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SUMMARY 
 

 Independent Component Analysis (ICA) is a new and powerful blind signal 

separation algorithm. It decomposes multi- channel mixed signals into independent 

components which are corresponding to original sources of the mixed signals without 

any pre-knowledge about the sources and the way of mixture. ICA has been 

introduced into (electroencephalo-graph) EEG signal processing recently, but the 

application is only in off-line artifacts removal.  

 

In this research, ICA was verified by experiments on a novel volume conductor 

platform which has similar electrical characteristic and multi-layer structure to the 

human brain. It was shown that ICA can decompose signals mixed on the human 

brain with satisfying accuracy. ICA was used to automatically remove ECG and 

ocular artifacts online in this research. The independent components corresponding to 

ECG and ocular artifacts were automatically identified by specific models and then 

removed. 

 

An ICA based Low Resolution Electromagnetic Tomography Method (LORETA) 

was also developed in this research for locating the event stimulated brain activities 

and spontaneous brain activities from single-trial EEG signal. The EEG signal was 

first decomposed by ICA and the independent components corresponding to brain 

activities were manually identified by pre-knowledge. The coefficient maps of these 

independent components were used as input of the LORETA, and the source 

distribution in the brain was obtained. The detailed algorithm was described and 

verified by numerical simulation and experiments using a volume conductor platform 

as well as functional Magnetic Resonance Image (fMRI) with satisfying accuracy. 
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ABBREVIATIONS 
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OA                                                     Ocular Artifacts 

LORETA                                           Low Resolution Brain Electromagnetic Tomography 

fMRI                                                 functional Magnetic Response Image 
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Chapter 1 

INTRODUCTION 

1.1The difficulties in EEG signal processing  

 The electroencephalogram (EEG) was first measured in humans by Hans Berger in 

1929. Electrical impulses generated by nerve firings in the brain diffuse through the 

head and can be measured by electrodes placed on the scalp. The EEG gives a coarse 

view of neural activity and has been used to non-invasively study cognitive processes 

and the physiology of the brain. However, the analysis of EEG data and the extraction 

of useful information from this data is a d ifficult problem. There are three challenging 

problems in the analysis of EEG data: first, the EEG artifacts removal, second the 

EEG source reconstructions, third the validation of EEG signal processing methods.  

In any actual measurement of signals, the contamination of artifacts and noises is an 

avoidless problem especially  for the faint signals. Moreover this problem in the 

measurement of EEG signal is exacerbated by the introduction of extraneous 

biologically generated and externally generated signals into the EEG. These sources 

of noises and artifacts include eye blinks, eye movements, heart beat, breathing, and 

other muscle activities. Some artifacts, such as eye blinks, produce voltage changes of 

much higher amplitude than the endogenous brain activity. In this situation, the data 

must be discarded unless the artifacts can be removed from the data. There are various 

kinds of algorithms to remove artifacts from EEG. Among them, Independent 

Component Analysis (ICA) is the most popular one. But ICA requires manually 

selection of independent components corresponding to artifacts and can not be used in 

online artifacts removal.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 Figure 1.1 EEG signal and artifacts (a) Clean EEG signal (b) Eye blink(c) Eye 
movement (d) 50Hz noise 
 

The inverse problem that reconstructs the electric sources in the brain from the 

potentials measured on the scalp, generally termed EEG inverse problem has been an 

important topic in electrophysiology for a long time. There are two different kinds of 

approaches to solve this inverse problem. The first kinds of approaches are based on 

dipole model, assuming one or multiple current dipoles to represent the electric 

sources, and trying to determine the location or amplitude of these dipoles. The 

second kineds of approaches employ distributed source model and estimate the 

current distribution in the brain, such as Low Resolution Electromagnetic 

Tomography (LORETA. The EEG inverse problem is well known for its 

indetermination. Moreover, the volume conductor characteristics of brain makes all of 
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the signals be compounded together, thus the EEG signals are compounded with 

external and internal noises and artifacts and uncorrelated brain electric activities. The 

external noises and artifacts may invalidate the inverse models if not correctly 

removed. The irrelevant brain electric activities make the inverse problem much more 

difficult as the number of multiple current dipoles cannot be determined for the dipole 

model. Although the LORETA does not need to assume the number of the multiple 

current dipoles, it fails to discriminate several different brain electric activities with 

nearby active areas, because of its low spatial resolution. Many methods are used in 

the pre-processing before solving the inverse problem(Du, Leong,1994; Larsen and 

Prinz, 1991; Noda,1989). Digital and analog filters are widely used to remove the 

noise and artifacts from the EEG signal. The choice of the parameters of the filters is 

based on the known characteristics of EEG signals, artifacts and noise. However, in 

real case, this condition can not be always met. The EEG signals of concerned brain 

electric activity are often interfered by many unknown or unexpected noise and EEG 

signals of irrelevant brain electric activities; moreover in some case, the characteristic 

of EEG signals of concerned brain electric activity is unknown neither. A widely used 

non parameter method in the research of Event-Related-Potential (ERP) is to filter out 

all kinds of noise and uncorrelated brain electric signals by averaging a large number 

of time-locked EEG trials. However, in the actual EEG measurement for brain 

activities which are spontaneous rather then event-related, such as epilepsy, ERP 

cannot be applied and thus the original LORETA can not be used. 

 

 For testing some EEG signal processing methods, such as Independent Component 

Analysis (ICA) for EEG signal separation, accurate information of the source signals 

is necessary. However, EEG signals are complicated and compounded with 
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environmental noise and unexpected artifacts. Moreover because of the volume 

conductor characteristic of brain the original signals are unknown. A testing platform 

that provides a real experimental environment is necessary and needed.  

 

1.2  Research objectives 

 The first objective of this research was to develop a novel testing platform which can 

be easily acquired and is very similar to the human brain to verify various kinds of 

EEG signal processing methods, especially ICA for the decomposition of mixed 

signals on the head.  

 

The second objective of this research was to automatically remove two major kinds of 

artifacts in EEG signals, ECG and ocular artifacts using ICA.  

The third objective of this research was to locate specific brain activity in the brain 

from single-trial EEG signals. 
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Chapter 2 

LITERITURE REVIEW 

2.1 Previous work on ECG artifact removal  

 The ECG contamination may vary widely in intensity from subject to subject and 

even between epochs for a given subject.  

 

 Recording techniques such as balancing resistors and reference electrode placement 

(montage), help to minimize ECG signal, usually the references are located at the two 

earlobes. However, the montage is very sensitive to the dissymmetry of the 

distribution of ECG signals on the scalp. Although the strength of ECG signals does 

not obviously change across the EEG channels, the remnant of ECG artifact sometime 

is considerably large.  

 

Thus techniques to eliminate the ECG signal have been proposed (Barlow and 

Dubinsky 1980; Ishiyama el al. 1982; Nakamura and Shibasaki 1987). These 

elimination techniques employ a subtraction of the average ECG from the EEG to 

construct a clean EEG record. Subtraction methods suffer from both the need to 

record a separate ECG channel and the inability to cope with a waxing and waning 

ECG contaminant.  

 

The use of robust filters-smothers to eliminate ECG contamination was introduced to 

cope with these problems (Larsen and Prinz, 1991). These filter-smoothers do not 

require a separate channel of ECG information. In this kind of procedure, ECG 

artifacts are considered as additive outliners and the real EEG signal is obtained by a 
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robust A-R model algorithm. However, not only ECG artifacts are additive outliners 

in the A-R model, any suddenly appearing peaks may be additive outliners such as 

event related potentials (ERP). Thus, this technique can lead over correction. It was 

reported that by using Independent Component Analysis (ICA), ECG artifacts can be 

successfully removed without any over correction (Wei, Gotman, 2002). But these 

algorithms still need visual search for ECG artifact component. Thus they can not be 

used in online processing. 

 

2.2 Previous work on Ocular artifacts  

 Among the many sources of artifacts in EEG studies, eye activity plays a dominant 

role. The need of ocular artifacts correction has been shown in the past, and several 

methods have been introduced (Brunia et al, 1989 and Jervis et al. 1988). 

 

 The simplest and actually most common eye artifacts correction method is rejection. 

It is based on discarding portions of EEG that correspond to EOG channel(s) 

containing attributes (e.g. amplitude peak, variance and slope) that exceed a 

determined criterion threshold (Barlow, 1979 and Verleger, 1993). However, the 

rejection method may lead to a significant loss of data, as well as lead to the portions 

used not being representative of the study made. This is particularly important when 

the brain signals of interest occur near/during strong eye activity, as happens for 

example in visual tracking experiments. Another problem associated with the 

rejection technique is that one may be unable to identify all eye activity beforehand, 

rejecting only the small portion that one can see, and considering artifact-free what is 

in fact only artifact-reduced. This may lead to wrong appreciation of the signals 

observed. 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


 7 

 To reduce the presence of eye activity in EEG measurements, the subject is often 

asked to avoid blinking, fix the eyes on a target, or restrict the blinking at particular 

times. The effectiveness of this eye fixation method can be questionable, especially in 

studies of children and of psychiatric or neurological patients, who are not fully co-

operative. Thus it may be difficult to collect a sufficient amount of artifact-free data. 

Besides, this requirement constitutes a secondary task, leading to reduced amplitudes 

in the task of interest (Weerts and Lang, 1973; Verleger, 1991).  

 

 A third class of methods, that could be called EOG subtracting methods, bases its  

action on the assumption that the measured EEG is a linear combination of true EEG 

and ocular artifact. Accepting that one or more EOG derivations well represent all eye 

activity, a correction is proposed by subtraction of a regressed portion of this signal 

throughout the EEG (Gratton et al., 1983). Time-domain and Frequency-domain 

regression methods are popular in EOG artifact removal. Time-domain regression 

methods assume that propagation of ocular potentials is volume conducted and 

frequency independent and without any time delay. The frequency-domain regression 

methods consider the medium through which the EOG activity is conducted to a scalp 

location a linear filter. This means for example that some frequencies can be 

attenuated more than others. In the time domain the relation between the actual EOG 

activity (denoted byVEOG ) and the EOG artifact measured at a given scalp location, 

(denoted byVeog ) can be then described as follows: 

                                          
1

( ) ( ) ( )
M

i i
k

Veog t VEOG t k p k


   

t=1, 2, 3, …, N, k=0, 1,2 ,..., M, M<N-1,                                                               (2.1)  
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In which i stands for successive trials (time over the experiment) and t for time in 

each trial, p(k) is a series of weighted attenuation factors, namely the filter or system 

characteristics. The solution of this linear filter implicates thatVeog  is not only 

dependent onVEOG , but also on sample points in the past t - k. This means that the 

artifact Veog  on the EEG can be deformed but remains linearly related to the EOG. 

(Woestenburg, et al 1982). There are disputes about the advantages of the frequency-

domain regression over the time-domain regression, as it was reported that in reality 

the frequency dependence does not seem to be very pronounced. (Kenemans et al, 

1991; Croft and Barry, 2000) However, neither time nor frequency techniques take 

into account the propagation of brain signals into recorded EOG. Thus a portion of 

relevant EEG signal is always cancelled out along with the EOG artifact. (Jervis et al, 

1989). 

 

Berg and Scherg (1994) have introduced another approach for eye artifact correction, 

a model based on multiple source eye analysis. In this MSEC (multiple source eye 

correction) approach, ocular artifact correction is performed by subtracting source 

waveforms defined by the eye activity, rather than proportions of the resulting EOG 

signals. The source waveforms are calculated from the EEG signal, together with 

topographic estimations of the propagation of eye activity throughout the head. This 

method results in considerable eye artifact suppression, but contains some basic 

restrictions. First, to perform this type of correction one has to choose a set of 

calibrating data containing eye activity that goes well above the background signals 

(in this context, the EEG). As stated above, this requirement may be difficult to fulfill. 

Second, the technique assumes  orthogonality of the source vectors, that are a function 

of the location and orientation of each source, and of some head parameters. It is 
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possible that this solution represents a good approximation to the real conditions, but 

some further improvements may be necessary, like some independent considerations 

between each source and the background EEG. Signal-space projection method 

(Huotilainen et al, 1995) is used to identify and remove eye-blink artifacts, with much 

success. This approach, like that of Berg and Scherg (1994) requires either a prior 

modelling of the production of the artifact, or a considerable amount of data where the 

artifact's amplitude is much higher then the EEG or MEG under study. These 

requirements, as stated above, may be difficult to fulfill.  

 

 The adaptive filters are widely used in EOG artifact removal. One typical application 

of adaptive filtering is the interference cancellation by using the available reference to 

the interference. An adaptive eye artifact canceller is given in Fig 2.1 Adaptive filters 

are especially suitable for non-stationary signals such as the EEG. 

 

 

             

               Figure 2.1 Adaptive filter eye artifact canceller   
 
 

The essential assumption for an adaptive interference canceller is that the reference 

signal is  uncorrelated with the desired signal. Otherwise, over correction will occur. 
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Unfortunately, the undesired correlations often exist due to the dc offset drift in the 

reference and the EEG signals. Slow cognitive potentials and head or body movement 

artifacts are often responsible for the dc offset drift. Quite a few on-line dc drift 

removal algorithms have been proposed in various contexts. All dc detrenders are 

essentially high-pass filters. Applying dc drift removal algorithms will inevitably have 

effects on the slow cognitive potentials. Since the slow potentials are important to 

many EEG studies, a dc detrender can not be used in these situations. Undesired 

correlations are the traditional difficulty in the adaptive filtering theory, and there are 

no general solutions to the problem. All feasible solutions are problem specific (Du, 

Leong and Gevins, 1994). 

 

 Time-frequency analysis has been introduced into the artifact removal. Wavelet 

based techniques for EOG artifacts removal have been  proposed recently (Venkata 

Ramanan, 2004). Wavelet transforms are used to analyze time varying, non-stationary 

signals, and EEG falls into these category of signals. The ability of wavelet analysis to 

accurately decompose EEG into specific time and frequency components leads to 

several analysis applications and one among them is denoising. EEG signals have 

frequency content that varies as a function of time and recording sites on the scalp. 

Hence wavelet techniques can optimize the analysis of such signals by providing 

excellent joint time-frequency resolution, which is not possible with Fourier 

Transform. In contrast to Short Time Fourier Transform (STFT), wavelet transform 

adapts the window size according to the frequency. .  In EEG data sets, there may be 

some specific components or events that may help the clinicians in diagnosis. They 

may tend to be transient (localized in time), prominent over certain scalp regions 

(localized in space) and restricted to certain ranges of temporal and spatial frequencies 
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(localized in scale). Wavelet analysis provides flexible control over the resolution 

with which neuroelectric components and events are localized in time, space, and 

scale. However the choice of value of wavelet coefficients threshold for de-noising is 

quite experiential. The general assumption of wavelet based de-nosing techniques is 

that the artifacts such as (heartbeat and EOG artifacts) are much stronger (10-100 

times) than EEG signal. So the EEG signal can be considered as “noise” compared 

with artifacts and can be filtered out by setting a cut-off threshold from the wavelet 

coefficients of the recorded signal and then get the “pure”  artifacts. The reconstructed 

EEG signals are obtained by subtracting the pure artifacts from the recoded signals. 

However, this assumption is not always true as the EOG artifacts decrease rapidly 

when propagating from forehead to occipital area. In the occipital channels the EOG 

artifacts are comparable with the EEG signal. In these channels, the EEG signal can 

not be considered as noise-like compared to EOG signal. 

 

Inspired by the non-linearity of signal processing in the human brain, Rao and Reddy 

(1995) introduced a non-linear on-line method to enhance the EEG signals in the 

presence of ocular artifacts. Their method, using the recursive least squares based on 

the second-order Volterra filter, has shown good performance, but its non-linearity is  

still too limited, as it stops at second order statistics (variances and covariances). 

Mathematical and experimental work proves that higher order statistics may be 

needed to separate independent signals (Karhunen, 1996; Hyvarinen and Oja, 1997; 

Karhunen et al.,1997 ). Makeig et al. (1996) have recently introduced a comparable 

application of the independent component analysis (ICA) to EEG signals. Using ICA 

to separate brain activity from eye artifacts, based on the assumption that the brain 

and eye activities are anatomically and physiologically separate processes, and that 
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their independence is reflected in the statistical relation between the electrical signals 

generated by those processes. Even if no limitation seems to exist on the type of 

artifact that can be extracted, the fact that the ocular ones are the most representative 

justify their choice as illustration of the method. Like the application in ECG artifact 

removal, this method still needs visual search for EOG artifact component. 

 

2.3 The EEG source reconstruction 

 The inverse problem of EEG is defined as the estimation of the distribution of 

electromotive force (EMF) in the brain from EEG by mathematical manipulations. As 

is well known, the solution to the inverse problem is not unique, since there exist 

silent EMF distributions that do not generate any electric at all outside the closed 

surface involving them (Rush, 1975). This difficulty is usually circumvented by 

making use of some simplified models for the EMFs such as multipoles, moving 

dipoles, multiple fixed dipoles, distributed source distribution and so on: the 

parameters of these models can be determined uniquely by fitting the forward solution 

to the measured EEG.  

 

 Depending on the models for the EMF distribution, various methods have been 

proposed to solve the inverse problems: equivalent dipole method (Musha and 

Okamoto, 1999), BESA (Scherg and Picton, 1991), MUSIC (Mosher and Leahy, 

1998), LORETA (Pascual-Marqui et al., 1994) to name a few of the major ones. The 

equivalent dipole method is based on the moving dipole model. In this method EMF 

sources in the brain are approximated by a small number of current dipoles, and their 

locations and moments are estimated by fitting the EEG generated by them to the 

measured ones. In BESA (Brain Electric Source Analysis) and MUSIC (Multiple 
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Signal Classification), the locations of dipoles are assumed to be fixed during some 

time interval, and they are determined from the potential distributions measured 

repeatedly during that time interval. The LORETA source estimation approach is a 

kind of discrete and distributed source estimation. The source region is divided into 

grids. As the grids are dense enough, the dipole source can be considered to locate on 

each of the grid points. For a given orthogonal coordinate, the dipole sources with 

different strengths and directions can be expressed as the linear combination of the 

unit dipoles along x, y, z directions. N observing points were put on the scalp outside 

the source region. The relationship between the strength of the unit dipoles along the 

directions at each grid point and the potential at the observing points can be written as 

 

                                                            v = KJ                                                             (2.2)                                 

 

where J = 1 2[ , ,... ]T T T T
Mj j j is a 3M-vector comprised of  the current densities  ji (3-

vector) at  M points with known locations within the brain volume; v is the N –vector 

comprised of measurements; K is  the transfer matrix with 3N M  ranks. The transfer 

matrix of can be calculated by the numerical method, such as the finite-element 

method, however, the analytical expression is available for the sphere model of brain. 

The number of grids is usually greater than that of the observing points, that is 3M>N, 

so this simultaneous equation system is an underdetermined system, and it does not 

have a unique solution. The LORETA source estimation approach is to find out  

                                                 
2

min
J

BWJ  , under constraint:  v = KJ                    (2.3)                                                        
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where B is the discrete Laplacian operator 3N M matrix. W is a diagonal matrix with, 

1

ii iw k
  where ki is the ith column of K. If W is nonsingular, the unique solution of 

equ.2.3 is 

                                                  ( )J W KW v                                                          (2.4) 

  

where A+ denotes the Moore–Penrose pseudoinverse of matrix. Thus a low resolution 

tomography is generated by this algorithm.  

  LORETA is famous for the generation the "smoothest" solution with the effect of 

depth properly considered. The distributed source model and the "smoothest" solution 

of LORETA have been adopted by many researchers because it is more 

physiologically realistic than the dipole model. The dipole model and the distributed 

source model are all based on the spatial distribution of the EEG potential, while the 

temporal characteristics of EEG signals are not fully considered. Moreover, all 

previous methods for EEG inverse problem are actually only available for event 

related potential (ERP) which is acquired from average of hundreds of time-locked 

EEG trials, and not available for single trial EEG. So they can not be used to locate 

the source of specific spontaneous brain activity. 

 

2.4 The validation of EEG signal processing methods 

There are two ways to validation of EEG signal processing methods.The first method 

is numeric simulation using simplif ied head models. Although several sophisticated 

head models have been developed which provide realistic head shapes (Cuffin, 1995), 

most commonly used models are multi-shell spherical models due to their simplicity 

in theoretical treatment and computation. These models consist of three to four 

concentric shells with different conductivity values representing the brain, skull, 
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cerebrospinal fluid (optional), and scalp (Rush and Driscoll, 1968; Cuffin and Cohen, 

1979; Mingui, 1997; Pascual-Marqui, 1999). The choice of the head model is crucial 

as more simplified model requires less computation but loses more similarity to the 

real human head, while more sophisticated head models usually require large 

computation. Moreover, as the simulation methods only consider ideal situation in 

which the data is clean without any noise and artifacts, the ability of coping with 

noises and artifacts can not be tested by the numeric simulation way. 

 

 The second one is using implanted dipoles in epileptic patients undergoing 

presurgical intracerebral recordings (Cuffin et al 1991). The current dipoles are 

created by passing a weak (subthreshold) current through intracerebral electrodes 

implanted in the brains of epileptic patients for seizure monitoring. The locations of 

these dipoles are accurately known from roentgenographs. This method can provide 

totally realistic testing environment and most reliable results. However, implanting 

electrodes in the brain needs proper subjects and specific surgery, which are 

extremely inconvenient and not available for ordinary researchers.   

 

2.5 Mathematical Background of Independent Component Analysis 

Independent component analysis is a novel statistical technique which was developed 

in context with blind source separation (Jutten and Herault, 1991; Comon, 1994), in 

which case the original independent sources are assumed to be unknown, and yet to 

be separated from their weighted mixtures.  

 

2.5.1 The Model 
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The basic data model used in defining (linear) ICA assumes that the observed n-

dimensional data vector at time instant t, x(t) = [x1(t),…, xn(t)]T is given by   

                       
1

( ) ( ) ( )
m

i i
i

t t t


 X a s As                                                                      (2.5) 

where s(t) = [s1(t), … , sm(t)]T are m independent source signals with zero mean, 

which can be guaranteed by explicitly extracting the mean of each xi(t) without loss of 

generality, and A = [a1, … , am] is a constant mixing matrix which is a function of the 

location of the sources, the positioning in an EEG recording, the shape and the 

conductivity distribution of the brain as a volume conductor(Vigario, 1997). As in the 

general blind signal separation problem, A is assumed to be an nm matrix of full 

rank (there are at least as many mixtures as the number of independent sources, i.e. n 

> m). In addition, although A is unknown, we assume it to be constant, or semi-

constant (preserving local constancy) in order to perform ICA. 

 

If W denotes the inverse or pseudo-inverse of A, the problem can be redefined 

equivalently as to find the separating matrix W that satisfies 

 ( ) ( )t ts Wx    (2.6) 

 

2.5.2 The ICA algorithm 

It has been documented that the preprocessing the input data (mixtures) by whitening 

can significantly ease the separation of the source signals (Karhunen et al., 1997). 

Therefore, in the first step, we implement standard principal component analysis 

(PCA) for whitening x. It can be shown in the compact form (noting that we have now 

dropped the time index t): 

 v Vx       (2.7) 
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where E{vvT} = I with I denotes the unit matrix. The whitening matrix V is given by 

 1/ 2 TV D E    (2.8) 

where D = diag[1, … , m] is a diagonal matrix with the eigenvalues of covariance 

matrix E{xix i
T} as its diagonal elements, and E is a matrix with the corresponding 

eigenvectors as its columns. 

 

The key to estimating the independent components from their mixtures by using ICA 

is non-Gaussianity. Intuitively speaking, maximizing the norm of this kurtosis leads to 

the separation of one non-Gaussian source from the observed mixtures. In our 

algorithm, non-Gaussianity is measured by the classical fourth-order cumulant or 

kurtosis. Consider y = wTv, with ||w|| = 1, kurtosis is calculated by 

 4 2 2( ) {( ) } 3[ {( ) }]kurt E E y y y  (2.9) 

where operator E denotes the mathematical expectation.  

Then the FastICA fixed-point algorithm based on gradient descent searching 

(Hyvarinen, 1999; Hyvarinen and Oja, 2000) is used to search the expectation 

maximization. As a result, rows of the separating matrix W and corresponding 

independent sources are identified one by one, up to a maximum of m. The basic steps 

of this efficient algorithm are as follows:  

1. Choose initial vector w0 randomly (iteration step l=0). 

2. Let wl = E{v(wl-1
Tv)3}-3wl-1. 

3. Let wl=wl/||wl||. 

If stop criterion has not been satisfied, go back to step 2 

Due to the cubic convergence of the algorithm (HyvLdnen and Oja, 1997a), the 

solution is typically found in less than 15 iterations. 
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Chapter 3 

VOLUME CONDUCTOR PLATFORM FOR 

VALIDATION OF EEG SIGNAL PROCESSING 

ALGORITHMS 

3.1 The volume conductor simulation platform 

In this study, a volume conductor platform method using real volume conductors 

structurally similar to the human head for validation of EEG signal processing method 

by simulation was proposed. As one of such cases, a watermelon volume conductor 

simulation platform has been developed. It has been found that watermelon has some 

physical characters very similar to the human head. Firstly, a watermelon and a 

human head are both spherical volume conductors. Secondly, they are both composite 

of different layers with materials of different electrical resistances, as shown in Fig. 

3.1 (a) and (b). In a human head, the average resistance of the scalp is about 2.22 m, 

the average resistance of the skull is about 177Ωm, and the brain is about 2.22Ωm. In 

a watermelon, the average resistance of the peel is about 13kΩm, the average 

resistance of the white part of the flesh is about 186Ωm, and the red part is about 

73Ωm. Although the values are different, the fundamental structural features are the 

same. These common features make watermelon an ideal model platform for 

simulation of the electric activity of the human head. By installing electric current 

dipoles in the watermelon and controlling the amplitudes and frequencies of the 

currents, the electric activity of a human head can be simulated. By placing EEG 

electrodes on the surface of the watermelon, the potentials on the watermelon surface 

can be measured in the same way as scalp EEG acquisition. The significant advantage 

of such a volume conductor simulation platform is that for specific measured EEG 
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data, the precise information of the corresponding electric activities in the volume 

conductor is known. This can be used to conduct accurate validation of many EEG 

signal processing methods, such as the ICA and special power mapping, as shown in 

the following sections.    

 

 

                                                                  (a)                       

 

(b) 

Figure 3.1 Models of human brain and watermelon 
(a) Concentric spherical head model by Rush and Driscoll (1969). The model 
contains a region for the brain, scalp, and skull, each of which is considered to be 
homogeneous. (b) Concentric spherical structure of watermelon 
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3.2 Experiment Setup  

In order to show how the proposed volume conductor brain activity simulation 

platform serves the purposes, experiments have been conducted. A watermelon of 

diameter 165 mm (close to the size of human head) was used for the volume 

conductor body. Six  spinal electrodes were inserted into different part of the 

watermelon, forming three dipole sources in the volume conductor. The simulated 

brain activity signals were generated by three function generators. The simulated 

signals were injected into the watermelon through the spinal electrodes. To model the 

dipole sources, every source consists of two electrodes, one connected to the function 

generator the other is connected to the ground. A total of 17 electrodes were attached 

on the surface of the watermelon, according to the 10-20 system, to receive the signals. 

All signals are measured and recorded using a commercial EEG machine (Mactronis). 

The overall setup is shown in Fig.3.2. 

 

 

Figure3.2 Experimental setup for the validation of the volume conductor brain activity 
simulation platform 
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3.3 Results and discussions 

3.3.1 Validation of ICA using the volume conductor brain activity 

simulation platform   

ICA is a widely used method for blind signal separation. To test the valid ity of ICA in 

EEG signal decomposition, three signals, S1, S2…S3 of frequencies 4 Hz, 1 Hz and 8 

Hz, respectively, were generated and injected into the watermelon through the spinal 

electrodes. The three groups of spinal electrodes were located at P4, Cz, T3, as shown 

in Fig. 3.3. The input source data, the raw data and separated signals are shown in 

Fig.3.4 and 3.5. Signals from the 17 channels on the surface of the watermelon were 

recorded, and then were separated into independent components by ICA. The 

separated independent components were validated by comparing the components with 

the original inputted signals. Because the ICA separated components have zero mean 

and unit variance, the original sources are normalized to zero-mean and unit variance, 

the mean root MSN between the ICA components and the corresponding normalized 

original sources were then computed, the mean root MSE of the separated signals was 

found to be 0.2, indicating a good accuracy in the signal separation.  

 

3.3.2 Validation of spatial power mapping using the volume 

conductor brain activity simulation platform   

In EEG measurement, spatial mapping is often used for identifying the location of the 

signal sources. The volume conductor platform can test the methodology of 

identification the source location easily. The same measured data obtained from the 

ICA validation as described in Section 3.3.2 were used for checking an EEG special 

power mapping method. The real locations of the three dipole sources generated by 
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the three groups of spinal electrodes were known at P4, Cz, and T3, respectively, as 

shown in Fig 3.3. Compared with the three source locations determined according to 

the spatial power mapping as shown in Fig 3.5, identified according to the frequency 

bands 1.5-2.5 Hz, 3.5-4.5 Hz, and 7.5-8.5 Hz of the dipole sources. The accuracy of 

the special mapping in terms of dipole source frequency and locations was validated 

by comparing the actual dipole sources and with the three maps. Comparing the 3 

dipole sources and the 3 power maps, it was found that each of the maps 

corresponding to one of the three frequency bands shows only one peak, which has 

the location exactly the same as the location of the dipole source having the frequency 

within the band. 

 

 

(a) 
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(b) 

 

(c) 

Figure 3.3The location of the sources. (a) Platform of source location (b) Left side 
view of source location(c) Right side view of source location  
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(c) 

Figure 3.4 Result of ICA Experiment (a) ICA test for three sources. (a) Input 
source data. (b) Raw data of ICA testing experiment. (c) ICA components C1, C2 
and C3 are separate sources, 8Hz, 1 Hz and 4 Hz sinuous waves.  

 

           

 
                                                        (a) 
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(b) 

Figure 3.5 (a) Power spatial maps at three frequency bands. The maps are gray scaled, 

dark represents large amplitude. (b)The real source location on the watermelon 
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Chapter 4 

ICA BASED AUTOMATIC ARTIFACT REMOVAL 

4.1 Model of ECG artifact 

Because the heart is far away from the head, the potentials of ECG artifact is almost 

the same everywhere on the scalp. After ICA decomposition, the entries of the 

coefficient map of the component corresponding to ECG artifact are expected to have 

the same amplitude. As the sources of brain activities are inside the brain and near the 

electrodes on the scalp, the entries of the coefficient map of the corresponding 

components are the function of the location of the sources and different with each 

other. Thus, this feature is unique for the identification of ECG components. Fig.4.1 

shows the ICA components and coefficient maps of ECG component and brain 

activity components. It is shown that the coefficient map of ECG component is the 

same everywhere with out any change, while the coefficient map of brain activity 

component changes a lot from location to location.  
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(b) 

Figure 4.1: ICA components and coefficient maps. (a)Component C2 corresponds 
to some brain activity component C0 corresponds to the heartbeat artifacts (ECG). 
(b) The coefficient maps of components C0 and C2. The maps are gray scaled, 
dark represents large amplitude. 
 
 

     The numeric description of this feature is given by the normalized variance: 

               2( ) ( ) / ( )n i i iVar Var Meana a a      i=1, 2,….M                                           (4.1) 

Var () denotes the variance of the entries of a vector, Mean () denotes the mean of the 

entries of a vector, i stands for the ith components, M stands for the number of 

independent components of ICA. 

 

Apparently, the coefficient vector of ECG component has the minimum normalized 

variance. The identification of ECG component can be realized by finding the 

component s*of which coefficient vector s*, minimizes the ( )nVar a .  It is easy and 

feasible if ICA can separate the ECG artifacts from brain activities. However, in case, 

ECG artifact is not separated from brain activities by ICA, this method will discard 

other components instead. So a more robust method is needed. When ( )nVar a  

exceeds a threshold c, the corresponding component is remained. The experiential 

value of c is 0.01. 

 

4.2 Automatic ECG artifact removal algorithm  

 The algorithm for automatic ECG artifact removal is as follows: 
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(1) Decompose the original data x by ICA to get the components si and the 

coefficient vectors ai of each component. Where i=1,2,…M , M is the number 

of the total ICA components 

(2)  Find the component s* of which the coefficient vector a* satisfies the 

conditions below: 

       2( ) ( ) / ( )nVar Var Mean  a a a , 

2( ) ( ( ) / ( ) )n i i
i

Var Min Var Mean a a a , 

( )nVar c a , 

(3) If a is found,  correct the original data  

( ) ( ) ( )c t t t  X X a s  

 

60 3-second-long epochs of EEG data from 5 subjects were tested. The ECG artifacts 

were successfully separated and identified from 58 sections. The ICA could not 

separate ECG artifacts from 2 sections, and the ICA components were remained by 

the algorithm. Fig. 4.2 shows the result of automatic ECG artifact removal on one 

epoch of the EEG raw data. Table 4.1 shows the normalized variances of the ICA 

components   
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(c) 

Figure 4.2 The ECG artifact removal. (a) the raw EEG data contaminated by ECG 
artifact. (b) Components decomposed by ICA (c) Corrected EEG  

 

    

 

 C0:   0.0005                 C5:    15.0373                C10:    33.1776 

   C1:   1.2767                 C6:    43.0366                C11:    16.0629 

   C2:   507.3110             C7:    191.0964              C12:     0.5863 

   C3:   753                      C8:     6.5521                 C13:     105.0777 

   C4:   3.2198                 C9:     35.7737               C14:      26.0770   

   Minimum normalized variance: 0.0005 

   ECG component identified: C0                    

  Table 4.1 Normalized variance of the ICA components  
 

4.3 Model of Ocular Artifacts 
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There are two different originating phenomena for ocular potentials. There is a 

potential difference of about 100mv between a positively charged cornea and negative 

cornea of the human eye, thus forming an electrical dipole, so called cornea- retinal 

dipole. Firstly, the rotation of the eyeball results in changes of the electrical field 

across the skull. Secondly, eye blinks are usually not associated with ocular rotation. 

However, the eyelids pick up the positive potential as they slide over the cornea. This 

creates an electrical field that is also propagated through the skull.  

The mechanism of origin and the direction of eye movements determine the resulting 

EOG wave shape. Vertical, horizontal and round eye movements usually result in 

square-shaped EOG waveforms, while blinks are spike-like waves. 

The OA are large, transient slow waves. The eye moment artifacts typically occupy 

the lower frequency range; from 0Hz up to 6-7Hz. The eye blinking artifact can reach 

to alpha band (8-13Hz). 

 

4.3.1 The correlation between EOG and ICA components 

corresponding to the Ocular Artifacts 

The EOG is a reliable indicator of ocular movements and ocular eye movements are 

independent with brain activities, thus the ICA components corresponding to the OAs 

are expected to be highly correlated with EOG, while other components 

corresponding to the brain activities are expected to be uncorrelated with EOG. 

However the recorded EOG are corrupted by the EEG, the correlation between EOG 

and artifactual components is suppressed and the correlation between EOG and non-

artifactual components is enhanced. Thus, it is necessary to remove EEG from the 

recorded EOG channel before identifying artifactual components by using correlation 

between EOG and ICA components.  
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4.3.2 Wavelets based de-nosing on recorded EOG 

  (1) Problem Statement  

As previously mentioned, the recorded EOG is also contaminated by the EEG. It can 

be assumed that the recorded EOG is a superposition of the true EOG and some 

portion of EEG signal, thus we have:  

( ) ( ) ( )rec ture trueEOG t EOG t k EEG t                                                                        (4.2) 

Where ( )recEOG t is the contaminated EOG, ( )trueEOG t  is due to eye activities, and 

( )truek EEG t is the propagated brain activities at the recording site. 

 

The true EEG is a noise-like signal. We can not observe any clear patterns within it, 

nor can we simply correlate the particular underlying events with its waveform. 

Furthermore, in the awake, conscious state, neurons are firing in a more independent 

fashion. As a result of this resynchronization, the EEG signal is even more random-

appearing. 

 

(2) Wavelet Thresholding  

The main statistic application of wavelet thresholding is a nonparametric estimation 

of the regression function f, based on observations is at time points it . The 

is observations are modeled as: 

 ( )i i is f t   ,  1, 2,... ( 2 )ni N N                                                                           (4.3) 

Where i are independent and identically distributed N (0, 2 ) random variables 

(noises) at equally spaced time points it . 
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Due to the orthogonality of the wavelet transform, we are allowed to perform filter in 

the space of wavelet coefficient. The procedure for suppressing the noise involves i) 

finding the coefficients of the wavelet transform of  { }is ; ii) comparing each 

coefficient against an appropriate threshold; iii) keeping only those coefficients larger 

than the threshold; iv) applying an inverse wavelet transform to obtain an estimate of 

f . 

 

The assumption is that large coefficients kept after thresholding belong to the function 

to be estimated, and those discarded belong to the noise. This is a fair assumption due 

to the good energy compaction of the wavelet transform. It is expected that some of 

the coefficients of the function might be discarded because they are of the same level 

as the noise coefficients. Thus, the performance of this technique depends on the 

proper choice of the wavelet filter that results in only a few nonzero function 

coefficients and the SNR, the lower SNR is, the more function coefficients will be of 

noise level and discarded. Fig. 4.3 and Fig. 4.4 clearly show how the noise energy 

influences the performance of wavelet de-noising. In our application, since the pure 

EOG is much higher than propagated EEG, the wavelet de-noising can perform well.   
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Figure 4.3 Original signal, the length is 1024 points 

 

(a) (b) 

 

(c)                                                                (d) 

   

                             (e)                                                               (f) 

Figure 4.4The performance of wavelet de-noising under different noise energy 
level 
(a),(b) Gaussian noise with sigma=0.2 was added to the original signal. The 
waveform of the estimated signal by wavelet de-noising is the same as the original 
signal 
(c),(d) Gaussian noise with sigma=0.5 was added to the original signal. The 
waveform of the estimated signal by wavelet de-noising is slightly distorted. 
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(e),(f) Gaussian noise with sigma=1 was added to the original signal. The 
waveform of the estimated signal by wavelet de-noising is serious distorted. 

 

(3) Stationary Wavelet Transform 

It is known that the classical DWT suffers a drawback: the DWT is not a time- 

invariant transform. This means that, even with periodic signal extension, the DWT of 

a translated version of a signal X is not, in general, the translated version of the DWT 

of X ( Coifman and Donoho,1995).How to restore the translation invariance, which is 

a desirable property lost by the classical DWT. 

 

The idea is to average some slightly different DWT, called -decimated DWT, to 

define the stationary wavelet transform (SWT). There is a restriction: we define the 

SWT only for signals of length divisib le by 2J, where J is the maximum 

decomposition level, and we use the DWT with periodic extension. The 

approximation and detail sequences at each level of decomposition are of the same 

length as the original sequence, rather than becoming shorter by a factor 2 as the level 

increases (Nason and Silverman, 1995). 

 

The analysis is based on 960 point- long epoch of EOG signal (about 5.74 second, the 

signal was sampled at 167Hz), the same length as the EEG epoch that decomposed by 

ICA. Eye activity occupies the low frequency bands, from (0 up to 6-7 Hz) for eye 

movement artifacts, and between (8-13 Hz), excluding very low frequencies for the 

eye blink.  Stationary Wavelet Transform (SWT) is used to decompose the recorded 

EEG into various frequency scales.  SWT is chosen since it is time invariant and also 

it has better sampling rates in the low frequency bands, which produces smoother 

results. The decomposition level is restricted to five (0-2 Hz, 2-4 Hz, 4-8 Hz, 8-16 Hz, 
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16-32 Hz and 32-64 Hz), in order to have a reasonable computational complexity. The 

mother wavelet should be chosen in such a way that it better approximates and 

captures the artifacts in the noisy EEG signal. Coiflet 3 wavelet has been chosen as 

the basis function, since it resembles the shape of the eye blink artifact. This 

maximizes the amplitude of coefficients corresponding to the eye blink artifacts in the 

lowest band of the decomposition. It has turn out that it works properly as well for the 

eye movement artifacts as well. 

 

In the proposed scheme, the following threshold was used for calculating the 

threshold limits: 

               ( ) 2 ( )k k kT mean H std H                                                                         (4.4)                                              

where kH  denotes the wavelet coefficients of  kth level  of decomposition.  

Fig. 4.5 and Fig. 4.6 show the result of the de-nosing for a single epoch of eye 

blinking and eye rolling. 

 

                                                                    (a)    
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(c) 

Figure 4.5 Wavelet De-noising for eye blinking (a)Stationary wavelet 
decomposition  
of contaminated EEG (b) Contaminated EOG (c) corrected EOG 
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                                                                     (a) 

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
-8 0 0

-6 0 0

-4 0 0

-2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

 

(b) 
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(c) 
Figure 4.6 Wavelet De-noising for eye rolling (a) Stationary wavelet 
decomposition of contaminated EEG (b) Contaminated EOG (c) and corrected 
EOG 

 
 
4.4 Automatic Ocular artifacts removal algorithm 

The method has the following key steps: 

1. Four EOG channels in addition to the international standard 10-20 system are used 

in the EEG measurement; the placement of the electrodes is shown in Fig.4.7:     
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Figure 4.7 The electrode placement scheme  
 

2. The EEG raw data is decomposed into a number of independent components by an 

Independent Component Analysis (ICA); 

3. The portion of EEG in EOG is filtered out using a Stationary Wavelets Transform 

De-nosing (SWTD) method. 

4. Each ICA component is regressed upon the two corrected EOG channels, and is 

identified as artifactual when the squared multiple correlation coefficient ( 2R ) 

exceeds a cutoff value. 

5. Finally, the EOG components are corrected by the SWTD method and removed 

from the raw EEG data. 

 

Fifty 5- second- long epochs of EEG and EOG signals are studied. The mean 2R of 

un-artifact components is 0.2209 with variance 2   = 0.032 and the mean 2R  of 

artifact components is 0.74 with variance 2  =0.213. Thus 0.5 is reasonable value for 

cutoff. Fig.4.8 shows the results of this algorithm for a single epoch of contaminated 

EEG data. Table 4.2 shows the  2R  of each ICA components 
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(e) 

Figure 4.8 The result for a single epoch of contaminated EEG (a) Raw EEG data 
(b) Recorded EOG (c) ICA components of the raw EEG (d) The EOG artifactual 
components identified by the algorithm (e) Corrected EEG  
 
 

   C0:   0.9554                 C5:     0.0267              C10:     0.1599              C15:     0.1786 

   C1:   0.9415                 C6:     0.4482              C11:     0.3678              C16:     0.0519 

   C2:   0.1679                 C7:     0.0949              C12:     0.2116 

   C3:   0.5894                 C8:     0.1766              C13:     0.0292 

   C4:   0.1665                 C9:     0.1445              C14:     0.1450  

    

   EOG components identified: C0, C1, C3                

  Table 4.2 2R of the ICA components 
 

 

The experiment results show that by applying automatic components selection 

algorithms, ICA can be used in on-line artifact removal. Although different artifacts 
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need different selection algorithms, the system can work effectively, as these 

algorithms take little running time compared with the ICA decomposition. Moreover, 

in some cases, some kinds of artifacts are considered as signal instead, thus moving 

different kinds of artifacts one by one can provide additional choice to decide whether 

the artifacts will be removed as noise or  remained as useful information.    
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Chapter 5 

ICA BASED LORETA FOR BRAIN ACTIVITY SOURCE 

LOCATING 

5.1 The ICA-LORETA method 

An algorithm combining ICA and LORETA is presented in this chapter. This 

algorithm is based on the basic assumption that the electric current sources (neurons) 

involved in specific brain electric activity are simultaneously and synchronously 

activated and independent of the sources of other uncorrelated brain electric activity. 

This assumption is supported by previous animal studies (Pascual-Marqui, R.D, et al 

1994). Thus a linear model of the relation between the oscillation of the electric 

current sources and the measured EEG signals on the scalp can be developed. The 

discrete distributed source model at time instant t can be written as: 

 

                                                V (t) = KJ(t)+AN(t)                                                    (5.1)                       

                                                           

where J(t) = 1 2[ ( ) , ( ) ,... ( ) ]T T T T
Mj t j t j t is a 3M-vector comprised of  the current 

densities  j (t)(3-vector) at  M points with known locations within the brain volume; 

V(t) is the N –vector variable comprised of measurements; K is the transfer matrix 

with 3N M  ranks. N (t)= [N1(t), … , Nl(t)]T are L independent noise sources out of 

brain volume contributing to the measurement on the scalp; A is the noise transfer 

matrix with rank N L . Assume there are l different brain activities occurring in the 

observing time period, each has an independent dynamic current source distribution 

Ji(t), i=1,2,… l; J(t) equals to the superposition of the l distributions: 
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                                               J(t)= 
1

( )
l

i
i

J t

                                                             (5.2) 

 According to the simultaneity and synchrony assumption, the Ji(t) can be rewritten as  

JiSi(t), where J i = 1 2[ , ,... ]T T T T
i i M ij j j is a 3M-vector comprising the variances of current 

densities ji(t) in 3 directions (3-vector) at M points, S i(t) is a temporal variable with 

unit variance and zero mean describing the simultaneous and synchronous temporal 

oscillation of the current densities, thus Eq. (5.1) can be rewritten as: 

 

                                         V (t) = BS(t) +AN(t)                                                         (5.3) 

 

 

 

Where  B = [KJ1, KJ2,…KJ l ] is the N l matrix; S(t)=[S1(t), S2(t)…Sl(t)]T are l 

independent  variables. Eq. (5.3) can be rewritten as the ICA linear model: 

 

                                      V (t) = [B, A] [S(t),N(t)]T                                                    (5.4) 

 

 If l +L N, the ICA algorithm can estimate B and S(t) from V(t). Suppose that the ith 

independent component is corresponding to the specific brain activity. Let iB denote 

the estimation of Bi obtained from the ICA, where Bi= KJi is the ith column of B; the 

estimation of J i denoted by iJ  is given by the LORETA algorithm: 

                       

                                            ( )i iJ KW B                                                                 (5.5) 

where A+ denotes the Moore–Penrose pseudoinverse of matrix. Thus, a low resolution 

tomography for a specific brain activity can be generated by this algorithm. This ICA-
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LORETA method has been verified by numerical simulation and experimental tests 

using a volume conductor platform and fMRI, as shown in the following sections. 

 

5.2 Verification by Numerical simulation results 

A single layer sphere model (Wilson and Balyey 1950; Brody et al 1973), in which 

the brain is assumed to be a ball of homogenous volume conductor with unit radius, 

was used. The simulated EEG signal of two current dipoles located inside the ball 

along the x-axis with the coordinates (0, -0.5, 0) and (0, 0.5, 0), respectively, were 

generated by function generators, as shown in Fig. 5.1. The current amplitude of the 

two dipoles were varying with the time independently, which denoted by S1, S2 

respectively. The waveforms of S1, S2 are shown in Fig.5.2. The simulated signals on 

the surface of the brain were mixture of the two sources, as shown in the Fig. 5.3. At a 

particular instant t, which is denoted in Fig. 5.3, the signal potentials on each channel 

were used to reconstruct the source tomography by LORETA. The 2-D tomography at 

the plane z=0 is shown in Fig. 5.4. The simulated singles were decomposed by ICA 

obtaining the two original sources and the coefficient maps of these sources, as shown 

in Fig. 5.5 and Fig. 5.6. The tomograph was reconstructed by LORETA using the 

coefficient maps. The 2-D tomography at the plane z=0 is showed in Fig 5.7. It is  

obvious that LORETA based on single-trial data can only give low-resolution 

tomography and can not separate the two current dipoles, as shown in Fig.4, while 

ICA based on LORETA, as shown in Fig 5.7(a) and Fig 5.7(b), can clearly indicate 

the different locations of the two dipoles. 
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Figure 5.1 Single Sphere model with two current dipoles D1 and D2 
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Figure 5.2 The waveforms of S1 and S2 
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Figure 5.3 Four channels of the simulated EEG signals, the vertical line indicates the 
specific time instant at t=300ms 

 

 

Figure 5.4 The tomography reconstructed by LORETA 
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Figure 5.5 The two independent components separated by ICA. The first one was 
source S1 and the second one was source S2 

 

 

(a) 
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(b) 

Figure 5.6 The coefficients map of the Independent components (a) the first 
independent component (b) the second independent component. The maps were gray 
scaled, dark represents large amplitude. 

 

 

(a) 

 

 

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


 53 

 

(b) 

Figure 5.7 The tomography reconstructed by LORETA using the coefficient maps of 
(a) the first independent component (b) the second independent component 

 

5.3 Experimental verification using a volume Conductor 

To validate that ICA-LORETA can locate specific brain activity sources, a simulated 

experiment using a volume conductor platform was conducted. The test was designed 

based on the fact that watermelon has some physical characters similar to the human 

head. Firstly they are both spherical volume conductor. Secondly they are both 

composite with different layers of different electrical resistances. These make 

watermelon an ideal model of the human head in the test.  

 

5.3.1 Experimental setup 

In the test setup, signal generators were used to simulate the electric sources in the 

brain. The simulated signals were injected into the watermelon through the spinal 

electrodes. The output signals were tested on the surface of watermelon. 19 electrodes 
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according to the standard 10-20 system were used to measure the signals on the 

watermelon surface and PL-EEG Wavepoint system was used to record the measured 

signals, as shown in Fig.5.8. 

 

Figure 5.8 Devices of watermelon experiment 

 

5.3.2 Results of the watermelon experiment 

10 Hz and 5 Hz sine wave signals were used as the simulated sources. Fig. 5.9 shows 

the 4 channels of mixed signals measured on the surface on the watermelon. Fig. 5.10 

shows the first four ICA components. It can be seen that the two sine wave sources 

are separated in C2 and C4, where C1 and C3 are noise. The coefficient maps of C2 

and C4 are shown in Fig. 5.11. The location of the two sources are (0.3, 0.3, 0.8) and 

(0.3,-0.3, 0.8). The max value of the tomography of LORETA from the coefficient 

map of C2 is at (0.2793, 0.3414, 0.7759) and the max value of the tomography of 

LORETA from the coefficient map of C2 is at (0.2793, -0.3414, 0.7759). 
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Figure 5.9 Six channels of measured mixed signals on the surface of watermelon, the 
sampling rate was100Hz 
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Figure 5.10 The first four independent components; the sampling rate was 100Hz 
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(a) 

 

(b) 

Figure 5.11 The coefficient maps of the independent components corresponding to 
sources. (a) C2 (b) C4.  The maps were gray scaled, dark represents large amplitude. 
 

The results show that the ICA-LORETA method can be used in the source separation 

and locating on the volume conductor, for example, the separation and locating of 

EEG signals on the human head.  
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5.4 Extraction of brain activities in response to irregular auditory 

stimulus                             

In previous research, ICA method was mainly used to separate artifacts from the EEG 

signals, using ICA method to identify certain brain activity was not widely reported 

yet. In our project, the attention shifting response to sudden hand clap and pop 

stimulus under quite environment was successfully identified in the ICA components 

and find the location of the sources in the brain. These responses can be observed 

directly in the montage channels Fz-Cz and Cz-Pz. In the ICA components separated 

from EEG raw data, it was found that only one component has an obvious peak at the 

same time when the response vertexes appear in the montage channels (Shen, K.Q, et 

al 2004). Moreover, the topographies reconstructed by the LORETA are similar 

indicating that these responses come from the same area of the brain.  

 

 Two sets of results are listed below. The first set includes experiment Pop1 and Pop2. 

From the time marking, the brain activity components corresponding can be identified 

to pop stimulus (Fig. 5.12, Fig 5.13, Fig 5.14 and Fig 5.15). Components of ECG 

signal are also clear. The coefficient maps are consistent in experiments Pop1 and 

Pop2. The similar results are presented in the second set which consists of experiment 

Clap1 and Clap2 for clap stimulus (Fig. 5.16, Fig 5.17, Fig 5.18 and Fig 5.19). The 

coefficients maps of the response related ICA components are consistent, as shown in 

the Fig. 5.20 
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Figure 5.12 Raw EEG montage data (experiment pop1).Two vertexes were observed 
in Fz-Cz and Cz-Pz channels due to the pop sound stimulus at 6th second. 
 
 

 
 
Figure 5.13 Component C6 was the brain response due to the pop sound stimulus 
according to Fig 5.12. C3 was the heartbeat artifacts (ECG) 
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Figure 5.14 Raw EEG montage data (experiment pop2). Two vertexes were observed 
in Fz-Cz and Cz-Pz channels due to the pop sound stimulus at about 7th second. 
 

 
 
Figure 5.15 Component C1 was the brain response due to the pop sound stimulus 
according to Fig 5.14. C0 was the heartbeat artifacts (ECG) 
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Figure 5.16 Raw EEG montage data (experiment clap1). Two vertexes were observed 
in Fz-Cz and Cz-Pz channels due to the clap sound stimulus after 8h second. 
 

 

 

Figure 5.17 Component C2 was the brain response due to the clap sound stimulus 
according to Fig 5.16. C1 was the heartbeat artifacts (ECG) 
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Figure 5.18 Raw EEG montage data (experiment clap2). Two vertexes wre observed 
in Fz-Cz and Cz-Pz channels due to the clap sound stimulus 

Figure 5.19 Component C5 was the brain response due to the clap sound stimulus 
according to Fig 5.18. C1 was the heartbeat artifacts (ECG) 
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Figure 5.20 Coefficient maps of ICA components corresponding to response, the 
maps were gray scaled, dark represents large amplitude. 

 

The tomography reconstructed by LORETA using the ICA coefficient maps are 

showed in Fig 5.21, Fig 5.22, Fig 5.23, Fig 5.24. The dark area (indicated by the 

arrow) shows the location of brain activity sources. From the tomography, it is shown 

that the sources of the responses are all concentrated in the medial frontal gyrus area 

indicating that the responses are caused by infrequent auditory stimulus (Christoph 

Mulert, et al 2004; David Friedman, ea al, 2001; Muller, B. W, ea al 2003). The 

results are also cross-validated by fMRI. For the auditory stimulus in fMRI, there are 

two kinds of stimulus, 1000Hz tone (infrequent target: 8%) or tone of other four 

frequencies,200Hz, 300Hz, 500Hz or 700Hz( frequent un-target 92%) bursts (500ms 

duration) were presented to the subject.  Although, the stimulus of ICA-LORETA and 

fMRI were not exactly the same, and the subjects are not the same, the brain activities 

measured were the same, therefore the source location should be the same. 

 

The fMRI scanned during the infrequent target stimulus shows that there is a common 

active area between fMRI and LORETA, see Fig. 5.25. In the fMRI, there were other 

active areas which corresponding to other kind brain activities, but they are not 

covered by ICA-LORETA, as ICA-LORETA has filtered out other brain activities 

and remained the specific one.  

Evaluation notes were added to the output document. To get rid of these notes, please order your copy of ePrint IV now.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1


                                                                                                                                                                                                                                     

 63 

 

Figure 5.21 Tomography of ICA component C6 in experiment (Pop1) reconstructed 
by LORETA 

 

 

Figure 5.22 Tomography of ICA component C1 reconstructed by LORETA, in 
experiment (Pop2) 
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Figure 5.23 Tomography of ICA component C2 reconstructed by LORETA, in 
experiment (Clap1) 

 

 

Figure 5.24 Tomography of ICA component C5 reconstructed by LORETA, in 
experiment (Clap2) 
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Figure 5.25 Pictures showing activation regions corresponding to infrequent target 
stimulus, where the light areas were in activation. 
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Chapter 6 

CONCLUSIONS 

ICA is a powerful algorithm for blind signal processing and is very suitable for EEG 

signal decomposition. Combined with other algorithms, ICA can be used in automatic 

artifact removal, locating specific brain activity in the brain with promising results.  

 

(1)  A novel volume conductor brain activity simulation platform for validation of 

EEG signal processing methods has been presented. The platform consists of a 

volume conductor, spinal electrodes inserted into the volume conductor and 

function generators. By controlling the amplitude and waveform of signals 

generated by the function generators, a volume conductor brain activity simulation 

platform can be established, on which electric potentials at different locations can 

be measured. The measured signal together with the information of dipole sources 

can be used for validation of EEG signal processing methods. The simulation 

platform has been used in the validation of ICA in EEG signal decomposition and 

the validation of the spatial power mapping method for EEG analysis. 

 

(2) The experiment on the proposed volume conductor platform showed that ICA can 

successfully decompose mixed source signals on the human head and is robust to 

hardware and environmental noise. ICA can separate bioelectrical artifacts and 

hardware noise from raw EEG data as well as different brain activities. This 

conclusion is very important, since ICA is widely used in EEG artifact removal 

and is combined with LORETA in this research to locate specific brain activity 

using single-trial EEG data. However, the conclusion was not strongly supported 

by the validation of actual experiment on the human head or a similar volume 
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conductor platform in the previous study. All previous validation of ICA for EEG 

signal decomposition is numeric simulation without considering whether the liner 

mixture model is available on the real human head under the real noisy 

environment. The experiment on the novel platform provides a strong validation 

of this basic assumption for the application of ICA in EEG signal decomposition. 

 

 

(3) It has been verified by both experiment on the proposed platform and the previous 

research, ICA can separate artifacts from EEG signals with good accuracy. But the 

artifacts of EEG are quite different from each other both in time and frequency 

domain, using one model to identify all artifact components is not possible. Thus 

algorithms to identify artifactal independent components were developed for ECG 

artifact and EOG artifact in this research respectively. The algorithms require little 

computation but proved to be efficient. The experiments on real raw EEG data 

proved that these algorithms can automatically remove EOG and ECG artifacts 

without overcorrection and can be used in online EEG data processing.  

 

(4) It is needed to point out that for EOG artifact removal, 4 additional channels of 

EOG are used to identify the EOG independent components. This is also required 

for many other EOG artifact correction methods and acceptable in most cases. 

Since most of EEG machines have additional channels for EOG recording, and the 

increased data is small compared with 19 or even more channels of EEG data, it 

will not bring any problem in the data recording and processing. The electrodes 

around the eye will not bring any baleful affect to the subject during the test. 
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(5) The ICA-LORETA exploits the temporal characteristics of the signal in addition 

to the spatial conditions to solve the EEG inverse problem.  The results of 

numerical simulation and an real experiment on a volume conductor show that by 

introducing ICA to separate signals, the shortcoming of LORETA that it can not 

separate sources nearby has been overcome without invalidating the 

“smoothest ”condition of LORETA while other improvements of LORETA (Zhou, 

J. et al 2004) do not remain this condition. If the sources of brain activities are 

smoothly distributed and independent of each other, this algorithm can give better 

result than the LORETA and  algorithms based on dipole model. If the sources are 

diploes or highly concentrated, it’s worse than the algorithms based on dipole 

model and the improvements of LORETA based on the “highly concentrated” 

condition, but it is still better than the original LORETA when the independent 

condition is available.  

 

(6) Then fMRI shows that the active area in the human brain reacting to the external 

stimulus is not highly concentrated as dipoles but more likely to be smoothly 

distributed in the area with specific neural function. This proves that the 

distributed model used in LORETA is more reliable than the dipole model and the 

“smoothest” condition should be hold.  

 

 

(7) The tomography of ICA-LORETA and fMRI has the common active area, 

showing that the ICA-LORETA can locate event-related stimulated brain activity 

from single-trial EEG data with good accuracy. This is a promising result, since 

the original LORETA can only process averaged ERP signal. 
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(8) The ICA-LORETA can also be applied to spontaneous EEG measurement besides 

the single-trial Even Related Potential. This is an attractive virtue which neither 

original LORETA nor fMRI possesses, since most of the brain activities not even 

related but spontaneous. 
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Chapter 7 

FUTURE WORK 

(1) A new algorithm for automatic identification of OA components which does not 

need additional EOG channels will be developed in future. The new algorithm will 

utilize time _frequency features and the propagation pattern of ocular artifacts on the 

scalp instead of regression on the EOG channels.  

 

(2) The ICA-LORETA algorithm will be applied in more brain activities especially in 

the spontaneous brain activities in future. Since most of the studies were concentrated at 

the event related brain activities and few work were done on spontaneous brain 

activities because of difficult in separating and locating such activities, the ICA-

LORETA algorithm can help us to understand more about the spontaneous brain 

activities  
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