
EMBEDDED MACHINE VISION
– A PARALLEL ARCHITECTURE APPROACH –

CHAN KIT WAI

NATIONAL UNIVERSITY OF SINGAPORE

2005

EMBEDDED MACHINE VISION

– A PARALLEL ARCHITECTURE APPROACH –

CHAN KIT WAI

(B.Tech.(Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

Acknowledgements

First of all, I would like to thank my project supervisor, Dr Prahlad Vadakkepat

for his help and guidance in writing this thesis. For that, he has spent his precious

time guiding me for making this thesis readable. I would also like to express my

gratitude for his advice and the freedom that he had given, to explore the areas of

my interest.

I would also like to thank those who had gave their technical advice and time

for answering numerous questions. In particular, Dr Tang Kok Zuea, Boon Kiat

and Dr Wang.

Special thanks, goes to my wife for giving her unlimited support in many ways;

especially working through late nights for the preparation of this thesis. Her un-

derstanding and encouragement are important during this demanding period of my

career and studies.

Jason Chan Kit Wai

Nov 2005

ii

Contents

Acknowledgements ii

Contents iii

Summary vii

List of Tables ix

List of Figures x

List of Abbreviations xiv

1 Introduction 1

1.1 Vision System For Mobile Robots 1

1.2 Different Architectures for Image Processing 4

1.2.1 Microprocessors . 5

1.2.2 DSP Processors . 6

1.2.3 Application Specific Integrated Circuit 7

1.2.4 Reconfigurable Architecture 7

1.3 Data Processing at Different Level 9

iii

1.4 Motivation and Contribution . 11

1.5 Thesis Outline . 12

2 System Level Architecture Design 13

2.1 System Components Studies . 13

2.1.1 Image Sensors . 14

2.1.2 Memories . 17

2.1.3 FPGA Development Board 17

2.2 Simulation and Development Tools 18

2.2.1 Programming Tools . 19

2.2.2 FPGA Design Flow . 19

2.2.3 Verilog vs VHDL . 22

2.3 Image Representation . 24

3 An Analytic Model for Embedded Machine Vision 28

3.1 Introduction . 28

3.2 Analytic Model to Determine Image Buffer Size 29

3.2.1 Concept of Queuing Theory 29

3.2.2 Row buffering . 31

3.3 Analytic Model to Determine Computational Speed 34

3.4 Analysis of Image Segmentation Algorithm 36

3.4.1 Computation using microprocessor 37

3.4.2 Computation using custom architecture 39

iv

3.5 Analysis of Image Convolution Algorithm 40

3.6 Summary . 42

4 Image Acquisition, Compression, Buffering and Convolution 43

4.1 Image Acquisition . 44

4.1.1 Image sensor interface signals 44

4.1.2 Image acquisition: implementation 46

4.2 Image Compression . 49

4.2.1 Image compression: concept 49

4.2.2 Image compression: implementation 52

4.3 Image Buffering . 56

4.3.1 Image buffering: theory . 56

4.3.2 Image buffering: implementation 60

4.4 Convolution Theory . 65

5 FPGA Implementation of Parallel Architecture 67

5.1 Edge Detection Theory . 68

5.2 Proposed Parallel Architecture for Edge Detection 71

5.3 Thresholding . 75

5.4 Edge Detection: Analysis and Results 76

5.4.1 Experiment of edge detection with different scenes 80

5.4.2 Images with resolution 320 x 240 80

5.4.3 Image with resolution of 1280 x 1024 81

v

5.5 Proposal Parallel Architecture for Low Pass Filter 83

5.5.1 Noise pixels in high resolution image 83

5.5.2 Low Pass Filter . 84

5.6 System Resource Utilization . 88

5.6.1 On-Chip memory size requirements 88

5.6.2 Logic resources . 89

5.6.3 System performance . 89

5.7 Summary of Results . 90

6 Conclusions and Future Work 92

6.1 Conclusions . 92

6.2 Future Work . 93

Bibliography 95

Author’s Publications 101

vi

Summary

Machine vision is one of the essential sensory functions in mobile robotics. By

applying vision processing techniques, certain features can be extracted from a

given scene. However, there are certain limitations in implementing an on-board

image processor. Limited computational power, low data transfer rate and tight

memory budget, place constraints on the performance. As a result, image resolution

and frame rate are often compromised.

To implement efficient solutions, algorithms and hardware architectures must

be well matched. This can be achieved for algorithms with high degree of regularity

that are identified to exploit its parallelism. The operations can be mapped into

custom functional units to achieve higher performance compared to the fixed pro-

cessing units. Such approaches can eliminate the necessity of employing high-end

processors.

Reconfigurable architectures pose as a suitable platform for computationally

demanding image processing algorithms. Custom logic can be designed to exploit

parallelism at different areas and levels of an application.

Suitable image sensor, FPGA IC Chip and the suitable simulation and devel-

opmental tools are selected. An analytical mathematical model to estimate the

various performance parameters associated real-time image processing is proposed.

The model allows system designers to estimate the required memory size and pro-

cessing frequency of a given microprocessor architecture. In one of the examples,

the reduction in the number of instructions per pixel, resulted into processing a

vii

pixel in a single cycle. Next, the image acquisition, compression, buffering and

image convolution are studied. Custom architectures are designed with the con-

siderations of optimising the logic and memory resources. The image buffering is

modelled as a producer-consumer problem. Techniques are employed to reuse mem-

ory locations. Data that reaches the end of its lifetime is automatically removed

to free up the memory location for new data.

A parallel architecture is proposed to the perform 2D convolution operation

with the aim of processing a pixel within a single clock cycle. The customized

architecture allows direct computation instead of conventional load store opera-

tions. Specifically, the low pass filter, edge detection and thresholding algorithm

are investigated. For edge detection, two separate 2D convolution processes and

a thresholding process are computed within a single clock cycle. A study is con-

ducted to evaluate the effects of adding a low pass filter to the design. After which,

a threshold operation is performed to extract the desired edge features of an image.

Two types of image processing, with and without low pass filter are compared.

To achieve minimal usage of hardware resources, the redundant memory lo-

cations, logics and computations are removed. For instance, the multipliers are

replaced by an equivalent bit-wise shifter and a 9 pixels convolution is reduced to

a 6 pixels convolution.

The synthesis results obtained are very encouraging. The total number of slices

occupied by the design is 5% of the total hardware resource available. Lastly,

simulation and actual hardware implementation are provided to demonstrate the

performance of the embedded machine vision using FPGA.

viii

List of Tables

1.1 Specifications of various commercially available on-board vision pro-

cessors . 3

2.1 Comparison of available on-board vision processor 15

2.2 Development and analysis tools . 19

2.3 Comparsion of VHDL and Verilog 23

4.1 Properties of exclusive OR operations 51

ix

List of Figures

1.1 Typical machine vision system . 2

1.2 (a) Eyebot (b) CMUCam (c) Khepera Camera Turret [1][13][18] . . 3

1.3 Programmability vs parallelism . 5

1.4 Fixed Arithmetic Logic Unit (ALU) vs Custom ALU 8

1.5 Data processing at different level 9

1.6 Stages for image processing . 10

2.1 MicroViz setup configuration . 14

2.2 OV7620 Image sensor and FPGA 15

2.3 Timing waveform of pixel data bus [36] 16

2.4 MicroViz Prototype board . 18

2.5 FPGA design flow . 20

2.6 Gate level netlist . 21

2.7 Configuration Logic Block [30] . 22

2.8 Colour Space . 24

2.9 (a)RGB colour image (b)Greyscale image (c)Binary image 25

2.10 RGB colour space [35] . 25

x

2.11 HSI colour space [35] . 26

3.1 Queue model of vision system . 30

3.2 Burst time and emptying time . 31

3.3 Thresholding . 37

3.4 Assembly code representation of C program 38

3.5 Convolution algorithm in C . 41

4.1 Image acquisition process . 44

4.2 CMOS image sensor array . 44

4.3 CMOS image sensor architecture [36] 45

4.4 Timing Diagram of the control signals 47

4.5 Image acquisition block . 47

4.6 Synthesized circuit of the image acquisition block 48

4.7 Simulation result of the image acquisition block 49

4.8 Pixel amplitude of a single line . 50

4.9 Number of bits to represent compressed pixel 50

4.10 Block diagram of Compression and Decompression 52

4.11 Simulation results . 53

4.12 Synthesized circuit of XOR compression module 54

4.13 XOR gate . 54

4.14 Histogram of image with low frequency content 55

4.15 Histogram of image with high frequency content 55

xi

4.16 Image buffering stage . 56

4.17 A 3 x 3 convolution mask on a 5 x 4 image 57

4.18 Producer and consumer of pixels before transformation 58

4.19 Producer and consumer of pixels after transformation 58

4.20 Buffering using FIFO . 59

4.21 Reduction of memory space after data reuse 59

4.22 Convolution window using registers 61

4.23 Image buffer module . 61

4.24 Synthesize result of Image buffer (Part 1) 63

4.25 Synthesize result of Image buffer (Part 2) 64

4.26 Image convolution stage . 65

4.27 Image convolution . 66

5.1 Image processing stage . 67

5.2 Image intensity level derivatives . 68

5.3 Convolution window . 69

5.4 Prewitt operator . 69

5.5 Sobel operator . 70

5.6 Acquiring nine pixels from image buffering module 71

5.7 Architecture of Gx . 72

5.8 Architecture of Gy . 73

5.9 Architecture for gradient magnitude and thresholding 73

5.10 Simulation of architecture using Visual C/C++ 75

xii

5.11 Thresholding . 76

5.12 Sum of |Gx| and |Gy| component 77

5.13 Detecting edges of the green carpet 78

5.14 Detecting edges of a tennis ball and the boundary lines 79

5.15 Edge detection with image resolution of 320 x 240 80

5.16 Magnified image of Figure13 . 81

5.17 (a) Original image of 1280 x 1024 produces (b) fine edge pixels . . . 82

5.18 (a) Magnified image of Figure 15 and (b) Edge detection of fine lines 82

5.19 Edge detection with different image resolution 83

5.20 Insertion of Low pass filter before edge detection 84

5.21 Convolution coefficients of Low Pass Filter 84

5.22 Architecture of Low Pass Filter . 85

5.23 (a) Orignal image (b) Edge detection without Low Pass filter 86

5.24 (a) Original 1280 x 1024 image (b) Resultant Image applied with

Low pass filter . 86

5.25 (a) Edge detection without Low Pass filter (b) Edge detection with

Low Pass filter . 87

5.26 (a) Without Low pass filtering (b) With Low pass filtering 87

5.27 Comparison of image buffer size required for different resolution . . 88

5.28 Synthesis report from Xilinx synthesis tool 89

5.29 Computation time with different resolution 90

xiii

List of Abbreviations

ALU Arithmetic Logic Unit

ASICs Application Specific Integrated − Circuit

CCD Charge Coupled Device

CLB Configuration Logic Blocks

CMOS Complementary Metal − oxide Semiconductor

CPU Central Processing Unit

DSP Digital Signal Processing

EDA Electronic Design Automation

EDIF Electronic Design Interchange Format

EE Electrical Engineering

FIFO First In F irst Out

FPGA Field Programmable GateArray

FPS Frames per Second

HDL Hardware Description Language

HREF Horizontal Reference

HSI Hue Saturation Intensity

I2C Inter − IC Connection

IIC Inter IC Connect

IOBs Input Output Blocks

ISE Integrated Software Environment

JTAG Joint Test Access Group

LUT Look − upTables

xiv

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

P&R Place and Route

PCLK Pixel Clock

RAM Random Access Memory

RGB Red Green Blue

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

UCF User Constraints F ile

V HDL V HSIC HDL

V HSIC V ery High Speed Integrated Circuit

V SY N V ertical Synchronization

1

Chapter 1

Introduction

Robot vision is one of the most essential development set by the robotic community

at large. Research and development in robot vision has grown dramatically over the

past decade. The interest and concerns of image processing for mobile robots can

be seen from the vast amount of literature on this subject, including major projects

spearheaded in the industry and research institutes. In particular much emphasis

is placed on localization and navigation abilities of mobile robots [1][2][12][13].

Machine vision is one of the essential sensory functions for mobile robotics.

By applying vision processing techniques, certain features can be extracted from

a given scene. These are used to describe the environment. Collectively, such de-

scription is necessary for localization and navigation. This forms the basic behavior

of any mobile robot and pave the way for the development of intelligence robot.

1.1 Vision System For Mobile Robots

A typical machine vision system consists of a Charge Coupled Device (CCD) cam-

era, a frame grabber and a host computer for the execution of the image processing

algorithm.

1

1.1. Vision System For Mobile Robots

RF Reciever Frame Grabber RF Transmitter

Video signal through RF

Abstract data

Mobile Robot

Image sensor

RF Reciever Frame Grabber RF Transmitter

Video signal through RF

Abstract data

Mobile Robot

Image sensor

Figure 1.1: Typical machine vision system

A typical image processing system is shown in Figure 1.1. A host computer

receives images from a CCD camera, performs image recognition algorithms and

transmits control signals to the mobile robot. Such configuration setup is shown

in Figure 1.1 is often used in many mobile robotic systems [14][45][16].

A variety of standard image processing tools are supported on a general purpose

computer. For instance, some of the commonly used programming libraries and

tools are Intel Processing Library, Matlab, Visual C/C++ and Borland C/C++.

However, there are certain limitations that require the processing to be per-

formed on board. The ability to perform on-board processing of real-time images

sets many constraints. At many times, limited computational power, low data

transfer rate and tight memory budget place constraints on the implementation

and performance of the robots. As a result, image resolution and frame rate are

often compromised.

A survey is performed to study some of the existing on-board vision systems.

The EyeBot, CMUCam1, CMUCam2 and Khepera Camera Turret are reviewed

(Figure 1.2). The EyeBot processes an image resolution of 80 x 60 pixels on a

2

1.1. Vision System For Mobile Robots

(a) (b) (c)

Figure 1.2: (a) Eyebot (b) CMUCam (c) Khepera Camera Turret [1][13][18]

20MHz processor. The Khepera vision turret is a commercially available vision

module exclusively targeted for Khepera miniature mobile robot [13]. It can process

a relative high resolution image of up to 160 x 120 pixels. The Camera Turret uses a

V6300 digital Complementary Metal-Oxide Semiconductor (CMOS) camera along

with a dedicated 32bit Central Processing Unit (CPU) in the turret. Table 1.1

shows the comparison of the various on-board vision processors mentioned.

Table 1.1: Specifications of various commercially available on-board vision proces-
sors

D
es

cr
ip

tio
ns

C
M

U
C

am
1

C
M

U
C

am
2

E
ye

bo
t

K
he

pe
ra

 v
is

io
n

T

ur
re

t

CPU Ubicom
sx28

Ubicom
Sx52

Motorola
32 bit

Motorola
32bit

CPU speed 75 Mhz 75 Mhz 25 Mhz -
Max resolution 143 x 80 288 x 160 60 x 80 160 x 120
FPS @ max res 2 to 17 fps 50 fps 10 fps -
Min resolution 80 x 143 80 x 143 60 x 80 160 x 120
FPS @ min res 30 fps 50 fps 10 fps -
Memory size Int.

138 bytes
Ext. FIFO
384K x 8bit

- SRAM
128K x 8bit

Com port 115200bps 115200bps - 57600bps

3

1.2. Different Architectures for Image Processing

On-board image processor poses certain challenges in the following areas:

Speed: Real-time images are to be computed at high frame rate for closed loop

vision control.

Power: The power consumption should be reduced to the minimal for longer

battery life. The power consumed by the processor depends on the algorithm,

switching frequency (clock frequency) and the switching voltages.

Memory requirements: Vision algorithms often demands more memory com-

pared to other embedded applications. Temporary storages are often used to store

image buffers at different stages of the image transformation and analysis. Gen-

erally, First-In-First-Out (FIFO) or dual ported Random Access Memory (RAM)

are used to buffer the input image for the subsequent processing.

Size constraints: The size of the embedded machine vision should be small

enough to fit onto miniature mobile robot.

With the four major constraints specified, it is noted that there is a relationship

between all the four constraints. The area of the IC chip is related to the clock

speed, amount of memories and logic elements within the die. By lowering the

clock speed of the processor, the energy consumption is also reduced accordingly.

As a result, this research focuses on the reduction of clock speed and memory

requirements for various image processing algorithms.

1.2 Different Architectures for Image Processing

The computational demands associated with high performance image processing

has led to several architectures being proposed. Namely, the Microprocessor Ar-

chitecture, the dedicated Digital Signal Processing (DSP) Processor, Application

Specific IC (ASIC) Architecture and the Reconfigurable Architecture. These men-

tioned architectures are targeted for different types of processing requirements.

Figure 1.3 shows the relationship of the different architectures in programmability

4

1.2. Different Architectures for Image Processing

vs the data parallelism space [20][19].

SISD

Programmable
DSP

Reconfigurable Architecture

ASICs

Parallelism

Pr
og

ra
m

m
ab

ili
ty

MISD MIMD

SIMD

Figure 1.3: Programmability vs parallelism

1.2.1 Microprocessors

The Microprocessor can be further categorised into four different architectures.

These have been named in Flynn’s classification [20][4] as: Single Instruction Single

Data (SISD), Single Instruction Multiple Data (SIMD) , Multiple Instruction Single

Data (MISD) and Multiple Instruction Multiple Data (MIMD). The latter two have

generally been used for demanding image processing algorithms.

General purpose computer systems using microprocessor technology are com-

monly used in the industry. This popular platform provides well established tools

and rapid implementation of image processing applications. In addition, the appli-

cations are portable to future variants of such system.

The microprocessor is also often used in industry applications. The keys factors

for its popularity are: short time to market, low setup cost, backward compatibility,

commercially available image processing tools and software modules. In addition,

5

1.2. Different Architectures for Image Processing

the doubling of the processor speed in every 18 months gives them the luxury of

improving system performance with near zero development cost.

To a large extent, the performance of such systems greatly depend on the com-

puting speed of the processor. This solution does not actually map the software

with appropriate hardware functional units to exploit both data and computa-

tional parallelism. Rather, it is an interpreter and translator of algorithms being

read from memory. The microprocessor architecture requires many load, store and

branch operations. These operations are used to perform various data manipu-

lations. Hence, most of the computing time is spent on ”overhead” instructions

rather than the actual processing of data. As a result, the silicon area to data

processing ratio is low. Most of the silicon area is used for communication, control

logic, functions and the management of the flow of computing instructions. As

such, in microprocessor implementations, most computationally complex applica-

tions spend 90% of execution time on 10% of the codes [22]. Therefore, research

has been carrying out in parallel processor architecture. It is a well-known fact

that parallel processors always perform better than a microprocessor.

1.2.2 DSP Processors

Signal processing applications, by their very definition, process signals which are

generated in real time. Traditionally, much signal processing work has operated on

one-dimensional signals, such as speech or audio. To obtain real time performance

for these applications, processors with architectures and instruction set specially

tailored to signal processing began to emerge [5]. Typical features included multiply

and accumulate instructions, special control logic and instructions for tight loops,

pipelining of arithmetic units and memory accessing, and Harvard architecture

(with separate data and program memory spaces). More recent designs (such as

some in the Texas range of DSP processors) have featured explicitly for (two-

dimensional) image processing, particularly with image compression in mind.

When carefully programmed to exploit the special architectural features, these

6

1.2. Different Architectures for Image Processing

processors can yield very impressive performance rates. However, there is a cost.

The programming model at the machine level is much more complex than for tra-

ditional microprocessors. Highly optimizing compilers are needed if the processor’s

potential is to be realized with a high level language.

1.2.3 Application Specific Integrated Circuit

Application Specific Integrated Circuit (ASIC) has the highest degree of compu-

tational parallelism. This device is usually chosen in cases whereby sequential

processors have reached the performance limits. Any further improvement in per-

formance can only be obtained by adding more processors. For this reason, parallel

processing techniques have been widely studied for image processing applications

[21]. In some cases, techniques have been developed specifically for image pro-

cessing; in other cases, standard parallel processing techniques have merely been

applied.

1.2.4 Reconfigurable Architecture

In the mid-1980s, a new technology for implementing digital logic was introduced:

the Field Programmable Gate Array (FPGA). The introduction of FPGA provides

the flexibility to configure the hardware. The FPGA consists of hardware logic

that are unconnected. It can be programmed to interconnect the various available

logic components to implement any desired digital function. For the advantages it

offers, the reconfigurable devices open a new area of research in custom and parallel

computing [29][6][11].

The rapid progress in microelectronics and FPGA provides an architectures

that have higher speed and density. Hence, the FPGA architectures are poten-

tial candidates for computational intensive applications. They also provide cus-

tomization of hardware without the risk and high setup cost involved with ASIC

7

1.2. Different Architectures for Image Processing

implementation. The main advantage of FPGA-based processors is that they of-

fer near supercomputer performance at relatively low costs [59]. FPGAs provide

the benefits of customized hardware architecture and at the same time allowing

for dynamic reprogrammability. It is an important characteristic that meets the

changing requirements of the wide range of applications.

Reconfigurable architectures can be designed to achieve different levels of per-

formance for a given application. The custom logic are designed to exploit par-

allelism at different areas and levels of the application. Of particular importance

and interest, is the use of these techniques to produce compact and fast circuit.

Such mapping tends to be most successful for implementing algorithms with high

degrees of parallelism [10].

Adder

output data

Fixed Arithmetic Logic Unit
(Conventional)

Custom Logic

Instructions

mov data1,pixel[1]
mov data2, pixel[2]
add data1, data 2

mov data1, output data
mov data2, pixel[3]
add data1, data2

add pixel[1],pixel[2],pixel[3]

output data
data 1

data 2

pixel[1]
pixel[2]
pixel[3]

Adder

Figure 1.4: Fixed Arithmetic Logic Unit (ALU) vs Custom ALU

To implement efficient solutions, the algorithm and hardware architecture must

be well matched to improve overall computational efficiency and concurrency. This

can be achieved for algorithms with high degree of regularity that are identified to

exploit its parallelism. The operations are mapped into custom functional units

to achieve higher performance compared to the fixed processing unit. Figure 1.4

demonstrates the example of computational efficiency of processing three pixels in

a single cycle, as compared to multiple cycles for a fixed Arithmetic Logic Unit

(ALU).

8

1.3. Data Processing at Different Level

1.3 Data Processing at Different Level

Image processing consists of several sub-system operations. They are generally

categorized into pre-processing, segmentation, feature extraction and classification.

The process is sequential with each step gradually transforming the image data to

give a higher level of abstract image information.

� �
� �

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 1.5: Data processing at different level

The amount of data to be processed is modelled using a pyramid architecture as

shown in Figure 1.5. The bottom level of the pyramid represents the data volume to

be processed and similarly the top level of the pyramid represents abstract informa-

tion derived from the image. The lowest level comprised of the raw pixels acquired

from the source image. Intermediate level 1, 2, 3 are typically pre-processing, seg-

mentation, feature extraction and classification. The final level produces abstract

data as a feedback control signal in vision servo.

The vision task at the lowest level is often identified as the process that con-

sumes the most computing resource. The Low level tasks consist of pixel-based

transformation such as filtering and edge detection. These tasks are characterized

by large amount of data pixels, small neighbourhood operators, and simple struc-

tured operations (e.g multiply and add functions) [31]. Computational intensive

and yet repetitive algorithms fall in this category at the lowest level of the pyramid;

convolution, thresholding and component labelling.

9

1.3. Data Processing at Different Level

On the other hand, higher level tasks are more dynamic in nature. These

tasks are more decision oriented and do not have a repetitive execution of a set

of algorithms. The intensive processing of image at each stage, requires efficient

architectural support for frequently accessed functions. The first step to exploit

parallelism is to identify the sub-system that demands heavy workload. Next,

the critical section of the algorithm within the sub-system must be identified as

well. With reference to Figure 2.2, performance improvement will be significant

when exploiting parallelism in Level zero. The following sections discuss about

the hardware architecture design for preprocessing, edge detection and boundary

detection tasks. Figure 1.6 shows the different stages of image processing for object

recognition.

Cmos
image

sensors

image
segmentation

edge
detection

Selection
of

functions

Feature
Extraction

object
recognition

abstract
information

binary imagesraw pixel

Figure 1.6: Stages for image processing

Researchers have recognized that a new architecture is necessary for real-time

image processing. Several optical sensors are developed, to perform on-chip pre-

processing task at the pixel level. This dramatically simplify the extraction of the

desired information [34][33]. Any image processing task that is performed within

the sensor itself reduces the communication and processing workload of the host

controller.

On-chip processing has an important role to play in the viability of visual ser-

voing applications. With the increasing accessibility of custom logic design, this

makes the development of smart image sensing architectures attractive.

10

1.4. Motivation and Contribution

1.4 Motivation and Contribution

Mobile robots with size constraints generally have limitations on the kind of hard-

ware that can be used for the vision system. As a result, most of the vision

processing operations have to be performed off the board, i.e. on a host computer.

To achieve a self-contained and fully autonomous robot, real-time vision process-

ing is required. At many times, to achieve the desired performance, a high speed

processor is required.

Machine-vision applications that demand computational expensive algorithms

can be accelerated by custom computation units. With the emergence of recon-

figurable devices, many of the on-going research efforts use FPGAs to increase

the performance of computationally intensive image processing applications. Such

approaches can reduce the necessity of employing high-end processors.

The aim of this research is to investigate the methods of achieving the desired

performance, without utilizing high-end microprocessors. Techniques of exploring

computationally efficient algorithms and exploring various hardware architectures

are studied. Low-level tasks consisting of pixel-based transformations, such as

filtering, image segmentation, image convolution and edge detection algorithms

are implemented in this work.

With the aim of exploring custom hardware architectures, an analytic mathe-

matical model is derived. The model is used to study the required processing speed

of Digital Signal Processor and memory requirements. Additionally, the mathe-

matical model helps to analyse the performance of custom architecture without

the need for a simulation model.

Together with the mathematical model and the selected FPGA board, memory

chip and CMOS image sensor, the custom architecture is tested in both simulation

environment and actual hardware setup.

Using the available FPGA logic resources, the custom architecture is configured

to exploit the computation parallelism. The limitations discussed in section 1.1 are

11

1.5. Thesis Outline

addressed in the proposed design. Real-time VGA images is computed at a very

high speed of 30 fps. Furthermore, the memory optimisation technique employed

allows all image buffers to fit within the available on-chip memory. Collectively, this

work addresses three main constraints of processing real-time images in embedded

system. These are computational speed, memory size and physical size constraints.

1.5 Thesis Outline

This thesis is organised as follows, Chapter 2 introduces and evaluates on the

various type of image sensor, FPGA and development tools required for the ex-

perimental setup. It also includes the introduction to the different types of colour

space.

Chapter 3 presents an analytical mathematical model to estimate the various

performance parameters associated real-time image processing. The model allows

system designers to estimate the required memory size and processing frequency

of a given microprocessor architecture. In Chapter 4, the image acquisition, com-

pression, buffering and image convolution are studied. Custom architecture are

designed with the considerations of optimising for logic and memory resources.

Chapter 5 is devoted to the FPGA Implementation of Parallel Architecture.

Specifically, the low pass filter, edge detection and thresholding algorithm are in-

vestigated. The parallel architecture is designed to accomplish high performance

image processing task. Methods and techniques are investigated to implement the

design with the minimal resources needed.

Finally the thesis is concluded in Chapter 6 with a brief on the major results

and observations obtained and an outline of possible directions for future work.

12

Chapter 2

System Level Architecture Design

The chapter discusses about the various type of image sensor, FPGA and develop-

ment tools required for the experimental setup. In additional, the different colour

space that are suitable for image processing is also included.

2.1 System Components Studies

Selecting the proper hardware components is one of the critical decisions that con-

trols the success or failure of the project. There are many criteria to be considered

in the process of selection. The few main considerations are component size, mem-

ories size, sensor resolution and frame rate.

There are various types of image sensors available in the market. A comparison

of CCD image sensors and CMOS image sensor is conducted. Furthermore, the

various types of CMOS sensor are narrow down for selection. In this project, the

selection of image sensor is very much focused on the resolution and the interface

to the FPGA.

The following sections discuss about the various image sensor, memories and

FPGA development board available in the market. Figure 2.1 shows the overview

13

2.1. System Components Studies

Digital CMOS
camera

ComputerFPGA Development
Board

monochrome
analog signal

abstract data
via USB port
or serial port

IIC control
signal

YUV pixel
data

Figure 2.1: MicroViz setup configuration

of the physical interface circuitry between the various components.

2.1.1 Image Sensors

CMOS sensors rose to the top of the hype curve in the 1990s, promising to do away

with their predecessors, the CCD sensor. CCDs traditionally use a process that

consumes more power as compared to CMOS image sensors. It consumes as much

as 100 times more power than an equivalent CMOS sensor [37]. As a result, CMOS

sensor with low power dissipation at the chip level, coupled with its small form

factor and the ability to deliver high frame rate, emerges as the suitable candidate

for many low power mobile applications.

A major advantage of CMOS over CCD camera technology is its ability to

integrate additional circuitry on the same die as the sensor itself. This makes it

possible to integrate the Analog to Digital Converters (ADCs) and associated pixel

grabbing circuitry. Thus a separate frame grabber is not needed [2].

14

2.1. System Components Studies

A study is conducted to evaluate the suitability of various image sensors for

this purpose. The six different sensors are shown in table 2.1.

Table 2.1: Comparison of available on-board vision processor

Supplier Model Resolution AD Output
format

Frame rate

VLSI
Vision

VV6300 160 x 120 8 bit Bayers
RGB

60 fps

Hynix HV7131GP 652 x 492 10 bit YCrCb,
RGB

30 fps

Pictos MK00-D190 640 x 480 10 bit RGB,
YCrCB,
JPEG

30 fps

Kodak KAC-0311 640 x 480 10 bit Bayers
RGB

60 fps

OmniVision OV6620 356 x 292 10 bit YCrCb,
RGB

60 fps

OmniVision OV7620 664 x 492 10 bit YCrCb,
RGB

60 fps

The OV7620 CMOS image sensor from OmniVision is chosen since is offers

the best configurations based on its resolution, frame rate and data format. The

OV7620 is able to configure the data output in RGB bayers format or YCrCb

format for different types of image processing requirements.

CMOS image
sensor

PCLK
HREF
VSYN
Y[0-7]

UV[0-7]

IIC

nresetn clknintrpn

Figure 2.2: OV7620 Image sensor and FPGA

The OV7649 (Figure 2.2) is a 1/3” color camera module with digital output

15

2.1. System Components Studies

ports. The digital video port supplies a continuous 8/16 bit-wide image data

stream. All camera functions, such as exposure, gamma, gain, white balance, color

matrix, windowing, are programmable through the Inter-IC Connection (IIC) in-

terface.

Figure 2.3: Timing waveform of pixel data bus [36]

The OV7620 supports some flexible YCrCb 4:2:2 output format. For instance,

for every Pixel Clock (pclk) cycle, the 16 bit pixel data is placed on the Y and UV

data bus. Using the YUV 4:2:2 subsampling format, the sequence output is given

as

Y (8 bit databus) : Y0 Y1 Y2 Y3
UV (8 bit databus): U0 V1 U2 V3

Hence, the respective Y,U and V is mapped to the following four pixels:

Pixel 0 Pixel 1 Pixel 2 Pixel 3
[Y0 U0 V1] [Y1 U0 V1] [Y2 U2 V3] [Y3 U2 V3]

16

2.1. System Components Studies

2.1.2 Memories

In any image processing system, buffering the input image signal is necessary. The

camera module produces 640 x 480 (VGA) colour pixels at a rate of 30 frame/sec.

In order to process an entire image, the entire image is often buffered prior to any

processing. For a given data output format of YCrCb 4:2:2, a pixel consists of 16

bits. Hence, from the calculations, the data to be stored is very large.

Number of pixel per frame: 640x480=30,7200 pixels
Size per frame (RAM): 30,7200 x 16 bit= 4.9152 Mbit = 600 KBytes
Buffer Memory for processed image: 614.4 KBytes

A memory storage space of 4.9152M bit is required to store an entire frame.

These values exclude data buffers and other overheads. The significant huge

amount of memory space seriously poses a problem in the embedded world, where

memories are very expensive.

2.1.3 FPGA Development Board

A survey is performed to evaluate the different types of FPGA available in the in-

dustry. There are various vendors that manufacture FPGAs. The more prominent

ones are Xilinx, Altera, Cypress and Quicklogic.

Xilinx and Altera are the leading manufacturers of FPGAs. They provide

extensive support for both industrial and academic developers. As a result, the

Spartan-IIE from Xilinx is selected as a suitable platform for this research project.

The Spartan-IIE system board connected together with the CMOS sensor board

are shown in Figure 2.4.

The Spartan-IIE system board utilizes the 300,000-gate (XC2S300E- 6FG456C)

with a 456 fine-pitch ball grid array package. The high gate density and large

number of user I/Os allows complete system solutions to be implemented in the

17

2.2. Simulation and Development Tools

Figure 2.4: MicroViz Prototype board

low-cost Spartan-IIE FPGA. The board also supports the Memec Design P160

expansion module standard, which allows application-specific expansion modules

to be easily added.

The Spartan-IIE incorporates several large block RAM memories. These com-

plement the distributed RAM LUTs that provide shallow memory structures im-

plemented in CLBs. Block RAMs are organized in columns. Most Spartan-IIE

devices contain two such columns, one along each vertical edge. The XC2S400E

has four block RAM columns. The XC2S300E has a total of 16 RAM blocks [30].

2.2 Simulation and Development Tools

The following section discussed about the programming and analysis tools used in

this research project. The selection of Hardware Description Language (HDL) and

the introduction to FPGA design flow is also covered in this section.

18

2.2. Simulation and Development Tools

2.2.1 Programming Tools

There are many development and analysis tools required for this research as shown

in Table 2.2. Simulations necessary prior to actual implementation. The Visual

C/C++ is used as a platform to test and evaluate any new algorithms. After

which, the equivalent verilog codes are written according to those verified in C.

The verilog codes are simulated using ModelSim, producing simulation waveform of

data signals for verification purpose. The Xilinx Integrated Software Environment

(ISE) translates verilog codes into hardware logic circuits. This process is often

known as synthesis. After the FPGA is programmed, the data signals are verified

using the oscilloscope, ANT16 logic analysis and the Chipscope Pro. The schematic

design and PCB is designed using Protel 99SE.

Table 2.2: Development and analysis tools

Visual C/C++ 6.0: For simulation of algorithm in C

ModelSim: Simulation package for vhdl and verilog code

Xilinx ISE 6: Design Entry, design synthesis and device programming.

Xilinx EDK 6: Hardware specifications, MicroBlaze microcontroller

Chipscope Pro: Internal register Logic Analyzer

ANT16: External data bus Logic Analyzer

Irfanview: Portable Pixel Map file image viewer

Protel 99 SE: Schematic entry and PCB design

2.2.2 FPGA Design Flow

The FPGA design flow is illustrated in Figure 2.5. An idea or concept is translated

into Verilog HDL. This language is often used in the design at an entry stage.

19

2.2. Simulation and Development Tools

Alternatively, Electronic Design interchange Format (EDIF) or schematic entry is

used for design entry. Following that, the user constraints file (ucf) specify the

timing and pin location constraints. A logic synthesis tool reads a HDL entry

and produces a netlist consisting of a description of basic logic cells and their

interconnections (Figure 2.6).

The implementation of a digital logic design with a FPGA involve a design flow

similar to ASIC design flow [28].

Design entry

verilog

Constraints
Editing

verilog netlist

Mapping
design

Place and
Route

Design
synthesis

ucf file

Simulation of
verilog codes

FPGA in device
programming

edif files

Verification

Figure 2.5: FPGA design flow

The mapping function allocates Configuration Logic Blocks (CLB) and Input

Output Blocks (IOBs) resource for all basic logic elements in the design. It con-

siders the available resources together with the constraints specified and map the

digital logic design into the targeted FPGA chip.

The Place and Route (P&R) process decides the location of the cells in a block

and places the connections between the cells and blocks. The generated bit stream

file is programmed into the FPGA via a Joint Test Access Group (JTAG) connec-

tion. The results are verified using Chipscope Pro, PC-USB Logic Analyser and

oscilloscope. This process is often repeated for many iterations to yield satisfactory

results.

The Xilinx RAM-based FPGA features a logic block that is based on LUTs. A

20

2.2. Simulation and Development Tools

 (cell LUT4 (cellType GENERIC)
 (view view_1 (viewType NETLIST)
 (interface
 (port I0 (direction INPUT))
 (port I1 (direction INPUT))
 (port I2 (direction INPUT))
 (port I3 (direction INPUT))
 (port O (direction OUTPUT))
)
)
)
 (cell MUXCY (cellType GENERIC)
 (view view_1 (viewType NETLIST)
 (interface
 (port DI (direction INPUT))
 (port CI (direction INPUT))
 (port S (direction INPUT))
 (port O (direction OUTPUT))
)
)
)

Figure 2.6: Gate level netlist

LUT is a small one bit wide memory array, the address lines for the memory are

inputs from the logic block and the one bit output from the memory is the LUT

output. A LUT with K inputs would then correspond to a 2k x 1 bit memory. It

can realize any logic functions of its K inputs by programming the logic function’s

truth table directly into the memory.

Each Spartan-IIE CLB contains four Logic Cells (LCs), organized in two similar

slices; a single slice is shown in Figure 2.7. This arrangement allows the CLB to

implement a wide range of logic functions. Furthermore, each LUT can provide

a 16 x 1 bit synchronous RAM. The two LUTs within a slice can be combined

to create a 16 x 2-bit or 32 x 1 bit synchronous RAM, or a 16 x 1 bit dual-port

synchronous RAM [30] [29].

21

2.2. Simulation and Development Tools

Figure 2.7: Configuration Logic Block [30]

2.2.3 Verilog vs VHDL

Schematic capture and hardware description language are used for design en-

try. The two industry standard hardware description languages are VHSIC HDL

(VHDL) and Verilog.

VHDL was developed by committee intended for documenting digital hardware

behaviour. It originated out of the Very High Speed Integrated Circuit (VHSIC)

Program as a part of a US Department of Defense Project in 1981. Although

it was adopted by many Electronic Design Automation (EDA) companies and

carried strong support from the European electronics market, VHDL had significant

deficiencies. There was no facility for handling timing information [25].

On the other hand, Verilog HDL came from the commercial world and was

developed as part of a complete simulation system. It was also developed to de-

scribe digital based hardware systems. The Verilog HDL is used extensively, since

launched in 1983 by Gateway. It became the IEEE standard 1364 in December

1995 [26].

A comparison is made between the two HDL lanaguages is shown in Table 2.3.

It is also noted that there are increasing number of universities adopting to teach

22

2.2. Simulation and Development Tools

Table 2.3: Comparsion of VHDL and Verilog

VHDL Verilog

Learning curve A strongly typed language
with heavy syntax

Easy to pick up for those with
C language background

Design
reusability

Procedures and functions may
be placed in a package

Define modules to reuse
design

Datatypes Dedicated functions are
needed to convert objects
from one datatype to another

Easy to use and geared
towards modelling hardware
structure

HDL modelling
capability

Good for modelling large
design structure, unable to
provide gate level modelling

Developed with gate level
modeling in mind

Usage in Digital
Design Market
world wide

40% (mainly in europe,
military and academic
institutes)

60% (mainly in US and Asia
companies)

this language as part of their advanced Electrical Engineering programs; and to

dated more than 75 companies offer Verilog HDL products and services [25].

As a result, Verilog is chosen for this research project. The primary reasons

are the ease of usage, which is similar to C and the popularity of its usage in the

industry.

23

2.3. Image Representation

2.3 Image Representation

Images are represented in a form of analogue or digital signals. Analogue signals are

traditionally used in many types of video equipment, and mainly used for television

broadcasting.

However, in recent years, digital image and video are rapidly taking over many

applications. The most common digital signals used are RGB and YCbCr. The

RGB format is commonly used for display devices such as LCD display panels,

while the YCrCb is often used for data transmission and data processing.

A digitised colour image is represented as an array of pixels, where each pixel

contains numerical components that define a colour. The images captured from

the camera will consist of these array of pixels.

After an image is captured, it is represented in various formats. Typically,

the binary, greyscale, Red Green Blue (RGB), Hue Saturation Intensity (HSI) or

the YCrCb format are used (Figure 2.8). The binary image format represents the

simplest form of an image, with a one bit representing one pixel. Hence, for a given

image of 640 x 480, is represented by 38400 bytes. Although a binary image offers

a small file size, there is a significant loss in image quality.

image data

binary colourgreyscale

YCrCb HSIRGB CMYK

Figure 2.8: Colour Space

In a typical 8 bit grey scale image, there are 256 shades of grey. Each pixel

24

2.3. Image Representation

represents different shade of grey according to its brightness.

 (a) (b) (c)

Figure 2.9: (a)RGB colour image (b)Greyscale image (c)Binary image

Colour image can be represented in RGB, YCrCb or HSI colour format. RGB

is typically used to display images, YCrCb for transmission of image data and HSI

for image processing. Figure 2.9 shows the different data representation of image

in binary, greyscale and RGB colour format.

RGB colour space

The RGB space is widely used throughout computer graphics. The individual

component are added together to form a desired colour, it is represented using

cartesian coordinate system as shown in Figure 2.10.

Figure 2.10: RGB colour space [35]

However, RGB colour space is not very efficient when dealing with real world

images. Processing an image in the RGB colour space requires the modification of

all three colour components [27]. For instance, to increase the intensity or colour

25

2.3. Image Representation

of a given pixel, all three components must be read, calculate the new value and

written back into the memory for each pixel. For this reason, other colour space

is derived from the basic RGB colour space to ease date processing. The HSI and

the YCrCb colour space is discussed in the following section.

HSI colour space

HSI is preferred in some systems as it separates apparent ”colour” from ”bright-

ness”. Colour in HSI space is relatively more robust to illumination, lights and noise

as compared to RGB is more sensitive to highlights and shadow. The HSI colour

space is shown in Figure 2.11.

Figure 2.11: HSI colour space [35]

YCrCb colour space

The image data represented in YCrCb color space is sampled in 4:2:2, 4:2:0

or 4:1:1 sampling format. In YCrCb 4:2:2 format, for every four samples of Y

component, there are two Cb and Cr. Each sample is typically 8 bits. This posi-

tioning of YCrCb colour component sampling offers a reduction of bandwidth for

transmission. This is due to the fact that YCrCb 4:2:2, 4:2:0 and 4:1:1 use a lower

sampling rate for the chromatic components, hence require less storage space and

transmission bandwidth.

26

2.3. Image Representation

The YCrCb colour space is also derived from the RGB colour space. The Y

component is the luminance, Cr represents a colour value consisting of the lumi-

nance deducted from the color red (R-Y) and Cb represents the color value of the

luminance deducted from the color blue (B-Y).

The next chapter presents an analytical mathematical model to estimate the

various performance parameters associated real-time image processing. The model

allows system designers to estimate the required memory size and processing fre-

quency of a given microprocessor architecture.

27

Chapter 3

An Analytic Model for Embedded

Machine Vision

3.1 Introduction

This chapter focuses on the performance of the embedded machine vision. A model

is introduced to estimate the performance and memory resource requirements.

In literature, there are three basic techniques for performance evaluation; namely

measurement, simulation and analytic modelling [40] [41].

An analytic model is often used to predict performance. It can evaluate the

performance with minimal efforts and costs over a wide range of choices for system

parameters and configurations [42]. For various processor architectures, the key

resources and workload requirements can be analytically modelled with sufficient

realism to provide insight into the bottlenecks and key parameters affecting the

system performance [46]. However, such approach is impractical, if the vision

system is modelled in great details [40].

An analytic model is derived to provide a mathematical description of the vision

system. Such approach is considered being far less time consuming and more

28

3.2. Analytic Model to Determine Image Buffer Size

flexible compared to simulation based methods. A model is proposed to analyse

the performance of processing real-time images in embedded systems. Last but not

least, the limitations of general purpose processors are also discussed.

Section 3.2 presents a model to determine the optimal memory size for buffering

real-time images. Section 3.3 presents another model to calculate the processing

frequency required to perform certain algorithms. Specifically, image segmentation

and convolution algorithms are analysed in Section 3.4 and 3.5 respectively.

3.2 Analytic Model to Determine Image Buffer

Size

3.2.1 Concept of Queuing Theory

The image acquisition process is modelled using a producer and consumer process.

The CMOS image sensor produces image data and the image acquisition consumes

image data. Due to the difference in arrival and consumption rate, the producer

and consumer processes are buffered by a message queue. A message queue is a

set of memory locations that provides temporary storages for data that are being

passed from one process to other. In general, a producer places new message into

the queue while the consumer acquires the message by removing it from the queue.

For this approach, a First-In First-Out(FIFO) RAM is commonly used.

It many embedded systems, it is required to estimate the maximum number of

messages that will queue in a system. Empirical methods to estimate the required

capacity are not reliable [44], and these methods are often not able to determine

the optimal memory size for different algorithm. Furthermore, empirical methods

are often conducted using the actual experimental setups or simulation models.

For these reasons, an analytic model is derived from queuing theory to compute

the maximum message queue length.

29

3.2. Analytic Model to Determine Image Buffer Size

Queueing theory plays a very important role in analytical modelling [42]. The

concept is used as the fundamental formulae to calculate the system requirements

for real-time operations.

The system is modelled using the queueing analysis as illustrated in Figure 3.1.

The definitions used in this model are as follows:

nq = no. of jobs in queue

λb = arrival rate of pixel during burst

µb = service rate of pixel during burst

te = time require to empty buffer

tb = burst time

to = time of occurence

ts = service time per pixel

nipp = no. of instructions per pixel

ncpi = no. of clock per instruction

tclk = processor clock cycle

fclk = clock frequency

Population size
 (n * m) pixels

Queue

Service Unit

Figure 3.1: Queue model of vision system

The image sensor, or producer is said to have a population size of n*m messages.

If the messages arrive at a rate faster then the system can service, a queue is

formed. The sudden arrival of messages for a period of time is call a burst. During

the burst tb, a buffer is required to absorb any excess of production of pixels over

the consumption.

30

3.2. Analytic Model to Determine Image Buffer Size

At the beginning of each burst, the message queue should be empty. The pixels

will be placed into the queue synchronous to the clock of the image sensor, which

is also refer as the arrival rate λb. At the same time, some pixels are consumed

by the image acquisition routine, at a consumption rate µb. If λb ≤ µb, the queue

will not grow, else the queue will grow. In the situation where the pixels arrive

at a rate faster than it can handle for a long enough period of time, the messages

continue to stack up in the queue, to a point overflow occurs.

nq(t) = λb t − µb t (3.1)

Equation 3.1 is used to determine the number of messages nq(t) in the queue

at time t, where λb t is the number of messages arrived in the queue at time t and

µb t is the number of messages consumed from the queue at time t.

3.2.2 Row buffering

A row buffer is proposed in this work to acquire a single row of pixels and process

it before acquiring the next row of pixels.

HREF

PCLK

Time

Produce

Consume

etbt

3t2t1t

47.36us 79.6us

74ns

M
es

sa
ge

 Q
ue

ue

Figure 3.2: Burst time and emptying time

31

3.2. Analytic Model to Determine Image Buffer Size

Figure 3.2 illustrates the producer and consumer of pixels in the message queue.

It shows that the burst tb is 47.36 us and the maximum time allowed for the con-

sumer to service all pixels is tb + te. The required memory size can be determined

by the maximum length of a queue. From Figure 3.2, it is noted that the queue

length peaks after the last pixel is place in the queue, at t=t2.

At t1 (Figure 3.2), the first pixel is placed into the message queue. For every

PCLK, a pixel arrives at the message queue when HREF is high. At the same

time, some of these pixels are consumed in a First-In First-Out order. The message

queue continues to grow as long as the arrival rate is greater than consumption rate

(service time). At end of each burst, immediately after the last pixel is placed into

the message queue at t2, the message queue stop to grow. The production rate is

equals to zero while the consumption rate remains the same. At this point, the

total no. of messages remaining in queue is

nq(tb) = λb tb − µb tb

= (λb − µb) tb ,
(3.2)

where

λb =
wi

tb
, (3.3)

µb =
wi

tb + te
, (3.4)

The maximum time given to the consumer to empty the message queue before

the arrival of the next pixel is te = t2 − t1. Hence, the worst case consumption rate

µb is given in (3.4), where wi is the image width (number of pixels in a row).

If a new burst begins before the queue is totally emptied, the allocated message

queue will not have the capacity to store all pixels for the next row. As a result,

32

3.2. Analytic Model to Determine Image Buffer Size

buffer overflow will occurs. Hence, it is important to note that the all message

should be consumed within the allocated time.

If the λb

µb

ratio is large, the emptying time will be very much longer than the

burst time. As a result, the maximum queue length increases accordingly.

With (3.3) and (3.4), nq(tb) is simplified to

nq = (λb − µb) tb

= (
wi

tb
−

wi

tb + te
)tb

=
witb(tb + te − tb)

tb(tb + te)
,

nq =
wite

tb + te
(3.5)

For instance, if te is equal to tb, the messages are consumed at half the rate of

the arrival rate. As a result, the maximum queue length is half of the image width

as shown in (3.6).

nq =
wi tb

2tb
=

1

2
wi (3.6)

In this example (Figure 3.2), with tb = 47.36 us, te = 79.6 us and wi = 640,

the required buffer size calculated with (3.5) is found to be 402 pixels. With this

model, the buffer size can be adjusted accordingly by reducing the te parameter.

However, it should be noted that reducing te results in the reduction of service

time. The next section will present a model to illustrates the effects of te on the

processor clock frequency.

33

3.3. Analytic Model to Determine Computational Speed

3.3 Analytic Model to Determine Computational

Speed

In many embedded system design, the processor and its clocking frequency are

generally determined either by simulation or empirical methods. Many at times,

simulation models may not be available. As mentioned earlier, empirical methods

are not reliable and do not address the issue of scalability. In this section, a model

is derived to estimate the required processing speed.

With the consumption rate µb and the no. of message in the queue nq, the time

required to empty the queue is

te =
nq

µb

(3.7)

Together with the concept and equations derived in the previous section, the

time required to service a pixel can be computed as follows:

nq = (λb − µb) tb , (3.8)

λb =
1

tpclk

, (3.9)

µb =
1

ts
, (3.10)

where tpclk is the inter-arrival time of each pixel, and ts is the time needed to service

one pixel. By substituting (3.8),(3.9),(3.10) into (3.7), ts is simplified as

34

3.3. Analytic Model to Determine Computational Speed

te = ts[(λb −
1

ts
) tb]

= tstbλb − tb

(3.11)

ts =
te + tb

tbλb

(3.12)

With reference to Figure 3.2, a pixel arrives at an interval of 74 ns. The burst

time tb is 47.36 us and the emptying time te is 79.6 us. Hence, the service time

per pixel (3.12) is calculated to be 198.37 ns.

To estimate the processing speed required to compute one pixel, the number of

instructions to process a single pixel must be known. An image algorithm may con-

sist of several instructions to compute one pixel. In additional, a single instruction

may require of more than one clock cycle to complete.

In general, the target processor is first identified and the instruction set ar-

chitecture is studied. With the instruction set, the no. of instructions needed to

compute a single pixel is estimated. Thus, the service time per pixel is expressed

as

ts = nipp ncpi tclk , (3.13)

and together with (3.12) and (3.13), the required processing clock frequency is

expressed as

fclk =
nipp ncpi

ts
,

=
tb λb nipp ncpi

te + tb
,

(3.14)

where nipp is the number of instructions per pixel and ncpi is the number of cycles

per instruction.

35

3.4. Analysis of Image Segmentation Algorithm

Lastly, the production rate and consumption rate ratio are found to be

λb

µb

=
198.37

74
= 2.68 .

The analytic model discussed in this section provides an estimation of the

clock frequency required to perform certain image processing algorithm. With

this model, an in-depth analysis of image segmentation and image convolution al-

gorithm are discussed in the following sections. The clock frequency is calculated

based on a selected processor architecture and image algorithm is written in C. As

such, this will assist in the selection of processor architecture, instruction set and

most importantly the optimal processing speed.

3.4 Analysis of Image Segmentation Algorithm

The segmentation process partitions an image into meaningful regions [24]. The

nature of this process involves scanning of each pixels. Thresholding is one of

the most important approaches in image segmentation. It is a process to convert

greyscale images to binary images. Typically, a greyscale image is thresholded

to obtain a binarised version of the image that consists of only foreground and

background. To obtain a binary image which consists of only foreground and

background pixel, a threshold value, T, is used to partition the image into two

regions, such that

If f(x, y) ≥ T then g(x, y) = 1

If f(x, y) < T then g(x, y) = 0

where the image g(x, y) denotes the binarised version of image f(x, y).

A simple experimental setup for image segmentation is simulated in Visual

C/C++ and MicroChip MPLab. The program reads in the raw image data, con-

verts the Red, Green, Blue (RGB) primaries to greyscale image and performs image

36

3.4. Analysis of Image Segmentation Algorithm

thresholding. Finally, the program writes to an image file for viewing. The result

is shown in Figure 3.3.

(b)(a)

Figure 3.3: Thresholding

For instance, a real-time vision system with a resolution of 640 x 480 is required

to be processed at a rate of 30 fps (frames per second). The analytical model is

used to estimate the processing clock speed needed for handling real-time image

thresholding process.

3.4.1 Computation using microprocessor

Image thresholding can be performed using a Digital Signal Processor. Often, such

architectures requires several load, store and branch operation to perform data

manipulation.

The dsPIC30F6012 DSP controller from Microchip Technology Inc. is used

as a target chip in this work. It is a 16 bit Harvard RISC machine designed for

embedded system. The processor can reach up to the speed of 30 MIPS. The

simplified threshold algorithm written C is translated to assembly language as

shown in Figure (3.4). In addition, the number of cycles to complete a specific

instruction is also shown.

A further analysis of the program flow reveals that the computational time of

each path is different. For instance, if pixel in < threshold, the branch instruction

is not taken and the program executes through B1, B2, B3. The total time to

37

3.4. Analysis of Image Segmentation Algorithm

B1

B2

B3

B4

1
1

1
1

1 or 2

1
1

2

1
1
2

no. of cycles

per instruction

Figure 3.4: Assembly code representation of C program

complete one iteration is 9 clock cycles. Otherwise, the flow of the program is

taken in the sequence of B1, B2 and B4. As a result, 10 clock cycles are needed to

process a pixel.

By taking the worst case condition, nipp ncpi = 10, hence

fclk =
tb λb nipp ncpi

te + tb

=
47.36 us(

1

74 ns
)10

79.6 us + 47.36 us

= 50.4 MHz

(3.15)

From the calculations, it is noted that a considerably high clocking frequency

is needed to perform image thresholding process. Due to the amount of data to be

processed in real-time, the processor will not be able to compute all pixels within

the allocated time, if fclk < 50.4 MHz.

38

3.4. Analysis of Image Segmentation Algorithm

Hence, from the calculations, a Digital Signal Processor is not suitable for such

operations. The image thresholding algorithm does not actually map to appropri-

ate hardware resource to achieve efficiency. Most of computing time is spent on

”overheads” instructions rather than for the actual processing of data. It is reported

that most computationally complex applications spend 90% of their execution time

on only 10% of their code [22].

3.4.2 Computation using custom architecture

Using the model to calculate fclk, the parameters corresponding to the hardware

resources are identified to improve computational efficiency. The clock frequency

can be reduced by reducing nipp and ncpi. With the model as a reference, the oper-

ations required in image segmentation process are mapped into custom functional

units to achieve a lower clocking frequency

In an ideal case, nipp and ncpi is set to 1. Effectively, from (3.15), the new clock

frequency is calculated as

fclk =
tb λb nipp ncpi

te + tb

=
47.36 us(1

74 ns
)

79.6 us + 47.36 us

= 5.04 MHz

The possibilities of setting nipp ncpi = 1 can be achieved by processing a pixel

within a single clock cycle. With a customised architecture, it is possible to com-

plete the same image processing task with a reduction of clock frequency by 90%

compared to the implementation in Microchip dsPIC30F6012 processor.

Furthermore, the proposed custom architecture can be further improved by

reducing the buffer size. The consumption rate can be customised to match the

arrival rate, and at the same time achieving nipp ncpi equal to 1. As a result, all

39

3.5. Analysis of Image Convolution Algorithm

pixels arrived will be immediately processed or consumed. Hence, the emptying

time te is zero, and the buffer size required is zero as well.

nq =
wi te

tb + te
= 0 .

Consequently, fclk can also be determined from (3.14)

fclk =
tb λb nipp ncpi

te + tb

= λb

= pclk

where, the processing clock frequency is equals to the pixel clock frequency. In

theory, processing a pixel upon arrival eliminates the need for any buffer memory.

However, in practice, all computation must be completed before the arrival of next

pixel. Otherwise, the old data will be overwritten by new arrivals.

3.5 Analysis of Image Convolution Algorithm

The last section of this chapter analyses the computation requirement to perform

an image convolution algorithm. The convolution algorithm requires a pixel to

compute one output pixel, based on 3x3 input convolution window. An experi-

ment is conducted in Visual C/C++ and Microchip MPLab environment. The

algorithm is coded in C and compiled into assembly language to obtain the num-

ber of operations required to process a single block of C program.

The C program is clustered into blocks to illustrate the number of cycles as-

sociated with each block. From Figure 3.5, the main computation takes place in

the last block. The image is convolved with a convolution mask. From the assem-

ble code obtained, the block that performs convolution calculations consists of 67

operations. Hence, nipp ncpi is 67 and the fclk can be computed as follows:

40

3.5. Analysis of Image Convolution Algorithm

67

4 or 6

12

14

12

no. of cycles

per block

Figure 3.5: Convolution algorithm in C

fclk =
tb λb nipp ncpi

te + tb

=
47.36 us(

1

74 ns
) 67

79.6 us + 47.36 us

= 337.68 MHz

With the results calculated, it is not surprising that it requires a processor

with such a high frequency to perform the convolution process. However, the clock

frequency can be reduced by using the same approach mentioned in Section 3.4.2.

If nipp ncpi is reduced from 67 to 1, the new clock frequency will be 5.04 MHz.

With this approach, the custom architecture is able to perform image convolu-

tion at a relatively low clock frequency. The processing frequency of the custom

architecture compared to Microchip dsPIC30F6012 can be reduced by 98.5%.

41

3.6. Summary

3.6 Summary

The image processing analytic model is presented to estimate the various perfor-

mance parameters associated with the vision system. The model allows system

designers to estimate the required memory size and processing frequency of a given

microprocessor architecture. Specifically, the MicroChip DSP processor is used in

this work.

Such an approach is considered being far less time-consuming and more flexible

compared to simulation based approaches. It helps to compare different processor

architectures without actual implementation or simulation. Furthermore, this can

be extended to calculate the amount of energy consumed.

The model provides the design space exploration to achieve the desired per-

formance. In one of the examples, the reduction of the number of instruction per

pixel yields a lower clock frequency. With such hints, it provides a motivation to

process a pixel in a single cycle, which is achievable with custom architecture.

The customized architecture allows direct computation instead of conventional

load store operations. Such structure is able to compute a pixel in a single instruc-

tion within a single clock cycle. The possibilities of such an custom architecture

can be realized in a reconfigurable fabric of FPGA.

This chapter provides a theoretical calculations with assumptions that the cus-

tom architecture is able to process a pixel in a single cycle. In Chapter 4 and 5,

the detailed implementations of such architectures are discussed.

The next chapter discusses on the image acquisition process with emphasis on

the control signals and data format of the pixels produced. A brief introduction

to the CMOS image sensor architecture and its interface logic is also covered. In

addition, a simple yet effective compression technique is proposed as well.

42

Chapter 4

Image Acquisition, Compression,

Buffering and Convolution

Digital image processing encompasses a sequence of processes that transforms sig-

nals from one process to other. In this chapter, the image acquisition process,

followed by image compression and storage are discussed.

The basic function of image acquisition is to acquire a digital image from an

image sensor. Typically, a CCD camera or a CMOS digital image sensor is used

for image capturing. CMOS image sensor is chosen for this work.

An image must be digitised both spatially and in amplitude. Digitisation of

spatial coordinates (i, j) is also known as image sampling while amplitude digiti-

sation is known as grey-level quantisation [47]. In CMOS digital image sensor, the

sampling and digitisation processes are performed on the chip.

This chapter explores the features of the CMOS image sensor i.e., OV7620,

and the methods for fast image compression and storage solutions. The concept of

image compression, and its implementation are also included. Section 4.3 explores

the various methods for buffering the input image that is used for convolution

process while section 4.4 discusses about the basics of image convolution.

43

4.1. Image Acquisition

4.1 Image Acquisition

4.1.1 Image sensor interface signals

Image
sensors

Image
buffering

Image
acquisition

Image
convolution

ThresholdingDisplay Image

Figure 4.1: Image acquisition process

The first stage of any vision system is the image acquisition stage (Figure 4.1).

After the image has been obtained, various methods of processing can be applied

to the image to perform the extraction of the desired information. Typically, image

acquisition involves both hardware and software aspects. Hence, it is necessary to

first understand the interfacing I/O of the CMOS image sensor.

i
j M-1

N-1

0

0

Figure 4.2: CMOS image sensor array

The OV7620 CMOS image sensor from Omnivision is used in this research. It

is a highly integrated CMOS with a resolution of 664 x 492 pixels.

44

4.1. Image Acquisition

When an image is captured by the sensor, it is arranged in the form of an N x

M array (Figure 4.2), where each element in the array is a discrete quantity. The

output resolution of the image sensor can be configured to QVGA (320 x 240) or

VGA (640 x 480) resolution by setting the register in the image sensor chip.

The image captured in the form of pixels is expressed as a two-dimensional light

intensity function, f(i, j), where the amplitude of fat coordinate i and j gives the

brightness of the particular pixel. For instance, f(5, 2) refers to the brightness level

of the pixel in second row, fifth column.

The OV7620 consists of three primary control signals and two output data ports.

The three control signals (PCLK, HREF and VSYN), provide the synchronization

signals for the output data pixels to be read by the image acquisition device. The

two digital data ports, Y < 7 : 0 > and UV < 7 : 0 > together provide data pixels

in either YUV and RGB colour space formats. The output data transfer is based

on a line by line transfer with synchronous pixel read out scheme.

Figure 4.3: CMOS image sensor architecture [36]

45

4.1. Image Acquisition

The internal architecture of OV7620 is shown in Figure 4.3. The row select

determines which row to be sampled and the column sense amplifier produces

electric current which corresponds to the illumination of an image. The analog

processing unit samples and digitises the analog signals to generate the digital

representation signals either in RGB or YUV formats.

The digital output port of the OV7620 offers different type of output sequences.

The output sequence can be configured as YUV 4:2:2, YUV 4:1:1, YUV 4:4:4 or

RGB in Bayer-filter pattern colour format.

To understand the details of the three controls signals, a PC logic analyser is

used.

4.1.2 Image acquisition: implementation

The output controls signals are used to synchronise the output pixel data. The

VSYN signal represents the arrival of a new frame. When VSYN and HREF go

simultaneously high, it indicates the beginning of an image frame; the first pixel of

the first line. The control signals describe in the followings are shown in Figure 4.4.

PCLK is the output pixel clock from the image sensor. A new data is available

for every rising edge of the PCLK. The HREF is used to synchronise the rows

within an image frame. The HREF goes high at the beginning of each new active

row and goes low at the end of each row. All data on the Y and UV output ports

are considered valid only when HREF is high. Otherwise, when HREF is low, the

data is not within the display window and should not be considered as valid pixels.

As a result, the rising edge PCLK together with HREF = 1, indicate that a new

pixel is ready to be read.

Before any pixels is being processed, intermediate internal signals are derived for

the ease of control and processing. The acquisition module (Figure 4.5) interfaces to

the CMOS image digital output port and generates internal signals (PCLK valid,

Y valid, Row cnt and Col cnt), for further processing along the pipeline. The

46

4.1. Image Acquisition

Invalid Data Invalid Data

Row 1 Row 2 Row 3 Row 4 Last Row

VSYNC

HREF

Y[7:0]

33.33ms

200us

47.2us 79.6us

PCLK

HREF

Last Byte First Byte Last Byte

(Row Data)

Y[7:0]

Tsu=15ns

THD= 8 ns

T
pclk

=74ns

2.36ms 390us

Figure 4.4: Timing Diagram of the control signals

Acquisition.v

PCLK
VSYN
HREF

Y<7:0>
UV<7:0>

PCLK_valid

Y_valid<7:0>

Row_cnt

Col_cnt

Figure 4.5: Image acquisition block

PCLK valid is generated based on the input signals, PCLK and HREF. For every

rising edge of PCLK valid, it indicates a new valid pixel on Y valid bus. A row

counter (row cnt) and a column counter (col cnt) are generated from PCLK, HREF

and VSYN for the purpose of tracking the current active pixel.

The Y valid only consists of pixels in greyscale format. The colour components

are removed in the acquisition module. The acquisition module described in verilog

is simulated and synthesized as shown in Figures 4.6 and 4.7 respectively.

47

4.1. Image Acquisition

Logic
Gate

Cluster

Row
Counter D Fip-

Flop

Logic Gate
Cluster

MUX

MUX

D Fip-
Flop

Y
Counter

OR

Logic Gate
Cluster

D Fip-
Flop

Logic Gate
Cluster

Y
Counter

pclk_valid

nreset

VSYN

HREF

Y(7:0)

Reg_V(7:0)

PCLK

Reg_U(7:0)

pclk_valid_N83

_n0021

_n0001

_n0005(7:0)

_n0006(7:0)

vsyn

_n0022

href_valid

_n0004

D Flip-
Flop

D Flip-
Flop

D Flip-
Flop

D Flip-
Flop

y_valid(7:0)

D Flip-
Flop

vsyn_valid

Reg_V(7:0)

Reg_U(7:0)

pclk_valid

pclk_valid_N83

_n0021

_n0001

PCLK

_n0005(7:0)

_n0004

_n0006(7:0)

vsyn

nreset

Y(7:0)

_n0022

Figure 4.6: Synthesized circuit of the image acquisition block

48

4.2. Image Compression

Figure 4.7: Simulation result of the image acquisition block

4.2 Image Compression

4.2.1 Image compression: concept

As mentioned in Chapter 1, memories occupy a large part of the chip area in most

embedded multimedia systems.

Image compression addresses the problem of reducing the amount of data re-

quired to represent a digital image. Moreover, compressed image also helps to

reduce the transmission bandwidth. The compressed image stored in the memory,

is later read and decompressed to reconstruct the original image or as an approxi-

mation of the original image.

Digital image compression is commonly divided into two basic classes. They

are lossy and lossless compression. Lossy compression is often used where the loss

of certain information within the image is acceptable. Lossless compression is a

technique to compress data where no data are loss after decompression.

All digital image compression techniques are based on the exploitation of infor-

mation redundancy that exists in most digital images Most compression techniques

are based on the removal of such redundant data [48] [47].

A relatively simple solution is to encode the differences between successive sam-

ples rather than the samples themselves. Since differences between samples are

expected to be smaller than the actual sampled amplitudes and fewer bits are re-

quired to represent the differences. In this case, the mathematical representation

is expressed in (4.1) .

49

4.2. Image Compression

e(n) = s(n) − s(n − 1) , (4.1)

where s(n) is the current sampled sequence and e(n) is the amplitude difference

between the current and previous samples.

0

50

100

150

200

250

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

Column Address

G
re

yS
ca

le
 L

ev
el

Figure 4.8: Pixel amplitude of a single line

2 7 2 82 0 2 5

1

240

Column Address

Data Width

Figure 4.9: Number of bits to represent compressed pixel

To illustrate the spatial correlation of an image, the pixel greyscale level is

plotted against the location of the pixels. Figure 4.8 shows that, given a nature

50

4.2. Image Compression

image, it exhibits the properties where the difference in the grayscale level between

neighbour pixels is small. As a result, there is a reduction of data width required

to represent a pixel. Figure 4.9 shows the number of bits required to store a single

line after compression. For this example, 90.02% of the pixels can be represented

with a data width of 5 bits instead of 8 bits. This is especially useful for images

with low frequency contents. By exploiting this property, e(n) are stored in the

memory instead of s(n). To extend this idea to the entire image, only the absolute

value of the first pixel is stored in memory i.e., s(n = 0).

Due to the spatial correlation of neighbouring pixels, the average change in

amplitude between any neighbouring pixels is relatively small. Consequently, an

encoding scheme that exploits the redundancy in the samples, results in a lower

bit rate for memory storage.

To compute e(n), a subtraction module can be used at the compression stage,

after which the decompression can be achieved by using an adder. The subtraction

/addition module can be implemented using the Xilinx Core Generator. It provides

a customisable core for the purpose of addition and subtraction in a single module.

In additional, this module operates on both signed and unsigned data types.

Alternatively, an approximate of e(n) can be computed using the properties of

an exclusive OR operations (Table 4.1).

Table 4.1: Properties of exclusive OR operations

Hence, e(n) can be approximated as

s(n) ⊕ s(n − 1) = e(n) , (4.2)

51

4.2. Image Compression

where e(n) is the reduced data type and s(n) is the current sampled pixel. Conse-

quently, the original pixel can be recovered from e(n) as follows

s′(n) = s(n − 1) ⊕ e(n)

= s(n − 1) ⊕ s(n) ⊕ s(n − 1))

= s(n) ⊕ (s(n − 1) ⊕ s(n − 1))

= s(n) ⊕ 0

= s(n) ,

where s′(n) is the pixel recovered.

4.2.2 Image compression: implementation

Figure 4.10 shows the block diagram of the compression and decompression mod-

ules. The resultant implementation should be carried out with the considerations

of area and speed. The compressed image is stored in memory which is later de-

compressed by another XOR module.

Compress
(xor)

Decompress
(xor)

delay

s(n)

Memorys(n-1)

e(n) e(n')
s(n')

s(n' - 1)
delay

Figure 4.10: Block diagram of Compression and Decompression

Two images with low (Figure 4.14) and high frequency (Figure 4.15) content

are analysed. The image with high frequency content shows a better histogram

distribution.

Figures 4.14(a) and 4.14(c) show the uncompressed original image and com-

pressed image using the XOR operation respectively. The histograms for both the

images are shown in Figures 4.14(b) and 4.14(d) respectively.

52

4.2. Image Compression

From Figure 4.14(d), it is observed that when e(n) = 0, it has the highest

frequency. In this particular sample, there are 14.39% of the adjacent pixels having

the same intensity value.

The XOR compression and decompression are described using Verilog HDL and

simulated in ModelSim (Figure 4.11). The synthesized logic gates are shown in Fig-

ures 4.12 and 4.13. From the synthesis report, it is noted that the implementation

only consumes 9 slices and 16 Flip-Flops, with a timing delay of 6.042ns.

Figure 4.11: Simulation results

53

4.2. Image Compression

D Flip-Flop

pixelin(7:0)

nreset

pclk_valid

pixelin(7)

pixelin(6)

pixelin(5)

pixelin(4)

pixelin(3)

pixelin(2)

pixelin(1)

pixelin(0)

Data<15:0>Result<7:0>

D Flip-Flop

pixelout(7:0)

Figure 4.12: Synthesized circuit of XOR compression module

Figure 4.13: XOR gate

54

4.2. Image Compression

(c)

(a) (b)

(d)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239

GreyScale Value

Fr
eq

ue
nc

y

0

500

1000

1500

2000

2500

3000

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239

Greyscale value

Fr
eq

ue
nc

y

Figure 4.14: Histogram of image with low frequency content

0

50

100

150

200

250

300

350

400

450

500

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

GreyScale Value

Fr
eq

ue
nc

y

(a)
(b)

(d)(c)

0

2000

4000

6000

8000

10000

12000

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241

GreyScale Value

Fr
eq

ue
nc

y

Figure 4.15: Histogram of image with high frequency content

55

4.3. Image Buffering

4.3 Image Buffering

Prior to any actual processing being performed, buffering the input image is nec-

essary.

Image
sensors

Image
buffering

Image
acquisition

Image
convolution

ThresholdingDisplay Image

Figure 4.16: Image buffering stage

Image buffering is often used to compensate for a difference in the rate of flow

of the image data between processes. Image buffering is used to synchronize the

image acquisition module and the computation of image data. With reference to

Figure 4.16, buffering is necessary to provide or store neighbourhood pixels for the

subsequent image convolution process.

4.3.1 Image buffering: theory

The 3 x 3 image convolution function requires nine pixels to be sampled for the

computation of 1 output pixel. The conventional approach is to buffer the entire

frame into a SRAM and retrieve nine pixels for each convolution computation. As a

result, nine read access are required for the calculation of a single pixel. This section

discusses the method of memory reuse. A 3 x 3 convolution window performed on

a 5 x 4 image (Figure 4.17) is used as an example.

In order to reduce the frequency of memory access and total memory space

required, each memory location is reused. The principle of data reuse is to efficiently

utilize the available memory space by reusing its storage as much as possible. By

56

4.3. Image Buffering

W33W32W31

W23W22W21

W13W12W11

Figure 4.17: A 3 x 3 convolution mask on a 5 x 4 image

exploring the lifetime of a data variable, each memory location is allocated with an

occupancy time related to a particular data variable. When these locations are no

longer used by the data variable for any read or write access, these data variables are

said to have reached the end of lifetime. Hence, these locations can be reused by new

arrived data variable. As a result, the exploration of memory location to be reused,

resulting in the reduction of physical memory space is possible. The reduction

strategy is based on the concept of data transformation presented in [54] [55].

The buffering of an input image for the purpose of convolution function is used

for the study. The lifetime of a data pixel and the data representation of pixels

occupancy are illustrated in Figure 4.18.

The lifetime of each pixel is represented as a producer and consumer approach,

wherein the producer is associated with the image acquisition processes and the

consumer is associated with the convolution processes. Figure 4.18 illustrates the

writing of a new pixel is written to the memory during each clock cycle. The first

read cycle begins only after the last pixel is written to the memory. After 4 rows

of pixels are written, the convolution process reads nine pixels at the same time to

perform a 3 x 3 image convolution function. This process is repeated for (N - 2) x

(M - 2) times. In this example, the total memory space required is 20 data pixels.

Figure 4.19 illustrates that the consumer is brought closer to the producer.

Such technique reduces the lifetime of all data variable by seven clock cycles. Im-

mediately after the 14th pixel is written to the memory, the 1st pixel is consumed

or read.

57

4.3. Image Buffering

Time

M
em

or
y

L
oc

at
io

n

Pixel write Pixel alive Pixel read

Figure 4.18: Producer and consumer of pixels before transformation

M
em

or
y

L
oc

at
io

n

Time

Physical
memory
saved

Pixel write
Pixel alive

Pixel read
Location reused

Figure 4.19: Producer and consumer of pixels after transformation

58

4.3. Image Buffering

Time

D
at

a
in

 F
IF

O

St
ac

k
D

at
a

ou
ts

id
e

FI
FO

Line j - 1

Line j - 2

Line j - 3

Line j

5 x 4 image

Figure 4.20: Buffering using FIFO

Time

M
em

or
y

Sp
ac

e

Time

M
em

or
y

Sp
ac

e

Figure 4.21: Reduction of memory space after data reuse

After all pixels in the first row are read, these memory locations are free to be

reused. As a result, the 4th row of pixels has reused the first five data locations.

From this example, it shows that a buffer size of only three lines are required to

buffer the input image for a 3 x 3 image convolution.

Instead of using Static RAM for implementing the image buffer, FIFO RAM

can be used. The FIFO RAM offers several advantages over the Static RAM in

certain areas. The simplicity of FIFO RAM allows data to be accessed without

the hassle of address decoding. In additional, data placed on top of the stack are

retrieved at the bottom of the stack. As a result, data that reaches the end of its

59

4.3. Image Buffering

lifetime is automatically removed from the bottom of the stack after a data is being

read, freeing memory location for other data variables. For this reason, the reuse

of such free memory location achieves overall memory reduction.

The FIFO RAM is allowed to be filled before any data is being read (Fig-

ure 4.20). After the FIFO RAM is filled, for each pixel placed on top of the stack,

a pixel is read from the bottom of the stack at the same clock cycle. As the FIFO

RAM remains full, it performs a line delay function.

Figure 4.21 illustrates the reduction of total memory space required after the

reuse of free memory locations.

In theory, the nine pixels forming the 3 x 3 window are sampled at fixed locations

as illustrated in Figure 4.20. However, in practice, a typical FIFO RAM can only

be read at the end of the stack. Thus, such method is not possible. However, the

next section discusses on how this can be made possible.

4.3.2 Image buffering: implementation

A revised solution is proposed to access the nine pixels at the designated memory

locations. With reference to Figure 4.22, a single FIFO RAM can be broken up

into two separate FIFO RAM together with 9 registers. The 3 registers, W31,

W32 and W33 replace the 3 memory spaces from the FIFO1. Similarly, the other

3 registers replace 3 memory spaces in FIFO2. The size of both FIFO1 and FIFO2

are determined by the width of the image as (4.3).

Sfifo1 = Sfifo2 = N − 3 , (4.3)

where Sfifo1 and Sfifo2 are the sizes of the FIFO RAM required and N is the image

width. Such architecture maintains a single logical FIFO RAM for the functionality

discussed in the earlier section and provides a method to sample the designated

memory locations.

60

4.3. Image Buffering

FIFO 2

W13W12W11

W23W21 W22

W31 W32 W33FIFO 1 Pixel in

3 x 3 convolution window

Figure 4.22: Convolution window using registers

With reference to Figures 4.20 and 4.22, the convoluted output pixel is expressed

as shown in (4.4).

ri−1,j−1 =

hi−2,j−2 hi−1,j−2 hi,j−2

hi−2,j−1 hi−1,j−1 hi,j−1

hi−2,j hi−1,j hi,j

⊗

M1 M2 M3

M4 M5 M6

M7 M8 M9

(4.4)

Where hi,j is the pixel input, ri−1,j−1 is the resultant pixel and M is the con-

volution mask. It is interesting to note that, for every pixel produced at location

(i, j), an output pixel at (i + 1, j + 1) is produced.

Pixel in

Pixel Clock
w11

w12

w13

w21

w22

w23

w31

w32

w33

8

8

8

8

8

8

8

8

8

8

reset

Figure 4.23: Image buffer module

The image buffer is designed and implemented as a module with the various

input/output ports and control signal as shown in Figure 4.23. It uses a dedicated

61

4.3. Image Buffering

Block RAM available in the Xilinx Spartan 2eS300. The block RAM is accessed

through an FIFO module generated by Core Generator, a program distributed by

Xilinx Inc. The Core Generator makes use of the block RAM within the FPGA

and embedding logic cell to implement an asynchronous FIFO RAM.

The Spartan 2eS300 chip has a total of 8 Kbytes spread across 16 blocks of

embedded RAM. Each block of RAM is 512 bytes. The 317 bytes FIFO RAM is

implemented using an entire single block RAM of 512 bytes. A counter is used to

count the number of memory locations occupied by data. If the counter counts

317 times, it asserts a FIFO full signal indicating that the logical 317 FIFO is full.

Upon receiving this signal, the 317 FIFO performs the function of shifting pixels

in and out of the FIFO RAM at every clock cycle.

For every clock cycle, a new pixel is shifted into the W33 register. In the

same way, the data in W33 register is shifted to the remaining 2 registers and

subsequently written into the FIFO1. The shifting technique can be viewed as a

common technique used in parallel to serial converter in many serial communication

systems.

The image buffer is generated using two FIFO RAM together with some control

logic and registers. The design is synthesized, simulated and tested with convolu-

tion function in the Chapter 5. Figures 4.24 and 4.25 show the synthesized design

of the image buffer. The image buffer consists of nine key registers that are used

in the convolution window. Four comparators are used to generate control signals

for read and write sequence to the two FIFO RAM.

62

4.3. Image Buffering

W
33

W

3
2

W
3

1
F

IF
O

1

Figure 4.24: Synthesize result of Image buffer (Part 1)

63

4.3. Image Buffering

W
23

W

22

W
21

W
1
3

W
1

2

W
1

1

F
IF

O
2

Figure 4.25: Synthesize result of Image buffer (Part 2)

64

4.4. Convolution Theory

4.4 Convolution Theory

Image convolution is used to enhance certain features, de-enhance the rest of the

features, identify edges, smooth out noise or discover previously known shapes in

an image [49]. It is one of the most commonly used processes in image processing.

Image

sensors

Image

buffering

Image

acquisition

Image

convolution

ThresholdingDisplay Image
Hough

transform

Figure 4.26: Image convolution stage

Convolution process is a computationally demanding process to be carried out in

real-time. The operation often compute a set of neighbour pixels with a predefined

convolution mask to produce a single pixel.

Convolution in an image can perform the function of image filtering. The con-

volution operator is often called filter or kernel. The size of typical convolution

filters are 3 x 3 and 5 x 5 pixels. Several convolution operators are available in the

literature for performing specific functions. A few common convolution operators

are ”High pass”, ”Low pass”, ”Laplacian”, ”Median” and ”Sobel” Roberts. Fig-

ures 4.27 illustrates the convolution operation of a 3 x 3 convolution filter with an

N x M image.

The output of the convolution function is represented as shown in Equation 4.5.

ri,j =
9

∑

k=1

f(k) h(k) , (4.5)

where ri,j is the result of the convolution, f(k) is the convolution mask and h(k)

is image window. For example, the resultant pixel is computed as

65

4.4. Convolution Theory

M9M8M7

M6M5M4

M3M2M1

W33W32W31

W23W22W21

W13W12W11

Convolution Mask f

Input image H Result image R

N-1

M-1

0

0

i

j

N-1

M-1

0

0

i

j

hi,j ri,j

Convolution Window h

Figure 4.27: Image convolution

r = W11M1 + W12M2 + W13M3

+ W21M4 + W22M5 + W23M6 ,

+ W31M7 + W32M8 + W33M9

(4.6)

Typically, the convolution function is performed using a predefined convolution

mask. The convolution window h is superimposed upon the input image H, com-

mencing at the origin. Convolution is performed using Multiply and Accumulate

(MAC) operation. Each element in the convolution window is multiplied by the

corresponding element in the convolution mask f . The nine results are summed

together and the final value is written to a resultant image R, at the position ri,j

. To compute the next ri,j . , the window is shifted to the next pixel. This process

is repeated until all pixels are computed to produce an output image.

In the next chapter, a FPGA implementation of Parallel Architecture is pre-

sented. The image buffer discussed in this chapter provides an overlaying convolu-

tion window for the subsequent convolution function.

66

Chapter 5

FPGA Implementation of Parallel

Architecture

This chapter discusses the concept and implementation of thresholding, Low Pass

filter and edge detection algorithm. The design is realised in a parallel architecture

with the considerations of computational efficiency. Figure 5.1 shows various stages

of processing within the image processing system.

Image
sensors

Image
buffering

Image
acquisition

Edge
detection

ThresholdingDisplay Image

Low Pass
Filter

Figure 5.1: Image processing stage

67

5.1. Edge Detection Theory

5.1 Edge Detection Theory

Edge detection is by far the most common approach for detecting meaningful dis-

continuities in grey level. The reason is that isolated points and thin lines are

not frequent occurrences in most practical applications [47]. The principle of edge

detection is that an edge is defined where there is a steep intensity gradient in the

image. An edge can be defined as a boundary between two regions with relatively

distinct greyscale properties. Hence, the gradient of the pixel at the edge provides

some indication on the presence of an edge pixel.

With this theory, the derivatives of the intensity values across the image are

calculated to determine the maximum intensity derivation. The point with the

maximum derivation is said to be an obvious edge. Subsequently, all other edges

can be determined by a predefined threshold. Thus, the image will consists of only

edges and non-edges pixels, represented in a binary image format.

Image

Profile of a
horizontal

line

First
derivative

Figure 5.2: Image intensity level derivatives

68

5.1. Edge Detection Theory

Figure 5.2 further illustrates the concept of detecting edges through the deriva-

tives of the intensity values across the image. The image shows that there is an

abrupt transition of dark grey level to white grey level. However the profile of this

image is modelled as a smooth change in the grey level. This is due to the fact

that any natural images captured has a gradual change in intensity with respect

to its surrounding pixels.

Subsequently, the first derivative can be obtained from the profile of the hori-

zontal line. It is also noted that, the leading edge of a profile transition results in

a positive derivative, a trailing edge results in a negative derivative and a constant

grey level results in a zero derivative.

The detection of edges or contours from a two dimensional image is performed

by convolution and moving window operations, conceptually combined into com-

putations that determine the magnitude of contrast changes [56].

W33W32W31

W23W22W21

W13W12W11

Figure 5.3: Convolution window

111

000

-1-1-1

10-1

10-1

10-1

(b)(a)

hy(i,j)= hx(i,j)=

Figure 5.4: Prewitt operator

Edge detection algorithms uses the theory of convolving a moving window (Fig-

ure 5.3) with a set of operator masks. The Prewitt operator (Figure 5.4) and Sobel

operator (Figure 5.5) are two commonly known edge detection operators.

69

5.1. Edge Detection Theory

10-1

20-2

10-1

(b)(a)

h
y
(i,j)= hx(i,j)=

121

00

-1-2-1

0

Figure 5.5: Sobel operator

The Prewitt operator demonstrates the simple concept of the first derivative.

It provides an equal weight to the pixel difference which is horizontally or verti-

cally adjacent to the origin. From Figure 5.4, it can be seen that hy(i, j) returns

the maximum rate of change in y component of the image. Consequently, a zero

difference in the y component results in zero gradient.

The Sobel edge operator is recognised as one of the best and yet simple to

implement algorithm [24]. The coefficients of the mask are derived to extract

features with high edge contrast. The Sobel operator works by applying more

weight to the central pixel differences as opposed to just the horizontal or vertical

pixels used in the Prewitt’s operator. The Sobel operators also have the advantages

of providing both differencing and smoothing effect. From Figures 5.4, 5.5(a) and

5.5(b).

df

dx

= Gx(i, j)

= (−w11 − 2(w12) − w13) + (w31 + 2(w32) + w33) ,

(5.1)

and

df

dy

= Gy(i, j)

= (−w11 − 2(w21) − w31) + (w13 + 2(w23) + w33) ,

(5.2)

where the gradient magnitude and orientation are given as

70

5.2. Proposed Parallel Architecture for Edge Detection

Gm(i, j) =
√

Gy(i, j)
2 + Gx(i, j)

2

≈| Gy(i, j) | + | Gx(i, j) | ,
(5.3)

Gθ(i, j) = tan−1(
Gy

G x
). (5.4)

5.2 Proposed Parallel Architecture for Edge De-

tection

Two dimensional convolution is often characterized by a large amount of data

together with small neighbourhood operators. The convolution process consists

of multiply and addition operations. It is also known that custom architectures

are more efficiently used than instruction-set architectures when the algorithm

processes large amount of data with high degree of regularity [60] [58] [59]. These

reasons have led to the proposed architecture to exploit computational parallelism.

The architecture is designed to match the speed of the image sensor’s frame

rate. For instance, the image sensor maximum frame rate is 30 fps. Hence, the

computation of an entire image must be less than or equal to 33.33ms.

B

Pixel_in

Pixel_valid_clk

Sinit

w11

w12

w13

w21

w22

w23

w31

w33

w32

c

ready

Pixel_valid_clk

g_out
Edge detection

module
Image buffering

module

Figure 5.6: Acquiring nine pixels from image buffering module

71

5.2. Proposed Parallel Architecture for Edge Detection

The image buffer module discussed in the previous chapter provides an overlay-

ing window for the operations of convolution function. The edge detection module

receives nine input pixels and performs a parallel computation as shown in Fig-

ure 5.7.

Considering the Sobel operation expressed in (5.5), (5.6) and (5.7), each of the

Gx and Gy operation consists of 5 signed additions and 2 unsigned multiplications.

By grouping similar operations together, 1 multiplication operation is reduced.

Hence, a total of 11 additions and 4 multiplications are required to obtain the

gradient magnitude of a single pixel.

Based on (5.5), the equivalent is implemented in hardware as shown in Fig-

ure 5.7. Similarly, the architecture for Gy and Gout are shown in Figure 5.7 and

5.8 respectively.

The image buffering together with the edge detection module forms the convo-

lution operation that is implemented in hardware architecture. All six pixels are

computed in a parallel configuration to produce a single output pixel value, |Gx|.

Gx(i, j) = (−w11 − 2(w12) − w13) + (w31 + 2(w32) + w33)

= 2(w23 − w21) + (w13 − w31) + (w33 − w11) ,
(5.5)

- W31

W13

- W21

W23
Shift

register 10

10

9 12

-ve value ? |Gx|

2's

complement

11

- W11

W33

11

8

8

8

8

8

8

11

Gx(i,j)

Figure 5.7: Architecture of Gx

72

5.2. Proposed Parallel Architecture for Edge Detection

Gy(i, j) = (−w11 − 2(w21) − w31) + (w13 + w23 + w33)

= 2(w32 − w12) + (w31 − w13) + (w31 − w11) ,
(5.6)

- W13

W31

- W12

W32
Shift

register 10

10

9 12

-ve value ? |Gy|

2's

complement

11

- W11

W33

11

8

8

8

8

8

8

11

Gy(i,j)

Figure 5.8: Architecture of Gy

Gout = |(Gyi, j| + |Gxi, j|
(5.7)

|Gx|

|Gy|

>

Threshold
value

11

11

12
G_out

Figure 5.9: Architecture for gradient magnitude and thresholding

The Gx component computation is based on 6 different inputs. There are 9

input pixels from the Image buffering module buffer of which only 6 pixels are used

in this module. This is due to the 3 zero coefficients in hx(i, j).

With reference to Figure 5.7, the (w23 - w21) signed arithmetic operation pro-

duces a 9 bit result. This value is subsequently multiplied by 2 to produce a 10

bit pixel values. The multiplication is implemented using a bit-wise shift operation

instead of a multiplier. A bit wise shift operation in digital logic implementation

73

5.2. Proposed Parallel Architecture for Edge Detection

is done simply by rewiring the 9 bit signed value to 10 bit signed value. With this

method, there is no logic gate delay. Nevertheless, wiring delay is still accountable.

By replacing the multiplier with shift operation, it is able to achieve higher speed

and smaller circuit area design compared to the multiplier implementation.

The sum of (2(w23) - w21)+ (w13- w31) together with (w33- w11) produces a

12 bit result of Gx(i, j). Although the (w33- w11) sum operation produce a 9 bit

value, it is deliberately assigned to produce an 11 bit result. This is to match the

summation operation with another 11 bit operand, which produces a 12 bit pixel

value.

The magnitude of Gx is computed based on the sign of Gx. If the MSB (Most

Significant Bit) of Gx is negative, it is converted to positive by applying a 2’s

complement operation which produces |Gx|. Since |Gx| is an unsigned register, the

sign bit is not needed and the resultant |Gx| is truncated to an 11 bit register.

In the same way, the architecture for |Gy| is identical. Two identical architec-

tures are used for the concurrent computation of |Gx| and |Gy| in a single clock

cycle.

The output image is threshold to a predefined value to produce a binary image

that consists of only edge data pixels. This edge information is then used for further

feature extraction.

The concept and architecture designed are first tested in Visual C/C++ en-

vironment before the actual coding of Verilog HDL. Figure 5.10 shows the vari-

ous image processing algorithms applied to a 320 x 240 colours image. Specifi-

cally, thresholding, edge detection, image compression and image decompression

are demonstrated.

74

5.3. Thresholding

(a) (b) (c)

(d) (e)

Figure 5.10: Simulation of architecture using Visual C/C++

5.3 Thresholding

Thresholding is one of the most important approaches in image segmentation. It

is a process to convert greyscale images to binary images. Typically, a greyscale

image is threshold to obtain a binarised version of the image which consists of only

foreground and background.

To obtain a binary image which consists of only foreground and background

pixel, a threshold value T, is used to partition the image into pixels with just two

values, such that

If f(x, y) ≥ T then g(x, y) = 1

If f(x, y) < T then g(x, y) = 0

where the image g(x, y) denotes the binarised version of image f(x, y).

75

5.4. Edge Detection: Analysis and Results

(b)(a)

Figure 5.11: Thresholding

Figure 5.11(a) shows a greyscale image and Figure 5.11(b) shows the binary

image. The selection of threshold T, is a critical issue which determines the content

of the image to be classified as a foreground or background information.

Consequently, the foreground information is normally useful for further analysis

or processing. As such, unsuitable threshold values will produce inaccurate results.

5.4 Edge Detection: Analysis and Results

Using the edge detection and thresholding module discussed, various types of im-

ages with different resolution are experimented. This section will discuss on the

results of edge detection technique employed on different scenes and different image

resolutions.

The proposed architecture discussed is simulated and implemented in Xilinx

FPGA. The architecture is tested with different scenes of different image resolu-

tions. Specifically, the low resolution QVGA (320 x 240) and the high resolution

SXGA (1280 x 1024) are experimented.

An initial study is to experiment with different image scenes. After which, a

comparison of edge detection with different image resolution is shown. Finally, the

system resource utilisation to process a QVGA and a SXGA is also presented.

76

5.4. Edge Detection: Analysis and Results

|Gx|

121

000

-1-2-1

10-1

20-2

10-1

|Gy|

Gout=|Gx|+|Gy|

Figure 5.12: Sum of |Gx| and |Gy| component

77

5.4. Edge Detection: Analysis and Results

(c) Output of Gx component (d) Output of Gy component

(a) Original image (b) Edge pixels

Figure 5.13: Detecting edges of the green carpet

78

5.4. Edge Detection: Analysis and Results

(c) Output of Gx component (d) Output of Gy component

(a) Original image (b) Edge pixels

Figure 5.14: Detecting edges of a tennis ball and the boundary lines

79

5.4. Edge Detection: Analysis and Results

5.4.1 Experiment of edge detection with different scenes

The Sobel edge detection module is performed by approximating the magnitude of

the two vectors Gx and Gy to be |Gy(i, j)| + |Gx(i, j)|. As such, the results of two

separate convolution process are added together. The addition of the horizontal

and vertical convolution results are shown in Figure 5.12. It can be seen that the

|Gx| image responded strongly to vertical lines and |Gy| responded strongly to

horizontal lines.

The real-time images are captured at 30 fps using AMCAP program. Fig-

ure 5.13 shows that the edges are detected along the green carpet. Figure 5.14

shows a clear outline of a tennis ball in a robot soccer field.

5.4.2 Images with resolution 320 x 240

Figures 5.15(a) and (b) show the original image and the processed image using

edge detection operation. It is observed that the edges are well separated from the

background with a careful selection of threshold value. An optimal threshold value

of 78.42% produces an output image as shown in Figure 5.15. However, it is also

observed that some non-edge pixels are also classified as edge pixels. These noise

pixels are due to the noise or lighting reflection originates from the image captured.

A false edge detected may affect the reliability of image recognition.

(a) (b)

Figure 5.15: Edge detection with image resolution of 320 x 240

80

5.4. Edge Detection: Analysis and Results

Figure 5.16 shows a magnified image of Figure 5.15, with the emphasis on a

horizontal white line. It is observed that the changes in intensity level are often

seen as a slow change in grey value between connected pixels.

Figure 5.16: Magnified image of Figure13

The output image in Figure 5.16(b) shows that the horizontal line in the original

image (Figure 5.16(a)) is not detected as an edge pixel. The difference between grey

value of the line and the background is not significant. Hence, it is not detected as

an edge. It is noted that the grey level of a particular pixel is related to the image

resolution as well as its neighbourhood pixels. As a result the differential value

falls below the predefined threshold value. From this experiment, it is concluded

that pixels have a gradual change in intensity with respect to its neighbourhood

pixels.

5.4.3 Image with resolution of 1280 x 1024

In order to solve the difficulty in detecting the fine line, a high pass convolution filter

can be applied to enhance certain features in the image. However, by applying a

high pass filter, the noise pixels are amplified as well. This may result in producing

many undesired edge pixels.

81

5.4. Edge Detection: Analysis and Results

Another experiment is conducted using an image with a resolution of 1280 x

1024. From Figure 5.17(b) and 5.18(b), it can be seen that the output image

produces a sharper edge compared to the image with 320 x 240 resolution.

(a) (b)

Figure 5.17: (a) Original image of 1280 x 1024 produces (b) fine edge pixels

Figure 5.18: (a) Magnified image of Figure 15 and (b) Edge detection of fine lines

Figure 5.18(a) and Figure 5.18(b) are the magnified images of Figure 5.17(a)

and Figure 5.17(b) respectively. With the same threshold of 78.4%, a fine resolution

of edge pixels is obtained.

82

5.5. Proposal Parallel Architecture for Low Pass Filter

5.5 Proposal Parallel Architecture for Low Pass

Filter

5.5.1 Noise pixels in high resolution image

From Section 5.4.3, it can be seen that a high resolution image produces an output

image with fine edges and is able to detect the fine horizontal line. This section

looks into some of the problems encountered when a high image resolution is used.

Figure 5.19: Edge detection with different image resolution

An edge detection operation followed by thresholding is applied to two images

of different resolutions. A threshold value of 78.43% is applied to both experiments.

Figure 5.19(a) shows the original image. Figure 5.19(b) and 5.19(c) show the output

images with resolutions 320 x 240 and 1280 x 1024 respectively.

By comparing both output images, it is interesting to note that the low resolu-

tion image produces better results. It is observed that the edge is clearly outlined

with unwanted background features suppressed.

On the other hand, an image with a higher resolution produces an undesirable

result. With a higher resolution, the changes of grey value on the green carpet be-

come significant. With the same convolution operator and a predefined threshold

value, the desired edge pattern does not distinguish from the background (Fig-

ure 5.19(c)).

83

5.5. Proposal Parallel Architecture for Low Pass Filter

5.5.2 Low Pass Filter

Image
buffering

Edge
detection

Low Pass
Filter

Threshodling

Figure 5.20: Insertion of Low pass filter before edge detection

Image noise usually is seen as random fluctuations in grey-level values super-

imposed with the ideal grey value. The characteristic of such image usually has a

high spatial frequency. In order to remove unwanted noise from an image, while

preserving all of the essential edges, a low pass filter is applied to the input image.

Neighborhood averaging is one of the commonly used techniques of applying a

low pass filter to smoothen an image. It seeks to remove as much noise as possible

while preserving the essential edge information.

Figure 5.20 shows that a low pass filter is applied before the edge detection pro-

cess. The simplest Low Pass filter arrangement is implemented using a convolution

mask in which all coefficients have a value of 1. However in practice, the sum of nine

pixels would result in a large value that cannot be represented within the number

of grey levels. Hence, the sum is often divided by 9 as shown in Figure 5.21. The

mathematical representation of the low pass convolution filter is shown in(5.8).

9

1

111

111

111

h(i,j) =

Figure 5.21: Convolution coefficients of Low Pass Filter

r(i, j) =
1

9
[f(i, j) ⊗ h′(i, j) (5.8)

The low pass filter (Figure 5.22) is implemented using a similar architecture

discussed in Section 5.2. Instead of using a multiplier, a bit-wise shift register is

84

5.5. Proposal Parallel Architecture for Low Pass Filter

used to reduce gate counts. As a result, the division by 9 is replaced by a division

of 8, which is simply a shift of 3 bits to the right. Again, such technique achieves

a higher speed and smaller circuit compared to a 9 bit multiplier.

W12

W11

11

11 12

>> 3 Gx (i , j)

12

11

8

8

8

8

8

W13

W21
8

8
W22

W23

W21
8

8
W22

W23

Figure 5.22: Architecture of Low Pass Filter

Figure 5.23 shows the original image and a processed image without low pass

filter. Figure 5.24 illustrates the effect of applying a low pass filter to the input

image. A comparsion of Edge detection with and without Low Pass filter is shown

in Figure 5.25. The unwanted noisy pixels are suppressed after a low pass filter

followed by a Sobel edge enhancement operation. Subsequently, all of the three

processes are combined, with a low pass filter followed by an edge detection and

thresholding. Finally, the image is threshold and the effects are demonstrated in

Figure 5.26

85

5.5. Proposal Parallel Architecture for Low Pass Filter

(a) (b)

Figure 5.23: (a) Orignal image (b) Edge detection without Low Pass filter

(a) (b)

Figure 5.24: (a) Original 1280 x 1024 image (b) Resultant Image applied with Low
pass filter

86

5.5. Proposal Parallel Architecture for Low Pass Filter

(a) (b)

Figure 5.25: (a) Edge detection without Low Pass filter (b) Edge detection with
Low Pass filter

Figure 5.26: (a) Without Low pass filtering (b) With Low pass filtering

87

5.6. System Resource Utilization

5.6 System Resource Utilization

5.6.1 On-Chip memory size requirements

As mentioned in Chapter 4, the memory size of a logical FIFO is given as (w -

3) x 2 Bytes, where w is the image width. The FIFO is generated using the core

generator from Xilinx. Each FIFO is generated from the embedded Block RAM in

the SpartanIIE chip. The SpartanIIE300 consists a total of 16 blocks RAM and

a single block RAM is given as 512 bytes. A total of 8192 bytes of block RAM is

available on chip.

Image Resolution
7.7% 12.5% 15.6% 18.8%

31.2% 31.3%

Memory Size (bytes)

QVGA VGA SXGA

L
og

ic
al

Ph
ys

ic
al

L
og

ic
al

Ph
ys

ic
al

Ph
ys

ic
al

L
og

ic
al

8192

2560

1536
1024

Figure 5.27: Comparison of image buffer size required for different resolution

The logical FIFO memory is defined as the memory size required for buffering

while the physical FIFO memory is defined as the actual memory utilised. This

is due to the fact that, a single FIFO memory must occupy at least one physical

block RAM.

Although increasing the image resolution requires more memory space, the on-

chip block RAM is still capable of buffering the SXGA resolution. Figure 5.27 shows

the comparison of logical and physical FIFO memory requirements for QVGA, VGA

and SXGA resolution.

88

5.6. System Resource Utilization

5.6.2 Logic resources

(a) Inferred Macro

(b) System Resources

(c) Timing information

Figure 5.28: Synthesis report from Xilinx synthesis tool

The Sobel edge detection architecture is designed with the considerations of

the gate delay and logic optimization. The entire design is synthesized and all the

macros inferred from the verilog codes are shown in Figure 5.28(a). The adders

and subtractors are the main functions of the Sobel operations. The registers are

used in register transfer level design and the comparators are used for control logic

and thresholding purposes.

The inferred hardware logics gates are mapped to a Xilinx Spartan2s300efg456-

7 device. From the synthesis report (Figure 5.28(b)), the entire system architecture

only occupies 5% of the total slices on chip. The minimum period is given as 17.736

ns.

5.6.3 System performance

As mentioned earlier, the pixels are processed in a parallel approach. In additional,

the system computes two sets of 2D convolution within a single clock cycle. The lag

time for such computation is 7.870 ns. Since all computations are performed within

a single clock cycle, all the processes must be synchronised. As a result, the image

89

5.7. Summary of Results

acquisition, image buffering and edge detection process, use a common clock. A

clock frequency of 27 Mhz is used in the design. Figure 5.29 shows the computation

time required to process images with different frame rates and resolutions.

Resolution

Computation Time (ms)

Fr
am

e r
at

e (
fp

s)

15

30
66

33

16

SXGA

VGA

QVGA

60

Figure 5.29: Computation time with different resolution

The maximum frame rate that the system can achieve is calculated from the

synthesis report. The total gate delay is 17.74 ns. Thus, the system is able to op-

erate at a maximum frequency of 56.38 Mhz. With this information, and assuming

that the image sensor transmit a pixel for every clock, the time required to process

one frame is (image width * image height * pixel clk). Hence, for a 320 x 240

image, the system can achieve a computational performance of 734 fps. This shows

that the system has a great potential of processing real-time video at a very high

frame rate.

5.7 Summary of Results

This chapter has presented the design and implementation of the Low Pass filter,

the Sobel edge detector and the thresholding operations. The entire system archi-

tecture is decomposed into independent modules to ease modular testing. With

90

5.7. Summary of Results

each independent module, the algorithms are designed with the consideration to

achieve high computational speed with minimum hardware resource required.

After the review of Sobel operator, a parallel architecture is proposed to perform

the two 2D convolution operations. The target of completing all operations within

a single clock cycle is set. To achieve such demanding performance, it is necessary

to exploit the computation parallelism of the Sobel algorithm.

A study is also conducted to evaluate the effects of adding a low pass filter to

the design. After which, a threshold operation is performed to extract the desired

edge features of an image. In summary, to achieve minimal hardware resources,

redundant logics and computations are removed.

91

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This chapter reviews the outcome of this work and, evaluate the results and dis-

cussions with respect to the initial objectives. The overall aim is to investigate the

methods of achieving the desired performance with the considerations of various

constraints stated.

The four major constraints mentioned in Chapter 1 which comprises the demand

of computation speed, limitations to memory space, size constraints and lastly

energy consumption issues.

With these aims, a review of research work and study of hardware system

components is conducted. A few of the existing embedded image processor are

compared in Section 1.1. A good portion of work is spent to identify the suitable

hardware components used in the experiment. In Section 2.4, the type of FPGA

and image sensor are chosen with detailed considerations of resources and system

interface. Efforts to implement the entire design on a single chip is realised. This

will help to reduce cost and the overall size of the system.

A substantiate amount of time is spent to study various image processing al-

gorithms, the simulation and development tools and the design flow of FPGA

92

6.2. Future Work

implementation.

Along with the practical considerations, an analytic model is presented in Chap-

ter 4 to estimate the various performance parameters associated with embedded

machine vision.

In Chapter 5, the parallel architecture is designed to accomplish high perfor-

mance image processing task. Methods and techniques are investigated to imple-

ment the design with the minimal resources needed. Practical methods such as

eliminating the computation of redundance data and replacing multipliers with

shift registers are discovered in the course of implementation. These techniques

are employed in both Low Pass filtering and edge detection process.

The methods obtained from this work are very encouraging. The custom par-

allel architecture is able to perform a series of image processing at a very high

speed. Real-time image processing at 30 fps with image resolution of 320 x 240

and 640 x 480 is tested in the hardware. In fact, the system shows great potential

of processing images even at a higher frame rate. Finally from the evaluation of

the work done, the next section raises some directions and considerations for future

work.

6.2 Future Work

The future work can be carried at along the following directions. At the moment,

the analytical mathematical model helps to estimate the memory buffer required

and the processing clock speed for certain image processing algorithm.

As for the parallel architecture, the same concepts and techniques can be ap-

plied to other image processing algorithm. However, it is recommended to work

on algorithms that are repetitive and characterized by large amount of data to

be processed. The pyramid architecture for data processing should be used as a

reference. Image algorithm such as image erosion, dilation, opening and closing are

93

6.2. Future Work

suitable to exploit computational parallelism.

Lastly, it will be an interesting area to study the soft-core architecture of a

Microprocessor. With the reconfigurable architecture of FPGA, the soft-core Mi-

croprocessor can include custom instruction set for handling demanding operations.

94

Bibliography

[1] Thomas Braunl, “Improv amd EyeBot Real-time Vision on-board Mobile

Robots”, IEEE, Mechatronics and Machine Vision in Practice, vol.4, pp. 131-

135, 1997.

[2] A. Rowe, C. Rosenberg and I. Nourbakhsh, “A Low Cost Embedded Color

Vision System”, IROS 2002 conference, 2002.

[3] R. T. Chin and C. R. Dyer, “Model-Based Recognition in Robot Vision”, ACM

COMPUTING SURVEYS, vol.18, pp.67-108, 1986.

[4] M.J. Flynn, “Very high speed computing systems”, Proc. IEEE, vol.54, no.12,

1966.

[5] A. Aliphas and J.D. Feldman, “The versatility of digital signal processing

chips”, IEEE Spectrum, vol.24, no.6, pp.40-45, 1987.

[6] S. Hauck, “The Roles of FPGA’s in reprogrammable system”, proceedings of

the IEEE, vol.86, no.4, pp.615-638, 1988.

[7] P. L. Athanas and A. L. Abbott, “Real-time Image Processing on a Custom

Computing Platform”, IEEE Computer, vol.28, no.2, pp.16-25, 1995.

[8] D. Crookes and K. Benkrid, “An FPGA implementation for image compo-

nent labeling”, Reconfigurable Technology: FPGAs for Computing and Appli-

cations, Proc. SPIE 3844, pp.16-23, 1999.

[9] D. Crookes, “Architectures for high performance image processing: The fu-

ture”, Journal of Systems Architecture, vol.45, no.10, pp.739-748, 1999.

95

Bibliography

[10] R. Woods, D. Trainor and J. P. Heron, “Applying an XC6200 to real-time

image processing”, IEEE Design and Test of Computers, vol.15, pp.30-38,

1998.

[11] D. Bhatia, “Field programmable gate arrays. A cheaper way of customizing

product prototypes”, Proc. IEEE, vol.13, no.1 pp.16-19, 1994.

[12] The Vision and Autonomous Systems Center

(http://vasc.ri.cmu.edu/), 2005.

[13] The K-team, Khepera vision turret K6300

(http://www.k-team.com/robots/khepera/k6300.html/), 2004.

[14] The RoboCup Federation

(http://www.robocup.org), 2003.

[15] Kitano Symbiotic Systems Project- Open PINO Platform

(http://www.symbio.jst.go.jp/PINO/index.html), 2003.

[16] ActivRobots

(http://www.activrobots.com/), 2004.

[17] RC1000PP Product Information Sheet

(http://www.te.rl.ac.uk/europractice/vendors/rc1000.pdf), 2004.

[18] The CMUcam Vision Sensor

(http://www.cs.cmu.edu/ cmucam/), 2004.

[19] Viorela Ila, Reconfigurable Devices Architecture for Robotics Applications, PhD

thesis, University of Girona, 2005.

[20] D. Sima, T. Fountain and P. Kacsuk, Advanced Computer Architectures: A

design Space Approach, Pearson Education Limited, England, 1997.

[21] A.N. Choudray and J.H. Patel, Parallel architectures and parallel algorithms

for integrated vision systems, Kluwer Academic Publishers, Dordrecht, 1990.

96

Bibliography

[22] J. L. Hennessy and D. A. Patterson, Computer Architecture: A quantitative

approach, Morgan Kaufmann, Calif, 1990.

[23] Stephen Brown and Jonathan Rose, Architecture of FPGAs and CPLDs: A

Tutorial, Department of Electrical and Computer Engineering, University of

Toronto.

[24] G.J. Awcock and R. Thomas, Applied Image Processing Book, McGraw-Hill,

USA, 1996.

[25] Keith Jack Verilog HDL vs. VHDL For the First Time User Bill Fuchs, OVI,

1995.

[26] Douglas J. Smith VeriBest Incorporated, VHDL and Verilog Compared and

Contrasted Plus Modeled Example Written in VHDL, Verilog and C, 2003.

[27] Keith Jack Video Demystified, A handbook for the Digital Engineer, LLH Tech-

nology Publishing, Eagle Rock, 1997.

[28] Michael John Sebastian Smith Application-Specific Integrated Circuits,

Addison-Wesley Professional, England, 1997.

[29] Stephen Brown and Jonathan Rose Architecture of FPGAs and CPLDs: A

Tutorial, Department of Electrical and Computer Engineering, University of

Toronto.

[30] Spartan-IIE 1.8V FPGA Family: Complete Data Sheet, Xilinx, July 2003.

[31] N. K. Ratha and A. K. Jain, “ Computer Vision Algorithms on Reconfigurable

Logic Arrays ”, IEEE Transactions, Parallel and Distributed Systems , vol.10,

pp. 29-43, 1999.

[32] Kwangho Yoon, Chanki Kim, Bumha Lee, and Doyoung Lee, “ Single-Chip

CMOS Image Sensor for Mobile Applications”, IEEE Journal of Solid-State

Circuits, vol.37, pp. 1839-1845, 2002.

97

Bibliography

[33] G.J. Awcock, M.T. Rigby“ Single Integrated Imaging Sensors and Processing

”, IEE Colloquium on, vol.5, pp. 2-5, 1994.

[34] S. Shigematsu, H. Morimura Y. Tanabe, T. Adachi, and K. Machida “A

Single-Chip Fingerprint Sensor and Identifier”, IEEE JOURNAL OF SOLID-

STATE CIRCUITS, vol.34, pp. 1852-1859, 1999.

[35] Darrin Cardani “Adventures in HSV Space”, The Advanced Developers Hands

On Conference, 2001.

[36] Advanced information on OV7620 Data Sheet, OmniVision, July 2003.

[37] Difference between CCD and CMOS image sensors in a digital camera.

(http://electronics.howstuffworks.com/question362.htm), 2005.

[38] YUV Colour Space.

(http://softpixel.com/ cwright/programming/colorspace/yuv/), 2005.

[39] YUV From Wikipedia, the free encyclopedia.

(http://en.wikipedia.org/wiki/YUV), 2005.

[40] K.Kant Introduction to Computer System Performance Evaluation, Mc Graw-

Hill, Singapore, 1992.

[41] David J. Lilja Measuring Computer Performance: A practitioner’s guide,

Cambridge University Press, United Kingdom, 2000.

[42] Hisashi Kobayashi MModeling and Analysis: An introduction to System Per-

formance Evaluation Methodology, Addison-Wesley, Philippines, 1978.

[43] Raj Jain The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling, Wiley- Inter-

science, New York, 1991.

[44] Queueing Theory for Embedded Systems Designers

(http://www.kalinskyassociates.com/Wpaper5.html), 2005.

98

Bibliography

[45] Kitano Symbiotic Systems Project- Open PINO Platform

(http://www.symbio.jst.go.jp/PINO/index.html), 2003.

[46] P.Heidelberger and S.S.Lavenberg, “ Computer Performance Evaluation

Methodology ”, IEEE Transactions on Computers, vol.C-33, no.12, pp. 1195-

1220, 1984.

[47] Rafeal C. Gonzalez Digital Image Processing, LLH Addison Wesley Publishing,

New York, 1992.

[48] Ioannis Pitas Digital Image Processing Algorithms, Prentice Hall, UK, 1993.

[49] Keith Jack Introductory computer vision and image processing, McGraw Hill

Book Company, Singapore, 1991.

[50] K. Wiatr and E. Jamro, “ Implementation of image data convolutions opera-

tions in FPGA reconfigurable structures for real-time vision systems ”, Inter-

national IEEE Conference on Information Technology: Coding and Computing

, pp. 152-157, 2000.

[51] K. Wiatr and E. Jamro, “ Implementation of convolution operation on general

purpose processors”, Proceedings of the Euromicro Conf. on Multimedia and

Telecommunication , euromicro, vol. 00, pp. 0410, 2001.

[52] D. Crookes, “Architectures for high performance image processing: The fu-

ture”, Journal of Systems Architecture, vol.45, no.10, pp.739-748, 1999.

[53] Domingo Benitez, “ Performance of reconfigurable architectures for image-

processing applications”, Journal of Systems Architecture, vol.49, no.4, pp.193-

210, 2003.

[54] Eddy De Greef, “ Memory size reduction through storage order optimization

for embedded parallel multimedia applications”,

[55] F.Catthoor, W.Geurts and H.De Man, “ Loop transformation methodology

for fixed-rate video image and telecom processing applications”, Proc. Int.

Conference on Application Specific Array Processors, , pp.427-438, 1994.

99

Bibliography

[56] Terry W.Griffin and Nelson L.Passos, An Experiment with hardware imple-

mentation of edge enhancement filters ”, The Journal of computing in small

colleges, vol. 17, pp. 24-31, 2002.

[57] K. Wiatr and E. Jamro, “ Implementation of image data convolutions opera-

tions in FPGA reconfigurable structures for real-time vision systems ”, Inter-

national IEEE Conference on Information Technology: Coding and Computing

, pp. 152-157, 2000.

[58] K. Wiatr and E. Jamro, “ Implementation of convolution operation on general

purpose processors”, Proceedings of the Euromicro Conf. on Multimedia and

Telecommunication , euromicro, vol. 00, pp. 0410, 2001.

[59] D. Crookes, “Architectures for high performance image processing: The fu-

ture”, Journal of Systems Architecture, vol.45, no.10, pp.739-748, 1999.

[60] Domingo Benitez, “ Performance of reconfigurable architectures for image-

processing applications”, Journal of Systems Architecture, vol.49, no.4, pp.193-

210, 2003.

100

Author’s Publications

Journal Publications

Chan, Kit Wai, Prahlad Vadakkepat and Xiao Peng, “Hierarchical robot control

structure and Newton’s divided difference approach to robot path planning”, Jour-

nal of Harbin Institute of Technology, Vol.8(3) , pages 303-308, 2001.

Conference Publications

Chan Kit Wai and Prahlad Vadakkepat, “Real-Time Debugger for Robot Soccer

System”, Proc. of 2002 FIRA Robot World Congress, pages 639 - 642, 2002.

C.C. Ko, Ben M. Chen, C.D. Cheng, X. Xiang, Chan Kit Wai and Y.P. Khanal, P.

Vadakkepat, “Development of a Web-based Mobile Robot Control Experiment”,

Proc. of 2002 FIRA Robot World Congress, pages 488 - 493, 2002.

Tey Ghee Kwan, Prahlad Vadakkepat, Chan Kit Wai, Liu Xin, “Mobile Robot

Path Planning using Electrostatic Potential Field”, Proc. Of 2003 FIRA World

Congress, 2003

Yeo Hui Mei, Chan kit wai, Prahlad Vadakkepat, “Evaluation of K-Means cluster-

ing and thresholding techniques” , proc. Of 2004 FIRA World Congress, 2004.

Chan Kit Wai, Prahlad Vadakkepat and Tan Kok Kiong, “An Analytic Model for

Embedded Machine Vision: Architecture and Performance Exploration”, Proc. Of

ICARA 2004, Palmerston North, New Zealand, 2004.

101

