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SUMMARY 

 

A typical chemical plant may employ several hundred to thousand control loops (feedback 

controllers) for the regulation of process variables. With the increased emphasis on 

production geared towards lower cost, higher profit and higher yield, chemical and related 

companies are relying more and more on their automatic control systems to ensure precise 

control of critical variables. Even when a loop performs well at the time of 

commissioning, its performance deteriorates over time due to changing operating 

conditions. In such a scenario, and especially with the easy availability of routine 

operating data, it makes sense to develop tools and procedures for measuring the 

performance of control loops and to determine the causes for loops exhibiting poor 

performance. Research work done in this thesis is motivated by the growing interest 

among the control research community towards performance monitoring and 

enhancement of control loops 

 

For detecting poor control loop performance, many methods exist in the control literature. 

The minimum variance benchmark for control loop performance assessment (CLPA) that 

was first proposed by Harris (1989) is used in this study. With only the knowledge of time 

delay, this methodology can assess the performance measure of a loop. If a poorly 

performing control loop is identified, the basic remedy employed to improve performance 

is re-tuning the controller. However, this may have little or no effect in on the control loop 

performance index (CLPI) because the maximum achievable performance using the 



 xiii

feedback controller might have already been reached. This implies that there could be 

other reasons as to why the control loop is performing poorly.  

 

Therefore, in this thesis, we propose a detailed framework that would systematically 

characterize the dynamics of a process variable to determine the cause(s) of its poor 

performance (if any). Various statistical and graphical techniques are coded to facilitate 

this analysis. This framework is implemented on an industrial fluid catalytic cracking 

(FCC) unit in which a temperature control loop is exhibiting less than satisfactory control 

loop performance. Our methodology is able to determine the cause(s) of the poor 

performance and to suggest suitable remedies to reduce the fluctuations and increase the 

CLPI of this temperature loop. 

 

A novel framework that detects and diagnoses poor control loop performance is also 

proposed and tested on several realistic simulations and industrial case studies. Various 

mathematical models of valve nonlinearities are implemented to represent faults in the 

valves and a parameter estimation technique is incorporated to determine the type of valve 

nonlinearity. Subsequently, the framework is able to diagnose the cause of the poor CLPI 

and suggest the appropriate corrective action(s) by determining the effect of each control 

loop problem (i.e., poor controller tuning, valve nonlinearities and / or linear external 

oscillations) on control loop performance. Quantifying the individual effect of each of 

these control loop problems on CLPI, would enable the control engineer to make an 

informed decision in improving the performance of a control loop.  
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b: Backlash interval 

d: Stiction interval 
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CHAPTER 1 

INTRODUCTION 

 

This chapter contains sections on the definition and importance of process control 

followed by the motivation, objectives and organization of this thesis.  

 

1.1 Prelusion  

 

Process control is generically defined as an engineering discipline that deals with 

architectures, mechanisms and algorithms for maintaining the process output at specified 

values. In the recent years, the field of process control has seen much growth and has 

matured into one of the core areas of chemical engineering alongside thermodynamics, 

mass transfer, heat transfer, reactor kinetics and fluid dynamics (Luyben and Luyben, 

1997). This quantum leap is reflected in the application of process control to many areas: 

(1) Agriculture, (2) Food and Beverage, (3) Life Sciences, (4) Pulp and Paper, (5) 

Pharmaceutical Industries, (6) Polymers and Plastics, (7) Refineries, (8) Chemical and 

Petrochemical plants and (9) Mineral Processing etc. However, regardless of the 

application, the purpose of process control is still the same and its objective is to ensure 

that the process is kept within certain specified boundaries, thus minimizing the variation 

in the process variables. Without an effective methodology to carry out this objective, the 

quality of the product and the safety of the plant personnel may be severely compromised. 

Therein lies the importance of process control.  
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For the purpose of this thesis, process control and its importance to chemical and related 

industries will be discussed. In the last decade, the performance criteria for chemical 

plants have become very stringent and exceedingly difficult to satisfy. Intense 

competition, tough environmental legislations, exigent safety regulations and rapidly 

changing socio-economic conditions have been the primary factors in the tightening of 

plant product quality specifications. This is further complicated given the fact that modern 

chemical plants are highly integrated and retrofitted. Such plants exhibit a high propensity 

to be upset as each individual unit is not an independent entity but rather dependent on 

other units due to the interconnected network. In view of the increased emphasis placed 

on safe and efficient plant operation to produce high quality products and given that good 

process control can help achieve this, process control has become an important research 

field.  

 

1.2 Motivation  

 

It is a well known fact that precise control of critical variables in a chemical plant, 

correlates directly with higher yield, better quality and lower cost thereby leading to 

increased profits. More often than not, chemical plants do not operate at their desired 

profit level and this is normally attributed to improper or inadequate process control. 

Hence, one may expect quick action to be carried out, the problem rectified and desired 

profit levels achieved. However, in reality, nothing could be further from the truth. 

Oftentimes, poor process control is attributed to the wrong cause thus suggesting the 

incorrect corrective action and resulting in no change or even worse conditions to the 
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current status. The responsibility of ensuring precise control of key variables lies with the 

control engineer who on average has to monitor 400 control loops (Desborough and 

Miller, 2001). This is a tough task and therefore it can be seen that the availability of a set 

of procedures that automatically estimate and diagnose the performance of a control loop 

will be much heralded in many chemical and related industries. The objectives of these 

tools would be to (1) detect poor performance, (2) diagnose the cause of poor performance 

and (3) implement the proper remedial action. These procedures must be non-invasive and 

use routine operating plant data. Whilst the first objective has been researched extensively 

in the literature (e.g., Desborough and Harris, 1992, 1993; Stanfelj et al., 1993; Horch, 

1999; Huang, 1999; Xia and Howell, 2003), the remaining two objectives have not been 

thoroughly analyzed and remains an open area for research.  A proper and focused study 

pertaining to these objectives would render succor to those concerned in various chemical 

plants. This is the motivation behind this thesis.  

 

1.3 Problem Statement  

 

In one of the local refineries, the riser temperature of the fluid catalytic cracking (FCC) 

unit was observed to have fluctuations of C05± about the set-point which are higher than 

desired. These seemingly innocuous fluctuations, due to poor process control, affect the 

gasoline yield of the FCC unit which in turn has an adverse effect on the profit of the 

company. Hence, along with our industry contact we have attempted to ascertain the cause 

of these fluctuations and ameliorate the situation by implementing suitable corrective 

action(s).  
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1.4 Objectives  

 

The final aim of this study is to reduce the riser temperature fluctuations to approximately 

C01± , as previous studies on other industrial FCC units have shown this to be possible 

(Grosdidier et al., 1993). However, it must be noted that different FCC units vary slightly 

in design and hence the same level of fluctuations in each unit may not be always 

possible. Given such a scenario, it is vital that in this study, we are able to pinpoint why in 

this particular industrial FCC unit, fluctuations within C01± are not possible. 

Nevertheless, mitigating these fluctuations will be one of the focuses in this thesis. To 

accomplish the primary objective, there are various intermediate objectives that need to be 

addressed. Therefore the objectives of this study are summarized as follows.  

 

• Implement a set of procedures that characterize the dynamics of routine operating 

plant data and use this to analyze the riser temperature data and other important 

controlled variables in the FCC unit. Chapters 3 and 4 cover these aspects of our 

study.  

• Implement a dynamical model of the industrial FCC unit based on first principles 

to facilitate an in-depth study of certain key variables. The reader is referred to 

chapter 5 for more details on the dynamical model.  

• Establish a control loop performance assessment (CLPA) framework to detect 

poor control loop performance of feedback loops. This framework should also 

ascertain the causes of this poor performance and then suggest suitable methods to 

improve the performance. The framework is discussed in detail in chapter 6.  
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1.5 Overview of the Thesis 

 

This thesis is divided into seven chapters including this introductory chapter. Most of the 

chapters are inter-linked and it is advised that they be read in sequence. The contents of 

the chapters are as follows:  

 

• Chapter 1 discusses the definition and important of process control and focuses on 

its impact on chemical and related industries. It then goes on to highlight the 

motivation, problem statement and objectives of this study.  

• Chapter 2 provides a detailed description of the FCC unit. Dominant variables that 

influence the riser temperature and the current control strategy present in the 

existing unit are also included. 

• Chapter 3 introduces a complete framework consisting of several mathematical 

and statistical techniques that can help to characterize the dynamics (i.e., linear or 

nonlinear, noise or chaos) of the process, using routine operating data. These 

techniques provide valuable insight into the nature of the data and therefore of the 

process.  

• Chapter 4 analyzes the riser temperature data and other key variables using the 

techniques mentioned in chapter 3. From these analyses, specific knowledge of the 

process, which will assist in implementing suitable control strategies, is gathered.  

• Chapter 5 describes the development and validation of a dynamical FCC model 

from first principles that realistically depicts the industrial FCC unit. It then goes 



 6

on to investigate the important variables in this model and propose a suitable 

control strategy or improve the one.  

• Chapter 6 describes a consummate and novel approach to control loop 

performance assessment (CLPA) and enhancement. It aids the control engineer in 

detecting poorly performing control loops followed by establishing the causes 

(i.e., poor selection of tuning parameters, valve nonlinearity and / or linear 

external oscillations) of their poor performance. Thereafter, the effect of each of 

these causes is quantified (by determining the CLPI). By focusing on the more 

important causes of poor performance, appropriate rectification measures can be 

implemented to improve overall control loop performance.  

• Chapter 7 concludes the thesis with a summary of its main contributions. It also 

provides recommendations for future work in this area.  
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CHAPTER 2 

BACKGROUND ON THE FCC UNIT 

 

This chapter contains sections on the overview of the industrial FCC unit, the dominant 

variables and the existing control strategy that is currently implemented in the unit.  

 

2.1 Introduction 

 

The FCC unit is one of the most important units and is known to contribute approximately 

40% of the total revenue in a typical petroleum refinery (Wilson, 1997). It is the kernel of 

modern petroleum refining and its main function is to convert atmospheric residue (AR) 

from the crude distillation unit (CDU) into a multitude of value added products such as 

gasoline, middle distillates and light alkenes. The FCC unit is the most dominant 

conversion process in petroleum refineries and is also a major contributor of “value-

added” products in the refining process. Fluid catalytic cracking is a process for splitting 

large molecules in the gas oil feedstock into smaller, more valuable gasoline molecules. 

The product yields from the FCC unit are dependent on the combination of feedstock and 

catalyst used. The FCC technology was initially developed in the 1930’s and by 1942, the 

first commercial unit was ready.  

 

The typical FCC unit consists of three major sections: the reactor-regenerator, the main 

fractionator and the light ends of gas concentration section. Today, the operation of the 

FCC unit has become advanced, encompassing the use of automatic process controllers to 
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control the key variables. This is because control of an FCC unit is an important and 

challenging problem. Precise control of the FCC unit is important because it affects 

product quality, yield and cost. It is a challenging problem due to the intricate and 

interacting nonlinear dynamics between the riser and the regenerator. This is further 

compounded by multiple steady states and input multiplicities (Arbel et al., 1995). Such 

complex dynamics may result in poor performance and reduced profits unless the unit is 

properly controlled.  

 

2.2 Overview of the Industrial FCC unit  

 

For the purpose of this study, the reactor-regenerator section of the FCC unit in a local 

refinery is analyzed. The simplified schematic of this section is shown in Figure 2.1. The 

main components of this section are the riser (labeled in Figure 2.1), the 1st and 2nd stage 

regenerator (labeled in Figure 2.1), the catalyst cooler and the withdrawal well (both not 

shown in Figure 2.1).  
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Figure 2.1: Simplified schematic of the FCC unit in the local refinery 
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The FCC unit in the local refinery is designed to crack AR from the CDU, which is fed 

into the feed surge drum (not shown in Figure 2.1) with other sources of feed such as 

heavy vacuum gasoil (HVGO) and light sulfur fuel oil (LSFO). The feed to the riser is 

preheated in a series of few heat exchangers (not shown in Figure 2.1) to the required 

temperature and then injected at the bottom of the riser, through the feed nozzles into the 

moving regenerated catalyst at high temperature. The cracking of the feed takes place in 

the riser. At the end of the riser the catalyst and hydrocarbon vapor disengage from each 

other. The catalyst flows down to the stripper where they are stripped free of the 

hydrocarbon by the saturated steam (labeled in Figure 2.1). The stripped catalyst is then 

sent to the regenerator for catalyst regeneration. The hydrocarbon vapors which are the 

effluent (labeled in Figure 2.1) pass through vertical pipes which discharge near the inlets 

of the four single stage cyclones (not shown in Figure 2.1) inside the upper section of the 

reactor. The entrained catalyst in the vapors is collected by the cyclones and flow down to 

the riser. The vapors leave the cyclones and flow into the main fractionator flash zone.  

 

During the process of catalytic cracking in the riser, coke is deposited on the catalyst. The 

spent catalyst is sent to the two-stage regenerators. The catalyst is fluidized and the flows 

of the spent and regenerated catalysts (labeled in Figure 2.1) are controlled by the slide 

valves. The spent catalyst is partially regenerated by burning the coke with combustion air 

in the first stage regenerator (labeled in Figure 2.1). The partially regenerated catalyst 

flows upward to the second stage regenerator (labeled in Figure 2.1) via the lift line 

controlled by the plug valve. The catalyst cooler (not shown in Figure 2.1) helps to keep 

the temperature within a controlled range in the second stage regenerator especially 
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during the processing of higher percentage of carbon in the feed. It is expected that the 

cokes on the catalyst would have almost been burnt off in the second stage regenerator. 

The regenerated catalyst flows from the second stage regenerator and enters the riser 

where the hydrocarbon feed is injected at the bottom of the riser through fresh feed 

nozzles. A small amount of purge steam keeps the nozzles clear of any catalyst. As the 

fresh feed passes through the nozzles, it is finely atomized and dispersed in the steam 

injected in the feed nozzles.  

 

2.3 Dominant Variables 

 

Dominant variables are defined to be those that exert a strong influence on other variables. 

By controlling these dominant variables, fluctuations in other process variables will be 

mitigated. Therefore, it is imperative that the proper dominant variables are identified for 

the purpose of good control. The feed flowrate into the riser and temperature of the feed 

entering the riser have been identified as the two dominant variables of the FCC unit 

(Toh, 2002). Apart from these two dominant variables, three other variables although are 

not considered dominant, are identified as plausible causes for temperature variations in 

the riser. Therefore, the variations in all five variables are seen as a potential source of 

disturbance to the riser temperature. These variables along with their controller tags 

(labeled in Figure 2.1) are listed in Table 2.1.  
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Controller tag Process variable 
FC 1 Feed flowrate into the riser 
PC 1 Pressure of 2nd stage regenerator 
PC 2 Pressure differential between 1st and 2nd 

stage regenerator 
TC 2 Temperature of feed entering the riser 
FC 2 Flow of saturated steam into the riser 

 

 

2.4 Existing Control Strategy 

 

As mentioned in chapter 1, the riser temperature (temperature control loop TC1) in the 

FCC unit is the focus of our current investigation. TC1 is a proportional-integral (PI) 

controller that operates in a feedback control configuration. TC1 controls the temperature 

of the riser by manipulating the opening of the slide valve (labeled in Figure 2.1) thereby 

adjusting the amount of regenerated catalyst fed back to the riser. The process variable is 

the riser temperature and the manipulated variable is the regenerated catalyst flow rate. 

When the temperature of the riser changes by more than 15% (due to poor control or other 

variables affecting the riser temperature), a supervisory controller will provide the set-

point for TC1.  

 

2.5 Summary  

 

In this chapter, the industrial FCC unit was described, followed by dominant variables and 

the existing control strategy. In the next chapter, various statistical and mathematical 

methods used in this study will be presented.  

Table 2.1: Description of disturbance variables 
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CHAPTER 3 

STATISTICAL TOOLS AND FRAMEWORK 

 

This chapter contains sections on tests for stationarity, Gaussianity, nonlinearity and 

chaos followed by noise removal techniques.  

 

3.1 Introduction  

 

Traditionally, in the realm of process control, characteristics of data (such as nonlinearity) 

are detected by subjecting the process to an input excitation in either open-loop or closed-

loop, followed by analyzing the process response. This approach albeit simple in 

implementation is not desirable. Given that any industrial process needs to operate under 

optimal conditions, data characterization under open-loop conditions would incur the risk 

of deviating from this optimum range, thus resulting in lower yield and loss of revenue. 

Even in closed-loop conditions, set-point changes that are implemented may bring forth 

the process to non-optimal conditions. Therefore, tools and procedures that do not require 

any excitation in the form of step changes or set-point changes are very much needed. The 

tools should use routine operating data which are perennially available due to major 

advances in sensor technology. Statistical procedures can uncover process characteristics 

in a manner that facilitates process understanding. Statistics, especially higher order 

statistics, although ubiquitous in the field of mathematics, is relatively new to process 

monitoring and the control literature. In the next few sections, an array of techniques that 

analyzes routine operating data will be presented.  
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3.2 Tests for Stationarity  

 

A time series is said to be stationary if the distribution of a variable X1, X2,…, Xn is the 

same as the distribution of the variable shifted by some lag k, X1+k, X2+k,…, Xn+k; i.e., the 

distribution of the variable does not depend on time t. Whenever one looks at the 

distribution for some segment, the dynamics remains the same. This implies that the 

observation is independent of time. In a nutshell, a stationary process has the property that 

the mean, variance and auto-correlation do not change over time. Qualitatively speaking, a 

flat looking time series, without trend, constant variance over time, constant auto-

correlation structure over time and no periodic fluctuations would insinuate stationarity. A 

common assumption in many time series techniques is that the data are stationary. 

However, this is a fallacious assumption as in most cases the data are not stationary. One 

of the criteria to ensure that these statistical analyses provide accurate characterization of 

data is stationarity. Hence, two tests for stationarity are introduced to quantify stationarity 

mathematically.  

 

A number of quantitative tests for stationarity exist but the two most common tests used 

in practice are the runs test and the reverse arrangements test. Of the two tests, the latter is 

more powerful in detecting non-stationarity (Padmanabhan, 2004). This section describes 

the details of these tests. These tests will be subsequently employed in chapter 4, to 

determine if process data are indeed stationary.  
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3.2.1 Runs Test  

This widely used test for stationarity works by classifying data into two mutually 

exclusive categories identified simply by plus (+) and minus (-). For a given time series, 

we first find the mean (or median) and then go down the list of values, assigning a ‘+’ if 

the value is greater than the mean and a ‘-‘ if it is less than the mean. The signs are then 

grouped into a series of runs, where a run is defined as a sequence of identical 

observations that is followed or preceded by a different observation or none at all. The 

total number of runs (r) is found. After this is done, a suitable level of significance (α) is 

selected. If r is such that 

 2/;2/2/1;2/ αα NN rrr ≤≤−    (3.1) 

where N is the total number of samples, the signal is said to be stationary. For a 5% level 

of significance and 20 samples, r must lie between 6 and 15 and for a 5% level 

significance and 200 samples, r must lie between 86 and 115 (Bendat and Piersol, 1991). 

However, no confidence intervals for r are reported for more than 200 samples. While, a 

5% level of significance is acceptable, a data length of 200 samples is too short, since we 

are dealing with data of around 4000 samples and more. Therefore, we need to find a way 

to circumvent this issue.  

 

Hence, we have developed a code in MATLAB that divides the data into segments of 200 

samples and calculates the total number of runs for each segment. Thereafter, the median 

value of the total number of runs is calculated (median is selected as opposed to the mean 

so as to mitigate the impact of outliers) and if it lies within the confidence interval, the 

data are deemed to be stationary.  
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3.2.2 Reverse Arrangements Test  

This test is a more powerful test for stationarity than the runs test. It works as follows: if a 

random variable x is given by xi where i = 1, 2,…., N, we count the number of times xi > 

xj for i < j. Every such inequality is known as the reverse arrangement. In other words, let 

hij = 1, if xi > xj and 0, otherwise. Then,  

 ∑
−

=

=
1

1

N

i
iAA where ∑

+=

=
N

ij
iji hA

1
 (3.2) 

For instance, A1 = h12 + h13 + h14 +…..+ h1N. Again, we choose a suitable significance 

level and if A is such that  

           (3.3) 

where N is the total number of samples, the signal is stationary. With a significance level 

of 5% and 100 samples, the value of A must lie between 2145 and 2804 (Bendat and 

Piersol, 1991). Once again, the confidence interval is not available for larger data sets. 

Therefore, similar to the procedure in the runs test, a MATLAB code has been 

implemented to calculate A for each segment of 100 samples and then the median value of 

all the calculated A’s is determined. If this value lies inside the confidence interval, the 

data are stationary. 

 

3.2.3 Transformations to Achieve Stationarity  

In the previous section, it was noted that several statistical techniques are applicable only 

to stationary data. Therefore, if the time series is not stationary, it can be transformed to 

achieve stationarity through the following techniques: 

 

2/;2/1; αα NN AAA ≤≤−
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• The data can be differenced. That is, given the series Yi, a new series Zi = Yi-Yi-1 is 

created. The differenced data will contain one less sample compared to the original 

data. Although the data can be differenced more than once, often one difference is 

sufficient to achieve stationarity in process data.  

• If the data contain a trend, we can fit a curve to the data and then model the 

residuals from that fit. Since the purpose of the fit is to simply remove long term 

trends, a simple fit, such as a straight line, is typically used. 

• For non-constant variance, taking the logarithm or square root of the series may 

stabilize the variance. For negative data, a suitable constant can be added to make 

the entire data positive before applying the transformation. This constant can then 

be subtracted from the model to obtain predicted values and forecasts for future 

points. 

 

3.3 Tests for Gaussianity  

 

A time series is said to be Gaussian if it has a continuous symmetric distribution that 

follows the familiar bell shaped curve. Such a distribution is uniquely characterized by its 

mean and variance. Empirical evidence has shown that many measurement variables have 

distributions that are approximately Gaussian. Even when a distribution is non-Gaussian, 

the distribution of the mean of many independent observations becomes Gaussian as the 

number of observations becomes large (Schreiber and Schmitz, 2000). This gives 

credence to the evolution of many statistical tests that make the assumption that the data 

come from a Gaussian distribution. However, the presence of certain trends (such as 
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nonlinearities or chaos) can cause the time series to be non-Gaussian. Hence, the test for 

Gaussianity of a signal is a useful diagnostic tool. This is because, for a non-Gaussian 

signal there exist a special set of statistical tools that should be used as opposed to the 

more general statistical measures used for Gaussian signals. Refer to section 3.4 for a 

more elaborate discussion.  

 

For this study, Kurtosis is used to determine if a time series is Gaussian. Kurtosis is the 

degree of peakedness of a distribution and is defined as the normalized form of the fourth 

central moment of a distribution. It is given by: 

4

4 3)(
σN
xx

Kurtosis i∑ −−
=                                                (3.4) 

where xi = data point, x  = mean, N = number of samples and σ = standard deviation.  

For a Gaussian distribution, the Kurtosis will be zero. In our study, we use the in-built 

Kurtosis function file in MATLAB to calculate Kurtosis.  

 

3.4 Tests for Nonlinearity  

 

In the previous section, it was mentioned that nonlinearities may render a time series non-

Gaussian (Schreiber and Schmitz, 2000). Since many statistical procedures assume that 

the time series signal is Gaussian, it is imperative that the signal is investigated for 

nonlinearities. Previously, the statistical theory of linear stochastic processes had led to 

the development of a compendium of procedures and techniques for the numerical 

analysis of time series. These were tools that characterized the deterministic and 
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stochastic aspects of a time series. Currently, these tools have been extrapolated to 

nonlinear processes and some of these techniques will be discussed here. 

 

There are two main reasons to use a nonlinear approach when analyzing time series data. 

Firstly, the plethora of linear methods has been exploited completely and yet cannot 

account for certain structures in the data. Secondly, there may be apriori knowledge that 

the system is nonlinear in nature and therefore it is unsatisfactory to use linear methods 

(Schreiber, 1999). While these may justify the usage of a nonlinear analysis, it is still 

important to mathematically establish nonlinearities in the data rather than relying on 

visual or intuitive judgement. In this section, we will discuss two formal statistical tests 

for nonlinearities.  

 

3.4.1 Nonlinear Systems  

Nonlinear systems are systems whose behaviour cannot be expressed as a linear function 

of its descriptors. In such a system, the principle of superposition is not valid and its 

equation cannot be split into the sum of its parts. This means that certain assumptions, 

approximations and mathematical approaches are not possible, implying that special 

techniques such as higher order statistics have to be implemented.  

 

3.4.2 Higher Order Statistics  

Higher order statistics (HOS) is a field of statistical signal processing that has become 

very popular in recent years (Nikias and Petropulu, 1993). It is a rapidly evolving signal 

analysis area with many applications in science and engineering. Applications of HOS are 
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abundant and include telecommunications, sonar, radar, geo-physics, image processing, 

speech processing, biomedicine, oceanography, plasma physics, econometrics and fluid 

mechanics.  

The scope of HOS has recently been extended to chemical processes (Choudhury, 2004). 

HOS makes use of extra information on top of what is generally used in traditional signal 

processing. Therefore, HOS measures are extensions of second order measures (such as 

the auto-correlation function and the power spectrum). These second order measures work 

well if the time series signal has a Gaussian (normal) probability density function. 

However in practice, most processes deviate from Gaussianity especially when they 

exhibit nonlinear behavior. Such nonlinearities cause certain types of phase coupling 

which second order measures are unable to accurately identify as they contain no phase 

information (Nikias and Petropulu, 1993). Hence, HOS measures can be used to extract 

the correct phase information and detect nonlinearities.  

 

3.4.3 Generating Functions  

A generating function of a random variable is an expected value of a certain 

transformation of the variable. All generating functions have three important 

characteristics.  

 

• Under mild conditions, the generating function completely determines the 

distribution of the random variable. 

• The generating function of a sum of independent variables is the product of their 

generating functions. 
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• The moments of the random variable can be obtained from the derivatives of the 

generating functions. 

 

Therefore, given any random variable x and a probability distribution function P(x), the 

moment generating function can be defined as the expectation of the transformation, etx, 

where Rt∈ , i.e., 

      ][)( tx
x eEtM =      (3.5) 

Moments of the random variable are obtained from the coefficients of the Taylor’s series 

expansion of the moment generating function about the origin. 
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From the right hand side of equation 3.6, the first derivative gives the first order moment: 
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The second derivative gives the second order moment: 
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In a similar fashion, the third derivative leads to the third order moment: 
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][ 3
3 xEm =       (3.9) 

Hence, we can write the moment generating function as 
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The first order moment is the mean (µ) of a data series. The second order moment is the 

variance (σ2), the third order moment is the skewness and the fourth order moment is the 

Kurtosis.  

 

3.4.4 Cumulants  

Cumulants are an alternate set of statistical measures that can be used in place of moments 

due to their exceptional noise suppressing properties. A cumulant generating function is 

defined as the logarithm of the moment generating function. For a random variable x, the 

cumulant generating function is 

))(ln()( tMtC xx ≡      (3.11) 

Similar to moment generating functions, cumulants can also be derived from the Taylor’s 

series expansion of the cumulant generating function.  
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Hence, the first order cumulant is given by:  
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Similarly, the second, third and fourth order cumulants are: 

2
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3.4.5 Cumulant Spectra  

Time series data are generally a good source of information. The statistical measures 

described so far have been developed to quantify signal characteristics. However, in the 

time domain analysis, not all the information of a signal can be captured. Therefore, 
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transforming the signal from time to frequency domain can expose the periodicities of the 

signal, detect inherent nonlinearities in the signal and help comprehend the dynamics of 

the signal generating process. The main tool for this kind of transformation is the Discrete 

Fourier Transform (DFT). The power spectrum, bispectrum and trispectrum are the 

special cases of the nth order cumulant spectrum that are a result of this transformation.  

 

3.4.6 Power Spectrum  

The power spectrum is the frequency domain counterpart of the second order cumulant 

(auto-correlation function) of a signal. For a given signal, the power spectrum gives a plot 

of the portion of a signal’s power falling in a range of frequencies. Common ways of 

generating the power spectrum are by using the DFT or the maximum entropy method. In 

this study, the former is used and it has been coded in MATLAB. The power spectrum is 

given by: 
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3.4.7 Bispectrum  

The bispectrum is the frequency domain counterpart of the third order cumulant of a 

signal. The methodology used for estimating the power spectrum can also be extended to 

obtain the frequency domain counterparts of higher order spectra. The bispectrum is 

defined to be: 

)](*)()([)],([),( 212121321 ffXfXfXEcDDFTffB +≡= ττ  (3.18) 

where DDFT stands for Double Discrete Fourier Transformation. Equation 3.18 shows 

that it is a complex quantity having both magnitude and phase. The bispectrum is plotted 
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against two independent frequency variables, f1 and f2 in a three dimensional plot. Any 

point in the plot represents the bispectral content of the signal at those particular 

frequencies and the bispectrum at any point measures the interaction between frequencies 

f1 and f2. This interaction between the two frequencies can be related to the nonlinearities 

present in the signal and herein lies its importance in the detection of nonlinearities.  

 

In the same fashion, higher order spectra, known as polyspectra can be derived. However, 

in this thesis, higher order spectra of the fourth order and above are not discussed and the 

scope will be limited to power spectrum and bispectrum. This is because, bispectral 

analysis is sufficient as it is found to have the capability of detecting nonlinearities as the 

magnitude of the bispectrum will show nonzero peaks for a signal that is nonlinear. 

However, the variance across the bispectrum is not uniform and this may lead to spurious 

results. Therefore, a new quantity with an approximately flat variance can be normalized 

by dividing the bispectral estimate by this variance term. In literature, there are several 

normalization schemes for the bispectrum, each with its own advantages and 

disadvantages. Two of the popular schemes are: 

 

• Bicoherence (Kim and Powers, 1979). 

• Bicoherency Index (Nikias and Petropulu, 1993).  

 

A useful feature of the first method is that it is bounded between 0 and 1. As for the 

second method, it is unbounded but it ensures a flatter variance which would ensure more 
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accurate quantification of nonlinearities. Hence, for this study, the second method is 

incorporated and is presented next.  

 

 

3.4.8 Bicoherency Index (BI) 

A normalized cumulant spectrum or the nth order coherency index is a function that 

combines two completely different entities which are the cumulant spectrum of order n,  

),...,( 11 −n
x
nC ωω and the power spectrum of a process. Therefore, the bicoherency index 

which is also the third order coherency index is given by: 
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The magnitude of this index is known as the bicoherency index (BI). There are practical 

situations where it is imperative to be able to distinguish between a linear Gaussian 

process, a linear non-Gaussian process and a nonlinear non-Gaussian process. A linear 

Gaussian process has zero nth order moments and this ensures that the skewness is zero 

i.e., 

0),( 213 =ωωxC      (3.20) 

Hence, the BI of this process is zero. For non-Gaussian linear and nonlinear processes, the 

nth order moments are nonzero. Hence the BI is not zero but rather some finite value. The 

difference between these two processes is that for the former, the BI is constant at all 

frequencies and for the latter the BI varies and is dependent on the individual frequencies. 

In this manner, BI can easily distinguish between the three types of processes stated 

above. As part of this work, the BI calculation procedure has been implemented in 
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MATLAB. In the following chapters, we will quantitatively and qualitatively illustrate 

how the BI is able to distinguish such processes.  

 

3.4.9 Surrogate Data Method  

Most tests for nonlinearities are performed by specifying some well defined null 

hypothesis and then calculating a test statistic to test against this hypothesis. A common 

null hypothesis is that the data are generated by a linear Gaussian stochastic process 

(Schreiber and Schmitz, 2000). We will then attempt to reject this null hypothesis by 

comparing the value of a nonlinear parameter estimated from the data. This concept is 

known as the surrogate data method (SDM). Thus this is a two-fold task. Firstly, we have 

to find a nonlinear parameter that is able to veritably detect an existing deviation of the 

data from a given null hypothesis and we have to provide an array of randomized time 

series that accurately represents the null hypothesis. The latter is known as the surrogate 

data.  

 

Surrogate data refers to random data that are generated in such a way that they have the 

same mean, variance and auto-correlation as the original data. This basically means that 

for both original and surrogate data, all first and second order statistics are exactly 

identical. There are three ways of generating surrogate data (Chang et al., 1995). 

 

• Phase randomized surrogates: A phase-randomized surrogate is generated by 

randomizing the phases of the Fourier transform of the signal and then inverting it 

to time domain. The surrogate has identical first and second order statistics as the 
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original but has a different distribution of amplitudes (histogram) from the 

original. This method is implemented using the ‘unwindowed Fourier transform’ 

algorithm.  

• Gaussian-scaled surrogates: In this method, the signal is shuffled based on the 

assumption that it is a Gaussian random process that is passed through a nonlinear 

filter. A Gaussian distributed random process is shuffled in the rank order of the 

experimental data, phase randomized and then the amplitudes of the original data 

are rank ordered and substituted. Since it is a shuffle of the original data, the 

histogram of the amplitudes is maintained. This method is implemented using the 

‘amplitude adjusted Fourier transform’. 

• Fourier shuffled surrogates: The signal is shuffled by rank ordering the original 

data in the order of a phase-randomized surrogate. This surrogate usually 

approximates the power spectrum more closely than the Gaussian-scaled surrogate 

and still preserves the marginal distribution.  

 

In this study, the first two methods have been implemented in Matlab to generate 

surrogate data sets.  

 

3.4.10 Discriminating Statistics  

For the purpose of nonlinearity testing, we need quantifiers that are particularly powerful 

in discriminating linear dynamics and weakly nonlinear entities. This is because strong 

nonlinearities are more easily detectable. An important objective criterion is the 

discriminating power of the resulting test. The power β is defined as the probability that 
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the null hypothesis is rejected when it is false. Taking this into consideration, a number of 

test statistics are available for discrimination. It is therefore important to choose a statistic 

that is easy to compute and achieves best performance for the purpose of discrimination. 

Examples of test statistics employed are the Brock, Declert and Scheinckman (BDS) 

statistic, time asymmetry (time reversal) and the Takens estimator for correlation 

dimension (Galka, 2000; Kantz and Schreiber, 1997). A number of investigations have 

been carried out to gauge the effectiveness of these test statistics in detecting 

nonlinearities. Some of these studies have shown that the BDS statistic and correlation 

dimension work poorly in detecting nonlinearities (Theiler et al., 1992; Galka, 2000). 

 

3.4.11 Time reversibility  

A simple and yet powerful discriminating technique is time reversibility (Diks et al., 

1995). A time series is said to be reversible if its probabilistic properties are invariant with 

respect to time reversal. Whilst time reversibility is not a definitive indicator of linearity, 

time irreversibility indicates the presence of nonlinearities. There are many variations of 

the time reversibility (TR) test. The one used in this study is defined as: 

 

 

(3.21) 

where θ is the delay. θ is determined from the method of mutual information which will 

be discussed in section 3.5.4. 
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3.4.12 Hypothesis Testing  

With a large number of generated surrogates (the minimum recommended being 100), the 

Trev histogram will tend toward a Gaussian distribution (Galka, 2000). If the signal is 

linear, the Trev value of the original signal will lie well within the range of the surrogates 

because the generated surrogates are always time reversible. If the signal is not linear, Trev 

value of the original signal will lie outside the range of the surrogates. This is a qualitative 

approach and it may work well for a strictly linear or highly nonlinear signal. However, it 

can fail for a mildly nonlinear signal as one may not be able to say confidently if the Trev 

original lies within or outside the range of the surrogates. Hence, we need a rigorous 

method for categorizing linear and nonlinear processes as well as quantifying the degree 

of nonlinearity that is present in the data. Hypothesis testing is one such method that 

provides the means to achieve this. Hypothesis testing is a way to determine if a time 

series is nonlinear by combining the SDM and TR methods. It provides a quantitative way 

of determining whether or not results obtained are significant enough to conclude that 

nonlinearities are present. The strategy is as follows: 

 

1. We first formulate a null hypothesis, i.e., we hypothesize that the data are 

produced by a Gaussian linear stochastic process. 

2. We then generate 500 surrogate data sets from the original data set using one of 

the methods described earlier. 

3. A suitable test statistic, e.g. TR, is calculated for the original data set (Trev,ori) as 

well as the 500 surrogates (Trev,surr). 
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4. A histogram of the 500 values is plotted to determine if the distribution is 

approximately Gaussian and then the mean (µsurr) and standard deviation (σsurr) of 

the surrogates are calculated.  

5. The observed statistic is given by 
surr

surrorirevT
σ

µ−,  

6. A suitable level of significance is chosen and the hypothesis is either rejected or 

accepted. In order to reject the hypothesis at a 95% confidence level, the observed 

statistic should be at least 2. If the distribution is not Gaussian, we need between 

the observed statistic to be between 5 and 6 in order to reject the hypothesis 

(Galka, 2000).  

 

The hypothesis testing procedure, combined with the TR and SDM has been coded in 

MATLAB as part of this research effort.  

 

3.5 Tests for Chaos  

 

In the previous section we discussed linearity and nonlinearity and how most real life 

systems and processes are nonlinear in nature. Linear systems are easier to solve both in 

principle and practice, with significant savings in computational time and cost. Therefore, 

most nonlinear systems are linearly approximated before solving them. However, for 

some cases, linear functions and equations are just not good approximations. This led to a 

new classification of highly nonlinear systems now known as chaotic systems and the 

phenomenon at the heart of this is chaos (Grebogi and Yorke, 1997). Chaos theory has 

been well explored in the fields of mathematics and theoretical physics compared 
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chemical engineering. However, some studies have shown chemical processes do exhibit 

chaotic behaviour under certain conditions (Abasaeed and Elnashaie, 1997; Abasaeed and 

Elnashaie, 1998). Hence this section aims to discuss the relevant statistical tools that 

detect chaos. It must be noted that although such tools and algorithms are designed to 

make this distinction, they are known to be unreliable and usually involve considerable 

human judgement. This is especially true for experimental time series data which are short 

in length and noisy (Tanake et al., 1993). Chaos quantifiers employed may be fooled into 

signaling chaos when there is none to begin with. One study has shown that it is plausible 

for one method to detect chaos and for another to show otherwise (Fraser, 1999). This 

problem is further intensified given the fact that there is a fine line between chaos and 

noise. Fluctuations that are mistaken for chaos may actually be due to nonchaotic but still 

nonlinear determinism, linear correlations and noise. The prerequisite of chaos is 

nonlinearity. In principle, any nonlinear system has the potential to exhibit chaos. Many 

chemical process systems are nonlinear and there are many ways of determining this. 

However, these chemical systems are not investigated for chaos. Therefore, we propose to 

implement several chaotic quantifiers that would confirm the presence of chaos. This 

knowledge would aid us in truly understanding the nature of the process. Therefore, 

identification of chaos and more importantly pin-pointing the degree of chaos using 

statistical tools would be the first steps in studying chaotic systems.  

 

3.5.1 Chaos and Chaotic Systems 

Chaos is the breakdown of predictability and represents a state of disorder. In the world of 

dynamics, chaos refers to the generation of random, unpredictable behaviour from a 
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simple, but nonlinear rule. A chaotic system is a highly nonlinear dynamical system that is 

very sensitive to initial conditions. Hence, subtle changes in its initial conditions lead to 

rapid divergence of the system from one trajectory to another amongst the many possible 

trajectories (Alligood et al., 1997). Such systems are also mathematically deterministic as 

in they follow precise laws but their irregular behavior can appear random to the casual 

observer.  

 

3.5.2 Phase-Space Reconstruction  

When testing for chaos, it is important to obtain the proper information from the time 

series data. Hence, a solution to extract geometric information from these time series data 

was proposed by Packard et al. 1980. The basic idea is that the state of an m-dimensional 

dynamical system can be uniquely characterized by m independent quantities. One such 

set of independent quantities are the phase space coordinates. However, this is not 

possible as the only data one has in the beginning is the one dimensional time series data. 

Hence, a one dimensional time series is expanded into a higher dimensional space using a 

technique called ‘delayed coordinate embedding’ (Takens, 1981). This creates a phase-

space portrait of the dynamical system and transforms it into an m-dimensional system 

from which the correct information can be retrieved.  

 

3.5.3 Delayed Coordinate Embedding  

The process of delayed coordinate embedding can be summarized as follows. Each 

observation in the signal x(t) is substituted with a vector given by: 

)})1((),....,2(),(),({)( τττ −+++= Mixixixixiy    (3.22) 
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where M = embedding dimension, τ = time delay, i = time index. Thus, the original signal 

can be represented as a set of vectors with each vector corresponding to a single state or 

an observation of the time series. The algorithm for delayed coordinate embedding has 

been developed in MATLAB. The embedding dimension and time delay are important 

parameters in determining an appropriate phase space representation from which useful 

information about signal structure can be derived. Algorithms exist for finding the optimal 

value of M and τ are described in the following sub-sections.  

 

3.5.4 Average Mutual Information (AMI) 

It is important to choose a good value of τ, the time delay. If the delay is too short, then 

x(t) is very similar to x(t+τ) and when plotted, all the data stays near the x(t) = x(t+τ) line. 

If the delay is too long, then the coordinates are essentially independent and no 

information can be gained from the plot. Therefore, the value of the time delay is chosen 

by plotting a graph of mutual information I(τ) between x(t) and x(t+τ) and finding the 

value for which I(τ) is a minimum (Fraser and Swinney, 1986). This algorithm has been 

implemented in MATLAB as part of this work.  

 

3.5.5 False Nearest Neighbours (FNN)  

The false nearest neighbours (FNN) method is used to find the optimal embedding 

dimension (Kennel et al., 1992). It works by finding the nearest neighbour of every point 

in the phase space for a given dimension and then checks to see if the points are close 

neighbours in the next higher dimension. If the distance between the two points (Si and Sj) 
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in the higher dimension divided by the distance in the present dimension exceeds a given 

heuristic threshold (Rt), i.e., 
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the point is marked as a false nearest neighbour. The percentage of false nearest 

neighbours should be at its minimum when the optimal embedding dimension is reached. 

Similar to the AMI algorithm, this algorithm has also been written in MATLAB.  

 

3.5.6 Recurrence Plots  

Recurrence plots are a useful qualitative tool for detecting the presence and amount of 

structure in a given dataset (Eckman et al., 1987). Once the phase-space representation of 

the signal is obtained, a recurrence plot can be used to show which vectors in the 

reconstructed space are close and far from each other by calculating the Euclidean 

distance between all pairs of vectors. The recurrence plot is then merely a colour-mapped 

representation of a 2-dimensional array where each element (i,j) represents the Euclidean 

distance between the vectors y(i) and y(j). It has been likened to a graphical representation 

of a correlation integral with the advantage that it preserves the temporal dependence of 

the time series (Eckman et al., 1987). The recurrence plot of a completely random signal 

(e.g. white noise) will show a uniform distribution of colours over the entire plot. On the 

other hand, a recurrence plot of a deterministic signal (e.g. a sine wave) will be more 

structured. Hence, a chaotic process would have a recurrence plot that has both a uniform 

and structured distribution of colours. Furthermore, the quality of the recurrence plot is 

affected by the choice of time delay and embedding dimension. Hence, optimal values of 
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these parameters using the methods described above may bring out the hidden structure of 

the data. The visual recurrence analysis (VRA) freeware is used to generate recurrence 

plots.  

 

3.5.7 Spatio-Temporal Entropy  

Spatio-temporal entropy provides a quantitative measure of the degree of structure in both 

space and time domain (Fan et al., 2001). It compares the distribution of colours over the 

whole recurrence plot with the distribution of colours over each diagonal line present in 

the plot. The higher the combined difference between the global distribution and the 

distribution over the individual lines, the more structured the image. In other words, it 

compares the distribution of distances between all pairs of vectors in the reconstructed 

space with that of the distances between different orbits evolving in time. The result is 

normalized and presented as a percentage of the maximum entropy. 100% entropy 

indicates the absence of any kind of structure whatsoever, i.e. pure randomness and thus a 

uniform distribution of colours. On the other hand, 0% entropy indicates complete 

determinism or perfect structure and thus distinct patterns and a high predictability. A 

chaotic process would incorporate both randomness and determinism and therefore, its 

spatio-temporal entropy will be in the mid range of 0% - 100%.  

 

3.5.8 Return Maps  

As seen in the earlier sections, the result of delayed coordinate embedding is a multi-

dimensional plot in the phase space. This is known as an attractor which is defined to be 

the smallest unit that cannot be decomposed into two or more attractors with distinct 
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basins of attraction. Given that a time series data set is embedded into m dimensions, it 

has to be plotted in a plot that contains m axes for us to accurately visualize the attractor. 

However, it is complicated to construct a plot that is higher than three dimensions. 

Therefore, more often that not, attractors are visualized in a two or three dimensional plot. 

The unique characteristic of a chaotic process is that its attractor is known to be ‘strange’. 

A strange attractor is an attractor whose variables never exactly repeat their value but 

always found to be within a restricted range of state space. This concept is analogous to 

the earlier tests where it was seen that a chaotic process is one that is neither completely 

stochastic nor completely deterministic.  

 

3.5.9 Lyapunov Exponents 

Lyapunov exponents are a measure of chaos (sensitivity to initial conditions), whose sign 

signifies chaos and whose value is a measure of the chaos. For an n dimensional chaotic 

system, there are n Lyapunov exponents that may be positive, negative or zero. The set of 

all the exponents is called the Lyapunov spectrum and the ith Lyapunov exponent is 

defined as: 
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where λi = ith Lyapunov exponent, t = time and r = radius. A bounded system with a 

positive Lyapunov exponent is chaotic and the exponent measures the mean rate at which 

predictability is lost. Lyapunov exponents must be calculated numerically and the largest 

exponent is the most informative and important. Therefore it is useful to develop a generic 

numerical technique that works for any system in any dimension. Table 3.1 presents the 

characteristics of Lyapunov exponents (symbolized byλ ) which are used in this study.  
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Table 3.1: General character of Lyapunov exponents 

1λ  2λ  3λ  attractor 
negative negative negative equilibrium point 

0 negative negative limit cycle 
0 0 negative 2-torus 

positive 0 negative strange (chaotic) 
positive positive negative noise 

 

There are four kinds of attractors. 1) point, 2) periodic, 3) quasi-periodic and 4) chaotic, 

which encompass the various kinds of attractors seen in Table 3.1. Equilibrium point is 

the point attractor where a time series converges and there are no more oscillations. Limit 

cycle is an attractor in which orbits or trajectories converge, upon which trajectories are 

periodic. 2-torus which is quasi-periodic is defined to be the surface of a doughnut shaped 

compact manifold. Lastly, chaos is a strange attractor that has a fractal dimension 

(implying that a structure assumes a consistent pattern of self-similarity) whose trajectory 

appears to move around randomly. Thereafter, using the interpretations in Table 3.1, the 

exact nature of the data (most importantly if chaos is exhibited) can be determined. There 

are numerous algorithms available to calculate Lyapunov exponents. In our study, the 

method by Briggs is used to estimate the spectrum of Lyapunov exponents as this method 

is proven to produce more reliable results (Briggs, 1990). This algorithm has been 

implemented in FORTRAN / MATLAB.  

 

3.5.10 Kaplan-Yorke Dimension  

The Kaplan-Yorke (KY) dimension can be derived from the Lyapunov exponents as 

follows. If there are n Lyapunov exponents then: 
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where the iλ  are positive and arranged in descending order of magnitude, their sum is 

greater than zero and 0
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aλ . For a chaotic signal, the KY dimension value would be 

similar to the correlation dimension of the signal. 

 

3.5.11 Kolmogrov Entropy  

Kolmogrov entropy of an attractor is a measure of the rate of information loss along the 

attractor, or a measure of the degree of predictability of points along the attractor, given 

an arbitrary initial point. It is related to the Lyapunov exponents as follows:  
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iK λ      (3.26) 

and it is the sum of all positive Lyapunov exponents. For a chaotic signal, K should be 

positive and finite.  

 

3.5.12 Correlation Dimension  

The correlation dimension method is a way to determine if a signal is chaotic 

(Grassberger and Procaccia, 1984). Chaotic attractors often have a complex and highly 

fractured structure that result in non-integer dimensions in the phase space called fractal 

dimensions. Before the correlation dimension is computed, it is necessary to reconstruct 

the one dimensional data into a multi-dimensional vector which was described in the 

earlier section. Subsequently, the correlation dimension can be calculated using the 

absolute distances between each pair of points in the set of N points. 
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A correlation function C(r) is then calculated using, 
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C(r) follows a power law of C(r) = krD. Therefore, correlation dimension (CD) can be 

found with the estimation techniques derived from the formula: 
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C(r) written in mathematical form is as follows: 
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where θ is the Heaviside function step function described as, 

{ } { })(0,0)(0,1)( jijiji XXrorXXrXXr −−>−−≤=−−θ   (3.31) 

For determining chaotic dynamics in a system, the correlation exponent has to be plotted 

as a function of the embedding dimension. A code that implementes these computations 

has been developed in MATLAB.  

 

3.5.13 Auto-Correlation Function (ACF)  

Through the shape of the auto-correlation function, a perfunctory detection of 

deterministic chaos in the time series may be done. If the ACF falls quickly to zero, then 

most probably the time series is stochastic and exhibits no determinism, implying that the 

value at each point is independent of all other values in the series. One such example is 

random Gaussian white noise. However, the ACF of a signal which has chaotic dynamics 

decreases very slowly and even more slowly than in an exponential manner. This is due to 
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the fact that the points are dependant and self-similar. An example of such a system is the 

Lorenz attractor. More details will be covered in chapter 4. A function that computes the 

ACF has been implemented in MATLAB.  

 

3.6 Noise Removal Techniques  

 

Time series data from chemical systems often display fluctuations in the measured 

variables. Much effort has been put into determining if this variability reflects 

determinism or stochastic “noise”. The output from these systems is the result of both the 

internal dynamics of the system and the inputs to the system from the surroundings. This 

implies that the system should be viewed as consisting of both stochastic and 

deterministic components. To analyze the “true” signal, it is important to characterize the 

determinism in the signal. However, the stochastic components cause the chaos 

quantifiers to give spurious results (Gong and Lai, 2000). This would lead us to the wrong 

conclusions about the nature of the signal which would have severe ramifications when 

we try to implement a suitable control strategy for the signal. Therefore, when the signal 

is too noisy, it is important to use some techniques to de-noise the signal and recover the 

true signal. Frequency domain filtering techniques can be applied to remove noise if the 

frequency characteristics of the signal are known. The latter can be found from the power 

spectrum analysis. Hence, low-pass, high-pass and band pass finite impulse response 

(FIR) filters have been implemented in MATLAB to achieve the objective of removing 

noise. A technique that smoothes noise (by evening out the noise) across the entire 

frequency range of the signal has also been implemented. Lastly, another de-noising 
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technique is discussed in this study, which is the concept of wavelets. Fourier smoothing 

has long been the method of choice to limit noise, but recently methods based on wavelet 

transformation have been surfacing. The reason is that they are more flexible in analyzing 

data. The advantage of wavelets lies in the additional spatial resolution of the transformed 

signal. In contrast to the Fourier transformation, the signal is decomposed into waves of 

finite length, hence the name wavelets. The wavelet transformation of a one dimensional 

signal has two independent variables, a frequency and a spatial location variable. It leads 

to the decomposition of a spectrum into a series of spectra at finer and coarser resolutions. 

Hence, the wavelet transformation furnishes us with the frequency of a signal at every 

spatial location (Mallat, 1989). To perform this transformation, the wavelet toolbox 

(wavmenu) in MATLAB is utilized. The utility of this tool will be shown in chapter 4.  

 

3.7 Summary  

In this chapter, we outlined many statistical and graphical methods that are used for the 

purpose of data analysis. The next chapter will present the application of these methods to 

various industrial data sets.  
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CHAPTER 4 

ANALYSIS OF ROUTINE OPERATING DATA 

 

This chapter contains sections on closed-loop systems, a simulation example, results of 

analyzing various key variables from routine operating data and applying noise removal 

techniques to the riser temperature data.  

 

4.1 Introduction 

 

Data analysis is the process of systematically applying statistical and mathematical 

techniques to data. In the context of this work, the purpose of doing this is to comprehend 

the meaning, structure and origin of the data which would help in understanding reasons 

for poor control loop performance and subsequently controlling the key variables within 

specified boundaries. Our current investigation is on an industrial FCC unit in which a 

temperature control loop is exhibiting less than satisfactory performance. We will 

examine routine and experimental data of various key variables to make appropriate 

structural and parametric decisions for the control system using the methods described in 

chapter 3.  

 

4.2 Previous Studies 

 

In this section, we present some of the related work that provides us the motivation to 

implement a comprehensive data analysis framework (including testing for chaos) of key 
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variables in the FCC unit. Abasaeed and Elnashaie (1997, 1998) showed that the external 

periodic forcing of the regenerator air temperature, can lead to chaotic behavior in the 

gasoline yield. Han and Chung (2001) then reported sensitivity in initial conditions 

leading to inverse responses and nonlinear behavior of the riser and the regenerator in the 

FCC unit. Even in other units, such phenomena were observed. Morud and Skogestad 

(1998) observed the occurrence of oscillations and instability in an ammonia reactor. 

Mosdorf and Shoji (2003) also observed chaos for bubbling in a submerged orifice.  

 

4.3 Closed-Loop Systems  

 

The presence of chaos in mathematical and physical systems has been extensively 

demonstrated and is very common (Ott et al., 1990). Amongst all these systems, the 

Lorenz system proposed by Lorenz (1963) is the one of the simplest system of three 

equations (for certain specific parameter values) to exhibit chaos. It must be noted 

however, that these systems are investigated under open-loop conditions. On the contrary, 

most chemical systems (such as the one which is the focus of this study) function as 

closed-loop systems due to the commonly employed feedback control. Hence, it is 

important to consider the effect of the controller, disturbance and noise, on chaos (if any). 

Hitherto, there doesn’t exist much literature on the investigation of chaos of closed-loop 

systems. Therefore, in this study, we will focus on such systems.  
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4.4 Results and Discussion  

 

For consistency, three sets of routine operating data (when the plant is in closed-loop) 

taken on the first day of consecutive weeks are analyzed. Each set is sampled at every 5 

seconds and for the purpose of our analysis, 4096 data points are used.  

 

4.4.1 Simulation Example  

Let us consider the Lorenz system (Lorenz, 1963): 

 

 
 
 

(4.1) 

 

The following are chosen as values for the different parameters: σ = 10, r = 28 and b = 

8/3. These values are known to result in chaotic behavior (Lorenz, 1963).  

The three system equilibria are:  
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which are all unstable. This implies that when the outputs (x, y and z) evolve over time, 

they are unable to achieve steady state but rather tend to undergo permanent transience 

from one equilibrium to another. This is the open-loop analysis of the Lorenz system and 

results from various chaotic quantifiers confirm the presence of chaos (Sprott, 1993). In 

our study, we aspire to investigate the closed-loop configuration of the Lorenz system. 
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Therefore, we consider the same system but add a feedback PID controller (with arbitrary 

tuning parameters) and random noise of mean 0 and variance 0.1. For this closed-loop 

system, the state variable ‘x’ is chosen as the controlled variable. ‘σ’ which is the Prandtl 

number (a dimensionless parameter that can be varied depending on the choice of 

kinematic viscosity and thermal diffusivity) is the manipulated variable. We compare the 

Lyapunov exponents obtained from both open-loop and closed-loop configurations to 

determine if the closed-loop Lorenz system also exhibits chaos. In this thesis, the Lorenz 

system (open-loop and closed-loop) is simulated in Simulink using the differential 

equation editor (DEE) block, with a sampling rate of 1 unit of time and 4096 data points. 

Results are presented in Table 4.1.  

 

Table 4.1: Lyapunov exponents (LE) of the open-loop and closed-loop Lorenz system 

LE of an open-loop Lorenz 
system 

LE of a closed-loop Lorenz 
system without noise 

LE of a closed-loop Lorenz 
system with noise 

LE1 LE2 LE3 LE1 LE2 LE3 LE1 LE2 LE3 
0.906 0 -1.572 0.924 0 -1.553 1.126 0.030 -1.478 

 

Results from Table 4.1 show that the LE1 of the open-loop Lorenz system is positive, LE2 

is zero, LE3 is negative and that the sum of all LEs is negative. This signifies that chaos is 

present and this is consistent with the results reported in the literature. This pattern is also 

evident in the LEs of the closed-loop Lorenz system without noise. This implies that the 

control action is unable to mitigate the chaotic fluctuations exhibited by the process 

variable.  We observe that the LE1 of the closed-loop system with noise is 0.22 more than 

that of the open-loop system. This increase could be due to chaos and / or noise but a clear 

distinction cannot be made as LEs are often not able to distinguish between chaos and 
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noise (Gong and Lai, 2000). However, based on the LE2 of the closed-loop system, we 

note that the value has increased from 0 to 0.03. For a purely chaotic system, LE2 is 

expected to be zero (as demonstrated by the open-loop and closed-loop without noise 

Lorenz systems). Therefore, this increase is due to the noise in the system which is also 

likely to have caused the increase in LE1. LE3 is negative which is typical of a chaotic 

system. Therefore, results clearly show that the closed-loop Lorenz system with noise also 

exhibits chaos and the marginal difference in results compared to the open-loop and 

closed-loop without noise systems is mainly due to noise.  

 

The observed chaos in the closed-loop Lorenz system is dependent on the controller 

tuning parameters selected. It can be seen that for this particular set of tuning parameters, 

chaos is observed. This suggests that even with a linear feedback controller, the 

phenomenon of chaos may be still inherent as the controller is unable to eliminate the 

chaotic components in the system. This also provides us the justification to examine 

routine operating data under closed-loop conditions as we have shown that it is indeed 

possible for a closed-loop system to exhibit chaos. It must be noted that the purpose of a 

controller in an unstable and chaotic system, is to stabilize the system equilibria and 

ensure that the output doesn’t fluctuate between the equilibrium coordinates. Tian et al. 

(2002) have shown that it is possible to mitigate chaotic fluctuations in the controlled 

Lorenz system via a special form of chaos control called the bang-bang control. However, 

there have been no studies which have reported the mitigation of chaotic fluctuations via 

feedback control using conventional PID controllers. In this chapter, we do not aspire to 

show that such feedback control can quench chaos but rather we purport to show that even 
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under this type of feedback control, chaotic behavior can occur. In the next sub-section, 

we will critically examine several key variables of the FCC unit.  

 

4.4.2 Riser Temperature  

In this section, we utilize our framework (refer to Appendix B) and present results of 

analyzing the riser temperature data and various key variables of the FCC unit. This 

framework is not applied to the simulation example of the Lorenz system, as it is a 

mathematical system that is already known to exhibit chaos. Figure 4.1 shows the 

dynamics of the riser temperature (plotted as deviation from the set-point for proprietary 

reasons).  

 

 

Figure 4.1: Graph of riser temperature against time (set 1) 

 

From Figure 4.1, we can observe the higher than desired fluctuations in the riser 

temperature, which may be a result of poor control, poor process design or other causes. 
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Table 4.2 presents the results from the tests of stationarity and Gaussianity on the riser 

temperature data.  

 

Table 4.2: Results from tests of stationarity and Gaussianity for riser temperature 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 Runs Test 11 (97)* 2 (92)* 2 (91)* 
2 Reverse 

Arrangements Test 1724 (2243)* 3553 (2764)* 3345 (2651)* 

3 Kurtosis 1.4215 1.0319 1.3369 
*The metric in brackets is for the differenced data 

 

Results from Table 4.2 show that for all three sets, the data are not stationary. This is 

confirmed by both the runs and reverse arrangement tests. Hence, the data are differenced 

(as described by the method in chapter 3) to ensure stationarity. This is indicated by the 

metric values for the differenced data which are in brackets. Hereafter, the new 

differenced data sets are used in our analysis. The Kurtosis of all three sets is more than 1 

and this indicates a non-Gaussian distribution. From this, we can infer that first and 

second order statistics are not sufficient to characterize the dynamics of the riser 

temperature. Hence, HOS have to be implemented. Furthermore, since the data are non-

Gaussian, the assumption of linearity is not justified and testing for nonlinearities should 

be carried out. This is because only a positive test for Gaussianity implies linearity (Rao 

and Gabr, 1980, 1984; Hinich, 1982). Table 4.3 presents the results obtained from the two 

tests (BI and SDM) for nonlinearities.  
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Table 4.3: Results from tests of nonlinearities for riser temperature 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 

1 BI (f1,f2) 
0.373 (-0.031, -

0.445) 
0.473 (-0.468, -

0.476) 
0.465 (-0.328, -

0.335)  
2 Trev,ori  0.0030  0.0034 0.0031  
3 µsurr  -4.843E-5  -4.725E-5 -4.678E-5  
4 Observed 

Statistic 3.711 3.342 3.366 

 

It can be seen that the BI of all three sets is between 0.37 and 0.47. This implies that the 

data are nonlinear with the magnitude of the BI’s indicating the degree of interaction of 

the nonlinearities at the two independent frequencies shown in brackets. For a visual 

depiction of this, refer to Figure 4.2.  

 

 

Figure 4.2: BI of riser temperature (set 1) 

 

Figure 4.2 shows the interaction at the various bi-frequencies and the highest peak (which 

is caused by a nonlinearity) is observed at (-0.031, -0.445) and its magnitude is 0.373. 
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From Table 4.3, we also observe that the observed statistic of all three sets is more than 2. 

This insinuates that the null hypothesis is rejected and provides evidence that the data are 

nonlinear. Figure 4.3 shows the SDM in graphical form.  

 

  

Figure 4.3: Surrogate data plot of riser temperature (set 1) 
 

 
Figure 4.3 shows the time reversal value of the original (differenced) data (indicated by 

the tallest bar) and the time reversal values of all the surrogate data which are indicated by 

the numerous shorter bars. We can clearly see that the time reversal value of the original 

data (Trev,ori) lies well outside the range of that of the mean of the surrogates (µsurr). This 

implies that the data are nonlinear and this is confirmed by the hypothesis testing and 

calculation of the observed statistic. Since both tests (BI and SDM) confirm the presence 

of nonlinearities, this paves the way for testing for chaos, as nonlinearities are the 

precursors of chaos. Table 4.4 presents the results from the various chaos quantifiers.  
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Table 4.4: Results from tests of chaos for riser temperature 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 LE1 0.5421  0.5031   0.3861 
2 LE2 0.0392 0.0281     0.0166 
3 LE3 -0.8907  -0.8654   -0.8196 
4 STE  84%  85%  85% 
5 K 0.5813 0.5312 0.4027 
6 CD 3.60 3.65 3.50 
7 KY 2.64 2.55 2.45 
8 OED 8 8 8 
9 AMI 3 3 3 

 

It can be seen that the first and second LE for all the three sets are positive. A positive LE1 

is an indicator of chaos and / or correlated noise and a positive LE2 indicates that random 

noise is present as well. Since the riser temperature data are embedded in three 

dimensions, LE2 is expected to be zero if the data are purely chaotic. LE3 is negative for 

all three sets and this is expected as the third exponent is always negative for any data set. 

The theoretical value of LE1 for a purely random signal is infinity 

(http://sprott.physics.wisc.edu/ phys505/lect09.htm, accessed on 08/07/05) but in practice 

this is not achieved. Instead, a typically high value (higher than that of chaos, but of no 

specific value) is registered. For the riser temperature data, the LE1 is not high enough to 

be classified as pure noise. Hence, this is a good indication that there are chaotic 

fluctuations present in the riser temperature.  

 

The spatio-temporal entropy (STE) of the three sets, indicates that the data are mostly 

random but with some hidden structure. This reinforces our belief that chaos may be 

present as this is the typical nature of a chaotic attractor. The Kolmogrov entropy (K) that 

is calculated for all three sets is positive and finite and this also suggests that chaos is 
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present. The correlation dimension (CD) of the riser temperature (set 1) is shown in 

Figure 4.4.  

 

 

Figure 4.4: Correlation dimension of riser temperature (set 1) 
 

 

From Figure 4.4, we observe that the rate of increase of the correlation exponent 

decreases as the embedding dimension increases. This type of saturation is typical of what 

is observed in a chaotic process as described in chapter 3. This inference and the trend in 

Figure 4.4 are also similar to those for the experimental data reported in literature 

(Mosdorf and Shoji, 2003). Furthermore, we observe that CD, which is the correlation 

exponent at the saturation point, is approximately 3.60. This implies that the data has a 

fractal dimension which is also a criterion for a chaotic process. We also note that the CD 

for data sets 2 and 3 are also fractal. In evaluating the CD, we stop at an embedding 

dimension of 20 so as to save on computational time (following the approach employed 

by Mosdorf and Shoji (2003)).  
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From Table 4.4, we can also see that the Kaplan-Yorke (KY) dimension is similar in value 

to the CD. For a chaotic process, the KY should be the same as or similar to the CD.  

Hence, this also shows evidence of chaotic behavior. The values of average mutual 

information (AMI) and optimal embedding dimension (OED) in Table 4.4 are used in 

determining the graphical chaos quantifiers. We now present some quantifiers that detect 

chaos via graphical means. Refer to Figures 4.5 to 4.7.  

 

 

Figure 4.5: Return map of riser temperature (set 1) 

 

Figure 4.6: ACF of riser temperature (set 1) 
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Figure 4.7: Recurrence plot of riser temperature data (set 1) using Lyapunov color scheme 

 
 
 

Figures 4.5 to 4.7 depict the return map, ACF and recurrence plot of the riser temperature 

data taken in the first week (set 1). Figure 4.5 shows that the data are not entirely random 

and some structure is present. Whilst this is not a confirmation of chaos, it is nevertheless 

indicative that chaos could be present. The ACF plot (Figure 4.6) of the data shows that 

the ACF decreases slowly as lag increases. However, the trend in this plot does not 

decrease in an exponential manner as observed in the trend for the Lorenz data 

(http://cecwi.fsv.cvut.cz/jiz/stehlik/det_chao.htm, accessed on 08/07/05). While the ACF 

test may work well for chaotic mathematical systems, they often fail for chaotic 

experimental systems. This is attributed to the fact that for experimental systems, the 

reconstruction of chaotic attractors is not as good as compared to the attractors of 

mathematical systems  

(http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson12/Experiment.pdf, accessed on 

08/07/05). In Figure 4.7, we observe that the data are mostly random (as indicated by the 

distribution of the red color) but at the same time there is some structure inherent (as 
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indicated by the green color). It must be noted that AMI, OED and the choice of color 

scheme (in this example, the Lyapunov color scheme is used) are vital in obtaining the 

complete structure (or the lack of) of the data. This suggests that the data have chaotic 

origins.  

 

In summary, the above analysis shows that the riser temperature has a non-Gaussian 

distribution which implies that HOS techniques should be utilized to extract more useful 

geometric information. Based on the two formal tests of nonlinearities, we can conclude 

that the data are nonlinear in the operating region. This is important because some studies 

assume that chemical processes may be linear in a narrow operating region (Eskinat et al., 

1991) but in this case, it is not true. After confirming the presence of nonlinearities, 

several statistical tools for characterizing chaos are implemented and results from most 

chaos quantifiers indicate the presence of chaos. Based on this, we can conclude that two 

of the causes of the large fluctuations in the riser temperature are the presence of 

nonlinearities and chaos. To understand more about the causes of these fluctuations, 

dynamics of other key variables of the FCC unit are characterized in the following sub-

sections. Data for all these variables are presented in the rest of this thesis as deviation 

variables for proprietary reasons.  

 

4.4.3 Feed Flowrate  

The feed flowrate is known to be one of the dominant variables affecting the riser 

temperature. The fluctuations inherent in the feed flowrate may propagate and cause the 

nonlinear and chaotic fluctuations seen in the riser temperature. Figure 4.8 shows the time 
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series of the feed flowrate. From this, one can observe that there are some fluctuations in 

the feed flowrate.  

 

 

Figure 4.8: Graph of feed flowrate against time (set 1) 

 

Table 4.5 presents the results of testing for stationarity, nonlinearity and Gaussianity for 

the fluctuations in the feed flowrate. These results show that the feed flowrate data are not 

stationary. Hence, differencing is carried out and stationarity is ensured as seen by the 

metric values in brackets. The data are then tested for Gaussianity and although the 

Kurtosis of all three sets is lower than that of the riser temperature data, Gaussianity 

cannot be assumed. Hence, this shows that HOS have to be used and the data are then 

tested for nonlinearities. The low non-zero BI values indicate that the data are non-

Gaussian but linear. The linearity of the data is further confirmed by the SDM as the 

observed statistic for all three sets is in the range of -2 to 2. Therefore, the null hypothesis 

that the data are linear is not rejected. Subsequently, since no nonlinearity is observed in 
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the feed flowrate data, testing for chaos is not necessary as nonlinearity is a prerequisite 

for chaos. From the above analysis, we can see that the feed flowrate acts as a linear 

disturbance to the riser temperature and hence this might be one of the causes of the large 

fluctuations in the riser temperature.  

 

Table 4.5: Results from tests of stationarity, Gaussianity and nonlinearity for feed 

flowrate 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 Runs Test 3 (98)* 8 (106)* 11 (89)* 
2 Reverse 

Arrangements Test 1418 (2247)* 3167 (2678)* 2862 (2546)* 

3 Kurtosis 0.1932 0.2246 0.2563 
4 BI (f1,f2) 

0.1146 (0,0) 0.0799 (-0.398, -
0.398) 

0.0853 (0.390, -
0.406) 

5 TRori -2.077E-4 -2.756E-4 3.816E-4 
6 µsurr 2.5432E-5 2.340E-5 -7.448E-6 
7 Observed Statistic 0.4607 0.5356 0.6723 

* The metric in brackets is for the differenced data.  
 

 

4.4.4 Feed Temperature 

The temperature of the feed entering the riser is the other dominant variable that may have 

an effect on the riser temperature. Similar to that of the feed flowrate, the fluctuations 

present in the feed temperature may contribute to the fluctuations in the riser temperature 

and result in the higher than desired fluctuations. Fluctuations in the feed temperature are 

evident from the feed temperature data (set 1) in Figure 4.9. Table 4.6 presents the results 

from the characterization of these fluctuations.  
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Figure 4.9: Graph of feed temperature against time (set 1) 

 

Table 4.6: Results from tests of stationarity, Gaussianity and nonlinearity for feed 

temperature 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 Runs Test 2 (90)* 19 (113)* 5 (94)* 
2 Reverse 

Arrangements Test 1202 (2278)* 2081 (2369)* 4498 (2698)* 

3 Kurtosis -0.6908 -0.7392 -0.7230 
4 BI (f1,f2) 

0.0900 (0,0) 0.0799 (-0.398, -
0.398) 

0.0853 (0.390, -
0.406) 

5 TRori 2.9696E-4 2.6572E-4 2.7361E-4 
6 µsurr 2.4890E-5 2.4311E-5 2.2295E-5 
7 Observed Statistic 0.2826 0.3356 0.2723 

* The metric in brackets is for the differenced data. 
 
 
Results from Table 4.6, show that the feed temperature data are neither stationary nor 

Gaussian. Hence, the data are differenced and tested for nonlinearities with both the BI 

and the observed statistic from the SDM showing that the data are linear. This suggests 

that the feed temperature is acting as a linear disturbance to the riser temperature. These 

results are very similar to that seen in the case of the feed flowrate data.  
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4.4.5 Pressure of 2nd Stage Regenerator  

Pressure of the 2nd stage regenerator is not considered to be one of the dominant variables 

in the FCC unit. However, it is known to adversely affect the riser temperature if poorly 

controlled. Figure 4.10 shows the dynamics of the 2nd stage regenerator pressure. We can 

observe that there are some fluctuations in the regenerator pressure. Table 4.7 presents the 

results from the characterization of these fluctuations.  

 

 

Figure 4.10: Graph of the 2nd stage regenerator pressure against time (set 1) 
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Table 4.7: Results from tests of stationarity, Gaussianity and nonlinearity for regenerator 

pressure 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 Runs Test 86 97 90 
2 Reverse 

Arrangements Test 2280 2519 2616 

3 Kurtosis 0.1896 0.2296 -0.7230 
4 BI (f1,f2) 

0.1232 (0.007, -
0.085) 

0.1691 (0.0546, -
0.1093) 

0.1745 (0.340, -
0.435) 

5 TRori 0.0042 0.0040 0.0037 
6 µsurr -7.3754E-5 -7.3947E-5 -7.4192E-5 
7 Observed Statistic 2.2259 2.2736 2.3481 

 

Results in Table 4.7, show that the 2nd stage regenerator pressure data are stationary. 

Hence differencing need not be carried out and the original data can be used for further 

testing. The Kurtosis values indicate that the data are not Gaussian and so the data are 

tested for nonlinearities using HOS techniques. The BI values are between 0.12 and 0.18 

which are typical of a mildly nonlinear signal (Choudhury et al., 2004). Subsequently, the 

observed statistic from the SDM was tabulated to be in the range of 2.20 to 2.35. This 

implies that although the null hypothesis is rejected, it is nevertheless close to 2 and hence 

the data can only be classified as mildly nonlinear. Therefore, both BI and SDM show that 

the data are mildly nonlinear in their operating range. Since the data are shown to be 

nonlinear, this requires us to test the data for chaos as that could be a contributing factor 

to the fluctuations in the riser temperature. Table 4.8 presents these results.  
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Table 4.8: Results from tests of chaos for the regenerator pressure 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 LE1 1.7580 1.8235 1.8964 
2 LE2 0.1129 0.1276 0.1340 
3 LE3 -0.3355 -0.3497 -0.3622 
4 Σ LE 1.5354 1.6014 1.6682 

 

Table 4.8 presents the calculated LEs for the three different sets of data. Results show that 

for all the three sets, LE1 and LE2 are positive and LE3 is negative. This pattern is similar 

to what we observed for the riser temperature data. However, in this case, we note that the 

LE1 for each set is quite high (above 1) compared to what is normally observed for a 

chaotic process and this implies that noise is present. This is confirmed by the positive 

value of the LE2 for each set. At this juncture, it seems that both chaos and noise are 

present with the large value of LE1 suggesting that more noise than chaos is present. 

However, the sum of LE’s is positive which rules out chaos. Therefore, we can conclude 

that the data is not chaotic and that the fluctuations are due to noise and nonlinearities. 

Although Lyapunov exponents are known to give a false indication of chaos at times, they 

are accurate in detecting the absence of chaos. This negates the usage of other quantifiers 

of chaos to verify that no chaotic fluctuations are present. Overall, results show that the 

2nd stage regenerator pressure acts as a nonlinear disturbance toward the riser temperature.  

 

4.4.6 Pressure Differential between the 1st and 2nd Stage Regenerator 

The pressure differential between the 1st and 2nd stage regenerator is not considered to be 

one of the dominant variables in the FCC unit. However, it is also known to adversely 

affect the riser temperature if poorly controlled. From the pressure differential data in 
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Figure 4.11, we can observe that there are some fluctuations in the pressure differential. 

Table 4.9 presents the results from the characterization of these fluctuations.  

 

 

Figure 4.11: Graph of the regenerator pressure differential against time (set 1) 

 

Table 4.9: Results from tests of stationarity, Gaussianity and nonlinearity for regenerator 

pressure differential 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 Runs Test 114 109 113 
2 Reverse 

Arrangements Test 2421 2561 2590 

3 Kurtosis 0.1910 0.1996 0.2523 
4 BI (f1,f2) 

0.0960 (0.054, -
0.109) 

0.1092 (0.044, -
0.091) 

0.0844 (0.430, -
0.438) 

5 TRori 0.0015 0.0012 0.0018 
6 µsurr 4.288E-5 4.0276E-5 3.975E-5 
7 Observed Statistic 1.2622 1.2043 1.1487 

 

Results in Table 4.9 show that the pressure differential data are stationary and non-

Gaussian. Hence, differencing need not be carried out and the original data can be used to 
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test for nonlinearities. Both BI and the observed statistic from the SDM show that the data 

are linear and therefore, testing for chaos need not be undertaken. Similar to the feed 

flowrate and feed temperature data, the pressure differential is also a linear disturbance 

that could be affecting the riser temperature variable.  

 

4.4.7 Saturated Steam Flowrate 

Similar to the 2nd stage regenerator pressure and 1st and 2nd stage regenerator pressure 

differential data, the saturated steam flowrate is also not a dominant variable. However, it 

is still tested for any effect on the riser temperature. From Figure 4.12, we can observe 

that there are some fluctuations in the saturated steam flowrate. Table 4.10 presents the 

results from the characterization of these fluctuations.  

 

 

Figure 4.12: Graph of saturated steam flowrate against time (set 1) 
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Table 4.10: Results from tests of stationarity, Gaussianity and nonlinearity for saturated 

steam flowrate 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 Runs Test 102 92 104 
2 Reverse 

Arrangements Test 2564 2627 2609 

3 Kurtosis -0.5317 0.1996 0.2523 
4 BI (f1,f2) 

0.3066 (0.054, -
0.109) 

0.2894 (0.054, -
0.022) 

0.3249 (0.341, -
0.497) 

5 TRori 0.0075 0.0072 0.0079 
6 µsurr -4.643E-5 -4.359E-5 -3.946E-5 
7 Observed Statistic 3.0654 3.1262 3.1478 

 
 

Results in Table 4.10 show that the data are stationary and non-Gaussian. Hence, HOS 

techniques are applied to the original data sets and both SDM and BI confirm the presence 

of nonlinearities. Compared to the values obtained for the 2nd stage regenerator pressure 

data, the BI and observed statistic for the saturated steam flowrate are higher. This implies 

that this data are comparatively more nonlinear. Subsequently, the saturated steam 

flowrate data are tested for chaos and results are presented in Table 4.11.  

 

Table 4.11: Results from tests of chaos for saturated steam flowrate 

Index Indicator Metric for Set 1 Metric for Set 2 Metric for Set 3 
1 LE1 1.5765 1.6253 1.5993 
2 LE2 0.1125 0.1216 0.1104 
3 LE3 -0.4206 -0.4394 -0.3923 
4 Σ LE 1.2684 1.3075 1.3174 

 

Results in Table 4.11, show that for all sets, LE1 and LE2 are positive, LE3 is negative and 

the summation of LEs are positive. This is similar to the situation and discussion about the 

2nd stage regenerator pressure data (refer to section 4.4.5). Although chaos can be 

misconstrued from the results, the Σ LE metrics indicate that it is actually absent and the 
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data are merely contaminated with noise. Overall, results show that the saturated steam 

flowrate acts as a nonlinear disturbance toward the riser temperature.  

 

4.4.8 Overall Analysis 

In this sub-section, we consider the implication of our analysis of the key variables of the 

FCC unit. The riser temperature is seen to be nonlinear and have chaotic fluctuations. This 

can be fathomed as one of the reasons for its poor regulation by the feedback control loop. 

Aside from the innate nature of the riser temperature dynamics, other disturbance 

variables are observed to contribute to the fluctuations in the riser temperature. Three 

variables: feed flowrate, feed temperature and pressure differential between the 1st and 2nd 

stage regenerator, are identified as linear disturbances. The other two variables: 2nd stage 

regenerator pressure and saturated steam flowrate are identified as nonlinear disturbances; 

but they are found to be non-chaotic. The combination of these linear and nonlinear 

disturbances coupled with the riser temperature dynamics, may have led to the chaotic 

fluctuations in the riser temperature. Hence the riser temperature (which is the controlled 

variable) is poorly regulated. This revelation is important in investigating the root cause of 

the poor control loop performance observed in the riser temperature loop. The control 

aspect of the FCC unit will be dealt with in chapter 5.  
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4.5 Noise Removal Techniques applied to Riser Temperature Data 

 

In this section, we apply some of the noise removal techniques described in chapter 3 to 

the riser temperature data. Let us consider the riser temperature data in Figure 4.1. Figure 

4.13 illustrates the power spectrum of the riser temperature data. All the power of the riser 

temperature signal lies between 0 and 60Hz (normalized frequency of 0.06). This implies 

that a low-pass filter of cut-off frequency of 60 Hz would be an ideal choice for noise-

removal. Figure 4.14 shows the signal characteristics of the riser temperature after the 

low-pass filtering.  

 

 

Figure 4.13: Power spectrum of riser temperature 
 
 

 

 

 



 68

 

Figure 4.14: Graph of riser temperature after low-pass filtering 
 
 

The next noise removal technique to be applied to the raw data is the smoothing 

technique, described in chapter 3. Figure 4.15 shows the signal characteristics of the riser 

temperature after smoothing by this technique.  

 

Figure 4.15: Graph of riser temperature after smoothing 
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After the low-pass filtering and smoothing techniques are applied to the riser temperature 

data, we attempt to characterize the chaotic fluctuations of the de-noised data by 

recalculating the Lyapunov exponents. Results in Table 4.12 show that the LE1 for both 

data are positive and less than that of the original riser temperature data. This implies that 

some of the noise from the original data has been suppressed and this is reflected in the 

lower LE1. Also, the positive values of the LE1 indicate the presence of chaos which is 

expected since the original data are deemed to be chaotic. We observe that the LE2 for 

both the de-noised data to be approximately zero. This suggests that virtually all the noise 

is suppressed as for a noisy system LE2 is expected to be positive, as seen in the case of 

the original riser temperature data (Table 4.1). LE3 is negative for both the de-noised data 

and this is expected as well. Overall, taking into consideration that the LE1 is positive, 

LE2 is virtually zero and that the sum of LEs is negative, we can conclude that the de-

noised data also exhibits chaotic dynamics. Results also show that most of the noise is 

eliminated through filtering / smoothing and what is captured is mostly pure chaos. 

Therefore, for the case of the riser temperature data, the low-pass filtering and smoothing 

techniques seem to work well in suppressing the noise and recovering the true chaotic 

signal. 

 

Table 4.12: Lyapunov exponents of the de-noised riser temperature data 

Lyapunov exponents (LE) for the low-
pass filtered data 

Lyapunov exponents (LE) for the 
smoothed data 

LE1 LE2 LE3 LE1 LE2 LE3 
0.3382 0.0065 -0.6138 0.1286 -0.0051 -0.1460 
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It must be noted that the LE values for both sets of filtered data are different but the 

conclusions drawn from them are the same. This shows that the recovered signal after de-

noising is different (due to different techniques implemented) and that we cannot 

determine which method recovers the more accurate signal. If the conclusions drawn from 

the two methods are different, we could have formed a judgment as to which method is 

better. We can observe (refer to Figure 4.15) that the smoothing technique has suppressed 

more noise than the low-pass filtering technique. This however shouldn’t be an indication 

of it being a better method. This is because in suppressing some of the noise, it may have 

inadvertently eliminated some of the true dynamics of the signal which would then 

impede the results obtained.  

 

For a consummate discussion on noise removal techniques, we also present results 

obtained from a wavelet transformation of the riser temperature signal (refer to chapter 3). 

Figure 4.16 shows this transformation. As before, we attempt to characterize the dynamics 

of the riser temperature data after wavelet transformation. Table 4.13 presents these 

results.  
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Figure 4.16: Graph of riser temperature after wavelet transformation 
 
 

Table 4.13: Lyapunov exponents of the wavelet transformed riser temperature data 

Lyapunov exponents (LE) for wavelet transformed data 
LE1 LE2 LE3 

0.3871 -0.0499 -0.8703 
 

Results in Table 4.13, show that the LE1 is positive, LE2 is almost zero, LE3 is negative 

and the sum of them is also negative. This proves that the de-noised data are found to 

exhibit chaotic fluctuations and this is expected since the original data are chaotic. Results 

also show that the LE values in this case are closer to those for the original data, 

compared to the values obtained for the low-pass filtered and smoothed data. Since 

wavelet analysis is known to be a superior method compared to other filtering methods, 

we can expect its results to be more accurate (Padmanabhan, 2004). Therefore, since the 

LE values of the original data and wavelet transformed data are not that different, we can 

conclude that the original data did not contain much noise to begin with. We can also 
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conclude that the low-pass filtering and smoothing techniques may have over 

compensated to remove noise as well as some of the true characteristics of the signal 

 

Based on the above analysis, we can see that all three techniques work well in mitigating 

noise (and perhaps some of the characteristics of the signal) to recover the dynamics of 

the true signal. Characterizing the true nature of the signal would aid us in comprehending 

reasons for poor control performance. It must be noted that the true signal can never be 

completely known and hence we can only infer which method is more superior, either 

from results or prior knowledge of the efficiency of the method. Recovering the true 

signal is also important in cases where the systems are too noisy and the abundance of 

noise results in a false indication of chaos. We note that tests for stationarity, Gaussianity 

and nonlinearity are more robust than that of chaos and are able to yield good results even 

in the presence of noise. Therefore, if a signal is found not to be chaotic, there is no need 

to apply noise removal techniques to it. Hence, in this study, de-noising techniques are 

only applied to the riser temperature data since it is the only signal to exhibit chaotic 

dynamics.  

 

4.6 Summary  

 

This chapter applied a rigorous statistical framework to comprehensively characterize the 

dynamics of the riser temperature and other important variables in the FCC unit. The 

feature of this framework is that all analyses utilize only routine operating data which is 

easily available. The results clearly show that the riser temperature exhibits nonlinear and 
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chaotic fluctuations. Hence, it is deduced that a linear PI controller is unable to mitigate 

these fluctuations and thus large fluctuations are still inherent. To further understand why 

such fluctuations are present, other variables that may vicariously affect the riser 

temperature are investigated using the same statistical framework. Results show that there 

are linear fluctuations in feed flowrate, feed temperature and pressure differential between 

the 1st and 2nd stage regenerator and nonlinear fluctuations in the 2nd stage regenerator 

pressure and saturated steam flowrate all of which may contribute to the chaotic 

fluctuations observed in the riser temperature. In conclusion, via data analysis, we fully 

understand why the riser temperature control loop is performing poorly. The next step is 

to propose remedial actions that may help reduce these fluctuations and improve control 

loop performance. This will be discussed in chapter 5. We also tested three noise removal 

techniques for the riser temperature data and the results show that they could be useful in 

recovering the true nature of the signal. Results also reveal that the true signal is chaotic 

and this is important because this shows that our implemented methods are efficient in 

detecting chaos in the original signal although it is contaminated with some noise. In the 

next chapter, we will discuss the modeling and control aspect of the FCC unit and attempt 

to reduce the fluctuations seen in the riser temperature.  
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CHAPTER 5 

MODELING AND CONTROL ENHANCEMENT OF THE FCC UNIT 

 

This chapter provides the background information followed by a review of available FCC 

models. Subsequently, modification and implementation of one selected FCC model, its 

validation, followed by several strategies to improve the control of the FCC unit are 

presented.  

 

5.1 Introduction 

 

The fluid catalytic cracking (FCC) process is one of the most important processes in a 

modern refinery. To recapitulate, the FCC unit is constituted basically of two 

interconnected reactors (riser and regenerator) supported by ancillary equipment. In the 

riser, the catalytic cracking of the feed takes place whilst in the other, deactivated catalyst 

is reactivated by coke combustion. The interacting effects of these two units pose several 

challenges related to the stability and control of the FCC process. This was seen in chapter 

four, where results showed that the nonlinear and / or chaotic fluctuations in several key 

variable(s) of the FCC unit were the plausible causes of poor control of the riser 

temperature. In this chapter, the modeling and control aspect of the FCC unit will be 

discussed in order to ameliorate the control loop performance of the riser temperature. 

The first step towards this goal will be to develop an accurate model that realistically 

represents the characteristics of the process.  
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5.2 Previous Studies  

 

Numerous studies dealing with the modeling, simulation, kinetics, multiplicity of steady 

states, chaotic behavior, online optimization and control of FCC units have been reported 

in the open literature (Kasat and Gupta, 2003). Several studies on the multiplicity of 

steady states and chaotic behavior were presented in chapter four and in this chapter, we 

present some of the related work on the modeling and control of FCC units. The literature 

is relatively rich in modeling and control studies of FCC units. A few of these models are 

developed using fundamental principles, while other FCC studies are based on empirical 

or semi-empirical models (Viera et al., 2005). A detailed review of these models is 

provided by Arbel et al. (1995) while their merits and demerits have been critically 

reviewed by Elshishini and Elnashaie (1990). Based on these, it has been suggested that 

one can possibly use any reasonable model, even if empirical, for simulation and control, 

as long as experimental or industrial data are used to tune the parameters associated with 

the model. This clearly implies that the model can be tuned to match the industrial FCC 

process. Going by the availability of several FCC models, it can be concluded that 

deriving a new FCC model from first principles to accurately model our industrial FCC 

process is redundant. Therefore, for the purpose of this thesis, we propose to utilize an 

existing FCC model and fine tune it, to accurately depict the industrial FCC process. 
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5.3 Review of FCC Models  

 

FCC processes are known to be difficult to model well because of the large scale nature of 

the process, complicated hydrodynamics and complex kinetics of both cracking and coke 

burning reactions. Numerous papers on FCC modeling have had widely varying scope 

and level of modeling rigor. Some papers focus on specific parts of the units while others 

are only concerned with reaction kinetics or steady state behavior. Several studies on 

dynamic modeling of the whole FCC unit, as reported by Han and Chung (2001), have 

had limited applicability due to the outdated type of process or the over-simplified and 

unrealistic assumptions introduced in the modeling effort. Empirical and semi-empirical 

models are adequate and conform well to the real industrial process over a small operating 

range. However, when the operating conditions change, their validity may fail. Many of 

these models also do not describe or include important variations in variables, like 

pressure effects (Balchen and Strand, 1992; Hovd and Skogestad, 1993) and use over-

simplified kinetics (Ansari and Tade, 2000). It is also not possible to investigate 

nonlinearities and chaos in empirical models, as these models are generally linear models 

obtained from system identification. If nonlinear models are identified, we may be able to 

capture phenomena such as chaos and bifurcation. Dynamical models (from first 

principles) are able to capture the nonlinearity and chaos (if any) of a process and 

therefore would be deemed more suitable for this study. These models have been 

developed in several studies for certain parts of the FCC process. For the purpose of this 

study, we will restrict our review of FCC models that model the riser and regenerator. 

Arbel et al. (1995) have developed a model that can describe both the steady state and 
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dynamic behavior of a FCC unit (consisting of the riser and regenerator) being operated in 

both partial and full combustion modes. Ali and Rohani (1997) presented a more detailed 

dynamic model that consists of several ordinary differential and algebraic equations. Han 

and Chung (2001) presented an even more detailed model of the FCC unit which consists 

of ordinary and partial differential equations. The latter is used to simulate the effect of 

the dense bed and freeboard both of which are not included in this study.  Furthermore, 

the model proposed by Han and Chung (2001), incorporates too much complexity for the 

purpose of control studies. Furthermore, partial differential equations are not always 

necessary when time scales are of large varying orders (Jia et al., 2003). Thus, an 

adequate reduced model would suffice for the purpose of this study. Hence, the model 

proposed by Ali et al. (1997) is employed in this study as it is of adequate complexity and 

yet it captures most of the important variables we wish to investigate. For more details of 

this model, the reader is directed to the paper by Ali and et al. (1997).  

 

5.4 Modification and Implementation of the FCC model  

 

The model for the FCC unit proposed by Ali et al. (1997) consists of sixteen differential 

equations coupled with twenty four algebraic equations. The steady state model involves 

both ordinary differential equations (riser equations) and algebraic equations (regenerator 

equations). Riser ordinary differential equations are solved using MATLAB ODE 

functions. All the output variables are integrated with respect to axial length of the riser. 

The output variables are the product distribution (species composition) and temperature of 

the riser. The regenerator nonlinear algebraic equations are solved using Newton-Raphson 
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method. When solving the dynamic model, the steady state variables are first calculated 

and then used as the initial conditions to obtain the transient response. The riser and 

regenerator equations are solved using MATLAB’s ODE integrating functions (ode15s, 

ode45 etc). The integrating step size is set to one second. The model equations are 

implemented in a MATLAB code, which is provided by Jia et al. (2003) in a softcopy 

format. There is also a slight difference in the design between the industrial FCC unit and 

the FCC model of Jia et al. (2003). The latter does not account for a purge stream entering 

the riser along with the feed. Hence, suitable modifications are made to the mass and 

energy balances, to account for the purge stream. At this juncture, from a design point of 

view, the model is an apt representation of the industrial FCC unit. The next step would 

be to tune the FCC model to match with the measured operating data.  

 

5.5 Validation of the FCC model  

 

The FCC model is tuned by matching the measured operating data of the following 

variables: (1) riser temperature, (2) pressure of 2nd stage regenerator and (3) gasoline 

yield. Although the main focus of our investigation is the riser temperature, the added 

validation of (2) and (3) would lend credence to the validity of the FCC model as a good 

representation of the industrial FCC process. The manipulated variable for (1) is the 

regenerated catalyst flow rate and that of (2) is the spent catalyst flow rate. Gasoline yield 

is uncontrolled. The feed flowrate, feed temperature and saturated steam flowrate are 

selected as the disturbances, as mentioned in chapter 2. Industrial data of these 
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disturbances are used in estimating model parameters and model validation, which 

consists of the following steps: 

 

1. Input all industrial FCC unit design and operating parameters (i.e., riser and 

regenerator dimensions, feed properties, disturbance and manipulated variables) 

into the model. These parameters are not listed or shown due to proprietary 

reasons.   

2. Select operating parameters that would influence the riser temperature, regenerator 

pressure and gasoline yield, for estimating to match the measured data of the 

variables. These parameters are heats of reaction of the riser temperature and 

gasoline yield, heat of vaporization of the feed oil, voidage factors of emulsion and 

bubble phases in the regenerator. In total, there are 5 parameters.  

3. Perform parameter estimation by implementing an optimization algorithm that 

would optimize these selected operating parameters to ensure a good fit of the 

model to the process data. The FMINCON function in MATLAB is used as the 

optimization routine in our study. The voidage factors are bounded between zero 

to one, the heats of reaction are bounded to be less than or equal to zero and the 

heat of vaporization is bounded to be non-negative. Settings such bounds in the 

optimization routine would ensure that only feasible solutions are obtained.  

 

5.5.1 Results and Discussion  

We consider three sets of riser temperature, 2nd stage regenerator and gasoline yield data, 

taken on the first day of consecutive weeks. The first set of data (set 1) is used to tune the 
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FCC model, i.e., estimate parameters in the model. Conventionally, a model is deemed to 

be a good fit to the process if the sum of squared error (SSE) is minimal. However, in our 

study, it is essential that the model is able to capture the dynamics of the process. 

Therefore, after finding optimal parameter values by minimizing SSE, we calculate the 

control loop performance index (CLPI, refer to chapter 6 for more details), BI and the 

observed statistic from SDM to ensure that the dynamics of our model typifies that of the 

process. Figures 5.1 to 5.3 show the fit of the FCC model to the process for riser 

temperature, regenerator pressure and gasoline yield. The corresponding SSE values are 

0.8934, 0.7373 and 1.1699 respectively. These values appear low but they do not 

necessarily indicate that the model is a good fit to the process. However, Figures 5.1 to 

5.3 indicate that the model is able to approximately capture the range of fluctuations of 

the process. As the FCC unit is very complex, the model cannot be expected to account 

for every peak or trough exhibited by the process. It is more important that the model be 

able to capture the dynamics of the process which are determined by the CLPI, BI and 

observed statistic.  
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Figure 5.1: Graph of riser temperature against time (set 1) 
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Figure 5.2: Graph of regenerator pressure against time (set 1) 
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Figure 5.3: Graph of gasoline yield against time (set 1) 

 

Table 5.1 presents the CLPI, BI and observed statistic for the riser temperature data. 

Results show that for set 1, the CLPI of the riser temperature from the FCC model is 

0.034 higher than that of the riser temperature from the process. This 11.5% difference 
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shows that the model is able to capture the approximate control loop performance of the 

riser temperature process variable. Similarly, the BI and observed statistic values of set 1 

indicate that the FCC model is able to capture the nonlinearity in the riser temperature of 

the FCC process. To ensure that our FCC model (that was fitted using only data set 1) is 

robust, it is imperative that we validate it for other sets of data which would signify a 

change in operating conditions. Results in Table 5.1 show that for sets 2 and 3, the CLPI, 

BI and observed statistic of both the process and model are similar. This demonstrates that 

the model is able to capture the dynamics of the process on different days.  

 

Table 5.1: CLPI, BI and SDM results for the riser temperature, both measured in the 

process and predicted by the model 

CLPI (θ = 5)* BI Observed Statistic Set Process Model Process Model Process Model 
1 0.294 0.328 0.528 0.640 3.501 3.057 
2 0.291 0.333 0.473 0.526 3.342 3.114 
3 0.326 0.338 0.465 0.554 3.666 3.268 

* The metric in brackets indicates the time delay for the FCC process 
 

A similar analysis is presented for the regenerator pressure and gasoline yield. Tables 5.2 

and 5.3 present the BI and observed statistic results for these variables. Results in Table 

5.2 show that for set 1, the BI and observed statistics are marginally higher for the model 

predicted data than those for the measured data in the process. This shows that the model 

is able to capture the nonlinearity exhibited by the process variable. This is substantiated 

by the results in sets 2 and 3 whose values are similar for both the process and model. 

Likewise, results in Table 5.3 show that for all three sets, the BI and observed statistic 
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values are comparable. This implies that the model is able to capture the dynamics of the 

gasoline yield process variable.  

 

 Table 5.2: CLPI, BI and SDM results for the regenerator pressure, both measured in the 

process and predicted by the model 

BI Observed Statistic Set Process Model Process Model 
1 0.123 0.147 2.226 2.672 
2 0.169 0.185 2.273 2.714 
3 0.174 0.226 2.348 2.812 

 

 

 Table 5.3: CLPI, BI and SDM results for the gasoline yield, both measured in the process 

and predicted by the model 

BI Observed Statistic Set Process Model Process Model 
1 0.669 0.641 2.643 2.847 
2  0.621 0.587 2.712 2.901 
3 0.604  0.557 2.547 2.834 

 
 

In summary, results in Tables 5.1 to 5.3 show that for all the three variables (riser 

temperature, regenerator pressure and gasoline yield) the FCC model is able to adequately 

predict the behaviour of the actual process. Therefore, the tuned FCC model can be 

deemed to be a good working model. Henceforth, this model will be utilized and all our 

analysis will be carried out in silico (i.e., on the computer).  
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5.6 Control Loop Performance Enhancement  

 

Our focus in this study is to ameliorate the control loop performance (CLP) of the riser 

temperature. In this section, we analyze the CLP of the riser temperature (set 1) and 

present some strategies that may enhance its loop performance. As established in section 

5.5, the CLPI of the riser temperature is 0.328. This CLPI is deemed poor and this is 

confirmed by the ACF plot (Figure 5.4). It can be seen that the ACF falls slowly to zero as 

the lag increases. This signifies that the time series of the regulated riser temperature is 

serially correlated which is an indication of poor CLP.  

 

 

 

Figure 5.4: ACF of riser temperature  
 
 
 
There could be several causes for the poor control loop performance exhibited by the riser 

temperature, which are namely: (1) poor controller tuning, (2) valve nonlinearities, (3) 
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process nonlinearities, (4) linear disturbances and (5) nonlinear disturbances. In this 

chapter, we will examine (1), (4) and (5) and attempt to improve the overall CLP by 

tackling these issues. (2) and (3) are not examined due to limitations in the data obtained. 

However, the nonlinearity issues will be re-examined in chapter 6 in greater detail by 

considering several realistic simulations and industrial case studies.  

 

5.6.1 Results and Discussion  

In any chemical plant, the rudimentary method of attempting to improve poor control 

performance in a loop is to re-tune the controller. For the purpose of this thesis, we will 

only be looking at “regulatory level” PID controllers operating in a feedback 

configuration. In section 5.5, the FCC model was established to be a good representative 

of the FCC process. Using this model, we incorporate a closed-loop control strategy using 

two PID controllers to regulate the two controlled variables (riser temperature and 

regenerator pressure). Our objective is to optimize the six tuning parameters (kc, τi and τd 

in each controller) to maximize CLPI of the riser temperature, using our CLPI 

optimization algorithm which has been implemented in MATLAB. After re-tuning the 

controller, the next logical option would be to examine any linear or nonlinear 

disturbances that may enter the loop and degrade control loop performance. In our model, 

we consider three disturbances which are, the feed flowrate, the feed temperature and the 

saturated steam flowrate. Prior results in chapter 4 have categorized them as linear, linear 

and nonlinear disturbances respectively. At this juncture, we can easily see that mitigating 

the nonlinear disturbance into the loop would be the primary focus, after controller re-

tuning. The linear disturbances although less harmful than the nonlinear disturbance could 
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still be the reasons for the poor performance exhibited by the riser temperature. Table 5.4 

presents the CLPI results after controller tuning and removal of linear / nonlinear 

disturbances.  

 

Table 5.4: CLPIs after various strategies are implemented in the riser temperature loop 

No. Strategy Implemented CLPI Increase in 
CLPI (%) 

1 None 0.328 - 
2 Re-tune the controller to maximize CLPI 0.369 13.2 
3 Remove fluctuations in saturated steam flowrate + 

re-tuning 0.479 35.4 

4 Remove fluctuations in feed flowrate + re-tuning 0.568 28.6 
5 Remove fluctuations in feed temperature + re-

tuning 0.639 22.8 

  

Results in Table 5.4 show that when no strategy is implemented, the status quo remains 

and the CLPI is 0.328. After optimizing the controller tuning parameters, we note that the 

CLPI increases to 0.369. This new CLPI indicates that for this control loop, this is the best 

possible index that can be achieved. This is because the control loop is still afflicted with 

other problems such as process and / or valve nonlinearities and linear / nonlinear 

disturbances. Thereafter, we remove the nonlinear fluctuations in the saturated steam 

flowrate disturbance. We liken this to better regulation of the upstream saturated steam 

flowrate such that perfect control is achieved. Subsequently, we note that the CLPI has 

further increased to 0.479. It must be noted that after every strategy is implemented, the 

controller has to be re-tuned to register the best possible CLPI. This is because if 

something is altered in a control loop that previously had served to hinder loop 

performance, the existing tuning parameters may result in aggressive control action which 

would then exacerbate the CLPI. Hence, re-tuning is vital. The third strategy implemented 
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is mitigating the fluctuations in the feed flowrate. Once this is carried out, it is observed 

that the CLPI increases from 0.479 to 0.568. Lastly, the fluctuations in the feed 

temperature are attenuated and it can be seen that the CLPI now increases from 0.568 to 

0.639. Through these strategies, the CLPI has increased from 0.328 to 0.639 which is a 

94.8% increase and is deemed to be fairly substantial.  

 

The CLPI cannot be increased beyond 0.639 because the control loop may still be 

afflicted with some valve and / or process nonlinearities or because the best possible 

performance with a PID controller has been achieved. If these problems are dealt with, it 

may be possible to increase the CLPI further. It is also important to apportion the effect of 

each control strategy on the CLPI. Results in Table 5.4 show that better upstream control 

of the saturated steam flowrate would account for a 35.4% improvement to the CLPI. This 

is followed by better control of the feed flowrate followed by better control of feed 

temperature. Finally, re-tuning the controller accounts for 13.2% increase to CLPI. This 

last statement is testament to why many critical variables in chemical plants are poorly 

regulated. It is noted that when a control loop is subject to nonlinear and linear 

disturbances (which could be contributing to chaotic fluctuations as shown in chapter 4), 

the effect of re-tuning the controller is minimal. Therefore, this should not be the only 

focus when attempting to improve the loop performance. Figure 5.5 shows the plot of the 

riser temperature after implementing all the various strategies. It can be seen that the 

fluctuations have reduced to C05.1± , which is a marked improvement from the original 

fluctuations of C05±  (Figure 4.1).  
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Figure 5.5: Graph of riser temperature (model) against time after implementation of 

various strategies 

5.7 Summary  

 

In this chapter, we review some of the latest FCC models that are available in literature 

and then select a suitable FCC model to model our industrial FCC process. Using 

industrial data and various statistical indices, the model is tuned and validated for 

different operating conditions. Results show that the model is able to realistically capture 

the dynamics of three critical variables in the FCC unit, with the riser temperature being 

the most important. Upon validation of the model, various strategies to ameliorate control 

loop performance are implemented. From the results obtained, it can be clearly seen that 

removal of the nonlinear disturbance would have the most significant impact on CLPI. 

More importantly, from our results, a control engineer would be able to determine how 

each strategy would improve the CLPI and this would enable him or her to make an 

informed decision when it comes to rectifying a poorly performing control loop. In the 
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next chapter, we present an even more detailed framework on control loop performance 

assessment which will look into the added adverse effect of process and / or valve 

nonlinearities, on CLPI.  
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CHAPTER 6 

CONTROL LOOP PERFORMANCE ASSESSMENT AND 

ENHANCEMENT 

 

This chapter contains sections on control loop performance assessment and enhancement 

with emphasis on the minimum variance benchmark, causes of poor control loop 

performance, mathematical models of valve nonlinearities, Hammerstein models, 

motivation, proposed framework for control loop enhancement, previous studies, effects 

of nonlinearities on control loop performance index, simulation examples, effect of poor 

data selection and industrial case studies.  

 

6.1 Introduction 

 

A typical chemical plant consists of several hundreds to thousands of process control 

loops. Although these “regulatory level” loops form the kernel of automatic and advanced 

process control, they are more often than not superseded by advanced control strategies 

such as model predictive control (MPC) and real-time optimization (RTO). This is 

because the performance capabilities of the “regulatory level” controllers which are 

mostly PI and PID algorithms, are limited and more sophisticated strategies such as the 

advanced control options must be implemented for better process control and economic 

optimization of the process. However, the limitations of these “regulatory level” 

controllers belie their importance as it is imperative that their performance be maintained 

at optimum levels for the advanced control strategies to perform well and achieve the 
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plants’ overall objectives. At the time of commissioning, the controllers at the regulatory 

level may perform well but their performance can deteriorate over time due to changing 

operating conditions. Given such a scenario and particularly with the ready availability of 

routine operating plant data, there is good reason to develop tools and procedures for the 

purpose of control loop performance assessment (CLPA). For the purpose of this study, 

routine data encompasses (1) process variable (PV) data, (2) controller output (OP) data 

and (3) set-point (SP) data. From these data, the error (e) can be determined by calculating 

PV-SP.  

 

6.2 Control Loop Performance  

 

The performance of various control loops in a plant may be very good when 

commissioned. However, over time this performance is compromised due to external 

disturbances, changes in process dynamics, limits on the manipulated variables and even 

degradation of control system hardware. This necessitates the periodic monitoring of the 

plant to ensure that it runs efficiently and without any hitches. Hence, the fundamental 

idea in CLPA is to define a performance metric. This metric can then be used to compare 

the current control loop performance against a user defined benchmark. If the comparison 

is favorable, the loop under investigation is deemed to be functioning well. If not, the loop 

is subject to a more detailed analysis and appropriate rectification actions are carried out. 

The main features of this metric are that it should not interfere with the nominal operation 

of the plant, it should detect performance degradation quantitatively and it should be non-

invasive meaning that it should utilize only routine operating data. In the control 
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literature, there are several measures that exist for the purpose of control loop 

performance assessment. Astrom (1967) proposed the auto-correlation function method 

(ACF), DeVries and Wu (1978) proposed the spectral analysis method and Harris (1989) 

came up with minimum variance controller (MVC) benchmark. The methodology 

developed by Harris (1989) is theoretically sound, reliable, efficient, easily interpretable 

and computationally simple (Goradia, 2004). However, it is usually undesirable to install 

a MVC in practical applications as it may result in excessive or aggressive control actions 

that may damage control valves and limit their life span. The MVC also is not very robust 

to changing operating conditions and if a process has non-invertible zeros (zeros outside 

the unit circle), it is not possible to design a MVC. However, despite these demerits, one 

can exploit the fact that the MVC provides the best possible control under feedback 

conditions. With only the knowledge of process delay, the MVC benchmark represents a 

powerful tool in the analysis of control loops to determine if they are performing to the 

standard of the MVC benchmark. Today, taking into consideration the various advantages 

and disadvantages, the MVC is the most popular benchmark used for the purpose of 

CLPA. It also forms the major core of commercially available control loop performance 

monitoring software such as ‘LoopScout’ (Honeywell) and ‘ProcessDoctor’ (Matrikon). 

Hence, this metric will be used in this study.  

 

6.3 Control Loop Performance Index (CLPI) using the MVC benchmark 

 

This method computes an index known as the CLPI which is a measure of the 

performance of the control loop. The derivation of this index is shown below:  
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Let us consider a conventional feedback control loop (refer to Figure 6.1) where 

• Q  is the feedback controller. 

• T  is the process transfer function whereby 
~
T  is the delay free transfer function 

and z-θ is the pure delay portion such that θ−= zTT
~

 

• N  is the disturbance or load transfer function. 

• T, Q and N are polynomials in z-1 

• y is the process output. 

• wt is a white noise signal that feeds the disturbance transfer function and is the 

signal driving the closed loop system. 

 

 

Figure 6.1: Block diagram of a conventional feedback loop 
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The process output (y) can be expressed in terms of the transfer functions (labeled in 

Figure 6.1) and white noise (wt) as: 
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Factor the transfer function N as 
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where L is a polynomial in terms of z-1. The polynomial F is now independent of the 

controller Q and hence characterizes the controller invariant portion of y. The polynomial 

L is dependent on the controller. If ~
TF

RQ = , then L = 0, which implies that tFwy = . This 

selection of Q yields the MVC. The output variance for the MVC is: 
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For any other choice of Q, 0≠L and we have the output variance 
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The CLPI (η) using the MVC benchmark is given as 
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implying the index is a function of process delay (θ). The CLPI is the ratio of the sum of 

squares of the first ‘θ’ closed loop disturbance impulse response (IR) coefficients to the 
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sum of squares of all closed loop disturbance IR coefficients. To evaluate CLPI, only the 

knowledge of process delay and closed loop disturbance impulse response are needed. 

The CLPI is bounded between 0 and 1 where 0 indicates the worst performance and 1 

indicates the best performance. For detailed calculations, refer to Huang and Shah (1999).  

The codes for CLPI calculation and design of a MVC have been implemented in 

MATLAB.  

 

6.4 Causes of Poor Control Loop Performance  

 

Hitherto, we have discussed a performance metric (CLPI using MVC) that is able to 

quantitatively detect performance degradation. Assuming that the current CLPI shows 

poor performance, it is important for us to firstly diagnose the cause of this performance 

degradation and secondly to suggest suitable corrective action. In control literature, these 

two points have not received much attention and remains an open area for research. Poor 

performance of control loop can be caused by various factors. In this study we will 

consider the four main causes which are (1) poor controller tuning, (2) oscillations (due to 

external disturbances and / or aggressively tuned controllers), (3) nonlinearities and (4) 

combination of (1), (2) and (3).  

 

6.4.1 Poor Controller Tuning 

Since most of the regulatory level controllers are PI or PID, there are at least two or three 

parameters that require to be correctly tuned. In most industries, there is computer 

software that tunes these parameters based on system identification of linear models from 
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step responses. However, given the changing operating conditions and process dynamics, 

these tuning parameters may become sub-optimal and new tuning parameters are required. 

However, the tuning parameters are not routinely updated and often they are manually 

adjusted by the shift operators. This results in the controller being either conservatively 

tuned (resulting in sluggish closed-loop response) or the controller being tightly tuned 

(resulting in large oscillations and overshoot). Both however, contribute to poor 

performance.  

 

6.4.2 Oscillations  

Oscillations can be caused by a tightly tuned controller as described in the above sub-

section. They are also caused by external disturbances which affect the process variable 

and hence result in poor control. It is worthwhile to note that these external disturbances 

may be linear or nonlinear. If the disturbances can be measured, it is possible to 

distinguish linear disturbances from nonlinear ones. This is important because the impact 

of nonlinear disturbances on control loop performance is more severe than that of linear 

disturbances. If the disturbances are unmeasured, it is virtually impossible to infer 

anything about their linearity or nonlinearity. Therefore, in such instances, they are 

assumed to be linear. For the purpose of this thesis, we will also assume that these linear 

external oscillations are in the form of random white noise, integrated white noise or 

colored noise (a random signal passing through a first order filter to give it structure).  

 

 

 



 97

6.4.3 Nonlinearities  

Nonlinearities are often the cause of poor control loop performance. This is because 

controllers are tuned based on linear algorithms and nonlinearities would render these 

tuning parameters inaccurate. Nonlinearities in a control loop may appear as follows: 

 

• The process may be nonlinear (process nonlinearity). 

• The control valve may have a nonlinear characteristic (valve nonlinearity). 

• The valve may contain nonlinear faults (valve nonlinearity). 

• A nonlinear disturbance enters the loop. 

 

Although most chemical processes are nonlinear in nature, it is often assumed that given 

the narrow operating conditions within which they operate, the process operates linearly. 

However, it is still possible that process nonlinearities affect control loop performance. 

Since the control valve may be innately nonlinear and given that over time they develop 

faults which augment the nonlinearities, valve nonlinearities are predominantly the cause 

for poor control loop performance. There are also cases where process nonlinearities and 

valve nonlinearities combine (known as system nonlinearities) and result in poor control 

loop performance (Choudhury, 2004).  
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6.5 Mathematical Models of Valve Nonlinearities  

 

In the previous sub-section we discussed valve nonlinearities and how nonlinearities in 

general affect control loop performance. In this section we discuss and develop the types 

of valve nonlinearities via mathematical models.  

 

6.5.1 Stiction 

Stiction is the resistance to the start of the motion, usually measured as the difference 

between the driving values required to overcome static friction. The word stiction is a 

combination of the words stick and friction, created to emphasize the difference between 

static and dynamic friction. Stiction exists when the static (starting) friction exceeds the 

dynamic (moving) friction inside the valve. Stiction describes the valves stem (or shaft) 

sticking when small changes are attempted. Friction of a moving object is less than when 

it is stationary. Therefore, stiction can keep the stem from moving for small control input 

changes and then the stem moves when there is sufficient force to free it. The result of 

stiction is that the force required to get the stem to move is more than that required to go 

to the desired stem position. Hence, in the presence of stiction, the movement is jumpy as 

shown by the dashed lines in Figure 6.2.  
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Figure 6.2: Valve position against time under stiction conditions 

 

Valve stiction in a control loop will cause problems. In a control loop, stiction causes the 

loop to cycle and any amount of stiction will degrade the performance of the control loop. 

Hence identification of stiction is the first step in circumventing this problem and this is 

achieved by means of mathematical models of stiction. In literature, several friction 

models that can model stiction are available (Karnopp, 1985). Each model has its merits 

and demerits and in this study we implement the classical and simple stiction model.  

 

6.5.1.1 Classical Stiction model 

In this sub-section we will discuss the classical stiction model based on a friction model 

proposed by Karnopp (1985) that includes static and dynamic friction. For a pneumatic 

Valve 
Position 

Time

Valve position 
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sliding stem valve, the force balance equation based on Newton’s second law is written 

as: 

ipfra FFFFFForces
dt
xdM ++++== ∑2

2

  (6.7) 

where M is the mass of moving parts, x is the relative stem position, Fa = Au is the force 

by pneumatic actuator where A is the area of the diaphragm and u is the actuator air 

pressure or the valve input signal. Fr = -kx is the spring force where k is the spring 

constant, Fp = -α∆P is the force due to fluid pressure drop where α is the plug unbalance 

area and ∆P is the fluid pressure drop across the valve, Fi is the extra force required to 

force the valve to be into the seat and Ff  is the friction force. Fi and Fp will be assumed to 

be zero because of their negligible contribution to the model (Kayihan and Doyle III, 

2000). The expression for the moving friction, Ff (in the first line of equation 6.8) is as 

follows:  
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  (6.8) 

 

It comprises of a velocity independent term Fc known as Coulomb friction and a viscous 

friction term vFv that depends linearly on velocity (v). Both act in opposition to the 

velocity, as shown by the negative signs. The second line in equation 6.8 depicts the case 

when the valve is stuck whereby Fs is the maximum static friction. The velocity of the 

stuck valve is zero and is not changing, so therefore the acceleration is also zero. Hence, 

the right hand side of Newton’s law is zero, so Ff = - (Fa+Fr). The third line in equation 

6.8 represents the instance the valve breaks free and moves. At this instant, the sum of the 
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forces is )sgn()( rassra FFFFFF +−−+ , which is not zero if |Fa+Fr| > Fs. Hence, the 

acceleration is non-zero and the valve begins to move.  

 

This classical stiction model although very detailed, has numerous parameters that have to 

be identified from routine operating data and identifying all the parameters accurately is a 

tedious task. Oftentimes, due to the fallibility of numerical optimization routines, it is not 

possible to identify the parameters at all. Hence, this paves the way for a simpler stiction 

model that would be easier to solve and be a reasonably good substitute to the classical 

stiction model. The classical stiction model has been implemented in MATLAB using the 

S-function algorithm.  

 

6.5.1.2 Simple Stiction Model 

In this sub-section we present a simple stiction one parameter model that is proposed by 

Hagglund (2002). This simple model is given as follows: 



 ≤−

= −−

otherwiseu
dxuifx
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ttt
t

11     (6.9) 

Here, xt and xt-1 are present and past valve outputs, ut is the present controller output and d 

is the valve stiction band. Srinivasan and Rengaswamy (2004) have shown that this 

simple model is able to capture stiction phenomena by matching the data generated by the 

classical model with reasonable accuracy. The algorithm for the simple stiction model has 

been developed in MATLAB (Simulink).  
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6.5.2 Hysteresis  

Hysteresis is a highly nonlinear phenomenon that affects the control valves in many 

industrial process control systems. As a parameter that represents some property of a 

system is increased, the behaviour makes a sudden jump at a particular value of the 

parameter. But as the parameter is then decreased, the jump back to the original behaviour 

does not occur until a much lower value. In the region between the two jumps, the system 

is bi-stable. Figure 6.3 depicts the input output behavior of a loop that is exhibiting 

hysteresis.  

 

 

Figure 6.3: Input output behaviour of hysteresis 
 

 

For the purpose of this thesis, we present the Weiss model of hysteresis.  

Suppose we have some relays:  

NjRR jj
j ≤≤= 1,,βα      (6.10) 

Consider a parallel connection of the relays Rj with the weights 0)( >= jj µµ : 
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Figure 6.4 illustrates this situation. This is the Weiss model of hysteresis where u(t) 

represents the controller output and x(t) represents the valve output. This model has been 

developed in MATLAB (Simulink). 

 

 

Figure 6.4: Weighted parallel connection of a finite number of nonideal relays 

 

6.5.3 Backlash  

In process instrumentation, backlash is the relative movement between interacting 

mechanical parts, resulting from looseness, when the motion is reversed. This can be due 

∑  

x(t) u(t) 
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3,3 βαR  
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to play in the fittings of the control valve. Backlash can lead to oscillations in closed-loop 

configurations and should not be confused with hysteresis (refer to Figure 6.5). A one 

parameter model of backlash is available in Simulink and it will be used in this study.  

 

 

Figure 6.5: Input output behaviour of backlash 

 

6.5.4 Deadzone 

In process instrumentation, a dead zone is the range through which an input signal may be 

varied, upon reversal of direction, without causing an observable change in the output 

signal (refer to Figure 6.6). Similar to backlash, a one parameter model of dead zone is 

available in Simulink and it will be used in this study.  

Output 

Input 
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Figure 6.6: Input output behaviour of deadzone 

 

6.6 Hammerstein Models 

 

Nonlinear behavior is the rule rather than the exception in the dynamic behavior of 

chemical processes. In these chemical processes, understanding the inherent nonlinear 

characteristics is vital for proper design of controllers. One way to comprehend the 

nonlinear behavior is to form a mathematical model of the process. This approach has 

often been used to model nonlinear processes and is very useful. Owing to the relatively 

high effort in modeling systems from first principles, empirical modeling using process 

data is convenient for process control purposes. Therefore, system identification makes 

use of input / output data of the process to build an empirical model that represents the 

process and the crucial step in this method is the selection of the model structure. The vast 

majority of research done on system identification is for linear model structures which 

may suffice in modeling linear and mildly nonlinear systems. However, there is still a 

Output 

Input 
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need to obtain empirical models that are able to capture the nonlinearities by identifying a 

nonlinear model from input / output data. One useful representation for nonlinear 

processes is the block oriented models. The popular representation of this family of 

models is the Hammerstein model. This model structure is considered because of its high 

relevance to the current work. 

 

The Hammerstein model of a nonlinear system is shown in Figure 6.7. The static NL 

element takes in the input u(t) and transforms it to x(t) and the dynamics are modeled by a 

linear discrete transfer function G(z-1), with y(t) as the resulting output. The Hammerstein 

model captures the effects of the nonlinearity as an input dependent gain nonlinearity and 

the gradient of this nonlinearity at a particular operating point is the instantaneous gain of 

the system. 

 

Figure 6.7: Hammerstein model 

 

For the Hammerstein model, the mathematical representation is developed as follows: 

If the static NL element is assumed to be approximated by a finite polynomial expansion, 

the Hammerstein model can be described by the following equations:  
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The intermediate variable x(t) cannot be measured but it can be eliminated from the 

equations. Substituting the second equation into the first we obtain: 
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We can write the above equation in operator form as: 
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where the polynomials A(q-1) and B(q-1) are: 
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The orders of the polynomial are assumed to be the same and in our study we will 

represent the NL element as a third order polynomial.  

 

6.6.1 Parameter Estimation Methods for Hammerstein Models 

It is possible to estimate the parameters of the Hammerstein model separately because of a 

special property of the Hammerstein model structure. Several algorithms exist for this 

parameter estimation and they include (1) prediction error method, (2) recursive 

prediction error method and (3) Narendra-Gallman algorithm. Eskinat et al. (1991) have 

reported that the Narendra-Gallman algorithm is the most robust amongst the three 

methods. Hence, this method is used in this study. Details of the method can be found in 

the paper by Eskinat et al. (1991). The algorithm for identifying Hammerstein models has 

been developed in MATLAB.  
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6.6.2 Identification of Hammerstein Models from Closed-Loop Data 

The plethora of methods for identification of linear models has been based on open-loop 

identification and is deemed to work well. However, most of these methods fail when 

applied to closed loop data (Forssell and Ljung, 1999). The problem lies with the 

correlation between the immeasurable noise and the input in the closed-loop 

configuration. This is because, as long as the feedback controller is not identically zero, 

the noise and input will be correlated. In spite of these problems, performing experiments 

under closed loop conditions may be required for safety or economic reasons. This is 

especially pertinent for chemical processes. This conundrum led to the advent of several 

closed-loop identification methods for system identification which are namely the direct, 

indirect and joint input-output methods (Forssell and Ljung, 1999). In this study, we 

propose to use the direct approach, as the plant input ‘u’ which is now the controller 

output for the closed-loop case and the plant output ‘y’ are treated exactly the same way 

as in the open-loop case. While Forssell and Ljung limited their analysis to the 

identification of linear models, we extend this approach to the identification of 

Hammerstein models. The direct approach is also advantageous since apriori information 

such as the nature of the controller, tuning parameters and noise models are not accurately 

obtainable.   

 

6.6.3 Persistence of Excitation  

To identify good Hammerstein models, the system must be sufficiently excited. This is 

more so for closed-loop systems because the correlation between the input and noise must 

be broken and this can be done only if the system is persistently excited over a length of 
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time. Eskinat et al, (1991) made use of random noise as the input to the system to achieve 

the required excitation and showed that good Hammerstein models may be obtained. 

However, the scope of that paper is limited to open-loop simulations. In our study, we 

extend the concept of system identification using Hammerstein models, to closed-loop 

industrial data. This is more challenging because such data may not be persistently excited 

especially if they are operating near the steady state for a long period of time. Also, given 

that the data are obtained from industrial processes and not computer simulations, it is 

neither possible nor feasible to inject random noise in the loop to excite the data. 

Therefore, in this study, we propose an alternate means of data excitation which 

encompass a series of step changes applied to the set-point. The magnitude of the change 

and the time frame for which the changes are made, are carefully selected to ensure that 

the data are sufficiently excited. Such set-point changes are more realistic in industrial 

plants as opposed to injection of random noise. At times, when a particular unit operation 

becomes unstable due to changes in feed or operating conditions, the operator has to step 

in and manually adjust the controller to regulate the process variable. During this period, 

the operator makes fairly significant set-point changes and data collected over this time 

frame would be beneficial in identifying Hammerstein models via the direct identification 

method.  

 

6.7 Motivation 

The motivation behind presenting the above mentioned concepts and techniques is to 

introduce a novel framework that will detect, diagnose and rectify poor control loop 

performance (if any). Such a consummate approach to control loop performance 
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assessment would ensure that the appropriate rectification actions are carried out when 

control loops are not performing up to expectations. Oftentimes, when a loop is 

performing poorly, the cause for this poor performance is attributed to the wrong reason. 

Hence, the rectification action that is implemented is unable to improve the control loop 

performance and the process variable continues to be poorly controlled.  

 

6.8 Proposed Framework  

A detailed framework on control loop performance assessment is depicted in Figure 6.8. 

Firstly, a set of control loop data (error, e = PV-SP) is analyzed and tested for 

Gaussianity. If the error signal is found to be Gaussian, the signal generating process is 

assumed to be linear (Rao and Gabr, 1980; Hinich, 1982). In this case, if the CLPI and / or 

other means of assessing control loop performance are deemed to be poor, the causes of 

this would be linear external oscillations and / or poor control loop tuning. The controller 

can then be re-tuned and / or the linear external oscillations can be mitigated by 

investigating the disturbance variables for the CLPI to be improved. If the error data are 

found to be non-Gaussian, this implies that the data may or may not be linear and hence, a 

test for linearity should be implemented. If the data are nonlinear, the poor CLPI would be 

due to the system nonlinearities present in the loop. Given our assumption that a chemical 

process may be linear over a narrow operating range, the major contribution of the 

nonlinearities would be due to valve problems such as those discussed in the earlier 

section. With this knowledge, the valves may then be serviced and an acceptable loop 

performance may be restored. 
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Figure 6.8: Flow diagram of proposed framework 
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We now consider the case where the poor CLPI is a result of poor controller tuning, 

linear external oscillations and valve nonlinearities. This is a much more challenging 

issue because for the control engineer to make the right decision, he / she has to ascertain 

the main cause for the poor CLPI and also the individual contribution of each possible 

cause of the poor CLPI. Many times in the chemical industries, a valve problem (due to 

the valve nonlinearity) is untreated as the cost of rectifying the problem is thought to 

outweigh the benefit of having the valve serviced and treated. However, there is no real 

way of measuring the increase in CLPI in a control loop when a valve is treated. Control 

engineers would be interested to quantify the potential improvement in loop performance 

if a certain problematic valve is serviced. Only if the increase in control loop 

performance is significant, would it make for good economic sense. We outline the main 

features in our proposed method that would enable the control engineer to detect, 

diagnose and rectify poor control loop performance when a loop is afflicted with poor 

tuning, linear external oscillations and valve nonlinearities.  

 

• A control loop that is performing poorly is identified by calculating the CLPI. 

• If the data are linear this means that the poor CLPI is a result of poor controller 

tuning and / or linear external oscillations. 

• If the data are nonlinear, this means that the poor CLPI is a result of poor 

controller tunings, linear external oscillations and / or valve nonlinearities.  

• Using the PV, OP and SP data, we identify a Hammerstein model of the system 

which should be a good representation of the real system (process and valve 

dynamics together). A low sum of squared error (SSE) would indicate a good fit. 
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CLPI, BI and the observed statistic from SDM will also be recalculated. If these 

indices are similar to that of the process, the model is deemed to be a good fit to 

the process. 

• Since we are able to separate this system into a linear and nonlinear component, 

we assume the entire nonlinear polynomial term represents the valve nonlinearity.  

• Since controller re-tuning is the common method of attempting to improve control 

loop performance, at this juncture we re-tune the controller (using an optimization 

algorithm that we implemented in MATLAB) by maximizing the CLPI. Any 

increase in CLPI would be solely due to re-tuning of the parameters and the effect 

of the tuning parameters on CLPI can be quantified.   

• We then remove the nonlinear term (which signifies that the valve has been 

serviced to remove any nonlinearity) and calculate the new CLPI after further re-

tuning is carried out. Any increase in CLPI would be now solely due to the 

removal of the valve nonlinearity. The increase in CLPI would indicate the degree 

of the valve nonlinearity that is affecting the control loop performance.  

• The new CLPI may still not be optimal as linear external oscillations (resulting in 

some noise structure) may still limit the control loop performance. Subsequently, 

we remove the noise structure and re-tune the controller. This new CLPI would 

now be higher than the earlier CLPI that was calculated as we expect a noise 

model to adversely affect the CLPI. The absence of the noise structure indicates 

that all possible disturbance variables (which could be controlled variables in 

upstream units) are controlled better such that significant variance / structure are 

not propagated into the downstream unit. To separate the effect of the tuning 
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parameters, valve nonlinearity and linear external oscillations we determine the 

difference between the CLPI (after re-tuning), the CLPI (valve nonlinearity 

removal + re-tuning) and CLPI (valve nonlinearity + noise structure removal + re-

tuning). This would aid us in determining the percentage improvement to CLPI 

after each control loop problem (poor controller tuning, valve nonlinearity and 

noise structure) is dealt with.  

• In summary, the individual effect of valve nonlinearities, poor controller tuning 

and linear external oscillations (noise structure) can be found.  

 

Therefore, the above mentioned framework would provide accurate and relevant 

information to a control engineer who needs to make appropriate structural and 

parametric decisions in improving control loop performance. We will implement this 

proposed framework with realistic simulations and industrial case studies in sections 6.11 

and 6.12. For the latter, several realistic noise models will be considered.  

 

6.8.1 Parameter Estimation  

In our framework, we propose to model the valve nonlinearities accurately by means of a 

third order polynomial model as this has shown to suffice in modeling nonlinearities in 

system identification via Hammerstein models (Eskinat et al., 1991). However, this is 

merely a mathematical representation of the valve nonlinearity and has no physical 

meaning. For our method to work, a mathematical representation is sufficient. 

Nevertheless, it is important to the control engineer to know the kind of valve 

nonlinearity (valve problem) that is affecting the performance of the loop. Therefore, in 
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our method we propose to utilize the Hammerstein model and routine operating data to 

accurately identify the valve problems (stiction, hysteresis, deadzone and backlash). Such 

knowledge would be useful because now it will be known that this loop suffers from this 

particular kind of valve problem and appropriate measures may then be taken to avoid 

this occurrence in future. This proposed method will be implemented and discussed in the 

section on simulation examples. For the purpose of parameter estimation, most of the 

local optimization methods fail to converge, thus giving poor results. This could be 

attributed to the discontinuities present in the mathematical models of stiction and 

hysteresis. Hence, we use the genetic algorithm (GA) toolbox in MATLAB as the 

optimization routine in our codes.  

 

6.9 Previous Studies 

 

Before we present the results in this chapter, we present a brief summary of the related 

work. As seen in section 6.2, CLPA has been a popular area of research for many years 

and there exists an abundant amount of literature on it. In this section we discuss some of 

the latest work that has been carried out in this field and how our study aims to address 

some of the issues that have not been adequately addressed but are nevertheless 

important. In the recent past, the focus on CLPA has shifted from identifying poorly 

performing control loops to finding out the causes of poor control loop performance. This 

has resulted in a spate of research papers identifying valve problems as a chief cause of 

poor performance. Most of these papers concentrate on identification of stiction as the 

valve nonlinearity. Rossi and Scali (2004) used a cross-correlation technique to detect 
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stiction in routine operating data. Aside from this, a generalized definition of valve 

stiction based on the real plant data has also been proposed and validated, and results 

show that it works well in detecting stiction (Choudhury et al., 2004b). This model was 

subsequently modified to deal with stochastic inputs as well (Kano et al., 2004). Singhal 

and Salsbury (2004) then went on to present a simple and new method for detecting valve 

stiction in an oscillating control loop. This method is based on the calculation of areas 

before and after the peak of an oscillating signal. There exist other methods for stiction 

diagnosis but in this chapter, we present only the latest related work. Based on the 

available literature, it can be seen that the valve problems are limited to stiction detection 

only and other valve problems which are described in the earlier sections are not 

researched. Furthermore, efforts were made in detecting stiction but there was no mention 

as to how stiction really affects control loop performance. Also, the research so far 

focuses more on identifying stiction via graphical means rather than parameter estimation 

which would be more accurate. Hence, in this study we aspire to fill in the gaps by 

addressing these pertinent issues which until now have not received much attention.  

 

6.10 Effect of Nonlinearities on CLPI  

 

In this section, a perfunctory analysis of the effects of nonlinearities on CLPI will be 

carried out. Such a study gives credence to the next section when we examine other 

simulation examples and industrial case studies with regard to our proposed framework. 

We consider an example with the following process, noise and controller transfer 

functions respectively. 
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Q is the minimum variance controller designed for the above mentioned first order plus 

time delay (FOPDT) transfer function, with the corresponding noise model. For this 

system, an optimal PID controller is also designed in MATLAB, based on maximizing 

the CLPI. The digital controller transfer function is 1
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Table 6.1 presents the effect of stiction on the CLPI of both the MVC and PID 

controllers.  

 

Table 6.1: Effect of stiction on CLPI 

No. Stiction Interval (d) BI CLPIMVC CLPIPID 
1 0 0.0697 0.9977 0.9976 
2 2 0.0954 0.8688 0.8531 
3 4 0.1317 0.6121 0.5958 
4 7 0.1619 0.4323 0.4128 
5 12 0.4591 0.2928 0.2681 

 

Table 6.1 presents the first case where no stiction is present (d=0) and this is confirmed 

by the BI whose value indicates the absence of any nonlinearity. For such a case, both the 

CLPI of the MVC and PID controllers are very close to 1 indicating excellent 

performance. From a theoretical perspective, the CLPIMVC should be exactly 1 but due to 

round-off inaccuracies in the computer program, this is not practically achievable. 

Therefore, the value of 0.9977 for the MVC case is the best possible performance this 

system can exhibit. The CLPIPID is 0.9976 and this is only a fraction less than the MVC 

case. This augurs well with our expectations, because the performance of an optimally 

tuned PID controller can never be as good as a MVC but for a simple FOPDT system it 
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can be extremely close. We can also observe that as the level of nonlinearity is increased 

in the system, the difference between the CLPIMVC and CLPIPID increases. This suggests 

that as the degree of complexity increases in any system, the optimal PID controller is not 

able to perform as well as its MVC counterpart. The implications of this will be seen later 

on.  

 

In the second to fifth cases, stiction (using the 1 parameter simple stiction model) is 

introduced into the system and is slowly increased by varying the stiction interval (d). As 

the stiction level is increased, the degree of nonlinearity is also increasing as seen by the 

BI. In the second case, the level of stiction is mild as seen by a BI of 0.0954 but 

nevertheless, the CLPIMVC is reduced to 0.8688 and the CLPIPID to 0.8531. In the fifth 

case, where the BI is now 0.4591 (which signifies a much higher level of nonlinearity) 

the CLPI for both cases is drastically reduced to less than 0.30. This clearly illustrates the 

effect of stiction on CLPI and as mentioned earlier, the implications of this are: 

 

1. Even for a simple FOPDT system with a MVC, stiction could comprehensively 

degrade performance. 

2. Most industrial processes are regulated using PID controllers and not MVC’s. 

Therefore, we expect the CLPI to be worse off due to this.  

3. Most industrial processes are more complex than that of a FOPDT process and 

this complexity would serve to exacerbate the CLPI. 
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Therefore, the rationale behind using this simple example and a MVC is to show that if 

stiction can have such an adverse effect on this simple system performing at its best, it 

would have an even more adverse effect on higher order systems that are regulated by 

PID controllers. For a more consummate study on the effects of nonlinearities on CLPI, 

we consider the same example but now we introduce separately, hysteresis, backlash and 

deadzone into the system. Tables 6.2, 6.3 and 6.4 present these results respectively. 

 

Table 6.2: Effect of hysteresis on CLPI 

No. Hysteresis Interval (a) BI CLPIMVC CLPIPID 
1 0 0.0697 0.9977 0.9976 
2 0.3 0.1609 0.9615 0.9553 
3 0.5 0.1721 0.8687 0.8592 
4 0.7 0.2108 0.6744 0.6636 
5 0.9 0.3699 0.3011 0.2949 

 

Table 6.3: Effect of backlash on CLPI 

No. Backlash Interval (b) BI CLPIMVC CLPIPID 
1 0 0.0697 0.9977 0.9976 
2 5 0.0932 0.3157 0.3095 
3 7 0.2382 0.2243 0.2182 
4 9 0.3444 0.1869 0.1861 
5 11 0.7447 0.1535 0.1470 

 

Table 6.4: Effect of deadzone on CLPI 

No. Deadzone Range (r) BI CLPIMVC CLPIPID 
1 0 0.0697 0.9977 0.9976 
2 -2.5 to 2.5 0.8552 0.9688 0.9645 
3 -5 to 5 1.2132 0.9085 0.9022 
4 -7.5 to 7.5 1.3677 0.8553 0.8478 
5 -12.5 to 12.5 2.3446 0.7380 0.7295 
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Results in Tables 6.2 to 6.4 also show that as the degree of nonlinearity increases, CLPI 

is reduced. It can also be seen that the effect of backlash and hysteresis is much more 

severe than that of deadzone on the CLPI. Overall the results show that nonlinear valves 

are a major cause for concern as their drastically degrade control loop performance 

 

6.11 Simulation Examples  

 

In this section we implement our proposed framework on fifteen realistic simulations 

which are shown below. For each of these examples, the process is modeled as a FOPDT 

transfer function with gain (K) = 1, time constant (τ) = 10 and time-delay (θ) = 2, 

represented as FOPDT (1, 10, 2). It must be noted that the simulations are only used to 

generate PV, OP and SP data. Using only these data, we carry out pertinent analyses and 

identify a suitable linear / nonlinear model to represent the process. Thereafter, any 

further analysis, diagnosis, modifications and improvements to CLPI are carried out in 

silico. If controller tuning parameters are known, they will be used in our computer 

simulations. Noise models which are generally unknown, will be assumed.  

 

Examples: 

1. FOPDT (1, 10, 2); PI Controller; White noise; 0.05 minutes sampling 

2. FOPDT (1, 10, 2); PI Controller; Colored noise; 0.05 minutes sampling 

3. FOPDT (1, 10, 2); PI Controller; Integrated white noise; 0.05 minutes sampling 

4. FOPDT (1, 10, 2); Marginally stable PI Controller; White noise; 0.05 minutes 

sampling 
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5. FOPDT (1, 10, 2); Marginally stable PI Controller; Colored noise; 0.05 minutes 

sampling 

6. FOPDT (1, 10, 2); Marginally stable PI Controller; Integrated white noise; 0.05 

minutes sampling 

7. FOPDT (1, 10, 2); PI Controller; (White noise + Periodic noise through filter); 

0.05 minutes sampling 

8. FOPDT (1, 10, 2); PI Controller; (White noise + Periodic noise through filter) 

passing through an integrator; 0.05 minutes sampling 

9. FOPDT (1, 10, 2); PI Controller; (White noise + Periodic noise through filter) 

passing through a first order filter; 0.05 minutes sampling 

10. Nonlinearity + FOPDT (1, 10, 2); PI Controller; White noise; 0.05 minutes 

sampling 

11. Nonlinearity + FOPDT (1, 10, 2); PI Controller; Colored noise; 0.05 minutes 

sampling 

12. Nonlinearity + FOPDT (1, 10, 2); PI Controller; Integrated white noise; 0.05 

minutes sampling 

13. Nonlinearity + FOPDT (1, 10, 2); PI Controller; (White noise + Periodic noise 

through filter); 0.05 minutes sampling 

14. Nonlinearity + FOPDT (1, 10, 2); PI Controller; (White noise + Periodic noise 

through filter) passing through integrator; 0.05 minutes sampling 

15. Nonlinearity + FOPDT (1, 10, 2); PI Controller; (White noise + Periodic noise 

through filter) passing through first order filter; 0.05 minutes sampling 
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In our simulations, we assume the process model to be a FOPDT model and the controller 

to be of PI form. Since most industrial controllers are PI controllers and industrial 

processes can be accurately modeled as FOPDT transfer functions in many cases, our 

examples (while not exhaustive) are able to realistically cover a range of industrial 

processes. The sampling time of 0.05 minutes is also realistic as given major advances in 

measurement technology and cheaper hardware, process variables are able to be sampled 

at such fast rates. Furthermore, in our examples, we incorporate various noise models to 

make the situations even more realistic. Different controller tuning parameters are also 

considered to augment the reality of the situation. Examples 1 to 9 are linear cases and 

examples 10 to 15 are nonlinear cases. This is to ensure that our proposed methodology 

works wells in linear and nonlinear situations. For the purpose of our analysis, we have 

grouped the fifteen examples into sets of five, with the first three examples comprising of 

set 1, second three examples comprising of set 2 and so on so forth. Details of each set 

and its examples will be discussed in the next sub-sections.  

 

6.11.1 Simulation Set 1 

In this set, our proposed framework is implemented on the first three examples. The 

system in example 1 is driven by white noise of mean 0 and variance 0.05.  The 

controller tuning parameters are kc = 0.909, τi = 10 and τd = 0. These tuning parameters 

are selected by manual tuning such that reasonably good control loop performance is 

observed. This typifies the method of controller tuning in most industries. The CLPI for 

this example is calculated to be 0.9657 and the ACF of the process is shown in Figure 

6.9.  
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Figure 6.9: ACF of process variable (y) in example 1 

 

From Figure 6.9, we observe that the ACF falls quickly to zero as the lag increases. This 

suggests that the output has very little determinism which is a sign of good control. 

Ideally, the ACF should fall to zero at a lag of two. Therefore, we can conclude that 

although the controller is performing well, there is still marginal room to ameliorate its 

performance. This is substantiated by the fact that although the CLPI is very high, it can 

still be made to increase slightly such that it tends to 1.  

 

Assuming that no prior process knowledge is known, we calculate the Kurtosis and 

implement the BI and SDM test for nonlinearities. Figures 6.10 and 6.11 show the results 

from the BI and SDM tests. 
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Figure 6.10: BI of process variable (y) in example 1 

 

 

Figure 6.11: Surrogate data plot of process variable (y) in example 1 
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Kurtosis is determined to be -0.0513 which implies that the data distribution is mostly 

Gaussian and hence the process is linear. From Figure 6.10, we note that the maximum 

BI is 0.0640 which occurs at the bifrequencies of 0.453 and -0.484. From Figure 6.11, we 

see that the observed statistic from hypothesis testing is 0.2415. Hence, both methods 

demonstrate that the data are linear. Since the data are linear, it is not necessary to 

identify a Hammerstein model for the process. However, we still perform system 

identification using our Hammerstein model algorithm. This is to ensure that a good 

linear dynamic model is identified under linear circumstances. We also expect our 

algorithm not to identify a spurious nonlinear static polynomial model in such a situation. 

Figure 6.12 illustrates these results.  

 

 

Figure 6.12: Plot of y (continuous line) and ymodel (‘+’) in example 1 
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From Figure 6.12, we can see that the Hammerstein model is an excellent fit to the 

process with a sum of squared error (SSE) value of 8.478E-5. The parameters of the 

linear dynamic model (which is in the form of 1

2

1 −

−

−
=

z
zGm α

β ) are α = 0.9097 and β = 

0.0858. The parameters for the nonlinear static polynomial (which is in the form of 

32* cubuauu ++= ) are a = 1, b = 0.0107 and c = 0. For a linear process, a, b and c 

should be 1, 0 and 0 respectively such that u* = u. In this example, only b is marginally 

inaccurate but even then it is almost zero. The identification results for this example show 

that a linear model is adequate. This also confirms the absence of any nonlinearity just as 

the BI and observed statistic from the SDM predicted.  

 

Hence, any improvement to the CLPI can only be made by re-tuning the controller. Using 

our algorithm that calculates tuning parameters based on maximizing the CLPI, we find 

that the maximum CLPI for this process is 0.9946 with Kc = 0.060, τi = 10.015 and τd = 

0.566. Therefore, we can see that for a simple case of a linear process, our method can 

ascertain that there is marginal room for improvement of control loop performance by re-

tuning the controller. In the next two examples, we will consider the same process and 

controller (original tuning parameters) but now with two different noise models. Example 

2 consists of random noise (of mean 0 and variance 0.05) passing through an integrator 

(
s

Gn
1

= ) and example 3 consists of the same random noise passing through a colored 

noise transfer function (
1

10
+

=
s

Gn ). Results are presented in Table 6.5.  
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Table 6.5: CLPI results for simulation set 1 

Example CLPI(original) CLPI(after re-
tuning) 

CLPI(after noise structure is removed + 
re-tuning) 

1 0.9794 0.9974 0.9974 
2 0.3112 0.8896 0.9974 
3 0.9657 0.9946 0.9974 

 

In Table 6.5, the original CLPI of example 1 is the highest and that re-tuning of the 

controller increases it to 0.9974 (as discussed earlier). The original CLPI of example 2 is 

0.3112 and this poor CLPI is due to the effect of the integrator and possibly poor 

selection of tuning parameters. After re-tuning is carried out, the CLPI is 0.8896 and this 

is the best possible performance exhibited by this system under feedback PID control. 

Assuming now that the linear external oscillations are mitigated and that the noise 

structure is removed (and the controller re-tuned), the CLPI further increases to 0.9974. 

This shows that no matter how much re-tuning is carried out, the CLPI can only increase 

to 0.8896 and for any further increase, it is imperative that the noise structure is altered or 

removed. Therefore, considering the overall increase in CLPI from 0.3112 to 0.9974 and 

the individual increases in CLPI by re-tuning and noise structure removal, re-tuning is 

responsible for 84.3% improvement in CLPI. This percentage is calculated by dividing 

the difference of CLPI (after re-tuning) and CLPI (original) with the difference of CLPI 

(after noise structure removal + re-tuning) and CLPI (original), multiplied by 100. 

Similarly, removing the noise structure is responsible for the balance 16.7% improvement 

in CLPI.  

 

We analyze example 3 in a similar fashion and find that in this case the original CLPI of 

0.9657 is only slightly less than that of example 1 but much greater than that of example 
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2. This highlights the more benign effect of colored noise compared to integrated white 

noise. Results also show that re-tuning contributes to 91.2% increase in CLPI and noise 

structure removal results in the balance 8.8% improvement to CLPI. Given that example 

2 and 3 have different noise models it is imperative that our methods are able to detect 

the absence of nonlinearities in them, as they did for example 1. Table 6.6 presents the 

results from the nonlinearity tests.  

 

Table 6.6: Kurtosis, BI and SDM results for simulation set 1 

Example Kurtosis BI (f1,f2) SDM (Observed Statistic) 
1 -0.0513 0.0640 (0.453,-0.484) 0.2415 
2 -0.8632 0.0816(0,0) 0.9715 
3 0.1213 0.0784(-0.492,-0.492) 0.2998 

 

Table 6.6 shows that Kurtosis for example 2 is inconclusive but that of example 3 

insinuates linearity. BI values for both example 2 and 3 are less than 0.09 and the 

observed statistic from hypothesis testing is less than 2. Overall results indicate the 

absence of any nonlinearity in the system.  

 

6.11.2 Simulation Set 2 

In this simulation set, we present a similar analysis to what is seen in set 1. The 

difference is now that we use a marginally stable PI controller as opposed to the more 

optimal one in set 1. We purport to show that our methods are robust and work well for 

different controller settings. The controller tuning parameters selected are Kc = 4, τi = 

1000 and τd = 0. The data are first tested for Gaussianity and nonlinearity with results 

presented in Table 6.7.  
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Table 6.7: Kurtosis, BI and SDM results for simulation set 2 

Example Kurtosis BI (f1,f2) SDM (Observed Statistic) 
4 0.0767 0.0726 (0.109,-0.218) 0.3587 
5 -0.5342 0.100 (0,0) 0.6169 
6 0.0749 0.0740 (0,0) 0.2548 

 

Table 6.7 shows that the Kurtosis for examples 4 and 6 are close to zero which means 

that the signal distribution is Gaussian and hence the system is linear. This is further 

confirmed by the BI and observed statistic values. For example 5, the Kurtosis is 

inconclusive but BI and the observed statistic are able to show that data originates from a 

linear system. Once linearity is established, we look into the CLPI indices of the various 

examples and these are presented in Table 6.8.  

 

Table 6.8: CLPI results for simulation set 2 

Example CLPI(original) CLPI(after re-
tuning) 

CLPI(after noise structure is removed + 
re-tuning) 

4 0.7531 0.9974 0.9974 
5 0.1984 0.8896 0.9974 
6 0.7158 0.9946 0.9974 

 

Table 6.8 shows that the original CLPI for example 4 is the highest and that CLPI of 

example 2 is the lowest. This once again reflects the negative effect of integrated white 

noise compared to colored noise. The CLPI (after re-tuning) and CLPI (after noise 

structure is removed + re-tuning) results for all three examples are the same as that of 

simulation set 1. This is expected as time-delay and noise models have not changed 

between the sets. We then apportion the effect of improvement to CLPI for each factor 

for examples 5 and 6. In example 5, there is an 86.5% increase in CLPI after re-tuning the 
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controller and a 13.5% increase after the noise structure is removed and then re-tuned. 

Similarly in example 6, the effect is 99% and 1% respectively.  

 

6.11.3 Simulation Set 3 

In this simulation set, we now use the same PI controller settings as of example 1 but 

modify the same noise models by combining them with periodic noise through a filter. 

Table 6.9 presents results from tests of Gaussianity and nonlinearity.  

 

Table 6.9: Kurtosis, BI and SDM results for simulation set 3 

Example Kurtosis BI (f1,f2) SDM (Observed Statistic) 
7 -0.0487 0.0698 (0.109,-0.218) 0.2306 
8 -0.6513 0.0786 (0,0) 0.7557 
9 0.2025 0.0804 (0,0) 0.2548 

 

Results from Table 6.9 show that the data distribution for example 7 is almost Gaussian, 

implying linearity and this is confirmed by both the BI and observed statistic. Results 

also show that although the Kurtosis value is inconclusive for examples 8 and 9, BI and 

the observed statistic demonstrates that signal generating process is linear. Table 6.10 

presents the various CLPI indices for this simulation set.  

 

Table 6.10: CLPI results for simulation set 3 

Example CLPI(original) CLPI(after re-
tuning) 

CLPI(after noise structure is removed + 
re-tuning) 

7 0.9794 0.9884 0.9974 
8 0.0353 0.2314 0.9974 
9 0.6061 0.6581 0.9974 
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Results in Table 6.10 show that the CLPI (original) for example 7 is 0.9794 which is 

similar to that in set 1. This leads us to believe that in the case of example 7, the 

controller is still able to perform well even when extra periodic noise through a filter is 

added. For example 8, the CLPI (original) drastically reduces to 0.0353 and this shows 

that the combined effect of periodic and integrated noise adversely affects control loop 

performance. Upon controller re-tuning, the performance is increased to 0.2314 which 

implies that for this system, this is the best possible performance for a feedback PID 

controller. Similar to the analysis in example 8, the original CLPI for example 9 is 0.6061 

which indicates that the extra periodic noise degrades performance (as compared to the 

performance in example 3). Upon re-tuning, the performance is able to improve to a 

maximum CLPI of 0.6581. We then apportion the effect of improvement to CLPI for 

each factor for examples 7 to 9. In example 7, there is a 50% increase in CLPI after re-

tuning the controller and a 50% increase after the noise structure is removed and then re-

tuned. Likewise, in example 8 this improvement to CLPI is 20.4% and 79.6% 

respectively. Similarly in example 9, the effect is 13.2% and 86.8% respectively.  

 

6.11.4 Simulation Set 4 

In this simulation set, we use the same process, controller and noise models as what is 

used in set 1. In addition, valve stiction is added to the system to represent a problem 

with the valve. The stiction is simulated using the classical stiction model (as described in 

chapter 3). The stiction parameters used for this study are Fs = 1750N, Fc = 0N and Fv = 

612N (Choudhury et al., 2004). Table 6.11 presents the results from the tests of 

Gaussianity and nonlinearity.  
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Table 6.11: Kurtosis, BI and SDM results for simulation set 4 

Example Kurtosis BI (f1,f2) SDM (Observed Statistic) 
10 -0.5128 0.1867 (-0.015,-0.015) 2.347 
11 -0.6513 0.1930 (-0.015,-0.492) 2.465 
12 0.2025 0.1709 (-0.046,-0.046) 2.301 

 

Results in Table 6.11 show that the Kurtosis for all 3 examples is not close to 0 and this 

implies that the distribution may be non-Gaussian. Subsequently, the data are tested for 

nonlinearities. The BI values are in the range of 0.17 to 0.19 and these values indicate 

mild nonlinearity. This is confirmed by the SDM as well since the observed statistic is 

marginally beyond the value 2. Figures 6.13 and 6.14 show the BI and SDM plots for 

example 11.  

 

 

Figure 6.13: BI of process variable (y) in example 11 
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Figure 6.14: Surrogate data plot of process variable (y) in example 11 

 

After the data is deemed to have come from a nonlinear system, the next logical step is to 

identify a Hammerstein model of the overall system. This is to facilitate further 

examination of the system. We expect the Hammerstein model to be similar for all three 

examples. This is because the process and valve nonlinearity are identical. However, due 

to the different noise models in each example and limitations in data excitation, the linear 

dynamic and static polynomial models might differ slightly. Figure 6.15 illustrates the 

process (y) and Hammerstein model (ymodel) for example 11.  
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Figure 6.15 Plot of y (blue) and ymodel (red) in example 11 

 

Models identified from the Hammerstein system identification are, 1

2

9861.01
0592.0

−

−

−
=

z
zGm  

and 32 067.027.0* uuuu +−=  with a SSE value of 0.0061. We note that the process 

model (Gm) differs slightly from that of the model in example 1. In theory, these 2 

models should be exact. However, because the SSE value in this example is poorer than 

that of example 1, we expect that the Gm of example 1 to be more accurate than the Gm of 

this example. But this difference is marginal and overall results clearly show that the SSE 

value ensures a reasonable good fit of the model to the process and this can be seen in 

Figure 6.15. The polynomial u* is also able to capture the nonlinearity of the stiction 

model.  Another way of proving that the model is an accurate depiction of the simulated 

process would be to ensure that various indices such as CLPI, BI and SDM (observed 

statistic) are similar. This would further confirm that the model is also able to capture the 
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dynamics of the process (refer to Table 6.12). We also treat each example as a different 

process and similar to example 11, we identify separate Hammerstein models for 

examples 10 and 12.  

 

Table 6.12: BI, SDM and CLPI results for simulation set 4 

BI SDM (Observed 
Statistic) CLPI Example 

 Process Model Process Model Process   Model  
10  0.1867 0.2039 2.347 2.5864  0.7918 0.7724  
11  0.1930 0.2247 2.465 2.6021  0.2397  0.2288  
12 0.1709 0.2173 2.301 2.6324 0.5759 0.5572 

 

In Table 6.12, we see that the BI values of the model are slightly higher than that of the 

BI values of the process. The same trend is observed for the observed statistic. This 

shows that the nonlinearities in the model are slightly elevated compared to the process. 

However, this difference is marginal and results show that the dynamics of the model and 

process are similar. From the Table, we also note that the CLPIs of the model are very 

close to that of the process. However, the CLPIs of the model are a shade lower than that 

of the process and this is attributed to the higher degree of nonlinearity in the model as 

compared to the process. Overall, the CLPIs are close enough to indicate that the model 

is a realistic representation of the process. Henceforth, we use the CLPIs of the model in 

our analysis, as opposed to the CLPIs of the real process.  

 

The CLPI results from Table 6.12 also show that the best performance is seen in example 

10 and the worst in example 11. This shows that the integrating noise degrades the 

performance the most, followed by the colored noise structure and then no noise 
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structure. This trend is similar to what is observed in the earlier examples. Overall, the 

control loop performance for all three examples is poor and this is attributed to a 

combination of valve stiction, sub-optimal controller tuning and presence of noise 

structure (if any). Tables 6.13 to 6.15 present the CLPI results of our analysis.  

 

Table 6.13: CLPI results for simulation set 4 after re-tuning 

Example CLPI(original) CLPI(after re-tuning) 
10 0.7724  0.9546 
11 0.2288  0.6990 
12 0.5572 0.8923 

 

Results from Table 6.13 show the original values of the CLPI and the CLPI values after 

re-tuning the controller. The CLPIs calculated after re-tuning indicates the best possible 

control loop performance under conditions of stiction and noise structure (if any). We can 

see that under such conditions, CLPI for example 10 is fairly high. This seems to suggest 

that for a purely white noise disturbance, the effect of nonlinearities is not significant in 

this example. However, the CLPIs of examples 11 and 12 have room for improvement.  

 

Table 6.14: CLPI results for simulation set 4 after stiction and noise structure removal 

Example CLPI(after stiction removal + re-
tuning) 

CLPI(after stiction and noise 
structure removal + re-tuning) 

10 0.9974 0.9974 
11 0.8896 0.9974 
12 0.9946 0.9974 

 

The second column in Table 6.14 presents the CLPIs after the stiction model is removed 

and the controller re-tuned.  We note that at this juncture, the CLPIs are fairly optimal but 

there still might be room for improvement in the case of example 11. Hence, the noise 
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structure is then removed and column 3 shows the optimal values of the CLPIs. Our 

results show that re-tuning the controller, removing the stiction and eliminating any 

structure in noise are able to significantly improve the CLPI for all three examples. 

However, it is vital to apportion the individual effect of each control loop problem to the 

CLPI and Table 6.15 presents these results.  

 

Table 6.15: Individual Improvement to CLPI 

Example  Increase in CLPI after 
re-tuning (%) 

Increase in CLPI after 
stiction removal (%) 

Increase in CLPI 
after noise structure 

removal (%)  
10 80.9 19.1 0 
11 61.1 24.8 14.1 
12 76.1 23.2 0.7 

 

Results in Table 6.15 show that for all three examples, effect of re-tuning the controller is 

the most significant. This is followed by removing stiction and then eliminating any 

structure in noise. In example 10, the effect of re-tuning the controller is more than that of 

examples 11 and 12. This can be attributed to the fact that there is no noise structure in 

this process and that also that the effect of stiction may not be as predominant as it is for 

the other examples. We can see that for examples 11 and 12, the effect of stiction is 

higher and therefore, the removal of stiction would be more useful in these cases. 

Example 11 is of particular interest because it clearly shows that all 3 control loop 

problems have an impact on CLPI and our results are able to separate their individual 

effect. We also note that the nonlinearity introduced in this simulation set is mild (as 

determined by the BI and observed statistic from SDM). Therefore, we might falsely 

expect the effect of this nonlinearity to be insignificant. On the contrary, results show that 
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even with this mild nonlinearity, a fairly significant improvement to CLPI can be 

obtained if the nonlinearity is removed.  

 

6.11.4.1 Parameter Estimation  

Parameter estimation is an integral part of our analysis. In simulations, precise knowledge 

of the valve nonlinearity is known but this information is not known to control engineers 

in an industrial setting. Therefore, in our study we aim to use several mathematical 

models of valve nonlinearities to determine the type of valve nonlinearity present in the 

control loop. Let us consider example 11. Figure 6.16 illustrates the dynamics of the 

process variable (y) against time.  
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Figure 6.16: Graph of y against time 
 
 
The output (y) is afflicted with valve stiction which is disguised by the random 

fluctuations. This shows that valve stiction is not easy to spot from a graphical analysis of 

the process variable (y), thereby necessitating the use of parameter estimation methods. 
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The valve stiction is simulated using the classical stiction model. For our purposes, we 

will assume that we are not privy to this information. Hence we attempt to model this 

output by incorporating the simple stiction, Weiss, backlash and deadzone model. If one 

of the models provides a good fit to the actual output, we will know the cause of the 

valve nonlinearity. If none of the models provide a good fit, we can conclude that either 

no valve nonlinearity is present (which means the process could be nonlinear instead) or 

that there exists another kind of valve nonlinearity aside from stiction, hysteresis, 

backlash and Deadzone. Figures 6.17 to 6.20 show the results from parameter estimation 

using the various models 
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Figure 6.17: Graph of y and ymodel against time using stiction model 
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Figure 6.18: Graph of y and ymodel against time using Weiss model 
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Figure 6.19 Graph of y and ymodel against time using backlash model 
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Figure 6.20: Graph of y and ymodel against time using deadzone model 
 
 

From Figures 6.17 to 6.20, we can see that the output data (y) provides a better fit to the 

stiction and backlash valve model compared to the Weiss and deadzone model. However, 

for a quantitative determination of which are the best fits, we compare the SSE values 

calculated from the different fits. Table 6.16 presents these results.  

 

Table 6.16: SSE results for various valve models 

Index   Valve Model SSE   
1 Stiction 0.419 
2 Weiss (hysteresis) 896.153 
3 Backlash 1.402 
4 Deadzone 12.563 

 

Results in Table 6.16 show that the SSE value for the stiction valve model is the lowest. 

This shows that the valve nonlinearity present in the loop is stiction. Although, prior 

knowledge of stiction is already known, this goes to show that our parameter estimation 
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methods are effective in determining the type of valve nonlinearity afflicting the control 

loop.  

 

6.11.5 Simulation Set 5 

In this simulation set, we use the same process, controller and noise models as what is 

used in set 3. In addition, valve stiction is added to the system to represent a problem 

with the valve. The examples in set 5 are also similar to that in set 4, with the exception 

of a more severe noise model as seen by the addition of a periodic noise through a first 

order filter. Results so far have shown that our methods are robust and work well in linear 

and nonlinear cases amidst different noise models and controller tuning parameters. Prior 

results already provide the justification that the data are nonlinear. Similar to what was 

seen in set 4, we identify separate Hammerstein models for these three examples. The 

Hammerstein model plot for example 14 is shown in Figure 6.21. The reported SSE is 

4.822E-4 which indicates the model identified is a very good fit to the process.  

 

 

Figure 6.21 Plot y (blue) and ymodel (red) in example 14 
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In this sub-section, we purport only to show the effect nonlinearity, poor controller tuning 

and noise structure on CLPI. Tables 6.17, 6.18 and 6.19 present the CLPI results of our 

analysis.  

 

Table 6.17: CLPI results for simulation set 5 after re-tuning 

Example CLPI(original) CLPI(after re-tuning) 
13 0.6732 0.9430 
14 0.0108 0.0121 
15 0.5036 0.5434 

 

Table 6.18: CLPI results for simulation set 5 after stiction and noise structure removal 

Example CLPI(after stiction removal + re-
tuning) 

CLPI(after stiction and noise 
structure removal + re-tuning) 

13 0.9884 0.9974 
14 0.2314 0.9974 
15 0.6581 0.9974 

 

Table 6.19: Individual Improvement to CLPI 

Example  Increase in CLPI after 
re-tuning (%) 

Increase in CLPI after 
stiction removal (%) 

Increase in CLPI 
after noise structure 

removal (%)  
13  83.2 14.0  2.8  
14  0.13  22.2  77.67 
15  3.98  23.2  72.82 

 

Results in Table 6.19 show that for example 13, the biggest improvement to CLPI is due 

to the re-tuning of the controller. This supersedes the effect of stiction and noise structure 

on CLPI. Examples 14 and 15 demonstrate that the effects of stiction and noise structure 

are more significant. Overall, results are able to categorize the effect of each factor 

(controller tunings, stiction and noise structure) on the CLPI. In the next section we 

present a summary of our findings using these fifteen simulated examples.  
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6.11.6 Summary  

Re-tuning the controller, removal of valve stiction and elimination of noise structure all 

have a direct impact on the CLPI. Table 6.20 summarizes these results.  

 

Table 6.20: Summary of individual improvement to CLPI 

Example  Increase in CLPI after 
re-tuning (%) 

Increase in CLPI after 
stiction removal (%) 

Increase in CLPI 
after noise structure 

removal (%)  
1 100 N.A 0 
2 84.3 N.A 16.7 
3 91.2 N.A 8.8 
4 100 N.A 0 
5 86.5 N.A 13.5 
6 99 N.A 1 
7 50 N.A 50 
8 20.4 N.A 79.6 
9 13.2 N.A 86.8 
10 80.9 19.1 0 
11 61.1 24.8 14.1 
12 76.1 23.2 0.7 
13 83.2 14.0 2.8 
14 0.13 22.2 77.67 
15 3.98 23.2 72.82 

 

From the results presented in Table 6.20, we can perform a cross-comparison between the 

examples. We now group the examples that have the same noise models. Hence group 1 

comprises of examples 1, 4, 7, 10 and 13, group 2 consists of examples 2, 5, 8, 11 and 14 

and group 3 consists of examples 3, 6, 9, 12 and 15. We find that for group 1, the effect 

of controller retuning is the most predominant compared to valve nonlinearity (only for 

examples 10 and 13). This implies that for such loops, controller re-tuning should be the 

main focus in ameliorating control loop performance. In group 2, we note that now the 

effect of noise structure removal has significantly increased and that effect of nonlinearity 
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removal (only for examples 11 and 14) is also more significant. This implies that for a 

process afflicted with integrated white noise, the focus should also be on servicing the 

valves and alleviating the noise structure (by better process control upstream and / or 

process redesign) and not just on controller re-tuning. For group 3, the effect of noise 

structure is less than that of group 2 but the effect of nonlinearity is similar. Therefore, 

we suggest that the focus should be more on valve servicing to limit the effect of valve 

nonlinearities.  

 

From the overall results in Table 6.20, we can see that for each example (which 

represents a different system), we are able to determine which is the most important 

component (controller parameters, valve nonlinearity or noise structure) that results in a 

poor CLPI. Such knowledge would be very useful to the control engineer who can then 

implement the necessary rectification action to ameliorate the control loop performance. 

In the next section, we will apply our methodology to two industrial case studies.  

 

6.12 Industrial Case Studies  

 

In the previous section, we showed that our novel framework is able to work well and 

yield useful results for the fifteen realistic simulations. To add an extra dimension, we 

purport to test our framework on two industrial case studies. This would ensure that our 

methods are robust in dealing with industrial data and conditions. For the purpose of this 

thesis, we consider 2 case studies. In case study 1, we examine a poorly performing 

temperature control loop from an industrial polymerization reactor in a local chemical 
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plant. In case study 2, we also examine a temperature control loop but in another 

industrial polymerization reactor from the same chemical plant. The only data available 

are PV, OP and SP. The data is gathered during a period of feed change which resulted in 

frequent changes to the set-point (SP). Therefore, we expect more excitation in the data 

compared to what we normally would expect under stable conditions. However, this extra 

data excitation would be useful for our methods as we have shown that data has to be 

persistently excited to identify good Hammerstein models.   

 

6.12.1 Case Study 1 

Figure 6.22 shows the error signal versus time of the process variable (y).   

 

 

Figure 6.22: Graph of error against time. 
 
 

After the poorly performing control loop is identified (from CLPI and ACF), the data are 

tested for Gaussianity and nonlinearity. Table 6.21 presents these results.  
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Table 6.21: Kurtosis, BI and SDM results for case study 1 

No. Kurtosis BI (f1,f2) SDM (Observed Statistic) 
1 0.7849 0.392 (0,-0.31) 12.237 

 

From the results in Table 6.21, we can conclude that the data are non-Gaussian. 

Furthermore, the BI and observed statistic from the SDM indicate that the data are 

nonlinear. Refer to Figures 6.23 and 6.24 for a visual depiction.  

 

 

Figure 6.23: BI of error signal  
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Figure 6.24: Surrogate data plot of error signal 
 

 
Having quantified the degree of nonlinearity present in the data, we now evaluate the 

control loop performance from the error signal. Figures 6.25 and 6.26 illustrate the ACF 

and CLPI respectively.  

 

 

Figure 6.25: ACF of error signal  
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Figure 6.26: CLPI plot of error signal  
 

 
From Figure 6.25, we observe that the data are extremely correlated and this signifies 

poor performance. In Figure 6.26 we plot the CLPI as a function of time delay. This is 

because the precise knowledge of time delay is not known. However, we expect the time 

delay to be in the range of 3 to 8 (as determined by our industry contact). Hence, based 

on this information the calculated CLPI is between 0.25 and 0.50 which is anything 

between poor and moderate. After characterizing the dynamics of the data and evaluating 

the control loop performance, we identify a Hammerstein model from the data. Figure 

6.27 shows the Hammerstein plot.  
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Figure 6.27: Plot of y (blue) and ymodel (red) 
 
 
From Figure 6.27, we can see that the model is a fairly good fit to the process with a SSE 

value of 0.003. The parameters of the linear dynamic model are α = 0.8988 and β = -

2.630e-4 and the nonlinear static model is, 32 430.0186.0* uuuu −+= . The nonlinearity 

captured in u* also confirms that the data are nonlinear. Since we are dealing with 

industrial data, we further validate the model by comparing the BI, SDM and CLPI 

indices of the process and the model. Table 6.22 presents the results of BI and SDM.   

 

Table 6.22: BI and SDM results for case study 1 

BI SDM (Observed Statistic) No  Process Model Process Model 
1  0.392 0.376 12.237 11.957 

 

Results in Table 6.22 show that the BI and observed statistic of the model are comparable 

to that of the process. This implies that our model is able to accurately capture the 

dynamics of the true process. Figure 6.28 computes the CLPI of the model.  
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Figure 6.28: CLPI plot of ymodel 
 
 

Figure 6.28 shows that the range of CLPI for the model is very similar to that of the 

process (Figure 6.26). Hence we can conclude that the model is an apt representation of 

the real process. For future analysis, we assume that the time delay of the process is 5, 

which is an unbiased and realistic assumption. Therefore, for a time delay of 5 the 

corresponding CLPI would be 0.42. At this point, it is important to highlight that because 

we use the direct approach in identification of Hammerstein models, information about 

controller tuning parameters and noise models are not needed. However, the knowledge 

of such information would be useful in our analysis. In the simulation examples discussed 

earlier, knowledge of controller and noise models are known and hence we are able to 

show comprehensive results. For this temperature control loop, the nature and tuning 

parameters of the controller are not accurately known. We know that this loop is the inner 

loop of a cascade control loop and hence it could be a simple PID controller. However 

the nature of the controller is unlikely to be standard (textbook) PID controller and most 
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likely is a non-standard one. For our purposes, we will assume it to be an ideal PID 

controller. However, the tuning parameters obtained from the industry cannot be used as 

they are specific for the non-standard PID controller. Therefore, it is imperative that we 

obtain the correct tuning parameters for our standard PID controller. Also, the noise 

model of the process is unknown but as discussed earlier we will assume the system to be 

contaminated with 1) integrated white noise and 2) colored noise passing through a first 

order filer. Both noise models are the same as the models used in the simulation 

examples. We will analyze the effect of each noise model separately. The objective in our 

analysis is to optimize the controller tuning parameters such that the CLPI is 

approximately 0.42 as that is the original CLPI of the process. For each of the noise 

models, we expect the tuning parameters to be different such that the resultant CLPI is 

0.42. Hence, for integrated white noise, the tuning parameters are kc = 15, τi = 0.07 and τd 

= 0. For colored noise, the tuning parameters are kc = 5, τi = 0.09 and τd = 0. The tuning 

parameters are obtained from an optimization algorithm.  

 

With the assumption of the noise model, controller tuning parameters, the level of 

nonlinearity present and the Hammerstein model of the system, we now proceed with 

apportioning the effect of each of the control loop problems on CLPI. Tables 6.23 to 6.25 

presents these results.  
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Table 6.23: CLPI results for case study 1 after re-tuning 

Noise Model CLPI(original) CLPI(after re-tuning) 
Integrated 

Noise 0.42 0.7826 

Colored Noise 0.42 0.8385 
 

Table 6.24: CLPI results for case study 1 after nonlinearity and noise structure removal 

Noise Model CLPI(after nonlinearity 
removal + re-tuning) 

CLPI(after nonlinearity and noise 
structure removal + re-tuning) 

Integrated 
Noise 0.9436 0.9987 

Colored Noise 0.9572 0.9987 
 

Table 6.25: Individual Improvement to CLPI 

Noise 
Model Increase in CLPI after 

re-tuning (%) 

Increase in CLPI after 
nonlinearity removal 

(%) 

Increase in CLPI 
after noise structure 

removal (%)  
Integrated 

Noise 62.6 27.8 9.6 

Colored 
Noise 72.3 20.5 7.2 

 

Results in Table 6.25 show that for both noise models, poor controller tunings are the 

main cause of low CLPI. It can also be seen that removing the nonlinearity (which 

signifies valve servicing) would account for between 20% to 28% increase in CLPI. This 

shows that for these two scenarios, valve nonlinearity also contributes to the poor CLPI. 

Removal of the noise structure by establishing better control in upstream variables, 

accounts for between 7% to 10% improvement in CLPI. It must be also noted that 

although the BI and observed statistic indicate a high degree of nonlinearity, the 

improvement of CLPI after removing the nonlinearity is not extremely significant. This 

can be attributed to the fact that given the data is substantially excited, the BI and 
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observed statistic tend to overestimate the degree of nonlinearity. However, this does not 

compromise the accuracy of these methods. Overall, results show that we are able to 

quantify the exact improvement to CLPI, using merely PV, OP and SP data.  

 

6.12.2 Case Study 2 

In this section, we consider the temperature control loop of the second reactor. We 

present a similar analysis as what is shown in case study 1. Figure 6.29 shows the error 

signal versus time of the process variable (y).   

 

 

Figure 6.29: Graph of error against time. 
 

 
Subsequently, we perform the tests for Gaussianity and nonlinearity on the data.  
 
 
 

 Table 6.26: Kurtosis, BI and SDM results for case study 2 

No. Kurtosis BI (f1,f2) SDM (Observed Statistic) 
1 0.5930 1.2103 (0,-0.031) 33.880 
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Results in Table 6.26 show that the data are non-Gaussian. The seemingly high values of 

BI and SDM indicate that the data are more nonlinear than that of case study 1. We then 

quantify the poor performance of this loop by examining the ACF and CLPI plots. 

Figures 6.30 and 6.31 present these results.  

 

 

Figure 6.30: ACF of error signal  
 

 
 

Figure 6.31: CLPI plot of error signal  
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Similar to our analysis in case study 1, Figure 6.30 shows that the data are correlated and 

hence this accounts for poor control loop performance. The CLPI plot in Figure 6.31 also 

shows that the performance is poor in the time delay range of 3 to 8. At a time delay of 5, 

the CLPI is 0.39. After characterizing the dynamics of the data and evaluating the control 

loop performance, we identify a Hammerstein model from the data. Figure 6.32 shows 

the Hammerstein plot.  

 

 

Figure 6.32: Plot of y (blue) and ymodel (red) 
 
 

From Figure 6.32, we can see that the model is a fairly good fit to the process with a SSE 

value of 0.003. The parameters of the linear dynamic model are α = 0.9214 and β = 

2.4574e-5 and the nonlinear static model is, .0648.25572.4* 32 uuuu +−= We also 

observe that u* captures the nonlinearity and the polynomial also confirms that the data 

are nonlinear. We further validate the model by comparing the BI, SDM and CLPI 

indices of the process and the model. Table 6.27 presents these results.  
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Table 6.27: BI, SDM and CLPI results for case study 2 

BI SDM CLPI Case 
Study  Process Model Process Model Process   Model  

2  1.2103 1.2547 33.880 34.541  0.39 0.38  
 

Results in Table 6.27 show that the BI and SDM of the model are comparable to that of 

the process. This implies that our model is able to accurately capture the dynamics of the 

true process. Similar to case study 1, we assume two different noise models and tune the 

PID controller to achieve an overall CLPI of 0.38. With the knowledge of the noise 

model, controller tuning parameters, the level of nonlinearity present and the 

Hammerstein model of the system we now proceed with apportioning the effect of each 

of the control loop problems on CLPI. Tables 6.28 to 6.30 presents these results.  

 

Table 6.28: CLPI results for case study 2 after re-tuning 

Noise Model CLPI(original) CLPI(after re-tuning) 
Integrated 

Noise 0.38 0.7335 

Colored Noise 0.38 0.7856 
 

Table 6.29: CLPI results for case study 2 after nonlinearity and noise structure removal 

Noise Model CLPI(after nonlinearity 
removal + re-tuning) 

CLPI(after nonlinearity and noise 
structure removal + re-tuning) 

Integrated 
Noise 0.9646 0.9973 

Colored Noise 0.9673 0.9973 
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Table 6.30: Individual Improvement to CLPI 

Noise 
Model Increase in CLPI after 

re-tuning (%) 

Increase in CLPI after 
nonlinearity removal 

(%) 

Increase in CLPI 
after noise structure 

removal (%)  
Integrated 

Noise 57.2 37.4 5.4 

Colored 
Noise 65.7 29.4 4.9 

 

Results in Table 6.30 show that for both noise models, poor controller tunings are the 

main cause of low CLPI. It can also be seen that removing the nonlinearity (which 

signifies valve servicing) would account for between 29% to 38% increase in CLPI. 

Removal of the noise structure by establishing better control in upstream variables, 

accounts for between 4% to 6% improvement in CLPI. Comparing case study 1 and 2 we 

see that effect of nonlinearity on CLPI is more significant in the latter. This is expected as 

our methods previously indicated that a higher degree of nonlinearity is observed in case 

study 2.  

 

6.13 Effect of Poor Data Selection  

In sections 6.11 and 6.12 we presented several simulated examples and industrial case 

studies to show the effectiveness of our method. This is confirmed by our results and 

analyses as discussed in those sections. In this section, we purport to show that our 

method works well given the data (PV, OP and SP) used, meet a certain criteria. If not, 

results obtained may be inaccurate and misleading. To generate the so called ‘poor’ data, 

we consider example 1. We then simulate it to obtain only 1500 data points. We also do 

not excite the data sufficiently enough. Figures 6.33 and 6.34 illustrate the BI and SDM 

plots of the error (e) signal.  



 159

 

 

Figure 6.33: BI of error signal 

 

 

Figure 6.34: Surrogate data plot of error signal  
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From Figure 6.33, we note that the BI is 0.3072 at the bifrequencies of 0 and -0.02. This 

indicates that mild nonlinearities are present when in actual fact, the data originates from 

a linear system. From Figure 6.34, the observed statistic is 0.6521. This result indicates 

that nonlinearities are absent and this is consistent with our knowledge of the system. 

This dichotomy would present a conundrum as we wouldn’t know which measure yields 

the correct result (assuming prior knowledge of the system is not known). Hence, the 

logical step would be to identify a Hammerstein model which would confirm if any 

nonlinearity is present. Figure 6.35 depicts the Hammerstein plot.  

 

 

Figure 6.35: Plot of y (blue) and ymodel (red) 
 
 

From Figure 6.35, we can see that the model is a very poor fit to the process. 

Furthermore, 32 851.6451.0* uuuu +−= and this indicates the presence of a nonlinearity. 

Hence, we note that the Hammerstein model identification procedure has identified a 

spurious model of the process. Similar to the BI, it has also identified a false nonlinearity. 
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Only the SDM has detected the true result. We attribute the failing of the BI to the length 

of the data set. We can see that 1500 samples are too few for the BI to give the correct 

result. Similarly, our Hammerstein model algorithm failed to identify a better model 

because the data is not excited sufficiently, such that the correlation between the input 

and noise signals is broken. Therefore, it is imperative that an appropriate length of data 

is analyzed and the data must be sufficiently excited to identify good Hammerstein 

models (as discussed in section 6.6.3). However, given significant advances in 

technology, ensuring that the routine operating data meets these specific characteristics is 

easy.  

 

6.14 Summary  

 

In this chapter, we present a novel framework of statistical techniques to detect, diagnose 

and rectify poor control loop performance. The feature of this chapter is that we make use 

of only the control error and controller output in the analysis. Such routine operating 

plant data (with a small portion of it persistently excited) is easily available from 

industrial control loops, and this ensures that our methods are realistic and easy to 

implement. From several realistic simulations, we are able to identify poor control loops 

and subject them to a multitude of statistical tests. From these tests, we can diagnose the 

plausible causes of poor performance. Subsequently, from the identification of a 

Hammerstein model of the system, we can then accurately go on to apportion the effect 

of each control loop problem to the CLPI. Such knowledge would be useful to the control 

engineer, who would then know which is the more important factor to rectify and a cost-
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benefit analysis can then be carried out. This is to determine if the improvement to the 

CLPI outweighs the costs in addressing the individual problems. Furthermore, given that 

the control loop is often subject to valve nonlinearity, we use a combination of 

mathematical models and parameter estimation techniques to determine the type of valve 

nonlinearity. This is also useful to the control engineer who can then embark on the 

proper correction techniques to mitigate the particular type of valve nonlinearity 

identified. Thereafter, we implement our methods on two industrial case studies and 

perform a similar analysis. Given the higher degree of uncertainties in industrial systems, 

our methods are still able to yield useful results and hence this is testament to their utility 

and robustness. In the next chapter, we will round up this thesis with our conclusions 

from the present work and recommendations for future work.  
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CHAPTER 7 

CONCLUSIONS 

 

This chapter lists the contributions of this thesis and the directions identified for future 

research.  

 

7.1 Contributions of this Thesis  

 

This thesis deals with two important aspects of process control, namely data analysis and 

control loop performance assessment and enhancement. The former involves 

investigating dynamic data via statistical and mathematical methods to solve engineering 

problems. The latter deals with the detection, diagnosis and rectification of poor control 

loop performance.  

 

Methods to detect poor control loop performance are ubiquitous and are widely reported 

in the control literature. However, the diagnosis and implementation of suitable 

corrective action(s) for poor control loop performance are not well researched. Therefore, 

this thesis considered these two challenging aspects, in the quest to attain good control 

loop performance. Furthermore, most studies in this area focus only on simulated 

examples when assessing control loop performance. In our study, we extend our analysis 

not only to a multitude of realistic simulated examples, but also to various industrial case 

studies. The inclusion of the latter increases the complexity of the problem and also 
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accounts for the relevance and validity of our methods. Amongst these case studies, an 

industrial FCC unit is chosen as the main focus of our investigation because it is difficult 

to model and control. Hence, such a unit would be ideally suited for us to apply our data 

analysis and CLPA methodologies.  

 

The FCC process is highly complex and consists of an ensemble of interlinked units. In 

chapter 2, a concise description of the FCC process is presented, which introduces to the 

reader the main components of the FCC unit and also enables the reader to understand the 

fundamental idea of the FCC process. A simple schematic of the riser and regenerator in 

the FCC unit is also incorporated to facilitate better understanding of the FCC process. 

This visual depiction of the FCC process coupled with a brief description of the various 

key variables provides the reader with adequate information about the FCC process.  

 

Chapter 3 presents an array of tools consisting of various statistical, mathematical and 

graphical techniques. These techniques comprehensively characterize the nature of the 

dynamic data by testing for stationarity, Gaussianity, nonlinearity and chaos. A thorough 

understanding of the behavior of the data would enable the control engineer in 

determining the root cause(s) of poor control loop performance. The underlying feature 

of these techniques is that they utilize routine operating data which are easily available, 

given major advances in sensor technology. Lastly, most of these techniques are coded 

into software programs (such as MATLAB / FORTRAN) that are commercially available 

and easy to use. These programs can be used on any routine operating data to characterize 

their dynamics. A list of these programs and their functions are provided in appendix A.  
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The application of the above mentioned techniques to the industrial FCC unit is presented 

in chapter 4. The riser temperature and other key variables of the FCC unit are analyzed 

to determine the type of dynamics exhibited (i.e., stationary, Gaussian, linear, nonlinear 

and / or chaotic). Results show that the riser temperature exhibits chaotic fluctuations and 

this could be caused by the nonlinear and linear fluctuations present in several 

disturbance variables. Such a detailed analysis on industrial process variables is unique to 

our study and the results clearly show that a good understanding of the nature of the data 

is the first step in ameliorating poor control loop performance.  

 

In chapter 5, a discerning review of several FCC models is presented and an appropriate 

first principles FCC model is selected to represent the industrial FCC process. The model 

is then tuned to match the industrial FCC process by considering one set of industrial data 

and is subsequently validated by successfully predicting the outputs for two other sets of 

data. The feature in this chapter is that a realistic FCC model is implemented to depict the 

industrial FCC process and thereafter all pertinent analyses are carried out using the 

model. Results show that it is possible to reduce the fluctuations in the riser temperature 

by incorporating various remedies. Significant contribution is also made by separating the 

effect of each control loop problem (i.e., linear and nonlinear disturbances, poor 

controller tuning) on the CLPI. Results (based on simulations using the model) confirm 

that for the riser temperature loop, re-tuning the controller is of little value and better 

performance can be achieved if the nonlinear disturbances followed by the linear 

disturbances are removed.  
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Chapter 6 presents a consummate and novel approach to CLPA. A detailed framework is 

developed to systematically quantify poor control loop performance. Upon detecting a 

poorly performing control loop, the methodology goes on to determine the cause of the 

poor performance. This is followed by suggesting suitable corrective action(s). The 

methodology is applied to several simulated examples and two industrial case studies. 

Results clearly show that we are able to detect poor performance and diagnose the 

cause(s) of the poor performance. This is followed by quantifying the improvement to the 

CLPI, if each of the control loop problems (i.e., poor controller tuning, valve 

nonlinearities and / or linear external oscillations) is dealt with. Substantial contribution 

is made in this chapter by incorporating four mathematical models of valve nonlinearities 

and establishing a parameter estimation technique to determine the type of valve 

nonlinearity. Furthermore, relating CLPI to the various control loop problems and 

quantifying their individual effect to the CLPI are unique to this study and have not been 

addressed prior to this research.  

 

7.2 Future Directions  

 

In the course of this study, two important recommendations are made for future research. 

They are: 

 

1. A global optimization tool could be implemented. This is because, optimization is 

a vital ingredient in our research and oftentimes, the local optimization methods 
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and GA toolbox in MATLAB fail to find the global optimum. To circumvent this 

problem, these optimization routines have to be run many times using different 

initial guesses, which can be time consuming. Hence a global optimization routine 

(based on deterministic principles) would be highly desirable.  

2. Mathematical models of valve nonlinearities that consist of more than one valve 

problem (eg. stiction + hysteresis) could be implemented. Such models can 

accurately represent valves that suffer from a combination of valve nonlinearities. 

Hence, this would be more accurate than assuming each valve suffers from only 

one type of valve nonlinearity.  
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APPENDIX A: LIST OF M-FILES DEVELOPED 

 

Index Filename Purpose 

1 runs.m Implements the runs test discussed in section 3.2.1 

2 reverse.m Implements the reverse arrangements test discussed 
in section 3.2.2 
 

3 power_spec.m Implements the power spectrum of a signal 
discussed in section 3.4.6  
 

4 bispec.m Implements the bispectrum of a signal discussed in 
section 3.4.7 
 

5 bicoher.m Implements the bicoherence index of a signal 
discussed in section 3.4.8 
 

6 surr1.m Implements the phase randomized surrogate data 
method discussed in section 3.4.9 
 

7 surr2.m Implements the Gaussian-scaled surrogate data 
method discussed in section 3.4.9 
 

8 Trev.m Implements the time reversal method discussed in 
section 3.4.11  
 

9 hypo.m Implements the combined methods of surrogates 
and time reversal along with hypothesis testing 
discussed in section 3.4.12 
 

10 embed.m Implements the delayed coordinate embedding 
algorithm discussed in section 3.5.3   
 

11 mutual.m Implements the average mutual information 
algorithm discussed in section 3.5.4 
 

12 false.m Implements the false nearest neighbours algorithm 
discussed in section 3.5.5 
 

13 Lyapunov.m Implements the Lyapunov exponents test discussed 
in section 3.5.9 
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14 correl.m Implements the correlation dimension algorithm 
discussed in section 3.5.13 
 

15 lpf.m Implements the low pass filter algorithm discussed 
in section 3.6 
 

16 hpf.m Implements the high pass filter algorithm discussed 
in section 3.6 
 

17 bpf.m Implements the band pass filter algorithm discussed 
in section 3.6 
 

18 smoothing.m Implements the smoothing algorithm discussed in 
section 3.6 
 

19 clpi.m Implements the CLPI algorithm discussed in 
section 6.3 
 

20 design.m Implements the design of a MVC discussed in 
section 6.3 
 

21 classical_stic.m Implements the classical stiction model discussed 
in section 6.5.1.1 
 

22 simple.stic.m Implements the classical stiction model discussed 
in section 6.5.1.2 
 

23 hys.m Implements the Weiss hysteresis model discussed 
in section 6.5.2 
 

24 hammer.m Implements the algorithm for Hammerstein model 
identification discussed in section 6.6  
 

25 optimal.m Implements a generic optimization algorithm 
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APPENDIX B: DATA ANALYSIS FRAMEWORK 

 

Steps: 

 

1. Test data for stationarity. If data are non-stationary, carry out suitable 

transformations to ensure stationarity. If data are stationary, no transformation is 

required. 

 

2. Test data for Gaussianity. If data are non-Gaussian, further testing for nonlinearity 

should be carried out. If data are Gaussian, no further testing is required and data 

are deemed to be linear.  

 

3. Test data for nonlinearity. If data are nonlinear, further testing for chaos should be 

carried out. If data are linear, no further testing for chaos is required.  

 

4. Test data for chaos. If data are chaotic, appropriate noise removal techniques may 

be implemented to recover the true nature of the signal. If data are not chaotic, 

noise removal techniques need not be implemented.  

 

 

 
 

 

 


