
OPTIMAL PRECOMPENSATION IN

HIGH-DENSITY MAGNETIC RECORDING

LIM YU CHIN, FABIAN

NATIONAL UNIVERSITY OF SINGAPORE

2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OPTIMAL PRECOMPENSATION IN

HIGH-DENSITY MAGNETIC RECORDING

LIM YU CHIN, FABIAN

(B. Eng. (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2006

Acknowledgements

I would like to express my deepest gratitude to my supervisors, namely Dr.

George Mathew, Dr. Chan Kheong Sann and Dr. Lin Yu, Maria. I would like

to thank Dr. George Mathew for all the technical discussions on my work, and

grounding in the fundementals of signal processing. Other than being a great

teacher, he has also been a great administrator. I am grateful for all his effort to

facilitate my academic studies. I would also like to thank Dr. Chan Kheong Sann

for the numerous discussions, which has helped me see things in new perspectives.

Lastly, I would like to thank Dr. Lin Yu, Maria for the enriching past year, in

which she has shared her expertise on specific areas in signal processing.

I would also like to express my outmost gratitude to John L. Loeb Professor

Aleksandar Kavčić of Harvard University. Professor Kavčić has magnanimously

invited me to visit his school during the course of this work, during which he has

shared with me his wealth of experience and knowledge. He has also provided me

an avenue to present my work at Information Storage Industry Consortium (INSIC)

meetings, which allowed me to interact with researchers in a foreign environment.

He has always treated me like his own student, and has played a key role in the

preparation of this manuscript.

My warmest appreciation goes out to all my friends and collegues at the Data

Storage Institute. I would especially like to thank Mr. Ashwin Kumar, Mr. Hong-

ming Yang, Mr. An He and Ms. Kui Cai for their encouragement, support and

technical advice during my study.

i

On a personal note, I would like to thank my family and friends, for supporting

me throughout my post-graduate studies. This work would not have been possible

without them.

ii

Contents

1 Introduction 1

1.1 Background on Magnetic Recording 1

1.2 The Magnetic Recording Channel 4

1.3 Signal Processing in Magnetic Recording 5

1.4 Nonlinearities in Magnetic Recording and Effectiveness of Write

Precompensation . 7

1.5 Other Types of Nonlinearities . 12

1.6 Organization and Contributions of the Thesis 13

2 Problem Statement and Solution Approach 14

2.1 The Nonlinear Readback Signal Model 14

2.2 Mean-Squared Error (MSE) Criterion 16

2.3 Motivation . 18

2.4 Summary . 23

3 Dynamic Programming 24

3.1 Finite-State Machine Model (FSM) 24

3.2 Finite-Horizon Dynamic Programming 27

iii

3.3 Infinite-Horizon Dynamic Programming 31

3.4 Discounted-Cost Technique . 32

3.5 Average-Cost Dynamic Programming 34

3.6 Summary . 38

4 Extracting Precompensation Values 39

4.1 Optimal Precompensation Extraction 39

4.2 Suboptimal Solution . 40

4.3 Error Propagation . 41

4.4 Summary . 42

5 Computer Simulations 43

5.1 Channel Characteristics . 44

5.2 Validity of Assumption 1 . 47

5.3 MSE Performance of the Discounted-Cost Technique 48

5.4 Optimum Precompensation for Coded Data Bits 49

5.5 MSE for MTR Coded Data Bits . 50

5.6 MSE for the Average-Cost Technique 52

5.7 Summary . 54

6 Dynamic Programming for Measured Signals 55

6.1 Q-Learning Technique . 56

6.2 Estimating the State Information 59

6.3 Incorporating Equalization Techniques 60

6.4 Q-Learning Simulation Results . 61

iv

6.4.1 NLTS Measurements . 63

6.4.2 Observations on Q-value Convergence 63

6.4.3 Effect of ISI Extension Length δ on Optimal and Suboptimal

MSE Performance . 65

6.4.4 Effect of Precompensation on Media Noise 66

6.4.5 Comparison with Look-Ahead Policies 67

6.5 Summary . 69

7 Conclusion and Further Work 70

7.1 Current Results . 70

7.2 Further Work . 71

A Polynomials Used to Model PE Functions 73

B Linear Equalizer Tap Coefficients 75

v

Summary

In high-density magnetic recording, the readback signal is corrupted by signal-

dependent nonlinearities. To characterize the readback signal by simple models,

we can precompensate for the nonlinearities during the write process. While there

exist many precompensation schemes in the literature, the optimal scheme with

respect to any optimality criterion is unknown. In this work, we seek such a

solution. The work in this thesis focuses on longitudinal magnetic recording, and

considers two predominant nonlinearities, namely nonlinear transition shift (NLTS)

and partial erasure (PE). We start with the well known mean-square error (MSE)

optimality criterion, where the error is between the nonlinear signal and a desired

signal. We want to obtain precompensation values which minimize the total MSE

incurred by all written bits in a data sector.

The formulated MSE criterion can be viewed as a sum of individual MSE con-

tributions by each data bit. This critical observation motivated the proposal of a

dynamic programming approach. There are two main results in this thesis. The

first result relies on the following simplification: the nonlinear channel characteris-

tics can be assumed to be known. We discuss three different dynamic programming

techniques to compute the precompensation values which are optimal under var-

ious conditions. The finite-horizon dynamic programming technique optimizes

precompensation values for a finite number of data bits in a sector. Application

of this said technique results in an individual optimal precompensation value for

each bit, which varies with the position of the bit in a data sector. We then go on

vi

to propose to view the number of data bits in each data sector as infinite. Doing

so would allow application of an infinite-horizon dynamic programming technique,

whereby the corresponding optimal solution does not have strict dependence on

time. This brings about reduction in the complexity of the solution, which we con-

sider to be pleasing from an implementation point of view. We consider two types

of infinite-horizon dynamic programming techniques, namely, the discounted-cost

technique and the average-cost technique.

The dynamic programming techniques do not explicitly give the precompensa-

tion values; they have to be extracted. The extraction procedures may be simplified

by employing intuitive ideas, at the cost of optimality. We studied the performance

of optimal and suboptimal methods using computer simulations. Under reasonable

assumptions, the suboptimal solution is found to perform as good as the optimal

solution.

The second result deals with a more complicated problem of extracting opti-

mal precompensation when the channel characteristics are unknown. We utilize

Q-learning techniques to perform this task, which require a priori knowledge of the

NLTS. Estimation of the NLTS in the system can be done by borrowing existing

NLTS measurement techniques found in the literature. We also consider incorpo-

rating equalization into our optimal precompensation algorithm. Using computer

simulations, we computed optimal precompensatation for a readback signal equal-

ized to the extended partial response class 4 (EPR4) target. We also performed

simple studies to observe the characteristics of the noise in a precompensated sig-

nal. Finally, we conclude with some comments for further work.

vii

List of Symbols and Abbreviations

An
1 notation for vector [A1, A2, ..., An]

A∗ optimum value of A

α discounting factor for the discounted-cost technique

bn signed transition sequence

cn precompensation value sequence

C mean-square error (MSE) cost function

δ intersymbol interference extension length

D distance between write current transition and past written transition

∆n nonlinear transition shift (NLTS) sequence

en error between readback signal and some desired signal

ǫn output of finite-state machine (FSM) at time n

E{B} expected value of random variable B

γn partial erasure (PE) signal attenuation sequence

G(i) function used to define the average-cost technique Bellman’s equation

h(t) transition response

i, j, l integer values representing states or iteration counts

I1, I2 anti-causal and causal intersymbol interference lengths

Jn(i) cost-to-go function of state i at time n

k, n discrete-time indices

viii

K1, K2 NLTS functional form parameters

λ average-cost (per bit)

L length of past neighborhood of bits which affect NLTS

µn dynamic programming policy at time n

N number of bits in a data sector

P arbitrary time index

Pr {A} probability of event A

xn written transition position sequence

Qn(i, µ) Q-value function of state i and policy µ at time n

ρn Q-learning step-size sequence

σ2
v variance of AWGN sample vn

σ2
m media noise variance

τ suboptimal solution memory length

T bit period

vn additive white Gaussian noise (AWGN)

Vn(i) value function of state i at time n

yn desired target signal

zn sampled, nonlinear readback signal

BER bit-error rate

DC direct current

ECC error-control code

FSM finite-state machine

ix

ISI intersymbol interference

LTI linear time-invariant

MSE mean-square error

MR magnetoresistive

NLTS nonlinear transition shift

NRZI non-return to zero inverse

PE partial erasure

PRML partial response maximum-likelihood

RLL run-length limited

x

List of Figures

1.1 Longitudinal and perpendicular magnetic recording. 3

1.2 Block diagram of the magnetic recording channel. 4

1.3 Illustration of the NLTS phenomenon. In (a), the bit transitions are
written far apart and NLTS is absent. We observe alignment of the
pulses with the write current transitions. In (b) the bit transitions are
written closely together, and NLTS is present. We observe that the pulses
occur slightly before the write current transitions. 9

1.4 Write precompensation applied to the write current. 10

1.5 Illustration of the PE effect. When bit transitions are written too close
together, we observe fragmentation of the sandwitched magnetized me-
dia. Generally, this results in an attenuated readback pulse, as illustrated
by the figure. 11

2.1 Example of a simple stochastic control problem. 20

3.1 Finite-state machine (FSM) model of the precompensation problem. 27

3.2 Illustration of the policy µn+I1+1 for a given state (bn+I1
n−I2−1,b

n+I1
n−I2−1).

From each state, there are 2 possible transitions, corresponding to
the presence or absence, respectively, of a bit written transition.
When there is a transition, the bit will take on the value 2 or −2,
depending on the previously written bit transition. The only ex-
ception is the all-zero state, which will have 3 possible transitions
corresponding to all 3 possible values for bn. The policy assigns cor-
responding values for the written transition position xn+I1+1. For
the sake of illustration, x is used to indicate an arbitrary chosen
transition position value. In the absence of a transition bn+I1+1 = 0,
we arbitrarily set xn+I1+1 = 0. 28

5.1 Channel transition response h(t). 44

5.2 Amplitude loss resulting from partial erasure. 46

xi

5.3 Optimal transition position sequences x
∗n
n−τ for different bit patterns

b
n
n−τ . In (a), it takes 3 steps for all trajectories to converge, suggesting

τ ≥ 3. In (b), it takes 2 steps for all trajectories to converge, suggesting
τ ≥ 2. Taking the maximum of the two, we get τ ≥ 3. 47

5.4 Illustration of the effect of different values for the memory constant τ on
the error between the optimal transition positions x∗

n and the suboptimal
transition positions x′

n. For τ = 0, the error |x′
n−x∗

n| is large. For τ = 6,
the error |x′

n−x∗
n| is practically zero, and we deem the error propagation

to be negligible. 48

5.5 The MSE performance of the suboptimal solution, for the discounted-
cost technique. The MSE approaches the optimal value C(α)|α=0.8 for
τ ≥ 6. The MSE approaches the optimal value C(α)|α=0.9 for τ ≥ 7. As
α approaches 1, the MSE will approach the optimal (finite-horizon) MSE
value indicated by C∗. The discounted-cost optimum C(α)|α=0.9 obtained
is approximately the finite-horizon optimum C∗. 49

5.6 The computed optimal transition positions x
∗n
n−6 for various fixed length

bit patterns b
n
n−6. Observe that coded bits require a past bit memory

length τ of at least 3. Also observe that the coded bits have different
optimal transition position trajectories x∗

n as compared to the uncoded
case. This is intuitively correct, since the optimization strategies depend
on the bit probabilities, and nonlinearities are signal-dependent. 51

5.7 The MSE performance of the suboptimal solution when writing MTR
coded bits. For values of α = 0.6 and α = 0.9, we get close to the
discounted-cost optimum C(α) as τ > 0. As α → 1, the MSE approaches
the minimum MSE value C∗. 52

5.8 The MSE performance of the suboptimal solution obtained using the
average cost technique. In comparison to Figures 5.5 and 5.7, we observe
that the MSE performance of the average-cost optimal policy is very
similar to that of the discounted-cost optimal policies (when α = 0.9) for
both uncoded bits and coded bits. We also observe that the average-cost
optimal policy outperforms the discounted-cost optimal policies when we
choose α = 0.6 and α = 0.8 for uncoded and coded bits, respectively. . . 53

6.1 Partial erasure (PE) functions chosen for the tests. 62

6.2 NLTS measurements obtained using Cai’s method [7]. The results shown
here is obtained using the PE function that results in an evaluated SNR
of 19 dB (see Figure 6.1). Approximately 15 million bits were written
to gather data. We observe some slight descrepencies between measure-
ments and actual values for D > 6.0. 64

6.3 Optimum discounted-cost J∗(bn+1
n−2,b

n+1
n−2), estimated using the Q-learning

technique. Three sets of data are shown, each corresponding to the three
different PE functions shown in Figure 6.1. The horizontal lines repre-
sent the discounted-cost J∗(bn+1

n−2,b
n+1
n−2), evaluated by Monte Carlo sim-

ulations, using the optimal policy obtained from the estimated Q-values.
Observe that for all three cases, as the number of updates becomes large,
we approach reasonably close to the Monte Carlo simulated values. . . . 65

xii

6.4 Comparison of the MSE obtained using the Q-learning technique for
different choices of the ISI extension length δ. The plots indicate the
MSE performance of the suboptimal solution (explained in Section 4.2),
for various choices of the memory constant τ . We also include the MSE
performance of the optimal solution, indicated by the horizontal, dotted
lines. Observe that for a reasonable choice of τ , the MSE performance of
the suboptimal solution approaches that of the optimal solution. Further,
a choice of δ = 1 results in a huge improvement in MSE as compared
to δ = 0, while choosing either δ = 1 or δ = 2 results in similar MSE
performance. 66

6.5 Compensation error histograms for different bit patterns b
n
n−2. Two sets

of compensation error histograms are shown, the first obtained when
optimal precompensation values (computed using our method) was used,
and the second obtained when writing bits such that the distance between
any two transitions is a mulitiple of the symbol interval T . For most bit
patterns b

n
n−2, the first set of histograms show multiple “peaks”. Use

of optimal precompensation values seems to help reduce these “peaks”,
thus making the error more “Gaussian-like”. 68

xiii

List of Tables

6.1 Comparison of the MSE per bit obtained for various precompensation
schemes. We note that because we do not account for look-ahead deci-
sions in our dynamic programming, we get outperformed by an intuitive
look-ahead method, which is to write all bit transitions located at the
ends of transition runs further apart. 69

xiv

Chapter 1

Introduction

1.1 Background on Magnetic Recording

The term magnetic recording describes the process in which data (analog or dig-

ital) is recorded onto a magnetic medium, for the purpose of storage. The first

working magnetic storage device was developed in 1898 by Danish engineer Valde-

mar Poulsen [30]. Poulsen’s motivation for building such a device was to allow

people to leave voice messages on the telephone, and served as a forerunner to the

modern answering machine. This marked the beginning of a multibillion dollar

industry, which perpetuates due to the insatiable appetite for data storage.

This thesis focuses on magnetic recording for hard-drive systems. A hard-drive,

also known as a hard-disk, allows a computer system to store data. Hard-drives are

effective devices for long-term data storage. In computer systems, hard-drives are

also used for temporary data storage, for instance when most of the computer’s

volatile memory space has been used up, and its memory needs to be freed to

perform other tasks. In the early 1950’s, computer engineers began their search

for such a device with tape-drives [30]. It turns out that there exists a crippling data

1

CHAPTER 1. INTRODUCTION

access problem with tape-drives. In tape-drives, the data is recorded on various

parts of a long magnetic tape, wound on a spindle-like receptacle. Data access

speeds are limited by how fast the magnetic tape could be wound or unwound to

expose the data-containing portion to the playback head. The innovation of the

hard-drive mitigated this problem. With its magnetic medium fashioned in the

form of circular disks, data access was sped up and allowed concurrent processing

of jobs. The first hard-disk, developed by International Business Machines (IBM)

in the early 1950’s, had a minuscule capacity of 5 megabytes [30].

Fast forward to the present, and we have cheap and available hard-drives that

store over 200 gigabytes. That is at least a 50,000,000% increase in storage space

over 50 years. Today, a typical user’s storage needs are dictated by work and

leisure. Nowadays, computer programs can be as large as in the order of hun-

dreds of megabytes, and music files, motion-picture files, digitized pictures, etc,

also require an astronomical amount of storage space. While storage demands

are also addressed by other forms of storage media, for example, digital versatile

disks (DVD’s), the hard-disk is irreplacable in terms of speed, reliability and data

capacity.

The hard-disk is primarily composed of two components, namely the read/write

head and the magnetic media. The recording medium is required to be of hard

magnetic material [4], which once magnetized, does not lose its magnetism if left

on its own. Important factors to consider when choosing the magnetic material for

the medium include coercivity and remnance [4, 3], which determine how large a

magnetic field is required to magnetize the medium and how much magnetism it

retains, respectively.

When data is written on the media, the recording medium is magnetized into

patterns. The data can then be retrieved by reading these magnetization patterns.

The type of magnetic recording used in hard-disks can be split into two main cate-

2

CHAPTER 1. INTRODUCTION

Write

Head

Write

Bubble

Magnetic Medium

Recording Direction Recording Direction

Write

Bubble

Write

Bubble

Magnetic Medium

Longitudinal Perpendicular

Write

Head

Figure 1.1: Longitudinal and perpendicular magnetic recording.

gories, namely, longitudinal and perpendicular recording. As their names suggest,

they differ in the direction in which the medium is magnetized. Figure 1.1 illus-

trates the recording process in these two cases. The disk-like recording medium is

subdivided into thin, concentric circles known as tracks. When data writing starts,

the write head is first positioned over the desired track, and the medium is spun at

very high velocities. Sophisticated head sliders prevent the write head from coming

into direct contact with the medium, thus protecting the recording medium from

wear. When the write head is activated, it emits a region of magnetic flux termed

as the write bubble. This flux permeates the medium, magnetizing it in the desired

direction. In digital magnetic recording systems, saturation recording is used for

storing data bits. That is, there are two possible magnetization directions, each

corresponding to a “0” or “1” binary digit, respectively. As shown in Figure 1.1,

the medium is magnetized horizontally in longitudinal recording, and vertically in

perpendicular recording. Perpendicular recording was developed as a candidate

for extremely high-density recording, having a thermal decay stability advantage

over longitudinal recording at very high densities [5].

3

CHAPTER 1. INTRODUCTION

ECC and Modulation
Encoder

Write
Head

Read
Head

Front-end
Circuit

Detector

Data

Bits

Recovered

Bits

Write

Circuit

Storage

Medium

ECC and Modulation

Decoder

Figure 1.2: Block diagram of the magnetic recording channel.

1.2 The Magnetic Recording Channel

A hard-drive system is extremely complex, comprising many individual com-

ponents designed by experts from various fields of physics and engineering. For

those of us working in signal processing, we focus on a specific component known

as the recording channel. Figure 1.2 depicts a block diagram of the recording chan-

nel, which can be modeled as a communication system. Specifically, the magnetic

recording channel is a baseband communication system, where information is con-

tained in a frequency range located around DC. In this communication system, the

process of writing (or recording) the data on the medium amounts to transmission,

and reading the data by means of the read head amounts to reception. The signal

path from the input of the write circuit to the output of the read head constitutes

the noisy transmission channel.

The error-control code (ECC) block protects the bits from detection errors

by introducing redundant (non-data) symbols that provide information about the

data bits. In commercial systems, powerful Reed-Solomon codes [8] are used for

this purpose. A modulation code is then applied over the ECC to constrain the

minimum and maximum distances between written bit transitions. The minimum

distance minimizes interferences which occur when bit transitions are written too

close together. The maximum distance aids sampling clock recovery by preventing

a long absence of bit transitions [3]. Such modulation codes are known as run-

4

CHAPTER 1. INTRODUCTION

length limited (RLL) codes. A RLL code with a minimum and maximum distance

symbol runlength of d + 1 and k + 1 , respectively, is called a (d, k) RLL code.

The rate of the RLL code is a rational number, which indicates the ratio of the

number of data bits assigned to the number of coded bits. The first RLL code used

was the rate 1/2 (2,7) code, which was later replaced by a rate 2/3 (1,7) code [3].

RLL codes used today do not contain the minimum distance constraint anymore,

as this results in a lower code rate, which is costly when considering the high data

rates in high-density magnetic recording. Code rates of current modulation codes

are 8/9 [3], 16/17 [40], etc.

RLL coded bits are defined in the non-return to zero inverse (NRZI) convention,

in which “1” and “0” binary digits indicate the presence and absence, respectively,

of a bit transition. The modulation encoded bits control the write current, which

in turn controls the flux switching in the write head. The write head switches

flux according to the data bits to be written, magnetizing the magnetic medium.

When the stored data is to be retrieved, the read head moves over the magnetized

location and produces a readback signal. The readback signal is then fed into the

front-end circuit, which performs noise filtering, sampling, quantization (using a

analog-to-digital converter), and equalization. The equalized signal is passed to

the detector which recovers the written symbols. Finally, the detected symbols

pass through the modulation decoder and ECC decoder to recover the original

data bits, which are then returned to the user.

1.3 Signal Processing in Magnetic Recording

The role of signal processing in magnetic recording has always been to find

efficient bit detection schemes for practical implementation. This involves de-

veloping synchronization schemes, equalization schemes, detection schemes, and

ECC/modulation coding schemes to improve the bit error rate (the probability

that a recieved bit will be erronous). To facilitate theoretical exposition, we model

5

CHAPTER 1. INTRODUCTION

the magnetic recording channel using a mathematical model. A widely used and

simple model would be the linear time-invariant (LTI) model. Appropriate choices

for the LTI channel transition response are made from readback signal measure-

ments. For longitudinal recording, we normally use a Lorentzian pulse, and for

perpendicular recording we select from the hyperbolic tangent function [25], the

inverse tangent function [29] and the Gaussian error function [42].

At low recording densities, the peak detector served as the primary detection

scheme in longitudinal recording, which was used until the 1990’s [30]. The tran-

sition response in longitudinal recording resembles a cone, with a distinct peak.

The peak detector detects the locations of these peaks, which correspond to bit

transitions. As recording density increased, so do the widths of the cone-shaped

transition responses (relative to the symbol spacing), causing interference between

neighboring written transition responses. Thus, the peaks are rendered less promi-

nent. We term this form of interference intersymbol interference (ISI). Since ISI

becomes larger at higher bit densities, peak detection is no longer effective at high

densities.

The solution to this problem is to use equalization techniques to reduce the ISI,

and to use bit detection techniques that perform well under such conditions. The

well known partial response maximum-likelihood (PRML) detection scheme [3] falls

under this category. In practical systems, we avoid using equalization techniques

that remove all the ISI (known as full response equalization techniques), as this will

result in severe noise enhancement. Partial response equalization techniques are

used instead, whereby only some of the ISI is removed [16, 3]. After partial response

equalization, we employ a Viterbi detector [3], which detects a sequence of symbols.

The complexity of such a detection scheme increases exponentially as the length

of the symbol sequence increases, since the number of possible symbol sequences

increases exponentially with its length. Fortunately, the Viterbi algorithm [13, 3]

mitigates this complexity problem, by providing a systematic way to eliminate

6

CHAPTER 1. INTRODUCTION

symbol sequences, thus greatly reducing the complexity.

In many instances, PRML techniques (i.e., partial response equalization fol-

lowed by the Viterbi detector) are considered the de facto way to perform reception.

The Viterbi detection scheme is theoretically optimal only if the readback samples

are corrupted by additive white Gaussian noise (AWGN), i.e., the Viterbi detector

chooses the symbol sequence that has the highest probabilistic likelihood of being

transmitted; but unfortunately, equalization techniques correlate the noise, thus

degrading its performance. However, it has been shown that by incorporating noise

whiteners into the Viterbi algorithm, detection performance can be improved [10].

At high recording densities, the magnetization transitions are written too close

that they start to magnetically interact with each other. This results in nonlinear

distortions and are different from the previously mentioned ISI which is linear.

Nonlinearities are caused by imperfections in the medium, and directly affect the

shape of each individual written transition and its corresponding response. If the

readback signal is nonlinear, then the readback signal can no longer be modeled by

a LTI model. It is of paramount importance to study this nonlinear phenomenon,

and devise solutions for this nonlinear interference problem.

1.4 Nonlinearities in Magnetic Recording and Ef-

fectiveness of Write Precompensation

Major technology improvements in magnetic recording over the past two decades

have resulted in increased areal densities. Thin film media have found applications

in high-density magnetic recording applications [1]. As the recording density got

higher, the flux emanating from the medium got weaker. Magnetoresistive (MR)

playback heads, due to their superior sensitivity [2], replaced the dual-purpose

(read/write) inductive heads in data reading duties. While areal densities con-

tinue to push the envelope, resistance is encountered as the readback signal be-

7

CHAPTER 1. INTRODUCTION

comes increasingly nonlinear at high recording densities. Granular thin film media

are reported to be dominated by transition noise [21], and MR playback heads

are found to have nonlinear transfer characteristics [32]. Old data is not erased

before data writing, and the residual magnetization patterns on the track cause

signal-dependent overwrite effects [27].

The nonlinearities described above give rise to a noise that is not only corre-

lated, but also signal-dependent. To combat the signal dependencies in the noise,

modified sequence detectors based on the Viterbi algorithm were proposed [19, 31].

Modifications can also be made to the powerful Baum-Welch estimation tech-

nique [17]. The modifications to the various detectors make them much more

complex than their unmodified counterparts.

This thesis focuses mainly on nonlinearities found in longitudinal recording.

A dominant and well known nonlinearity found in magnetic recording is termed

nonlinear transition shift (NLTS). NLTS causes the written bit transitions to be

shifted, if there exist previously written transitions within a reasonable distance.

Figure 1.3 depicts a typical sitution in which NLTS affects a bit transition. Exten-

sive studies have revealed that NLTS is caused by demagnetizing fields emanating

from the medium [4, 27]. These demagnetizing fields interfere with the write bub-

ble (used to magnetize the media), and cause the bit transitions to be written

in unintended positions. In longitudinal recording, NLTS moves the written bit

transitions against the recording direction [4, 27], whereas the shifts occur in the

opposite direction in perpendicular recording [34]. This shifting of pulses interferes

severely with our bit detection, since the written bit transitions will not be evenly

spaced, thus violating the linearity assumption on the channel used for developing

the detector.

Write precompensation is typically used as a means to deal with NLTS. The

idea is to delay the transitions in the write current, to offset the “forward” shifts

8

CHAPTER 1. INTRODUCTION

Write
Current

Readback
Signal

Write
Current

Readback
Signal

(a)

(b)

Figure 1.3: Illustration of the NLTS phenomenon. In (a), the bit transitions are written
far apart and NLTS is absent. We observe alignment of the pulses with the write current
transitions. In (b) the bit transitions are written closely together, and NLTS is present.
We observe that the pulses occur slightly before the write current transitions.

of the written transitions caused by NLTS. Figure 1.4 shows the write precom-

pensation subsystem of the recording system explained in the previous section. In

1987, Palmer et al. [11, 27] proposed a method to measure the NLTS in magnetic

recording systems. These measurements allow the prediction of the amount of

NLTS when bit transitions are written at various distances apart.

When a bit transition is to be written, we offset the write current by a cer-

tain amount determined by the NLTS measurements, such that after the NLTS

occurs, the distance between any two bit transitions would be a multiple of the

symbol interval (i.e., bit transitions are written at “equal” spaces apart). This

technique proved effective at moderate recording densities, and sparked further

research (e.g. Tsang and Tang [26, 27]) to develop different methods for NLTS

measurement. IBM used write precompensation in their 1 gigabyte per square

inch demonstration [15].

Today, write precompensation is found in almost every commercial hard-drive,

but it is often taken for granted. In the literature, both in textbooks and re-

search papers alike, it is obscured by “main” research topics such as bit detection,

9

CHAPTER 1. INTRODUCTION

Write

Head

Write

Precompensation

ECC and

Modulation

Encoder

Write

Circuit

Figure 1.4: Write precompensation applied to the write current.

code designs and equalization techniques. Most hard-drive companies view their

precompensation techniques as proprietary, and perhaps perform write precom-

pensation in an ad-hoc fashion (e.g. trial-and-error approaches). Theoretically

correct and/or optimum ways to approach write precompensation have not yet

been reported. It is however very important that we precompensate the bits prop-

erly during the writing process, or else the readback signal will become too noisy

to glean any bit information from it.

When the recording density is increased further, another nonlinearity arises.

This nonlinearity is known as partial erasure (PE), which occurs when bit transi-

tions are written very close to each other. This phenomenon is simply a percolation

of magnetization domains [4], due to the close proximity in which the bit transi-

tions are written at high recording densities. Consider a dibit, which is a pair of

adjacent bit transitions. Figure 1.5 depicts PE affecting both written transitions

in the dibit. The magnetized boundaries interfere with each other, causing the

magnetized portion of the track (sandwiched between the two transition bound-

aries) to break down, causing what looks like little “islands” of magnetized media.

10

CHAPTER 1. INTRODUCTION

Recording

Medium

Readback

Signal

Signal

Attenuation

transitions written

su ciently far apart

transitions written

very close together

Figure 1.5: Illustration of the PE effect. When bit transitions are written too close
together, we observe fragmentation of the sandwitched magnetized media. Generally,
this results in an attenuated readback pulse, as illustrated by the figure.

This breakdown of the magnetized media typically causes the readback signal to

be attenuated. The PE effect extends from the above argument to encompass all

other signal patterns which have adjacent written bit transitions (e.g. tribits).

Written bit transitions with adjacent bit transitions on both sides (tribit) will have

higher signal attenuation due to PE than written bit transitions with adjacent bit

transitions on only one side (dibit).

While being acknowledged as a significant source of distortion, it is not clear

how to precompensate for PE. The initial train of thought was to only precompen-

sate for NLTS, in which modifications must be made to the NLTS measurement

methods which are now affected by PE. Che [9] proposed to incorporate a cor-

rection factor in the NLTS measurements, which is a function of the amount of

PE. Even if the NLTS measurements are accurate, the question still remains how

should we precompensate jointly for NLTS and PE. Recall from the previous sec-

tion that if only NLTS is present, then we could correct for it by ensuring that the

distance between any two transitions would be a multiple of the symbol interval.

However, with the inclusion of the PE effect, this may not be true. It has been

proposed in [24] to offset dibit patterns to alleviate the PE.

11

CHAPTER 1. INTRODUCTION

1.5 Other Types of Nonlinearities

At current recording densities, it has been reported that NLTS and PE are the

most dominant types of nonlinearities [15]. Hence, in this thesis, we focus on prec-

ompensating NLTS and PE optimally, under certain assumed conditions. However,

for the sake of completeness, we mention other types of nonlinearities that are also

found in longitudinal magnetic recording.

Write current : In a practical scenario, the write current does not strictly re-

semble a square wave, as shown in Figure 1.3. The write current incurs some

delay when switching polarity, and this usually results in a small misalignment of

the written transition. Further, eddy currents in the head coils will cause power

losses [3].

Hysteresis : The magnetic flux is not of uniform strength throughout the write

bubble. The reaction of a particular magnetic medium exposed to a magnetic field

is given by its hysteresis loop [3, 4]. The unevenness of flux in the write bubble,

results in various parts of the medium (across a bit transition boundary) to be

exposed to magnetic fields of varying strength. This causes the recorded transitions

on the medium to take a noticeable period to change from one magnetization

direction to the other. Effort must be made to choose a head/media combination

which results in fast magnetization to the new direction, such that the position of

the written transitions are clearly defined. Otherwise, this lack of definition results

in written bit transitions shifting about.

Hard/Easy (HE) transitions : This nonlinearity is caused by previously written

magnetization patterns on the track. In a practical system, erasing past written

magnetization patterns is a costly process in terms of data access speed. Hence,

the new data is usually written directly over past written data. The residual

magnetization patterns on the medium emit demagnetization fields that interfere

with the write bubble [27, 4], causing the written transitions to shift.

12

CHAPTER 1. INTRODUCTION

Pulse broadening : Another effect, also caused by the interaction of demagne-

tization fields with the write bubble, is known as pulse broadening. When an

“interfered” write bubble records transitions on the track, the period of change

from one magnetization direction to the other is larger [27] than that of the tran-

sitions recorded by a “normal” write bubble (i.e., without any interference from

demagnetization fields). The period of magnetization change of a written transi-

tion affects the “width” of the corresponding response; a “wider” transitions results

in a longer (or “wider”) response.

1.6 Organization and Contributions of the

Thesis

We consider only two nonlinearities, NLTS and PE, since they are most per-

tinent at currently used recording densities. While MR head nonlinearities do

exist, they could be compensated for independently [6]. We formulate a theoret-

ical treatise of the problem, as expounded in Chapter 2. We propose a dynamic

programming approach to solve our optimal precompensation problem, which is

elaborated in Chapters 3-4. In Chapter 5, we support the theory with simulation

results. We then go on to consider a practical problem in Chapter 6, whereby

the channel characteristics are assumed to be unknown. Finally, we conclude the

thesis in Chapter 7, with some comments for further work.

13

Chapter 2

Problem Statement and Solution
Approach

We start this chapter by formally defining our precompensation problem. Next,

we give the relevant motivation for adopting a dynamic programming approach in

solving the precompensation problem. We end the chapter with a simple example

of a dynamic programming problem, to give the reader an initial feel for dynamic

programming.

The readback signal is to be optimized with respect to some optimality cri-

terion, such that it appears to be as close as possible to the signal from a linear

channel. The readback signal, as we know, is nonlinear, and depends on the pre-

compensation used. We mathematically formulate such a model. We also state

relevant assumptions on the nonlinearities.

2.1 The Nonlinear Readback Signal Model

In the literature, models exist that capture nonlinear effects in magnetic recording.

Some examples of these models are the signal-dependent autoregressive channel

model [20], the transition zig-zag model [18], the position jitter width variation

model [22], the microtrack model [8] and the Volterra series expansion model [14].

The typical trade-off for a nonlinear channel model is between accuracy and speed.

14

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

We formulate the simplest channel model that facilitates our purpose. We first

define four important sequences bn, cn, ∆n and xn. The written data is in the form

of a signed transition sequence bn ∈ {2,−2, 0} denoting positive, negative, and

no transition, respectively. We will abuse terminology and refer to bn’s as signal

bits. Let T denote the symbol interval. The amount of NLTS affecting the nth

transition is defined as ∆nT , and is precompensated by offsetting the nth write

current transition by cnT from the sampling instant nT . Finally, the transition

position xnT = ∆nT + cnT is the net shift due to the precompensation and the

NLTS effect. Here, ∆n, cn and xn lie in the continuous interval (1,−1) [normalized

by the symbol interval]. We stick to the convention where ∆n, cn > 0 constitutes

a time advance and ∆n, cn < 0 a time delay.

We define the vectors bn
n−L and xn

n−L as bn
n−L = [bn−L, bn−L+1, ..., bn] and

xn
n−L = [xn−L, xn−L+1, ..., xn]. Normalized NLTS is defined as

∆n
∆
= ∆(bn

n−L,xn−1
n−L, cn), (2.1)

i.e., it depends on the past L bits, the positions of the past L transitions xn−1
n−L and

the current precompensation cn. If there are no transitions in the past neighbor-

hood of L bits from time n, then the NLTS value ∆n = 0. We note that we have

ignored hard and soft transition effects in this model. Here, L is a constant that

depends on the head-media combination.

For a written transition bn 6= 0, partial erasure (PE) is defined as the amplitude

attenuation (normalized to 1)

γn
∆
= γ

(
bn+1

n−1,x
n+1
n−1

)
. (2.2)

If there are no neighboring transitions to a transition at time n, the partial erasure

amplitude is γn = 1. The amount of amplitude attenuation γn ≤ 1 depends on the

15

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

distances of the preceding/following transitions from the transition at time n.

The continuous-time, nonlinear readback signal z(t) is written as

z(t) =
N−1∑

k=0

bkγkh (t − kT + ∆kT + ckT) + v(t), (2.3)

where h(t) is the continuous-time transition response, the term v(t) is additive

white Gaussian noise (AWGN), and N is the number of bits in a data sector.

After bandlimiting z(t) by passing it through an ideal low-pass filter of bandwidth

1/T , we sample the output at time t = nT to obtain

zn =

I2∑

k=−I1

bn−kγn−kh (kT + ∆n−kT + cn−kT) + vn

=

I2∑

k=−I1

bn−kγn−kh (kT + xn−kT) + vn. (2.4)

We define the variance of the discrete-time AWGN random process vn as σ2
v . The

summation limits I1 and I2 are the anti-causal and causal intersymbol interference

(ISI) lengths, respectively.

2.2 Mean-Squared Error (MSE) Criterion

It makes sense to precompensate the nonlinear readback signal, such that it

appears as close to a linear signal model as possible. Thus, detector designs can

be based on the simpler linear model. Hence, we choose the mean-squared error

(MSE) optimality criterion. We define the mean-squared error signal as the square

of the difference between the nonlinear and linear read-back signals, given as

e2
n

∆
=

(

zn −

I2∑

k=−I1

bn−khk

)2

, (2.5)

16

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

where hk
∆
= h(t)|t=kT . Define the precompensation sequence cN−1

0 = [c0, c1, ..., cN−1].

We define the MSE cost function C, which depends on the precompensation se-

quence cN−1
0 , as the sum of the mean-squared errors for all sampling instants,

C = E

{
N−1+I2∑

n=−I1

e2
n

}

. (2.6)

The write precompensation is done during the write process, and we know the

bits being written. Hence, we can assume that the bit sequence bN−1
0 is known.

We mentioned in Section 2.1 that the NLTS and PE nonlinearities are signal-

dependent. We also realize that not all bit transitions require precompensation,

for example, bit transitions that are written far apart (such that NLTS and PE

nonlinearity effects are not present). Hence, the optimal precompensation scheme

should be specific for a particular bit sequence bN−1
0 .

Thus, we can define the precompensation optimization problem as follows. We

define a new MSE cost function

C′ = E

{
N−1+I2∑

n=−I1

e2
n

∣
∣
∣
∣
∣
bN−1

0

}

. (2.7)

We find the optimal precompensation sequence c∗N−1
0 that satisfies

c∗N−1
0 = arg min

c
N−1

0

E

{
N−1+I2∑

n=−I1

e2
n

∣
∣
∣
∣
∣
bN−1

0

}

= arg min
c

N−1

0

C′. (2.8)

The expectation operation in (2.8) is conditioned on the known bit sequence bN−1
0 .

17

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

2.3 Motivation

The problem of minimizing the MSE cost function C′ given in (2.7) is a compli-

cated one. This is because the sector size N is typically large, and the number of

possibilities for the optimal solution increases exponentially with N . A brute force

strategy can be adopted to find such an optimal solution, however it is definitely

not efficient.

The MSE C′ is a nonlinear function of cN−1
0 since the NLTS functional form (2.1)

and PE functional form (2.2) are almost certainly nonlinear functions of cn. If we

were to use some kind of numerical search method, such as the well known gradient

descent algorithm [25], we may likely get stuck in a local minimum. Furthermore,

the gradient of C′ with respect to cN−1
0 will be hard to compute, even if the non-

linearities’ functional forms are known. Numerical search methods are also known

to be inefficient when optimizing over a large number of variables.

We observe that the cost function C′ consists of a sum of non-negative costs

E{e2
n}. This property lends itself nicely to apply dynamic programming tech-

niques. The phrase “dynamic programming” is a mathematical term, where the

word “programming” means a set of rules that we follow while making computa-

tions. Dynamic programming, in a nutshell, solves optimization problems whereby

the cost accumulates in a sequential sum.

The pioneer of this technique, Richard Bellman, noticed that the sequential sum

optimization problem can be broken up in stages, where each stage corresponds to

one time step [6]. At each time step n, if the optimal strategy to account for the

future time n+1 is known, then the optimal strategy starting from the current time

instant n must consist of the optimal strategy starting from time n+1. Hence, by

knowing the optimal future strategy, we can solve for the current optimal strategy.

Consider an arbitrary sequential sum that can be broken up into N components1,

1Here, the symbol N refers to the total number of components in the sequential sum,

18

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

each assigned according to time instants n in the range 0 ≤ n ≤ N − 1. We work

backwards, starting from the final time instant n = N − 1, to obtain the optimal

strategy for all N preceding time steps.

We apply this systematic problem solving approach to our precompensation

problem. However, we are not satisfied with the MSE cost function C′ defined

in (2.7). This is because even though it is reasonable to assume that bN−1
0 is

known, the optimization problem given in (2.8) amounts to an “online” approach

to write precompensation, That is, during hard-drive operation, we observe the bits

bN−1
0 that are to be written, and accordingly compute the optimal precompensation

vector c∗N−1
0 . Adopting such an approach implies that we have to ensure that our

optimization procedure does not cause bottleneck in the speed at which the bits

bN−1
0 are to be written. Since we optimize the cost function C′ over a typically

large sequence of precompensation values cN−1
0 , it is difficult to keep up with the

high operation speeds of modern hard-drives.

Therefore, we want to use dynamic programming techniques to minimize the

MSE cost function C given in (2.6) for all possible bit sequences bN−1
0 . Note that

this is slightly more complicated than (2.8), in the sense that the cost function C is

averaged over random bits bn. Without further theoretical development, it is not

yet possible to define the minimization of the cost function C, with respect to all

possible precompensation schemes. We note that directly minimizing C without

conditioning on the bits bN−1
0 amounts to an “offline” approach to solve the write

precompensation problem; we consider all possible bit patterns bN−1
0 that may

occur in a data sector. Nevertheless, we can still apply dynamic programming

techniques. The problem of minimizing the reformulated cost function C in (2.6)

is a stochastic control problem [5]. Let us consider a simple stochastic control

problem, which is given as follows.

unlike in (2.6) where N was used to define the number of data bits in a sector.

19

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

1

2

3

4

Action 1

Action 2

1

3

Action 1

Action 2

2

3

Action 1

Action 2

Action 1

Action 2
6

7

1

7

3

5

2

5

5

6

1

6

Figure 2.1: Example of a simple stochastic control problem.

Example 2.1. Figure 2.1 depicts a simple stochastic control problem. We have

4 states, numbered from 1 to 4. Only State 1 and State 2 have two different

choices for actions, each resulting in different transition probabilities. We want to

determine the set of optimal actions (for States 1 and 2), such that we go from

State 1 to 4 in minimum number of steps. Since we take 1 step for each transition,

we assign a cost of 1 to all transitions. We define i as a state variable and J∗(i)

as the optimum cost incurred from State i.

We work backwards to obtain the optimal solution. We start from State i = 4,

and the optimum cost is given as

J∗(4) = 0. (2.9)

This is because State 4 is the goal state, and we incur zero cost after reaching State

4.

20

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

Next we take a look at State i = 3, and we write

J∗(3) = 1. (2.10)

This holds because at State 3, we must go to State 4 and thus incur a cost of 1

step in the process.

Next, at State i = 2 we have

J∗(2) = min







1

6
(1 + J∗(3)) +

5

6
(1 + J∗(4))

︸ ︷︷ ︸

Action 1

,
3

5
(1 + J∗(3)) +

2

5
(1 + J∗(4))

︸ ︷︷ ︸

Action 2







.

At State 2, we have to choose between 2 actions. Action 1 allows for a transition

to State 3 with probability 5/6 and a transition to the goal state (4, to be precise)

with probability 1/6. Action 2 transits to State 3 with probability 3/5 and reaches

the goal state with probability 2/5. Intuitively, we should choose Action 2, since it

has a higher probability to reach the goal state. Let us work out the exact values to

verify the intuition. Using J∗(3) = 1 and J∗(4) = 0, we have

J∗(2) = min

{
5

6
(2) +

1

6
(1),

3

5
(2) +

2

5
(1)

}

= min

{

1
5

6
, 1

3

5

}

= 1
3

5
. (2.11)

As expected, Action 2 gives a lower cost.

21

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

Finally, we perform similar computations for State 1

J∗(1) = min

{
1

3
(1 + J∗(3)) +

2

3
(1 + J∗(2)),

1

7
(1 + J∗(3)) +

6

7
(1 + J∗(2))

}

= min

{
1

3
(2) +

2

3

(
13

5

)

,
1

7
(2) +

6

7

(
13

5

)}

= min

{

2
2

5
, 2

18

35

}

= 2
2

5
. (2.12)

This time Action 1 gives the minimum cost from State 1. Thus, the minimum

expected number of steps to reach the goal state from State 1 is 22
5

steps. Again,

we us use intuition to verify this. We observe from Figure 2.1 that there exists a

total of 3 paths to State 4, i.e., 1 → 2 → 4, 1 → 3 → 4, and 1 → 2 → 3 → 4.

We note that 2 of these paths require 2 steps, while the remaining path requires

3 steps. Thus, the expected number of steps should be a value between 2 and 3.

We can verify that the path that requires 3 steps, under the optimal action scheme

(choose Action 1 when at State 1 and choose Action 2 when at State 2), has the

lowest probability of 2/5, out of all possible action scheme combinations. Hence,

the expected number of steps (if we follow the opimal action scheme) will be given

as

2. Pr {2-step path is taken} + 3. Pr {3-step path is taken} = 2.
3

5
+ 3.

2

5

= 2
2

5
.

This example is designed to give the reader an initial feel for stochastic control

problems. To formulate our precompensation problem into the dynamic program-

ming framework, a system must be defined. For any time instance n, this system

resides in one of its many states. When the system transits to a new state, it gen-

erates a one-step cost, analogously to Example 2.1 in which each state transition

22

CHAPTER 2. PROBLEM STATEMENT AND SOLUTION APPROACH

generates a cost of 1. In the next chapter (Chapter 3), we show how to formally for-

mulate the precompensation problem into the dynamic programming framework.

We then go on to discuss dynamic programming techniques for stochastic control

problems that apply to our problem. In Chapter 5, we present simulation results

to support the theory behind dynamic programming.

2.4 Summary

We started this chapter by defining the nonlinear readback signal model. Using

the nonlinear model, we defined the MSE optimality criterion, where the error is

between the nonlinear readback signal and the (desired) linear readback signal. We

observed that the MSE optimality criterion is a sequential sum of MSE costs, which

can be optimized using dynamic programming techniques. We proposed that the

MSE cost function should be designed for “offline” computation of optimal prec-

ompensation values. Our MSE optimization problem is identified as a stochastic

control problem. We gave an example of a simple stochastic control problem, and

showed how it can be solved using dynamic programming techniques.

23

Chapter 3

Dynamic Programming

We now proceed to present three dynamic programming techniques that apply to

our precompensation problem. In this chapter, the first dynamic programming

technique that we present addresses the problem well, but faces a certain com-

plexity issue. The other two techniques mitigate this complexity issue, however,

they are optimal (in some sense) only if the number of data bits in a sector N

approaches infinity. We advocate the use of the latter techniques as N is typically

large in practice.

3.1 Finite-State Machine Model (FSM)

As noted in Section 2.3, we want to minimize the MSE cost function C in (2.6), over

all possible precompensation schemes. We recast the precompensation problem

into a form suitable for defining a finite-state machine (FSM) model through the

following two steps.

1. The PE amplitude loss γn is dependent on the transition positions xn+1
n−1.

Hence by utilizing equations (2.4) and (2.5), we see that e2
n depends on a

24

CHAPTER 3. DYNAMIC PROGRAMMING

neighborhood of written bits bn+I1+1
n−I2−1 and transition positions xn+I1+1

n−I2−1. Hence,

we express it as

e2
n(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1). (3.1)

The problem now becomes one of finding the optimal transition position

sequence x∗N−1
0 that minimizes the cost function C in (2.6). Once x∗N−1

0

is obtained, we can then compute c∗N−1
0 using the knowledge of the NLTS

function (2.1). Notice that we have expressed the squared-error in (3.1) to

be dependent on a fixed-length neighborhood of transition positions xn. Had

we chosen to write the squared-error to be dependent on precompensation

values cn, we would not be able to confine the dependence to a fixed-length

window of precompensation values cn.

2. We quantize the transition positions xn to a finite number of values between

−1 and 1.

With these modifications, we are now ready to define a FSM model.

Definition: FSM model

State: The state is defined by (bn+I1
n−I2−1,x

n+I1
n−I2−1).

Input : The input pair is (bn+I1+1, xn+I1+1).

a) The bit bn+I1+1 is random, with transition probability

Pr
{
bn+I1+1

∣
∣bn+I1

n−I2−1

}
.

b) The written transition position xn+I1+1 determines the

future state (bn+I1+1
n−I2

,xn+I1+1
n−I2

).

25

CHAPTER 3. DYNAMIC PROGRAMMING

Output : The output (one-step cost) is defined as

ǫn
∆
= ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1)

= E
{
e2

n(bn+I1+1
n−I2−1,x

n+I1+1
n−I2−1)

∣
∣bn+I1+1

n−I2−1

}
. (3.2)

Here, the expectation of the squared-error sample e2
n is over the noise

sample vn only, given the signal pattern bn+I1+1
n−I2−1. We see from (3.2) that

the output ǫn depends on the present and future states (bn+I1
n−I2−1,x

n+I1
n−I2−1)

and (bn+I1+1
n−I2

,xn+I1+1
n−I2

), respectively. Also, note that the output ǫn is

still a random variable, as it depends on the bit sequence bn, which is

random.

The transition probability is Pr
{
bn+I1+1 6= 0

∣
∣bn+I1

n−I2−1

}
, and an absence of transi-

tion occurs with probability Pr
{
bn+I1+1 = 0

∣
∣bn+I1

n−I2−1

}
. These values are assumed

to be known a priori, and depend on the modulation coding applied to the signal

bits. Figure 3.1 illustrates the FSM model.

Now, the MSE cost function C in (2.6) can be expressed as a sum of the one-step

costs ǫn, written as

C = E

{
N−1+I2∑

k=−I1

e2
k(b

k+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

}

= E

{
N−1+I2∑

k=−I1

ǫ(bk+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

}

, (3.3)

where the second equality follows from (3.2). To solve this stochastic control prob-

lem, or to minimize the MSE cost function C, we adopt the following optimization

approach. At the nth time instant and given the state (bn+I1
n−I2−1,x

n+I1
n−I2−1), we assign

a transition position xn+I1+1 to each possible bit bn+I1+1. In dynamic programming

terminology [5], we term such an optimization approach as a policy.

26

CHAPTER 3. DYNAMIC PROGRAMMING

input

output

bn+I1+1, xn+I1+1

b
n+I1
n I2 1

,xn+I1
n I2 1 b

n+I1+1

n I2
,x
n+I1+1

n I2

²(bn+I1+1
n I2 1

,x
n+I1+1

n I2 1
)

Figure 3.1: Finite-state machine (FSM) model of the precompensation problem.

3.2 Finite-Horizon Dynamic Programming

The choice of xn is determined by the policy µn at time n, and we can write

xn+I1+1 = µn+I1+1

((
bn+I1

n−I2−1,x
n+I1
n−I2−1

)
, bn+I1+1

)
. (3.4)

Thus, the policy µn+I1+1 makes a decision on the value of xn+I1+1, given the state

(bn+I1
n−I2−1,x

n+I1
n−I2−1) and the incoming bit bn+I1+1. Figure 3.2 graphically illustrates

the policy µn+I1+1 for a given state (bn+I1
n−I2−1,x

n+I1
n−I2−1). To make visualization of

this concept easier, let us make some analogies with Example 2.1. In Example

2.1, we choose an action at each state. Here, we choose an input pair assignment

(bn+I1+1, xn+I1+1), for all possible bits bn+I1+1. In Example 2.1, the choice for the

action affects the probabilities with which we transit to the new state. Here, for

some bit bn+I1+1, the choice for the value xn+I1+1 = x indicates2 that we go the

future state (bn+I1+1
n−I2

,xn+I1+1
n−I2

)
∣
∣
xn+I1+1=x with probability Pr

{
bn+I1+1

∣
∣bn+I1

n−I2−1

}
,

and to the state (bn+I1+1
n−I2

,xn+I1+1
n−I2

)
∣
∣
xn+I1+1 6=x with probability zero.

With the definition of the FSM and the policy, now we can describe the dynamic

programming algorithm. The MSE optimization problem written in terms of the

2Here, x is a value in the range (-1,1), chosen for the sake of argument

27

CHAPTER 3. DYNAMIC PROGRAMMING

b
n+I1
n I2 1

,xn+I1
n I2 1

²(bn+I1+1
n I2 1

,xn+I1+1
n I2 1

) bn+I1+1 = 0
xn+I1+1 = 0

²(bn+I1+1
n I2 1

,xn+I1+1
n I2 1

)

b
n+I1
n I2

,xn+I1
n I2

,

b
n+I1
n I2

,xn+I1
n I2

,

bn+I1+1 = 0,
xn+I1+1 = 0

bn+I+1 = 2/ 2,
xn+I1+1 = x

bn+I1+1 = 2/ 2
xn+I1+1 = x

Figure 3.2: Illustration of the policy µn+I1+1 for a given state (bn+I1
n−I2−1,b

n+I1
n−I2−1).

From each state, there are 2 possible transitions, corresponding to the presence or
absence, respectively, of a bit written transition. When there is a transition, the bit
will take on the value 2 or −2, depending on the previously written bit transition.
The only exception is the all-zero state, which will have 3 possible transitions
corresponding to all 3 possible values for bn. The policy assigns corresponding
values for the written transition position xn+I1+1. For the sake of illustration, x is
used to indicate an arbitrary chosen transition position value. In the absence of a
transition bn+I1+1 = 0, we arbitrarily set xn+I1+1 = 0.

one-step cost ǫn sequence and the policy µn sequence, is given as

C∗ = min
µN−1

0

E

{
N−1+I2∑

k=−I1

ǫ(bk+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

}

. (3.5)

We minimize the MSE cost function C given in (3.3) over all policies µN−1
0 =

[µ0, µ1, ..., µN−1]. We assume the boundary conditions to be (b−1
−∞,x−1

−∞) = (0,0)

and (b∞
N ,x∞

N) = (0,0). To solve a dynamic program, recall from Section 2.3 that we

work backwards from the “final” (in time) FSM state. From the assumed boundary

conditions, we note that after some arbitrary policy vector µN−1
0 has been chosen,

we will end up in some terminating state denoted as (bN−1
N−I1−I2−2,x

N−1
N−I1−I2−2). Any

dynamic programming problem that terminates after a finite number of time steps

is called a finite-horizon dynamic programming problem. Each terminating state

28

CHAPTER 3. DYNAMIC PROGRAMMING

(bN−1
N−I1−I2−2,x

N−1
N−I1−I2−2) is associated with its respective terminating cost

V ∗
N−I1−1(b

N−1
N−I1−I2−2,x

N−1
N−I1−I2−2) =

E

{
N−1+I2∑

k=N−I1−1

ǫ(bk+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

∣
∣
∣
∣
∣
bN−1

N−I1−I2−2

}

. (3.6)

The expectation is conditioned on the signal bits bN−1
N−I1−I2−2 because the termi-

nating cost is a function of bN−1
N−I1−I2−2. Note that the summation of one-step costs

ǫn in (3.6) is to account for all ǫn that are dependent on the final bit bN−1.

The dynamic programming algorithm iterates for each time instant n. Recall

again from Section 2.3 that at each time instant n, we solve for the present policy,

given that we know the optimal future cost. To clearly see this, first we need to

define an important function. We define a cost-to-go function, which stores the

cost accumulated from some particular state (bn+I1
n−I2−1,x

n+I1
n−I2−1) at time n. The

optimum cost-to-go function [5] at time n is then written as

V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1)

= min
µN−1

n+I1+1

E

{
N−1+I2∑

k=n

ǫ(bk+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

∣
∣
∣
∣
∣
bn+I1

n−I2−1

}

. (3.7)

The optimum cost-to-go function V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1) gives the minimum future

cost that is incurred from the state (bn+I1
n−I2−1,x

n+I1
n−I2−1) at time n. This minimum

cost is achieved using the optimum policy µ∗N−1
n+I1+1.

The finite-horizon dynamic programming algorithm is derived from the opti-

29

CHAPTER 3. DYNAMIC PROGRAMMING

mum cost-to-go function [5] given in (3.7), and is written as

V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1) =

min
µn+I1+1

E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) +V ∗

n+1(b
n+I1+1
n−I2

,xn+I1+1
n−I2

)
}

. (3.8)

We make the following observations from (3.8). If the optimum future costs

V ∗
n+1(b

n+I1+1
n−I2

,xn+I1+1
n−I2

) are known, we can solve for the optimal policy µ∗
n+I1+1. We

also observe that the dynamic programming algorithm runs backwards in time, i.e.,

we compute the optimal costs at time n denoted by V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1), only after

computing the optimal costs at time n + 1 denoted by V ∗
n+1(b

n+I1
n−I2−1+1,x

n+I1
n−I2−1+1).

The recursion starts from the terminating state (bN−1
N−I1−I2−2,x

N−1
N−I1−I2−2), and at

each time instance n, we ensure the optimality of the cost-to-go function. Thus by

inductive reasoning, the cost-to-go at the initial state will also be optimal, and we

can obtain the minimum MSE.

We initialize the dynamic programming algorithm at time n = N − I1 − 2, and

set V ∗
n+1(b

n+I1+1
n−I2

,xn+I1+1
n−I2

) to the terminating costs V ∗
N−I1−1(b

N−1
N−I1−I2−2,x

N−1
N−I1−I2−2)

given in (3.6). For the iteration at time n, we compute the optimal policy µ∗
n+I1+1

and the optimum costs V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1) using the costs V ∗

n+1(b
n+I1+1
n−I2

,xn+I1+1
n−I2

)

obtained from the previous iteration at time n + 1. We iterate the dynamic pro-

gramming algorithm until the optimal policy vector

µ∗N−1
0 = arg min

µN−1

0

E

{
N−1+I2∑

k=−I1

e2
k(b

k+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

}

(3.9)

is obtained. Once all the iterations are done, we obtain the minimum MSE

C∗ = min
µN−1

0

E

{
N−1+I2∑

k=−I1

e2
k(b

k+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

}

= V ∗
−I2−1(b

−1
−I1−I2−2,x

−1
−I1−I2−2), (3.10)

30

CHAPTER 3. DYNAMIC PROGRAMMING

where the initial state is (b−1
−I1−I2−2,x

−1
−I1−I2−2) according to the assumed boundary

conditions.

Using the finite-horizon dynamic programming algorithm, we can obtain the

minimum MSE C∗. However, the optimal policy µ∗N−1
0 is complicated. This is

because it requires that we store the policies µn for all states, and for all values

0 ≤ n ≤ N − 1. In dynamic programming terminology, this is known as a non-

stationary policy, i.e., the optimal policy µ∗
n+I1+1 not only depends on the state

(bn+I1
n−I2−1,x

n+I1
n−I2−1), but also on the time n at which the state occurs. To circum-

vent the complexity bottleneck arising from the non-stationary policy, in the next

section, we propose to reformulate the problem into one that allows us to obtain a

stationary optimal policy (the policies µn do not depend on the time instance n).

The complexity reduction is obvious, and we propose to do this to efficiently solve

the precompensation problem.

3.3 Infinite-Horizon Dynamic Programming

We first make an observation on the finite-horizon optimum cost-to-go function

V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1) given in (3.8). As the value of N (the sector size) gets larger,

we see that the terminating costs given in (3.6) will have decreasing influence on

the optimal cost V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1). In other words, as we move further away

from the boundary, the optimum future costs would be (almost) independent of

the boundary conditions. Thus, decisions based on these optimal future costs will

not depend on the distance from the boundaries, indirectly implying that they

are independent of time. The technique of survivor path truncation [3], used in

a Viterbi detector, is based on a very similar idea. The past optimal decisions

(the point in time where the survivor paths converge) located at some reasonable

distance away, would not be influenced by present optimal decisions (the point in

31

CHAPTER 3. DYNAMIC PROGRAMMING

time where we are currently performing the add-compare-select [3]).

In magnetic recording, the sector size N is typically in the order of thousands

of bits. Therefore, we propose to reformulate the problem into an infinite-horizon

stochastic control [5] problem, which we solve using infinite-horizon dynamic pro-

gramming techniques, presented in the next two sections.

3.4 Discounted-Cost Technique

Before we introduce the discounted-cost technique, we make a few comments.

At a first glance, the discounted-cost technique may look very different from

infinite-horizon dynamic programming, however, the basic concept remains the

same: solve for the optimum cost (see (3.11)) that accumulates from the state

(bn+I1
n−I2−1,x

n+I1
n−I2−1). Here, the main difference is in the introduction of a “discount-

ing factor” α, which exponentially discounts future cost incurring from the state

(bn+I1
n−I2−1,x

n+I1
n−I2−1). To see why we require this discounting factor α, let us first

formulate the discounted-cost problem [5].

1. We freely choose the discounting factor α, where α must satisfy the condition

0 < α < 1.

2. Assume that all bit transition probabilities Pr
{
bn+I1+1

∣
∣bn+I1

n−I2−1

}
are station-

ary3.

3. Define the discounted cost-to-go function [5] at time n by J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1),

3We overlook the fact that the length of the vector b
n+I1

n−I2−1
should be large for this assumption

to hold. This is because a large vector b
n+I1

n−I2−1
will cause the FSM state size to be huge and

unmanageable.

32

CHAPTER 3. DYNAMIC PROGRAMMING

which satisfies

J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1)

= min
µ∞

n+I1+1

E

{
∞∑

k=n

αk−nǫ(bk+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

∣
∣
∣
∣
∣
bn+I1

n−I2−1

}

. (3.11)

Comparing (3.11) to (3.7), we note the obvious similarities and differences between

the finite-horizon cost-to-go function V ∗
n (bn+I1

n−I2−1,x
n+I1
n−I2−1) and the discounted cost-

to-go function J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1). Here, we note that we allowed the sector

size N to go to infinity. The discounting factor α is required to ensure that the

discounted cost-to-go function J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1) is of finite value (the term αk−n

converges to zero as k → ∞). Also, as shown in (3.11), the term αk−n (where

k ≥ n) gets larger as the time index k gets closer to time n. This implies that the

minimization is focused on one-step cost ǫk that occurs closer in time to the state

(bn+I1
n−I2−1,x

n+I1
n−I2−1).

The cost-to-go function J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1) gives the minimum future cost

that can be incurred from the state (bn+I1
n−I2−1,x

n+I1
n−I2−1). This minimum cost is

achieved using the optimum policy µ∗∞
n+I1+1. An important difference from the

finite-horizon dynamic programming technique presented earlier, is that the op-

timum discounted cost-to-go function J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1) is always constant for

any time instance n. This can be seen by realizing that for any time instance

n, the optimum future cost always depends on an infinite number of future bits.

Hence, any finite time difference between two different values for n will not affect

the optimal cost-to-go function J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1). Of course, this holds true

only if the bit probabilities Pr
{
bn+I1+1

∣
∣bn+I1

n−I2−1

}
are stationary, and hence the

stationarity assumption is made.

The optimal policy µ∗
n+I1+1 is found by solving Bellman’s equation [5]. Bell-

man’s equation is derived from the optimum cost-to-go function (3.11), and is

33

CHAPTER 3. DYNAMIC PROGRAMMING

written as

J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1) =

min
µk+I1+1

E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) +αJ∗

n+1(b
n+I1+1
n−I2

,xn+I1+1
n−I2

)
}

. (3.12)

Since the optimal cost-to-go functions J∗
n(bn+I1

n−I2−1,x
n+I1
n−I2−1) are independent of the

time instance n, the optimal policy µ∗
n+I1+1 depends only on the state

(bn+I1
n−I2−1,x

n+I1
n−I2−1). We see from (3.13) that if we know the cost J∗

n+1(b
n+I1+1
n−I2

,xn+I1+1
n−I2

)

incurred by proceeding optimally from the future state (bn+I1+1
n−I2

,xn+I1+1
n−I2

), we can

solve for µ∗
n+I1+1 given the present state (bn+I1

n−I2−1,x
n+I1
n−I2−1).

It is well known in the dynamic programming literature [5] that there are vari-

ous methods available to solve Bellman’s equation. We shall elaborate on one such

method known as value iteration. We initialize the values Ĵ0(b
n+I1
n−I2−1,x

n+I1
n−I2−1) = 0

for all states. Then, we update Ĵi(b
n+I1
n−I2−1,x

n+I1
n−I2−1) for all states (bn+I1

n−I2−1,x
n+I1
n−I2−1)

using the value iteration equation

Ĵi(b
n+I1
n−I2−1,x

n+I1
n−I2−1) =

min
µn+I1+1

E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) +αĴi−1(b

n+I1+1
n−I2

,xn+I1+1
n−I2

)
}

. (3.13)

As i → ∞, the value of Ĵi(b
n+I1
n−I2−1,x

n+I1
n−I2−1) will converge to J∗

n(bn+I1
n−I2−1,x

n+I1
n−I2−1)

for all states (bn+I1
n−I2−1,x

n+I1
n−I2−1), and we can obtain the optimal policy µ∗

n+I1+1.

3.5 Average-Cost Dynamic Programming

The discounted-cost technique presented in the previous section allows us to com-

pute an optimal stationary policy, under the assumption that the number of bits N

approaches ∞. However, an argument can be made that discounting is unnatural

34

CHAPTER 3. DYNAMIC PROGRAMMING

for the MSE problem, where we give weights to the one-step costs appearing at all

time instants n. We now present another infinite-horizon dynamic programming

technique, which uses time-averaging instead to force the cost-to-go to be finite.

We denote the optimum average cost-to-go function4 [5] as

J̄∗(bn+I1
n−I2−1,x

n+I1
n−I2−1)

= min
µ∞

n+I1+1

lim
N→∞

1

N
E

{
N∑

k=n

ǫ(bk+I1+1
k−I2−1,x

k+I1+1
k−I2−1)

∣
∣
∣
∣
∣
bn+I1

n−I2−1

}

. (3.14)

The optimal average cost-to-go J̄∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) is the optimum average-cost

per time instant. Similar to the arguments presented for the discounted-cost tech-

nique, the optimum cost-to-go function J̄∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) is independent of the

time instant n since the horizon always lies infinitely far away in the future.

As in the discounted-cost technique, the average-cost technique has its own

unique Bellman’s equation [5], which can be solved for the optimal policy µ∗
n+I1+1.

Define G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) as a function of the states (bn+I1

n−I2−1,x
n+I1
n−I2−1). The

Bellman’s equation for the average-cost problem is written as

G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) + λ∗ =

min
µn+I1+1

E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) + G∗(bn+I1+1

n−I2
,xn+I1+1

n−I2
)
}

, (3.15)

and we solve it for λ∗ and G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) for all states (bn+I1

n−I2−1,x
n+I1
n−I2−1).

The theoretical interpretation of the function G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) is not required

to understand how to solve the average-cost Bellman’s equation (3.15). Since the

theoretical interpretation of G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) requires advanced concepts in

dynamic programming (which is beyond the scope of this thesis), we refer the

4In the dynamic programming literature [5], the term J̄∗(bn+I1

n−I2−1
,xn+I1

n−I2−1
) is often referred

to as the average-cost per time instant. Since J̄∗(bn+I1

n−I2−1
,xn+I1

n−I2−1
) can be viewed as a cost-to-go

function, we avoid unnecessary introduction of new terminology.

35

CHAPTER 3. DYNAMIC PROGRAMMING

interested reader to [5] for a discussion on the topic.

At a first glance, the Bellman’s equation (3.15) for the average-cost problem

may look completely unrelated to the average cost-to-go J̄∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) given

in (3.14) because we have introduced new notation λ∗ and G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1). It

turns out, however, that if (3.15) has a solution, the optimum average cost-to-go

function J̄∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) will be independent of the state (bn+I1

n−I2−1,x
n+I1
n−I2−1),

and will be given by λ∗. The following proposition states this formally.

Proposition 3.1. If the following equation

G∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) + λ∗ =

min
µn+I1+1

E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) + G∗(bn+I1+1

n−I2
,xn+I1+1

n−I2
)
}

is satisfied for all states (bn+I1
n−I2−1,x

n+I1
n−I2−1), then we have

λ∗ = J̄∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) (3.16)

for all states (bn+I1
n−I2−1,x

n+I1
n−I2−1), where J̄∗(bn+I1

n−I2−1,x
n+I1
n−I2−1) is the optimum average

cost-to-go given in (3.14).

The proof can be found in [5]. We now go on to present a simple argument to

see why the optimum average cost-to-go is independent of the state. Consider two

States i and j, and assume that there is a finite length path that takes us from

State i to State j. Consider starting from State i, and following the path to reach

State j. When we arrive at State j, we can follow the optimal policy that gives

the optimum future cost J∗(j). Since the path from State i to State j is finite in

length, the cost incurred by traveling from State i to State j is negligible when

the horizon approaches infinity, i.e., N → ∞. Hence, the optimal average-cost

incurred when starting from State i must be equal to the optimal cost incurred

36

CHAPTER 3. DYNAMIC PROGRAMMING

when starting from State j.

Proposition 3.1 holds only if the Bellman’s equation (3.15) for the average-cost

problem has a solution. It can be shown that (3.15) will have a solution if there

exists a state that can be reached from any other state (including itself) with

non-zero probability [5]. This is stated formally by the following proposition.

Proposition 3.2. If there exists a State l, such that any state (including itself)

has a non-zero probability of reaching State l, then the Bellman’s equation given in

(3.15) has a solution.

We can simply choose State l to be the all-zero state. The all-zero state exists

under any reasonable choice of modulation codes, and will satisfy the conditions

stated by Proposition 3.2. As with Proposition 3.1, the proof can be found in [5].

Now that we have established that the optimal policy can be obtained by

solving Bellman’s equation, we proceed to describe how it can be solved numeri-

cally. Though there are a couple of methods that do this [5], we describe here

only the value iteration algorithm in detail. While the idea is similar to the

discounted-cost technique, the average-cost value iteration algorithm is slightly

more complicated. We first identify the recurrent state l, and initialize the values

Ĝ0(b
n+I1
n−I2−1,x

n+I1
n−I2−1) = 0 for all states. Next, we update Ĝ0(b

n+I1
n−I2−1,x

n+I1
n−I2−1) for

all states using the value iteration equation

Ĝi(b
n+I1
n−I2−1,x

n+I1
n−I2−1) =

min
µn+I1+1

E
{

ǫ(bn+I1+1
n−I2−1,x

n+I1+1
n−I2−1) + Ĝi−1(b

n+I1+1
n−I2

,xn+I1+1
n−I2

)
}

− min
µn+I1+1

E
{

ǫ(l, l′) + Ĝi−1(l
′)
}

, (3.17)

where State l′ is a possible transitional state from State l, and ǫ(l, l′) is defined

as the one-step cost incurred by going from State (bn+I1
n−I2−1,x

n+I1
n−I2−1) = l to State

37

CHAPTER 3. DYNAMIC PROGRAMMING

(bn+I1+1
n−I2

,xn+I1+1
n−I2

) = l′. It is proven [5] that the quantities Ĝi(b
n+I1
n−I2−1,x

n+I1
n−I2−1)

will converge as i → ∞, and minµn+I1+1
E
{

ǫn(t, t′) + Ĝi−1(t
′)
}

will converge to

the optimal average cost λ∗. We also obtain the optimal policy µ∗
n+I1+1, which

satisfies Bellman’s equation (3.15).

3.6 Summary

In this chapter, we discussed three dynamic programming techniques that can

be applied to the MSE optimization problem. Before exposition of the dynamic

programming details, we defined the FSM and the policy. The finite-horizon dy-

namic programming algorithm was described first. It computes the minimum of

the MSE cost function C, however, the corresponding optimal policy is compli-

cated and non-stationary. To mitigate this complexity bottleneck, we proposed to

use infinite-horizon dynamic programming techniques. Infinite-horizon dynamic

programming assumes that the number of bits in a sector N approaches infinity,

and in practice N is typically large. If the number of bits N is infinity, then the

boundary conditions will be ignored, and the corresponding optimal policies will

be stationary. We discussed two different types of infinite-horizon dynamic pro-

gramming techniques, namely the discounted-cost technique and the average-cost

technique.

38

Chapter 4

Extracting Precompensation
Values

We have seen how to obtain the optimal policy sequence µ∗N−1
0 (stationary or

non-stationary) using the dynamic programming methods shown in Chapter 3.

However, the policies themselves are not useful if we do not know how to translate

them to precompensation values cn. In this chapter, we investigate how to extract

precompensation values cn, given a sequence of optimal policies µ∗
n. We consider

both optimal and suboptimal precompensation value extraction methods.

4.1 Optimal Precompensation Extraction

The optimal policy sequence µ∗N−1
0 will give the optimal transition position se-

quence x∗N−1
0 for any written bit sequence bN−1

0 . The task now is to extract the

optimal precompensation value sequence c∗N−1
0 from x∗N−1

0 . Assuming that the

NLTS functional form (2.1) is known, we can solve the equation

x∗
n = ∆(bn

n−L,x∗n−1
n−L , cn) + cn, (4.1)

for cn = c∗n. One way of obtaining this solution is to compute the value c∗n only

after the sequence x∗n
0 is obtained. The value x∗

n is a function of bn
0 , and therefore

39

CHAPTER 4. EXTRACTING PRECOMPENSATION VALUES

by (4.1), the precompensation value c∗n is also a function of bn
0 . Hence, since the

sector size N is typically large, storing the optimal precompensation values c∗n in

a look-up table is practically infeasible.

This motivates the development of a suboptimal method to extract precompen-

sation values from the optimal policy. In the next section, we present an intuitive

approach to solving this problem. We derive a practical approximation that is

easily implemented, based on a simple observation.

4.2 Suboptimal Solution

In the previous section, we argued that x∗
n depends on bn

0 . In practice, however,

we know that bits in the distant past do not really affect the present transition

position x∗
n. This suggests that we can truncate the dependence on past bits

to some reasonable memory length τ . We cannot prove mathematically that this

property holds, but by making this assumption we greatly reduce the look-up table

size. We will support our assumption with simulation results in Chapter 5.

Assumption 1: The optimal transition position x∗
n at time n is only dependent

on the present signal bit bn and τ past signal bits bn−1
n−τ .

If Assumption 1 holds, it would imply that for a given signal pattern bn
0 , the

optimal transition position x∗
n would not depend on the values of bits bk for k <

n− τ . Consequently, the optimal precompensation value c∗n would depend only on

the bits bn
n−τ−L, which would significantly reduce the look-up table size.

The idea behind our suboptimal solution is therefore to limit the size of the

look-up table to a length of τ + L + 1 input bits. Thereby, the precompensa-

tion value cn(bn
n−τ−L) is forced to be time-invariant, and can hence be written as

cn(bn
n−τ−L) = c(bn

n−τ−L). The only remaining part is to determine the functional

40

CHAPTER 4. EXTRACTING PRECOMPENSATION VALUES

form of the function c(·). An easy way to solve this is to set b−1
−∞ = 0 and set

c(bτ+L
0)

∆
= c∗τ+L(bτ+L

0),

where c∗τ+L(bτ+L
0) is the optimal precompensation computed in the previous section

for the bit pattern bτ+L
0 .

4.3 Error Propagation

We claim that the NLTS value ∆n depends on the precompensation sequence cn
0

(we will support this claim with logical reasoning later in this section). Hence, we

consider the possibility of error propagation, which happens since the value ∆n

depends on cn
0 . Let us consider that we make Assumption 1 and assume some

value for τ , but the optimal precompensation sequence c∗n actually depends on a

larger past neighborhood of bits bn
n−τ̂−L, where τ̂ > τ . We want to examine what

happens when we use precompensation values c′n obtained by making Assumption

1 (suboptimal solution).

Let the sequence c∗n denote the optimal precompensation sequence obtained

using the method described in Section 4.1. Let us consider that we write the bits

b∞
−∞ twice, using precompensation sequences c∗n and c′n, respectively. Let us also

assume that c∗n 6= c′n for n ≤ P and c∗n = c′n for all n > P , where P is an arbitrarily

chosen integer for the sake of the argument that follows. Intuition suggests that if

c∗n = c′n for n > P , we would expect that x∗
n should be equal to x′

n for n sufficiently

larger than P . Now, since c∗P0 6= c
′P
0 and ∆n depends on the entire vector cn

0 (as

claimed in the previous paragraph), we conclude that ∆∗
n 6= ∆′

n, for all n > P .

Consequently, we may get x∗
n 6= x′

n, for n > P , i.e. the error may propagate.

Now, what remains to argue is that the value ∆n depends on cn
0 . As seen

41

CHAPTER 4. EXTRACTING PRECOMPENSATION VALUES

from equation (2.1), the value ∆n depends on xn−1. Using the relation xn−1 =

∆n−1 + cn−1, we see that xn−1 depends on ∆n−1 and cn−1. If we continue this

inductive argument, we conclude that ∆n depends on cn
0 .

Fortunately, in realistic scenarios, it is observed that (see Chapter 5) ∆n de-

pends on a short neighborhood of past precompensation values cn. Hence, as our

simulations show in Chapter 5, at time instances n ≫ P , the transition position

sequence x′
n will be equal to the optimal transition position sequence x∗

n if τ is

chosen adequately large.

4.4 Summary

In this chapter, we explained how to extract optimal precompensation values from

an optimal dynamic programming policy. We argued that the optimal transition

position c∗n depends on the sequence of bits bn
0 . Thus, it is practically infeasible to

store c∗n (for all values of n) in a look-up table, since n lies in the range 0 ≤ n ≤

N −1, and (the number of bits in a data sector) N is typically large. We proposed

to make a practical assumption that allows us to truncate the bit dependence of x∗
n

to a past bit neighborhood bn
n−τ , where τ is a reasonable past bit memory length.

This assumption in turn reduces the past bit neighborhood dependence of c∗n, and

gives us a suboptimal solution. Theoretically speaking, the suboptimal solution

will suffer from error propagation. However, the error propagation is observed to

be small in the simulation results shown in the next chapter.

42

Chapter 5

Computer Simulations

In this chapter, we test the three dynamic programming algorithms presented in

Chapter 3, namely the finite-horizon dynamic programming, the discounted-cost

technique, and the average-cost technique. We also test both optimal and subop-

timal precompensation extraction methods presented in Chapter 4. We compare

the performances of the three dynamic programming algorithms, to evaluate their

effectiveness in relation to each other. The results are presented in the following

manner.

1. We first show results pertaining to the discounted-cost technique when the

bits are equiprobable and independent (uncoded bits). We show the MSE

performance of the discounted-cost technique (Section 3.4) for various choices

of α, which we also compare with the solution given by the finite-horizon

technique (Section 3.2).

2. Next, we demostrate how the dynamic program works with modulation coded

bits. We focus on the discounted-cost technique here, and show that the

dynamic program will choose optimum strategies that are specific to the

modulation code used.

43

CHAPTER 5. COMPUTER SIMULATIONS

h
(t
)

t/T

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

Figure 5.1: Channel transition response h(t).

3. Finally, we demostrate the MSE performance of the average-cost technique

(Section 3.5). We compare the MSE performance of the average-cost tech-

nique with that of the discounted-cost technique, and make some observa-

tions.

5.1 Channel Characteristics

We assume the transition response of the channel h(t) is given by the following

expression5

h(t) =
sin(πt/T ′)

2πt/T ′

cos(2πt/T ′)

1 − 16t2/T ′2
, (5.1)

where we adjusted the “pulse-width” of h(t) by setting T ′ = 20/9T . The time-

domain shape of h(t) is shown in Figure 5.1. We mentioned in Section 2.1 that the

value for the transition position xn lies in the continuous interval (1,−1). However,

we can reduce the range of the interval to −0.5 ≤ xn < 0.5. This is because a

5The expression for h(t) was arbitrarily chosen to resemble a plausible transition response
with short ISI lengths. Though it is similar to the raised-cosine pulse used in communication
channels [3], no properties of the raised-cosine pulse is of relevance here.

44

CHAPTER 5. COMPUTER SIMULATIONS

transition that is offset from the instant (n + 1)T by xT , where 0.5 < x < 1, can

also be represented6 by a transition that is offset from the instant nT by (1−x)T .

Hence, the closest that the bit(s) bn+2 and/or bn−2 can be written to the instant

nT is 1.5T . Referring to Figure 5.1, we observe that h(t) ≈ 0 for values t ≤ −1.5T

and t ≥ 1.5T . Hence, we assume the causal and anti-causal ISI lengths to be I2 = 1

and I1 = 1, respectively. This is of course an unrealistically short ISI length. In

real applications, the span of ISI is much larger and we need to use equalizers to

reduce the ISI, of course at the expense of coloring the noise.

To model NLTS, we use a functional form similar to equation (5) in [8],

∆(bn
n−L,xn−1

n−L, cn
n−L) =

L∑

j=1

−bnbn−jK1

4 (j + xn−j − cn)K2
, (5.2)

where K1 and K2 are constants dependent on the physical parameters of the record-

ing system. We set K1 = 0.3 and K2 = 2, which are chosen by referring to NLTS

measurements given in Figure 1 in [28]. These values of K1 and K2 result in

greater amounts of NLTS than what is shown in [28]. We set the past bit depen-

dence length of NLTS to L = 5, see equation (2.1), because transitions more than

5 symbols away do not seem to contribute much to NLTS under this model. Notice

that the factor −bnbn−j/4 evaluates to one of three possibilities: −1, 0, or +1.

We choose the PE function arbitrarily, however to resemble a plausible ampli-

tude loss. If the bit transition bn 6= 0 has only one adjacent bit transition, we

set the signal attenuation factor γn, for both bit transitions, to the value given in

Figure 5.2. Note that we require the normalized distance (either 1 + xn−1 − xn

or 1 + xn − xn+1) to determine the exact amount of signal attenuation. If the bit

bn 6= 0 is flanked by 2 adjacent transitions (i.e., bn−1 6= 0 and bn+1 6= 0), then

following [24], the value of γn is chosen as the product of the individual signal

6This argument does not apply to the first and last bits b0 and bN−1, but we ignore this slight
discrepancy to conveniently reduce the range of xn.

45

CHAPTER 5. COMPUTER SIMULATIONS

Distance between written transitions (normalized)

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

S
ig
n
a l
at
te
n
u
a
ti
o
n
fa
c t
o
r

Figure 5.2: Amplitude loss resulting from partial erasure.

attenuation factors due to the bit transition pairs (bn, bn−1) and (bn, bn+1). The

curve shown in Figure 5.2 is obtained using a polynomial of the 7th order, which

is a function of the normalized distance between transitions. The polynomial co-

efficients are given in Appendix A.

We limit xn to be quantized in intervals of 0.1, and in the range −0.2 ≤

xn ≤ 0.2. The range of quantization |xn| ≤ 0.2 was chosen because of the PE

function shown in Figure 5.2, as explained below. We want to ensure that PE is

only caused by bits 1 symbol interval away. Therefore, the PE attenuation factor

should go to 1 at the closest possible distance, so that bits 2 symbol intervals

away (i.e. bn and bn+2) can be written. If we set the range |xn| ≤ 0.2, then the PE

attenuation factor will be 1 at a distance of (2−2(0.2))T = 1.6T (check with Figure

5.2). Finally, we set the bit transition probabilities Pr
{
bn+I1+1 6= 0|bn+I1

n−I2−1

}
=

Pr
{
bn+I1+1 = 0|bn+I1

n−I2−1

}
= 0.5, and the number of data bits in a sector N = 4000.

46

CHAPTER 5. COMPUTER SIMULATIONS

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(a) Bit pattern b
n

n−τ
= {2,−2, 2,−2, 0, 2,−2}

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(b) Bit pattern b
n

n−τ
= {2,−2, 0, 2,−2, 0, 2}

Figure 5.3: Optimal transition position sequences x
∗n
n−τ for different bit patterns b

n
n−τ .

In (a), it takes 3 steps for all trajectories to converge, suggesting τ ≥ 3. In (b), it takes
2 steps for all trajectories to converge, suggesting τ ≥ 2. Taking the maximum of the
two, we get τ ≥ 3.

5.2 Validity of Assumption 1

The discounted-cost technique was used to compute an optimal policy. We generate

a random bit sequence bn drawn from the transition probabilities Pr
{
bn+I1+1|b

n+I1
n−I2−1

}
.

We then extract the optimal transition positions x∗
n using the optimal precompen-

sation extraction method described in Section 4.1. We collect all optimal transition

positions x∗n
n−τ that correspond to each bit pattern bn

n−τ , and Figure 5.3 depicts the

(superimposed) trajectories. When the discounting factor is chosen to be α = 0.9,

the figure suggests that the memory of past signal bits in Assumption 1 should be

chosen as τ ≥ 4.

Next, we test how different choices for the memory constant τ affect the error

between the optimal transition position x∗
n and the suboptimal transition positions

47

CHAPTER 5. COMPUTER SIMULATIONS

|x
0 n

x
n
|

n

0 1000 2000 3000 4000
0

0.05

0.1

(a) τ = 0

|x
0 n

x
n
|

n
0 1000 2000 3000 4000
0

0.05

0.1

(b) τ = 6

Figure 5.4: Illustration of the effect of different values for the memory constant τ on the
error between the optimal transition positions x∗

n and the suboptimal transition positions
x′

n. For τ = 0, the error |x′
n − x∗

n| is large. For τ = 6, the error |x′
n − x∗

n| is practically
zero, and we deem the error propagation to be negligible.

x′
n computed7 using the method in Section 4.2. Figure 5.4 reveals that for τ = 6,

the error is practically zero. We also note that the isolated errors that occur for

τ = 6 do not seem to propagate much for time indices k > n. Thus, we deem the

error propagation to be negligible for τ = 6.

5.3 MSE Performance of the Discounted-Cost Tech-

nique

Figure 5.5 depicts the MSE performance of the suboptimal solution. We eval-

uate the MSE cost function C in (2.6) using Monte Carlo methods for different

choices of the memory constant τ . We observe that for a chosen value of α, the

7Note that x∗

n
is quantized, but x′

n
is not quantized because x′

n
is obtained by solving x′

n
=

∆n + cn only after cn is found.

48

CHAPTER 5. COMPUTER SIMULATIONS

0 1 2 3 4 5 6 7 8

37.8

38

38.2

38.4

38.6

38.8

39

39.2

39.4

M
e a
n
-S
q
u
ar
e
E
rr
o
r

C

C()|
=0.9

C()|
=0.8

MSE with = 0.8

MSE with = 0.9

Figure 5.5: The MSE performance of the suboptimal solution, for the discounted-cost
technique. The MSE approaches the optimal value C(α)|α=0.8 for τ ≥ 6. The MSE
approaches the optimal value C(α)|α=0.9 for τ ≥ 7. As α approaches 1, the MSE will
approach the optimal (finite-horizon) MSE value indicated by C∗. The discounted-cost
optimum C(α)|α=0.9 obtained is approximately the finite-horizon optimum C∗.

MSE approaches the value C(α), which is the MSE obtained using the optimal

solution of Section 3.4. For sufficiently large τ and as α approaches 1, the MSE

approaches the optimal MSE value C∗ (as computed by finite-horizon methods).

The discounted-cost optimum C(α)|α=0.9 approximately equals the finite-horizon

optimum C∗.

5.4 Optimum Precompensation for Coded Data

Bits

In this section, we demonstrate that our method is also able to find optimal

precompensation when the data bits are coded using a modulation code. All the

tests in this section are performed twice. In the first set of tests, the (uncoded)

bits bn were independently picked from an equiprobable source. The second set of

tests was performed with independent, equiprobable bits coded using a modulation

49

CHAPTER 5. COMPUTER SIMULATIONS

code. For the sake of simplicity, we chose a rate 4/5 (0,7) maximum transition

run (MTR) block code [23], where the maximum transition run is 2. The MTR

code prevents tribit sequences from occurring. The bit transition probabilities

Pr
{
bn+I1+1|b

n+I1
n−I2−1

}
of the coded bits are non-stationary. However, to use the

discounted-cost technique, we assume stationary transition probabilities, which we

estimate using simple time-averaging.

We next look at how the dynamic programming techniques optimize over differ-

ent bit transition probabilities Pr
{
bn+I1+1|b

n+I1
n−I2−1

}
. We set the discounting factor

α = 0.9, and picked 4 different bit patterns bn
n−6. Figures 5.6(a)-5.6(d) show the

trajectories of the optimal transition position sequences x∗
n computed when the bits

are uncoded, while Figures 5.6(e)-5.6(h) show the trajectories computed when the

bits are coded. We see that the coded bits require a past bit memory length τ ≥ 3.

Also, we see from Figure 5.6(a) that the optimal transition position x∗
n at time

index 6 is 0.1, whereas Figure 5.6(e) shows its value to be 0. Similar comparisons

with other figures indicate that the use of modulation code affects the optimal

written transition positions x∗
n. This makes intuitive sense, as the nonlinearities

are signal-dependent.

5.5 MSE for MTR Coded Data Bits

Figure 5.7 shows the MSE performance of the discounted-costs technique com-

puted for MTR coded bits. We compare the MSE performance with that obtained

when optimizing for uncoded bits. As expected of MTR codes and the precom-

pensation process, we observe a huge improvement in the MSE performance (see

Figure 5.5) when we optimize precompensation for the MTR coded bits. The MTR

code prevents tribits from being written, which in turn prevents partial erasure ca-

sued by the simultaneous occurrence of preceding and following transitions. This

50

CHAPTER 5. COMPUTER SIMULATIONS

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

Uncoded Bits

(a) b
n

n−6 = {0, 2,−2, 0, 0, 0, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete time index

x
n

Coded Bits

(e) b
n

n−6 = {0, 2,−2, 0, 0, 0, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(b) b
n

n−6 = {−2, 2, 0,−2, 0, 0, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(f) b
n

n−6 = {−2, 2, 0,−2, 0, 0, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(c) b
n

n−6 = {2,−2, 0, 2,−2, 0, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(g) b
n

n−6 = {2,−2, 0, 2,−2, 0, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(d) b
n

n−6 = {2,−2, 0, 2, 0,−2, 2}.

0 1 2 3 4 5 6

-0.2

-0.1

0

0.1

0.2

Discrete-time index

x
* n

(h) b
n

n−6 = {2,−2, 0, 2, 0,−2, 2}.

Figure 5.6: The computed optimal transition positions x
∗n
n−6 for various fixed length bit

patterns b
n
n−6. Observe that coded bits require a past bit memory length τ of at least 3.

Also observe that the coded bits have different optimal transition position trajectories
x∗

n as compared to the uncoded case. This is intuitively correct, since the optimization
strategies depend on the bit probabilities, and nonlinearities are signal-dependent.

MSE performance gain is obtained of course, at the cost of some code rate loss.

We observe from Figure 5.7 that we practically obtain the discounted-cost

optimum C(α) for both choices of α when we set τ = 0. However, we note that

for α = 0.9, Figure 5.6 has suggested the choice of τ ≥ 3. This is because we

observe from Figure 5.6 that the optimal trajectories x∗
n do not seem to diverge

much for small values of τ . Also, we observe from Figure 5.7 that we obtain a

lower MSE value for τ = 0, as compared to the discounted-cost optimum C(α)

51

CHAPTER 5. COMPUTER SIMULATIONS

0 1 2 3 4 5 6

8.6

8.8

9

9.2

9.4

9.6

M
e a
n
-S
q
u
ar
e
E
rr
o
r

C

C()|
=0.9

C()|
=0.6

MSE with = 0.6

MSE with = 0.9

Figure 5.7: The MSE performance of the suboptimal solution when writing MTR coded
bits. For values of α = 0.6 and α = 0.9, we get close to the discounted-cost optimum
C(α) as τ > 0. As α → 1, the MSE approaches the minimum MSE value C∗.

for α = 0.9. This is because we cannot guarantee that the suboptimal transition

position sequence xn will be quantized.

5.6 MSE for the Average-Cost Technique

We now present results for the average-cost technique. We show results ob-

tained using both uncoded and coded (using the same MTR code as in Section

5.5) data bits. Figure 5.8 shows the MSE performance of the suboptimal solution

for the average-cost technique. We observe that the suboptimal solution approxi-

mates the optimal solution well for all values of τ , as indicated by proximity to the

average-cost optimum C̄. The discounted-cost optimum C(α) for various choices of

α are also indicated in Figure 5.8. We observe that for both uncoded bits and coded

bits with α = 0.8 and α = 0.6, respectively, the average-cost optimal policy out-

performs the discounted-cost optimal policies. Further, for both sets of data bits

52

CHAPTER 5. COMPUTER SIMULATIONS

0 1 2 3 4 5 6 7 8

37.8

38

38.2

38.4

38.6

38.8

39

39.2
M
e a
n
-S
q
u
ar
e
E
rr
o
r

C̄ C ()| =0.9
C

C ()| =0.8

(a) Uncoded bits

0 1 2 3 4 5 6

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

M
e a
n
-S
q
u
ar
e
E
rr
o
r

C

C ()| =0.6

C̄ C ()| =0.8

(b) Coded bits

Figure 5.8: The MSE performance of the suboptimal solution obtained using the av-
erage cost technique. In comparison to Figures 5.5 and 5.7, we observe that the MSE
performance of the average-cost optimal policy is very similar to that of the discounted-
cost optimal policies (when α = 0.9) for both uncoded bits and coded bits. We also
observe that the average-cost optimal policy outperforms the discounted-cost optimal
policies when we choose α = 0.6 and α = 0.8 for uncoded and coded bits, respectively.

with α = 0.9 and α = 0.8, respectively, the average-cost optimal policy performs

just as well as the discounted-cost optimal policies. The optimum average-cost

(see equation (3.14) and Proposition 3.1) was computed as λ∗ = 9.46 × 10−3 for

uncoded bits and λ∗ = 2.24 × 10−3 for coded bits.

The average-cost optimum C̄ is the MSE cost function C (see equation (2.6))

evaluated using the average-cost optimal policy, for some N number of bits. We can

write C̄ = C̄(N), as C̄ implicitly depends on the number of bits N . If we allow N to

approach ∞, then the optimum average-cost λ∗ will be equal to limN→∞
1
N
C̄(N).

A quick calculation reveals that the average-cost over N = 4000 bits are given

by 9.45 × 10−3 and 2.22 × 10−3 for uncoded and coded bits, respectively. We see

that for both cases, these values are close to the theoretically computed values for

infinite number of bits λ∗ = 9.46 × 10−3 and λ∗ = 2.24 × 10−3, respectively.

For the sake of clarity, we refrained from mentioning in Chapter 3 that we

actually expect the discounted-cost optimal policy to converge to the average-

cost optimal policy as α → 1. This is expected due to certain proven relations

between the two said techniques. As seen from Figures 5.8(a) and (b), the average-

53

CHAPTER 5. COMPUTER SIMULATIONS

cost optimal policy obtains a MSE that is extremely close to the discounted-cost

optimum C(α)|α=0.9, for both uncoded and coded bits. A mathematical treatise on

the relation between the discounted-cost and average-cost technique can be found

in [5].

5.7 Summary

In this chapter, we used computer simulations to show the performance of the

various dynamic programming algorithms described in Chapter 3. In Section 5.2,

using optimal transition position x∗
n trajectories computed using the discounted-

cost technique, we illustrated the validity of Assumption 1 in practice. In Section

5.3, we showed that the (discounted-cost) suboptimal solution performs well with

a reasonably chosen memory length τ . In Section 5.4, we showed that when the

data bits are coded with a MTR code, the chosen optimum strategy is specific to

the bit transition probabilities of the bits. In Section 5.5, we evaluated the MSE

performance of the precompensated coded bits (with the MTR code), and observed

a vast improvement in performance as compared to uncoded bits. In Sections 5.3

and 5.5, we also compared the performance of the discounted-cost technique to

that of the finite-horizon technique. We observed that as the discounting factor

α → 1, the performance of the discounted-cost technique approaches that of the

finite-horizon technique. Finally, in Section 5.6, we compared the performance of

the average-cost technique to the discounted-cost technique, for both suboptimal

and optimal solutions.

54

Chapter 6

Dynamic Programming for
Measured Signals

In practical situations, we do not have closed-form expressions for the one-step cost

ǫn as a function of the present and future FSM states. This is because in practice

we do not have prior knowledge of the NLTS and PE functions given in (2.1) and

(2.2). The dynamic programming methods given in the previous chapters require

that such knowledge is known a priori.

In this chapter, we describe and test (using computer simulations) dynamic

programming methods that work even if the closed-form expressions for NLTS and

PE are unknown. In magnetic recording, such dynamic programming methods are

useful in two particular cases.

1. We want to consider a more realistic situation where equalization is used to

shorten the ISI of the channel transition response. In this case, even though

the FSM that generates the readback signal (prior to equalization) might be

known, the FSM that generates the equalized signal is unknown.

2. We want to compute optimal precompensation given some “real” signal ob-

tained from a spin-stand or hard-drive, where no mathematical representa-

tion of the “real” signal is known.

55

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

6.1 Q-Learning Technique

We focus on a particular type of “real” signal dynamic programming methods,

known as Q-learning, and in particular, Q-learning for the discounted-cost tech-

nique. This algorithm was first proposed by Watkins [30]. As its name suggests,

the algorithm tries to learn “Quality” values, or Q-values for short, which are

denoted as

Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)

= E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) +αJ∗(bn+I1+1

n−I2
,xn+I1+1

n−I2
)
}

. (6.1)

Recall from Section 3.3 that the quantity J∗(bn+I1+1
n−I2

,xn+I1+1
n−I2

) is the optimum

discounted future costs and α is the discounting factor. Note that in Section 3.3,

we expressed the discounted cost-to-go as J∗
n+1(b

n+I1+1
n−I2

,xn+I1+1
n−I2

), whereas here

we omit the time index (n + 1) in J∗(bn+I1+1
n−I2

,xn+I1+1
n−I2

). This is because we have

previously established (in Section 3.3) that J∗
n+1(b

n+I1+1
n−I2

,xn+I1+1
n−I2

) only depends on

the state (bn+I1+1
n−I2

,xn+I1+1
n−I2

); we remove the dependence on the time instance n to

clear up notational clutter. Note that the Q-value Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1)

)
inherits

its time-independence from J∗(bn+I1+1
n−I2

,xn+I1+1
n−I2

). The Q-value equation given in

(6.1) is related to Bellman’s equation for the discounted-cost problem given in

equation (3.13), reproduced here for the benefit of the reader:

J∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) =

min
µn+I1+1

E
{
ǫ(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) + αJ∗(bn+I1+1

n−I2
,xn+I1+1

n−I2
)
}

. (6.2)

Note that the Q-value Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
is nothing but the cost-to-go

function obtained without minimization over the policies µn+I1+1. In other words,

the quantity Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
is the cost incurred by adopting the

56

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

policy µn+I1+1 first, and then following the optimal policy which gives the optimum

future cost J∗(bn+I1+1
n−I2

,xn+I1+1
n−I2

). We can explicitly write

J∗(bn+I1
n−I2−1,x

n+I1
n−I2−1) = min

µn+I1+1

Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
. (6.3)

Thus, the idea is to estimate these Q-values, and then perform a minimization

over all policies µn+I1+1 to estimate the optimal discounted cost-to-go and the

optimal policy. To estimate the Q-value Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
, we utilize

the following estimation update equation [30] (here Q̂(i) denotes the estimate of

Q, obtained in the ith update)

Q̂(i)
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)

:= ρn

{

e2
n(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1) + α min

µn+I1+2

Q̂(j)
(
(bn+I1+1

n−I2
,xn+I1+1

n−I2
), µn+I1+2

)
}

+ (1 − ρn)Q̂(i−1)
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
, (6.4)

where ρn is a chosen sequence of step-sizes satisfying 0 < ρn < 1 for all n. To gather

data for updating the Q-values, we write random data bits drawn from the known

bit probabilities Pr
{
bn+I1+1

∣
∣bn+I1

n−I2−1

}
using an arbitrarily chosen policy µ, such

that all possible states and state transitions are realized. At time instance n, we

observe the state (bn+I1
n−I2−1,x

n+I1
n−I2−1), the policy µn+I1+1 that has been used, and the

squared-error sample e2
n(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1). Using this information, together with

some estimate of the “future” Q-value Q̂(j)
(
(bn+I1+1

n−I2
,xn+I1+1

n−I2
), µn+I1+2

)
, we up-

date the “present” Q-value Q̂(i)
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
using (6.4). Note that

the number of updates j, pertaining to the “future” Q̂(j)
(
(bn+I1+1

n−I2
,xn+I1+1

n−I2
), µn+I1+2

)
,

is arbitrary as we do not update the Q-values for all states (bn+I1
n−I2−1,x

n+I1
n−I2−1) and

policies µn+I1+1 at each time instant n. Hence, we require information about the

state realizations (bn+I1
n−I2−1,x

n+I1
n−I2−1) for all time instances n. For the sake of sim-

57

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

plicity, let us for now assume that we do have this information.

As given in [12], the step-sizes are chosen as

ρn = 1/iω, (6.5)

where i is the number of updates done on the Q-value Q̂(i)
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)

and ω is a real value parameter chosen in the interval (0.5,1). A lower value of

ω makes the Q-value update more sensitive to new data. We also see that if we

choose ω = 1, we are updating the Q-value by simply averaging over all previously

realized Q-values.

Q-learning is an efficient method used to learn optimal control strategies when

the FSM is unknown. On a side note, an alternative solution to this problem

would be to estimate the FSM first, and then run dynamic programming to get

the optimal solution. However, such an approach would require us to re-run the

dynamic program, should new information be gathered to update the FSM model

estimate. Q-learning however, just requires updates of the Q-value update equa-

tion (6.4) to perform optimization when new information is gathered. This feature

of Q-learning makes it more attractive than directly learning the FSM.

It was proven by Tsitsiklis [29] that after infinite updates of the Q-value up-

date equation (6.4), the estimate Q̂(i)
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
will converge

to Q
(
(bn+I1

n−I2−1,x
n+I1
n−I2−1), µn+I1+1

)
with probability 1. Convergence is guaranteed

if perfect state information is known. Unfortunately for us in data storage ap-

plications, the state information must be estimated, and hence we cannot claim

convergence. However, we can resort to simulations to show “numerical” conver-

gence.

58

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

6.2 Estimating the State Information

The FSM state comprises signal bits bn and written transition positions xn. Thus,

knowing the FSM state is equivalent to knowing the written transition sequence

xn, since the signal bit sequence bn is known during data writing. In practice, the

transition position sequence xn is unobservable and needs to be estimated. As in

Section 2.1, we assume that the transition position sequence xn and precompen-

sation sequence cn are related by the following equation

xn = ∆(bn
n−L,xn−1

n−L, cn) + cn,

where ∆(bn
n−L,xn−1

n−L, cn) is the NLTS at time n. Thus, if the NLTS function

∆(bn
n−L,xn−1

n−L, cn) is known, the written transition position xn is known given the

signal bit vector bn
n−L, the precompensation value cn, and the vector of past written

transition positions xn−1
n−L. Here, however, we assume that the NLTS function

∆(bn
n−L,xn−1

n−L, cn) is not known.

In the literature, various methods [11, 26] are proposed to estimate the NLTS

function ∆(bn
n−L,xn−1

n−L, cn). We favor a method developed by Cai [7], which is able

to measure the NLTS function accurately in the presence of PE. Cai’s method [7]

is based on the NLTS estimation method developed by Tang and Tsang [26].

To efficiently estimate the NLTS function ∆(bn
n−L,xn−1

n−L, cn), we assume that

NLTS has the functional form

∆(bn
n−L,xn−1

n−L, cn) =
L∑

i=1

bnbn−i

4
∆d(D)|D=i+xn−i−cn

, (6.6)

where ∆d(D) is the NLTS observed when trying to write a bit transition at distance

D from the preceding transition. In other words, the NLTS due to some signal

pattern bn
n−L is nothing but a linear superposition of NLTS values resulting from

59

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

the bit pairs (bn, bn−i) for 1 ≤ i ≤ L. The multiplicative factor bnbn−i

4
∈ {−1, 0, 1}

accounts for the presence and polarity of the NLTS contribution from the bit

pair (bn, bn−i). This superposition assumption is required because if we were to

parameterize the NLTS function ∆(bn
n−L,xn−1

n−L, cn) directly for all its variables,

then such a process would be too complicated. Hence, what remains to be obtained

is the function ∆d(D) for a range of distance D. We simply quantize the distance

D to a reasonable set of values within a certain range, and perform some sort of

parameterization (e.g. polynomial curve fit).

6.3 Incorporating Equalization Techniques

So far, without loss of generality, we assumed that the squared-error sample is given

by e2
n(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1), where the dependence on the bits bn−I2−1 and bn+I1+1 re-

sults from the presence of PE. Recall that the functional form of e2
n(bn+I1+1

n−I2−1,x
n+I1+1
n−I2−1)

is inherited from the functional form of the readback signal zn(bn+I1+1
n−I2−1,x

n+I1+1
n−I2−1)

(see (2.5) and (2.4)). However, when we pass the nonlinear readback signal zn

through a linear equalizer, it is not guaranteed that the functional form of the

equalized readback signal will be the same as that of zn. Hence, if we were the

formulate the error signal en as the error between the equalized readback signal

and the chosen equalization target, the functional form for en would be unknown.

In such a case, we can just assume that the functional form of e2
n is approximated

by

e2
n(bn+I1+δ

n−I2−δ,x
n+I1+δ
n−I2−δ), (6.7)

where the limits I1 and I2 correspond to the ISI limits of the chosen equaliza-

tion target. We term δ as the ISI extension length. The state is now given as

(bn+I1+δ−1
n−I2−δ ,xn+I1+δ−1

n−I2−δ). Hence, the Q-learning technique described in the earlier

60

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

part of this chapter is now applicable.

6.4 Q-Learning Simulation Results

Here, we choose the transition response h(t) to be Lorentzian with a pulse width

normalized density PW50/T = 3. We recall that T is the symbol interval and

PW50 is the width of an isolated Lorentzian pulse at half its amplitude. We de-

signed a (discrete-time) linear equalizer, which equalizes the discrete-time Lorentzian

transition response hn = h(t)|t=nT to the well-known EPR4 target. We keep the

equalizer fixed for all the tests in this section, and the equalizer tap coefficients

are given in Appendix B8. We note that a signal yn which is equalized to the

EPR4 target can be written as yn = bn + 2bn−1 + bn−2, where the bit transition

sequence bn ∈ {2,−2, 0}. We run the Q-learning algorithm to compute optimal

precompensation values as described previously.

Similar to the tests described in Chapter 5, we quantize xn to 5 values, chosen

in the range −0.2 ≤ xn ≤ 0.2. Quantizing xn to 5 discrete values turned out to

be convenient when we apply Q-learning techniques, as we found that Q-learning

requires a lot of data, and having 5 discrete values for xn limited the data required

to a reasonable amount. Before we apply the Q-learning algorithm, the state

information has to be estimated using NLTS measurements, as explained in Section

6.2. We set the Q-learning step-size parameter (see (6.5)) as ω = 0.55. We used

equiprobable (uncoded) bits bn in the tests presented in this section.

In this set of tests, we increased the amount of NLTS, as compared to the

simulations performed in Chapter 5. We stick to the NLTS model given in (5.2),

but we set the NLTS model parameters K1 = 0.4 and K2 = 1.5. The NLTS past bit

8We note that such a scheme, whereby one fixes the equalizer and then computes precompen-
sation values, will not truly minimize the MSE. However, the development of joint equalization-
precompensation schemes is beyond the scope of this thesis.

61

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

Distance between written bit transitions (normalized to bit period)

P
E
si
g
n
al
at
te
n
u
at
io
n
fa
ct
o
r

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

SNR 24 dB
SNR 30 dB

SNR 19 dB

Figure 6.1: Partial erasure (PE) functions chosen for the tests.

dependence length L was chosen to be 10, for similar reasons given in Chapter 5.

We note that the set of NLTS model parameters used here results in a much larger

NLTS past bit dependence length (L was determined to be 5 in Chapter 5).

We carefully chose three different PE functions, shown in Figure 6.1, which

represent signal attenuation behavior for three different head-media combinations.

This is done to test the algorithm functionality. To keep things simple, we fixed the

NLTS model for all three head-media combinations. We did so for two additional

reasons. Firstly, we do not have data which describe how NLTS varies with PE.

Secondly, we chose the NLTS parameters K1 and K2, such that they result in

relatively large values for the NLTS (dibit NLTS amounts to about 40% of the bit

period T). Thus, we test the algorithm under conditions that are possibly more

demanding than those found in realistic scenarios. The three polynomials used to

model the PE functions shown in Figure 6.1 are given in Appendix A.

62

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

We define the signal-to-noise ratio (SNR) as

SNR = 10 log10

(
1

σ2
m + σ2

v

)

,

where σ2
m and σ2

v correspond to the variances of the media noise (resulting from

nonlinearities) and electronic noise (modeled by AWGN samples vn defined in (2.4)),

respectively. Given some value for the SNR, we fix the media and AWGN noise

variances such that they account for 90% and 10%, respectively, of the total noise

variance σ2
m + σ2

v . The media noise variance σ2
m is defined as the mean-square

value of the per-bit difference of the “AWGN-less” nonlinear readback signal with

its linear counterpart. When computing the media noise variance σ2
m, we write

bits that are spaced at a distance of T (symbol interval) apart.

6.4.1 NLTS Measurements

As mentioned in Section 6.2, we first obtain the dibit NLTS function ∆d(D),

where D is the distance of the transition being written from the past transition

(before NLTS is taken into account). Figure 6.2 shows a set of obtained NLTS

measurements, for the head/media combination that results in a SNR of 19 dB

(see Figure 6.1). The figure also shows a polynomial curve fit used to parameterize

the function ∆d(D), where the polynomial order was set to 6. We performed

measurements for values of D chosen in the range 0.1 ≤ D ≤ 7.5, ignoring NLTS

effects that occur for values of D > 7.5.

6.4.2 Observations on Q-value Convergence

We set the ISI extension length to δ = 1 (see Section 6.3). Figure 6.3 shows the

optimum discounted-cost J∗(bn+1
n−2,x

n+1
n−2) as estimated by the Q-learning algorithm.

63

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Distance between write current transition
and previous written transition (D)

NLTS value given by model

Polynomial fit over measured values
NLTS measurements

N
L
T
S
(

d
(D
))

Figure 6.2: NLTS measurements obtained using Cai’s method [7]. The results shown
here is obtained using the PE function that results in an evaluated SNR of 19 dB (see
Figure 6.1). Approximately 15 million bits were written to gather data. We observe
some slight descrepencies between measurements and actual values for D > 6.0.

We present results for various SNR’s, and the optimum future cost estimates cor-

respond to the all-zero state (bn+1
n−2,x

n+1
n−2) = (0,0). We only show optimal costs

corresponding to one state, since the cost-to-go functions J∗(bn+1
n−2,x

n+1
n−2) are inter-

dependent.

We see that as the number of updates of the Q-values becomes large, the

Q-learning algorithm converges. As a point of comparison, we used the esti-

mated optimal policy (as computed by the Q-learning algorithm), and evaluated

the discounted-cost J∗(bn+1
n−2,x

n+1
n−2) using Monte Carlo techniques. The evaluated

discounted-cost is shown using the horizontal lines in Figure 6.3. We note that

the Q-learning algorithm converges pretty close to the evaluated discounted-cost,

indicating that the Q-learning’s estimates are fairly unbiased.

64

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

0 0.5 1 1.5 2

x 10
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SNR 24 dB

SNR 30 dB

SNR 19 dB

D
is
co
u
n
te
d
M
ea
n
-s
q
u
a
re
E
rr
o
r

Number of Q-learning updates

Figure 6.3: Optimum discounted-cost J∗(bn+1
n−2,b

n+1
n−2), estimated using the Q-learning

technique. Three sets of data are shown, each corresponding to the three different
PE functions shown in Figure 6.1. The horizontal lines represent the discounted-cost
J∗(bn+1

n−2,b
n+1
n−2), evaluated by Monte Carlo simulations, using the optimal policy obtained

from the estimated Q-values. Observe that for all three cases, as the number of updates
becomes large, we approach reasonably close to the Monte Carlo simulated values.

6.4.3 Effect of ISI Extension Length δ on Optimal and Sub-
optimal MSE Performance

We use the Q-learning algorithm to minimize the MSE, while assuming various

values for the ISI extension length δ (see Section 6.3). We also test the suboptimal

solution (given in Section 4.2) for various combinations of choices for the memory

constant τ and δ. We observe from Figure 6.4 that when we choose δ = 0 (i.e., no

ISI extension), we obtain much worse MSE performance than if we choose δ = 1

or δ = 2. This is because δ = 0 makes the FSM state too short, and hence

the nonlinear readback signal is badly represented by the FSM. Interestingly, we

observe that a choice of δ = 1 gives slightly better MSE performance compared

to that of δ = 2. Perhaps, this can be explained by noting the following. A FSM

consisting of more states may result in a more detailed representation of the signal.

However, a larger δ causes the state of the FSM to depend on a larger number of

65

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

0 1 2 3 4 5 6 7 8 9 10
280

300

320

340

360

380

400

420

440

294

296

298

300

M
e a
n
- S
q
u
ar
e
E
rr
o
r

C() for = 2

C() for = 1

C() for = 0

MSE obtained using the Q-learning technique
assuming ISI extension length = 2

MSE obtained using the Q-learning technique
assuming ISI extension length = 1

MSE obtained using the Q-learning technique
assuming ISI extension length = 0

Figure 6.4: Comparison of the MSE obtained using the Q-learning technique for different
choices of the ISI extension length δ. The plots indicate the MSE performance of the
suboptimal solution (explained in Section 4.2), for various choices of the memory constant
τ . We also include the MSE performance of the optimal solution, indicated by the
horizontal, dotted lines. Observe that for a reasonable choice of τ , the MSE performance
of the suboptimal solution approaches that of the optimal solution. Further, a choice of
δ = 1 results in a huge improvement in MSE as compared to δ = 0, while choosing either
δ = 1 or δ = 2 results in similar MSE performance.

transition position values xn (see (6.7)). Thus, a larger value for δ causes the FSM

to be more sensitive to state estimation errors, since each xn value will suffer from

estimation errors. However, we observe from Figure 6.4 that the difference in MSE

performances when we choose δ = 1 and δ = 2 is practically small enough to be

ignored. From our results, we conclude that the choice of δ = 1 gives an excellent

compromise between MSE performance and algorithm complexity.

6.4.4 Effect of Precompensation on Media Noise

We redefine en = zn − yn (see equation (2.5)) as the error between the real

66

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

(noisy) compensated readback signal and the desired EPR4 signal yn = bn+2bn−1+

bn−2. This error signal represents the compensation error, i.e., the remnant noise

in the readback waveform after performing precompensation and equalization. We

set the PE function to the one that corresponds to a SNR of 24 dB. We compute

optimal precompensation while setting the bit extension length δ = 1. Next, we

extract precompensation values using the suboptimal solution, while choosing the

memory constant τ = 6. We then collect all error signals en corresponding to

each signal pattern bn
n−2. Figure 6.5 shows the histograms of the error signals en.

Note that only 8 patterns are shown, the rest being similar as we do not consider

pulse asymmetries. For the sake of comparison, we also show histograms obtained

when we write bit transitions such that the distance between any two transition

is a multiple of the symbol interval T . We observe from Figure 6.5 that the errors

improve after applying optimal precompensation. We observe that most signal

patterns, due to the nonlinearities, have error histograms with multiple “peaks”.

We see that optimal precompensation helps to reduce these “peaks”, leaving only

one main “peak” located reasonably close to zero, and making the error more

“Gaussian-like”. We observe that while our algorithm works well for most signal

patterns, it seems to have trouble with the bit pattern bn
n−2 = {−2, 2, 0}. It seems

that this particular signal pattern may only be handled using a look-ahead policy,

which we briefly expose in the next section.

6.4.5 Comparison with Look-Ahead Policies

In this subsection, we would like to point out a subtle limitation of our method.

We compare the MSE performance obtained with our optimal method to a look-

ahead policy, such as the one given below. We consider a simple precompensation

strategy: write all dibits further apart to alleviate PE. This translates to a look-

ahead policy because when deciding to shift a particular transition, we need to

look one bit into the future to know if the said bit belongs to a dibit pattern. The

67

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

-1 0 1
0

0.02

0.04

Using optimal precompensation

Vertical axis : Number of samples collected (normalized)

Horizontal axis : Compensation error (normalized to bit period T)

b
n

n 2

= {0, 0, 0}

b
n

n 2

b
n

n 2

= {0, 2, 0}

b
n

n 2

b
n

n 2
b
n

n 2

b
n

n 2

b
n

n 2

= {0,0, 2}

= {0, 2, 2}

= { 2, 0,2}

= {2, 2, 2}= { 2, 2,0}

= {2,0, 0}

The histogram axes labels:

Bit transitions spaced at multiples of the symbol interval T

Figure 6.5: Compensation error histograms for different bit patterns b
n
n−2. Two sets

of compensation error histograms are shown, the first obtained when optimal precom-
pensation values (computed using our method) was used, and the second obtained when
writing bits such that the distance between any two transitions is a mulitiple of the
symbol interval T . For most bit patterns b

n
n−2, the first set of histograms show multiple

“peaks”. Use of optimal precompensation values seems to help reduce these “peaks”,
thus making the error more “Gaussian-like”.

policies defined in the previous sections do not account for any look-ahead, since

all controls are decided based on the incoming bit.

Table 6.1 compares MSE per bit obtained by various precompensation schemes.

We note that our dynamic programming algorithm outperforms the simple look-

ahead strategy of writing dibits further apart. However, it incurs a larger MSE per

bit than if we write all bit transitions located at the ends of transition runs further

apart. This motivates further investigation of dynamic programming techniques

that incorporate some look-ahead; this will be a topic of future research.

68

CHAPTER 6. DYNAMIC PROGRAMMING FOR MEASURED SIGNALS

Method MSE per bit (×10−2)

Alignment with sampling instances 17.10
Q-learning (Dynamic Programming) 7.38

Writing only dibits further apart 9.95
Writing bit transitions located at ends

3.95
of transition runs further apart

Table 6.1: Comparison of the MSE per bit obtained for various precompensation
schemes. We note that because we do not account for look-ahead decisions in our dy-
namic programming, we get outperformed by an intuitive look-ahead method, which is
to write all bit transitions located at the ends of transition runs further apart.

6.5 Summary

In this chapter, we considered a realistic situation, in which the functional forms

for the nonlinearities are unknown, and equalization techniques are used to shorten

the ISI lengths. We proposed to use Q-learning techniques, which are based on

the dynamic programming principle, to compute optimal precompensation. We

focused specifically on the Q-learning technique for the discounted-cost problem.

In order to use the Q-leaning algorithm, first we need to measure the NLTS.

NLTS measurements can be done by methods proposed in the literature. We also

considered the application of Q-learning techniques, when an equalizer is used to

reduce the ISI length. This is done by assuming an appropriate ISI extension

length. The Q-learning algorithm was tested using computer simulations. The

Q-learning estimates were corroborated using Monte Carlo simulations, and were

found to be relatively unbiased. The ISI length assumption was tested, and for a

chosen EPR4 target, the value δ = 1 gives good compromise between performance

and complexity. We performed simple studies to observe the remnant noise after

optimal precompensation is applied, in which we found that the noise becomes

more “Gaussian-like”. Finally, we performed comparisons with look-ahead policies,

and found that our dynamic programming approach is outperformed by a simple

precompensation scheme that incorporates look-ahead. This motivates further

study to incorporate look-ahead strategies in our dynamic programming approach.

69

Chapter 7

Conclusion and Further Work

7.1 Current Results

There are two main results in this thesis. The first main result is the theoret-

ical computation of optimal precompensation that minimizes the MSE between

the nonlinear readback signal and a desired linear one. We proposed a dynamic

programming approach, and formulated the problem to fit into such a framework.

We surveyed various dynamic programming methods in Chapter 3. We showed

in Chapter 3 how finite-horizon dynamic programing can be used to find the ex-

act optimal solution, which turns out to be a non-stationary dynamic program-

ming policy. We argued that finite-horizon dynamic programming incurs a high

complexity cost. In Chapter 3, we also proposed to use infinite-horizon dynamic

programming techniques, namely the discounted-cost and average-cost techniques,

that deliver reduced complexity and stationary policies.

We found extraction of optimal precompensation values from the dyanmic pro-

gramming policies to be complicated, and hence in Section 4.2, we proposed a

suboptimal solution.

70

CHAPTER 7. CONCLUSION AND FURTHER WORK

The second main result is the blind estimation method presented in Chapter 6.

We proposed the use of the well known Q-learning technique to compute optimal

precompensation when the channel characteristics are unknown. We pointed out

that when adopting such an approach, we need to estimate the functional form

of NLTS, which can be easily done using currently known NLTS measurement

methods. We considered a practical application of the Q-learning technique, where

equalizers are used to reduce the ISI. We pointed out the relevant assumptions

required when adopting such an approach. Simulation results, obtained using the

Q-learning technique to compensate for the well known partial response EPR4

target, were presented in Chapter 6.

7.2 Further Work

In this initial effort, we used the MSE as the optimality criterion to design dy-

namic programming techniques to solve the precompensation problem. Another

optimality criterion that is of great interest would be the bit-error rate (BER). It

may be possible to compute optimal precompensation, to improve the BER per-

formance of currently known bit detectors. Perhaps, it may also be possible to

compute optimal precompensation to allow new, simple detectors that outperform

presently known counterparts. It would also be interesting to study how to com-

pute optimal precompensation that maximizes the information rate of the channel.

Perhaps, we would be able to increase the capacity of the channel using intelligent

write precompensation.

In our initial approach to apply dynamic programming, we formulated our

policies without any bit look-ahead whatsoever. In Chapter 6, we pointed out

that our current approach will perform worse than optimization strategies with

bit look-aheads. This motivates an extension of our methods towards dynamic

71

CHAPTER 7. CONCLUSION AND FURTHER WORK

programming for policies with bit look-aheads. While we can anticipate an obvious

improvement in performance, we foresee that such an approach will be non-trival.

To our current knowledge, dynamic programming techniques that perform such a

task do not exist in the literature.

We also observed in Chapter 6 that it typically requires a lot of data for the

Q-learning algorithm to converge. This is because we need to realize all possi-

ble state transitions in the FSM, and our FSM typically has a large number of

states. In magnetic recording, since the size of the typical data file is in the order

of megabytes, writing a few million data bits can be done really fast. However, it

would be convenient if we could reduce the required number of data bits. In the

dynamic programming literature, there exist methods that only explore state tran-

sitions which are possibly optimal [5], and ignore state transitions which obviously

will not be part of the optimal policy. This reduces the number of state transitions

we need to realize, thus reducing the data length required by Q-learning.

Finally, our results could be strengthened by testing the derived algorithms

with realistic waveforms obtained from a spin-stand. During this work, we mainly

focused on algorithm development. Obviously these algorithms eventually need to

be tested on spin-stand waveforms.

72

Appendix A

Polynomials Used to Model PE
Functions

In this appendix, we give the coefficients of the polynomials used to model the PE

functions shown in Sections 5.1 and 6.4.

Section 6.4 (Figure 6.1: SNR=19 dB)

Order 7 6 5 4 3 2

Coef -0.27079860 2.01226812 -5.85592704 8.52781928 -6.71345891 2.73208312

Order 1 0

Coef 0.17445192 0.25267821

Section 5.1 (Figure 5.2), and Section 6.4 (Figure 6.1: SNR=24 dB)

Order 7 6 5 4 3 2

Coef -0.08345976 0.86106975 -3.18699273 5.61751907 -5.30899702 2.79987281

Order 1 0

Coef -0.06050535 0.07290768

73

APPENDIX A. POLYNOMIALS USED TO MODEL PE FUNCTIONS

Section 6.4: (Figure 6.1: SNR=30 dB)

Order 7 6 5 4 3 2

Coef 0.78167266 -5.46801959 15.11652385 -20.90184342 14.56579915 -3.88242199

Order 1 0

Coef 0.30244275 -0.00040084

74

Appendix B

Linear Equalizer Tap Coefficients

In this appendix, we give the tap coefficients of the 31-tap linear equalizer, used

to obtain the simulation results shown in Section 6.4.

Taps Values

1 & 31 -0.004003508

2 & 30 -0.001530436

3 & 29 -0.004363056

4 & 28 -0.004411582

5 & 27 -0.006182235

6 & 26 -0.007460240

7 & 25 -0.009645008

8 & 24 -0.013447671

9 & 23 -0.011296905

10 & 22 -0.043294927

11 & 21 0.042990970

12 & 20 -0.295731673

13 & 19 0.669950305

14 & 18 -1.919653601

15 & 17 -0.232183893

16 5.471995798

75

Bibliography

[1] T. C. Arnoldussen, “Thin-film recording media,” Proceedings of the IEEE,

vol. 74, no. 11, pp. 1526–1539, Nov. 1986.

[2] T. C. Arnoldussen and J. G. Zhu, “Nonlinear behavior of magnetoresistive

heads,” IEEE Trans. Magn., vol. 34, no. 1, pp. 36–39, Jan. 1998.

[3] J. W. M. Bergmans, Digital Baseband Transmission and Recording, Kluwer

Academic Publishers, 1st ed., 1996, chap. 2,6,7.

[4] H. N. Bertram, Theory of Magnetic Recording, Cambridge University Press,

2nd ed., 1994, chap. 1,9.

[5] H. N. Bertram and M. Williams, “SNR and density limit estimates: A com-

parison of longitudinal and perpendicular recording,” IEEE Trans. Magn.,

vol. 36, no. 1, pp. 4–9, Jan. 2000.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume I,

Athena Scientific, 2nd ed., 2000, chap. 1.

[7] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume II,

Athena Scientific, 2nd ed., 2000, chap. 1,4.

76

BIBLIOGRAPHY

[8] M. Blaum, “An introduction to error-correcting codes,” in Coding and Signal

Processing Techniques for Magnetic Recording Systems, B. Vasic and E. M.

Kurtas, Eds. CRC Press, 1st ed., 2005, chap. 9.

[9] H. Cai, “Magnetoresistive read nonlinearity correction by a frequency-domain

approach,” IEEE Trans. Magn., vol. 35, no. 6, pp. 4532–4534, Nov. 1999.

[10] H. Cai, “New frequency-domain technique for joint measurement of nonlinear

transition shift and partial erasure,” IEEE Trans. Magn., vol. 35, no. 6, pp.

4535–4537, Nov. 1999.

[11] J. Caroselli, J. Fitzpatrick, and J. Wolf, “A simple model for transition in-

teractions with the microtrack model,” in Proc. IEEE Intl. Conf. Commun.

(ICC), Atlanta, GA, Jun. 1998, vol. 2, pp. 942–946.

[12] X. Che, “Nonlinearity measurements and write precompensation studies for a

PRML recording channel,” IEEE Trans. Magn., vol. 31, no. 6, pp. 3021–3026,

Nov. 1995.

[13] J. D. Coker, E. Eleftheriou, R. L. Galbraith, and W. Hirt, “Noise-predictive

maximum likelihood (NPML) detection,” IEEE Trans. Magn., vol. 34, no. 1,

pp. 110–117, Jan. 1998.

[14] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,” Journal of

Machine Learning Research, vol. 5, pp. 1–25, Dec. 2003.

[15] P. C. I. Fang, X. Feng, T. T. L. Lam, and Z. H. Lin, “Process for measuring

nonlinear transition shift NLTS at high recording densities with a giant mag-

77

BIBLIOGRAPHY

netoresistive GMR head,” US Patent Application, no. US 2003/0179478 A1,

Sep. 2003.

[16] G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences

in the prescence of intersymbol interference,” IEEE Trans. Inform. Theory,

vol. 18, no. 3, pp. 363–378, May 1972.

[17] R. Hermann, “Volterra modeling of digital magnetic saturation recording

channels,” IEEE Trans. Magn., vol. 26, no. 5, pp. 2125–2127, Sep. 1990.

[18] T. D. Howell, D. P. McCown, T. A. Diola, Y. S. Tang, K. R. Hense, and

R. L. Gee, “Error rate performance of experimental gigabit per square inch

recording components,” IEEE Trans. Magn., vol. 29, no. 5, pp. 2298–2302,

Sep. 1990.

[19] P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. Com-

mun., vol. 23, no. 9, pp. 921–934, Sep. 1975.

[20] A. Kavcic, “Soft-output detector for channels with intersymbol interference

and Markov noise memory,” in Proc. IEEE Intl. Conf. Global Telecommun.

(GLOBECOM), 1999, Rio de Jeneiro, Dec. 1999, vol. 1b, pp. 728–732.

[21] A. Kavcic and J. M. F. Moura, “Statistical study of zig-zag transition bound-

aries in longitudinal digital magnetic recording,” IEEE Trans. Magn., vol. 33,

no. 6, pp. 4482–4491, Nov. 1997.

78

BIBLIOGRAPHY

[22] A. Kavcic and J. M. F. Moura, “The Viterbi algorithm and Markov noise

memory,” IEEE Trans. Inform. Theory, vol. 46, no. 5, pp. 291–301, Jan.

2000.

[23] A. Kavcic and A. Patapoutian, “A signal-dependent autoregressive channel

model,” IEEE Trans. Magn., vol. 35, no. 5, pp. 2316–2318, Sep. 1999.

[24] I. Lee, T. Yamauchi, and J. M. Cioffi, “Performance comparison of receivers

in a simple partial erasure model,” IEEE Trans. Magn., vol. 30, no. 4, pp.

1465–1469, Jul. 1994.

[25] J. Lee and J. Lee, “A simplified noise-predictive partial response maximum

likelihood detection using M-algorithm for perpendicular magnetic recording

channels,” IEEE Trans. Magn., vol. 41, no. 2, pp. 1064 – 1066, Feb. 2005.

[26] G. H. Lin and H. N. Bertram, “Experimental studies of noise autocorrelation

in thin film media,” IEEE Trans. Magn., vol. 29, no. 6, pp. 3697–3699, Nov.

1993.

[27] J. Moon, “Discrete-time modeling of transition-noise-dominant channels and

study of detection performance,” IEEE Trans. Magn., vol. 27, no. 6, pp. 4573–

4578, Nov. 1991.

[28] J. Moon and B. Brickner, “Maximum transition run codes for data storage

systems,” IEEE Trans. Magn., vol. 32, no. 5, pp. 3992–3994, Sep. 1996.

[29] Y. Okamoto, H. Sumiyoshi, T. Kishigami, M. Akamatsu, H. Osawa, H. Saito,

H. Muraoka, and Y. Nakamura, “A study of PRML systems for perpendicular

79

BIBLIOGRAPHY

recording using double layered medium,” IEEE Trans. Magn., vol. 36, no.5,

pp. 2164–2166, Sep. 2000.

[30] D. Palmer, “A brief history of magnetic storage,” in Coding and Signal Pro-

cessing Techniques for Magnetic Recording Systems, B. Vasic and E. M. Kur-

tas Eds. CRC Press, 1st ed., 2005, chap. 1.

[31] D. Palmer, J. Hong, D. Stanek, and R. Wood, “Characterization of the

read/write process for magnetic recording,” IEEE Trans. Magn., vol. 31, no. 2,

pp. 1071–1076, Mar. 1995.

[32] D. Palmer, P. Ziperovich, R. Wood, and T. Howell, “Identification of nonlinear

write effects using psuedorandom sequences,” IEEE Trans. Magn., vol. 23, no.

5, pp. 2377–2379, Sep. 1987.

[33] W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical

recipies in C, Cambridge University Press, 2nd ed., 1996, chap. 10.

[34] K. Senanan and R. H. Victora, “Theoretical study of nonlinear transition

shift in double-layer perpendicular media,” IEEE Trans. Magn., vol. 38, pp.

1664–1669, Jul. 2002.

[35] Y. Tang and C. Tsang, “A technique for measuring non-linear bit shift,” IEEE

Trans. Magn., vol. 27, no. 6, pp. 5316–5318, Nov. 1991.

[36] A. Taratorin, Characterization of magnetic recording systems, Guzik technical

publications, 1st ed., 1996, chap. 5-7.

80

BIBLIOGRAPHY

[37] A. Taratorin, D. Cheng, P. Arnett, R. Olson, J. Diola, T. amd Fitzpatrick,

S. Wang, and B. Wilson, “Intra- and inter-pattern non-linearities in high

density magnetic recording,” IEEE Trans. Magn., vol. 34, no. 1, pp. 45–50,

Jan. 1998.

[38] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,”

Machine Learning, vol. 16, no. 3, pp. 185–202, Sep. 1994.

[39] C. J. C. H. Watkins and D. Peter, “Q-learning,” Machine Learning, vol. 8,

pp. 279–292, May 1992.

[40] A. J. Wijngaarden and E. Soljanin, “A combinatorial technique for construct-

ing high-rate MTR-RLL codes,” IEEE J. Select. Areas Commun., vol. 19, no.

4, pp. 582–588, Apr. 2001.

[41] W. Zeng and J. Moon, “Modified Viterbi algorithm for a jitter-dominant

1 − D2 channel,” IEEE Trans. Magn., vol. 28, no. 5, pp. 2895–2897, Sep.

1992.

[42] H. Zhou, T. Roscamp, R. Gustafon, E. Boerner, and R. Chantrell, “Physics

of longitudinal and perpendicular recording,” in Coding and Signal Processing

Techniques for Magnetic Recording Systems, B. Vasic and E. M. Kurtas, Eds.

CRC Press, 1st ed., 2005, chap. 2.

[43] W. Zhu, D. Kaiser, J. Judy, and D. Palmer, “Experimental study of reader

nonlinearity in perpendicular recording using pseudorandom sequences,”

IEEE Trans. Magn., vol. 39, no. 5, pp. 2636–2638, Sep. 2003.

81

List of Publications

[1] F. Lim and A. Kavcic, “Optimal pre-compensation for partial erasure and

non-linear transition shift in magnetic recording using dynamic program-

ming,” in Proc. IEEE. Intl. Conf. Global Telecommun. (GLOBECOM),

2005, St Louis, MO, Nov. 2005.

[2] F. Lim and A. Kavcic, “Optimal precompensation for nonlinearities in longi-

tudinal magnetic recording using dynamic programming,” to appear in Intl.

J. Prod. Develop, 2006.

82

Bibliography

[1] T. C. Arnoldussen, “Thin-film recording media,” Proceedings of the IEEE,

vol. 74, no. 11, pp. 1526–1539, Nov. 1986.

[2] T. C. Arnoldussen and J. G. Zhu, “Nonlinear behavior of magnetoresistive

heads,” IEEE Trans. on Magn., vol. 34, no. 1, pp. 36–39, Jan. 1998.

[3] J. W. M. Bergmans, Digital Baseband Transmission and Recording, Kluwer

Academic Publishers, 1996.

[4] H. N. Bertram, Theory of Magnetic Recording, Cambridge University Press,

2nd edn., 1994.

[5] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume II,

Athena Scientific, chap. 1.

[6] H. Cai, “Magnetoresistive read nonlinearity correction by a frequency-domain

approach,” IEEE Trans. on Magn., vol. 35, no. 6, pp. 4532–4534, Nov. 1999.

[7] H. Cai, “New frequency-domain technique for joint measurement of nonlinear

transition shift and partial erasure,” IEEE Trans. on Magn., vol. 35, no. 6,

pp. 4535–4537, Nov. 1999.

83

[8] J. Caroselli and J. Wolf, “Applications of a new simulation model for media

noise limited magnetic recording channels,” IEEE Trans. on Magn., vol. 32,

no. 5, pp. 3917–3919, Sep. 1996.

[9] X. Che, “Nonlinearity measurements and write precompensation studies for a

PRML recording channel,” IEEE Trans. on Magn., vol. 31, no. 6, pp. 3021–

3026, Nov. 1995.

[10] J. D. Coker, E. Eleftheriou, R. L. Galbraith, and W. Hirt, “Noise-predictive

maximum likelihood (NPML) detection,” IEEE Trans. on Magn., vol. 34,

no. 1, pp. 110–117, Jan. 1998.

[11] R. W. D. Palmer, P. Ziperovich and T. Howell, “Identification of nonlinear

write effects using psuedorandom sequences,” IEEE Trans. on Magn., vol. 23,

no. 5, pp. 2377–2379, Sep. 1987.

[12] E. Even-Dar and Y. Mansour, “Learning rates for Q-learning,” Journal of

Machine Learning Research, vol. 5, pp. 1–25, Dec. 2003.

[13] G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences

in the prescence of intersymbol interference,” IEEE Trans. on Inform. Theory,

vol. 18, no. 3, pp. 363–378, May 1972.

[14] R. Hermann, “Volterra modeling of digital magnetic saturation recording

channels,” IEEE Trans. on Magn., vol. 26, no. 5, pp. 2125–2127, Sep. 1990.

[15] T. D. Howell, D. P. McCown, T. A. Diola, Y. S. Tang, K. R. Hense, and

R. L. Gee, “Error rate performance of experimental gigabit per square inch

84

recording components,” IEEE Trans. on Magn., vol. 29, no. 5, pp. 2298–2302,

1990.

[16] P. Kabal and S. Pasupathy, “Partial response signaling,” IEEE Trans. on

Comm., vol. 88, no. 8, pp. 921–934, Sep. 1975.

[17] A. Kavcic, “Soft-output detector for channels with intersymbol interference

and markov noise memory,” IEEE Trans. on Magn., vol. 39, no. 5, pp. 2636–

2638, Sep. 2003.

[18] A. Kavcic and J. Moura, “Statistical study of zig-zag transition boundaries

in longitudinal digital magnetic recording,” IEEE Trans. on Magn., vol. 33,

no. 6, pp. 4482–4491, Nov. 1997.

[19] A. Kavcic and J. Moura, “The Viterbi algorithm and Markov noise memory,”

IEEE Trans. on Inform. Theory, vol. 46, no. 5, pp. 291–301, Jan. 2000.

[20] A. Kavcic and A. Patapoutian, “A signal-dependent autoregressive channel

model,” IEEE Trans. on Magn., vol. 35, no. 5, pp. 2316–2318, Sep. 1999.

[21] G. H. Lin and H. N. Bertram, “Experimental studies of noise autocorrelation

in thin film media,” IEEE Trans. on Magn., vol. 29, no. 6, pp. 3697–3699,

Nov. 1993.

[22] J. Moon, “Discrete-time modeling of transition-noise-dominant channels and

study of detection performance,” IEEE Trans. on Magn., vol. 27, no. 6, pp.

4573–4578, Nov. 1991.

85

[23] J. Moon and B. Brickner, “Maximum transition run codes for data storage

systems,” IEEE Trans. on Magn., vol. 32, no. 5, pp. 3992–3994, Sep. 1996.

[24] D. Palmer, J. Hong, D. Stanek, and R. Wood, “Characterization of the

read/write process for magnetic recording,” IEEE Trans. on Magn., vol. 31,

no. 2, pp. 1071–1076, Mar. 1995.

[25] W. H. Press, S. A. Teukolsky, and W. Vetterling, Numerical recipies in C,

Cambridge University Press, 1996.

[26] Y. Tang and C. Tsang, “A technique for measuring non-linear bit shift,” IEEE

Trans. on Magn., vol. 27, no. 6, pp. 5316–5318, Nov. 1991.

[27] A. Taratorin, Characterization of magnetic recording systems, Guzik technical

publications, 1st edn., 1996.

[28] A. Taratorin, D. Cheng, P. Arnett, R. Olson, J. Diola, T. amd Fitzpatrick,

S. Wang, and B. Wilson, “Intra- and inter-pattern non-linearities in high

density magnetic recording,” IEEE Trans. on Magn., vol. 34, no. 1, pp. 45–

50, Jan. 1998.

[29] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-learning,”

Machine Learning, vol. 16, pp. 185–202, 1994.

[30] C. J. C. H. Watkins, “Q-learning,” Machine Learning, vol. 8, no. 6, pp. 279–

292, 1992.

[31] W. Zeng and J. Moon, “Modified Viterbi algorithm for a jitter-dominant 1−d2

channel,” IEEE Trans. on Magn., vol. 28, no. 5, pp. 2895–2897, Sep. 1992.

86

[32] W. Zhu, D. Kaiser, J. Judy, and D. Palmer, “Experimental study of reader

nonlinearity in perpendicular recording using pseudorandom sequences,”

IEEE Trans. on Magn., vol. 39, no. 5, pp. 2636–2638, Sep. 2003.

87

