50
23

55
31

0.
90

8
67

.2
21

0.
00

0
14

.8
07

22
.0

21
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

50
32

52
41

0.
96

0
0.

00
0

0.
00

0
23

.5
26

17
.5

16
99

.0
10

2-
Is

su
e-

B
P

50
39

44
32

1.
13

7
0.

00
0

0.
00

0
4.

94
1

7.
04

0
99

.0
10

4-
Is

su
e-

B
P

50
39

43
31

1.
16

3
0.

00
0

0.
00

0
2.

65
5

7.
18

1
99

.0
10

T
ab

le
6.

3:
S
tu

d
en

t
A

rr
ay

(1
00

re
co

rd
s)

B
en

ch
m

ar
k
:

C
on

ve
n
ti

on
al

A
rr

ay
A

cc
es

s

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

39
30

98
56

0.
39

9
56

.0
06

0.
00

0
92

.8
77

69
.3

99
N

ot
A

p
p
l.

1-
Is

su
e

39
30

57
46

0.
68

4
24

.5
39

0.
00

0
61

.6
08

38
.8

27
N

ot
A

p
p
l.

2-
Is

su
e

39
30

47
38

0.
82

9
48

.9
02

0.
00

0
28

.0
08

25
.7

91
N

ot
A

p
p
l.

4-
Is

su
e

39
30

44
37

0.
88

6
63

.6
24

0.
00

0
20

.7
35

25
.1

97
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

39
32

50
46

0.
77

9
0.

00
0

0.
00

0
58

.2
64

38
.1

89
99

.0
10

2-
Is

su
e-

B
P

39
32

45
38

0.
86

6
0.

00
0

0.
00

0
27

.0
38

24
.6

80
99

.0
10

4-
Is

su
e-

B
P

39
32

45
37

0.
86

7
0.

00
0

0.
00

0
20

.2
78

24
.5

98
99

.0
10

T
ab

le
6.

4:
S
tu

d
en

t
A

rr
ay

(1
00

re
co

rd
s)

:
U

si
n
g

F
ra

m
e

R
eg

is
te

r
(v

er
si

on
1)

CHAPTER 6. BENCHMARK RESULTS 158

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

39
33

98
60

0.
39

9
55

.9
94

0.
00

0
92

.8
80

69
.4

12
N

ot
A

p
p
l.

1-
Is

su
e

39
33

57
49

0.
68

4
24

.5
26

0.
00

0
59

.8
89

38
.8

59
N

ot
A

p
p
l.

2-
Is

su
e

39
33

47
40

0.
83

0
48

.8
82

0.
00

0
28

.0
17

25
.8

02
N

ot
A

p
p
l.

4-
Is

su
e

39
33

44
38

0.
88

6
63

.6
10

0.
00

0
20

.7
53

25
.1

92
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

39
35

50
49

0.
77

9
0.

00
0

0.
00

0
56

.3
08

38
.2

25
99

.0
10

2-
Is

su
e-

B
P

39
35

45
40

0.
86

7
0.

00
0

0.
00

0
24

.8
46

24
.6

92
99

.0
10

4-
Is

su
e-

B
P

39
35

45
38

0.
86

7
0.

00
0

0.
00

0
20

.2
95

24
.5

92
99

.0
10

T
ab

le
6.

5:
S
tu

d
en

t
A

rr
ay

(1
00

re
co

rd
s)

:
U

si
n
g

F
ra

m
e

R
eg

is
te

r
(v

er
si

on
2)

CHAPTER 6. BENCHMARK RESULTS 159

6.2.3 Data Structures Support: Linked List

Another typical high level data construct would be linked list, which represents an

almost exact opposite philosophy as compared to the array. For linked list, the

number of records is not fixed at the point of execution or data structure creation.

Each record is dynamically allocated, which may be scattered around the available

memory space. The records are kept as a whole by pointer (memory address) linking

one record to the next (refer to Section 3.2.2 for more details).

The nature of the linked list restricts the possible optimization. Each

address has to be traversed to reach the next record. Hence, the only possible

improvement would be the retainment of useful information in the CPU instead of

reloading from memory as in conventional stack machine. For the linked list, the

“useful information” would be the memory address of the currently inspected record.

In conventional stack machine, stack is the only storage in the CPU core, hence, the

memory address needs to be reloaded from memory whenever it is needed. In SAFA,

as explained in Section 3.2.2, frame register can be used to retain this information.

Just like the previous benchmarks, a set of three programs are written for

validating the idea of frame register in this aspect. These programs simply create a

list of student records and then compute the total test score by following the linked

list. The first follow closely to the conventional stack program, using a Java program

as blueprint. The second and third both utilize frame register to retain the memory

address, however, the second program uses the index in a frame register for element

access while the third uses direct offset from the frame register base. The tables

(Table 6.6 and Table 6.7) summarize the results of the benchmarks respectively.

First of all, the first SAFA version (i.e. program two) actually contains

more instructions to accomplish the same task. In this particular case, a 6% increase

(from 5018 instructions to 5324 instructions) is observed. The extra instructions are

mainly dealing with frame register management, for example, setting up the current

frame register (Section 3.4.1), managing the index etc. As an example, compare the

CHAPTER 6. BENCHMARK RESULTS 160

following two code fragments, taken from program one and two respectively, for the

assignment of a pointer.

//Implementing the line

// head = temp;

//Refer to the pseudo code

// Variables:

// "head" at offset x34 of the execution frame

// "temp" at offset x38 of the execution frame

...

//Allocate and initialize a new student record

//address stored in "temp" at x38

...

cfb_wload x38 //load "temp" to stack

cfb_wstore x34 //store to "head"

...

//Implementing the line

// head = temp;

//Refer to the pseudo code

// Variables:

// "head" stored in frame register 4, fr4

// "temp" stored in frame register 5, fr5

...

//Allocate and initialize a new student record

//address stored in "temp" i.e. fr5

...

cfset5 //set the current frame to fr5

cfinfoload //load the current frame info

cfset4 //set the current frame to fr4

cfinfostore //store the info to fr4

cfsetown //set the current frame to the

//execution frame, "own" frame

The difference in instruction counts is small (2 compared to 5), however,

since the above code is in a loop, the small difference accumulates and shows up in

CHAPTER 6. BENCHMARK RESULTS 161

the result.

The third version of the benchmark manages to be slightly more efficient

by discarding all index management instructions. This results in a minor decrease

in size (less than 1%) compared to the conventional version.

Lets move on to the next aspect of the benchmark: the execution time.

This benchmark shows that total instruction count does not necessarily correlate

to execution time. It is more important to see what type of instructions are more

dominant, i.e. the composition of instructions. For example, referring to the two

code fragments given, it is not definite that first code will run faster. This is because

both instructions in the first code fragment are memory operations, while the sec-

ond code fragment involve only frame register instructions. Although the memory

operation latency is not severe in the SAFA model used, the conventional program

eventually lose out when super scalar execution is enabled. Multiple memory opera-

tions will be serialized by the memory interface (the Load/Store Unit) which forms

a performance bottleneck.

Both the SAFA programs executes faster than the conventional program

under super scalar execution. The second version of SAFA program, benefiting from

its more concise code and lesser memory operations, performs consistently better

than the conventional version under all models. The results are summarized in

Figure 6.5.

CHAPTER 6. BENCHMARK RESULTS 162

4

6

8

10

12

14

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Conventional
SAFA (Index)
SAFA (Offset)

Figure 6.5: Student Linked List (100 Records): Comparison

CHAPTER 6. BENCHMARK RESULTS 163

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

50
18

12
94

1
0.

38
8

58
.0

87
0.

00
0

93
.0

38
66

.6
49

N
ot

A
p
p
l.

1-
Is

su
e

50
18

67
33

0.
74

5
19

.4
42

0.
00

0
62

.8
25

31
.4

57
N

ot
A

p
p
l.

2-
Is

su
e

50
18

52
28

0.
96

0
42

.3
30

0.
00

0
34

.8
89

23
.2

59
N

ot
A

p
p
l.

4-
Is

su
e

50
18

51
28

0.
97

9
64

.6
84

0.
00

0
27

.7
11

21
.7

63
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

50
22

56
32

0.
89

2
0.

00
0

0.
00

0
55

.5
58

21
.5

55
99

.0
10

2-
Is

su
e-

B
P

50
26

47
28

1.
06

3
0.

00
0

0.
00

0
21

.5
95

15
.1

02
99

.0
10

4-
Is

su
e-

B
P

50
26

47
28

1.
06

3
0.

00
0

4.
23

0
13

.0
29

12
.9

86
99

.0
10

T
ab

le
6.

6:
S
tu

d
en

t
L
in

ke
d

L
is

t
(1

00
re

co
rd

s)
:

C
on

ve
n
ti

on
al

L
in

ke
d

L
is

t
T
ra

ve
rs

al

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

53
24

10
64

4
0.

50
0

46
.1

67
0.

00
0

95
.2

93
76

.4
00

N
ot

A
p
p
l.

1-
Is

su
e

53
24

68
37

0.
77

9
16

.1
91

0.
00

0
80

.9
42

60
.3

48
N

ot
A

p
p
l.

2-
Is

su
e

53
24

52
31

1.
01

8
40

.3
94

0.
00

0
42

.5
54

32
.9

00
N

ot
A

p
p
l.

4-
Is

su
e

53
24

51
31

1.
03

8
64

.6
66

0.
00

0
31

.6
31

25
.7

26
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

53
27

59
38

0.
89

7
0.

00
0

0.
00

0
78

.0
57

56
.0

12
99

.0
10

2-
Is

su
e-

B
P

53
27

51
31

1.
03

8
0.

00
0

0.
00

0
41

.4
34

27
.6

94
99

.0
10

4-
Is

su
e-

B
P

53
27

51
31

1.
03

8
11

.6
94

0.
00

0
31

.6
31

21
.8

28
99

.0
10

T
ab

le
6.

7:
S
tu

d
en

t
L
in

ke
d

L
is

t
(1

00
re

co
rd

s)
:

U
si

n
g

F
ra

m
e

R
eg

is
te

r
an

d
In

d
ex

CHAPTER 6. BENCHMARK RESULTS 164

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

48
24

10
14

4
0.

47
6

48
.4

42
0.

00
0

95
.0

61
71

.2
93

N
ot

A
p
p
l.

1-
Is

su
e

48
24

63
37

0.
76

1
17

.4
69

0.
00

0
79

.4
38

52
.4

85
N

ot
A

p
p
l.

2-
Is

su
e

48
24

48
31

0.
99

9
39

.5
98

0.
00

0
41

.9
37

31
.4

84
N

ot
A

p
p
l.

4-
Is

su
e

48
24

47
31

1.
02

0
63

.7
92

0.
00

0
30

.0
78

27
.9

01
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

48
27

56
36

0.
85

6
0.

00
0

0.
00

0
76

.8
81

46
.5

76
99

.0
10

2-
Is

su
e-

B
P

48
27

46
31

1.
04

2
0.

00
0

0.
00

0
41

.5
89

19
.8

45
99

.0
10

4-
Is

su
e-

B
P

48
27

46
31

1.
04

2
4.

31
9

2.
15

9
30

.7
28

17
.5

77
99

.0
10

T
ab

le
6.

8:
S
tu

d
en

t
L
in

ke
d

L
is

t
(1

00
re

co
rd

s)
:

U
si

n
g

F
ra

m
e

R
eg

is
te

r
an

d
O

ff
se

t

CHAPTER 6. BENCHMARK RESULTS 165

6.3 Low Level Instruction Support

In this section, we turn to inspect another aspect of the SAFA architecture: low level

instruction execution support. For each of the benchmark result, we will concentrate

on the improvement of SAFA architecture over conventional stack machines. The

improvement is measured by Speedup, calculated as:

Speedup =
ExecutionT imeconventional

ExecutionT imeSAFA

At the same time, as the result will most likely deviate from the expected

(ideal) case, we will look at the reasons for the discrepancies and possible remedies.

The other important yardstick of CPU benchmark is the instruction per

time tick (IPT). IPT basically measures the number of executed instructions during

one time tick. For a single issue pipelined CPU, IPT is bounded by 1.0, since there

is only a single instruction reaching the execution stage in any CPU cycle. Also,

a number of problems can cause the pipeline to stall, e.g. branching, dependencies

etc, further reducing the actual IPT.

Given a multiple issues (superscalar) CPU, we would expect the IPT to

rise above 1.0, bounded by the maximum number of instructions issued. Again, this

naive view is marred by the same problems mentioned above. Besides, the number

of execution units plays a much more important role for super scalar CPU. Consider

the scenario where four integer instructions are decoded and issued successfully, we

can only expect all of them to be completed together if there are at least four

available integer execution units.

However, the number of execution units is normally smaller, for example,

the Alpha 620 consists of 3 integer units (2 for simple instruction, 1 for complex

instruction). So, these issued instructions are forced to be executed serially, one after

another by the limited number of execution units. In this scenario, the execution

unit serializes the potentially parallel executions and reduce the IPT. Conversely, a

stream of instructions of different types can perform much better, since the execution

CHAPTER 6. BENCHMARK RESULTS 166

can be performed in parallel by separate units. Since there is no easy way to quantify

the dynamic mixture of instruction type during execution, we utilize the composition

(spectrum of instructions type) of a program to give some inkling of the possible

parallel execution opportunity.

Hence, the IPT for a superscalar machine is closely linked to the number of

execution unit and also the composition of the program executed. We will inspect

and comment on the IPT achieved as we go through the benchmark results.

6.4 Various Benchmarks: Single Execution Unit

In this section, we deploy a standard SAFA model, which consists of only four

execution units, one each for integer, float, branch and memory instruction. For the

reason described previously, the IPT rarely rise above 1.0 because of the serialization

effect. Only benchmark with more spread out instruction composition can take

advantage of multiple different execution units, and perform much better.

As mentioned before, all the benchmark results are accompanied by in-

struction composition graph. To ease discussions, the instruction types discussed

are listed as follows:

Integer Integer instructions, like addition, subtraction etc

Float Floating point instructions.

Memory Direct memory access, such as loading, storing to memory space.

Frame-Memory Memory access through frame registers. For example, loading an

element indexed by a frame register. To have a complete picture of memory

access instruction, these instructions have to be considered along with the

Memory instructions described above.

Frame-Other Non-memory related instructions that base on frame register, such

as changing index, setting base address of a frame register etc. The previous

CHAPTER 6. BENCHMARK RESULTS 167

category (Frame-Memory) combined with this category form the total frame

register based instruction.

Other Other type of instructions, such as stack manipulation instructions e.g. pop-

ping, swapping entries, and also branching instructions.

6.4.1 Fibonacci Series

From the algorithm description in the previous section, the Fibonacci benchmark

obviously leans heavily on branching and function call, while light on calculation. As

shown in the composition graph (Figure 6.7), integer calculation takes only a meager

9%, memory related operations, both directly and through frame instructions, take a

big chunk at 29% (4% + 25%). Since function calls involve stack frame allocation and

initialization, it is not surprising that the frame instructions (other than memory-

related operations) dominates the graph at 34%.

Also, it is worth pointing out that the frame related instructions totally

dwarfed other types of instructions at 59% (25% + 34%). This is a trend shared

by all benchmark results, which arise simply because of the reliance of conventional

stack compiler (Java compiler more specifically) relies heavily on the current stack

frame (stack frame of the current executing method/procedure). The parameters

and local variables of the current procedure are stored in the current stack frame,

which see heavy usage. Since frame registers usage are serialized (refer to Sec-

tion 5.1), this dominant usage of frame register instructions introduces a bottleneck

which restrict the possible speed up.

The results are summarized in Table 6.9. As can be seen, the strict ex-

ecution model which simulates conventional stack machine, gives appalling result.

For the strict execution model, the stack top must be ready before subsequent in-

structions can be issued (as mentioned in Section 6.1). This unnecessarily stalls the

execution, as shown by the poor execution time as well as low IPT (0.489). Just

by removing this restriction such that consumer instruction can be issued and wait

CHAPTER 6. BENCHMARK RESULTS 168

for its operands on reservation stations, the resultant execution model (the 1-Issue

model) already shows a 1.39 speed up.

The 2-Issue and 4-Issue models shows the potential of superscalar exe-

cution. By relaxing the dependencies and adapting conventional superscalar tech-

niques, the speed up gained are 1.60 and 1.63 respectively. Although the speed up

gained by issuing 2 instructions up from 1 instruction is quite satisfactory, the jump

to issuing 4 instructions is less so (only a 1.02 increase from 2-Issue to 4-Issue).

One of the reason is that for all these execution models, execution stalls as soon

as encountering a branch instruction. Since branch instructions (including condi-

tional/unconditional branches and procedure entry/exit) occurs frequently in this

program, the machine is forced to stall most of the time. As shown in Table 6.9, the

decode unit is stalled at least half of the time and reaches a high 64% for 4-Issue

execution model.

One way to recoup some of the wasted time ticks is to enabled speculative

execution. For all the execution models X-Issue-BP, branch prediction and specula-

tion (Section 4.3.2) is turned on. Since speculative execution in SAFA is restricted to

normal branches, i.e. no inter-procedure speculation, the expected benefit is minor.

With the help of the BiModal adaptive branch prediction, SAFA predicted correctly

for around 55% of the branches. The resultant speed up gained are 1.49, 1.75 and

1.77 respectively for the three speculative execution models.

The speed up of various execution models are summarized graphically in

Figure 6.6. To round off the discussion, we should point out that this benchmark

represent one of the worst possible scenario in low level execution. Short function

body and intensive recursive function calls gives scant opportunity for instruction

level parallelism. Even so, the result still shows some benefit of the ILP scheme.

CHAPTER 6. BENCHMARK RESULTS 169

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

81
81

16
72

0
0.

48
9

44
.0

61
0.

00
0

95
.4

49
72

.8
95

N
ot

A
p
p
l.

1-
Is

su
e

81
81

12
04

9
0.

67
9

22
.3

75
4.

40
7

91
.0

37
62

.3
87

N
ot

A
p
p
l.

2-
Is

su
e

81
81

10
45

7
0.

78
2

48
.8

29
0.

00
0

86
.6

21
46

.5
05

N
ot

A
p
p
l.

4-
Is

su
e

81
81

10
28

0
0.

79
6

64
.8

35
0.

00
0

79
.8

44
42

.1
40

N
ot

A
p
p
l.

1-
Is

su
e-

B
P

83
39

11
21

2
0.

74
4

12
.6

29
4.

73
6

90
.3

67
59

.2
76

61
.2

50

2-
Is

su
e-

B
P

85
85

95
46

0.
89

9
35

.2
29

0.
00

0
83

.8
36

39
.5

35
55

.3
67

4-
Is

su
e-

B
P

86
48

94
23

0.
91

8
51

.2
89

0.
00

0
77

.2
68

34
.4

16
55

.3
67

T
ab

le
6.

9:
F
ib

on
ac

ci
(1

0)
=

55
.

T
ot

al
R

ec
u
rs

iv
e

C
al

ls
=

17
7

CHAPTER 6. BENCHMARK RESULTS 170

0.8

1

1.2

1.4

1.6

1.8

2

Strict 1Issue 2Issue 4Issue

S
pe

ed
up

Execution Model

Non-Speculative
Speculative

Figure 6.6: Fibonacci Series. Fib(10) : Speed Up

0

5

10

15

20

25

30

35

40

45

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.7: Fibonacci Series: Composition

CHAPTER 6. BENCHMARK RESULTS 171

6.4.2 Sieve of Erathosthense

For this benchmark, there are far fewer function calls compared to the Fibonacci

benchmark. The majority of the execution time is spent on manipulating and up-

dating local variables, e.g. the prime, the i variables in the pseudo-code shown in

Section 5.3. Again, the reliance on current stack frame shows up as the heavy usage

(47%) for the Frame-Mem category shown in Figure 6.9. There are more integer

computation like calculating the multiples for prime numbers, increment of values

etc, which contributes a substantial 22% to overall instruction counts. Branch in-

structions to handle the looping and condition checking contribute another 22%,

with the array manipulation shown up as direct memory access taking the rest 7%.

Execution for the plain integer instructions can be considered as prime

candidate for parallelization. This benchmark, with substantial amount of integer

computation should yields better speed up. As can be seen in the graph (Figure 6.8),

this simple analysis is pretty close to the mark. 2-Issue and 4-Issue both give speed

up of 1.86. However, the speed up fails to gain any advantage from the higher issuing

rate (from two to four), which shows a possible bottleneck.

One of the possible reason is the frequent occurrence of branching instruc-

tions, which detracts the CPU from good performance. Table 6.10 supports this

reasoning, as shown by the high idling percentage of the decode unit (more than

59% during superscalar execution).

This bottleneck can be easily removed by enabling speculative execution.

With good prediction success, the machine manage to perform much better, giving

speed up of 2.54 for 1-Issue-BP model and 2.77 for both 2-Issue-BP and 4-Issue-BP

models. As most of the instructions can be speculated, the speculative execution

consistently outperform the non-speculative counterpart. It is interesting to note

that even the 1-Issue-BP model can outperform the 4-Issue model. The reason

for the good performance under speculative execution comes mainly from the good

success rate and also the way that a branch is compiled in Java. For example, below

CHAPTER 6. BENCHMARK RESULTS 172

is an excerpt from the assembly code (Section C.1):

forLoop:

cfb_wload x2c //load local variable

cfb_wload x28 //load local variable

ige

iftrue forLoopEnd //Branch Instruction

cfb_wload x24 //load from current frame

cfb_wload x2c //load from current frame

iadd

ibload 1

bstore

.....

forLoopEnd:

.....

As the branch iftrue is based on two values that reside in memory, the

resolution has to wait for the memory loads. This time window represent a good

opportunity for speculative execution. Additionally, after the branch instruction

“iftrue”, there are several instructions that can be executed speculatively up to

the instruction “bstore”. With a good time window and plenty instructions, this

allow the execution to continue while the branch is being resolved. Since the local

variables are stored in the stack frame in Java model, the above code snippet occurs

very frequently in Java bytecode.

However, good speed up does not detract from the fact the speed up again

tapers out at 2-Issue-BP. This strongly suggests another factor in play which limits

the possible benefits. As mentioned earlier, the composition graph (Figure 6.9)

shows a very heavy usage memory traffic via frame register instructions. Further,

these instructions are serialized at the frame register unit which limits the possible

gain from multiple issues. This major problem is rectified in Section 6.6.

In a nutshell, this benchmark shows that: Firstly, more computation allows

better parallelization, and secondly, the time window and the amount of eligible

instructions for speculation plays a major part in execution speed.

CHAPTER 6. BENCHMARK RESULTS 173

1

1.5

2

2.5

3

Strict 1Issue 2Issue 4Issue
S

pe
ed

up

Execution Model

Non-Speculative
Speculative

Figure 6.8: Sieve of Erathosthense (100 Numbers) : Speed Up

0

5

10

15

20

25

30

35

40

45

50

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.9: Sieve of Erathosthense: Composition

CHAPTER 6. BENCHMARK RESULTS 174

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

49
43

15
81

9
0.

31
2

63
.1

27
0.

00
0

93
.0

21
68

.6
20

N
ot

A
p
p
l.

1-
Is

su
e

49
43

91
50

0.
54

0
36

.2
51

0.
03

3
60

.6
34

41
.1

91
N

ot
A

p
p
l.

2-
Is

su
e

49
43

85
05

0.
58

1
59

.0
24

0.
00

0
36

.9
66

36
.3

43
N

ot
A

p
p
l.

4-
Is

su
e

49
43

85
04

0.
58

1
70

.9
67

0.
00

0
31

.4
56

36
.3

24
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

50
76

62
33

0.
81

4
0.

12
8

0.
04

8
46

.2
86

22
.7

98
90

.1
21

2-
Is

su
e-

B
P

50
95

57
38

0.
88

8
0.

62
7

0.
00

0
28

.3
72

28
.5

12
90

.1
21

4-
Is

su
e-

B
P

50
95

57
38

0.
88

8
0.

57
5

0.
00

0
18

.4
04

28
.4

94
90

.1
21

T
ab

le
6.

10
:

S
ie

ve
of

E
ra

th
os

th
en

se
:

10
0

N
u
m

b
er

s

CHAPTER 6. BENCHMARK RESULTS 175

6.4.3 Bubble Sort

The bubble sort benchmark is previously used to show support for high level data

structure. In this section, we are using the version with conventional array access.

Please refer to Table 6.1 for detailed benchmark results and Figure 6.2 for instruction

composition graph.

As noted before (Section 6.3), the instruction composition for bubble sort

is pretty well spread, in particular there are 40% integer instructions and 48% mem-

ory related instructions. The huge amount of pure integer computation is largely

responsible for the good 1.86 and 1.89 speed up under the superscalar execution

models: 2-Issue and 4-Issue respectively as shown in Figure 6.10 .

With the same argument as in the previous benchmark “Sieve of Erathos-

thense”, speculative execution again give additional speed up. Aided by more com-

putational instructions and also higher prediction success rate, the gain in execution

speed is pretty substantial. Both 2-Issue-BP and 4-Issue-BP gives speed up of 2.50.

The slightly longer execution time of the 4-Issue-BP model is an interesting arti-

fact created by the larger issue rate and speculative execution. As the available

parallelism hits a ceiling at two issuing model, faster issuing rate only increases the

number of instructions executed when the execution is on the wrong predicted path.

Again, it seems that the speed up encounters a ceiling at two issuing execution

models. This ceiling of speed up can be pushed much further up as shown later in

Section 6.6.

This benchmark demonstrates the possible benefits for SAFA architecture

given unoptimized conventional stack program. As discussed in Section 6.2, it is

possible to get even better performance by utilizing specialized SAFA features.

CHAPTER 6. BENCHMARK RESULTS 176

1

1.5

2

2.5

3

Strict 1Issue 2Issue 4Issue

S
pe

ed
up

Execution Model

Non-Speculative
Speculative

Figure 6.10: Bubble Sort (50 Numbers) : Speed Up

CHAPTER 6. BENCHMARK RESULTS 177

6.4.4 Quick Sort

The quick sort benchmark can be taken as a counterpoint of the Fibonacci bench-

mark discussed previously. Both of the benchmarks involve substantial function

calls. However, the recursive function in quick sort contains a larger body of compu-

tation compared to those in Fibonacci benchmark. This contrast can be seen clearly

in Figure 6.12, with the quick sort benchmark containing more integer instructions

but having equally substantial frame register based instructions as compared to the

Fibonacci benchmark (Figure 6.7).

The Fibonacci benchmark gives pretty poor performance especially for

speculative execution. The quick sort benchmark, on the other hand, shows good

performance under SAFA architecture. As shown in Figure 6.11, superscalar execu-

tion under the models 2-Issue and 4-Issue give speed up of 1.97 and 1.99 respectively.

Even with the mediocre prediction success rate (around 50% for superscalar

execution), the speculative execution nevertheless squeeze extra performance out of

the architecture. The speed up gained are 2.34 and 2.33 for execution models 2-Issue-

BP and 4-Issue-BP respectively. The slightly longer execution time for 4-Issue-BP

model reprise the effect discussed in the Bubble Sort benchmark. The result also

restates the trend that speculative execution can give better return compared to

plain superscalar execution, with the execution model 1-Issue-BP outperforming

the 4-Issue again.

This benchmark serves as a confirmation that as long as there are substan-

tial body of computation, the parallelism extracted would overcome the serialization

forced by other instructions (like function calls, branching etc).

CHAPTER 6. BENCHMARK RESULTS 178

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Strict 1Issue 2Issue 4Issue

S
pe

ed
up

Execution Model

Non-Speculative
Speculative

Figure 6.11: Quick Sort (50 Numbers) : Speed Up

0

5

10

15

20

25

30

35

40

45

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.12: Quick Sort: Composition

CHAPTER 6. BENCHMARK RESULTS 179

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

M
em

Id
le

(%
)

P
re

d
.S

u
cc

es
s

S
tr

ic
t

11
34

7
32

86
0

0.
34

5
61

.5
19

0.
00

0
91

.2
72

70
.3

50
N

ot
A

p
p
l.

1-
Is

su
e

11
34

7
17

79
9

0.
63

8
28

.9
57

0.
79

2
54

.9
86

42
.7

50
N

ot
A

p
p
l.

2-
Is

su
e

11
34

7
16

69
1

0.
68

0
57

.0
13

1.
91

7
38

.8
23

31
.7

78
N

ot
A

p
p
l.

4-
Is

su
e

11
34

7
16

53
6

0.
68

6
71

.4
26

0.
96

8
34

.3
49

31
.7

79
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

12
20

7
15

05
9

0.
81

1
2.

49
7

0.
93

6
45

.8
86

31
.5

82
59

.0
28

2-
Is

su
e-

B
P

13
22

7
14

03
5

0.
94

2
15

.1
55

3.
68

4
30

.7
37

18
.7

25
49

.1
90

4-
Is

su
e-

B
P

13
30

9
14

10
1

0.
94

4
26

.8
78

4.
06

4
27

.7
92

18
.7

93
50

.3
61

T
ab

le
6.

11
:

Q
u
ic

k
S
or

t:
50

N
u
m

b
er

s.
T
ot

al
R

ec
u
rs

iv
e

C
al

ls
=

43

CHAPTER 6. BENCHMARK RESULTS 180

6.4.5 Linpack: Gaussian Elimination

As the Linpack benchmark is the only floating point benchmark and also one of the

more complicated benchmark compared to others, several set of tests were performed

which solves simultaneous linear equation matrix of different size. The detailed

result of the three tests, which solves the matrix of size 5, 10 and 15 are shown in

Table 6.12, Table 6.13 and Table 6.14 respectively.

The composition graph (Figure 6.14) shows a good mix of instructions.

Pure computation instructions (integer and floating point instructions combined)

constitute 28%. Memory operations at 46% (9% + 37%) and other instructions

take the rest 20%.

Figure 6.13 shows a steady increase for speed up as the matrix size in-

creases. The smallest matrix (5 × 5) has the worst performance, which is caused

by the limited amount of computations. The more intensive calculation in larger

matrix proves to be a good source for parallel executions. The 15 × 15 achieve a

good speed up 2.25 under the 4-Issue model. In a nutshell, superscalar execution

models 2-Issue and 4-Issue give speed up of 2.17 (average) and 2.18 (average) across

the three tests.

For speculative execution models, the prediction success rate is fairly good

(above 80% for all cases) and increase steadily as matrix size increases. This is

because quite a number of functions in Linpack loop through all values in a row (for

example, scaling the row by a constant etc), which tunes the BiModal predictor to

give more accurate guesses.

With favorable prediction success and substantial computation, the spec-

ulative execution models 2-Issue-BP and 4-Issue-BP outperform their counterpart

and give speed up of 2.57 (average) and 2.58 (average). In particular, the 15 × 15

matrix reaches a respectable speed up of 2.67. Similar to several previous bench-

marks, all 1-Issue-BP models outperforms the 4-Issue model which has much higher

issue rate.

CHAPTER 6. BENCHMARK RESULTS 181

Linpack benchmark is one of the more popular benchmark around. As the

favorable results showed, SAFA architecture is capable of removing the constraints

that restricts execution in conventional stack machine.

1

1.5

2

2.5

3

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

Linpack 5
Linpack 10
Linpack 15

Figure 6.13: Linpack Benchmarks : Speed Up

0

5

10

15

20

25

30

35

40

45

0 Int Flt Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.14: Linpack Benchmarks: Composition

CHAPTER 6. BENCHMARK RESULTS 182

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

F
lo

at
Id

le
(%

)
M

em
Id

le
(%

)
P

re
d
.S

u
cc

es
s

S
tr

ic
t

80
20

22
02

7
0.

36
4

60
.2

17
0.

00
0

92
.4

09
96

.1
87

72
.0

93
N

ot
A

p
p
l.

1-
Is

su
e

80
20

11
59

9
0.

69
1

24
.4

50
1.

13
8

59
.7

29
84

.2
66

40
.3

91
N

ot
A

p
p
l.

2-
Is

su
e

80
20

10
55

0
0.

76
0

54
.1

90
1.

48
8

41
.8

20
71

.4
60

29
.3

74
N

ot
A

p
p
l.

4-
Is

su
e

80
20

10
49

0
0.

76
5

71
.6

78
2.

55
5

37
.8

07
65

.6
72

29
.0

66
N

ot
A

p
p
l.

1-
Is

su
e-

B
P

83
88

98
06

0.
85

5
3.

69
2

1.
44

8
48

.2
26

79
.7

37
28

.8
80

80
.9

02

2-
Is

su
e-

B
P

86
51

89
92

0.
96

2
25

.0
00

6.
26

1
33

.6
41

64
.8

58
18

.8
95

80
.0

00

4-
Is

su
e-

B
P

87
16

89
62

0.
97

3
35

.7
29

7.
09

7
30

.8
52

57
.7

44
18

.6
23

80
.0

00

T
ab

le
6.

12
:

L
in

p
ac

k
(5

):
S
ol

ve
5

x
5

fl
oa

ti
n
g

p
oi

n
t

m
at

ri
x

u
si

n
g

G
au

ss
ia

n
E

li
m

in
at

io
n
.

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

F
lo

at
Id

le
(%

)
M

em
Id

le
(%

)
P

re
d
.S

u
cc

es
s

S
tr

ic
t

33
11

7
94

47
1

0.
35

1
61

.9
21

0.
00

0
92

.1
22

95
.4

59
72

.4
52

N
ot

A
p
p
l.

1-
Is

su
e

33
11

7
47

05
5

0.
70

4
23

.5
49

0.
88

6
55

.0
19

79
.9

17
37

.1
99

N
ot

A
p
p
l.

2-
Is

su
e

33
11

7
43

33
8

0.
76

4
54

.3
40

0.
91

6
35

.7
68

64
.0

48
25

.1
70

N
ot

A
p
p
l.

4-
Is

su
e

33
11

7
43

10
6

0.
76

8
72

.1
36

1.
73

5
32

.0
21

56
.5

70
24

.9
22

N
ot

A
p
p
l.

1-
Is

su
e-

B
P

34
22

7
39

10
7

0.
87

5
3.

15
0

1.
37

3
38

.6
48

71
.4

12
23

.5
64

88
.6

16

2-
Is

su
e-

B
P

34
79

0
36

42
2

0.
95

5
28

.4
25

8.
56

1
26

.4
07

54
.9

70
14

.7
14

88
.1

14

4-
Is

su
e-

B
P

35
00

0
36

33
2

0.
96

3
39

.0
76

8.
59

0
24

.2
79

45
.9

90
14

.5
85

88
.1

14

T
ab

le
6.

13
:

L
in

p
ac

k
(1

0)
.

S
ol

ve
10

x
10

fl
oa

ti
n
g

p
oi

n
t

m
at

ri
x

u
si

n
g

G
au

ss
ia

n
E

li
m

in
at

io
n
.

CHAPTER 6. BENCHMARK RESULTS 183

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

D
ec

.I
d
le

(%
)

Is
s.

S
tl

(%
)

In
t

Id
le

(%
)

F
lo

at
Id

le
(%

)
M

em
Id

le
(%

)
P

re
d
.S

u
cc

es
s

S
tr

ic
t

82
40

9
24

01
77

0.
34

3
62

.8
43

0.
00

0
91

.9
72

95
.0

86
72

.6
01

N
ot

A
p
p
l.

1-
Is

su
e

82
40

9
11

56
43

0.
71

3
22

.8
30

0.
73

7
52

.0
98

77
.2

45
35

.0
82

N
ot

A
p
p
l.

2-
Is

su
e

82
40

9
10

74
10

0.
76

7
54

.3
42

0.
65

5
32

.0
22

59
.6

17
22

.3
97

N
ot

A
p
p
l.

4-
Is

su
e

82
40

9
10

69
15

0.
77

1
72

.3
31

1.
32

1
28

.4
40

51
.1

14
22

.1
89

N
ot

A
p
p
l.

1-
Is

su
e-

B
P

84
72

0
95

64
2

0.
88

6
2.

95
1

1.
46

6
32

.6
02

65
.1

92
19

.9
73

90
.6

47

2-
Is

su
e-

B
P

85
57

2
90

11
0

0.
95

0
30

.8
07

10
.1

65
22

.0
71

49
.2

76
12

.3
05

90
.2

81

4-
Is

su
e-

B
P

86
00

2
89

93
6

0.
95

6
41

.5
90

9.
65

9
20

.3
32

39
.1

50
12

.1
98

90
.2

81

T
ab

le
6.

14
:

L
in

p
ac

k
(1

5)
.

S
ol

ve
15

x
15

fl
oa

ti
n
g

p
oi

n
t

m
at

ri
x

u
si

n
g

G
au

ss
ia

n
E

li
m

in
at

io
n
.

CHAPTER 6. BENCHMARK RESULTS 184

6.5 Various Benchmarks: Multiple Execution Units

In this section, a brief exploration into multiple execution units under SAFA ar-

chitecture is conducted. In contrast to the benchmarks in Section 6.4, multiple

execution units of the same type are deployed. The result serves as a starting point

to consider whether further performance can be gained under SAFA architecture.

6.5.1 Bubble Sort

This benchmark is picked because of its more widely spread instruction spectrum

(Figure 6.2). The intensive integer computation should allow the Bubble Sort bench-

mark to make better use of the extra execution unit.

The results in Table 6.15 is gathered with a SAFA model that contains

two integer execution units, with all other parameters remain the same. The table

also contain a brief statistic from the single integer execution unit model discussed

in Section 6.4 for comparison.

Intuitively, multiple execution units in general can only be exploited by

continuous or at least densely grouped stream of instructions of the same type.

Furthermore, since the execution units in SAFA architecture are pipelined, a new

instruction (if ready) can be ushered into the execution stages every time tick. This

further restrict the condition where multiple execution unit can be useful: firstly,

that instructions of the same type must be issued within the same time cycle; and

secondly, they must be ready to be executed.

Besides, the reservation station attached to a execution unit can serves as

extra temporary storage for issued instruction. This would allow more instruction

issue in the scenario where instruction issuing is stalled by inadequate reservation

station entries.

With the reasoning above, it is unlikely that further speed up can be ob-

CHAPTER 6. BENCHMARK RESULTS 185

served when the issue count is low. Only when the issue count is high enough, the

chance of satisfying the above conditions will be high enough for performance gain.

As the results in Table 6.15 shows, the above reasoning agrees with the

outcome. The performance difference for any non-speculative execution models is

negligible. Minor Performance gain (1.03) is observed for the 2-Issue-BP and 4-

Issue-BP as compared to their single integer unit counterparts. The low speed up

is consistent with the reasons mentioned: the conditions to fully utilize the multiple

integer execution units only occurs infrequently, even when multiple instructions are

issued every cycle.

1

1.5

2

2.5

3

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

One Int.Exe
Two Int.Exe

Figure 6.15: Bubble Sort (50 Numbers) : Multiple Execution Units - Speed Up

Comparison

CHAPTER 6. BENCHMARK RESULTS 186

S
in

g
le

In
t.

E
x
e

T
w

o
In

t.
E
x
e

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

In
st

.C
ou

n
t

T
im

e
T

ic
k

IP
T

S
tr

ic
t

75
15

4
23

15
97

0.
32

5
75

15
4

23
15

97
0.

32
5

1-
Is

su
e

75
15

4
12

86
20

0.
58

4
75

15
4

12
86

20
0.

58
4

2-
Is

su
e

75
15

4
12

44
45

0.
60

4
75

15
4

12
39

22
0.

60
6

4-
Is

su
e

75
15

4
12

25
67

0.
61

3
75

15
4

12
20

44
0.

61
6

1-
Is

su
e-

B
P

76
68

9
10

03
86

0.
76

4
76

68
9

99
86

4
0.

76
8

2-
Is

su
e-

B
P

77
17

7
92

52
1

0.
83

4
77

18
9

89
79

4
0.

86
0

4-
Is

su
e-

B
P

77
28

3
92

57
0

0.
83

5
77

28
3

89
79

2
0.

86
1

T
ab

le
6.

15
:

B
u
b
b
le

S
or

t
(5

0
N

u
m

b
er

s)
:

M
u
lt

ip
le

E
x
ec

u
ti

on
U

n
it

s
-

C
om

p
ar

is
on

CHAPTER 6. BENCHMARK RESULTS 187

6.5.2 Linpack Benchmark

The Linpack Benchmark, being the computational intensive and only floating point

benchmark program serves as another suitable study. For this particular experiment,

a matrix of 15 × 15 is used. As shown previously (Figure 6.14), this benchmark

actually contains quite intensive floating point and integer instructions. To study

the interaction of the multiple execution units, we set up three different execution

models consists of two integer execution units, two floating point execution units

and two of integer and floating point execution units. Refer to Table 6.16 for the

trimmed results along with the single execution unit counterpart for comparison.

As noted in the previous test, multiple execution units is useless without

sustained supply of instructions. For the Linpack benchmark, multiple integer units

increase the performance only in 2-Issue, 4-Issue and 4-Issue-BP. As with the Sieve

of Erathothense and Bubble Sort benchmarks, the increase in integer execution

units actually slightly degrades the performance as shown in the execution models

1-Issue-BP and 2-Issue-BP.

Even in the cases where execution gain is observed, the less than 1% (aver-

age) speedup is not encouraging given the high concentration of integer instructions

(25%). It is perhaps not surprising that multiple floating point execution units do

not increase the performance at all. With much lesser concentration (only 5%), it

is not realistic to expect the instructions shows up in high enough frequency during

one time cycle to make good use of the multiple execution units.

Since the floating point instructions in this benchmark could not utilize

the multiple units fully, the SAFA model with two of integer and floating execution

units can only perform on par with the model without the multiple floating point

units. The diagram (Figure 6.16) shows only the speed up difference between the

single integer unit and the two integer units.

CHAPTER 6. BENCHMARK RESULTS 188

1

1.5

2

2.5

3

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

One Exe
Two Exe

Figure 6.16: Linpack Benchmark (15 x 15): Multiple Execution Units - Speed Up

Comparison

CHAPTER 6. BENCHMARK RESULTS 189

S
in

g
le

In
t.

E
x
e

T
w

o
In

t.
E
x
e

T
w

o
F
lt

.E
x
e

T
w

o
In

t/
F
lt

T
im

e
T

ic
k

IP
T

T
im

e
T

ic
k

IP
T

T
im

e
T

ic
k

IP
T

T
im

e
T

ic
k

IP
T

S
tr

ic
t

24
01

77
0.

34
3

24
01

77
0.

34
3

24
01

77
0.

34
3

24
01

77
0.

34
3

1-
Is

su
e

11
56

43
0.

71
3

11
56

43
0.

71
3

11
56

43
0.

71
3

11
56

43
0.

71
3

2-
Is

su
e

10
74

10
0.

76
7

10
72

77
0.

76
8

10
74

10
0.

76
7

10
72

77
0.

76
8

4-
Is

su
e

10
69

15
0.

77
1

10
67

82
0.

77
2

10
69

15
0.

77
1

10
67

82
0.

77
2

1-
Is

su
e-

B
P

95
64

2
0.

88
6

95
65

7
0.

88
6

95
64

2
0.

88
6

95
65

7
0.

88
6

2-
Is

su
e-

B
P

90
11

0
0.

95
0

90
22

9
0.

95
3

90
11

0
0.

95
0

90
22

9
0.

95
3

4-
Is

su
e-

B
P

89
93

6
0.

95
6

89
80

3
0.

95
8

89
93

6
0.

95
6

89
80

3
0.

95
8

T
ab

le
6.

16
:

L
in

p
ac

k
B

en
ch

m
ar

k
(1

5
x

15
):

M
u
lt

ip
le

E
x
ec

u
ti

on
U

n
it

s
-

C
om

p
ar

is
on

CHAPTER 6. BENCHMARK RESULTS 190

6.6 Various Benchmarks: Local Data Access Op-

timization

As the previous benchmarks show, the over reliance on own stack frame for parame-

ters and variables access hinders the full potential of superscalar execution in SAFA.

Most of the benchmarks hit the performance ceiling as soon as 2-Issue-BP execu-

tion models. In Section 4.4, we proposed a mechanism to minimize these frequent

memory operations by turning them into stack-to-stack operations. In this section,

several of the benchmark programs are re-written to utilize this feature. The results,

shown later in respective sections, are very encouraging.

Section 4.4 noted that the possible overhead of using local data map can be

reduced by modifying the construction method of stack frame. The usual method for

stack frame building stores all the parameters into the stack frame before transferring

the control to the activated procedure. The activated procedure is then required

to setup the local data map by moving these items from memory. Obviously, this

introduces additional memory movements. A better construction method (discussed

in the same section) requires the caller to leave the parameters on the operand stack

without storing them in stack frame of the callee. The callee procedure can simply

store the parameters into the local data map when activated. The second method

obviously cut out the redundant memory movements. To monitor the significance

of this reduction, each of the benchmark presented consists of two set of programs,

each utilizing one of the construction methods mentioned. The results marked with

“Stack Frame” utilize the stack frame storage method, while those marked with

“Operand Stack” leave the parameters on stack. The results reported in the

previous are included in the “Normal” column for comparison.

To show the benefit of this optimization over the traditional stack machine,

the speedup results are computed by comparing the execution time of the optimized

binary with the execution time of the unmodified binary by the Strict model, which

is reported in the previous section. For each of the benchmark, the execution time

CHAPTER 6. BENCHMARK RESULTS 191

for the optimized binary on the Strict model represents the benefit of introducing

this optimization into traditional non-superscalar stack machine.

6.6.1 Fibonacci Series

The instruction composition of the binaries would be the first hint of whether the

optimization is working. Comparing the two composition graphs (Figure 6.19 and

Figure 6.20) shows a small reduction in frame register related operations, from 59%

to 54% and 49% respectively. Because of the numerous recursive function calls in

this benchmark, most of the frame instructions are used for stack frame construction

instead of local data accesses, which explains the small reduction.

The extra instructions of setting up the local data map every function call

is hardly justifiable because of the small function body and limited local variable

access (at most three accesses). As can be seen in Table 6.17, the stack frame con-

struction method caused a nearly 9% increase (from 8181 to 8887) in instruction

counts. Although most of these extra instructions are stack-to-stack instruction,

more instruction simply represents longer execution time for non-superscalar mod-

els (Strict, 1-Issue and 1-Issue-BP). These overhead are covered when superscalar

execution is in action as most of these instructions are parallelizable, as can be seen

by the higher IPT. Overall, the speed up is miniscule, with the 4-Issue execution

model posing the highest increase (1.04) with respect to the counterpart.

Using the second stack frame construction method, we see a small saving

in instruction count (from 8181 to 8002) as the overhead of setting up the local data

map is reduced. With smaller instruction count and better ILP, the program consis-

tently outperform its unoptimized counterpart in all execution model (Figure 6.17).

In particular, the 4-Issue and 4-Issue-BP outperform their counterparts by 1.24 and

1.18. Overall, the highest speedup (2.09) posted by the 4-Issue-BP model compared

to conventional stack machine, is quite satisfactory considering the nature of this

benchmark.

CHAPTER 6. BENCHMARK RESULTS 192

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.17: Fibonacci Series: Local Variable Access - Speed Up Comparison

6

8

10

12

14

16

18

20

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.18: Fibonacci Series: Local Variable Access - Execution Time Comparison

CHAPTER 6. BENCHMARK RESULTS 193

N
o
rm

a
l

S
ta

ck
F
ra

m
e

O
p
e
ra

n
d

S
ta

ck

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

S
tr

ic
t

81
81

16
72

0
0.

48
9

88
87

16
73

3
0.

53
1

80
02

15
31

7
0.

52
2

1-
Is

su
e

81
81

12
04

9
0.

67
9

88
87

12
25

8
0.

72
5

80
02

11
19

6
0.

71
5

2-
Is

su
e

81
81

10
45

7
0.

78
2

88
87

10
34

7
0.

85
9

80
02

89
31

0.
89

6

4-
Is

su
e

81
81

10
28

0
0.

79
6

88
87

98
51

0.
90

2
80

02
82

92
0.

96
5

1-
Is

su
e-

B
P

83
39

11
21

2
0.

74
4

89
22

11
90

1
0.

75
0

80
37

10
69

7
0.

75
1

2-
Is

su
e-

B
P

85
85

95
46

0.
89

9
91

13
96

19
0.

94
7

80
92

84
86

0.
95

4

4-
Is

su
e-

B
P

86
48

94
23

0.
91

8
91

47
91

90
0.

99
5

80
92

79
89

1.
01

3

T
ab

le
6.

17
:

F
ib

on
ac

ci
S
er

ie
s

:
L
o
ca

l
V

ar
ia

b
le

A
cc

es
s

-
C

om
p
ar

is
on

CHAPTER 6. BENCHMARK RESULTS 194

0

5

10

15

20

25

30

35

40

45

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.19: Fibonacci Series: Local Variable Access (Stack Frame) Instruction

Composition

0

5

10

15

20

25

30

35

40

45

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.20: Fibonacci Series: Local Variable Access (Operand Stack) Instruction

Composition

CHAPTER 6. BENCHMARK RESULTS 195

6.6.2 Sieve of Erathosthense

This benchmark shows that the local data map can have a drastic effect on removing

redundant memory operations. The composition graph of the unoptimized program

(Figure 6.9) shows a 49% of memory operations via frame register. The psuedocode

in Section 5.3.1 further confirms that most of these operations are used for local data

access. This huge concentration of memory operations are reduced to less than 1%

using the local data map optimization, as shown in Figure 6.23 and Figure 6.24. As

the Figure 6.21 shows, a traditional stack machine equipped with local data map

already shows a speedup of 1.59.

Since there is only one procedure activation in this benchmark (main call-

ing the sieve function), the overhead of setting up the local data map is negligible,

resulting in much greater performance consistently (Table 6.18). As the serializa-

tion effect of the memory operations are removed, we get much better ILP in the

optimized programs, achieving IPT of 1.47 in some of the execution models.

The net effect of the benefits mentioned is shown by the impressive speedup

in Figure 6.21, reaching 4.58 for the 4-Issue-BP model. This benchmark clearly

shows the potential of local data map in program with heavy local data access.

1

1.5

2

2.5

3

3.5

4

4.5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.21: Sieve of Erathosthense: Local Variable Access - Speed Up Comparison

CHAPTER 6. BENCHMARK RESULTS 196

2

4

6

8

10

12

14

16

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.22: Sieve of Erathosthense: Local Variable Access - Execution Time Com-

parison

0

10

20

30

40

50

60

70

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.23: Sieve of Erathosthense: Local Variable Access (Stack Frame) Instruc-

tion Composition

CHAPTER 6. BENCHMARK RESULTS 197

N
o
rm

a
l

S
ta

ck
F
ra

m
e

O
p
e
ra

n
d

S
ta

ck

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

S
tr

ic
t

49
43

15
81

9
0.

31
2

49
51

99
35

0.
49

8
49

44
99

22
0.

49
8

1-
Is

su
e

49
43

91
50

0.
54

0
49

51
81

01
0.

61
1

49
44

80
93

0.
61

1

2-
Is

su
e

49
43

85
05

0.
58

1
49

51
62

27
0.

79
5

49
44

62
19

0.
79

5

4-
Is

su
e

49
43

85
04

0.
58

1
49

51
52

71
0.

93
9

49
44

52
62

0.
94

0

1-
Is

su
e-

B
P

50
76

62
33

0.
81

4
50

18
57

56
0.

87
2

50
11

57
48

0.
87

2

2-
Is

su
e-

B
P

50
95

57
38

0.
88

8
50

85
41

43
1.

22
7

50
78

41
35

1.
22

8

4-
Is

su
e-

B
P

50
95

57
38

0.
88

8
51

01
34

54
1.

47
7

50
94

34
45

1.
47

9

T
ab

le
6.

18
:

S
ie

ve
of

E
ra

th
os

th
en

se
:

L
o
ca

l
V

ar
ia

b
le

A
cc

es
s

-
C

om
p
ar

is
on

CHAPTER 6. BENCHMARK RESULTS 198

0

10

20

30

40

50

60

70

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.24: Sieve of Erathosthense: Local Variable Access (Operand Stack) In-

struction Composition

CHAPTER 6. BENCHMARK RESULTS 199

6.6.3 Quick Sort

The Quick Sort benchmark combines the traits of the two previous program: nu-

merous recursive calls and substantial local data access. The repercussions of these

traits under the local data map optimization are clearly present. The recursive calls

and the larger number of local data implies more instruction overhead for setting

up, saving and restoring of the local data map, as can be seen in instruction count

columns in Table 6.19. Balancing the scale is the removal of huge number of memory

operations for local data access. Figure 6.27 and Figure 6.28 shows that the frame

related instructions have been reduced to 15% and 12% from the original 47%(refer

toFigure 6.12).

As noted before, the IPT of the optimized programs are much higher,

helped by the better ILP between instructions. The speculative superscalar models

benefit the most from this, showing IPT over 1.27.

The speedup gain stand in the middle ground compared to the two previous

benchmarks. Figure 6.25 shows a near linear speed up for the optimized versions,

with the “operand stack” version slightly better. The best overall speedup 3.73 is

posted by the 4-Issue-BP model using the “operand stack” scheme.

By studying the trend of the graph, we can see that the speedup of the

unoptimized version taper off as soon as the 2-Issue-BP execution model. Further

increase in issuing count only gives diminishing return. The new data clearly shows

that this is the caused by the serialization effect of the memory unit. With the help

of Local Data Map, this bottleneck is partially removed.

CHAPTER 6. BENCHMARK RESULTS 200

1

1.5

2

2.5

3

3.5

4

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.25: Quick Sort: Local Variable Access - Speed Up Comparison

10

15

20

25

30

35

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.26: Quick Sort: Local Variable Access - Execution Time Comparison

CHAPTER 6. BENCHMARK RESULTS 201

N
o
rm

a
l

S
ta

ck
F
ra

m
e

O
p
e
ra

n
d

S
ta

ck

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

S
tr

ic
t

11
34

7
32

86
0

0.
34

5
12

54
5

24
68

3
0.

50
8

12
11

8
23

82
7

0.
50

9

1-
Is

su
e

11
34

7
17

79
9

0.
63

8
12

54
5

17
49

2
0.

71
7

12
11

8
17

01
8

0.
71

2

2-
Is

su
e

11
34

7
16

69
1

0.
68

0
12

54
5

13
08

9
0.

95
8

12
11

8
12

57
2

0.
96

4

4-
Is

su
e

11
34

7
16

53
6

0.
68

6
12

54
5

11
23

2
1.

11
7

12
11

8
10

68
5

1.
13

4

1-
Is

su
e-

B
P

12
20

7
15

05
9

0.
81

1
12

98
5

15
42

9
0.

84
2

12
56

3
14

95
9

0.
84

0

2-
Is

su
e-

B
P

13
22

7
14

03
5

0.
94

2
13

69
7

10
82

0
1.

26
6

13
27

0
10

41
7

1.
27

4

4-
Is

su
e-

B
P

13
30

9
14

10
1

0.
94

4
14

19
2

94
07

1.
50

9
13

81
7

88
03

1.
57

0

T
ab

le
6.

19
:

Q
u
ic

k
S
or

t:
L
o
ca

l
V

ar
ia

b
le

A
cc

es
s

-
C

om
p
ar

is
on

CHAPTER 6. BENCHMARK RESULTS 202

0

10

20

30

40

50

60

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.27: Quick Sort: Local Variable Access (Stack Frame) Instruction Compo-

sition

0

10

20

30

40

50

60

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.28: Quick Sort: Local Variable Access (Operand Stack) Instruction Com-

position

CHAPTER 6. BENCHMARK RESULTS 203

6.6.4 Bubble Sort

Table 6.20 summarizes the benchmark data for the bubble sort benchmark. Similar

to the Sieve of Erathosthense benchmark, there are only a small number of function

calls. Hence, nearly all of the frame related instructions are used for local data

access. Figure 6.31 and Figure 6.32 shows the drastic reduction in the frame re-

lated instructions, the original heavy concentration of 49% (Figure 6.2) is virtually

eliminated.

With most of the frame related instructions removed, combined with the

big chunks of integer computation, the benchmark performs very well. As indicated

in Figure 6.30, the execution time drops from 240 thousands time ticks to merely

52 thousands under the best execution model 4-Issue-BP (over 75% reduction).

In Figure 6.29, a good speedup is observed for superscalar execution mod-

els. The 2-Issue models and 4-Issue models posted a speedup of 2.63 and 3.10

respectively, easily exceeds their counterpart for the unoptimized version. Even bet-

ter performance are reported for the speculative superscalar models 2-Issue-BP and

4-Issue-BP. A linear1 can seen in Figure 6.29, with speedup of 3.70 and 4.44 under

the two models respectively.

The benchmark should further strengthens the case for the local data map

optimization. In typical program with small number of function calls, the cost of

maintaining the consistency of the local data map is repaid many times over by the

performance gain.

1Slightly superlinear technically

CHAPTER 6. BENCHMARK RESULTS 204

1

1.5

2

2.5

3

3.5

4

4.5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.29: Bubble Sort: Local Variable Access - Speed Up Comparison

60

80

100

120

140

160

180

200

220

240

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

E
xe

cu
tio

n
T

im
e

T
ho

us
an

ds
 T

im
e

T
ic

ks

Execution Model

Normal
Stack Frame

Operand Stack

Figure 6.30: Bubble Sort: Local Variable Access - Execution Time Comparison

CHAPTER 6. BENCHMARK RESULTS 205

N
o
rm

a
l

S
ta

ck
F
ra

m
e

O
p
e
ra

n
d

S
ta

ck

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

In
st

.
C

ou
n
t

T
im

e
T

ic
k

IP
T

S
tr

ic
t

75
15

4
23

15
97

0.
32

5
75

18
0

16
52

04
0.

45
75

16
0

16
51

63
0.

45
55

1-
Is

su
e

75
15

4
12

86
20

0.
58

4
75

18
0

11
34

20
0.

66
75

16
0

11
33

98
0.

66
33

2-
Is

su
e

75
15

4
12

44
45

0.
60

4
75

18
0

87
93

8
0.

85
75

16
0

87
91

9
0.

85
55

4-
Is

su
e

75
15

4
12

25
67

0.
61

3
75

18
0

74
79

0
1.

00
75

16
0

74
77

1
1.

00
55

1-
Is

su
e-

B
P

76
68

9
10

03
86

0.
76

4
76

46
1

90
08

4
0.

84
76

44
1

90
06

2
0.

84
99

2-
Is

su
e-

B
P

77
17

7
92

52
1

0.
83

4
76

90
7

62
55

8
1.

22
76

88
7

62
53

9
1.

22
99

4-
Is

su
e-

B
P

77
28

3
92

57
0

0.
83

5
77

21
1

52
13

9
1.

48
77

19
1

52
11

9
1.

48
11

T
ab

le
6.

20
:

B
u
b
b
le

S
or

t:
L
o
ca

l
V

ar
ia

b
le

A
cc

es
s

-
C

om
p
ar

is
on

CHAPTER 6. BENCHMARK RESULTS 206

0

10

20

30

40

50

60

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.31: Bubble Sort: Local Variable Access (Stack Frame) Instruction Compo-

sition

0

10

20

30

40

50

60

0 Int Mem FrmMemFrmOther Other

P
er

ce
nt

ag
e

Instruction Type

Figure 6.32: Bubble Sort: Local Variable Access (Operand Stack) Instruction Com-

position

CHAPTER 6. BENCHMARK RESULTS 207

6.7 Conclusion

The benchmarks results presented in this chapter validates our claims for SAFA

architecture. In Section 6.2, the benchmarks shows that SAFA is capable of pro-

viding good support for high level language constructs. With frame registers, high

level language programs can be expressed more concisely when dealing with data

structures. Not only the footprint of the program is smaller, the execution time is

smaller as well due to the elimination of redundant memory operations.

For the low level instruction execution, Section 6.3 supplies good support-

ing results that SAFA improves over conventional stack machine is substantial. Su-

perscalar stack execution is shown to be possible and yields favorable speed up

consistently. The results also strongly support speculative superscalar stack exe-

cution, which is capable of outperforming pure super scalar execution with higher

instructions issue capability.

However, it is worth noting that the SAFA architecture does not (at least

for the chosen benchmark programs) benefit much from multiple execution units

in general. This could be caused by the sparse concentration of instructions of the

same type. Also, the high reliance on current running frame for parameters and local

variables cause a high reliance on frame register instructions. These instructions

are serialized in SAFA, which translates to a huge loss in potential parallelization

opportunities.

This problem is partially curbed by the local data map optimization, which

fits into the SAFA design easily with a modest extra complexity. This optimization

transforms most of the frame related instructions for local data access into stack-

to-stack operations. These operations are easily parallelizable, fully realizing the

potential of a speculative superscalar stack machine.

Chapter 7

Topical Benchmarks

In this chapter, we attempt to conduct several benchmarking studies into related

topics. These forays should complement the more focused nature of the previous

chapter to give broader perspective to evaluate the SAFA architecture.

The first topic, covered in Section 7.1, presents the behavior and perfor-

mance of SAFA architecture during execution of large program. Since the previ-

ous benchmarks only observe SAFA with smaller programs, it is important to see

whether the same performance trends can be sustained under larger application.

In Section 7.2, we give a quantitative study on the Instruction Folding

technique (discussed in Section 4.5). As Instruction Folding is another well known

execution optimization for stack machine, it is essential to study the pros and cons

of this technique as compared to the SAFA architecture.

Lastly, we briefly compare SAFA architecture with General Purpose Ma-

chine in Section 7.3. Although it is premature to compare SAFA to the well es-

tablished GPR machines at this point, it is nonetheless important to identify the

possible weak points of our design for future development.

208

CHAPTER 7. TOPICAL BENCHMARKS 209

7.1 Large Application

The SpecJVM98 benchmark suite[50], being a well recognized yardstick for Java

Virtual Machine performance, serves as a good repository for identifying a suitable

large application for SAFA. As Java programs require mainly human translation into

SAFA assembly, it is not feasible to pick programs that relies heavily on Java APIs.

Out of the benchmarks programs in SpecJVM98 suite, the Compress benchmark is

chosen. Following is a brief summary of this benchmark:

- Implements the LZW[59] adaptive compression algorithm.

- Replaces strings of characters with a single code.

- Build the common strings table on the fly.

- Decompression is similarly performed by constructing the common strings ta-

ble during processing. Hence, no extra information (except a limited 3 bytes

header) is included in the compressed file.

The direct implementations and derivatives of the LZW algorithm is widely

available, for example, the compress and uncompress commands in UNIX. The im-

plementation of the SAFA version follows closely to the SpecJVM98 version, with

the following exceptions:

- As SAFA does not support Object natively, a Java object is simulated as a

plain data structure instead. All methods take in an extra parameter, which

is a memory pointer to the associated Object (simulated as structure). This

is similar to the this reference.

- Several minor classes, for example the hash table, is changed to a direct array

access. In this regard, the SAFA program is similar to the Compress Bench-

mark in SpecInt95[49].

CHAPTER 7. TOPICAL BENCHMARKS 210

- As there is no simulated I/O in SAFA, the input file is loaded into memory

directly at program start up.

As the simulated object is heavily used in the benchmark, we will now give

a brief example to illustrate the idea. Consider the following class definition in Java:

class C

{

... //Other variables

int a; //object variable ’a’

void M()

{

int b; //local variable ’b’

a = 1;

b = a;

}

...

}

The interaction between object variable and local variables can be observed

by looking at the method M() in Java Assembly Code:

Method void M()

0 aload_0 //Load 1st parameter, i.e. ’this’

1 iconst_1

2 putfield #2 <Field int a> //store 1 into field ’a’

5 aload_0

6 getfield #2 <Field int a> //load value from field ’a’

9 istore_1 //store into local variable #1

10 return

The same method is translated as follows in SAFA:

CHAPTER 7. TOPICAL BENCHMARKS 211

PROC M 1 1 //Procedure M with 1 parameter 1 local

s1: cfb_wload x24 //Load the address of simulated object

s2: ibload 8 //Assumes the offset to ’a’ is 8 bytes

s3: iadd //address of ’a’

s4: ibload 1

s5: wstore //store 1 into ’a’

s6: cfb_wload x24

s7: ibload 8

s8: iadd

s9: wload //load from ’a’

s10:cfb_wstore x28 //store into local variable ’b’

s11: EXIT

As can be seen an object of class C is simulated as a structure which

contains all the fields in C. Statements s1 to s5 simulates the instructions 0 to

2 in the Java program. Note that the slightly longer coding in SAFA is to avoid

micro-coding, which allows a more accurate instruction counts. In Java, the putfield

instruction is usually expanded by trapping.

Although the translation is admittedly ad hoc, the execution behavior is

very close. The access of fields (object variables) in Java is processed via memory

address calculation followed by direct memory access. The translated program in

SAFA exhibits the similar property. As we make no attempt to make SAFA a native

JVM, this translation should give acceptable simulation of full-fledged OO program.

A direct result of this translation technique is the large amounts of memory

dereferencing in the SAFA program, as the methods make frequent use of the object

variables. The benchmark could potentially executes even faster if the code structure

in Spec95, which uses C language, is used instead. The equivalent C program uses

mainly global variables, or direct passing which reduces memory dereferencing.

CHAPTER 7. TOPICAL BENCHMARKS 212

7.1.1 Benchmark Result

The Compress benchmark compresses the input and subsequently decompressed the

compressed information. Two set of benchmarks are performed with different input.

A 4000 bytes text file is used for the first experiment, while a 8kb (8192) bytes of

binary file is used for the second. As the LZW algorithm can adapt to the input on

the fly, the execution metrics scales linearly, regardless of the input type. Table 7.1

summarizes the performance of SAFA as well as SAFA in conjunction with Local

Data Map. Table 7.2 similarly summarizes the result for the second set of input.

The main concern for this study is to check whether the observed execution

trends in Chapter 6 can be sustained for a larger and more complicated application.

The graphs Figure 7.1 and Figure 7.2 restate several findings:

1. Without Local Data Map, the frequent memory operations restricts the po-

tential speedup. The speedup flatten off even with higher issuing rate. Nev-

ertheless, the recorded speedup is quite good: 2.2 highest speedup for non-

speculative execution models, and 2.69 for speculative execution models for

both benchmarks.

2. Using Local Data Map, the speedup is much better. The highest speedup

achieved by non-speculative execution model stands at 3.50 for the first bench-

mark and 3.54 for the second. On the other hand, speculative models posed

an impressive 4.65 and 4.62 for the two benchmarks respectively.

As the discrepancy in the two benchmarks is small enough, it is reasonable

to believe that the trends would be similar for even larger input. These results

should serve as a assurance for the capabilities of SAFA architecture.

CHAPTER 7. TOPICAL BENCHMARKS 213

SAFA SAFA with LDM

Inst. Count Time Tick IPT Inst. Count Time Tick IPT

Strict 960065 2638446 0.364 1044976 2049352 0.510

1-Issue 960065 1325054 0.725 1044976 1320212 0.792

2-Issue 960065 1201257 0.799 1044976 890097 1.174

4-Issue 960065 1201235 0.799 1044976 743851 1.405

1-Issue-BP 979450 1088462 0.900 1051158 1138227 0.924

2-Issue-BP 1012306 978051 1.035 1069410 701275 1.525

4-Issue-BP 1014201 977232 1.038 1085440 567571 1.912

Table 7.1: Compress (4000bytes Text): Summary

SAFA SAFA with LDM

Inst. Count Time Tick IPT Inst. Count Time Tick IPT

Strict 2026323 5562578 0.364 2209338 4326682 0.511

1-Issue 2026323 2794960 0.725 2209338 2787161 0.793

2-Issue 2026323 2532720 0.800 2209338 1878702 1.176

4-Issue 2026323 2532694 0.800 2209338 1570062 1.407

1-Issue-BP 2072873 2306219 0.899 2223518 2411606 0.922

2-Issue-BP 2150530 2072399 1.038 2267159 1487871 1.524

4-Issue-BP 2155472 2070946 1.041 2306494 1204813 1.914

Table 7.2: Compress (8kbytes Binary) - Summary

CHAPTER 7. TOPICAL BENCHMARKS 214

1

1.5

2

2.5

3

3.5

4

4.5

5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP
S

pe
ed

up

Execution Model

SAFA
SAFA LDM

Figure 7.1: Compress (4000 bytes Text) - Speed Up Comparison

1

1.5

2

2.5

3

3.5

4

4.5

5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

SAFA
SAFA LDM

Figure 7.2: Compress (8 kbytes Binary) - Speed Up Comparison

CHAPTER 7. TOPICAL BENCHMARKS 215

7.2 Instruction Folding

Instruction Folding, as described briefly in Section 4.5, provides another attack angle

to increase the performance of traditional stack machines. This section attempt to

study this technique under the SAFA architecture. The two main requirements for

incorporating Instruction Folding are:

1. Stack based instructions.

2. Ability to retain and specify information in register-like construct.

As the first requirement is easily satisfied, only the second requirement need

to be checked. In SAFA, values in the execution core are identifiable with a tag.

However, these values are only retained until the arrival of corresponding consumer.

With the addition of Local Data Map, local data are retained in the Reorder Buffer

and thus satisfying the second requirement. Both of the designs (with or without

LDM) will be studied in this section.

The basic premise of Instruction Folding builds on top of a foldable in-

structions group, which is a stream of instructions that can be packed (folded) into

a single execution package. The foldable groups are identified via folding type of the

instructions. Each instructions can be categorized into one of the following folding

types[12].

CHAPTER 7. TOPICAL BENCHMARKS 216

Acronym Meaning JAVA

Example

SAFA

Example

LV Load from either local variable or

global register or immediate operand

(constant).

iload 0,

iconst 0,

etc

own wload,

ibload, etc

OP Operation that uses the top two entries

of stack

iadd, iand,

etc

iadd, iand,

etc

BG1 Operation that uses only the topmost

entry of stack. This also breaks the

folding group.

ifeq, ifge,

etc

iftrue,

iffalse, etc

BG2 Operation that uses the top two entries

of stack. This also breaks the folding

group.

if cmpeq,

iaload etc

wstore, hw-

store, etc

MEM Stores to local variable or global regis-

ter and loading from memory.

istore,

fstore etc

own wstore

NF Non-Foldable instruction. dup2, i2f,

invoke-

virtual,

etc

dup, enter,

etc

There is a good correspondence in SAFA for most of the folding types.

Although there is only one instruction in SAFA (own wstore) in the MEM folding

type, it actually covers all the equivalent instructions in Java (istore, fstore, etc) as

the instruction in SAFA is not data type sensitive.

To incorporate Instruction Folding into the SAFA, additional processing is

added at the decode stage. The decoded instructions is placed in a Decode Instruc-

tion Queue in program order. This queue (also known as Decoded Cache Window

in picoJava architecture) is then inspected for foldable instruction group. Similar to

the picoJava architecture, the following nine folding groups are supported.

CHAPTER 7. TOPICAL BENCHMARKS 217

1. LV, LV, OP, MEM

2. LV, LV, OP

3. LV, LV, BG2

4. LV, OP, MEM

5. LV, BG2

6. LV, BG1

7. LV, OP

8. LV, MEM

9. OP, MEM

The only 4-foldable (referring to the number of instructions folded) group

is the first group, which make it highly desirable. In each time cycle, the first four

instructions in the instruction queue are inspected. If these instructions correspond

to any of the folding group listed, they are bundled into a single execution package,

which will be issued in the next time tick. If the first instruction is non-foldable

(NF type) or does not belong to any of the folding patterns, the folding operation

will cease. Only this single instruction is issued next. As non-foldable instruction

is removed one at a time, and the largest folding group is always produced by the

folding logic, folding is always optimum (with respect to the available patterns).

Other than the above additions, the execution models used for the bench-

mark is different from the SAFA models only in the higher decoding rate. Four

instructions are decoded every time tick and the decoded instructions queue con-

tains up to eight decoded instructions. The issuing rate is fixed at one instruction

(or one folded group). These hardware parameters are chosen to closely imitate the

performance of picoJava architecture.

CHAPTER 7. TOPICAL BENCHMARKS 218

For the picoJava architecture, each folded group is assumed to be com-

pleted in one time cycle. Besides, neither superscalar nor speculative executions

are supported. This can be closely simulated by the Strict SAFA execution model,

which requires the stack top to be ready before next instruction can be issued. To

provide a clear upper bound of the performance of instruction folding, we included

the result under 1-Issue execution model, in which one instruction is issued every

time tick regardless of the readiness of stack top. In conventional picoJava architec-

ture, with its strict stack cache implementation, does not allow for such executions.

As such, the results can be taken as strict performance upper bound for instruction

folding mechanism under SAFA setting.

Table 7.3 summarizes the results for various benchmarks without LDM.

The difference of decoded and issued instruction counts gives the number of folded

instructions. SAFA programs that do not use LDM relies on memory access for local

data, i.e.there is no use of instructions like own wload and own wstore. This reduces

the possible folding patterns and results in a low 7.68% folding average across the

benchmarks. The speedup over conventional stack machine is at a equally low 1.029

(bounded by 1.727).

By introducing the LDM, the advantage of the Instruction Folding is clearly

shown in Table 7.4. A healthy 29.39% average folding rate is achieved. Besides, this

also supports accuracy of Instruction Folding simulation in SAFA, as the reported

common folding rate lies between 23 to 37 percents, with an average of around 28

percents[13]. The speedup is similarly encouraging, with average of 1.584 (upper

bound of 2.223).

The second benchmark shows that the Instruction Folding technique is

quite effective, provided stack cache or similar construct is used to retain the exe-

cution values. Further comparisons will be conducted in subsequent sections.

CHAPTER 7. TOPICAL BENCHMARKS 219

Inst. Count Folding Speed Up

Benchmark Decoded Issued Percentage (%) Strict 1-Issue

Fibonacci(10) 8181 7508 8.23 1.042 1.452

Sieve(100) 4943 4672 5.48 1.017 1.777

QuickSort(50) 11347 10466 7.76 1.028 1.878

BubbleSort(50) 75154 68206 9.25 1.031 1.801

Average 7.680 1.029 1.727

Table 7.3: Folding Benchmarks without LDM: Summary

Inst. Count Folding Speed Up

Benchmark Decoded Issued Percentage Strict 1-Issue

Fibonacci(10) 8887 7718 13.15 1.074 1.484

Sieve(100) 4951 2527 48.96 2.106 2.774

QuickSort(50) 12545 8993 28.31 1.555 2.304

BubbleSort(50) 75180 54789 27.12 1.600 2.328

Average 29.39 1.584 2.223

Table 7.4: Folding Benchmarks with LDM: Summary

7.2.1 SAFA vs Instruction Folding

As both SAFA and Instruction Folding attempt to improve the conventional stack

machine, it is natural to pits them against each other. Table 7.5 and Table 7.6

summarize the comparison between SAFA execution model with Instruction Folding.

The result is calculated as speedup of SAFA execution time w.r.t Instruction Folding

execution time:

Speedup =
ExecutionT imeInstructionFolding

ExecutionT imeSAFA

The lower speedup is calculated against the Strict execution model for

Instruction Folding, while the upper speedup is calculated against the 1-Issue model.

In the closing of Section 4.5, we theorize that the SAFA architecture can

compete with and overcome Instruction Folding when the issuing rate is high enough,

since Instruction Folding effectively turns a single issue machine into a multiple issu-

ing one. In Table 7.5 however, SAFA consistently outperforms Instruction Folding

CHAPTER 7. TOPICAL BENCHMARKS 220

if the lower bound is used. Even when competing with the higher bound of execu-

tion time in Instruction Folding, SAFA manages to gain the upper hand as early

as the 1-Issue-BP. As LDM is not utilized in this set of benchmarks, this certainly

shows the reliance of the Instruction Folding technique on stack cache and local data

manipulation.

By using the LDM (similar to stack cache), we can compare with the

full potential of Instruction Folding. As shown in Table 7.6, the advantage for

Instruction Folding is harder to overcome if we pick the upper bound performance.

In particular, the Sieve of Erathosthense benchmark, with a high folding percentage,

gives the only sublinear speedup for SAFA execution model 1-Issue. By comparing

with the upper bound of Instruction Folding performance, it takes a 2-Issue-BP

SAFA model in the worst case (Sieve of Erathosthense), a 1-Issue-BP SAFA model

in the best case to get better performance.

This comparison shows the SAFA architecture can be a better alternatives

to improve stack machine performance. As discussed in Section 4.5, Instruction

Folding only establishes specific consumer-producer relationships between the in-

structions. Each folding group basically includes one or more producers and a con-

sumer. However, the limited folding patterns restricts the possible relationships that

can be established. Besides, the lack of renaming in the picoJava stack cache im-

plementation further restrict the possibility of superscalar execution. These reasons

combined results in reduced potential of this technique.

The SAFA architecture on the other hand, implicitly “folded” each in-

struction at the issue stage by using the Operand Tag Stack. The ability to issue

instructions regardless of the stack top further pushes SAFA ahead of Instruction

Folding.

CHAPTER 7. TOPICAL BENCHMARKS 221

SAFA Execution Models Speedup

1-Issue 1-Issue 2-Issue 2-Issue 4-Issue 4-Issue

BP BP BP

Fibonacci

lower 1.331 1.431 1.534 1.681 1.560 1.702

upper 0.956 1.027 1.101 1.206 1.120 1.222

Sieve

lower 1.699 2.494 1.828 2.709 1.828 2.709

upper 0.973 1.428 1.046 1.551 1.047 1.551

QuickSort

lower 1.796 2.123 1.915 2.278 1.933 2.267

upper 0.982 1.161 1.048 1.246 1.057 1.240

BubbleSort

lower 1.746 2.237 1.805 2.428 1.832 2.426

upper 0.999 1.280 1.033 1.389 1.048 1.388

Table 7.5: SAFA vs Instruction Folding (without LDM): Summary

SAFA Execution Models Speedup

1-Issue 1-Issue 2-Issue 2-Issue 4-Issue 4-Issue

BP BP BP

Fibonacci

lower 1.269 1.307 1.504 1.618 1.579 1.693

upper 0.919 0.946 1.088 1.171 1.143 1.225

Sieve

lower 0.927 1.304 1.206 1.812 1.424 2.174

upper 0.703 0.990 0.915 1.376 1.081 1.650

QuickSort

lower 1.208 1.369 1.614 1.952 1.881 2.246

upper 0.815 0.924 1.089 1.318 1.270 1.516

BubbleSort

lower 1.276 1.607 1.646 2.314 1.935 2.776

upper 0.840 1.058 1.084 1.524 1.275 1.829

Table 7.6: SAFA vs Instruction Folding (with LDM): Summary

CHAPTER 7. TOPICAL BENCHMARKS 222

7.2.2 SAFA with Instruction Folding

The previous section presents SAFA and Instruction Folding as competing tech-

niques, however, the two are not mutually exclusive. The Instruction Folding mainly

concentrates on the decode stage, while SAFA works during the issue stage. Hence,

it is possible to combine the two techniques instead of considering them individually.

Although the hardware complexity by combining the two would be considerable, the

speedup would be much better at lower issuing rate. Hence, the benchmark in this

section serves as a brief investigation of the possible benefits.

To allow multiple issues for Instruction Folding, we assume the folding logic

is capable to perform multiple foldings per time tick. The speedup comparisons for

the four simple programs are presented in Figure 7.3, Figure 7.4, Figure 7.5 and

Figure 7.6. The graphs exhibits two main commonalities:

1. The speedup collapsed at four issuing models, as the decode stage can only

decode four instructions. Both SAFA, and “SAFA with Folding” are capable of

churning through the available decoded instructions which results in stagnant

speedup. This also shows that if no higher decoding rate is achievable, plain

SAFA architecture is more desirable.

2. The biggest jump in performance occurs at using 1-Issue-BP execution model.

The branch prediction allows more instructions to be considered for folding,

while the 1-Issue model allow constant issuing of instructions. Hence, if a low

issuing execution engine is more achievable, then the combination of SAFA

and Instruction Folding can be considered.

CHAPTER 7. TOPICAL BENCHMARKS 223

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

SAFA
SAFA + Folding

Figure 7.3: Fibonacci Series : SAFA with Folding - Speed Up

1

1.5

2

2.5

3

3.5

4

4.5

5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

SAFA
SAFA + Folding

Figure 7.4: Sieve of Erathosthense: SAFA with Folding - Speed Up

CHAPTER 7. TOPICAL BENCHMARKS 224

1

1.5

2

2.5

3

3.5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

SAFA
SAFA + Folding

Figure 7.5: Quick Sort: SAFA with Folding - Speed Up

1

1.5

2

2.5

3

3.5

4

4.5

0 Strict 1I 1IBP 2I 2IBP 4I 4IBP

S
pe

ed
up

Execution Model

SAFA
SAFA + Folding

Figure 7.6: Bubble Sort: SAFA with Folding - Speed Up

CHAPTER 7. TOPICAL BENCHMARKS 225

7.3 General Purpose Register Machine

In this section, we present a comparison with superscalar GPR machine. A super-

scalar GPR simulator is chosen instead of an actual chip as we need more flexibility

in setting up the hardware parameters. SimpleScalar[60] version 2.0 (Portable ISA

mode) is used to generate the result under several machine configurations. The Sim-

pleScalar simulator implements the Register Update Unit[61] scheme which allows

out-of-order issuing and execution based on register renaming. The Portable In-

struction Set Architecture uses a fixed four bytes instructions format that is similar

to MIPS.

By pitting SAFA against GPR machine, which is well studied in computer

architecture, would be helpful in understanding the pros and cons of the current

design. As the program code generated would be totally different, no attempt is

made to make sure they are comparable, except in ensuring the source code is as

close as possible. A Bubble Sort of 250 numbers is picked because of its heavy

computation and infrequent function calls. The binary for SimpleScalar is directly

generated by a modified gcc compiler (provided by SimpleScalar package) without

manual alteration.

The machine models under SimpleScalar is configured to be as close as the

counterparts in SAFA. The same naming convention is used for these models for

ease of comparison. As we only study speculative execution models, the acronym

X-Issue-BP represents the machine configuration with X decoding and issuing rate.

Other than that, a few more important hardware parameters are listed below:

Fetch The fetch queue size is set to 8 bytes.

Integer Execution Unit Unlike SAFA, SimpleScalar contains a dedicated integer

multiplication/division unit. To have a close comparison, integer multipli-

cations and divisions are modified to use the normal integer execution unit

instead.

CHAPTER 7. TOPICAL BENCHMARKS 226

Branch Predictor BiModal Predictor is used with 1024 entries.

Commit Rate Instruction commit rate is fixed at 4.

Also, to study the ability of multiple execution units utilization in GPR

machine, benchmark for each execution models is repeated for different number of

execution unit (integer execution units in this case). Table 7.7 summarize the result.

As integer execution take only 1 cycle in SimpleScalar, the IPC is limited by the

issuing rate. For example, there is no speedup improvement in the first row even

when multiple execution units are present. The best performance is reported by

4-Issue-BP model with 4 integer units, with IPC of 1.831. However, looking at the

fetch rate mentioned previously, we can see that SimpleScalar could be hold back

by the low fetch rate (8 bytes is equivalent to 2 instructions only). To see the full

potential of GPR machine, a further model 4-Ideal is setup, where the fetch rate

is set to 16 bytes (4 instructions). Further improvement is observed, with the IPC

standing at 2.128 for 4-Ideal models with four integer units.

The results on SAFA with LDM is reported in Table 7.9. As noted be-

fore, SAFA fails to utilize the multiple execution units. The only improvement is

observed in the 4-Issue-BP model when the number of execution unit increased to

2. Comparing SimpleScalar with SAFA, we can see that SAFA has better IPC in

all cases, except in 4-Ideal. More notable is the lower instruction counts for SAFA

programs compared to GPR programs. Hence, if the SAFA core can execute at the

same clock as the GPR machine, then SAFA can outperform GPR machine with a

lower fetch size and lesser execution units.

The rosy picture in the previous comparison no longer hold up if we take

compiler optimization into consideration. Compilers for GPR machine are equally

well studied, with many proven techniques. By turning on compiler optimization,

the increase in performance is drastic as can be seen in Table 7.8. Much smaller

dynamic instruction counts (over 70% reduction) and much better parallelism allows

the 4-Ideal model to achieve IPC of 2.4556 using four integer units. Assuming same

CHAPTER 7. TOPICAL BENCHMARKS 227

clock rate, this would represent a 2.5 speedup over the best SAFA execution.

To have a clearer picture of the source of such improvement, the assembly

code generated for the non-optimized and optimized program are inspected. The

following characteristics are found in the non-optimized version:

- This version relies heavily on stack frame for parameters and local variables.

This result in frequent memory operation by relative addressing mode.

- Frequent register-to-register movements.

- Redundant calculation.

- Redundant branching code.

The optimized version correctly addresses the above shortcomings by:

- Frequently accessed variables are moved into registers. Less memory move-

ments are needed.

- redundant register movements are removed.

- Commonly used values are recorded to avoid repeated calculation.

- The flow of the program is tightened and restructured and results in lesser

branching.

These improvements come from several well studied techniques, like copy

propagation, common subexpression elimination, jump optimization etc. As a par-

ticular revealing example, the instruction counts for the swapping operation in the

unoptimized version is 31, which is reduced to only 2 in the optimized version. The

reduced movements (both memory-to-register and register-to-register) increase the

“useful” instructions to better utilize the hardware resources.

The SAFA assembly code, when compared to the two versions above, is

found to be closer to the optimized version. The structure and flow of the program

CHAPTER 7. TOPICAL BENCHMARKS 228

is nearly identical. However, as it takes more stack instructions to accomplish a

similar task expressed by GPR instruction, SAFA eventually lose out.

As expected, this study highlights the advantage and disadvantage of the

SAFA architecture. Since the main SAFA logic is arguably similar to the out-

of-order execution logic in GPR machine, SAFA architecture can be expected to

perform better with lower hardware requirement (lower fetch rate, lesser execution

units). As we know, compiler for stack machine is much simpler, then the SAFA

architecture may fit in a niche where fast but efficient compilation is desirable, e.g.

real-time HLP interpretation. All this points to a possible utilization in real-time

embedded environment.

On the other hand, the disadvantages for SAFA is also very clear. SAFA

programs, similar to conventional stack program, suffer from the overhead of stack

manipulation instructions. These extra instructions also “dilutes” the density of

pure computation instructions such that it is harder to sustain a stream of com-

putation instructions to utilize multiple execution units. Several possible venues to

combat this drawback are briefly discussed below.

Firstly, more aggressive bundling can be applied at the decode stage. For

example, a VLIW-like approach can be taken to pack several self-contained execution

package into a “Instruction Word”. This would increase the density of computation

instructions going to execution stage.

Secondly, more complicated instructions can be added. For example, the

frame register instructions represent a step in this direction. The frame register

instructions allows more compact code for memory manipulation, which reduce the

overhead. Further instructions can added to allow whole frame interaction, e.g.

whole array addition, array scaling etc. This harken back to the SIMD models of

early supercomputers.

Last but not least, as SAFA allows superscalar and speculative execution

for stack-oriented code, this allows us to reexamine compiler techniques devised for

CHAPTER 7. TOPICAL BENCHMARKS 229

GPR machine. These techniques were deem inapplicable for stack-oriented code due

to the restrictions described in Chapter 4. As GRP machines gain respectable exe-

cution efficiency largely due to these well studied techniques, it is not unreasonable

to assume these techniques may be adapted and improve the quality of compiler

generated stack-oriented code.

One Int Two Int Four Int

Inst. Count IPC Inst. Count IPC Inst. Count IPC

1-Issue-BP 2180599 0.7546 2180599 0.7546 2180599 0.7546

2-Issue-BP 2185387 1.0611 2185128 1.4641 2185128 1.4641

4-Issue-BP 2185364 1.0722 2160980 1.8143 2160520 1.8311

4-Ideal 2182935 2.1285

Table 7.7: Bubble Sort(250) on SimpleScalar: Non-Optimized

One Int Two Int Four Int

Inst. Count IPC Inst. Count IPC Inst. Count IPC

1-Issue-BP 634192 0.8559 634192 0.8559 634192 0.8559

2-Issue-BP 687644 1.1406 655368 1.6142 655368 1.6142

4-Issue-BP 687633 1.1406 638837 1.7467 631436 1.7441

4-Ideal 686764 2.4556

Table 7.8: Bubble Sort(250) on SimpleScalar: Optimized

One Int Two Int Four Int

Inst. Count IPC Inst. Count IPC Inst. Count IPC

1-Issue-BP 1827588 0.895 1827588 0.895 1827588 0.895

2-Issue-BP 1855121 1.549 1855121 1.549 1855121 1.549

4-Issue-BP 1856485 1.859 1856480 2.036 1856480 2.036

Table 7.9: Bubble Sort(250) on SAFA with LDM

CHAPTER 7. TOPICAL BENCHMARKS 230

7.4 Conclusion

The first study in this chapter shows that larger application can be executed equally

well in SAFA. The benchmark results agrees with the simpler, smaller benchmarks

in previous chapter.

The study on Instruction Folding supports our claims that SAFA can out-

perform the technique by having higher issuing rate. In the worst case, a two issuing

speculative SAFA execution model is needed to overcome the advantage of Instruc-

tion Folding if the folding rate is very high. In many other benchmarks, a one issuing

speculative SAFA execution model is good enough.

The comparison between SAFA and GPR machine in the last study high-

lights the pros and cons of SAFA. As supported by the benchmark results, SAFA

can perform well with less stringent hardware requirement. However, the well know

stack manipulation overhead stop SAFA from utilizing more execution units.

Chapter 8

Conclusion

This chapter provides a closing to our work. In particular, the contribution of the

study is summarized in Section 8.1. Possible future works are discussed in Section 8.2

8.1 Contribution

As mentioned in the previous section, the SAFA architecture is an experiment to sup-

port two claims. The more general aim of this work is to substantiate the General

Tagged Execution framework, which provides a common ground to understand

and reconcile various existing execution models. Our work showed that it is possi-

ble to place a stack execution core in a conventional superscalar CPU. Traditional

superscalar mechanisms and techniques can be adapted to utilized with this core

seamlessly.

The proposed SAFA architecture also introduces a simple yet useful addi-

tion: frame registers and execution context dependence. The frame registers, with

its associated information fields, can be used to represents a piece of consecutive

memory space to allow easier and well supported manipulation. This allow high

level language construct like array, object etc, which traditionally do not sit well

with stack based architecture, to be accessed efficiently with simple coding. In the

231

CHAPTER 8. CONCLUSION 232

two array-based benchmarks, the highest reduction dynamic instruction counts re-

ported is 40%. More importantly, the frame register is not a specialized mechanism

that entwine with stack architecture. The idea can survive transplants into other

execution model with minor or no modification.

On the low level instruction level execution, SAFA architecture overcomes

the inherent bottleneck of stack based instructions. By adapting superscalar mech-

anism in General Purpose Register machine, SAFA is capable of relaxing the con-

straints and enable superscalar execution. Benchmarks under superscalar execu-

tion reports an average speedup of 1.95 (lowest: 1.39, highest:2.67) with respect

to conventional stack execution. As superscalar execution demanding more eligible

instructions per cycle to exploit instruction level parallelism, we devised a technique

to allow speculative execution in stack based architecture. This technique exploits

the inherent dependency of stack instruction to allow simple and clean resolution

regardless of the outcome of the branch prediction. Additional benchmarks under

speculative executions shows an average speedup of 2.249 (lowest: 1.49, highest

2.67).

Additionally, to cope with the heavy memory operations induced by lo-

cal data access, a new mechanism local data map is utilized to transform these

memory operations to more efficient stack-to-stack operations. By leaving the fre-

quently access local data in the core (on the RoB more specifically), access time

for these data can be improved. More importantly, ILP between these instructions

are now free from the memory bottleneck, further supporting the superscalar ca-

pability of SAFA. Benchmarks under this configuration shows substantial improve-

ments. Benchmarks under non-speculative models achieve an average speedup of

2.30 (lowest:1.36,highest:3.10), while benchmarks under speculative models reports

an average speedup of 2.97 (lowest:1.404, highest:4.59).

Last but not least, we should point out that these ideas are not “SAFA

dependent” in the sense that individual idea can be retrofitted into suitable platform

as long as the prerequisites are satisfied. In Figure 8.1, the relationship between each

CHAPTER 8. CONCLUSION 233

of the ideas and current existing technology are laid out clearly. For example, the

“Reorder Buffer Scheme” can be used to allow superscalar execution in any machine

that uses “Stack Based Instructions”. With the superscalar stack execution, the

“Speculative Scheme” can be added on top to facilitate speculative execution. From

the figure, it is also clear that “Frame Register Instructions” is actually an indepen-

dent path. Any instruction set can incorporate the idea to provide better support

for high level languages. Whether the subsequent ideas like “Context Dependence”,

“Vector Support” etc are needed is totally up to the designer. As such, the SAFA

architecture can be viewed as a “virtual” platform that conglomerate all the ideas

for experimentation.

8.2 Future Work

Just as there are the two major aims in this work, there are also two possible

directions to carry on the study.

For the more general direction, it is possible to further study the com-

patibility and expressing power of the General Tagged Execution framework by

substituting part of the execution model with existing or new components. For ex-

ample, by moving the VLIW packaging techniques into CPU core but retaining a

stack based execution core, it is possible to study the possibility of dynamic VLIW

execution. Currently, there is already one work pursuing this direction.

For the more specific direction, there are nooks and crannies in superscalar

stack execution that awaits exploration. As shown by the benchmark result, bi-

nary code resulting from conventional compiler does not exploit the full potential of

the SAFA architecture. Most compiler techniques devised in the past decades con-

centrates on optimization for register based architecture. Although some of these

techniques would be equally valid for frame registers optimization for SAFA, the

major feature namely superscalar stack execution is not well studied in the context

CHAPTER 8. CONCLUSION 234

Instruction Set

Frame Register
Instructions

Effect: Compact Code

for HLP support

Stack Based
Instructions

Reorder
Buffer

Scheme

Effect:
Superscalar

Execution

Local Data
Map

Effect:
Optimized Local

Data Access

Speculation
Scheme

Effect:

Speculative
Execution

Speculation
Scheme

Effect:

Speculative Local
Data Access

Context
Dependence

Effect: Context

Sensitive
Instructions

Prefetching

Effect: Better

Cache Behavior

Vector
Support

Effect: SIMD

for Array
Calculation

Loop Support

Effect: Better
Loop

Management

Existing Technology Proposed Idea

Effect: Benefits of the
idea

Possible Idea
Not Explored

Effect: Benefits of the
idea

Graph Key :

Figure 8.1: Ideas Relationship in SAFA

of compilation. Hence, compilers research is one possible path.

Other than that, the frame register can be further utilized. With its well

defined structure and embedded representation of high level data structure, more

complicated and specialized instructions can be implemented. For example, with

two frame registers representing two separate arrays, we can use just one instruc-

CHAPTER 8. CONCLUSION 235

tion to perform vector addition, reminiscent of the SIMD architecture as shown in

Figure 8.1.

On the other hand, the context sensitive frame register instructions poses

a potential bottle neck during superscalar execution. It is worthwhile to study ways

to elevate this pressure on the frame registers, for example, by providing a separate

set of instructions working on the “Current Frame Register” and “Previous Frame

Register” to allow parallel executions.

Bibliography

[1] Philip J. Koopman, Jr.

Stack Computers - the new wave

Ellis Horwoord Limited, 1989

[2] Ilkka J. Haikala

“More design data for stack architectures”

Proceedings of the ACM ’82 conference, January 1982.

[3] Peter Schulthess & Fritz Vonaesch

OPA: a new architecture for Pascal-like languages

ACM SIGARCH Computer Architecture News, Vol 10 Issue 6, December 1982.

[4] John R. Hayes, Martin E. Fraeman, Robert L. Williams & Thomas Zaremba

“An architecture for the direct execution of the Forth programming language”

Proceedings of the second international conference on Architectual support for

programming languages and operating systems, Vol 22 Issue 10, October 1987

[5] William F. Keown, Philip Koopman & Aaron Collins

“Performance of the HARRIS RTX 2000 Stack Architecture versus the Sun 4

SPARC and the Sun 3 M68020 Architectures”

ACM SIGARCH Computer Architecture News, Volume 20 Issue 3, June 1992.

[6] Alastair J.W.Mayer

The Architecture of the Burroughs B5000 - 20 Years Later and Still Ahead of

236

BIBLIOGRAPHY 237

the Times?

ACM Computer Architecture New, 1982

[7] Elliott I. Organick

A Programmer’s View of The Intel 432 System

McGraw-Hill Book Company,1983

[8] Elliott I. Organick

Computer Systems Organization - The B5700/B6700 Series

Academic Press,

[9] Christopher Edler

“The Early History of HP3000”

The Analytical Engine, Newsletter of the Computer History Association of

California, Vol 3 Number 1, November 1995.

[10] Sun Microsystem

picoJava I - Java Processor Core Data Sheet

Sun Microsystems, 1997

[11] Sun Microsystem

picoJava II - Java Processor Core Data Sheet

Sun Microsystems, 1999

[12] Sun Microsystem

picoJava II - Programmer’s Reference Manual

Sun Microsystems, 1999

[13] Harlan McGhan & Mike O’Connor

“PicoJava: A Direct Execution Engine for Java Bytecode”

IEEE Computer, Volume 31 Issue 10, Pages 22-30, October 1998.

[14] Tim Lindholm and Frank Yellin

Java Virtual Machine Specification 2nd Edition

Addison Wesley, 1999

BIBLIOGRAPHY 238

[15] Bill Venners

Inside the Java 2 Virtual Machine 2nd Edition

McGraw Hill, 1999

[16] The Kaffe Virtual Machine

http://www.kaffe.org

[17] R.L. Sites

“Alpha AXP Architecture”

Special Issue, Digital Technical Journal. Vol 4, No.4, 1992.

[18] Peter Bannon & Jim Keller

“Internal Architecture of Alpha 21164 Microprocessor”

IEEE CompCon 1995.

[19] John H.Edmondson, Paul Rubinfeld, Ronald Preston & Vidya Rajagopalan

“Superscalar Instruction Execution in the 21164 Alpha Microprocessor”

IEEE Micro April 1995, Vol 15.

[20] Linley Gwennap

“Digital 21264 Sets New Standard”

Microprocessor Report, October 1996.

[21] R. E. Kessler

“The Alpha 21264 Microprocessor”

IEEE Micro March-April 1999.

[22] James S.Evans & Richard H.Eckhouse

Alpha RISC Architecture for Programmers

Prentice Hall, 1999

[23] IBM Online PowerPC Archieve

“PowerPC Architecture: A high-performance architecture with a history”

http://wwww-1.ibm.com

BIBLIOGRAPHY 239

[24] David Levitan, Thomas Thomas & Paul Tu

“The PowerPC 620(tm) Microprocessor: A High Performance Superscalar RISC

Microprocessor” IEEE CompCon 1995.

[25] Apple Computer, Inc. “PowerPC G5 White Paper”

June 2004.

[26] Top500 Supercomputer Site

http://www.top500.org/lists/2004/11/

[27] Richard Y.Kain

Advanced Computer Architecture

Prentice Hall,1996

[28] William Stallings

Computer Organization and Architecture (4th Edition)

Prentice Hall, 1996

[29] Ravi Sethi

Programming Languages – Concepts and Constructs 2nd. Edition

Addion Wesley, 1996

[30] John L. Hennessy & David A. Patterson

Computer Architecture – A Quantitative Approach 2nd. Edition

Morgan Kaufman Publishers Inc, 1996

[31] Jurij Silc, Borut Robic & Theo Ungerer

Processor Architecture: From Dataflow to Superscalar and Beyond

Springer-Verlag 1999.

[32] John Paul Shen & Mikko H. Lipasti

Modern Processor Design: Fundamentals of Superscalar Processor (Beta Edi-

tion)

McGraw Hill, 2003.

BIBLIOGRAPHY 240

[33] Tetsuya Hara, Hideki Ando, Chikako Nakanishi & Masao Nakaya

“Performance comparison of ILP machines with cycle time evaluation”

ACM SIGARCH Computer Architecture News , Proceedings of the 23rd annual

international symposium on Computer architecture, Vol 24 Issue 2, May 1996.

[34] David W. Wall

“Limits of Instruction-Level Parallelism”

Proceedings of the fourth international conference on Architectural support for

programming languages and operating systems, Vol 26 Issue 4, April 1991.

[35] Narayan Ranganathan & Manoj Franklin

“An empirical study of decentralized ILP execution models”

Proceedings of the eighth international conference on Architectural support for

programming languages and operating systems, Vol 33, 32 Issue 11, 5, October

1998.

[36] Kevin Scott & Kevin Skadron

“BLP: Applying ILP Techniques to Bytecode Execution”

In the Proceedings of the Second Annual Workshop on Hardware Support for

Objects and Microarchitecturs for Java, September 2000.

[37] Daniel P. Siewiorek, C.Gordon Bell & Allen Newell

Computer Structures:Principles and Examples

McGraw-Hill, 1982

[38] R. M. Tomasulo

“An efficient algorithm for exploiting multiple arithmetic units.”

IBM Journal of Research and Development,11(1):25-33. January 1967.

[39] Wikipedia, the free encyclopedia

http://en.wikipedia.org

BIBLIOGRAPHY 241

[40] Jack J. Dongarray,Piotr Luszczeky,& Antoine Petitetz “The LINPACK Bench-

mark: the past, present and future”

December 2001.

[41] Gao YuGuang

“The Design and Implementation of a C to SAFA Compiler”

Master’s Thesis. School of Computing, National University of Singapore. March

2005.

[42] Scott McFarling

“Combining Branch Predictors”

DEC WRL TN-36, June 1993.

[43] David J.Lilja

“Reducing the Branch Penalty in Pipelined Processors”

IEEE Computer Volume 21 Issue 7, Pages 47–55, July 1988.

[44] Augutus K.Uht, Vijay Sindagi & Sajee Somanathan

“Branch Effect Reduction Techniques”

IEEE Computer Volume 30 Issue 5, Pages 71–81, May 1997.

[45] Brian Davis, Andrew Beatty, Kevin Casey, David Gregg & John Waldron

“The Case for Virtual Register Machines”

In Workshop on Interpreters, Virtual Machines and Emulators, ACM Press,

San Diego, California, Pages 41–49, 2002.

[46] Yunhe Shi, David Gregg, Andrew Beatty & M. Anton Ertl

“Language representations: Virtual machine showdown: stack versus registers”

Proceedings of the 1st ACM/USENIX international conference on Virtual exe-

cution environments, June 2005

[47] Lee-Ren Ton, Lung-Chung Chang, Min-Fu Kao & Han Min Tseng

“Instruction Folding in Java Processor”

BIBLIOGRAPHY 242

In the Proceedings of International Conference on Parallel and Distributed

Systems, 1997.

[48] Lee-Ren Ton, Lung-Chung Chang & Chung-Ping Chung

“An Analytical POC stack operations folding for continuous and discontinuous

Java Bytecodes

Journal of Systems Architecture, Vol 48 Issue 1-3, September 2002.

[49] The Spec95 Benchmark Suite

http://www.spec.org/osg/cpu95/

[50] The SpecJVM98 Benchmark Suite

http://www.spec.org/osg/jvm98/

[51] The Java Grande Forum Benchmark Suite

http://www.spec.org/osg/jvm98/

[52] M.Watheq El-Kharashi, Fayez Elguibaly, & Kin F.Li

“An operand extraction-based stack folding algorithm for Java processors”

Second Annual Workshop on Hardware Support for Objects and Microarchi-

tectures for Java, Austin, Texas, USA, September 2000, Pages 22–26.

[53] M.Watheq El-Kharashi, Fayez Elguibaly, & Kin F.Li

“Adapting Tomsaulo’s Algorithm for Bytecode Folding Based Java Processors”

ACM SIGARCH Computer Architecture News Volume 29 Issue 5, December

2001.

[54] Ramesh Radhakrishnan, Deependra Talla & Lizy Kurian John

“Allowing for ILP in an Embedded Java Processor”

In the Proceedings of the 27th International Symposium on Computer Archi-

tecture, Pages 294–305, June 2000.

[55] R. Radhakrishnan, N. Vijaykrishnan, L.K. John, A. Sivasubramaniam, J. Ru-

bio, & J. Sabarinathan

BIBLIOGRAPHY 243

“Java runtime systems: characterization and architectural implications”

IEEE Transactions on Computers, Vol 50, Issue 2, Feb. 2001, Pages 131-146.

[56] Ramesh Radhakrishnan & Ravi Bhargava, Lizy K. John

“Improving Java performance using hardware translation”

Proceedings of the 15th international conference on Supercomputing, June

2001.

[57] Iffat H. Kazi, Howard H. Chen, Berdenia Stanley & David J. Lilja

‘Techniques for obtaining high performance in Java programs”

ACM Computing Surveys (CSUR), Vol 32 Issue 3, September 2000.

[58] T.Suganuma et al

“Evolution of a Java just-int-time compiler for IA-32 platforms”

IBM Journal of Research and Development, IBM Research in Asia Issue, Vol

48 No 5/6, Pages 767-795, 2004.

[59] Terry Welch

“A Technique for High-Performance Data Compression”

IEEE Computer 17, Pages 8-19, 1984

[60] SimpleScalar LLC

http://www.simplescalar.com

[61] Gurindar S. Sohi

“Instruction Issue Logic for High-Performance, Interruptible, Multiple Func-

tional Unit, Pipelined Computers.”

IEEE transactions on Computers, Volume 39, Issue 3. Pages 349-359. March

1990.

[62] John Catsoulis

“Transputers - a short historical overview”

http://www.embedded.com.au/Reference/transputers.html

BIBLIOGRAPHY 244

[63] Chris Porthouse

“Jazelle(tm) technology: ARM(tm) acceleration technology for the Java(tm)

Platform”

White Paper, ARM Limited, September 2004.

Appendix A

SAFA Assembly Code and

Assembler

This appendix gives a brief run through of all currently supported assembly code.

Section A.1 to Section A.6 categorize and explain the assembly code according to the

instruction type. The assembler written for SAFA is briefly described in Section A.7

along with the assembly code syntax.

To shorten the instruction description, the following notations are used

throughout the sections:

Notation Description

B A prefix to denote the value take up 1 byte. e.g. BOffset means a 1 byte

offset value.

HW A prefix to denote the value take up half a memory word (2 bytes). e.g.

HWOffset means a 2 bytes offset value.

W A prefix to denote the value take up a memory word (4 bytes). e.g.

WOffset means a 4 bytes offset value.

245

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 246

W1.W2 Two words forming one value, for example, a double word integer.

FInfo Frame register information. The information for the frame register con-

sists of three words: FInfo1 contains the base address, FInfo2 contains

the item index and index limit, FInfo3 contains the interval (stripe) for

index increment and the size of the elements. Refer to Section 3.1.1 for

detailed explanation. When the frame information is on the stack, the

FInfo1 is assumed to be the bottommost of the three words and the

FInfo3 the topmost.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 247

A.1 Frame Register Instructions

The following abbreviations are used for the more frequently used frame registers.

Refer to Section 3.1.1 for more details on the types and composition of a frame

register.

CFP Current Frame Pointer, points to one of the Frame Registers. Some instruc-

tions can change the CFP as a side-effect.

PFP Previous Frame Pointer, points to one of the Frame Registers, automatically

take the CFP value when CFP changes.

OFR Own Frame Register, the Frame Register that contains information of the

current executing stack frame.

SAFA Stack Brief

Mnemonic Before After Description

cfsetX Set CFP to X, ranging from 0 to 7.

cfsetglobal Set CFP to the Global Frame Register.

cfsetcaller Set CFP to the Caller Frame Register.

cfsethost Set CFP to the Host Frame Register.

cfsetown Set CFP to the Host Frame Register.

cfload ,frm no Load the FR number stored in CFP to

stack.

pfload ,frm no Load the FR number stored in PFP to

stack.

cfpfswitch Switch CFP and PFP.

frloadX ,element Load the current element indexed by

FR X, ranging from 0 to 7. Does not

affect CFP.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 248

frstoreX . . . ,element . . . Store the element to location indexed

by FR X, ranging from 0 to 7. CFP

changed to X after execution.

idxstore . . . ,idx . . . Store idx from stack to index of CFP.

idxload ,index Load index of CFP to stack.

itvstore . . . ,itv . . . Store itv from stack to the interval field

of CFP.

cfincidx Increment the index of CFP, calculated

by Indexnew = Indexold +Interval+1.

idxlimitcmp , diff Calculate the difference diff of index

and limit of CFP.

cfdecidx Decrement the index of CFP, cal-

culated by Indexnew = Indexold −
Interval − 1.

cfb wload BOff-

set

. ,W Load a word W from location Base +

BOffset, where base is stored in CFP.

cfb wstore BOff-

set

. . . ,W . . . Store the word W to location Base +

BOffset, where base is stored in CFP.

cfhw wload

HWOffset

. ,W Load a word W from location Base +

HWOffset, where base is stored in

CFP.

cfhw wstore

HWOffset

. . . ,W . . . Store W to location Base +

HWOffset, where base is stored

in CFP.

baseloadidx . . . ,addr . . . Change CFP’s base to new address

addr and clear index.

baseload . . . ,addr . . . Change CFP’s base to new address

addr.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 249

hw addbase

HWOffset

. Add HWOffset to base of CFP.

b addbase BOff-

set

. Add BOffset to base of CFP.

newframe . . . ,W1,W2 . . . Create a new frame, using W1 as

FInfo2, W2 as FInfo3. The base of new

frame is calculated automatically. CFP

changed to this new frame after execu-

tion.

loadnextfrm . . . ,offset . . . ,

FInfo1,

FInfo2,

FInfo3

Load Frame Information from Base +

offset to stack, where Base is the base

of CFP.

ldfrmcur . . . ,offset . . . ,

FInfo1,

FInfo2,

FInfo3

Load Frame Information from Base +

offset to stack, where Base is the base

of CFP. The index is reset to zero.

cfinfoload ,

FInfo1,

FInfo2,

FInfo3

Load Frame Information of CFP to

stack.

cfinfoload0 ,FInfo1,

FInfo2,

FInfo3

Load Frame Information of CFP to

stack. The index field is set to zero.

cfinfostore . . . ,

FInfo1,

FInfo2,

FInfo3

. . . Store Frame Information from stack

into CFP.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 250

idxsetlimit . . . ,

FInfo1,

FInfo2,

FInfo3

. . . Store Frame Information from stack

into CFP. Set the index field to equal

to limit field.

frinfoload . . . ,addr . . . , FI-

nof1,

FInfo2,

FInfo3

Load Frame Info from address addr.

newarray . . . , E, S . . . ,

FInfo1,

FInfo2,

FInfo3

Create an Array of E number of ele-

ments, each element with size S. The

array is created as a new frame, with

frame info push onto stack.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 251

A.2 Direct Memory Access Instructions

SAFA Stack Brief

Mnemonic Before After Decription

0load ,0 Push Immediate Operand 0.

1load ,1 Push Immediate Operand 0.

ibload B ,B Push Immediate Operand B onto

stack.

nibload B . . . ,W . . . ,W2 Splice B onto W to get W2, i.e. the

last byte (least significant byte) of

W is replaced by B.

ihwload HW ,HW Push Immediate Operand HW onto

stack.

nihwload HW . . . ,W . . . ,W2 Splice HW onto W to get W2.

iwload W ,W Push Immediate Operand W onto

stack.

idwload DW ,W1,W2 Push Immediate Operand DW onto

stack.

X load . . . ,Addr . . . ,Value Load value from absolute address

Addr. X is size specifier: b, h, w

and dw for byte, halfword, word and

double-word respectively.

X store . . . ,Addr,V . . . Store value V to absolute address

Addr. X is size specifier: b, h, w

and dw.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 252

A.3 Integer Instructions

SAFA Stack Brief

Mnemonic Before After Decription

iadd . . . ,W1,W2 . . . ,W Integer (single word) Addition, W =

W1 + W2.

diadd . . . ,

WA1,WA2,

WB1,WB2

. . . ,

WC1,WC2

Integer (double word) Addition,

WC1.WC2 = WA1.WA2 +

WB1.WB2, where WC1.WC2

represent a double word integer.

isub . . . ,W1,W2 . . . ,W Integer (single word) Subtraction, W =

W1 − W2.

disub . . . ,

WA1,WA2,

WB1,WB2

. . . ,

WC1,WC2

Integer (double word) Subtrac-

tion, WC1.WC2 = WA1.WA2 −
WB1.WB2, where WC1.WC2 repre-

sent a double word integer.

imul . . . ,W1,W2 . . . ,W Integer (single word) Multiplication,

W = W1 × W2.

idiv . . . ,W1,W2 . . . ,Q,R Integer (single word) Division, Q =

W1 ÷ W2, R = W1%/W2.

inc . . . ,W1 . . . ,W Increment: W = W1 + 1

dec . . . ,W1 . . . ,W Decrement: W = W1 − 1

ieq . . . ,W1,W2 . . . ,W Comparison: Equal, W = (W1 ==

W2). True is represented as 1, false

0.

ineq . . . ,W1,W2 . . . ,W Comparison: Not Equal, W = (W1 �=
W2).

igt . . . ,W1,W2 . . . ,W Comparison: Greater than, W =

(W1 > W2).

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 253

ilt . . . ,W1,W2 . . . ,W Comparison: Less than, W = (W1 <

W2).

ige . . . ,W1,W2 . . . ,W Comparison: Greater than or Equal,

W = (W1 ≥ W2).

ile . . . ,W1,W2 . . . ,W Comparison: Less than or Equal, W =

(W1 ≤ W2).

ieqsign . . . ,W1,W2 . . . ,W Comparison: Whether W1 and W2 has

same sign.

ineqsign . . . ,W1,W2 . . . ,W Comparison: Whether W1 and W2 has

different sign.

ineg . . . ,W1 . . . ,W Integer Negation (2s complement),

W = −W1.

iand . . . ,W1,W2 . . . ,W Bitwise AND operation.

ior . . . ,W1,W2 . . . ,W Bitwise OR operation.

ixor . . . ,W1,W2 . . . ,W Bitwise XOR operation.

inotxor . . . ,W1,W2 . . . ,W Bitwise NOT-XOR operation.

iinv . . . ,W1 . . . ,W Bitwise Inversion.

imask . . . ,W1,W2 . . . ,W Bitwise Masking operation.

i2f . . . ,I . . . ,F Convert Integer I to Floating Point

Number F.

i2d . . . ,I . . . ,F1,F2 Convert Integer I to Double Floating

Point Number F1.F2.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 254

A.4 Floating Point Instructions

fadd . . . ,F1,F2 . . . ,F Floating Point (single word) Addition,

F = F1 + F2.

fsub . . . ,F1,F2 . . . ,F Floating Point (single word) Subtrac-

tion, F = F1 − F2.

fmul . . . ,F1,F2 . . . ,F Floating Point (single word) Multipli-

cation, F = F1 × F2.

fdiv . . . ,F1,F2 . . . ,F Floating Point (single word) Division,

F = F1 ÷ F2.

feq . . . ,F1,F2 . . . ,W Comparison: Floating Point Equal,

W = (F1 == F2). True is represented

as 1, false 0.

fneq . . . ,F1,F2 . . . ,W Comparison: Floating Point Inequal,

W = (F1 �= F2).

fgt . . . ,F1,F2 . . . ,W Comparison: Floating Point Greater,

W = (F1 > F2).

flt . . . ,F1,F2 . . . ,W Comparison: Floating Point Lesser,

W = (F1 < F2).

fge . . . ,F1,F2 . . . ,W Comparison: Floating Point Greater or

Equal, W = (F1 ≥ F2).

fle . . . ,F1,F2 . . . ,W Comparison: Floating Point Lesser or

Equal, W = (F1 ≤ F2).

feqsign . . . ,F1,F2 . . . ,W Comparison: Floating Point Equal

Sign.

fneqsign . . . ,F1,F2 . . . ,W Comparison: Floating Point Inequal

Sign.

f2i . . . ,F . . . ,I Convert Floating Point Number F to

Integer I.

f2d . . . ,F . . . ,F1,F2 Convert Floating Point Number F to

Double Floating Point Number F1.F2.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 255

dadd . . . ,

FA1,FA2,

FB1,FB2

. . . ,

FC1,FC2

Floating Point (double word) Addition,

FC1.FC2 = FA1.FA2 + FB1.FB2,

where FC1.FC2 represent a double

word floating point number.

dsub . . . ,

FA1,FA2,

FB1,FB2

. . . ,

FC1,FC2

Floating Point (double word) Sub-

traction, FC1.FC2 = FA1.FA2 −
FB1.FB2.

ddiv . . . ,FA1,FA2,

FB1,FB2

. . . ,

FC1,FC2

Floating Point (double word) Division,

FC1.FC2 = FA1.FA2 ÷ FB1.FB2.

dmul . . . ,

FA1,FA2,

FB1,FB2

. . . ,

FC1,FC2

Floating Point (double word) Multi-

plication, FC1.FC2 = FA1.FA2 ×
FB1.FB2.

deq . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating

Point Equal, W = (FA1.FA2 ==

FB1.FB2). True is represented as 1,

false 0.

dneq . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating Point In-

equal, W = (FA1.FA2 �= FB1.FB2).

dgt . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating

Point Greater, W = (FA1.FA2 >

FB1.FB2).

dlt . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating Point

Lesser, W = (FA1.FA2 < FB1.FB2).

dge . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating Point

Greater or Equal, W = (FA1.FA2 ≥
FB1.FB2).

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 256

dle . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating Point

Lesser or Equal, W = (FA1.FA2 ≤
FB1.FB2).

deqsign . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating Point

Equal Sign.

dneqsign . . . ,

FA1,FA2,

FB1,FB2

. . . ,W Comparison: Double Floating Point In-

equal Sign.

d2i . . . ,F1,F2 . . . ,I Convert Double Floating Point Num-

ber F1.F2 to Integer I.

d2f . . . ,F1,F2 . . . ,F Convert Double Floating Point Num-

ber F1.F2 to Floating Point Number

F.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 257

A.5 Branching Instructions

SAFA Stack Brief

Mnemonic Before After Decription

goto BOffset Branch to Program Counter (PC) +

BOffset.

wgoto WOffset Branch to Program Counter (PC) +

WOffset.

enter . . . ,Addr . . . Procedure Entry. The following con-

ditions must be met:

- PFP points to FR of Host of

Callee.

- CFP points to FR of Callee’s

stack frame.

- Callee address on stack as

Addr.

To facilitate the procedure calling,

an Assembler Macro penter is pro-

vided. Refer to Section A.7.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 258

return . . . ,Addr . . . Return from procedure. The follow-

ing conditions must be met:

- PFP points to FR of Host of

Caller.

- CFP points to FR of Caller’s

caller.

- Caller return address on stack

as Addr.

To setup the above conditions, the

Assembler Macro exit can be used.

Refer to Section A.7.

iftrue BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if W is true (one).

iffalse BOffset . . . ,W . . . Branch to PC + BOffset if W is false

(zero).

hw iftrue

HWOffset

. . . ,W . . . Branch to Program Counter (PC) +

HWOffset if W is true (one).

hw iffalse

HWOffset

. . . ,W . . . Branch to Program Counter (PC) +

HWOffset if W is false (zero).

ifgt BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if integer W is greater than

zero.

di ifgt BOffset . . . ,W1,W2 . . . Branch to Program Counter (PC) +

BOffset if double integer W1.W2 is

greater than zero.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 259

iflt BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if integer W is lesser than

zero.

di iflt BOffset . . . ,W1,W2 . . . Branch to Program Counter (PC) +

BOffset if double integer W1.W2 is

lesser than zero.

ifge BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if integer W is greater than

or equal zero.

di ifge BOffset . . . ,W1,W2 . . . Branch to Program Counter (PC) +

BOffset if double integer W1.W2 is

greater than or equal zero.

ifle BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if integer W is lesser than

or equal zero.

di ifle BOffset . . . ,W1,W2 . . . Branch to Program Counter (PC) +

BOffset if double integer W1.W2 is

lesser than or equal zero.

ifeq BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if integer W is equal to zero.

di ifeq BOffset . . . ,W1,W2 . . . Branch to Program Counter (PC) +

BOffset if double integer W1.W2 is

equal to zero.

ifne BOffset . . . ,W . . . Branch to Program Counter (PC) +

BOffset if integer W is not equal to

zero.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 260

di ifne BOffset . . . ,W1,W2 . . . Branch to Program Counter (PC) +

BOffset if double integer W1.W2 is

not equal to zero.

flag A special flag for debugging. Refer

to Section B.2 details.

halt Halt the execution.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 261

A.6 Stack Manipulation Instructions

SAFA Stack Brief

Mnemonic Before After Decription

shiftl N . . . ,W1 . . . ,W Bitwise Shirting Left. W = W1 << N ,

with N ranging from 1 to 32

shiftr N . . . ,W1 . . . ,W Bitwise Shifting Right. W = W1 >>

N , with N ranging from 1 to 32

popX . . . ,W1,

. . . , WX

. . . Erase X number of words from stack,

with X ranging from 1 to 6.

swap . . . ,W1,W2 . . . ,W2,W1 Reverse the two topmost words.

dwswap . . . ,

WA1,WA2,

WB1,WB2

. . . ,

WB1,WB2,

WA1,WA2

Reverse the two topmost double words.

dwbtcycle3 . . . ,

WA1,WA2,

WB1,WB2,

WC1,WC2

. . . WB1,WB2,

WC1,WC2,

WA1,WA2

Cycle the three topmost double words

from bottom to top.

dwtbcycle3 . . . ,

WA1,WA2,

WB1,WB2,

WC1,WC2

. . . WA1,WA2,

WC1,WC2,

WB1,WB2

Cycle the three topmost double words

from top to bottom.

btcycle3 . . . ,W1,

W2, W3

. . . , W2,

W3, W1

Cycle the three topmost words from

bottom to top.

tbcycle3 . . . ,W1,

W2, W3

. . . , W3,

W1, W2

Cycle the three topmost words from top

to bottom.

btcycle4 . . . ,W1,

W2, W3,

W4

. . . , W2,

W3, W4,

W1

Cycle the four topmost words from bot-

tom to top.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 262

tbcycle4 . . . ,W1,

W2, W3,

W4

. . . , W4,

W1, W2,

W3

Cycle the four topmost words from top

to bottom.

dup . . . ,W . . . ,W,W Replicate the topmost word.

dupX . . . ,W . . . , W, W,

. . . , W

Replicate the topmost word X times,

where X range from 2 to 4.

dwdup . . . , W1,

W2

. . . ,

W1,W2,

W1,W2

Replicate the topmost double word.

dwdupX . . . , W1,

W2

. . . ,

W1,W2,

. . . ,

W1,W2

Replicate the topmost double word X

times, where X range from 2 to 4.

hwdup . . . , HW . . . ,

HW.HW

Duplicate the halfword HW within one

word W, such that W is composed of

two identical HW.

bdup . . . , B . . . ,

B.B.B.B

Quadruplicate the byte B within one

word W, such that W is composed of

four identical B.

bsplit . . . , W . . . , B1,

B2, B3, B4

Split the topmost word W into four

bytes, where B1 is the most significant

byte and B4 the least.

hwsplit . . . , W . . . , HW1,

HW2

Split the topmost word W into two

halfwords, where HW1 is the more sig-

nificant half.

bcntbit . . . , B . . . , N Counts the number of ‘1’ bit in byte B.

hwcntbit . . . , HW . . . , N Counts the number of ‘1’ bit in half-

word HW.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 263

wcntbit . . . , W . . . , N Counts the number of ‘1’ bit in word

W.

dwcntbit . . . , W1,

W2

. . . Counts the number of ‘1’ bit in double

word W1.W2.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 264

A.7 SAFA Assembler Introduction

A SAFA assembly program, following the procedural paradigms, consists of a num-

ber of independent code modules (procedures). Each procedure contains two major

components:

1. Data Components: A number of parameters, which serves as “input” to the

procedure. A few local variables to be used as temporary storages.

2. Code Components: A sequence of assembly code to perform the required

computation.

The syntax for various components will be covered in the subsequent sec-

tions.

A.7.1 Syntax for Procedure

The syntax of a procedure is summarized in Figure A.1.

During execution, the data components of a procedure is encapsulated in

a stack frame. This special stack frame is named Own Stack Frame to distinguish

it from others. Information pertaining to OSF is stored in a special register Own

Frame Register (OFR). An example of stack frame is given in Figure A.2.

When a procedure is entered, the Current Frame Pointer (CFP) is auto-

matically set to OFR. The CFP can then be used to manipulate the local variables

and access the parameters. Because of this, a programmer must be careful when us-

ing frame register instructions (Section A.1) that alter the CFP automatically. The

CFP should be reset to OFR by the instruction setown under such cases. Before a

procedure is exited, the return value should be place on top of the stack. The CFP

will be reset to the caller’s OFR after procedure activation.

Other than the syntax above, there are some other semantic restrictions

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 265

PROC pName nPara nLocal

 code

label: code
 ...
 goto label

Procedure
Name

Number of
Parameters
(in words)

Number of
Local Variables

(in words)

Target Label
Code

Sequence

Figure A.1: Syntax for a Procedure in SAFA Assembly Code.

on the procedure definition:

1. There must be a procedure with the name “main” to serve as a starting point

of the program execution.

2. The definition of a procedure must precedes its activation. Currently, mutually

recursive procedures are not supported by the assembler.

A.7.2 Syntax for Data Values

In quite a number of the SAFA assembly code, the programmer is required to supply

a data value as operands, offset etc. For example the instruction cfb wload (refer

to Section A.1) requires a BOffset. A data value can be specified using one of the

following formats:

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 266

Return
Value

Dynamic
Link

(Frame Info)

Static
Link

(Frame Info)

Saved PC

Parameter
..

..

Local Variable
..

..

0x00

0x04

0x08

0x0c

0x10

0x14

0x18

0x1c

0x20

0x24

0x28

0x2c

0x30

0x34

0x38

Offset

Fixed

Variable

Figure A.2: Layout of a Procedure Stack Frame

Format Example Description

Decimal 1, 4096, -12345

etc

A decimal value can be simply

used without additional specifier

Hexadecimal x24, x1f, x1abc

etc

Use prefix ‘x’ to specify hexadec-

imal values.

Floating Point <f3.14>,

<f1.23e3>,

<f-1.72> etc

Use prefix ‘f’ and put the value

in enclosing caret signs ‘< ’ and

‘>’. Scientific notation of the

form mantissaeexponent is also

supported.

Double Floating Point <d3.1415927>,

<d3.45e10>,

<d-1.2> etc

Use prefix ‘d’ and put the value

in enclosing caret signs ‘<’ and

‘>’. Scientific notation of the

form mantissaeexponent is also

supported.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 267

As an example, to load the first parameter residing at offset 2416 of a

procedure onto a stack, we can use

cfb_wload x24

Or converting 2416 to 3610 and use

cfb_wload 30

To load the value of π onto stack, we can use the following code

iwload <f3.1415>

Unlike JVM byte-code, a data value has no type information after it is on

stack. Hence, the same iwload instruction can be use to load an integer, for example

12345 onto stack:

iwload 12345

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 268

A.7.3 Built in Assembly Macros

For the SAFA simulator, we decided to have no microcoded instruction at all. Each

instruction would just perform a very simple task, which conceivably can be com-

pleted under one time tick. For example, the procedure activation “enter” instruc-

tion (refer to Section A.5) just jump to the destined procedure address and change

the few special frame registers (the Own, Host, Caller) accordingly. The task of

setting up the callee stack frame, which includes setting up dynamic link, static link

etc is assumed to be the programmer’s task. Although this improves the accuracy

of the simulator, this add considerably burden to the programmer. To ease the

programming task, a number of commonly used code sequences are packaged into

macros. These macros are only valid at the assembly level, which will be expanded

automatically during assembly process. The following table summarize the available

macros in SAFA:

SAFA Stack Brief

Macro Before After Decription

PENTER

FR,ProcName

. . . ,

Param1,

. . . ,

ParamN

. . . Setup the callee frame and then acti-

vate the target procedure ProcName.

The frame register to hold the new

stack frame during construction is spec-

ified by FR, ranging from 0 to 7. Note

that the original content of the frame

register FR will be destroyed. The pa-

rameters for the target procedure must

be loaded onto the stack starting from

left to right i.e. last parameter should

be the topmost on the stack.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 269

SAFA Stack Brief

Macro Before After Decription

EXIT FR1,FR2 . . . , Result . . . , Result Exit the current procedure. The re-

quired information for the return in-

struction (refer to Section A.5) will be

setup automatically, using frame regis-

ter FR1 and FR2 as temporary stor-

age. The original content for these two

frame registers will be destroyed.

SAVEFRM

FR,BOffset

. Save the information of frame register

FR onto the own stack frame at offset

BOffset. It is the responsibility of the

callee procedure to preserve the content

of the all the frame registers upon re-

turning. So, before using a frame regis-

ter, a procedure is required to save the

information for later restoration.

RESTOREFRM

FR,BOffset

. Restore the frame register information

stored at offset BOffset to frame regis-

ter FR. Usually used before a proce-

dure return to restore the content of

any used frame registers.

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 270

A.7.4 Sample Translation

Given a simple C-like high level language program as follows:

int Multiply(int x, int y)

{

int result;

result = x * y;

return result;

}

void main()

{

int a;

a = Multiply(3,5);

}

The corresponding SAFA assembly code is given below:

PROC Multiply 2 1

cfb_wload x24

cfb_wload x28

imul

cfb_wstore x2c

EXIT 1,2

PROC main 0 1

ibload 3

ibload 5

PENTER 3,Multiply

cfb_wstore x24

APPENDIX A. SAFA ASSEMBLY CODE AND ASSEMBLER 271

A.7.5 Using the assembler

The SAFA assembler safaAs is written using yacc and lex, both from the software

suite Software Generation Utilities for Solaris-ELF 4.0 and compiled by gcc (v2.95.2

for Solaris).

A two passes assembly process is used:

1. Invoke by safaAs 1Pass ¡ SAFA Assembly Program.

2. Invoke by safaAs output file ¡ SAFA Assembly Program.

A simple script assembler is provided to perform the two passes. The

syntax is as follows:

assembler SAFA_Assembly_Program Output_File

As a convention, the assembly program uses the extension “.d”, where as

the SAFA binary uses the extension “.safa”.

Appendix B

SAFA Simulator

In Section 5.1, we mentioned that a software simulator of the SAFA architecture

is built for experimentation. A brief introduction is given in this appendix, for the

various versions of the simulator. The main difference for the versions are basically

in the presentation i.e. user interface with the same underlying execution core. In

Section B.1, the simplest bare-bone version is introduced. The more user-friendly

and information-rich version is presented in Section B.2.

The software tools used in building these versions are listed below:

Platform Sunfire 4800 server with 8 CPUs.

Compiler gcc version 2.95.2 19991024 (release).

GUI Tcl/Tk version 8.0.

B.1 Simulator in Plain Text

This version of simulator is suitable for a quick execution of SAFA binary. The

binary is loaded and executed until the halt instruction is encountered, or a maximum

number of time ticks specified by user elapsed. Only a statistic file, an optional

272

APPENDIX B. SAFA SIMULATOR 273

memory dump and an optional final machine state information are available at the

termination of the simulation. Since it is not possible to get any other information

during execution, this version is best for gathering benchmark result. If debugging

or more detailed in-execution information are required, the GUI version in the next

section would be more suitable.

The command and arguments to invoke this simulator is given below:

safaHalt input.safa [-d flags] [-tick tickLimit] [-c configFile]

[-memdump] [-trace] [-f statFile]

The usage of the options and arguments is summarized in the following table:

Options Arguments Description

-d Enable debugging messages for the Simulator. Depending on

the arguments, one or more units in the SAFA simulator will

output debug message every time tick. Causes extreme slow

down of the simulation and generate huge amount of informa-

tion on screen.

f Enable debug messages for fetch unit.

d Enable debug messages decode unit

i Enable debug messages issue unit

e Enable debug messages execution units

m Enable debug messages memory

s Enable debug messages cpu

o Enable debug messages instructions

r Enable debug messages frame register

+ Turn on all debug messages

-tick tickLimit The tickLimit determines the maximum number of time ticks

for the simulation. The default value is 30000.

APPENDIX B. SAFA SIMULATOR 274

-c configFile Configures the various units in SAFA simulator according to

the information in the file configFile. The format is given in

Section B.1.1. The default configuration file used is “safa.cfg”

in the working directory.

-memDump - Output the memory state at the end of simulation. Format is

given in Section B.1.3.

-trace - Output the CPU state at the end of simulation. Format is

given in Section B.1.3.

-f statFile Produce the statistic in the file “statFile” instead of the de-

fault file name “stat.dat” in the working directory.

B.1.1 Configuration File

As mentioned in Section 5.4, various hardware parameters are available for tweak-

ing to setup different execution models. To facilitate frequent modification, these

parameters are grouped and stored in a configuration file. A sample is given in

Figure B.1. As can be seen, each set of parameters is preceded by a descriptive line,

which should make the file quite self-explanatory.

B.1.2 Statistic File

This is arguably the most important file for a simulation. It is generated automati-

cally after each simulation, containing statistic information for all the units in SAFA

simulator. For all the data reported, they are accompanied by informative messages,

which allow easy interpretation and understanding. A sample statistic file is given

in Figure B.2

APPENDIX B. SAFA SIMULATOR 275

Fetch Size (multiples of four)

8

Multiple Decode/Issue Rate

1

Issue Q Threshold (# of instructions)

1

Instruction Queue Size

24

Reorder Buffer Size: VTag Size,Driz In,Out Threshold

16

32

4

12

Integer Exe Unit: nUnits, resrv entries + pipeline stages

1

4

2

Float Exe Unit: nUnits, resrv entries + pipeline stages

1

4

4

Load/store unit: resrv entries + ports + store delay

8

4

1

Cache: Hit Delay, Miss Delay

1

4

Instruction Cache: On/Off, #blocks, blockSize, #set.

0

8

4

4

Data Cache: On/Off, #blocks, blockSize, #set.

0

8

4

4

Frm Inst Unit: max exe, entries

1

8

Memory Size (in bytes, multiples of four)

8192

Branch Predictor, on/off, maxlevel

0

3

Figure B.1: Sample Configuration File

APPENDIX B. SAFA SIMULATOR 276

Statistic for Executing sample_source/linpack10_CONV.safa.

Configuration Config/I4_BP.cfg

******** SAFA Configuration *****

Aggressive Mode: OFF

Memory Size 8192 bytes

Instruction Queue Size = 24 bytes

Decode/Issue Rate = 4 instruction(s)

Issue/Decode Queue Threshold = 4 instruction(s)

Reorder Buffer with

RTAG = 16, VTAG = 32, Drizzle [In = 4|Out = 12]

Frame Instruction Queue Size = 8 instruction(s)

Branch Predictor : 1, Max Level : 3

******* Statistic for SAFA *****

Stall Statistics:

Issued Q > Threshold : 7862

Decoded Q > Threshold : 585

Branching : 4214 times

Switch to new address: 1829 times

******* Statistic for Fetch Unit *****

Number of Ticks: 29934

Stalled: 16158 tick(s)

Bytes Fetched: 108137 byte(s)

******* Statistic for Fetch Unit End *****

******* Statistic for Instruction Cache *****

Number of Ticks: 29934

Total Access: 0

Hit: 0

Hit percentage = NaN

******* Statistic for Instruction Cache End *****

******* Statistic for Decode Unit *****

Number of Ticks: 29934

Stalled: 11513 tick(s)

No Decode: 17774 tick(s)

Empty Queue: 2312 tick(s)

Partial Decoding: 280

Total Inst Decoded: 36263

Branch Encountered: 2625 inst(s)

Cannot Speculate: 6835 inst(s)

******* Statistic for Decode Unit End ****

Figure B.2: Sample Statistic File (Part1)

APPENDIX B. SAFA SIMULATOR 277

******* Statistic for Branch Predictor *****

Predicted : Total 1405 Times

True : 0 Time(s)

False : 1405 Time(s)

Correct Predictions : 1098

Percentage : 78.149%

******* Statistic for Branch Predictor End *****

******* Statistic for Issue Unit *****

Strict Issue: Disabled

Number of Ticks: 29934

Stalled: 7862 tick(s)

Virtual Tag Usage: Total = 234756, Avg = 7

Real Tag Usage: Total = 44989, Avg = 1

Drizzle: Out = 0 Failed = 0, In = 0 Failed = 0

Inst Issued: 31205 inst(s)

Int Inst: 8409 inst(s)

Float Inst: 1567 inst(s)

Mem Int: 3166 inst(s)

Freg Int: 15438 inst(s)

Branch Int: 2625 inst(s)

Immediate Inst: 5029 inst(s)

Total Ticks Not Issuing Any Insts: 19117 tick(s)

Not Issued Due to RoB Overflow: 0 inst(s)

Not Issued Due to RoB Underflow: 0 inst(s)

Not Issued Due to VTag: 0 inst(s)

Not Issued Due to No Decode: 11255 tick(s)

******* Statistic for Issue Unit End *****

******* Statistic for Frame Inst Unit *****

Number of Ticks: 29934

Inst Executed: 15438 inst(s)

Mem Inst: 13201 inst(s)

Queue Full for : 151 tick(s)

******* Statistic for Frame Inst Unit End *****

******* Statistic for Int 1 Exe Unit *****

Number of Ticks: 29934

Inst Executed: 7885 inst(s)

Pipe Full: 2610 tick(s)

RS Full: 5087 tick(s)

Idle: 9114 tick(s)

******* Statistic for Int 1 Exe Unit End *****

Figure B.3: Sample Statistic File(Part2)

APPENDIX B. SAFA SIMULATOR 278

******* Statistic for Flt 1 Exe Unit *****

Number of Ticks: 29934

Inst Executed: 1450 inst(s)

Pipe Full: 0 tick(s)

RS Full: 0 tick(s)

Idle: 17359 tick(s)

******* Statistic for Flt 1 Exe Unit End *****

******* Statistic for Brn Exe Unit *****

Number of Ticks: 29934

Inst Executed: 2622 inst(s)

Pipe Full: 2622 tick(s)

RS Full: 354 tick(s)

Idle: 17506 tick(s)

******* Statistic for Brn Exe Unit End *****

******* Statistic for Load/Store Unit *****

Number of Ticks: 29934

Load Inst: 13071 inst(s)

Store Inst: 3655 inst(s)

Port Full: 139 tick(s)

RS Full: 0 tick(s)

Idle: 8333 tick(s)

******* Statistic for Load/Store Unit End *****

******* Statistic for Data Cache *****

Number of Ticks: 29934

Total Access: 12183

Hit: 12183

Hit percentage = 1.00

******* Statistic for Data Cache End *****

******* Statistic for SAFA End *****

Figure B.4: Sample Statistic File (Part 3)

APPENDIX B. SAFA SIMULATOR 279

....

<0x0000000c> | b1 04 3c 3a

<0x00000010> | 2b 2c 24 44

<0x00000014> | 04 fd 42 00

<0x00000018> | 46 00 01 ff

<0x0000001c> | c4 46 00 15

<0x00000020> | 00 08 03 44

<0x00000024> | 04 00 34 2d

<0x00000028> | 3c 2d 38 2d

....

Figure B.5: Sample Memory Dump File (Partial)

B.1.3 Memory Dump and CPU State

As the plain-text version simulator does not give any information during execution,

it is sometime needed to check the final machine state for confirmation that the

execution has been performed correctly1. If the correctness of the execution needs

to be confirmed, then a per time tick execution state must be inspected. For such

cases, the GUI version of the simulator would be more suitable.

A complete machine state is formed by the main memory state (all memory

values) and the CPU state (all components state). The memory state is stored in a

file, which is conventionally named as memory dump file, with the following format:

<Memory Address> | byte_0 byte_1 byte_2 byte_3

A partial memory dump can be found in Figure B.5 which listed a part of the

memory space.

For the CPU state (or conventionally known as CPU trace), the following

information is included:

PC and NextPC The current program counter and the program counter for the

1Note that although highly unlikely, a machine state can still be correct even when the execution

is wrong

APPENDIX B. SAFA SIMULATOR 280

****** TimeTick = 1510 Starts ******

PC = <0x0000073a> NextPC = <0x0000073a>

*Issue Unit Information Starts *

RoB Usage2 | Free 18 | OTS 2

Operands Tag Stack

-=-=-=-=-=-=-=-=-=

RT 1 => RoBEntry [1e|54|1|W]

RT 0 => RoBEntry [09|4a|1|W]

*Issue Unit Information Ends *

Issue Output:

Resrv.Entry No.1 : <0x50> for Integer Unit

Frame Instruction Unit Information Starts

Frame Registers :

No.0 FR[B<00000000>|L<00000>|I<00000>|S<000>|It<000>] READY

.............. Removed....................

No.7 FR[B<00000000>|L<00000>|I<00000>|S<000>|It<000>] READY

Global: FR[B<000007e0>|L<00008>|I<00000>|S<004>|It<000>] READY

Host: FR[B<000007e0>|L<00008>|I<00000>|S<004>|It<000>] READY

Caller: FR[B<00000800>|L<00286>|I<00000>|S<004>|It<000>] READY

Own: FR[B<00000c78>|L<00016>|I<00008>|S<004>|It<000>] READY

CFR[8] PFP[11]

*Frame Instruction Unit Information Ends *

****** TimeTick = 1510 End ******

Figure B.6: Sample CPU Trace File (Abridged)

next time tick.

Issue Unit Information The information for operands tag stack, as well as issued

instructions are listed.

Frame Register Information The detailed information for each of the frame reg-

isters are reported.

A abridged example of the CPU trace is given in Figure B.6.

APPENDIX B. SAFA SIMULATOR 281

B.2 Simulator with GUI

The plain text SAFA simulator discussed previously is best suited to simply finished

a SAFA program execution. If the behavior of the SAFA architecture is to be studied

more deeply, then the GUI version would be much more handy. The GUI SAFA

simulator is built specifically to give full control to the user. Some of the main

features for this simulator are:

- A per time tick view of the machine state.

- Fuller information for all components.

- Inspection and conversion of values stored in memory.

- Turning on/off debug messages at run time.

The command to invoke this simulator, which is very close to the plain

text version is given as follows:

safa_tk input.safa [-d flags] [-tick tickLimit] [-c configFile]

[-memdump] [-trace] [-f statFile]

The various options and arguments are interpreted in the same way as in Section B.1.

Figure B.7 shows a screen snapshot of this simulator in work. The panels for the

individual components will be described in details next.

APPENDIX B. SAFA SIMULATOR 282

F
ig

u
re

B
.7

:
S
A

F
A

S
im

u
la

to
r

G
U

I
v
1.

5
S
cr

ee
n

S
h
ot

APPENDIX B. SAFA SIMULATOR 283

B.2.1 Main Control Panel

Emulator
Control

Register
Content

Execution
Control

Main Control Panel

Figure B.8: Main Control Panel GUI

The main control panel shown (Figure B.8) contains system-side informa-

tion and serves as the control center of the simulation. The information provided are

basically the value of the few register in the simulator, summarized in the following

tables.

APPENDIX B. SAFA SIMULATOR 284

Register Description

Program Counter The address of the current instruction, in hexadecimal.

NextPC The address of the next instruction, in hexadecimal.

TOS in Mem When RoB overflows, part of the stack will be ship off to main

memory and TOS is used to keep track of the Top Of Stack.

BOS Likewise, BOS keep track of the Bottom Of Stack in memory.

Branch Stall Not exactly a register, it is actually just a signal whether the sys-

tem is stalled (fetching and decoding stopped) because of branch

instruction.

To conduct the simulation, the following commands are provided:

Button Input Description

Go! Nticks The simulator executes Nticks cycles.

Look! Opcode The simulator executes until the Opcode is found (decoded). If

the assembly code is embedded with flag instruction, this can

serves as a debugging mechanism.

Halt - The simulator executes until the halt instruction is decoded.

Exit - Shutdown the simulator.

Reset - Reset the simulator.

Other less frequently used options are grouped under a pop-up menu (click

on the “Option” button). The options are:

APPENDIX B. SAFA SIMULATOR 285

Option Description

Memory Map Switching on/off of the display for memory unit.

Memory Dump Dump the current memory content to the file “MemDump.dat”.

CPU Trace Capture the current CPU state in the file “Trace.dat”.

Cache Panel Show the instruction and data cache panels.

Debug Flags Set/Un-set the Simulator debug messages. These messages are

shown on the standard output.

APPENDIX B. SAFA SIMULATOR 286

B.2.2 Components Window

Fetch Unit

Fetch
Buffer

Status

Target
Address

Usage

Fetch Unit

Figure B.9: Fetch Unit GUI

Field Format Description

Fetch Buffer Index :0xValue Buffer for fetched code. Index shows the rel-

ative position of each byte Value.

Target Address 0x:Addr Next fetching target. Note that this may be

far advanced compared to the PC because of

the fetch ahead.

Usage Cur/Max Current number Cur of maximum Max tem-

porary storage used.

Status Ok or Stl Whether the unit is working Ok or stalled

Stl.

APPENDIX B. SAFA SIMULATOR 287

Decode Unit

Decoded
Instructions

Status

Instruction
Queue

Decode Unit

Figure B.10: Decode Unit GUI

Field Format Description

Instruction

Queue

Index :0xValue Buffer for the byte codes. Index shows the

relative position of each byte Value.

Status Ok or Stl Whether the unit is working (Ok) or stalled

(Stl).

APPENDIX B. SAFA SIMULATOR 288

Field Format Description

Decoded

Instructions

SP [Mne OP]

[PL|T{Push}|Pop}|Imp] SP Whether the instruction can be

speculated (SI) or not (I).

SI Instruction that can be specu-

lated.

I Non-speculative Instruction.

Mne SAFA Assembly Mnemonic.

OP Opcode.

PL Prediction Level.

Push Number of tags pushed.

Pop Number of tags poped.

Imp Implementation status: O =

implemented, X = not imple-

mented.

APPENDIX B. SAFA SIMULATOR 289

Issue Unit

Reorder
Buffer
Entries

Format:
Virtual Tag
[Idle/Opcode |
Use Count |
Available/Waiting]

Operand Tag Stack
(Top to Bottom)

Status
(Ok / Stall)

Issue Unit

Instruction
Issued

Figure B.11: Issue Unit GUI

Field Format Description

RoB Entry T [OP | UC | ST]

T Virtual Tag Number assigned.

OP Opcode of the producer instruction.

UC Use count of the entry.

ST Status: W = waiting, A = available.

APPENDIX B. SAFA SIMULATOR 290

Field Format Description

Operand Tag Tag |PL

Tag Virtual Tag Number.

PL Associated Prediction Level.

Issued Instrcution EU.OP |PL

EU Execution Unit for this instruction.

OP Opcode of this instruction.

PL Associated Prediction Level.

APPENDIX B. SAFA SIMULATOR 291

Frame Register Unit

Frame
Pointers

Frame Register Unit

Special
Frame

Registers

Frame
Registers

Figure B.12: Frame Register Unit GUI

Field Format Description

General

Frame Regis-

ter Informa-

tion

|BA|Lmt |Idx | Sze|Itv |
BA Base Address, in hexadecimal.

Lmt Upperbound of number of

items, in decimal.

Idx Index of current item, in deci-

mal.

Sze Size (number of bytes) of one

item, in decimal.

Itv Interval to skip while moving

index (number of items), in

decimal.

APPENDIX B. SAFA SIMULATOR 292

Special Frame

Register

Same As General Frame

Register

Same As Above

Frame

Pointer

FrNum The CFP and PFP, can be either

general frame registers (from 0 to

7) or special registers (Global, Host,

Caller, Own).

APPENDIX B. SAFA SIMULATOR 293

Branch Predictor Unit

Prediction Entry

Branch Predictor Unit

Maximum
Prediction

Level

On / Off

Figure B.13: Branch Predictor Unit GUI

Field Format Description

On/Off 0 or 1 Whether the predictor is on (1 or off (0)

Maximum N N is the maximum allowed prediction levels.

Prediction Entry [OP |PLO/PLN]

<TF |TAddr|FAddr> OP Opcode of the branch instruction.

PLO Old Prediction Level, i.e. before spec-

ulating on this new branch.

PLN New Prediction Level after speculat-

ing on this branch.

TF Predicted outcome: True or False.

TAddr PC value if the outcome is true.

FAddr PC value if the outcome is false.

APPENDIX B. SAFA SIMULATOR 294

Execution Unit

Pipeline Status

Execution Unit

Recently Executed
Instruction & Result

Reservation
Station

Figure B.14: Execution Unit GUI

Field Format Description

Reservation

Station

Entry

OP [D : {Opr}]
[S :{Opr} PL] OP Opcode of the instruction.

D Destination (output) of the instruction.

S Source (input) of the instruction.

Opr Operand Status: OK = value acquired,

TNum = tag number of unavailable value.

PL Associated Prediction Level.

APPENDIX B. SAFA SIMULATOR 295

Memory Unit

Display Status

Memory Unit

Conversion

Memory
Content

Conversion
Result

Figure B.15: Memory Unit GUI

Field Format Description

Memory Value Addr | B1 B2 B3B4

Addr Address of the one memory word, in

hexadecimal.

BN Individual byte, in hexadecimal.

A memory word can be selected via mouse

click.

APPENDIX B. SAFA SIMULATOR 296

Conversion - Allow conversion to integer and floating

point of the selected memory word.

Conversion Result F:FRes I:IRes

FRes Selected memory word in floating

point.

IRes Selected memory word in integer.

Appendix C

SAFA Benchmark Programs

C.1 Sieve of Erathosthense

PROC Sieve 2 3

ibload 0

cfb_wstore x2c

forLoop: cfb_wload x2c

cfb_wload x28

ige

iftrue forLoopEnd

cfb_wload x24

cfb_wload x2c

iadd

ibload 1

bstore

cfb_wload x2c

inc

cfb_wstore x2c

goto forLoop

forLoopEnd: ibload 2

cfb_wstore x30

whileLoop: cfb_wload x30

cfb_wload x28

ige

iftrue end

cfb_wload x30

ibload 2

imul

cfb_wstore x34

innerFor: cfb_wload x34

cfb_wload x28

ige

iftrue innerForEnd

cfb_wload x24

cfb_wload x34

iadd

ibload 0

bstore

cfb_wload x34

cfb_wload x30

iadd

cfb_wstore x34

goto innerFor

innerForEnd: cfb_wload x30

inc

cfb_wstore x30

innerWhile: cfb_wload x30

cfb_wload x28

ige

iftrue whileLoop

cfb_wload x24

cfb_wload x30

iadd

bload

ifeq innerWhileEnd

297

APPENDIX C. SAFA BENCHMARK PROGRAMS 298

goto whileLoop

innerWhileEnd:

cfb_wload x30

inc

cfb_wstore x30

goto innerWhile

end: exit 1,2

PROC main 0 2

ibload 100

cfb_wstore x24

cfb_wload x24

ibload 1

newarray

pop2

cfb_wstore x28

cfb_wload x28

cfb_wload x24

penter 3,Sieve

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 299

C.2 Bubble Sort

PROC LCG 5 2

ibload 1

cfb_wstore x3c

ibload 0

cfb_wstore x38

loop: cfb_wload x38

cfb_wload x28

ige

iftrue end

cfb_wload x2c

cfb_wload x3c

imul

cfb_wload x30

iadd

cfb_wload x34

idiv

cfb_wstore x3c

pop

cfb_wload x24

cfb_wload x38

ibload 4

imul

iadd

cfb_wload x3c

wstore

cfb_wload x38

inc

cfb_wstore x38

goto loop

end: exit 1,2

PROC BubbleSort 2 3

doLoop: ibload 0

cfb_wstore x2c

ibload 0

cfb_wstore x30

forLoop: cfb_wload x30

cfb_wload x28

dec

ige

iftrue forEnd

cfb_wload x24

cfb_wload x30

ibload 4

imul

iadd

wload

cfb_wload x24

cfb_wload x30

inc

ibload 4

imul

iadd

wload

ile

iftrue forUpdate

cfb_wload x24

cfb_wload x30

ibload 4

imul

iadd

wload

cfb_wstore x34

cfb_wload x24

cfb_wload x30

ibload 4

imul

iadd

cfb_wload x24

cfb_wload x30

inc

ibload 4

imul

iadd

wload

wstore

cfb_wload x24

cfb_wload x30

inc

APPENDIX C. SAFA BENCHMARK PROGRAMS 300

ibload 4

imul

iadd

cfb_wload x34

wstore

ibload 1

cfb_wstore x2c

forUpdate: cfb_wload x30

inc

cfb_wstore x30

goto forLoop

forEnd: cfb_wload x2c

ifne doLoop

end: exit 1,2

PROC main 0 2

ibload 50

cfb_wstore x24

cfb_wload x24

ibload 4

newarray

pop2

cfb_wstore x28

cfb_wload x28

cfb_wload x24

ihwload 1277

ibload 0

iwload 131012

penter 3,LCG

cfb_wload x28

cfb_wload x24

penter 3,BubbleSort

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 301

C.3 Bubble Sort: Frame Register Version

PROC LCG 5 2

....

Same As LCG in Bubble Sort

....

....

....

PROC BubbleSort 4 6

SAVEFRM 4 x40

ibload x24

loadnextfrm

cfset4

cfinfostore

cfsetown

doLoop:

ibload 0

cfb_wstore x34

ibload 0

cfset4

idxstore

forLoop:

idxlimitcmp

inc

ifge forEnd

frload4

cfincidx

frload4

ile

iftrue forUpdate

frload4

cfdecidx

frload4

swap

frstore4

cfincidx

frstore4

cfsetown

ibload 1

cfb_wstore x34

forUpdate:

cfset4

goto forLoop

forEnd:

cfsetown

cfb_wload x34

ifne doLoop

end:

RESTOREFRM 4 x40

exit 1,2

PROC main 0 1

ibload 10

cfb_wstore x24

cfb_wload x24

ibload 4

newarray

cfset4

cfinfostore

cfinfoload

cfsetown

cfb_wload x24

ihwload 1277

ibload 0

iwload 131012

penter 3,LCG

cfset4

cfinfoload

cfsetown

cfb_wload x24

penter 3,BubbleSort

APPENDIX C. SAFA BENCHMARK PROGRAMS 302

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 303

C.4 Fibonacci Series

PROC fib 1 0

cfb_wload x24

ifne not0

ibload 0

exit 1,2

not0:

cfb_wload x24

ibload 1

ineq

iftrue not1

ibload 1

exit 1,2

not1:

cfb_wload x24

ibload 1

isub

penter 3,fib

cfb_wload x24

ibload 2

isub

penter 3,fib

iadd

exit 1,2

PROC main 0 3

ibload 10

penter 3,fib

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 304

C.5 Quick Sort

PROC LCG 5 2

....

Same As LCG in Bubble Sort

....

....

....

PROC QuickSort 3 4

cfb_wload x28

cfb_wstore x30

cfb_wload x2c

cfb_wstore x34

cfb_wload x24

cfb_wload x28

cfb_wload x2c

iadd

ibload 2

idiv

pop

ibload 4

imul

iadd

wload

cfb_wstore x3c

outer:

cfb_wload x30

cfb_wload x34

ige

iftrue outerEnd

iLoop:

cfb_wload x24

cfb_wload x30

ibload 4

imul

iadd

wload

cfb_wload x3c

ige

iftrue jLoop

cfb_wload x30

inc

cfb_wstore x30

goto iLoop

jLoop:

cfb_wload x24

cfb_wload x34

ibload 4

imul

iadd

wload

cfb_wload x3c

ile

iftrue switch

cfb_wload x34

dec

cfb_wstore x34

goto jLoop

switch:

cfb_wload x30

cfb_wload x34

igt

iftrue outer

cfb_wload x24

cfb_wload x30

ibload 4

imul

iadd

wload

cfb_wstore x38

cfb_wload x24

cfb_wload x30

ibload 4

imul

iadd

cfb_wload x24

cfb_wload x34

ibload 4

imul

iadd

APPENDIX C. SAFA BENCHMARK PROGRAMS 305

wload

wstore

cfb_wload x24

cfb_wload x34

ibload 4

imul

iadd

cfb_wload x38

wstore

cfb_wload x30

inc

cfb_wstore x30

cfb_wload x34

dec

cfb_wstore x34

goto outer

outerEnd:

cfb_wload x28

cfb_wload x34

ige

iftrue secondHalf

cfb_wload x24

cfb_wload x28

cfb_wload x34

penter 3,QuickSort

secondHalf:

cfb_wload x30

cfb_wload x2c

ige

iftrue end

cfb_wload x24

cfb_wload x30

cfb_wload x2c

penter 3,QuickSort

end: exit 1,2

PROC main 0 2

ibload 50

cfb_wstore x24

cfb_wload x24

ibload 4

newarray

pop2

cfb_wstore x28

cfb_wload x28

cfb_wload x24

ihwload 1277

ibload 0

iwload 131012

penter 3,LCG

cfb_wload x28

ibload 0

cfb_wload x24

dec

penter 3,QuickSort

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 306

C.6 Student Array: Conventional Array Access

PROC main 0 7

ibload 1

cfb_wstore x28

ibload 100

cfb_wstore x2c

ibload 200

ibload 4

newarray

pop2

cfb_wstore x34

ibload 0

cfb_wstore x24

init:

cfb_wload x24

cfb_wload x2c

ige

iftrue initEnd

cfb_wload x24

ibload 8

imul

cfb_wload x34

iadd

cfb_wload x24

wstore

ihwload 1277

cfb_wload x28

imul

ibload 101

idiv

cfb_wstore x28

pop

cfb_wload x24

ibload 8

imul

ibload 4

iadd

cfb_wload x34

iadd

cfb_wload x28

wstore

cfb_wload x24

inc

cfb_wstore x24

goto init

initEnd:

ibload 0

cfb_wstore x30

ibload 0

cfb_wstore x24

sum:

cfb_wload x24

cfb_wload x2c

ige

iftrue sumEnd

cfb_wload x30

cfb_wload x24

ibload 8

imul

ibload 4

iadd

cfb_wload x34

iadd

wload

iadd

cfb_wstore x30

cfb_wload x24

inc

cfb_wstore x24

goto sum

sumEnd:

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 307

C.7 Student Array: Frame Register and Index

PROC main 0 7

ibload 1

cfb_wstore x28

ibload 100

cfb_wstore x2c

ibload 200

ibload 4

newarray

cfset4

cfinfostore

ibload 0

cfsetown

cfb_wstore x24

init:

cfb_wload x24

cfb_wload x2c

ige

iftrue initEnd

cfb_wload x24

frstore4

cfset4

cfincidx

ihwload 1277

cfsetown

cfb_wload x28

imul

ibload 101

idiv

cfb_wstore x28

pop

cfb_wload x28

cfset4

frstore4

cfincidx

cfsetown

cfb_wload x24

inc

cfb_wstore x24

goto init

initEnd:

ibload 0

cfb_wstore x30

ibload 0

cfb_wstore x24

cfset4

ibload 1

idxstore

ibload 1

itvstore

cfsetown

sum:

cfb_wload x24

cfb_wload x2c

ige

iftrue sumEnd

cfb_wload x30

frload4

cfincidx

iadd

cfsetown

cfb_wstore x30

cfb_wload x24

inc

cfb_wstore x24

goto sum

sumEnd:

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 308

C.8 Student Array: Frame Register and Offset

PROC main 0 10

ibload 1

cfb_wstore x28

ibload 100

cfb_wstore x2c

ibload 200

ibload 4

newarray

cfset4

cfinfostore

ibload 0

cfsetown

cfb_wstore x24

init:

cfb_wload x24

cfb_wload x2c

ige

iftrue initEnd

cfb_wload x24

frstore4

cfset4

cfincidx

ihwload 1277

cfsetown

cfb_wload x28

imul

ibload 101

idiv

cfb_wstore x28

pop

cfb_wload x28

cfset4

frstore4

cfincidx

cfsetown

cfb_wload x24

inc

cfb_wstore x24

goto init

initEnd:

ibload 0

cfb_wstore x30

ibload 0

cfb_wstore x24

cfset4

cfinfoload

swap

pop

iwload x20001

swap

cfset5

cfinfostore

cfsetown

sum:

cfb_wload x24

cfb_wload x2c

ige

iftrue sumEnd

cfb_wload x30

frload5

iadd

b_addbase 8

cfsetown

cfb_wstore x30

cfb_wload x24

inc

cfb_wstore x24

goto sum

sumEnd:

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 309

C.9 Student List: Conventional Linked List Traver-

sal

PROC main 0 6

ibload 1

cfb_wstore x28

ibload 100

cfb_wstore x2c

ibload 0

cfb_wstore x24

ibload 0

cfb_wstore x34

init:

cfb_wload x24

cfb_wload x2c

ige

iftrue initEnd

ibload 3

ibload 4

newarray

pop2

cfb_wstore x38

cfb_wload x38

cfb_wload x24

wstore

cfb_wload x28

ihwload 1277

imul

ibload 101

idiv

cfb_wstore x28

pop

cfb_wload x38

ibload 4

iadd

cfb_wload x28

wstore

cfb_wload x38

ibload 8

iadd

cfb_wload x34

wstore

cfb_wload x38

cfb_wstore x34

cfb_wload x24

inc

cfb_wstore x24

goto init

initEnd:

ibload 0

cfb_wstore x30

cfb_wload x34

cfb_wstore x38

sum:

cfb_wload x38

ifeq sumEnd

cfb_wload x38

ibload 4

iadd

wload

cfb_wload x30

iadd

cfb_wstore x30

cfb_wload x38

ibload 8

iadd

wload

cfb_wstore x38

goto sum

sumEnd:

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 310

C.10 Student List: Frame Register and Index

PROC main 0 10

ibload 1

cfb_wstore x28

ibload 100

cfb_wstore x2c

ibload 0

cfb_wstore x24

ibload 0

cfset4

baseloadidx

cfsetown

init:

cfb_wload x24

cfb_wload x2c

ige

iftrue initEnd

ibload 3

ibload 4

newarray

cfset5

cfinfostore

cfsetown

cfb_wload x24

frstore5

cfb_wload x28

ihwload 1277

imul

ibload 101

idiv

cfb_wstore x28

pop

cfb_wload x28

cfset5

cfincidx

frstore5

cfset4

cfinfoload

pop2

cfset5

cfincidx

frstore5

cfinfoload

cfset4

cfinfostore

cfsetown

cfb_wload x24

inc

cfb_wstore x24

goto init

initEnd:

ibload 0

cfb_wstore x30

cfset4

cfinfoload

cfset5

cfinfostore

sum:

cfset5

cfinfoload

pop2

ifeq sumEnd

ibload 1

idxstore

frload5

cfsetown

cfb_wload x30

iadd

cfb_wstore x30

cfset5

cfincidx

frload5

baseloadidx

goto sum

sumEnd:

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 311

C.11 Student List: Frame Register and Offset

PROC main 0 10

ibload 1

cfb_wstore x28

ibload 100

cfb_wstore x2c

ibload 0

cfb_wstore x24

ibload 0

cfset4

baseloadidx

cfsetown

init:

cfb_wload x24

cfb_wload x2c

ige

iftrue initEnd

ibload 3

ibload 4

newarray

cfset5

cfinfostore

cfsetown

cfb_wload x24

frstore5

cfb_wload x28

ihwload 1277

imul

ibload 101

idiv

cfb_wstore x28

pop

cfb_wload x28

cfset5

cfb_wstore x4

cfset4

cfinfoload

pop2

cfset5

cfb_wstore x8

cfinfoload

cfset4

cfinfostore

cfsetown

cfb_wload x24

inc

cfb_wstore x24

goto init

initEnd:

ibload 0

cfb_wstore x30

cfset4

cfinfoload

cfset5

cfinfostore

sum:

cfset5

cfinfoload

pop2

ifeq sumEnd

cfb_wload x4

cfsetown

cfb_wload x30

iadd

cfb_wstore x30

cfset5

cfb_wload x8

baseloadidx

goto sum

sumEnd:

halt

APPENDIX C. SAFA BENCHMARK PROGRAMS 312

C.12 Linpack Benchmark

PROC abs 1 0

cfb_wload x24

dup

iwload <f0>

flt

iffalse return

iwload <f-1>

fmul

return: exit 1,2

PROC idamax 4 5

ibload 0

cfb_wstore x44

cfb_wload x24

dec

ifge ge1

iwload -1

cfb_wstore x44

wgoto end

ge1: cfb_wload x24

dec

ifne nne1

ibload 0

cfb_wstore x44

wgoto end

nne1: cfb_wload x30

ibload 1

ieq

hw_iftrue inc1

cfb_wload x28

cfb_wload x2c

ibload 4

imul

iadd

wload

penter 3,abs

cfb_wstore x34

cfb_wload x30

inc

cfb_wstore x40

ibload 1

cfb_wstore x3c

l1: cfb_wload x3c

cfb_wload x24

ige

hw_iftrue end

cfb_wload x24

cfb_wload x40

cfb_wload x2c

iadd

ibload 4

imul

iadd

wload

penter 3,abs

cfb_wstore x38

cfb_wload x38

cfb_wload x34

fle

iftrue small

cfb_wload x3c

cfb_wstore x44

cfb_wload x38

cfb_wstore x34

small: cfb_wload x40

cfb_wload x30

iadd

cfb_wstore x40

cfb_wload x3c

inc

cfb_wstore x3c

goto l1

inc1: ibload 0

cfb_wstore x44

cfb_wload x28

cfb_wload x2c

ibload 4

imul

APPENDIX C. SAFA BENCHMARK PROGRAMS 313

iadd

wload

penter 3,abs

cfb_wstore x34

ibload 1

cfb_wstore x3c

l2: cfb_wload x3c

cfb_wload x24

ige

iftrue end

cfb_wload x28

cfb_wload x3c

cfb_wload x2c

iadd

ibload 4

imul

iadd

wload

penter 3,abs

cfb_wstore x38

cfb_wload x38

cfb_wload x34

fle

iftrue small2

cfb_wload x3c

cfb_wstore x44

cfb_wload x38

cfb_wstore x34

small2: cfb_wload x3c

inc

cfb_wstore x3c

goto l2

end: cfb_wload x44

exit 1,2

PROC dscal 5 2

cfb_wload x24

ifle end

cfb_wload x34

dec

ifeq inc1

cfb_wload x24

cfb_wload x34

imul

cfb_wstore x3c

ibload 0

cfb_wstore x38

l1: cfb_wload x38

cfb_wload x3c

ige

iftrue end

cfb_wload x2c

cfb_wload x38

cfb_wload x30

iadd

ibload 4

imul

iadd

dup

wload

cfb_wload x28

fmul

wstore

cfb_wload x38

cfb_wload x34

iadd

cfb_wstore x38

goto l1

inc1: ibload 0

cfb_wstore x38

l2: cfb_wload x38

cfb_wload x24

ige

iftrue end

cfb_wload x2c

cfb_wload x38

cfb_wload x30

iadd

ibload 4

imul

iadd

dup

wload

cfb_wload x28

fmul

APPENDIX C. SAFA BENCHMARK PROGRAMS 314

wstore

cfb_wload x38

inc

cfb_wstore x38

goto l2

end: exit 1,2

PROC daxpy 8 3

cfb_wload x24

ibload 0

ile

hw_iftrue end

cfb_wload x28

iwload <f0>

feq

hw_iftrue end

cfb_wload x34

dec

ifne not1

cfb_wload x40

dec

ifeq both1

not1: ibload 0

cfb_wstore x48

ibload 0

cfb_wstore x4c

cfb_wload x34

ifge cy

cfb_wload x24

ineg

inc

cfb_wload x34

imul

cfb_wstore x48

cy: cfb_wload x40

ifge initl1

cfb_wload x24

ineg

inc

cfb_wload x40

imul

cfb_wstore x4c

initl1: ibload 0

cfb_wstore x44

l1: cfb_wload x44

cfb_wload x24

ige

iftrue midend

cfb_wload x38

cfb_wload x4c

cfb_wload x3c

iadd

ibload 4

imul

iadd

dup

wload

cfb_wload x28

cfb_wload x2c

cfb_wload x48

cfb_wload x30

iadd

ibload 4

imul

iadd

wload

fmul

fadd

wstore

cfb_wstore x48

cfb_wload x34

iadd

cfb_wstore x48

cfb_wload x4c

cfb_wload x40

iadd

cfb_wstore x4c

cfb_wload x44

inc

cfb_wstore x44

goto l1

midend: exit 1,2

both1: ibload 0

cfb_wstore x44

l2: cfb_wload x44

APPENDIX C. SAFA BENCHMARK PROGRAMS 315

cfb_wload x24

ige

iftrue end

cfb_wload x38

cfb_wload x44

cfb_wload x3c

iadd

ibload 4

imul

iadd

dup

wload

cfb_wload x28

cfb_wload x2c

cfb_wload x44

cfb_wload x30

iadd

ibload 4

imul

iadd

wload

fmul

fadd

wstore

cfb_wload x44

inc

cfb_wstore x44

goto l2

end: exit 1,2

PROC dgefa 3 9

ibload 0

cfb_wstore x50

cfb_wload x28

dec

cfb_wstore x4c

cfb_wload x4c

ibload 0

ilt

hw_iftrue end

ibload 0

cfb_wstore x40

l1: cfb_wload x40

cfb_wload x4c

ige

hw_iftrue end

cfb_wload x24

cfb_wload x40

ibload 4

imul

iadd

wload

cfb_wstore x30

cfb_wload x40

inc

cfb_wstore x44

cfb_wload x28

cfb_wload x40

isub

cfb_wload x30

cfb_wload x40

ibload 1

penter 3,idamax

cfb_wload x40

iadd

cfb_wstore x48

cfb_wload x2c

cfb_wload x40

ibload 4

imul

iadd

cfb_wload x48

wstore

cfb_wload x30

cfb_wload x48

ibload 4

imul

iadd

wload

iwload <f0>

feq

hw_iftrue loopUpdate

cfb_wload x48

cfb_wload x40

APPENDIX C. SAFA BENCHMARK PROGRAMS 316

ieq

iftrue noSwitch

cfb_wload x30

cfb_wload x48

ibload 4

imul

iadd

wload

cfb_wstore x38

cfb_wload x30

cfb_wload x48

ibload 4

imul

iadd

cfb_wload x30

cfb_wload x40

ibload 4

imul

iadd

wload

wstore

cfb_wload x30

cfb_wload x40

ibload 4

imul

iadd

cfb_wload x38

wstore

noSwitch: iwload <f-1.0>

cfb_wload x30

cfb_wload x40

ibload 4

imul

iadd

wload

fdiv

cfb_wstore x38

cfb_wload x28

cfb_wload x44

isub

cfb_wload x38

cfb_wload x30

cfb_wload x44

ibload 1

penter 3,dscal

cfb_wload x44

cfb_wstore x3c

inner: cfb_wload x3c

cfb_wload x28

ige

hw_iftrue loopEnd

cfb_wload x24

cfb_wload x3c

ibload 4

imul

iadd

wload

cfb_wstore x34

cfb_wload x34

cfb_wload x48

ibload 4

imul

iadd

wload

cfb_wstore x38

cfb_wload x48

cfb_wload x40

ieq

iftrue noColSwitch

cfb_wload x34

cfb_wload x48

ibload 4

imul

iadd

cfb_wload x34

cfb_wload x40

ibload 4

imul

iadd

wload

wstore

cfb_wload x34

cfb_wload x40

ibload 4

imul

iadd

cfb_wload x38

wstore

noColSwitch: cfb_wload x28

cfb_wload x44

isub

cfb_wload x38

cfb_wload x30

cfb_wload x44

APPENDIX C. SAFA BENCHMARK PROGRAMS 317

ibload 1

cfb_wload x34

cfb_wload x44

ibload 1

penter 3,daxpy

cfb_wload x3c

inc

cfb_wstore x3c

wgoto inner

loopUpdate: cfb_wload x40

cfb_wstore x50

loopEnd: cfb_wload x40

inc

cfb_wstore x40

wgoto l1

end: cfb_wload x2c

cfb_wload x28

dec

ibload 4

imul

iadd

cfb_wload x28

dec

wstore

exit 1,2

PROC dgesl 4 6

cfb_wload x28

dec

cfb_wstore x44

cfb_wload x44

ibload 1

ilt

hw_iftrue secondPart

ibload 0

cfb_wstore x38

l1: cfb_wload x38

cfb_wload x44

ige

hw_iftrue secondPart

cfb_wload x2c

cfb_wload x38

ibload 4

imul

iadd

wload

cfb_wstore x40

cfb_wload x30

cfb_wload x40

ibload 4

imul

iadd

wload

cfb_wstore x34

cfb_wload x40

cfb_wload x38

ieq

iftrue noSwitch

cfb_wload x30

cfb_wload x40

ibload 4

imul

iadd

cfb_wload x30

cfb_wload x38

ibload 4

imul

iadd

wload

wstore

cfb_wload x30

cfb_wload x38

ibload 4

imul

iadd

cfb_wload x34

wstore

noSwitch: cfb_wload x38

inc

cfb_wstore x48

cfb_wload x28

cfb_wload x48

isub

cfb_wload x34

APPENDIX C. SAFA BENCHMARK PROGRAMS 318

cfb_wload x24

cfb_wload x38

ibload 4

imul

iadd

wload

cfb_wload x48

ibload 1

cfb_wload x30

cfb_wload x48

ibload 1

penter 3,daxpy

cfb_wload x38

inc

cfb_wstore x38

wgoto l1

secondPart: ibload 0

cfb_wstore x3c

l2: cfb_wload x3c

cfb_wload x28

ige

hw_iftrue end

cfb_wload x28

cfb_wload x3c

inc

isub

cfb_wstore x38

cfb_wload x30

cfb_wload x38

ibload 4

imul

iadd

dup

wload

cfb_wload x24

cfb_wload x38

ibload 4

imul

iadd

wload

cfb_wload x38

ibload 4

imul

iadd

wload

fdiv

wstore

cfb_wload x30

cfb_wload x38

ibload 4

imul

iadd

wload

iwload <f-1>

fmul

cfb_wstore x34

cfb_wload x38

cfb_wload x34

cfb_wload x24

cfb_wload x38

ibload 4

imul

iadd

wload

ibload 0

ibload 1

cfb_wload x30

ibload 0

ibload 1

penter 3,daxpy

cfb_wload x3c

inc

cfb_wstore x3c

wgoto l2

end: exit 1,2

PROC matgen 3 4

ihwload 1325

cfb_wstore x34

iwload <f0>

cfb_wstore x30

ibload 0

cfb_wstore x38

nl: cfb_wload x38

APPENDIX C. SAFA BENCHMARK PROGRAMS 319

cfb_wload x28

ige

iftrue loopb

ibload 0

cfb_wstore x3c

innerCheck: cfb_wload x3c

cfb_wload x28

ige

iftrue innerEnd

ihwload 3125

cfb_wload x34

imul

iwload 65536

idiv

cfb_wstore x34

pop

cfb_wload x24

cfb_wload x3c

ibload 4

imul

iadd

wload

cfb_wload x38

ibload 4

imul

iadd

cfb_wload x34

i2f

iwload <f32768.0>

fsub

iwload <f16384.0>

fdiv

wstore

cfb_wload x24

cfb_wload x3c

ibload 4

imul

iadd

wload

cfb_wload x38

ibload 4

imul

iadd

wload

cfb_wload x30

fle

iftrue iU1

cfb_wload x24

cfb_wload x3c

ibload 4

imul

iadd

wload

cfb_wload x38

ibload 4

imul

iadd

wload

goto iU2

iU1: cfb_wload x30

iU2: cfb_wstore x30

cfb_wload x3c

inc

cfb_wstore x3c

goto innerCheck

innerEnd: cfb_wload x38

inc

cfb_wstore x38

goto nl

loopb: ibload 0

cfb_wstore x38

lbstart: cfb_wload x38

cfb_wload x28

ige

iftrue loopc

cfb_wload x2c

cfb_wload x38

ibload 4

imul

iadd

iwload <f0>

wstore

cfb_wload x38

inc

cfb_wstore x38

goto lbstart

loopc: ibload 0

cfb_wstore x3c

lcOuter: cfb_wload x3c

cfb_wload x28

ige

iftrue end

ibload 0

cfb_wstore x38

APPENDIX C. SAFA BENCHMARK PROGRAMS 320

lcInner: cfb_wload x38

cfb_wload x28

ige

iftrue lcInnerEnd

cfb_wload x2c

cfb_wload x38

ibload 4

imul

iadd

dup

wload

cfb_wload x24

cfb_wload x3c

ibload 4

imul

iadd

wload

cfb_wload x38

ibload 4

imul

iadd

wload

fadd

wstore

cfb_wload x38

inc

cfb_wstore x38

goto lcInner

lcInnerEnd: cfb_wload x3c

inc

cfb_wstore x3c

goto lcOuter

end: cfb_wload x30

exit 1,2

PROC main 0 7

ibload 5

cfb_wstore x24

cfb_wload x24

ibload 4

newarray

pop2

cfb_wstore x2c

cfb_wload x24

ibload 4

newarray

pop2

cfb_wstore x30

cfb_wload x24

ibload 4

newarray

pop2

cfb_wstore x28

ibload 0

cfb_wstore x34

make: cfb_wload x34

cfb_wload x24

ige

iftrue makeEnd

cfb_wload x28

cfb_wload x34

ibload 4

imul

iadd

cfb_wload x24

ibload 4

newarray

pop2

wstore

cfb_wload x34

inc

cfb_wstore x34

goto make

makeEnd: cfb_wload x28

cfb_wload x24

cfb_wload x2c

penter 3,matgen

cfb_wstore x38

cfb_wload x28

cfb_wload x24

cfb_wload x30

penter 3,dgefa

cfb_wload x28

cfb_wload x24

cfb_wload x30

APPENDIX C. SAFA BENCHMARK PROGRAMS 321

cfb_wload x2c

penter 3,dgesl

halt

