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Summary

Quantum entanglement, which has become a useful resource for quantum com-

munication and computation, is a remarkable feature of quantum mechanics. Vio-

lation of Bell inequalities is one way to identify entanglement. The overall objective

of this thesis is to develop Bell inequalities for multipartite systems of higher di-

mensions and explore their applications. To achieve this overall objective, different

types of systems: N qubits, 2 QuNits, and 3 quNits are investigated. This thesis

consists of three parts which are mainly based on the following papers.

1. J. L. Chen, C. F. Wu, L. C. Kwek and C. H. Oh, “Gisin’s theorem for three

qubits”, Phys. Rev. Lett. 93, 140407 (2004).

2. C. F. Wu, J. L. Chen, D. M. Tong, L. C. Kwek and C. H. Oh, “Quantum

nonlocality of Heisenberg XX model with site-dependent coupling strength”,

J. Phys. A: Gen. Math. 37, 11475 (2004).

3. C. F. Wu, J. L. Chen, L. C. Kwek, C. H. Oh and K. Xue, “Continuous multi-

partite entangled state in the Wigner representation and violation of Żukowski-

Brukner inequality”, Phys. Rev. A 71, 022110 (2005).

4. J. L. Chen, C. F. Wu, L. C. Kwek, D. Kaszlikowski, M. Żukowski and C. H.

Oh, “Multi-component Bell inequality and its violation for continuous-variable

systems”, Phys. Rev. A 71, 032107 (2005).

5. C. F. Wu, J. L. Chen, L. C. Kwek and C. H. Oh, “A Bell inequality based on

correlation functions for three qubits”, Int. J. Quantum Inf. 3: 53-59 Suppl.

S, NOV (2005).

6. C. F. Wu, J. L. Chen, L. C. Kwek and C. H. Oh, “Quantum nonlocality of

N-qubit W state”, Phys. Rev. A 73, 012310 (2006).
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7. J. L. Chen, C. F. Wu, L. C. Kwek and C. H. Oh, “Bell inequalities for three

particles”, e-print: quant-ph/0506230.

8. J. L. Chen, C. F. Wu, L. C. Kwek and C. H. Oh, “Violating Bell Inequalities

Maximally for Two d-Dimensional Systems”, e-print: quant-ph/0507227.

For N-qubit systems, quantum entanglement of quantum XX model is examined

through its violation of the Żukowski-Brukner (ŻB) inequalities. There are two types

of XX models considered in this thesis. It is shown that the quantum entanglement

of these two models can be controlled by adjusting temperature and magnetic field

strength. In addition to these discrete-variable systems, multipartite systems with

continuous variables are found to possess quantum entanglement because the sys-

tems violate the Żukowski-Brukner inequalities under the Wigner representation.

The degree of the violation increases with the increasing number of particles N.

For 2-quNit systems, a new type of Bell inequalities in terms of correlation func-

tions are constructed based on multi-component measurements. Quantum entan-

glement of bipartite quantum systems of arbitrary dimensions with continuous vari-

ables is examined by violating the inequalities. In addition, maximal violation of the

Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequalities is investigated for non-

maximally entangled states of 2 quNits. By extending the calculations to N=8000,

it is shown that the degree of violation grows slowly with increasing dimensions.

The results confirm that the violation is asymptotically constant when N goes to

infinity. An approximate value of the constant is found numerically to be 3.9132.

We construct a set of entangled states |Φ〉app whose corresponding Bell quantities

are closed to the actual maximal violations.

New Bell inequalities involving both probabilities and correlation functions for

3 qubits are found so that Gisin’s theorem can indeed be generalized to 3 qubits.

A new Bell inequality for tripartite systems of four dimensions is also formulated.

Starting from this inequality, it is shown that another new Bell inequality with

improved threshold visibility for three qubits can be constructed. The inequality is

violated for any pure entangled state. It is also worth noting that the inequality is

more resistant to noise than the known ones. In addition, an experimental setup

for testing violation of local realism by using Bell inequalities for three qubits is
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proposed.

The results of the first two parts in this thesis play an important role in un-

derstanding quantum entanglement of quantum XX models and continuous-variable

systems in general cases. Those entangled states presented in part II can potentially

be useful for quantum cryptography as well as many other important fields of quan-

tum information. The new Bell inequalities given in the third part (part III) provide

a basis for testing quantum entanglement of composite quantum systems. By using

the method given in part III, new Bell inequalities for 3 qubits are constructed.

Given these new Bell inequalities, experimental observation of quantum nonlocality

may be realized.
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Chapter 1

Introduction

Quantum information processing performs communication and computation be-

yond the limits achievable by the equivalent classical version. In this relatively

young field, quantum entanglement, in which measurements on spatially separated

quantum systems can influence instantaneously each other, plays a crucial role as a

valuable resource. The importance of entanglement has been demonstrated in pro-

cesses like quantum teleportation, quantum computation and quantum cryptogra-

phy. Entanglement lies at the heart of the so called quantum nonlocality. Quantum

nonlocality refers to the notion that a local realistic explanation of quantum mechan-

ics is not possible and is quantitatively expressed by violation of Bell inequalities.

Violation of a Bell inequality provides an important means to show that quantum

entanglement cannot in any way be simulated by classical correlation. Violation

of Bell inequalities which eliminates local realistic description is of importance in

identifying the nonclassical resource for quantum information processing.

In the following section, we provide a brief review of quantum nonlocality, en-

tanglement and Bell inequalities.

1.1 Historical Background

Quantum nonlocality is embodied in the EPR paradox, although it was not quite

explicitly stated in the work. The EPR paradox also provides one of the most famous

arguments concerning the foundation of quantum mechanics.

1



1.1. Historical Background 2

1.1.1 EPR Paradox

Einstein, Podolsky and Rosen (EPR) challenged the completeness of quantum

mechanics in a 1935 paper [1]. In this paper, they did not doubt that quantum

mechanics is correct, but they were dissatisfied with the description of a system by

wave function in quantum mechanics. The EPR reasoning required completeness

and locality: “there is an element corresponding to each element of reality in a

complete theory, and the real factual situation of the system A is independent of what

is done with the system B, which is spatially separated from the former.” Element of

physical reality was defined as “If, without in any way disturbing a system, we can

predict with certainty the value of a physical quantity, then there exists an element of

physical reality corresponding to this physical quantity”. As an example, they used

the following wave function of a two-particle system to show that the description by

wave function was incompatible with the completeness postulate,

Ψ(x1, x2) =

∫ ∞

−∞
e(i/h̄)(x1−x2+x0)pdp. (1.1)

According to EPR, a theory should meet the so called locality requirement in order

to be considered a complete description. Suppose that a system consists of two

particles 1 and 2 that are spatially separated. Then a measurement performed on

particle 1 must not modify the description of particle 2. However, for the system

described by the above wave function, after a measurement is performed on particle

1 and a corresponding outcome is obtained, the description of particle 2 does change.

Hence, by EPR’s argument, the description of a quantum system by wave function

could not be considered complete.

In the following, we follow Ref. [1] to discuss the EPR argument in a little bit

more detail . Consider the two-particle state (1.1). If one measures the momentum of

the first particle and obtains a result p, the first particle will be in the corresponding

eigenstate of momentum operator

up(x1) = e(i/h̄)px1. (1.2)

Then Eq. (1.1) reads

Ψ(x1, x2) =

∫ ∞

−∞
ψp(x2)up(x1)dp, (1.3)
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with

ψp(x2) = e−(i/h̄)(x2−x0)p. (1.4)

This tells us that the second particle will be in the eigenstate ψp(x2) of the momen-

tum operator P̂ = −ih̄ ∂
∂x2

corresponding to the eigenvalue −p after the momentum

measurement performed on the first particle. If one measures the position of the

first particle and obtains a result x, the first particle will be in the corresponding

eigenstate of position operator

vx(x1) = δ(x1 − x). (1.5)

Then Eq. (1.1) reads

Ψ(x1, x2) =

∫ ∞

−∞
ϕx(x2)vx(x1)dx, (1.6)

with

ϕx(x2) =

∫ ∞

−∞
e(i/h̄)(x−x2+x0)pdp. (1.7)

This tells us that the second particle will be in the eigenstate ϕx(x2) of the position

operator Q̂ = x2 corresponding to the eigenvalue x+ x0 after the position measure-

ment performed on the first particle. Thus, the momentum and the position of the

second particle are elements of reality. However, it is known that P̂ and Q̂ do not

commute, or Q̂P̂ − P̂ Q̂ = ih̄. Therefore, it has been shown that it is possible for ψp

and ϕx to be eigenfunctions of two noncommuting operators. So EPR questioned

the completeness of quantum mechanics: “We are thus forced to conclude that the

quantum-mechanical description of physical reality given by wave functions is not

complete.”

Einstein believed that there must be elements of reality that quantum mechanics

ignores. Moreover, they argued that the incomplete description could be avoided by

postulating the presence of hidden variables (HV). The variables are called hidden

ones because no one knows how to incorporate them into the theory.

1.1.2 Entanglement

The EPR paradox drew attention to a phenomenon predicted by quantum me-

chanics known as quantum entanglement. One of the main differences between



1.1. Historical Background 4

quantum physics and classical one is entanglement. The term entanglement was

first introduced by Schrödinger [2], the work of Schrödinger was partially motivated

by the EPR paper, who called it “Verschränkung”. Central to the original seminal

paper by Einstein, Podolsky and Rosen is an entangled state. There are two basic

features that a situation typical for entanglement includes [3]. One is that indi-

viduals do not carry any information by themselves. The other feature is that the

information in a total system is encoded in the joint properties of individuals.

To discuss basic features of entanglement, maximally entangled states of two-level

systems (called qubits) are usually considered. One of the states can be written as

|ψ〉 =
1√
2
(|0〉1 ⊗ |1〉2 − |1〉1 ⊗ |0〉2), (1.8)

where |0〉i, |1〉i describe two orthogonal states of the i-th particle. This pure state is

a coherent superposition of two product states with equal probability. Note that it

cannot be written as the product of two terms, one describing the state of particle

1 and the other one describing the state of particle 2,

|ψ〉 �= |ψ〉1|ψ〉2. (1.9)

Unentangled states are those that can be described by two independent terms. The

system is a simple composite of these two wave functions such that particle 1 is fully

described by |ψ〉1 and particle 2 by |ψ〉2. But an entangled state cannot be factored

into the product of two wave functions, and consequently cannot be thought of as

a composite system in any classical sense. According to quantum mechanics, |ψ〉
contains all available information about the state of the qubits. If we write the state

in the form of a density matrix

ρ12 = |ψ〉〈ψ|
=

1

2
(|0〉11〈0| ⊗ |1〉22〈1| − |0〉11〈1| ⊗ |1〉22〈0|

− |1〉11〈0| ⊗ |0〉22〈1| + |1〉11〈1| ⊗ |0〉22〈0|), (1.10)

and trace out one particle we obtain a density matrix describing the other particle,

ρ1 = Tr2(|ψ〉〈ψ|) =
1

2
(|0〉11〈0| + |1〉11〈1| =

1

2
11

ρ2 = Tr1(|ψ〉〈ψ|) =
1

2
(|0〉22〈0| + |1〉22〈1| =

1

2
12. (1.11)
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“Maximally entangled” means that when one traces over one of two particles to find

the density operator ρi of the other particle, a density matrix ρi = 1
2
1i describing

a totally random state is obtained. This means that if particle 1 or 2 is measured,

the result is completely random. Therefore, if one performs any local measurement

on particle 1 or 2, no information about the state is generated.

Given the maximally entangled state in Eq. (1.8), it can be seen that information

lives in the joint properties of individuals. Suppose there are two well separated

observers (Alice and Bob) and a source which generates entangled pair of spin-1/2

particles described by the state |ψ〉 (1.8). One particle is sent to Alice and the other

particle is sent to Bob. That there is no interaction possible between the particles

is guaranteed by spatially separating Alice and Bob. Alice measures spin along ẑ

direction, or observable ŝz, on her particle in the computational basis |0〉, |1〉 of ŝz

and Bob does the same on his particle. With probability 1/2, Alice’s measurement

result is 0 and the state |ψ〉 reduces to state |01〉 after Alice’s measurement and

hence Bob’s measurement result is 1. With probability 1/2, Alice’s measurement

result is 1 and the state |ψ〉 reduces to state |10〉 after Alice’s measurement and hence

Bob’s measurement result is 0. Thus, Alice’s result is 0 and 1 with probability 1/2

and so is Bob’s result but their results are always opposite. Perfect correlations of

the measurement outcomes occur. This is a situation typical for the entanglement.

The consequence turns out to be so remarkable that Schrödinger was led to say that

entanglement was not simply one of the many traits “but rather the characteristic

trait of quantum mechanics”.

The emergence of quantum computation and quantum information has revived

the importance of quantum entanglement. It was used to produce unusual effects

such as quantum teleportation [4], superdense coding [5] and quantum cryptography

[6], etc. It should be noted that communication using entanglement is not superlu-

minal. Superluminal communication [7] utilized the notion that the wavefunction

reduced instantaneously over arbitrarily large distance after a measurement is per-

formed. This would seem to suggest that signals can be sent from one end to the

other end faster than the speed of light. According to the special theory of relativ-

ity, however, nothing can move with a velocity that exceeds the speed of light. It is

therefore important to understand the instantaneously wavefunction reduction and
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the impossibility of superluminal communication.

Superluminal communication is not possible since one cannot actually use this

instantaneous wavefunction reduction to transmit real messages from one side to

another space separated side. For example, suppose that Alice and Bob need to

decide at which time to meet – either in the morning or in the afternoon. In order

to correlate their decisions, they might agree to measure spins of entangled particles

emitted from a EPR source in a prearranged direction (say ẑ direction). Alice will

decide the time and then try to communicate her decision to Bob. A prior agreement

is that the measurement of the spin of A along ẑ direction would mean that the

meeting is to be in the morning, whereas no such measurement along ẑ would mean

that afternoon is to be the meeting time. Thus, Alice either makes the measurement

or she does not to transmit the decision. Corresponding to Alice’s action, B will

have definite spin along ẑ direction and the time is morning, or otherwise the time

is afternoon. However, Bob cannot ‘read’ this message although he can observe the

particle B because there is no way Bob could know whether or not the spin of B was

definite. A crucial point is that Bob cannot tell whether the spin of his particle was

definite or not prior to his measurement. That is to say that Bob cannot discover

whether his particle had already definite spin along the chosen direction due to

Alice’s measurement, or whether it was still in the original entangled state.

Entanglement lies at the heart of the so called quantum nonlocality. Quantum

nonlocality is the fact that a local realistic explanation of quantum mechanics is

not possible. The impossibility can be quantitatively expressed by violation of Bell

inequalities. In next section, the Bell theorem is reviewed.

1.1.3 The Bell Theorem

For a long time, EPR paradox remained an inexplicable argument on the founda-

tion of quantum mechanics. In 1964, J. Bell [8] put forward a proposal, the so called

Bell theorem to solve the EPR paradox. He showed that the assumption of local

hidden variables was not just a thought view, it resulted in constraints on measure-

ment outcomes. In a local realistic model, the measurement results are determined

by hidden variables, and the results obtained at one side are independent of any

measurements carried out at the other space-separated side. Local realism imposes
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variable constraints on the statistical measurements on two or more physically sep-

arated systems. These constraints, called Bell inequalities, can be violated by the

predictions of quantum mechanics and this is basis of the “Bell theorem”. Thus,

the Bell inequalities made it possible for the first time to eliminate local realistic

description of quantum mechanics.

We next review the original Bell inequality given by J. Bell. In Ref. [8], the

hidden variables are denoted by a parameter λ, and the system studied consists

of two separated particles 1 and 2. Assume that the separated particles 1 and 2

have spin-1/2 and are in the quantum mechanical singlet state. The outcome of a

measurement of spin components along direction â on particle 1 is

A(â, λ) = ±1, (1.12)

and the outcome of a measurement of spin components along direction b̂ on particle

2 is

B(b̂, λ) = ±1, (1.13)

where +1 and −1 represent spin up and down, respectively. According to the locality

requirement, the result of a measurement on A does not depend on what is measured

on particle 2, and the result of a measurement on B does not depend on what is

measured on particle 1. For particles in the singlet state, the spins of the two

particles are anti-correlated. That is to say that if directions â and b̂ are chosen

to be the same then the outcomes of the measurements of the corresponding spin

components of particles 1 and 2 are different, or the product of their measurement

outcomes is −1. Under the hidden-variable theory, in order to agree with this

quantum mechanical correlation, there must be a probability distribution ρ over the

hidden variable λ such that∫
dλρ(λ)A(â, λ)B(â, λ) = −1, (1.14)

and the distribution function ρ satisfies the normalization condition
∫
dλρ(λ) = 1.

But Eq. (1.14) is guaranteed only if

A(â, λ) = −B(â, λ). (1.15)
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The correlation function of measurement of the spin components along directions â

and b̂ can be written as

E(â, b̂) =

∫
dλρ(λ)A(â, λ)B(b̂, λ). (1.16)

Introducing a third direction ĉ, and taking the difference

E(â, b̂) − E(â, ĉ) =

∫
dλρ(λ)[A(â, λ)B(b̂, λ) −A(â, λ)B(ĉ, λ)]

= −
∫
dλρ(λ)[A(â, λ)A(b̂, λ) − A(â, λ)A(ĉ, λ)]

(1.17)

by using Eq. (1.15). This can be factored to read

E(â, b̂) − E(â, ĉ) = −
∫
dλρ(λ)A(â, λ)A(b̂, λ)[1 −A(b̂, λ)A(ĉ, λ)] (1.18)

because

[A(b̂, λ)]2 = 1 (1.19)

since A(b̂, λ) is either plus or minus one. Similary, the factor A(â, λ)A(b̂, λ) is either

plus or minus one, and so is certainly less than or equal to plus one. Thus if one

drops it from the the right hand side of Eq. (1.18) and takes absolute values, one

obtains

|E(â, b̂) − E(â, ĉ)| ≤ |
∫
dλρ(λ)[1 − A(b̂, λ)A(ĉ, λ)]|. (1.20)

By Eqs. (1.15, 1.16), the above equation gives

|E(â, b̂) − E(â, ĉ)| ≤ 1 +

∫
dλρ(λ)A(b̂, λ)B(ĉ, λ)

≤ 1 + E(b̂, ĉ) (1.21)

which is the Bell theorem.

Quantum mechanically, the expectation value of the product of an arbitrary spin

component of particle 1 and an arbitrary spin component of particle 2 measured on

the singlet state is

〈	σ · â⊗ 	σ · b̂〉 = −â · b̂ = − cos θab. (1.22)
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The conflict between the local hidden-variable inequality (1.21) and the quantum

mechanical expectation value (1.22) is obvious. For example, if choosing settings

in which b̂ makes an angle of π/3 to â, ĉ makes an angle of π/3 to b̂, and ĉ makes

an angle of 2π/3 to â, then â · b̂ = b̂ · ĉ = 1
2

and â · ĉ = −1
2
, the left hand side of

inequality (1.21) is

|E(â, b̂) − E(â, ĉ)| = |(−1

2
) − (

1

2
)| = 1, (1.23)

and the right hand side of inequality (1.21) is

1 + E(b̂, ĉ) = 1 + (−1

2
) =

1

2
, (1.24)

which do not obey the inequality (1.21).

The original Bell inequality is not exactly suitable for realistic experimental

verification. However, there have been many attempts to formulate other versions

of Bell inequalities that are more amenable to experimental tests. One of the most

common form of Bell inequalities involves the study of correlation between two

maximally entangled spin-1/2 particles. This inequality is known as the Clauser-

Horne-Shimony-Holt (CHSH) inequality [9]. Here, we follow Bell’s proof [10] to

show the new version of the Bell Theorem. For the system discussed above, the

measurement result A(â, λ) or B(b̂, λ) of spin components along direction â or b̂ on

particle 1 or 2 can take values ±1 where +1 and −1 represent spin up and down,

respectively. Thus the average values of these quantities satisfy

|A(â, λ)| ≤ 1,

|B(b̂, λ)| ≤ 1. (1.25)

The correlation function in the hidden variable theory can also be written as shown

in Eq. (1.16). Then the following quantity can be written

E(â, b̂) − E(â, b̂′) =

∫
{A(â, λ)B(b̂, λ) −A(â, λ)B(b̂′, λ)}ρ(λ)dλ

=

∫
A(â, λ)B(b̂, λ){1 ± A(â′, λ)B(b̂′, λ)}ρ(λ)dλ

−
∫
A(â, λ)B(b̂′, λ){1 ± A(â′, λ)B(b̂, λ)}ρ(λ)dλ,

(1.26)
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where â′ and b̂′ are the alternative settings for observers.

By using Eq. (1.25), Eq. (1.26) reads

|E(â, b̂) − E(â, b̂′)| ≤
∫

{1 ± A(â′, λ)B(b̂′, λ)}ρ(λ)dλ

+

∫
{1 ± A(â′, λ)B(b̂, λ)}ρ(λ)dλ, (1.27)

which can be written as

|E(â, b̂) − E(â, b̂′)| ≤ ±{E(â′, b̂′) + E(â′, b̂)} + 2. (1.28)

The CHSH inequality is then obtained, which must be satisfied by any local hidden

variable theory,

−2 ≤ E(â, b̂) − E(â, b̂′) + E(â′, b̂′) + E(â′, b̂) ≤ 2. (1.29)

Quantum mechanically, E(â, b̂) = −â · b̂. For appropriate angle settings in which â

makes an angle of π
4

to b̂ and an angle of −π
4

to b̂′, â′ makes an angle of π
4

to b̂ and an

angle of 3π
4

to b̂′, the above inequality (1.29) is violated. Cirel’son [11] first proved

that the absolute value of the combination of correlation functions in Eq. (1.29)

is bounded by 2
√

2 for any quantum mechanical prediction, instead of the value 2

imposed by the local realism:

−2
√

2 ≤ E11 + E12 + E21 −E22 ≤ 2
√

2, (1.30)

which implies that quantum mechanics violates the CHSH inequality. If such a

violation is observed experimentally, one can draw a conclusion that local realistic

description does not exist since no local hidden-variable theory can reproduce the

observed violation of the Bell inequality. This means that one has to abandon the

concept of local realism.

However, such a perfect correlation cannot be achieved experimentally. If one

considers the inefficiency of detector, one has to modify the correlation slightly to

account for the imperfections, which are characterized by the quantum efficiency of

detectors η (0 ≤ η ≤ 1). For ideal detectors, η = 1 and the correlation is perfect.

For non-ideal detectors, take two qubits for example, the correlation is modified by

E ′
ij = η

2−η
Eij and the CHSH inequality is violated if η > 2

√
2 − 2 [12].
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In 1951, Bohm [13] recrafted the EPR paradox into a clear form. In recent

years his version of the EPR experiment has been realized in the laboratory. The

EPR experiment is no longer a thought experiment but can be realistically carried

out in the laboratory. The first experimental test of Bell inequality was performed

by Freedman and Clauser [14] with photons from atomic cascade decays. But no

precaution was taken to guarantee that the interaction between the two polarizing

settings detection stations is not possible [15, 16] in the experiment. It is worth

noting that Aspect and co-workers [17] published three landmark papers on tests

of nonexistence of local hidden-variable theories via violation of the Bell theorem.

In their experiments, possible interaction between the source and the analyzer was

prevented by using fast switchings of the analyzer position. To this date, many

experiments have been performed by using entangled photon pairs produced from

parametric down conversion and other means and the violation of Bell inequalities is

now fairly well established. Nature has shown us that the local realistic description

is fundamentally wrong. For this reason, the Bell theorem, which eliminates local

realism, is really a remarkable discovery of science.

The reason for the quantum violation of Bell inequalities is due to entanglement,

the characteristic feature of quantum mechanics. It was shown [18] that any en-

tangled pure state of two qubits violates some Bell inequality. For two-qubit pure

states, “entangled” is equivalent to “violation of Bell inequality”. For bipartite

mixed states or multi-partite states, however, the situations are more complicated.

After the original Bell inequality and the famous CHSH inequality, different types

of Bell inequalities have been developed. In the next section, these Bell inequalities

will be reviewed to show there are some problems that deserve further discussion.

1.2 Motivation and Goals

The theoretical foundation that no local and realistic theory can be compatible

with all predictions of quantum mechanics was first laid down by Bell [8] through

the violation of Bell inequalities. Since then, violation of Bell inequalities has also

become an effective method to detect entanglement, a useful resource in quantum

information. In this section, some formulation of Bell inequalities for different sys-
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tems will be reviewed briefly. These previous investigations have directly influenced

the studies to be presented in this thesis.

1.2.1 Motivation

Identifying and characterizing entanglement involving Bell inequalities are im-

portant issues in quantum information theory. The original Bell inequality [8] and

the subsequent famous CHSH inequality [9] were formulated for the simplest com-

posite quantum system, i.e. a system of two particles each in a two-dimensional

Hilbert space (called qubits). For the purpose of experimental verification, the more

suitable candidate is the CHSH inequality. The CHSH inequality was derived under

such a condition: two local settings are provided for each observer. Take for example

Alice who has local settings â and â′.

Up to now, there are two different strategies to develop Bell inequalities for

complex composite quantum systems, or multi-particles in high-dimensional Hilbert

space. The first strategy is to limit the search to two local settings for each observer

[8, 9]. The second strategy is to extend the search to three or more local settings

per site [19]. Based on the former method, two kinds of Bell inequalities have been

found that generalize the CHSH inequality to systems of multi-particles or higher

dimensions.

One generalization of the CHSH inequality is Collins-Gisin-Linden-Massar-Popescu

(CGLMP) inequalities given by Collins et al [20] for two particles of arbitrarily high

dimensions (2 quNits). The CGLMP inequalities were derived in terms of joint prob-

abilities. The CGLMP inequalities offer a possibility to test entanglement of 2 quNits

for both discrete-variable systems and continuous-variable systems. Although most

protocols in quantum information processing were developed for a discrete-variable

quantum system, similar protocols have also been carried out for a quantum sys-

tem with continuous variables [21] recently. From the experimental perspective,

continuous-variable states {for example, nondegenerate optical parametric ampli-

fication (NOPA) state [22]} are easier to generate than discrete entangled states.

Therefore, identifying entanglement for a quantum system with continuous vari-

ables is necessary for realization of quantum information protocols. In 2002, Chen

et al [23] showed that a 2-quNit continuous-variable system is quantum entangled
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by its violation of the CHSH inequality. So far there is no effort that contributes

to the identification of entanglement for continuous-variable systems based on Bell

inequalities for a general case, or a 2-quNit system by using nondichotomic observ-

ables.

The other generalization of the CHSH inequality is for N particles of two dimen-

sions (N qubits). The work was done by two independent teams [24]. One is led

by Żukowski and Brukner, and the other by Werner. It was shown that there exist

general Bell inequalities [called Żukowski-Brukner (ŻB) inequalities in this thesis]

which are sufficient and necessary conditions for N-qubit systems to be describable

in a local and realistic theory. The most common model of N-qubit quantum systems

is the Heisenberg model. The Heisenberg model has been shown to be a potential

model for spin-spin interaction in a solid state quantum computer [25, 26, 27, 28]. Al-

though an interesting type of entanglement, thermal entanglement, has been studied

in the context of the Heisenberg models by using entanglement measure [29, 30, 31],

no study has been given to identify entanglement of thermal states in a system of

interaction spins by violation of the ŻB inequalities.

The ŻB inequalities also provide a useful tool to identify entanglement for multi-

partite systems by Wigner function. Bell [10] argued that the original EPR wave

function does not violate local realism becasue its joint Wigner distribution function

is positive. In a recent work, however, Banaszek and Wódkiewicz [32] considered

parity measurement and interpreted the Wigner function as a correlation function.

They then showed that the original EPR state and the two-mode squeezed vacuum

state violate the CHSH inequality. Thus, it was shown that the positive definite

Wigner function of the EPR state provides direct evidence of the nonlocality exhib-

ited by this state. But for a multi-partite quantum system in 2-level Hilbert space,

no work has been done to identify its entanglement. Given the general Bell inequal-

ities for N-qubit states, it is possible to extend the test in the Wigner presentation

to a multi-partite quantum system.

For N-qubit Bell inequalities, there remains another problem. That is “do all

pure entangled states violate Bell inequalities for correlation function”? If Bell in-

equalities are violated by all pure entangled states, these Bell inequalities can be

used to characterize entanglement. There are several important recent develop-
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ments in characterizing entanglement based on Bell inequalities. In 1991, Gisin [18]

demonstrated that every pure bipartite entangled state in two dimensions violates

the CHSH inequality. This is known as Gisin’s theorem. One year later, Bell inequal-

ities for N qubits were developed by Mermin-Ardehali-Belinskii-Klyshko (MABK)

[33, 34, 35]. However, Scarani and Gisin [36] noticed that there exist pure states of

N-qubit that do not violate any of the inequalities. These states are the generalized

Greenberger-Horne-Zeilinger (GHZ) [37] states given by

|ψ〉GHZ = cos ξ|0 · · ·0〉 + sin ξ|1 · · ·1〉 (1.31)

with 0 ≤ ξ ≤ π/4. The GHZ states [37] are for ξ = π/4. In Ref. [36], Scarani and

Gisin noticed that for sin 2ξ ≤ 1/
√

2N−1 the states (1.31) do not violate the MABK

inequalities. Based on the results, Scarani and Gisin were prompted to write that

“this analysis suggests that MK (MABK [38]) inequalities, and more generally the

family of Bell’s inequalities with two observables per qubit, may not be the ‘natural’

generalizations of the CHSH inequality to more than two qubits” [36]. Soon after,

Żukowski-Brukner and Werner [24] independently found general correlation-Bell in-

equalities (the ŻB inequalities) for N qubits. Using the ŻB inequalities, Żukowski et

al in Ref. [38] showed that (a) For N =even, although the generalized GHZ states

do not violate the MABK inequalities, they violate the ŻB inequalities and (b) For

N =odd and sin 2ξ ≤ 1/
√

2N−1 , the generalized GHZ states satisfy all known Bell

inequalities involving correlation functions. Thus it seems that Gisin’s theorem is

invalid for N (odd numbers) qubits.

For M (M > 2) entangled N (N > 2)-dimensional quantum systems, the formu-

lation of the corresponding Bell inequalities is still an open question. Only recently,

the problem has been solved partly in the case of three three-dimensional particles

(3 qutrits) in [39]. The authors developed a coincidence Bell inequality in terms of

probabilities, which imposes a necessary condition on the existence of a local and

realistic description. But for M (M > 2) entangled N (N > 3)-dimensional quantum

systems, no Bell inequality in terms of either probabilities or correlation functions

has so far been constructed.

Violation of Bell inequalities is a powerful tool to identify and characterize entan-

glement. It will be interesting to generalize the criteria for violation of local realism
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to the case of multi-partite high dimensional systems or to the case of more mea-

surement choices for each observer than two. One can expect interesting practical

applications of such generalizations.

1.2.2 Objectives and Significance

The primary purpose of this thesis is to develop Bell inequalities for multi-

particles in high-dimensional Hilbert space based on the assumption of two local

settings per site, and explore applications of these inequalities. More specifically,

the aims of this thesis are

1. To determine entanglement in the context of quantum XX model, which is a N-

qubit system, by using the Żukowski-Brukner inequalities. The identification

of entanglement for a multi-partite system in the Wigner representation will

be also discussed.

2. To investigate maximal violation of the Collins-Gisin-Linden-Massar-Popescu

inequalities. An approximate value for the limit of the maximal violation when

dimension goes to infinity is found. A set of entangled states |Φ〉app whose

corresponding Bell quantities are closed to the actual maximal violations are

constructed.

3. To derive a new set of Bell inequalities involving correlation functions for a

quantum system of two particles in arbitrary high dimensional Hilbert space,

namely, two quNits. Then the inequalities are used to determine entanglement

of a continuous-variable system for a general case.

4. To develop new Bell inequalities for a 3-qubit system so as to determine

whether Gisin’s theorem can be generalized to 3 qubits.

5. To develop a new Bell inequality for systems of 3 particles in four dimensional

Hilbert space. Start from the Bell inequality, a 3-qubit Bell inequality with

improved visibility can be constructed. Based on the new 3-qubit inequality,

a proposed experiment to test quantum nonlocality will be presented.

The present research may provide some insight in understanding entanglement

of continuous-variable systems for more general cases: both 2 quNits and N qubits.
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In addition, the study on quantum XX model may provide a method for identifying

quantum entanglement of Heisenberg models. Those entangled states of 2 quNits

presented in part II can potentially be useful for quantum information processing

because of their high resistance to noise. The work in this thesis could also provide

an exciting possibility to test violation of local realism for 3 four-level entangled

states. It is also worth mentioning that the results in this thesis may be used

to develop a simple procedure for generating 3-qubit Bell inequalities in further

research. In other words, new Bell inequalities with improved visibility for a system

of 3 particles in two-level space could be constructed using the method given in

this thesis. Moreover, testing quantum nonlocality of three qubits by using Bell

inequalities may be possible in our proposed experiment.

While methods do not need to be restricted the number of measurement choices

for each observer to two, the method used in our study is limited to two local set-

tings per site in the generalizations of the CHSH inequality to multi-partite systems

in high dimensional Hilbert space. This thesis concentrates on the method of con-

structing Bell inequalities and explores their interesting applications. Moreover,

the investigations in this thesis are restricted to quantum systems of pure states;

research on mixed states, even though it is important, will not be considered here.

1.3 Organization of the Thesis

This thesis is devoted to the studies of entanglement and Bell inequalities in

multi-partite systems. We study different systems from simple ones to complex ones.

For N qubits, the Żukowski-Brukner inequalities are used as a tool to determine

entanglement of Heisenberg model in Chapter 2. The last section in Chapter 2

relates the Żukowski-Brukner inequalities to entanglement identification of a multi-

partite system in the Wigner representation. Bell inequalities for 2 particles in

N -dimensional space will be discussed in Chapter 3. Maximal violation of local

realism for 2 quNits is studied by using the Collins-Gisin-Linden-Massar-Popescu

inequalities. In order to construct a new set of Bell inequalities involving correlation

functions for 2 quNits, multi-component correlation functions have been introduced

in this chapter. Then entanglement of a bipartite quantum system in high level with
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continuous variables is examined based on the new Bell inequalities. Chapter 4 is

concerned with more complex quantum systems, or systems of 3 particles in high

dimensional Hilbert space. New Bell inequalities for 3 particles in two and four-level

systems are constructed. Especially for 3 qubits, Bell inequalities involving both

probabilities and correlation functions are developed to show that Gisin’s theorem

can be generalized to 3 qubits. In addition, an observation on inequalities for 2

particles and 3 particles offers one method to construct new Bell inequalities with

improved visibility for 3 qubits. In the last section of this chapter, an experimental

setup for testing quantum nonlocality is proposed. All the problems investigated

in this thesis are summarized in Chapter 5. Suggestions for further work are also

presented in this chapter.



Chapter 2

N-Qubit Bell Inequalities and
Applications

2.1 Bell Inequalities for N-qubit Systems

Entanglement and Bell inequalities concerning the non-existence of a local real-

ism in quantum mechanics underly a fundamental role in quantum mechanics. Bell

[8] proposed an inequality that could rule out the hidden variable description of

quantum mechanics in 1964. Several variants of Bell inequalities have since been

derived for two-body correlation functions to study the existence of local realism

[24, 33, 34, 35]. A set of Bell inequalities for a state of N spin-1/2 particles were

first derived by Mermin [33]. Following Mermin’s work, Ardehali [34], Belinskii

and Klyshko [35] have also developed a series of Bell inequalities for N qubits.

Such inequalities are now known as Mermin-Ardehali-Belinskii-Klyshko (MABK)

inequalities in Ref. [38]. N qubits refers to a quantum system of N particles each

in two dimensional Hilbert space. Here the N-dimensional Hilbert space is simply

a N-dimensional linear vector space. Recently more general Bell inequalities, called

Żukowski-Brukner (ŻB) inequalities, for N qubits were proposed. The work is done

by two independent teams [24]. The first one is led by Żukowski; the other is by

Werner. One obtains, as corollaries from these generalized inequalities, the CHSH

inequality [9] for two particles and the MABK inequalities for N particles [33, 34, 35].

The ŻB inequalities [24] were derived as follows. Consider N observers and

suppose that they can each measure two dichotomic observables, parameterized by

	n1 and 	n2. The outcomes of j-th observer’s measurement on the observable defined

by 	n1 and 	n2 are represented by Aj(n̂1) and Aj(n̂2). Each outcome can take values

18
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+1 or -1 under the assumption of local realism. The correlation function of the

measurements performed by the N observers is the average over many runs of the

experiment [24]

E(k1, ..., kN) = 〈
N∏

j=1

Aj(	nkj
)〉. (2.1)

For the predetermined results, one can construct the following identity [24]:

∑
s1,...sN=±1

S(s1, ..., sN)
N∏

j=1

[Aj(	n1) + sjAj(	n2)] = ±2N , (2.2)

where S(s1, ..., sN) is an arbitrary function of s1, ..., sN ∈ {−1, 1}, and it can only

take values ±1. There are totally 22N
different functions S(s1, ..., sN). This identity

can be proved in the following argument. For each observer j one has |Aj(	n1) +

Aj(	n2)| = 0/2 and |Aj(	n1) − Aj(	n2)| = 2/0 because Aj(	ni) = ±1. So the product∏N
j=1[Aj(	n1) + sjAj(	n2)] is nonzero only for one sign sequence, and the nonzero

value of the product is ±2N . One can use the correlation function defined in Eq.

(2.1) to express the left hand side of the identity and obtain the following set of Bell

inequalities [24]:

|
∑

s1,...sN=±1

S(s1, ..., sN)
∑

k1,...kN=1,2

sk1−1
1 ...skN−1

n E(k1, ...kN)| ≤ 2N . (2.3)

There are a set of 22N
Bell inequalities for the correlation functions. Some of them are

trivial and they are not violated by quantum mechanics. The function S(s1, ..., sN)

can be chosen properly to give nontrivial inequalities.

The ŻB inequalities for N qubits offer a possibility to test entanglement for

both discrete-variable systems and continuous-variable systems. Two interesting

applications of the ŻB inequalities will be described in the following sections.

2.2 Quantum Nonlocality of Quantum XX Model

with Site Dependent Coupling Strength

The first application of the Żukowski-Brukner inequalities to be discussed is on

quantum XX model1, which is the most common model of a N-qubit system. The

quantum XX model provides a simple model for the study of magnetic phenomena

1This work was published, see [2] in the publication list in Appendix A.
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with nearest neighbor interactions. Recently there have been some studies of the

model on the implementation of quantum processing on solid state devices. An

interesting type of entanglement, thermal entanglement, was studied in the context

of the Heisenberg XXX [29], XX [30], and XXZ [31] models. The simple Heisenberg

model has been shown to have a potential as a model for spin-spin interaction in a

solid state quantum computer [25]. It has been partially realized in quantum dots

[25], nuclear spins [26], and optical lattices [27]. In a recent work, Imamoglu et al

[28] realized quantum information processing using quantum dot spins and cavity

QED, and obtained an effective interaction Hamiltonian based on the XY spin chain

between two quantum dots. The effective Hamiltonian was shown to be capable of

constructing the Controlled-Not gate [28]. The XY Hamiltonian is given by

H =

N∑
n=1

(J1S
x
nS

x
n+1 + J2S

y
nS

y
n+1), (2.4)

where Si = σi/2(i = x, y, z) and σi are Pauli operators. When J1 = J2, the XY

model is known as the XX model. In the XY model, the interaction strength between

neighboring sites is usually assumed to be independent of the sites. In most solid

state models, however, the inter-site coupling strength is site dependent. Here we

consider a special quantum XX model in which the interaction strength is assumed

in a particular site dependent form. Interestingly, such a Hamiltonian has been

shown to be useful for perfect state transfer in quantum spin networks [40].

We first examine eigenstates of the special XX model. Correlation functions

needed to test entanglement can be constructed by using these eigenstate solutions.

2.2.1 Solution of the Special XX Model

The special Heisenberg XX model is described by the Hamiltonian

H = 2

N−1∑
n=1

Jn,n+1(σ
x
nσ

x
n+1 + σy

nσ
y
n+1)

=
N−1∑
n=1

Jn,n+1(σ
+
n σ

−
n+1 + σ−

n σ
+
n+1), (2.5)

where Jn,n+1 =
√
n(N − n) is the coupling strength between lattices n and n +

1. Obviously, the Hamiltonian H describes a nearest neighbor interaction open

spin chain. For such a coupling, the Hamiltonian is linked to angular momentum
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and perfect state transfer can be realized in the quantum spin networks [40]. The

Hamiltonian H possesses 2N complete and orthonormal eigenstates, which span the

Hilbert space of H . The Hilbert space of H can be divided into N + 1 subspaces.

In j-th subspace, there are C
(j−1)
N = N !

(j−1)!(N−j+1)!
states. This can be seen that the

Hamiltonian H commuts with the operator of the total z-component of the spin,

σz
tot =

∑N
j=1 σ

z
j , the total z-component of spin is conserved in each subspace. Thus,

the j-th subspace consists of eigenstates with (j − 1) spins up and the others down

and hence, there are Cj−1
N states.

The first subspace has only one (because C0
N = 1) eigenvector with zero value of

eigenvalue, i.e.,

|ψ0〉 = |00 · · ·0〉, H|ψ0〉 = E0|ψ0〉, E0 = 0, (2.6)

where we have denoted |0〉 as the state of spin-down | ↓〉, and |1〉 as the state of

spin-up | ↑〉. The (vacuum) state |ψ0〉 is a state with all spins down.

The second subspace contains N (because C1
N = N) first excitation states, which

have the following forms

|ψ1〉(k) =

N∑
m=1

ak(m)φ(m), H|ψ1〉(k) = E
(k)
1 |ψ1〉(k), k = 1, 2, ..., N (2.7)

where

φ(m) = |00 · · ·1m · · ·0〉, (2.8)

represents a state in which only the spin on the m-th lattice site is up.

The third subspace contains C2
N = N(N − 1)/2 second excitation states, which

have the following forms

|ψ2〉(k) =

N∑
m1<m2

ak(m1, m2)φ(m1, m2),

H|ψ2〉(k) = E
(k)
2 |ψ2〉(k), k = 1, 2, ..., N(N − 1)/2 (2.9)

where

φ(m1, m2) = | · · ·1m1 · · · 1m2 · · · 〉 (2.10)

represents a state in which only the spins on the m1-th and m2-th lattice sites are

up.



2.2. Quantum Nonlocality of Quantum XX Model with Site Dependent
Coupling Strength 22

The fourth subspace contains C3
N = N(N − 1)(N − 2)/6 third excitation states,

which have the following forms

|ψ3〉(k) =

N∑
m1<m2<m3

ak(m1, m2, m3)φ(m1, m2, m3),

H|ψ3〉(k) = E
(k)
3 |ψ3〉(k), k = 1, 2, ..., N(N − 1)(N − 2)/6 (2.11)

where

φ(m1, m2, m3) = | · · ·1m1 · · ·1m2 · · ·1m3 · · · 〉 (2.12)

represents a state in which only the spins on the m1-th, m2-th and m3-th lattice

sites are up. Similarly the (j + 1)-th subspace contains Cj
N = N !

j!(N−j)!
states, and

the last subspace, j = N , contains only one state with all spins up.

For the special Heisenberg XX model, the site dependent coupling strength is

of importance in perfect state transfer. In Ref. [40], the authors restricted their

discussion to the first excitation states, or the second subspace. When restrict-

ing the Hamiltonian H to the second subspace, the Hamiltonian H in the matrix

representation corresponds to the following N ×N (because of C1
N = N) matrix

H =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 J12 0 0 · · · 0
J12 0 J23 0 · · · 0
0 J23 0 J34 · · · 0
0 0 J34 0 · · · 0
...

...
...

...
. . . JN−1,N

0 0 0 0 JN−1,N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.13)

Equation (2.13) comes from the following consideration. As shown in Eq. (2.7), the

first excitation states have the following form

|ψ1〉(k) =
N∑

m=1

ak(m)|00 · · ·1m · · · 0〉, k = 1, 2, ..., N.

One can associateN column vectors corresponding toN states |100 · · ·0〉, |010 · · ·0〉,
· · · , |0 · · ·01〉 respectively. Namely⎛

⎜⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎟⎠ −→ |100 · · ·0〉 ,

⎛
⎜⎜⎜⎝

0
1
...
0

⎞
⎟⎟⎟⎠ −→ |01 · · ·0〉 , · · · ,

⎛
⎜⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎟⎠ −→ |00 · · ·01〉.

(2.14)
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Therefore, the first excitation state becomes

|ψ1〉(k) =

⎛
⎜⎜⎜⎝

ak(1)
ak(2)

...
ak(N)

⎞
⎟⎟⎟⎠ (2.15)

with corresponding eigenvalues E
(k)
1 . Accordingly, in the second subspace, the effec-

tive Hamiltonian H corresponds to Eq. (2.13).

The procedure of the perfect state transfer can be explained as follows [40].

Under the evolution e−iλtH , the state |ψ0〉 becomes e−iλE0t|ψ0〉 = |ψ0〉, namely the

state |ψ0〉 is unchanged during the evolution. Suppose initially one prepares the

input qubit A in an unknown state α|0〉 + β|1〉, the state of the network becomes

α|0A00 · · ·00B〉 + β|1A00 · · ·00B〉 = α|0〉 + β|1〉. (2.16)

The coefficient α does not change in time as |0〉 is the zero energy eigenstate of H .

Since the operator of the total z-component of the spin, σz
tot =

∑N
j=1 σ

z
j , commutes

with H , the total z-component of spin is conserved. Therefore the state |1〉 =

|1A00 · · ·00B〉 will evolve into a superposition of states with exactly one spin ‘up’

and all other spins ‘down’. Thus the initial state of the network evolves in time t as

α|0〉 + β|1〉 → α|0〉 +
N∑

n=1

βn(t)|n〉. (2.17)

[Note that here the notation |m〉 means φ(m) = |00 · · ·1m · · · 0〉 as defined in

Eq.(2.8)]. The dynamics is effectively confined to the second subspace. If we iden-

tify qubit A with vertex 1 and qubit B with vertex N then all we want to know is

the probability amplitude that the network initially in state |1〉, corresponding to

|1A00 · · ·00B〉, evolves after time t to state |N〉, corresponding to |0A00 · · ·01B〉, i.e.,

F (t) = 〈N |e−iλtH |1〉 =
N∑

k=1

ak(1)a∗k(N)e−iλtE
(k)
1 . (2.18)

The faithful state transfer is obtained for times t such that |F (t)| = 1.

The coupling strength Jn,n+1 =
√
n(N − n) has definite significance. For such

a coupling, the Hamiltonian H becomes the angular momentum operator Sx for

the spin-j = 1
2
(N − 1) particle [40]. Therefore, it is easy to get the eigenvalues of

H via the eigenvalues of Sz (since the eigenvalues of Sx and Sz are the same). A
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simple proof for the perfect state transfer can be proceeded as follows. For angular

momentum, there is a disentangled formula:

exp(reiϕS+ − re−iϕS−) = exp(eiϕ tan rS+)(1 + tan2 r)Sz exp(−e−iϕ tan rS−).

(2.19)

Since H = Sx = (S+ + S−)/2, for r = λt/2, ϕ = −π/2 we then have

e−iλtH = e−iλtSx = exp(re−iπ/2S+ − reiπ/2S−)

= exp(−i tan rS+)(1 + tan2 r)Sz exp(−i tan rS−). (2.20)

It is easy to know that

exp(−i tan rS+)

= 1 +
−i tan r

1!
S+ +

(−i tan r)2

2!
S2

+ + · · ·+ (−i tan r)N−1

(N − 1)!
SN−1

+ ,

(2.21)

since SN
+ = 0. It is clear that exp(−i tan rS+) is a upper-triangle matrix, and the

matrix elements are given as

[exp(−i tan rS+)]N,N = 1, (2.22)

and

[exp(−i tan rS+)]1,N = (J12J23J34 · · ·JN−1,N)
(−i tan r)N−1

(N − 1)!
= (−i tan r)N−1,

[exp(−i tan rS−)]N,1 = (−i tan r)N−1. (2.23)

And (1 + tan2 r)Sz is a diagonal matrix with the matrix elements

[(1 + tan2 r)Sz ]N,N = (cos−2 r)−(N−1)/2 = [cos r]N−1. (2.24)

From these results, one has

F (t) = (e−iλtH)N,1

= [exp(−i tan rS+)]N,N [(1 + tan2 r)Sz ]N,N [exp(−i tan rS−)]N,1

= 1 · [cos r]N−1 · (−i tan r)N−1 = [−i sin r]N−1

=

[
− i sin

(
λt

2

)]N−1

. (2.25)
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Therefore for some time t satisfying sin(λt/2) = 1, one obtains the faithful state

transfer |F (t)| = 1.

It is well-known that, for spin-j particle, the operator Sz has N = 2j + 1 eigen-

values {−j,−j + 1, ..., j − 1, j}. From previous results, we know that there are N

eigenvalues E
(k)
1 (k = 1, 2, ..., N) in the second subspace, which are the same as the

eigenvalues of Sz, i.e., E
(k)
1 ∈ {−N−1

2
,−N−3

2
, · · · , N−1

2
}. For convenience, denoting

the set {−j,−j + 1, ..., j − 1, j} by {v1, v2, ..., vN−1, vN}, then the energy spectrum

has interesting structures: 1) For the first subspace, eigenvalue is given as

E0 = v1 + v2 + · · · + vN = 0. (2.26)

2) For the second subspace, the N eigenvalues are

Ek
1 = v1 + · · · + vk−1 − vk + vk+1 + · · ·+ vN . (2.27)

Namely, a minus sign is for vk, positive signs are for other vi(i �= k). 3) For the third

subspace, the C2
N eigenvalues are

Ek1,k2
2 =

v1 + · · · + vk1−1 − vk1 + vk1+1 + · · · + vk2−1 − vk2 + vk2+1 + · · ·+ vN .

(2.28)

That is to say that vk1 and vk2 have minus signs, others have positive signs. The

similar procedure can be done for the general n-th subspace. In the following, we

give explicit solutions for the cases of N = 2, 3, 4.

a: For N = 2, the four eigenvalues and their corresponding eigenstates are

E0 = −1, E1 = 1, E2 = E3 = 0.

|φ0〉 =
1√
2
(−|10〉 + |01〉), |φ1〉 =

1√
2
(|10〉 + |01〉),

|φ2〉 = |11〉, |φ3〉 = |00〉. (2.29)
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b: For N = 3, there are eight eigenvalues and eigenstates.

E0 = E1 = −2, E2 = E3 = 2, E4 = E5 = E6 = E7 = 0

|φ0〉 =
1

2
(|011〉 −

√
2|101〉 + |110〉), |φ1〉 =

1

2
(|001〉 −

√
2|010〉 + |100〉),

|φ2〉 =
1

2
(|011〉 +

√
2|101〉 + |110〉), |φ3〉 =

1

2
(|001〉+

√
2|010〉 + |100〉),

|φ4〉 = |111〉, |φ5〉 =
1√
2
(−|011〉 + |110〉),

|φ6〉 =
1√
2
(−|001〉 + |100〉), |φ7〉 = |000〉. (2.30)

c: For N = 4, there are sixteen eigenvalues and eigenstates.

E0 = E7 = E8 = E15 = 0, E3 = E13 = −1, E4 = E14 = 1, E6 = −2,

E9 = 2, E1 = E11 = −3, E2 = E12 = 3, E5 = −4, E10 = 4.

|φ0〉 = |0000〉,
|φ1〉 =

1

2
√

2
(−|1000〉 +

√
3|0100〉 −

√
3|0010〉+ |0001〉),

|φ2〉 =
1

2
√

2
(|1000〉+

√
3|0100〉 +

√
3|0010〉+ |0001〉),

|φ3〉 =

√
3

2
√

2
(|1000〉 − 1√

3
|0100〉 − 1√

3
|0010〉+ |0001〉),

|φ4〉 =

√
3

2
√

2
(−|1000〉 − 1√

3
|0100〉 +

1√
3
|0010〉 + |0001〉),

|φ5〉 =
1

4
(|1100〉 − 2|1010〉 +

√
3|1001〉 +

√
3|0110〉 − 2|0101〉+ |0011〉),

|φ6〉 =
1

2
(−|1100〉 + |1010〉 − |0101〉 + |0011〉),

|φ7〉 =

√
3√
10

(|1100〉 − 2√
3
|1001〉+ |0011〉),

|φ8〉 =
5

2
√

10
(−

√
3

5
|1100〉 − 3

5
|1001〉+ |0110〉 −

√
3

5
|0011〉),

|φ9〉 =
1

2
(−|1100〉 − |1010〉+ |0101〉 + |0011〉),

|φ10〉 =
1

4
(|1100〉 + 2|1010〉+

√
3|1001〉 +

√
3|0110〉 + 2|0101〉 + |0011〉),

|φ11〉 =
1

2
√

2
(−|1110〉 +

√
3|1101〉 −

√
3|1011〉 + |0111〉),
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|φ12〉 =
1

2
√

2
(|1110〉 +

√
3|1101〉 +

√
3|1011〉 + |0111〉),

|φ13〉 =

√
3

2
√

2
(|1110〉 − 1√

3
|1101〉 − 1√

3
|1011〉 + |0111〉),

|φ14〉 =

√
3

2
√

2
(−|1110〉 − 1√

3
|1101〉 +

1√
3
|1011〉+ |0111〉),

|φ15〉 = |1111〉. (2.31)

It is also worth noting that we are able to find the analytical forms of the lowest

and highest eigenvalues for H with arbitrary N . Obviously, the highest eigenvalue

should be given by adding vms with all components with minus signs flipped. In the

same way, the lowest eigenvalue is given by all components with plus signs flipped.

For N is an odd number or even number, different results are given correspondingly,

Emin = n − n2, Emax = n2 − n, for N = 2n − 1

Emin = −n2, Emax = n2 for N = 2n. (2.32)

where n is any arbitrary number larger than 1.

2.2.2 Violation of the Żukowski-Brukner Inequalities and
the Threshold Temperature

When spin chains are subjected to environmental disturbance, they inevitably

become thermal equilibrium states. The state of a system at finite temperature

T is given by the Gibb’s density operator ρ(T ) = exp(−H/kT )/Z, where Z =

Tr[exp(−H/kT )] is the partition function, H is the system Hamiltonian and k is

the Boltzmann constant, which is set to unity for convenience in this thesis. At

high temperature, the thermal state becomes maximally mixed and does not violate

Bell inequalities of any kind. It is therefore interesting to consider the critical

temperature at which a Bell inequality will be violated. For a two-qubit system, we

have the CHSH inequality. For arbitrary number of qubits, we have the Żukowski-

Brukner inequalities [24].

In this section, several simple examples of testing quantum nonlocality of the

special Heisenberg XX model will be discussed by using the Żukowski-Brukner in-

equalities. In the simplest case of a two-qubit system, there are four eigenvalues of
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the Hamiltonian. So the thermal state is characterized by

ρ(T ) =
1

Z

3∑
µ=0

e−βEµ|φµ〉〈φµ|, (2.33)

where β = 1/T and the partition function is calculated as

Z = Tr(e−βH) =

3∑
µ=0

e−βEµ

= 1 + 1 + e−β + eβ

= 2 + 2 cosh(β). (2.34)

To test quantum nonlocality for the state ρ(T ), correlation function Qij should be

computed. Quantum mechanics predicts that

Qij = Tr[ρ(n̂i
1 · 	σ) ⊗ (n̂j

2 · 	σ)]

=
1

Z

3∑
µ=0

e−βEµTr[|φµ〉〈φµ|(n̂i
1 · 	σ) ⊗ (n̂j

2 · 	σ)]

=
1

Z

3∑
µ=0

e−βEµQµ
ij , (2.35)

where n̂α = (sin θα, 0, cos θα), α = 1, 2 and i, j = 1, 2. Qµ
ij is the correlation function

for the eigenstate |φµ〉,

Qµ
ij = Tr[|φµ〉〈φµ|(n̂i · 	σ) ⊗ (n̂j · 	σ)]. (2.36)

It is easy to calculate that

Q0
ij = − cos θi

1 cos θj
2 − sin θi

1 sin θj
2,

Q1
ij = − cos θi

1 cos θj
2 + sin θi

1 sin θj
2,

Q2
ij = cos θi

1 cos θj
2,

Q3
ij = cos θi

1 cos θj
2. (2.37)

Thus the correlation function for the thermal state is written as

Qij =
1

1 + cosh β
(cos θi

1 cos θj
2 − cos θi

1 cos θj
2 cosh β − sin θi

1 sin θj
2 sinh β). (2.38)

For a local and realistic description, the CHSH inequality is −2 ≤ Q11 +Q12 +Q21−
Q22 ≤ 2. By taking appropriate values β = 15.2, θ1

1 = 0, θ2
1 = π/2, θ1

2 = −3π/4, and
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θ2
2 = 3π/4, the maximum value of Q11 +Q12 +Q21−Q22 under quantum mechanical

prediction is 2
√

2. The critical temperature T0 = 0.273, above which the model is

describable with a local and realistic description.

Unfortunately it is not possible to test quantum nonlocality of three qubits in this

case since the correlation functions defined in a similar way are zero. Therefore, we

focus on the next non-trivial case of a 4-qubit system and test the violation of local

realistic description using the ŻB inequalities. The extension to arbitrary number of

sites, albeit complicating, can also be done in the same manner. The Hamiltonian

has sixteen eigenvalues, see Eq. (2.31). These eigenvalues and eigenstates completely

determine the thermal state. The density operator ρ(T ) at the temperature T can

be written as

ρ(T ) =
1

Z

15∑
µ=0

e−βEµ|φµ〉〈φµ|, (2.39)

with the partition function

Z = Tr(e−βH) =
15∑

µ=0

e−βEµ

= 4 + 4 cosh(3β) + 4 cosh β + 2 cosh(4β) + 2 cosh(2β). (2.40)

Similarly, correlation function Qijkl can be computed as follows,

Qijkl = Tr[ρ(n̂i
1 · 	σ) ⊗ (n̂j

2 · 	σ) ⊗ (n̂k
3 · 	σ) ⊗ (n̂l

4 · 	σ)]

=
1

Z

15∑
µ=0

e−βEµTr[|φµ〉〈φµ|(n̂i
1 · 	σ) ⊗ (n̂j

2 · 	σ) ⊗ (n̂k
3 · 	σ) ⊗ (n̂l

4 · 	σ)]

=
1

Z

15∑
µ=0

e−βEµQµ
ijkl, (2.41)

where n̂α = (sin θα, 0, cos θα), α = 1, 2, 3, 4 and i, j, k, l = 1, 2. Qµ
ijkl is the correlation

function for the eigenstate |φµ〉,

Qµ
ijkl = Tr[|φµ〉〈φµ|(n̂i

1 · 	σ) ⊗ (n̂j
2 · 	σ) ⊗ (n̂k

3 · 	σ) ⊗ (n̂l
4 · 	σ)]. (2.42)
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For instance, the quantum correlation for the ground state |φ5〉 is given by

Q5
ijkl = cos θi

1 cos θj
2 cos θk

3 cos θl
4 +

√
3

2
cos θk

3 cos θl
4 sin θi

1 sin θj
2

−
√

3

4
cos θj

2 cos θl
4 sin θi

1 sin θk
3 +

1

2
cos θi

1 cos θl
4 sin θj

2 sin θk
3

+
1

2
cos θj

2 cos θk
3 sin θi

1 sin θl
4 −

√
3

4
cos θi

1 cos θk
3 sin θj

2 sin θl
4

+

√
3

2
cos θi

1 cos θj
2 sin θk

3 sin θl
4 + sin θi

1 sin θj
2 sin θk

3 sin θl
4. (2.43)

Other quantum correlation functions can also be calculated in a similar way. We

list the correlation functions for each eigenstate of the 4-qubit Hamiltonian for easy

reference, see Table 2.1. The correlation functions for the thermal state ρ(T ) are

computed using Eq. (2.41).

Given a Bell inequality, a quantity can be associated to the inequality and the

quantity is called Bell quantity. In the case of the CHSH inequality, the Bell quantity

is BCHSH = Q11 +Q12−Q21 +Q22 and the CHSH inequality can be written as −2 ≤
BCHSH ≤ 2. When restricted to 4-qubit systems, we can write the corresponding

Bell quantity for the 4-qubit ŻB inequality based on the calculated values of Qijkl:

B = Q1111 −Q1112 −Q1121 −Q1122 −Q1211 −Q1212

−Q1221 +Q1222 −Q2111 −Q2112 −Q2121 +Q2122

−Q2211 +Q2212 +Q2221 +Q2222. (2.44)

For a local realistic description, it is required that −4 ≤ B ≤ 4 from Eq. (2.3). In

Figure 2.1, we numerically compute the Bell quantity as a function of temperature.

The results show that violation of the Bell inequality occurs at T ≤ T0 = 0.626. We

call this critical value T0 the threshold temperature. The maximum value of B for

the state ρ(T ) approaches 7.917 when temperature is close to zero.

The Bell quantities B(|φµ〉) constructed from the correlation functions of each
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correlation function explicit expression

Q0
ijkl = Q15

ijkl cos θi
1 cos θj

2 cos θk
3 cos θl

4

Q1
ijkl = Q11

ijkl − cos θi
1 cos θj

2 cos θk
3 cos θl

4 −
√

3
4

cos θk
3 cos θl

4 sin θi
1 sin θj

2

+
√

3
4

cos θj
2 cos θl

4 sin θi
1 sin θk

3 − 3
4
cos θi

1 cos θl
4 sin θj

2 sin θk
3

−1
4
cos θj

2 cos θk
3 sin θi

1 sin θl
4 +

√
3

4
cos θi

1 cos θk
3 sin θj

2 sin θl
4

−
√

3
4

cos θi
1 cos θj

2 sin θk
3 sin θl

4

Q2
ijkl = Q12

ijkl −cosθi
1 cos θj

2 cos θk
3 cos θl

4 +
√

3
4

cos θk
3 cos θl

4 sin θi
1 sin θj

2

+
√

3
4

cos θj
2 cos θl

4 sin θi
1 sin θk

3 + 3
4
cos θi

1 cos θl
4 sin θj

2 sin θk
3

+1
4
cos θj

2 cos θk
3 sin θi

1 sin θl
4 +

√
3

4
cos θi

1 cos θk
3 sin θj

2 sin θl
4

+
√

3
4

cos θi
1 cos θj

2 sin θk
3 sin θl

4

Q3
ijkl = Q13

ijkl − cos θi
1 cos θj

2 cos θk
3 cos θl

4 −
√

3
4

cos θk
3 cos θl

4 sin θi
1 sin θj

2

−
√

3
4

cos θj
2 cos θl

4 sin θi
1 sin θk

3 + 1
4
cos θi

1 cos θl
4 sin θj

2 sin θk
3

+3
4
cos θj

2 cos θk
3 sin θi

1 sin θl
4 −

√
3

4
cos θi

1 cos θk
3 sin θj

2 sin θl
4

−
√

3
4

cos θi
1 cos θj

2 sin θk
3 sin θl

4

Q4
ijkl = Q14

ijkl − cos θi
1 cos θj

2 cos θk
3 cos θl

4 +
√

3
4

cos θk
3 cos θl

4 sin θi
1 sin θj

2

−
√

3
4

cos θj
2 cos θl

4 sin θi
1 sin θk

3 − 1
4
cos θi

1 cos θl
4 sin θj

2 sin θk
3

−3
4
cos θj

2 cos θk
3 sin θi

1 sin θl
4 −

√
3

4
cos θi

1 cos θk
3 sin θj

2 sin θl
4

+
√

3
4

cos θi
1 cos θj

2 sin θk
3 sin θl

4

Q6
ijkl cos θi

1 cos θj
2 cos θk

3 cos θl
4 + cos θi

1 cos θl
4 sin θj

2 sin θk
3

− cos θj
2 cos θk

3 sin θi
1 sin θl

4 − sin θi
1 sin θj

2 sin θk
3 sin θl

4

Q7
ijkl cos θi

1 cos θj
2 cos θk

3 cos θl
4 + 2

√
3

5
cos θj

2 cos θl
4 sin θi

1 sin θk
3

2
√

3
5

cos θi
1 cos θk

3 sin θj
2 sin θl

4 + 3
5
sin θi

1 sin θj
2 sin θk

3 sin θl
4

Q8
ijkl cos θi

1 cos θj
2 cos θk

3 cos θl
4 +

√
3

10
cos θj

2 cos θl
4 sin θi

1 sin θk
3√

3
10

cos θi
1 cos θk

3 sin θj
2 sin θl

4 − 3
5
sin θi

1 sin θj
2 sin θk

3 sin θl
4

Q9
ijkl cos θi

1 cos θj
2 cos θk

3 cos θl
4 − cos θi

1 cos θl
4 sin θj

2 sin θk
3

+ cos θj
2 cos θk

3 sin θi
1 sin θl

4 − sin θi
1 sin θj

2 sin θk
3 sin θl

4

Q10
ijkl cos θi

1 cos θj
2 cos θk

3 cos θl
4 −

√
3

2
cos θk

3 cos θl
4 sin θi

1 sin θj
2

−
√

3
4

cos θj
2 cos θl

4 sin θi
1 sin θk

3 − 1
2
cos θi

1 cos θl
4 sin θj

2 sin θk
3

−1
2
cos θj

2 cos θk
3 sin θi

1 sin θl
4 −

√
3

4
cos θi

1 cos θk
3 sin θj

2 sin θl
4

−
√

3
2

cos θi
1 cos θj

2 sin θk
3 sin θl

4 + sin θi
1 sin θj

2 sin θk
3 sin θl

4

Table 2.1: Quantum correlation functions for each pure state.
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Figure 2.1: For a local realistic description of quantum mechanics, the Bell quantity
B constructed from 4-qubit Żukowski-Brukner inequality must necessarily be less
than 4. However, the Bell quantity for the XX model with site dependent coupling
strength as a function of temperature T shows that there is a significant violation
of Bell inequality at T < 0.626.

pure state |φµ〉 are also evaluated. The maximum values of B(|φµ〉) are respectively

Bmax(|φµ〉) = 4 for |φ0,15〉
6.112 for |φ1,2,3,4,11,12,13,14〉
7.917 for |φ5,10〉
5.657 for |φ6,9〉
4.866 for |φ7〉
4.060 for |φ8〉. (2.45)

That the maximum value of B for the thermal state is 7.917 can be qualita-

tively explained with the following argument. The thermal state ρ(T ) is the linear

combination of |φµ〉〈φµ| weighted with the factors e−βEµ = e−Eµ/T . For eigenvalue

E5 = −4, Bmax(|φ5〉) = 7.917, the power is e4/T and when T is small enough, the Bell

quantity B is totally determined by the contribution of state |φ5〉. Another thing

worth noting is that the eigenstates of special XX model do not lead to highest value

of Bmax. We check the maximum values of the Bell quantities consist of correlation
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functions for the following three general states

|φ′〉 = cosα1|1000〉 + sinα1 cosα2|0100〉
+ sinα1 sinα2 cosα3|0010〉+ sinα1 sinα2 sinα3|0001〉 (2.46)

|φ′′〉 = cosα1|1110〉+ sinα1 cosα2|1101〉
+ sinα1 sinα2 cosα3|1011〉 + sinα1 sinα2 sinα3|0111〉 (2.47)

|φ′′′〉 = cosα1|1100〉 + sinα1 cosα2|1010〉 + sinα1 sinα2 cosα3|1001〉
+ sinα1 sinα2 sinα3 cosα4|0110〉 + sinα1 sinα2 sinα3 sinα4 cosα5|0101〉
+ sinα1 sinα2 sinα3 sinα4 sinα5|0011〉 (2.48)

and find that

Bmax(|φ′
0〉) = 6.217

Bmax(|φ′′
0〉) = 6.217

Bmax(|φ′′′
0 〉) = 8.485 (2.49)

for |φ′
0〉 = 1/2(|1000〉 + |0100〉 + |0010〉 + |0001〉), |φ′′

0〉 = 1/2(|1110〉 + |1101〉 +

|1011〉+ |0111〉) and |φ′′′
0 〉 = 1/

√
6(|1100〉+ |1010〉+ |1001〉+ |0110〉+ |0101〉+ |0011〉)

respectively. It is easy to see that violation degree of the 4-qubit ŻB inequality for

state |φ′
0〉 is higher than that for the eigenstates |φµ〉, (µ = 1, 2, 3, 4) listed in Eq.

(2.31). The same results also apply for the eigenstates |φµ〉, (µ = 11, 12, 13, 14) and

|φµ〉, (µ = 5, 6, 7, 8, 9, 10) respectively. We see that among all possible Bmax, the

state |φ′′′
0 〉 yields the largest violation.

Here, we consider the special Heisenberg XX model, modeling the nearest-

neighbor interaction spin chain. For the 4-qubit special XX model, it is shown

that since the correlation functions depend on the temperature, the violation of

the 4-qubit ŻB inequality for the thermal state depends critically on the parame-

ter. The effect of temperature for a local realistic description of quantum theory

is determined by the threshold value of T below which the thermal state violates

the 4-qubit ŻB inequality. Effect of external magnetic field will be discussed in the

following section.
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2.2.3 The Effect of External Magnetic Field

In this section, we would like to study the effect of magnetic field on the non-

locality of thermal state in a general way, for which the Hamiltonian we wish to

consider is

H ′ =
N−1∑
n=1

Jn,n+1(σ
+
n σ

−
n+1 + σ−

n σ
+
n+1) +B

N∑
n=1

σz, (2.50)

where B is the strength of the magnetic field. We will still consider the non-trivial

case of a 4-qubit system. It is easy to verify that the eigenstates of H ′ are identical

with the ones listed in Eq. (2.31) of H , but with different eigenvalues.

E ′
0 = 4B, E ′

1 = −3 + 2B, E ′
2 = 3 + 2B, E ′

3 = −1 + 2B,

E ′
4 = 1 + 2B, E ′

5 = −4, E ′
6 = −2, E ′

7 = 0,

E ′
8 = 0, E ′

9 = 2, E ′
10 = 4, E ′

11 = −3 − 2B,

E ′
12 = 3 − 2B, E ′

13 = −1 − 2B, E ′
14 = 1 − 2B, E ′

15 = −4B.

(2.51)

The correlation function and Bell quantity B′ are given by

Q′
ijkl =

1

Z ′

15∑
µ=0

e−βE′
µQµ

ijkl, (2.52)

and

B′ = Q′
1111 −Q′

1112 −Q′
1121 −Q′

1122 −Q′
1211 −Q′

1212

−Q′
1221 +Q′

1222 −Q′
2111 −Q′

2112 −Q′
2121 +Q′

2122

−Q′
2211 +Q′

2212 +Q′
2221 +Q′

2222, (2.53)

respectively, where Z ′ = Tr(e−βH′
). Clearly the violation of the 4-qubit ŻB inequal-

ity depends not only on the temperature, but also on external magnetic field. Our

numerical calculations on the effects of T and B are exhibited in Figure 2.2.

There are five curves corresponding to B = 0.1, 0.5, 1.0, 1.5, and 2 respectively.

When B = 0.1, the Bell quantity shows a similar variation of the violation of the

Bell inequality as a function of T to that in the absence of magnetic field. With the

increasing strength of external magnetic field, there is a decrease in the value of Bell

quantity until B = 0.5. We see also that there is an increase in Bell quantity with B
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Figure 2.2: Bell quantity constructed from 4-qubit XX model with site dependent
coupling strength for the cases with magnetic field B = 0.1, 0.5, 1.0, 1.5, and 2.

until B = 1.0, and after that there is another decrease until B = 1.5 after which the

system does not violate the Bell inequality. It is clear that the effect of magnetic

field B on quantum nonlocality of the model is different from that of temperature T .

The variation of the Bell quantity as a function of magnetic field can be explained

qualitatively as follows. The ρ′(T ) is a different combination of |φµ〉〈φµ| from ρ(T ).

The largest contribution of all the states |φµ〉 is determined by the value of B. When

B < 0.5, it is the eigenstate, |φ5〉, which ultimately determines the maximal value of

the Bell quantity (Bmax = 7.917) since e−βE′
5 = e4/T is the largest power among all

the factors. When 0.5 < B < 1.5, |φ11〉 takes the place of |φ5〉 with power e(3+2B)/T

and Bmax = 6.112 at B = 1.0, for example. When B > 1.5, e−βE′
15 = e4B/T is the

one with largest contribution and Bmax = 4. But there are two singular values of

B = 0.5 and 1.5. In these two cases, Bmax < 4. The reason for the existence of

singular values is that the largest factors of e−βE′
µ are e−βE′

5 = e−βE′
11 = e4β for

B = 0.5, e−βE′
15 = e−βE′

11 = e6β for B = 1.5, respectively. Thus the Bell quantity is

determined principally using a combinations of these two elements of Qµ
ijkl, namely,

e4β(Q5
ijkl +Q11

ijkl) and e6β(Q15
ijkl +Q11

ijkl). Note that the maximum values of the Bell

quantity for the two correlation functions (Q5
ijkl +Q11

ijkl) and (Q15
ijkl +Q11

ijkl) are 2.228

and 2.081 respectively. These two values are both less than 4. Which means that

the system can be described in a local realistic description in the two cases since no

violation of the ŻB inequality occurs. As a result, there does not exist a threshold

temperature for the cases.
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B 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
T0 0.626 0.611 0.556 0.447 0.248 None 0.122 0.243
B 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 and above
T0 0.351 0.427 0.467 0.472 0.436 0.343 0.18 None

Table 2.2: Threshold temperatures of XX model with site dependent coupling
strength for different strengths of the external magnetic field B. When B = 0.5
and B = 1.5 and above, the values of Bell quantity are no greater than 4 at all
times. Therefore, no threshold temperatures exist for these cases.

The critical temperatures under different magnetic fields have been found (Ta-

ble 2.2). The variation of T0 with increasing strengths of B is complicated. The

complexity arises mainly because the eigenstates contributing to the optimization of

critical temperatures are different from those needed for the optimization of the Bell

quantity in the absence of magnetic field. In the latter case, Bmax is totally deter-

mined by the contribution of state with the largest weight or factor for sufficiently

large β. In the former case, depending on the value of the external magnetic field,

the eigenstates contributing to the optimization change and so the optimization is

determined using a combination of the correlation functions from different states.

In other words, the variation of T0 with B is similar to that of Bmax with B.

In summary, we examine the effects of temperature at different strengths of

magnetic field in this section. For a fixed temperature, we can find the optimal

value of the external magnetic field that violates the ŻB inequalities. Our results

imply that quantum nonlocality could be controlled effectively by magnetic field

and temperature. We have confined our argument to the 2,3,4-qubit cases. The

violation of the ŻB inequalities for arbitrary number of qubit can also be done in

the same manner.

In addition, quantum nonlocality of other kinds of spin chains and integrable

models can also be tested by using similar method. In the next section, we study

another form of XX model, in which coupling strength is taken to be constant.
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2.3 Quantum Nonlocality of Quantum XX Model

with Constant Coupling Strength

In this section, we look at the case in which the coupling strength is set to unity

J = 1. The Hamiltonian is given by

Hc =

N−1∑
n=1

(σ+
n σ

−
n+1 + σ−

n σ
+
n+1) +B

N∑
n=1

σz. (2.54)

For this model, we continue to focus on the non-trivial case of a 4-qubit system and

test the violation of local realistic description using the 4-qubit ŻB inequality. The

eigenvalues and eigenstates are

Ec
0 = Ec

1 = 0, Ec
2 = −4B, Ec

3 = 4B,

Ec
4 = −1, Ec

5 = 1, Ec
6 = −

√
5 Ec

7 =
√

5,

Ec
8 =

1

2
(−1 −

√
5 − 4B), Ec

9 =
1

2
(−1 −

√
5 + 4B),

Ec
10 =

1

2
(1 −

√
5 − 4B), Ec

11 =
1

2
(1 −

√
5 + 4B),

Ec
12 =

1

2
(−1 +

√
5 − 4B), Ec

13 =
1

2
(−1 +

√
5 + 4B),

Ec
14 =

1

2
(1 +

√
5 − 4B), Ec

15 =
1

2
(1 +

√
5 + 4B), (2.55)

and

|φc
0〉 =

1√
3
(|1100〉 − |0110〉 + |0011〉),

|φc
1〉 =

1√
2
(−|0110〉 + |1001〉),

|φc
2〉 = |1111〉,

|φc
3〉 = |0000〉,

|φc
4〉 =

1

2
(−|1100〉 + |1010〉 − |0101〉 + |0011〉),

|φc
5〉 =

1

2
(−|1100〉 − |1010〉+ |0101〉 + |0011〉),

|φc
6〉 =

1

2
√

5
(|1100〉 −

√
5|1010〉+ 2|0110〉 + 2|1001〉 −

√
5|0101〉+ |0011〉),

|φc
7〉 =

1

2
√

5
(|1100〉+

√
5|1010〉 + 2|0110〉+ 2|1001〉 +

√
5|0101〉+ |0011〉),
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|φc
8〉 =

1√
5 +

√
5
(−|1110〉 +

1

2
(1 +

√
5)|1101〉 − 1

2
(1 +

√
5)|1011〉+ |0111〉),

|φc
9〉 =

1√
5 +

√
5
(−|1000〉 +

1

2
(1 +

√
5)|0100〉 − 1

2
(1 +

√
5)|0010〉+ |0001〉),

|φc
10〉 =

1√
5 −√

5
(|1110〉+

1

2
(1 −

√
5)|1101〉 +

1

2
(1 −

√
5)|1011〉+ |0111〉),

|φc
11〉 =

1√
5 −√

5
(|1000〉+

1

2
(1 −

√
5)|0100〉 +

1

2
(1 −

√
5)|0010〉+ |0001〉),

|φc
12〉 =

1√
5 −√

5
(−|1110〉 +

1

2
(1 −

√
5)|1101〉 − 1

2
(1 −

√
5)|1011〉+ |0111〉),

|φc
13〉 =

1√
5 −√

5
(−|1000〉 +

1

2
(1 −

√
5)|0100〉 − 1

2
(1 −

√
5)|0010〉+ |0001〉),

|φc
14〉 =

1√
5 +

√
5
(|1110〉+

1

2
(1 +

√
5)|1101〉+

1

2
(1 +

√
5)|1011〉+ |0111〉),

|φc
15〉 =

1√
5 +

√
5
(|1000〉+

1

2
(1 +

√
5)|0100〉+

1

2
(1 +

√
5)|0010〉+ |0001〉).

(2.56)

It is easy to construct temperature dependent correlation functions based on these

eigenvalues/states. These functions are

Qc
ijkl = Tr[ρc(n̂i

1 · 	σ) ⊗ (n̂j
2 · 	σ) ⊗ (n̂k

3 · 	σ) ⊗ (n̂l
4 · 	σ)]

=
1

Zc

15∑
µ=0

e−βEc
µQc,µ

ijkl, (2.57)

where Zc = Tr(e−βHc
) and Bell quantity Bc is given from 4-qubit ŻB inequality,

Bc = Qc
1111 −Qc

1112 −Qc
1121 −Qc

1122 −Qc
1211 −Qc

1212

−Qc
1221 +Qc

1222 −Qc
2111 −Qc

2112 −Qc
2121 +Qc

2122

−Qc
2211 +Qc

2212 +Qc
2221 +Qc

2222. (2.58)

By expressing correlation functions Qc
ijkl for neighboring spins in terms of eigen-

states of quantum XX model, quantum nonlocality of the model can be tested by

its violation of the ŻB inequality. In Figure 2.3, the Bell quantities Bc for thermal

state ρc(T ) plotted as a function of temperature and magnetic field are exhibited.

There are four curves corresponding to B = 0, 0.1, 0.5, and 1.0. With the increasing

value of temperature, Bell quantities decrease slowly in all the curves. When B = 0,

it is calculated that the maximum value of the Bell quantity Bc approaches 7.754

when temperature is close to zero . To explain the result, Bell quantities Bc(|φc
µ〉)



2.3. Quantum Nonlocality of Quantum XX Model with Constant
Coupling Strength 39

in terms of correlation functions for each pure state |φc
µ〉 are evaluated,

Bc
max(|φc

µ〉) = 4 for |φc
1,2,3〉

4.807 for |φc
0〉

5.657 for |φc
4,5〉

6.136 for |φc
8,9,10,11,12,13,14,15〉

7.754 for |φc
6,7〉. (2.59)

It is worth noting that the Bell quantity of ρc(T ) is completely determined by

the state |φc
µ〉 with the largest factor e−Ec

µ/T when T is sufficiently small. After

comparing the eigenvalues Ec
µ, it is found that state |φc

6〉 has the largest factor

e−Ec
6/T = e

√
5/T . Hence the Bell quantity Bc is totally determined by the contribution

of state Bc
max(|φc

6〉) which is equal to 7.754. For a local realistic description of

quantum mechanics, the Bell quantity Bc must necessarily be less than 4. However,

the Bell quantity as a function of temperature T shows that there is a significant

violation of Bell inequality at T < T c
0 = 0.374.

When B = 0.1, the variation of the Bell quantity as a function of T is similar to

the case in the absence of magnetic field. With the increasing strength of external

magnetic field, the maximum value of the Bell quantity decreases and approaches the

value 4 when B is about 1.0. Which of the states |φc
µ〉 will dominate the contribution

to the Bell quantity Bc depends on the magnetic field B. When B = 0.1, it is the

eigenstate |φc
6〉 which ultimately determines the maximum value of the Bell quantity

(Bc
max = 7.754) since e−Ec

6/T = e
√

5/T is the largest one among all the factors. When

B = 0.5, |φc
8〉 takes the place of |φc

6〉 with factor e
1
2
(1+

√
5+4B)/T = e

1
2
(3+

√
5)/T and as a

result, Bc
max = 6.136. For the case of B = 1, e−Ec

2/T = e4B/T = e4/T is the one with

largest contribution and Bc
max = 4. In this case, the Bell inequality is not violated

by the XX model, which means the model is describable in a local realistic theory

when B is larger than 1. The data from Figure 2.3 suggests that the nonlocality

of quantum XX model is determined by both temperature and strength of external

magnetic field. These findings could serve as plausible evidence that the nonlocality

of the XX model can be controlled by choosing appropriate strength of external

magnetic field. These results are consistent with those given for that XX model

with site dependent coupling strength in the previous section.
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B 0 0.1 0.2 0.3
√

5−1
4

0.4
T0 0.374 0.345 0.24 0.021 None 0.112

B 0.5 0.6 0.7 0.8
√

5+1
4

0.9 and above
T0 0.21 0.239 0.184 0.016 None None

Table 2.3: Threshold temperatures of XX model with constant coupling strength for
different strengths of the external magnetic field B. When B =

√
5−1
4

, B =
√

5+1
4

and
B ≥ 0.9, the values of Bell quantity are no greater than 4 at all times. Therefore,
no threshold temperatures exist for these cases.

Table 2.3 summarizes the threshold temperatures under different magnetic fields.

There is a decrease in the value of T0 with increasing B until B =
√

5−1
4

. We see

also that there is an increase in T0 with B until B = 0.6, and after that there is

another decrease in T0 until B =
√

5+1
4

after which there does not exist a threshold

temperature. It is instructive to note that there exist two singular values of T0, one

at B =
√

5−1
4

and the other at B =
√

5+1
4

. In these two cases, Bc
max < 4 and hence

there are no threshold temperatures. To explain these two singular values, the states

contributing to the optimization of the threshold temperature are checked. For the

case of B =
√

5−1
4

, states |φc
6〉 and |φc

8〉 have the largest factors e−Ec
6/T = e−Ec

8/T =

e
√

5/T , and for the case of B =
√

5+1
4

, states |φc
2〉 and |φc

8〉 have the largest factors

e−Ec
2/T = e−Ec

8/T = e(1+
√

5)/T . In short, the Bell quantity is determined principally

by using a combinations of two elements of Qc,µ
ijkl, e

√
5/T (Qc,6

ijkl +Qc,8
ijkl) for B =

√
5−1
4

and e(1+
√

5)/T (Qc,2
ijkl +Qc,8

ijkl) for B =
√

5+1
4

. It is also found that the maximum values

of the Bell quantity for the two correlation functions (Qc,6
ijkl+Q

c,8
ijkl) and (Qc,2

ijkl+Q
c,8
ijkl)

are 2.264 and 2.088 respectively. These values are less than 4 which means that the

model does not violate the ŻB inequality in these two cases, and as a result, there

are no threshold temperatures for these two cases. The results indicate that high

threshold temperature can be achieved by adjusting the strength of magnetic field.

High threshold temperature is needed for realization of quantum protocols in spin

chains. The results provide important information on experimental realization of

quantum computation and communication in the XX model.

Until now, quantum nonlocality of two types of quantum XX models has been

investigated. These studies focus on discrete-variable quantum systems. By using

violation of the ŻB inequalities, quantum nonlocality of continuous-variable systems
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Figure 2.3: Variation of Bell quantity of XX model with constant coupling strength
with T for the cases of B = 0, 0.1, 0.5, and 1.0.

can also be explored. In the next section, we look at the case of continuous model.

2.4 Violation of the Żukowski-Brukner Inequali-

ties for Continuous-Variable Systems

2.4.1 Nonlocality and Wigner Function

Although most of the concepts and their applications in quantum information

theory were initially developed for quantum systems with discrete variables, many

quantum information protocols for continuous-variable systems have also been pro-

posed [21]. Therefore, it is necessary to understand the nonlocal character of a

quantum system with continuous variables. In recent years, quantum nonlocality for

position-momentum variables associated with the original EPR states has been the

object of interest. It is well known that quantum correlations for position-momentum

variables can be analyzed in phase space by using the Wigner distribution function

[41]. The Wigner function allows one to define a probability distribution in position-

momentum phase space for a quantum state [42]. In Ref. [10], Bell used the phase

space approach to investigate the nonlocality of the original EPR state. Recall that

the original EPR state is in the form given in Eq. (1.1) which can be expressed as

a δ-function:

Ψ(x1, x2) =

∫ ∞

−∞
e(2πi/h̄)(x1−x2+x0)pdp.



2.4. Violation of the Żukowski-Brukner Inequalities for
Continuous-Variable Systems 42

Indeed, the state can be represented by a density matrix ρ which can be obtained

from the Wigner function. The corresponding Wigner function for the EPR state is

[10]

W (x1, p1; x2, p2) = 2πδ(x1 − x2 + x0)δ(p1 + p2), (2.60)

which is positive everywhere. In a local realistic theory, the correlation of measure-

ment is given by Eq. (1.16). In this case, the distribution function is the Wigner

function and the parameters describing hidden variables are x and p. Since the

Wigner function is positive everywhere, it can be used to describe a local hidden

variable correlation and hence the Bell inequality is not violated. According to Bell

[10], the Wigner function would admit a local hidden variable description.

However, it should be noted that the choice of appropriate observables is impor-

tant for testing the nonexistence of local realism for a given state. In other words,

for an entangled state, the correlations in some type of measurements performed

on the state cannot reveal nonlocal character of the state by violation of local real-

ism. The Wigner function can be associated directly with the parity operator (−1)n̂

(where n̂ = â†â is the number operator) [43]. The Wigner representation of the par-

ity operator is not a bounded reality corresponding to the dichotomic result of the

measurement. This enables violation of Bell inequality for quantum states described

by positive definite Wigner function. It is Banaszek and Wódkiewicz [32] who first

demonstrated that positive definite Wigner function of the EPR state provides di-

rect evidence of the nonlocality of the state. The proof was based on the fact that

the correlation in the measurement of joint displaced parity operator on an entan-

gled state is described by the Wigner function of the sate. The original EPR state

is an unnormalized δ function. To avoid problems related to the singularity of the

original EPR state, two-mode squeezed vacuum state produced through nondegen-

erate optical parametric amplification (NOPA)[22] was considered. The two-mode

squeezed vacuum state generated in a nondegenerate optical parametric amplifier

(NOPA)[22] is given by

|NOPA〉 = er(â†
1â†

2−â1â2)|00〉 =
∞∑

n=0

(tanh r)n

cosh r
|nn〉, (2.61)

where r is known as the squeezing parameter and |nn〉 ≡ |n〉1⊗|n〉2 = 1
n!

(â†1)
n(â†2)

n |00〉.
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The NOPA state |NOPA〉 can also be written as [23]:

|NOPA〉 =
√

1 − tanh2 r

∫
dq

∫
dq′g(q, q′; tanh r)|qq′〉, (2.62)

where g (q, q′; x) ≡ 1√
π(1−x2)

exp
[
− q2+q′2−2qq′x

2(1−x2)

]
and |qq′〉 ≡ |q〉1 ⊗ |q′〉2, with |q〉

being the eigenstates of the position operator. Since limx→1 g (q, q′; x) = δ(q − q′),

one has limr→∞
∫
dq

∫
dq′g(q, q′; tanh r)|qq′〉 =

∫
dq|qq〉, which is just the original

EPR state by setting spatial separation between particles to be 0. Thus, in the infi-

nite squeezing limit, |NOPA〉 |r→∞ becomes the original EPR state. Banaszek and

Wódkiewicz then showed that the original EPR state and the two-mode squeezed

vacuum state violate local realism since they violate generalized Bell inequalities such

as the Clauser-Horne inequality [15] and the Clauser-Horne-Shimony-Holt (CHSH)

[9] inequality. Thus, in Ref. [32], it was shown that despite its positive definite-

ness, the Wigner function of the EPR state could provide direct evidence of the

nonlocality.

The observable measured in the experiment is displaced parity operator and the

joint observables are D̂1(α)(−1)n̂1D̂†
1(α) ⊗ D̂2(β)(−1)n̂2D̂†

2(β). At the same time,

the two-mode Wigner operator can be expressed as

Ŵ (α, β) =
4

π2
D̂1(α)(−1)n̂1D̂†

1(α) ⊗ D̂2(β)(−1)n̂2D̂†
2(β). (2.63)

The above equation tells us that the correlation function measured in the experiment

can be described by the Wigner function of the system. The correlation function of

NOPA state is given as [44]

E(α, β) = exp{−2 cosh 2r(|α|2 + |β|2) + 2 sinh 2r(αβ + α∗β∗)}. (2.64)

In Ref. [32], the experimental setting for the displaced parity measurement is chosen

as α = 0,
√J and β = 0,−√J where J is a positive constant describing the

magnitude of the displacement. Properly choosing the constant, the Bell quantity

constructed from the CHSH inequality by using the Wigner function approaches the

value 2.19. In a local realistic theory, the CHSH-Bell quantity is required to be less

than 2. Thus, a significant violation of the CHSH inequality takes place by using

positive definite Wigner function of the original EPR state.
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2.4.2 Wigner Function of N-Mode Squeezed States

No work has been aimed to address the relation between the nonlocality of ar-

bitrary multipartite entangled states and the Wigner function until now. Recently,

tripartite entangled state representation of the Wigner operator and the correspond-

ing Wigner function have been found by Fan and Jiang [45]. They focused principally

on a generalization of the Wigner function and its marginal distributions, without

invoking the nonlocality issue. The general Bell inequalities involving correlation

functions for N particles have been described in Ref. [24]. In this work, measure-

ments on each particle are chosen from two arbitrary dichotomic observables. This

general Bell theorem for general N-qubit states provides a useful tool to test the

violation of local realism of multipartite quantum states described by the Wigner

function. With this motivation, we derive an expression for the Wigner function of

N-mode squeezed state in this section. By expressing the correlation function using

the Wigner function, we show that the multipartite entangled state violates local

realism, and this violation is enhanced with increasing number of particles2.

To this end, we first choose parity operators as the observables for testing viola-

tion of local realism for a squeezed state. The Wigner function can be expressed as

the expectation value of a product of displaced parity operators as follows

W (α1, α2, ..., αN) ∝ Π(α1, α2, ..., αN), (2.65)

with the joint displaced parity operator given by

Π̂(α1, α2, ..., αN) = D̂1(α1)...D̂N(αN)(−1)n̂1+...+n̂ND̂−1
N (αN)...D̂−1

1 (α1).

(2.66)

In the above expression, D̂i(αi) = exp(αiâ
†−α∗

i â) denotes the displacement operator

for the subsystem i, where â(â†) is annihilation (creation) operator. The correla-

tion function E(α1, α2, ..., αN) given by the displaced parity operator (−1)n̂1+...+n̂N

is proportional to the equivalent Wigner function [46]. In this way, we see that

the nonlocal realistic description is embedded in the dichotomic correlation mea-

surements given by the phase-space Wigner function for the multipartite entangled

2This work was published, see [3] in the publication list in Appendix A.
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state,

W (α1, α2, ..., αN) ∝ E(α1, α2, ..., αN) ≡ Π(α1, α2, ..., αN). (2.67)

The correlation function, or equivalently the Wigner function for multipartite

system, can be calculated by using the expectation value of the displaced parity

operator on a N -mode squeezed state. This new squeezed state, a SU(1, 1) coherent

state, is given as

|r〉 = V |0〉 = exp[r(W+ −W−)]|0〉, (2.68)

where |0〉 = |00...0〉 is a N-mode vacuum state, and

W+ = x
N∑

i=1

â†2i + y
N∑

i<j=1

â†i â
†
j ,

W− = x

N∑
i=1

â2
i + y

N∑
i<j=1

âiâj,

B =
1

2

N∑
i=1

â†i âi +
N

4
. (2.69)

W+ is a N -mode squeezing operator and x and y are the coefficients which can

be determined by the fact that the above formula satisfies the closed SU(1, 1) Lie

algebra: [W+,W−] = −2B, [W+, B] = −W+, [W−, B] = W−. The final result is

W+ =
2 −N

2N

N∑
i=1

â†2i +
2

N

N∑
i<j=1

â†i â
†
j , (2.70)

W− =
2 −N

2N

N∑
i=1

â2
i +

2

N

N∑
i<j=1

âiâj . (2.71)

The N -mode squeezed state is characterized by the squeezing parameter r.

The correlation function of the squeezed state is calculated in the following way.

When r is zero, namely when no squeezing occurs, the correlation function is given

by

E(α1, α2, ..., αN) = 〈0|Π̂(α1, α2, ..., αN)|0〉

= exp[−2

N∑
i=1

|αi|2]. (2.72)

When r �= 0, the new correlation function can be constructed from

E ′(α1, α2, ..., αN) = 〈r|Π̂(α1, α2, ..., αN)|r〉. (2.73)
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To calculate E ′(α1, α2, ..., αN), we first write the correlation function in the following

form,

E(α1, α2, ..., αN) = 〈0|D̂1(α1)...D̂N (αN)SD̂−1
N (αN)...D̂−1

1 (α1)|0〉, (2.74)

with S = (−1)n̂1+...+n̂N , so

E ′(α1, α2, ..., αN) = 〈r|D̂1(α1)...D̂N (αN)SD̂−1
N (αN)...D̂−1

1 (α1)|r〉
= 〈0|V −1D̂1(α1)...D̂N (αN)SD̂−1

N (αN)...D̂−1
1 (α1)V |0〉

= 〈0|[V −1D̂1(α1)V ]V −1...V [V −1D̂N(αN)V ] ×
[V −1SV ][V −1D̂−1

N (αN)V ]V −1...V [V −1D̂−1
1 (α1)V ]|0〉.

(2.75)

Now the unitary transformation by parity operator (−1)â†
i âi on â†i and âi is given by

(−1)â†
i âi â†i(−1)â†

i âi = −â†i ,
(−1)â†

i âi âi(−1)â†
i âi = −âi. (2.76)

Since V is the exponential of a linear combination of â†2i , â†i â
†
j , âiâj , and â2

i , clearly,

S−1V S = V. (2.77)

So the crucial observation is that the parity operator is invariant under the trans-

formation V [43], V −1(−1)n̂1+...+n̂NV = (−1)n̂1+...+n̂N . After writing D̂i(α
′
i) =

V −1D̂i(αi)V , we have

E ′(α1, α2, ..., αN) = 〈0|Π̂(α′
1, α

′
2, ..., α

′
N)|0〉

= exp[−2

N∑
i=1

|α′
i|2], (2.78)

where Π̂(α′
1, α

′
2, ..., α

′
N) is the squeezed displaced parity operator

Π̂(α′
1, α

′
2, ..., α

′
N) = D̂1(α

′
1)...D̂N(α′

N)(−1)n̂1+...+n̂ND̂−1
N (α′

N)...D̂−1
1 (α′

1).

(2.79)

After some lengthy calculations, we arrive at the following relations,

V −1âiV = cosh râi + sinh r(
2 −N

N
â†i +

2

N

N∑
j �=i

â†j), (2.80)

V −1â†iV = cosh râ†i + sinh r(
2 −N

N
âi +

2

N

N∑
j �=i

âj). (2.81)
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The relations can be employed to yield squeezed displacement operator D̂i(α
′
i),

D̂i(α
′
i) = exp(α′

iâ
† − α

′∗
i â)

= exp{[(αi cosh r − 2 −N

N
α∗

i sinh r − 2

N

∑
l �=i

α∗
l sinh r)â†

− (α∗
i cosh r − 2 −N

N
αi sinh r − 2

N

∑
l �=i

αl sinh r)â]}.

(2.82)

Thus α′
i = αi cosh r− 2−N

N
α∗

i sinh r− 2
N

∑
l �=i α

∗
l sinh r. Then the correlation function

of N-mode squeezed state is given as

E ′(α1, α2, ..., αN) = exp{−2 cosh 2r
N∑

i=1

|αi|2

+
4

N
sinh 2r

N∑
i<j

(αiαj + α∗
iα

∗
j )

− N − 2

N
sinh 2r

N∑
i=1

(α2
i + α∗2

i )}. (2.83)

The correlation function of the original EPR state is recovered in the limit of r → ∞
for N = 2.

2.4.3 Violation of the Żukowski-Brukner Inequalities by the
N-Mode Wigner Function

The N -mode NOPA (nondegenerate optical parametric amplification) field is

equivalent to an entangled state of N oscillators. When N = 2, the correlation

function in Ref. [32] is given,

E ′(α1, α2) = exp{−2 cosh 2r(|α1|2 + |α2|2)
+ 2 sinh 2r(α1α2 + α∗

1α
∗
2)}. (2.84)

When N = 3, the correlation function is

E ′(α1, α2, α3) = exp{−2 cosh 2r

3∑
i=1

|αi|2

+
4

3
sinh 2r

3∑
i<j

(αiαj + α∗
iα

∗
j )

− 1

3
sinh 2r

3∑
i=1

(α2
i + α∗2

i )}, (2.85)
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and this is the same as the result given in Ref. [45]. The correlation function is

determined by considering measurements corresponding to the settings α1 = {0, a},
α2 = {0, a} and α3 = {−a, 0}, where a is a positive constant associated with the

displacement magnitude. From these combinations, the following Bell quantity can

be constructed from the 3-qubit Żukowski-Brukner inequality,

B(3) = E ′(0, 0, 0) + E ′(0, a,−a) + E ′(a, 0,−a) −E ′(a, a, 0)

= 1 + 2 exp{(−4 cosh 2r − 8

3
sinh 2r − 4

3
sinh 2r)a2}

− exp{(−4 cosh 2r +
8

3
sinh 2r − 4

3
sinh 2r)a2}. (2.86)

For local hidden variables theories, we have the inequality [24] −2 ≤ B(3) ≤ 2. If

we perform an asymptotic analysis for large |r| with r < 0, cosh 2r and sinh 2r can

be replaced by e−2r/2 and −e−2r/2 respectively, and Eq. (2.86) becomes B(3) =

3− exp{−8
3
e−2ra2} We see that when a2/e2r is large enough, the Bell inequality for

three qubits is violated when B(3) approaches the value Bopt = 3.

For N = 4, and choosing all αi to be real, the correlation function can be written

as

E ′(α1, α2, α3, α4) = exp{(−2 cosh 2r − sinh 2r)

×
4∑

i=1

α2
i + 2 sinh 2r

4∑
i<j

αiαj}. (2.87)

Evaluating the quantity B(4) from the 4-qubit Żukowski-Brukner inequality, we have

B(4) = −E ′(α1
1, α

1
2, α

1
3, α

1
4) + E ′(α1

1, α
1
2, α

1
3, α

2
4) + E ′(α1

1, α
1
2, α

2
3, α

1
4)

+E ′(α1
1, α

1
2, α

2
3, α

2
4) + E ′(α1

1, α
2
2, α

1
3, α

1
4) + E ′(α1

1, α
2
2, α

1
3, α

2
4)

+E ′(α1
1, α

2
2, α

2
3, α

1
4) − E ′(α1

1, α
2
2, α

2
3, α

2
4) + E ′(α2

1, α
1
2, α

1
3, α

1
4)

+E ′(α2
1, α

1
2, α

1
3, α

2
4) + E ′(α2

1, α
1
2, α

2
3, α

1
4) − E ′(α2

1, α
1
2, α

2
3, α

2
4)

+E ′(α2
1, α

2
2, α

1
3, α

1
4) − E ′(α2

1, α
2
2, α

1
3, α

2
4) −E ′(α2

1, α
2
2, α

2
3, α

1
4)

−E ′(α2
1, α

2
2, α

2
3, α

2
4). (2.88)

Under a local realistic description, B(4) ≤ 4. By choosing appropriate measure-

ments, we have Bopt(4) = 7.357. That is to say that the 4-mode NOPA state shows

strong nonlocality compared with 3-mode or 2-mode NOPA states.
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V = 2/Bopt(N) N = 2 N = 3 N = 4 N = 5 N = 6 N = 7

ME states 0.707 0.5 0.354 0.25 0.177 0.125
Oscillator 0.913 0.667 0.544 0.4 0.318 0.229

Table 2.4: Threshold visibilities of maximally entangled states and entangled states
of oscillator for 2 ≤ N ≤ 7.

Figure 2.4: Critical visibilities of N-qubit Żukowski-Brukner inequalities (N = 2, 3,
4, 5, 6, 7) for both maximally entangled states and the entangled states of oscillator.

We also consider the strength of violation or visibility (V ) [47] as the mini-

mal amount V of the given entangled state |ψ〉 that one has to add to pure noise,

ρnoise, so that the resulting state violates local realism. The quantity V is thus

the threshold visibility above which the state cannot be described by local real-

ism, and it is sometimes called the critical visibility. More specifically, we consider

Werner state of the form ρw = V |ψ〉〈ψ| + (1 − V )ρnoise where ρnoise = I/2N is

the completely mixed state. As shown in [24], for the maximally entangled state

|ψ〉GHZ = 1/
√

2(|00 · · ·0〉 + |11 · · ·1〉), the Werner state cannot be described by

local realism if and only if V > 1/
√

2N−1.

We repeat the calculation for entangled states of N oscillators (N=2,3,4,5,6,7)

and their results are succinctly summarized in Table 2.4 and compared to the values

for maximally entangled states. To see the variation of V with N , we also plot

V versus the number of particles N both for maximally entangled (ME) states

and N-mode squeezed states, see Figure 2.4. Naturally it is not surprising to see

that the two systems show similar variations of V with increasing dimension N .
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Alternatively, if one considers the optimal value of the violation for the Żukowski-

Brukner inequalities, the optimal value for this violation grows with N . Increasing

the number of qubits, in this case, will not bring us any closer to the classical regime,

but rather it appears to discriminate better the quantum and the classical boundary.

We also see that the entangled states of the oscillator do not violate the N -qubit

Bell inequalities as much as the maximally entangled states do. However from the

experimental perspective, NOPA state is easier to be generated than |ψ〉GHZ.

Our study shows that the multipartite entangled state in the Wigner represen-

tation exhibits nonlocal realism and this violation of local realism can be observed

by using N -mode NOPA state. The violation of local realism for NOPA state can

be manifested through the violation of N -particle Bell inequalities for correlation

described by the Wigner function. This provides an exciting possibility to test the

violation of local realism for the N -mode entangled state experimentally for the

general case using the quantum N -mode squeezed state.



Chapter 3

2-QuNit Bell Inequalities and
Applications

3.1 Bell Inequalities Involving Probabilities

One of the generalizations of the CHSH inequality is for 2 quNits. 2 quNits

refers to a quantum system of two particles each in N-dimensional Hilbert space. In

Ref. [20], a set of Bell inequalities, Collins-Gisin-Linden-Massar-Popescu (CGLMP)

inequalities, were achieved for two quNits. In this section, we will briefly review the

CGLMP inequalities. The authors in Ref. [20] developed a powerful approach to

the formulation of Bell inequalities. The method then was used to construct several

families of Bell inequalities for bipartite higher-dimensional systems. Suppose that

there are two observers Alice and Bob each can perform two possible N -outcome

measurements (A1 or A2 for Alice, B1 or B2 for Bob). A local variable theory

can be described by 4N2 probabilities P (Ai = k,Bj = l), with i, j = 1, 2 and

k, l = 0, ..., N −1. The probability P (Ai = k,Bj = l) specifies that measurement Ai

gives outcome k and measurement Bj gives outcome l.

They introduced the probability P (Ai = Bj +k) that the measurement outcomes

of Ai and Bj differ by k modulo N ,

P (Ai = Bj + k) ≡
N−1∑
m=0

P (Ai = m,Bj = m+ k mod N), (3.1)

where mod is short for modulo. Take a system, for example, that consists of two

particles with each particle in four-dimensional Hilbert space. If Alice chooses to

measure observable A1 and Bob chooses to measure observable B1, the probability

51
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with their results that differ by 3 modulo 4 is

P (A1 = B1 + 3) = P (A1 = 3, B1 = 0) + P (A1 = 2, B1 = 3)

+P (A1 = 1, B1 = 2) + P (A1 = 0, B1 = 1). (3.2)

The Bell inequalities given in Ref. [20] have the form

IN =

[N/2]−1∑
k=0

(1 − 2k

N − 1
) ×

{ + [P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+ P (A2 = B2 + k) + P (B2 = A1 + k)]

− [P (A1 = B1 − k − 1) + P (B1 = A2 − k)

+ P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)]} ≤ 2. (3.3)

where IN is the Bell quantity of the CGLMP inequalities. When N = 2, the CGLMP

inequalities reduce to the CHSH inequality involving probabilities [20],

I2 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1) ≤ 2. (3.4)

The quantum state considered in Ref. [20] was the maximally entangled state of

two N-dimensional systems

|ψ〉 =
1√
N

N−1∑
j=0

|jj〉. (3.5)

Maximally entangled states are those that all its partial traces are maximally mixed.

The observables considered in Ref. [20] were Ai for Alice and Bj for Bob. It was

assumed that the observables have the following nondegenerate eigenstates [20]

|k〉A,i =
1√
N

N−1∑
m=0

exp[i
2π

N
m(k + αi)]|m〉A,

|l〉B,j =
1√
N

N−1∑
m=0

exp[i
2π

N
m(−l + βj)]|m〉B, (3.6)

with α1 = 0, α2 = 1/2, β1 = 1/4, and β2 = −1/4. Thus the joint probabilities are

[20]

PQM(Ai = k,Bj = l) = 〈ψ|kl〉〈kl|ψ〉
=

1

2N3 sin2[π(k − l + αi + βj)/N ]
. (3.7)
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It is clear that these probabilities depend on the difference between k and l and

thus,

PQM(Ai = Bj + c) =
N−1∑
m=0

PQM(Ai = m+ c( mod N), Bj = m)

= NPQM(Ai = c, Bj = 0), (3.8)

where mod is short for modulo. From these joint probabilities, quantum prediction

of the Bell quantity can be written as [20]

IQM
N = 4N

[N/2]−1∑
k=0

(1 − 2k

N − 1
) ×

(
1

2N3 sin2[π(k + 1/4)/N ]
− 1

2N3 sin2[π(−k − 3/4)/N ]
).

(3.9)

The authors calculated the maximum value that can be attained for the Bell quantity

for quantum measurement on the entangled state. Specially, they found that [20]

IQM
3 = 4/(−9 + 6

√
3) � 2.87293,

IQM
4 =

2

3
(
√

2 +

√
10 −

√
2) � 2.89624,

lim
N→∞

IQM
N =

2

π2

∞∑
k=0

1

(k + 1/4)2
− 1

(k + 3/4)2

� 2.96981, (3.10)

The maximum value of the Bell quantity exceeds 2
√

2 when dimension goes to

infinity. They also showed numerically that these inequalities are optimal in the

same sense as that the CHSH inequality is optimal for two-dimensional systems.

3.2 Bell Inequalities Involving Correlation Func-

tions

The constraints on the correlations that local variable theories impose can also

be written as Bell inequalities in terms of correlation functions. For 2 quNits, one

type of correlation-Bell inequality was given by Fu [48]. In this paper, the author

generalized the CHSH inequality to arbitrary high-dimensional systems based on

correlation functions.
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Recall that the CHSH inequality for two qubits reads

Q11 +Q12 −Q21 +Q22 ≤ 2,

where Qij is known as correlation function of measurement on two qubits. The

correlation functions can be expressed involving probabilities by ascribing +1/− 1

to each probability,

Qij =

1∑
m=0

1∑
n=0

(−1)m+nP (Ai = m,Bj = n). (3.11)

For two qutrits, Ref. [49] gave a Bell inequality in terms of correlation functions,

which reads

Re[Q′
11 +Q′

12 −Q′
21 +Q′

22] +
1√
3
Im[Q′

11 −Q′
12 −Q′

21 +Q′
22] ≤ 2, (3.12)

where the correlation functions Q′
ij are defined by ascribing αm+n to each probability,

Q′
ij =

2∑
m=0

2∑
n=0

αm+nP (Ai = m,Bj = n), (3.13)

with α = ei2π/3. The inequality (3.12) was reformed in Ref. [48] as,

Q11 +Q12 −Q21 +Q22 ≤ 2, (3.14)

by definingQij = Re[Q′
ij ]+1/

√
3Im[Q′

ij ] for i ≥ j, andQ12 = Re[Q′
12]−1/

√
3Im[Q′

12].

The author then showed that, for 2 quNits, the correlation functions Qij can be

defined by ascribing f ij(m,n) to each probability as follows [48]:

Qij ≡ 1

S

N−1∑
m=0

N−1∑
n=0

f ij(m,n)P (Ai = m,Bj = n), (3.15)

in which S = N−1
2

, the spin of the particle for the N-dimensional system, f ij(m,n) =

S −M [ε(i − j)(m + n), N ], and ε(x) is the sign function: ε(x) = {1 x≥0
−1 x≤0. M [x,N ]

means x modulo N . Then he constructed the CHSH-like expression for arbitrarily

dimensional systems which takes the same form as the CHSH inequality, namely

I ′N = Q11 +Q12 −Q21 +Q22. (3.16)

The author proved that the maximum value of I ′N for local hidden variable theories

is 2, i.e., I ′N ≤ 2 [48]. The maximum value that can be attained for I ′N for quantum

measurement on an entangled state is the same as that obtained in [20]. The stan-

dard form of the CHSH inequality for arbitrarily high-dimensionality by introducing

the general correlation functions is an equivalent form of the CGLMP inequalities.
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3.3 Maximal Violation of the Collins-Gisin-Linden-

Massar-Popescu Inequalities

As far as Bell inequality is concerned, the CHSH inequality plays a very im-

portant role. It is already known that the CHSH inequality is violated by all pure

bipartite entangled states [18]. Its maximal violation is only obtained for the maxi-

mally entangled state of two qubits. Maximally entangled states are those that all

its partial traces are maximally mixed. In 1990, Peres and Gisin [50] showed that

for two particles of N level, there is a limit for the violation of the CHSH inequality

when N → ∞. The result was given under such a condition: dichotomic observables

are applied to a 2-quNit entangled state. For the case of any dichotomic observables

measured on two quNits the violation of the CHSH inequality does not exceed the

value bounded by the Cirel’son’s limit, or 2
√

2. For general observables other than

dichotomic observables, whether the violation of Bell inequalities increases or not

with growing N has attracted much attention. In 2000, Kaszlikowski et al [51]

showed that violations of local realism are stronger for two maximally entangled

quNits (3 ≤ N ≤ 9) than for two qubits. Moreover, the violation increases with

increasing N . In that paper, authors used a numerical linear optimization method

to show violation of local realism since no Bell inequality for 2 quNit except N = 2

was presented at that time. One year later, Durt et al [52] used a simple method,

in which certain experimental settings for maximal violation of local realism were

given, to extend similar calculations to N = 16.

In 2002, the Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequalities [20]

were developed that generalize the CHSH inequality to two-particle systems of arbi-

trary dimensions. This offers a possibility of testing violation of local realism based

on the inequalities given in Ref. [20] as those done for the CHSH inequality. It

was shown that two maximally entangled quNits violate the CGLMP inequalities

stronger than two maximally entangled qubits in Ref. [20]. The authors also showed

that the violation of the CGLMP inequalities increases with growing N . It is tempt-

ing to achieve the limit of N → ∞, 2.96981 [20]. Due to the considered N-outcome

measurement, violation of maximally entangled state can exceed Cirel’son’s bound.

However, it seems that such a limit is not a maximal violation of the CGLMP
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inequalities.

Recently it was shown [53] that there exist non-maximally entangled states that

lead to more robust violations of local realism than maximally entangled states.

In Ref. [53], Aćın et al investigated such problems for bipartite systems in low

dimensional Hilbert space, or for the cases of 2 quNit with N = 3, 4, 5, 6, 7, 8. They

showed that a larger violation exists for a non-maximally entangled state. It will

be interesting to generalize these results to higher dimensional systems. In this

section, we will extend the computations up to N = 8000 and try to find the limit

of the maximal violation of the CGLMP inequalities. The maximal violation and

corresponding entangled state will be given for different dimensional systems3.

It has been shown that symmetric multiport beam splitter [54] can be used to

test violation of local realism of two maximally entangled quNits. Symmetric N-

port beam splitter has the following property: a photon entering at any input ports

has equal chance ( 1
N

) of exit the device at any output ports. Bell multiport [54]

is a device consists of the symmetric multiport beam splitter and phase shifters.

Bell multiport beam splitters play an important role in testing nonexistence of local

realism. For dichotomic observables, the Bell-EPR experiment can be realized by

using the 2×2 beam splitter. For general nondichotomic observables, the Bell-EPR

experiment can be generalized by using the Bell multiport beam splitters.

Here we follow Ref. [54] to review beam splitters. Beam splitter is an important

device in experiment in quantum optics. It consists of two input ports and two

output ports [55] (see Figure 3.1). The action of the beam splitter can be described

by a unitary transformation V2 that transforms the two input modes into the two

output modes(
a′1
a′2

)
= V2

(
a1

a2

)
=

(
sinω eiφ cosω
cosω −eiφ sinω

)(
a1

a2

)
, (3.17)

where the phase φ is the relative phase between two inputs, and ω represents the

property of a beam splitter. Two parameters of a beam splitter are determined by

ω: reflectivity R = cos2 ω and transmittance T = sin2 ω. Specifically, the action of a

50:50 beam splitter can be represented by the following transformation matrix [54]

1√
2

(
1 1
1 −1

)
, (3.18)

3This work is submitted for publication, see [8] in the publication list in Appendix A.
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Figure 3.1: A beam splitter transforms (a1, a2) into (a′1, a
′
2) [54].

Figure 3.2: A multiport beam splitter transforms (a1, ..., aN ) into (a′1, ..., a
′
N ) [54].

in which the relative phase is chosen to be zero and R = T = 1
2
.

The concept of beam splitters can be generalized to multiport beam splitters for

systems in N-dimensional Hilbert space [54]. Multiports transform N input modes

into N output modes as shown in Figure 3.2. In Figure 3.2, a box was used to

represent a multiport beam splitter which consists of beam splitters, mirrors and

phase shifters. One type of unitary multiports is the symmetric multiport which

is of interest in generalizing the test of violation of local realism to nondichotomic

observables. The symmetric multiport beam splitter has an interesting property.

The property is that the elements of its matrix are of the same modulus. Therefore,

the action of the symmetric multiport is that one photon entering at one input port

of a symmetric N × N multiport has the probability 1
N

of being detected at any

output port. A form for the symmetric multiport transformation is defined as VN
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with elements

V ij
N =

1√
N
αij

N (3.19)

where i, j = 0, ..., N − 1, by using the N-th root of unity αN = exp i2π
N

[54]. In the

following, two simple multiports (tritters and quarters) are explained in detail.

The 3× 3 symmetric multiport is called a tritter which is a generalization of the

50:50 beam splitter with 3 input ports and 3 output ports. The form of the tritter

matrix is [54]

V3 =
1√
3

⎛
⎝ 1 1 1

1 ei 2π
3 ei 4π

3

1 ei 4π
3 ei 2π

3

⎞
⎠ . (3.20)

The 4×4 symmetric multiport is called a quarter which is a generalization of the

50:50 beam splitter with 4 input ports and 4 output ports. One form of the quarter

matrix is [54]

V4 =
1

2

⎛
⎜⎜⎝

1 1 1 1
1 eiφ −1 −eiφ

1 −1 1 −1
1 −eiφ −1 eiφ

⎞
⎟⎟⎠ with φ = π/2. (3.21)

By setting φ = π/2, the matrix elements of the 8 ports beam splitter are powers of

a root of unity.

The action of the multiport beam splitter can be described by a unitary trans-

formation V with elements Vkl = 1√
N
αkl

N where αN = exp(i2π/N). In front of

i-th input port of the device a phase shifter is put to change the phase of the in-

coming photon by φi. One can denote the phase shifts as a N-dimensional vector

φ̂ = (φ0, φ1, ..., φN−1) for convenience. These phase factors are the local parameters

that can be changed by observers. The symmetric N-port beam splitter together

with the N phase shifters perform the unitary transformation U(φ̂) with the elements

Ukl = Vkl exp[iφl]. Devices with such a transformation matrix were called Bell mul-

tiports [54] as shown in Figure 3.3. One thing worth to note is that the N-th root

of unity can also be chosen as α∗
N = exp(−i2π/N) and hence V ′

kl = 1√
N

(α∗
N)kl. In

this way, the Bell multiports perform the transformation U ′(φ̂) = V ′ exp[iφ̂].

Recall that the maximally entangled state of a bipartite system (3.5) which reads

|ψ〉 =
1√
N

N−1∑
j=0

|jj〉,



3.3. Maximal Violation of the Collins-Gisin-Linden-Massar-Popescu
Inequalities 59

Figure 3.3: A Bell multiport consists of a symmetric multiport beam splitter and N
phase shifters. N photon detectors are put at the output ports of the device [51].

where |j〉 is orthonormal base in each subsystem. The violation of the CGLMP

inequalities by the maximally entangled state (3.5) can be analyzed in the following.

The initial state is transformed by the Bell multiports into

|ψ′〉 = U(φ̂a) ⊗ U ′(ϕ̂b)|ψ〉 (3.22)

Thus the quantum joint probability P (Aa = k,Bb = l) to detect a photon at the

k-th output of A and another one at the l-th output of B is given by

P (Aa = k,Bb = l) = |〈kl|ψ′〉|2 = |〈kl|U(φ̂a) ⊗ U ′(ϕ̂b)|ψ〉|2

= 〈ψ|U(φ̂a)
† ⊗ U ′(ϕ̂b)

†|kl〉〈kl|U(φ̂a) ⊗ U ′(ϕ̂b)|ψ〉
= Tr(U(φ̂a)

† ⊗ U ′(ϕ̂b)
†Πk ⊗ ΠlU(φ̂a) ⊗ U ′(ϕ̂b)|ψ〉〈ψ|)

=
1

N3

N−1∑
j,m=0

ei[φj
a+ϕj

b+
2πj
N

(k−l)−φm
a −ϕm

b − 2πm
N

(k−l)],

(3.23)

where Πi(i = k, l) are projection operators. The quantum joint probabilities have

one symmetry

P (Aa = k,Bb = l) = P (Aa = k + c, Bb = l + c), (3.24)

for all integers c. The symmetry property leads to the following relation,

P (Aa = Bb + c) =
N−1∑
j=0

P (Aa = j + c, Bb = j) = NP (Aa = c, Bb = 0). (3.25)
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The values of the phases in the definition of joint probabilities can be chosen as [52]

φj
1 = 0, φj

2 =
jπ

N
, ϕj

1 =
jπ

2N
, ϕj

2 = − jπ

2N
. (3.26)

With the given experimental settings, quantum mechanics predicts that the Bell

quantity IN in Eq. (3.3) is given by

IN = 4N

[N/2]−1∑
k=0

(1 − 2k

N − 1
)(

1

2N3 sin2[π(k + 1
4
)/N ]

− 1

2N3 sin2[π(−k − 1 + 1
4
)/N ]

),

which is just Eq. (3.9). It was shown that the violation increases with growing N .

When N → ∞,

lim
N→∞

IN =
2

π2

∞∑
k=0

[
1

(k + 1/4)2
− 1

(k + 3/4)2
] � 2.96981. (3.27)

This is just the result given in Ref. [20].

However, it may happen that a larger value of the violation of the CGLMP

inequalities can be found if a different initial state is considered [53]. Take an

arbitrary entangled state of a bipartite system which reads

|Φ〉 =
N−1∑
j,j′=0

αj,j′|jj′〉, (3.28)

as initial state. The quantum prediction of the joint probability can be written as

P (Aa = k,Bb = l) = Tr(U(φ̂a)
† ⊗ U ′(ϕ̂b)

†Πk ⊗ ΠlU(φ̂a) ⊗ U ′(ϕ̂b)|Φ〉〈Φ|)

=
1

N2

N−1∑
j,j′,m,m′=0

αj,j′α
∗
m,m′ ×

ei[φj
a+ϕj′

b + 2π
N

(jk−j′l)−φm
a −ϕm′

b − 2π
N

(mk−m′l)].

(3.29)

To construct the Bell quantity IN(|Φ〉), we have such a relation first,

P (Aa = Bb + c) =
N−1∑
j=0

P (Aa = j + c ( mod N), Bb = j). (3.30)
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Then,

IN (|Φ〉) =
1

N2

N−1∑
j,j′,m,m′=0

αj,j′α
∗
m,m′

N−1∑
l=0

ei 2π
N

[(j−m)−(j′−m′)]l ×

{ei[φj
1−φm

1 +ϕj′
1 −ϕm′

1 ] ×
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(ei 2π

N
k(j−m) − e−i 2π

N
(k+1)(j′−m′)) +

ei[φj
1−φm

1 +ϕj′
2 −ϕm′

2 ] ×
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(e−i 2π

N
k(j′−m′) − ei 2π

N
(k+1)(j−m)) +

ei[φj
2−φm

2 +ϕj′
1 −ϕm′

1 ] ×
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(e−i 2π

N
(k+1)(j′−m′) − ei 2π

N
k(j−m)) +

ei[φj
2−φm

2 +ϕj′
2 −ϕm′

2 ] ×
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(ei 2π

N
k(j−m) − e−i 2π

N
(k+1)(j′−m′))}.

(3.31)

IN (|Φ〉) can be expressed as 〈Φ|B̂|Φ〉 with B̂ the so called Bell operator [56]. As

we know, a Bell quantity can be derived from the associated Bell operator. The

expectation value of a Bell operator is the corresponding Bell quantity. In this case,

the joint probability P (Aa = k,Bb = l) when Aa and Bb are measured in the initial

state |Φ〉 is given by Eq. (3.29)

P (Aa = k,Bb = l) = Tr(U(φ̂a)
† ⊗ U ′(ϕ̂b)

†Πk ⊗ ΠlU(φ̂a) ⊗ U ′(ϕ̂b)|Φ〉〈Φ|).

From the formula, the Bell quantity is

IN(|Φ〉) = Tr(B̂|Φ〉〈Φ|) = 〈B̂〉|Φ〉 = B, (3.32)

since the Bell quantity IN(|Φ〉) is a linear combination of the joint probabilities.

One can write the Bell operator in a matrix form. Then the maximal eigenvalue

is the highest quantum prediction of Bell quantity IN(|Φ〉eig) and the corresponding

eigenfunction is the state |Φ〉eig that maximally violates the Bell inequality [53].

Starting from the CGLMP inequalities, we derive the corresponding Bell operator



3.3. Maximal Violation of the Collins-Gisin-Linden-Massar-Popescu
Inequalities 62

for the experimental settings (3.26) with elements,

B̂(mm′)(jj′) =
1

N2

N−1∑
l=0

ei 2π
N

[(j−m)−(j′−m′)]l ×

{e iπ
2N

(j′−m′)
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(ei 2π

N
k(j−m) − e−i 2π

N
(k+1)(j′−m′)) +

e−
iπ
2N

(j′−m′)
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(e−i 2π

N
k(j′−m′) − ei 2π

N
(k+1)(j−m)) +

e
iπ
N

(j−m)+ iπ
2N

(j′−m′) ×
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(e−i 2π

N
(k+1)(j′−m′) − ei 2π

N
k(j−m)) +

e
iπ
N

(j−m)− iπ
2N

(j′−m′) ×
[N/2−1]∑

k=0

(1 − 2k

N − 1
)(ei 2π

N
k(j−m) − e−i 2π

N
(k+1)(j′−m′))}.

(3.33)

The maximum value of IN is thus reached when |Φ〉 is the eigenstate associated

to the maximal eigenvalue of B̂, |Φ〉eig. To determine what the eigenvalue is, note

that
∑N−1

l=0 ei 2π
N

[p−q]l = Nδ
(N)
pq , where δ

(N)
pq = 1 when p = q modulo N and 0 oth-

erwise. So one can decompose the Bell operator B̂ into a sum of N reduced Bell

operators that act individually inside the subspaces spanned by the following vectors

{|00〉, |11〉, ...,|(N−1)(N−1)〉}, {|01〉, |12〉, ...,|(N−1)0〉},...,{|0(N−1)〉,|10〉, ...,|(N−
1)(N − 2)〉} respectively [53]. The problem is hence simplified. Inside the subspace

spanned by the vectors {|00〉, |11〉, ..., |(N − 1)(N − 1)〉}, j −m = j′ −m′ and the

reduced Bell operator is given as

B̂red1
mj =

1

N
{e iπ

2N
(j−m)

[N/2−1]∑
k=0

(1 − 2k

N − 1
)(ei 2π

N
k(j−m) − e−i 2π

N
(k+1)(j−m)) +

e−
iπ
2N

(j−m)

[N/2−1]∑
k=0

(1 − 2k

N − 1
)(e−i 2π

N
k(j−m) − ei 2π

N
(k+1)(j−m)) +

e
i3π
2N

(j−m)

[N/2−1]∑
k=0

(1 − 2k

N − 1
)(e−i 2π

N
(k+1)(j−m) − ei 2π

N
k(j−m)) +

e
iπ
2N

(j−m)

[N/2−1]∑
k=0

(1 − 2k

N − 1
)(ei 2π

N
k(j−m) − e−i 2π

N
(k+1)(j−m))}.

(3.34)

However, for the other subspaces, there is no general explicit form for the re-
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duced Bell operators. The reason for this is due to the phase factors e
iπ
2N

(j′−m′),

e
iπ
N

(j−m)+ iπ
2N

(j′−m′) etc in Eq. (3.33). Take for example the second subspace spanned

by the vectors {|01〉, |12〉, ...,|(N−1)0〉}, only when j′−m′ = (j−m)modN , the Bell

operator does exist. In this case, these phase factors e
iπ
2N

(j′−m′), e
iπ
N

(j−m)+ iπ
2N

(j′−m′)

cannot be expressed only in terms of m, j. Thus, there is no simplified form for

B̂red2.

We proceed further to show how to find the maximal violation and the corre-

sponding |Φ〉eig.
When N = 3, the reduced Bell operators can be written in the following matrices,

B̂red1 =
2

3

⎛
⎝ 0

√
3 3√

3 0
√

3

3
√

3 0

⎞
⎠ ,

B̂red2 =
2

3

⎛
⎝ 0

√
3 0√

3 0 0
0 0 0

⎞
⎠ ,

B̂red3 =
2

3

⎛
⎝ 0 0 0

0 0
√

3

0
√

3 0

⎞
⎠ . (3.35)

Now, the problem is to determine the maximal eigenvalues of these 3 × 3 matrices.

The eigenvalues of B̂red1 are equal to −2, 1 − √
11/3 and 1 +

√
11/3. For B̂red2

and B̂red3, we have −2/
√

3, 0 and 2/
√

3. It is easy to check that the maximal

violation is equal to 1 +
√

11/3 � 2.9149 and the corresponding eigenvector is
√

2√
11−√

33
(|00〉 +

√
11−√

3
2

|11〉 + |22〉). These are the results shown in Ref. [53].

When N = 4, the reduced Bell operators can be written in the following matrices,

B̂red1 =
2

3

⎛
⎜⎜⎜⎝

0
√

4 − 2
√

2
√

2
√

4 + 2
√

2√
4 − 2

√
2 0

√
4 − 2

√
2

√
2√

2
√

4 − 2
√

2 0
√

4 − 2
√

2√
4 + 2

√
2

√
2

√
4 − 2

√
2 0

⎞
⎟⎟⎟⎠ ,

B̂red2 =
2

3

⎛
⎜⎜⎜⎝

0
√

4 − 2
√

2
√

2 0√
4 − 2

√
2 0

√
4 − 2

√
2 0√

2
√

4 − 2
√

2 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ ,
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B̂red3 =
2

3

⎛
⎜⎜⎜⎝

0
√

4 − 2
√

2 0 0√
4 − 2

√
2 0 0 0

0 0 0
√

4 − 2
√

2

0 0
√

4 − 2
√

2 0

⎞
⎟⎟⎟⎠ ,

B̂red4 =
2

3

⎛
⎜⎜⎜⎝

0 0 0 0

0 0
√

4 − 2
√

2
√

2

0
√

4 − 2
√

2 0
√

4 − 2
√

2

0
√

2
√

4 − 2
√

2 0

⎞
⎟⎟⎟⎠ . (3.36)

Now, the problem is to determine the maximal eigenvalues of these 4 × 4 matrices.

The eigenvalues of B̂red1 are equal to

1
2

√
32
9

+ 16
√

2
9

+ 2
3
√

3

√
24 − 9

√
2 + 16

√
2

32
9

+ 16
√

2
9

,

−1
2

√
32
9

+ 16
√

2
9

− 2
3
√

3

√
24 − 9

√
2 − 16

√
2

32
9

+ 16
√

2
9

,

−1
2

√
32
9

+ 16
√

2
9

+ 2
3
√

3

√
24 − 9

√
2 − 16

√
2

32
9

+ 16
√

2
9

and

1
2

√
32
9

+ 16
√

2
9

− 2
3
√

3

√
24 − 9

√
2 + 16

√
2

32
9

+ 16
√

2
9

.

For B̂red2 and B̂red4, we have
√

2
3

(1 +
√

17 − 8
√

2), −2
√

2
3

,
√

2
3

(1 −
√

17 − 8
√

2)

and 0.

For B̂red3, we have −2
3

√
4 − 2

√
2 and 2

3

√
4 − 2

√
2.

It is easy to check that the maximal violation is equal to 1
2

√
32
9

+ 16
√

2
9

+ 2
3
√

3

√
24 − 9

√
2 + 16

√
2

32
9

+ 16
√

2
9

� 2.9727 and the corresponding eigenvector is 1√
2+2a2

(|00〉 + a|11〉 + a|22〉 + |33〉), with a � 0.739372.

One more thing worthy to note is that experimental settings have no effect on the

maximal violation achieved. The authors in Ref. [53] proved that there would not

be a larger violation of the CGLMP inequalities by choosing different experimental

settings. They took N = 3 as an example, by varing φ̂1 and keeping the others

fixed:

φ0
1 = 0, φ1

1 = ε,

φ2
1 = θ, φj

2 =
jπ

N
,

ϕj
1 =

jπ

2N
, ϕj

2 = − jπ

2N
, (3.37)
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the varied reduced Bell operators will be

B̂red1 =
1

3

⎛
⎝ 0

√
3 3√

3 0
√

3

3
√

3 0

⎞
⎠ +

1

3

⎛
⎝ 0

√
3eiε 3eiθ√

3e−iε 0
√

3ei(θ−ε)

3e−iθ
√

3ei(ε−θ) 0

⎞
⎠ ,

B̂red2 =
1

3

⎛
⎝ 0

√
3 −√

3√
3 0 −3

−√
3 −3 0

⎞
⎠ +

1

3

⎛
⎝ 0

√
3eiε

√
3eiθ√

3e−iε 0 3ei(θ−ε)√
3e−iθ 3ei(ε−θ) 0

⎞
⎠ ,

B̂red3 =
1

3

⎛
⎝ 0 −3 −√

3

−3 0
√

3

−√
3

√
3 0

⎞
⎠ +

1

3

⎛
⎝ 0 3eiε

√
3eiθ

3e−iε 0
√

3ei(θ−ε)√
3e−iθ

√
3ei(ε−θ) 0

⎞
⎠ .

(3.38)

The authors checked that the eigenvalues of the matrices given above are respectively

−1, (1 − √
11/3)/2 and (1 +

√
11/3)/2. These eigenvalues are not larger than 1 +√

11/3 and similar results can be obtained by varing φ̂2, ϕ̂1 or ϕ̂2. It is reasonable to

draw a conclusion that the experimental settings defined in Eq. (3.26) are optimal

for violation of the CGLMP inequalities [53].

Actually, an arbitrary state |Φ〉 =
∑N−1

j,j′=0 αjj′|jj′〉 can always be transformed

into its Schmidt decomposition form |Φ〉 =
∑N−1

j=0 aj |jj〉 through local unitary trans-

formations, thus it is sufficient to study the maximal violation problem in the first

subspace. By diagonalizing exactly the matrix B̂red1, we have extended the calcu-

lations of maximal violation of local realism IN(|Φ〉eig) of 2 quNits to a system of

dimensions higher than 8. Tables 3.1 and 3.2 summarize these results. The higher

the dimension, the more difficult to find a maximal violation is. The highest di-

mension that we have calculated is N = 8000. In Fig. 3.4, one may observe that

IN (|Φ〉eig) increases with dimension N slowly. This means that there exists a limit

for quantum violation when N goes to infinity. Until now, we do not have an exact

value of the limit. Based on the data of IN(|Φ〉eig) from N = 2 to N = 8000, one

has an empirical formula fitting IN(|Φ〉eig) numerically to the dimension N :

Irough
N (|Φ〉eig) � 3.9132 − 1.2891N−0.2226 (3.39)

from which one can see that Irough
N (|Ψ〉eig) � 3.9132 is a coarse-grained limit of the

maximal violation for the CGLMP inequality when N tends to infinity.

Analysis of the eigenvectors |Φ〉eig shows that these eigenvectors numerically

satisfy some general properties: for instance, |Φ〉eig =
∑N−1

j=0 aeig
j |jj〉 with maximal
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N(Dimensions) 3 4 5 6 7 8
Maximal violation IN(|Φ〉eig) 2.9149 2.9727 3.0157 3.0497 3.0777 3.1013

N(Dimensions) 9 10 11 12 13 14
Maximal violation IN(|Φ〉eig) 3.1217 3.1396 3.1555 3.1698 3.1827 3.1946

N(Dimensions) 15 16 17 18 19 20
Maximal violation IN(|Φ〉eig) 3.2054 3.2155 3.2248 3.2335 3.2416 3.2492

N(Dimensions) 21 22 23 24 25 26
Maximal violation IN(|Φ〉eig) 3.2564 3.2632 3.2696 3.2757 3.2815 3.287

N(Dimensions) 27 28 29 30 31 32
Maximal violation IN(|Φ〉eig) 3.2923 3.2974 3.3022 3.3068 3.3113 3.3156

N(Dimensions) 33 34 35 36 37 38
Maximal violation IN(|Φ〉eig) 3.3197 3.3237 3.3275 3.3312 3.3348 3.3383

N(Dimensions) 39 40 41 42 43 44
Maximal violation IN(|Φ〉eig) 3.3416 3.3449 3.348 3.3511 3.3541 3.357

N(Dimensions) 45 46 47 48 49 50
Maximal violation IN(|Φ〉eig) 3.3598 3.3625 3.3652 3.3678 3.3703 3.3728

N(Dimensions) 51 52 53 54 55 56
Maximal violation IN(|Φ〉eig) 3.3752 3.3776 3.3799 3.3821 3.3843 3.3865

N(Dimensions) 57 58 59 60 61 62
Maximal violation IN(|Φ〉eig) 3.3886 3.3906 3.3926 3.3946 3.3965 3.3984

N(Dimensions) 63 64 65 66 67 68
Maximal violation IN(|Φ〉eig) 3.4003 3.4021 3.4039 3.4057 3.4074 3.4091

N(Dimensions) 69 70 71 72 73 74
Maximal violation IN(|Φ〉eig) 3.4107 3.4124 3.414 3.4155 3.4171 3.4186

N(Dimensions) 75 76 77 78 79 80
Maximal violation IN(|Φ〉eig) 3.4201 3.4216 3.423 3.4245 3.4259 3.4273

N(Dimensions) 81 82 83 84 85 86
Maximal violation IN(|Φ〉eig) 3.4286 3.43 3.4313 3.4326 3.4339 3.4351

N(Dimensions) 87 88 89 90 91 92
Maximal violation IN(|Φ〉eig) 3.4364 3.4376 3.4388 3.44 3.4412 3.4423

N(Dimensions) 93 94 95 96 97 98
Maximal violation IN(|Φ〉eig) 3.4435 3.4446 3.4457 3.4468 3.4479 3.449

N(Dimensions) 99 100 110 120 130 140
Maximal violation IN(|Φ〉eig) 3.4501 3.4511 3.4609 3.4697 3.4776 3.4848

Table 3.1: Maximal violation of the Collins-Gisin-Linden-Massar-Popescu inequali-
ties for different dimensional systems (Part I).
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N(Dimensions) 150 160 170 180 190 200
Maximal violation IN(|Φ〉eig) 3.4914 3.4975 3.5031 3.5083 3.5132 3.5178

N(Dimensions) 210 220 230 240 250 260
Maximal violation IN(|Φ〉eig) 3.5221 3.5261 3.5299 3.5336 3.537 3.5403

N(Dimensions) 270 280 290 300 310 320
Maximal violation IN(|Φ〉eig) 3.5434 3.5464 3.5492 3.552 3.5546 3.5571

N(Dimensions) 330 340 350 360 370 380
Maximal violation IN(|Φ〉eig) 3.5595 3.5619 3.5641 3.5663 3.5684 3.5704

N(Dimensions) 390 400 410 420 430 440
Maximal violation IN(|Φ〉eig) 3.5724 3.5743 3.5761 3.5779 3.5797 3.5814

N(Dimensions) 450 460 470 480 490 500
Maximal violation IN(|Φ〉eig) 3.583 3.5846 3.5861 3.5877 3.5891 3.5906

N(Dimensions) 510 520 530 540 550 560
Maximal violation IN(|Φ〉eig) 3.592 3.5934 3.5947 3.596 3.5973 3.5985

N(Dimensions) 570 580 590 600 610 620
Maximal violation IN(|Φ〉eig) 3.5997 3.6009 3.6021 3.6033 3.6044 3.6055

N(Dimensions) 630 640 650 660 670 680
Maximal violation IN(|Φ〉eig) 3.6066 3.6076 3.6087 3.6097 3.6107 3.6117

N(Dimensions) 690 700 710 720 730 740
Maximal violation IN(|Φ〉eig) 3.6126 3.6136 3.6145 3.6154 3.6163 3.6172

N(Dimensions) 750 760 770 780 790 800
Maximal violation IN(|Φ〉eig) 3.6181 3.6189 3.6198 3.6206 3.6214 3.6222

N(Dimensions) 810 820 830 840 850 860
Maximal violation IN(|Φ〉eig) 3.623 3.6238 3.6245 3.6253 3.626 3.6268

N(Dimensions) 870 880 890 900 910 920
Maximal violation IN(|Φ〉eig) 3.6275 3.6282 3.6289 3.6296 3.6303 3.6309

N(Dimensions) 930 940 950 960 970 980
Maximal violation IN(|Φ〉eig) 3.6316 3.6323 3.6329 3.6335 3.6342 3.6348

N(Dimensions) 990 1000 1100 1200 1300 1400
Maximal violation IN(|Φ〉eig) 3.6354 3.636 3.6417 3.6468 3.6514 3.6556

N(Dimensions) 1500 1600 1700 1800 1900 2000
Maximal violation IN(|Φ〉eig) 3.6594 3.6629 3.6662 3.6692 3.672 3.6747

N(Dimensions) 2250 2500 2750 3000 3500 4000
Maximal violation IN(|Φ〉eig) 3.6807 3.6859 3.6905 3.6946 3.7017 3.7077

N(Dimensions) 5000 6000 7000 8000
Maximal violation IN(|Φ〉eig) 3.7174 3.7250 3.7311 3.7362

Table 3.2: Maximal violation of the Collins-Gisin-Linden-Massar-Popescu inequali-
ties for different dimensional systems (Part II).
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Figure 3.4: Variations of IN(|Φ〉) with increasing dimension N (2 ≤ N ≤ 8000).
The black line is the result for |Φ〉eig and the red line is the result for |Φ〉app.

eigenvalue has the following symmetric properties for the coefficients: aj = aN−1−j ;

and a0 : a1 : a2 : a3 : · · · � 1 : 1√
2

: 1√
3

: 1√
4

: · · · for large N . Thus, we may

approximate a family of elegant entangled states

|Φ〉app =

N−1∑
j=0

aapp
j |jj〉, aapp

j =
1√N

1√
(j + 1)(N − j)

,

N =
N−1∑
j=0

1

(j + 1)(N − j)
(3.40)

whose corresponding Bell expressions IN(|Φ〉app) are closed to the actual ones IN(|Φ〉eig).
For example, for N = 8000, the error rate between IN(|Φ〉eig) and IN(|Φ〉app) is only

about 0.745%. We have also plot IN(|Φ〉app) versus dimension N in Fig. 3.4. It is

clear that the Bell quantities IN(|Φ〉app) and IN(|Φ〉eig) show similar variation with

increasing dimension. The Bell quantities IN(|Φ〉app) are closed to the actual ones

IN (|Φ〉eig). As we know that nonlocal resource which is highly resistant to noise is

needed in quantum information processing. It may be significant and interesting

to apply the symmetric entangled states |Φ〉app to quantum protocol of quantum

information.
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3.4 A New Set of Bell Inequalities Based on Multi-

Component Correlation Functions

In this section, we propose a new set of Bell inequalities, which are based on

multi-component correlation functions, for bipartite systems by utilizing N-outcome

measurement. We then investigate violation of the inequalities for continuous-

variable systems with finite value of squeezing parameter. The violation strength

of continuous-variable state with finite squeezing parameter is stronger than that of

the maximally entangled state4.

3.4.1 Bell Inequalities for Multi-Component Correlation Func-

tions

We consider a Bell-type scenario: two space-separated observers, denoted by

Alice and Bob, measure two different local observables of N outcomes, labeled by

0, 1, ..., N − 1. We denote Xi the observable measured by party X and xi the

outcome with X = A,B(x = a, b). If the observers decide to measure A1, B2, the

result is (0, 4) with probability P (a1 = 0, b2 = 4). Now let us introduce N (N − 1)-

dimensional unit vectors

v0 = (1, 0, 0, 0, · · · , 0, 0),

v1 =

(
− 1

N − 1
,

√
(N − 1)2 − 1

N − 1
, 0, 0, · · · , 0, 0

)
,

v2 =

(
− 1

N − 1
,− 1

N − 1

√
N(N − 1)

(N − 1)(N − 2)
,
N − 3

N − 1

√
N(N − 1)

(N − 2)(N − 3)
, 0,

· · · , 0, 0
)
,

...

vN−2 =

(
− 1

N − 1
,− 1

N − 1

√
N(N − 1)

(N − 1)(N − 2)
,− 1

N − 1

√
N(N − 1)

(N − 2)(N − 3)
,

· · · ,− 1

N − 1

√
N(N − 1)

3 · 2 ,
1

N − 1

√
N)N − 1)

2 · 1
)
,

vN−1 =

(
− 1

N − 1
,− 1

N − 1

√
N(N − 1)

(N − 1)(N − 2)
,− 1

N − 1

√
N(N − 1)

(N − 2)(N − 3)
,

· · · ,− 1

N − 1

√
N(N − 1)

3 · 2 ,− 1

N − 1

√
N(N − 1)

2 · 1
)
. (3.41)

4This work was published, see [4] in the publication list in Appendix A.
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These N vectors satisfy following properties:

(i)
N−1∑
j=0

vj = 0,

(ii) vj · vk ≡ − 1

N − 1
(j �= k). (3.42)

For N = 2, there are just two valued variables (i.e., v0 = 1,v1 = −1) obtained from

a measurement. If the measured result of Alice is j, and Bob’s result is k (where j

and k are less than N), we then associate a vector vj+k for the correlation between

Alice and Bob [vj+k understood as vm, where m = (j + k),modulo N ]. Based on

which, we now construct a multi-component correlation function:

	Qij =
∑
m,n

vm+nP (ai = m, bj = n)

=
N−1∑
t=0

vtP (m+ n = t), (3.43)

where P (ai = m, bj = n) is the joint probability of ai obtaining outcome m and

bj obtaining outcome n. We ascribe a vector vm+n to each probability P (ai =

m, bj = n) to define a new correlation function just as (−1)m+n has been as-

cribed to P (ai = m, bj = n) to define usual correlation function for two qubits.

	Qij = (Q
(0)
ij , Q

(1)
ij , Q

(2)
ij , · · · , Q(N−2)

ij ), Q
(k)
ij represents the k-th component of the vec-

tor correlation function 	Qij .

We now define a Bell quantity involving the multi-component correlation func-

tions,

BN = B(0) +

√
(N − 1)(N − 2)

N(N − 1)
B(1) +

√
(N − 2)(N − 3)

N(N − 1)
B(2)

+ · · ·+
√

2 · 1
N(N − 1)

B(N−2)

=
N−2∑
k=0

√
(N − k)(N − 1 − k)

N(N − 1)
B(k), (3.44)

where

B(0) = Q
(0)
11 +Q

(0)
12 −Q

(0)
21 +Q

(0)
22 ,

B(k) = Q
(k)
11 −Q

(k)
12 −Q

(k)
21 +Q

(k)
22 (k �= 0). (3.45)
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Any local realistic description of the previous Gedanken experiment imposes the

following inequality:

BN ≤ 2. (3.46)

To see that the above inequality is always satisfied in a local realistic description,

let us reconstruct the expression of BN . First, we write

Q11 =

N−2∑
k=0

√
(N − k)(N − 1 − k)

N(N − 1)
Q

(k)
11 ,

Q12 = Q
(0)
12 −

N−2∑
k=1

√
(N − k)(N − 1 − k)

N(N − 1)
Q

(k)
12 ,

Q21 =
N−2∑
k=0

√
(N − k)(N − 1 − k)

N(N − 1)
Q

(k)
21 ,

Q22 =
N−2∑
k=0

√
(N − k)(N − 1 − k)

N(N − 1)
Q

(k)
22 .

(3.47)

Then, the Bell quantity BN can be written in a CHSH-type form, namely, BN =

Q11 + Q12 − Q21 + Q22. It is calculated that Q11, Q21, Q22 = 1, N−3
N−1

,N−5
N−1

, ...,−N−5
N−1

,

−N−3
N−1

,−1, and Q12 = 1,−1,−N−3
N−1

,−N−5
N−1

, ...,N−5
N−1

,N−3
N−1

under local realistic descrip-

tion. So the maximum value for each Qij is plus one and minimum value is minus

one. As a result, it seems that the maximum value of BN is 4. However, the bound

of 4 is not achievable because a1, b1, a2 and b2 are correlated. To prove that the

actual bound of BN is 2, we define that ai + bj = tij and the correlation of ai, bj

gives

a1 + b1 + a2 + b2 = a1 + b2 + a2 + b1. (3.48)

So we have

t11 + t22 = t12 + t21. (3.49)
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The correlation functions Qij can be written in terms of tij as follows,

Q11 =
N − 1 − 2M [t11, N ]

N − 1
,

Q12 =
2M [t12, N ] −N − 1

N − 1
,

Q21 =
N − 1 − 2M [t21, N ]

N − 1
,

Q22 =
N − 1 − 2M [t22, N ]

N − 1
, (3.50)

for tij > 0 and where M [tij , N ] is defined as tij mod N . When tij = 0, Qij = 1. By

using these Qijs, we can find that BN is bounded by 2. We consider different cases

of the values of tij to give the bound.

1. First we consider cases in which t12 is equal to zero because when t12 = 0,

Q12 cannot be described by (3.50), while the other three Qij can be described

by (3.50) even when tij = 0. So the cases in which t12 = 0 are considered

specially.

(a) When t12 = 0 and 0 ≤ t11, t21, t22 < N ,

BN =
2t21 −N + 1 − 2t11 +N − 1 − 2t22 +N − 1

N − 1
+ 1 = 2,

(3.51)

because t21 = t11 + t22.

(b) When t12 = 0, t21 ≥ N , and 0 ≤ t11, t22 < N ,

BN =
2(t21 −N) −N + 1 − 2t11 +N − 1 − 2t22 +N − 1

N − 1
+ 1

= − 2

N − 1
, (3.52)

because t21 = t11 + t22.

(c) When t12 = 0, t11/t22 ≥ N , and 0 ≤ t21, t22/t11 < N , these cases cannot

exist since t12 + t21 < N while t11 + t22 > N which disobey constraint

(3.49).

(d) When t12 = 0, t11/t22, t21 ≥ N , and 0 ≤ t22/t11 < N ,

BN =
2(t21 −N) −N + 1 − 2t11 +N − 1 − 2t22 +N − 1 + 2N

N − 1
+ 1

= 2, (3.53)

because t21 = t11 + t22.
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(e) When t12 = 0, t11, t22 ≥ N , and 0 ≤ t21 < N , the case cannot exist since

t12 + t21 < N while t11 + t22 > N which disobey constraint (3.49).

(f) When t12 = 0, t11, t22, t21 ≥ N , the case cannot exist since t12 + t21 < 2N

while t11 + t22 ≥ 2N which disobey constraint (3.49).

2. In the following cases, t12 is larger than zero.

(a) For the case that all the tij are less than N ,

BN =
2(t12 + t21 − t11 − t22) − 2

N − 1
= − 2

N − 1
, (3.54)

because of the constraint (3.49).

(b) For the case that t11 (or t22) is larger than or equal to N , and t12, t21, t22

(or t11) are less than N ,

BN =
2(t12 + t21 − t11 − t22 +N) − 2

N − 1
= 2, (3.55)

because of the constraint (3.49).

(c) For the case that t12 (or t21) is larger than or equal to N , and t11, t22, t21

(or t12) are less than N ,

BN =
2(t12 + t21 − t11 − t22 −N) − 2

N − 1
= −2N + 2

N − 1
, (3.56)

because of the constraint (3.49).

(d) There are two special cases when two of the four tij are less than N and

the other two are larger than or equal to N . One is that t11 and t22 are

less than N , and t12 and t21 are larger than or equal to N ; the other one

is that t12 and t21 are less than N , and t11 and t22 are larger than or equal

to N . The constraint (3.49) tells us these two cases cannot exist.

(e) For the case that t11, t12/t21 are larger than or equal to N , and t22, t21/t12

are less than N ,

BN =
2(t12 + t21 −N − t11 − t22 +N) − 2

N − 1
= − 2

N − 1
. (3.57)

(f) For the case that t22, t12/t21 are larger than or equal to N , and t11, t21/t12

are less than N ,

BN =
2(t12 + t21 −N − t11 − t22 +N) − 2

N − 1
= − 2

N − 1
. (3.58)
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(g) For the case that t11 (or t22) is less than N , and t12, t21, t22 (or t11) are

no less than N ,

BN =
2(t12 + t21 −N −N − t11 − t22 +N) − 2

N − 1
= −2N + 2

N − 1
.

(3.59)

(h) For the case that t12 (or t21) is less than N , and t11, t22, t21 (or t12) are

no less than N ,

BN =
2(t12 + t21 −N − t11 − t22 +N +N) − 2

N − 1
= 2, (3.60)

because of the constraint (3.49).

(i) For the case that all the tij are larger than or equal to N ,

BN =
2(t12 + t21 −N −N − t11 − t22 +N +N) − 2

N − 1

= − 2

N − 1
, (3.61)

because of the constraint (3.49).

Therefore, for all choices of tij , the Bell quantity BN is no larger than 2.

Obviously, the inequalities reduce to the usual CHSH inequality for N = 2. In

the case of N = 3, a Bell inequality for two qutrits can be derived from inequality

(3.46),

Q
(0)
11 +Q

(0)
12 −Q

(0)
21 +Q

(0)
22 +

1√
3
(Q

(1)
11 +Q

(1)
12 −Q

(1)
21 +Q

(1)
22 ) ≤ 2. (3.62)

This is an equivalent version to the inequality for two qutrits given in Ref. [49].

The quantum prediction for the joint probability reads

PQM(ai = m, bj = n) = 〈ψ|P̂ (ai = m) ⊗ P̂ (bj = n)|ψ〉, (3.63)

where i, j = 1, 2; m,n = 0, ..., N − 1, P̂ (ai = m) = U †
A|m〉〈m|UA is the projector

of Alice for the i-th measurement and similar definition for P̂ (bj = n). Then the

quantum version of BN can be calculated by using PQM(ai = m, bj = n). The

violation of local realism for 2-quNit discrete-variable system has been investigated

in Refs. [20] and [48]. We shall investigate violation of local realism for 2-quNit

continuous-variable systems by using the inequalities (3.46) in next section.
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3.4.2 Violation of the Bell Inequalities for Continuous-Variable

Systems

Recently, Banaszek and Wódkiewicz [32] invoked the notion of parity as the

measurement operator and interpreted the Wigner function as a correlation function

for these parity measurements. They showed that the EPR state and the two-mode

squeezed vacuum state do not have a local realistic description in the sense that

they violate Bell inequalities such as the Clauser and Horne inequality [15] and the

Clauser-Horne-Shimony-Holt (CHSH) [9] inequality. In the limit r → ∞, when the

original EPR state is recovered, an obvious violation of Bell inequality takes place,

however, the violation is not very strong. To avoid the unsatisfactory feature, Chen

et al. [23] introduced “pseudospin” operators based on parity, due to the fact that

the degree of quantum nonlocality that we can uncover crucially depends not only

on the given quantum state but also on the Bell operator [56]. To test quantum

violation of the CHSH inequality for the two-mode squeezed vacuum states, the

authors in Ref. [23] wrote the CHSH-Bell operator in terms of these “pseudospin”

operators and obtained the maximum value of the expectation value of the CHSH-

Bell operator as

〈NOPA|B̂CHSH|NOPA〉max = 2
√

1 + tanh2 2r. (3.64)

When the squeezing parameter r goes to infinity, the NOPA state becomes the

original normalized EPR state for which 〈NOPA|B̂CHSH|NOPA〉max = 2
√

2. Thus

the violation of the CHSH inequality for the original EPR states can reach the

Cirel’son bound 2
√

2.

Now we have Bell inequalities for 2 quNits. It will be interesting to extend two-

outcome measurement to N-outcome measurement when testing quantum nonlocal-

ity of continuous-variable systems. The new inequalities involving correlation func-

tions for 2 quNits are used to test violation of local realism for a general continuous-

variable case in this section.

It is well known that the two-mode squeezed vacuum state can be generated in

the nondegenerate optical parametric amplifier (NOPA) [22]

|NOPA〉 = er(a†
1a†

2−a1a2)|00〉 =

∞∑
n=0

(tanh r)n

cosh r
|nn〉.
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Following Brukner et al. [57], we can map the two-mode squeezed state onto a

N -dimensional pure state:

|ψN〉 =
sechr√

1 − tanh2N r

N−1∑
n=0

(tanh r)n|nn〉. (3.65)

If the measurement result of Alice is j, and Bob’s result is k, we then ascribe a

vector vj+k for the correlation between Alice and Bob. P (ai = m, bj = n) is the

joint probability of ai obtain m and bj obtain n. More precisely, for the two-mode

squeezed state one obtains following quantum joint probability

PQM(ai = m, bj = n) = 〈ψN |P̂ (ai = m) ⊗ P̂ (bj = n)|ψN〉. (3.66)

For N = 3, we have three vectors v0 = (1, 0), v1 = (−1/2,
√

3/2), v2 =

(−1/2,−√
3/2). Accordingly the NOPA state is divided into three groups, namely,

|NOPA〉 =
1

cosh r

∞∑
n=0

(
tanh3n r|3n〉|3n〉

+ tanh3n+1 r|3n+ 1〉|3n+ 1〉
+ tanh3n+2 r|3n+ 2〉|3n+ 2〉

)
. (3.67)

If we use Bell multiports to test the violation of local realism for the NOPA state,

the projection operator can be written as

P̂ (ai = m) = U(φ̂i)
†ΠmU(φ̂i),

P̂ (bj = n) = U(ϕ̂j)
†ΠnU(ϕ̂j), (3.68)

where U(φ̂i) and U(ϕ̂j) are the transformations performed by the Bell multiports.

As a result, the probability defined in Eq. (3.66) is given as

P (ai = m, bj = n) = 〈ψN |U(φ̂i)
† ⊗ U(ϕ̂j)

†Πm ⊗ ΠnU(φ̂i) ⊗ U(ϕ̂j)|ψN〉
=

1

N2 cosh2 r(1 − tanh2N r)
×

N−1∑
k,l=0

cos(φk
i + ϕk

j − φl
i − ϕl

j

+
2π(k − l)(m+ n)

N
) tanh(k+l) r. (3.69)
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When N = 3,

P (ai = m, bj = n) =
1

9 cosh2 r(1 − tanh6r)
×

2∑
k,l=0

cos(φk
i + ϕk

j − φl
i − ϕl

j

+
2π(k − l)(m+ n)

3
) tanh(k+l) r. (3.70)

Local realistic description imposes BN=3 ≤ 2. Numerical results show that BN=3(r =

1.4068) � 2.90638; BN=3(r → ∞) = 4/(6
√

3 − 9) � 2.87293. It should be noted

that the maximally entangled state is recovered when the squeezing parameter goes

to infinity. So BN (r → ∞) is the quantum prediction for the Bell quantity con-

structed from maximally entangled state. For BN=3(r → ∞), the four optimal

two-component quantum correlations read

	Q11 = 	Q22 = 	Q∗
12 = (

2
√

3 + 1

6
,−2 −√

3

6
),

	Q21 = (−1

3
,−2

3
),

| 	Qij| =
√

(Q0
ij)

2 + (Q1
ij)

2 =

√
5

3
. (3.71)

We can similarly get BN(r = finite value) and BN (r → ∞) with different N. We

list them in Tables 3.3 and 3.4. Obviously, the degree of the violation increases with

dimension N, and the violation strength of continuous-variable states with finite

squeezing parameter is stronger than that of maximally entangled states. When

squeezing parameter and dimension N tend to infinity, NOPA state gives the original

EPR state. It is interesting to note that for maximally entangled state, the four

optimal multi-component quantum correlations share the same module: | 	Qij| =√
2N−1
3N

. When N tends to infinity, or when the original EPR state recovers, | 	Qij| =√
2/3. We calculate the maximal quantum violation for continuous-variable states

with different N. The more the value of dimension, the more difficult to find a

maximal violation is. Hence the violation strength points we get are for N ≤ 330.

With these values, it is easy to see that the violation increases slowly with increasing

N. Which means that there exists a limit for quantum violation when N goes to

infinity. However, we do not have an analytical way to find a bound for the violation

with finite squeezing parameter. For this case, what we do is draw a graph to see the
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Figure 3.5: Violation of multi-component Bell inequalities for continuous-variable
states with finite squeezing parameter for different dimension N.

variation of BN (r = finite value) with increasing dimension, see Figure 3.5. Until

now, we do not have an exact value of the limit. We numerically find a expression

that describes the curve in Figure 3.5,

BN = 3.12885 − 1.06535/N + 2.13122/N2 − 2.19262e−N . (3.72)

When N → ∞, quantum violation (BN), or the quantum predictions for the Bell

quantity, goes to 3.12885. Hence, such a value can be thought as an approximate

violation limit for continuous-variable states with finite squeezing parameter.

The correlation-Bell inequalities presented in the section are of importance in

testing violation of local realism. We investigate violation of the Bell inequalities

for continuous-variable cases. When the dimension increases, the violation of the

inequalities increases slowly. The variation of the violation is similar to that for

maximally entangled states. Numerical results show that the violation strength of

continuous-variable state with finite squeezing parameter is stronger than that of

maximally entangled state.
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〈BN 〉 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8 N = 9
ME 2.87293 2.89624 2.91054 2.9202 2.92716 2.93241 2.93651
|ψN〉 2.9011 2.95502 2.9886 3.00848 3.01962 3.02524 3.02742
with r 1.49983 1.42954 1.44614 1.48829 1.54037 1.59655 1.6541

〈BN 〉 N = 10 N = 11 N = 12 N = 13 N = 14 N = 15 N = 16
ME 2.9398 2.9425 2.94475 2.94666 2.9483 2.94973 2.95097
|ψN〉 3.03842 3.04917 3.05702 3.06254 3.06619 3.06836 3.06935
with r 1.72082 1.73827 1.7597 1.78375 1.80958 1.8366 1.86444

〈BN 〉 N = 17 N = 18 N = 19 N = 20 N = 21 N = 22 N = 23
ME 2.95208 2.95306 2.95393 2.95473 2.95544 2.95609 2.95668
|ψN〉 3.07141 3.07621 3.07993 3.08273 3.08472 3.08602 3.08674
with r 1.91912 1.93354 1.94913 1.96562 1.98281 2.00056 2.01874

〈BN 〉 N = 24 N = 25 N = 26 N = 27 N = 28 N = 29 N = 30
ME 2.95723 2.95773 2.95819 2.95862 2.95902 2.95939 2.95974
|ψN〉 3.08697 3.08932 3.09159 3.09336 3.09469 3.09562 3.0962
with r 2.03726 2.07377 2.08582 2.09833 2.11122 2.12441 2.13788

〈BN 〉 N = 31 N = 32 N = 33 N = 34 N = 35 N = 36 N = 37
ME 2.96006 2.96036 2.96065 2.96092 2.96117 2.96141 2.96164
|ψN〉 3.09646 3.0971 3.09867 3.09993 3.10091 3.10163 3.10212
with r 2.15156 2.18315 2.19295 2.20301 2.21331 2.22381 2.23449

〈BN 〉 N = 38 N = 39 N = 40 N = 41 N = 42 N = 43 N = 44
ME 2.96185 2.96206 2.96225 2.96243 2.96261 2.96278 2.96293
|ψN〉 3.1024 3.10248 3.10343 3.10439 3.10516 3.10575 3.10618
with r 2.24532 2.25629 2.28107 2.28949 2.29806 2.30678 2.31563

〈BN 〉 N = 45 N = 46 N = 47 N = 48 N = 49 N = 50 N = 51
ME 2.96309 2.96323 2.96337 2.96351 2.96364 2.96376 2.96388
|ψN〉 3.10645 3.10658 3.10685 3.10762 3.10826 3.10876 3.10913
with r 2.32458 2.33364 2.35594 2.36318 2.37052 2.37797 2.38552

〈BN 〉 N = 52 N = 53 N = 54 N = 55 N = 56 N = 57 N = 58
ME 2.96399 2.9641 2.96421 2.96431 2.96441 2.9645 2.96459
|ψN〉 3.10939 3.10954 3.10959 3.11007 3.11061 3.11104 3.11137
with r 2.39315 2.40086 2.40865 2.42738 2.4338 2.44031 2.44689

〈BN 〉 N = 59 N = 60 N = 61 N = 62 N = 63 N = 64 N = 65
ME 2.96468 2.96477 2.96485 2.96493 2.96501 2.96508 2.96515
|ψN〉 3.11162 3.11178 3.11186 3.11199 3.11245 3.11283 3.11314
with r 2.45353 2.46024 2.46701 2.48426 2.48997 2.49574 2.50157

Table 3.3: Violation of multi-component Bell inequalities for |NOPA〉 (nondegener-
ate optical parametric amplifier) and |ME〉 (maximally entangle) states with differ-
ent N (Part I).



3.4. A New Set of Bell Inequalities Based on Multi-Component
Correlation Functions 80

〈BN 〉 N = 66 N = 67 N = 68 N = 69 N = 70 N = 71
ME 2.96522 2.96529 2.96536 2.96542 2.96549 2.96555
|ψN〉 3.11337 3.11353 3.11362 3.11366 3.11394 3.11428
with r 2.50746 2.5134 2.51938 2.52541 2.54046 2.54565

〈BN 〉 N = 72 N = 73 N = 74 N = 75 N = 76 N = 77
ME 2.96561 2.96566 2.96572 2.96577 2.96583 2.96588
|ψN〉 3.11456 3.11478 3.11494 3.11504 3.1151 3.11516
with r 2.55089 2.55617 2.56149 2.56686 2.57226 2.58632

〈BN 〉 N = 78 N = 79 N = 80 N = 81 N = 82 N = 83
ME 2.96593 2.96598 2.96603 2.96607 2.96612 2.96616
|ψN〉 3.11547 3.11573 3.11593 3.11609 3.1162 3.11627
with r 2.59103 2.59578 2.60057 2.6054 2.61026 2.61515

〈BN 〉 N = 84 N = 85 N = 86 N = 87 N = 88 N = 89
ME 2.96621 2.96625 2.96629 2.96633 2.96637 2.96641
|ψN〉 3.11629 3.11647 3.11671 3.1169 3.11706 3.11717
with r 2.62007 2.63264 2.63699 2.64137 2.64578 2.65022

〈BN 〉 N = 90 N = 91 N = 92 N = 93 N = 94 N = 95
ME 2.96645 2.96648 2.96652 2.96656 2.96659 2.96662
|ψN〉 3.11725 3.11729 3.11732 3.11754 3.11773 3.11788
with r 2.65469 2.65918 2.67106 2.67506 2.6791 2.68316

〈BN 〉 N = 96 N = 97 N = 98 N = 99 N = 100 N = 110
ME 2.96666 2.96669 2.96672 2.96675 2.96678 2.96706
|ψN〉 3.11799 3.11807 3.11812 3.11814 3.11826 3.1193
with r 2.68725 2.69136 2.69549 2.69965 2.71045 2.75402

〈BN 〉 N = 120 N = 130 N = 140 N = 150 N = 160 N = 170
ME 2.96729 2.96748 2.96765 2.96779 2.96792 2.96803
|ψN〉 3.12004 3.12061 3.12126 3.12173 3.1221 3.12253
with r 2.79434 2.83708 2.8707 2.90307 2.93767 2.96527

〈BN 〉 N = 180 N = 190 N = 200 N = 210 N = 220 N = 230
ME 2.96813 2.96822 2.9683 2.96837 2.96844 2.9685
|ψN〉 3.12286 3.12311 3.12343 3.12367 3.12385 3.12398
with r 2.99448 3.02549 3.04729 3.07007 3.09393 3.1063

〈BN 〉 N = 240 N = 250 N = 260 N = 270 N = 280 N = 290
ME 2.96855 2.9686 2.96865 2.96869 2.96873 2.96877
|ψN〉 3.12428 3.12442 3.12462 3.12475 3.12486 3.12501
with r 3.132 3.15908 3.17319 3.18771 3.21808 3.23397

〈BN 〉 N = 300 N = 310 N = 320 N = 330
ME 2.9688 2.96884 2.96887 2.9689
|ψN〉 3.12513 3.12524 3.12536 3.12546
with r 3.25309 3.25881 3.27608 3.29396

Table 3.4: Violation of multi-component Bell inequalities for |NOPA〉 (nondegen-
erate optical parametric amplifier) and |ME〉 (maximally entangled) states with
different N (Part II).



Chapter 4

3-QuNit Bell Inequalities

Three quNits are quantum systems of three particles each in N-dimensional

Hilbert space. Bell inequalities for 3 quNits are not so well formulated as those

for 2 quNits. For a three N-dimensional system with an arbitrary value of N, new

developments have been made in constructing the corresponding Bell inequalities

recently. The first step came in 1990 with a paper of Mermin [33] in which he

derived a Bell inequality for arbitrary N-qubit states; quantum mechanics violates

this inequality by an amount that grows with N. This result clearly gave us a first

Bell inequality for three qubits in a correlation form which is maximally violated by

three-qubit GHZ state.

Q112 +Q121 +Q211 −Q222 ≤ 2, (4.1)

where Qijk(i, j, k = 1, 2) is correlation function of measurements among three ob-

servables for the subsystems. The second step is due to Ref. [39]. The authors

developed a three-qutrit Bell inequality which can be given in an probability form,

P (a1 + b1 + c1 = 0) + P (a1 + b2 + c2 = 1) + P (a2 + b1 + c2 = 1) +

P (a2 + b2 + c1 = 1) + 2P (a2 + b2 + c2 = 0) − P (a2 + b1 + c1 = 2) −
P (a1 + b2 + c1 = 2) − P (a1 + b1 + c2 = 2) ≤ 3,

(4.2)

where P (ai + bj + ck = r) with i, j, k = 1, 2 is joint probability which is defined in

Eq. (4.40). This inequality imposes a necessary condition on the existence of a local

realistic description for the correlations generated by three qutrits. For a system

more composite than three qutrits, no Bell inequality has been found yet.

81
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The inequality (4.1) gives one type of inequalities for three-qubit systems, and

it is not satisfactory. Since the inequality (4.1) is not violated by all pure entangled

states, it seems that the inequality can not be used to characterize entanglement of

three qubits. To solve the problem, a new Bell inequality for three qubits is to be

developed and is explained in next section.

4.1 Gisin’s Theorem for Three Qubits

Characterizing entanglement based on Bell inequality is an important issue in

quantum information theory. If a Bell inequality is violated by all pure entangled

states, the Bell inequality can be used to characterize entanglement. In 1991, Gisin

[18] demonstrated that every pure bipartite entangled state violates the CHSH in-

equality. This was known subsequently as Gisin’s theorem and it was probably the

first step towards characterizing entanglement. A few years later, the Horodecki

family [58] and Werner [59] showed that the CHSH inequality was insufficient to

characterize entanglement of mixed states. Bell inequalities for N qubits were first

developed by Mermin-Ardehali-Belinskii-Klyshko (MABK) [33, 34, 35]. However,

soon later, Gisin and Scarani [36] noticed that there exist pure states of N qubits that

do not violate any of the inequalities. These states are the generalized Greenberger-

Horne-Zeilinger (GHZ) states given by

|ψ〉GHZ = cos ξ|0 · · ·0〉 + sin ξ|1 · · ·1〉, (4.3)

with 0 ≤ ξ ≤ π/4. The GHZ states [37] are for ξ = π/4. In 2001, Scarani and

Gisin noticed that for sin 2ξ ≤ 1/
√

2N−1 the states (4.3) do not even violate the

MABK inequalities [33, 34, 35]. These results prompted Scarani and Gisin to note

that “this analysis suggests that MK (MABK [38]) inequalities, and more generally

the family of Bell’s inequalities with two observables per qubit, may not be the

‘natural’ generalizations of the CHSH inequality to more than two qubits” [36].

This was confirmed subsequently by two independent teams [24], who proposed

the more general Bell inequalities (in form of correlation functions), now known as

Żukowski-Brukner (ŻB) inequalities, for N qubits with two settings per site. The ŻB

inequalities include MABK inequalities as special cases. Ref. [38] showed that (a)

For N = even, although the generalized GHZ states (4.3) do not violate the MABK
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inequalities, the states violate the ŻB inequalities and (b) For sin 2ξ ≤ 1/
√

2N−1

and N = odd, the generalized GHZ states (4.3) satisfy all known Bell inequalities

involving correlation functions, which involve two dichotomic observables per local

measurement station.

It therefore appears that Gisin’s theorem is not valid forN (odd numbers) qubits.

Recently, we provide a further twist to the results. We construct a 3-qubit Bell

inequality, thus the return of Gisin’s theorem for 3-qubit systems5.

4.1.1 Bell Inequalities Involving Probabilities for Three Qubits

In the investigation, we focus on three-qubit systems, whose corresponding gen-

eralized GHZ states read |ψ〉GHZ = cos ξ|000〉+sin ξ|111〉. Up to now, there is no 3-

qubit Bell inequality violated by the pure entangled states for the region ξ ∈ (0, π/12]

based on the standard Bell experiment. The region ξ ∈ (0, π/12] is calculated from

the result that 3-qubit ŻB inequality or MABK inequality is not violated by the

generalized GHZ states for sin 2ξ ≤ 1/
√

2N−1 with (N = 3).

Can Gisin’s theorem be generalized to 3-qubit pure entangled states? Can one

find a Bell inequality that is violated by |ψ〉GHZ for the whole region? These ques-

tions are all answered in this section. In the following, we firstly present a Theorem

that all generalized GHZ states of three-qubit systems violate a Bell inequality in

terms of probabilities, secondly we will provide a universal Bell inequality involving

probabilities which is violated by all pure entangled states of three qubits.

Theorem 1: All generalized GHZ states of three-qubit systems violate a Bell in-

equality involving probabilities.

Proof: Let us consider the following Bell-type scenario: three space-separated

observers, denoted by A, B and C (or Alice, Bob and Charlie), can measure two

different local observables of two outcomes, labeled by 0 and 1. We denote Xi

the observable measured by party X and xi the outcome with X = A,B,C (x =

a, b, c). If the observers decide to measure A1, B1 and C2, the result is (0, 1, 1)

with probability P (a1 = 0, b1 = 1, c2 = 1). The set of these 8 × 8 probabilities

gives a complete description of any statistical quantity that can be observed in this

Gedanken experiment. One can easily see that, any local realistic (LR) description

5This work was published, see [1] in the publication list in Appendix A.
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of the previous Gedanken experiment satisfies the following Bell inequality:

P (a1 + b1 + c1 = 0) + P (a1 + b1 + c1 = 3) + P (a1 + b2 + c2 = 2)

+P (a2 + b1 + c1 = 0) + P (a2 + b1 + c1 = 3) + P (a2 + b2 + c2 = 1)

−P (a1 + b1 + c1 = 1) − P (a1 + b2 + c2 = 1)

−P (a2 + b1 + c1 = 2) − P (a2 + b2 + c2 = 2) ≤ 2. (4.4)

where P (ai + bj + ck = r) is joint probability with i, j, k = 1, 2 and r = 0, 1, 2, 3.

For instance, P (ai + bj + ck = 1) = P (ai = 1, bj = 0, ck = 0) + P (ai = 0, bj =

1, ck = 0) + P (ai = 0, bj = 0, ck = 1). It will be shown that the above inequality is

always satisfied in a local realistic model. According to a local realistic theory, any

probability model can be transformed into a deterministic one by postulating some

variables [60]. The value of P (ai + bj + ck = r) is either 1 or 0 in a local realistic

theory. In order to beat the bound 2, one may take as many of the positive terms

in inequality (4.4) as possible equal to one. However, local realistic constraints force

some of the other terms with negative sign to be the value of one. For example, if

the terms P (a1 + b1 + c1 = 0) and P (a2 + b2 + c2 = 1) are taken to be one, one will

have a1 + b1 + c1 +a2 + b2 + c2 = 1. Since P (a1 + b1 + c1 = 0) = 1, P (a1 + b1 + c1 = 3)

and P (a1 + b1 + c1 = 1) should be zero. Similarly, P (a2 + b2 + c2 = 2) = 0 because

a2 + b2 + c2 = 1. Now there remain three terms with positive sign except the above

three ones. It can be seen that P (a1 + b2 + c2 = 2) should be zero also, otherwise,

a2 + b1 + c1 = −1 according to the constraint a1 + b1 + c1 + a2 + b2 + c2 = 1.

a2 + b1 + c1 can not assume the value of minus one since all the measurement

outcomes are 0 or 1. Next one can take P (a2 + b1 + c1 = 0) equal to one and as a

result, P (a2 + b1 + c1 = 3) = 0 and P (a2 + b1 + c1 = 2) = 0. With a2 + b1 + c1 = 0,

a1 + b2 + c2 is fixed by the value of one from the local realistic constraint, which

means that P (a1 + b2 + c2 = 1) = 1. So the left hand side of inequality (4.4) is

taken the value of 1 + 0 + 0 + 1 + 0 + 1 − 0 − 1 − 0 − 0 = 2, which does not beat

the bound. Similar calculations can be done for other choices, but the inequality is

always bounded by 2 no matter which values ai, bj , ck take.

However, quantum mechanics will violate the Bell inequality for any generalized
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GHZ states. The quantum prediction for the joint probability reads

PQM(ai = m, bj = n, ck = l) = 〈ψ|P̂ (ai = m) ⊗ P̂ (bj = n) ⊗ P̂ (ck = l)|ψ〉,
(4.5)

where i, j, k = 1, 2; m,n, l = 0, 1, and

P̂ (ai = m) =
1 + (−1)mn̂ai

· 	σ
2

=
1

2

(
1 + (−1)m cos θai

(−1)m sin θai
e−iφai

(−1)m sin θai
eiφai 1 − (−1)m cos θai

)
, (4.6)

is the projector of Alice for the i-th measurement, and similar definitions for P̂ (bj =

n), P̂ (ck = l). More precisely, for the generalized GHZ states one obtains

PQM(ai = m, bj = n, ck = l)

=
1

8
cos2 ξ[1 + (−1)m cos θai

][1 + (−1)n cos θbj
][1 + (−1)l cos θck

]

+
1

8
sin2 ξ[1 − (−1)m cos θai

][1 − (−1)n cos θbj
][1 − (−1)l cos θck

)]

+
1

8
sin(2ξ)(−1)m+n+l sin θai

sin θbj
sin θck

cos(φai
+ φbj

+ φck
). (4.7)

For convenience, let us denote the left hand side of the Bell inequality (4.4) by B(4.4),

which represents the Bell quantity. For the following settings θa1 = θa2 = θ, φa1 =

−π/3, φa2 = 2π/3, θb1 = θc1 = 0, φb1 = φc1 = 0, θb2 = θc2 = π/2, φb2 = φc2 = π/6, the

Bell quantity B(4.4) is given as

B(4.4) =
1

2
+

3

2
(cos θ + sin(2ξ) sin θ)

≤ 1

2
+

3

2

√
1 + sin2(2ξ), (4.8)

the equal sign occurs at θ = tan−1[sin(2ξ)]. Obviously the Bell inequality is violated

for any ξ �= 0 or π/2 when θ = tan−1[sin(2ξ)]. This ends the proof.

This Theorem indicates that it is possible for the Bell inequality in terms of

probabilities to be violated by all pure entangled generalized GHZ states. Recently,

classification of N -qubit entanglement via quadratic Bell inequality consisting of

MABK inequalities has been presented in Ref. [61]. For N = 3, there are three

types of 3-qubit states. One type is totally separable states denoted as (13); One

type is 2-entangled states which are denoted as (2, 1) and the other type is fully

entangled states which are denoted as (3) = {ρABC}. Ref. [61] has drawn an
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ancient Chinese coin (ACC) diagram for the classification of 3-qubit entanglement

(see Figure 4.1). In this Figure, B3 and B′
3 are the MABK-Bell quantities which are

defined as

B3 = Q(A1B1C2) +Q(A1B2C1) +Q(A2B1C1) −Q(A2B2C2),

B′
3 = Q(A1B2C2) +Q(A2B2C1) +Q(A2B1C2) −Q(A1B1C1), (4.9)

where Q(AiBjCk), i, j, k = 1, 2 is the correlation function. Quantum mechanically,

Q(AiBjCk) = Tr[ρ	σ · n̂ai
⊗ 	σ · n̂bj

⊗ 	σ · n̂ck
]. (4.10)

For totally separable states (ρ ∈ {13}), the MABK-Bell quantities read

max{|B3|, |B′
3|} ≤ 2. (4.11)

Namely, separable states lie in the inner square. Two different entanglement classes

of 3-qubit states: 2-entangled states and fully entangled states give rise to different

violations of the MABK inequality [62].

B2
3 + B′2

3 ≤ 23 ifρ ∈ (2, 1),

B2
3 + B′2

3 ≤ 24 ifρ ∈ (3). (4.12)

All the results are put into an ancient Chinese coin diagram as shown in Figure 4.1

[61]. However, for the four points located on the four corners of the square, some of

the above three types of 3-qubit states coexist. For instance, the totally separable

states and the generalized GHZ states for ξ ∈ (0, π/12] coexist at these four corners,

it looks somehow that these four points are “degenerate”. The above Bell inequality

for probabilities is useful, at least, it can distinguish the generalized GHZ states for

ξ ∈ (0, π/12] from the totally separable states.

There are two different entanglement classes for 3-qubit states, namely, 2-entangled

states and fully entangled states. Why the MABK inequalities as well as the ŻB

inequalities fail for the region ξ ∈ (0, π/12] maybe due to the fact that their inequal-

ities contain only fully 3-particle correlations. If one expands P̂ (ai = m) ⊗ P̂ (bj =

n) ⊗ P̂ (ck = l) and substitutes them into the Bell quantity B(4.4) constructed from

Eq. (4.4), one will find that B(4.4) contains not only the terms of fully 3-particle

correlations, such as n̂ai
· 	σ ⊗ n̂bj

· 	σ ⊗ n̂ck
· 	σ, but also the terms of 2-particle corre-

lations, such as n̂ai
· 	σ⊗ n̂bj

· 	σ⊗ 1, n̂ai
· 	σ⊗ 1⊗ n̂ck

· 	σ and 1⊗ n̂bj
· 	σ⊗ n̂ck

· 	σ. The



4.1. Gisin’s Theorem for Three Qubits 87

Figure 4.1: Classification of 3-qubit entanglement in an ancient Chinese coin diagram
in Ref. [61] by regarding B3 and B′

3 as two axes.

above theorem implies that 2-particle correlations may make a contribution to the

quantum violation of Bell inequality.

The remarkable property of the Bell inequality (4.4) is that it is violated by

all pure entangled generalized GHZ states. However, some of other pure entangled

states do not violate it, such as the W state |ψ〉W = (|100〉 + |010〉 + |001〉)/√3.

One possible reason for this is that the Bell inequality (4.4) does not contain all

the possible probabilities. This motivates us to introduce a Bell inequality with all

possible probabilities:

P (a1 + b1 + c1 = 1) + 2P (a2 + b2 + c2 = 1)

+P (a1 + b2 + c2 = 2) + P (a2 + b1 + c2 = 2) + P (a2 + b2 + c1 = 2)

−P (a1 + b1 + c2 = 0) − P (a1 + b2 + c1 = 0) − P (a2 + b1 + c1 = 0)

−P (a1 + b1 + c2 = 3) − P (a1 + b2 + c1 = 3) − P (a2 + b1 + c1 = 3) ≤ 3.

(4.13)

This inequality is symmetric under the permutations of three observers Alice, Bob

and Charlie. It can also be tested that the inequality (4.13) is always bounded by 3

using the method given before. Here one of the conditions is taken as an example.

To beat the bound 3, terms P (a1+b1+c1 = 1) and P (a2+b2+c2 = 1) are taken equal

to one first. This means that a1+b1+c1+a2+b2+c2 = 2. The remained three terms

with positive sign are also taken equal to one to maximize the value of left hand
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side of the inequality (4.13). As a result, three of the last six terms should be zero,

they are P (a1 + b1 + c2 = 3), P (a1 + b2 + c1 = 3) and P (a2 + b1 + c1 = 3). The other

three are all equal to one according to the constraint a1 + b1 + c1 + a2 + b2 + c2 = 2.

Therefore one has 1 + 2 + 1 + 1 + 1 − 1 − 1 − 1 − 0 − 0 − 0 = 3. After tedious yet

straightforward calculations, it can be shown that the inequality (4.13) is always

bounded by 3 in a local realistic model.

Quantum mechanically, the inequality (4.13) is shown numerically to be violated

by all pure entangle states. Pure states of three qubits constitute a five-parameter

family, with equivalence up to local unitary transformations. This family has the

representation [63]

|ψ〉 =
√
µ0|000〉 +

√
µ1e

iφ|100〉+
√
µ2|101〉

+
√
µ3|110〉 +

√
µ4|111〉, (4.14)

with µi ≥ 0,
∑

i µi = 1 and 0 ≤ φ ≤ π. We follow Ref. [63] to give a simple proof

that any pure state of 3 qubits can always be written as a linear superposition of

five states. Write a pure three-qubit state as

|ψ〉 =
∑

ijk=0,1

λijk|ijk〉, (4.15)

and find two matrices Λ0 and Λ1 with elements

(Λi)jk ≡ λijk. (4.16)

There always exists a unitary transformation performed on the first qubit

Λ′
i =

∑
j

αijΛj , (4.17)

such that detΛ′
0 = 0. Since one can find a unitary matrix U which transforms Λ′

0 to

its diagonalized form Π′
0,

UΛ′
0U

† = Π′
0, (4.18)

one has

(Π′
0)01 = (Π′

0)10 = 0. (4.19)

Due to the fact that detΠ′
0 = 0, (Π′

0)00 = 0 or (Π′
0)11 = 0. This completes the proof.
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Figure 4.2: Numerical results for the generalized GHZ states |ψ〉GHZ = cos ξ|000〉+
sin ξ|111〉, which violate Bell inequality for probabilities (4.13) except ξ = 0 and
π/2. For the GHZ state with ξ = π/4, the Bell quantity reaches its maximum value
3
8
(4 + 3

√
3) which is shown analytically .

Numerical results show that this Bell inequality for probabilities is violated by

all pure entangled states of three-qubit systems. However, it is difficult to provide

an analytic proof. In the following, some special cases will be given to show that

the inequality (4.13) is violated by all pure entangled states.

In Figure 4.2, we show the numerical results for the generalized GHZ states

|ψ〉GHZ = cos ξ|000〉+ sin ξ|111〉, which violate the above symmetric Bell inequality

for probabilities except ξ = 0 and π/2. For the measuring angles θa1 = θa2 = θb1 =

θb2 = θc1 = θc2 = π/2, φa1 = −5π/12, φa2 = π/4, φb1 = −5π/12, φb2 = π/4, φc1 =

−π/3, φc2 = π/3, all the probability terms with positive signs in Bell inequality

(4.13) are equal to 3
16

(2 +
√

3), while the terms with negative signs are equal to 1
8
,

so the quantum prediction of Bell quantity for the GHZ state (where ξ = π/4) is

obtained as 6 × 3
16

(2 +
√

3) − 6 × 1
8

= 3
8
(4 + 3

√
3) > 3. In Figure 4.3, we show the

numerical results for the family of generalized W states |ψ〉W = sin β cos ξ|100〉 +

sin β sin ξ|010〉 + cosβ|001〉 with the cases β = π/12, π/6, π/4, π/3, 5π/12 and π/2,

which show the quantum violation of |ψ〉W except the product cases with β =

π/2, ξ = 0 and π/2. For the standard W state |ψ〉W = (|100〉 + |010〉 + |001〉)/√3,

the quantum violation is 3.55153. We then proceed to present the second theorem.

Theorem 2: All pure 2-entangled states of three-qubit systems violate a Bell in-

equality involving probabilities.
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Figure 4.3: Numerical results for the family of generalized W states |ψ〉W =
sin β cos ξ|100〉 + sin β sin ξ|010〉 + cos β|001〉 with the cases β = π/12, π/6,
π/4, π/3, 5π/12 and π/2. These states violate the inequality (4.13).

Proof: By pure 2-entangled states of three-qubit systems, we mean |ψAB〉⊗|ψC〉,
|ψAC〉 ⊗ |ψB〉 and |ψBC〉⊗ |ψA〉. It is sufficient to consider one of them, say |ψAB〉⊗
|ψC〉, since Bell inequality (4.13) is symmetric under the permutations of A, B and

C. Moreover, one can always have |ψAB〉⊗ |ψC〉 = (cos ξ|00〉AB +sin ξ|11〉AB)⊗|0〉C
due to local unitary transformations. For the measuring angles θa1 = θa2 = θ, φa1 =

2π/3, φa2 = −π/3, θb1 = θc1 = 0, φb1 = φc1 = 0, θb2 = π/2, θc2 = π, φb2 = π/3, φc2 =

0, we obtain from the left-hand side of Bell inequality (4.13) that

3

2
(1 − cos θ + sin(2ξ) sin θ) ≤ 3

2
(1 +

√
1 + sin2(2ξ)), (4.20)

the equal sign occurs at θ = − tan−1[sin(2ξ)]. Obviously the Bell inequality is

violated for any ξ �= 0 or π/2 when θ = − tan−1[sin(2ξ)]. This ends the proof.

Indeed, the quantum violation for the state |ψAB〉 ⊗ |ψC〉 corresponds to the curve

with β = π/2 as shown in Figure 4.3, because |ψAB〉 ⊗ |ψC〉 is equivalent to |ψ〉W
for β = π/2 up to a local unitary transformation.

There is a simpler and more intuitive way to prove Theorem 2, because the

symmetric Bell inequality (4.13) can be reduced to a CHSH-like inequality for two

qubits and then from Gisin’s theorem for two qubits one easily has Theorem 2. By
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taking c1 = 0, c2 = 1, we have from Eq. (4.13) that

P (a1 + b1 = 1) + 2P (a2 + b2 = 0)

+P (a1 + b2 = 1) + P (a2 + b1 = 1) + P (a2 + b2 = 2)

−P (a1 + b1 = −1) − P (a1 + b2 = 0) − P (a2 + b1 = 0)

−P (a1 + b1 = 2) − P (a1 + b2 = 3) − P (a2 + b1 = 3) ≤ 3. (4.21)

Since a1, a2, b1, b2 = 0, 1, the probabilities P (a1+b1 = −1), P (a1+b2 = 3) andP (a2+

b1 = 3) will be equal to zero, by using P (a2+b2 = 0)+P (a2+b2 = 2) = 1−P (a2+b2 =

1), we arrive at the following Bell inequality for two qubits

P (a1 + b1 = 1) + P (a1 + b2 = 1) + P (a2 + b1 = 1) +

P (a2 + b2 = 0) − P (a1 + b1 = 2) − P (a1 + b2 = 0) −
P (a2 + b1 = 0) − P (a2 + b2 = 1) ≤ 2. (4.22)

This Bell inequality is symmetric under the permutations of Alice and Bob and it is

an alternative form of the CHSH inequality for two qubits. For the two-qubit states

|ψ〉 = cos ξ|00〉+sin ξ|11〉 and the projector as shown in Eq. (4.6), one can have the

quantum probability

PQM(ai = m, bj = n)

=
1

4
cos2 ξ[1 + (−1)m cos θai

][1 + (−1)n cos θbj
]

+
1

4
sin2 ξ[1 − (−1)m cos θai

][1 − (−1)n cos θbj
]

+
1

4
sin(2ξ)(−1)m+n sin θai

sin θbj
cos(φai

+ φbj
). (4.23)

For the measuring angles θa1 = θa2 = θ, φa1 = π − φ, φa2 = −φ, θb1 = 0, φb1 =

0, θb2 = π/2, φb2 = φ, the left-hand side of Bell inequality (4.22) becomes 1
2

+

3
2
(− cos θ + sin(2ξ) sin θ) ≤ 1

2
(1 + 3

√
1 + sin2(2ξ)), the equal sign occurs at θ =

− tan−1[sin(2ξ)]. Obviously the Bell inequality (4.22) is violated for any ξ �= 0 or π
2

when θ = − tan−1[sin(2ξ)], just the same as the CHSH inequality violated by the

2-qubit states |ψ〉 = cos ξ|00〉 + sin ξ|11〉.
As pointed in Section 2.4.3, the violation strength of a Bell inequality can be

measured in terms of threshold visibility Vthr [47] which is the minimal amount of

the given entangled state |ψ〉 that one has to add to pure noise so that the resulting
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state ρ violates local realism. Consider the violation strength by using threshold

visibility, the entangled state is now described by the Werner state. The Werner

state is ρW = V |ψ〉〈ψ|+(1−V )ρnoise, where |ψ〉 = (|00〉+ |11〉)/√2 is the maximally

entangled state. The critical value of V below which a local realism is still possible

by this Bell inequality is Vthr = 1/
√

2, just the same as the case for the CHSH

inequality. Actually, if one denotes the left-hand side of Bell inequality (4.22) by

B(4.22) and redefines a new Bell quantity B′
(4.22) = 4

3
(B(4.22) − 1

2
), one still has the

Bell inequality B′
(4.22) ≤ 2. For quantum mechanics, B′max

(4.22) = 2
√

1 + sin2(2ξ), which

reaches 2
√

2 and then B′
(4.22) recovers the usual CHSH inequality.

Theorem 2 is remarkable. If one knows that a pure state is a 2-entangled state

of a three-qubit system, one can use the Bell inequality (4.13) to measure the degree

of entanglement (or concurrence denoted by C [64]) of the state. Since the left hand

side of (4.13) is 3
2
(1+

√
1 + sin2(2ξ)) = 3

2
(1+

√
1 + C2), thus one has the concurrence

C = | sin(2ξ)| ∈ [0, 1], just the same as the case that the CHSH inequality measures

the concurrence of pure states of two qubits [65]. But for a fully entangle state

of three qubits, there is no one to one relation between the maximal violation of

the 3-qubit Bell inequality and the entanglement measure found until now. In

summary, (i) since all pure entangled states (including pure 2-entangled states) of

three-qubit systems violate the Bell inequality (4.13), thus we have Gisin’s theorem

for 3-qubit system; (ii) the Bell inequality (4.13) can be reduced to an alternative

form of the CHSH inequality (in terms of probabilities), thus it can be viewed as a

good candidate for a“natural” generalization of the usual CHSH inequality. (iii) the

MABK inequalities and the Żukowski-Brukner inequalities are binary correlation

Bell inequalities. However, one may notice that Bell inequalities (4.4) and (4.13)

are both ternary Bell inequalities, i.e., where the inequalities are “modulo 3”. Most

recently, a ternary Bell inequality in terms of probabilities for three qutrits was

presented in Ref. [39] [or inequality (4.2)], this inequality can be connected to Bell

inequality (4.13), which is for three qubits, if one restricts the initial three possible

outcomes of each measurement to only two possible outcomes.



4.1. Gisin’s Theorem for Three Qubits 93

4.1.2 Bell Inequalities Involving Correlation Functions for

Three Qubits

Our recent investigation shows that one set of Bell inequalities for 3 qubits can

be derived in terms of correlation functions6. In this section, these Bell inequalities

involving correlation functions for three qubits are developed. We show that the

inequalities are violated by quantum mechanics. The violation is the same as that

predicted in the previous section. So the inequalities are the correlation function

version of the one (4.13) given in the previous section.

Consider 3 observers, Alice, Bob and Charlie. Suppose they are each allowed to

choose between two dichotomic observables, parameterized by 	n1 and 	n2. Each ob-

server can choose independently two arbitrary directions. The outcomes of observer

X’s measurement on the observable defined by 	n1 and 	n2 are represented by X(n̂1)

and X(n̂2) (with X = A,B,C). Each outcome can take values +1 or -1 under the

assumption of local realism. In a specific run of the experiment the correlations

between all 3 observers can be represented by the product A(n̂i)B(n̂j)C(n̂k), where

i, j, k = 1, 2. For convenience, we write A(n̂i)B(n̂j)C(n̂k) as AiBjCk. In a local re-

alistic theory, the correlation function of the measurements performed by the three

observers is the average over many runs of the experiment

Q(Ai, Bj, Ck) = 〈A(n̂i)B(n̂j)C(n̂k)〉 = 〈AiBjCk〉. (4.24)

Similarly, the correlation functions between any two observers can be given as follows

Q(Ai, Bj) = 〈A(n̂i)B(n̂j)〉 = 〈AiBj〉,
Q(Ai, Ck) = 〈A(n̂i)C(n̂k)〉 = 〈AiCk〉,
Q(Bj , Ck) = 〈B(n̂j)C(n̂k)〉 = 〈BjCk〉. (4.25)

The following inequality holds for the predetermined results:

A1B1C1 −A1B2C2 −A2B1C2 −A2B2C1 + 2A2B2C2

−QA1B1 − A1B2 − A2B1 −A2B2 + A1C1 + A1C2

+A2C1 + A2C2 +B1C1 +B1C2 +B2C1 +B2C2 ≤ 4. (4.26)

6This work was published, see [5] in the publication list in Appendix A.
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The proof of the above inequality consists of enumerating all the possible values of

Ai, Bj, Ck(i, j, k = 1, 2). This proof is easily seen by fixing values of A1, B1, C1. We

now consider different cases depending on the signs of A1, B1, C1.

1. A1, B1, C1 are all +1. The inequality (4.26) can be written as (A2B2 +1)(C2−
1) ≤ 0. Since A2, B2, C2 = ±1, A2B2 + 1 = 2 or 0 and C2 − 1 = 0 or −2, thus

the inequality is satisfied regardless of the values of A2, B2, C2.

2. A1, B1, C1 are all −1. The inequality (4.26) can be written as [B2(A2 + 1) +

(A2−1)]C2 ≤ 2. If A2 = 1, one finds [B2(A2 +1)+(A2−1)]C2 = 2B2C2 which

is not greater than 2 since B2, C2 = ±1. If A2 = −1, one finds [B2(A2 + 1) +

(A2 − 1)]C2 = −2C2 which is not greater than 2 since C2 = ±1.

3. A1 = 1, B1 = C1 = −1. The inequality (4.26) can be written as (A2C2 −
1)(B2 + 1) ≤ 0. Since A2, B2, C2 = ±1, A2C2 − 1 = 0 or −2 and B2 + 1 = 2

or 0, thus the inequality is satisfied no matter which values A2, B2, C2 take.

4. B1 = 1, A1 = C1 = −1. The inequality (4.26) can be written as (B2C2 −
1)(A2 + 1) ≤ 0. Since A2, B2, C2 = ±1, B2C2 − 1 = 0 or −2 and A2 + 1 = 2

or 0, thus the inequality is satisfied no matter which values A2, B2, C2 take.

5. C1 = 1, A1 = B1 = −1. The inequality (4.26) can be written as A2B2(C2−1)+

(A2+B2)(C2+1)−C2 ≤ 3. If C2 = 1, one finds A2B2(C2−1)+(A2+B2)(C2+

1) − C2 = 2(A2 + B2) − 1 which is not greater than 3 since A2, B2 = ±1. If

C2 = −1, one finds A2B2(C2 − 1) + (A2 + B2)(C2 + 1) − C2 = −2A2B2 + 1

which is not greater than 3 since A2, B2 = ±1.

6. A1 = B1 = 1, C1 = −1,. The inequality (4.26) can be written as A2B2C2−A2−
B2+C2 ≤ 4. If A2 = 1, one finds A2B2C2−A2−B2+C2 = (B2+1)(C2−1) which

is less than 4 since B2, C2 = ±1. If A2 = −1, one finds A2B2C2−A2−B2+C2 =

(1 − B2)(C2 + 1) which is not greater than 4 since A2, B2 = ±1.

7. A1 = C1 = 1, B1 = −1. The inequality (4.26) can be written as A2B2(C2 −
1) + A2(C2 + 1) ≤ 2. If C2 = 1, one finds A2B2(C2 − 1) + A2(C2 + 1) = 2A2

which is no greater than 2 since A2 = ±1. If C2 = −1, one finds A2B2(C2 −
1) + A2(C2 + 1) = −2A2B2 which is not greater than 2 since A2, B2 = ±1.
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8. B1 = C1 = 1, A1 = −1. The inequality (4.26) can be written as A2B2(C2 −
1) + B2(C2 + 1) ≤ 2. If C2 = 1, one finds A2B2(C2 − 1) + B2(C2 + 1) = 2B2

which is no greater than 2 since B2 = ±1. If C2 = −1, one finds A2B2(C2 −
1) +B2(C2 + 1) = −2A2B2 which is not greater than 2 since A2, B2 = ±1.

Thus, in each case, the inequality is satisfied regardless which values Ai, Bj , Ck

(i, j, k = 1, 2) take. After many runs of experiment, one can use correlation functions

to express the left hand side of inequality (4.26), so we have

Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1)

+2Q(A2B2C2) −Q(A1B1) −Q(A1B2) −Q(A2B1)

−Q(A2B2) +Q(A1C1) +Q(A1C2) +Q(A2C1) +Q(A2C2)

+Q(B1C1) +Q(B1C2) +Q(B2C1) +Q(B2C2) ≤ 4. (4.27)

The above inequality (4.27) does not include the terms of single-particle correlation

function, it is symmetric under the permutation of Aj and Bj. Moreover, by setting

appropriate values of C1 and C2, the inequality reduces directly to an equivalent

form of the CHSH inequality for two qubits. When C1 = −1, C2 = 1, the inequality

becomes

−Q(A1B1) −Q(A1B2) −Q(A2B1) +Q(A2B2) ≤ 2. (4.28)

The inequality (4.27) is symmetric under permutation of A and B. We then show

that another Bell inequality involving correlation functions for three qubits can be

constructed in a similar way. The new inequality is symmetric under permutations

of three observers. The inequality has the form,

−Q(A1B1C1) +Q(A1B2C2) +Q(A2B1C2) +Q(A2B2C1)

−2Q(A2B2C2) −Q(A1B1) −Q(A1B2) −Q(A2B1)

−Q(A2B2) −Q(A1C1) −Q(A1C2) −Q(A2C1) −Q(A2C2)

−Q(B1C1) −Q(B1C2) −Q(B2C1) −Q(B2C2) ≤ 4. (4.29)

To prove the inequality (4.29), we first write the following inequality

−A1B1C1 + A1B2C2 + A2B1C2 + A2B2C1 − 2A2B2C2

−A1B1 − A1B2 − A2B1 − A2B2 −A1C1 − A1C2

−A2C1 −A2C2 − B1C1 − B1C2 −B2C1 − B2C2 ≤ 4, (4.30)
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inequality (4.29) is given by averaging the left hand side of inequality (4.30). Proof

of the above inequality (4.30) is given in the following:

1. A1, B1, C1 are all +1. The inequality (4.30) can be written as −2A2B2C2 −
2A2 − 2B2 − 2C2 ≤ 8. If C2 = 1, one finds −2A2B2C2 − 2A2 − 2B2 − 2C2 =

−2(A2 +1)(B2 +1) which is not greater than 8 since A2, B2 = ±1. If C2 = −1,

one finds −2A2B2C2 − 2A2 − 2B2 − 2C2 = 2(A2 − 1)(B2 − 1) which is not

greater than 8 for the same reason.

2. A1 = B1 = 1, C1 = −1. The inequality (4.30) can be written as −(A2B2 +

1)(C2 + 1) ≤ 0. Since A2, B2, C2 = ±1, A2B2 + 1 = 2 or 0 and C2 + 1 = 2 or

0, thus the inequality is satisfied regardless of the values of A2, B2, C2. Since

the inequality is symmetric under permutations of A, B and C, the results of

the cases that A1 = C1 = 1, B1 = −1 and B1 = C1 = 1, A1 = −1 are the same

as that of the case A1 = B1 = 1, C1 = −1.

3. A1 = B1 = −1, C1 = 1. The inequality (4.30) can be written as −2A2B2C2 −
2A2C2 − 2B2C2 + 2C2 − 4 ≤ 0. If C2 = 1, one finds −2A2B2C2 − 2A2C2 −
2B2C2 + 2C2 − 4 = −2(A2 + 1)(B2 + 1) which is not greater than 0 since

A2, B2 = ±1 and hence, (A2 + 1)/(B2 + 1) = 2,or 0. If C2 = −1, one finds

−2A2B2C2 − 2A2C2 − 2B2C2 + 2C2 − 4 = 2(A2 + 1)(B2 + 1) − 8 which is

not greater than 0 for the same reason. Since the inequality is symmetric

under permutations of A, B and C, the results of the cases that A1 = C1 =

−1, B1 = 1 and B1 = C1 = −1, A1 = 1 are the same as that of the case

A1 = B1 = −1, C1 = 1.

4. A1, B1, C1 are all −1. The inequality (4.30) can be written as −2A2B2C2 −
2A2B2 − 2A2C2 − 2B2C2 + 2A2 + 2B2 + 2C2 − 6 ≤ 0. If C2 = 1, one finds

−4(A2B2 + 1) ≤ 0 which is satisfied since A2, B2,= ±1 and A2B2 + 1 = 2, 0.

If C2 = −1, one finds A2 + B2 ≤ 2 which is satisfied since A2 + B2 = 2, 0 or

−2.

Thus, in each case, the inequality (4.30) is satisfied no matter which values

Ai, Bj, Ck (i, j, k = 1, 2) take and so is the inequality (4.29). The inequality (4.29)

does not include the terms of single-particle correlation function, it is symmetric
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under the permutation of Aj, Bj and Ck. When C1 = 1, C2 = −1, the inequality is

reduced to an equivalent form of the CHSH inequality for two qubits

−Q(A1B1) −Q(A1B2) −Q(A2B1) +Q(A2B2) ≤ 2. (4.31)

Similarly, five more Bell inequalities for three qubits can be constructed. All the

correlation Bell inequalities are listed in Table 4.1. The first one and the fourth one

are exactly the inequalities (4.27) and (4.29), the others can be proved to be satisfied

under local realism by using similar methods. It is worth noting that these seven

inequalities are equivalent to each other. By interchanging B and C, the second

one is transformed to the first one. By interchanging A and C, the third one is

transformed to the first one. By changing Ci to −Ci, the fourth one is transformed

to the first one. By changing Ai to −Ai and Bi to −Bi, the fifth one is transformed

to the first one. By changing Bi to −Bi, the sixth one is transformed to the first

one. By changing Ai to −Ai, the seventh one is transformed to the first one. So

it is sufficient to consider only one of them when testing the quantum violation of

local realism. We will take the first one, or inequality (4.27) as an example to show

quantum mechanics violates local realism.

To test the quantum violation of any Bell inequalities, observables and quantum

states should be specified. We consider the Bell type experiment in which three

spatially separated observers Alice, Bob, and Charlie respectively measure two non-

commuting observables, namely, Ai = n̂ai
·	σ(i = 1, 2) for Alice, Bj = n̂bj

·	σ(j = 1, 2)

for Bob, and Ck = n̂ck
· 	σ(k = 1, 2) for Charlie on the generalized GHZ states |ψ〉 of

three qubits

|ψ〉GHZ = cos ξ|0〉A|0〉B|0〉C + sin ξ|1〉A|1〉B|1〉C , (4.32)

where |k〉i(k = 0, 1) describes k-th basis state of the qubit i(i = A,B,C) respectively.

The matrix forms for each set of observables Ai, Bj, and Ck are

Ai = n̂ai
· 	σ =

(
cos θai

sin θai
e−iφai

sin θai
eiφai − cos θai

)
,

Bj = n̂bj
· 	σ =

(
cos θbj

sin θbj
e−iφbj

sin θbj
eiφbj − cos θbj

)
,

Ck = n̂ck
· 	σ =

(
cos θck

sin θck
e−iφck

sin θck
eiφck − cos θck

)
, (4.33)
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No. Explicit Expression for the Bell Inequalities
1 Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1)

+2Q(A2B2C2) −Q(A1B1) −Q(A1B2) −Q(A2B1) −Q(A2B2)
+Q(A1C1) +Q(A1C2) +Q(A2C1) +Q(A2C2) +Q(B1C1)
+Q(B1C2) +Q(B2C1) +Q(B2C2) ≤ 4

2 Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1)
+2Q(A2B2C2) +Q(A1B1) +Q(A1B2) +Q(A2B1) +Q(A2B2)
−Q(A1C1) −Q(A1C2) −Q(A2C1) −Q(A2C2) +Q(B1C1)
+Q(B1C2) +Q(B2C1) +Q(B2C2) ≤ 4

3 Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1)
+2Q(A2B2C2) +Q(A1B1) +Q(A1B2) +Q(A2B1) +Q(A2B2)
+Q(A1C1) +Q(A1C2) +Q(A2C1) +Q(A2C2) −Q(B1C1)
−Q(B1C2) −Q(B2C1) −Q(B2C2) ≤ 4

4 −Q(A1B1C1) +Q(A1B2C2) +Q(A2B1C2) +Q(A2B2C1)
−2Q(A2B2C2) −Q(A1B1) −Q(A1B2) −Q(A2B1) −Q(A2B2)
−Q(A1C1) −Q(A1C2) −Q(A2C1) −Q(A2C2) −Q(B1C1)
−Q(B1C2) −Q(B2C1) −Q(B2C2) ≤ 4

5 Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1)
+2Q(A2B2C2) −Q(A1B1) −Q(A1B2) −Q(A2B1) −Q(A2B2)
−Q(A1C1) −Q(A1C2) −Q(A2C1) −Q(A2C2) −Q(B1C1)
−Q(B1C2) −Q(B2C1) −Q(B2C2) ≤ 4

6 −Q(A1B1C1) +Q(A1B2C2) +Q(A2B1C2) +Q(A2B2C1)
−2Q(A2B2C2) +Q(A1B1) +Q(A1B2) +Q(A2B1) +Q(A2B2)
+Q(A1C1) +Q(A1C2) +Q(A2C1) +Q(A2C2) −Q(B1C1)
−Q(B1C2) −Q(B2C1) −Q(B2C2) ≤ 4

7 −Q(A1B1C1) +Q(A1B2C2) +Q(A2B1C2) +Q(A2B2C1)
−2Q(A2B2C2) +Q(A1B1) +Q(A1B2) +Q(A2B1) +Q(A2B2)
−Q(A1C1) −Q(A1C2) −Q(A2C1) −Q(A2C2) +Q(B1C1)
+Q(B1C2) +Q(B2C1) +Q(B2C2) ≤ 4

Table 4.1: The explicit expression of a set of Bell inequalities for 3 qubits involving
correlation functions.
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Figure 4.4: Numerical results for the generalized GHZ states |ψ〉GHZ = cos ξ|000〉+
sin ξ|111〉, which violate a Bell inequality involving correlation functions (4.27) ex-
cept ξ = 0, π/2. For the GHZ state with ξ = π/4, the quantum violation reaches its
maximum value 3

√
3 = 5.1965.

Figure 4.5: Numerical results for the generalized GHZ states |ψ〉GHZ = cos ξ|000〉+
sin ξ|111〉, which violate 3-qubit ŻB inequality except (0, π/12], [7π/12, π/2). For
the GHZ state with ξ = π/4, the quantum violation reaches its maximum value 4.
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Figure 4.6: Numerical results for the family of the generalized W states |ψ〉W =
sin β cos ξ|100〉 + sin β sin ξ|010〉 + cosβ|001〉 which violate the inequality (4.27) for
different ξ and β. Here the cases β = π/12, π/6, π/4, π/3, 5π/12 and π/2 are
considered.

where i, j, k = 1, 2.

Using the following correlation functions,

QQM(Ai, Bj , Ck) = 〈ψ|Ai ⊗ Bj ⊗ Ck|ψ〉,
QQM(Ai, Bj) = 〈ψ|Ai ⊗Bj ⊗ 1|ψ〉,
QQM(Bj , Ck) = 〈ψ|1 ⊗Bj ⊗ Ck|ψ〉,
QQM(Ai, Ck) = 〈ψ|Ai ⊗ 1 ⊗ Ck|ψ〉, (4.34)

for generalized GHZ states, we find

QQM
GHZ(Ai, Bj, Ck) = cos θai

cos θbj
cos θck

cos 2ξ +

cos(φai
+ φbj

+ φck
) sin θai

sin θbj
sin θck

sin 2ξ,

QQM
GHZ(Ai, Bj) = cos θai

cos θbj
,

QQM
GHZ(Ai, Ck) = cos θai

cos θck
,

QQM
GHZ(Bj , Ck) = cos θbj

cos θck
. (4.35)

By using these correlation functions, quantum predictions of the Bell inequalities

listed in Table 4.1 can be easily calculated for the generalized GHZ states. These

seven inequalities are equivalent to each other, so we consider the quantum violation

of inequality (4.27) without loss of generality. Numerical results show that the

inequality (4.27) is violated by the generalized GHZ states for the whole region
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except ξ = 0, π/2, see Figure 4.4. When ξ = π/4, i.e., the GHZ state is given, the

maximal quantum violation is 3
√

3. For the purpose of comparability, we show the

numerical results for 3-qubit Żukowski-Brukner inequality in Figure 4.5. It is clear

that the 3-qubit ŻB inequality is not violated by the generalized GHZ states in two

regions (0, π/12], [7π/12, π/2). When ξ = π/4, the maximal violation is 4.

To measure strength of violation of the inequality (4.27), threshold visibility

is calculated. Visibility V [47] is the amount of entangled state presented in the

system with pure noise ρnoise. In this case, the considered state is described by

ρ = V |ψ〉〈ψ|+ (1− V )ρnoise, where ρnoise = 1
8

for three qubits. The visibility V is

bounded by 0 and 1, or 0 ≤ V ≤ 1. For V = 0, no violation of local realism occurs

and for V = 1, local realism description does not exist. Correspondingly, correlation

functions are given as

QQM
ρ (Ai, Bj, Ck) = Tr[ρAi ⊗ Bj ⊗ Ck] = V 〈ψ|Ai ⊗ Bj ⊗ Ck|ψ〉

= V QQM(Ai, Bj, Ck),

QQM
ρ (Ai, Bj) = Tr[ρAi ⊗ Bj ⊗ 1] = V 〈ψ|Ai ⊗ Bj ⊗ 1|ψ〉

= V QQM(Ai, Bj),

QQM
ρ (Bj , Ck) = Tr[ρ1 ⊗Bj ⊗ Ck] = V 〈ψ|1 ⊗Bj ⊗ Ck|ψ〉

= V QQM(Bj , Ck),

QQM
ρ (Ai, Ck) = Tr[ρAi ⊗ 1 ⊗ Ck] = V 〈ψ|Ai ⊗ 1 ⊗ Ck|ψ〉

= V QQM(Ai, Ck). (4.36)

If we describe the left hand side of the inequality (4.27) as the Bell quantity,

B(4.27) = Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1)

+2Q(A2B2C2) −Q(A1B1) −Q(A1B2) −Q(A2B1)

−Q(A2B2) +Q(A1C1) +Q(A1C2) +Q(A2C1) +Q(A2C2)

+Q(B1C1) +Q(B1C2) +Q(B2C1) +Q(B2C2). (4.37)

Local realistic description requires B(4.27) ≤ 4. In a quantum theory, results are

different. For a pure entangled state, the maximal BQM
(4.27) can be found. If the

considered state is a mixed state defined by ρ, the quantum prediction of the Bell
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quantity is BQM
ρ = V BQM

(4.27). To violate the Bell inequality (4.27), BQM
ρ must be

larger than 4, namely, V BQM
(4.27) > 4. Therefore, there exists a threshold visibility

Vthr = 4

BQM
(4.27)

above which the state cannot be described by local realism, and it is

sometimes called the critical visibility. Take the GHZ state for example that the

maximum value of BQM
(4.27) is 3

√
3, so we have the critical visibility is V GHZ

thr = 4
√

3
9

.

In other words, given inequality (4.27), the GHZ state cannot be described by local

realism if and only if V > 4
√

3/9.

If we consider the W state |ψ〉W = (|100〉+|010〉+|001〉)√3, correlation functions

are given as

QQM
W (Ai, Bj, Ck) = − cos θai

cos θbj
cos θck

+
2

3
cos(φai

− φbj
) sin θai

sin θbj
cos θck

+
2

3
cos(φai

− φck
) sin θai

cos θbj
sin θck

+
2

3
cos(φbj

− φck
) cos θai

sin θbj
sin θck

,

QQM
W (Ai, Bj) =

1

3
[− cos θai

cos θbj
+ 2 cos(φai

− φbj
) sin θai

sin θbj
],

QQM
W (Ai, Ck) =

1

3
[− cos θai

cos θck
+ 2 cos(φai

− φck
) sin θai

sin θck
],

QQM
W (Bj , Ck) =

1

3
[− cos θbj

cos θck
+ 2 cos(φbj

− φck
) sin θbj

sin θck
].

(4.38)

The maximum value of the quantum violation of the inequality (4.27) by the W

state is calculated as 5.471 based on these correlation functions. Then it is clear

that the critical visibility is V W
thr = 0.7312. It is also found numerically that the

correlation Bell inequality (4.27) is violated by all pure entangled states as is the

case for inequality (4.13) in section 4.1.1. Take generalized W states for example,

the inequality (4.27) is violated when ξ and β take different values (see Figure 4.6).

These results are the same as those results of inequality (4.13) given in section

4.1.1. Thus, the inequality (4.27) is an equivalent form of the one (4.13) in section

4.1.1. Although inequality (4.27) is violated by all pure entangled states of three

qubits as shown in section 4.1.1, the visibility of the GHZ state is not optimal

(3
√

3
9

). The visibility of the 3-qubit ŻB inequality for the GHZ state is 0.5, which is

optimal. It can be tested that all the seven inequalities given in this section yield
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the same results. The improvement of this work is that a set of Bell inequalities

involving correlation functions, which are violated by the generalized GHZ states

for the whole region, are constructed. However, there is no inequality which is not

only maximally violated by the GHZ state, but also violated by all pure entangled

states. The formulation of such a new Bell inequality for three qubits is still an open

problem. In next section, a method will be proposed to solve this problem partly.

4.2 An Observation on Qutrit Inequalities and

Qubit Inequalities

In this section, we analyze the relation between Bell inequalities for 3-level and

2-level systems. For two particles, it is shown that any inequality for higher di-

mensional systems can be reduced to one for lower dimensional systems. All the

inequalities constructed are optimal ones in the sense that they are maximally vio-

lated by Bell states. For three particles, however, an inequality for 3 qubits reduced

from the inequality for 3 qutrits is not maximally violated by the GHZ states, but

it is violated by any pure entangled state of three qubits. This observation gives us

a clue that we would derive an new inequality for 3 qubits if any inequalities for 3

particles in higher dimensional Hilbert space are given. It is anticipated that such

an inequality for 3 qubits is not only violated by all pure entangle states, but also

maximally violated by the GHZ state.

4.2.1 Two-Particle Systems

In 2002, Bell inequalities for two quNits were developed by Collins et al [20].

Recall that the Collins-Gisin-Linden-Massar-Popescu inequalities read

Id ≡
[d/2]−1∑

k=0

(1 − 2k

d− 1
){ + [P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+P (A2 = B2 + k) + P (B2 = A1 + k)]

−[P (A1 = B1 − k − 1) + P (B1 = A2 − k)

+P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)]}.

For different dimensional systems, there are different numbers of measurement out-

comes. For example, there are 0 and 1 for qubits; 0, 1 and 2 for qutrits. It is
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reasonable to think that inequalities for higher dimensional systems (for example,

qutrits) can be reduced to ones for lower dimensional systems (for example, qubits)

if one omits one or more outcomes for higher dimensional system. For the reduction

from 2-qutrit inequalities to 2-qubit inequalities, there are many choices to do. More

specifically, for the three possible measurement outcomes: 0,1,2, one can choose 0

and 1 as the two possible measurement outcomes for 2 qubits obviously, on the other

hand, one can choose 1 and 2 also.

There exists a perfect rule which connects the inequalities for two particles in

arbitrary d-dimensional Hilbert space. That is, an inequality for 2 quNits can be

reduce to an inequality for 2 qudits, where N > d. The most interesting thing is

that such an inequality for 2 qudits is a optimal one. By optimal inequality, we

mean that the inequality is maximally violated by Bell states. Usually visibility (V)

is used to measure the strength of quantum correlations for violating local realism,

so one can check the visibility of reduced inequality for lower dimensional systems

to see whether the inequality is optimal or not.

4.2.2 Three-Particle Systems

For three particles, the simplest system is 3 qubit. The inequality (4.1) for a three

2-level system is given by Mermin [33] or Żukowski et al [24] in terms of correlation

functions,

Q112 +Q121 +Q211 −Q222 ≤ 2,

which can rewritten in terms of probabilities,

P (a1 + b1 + c2 = 0) + P (a1 + b2 + c1 = 0) + P (a2 + b1 + c2 = 0) +

P (a2 + b2 + c2 = 1) − P (a1 + b1 + c2 = 1) − P (a1 + b2 + c1 = 1) −
P (a2 + b1 + c2 = 1) − P (a2 + b2 + c2 = 0) ≤ 2, (4.39)

where P (ai + bj + ck = r) is the joint probability with i, j, k = 1, 2; m,n, l = 0, 1.

For instance, P (ai + bj + ck = 1) = P (ai = 1, bj = 0, ck = 0) + P (ai = 0, bj =

1, ck = 0) + P (ai = 0, bj = 0, ck = 1). The joint probability P (ai + bj + ck = r)

is defined as measurements Ai, Bj and Ck have outcomes that sum to r modulo

2. However, quantum mechanics will violate this Bell inequality for GHZ state of 3



4.2. An Observation on Qutrit Inequalities and Qubit Inequalities 105

qubits |ψ〉GHZ = 1√
2
(|000〉 + |111〉). Quantum violation of inequality (4.39) can be

found by using quantum predictions for the joint probabilities defined in Eq. (4.5).

For the following settings ξ = π/4, θa1 = θb1 = θc1 = θa2 = θb2 = θc2 = π, φa1 =

φb1 = φc1 = −π/6, φa2 = φb2 = φc2 = π/3, the left hand side of inequality (4.39)

is 4. As pointed by Żukowski et al, however, inequality (4.39) is not violated by

generalized GHZ states when ξ ∈ (0, π/12]. It can be seen from Figure 4.5.

For a 3-level system, a Bell inequality in terms of probabilities for three-qutrit

systems was found in Ref. [39]. The inequality given in [39] is carefully derived in a

symmetric form with respect to any permutation of the subsystems. They presented

the Bell inequality for the following scenario: three space separated observers (de-

noted by A, B and C) can measure two local observables with outcomes labeled by 0,

1, and 2. The observers will get (l,m, n) with probability P (ai = l, bj = m, ck = n)

when measure Ai, Bj , and Ck, with m,n, l = 0, 1, 2 and i, j, k = 1, 2. The non-

trivial inequality imposed by local realistic theories is inequality (4.2). Recall that

inequality (4.2) reads

P (a1 + b1 + c1 = 0) + P (a1 + b2 + c2 = 1) + P (a2 + b1 + c2 = 1) +

P (a2 + b2 + c1 = 1) + 2P (a2 + b2 + c2 = 0) − P (a2 + b1 + c1 = 2) −
P (a1 + b2 + c1 = 2) − P (a1 + b1 + c2 = 2) ≤ 3,

where P (ai + bj + ck = r) is the joint probability,

P (ai + bj + ck = r) =
∑

a,b=0,1,2

P (ai = a, bj = b, ck = r − a− b). (4.40)

The joint probability P (ai + bj + ck = r) is defined as measurements Ai, Bj and Ck

have outcomes that sum to r modulo 3.

To test quantum violation of this inequality,

|ψ3〉 =
1√
3
(|000〉 + |111〉 + |222〉), (4.41)

the above state was taken as initial state. The measurements were restricted to the

tritter measurements, or unbiased symmetric six-port beamsplitter [54]. As shown

in Figure 4.7, three down converted photons are fed into three identical separated

tritters. The phase shifters are placed close to the input ports of the tritter. Recall

that the matrix elements of an unbiased symmetric six-port beamsplitter are given
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Figure 4.7: A three-tritter Bell-type experiment. This is an experiment of Alice,
Bob and Charlie analyze entangled qutrits.

by Ukl
3 (	φ) = 1√

3
αkl exp(iφl), where α = exp(2iπ

3
) and φl(l = 0, 1, 2) are the settings

of the appropriate phase shifters, for convenience one can denote them as a three

dimensional vector 	φ = (φ0, φ1, φ2).

The quantum version of probability was given as [39]

P (ai = k, bj = l, ck = m) = |〈klm|U3(	φAi
) ⊗ U3(	φBj

) ⊗ U3(	φCk
)|ψ3〉|2. (4.42)

Thus the quantum analogue of the joint probability can be easily calculated [39]

P (ai + bj + ck = r) =
1

9
[ 3 + 2 cos(ϕ1

ijk − ϕ0
ijk + 2r/3π)

+2 cos(ϕ2
ijk − ϕ0

ijk + 4r/3π)

+2 cos(ϕ2
ijk − ϕ1

ijk + 2r/3π)]. (4.43)

where ϕi
ijk = φi

Ai
+ φi

Bj
+ φi

Ck
(i = 0, 1, 2). It was shown [39] that for the optimal

settings,

	φA1 = (0, 0, 0),

	φA2 = (0, 0,
2π

3
),

	φB1 = (0,−2π

3
,−π

3
),

	φB2 = (0,−2π

3
,
π

3
),

	φC1 = (0,
π

3
, 0),

	φC2 = (0,
π

3
,
2π

3
), (4.44)
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the left hand side of inequality (4.2) gives 39
9
> 3, namely, this inequality is violated

by quantum mechanics.

Consider these two inequalities (4.39) and (4.2), there is no direct connection

between them. A new inequality for 3 qubits is given when inequality (4.2) is

reduced to 2 dimensions,

P (a1 + b1 + c1 = 1) + 2P (a2 + b2 + c2 = 1)

+P (a1 + b2 + c2 = 2) + P (a2 + b1 + c2 = 2) + P (a2 + b2 + c1 = 2)

−P (a1 + b1 + c2 = 0) − P (a1 + b2 + c1 = 0) − P (a2 + b1 + c1 = 0)

−P (a1 + b1 + c2 = 3) − P (a1 + b2 + c1 = 3) − P (a2 + b1 + c1 = 3) ≤ 3.

Which is just the inequality (4.13) given in section 4.1.1. It has been shown that

Gisin’s theorem can be generalized to three-qubit systems by using the inequality,

i.e., all pure entangled states of a three-qubit system are numerically shown to violate

the Bell inequality.

As shown in section 4.1.2, although inequality (4.27), which is an equivalent from

of the inequality (4.13), is violated by any pure entangled states of three qubits, the

visibility of the GHZ state is not optimal and Vthr = 4
√

3/9 = 0.7698. The visibility

of the inequality (4.39) given by Żukowski et al for the GHZ state is 0.5. Such an

interesting result gives us a clue that inequalities for 3 qubits may be improved by

reducing from inequalities for d(> 3) dimensional systems. By improved inequality,

we mean that it is violated by all pure entangled states of three qubits, in the

mean time, visibility given by the inequality is close to 0.5 (at least < 0.7698).

It is anticipated that such an inequality for 3 qubits can be derived by reducing

from an inequality for d(> 3)-dimemsional systems, if a new inequality for d(> 3)-

dimensional systems can be given.

A new Bell inequality for 3 particles in four-level Hilbert space will be presented

in next section. It will also be shown that when reduced to 2-dimensional systems,

this Bell inequality results in an improved inequality which is violated by all pure

entangled states and has a better visibility than inequality (4.13) has7.

7This work is to be submitted for publication, see [7] in the publication list in Appendix A.
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4.3 A Bell Inequality for Three Four-Level Sys-

tems

In this section, we present a new Bell inequality expressed by probabilities for

tripartite four-dimensional systems. We show that the inequality imposes a neces-

sary condition on the existence of a local realistic description for the correlations

generated by three four-level systems. The new inequality is violated by maximally

entangled states of three four-dimensional systems.

4.3.1 A Bell Inequality for 3 Four-Level Systems

Our approach to develop a new Bell inequality for tripartite four-dimensional sys-

tems is based on the Gedanken experiment. There are three separated observers, de-

noted by A, B, and C hereafter, each can carry out two possible local measurements,

A1 or A2 for A, B1 or B2 for B and C1 or C2 for C respectively. Each measurement

may have four possible outcomes, labeled by 0, 1, 2 and 3. We denote the observ-

able Xi measured by party X and the outcome xi with X = A,B,C(x = a, b, c). If

observers decide to measure observables A1, B2 and C1, the result is (0, 1, 2) with

probability P (a1 = 0, b2 = 1, c1 = 2). A local realistic theory can be described by

23 × 43 probabilities P (ai = a, bj = b, ck = c) with i, j, k = 1, 2 and a, b, c = 0, 1, 2, 3.

The total number of probabilities is 23 × 43 can be seen in the following way. 43

describes all possible probabilities for a specific observables chosen by the three ob-

servers (say A1, B2 and C1) since each observer can have one of four possible results

(0, 1, 2, 3). There are 23 possible combinations of observables because i, j, k = 1, 2.

Thus there are totally 8 × 56 probabilities. Here we denote the joint probability

P (ai + bj + ck = r) that the measurements Ai, Bj and Ck have outcomes that sum,

modulo four, to r:

P (ai + bj + ck = r) =
∑

a,b=0,1,2,3

P (ai = a, bj = b, ck = r − a− b). (4.45)

Some of the local realistic constraints are trivial, such as normalization and the

no-signaling conditions which are not violated by quantum predictions. Only the

non-trivial inequality, which is not true for quantum mechanics, is of use for checking

whether we can describe quantum correlations by a classical model. The new Bell



4.3. A Bell Inequality for Three Four-Level Systems 109

inequality for three four-dimensional systems has the form

−3P (a1 + b1 + c1 = 0) + P (a1 + b1 + c1 = 2) − 5P (a1 + b1 + c2 = 1)

−P (a1 + b1 + c2 = 3) − 5P (a1 + b2 + c1 = 1) − P (a1 + b2 + c1 = 3)

−5P (a2 + b1 + c1 = 1) − P (a2 + b1 + c1 = 3) + P (a1 + b2 + c2 = 0)

−3P (a1 + b2 + c2 = 2) + P (a2 + b1 + c2 = 0) − 3P (a2 + b1 + c2 = 2)

+P (a2 + b2 + c1 = 0) − 3P (a2 + b2 + c1 = 2) − P (a2 + b2 + c2 = 1)

+3P (a2 + b2 + c2 = 3)) ≤ 0. (4.46)

Similar as those done for inequalities for three qubits, the maximum value of

the left hand side of inequality (4.46) in local theories is shown to be 0. This

can be explained as follows. To beat the bound 0, terms P (a1 + b1 + c1 = 2)

and P (a2 + b2 + c2 = 3) are firstly taken to be equal to one. This means that

a1+b1+c1+a2+b2+c2 = 5. Among the remaining terms, we take P (a1+b1+c2 = 3),

P (a1 + b2 + c1 = 3) and P (a2 + b1 + c1 = 3) equal to one to maximize the value of

left hand side of the inequality (4.46). As a result, a2 + b2 + c1 = 2, a2 + b1 + c2 = 2

and a1 + b2 + c2 = 2 according to the constraint a1 + b1 + c1 + a2 + b2 + c2 = 5.

So P (a1 + b1 + c2 = 1) = P (a1 + b2 + c1 = 1) = P (a2 + b1 + c1 = 1) = 0,

P (a2 + b2 + c1 = 2) = P (a2 + b1 + c2 = 2) = P (a1 + b2 + c2 = 2) = 1 and

P (a2 + b2 + c1 = 0) = P (a2 + b1 + c2 = 0) = P (a1 + b2 + c2 = 0) = 0. Therefore we

have 0+1−0−1−0−1−0−1+0−3+0−3+0− 3−0+3 = −8 ≤ 0. If initially

terms P (a1+b1+c1 = 0) and P (a2+b2+c2 = 3) are taken equal to one first, we have

a1+b1+c1+a2+b2+c2 = 3. Among the remaining terms, we take P (a1+b1+c2 = 3),

P (a1 + b2 + c1 = 3) and P (a2 + b1 + c1 = 3) equal to one to maximize the value of

left hand side of the inequality (4.46). As a result, a2 + b2 + c1 = 0, a2 + b1 + c2 = 0

and a1 + b2 + c2 = 0 according to the constraint a1 + b1 + c1 + a2 + b2 + c2 = 3.

So P (a1 + b1 + c2 = 1) = P (a1 + b2 + c1 = 1) = P (a2 + b1 + c1 = 1) = 0,

P (a2 + b2 + c1 = 2) = P (a2 + b1 + c2 = 2) = P (a1 + b2 + c2 = 2) = 0 and

P (a2 + b2 + c1 = 0) = P (a2 + b1 + c2 = 0) = P (a1 + b2 + c2 = 0) = 1. Therefore we

have −3 + 0 − 0− 1 − 0− 1 − 0 − 1 + 1 − 0 + 1 − 0 + 1 − 0 − 0 + 3 = 0 ≤ 0. Thus,

after some lengthy calculations, it can be shown that the inequality (4.46) is always

bounded by 0 in a local realistic model.

Let us now consider the maximum value that can be attained for the inequality
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Figure 4.8: A three-quarter Bell-type experiment. This is an experiment of Al-
ice, Bob and Charlie analyze entangled particles each in a four-dimensional Hilbert
space.

(4.46) for quantum measurements on an entangled quantum state. First, we specify

the quantum state and measurement. The initial state is the maximally entangled

state of a three four-level system,

|ψ4〉 =
1

2
(|000〉 + |111〉 + |222〉 + |333〉). (4.47)

Consider a Gedanken experiment in which A, B and C measure observables defined

by unbiased symmetric eight-port beamsplitters (quarter) [54] on |ψ4〉. A three-

quarter Bell-type experiment is plotted in Figure 4.8. Three down converted photons

are fed into three identical separated quarters. The phase shifters are placed close

to the input ports of the quarter. Recall that the matrix elements of an unbiased

symmetric eight-port beamsplitter are given by Ukl
4 (	φ) = 1

2
αkl exp(iφl), where α =

exp(2iπ
4

) and φl(l = 0, 1, 2, 3) are the settings of the appropriate phase shifters, for

convenience we denote them as a four dimensional vector 	φ = (φ0, φ1, φ2, φ3).

The quantum prediction for the probability of obtaining the outcome (a, b, c) is

then given as

P (ai = a, bj = b, ck = c) = |〈abc|U4(	φAi
) ⊗ U4(	φBj

) ⊗ U4(	φCk
)|ψ4〉|2. (4.48)
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p(a1 + b1 + c1 = 0) p(a1 + b1 + c1 = 2)
0 2/3

p(a1 + b1 + c2 = 1) p(a1 + b1 + c2 = 3)
0 0

p(a1 + b2 + c1 = 1) p(a1 + b2 + c1 = 3)
0 0

p(a2 + b1 + c1 = 1) p(a2 + b1 + c1 = 3)
0 0

p(a1 + b2 + c2 = 0) p(a1 + b2 + c2 = 2)
2/3 0

p(a2 + b1 + c2 = 0) p(a2 + b1 + c2 = 2)
2/3 0

p(a2 + b2 + c1 = 0) p(a2 + b2 + c1 = 2)
2/3 0

p(a2 + b2 + c2 = 1) p(a2 + b2 + c2 = 3)
0 8/9

Table 4.2: The values of the probabilities in inequality (4.46) with appropriate angle
settings.

Thus the quantum analogue of the joint probability can be easily calculated

P (ai + bj + ck = r)

=
1

16
[4 + 2 cos(ϕ1

ijk − ϕ0
ijk +

π

2
r) + 2 cos(ϕ2

ijk − ϕ0
ijk + πr)

+2 cos(ϕ2
ijk − ϕ1

ijk +
π

2
r) + 2 cos(ϕ3

ijk − ϕ0
ijk +

3π

2
r)

+2 cos(ϕ3
ijk − ϕ1

ijk + πr) + 2 cos(ϕ3
ijk − ϕ2

ijk +
π

2
r)], (4.49)

where ϕi
ijk = φi

Ai
+φi

Bj
+φi

Ck
(i = 0, 1, 2, 3). In order to look for the maximal violation

of the inequality, we choose the optimal settings as the following:

	φA1 = 	φB1 = 	φC1 = (0,
1

3
arccos(−1

3
),

1

3
arccos(−1

3
) − π

3
,
π

3
),

	φA2 = 	φB2 = 	φC2 = (0,
1

3
arcsin

7

9
,
1

3
arcsin

7

9
+
π

6
,−π

6
). (4.50)

Numerical results show that for this choice, all the probabilities terms have definite

values as listed in Table 4.2. Putting them into the left hand side of the inequality

(4.46), we arrive at −3 × 0 + 2
3

+ 3(−5 × 0 − 0) + 3(2
3
− 3 × 0) − 0 + 38

9
= 16

3
> 0.

In Ref. [51], a proposal was made to measure the strength of violation of local

realism by the minimal amount of noise that must be added to the system in order

to hide the non-classical character of the observed correlations. This is equivalent
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to a replacement of the pure state |ψ〉〈ψ| by the mixed state ρ(F ) of the form

ρ(F ) = (1−F )|ψ〉〈ψ|+ F
64
I⊗I⊗I, where I is an identity matrix and F (0 ≤ F ≤ 1), is

the amount of noise present in the system. For F = 0, local realistic description does

not exist, whereas it does for F = 1. Therefore, there exists some threshold value of

F , denoted by Fthr, such that for every F ≤ Fthr, local and realistic description does

not exist. The threshold fidelity for three four-level system is Fthr = 8
17

= 0.4706.

Obviously, the relation between F and visibility is F = 1 − V . So the threshold

visibility is Vthr = 9
17

.

4.3.2 A New Bell Inequality for 3 Qubits

When restricted to 2-dimensional systems, the Bell inequality (4.46) reduces to

a new Bell inequality for three qubits, which is violated by all pure entangled states

of three-qubit systems. The visibilities above which GHZ state and W state can

not be described by local realism are calculated. The visibilities are improved ones

compared with those given in section 4.1. The fact is part of the reason that the new

inequality for 3 qubits is better than previous ones. In this section, we present the

new Bell inequality for three-qubit system which is reduced from inequality (4.46)

3P (a1 + b1 + c1 = 0) + P (a1 + b1 + c1 = 1) − 5P (a1 + b1 + c1 = 2)

+P (a1 + b1 + c1 = 3) + 3P (a1 + b1 + c2 = 0) + P (a1 + b1 + c2 = 1)

+3P (a1 + b1 + c2 = 2) − 7P (a1 + b1 + c2 = 3) + 3P (a1 + b2 + c1 = 0)

+P (a1 + b2 + c1 = 1) + 3P (a1 + b2 + c1 = 2) − 7P (a1 + b2 + c1 = 3)

+3P (a2 + b1 + c1 = 0) + P (a2 + b1 + c1 = 1) + 3P (a2 + b1 + c1 = 2)

−7P (a2 + b1 + c1 = 3) − 5P (a1 + b2 + c2 = 0) + P (a1 + b2 + c2 = 1)

+3P (a1 + b2 + c2 = 2) + P (a1 + b2 + c2 = 3) − 5P (a2 + b1 + c2 = 0)

+P (a2 + b1 + c2 = 1) + 3P (a2 + b1 + c2 = 2) + P (a2 + b1 + c2 = 3)

−5P (a2 + b2 + c1 = 0) + P (a2 + b2 + c1 = 1) + 3P (a2 + b2 + c1 = 2)

+P (a2 + b2 + c1 = 3) − P (a2 + b2 + c2 = 0) + 5P (a2 + b2 + c2 = 1)

−P (a2 + b2 + c2 = 2) − 3P (a2 + b2 + c2 = 3)) ≤ 12, (4.51)
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which can be expressed in terms of correlation functions

−Q(A1B1C1) +Q(A1B1C2) +Q(A1B2C1) +Q(A2B1C1) −Q(A2B2C2)

−Q(A1B2) −Q(A2B1) −Q(A2B2) −Q(A1C2) −Q(A2C1) −Q(A2C2)

−Q(B1C2) −Q(B2C1) −Q(B2C2) +Q(A1) +Q(B1) +Q(C1) ≤ 3. (4.52)

The above inequality (4.52) includes the terms of single-particle correlation function,

it is symmetric under the permutations of Aj, Bj and Cj. The inequality (4.52) can

be derived by averaging the following inequality

−A1B1C1 + A1B1C2 + A1B2C1 + A2B1C1 − A2B2C2

−A1B2 −A2B1 − A2B2 − A1C2 − A2C1 − A2C2

−B1C2 − B2C1 −B2C2 + A1 +B1 + C1 ≤ 3. (4.53)

By fixing the values of A1, B1 and C1, as done in Section 4.1.2, the inequality (4.53)

is shown to be always satisfied under a local realistic description and so is inequality

(4.52).

1. For the case that A1, B1 and C1 are all plus one, the inequality (4.53) becomes

−A2B2C2 −A2B2 − A2C2 − B2C2 −A2 −B2 − C2 − 1 ≤ 0. (4.54)

If C2 = 1, we have −2(A2 + 1)(B2 + 1) ≤ 0 from inequality (4.54). Because

A2 and B2 can be either plus one or minus one, −2(A2 + 1)(B2 + 1) will be

−8 or 0. These two values are no larger than 0. If C2 = −1, from inequality

(4.54) we have 0 ≤ 0, which is obviously satisfied.

2. For the case that A1 = B1 = 1 and C1 = −1, the inequality (4.53) becomes

−A2B2C2 −A2B2 − A2C2 − B2C2 −A2 −B2 − C2 − 1 ≤ 0. (4.55)

The inequality is the same as inequality (4.54). Seen from the first case, no

matter which values A2, B2 and C2 take, the inequality (4.55) is always correct.

Similar conclusions can be drawn for the cases that A1 = C1 = 1 and B1 = −1,

and B1 = C1 = 1 and A1 = −1 because the inequality (4.53) is symmetric

under the permutations of A, B and C.
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3. For the case that A1 = B1 = −1 and C1 = 1, the inequality (4.53) becomes

−A2B2C2 − A2B2 −A2C2 − B2C2 − A2 − B2 + 3C2 − 5 ≤ 0. (4.56)

If C2 = 1, we have −2(A2 + 1)(B2 + 1) ≤ 0 from inequality (4.56). Because

A2 and B2 can be either plus one or minus one, −2(A2 + 1)(B2 + 1) will be

−8 or 0. These two values are no larger than 0. If C2 = −1, from inequality

(4.56) we have −3 ≤ 5, which is obviously correct whichever values A2, B2 and

C2 take. Similar conclusions can be drawn for the cases that A1 = C1 = −1

and B1 = 1, and B1 = C1 = −1 and A1 = 1 because the inequality (4.53) is

symmetric under the permutations of A, B and C.

4. For the case thatA1, B1 and C1 are all minus one, the inequality (4.53) becomes

−A2B2C2 −A2B2 −A2C2 − B2C2 + 3A2 + 3B2 + 3C2 − 5 ≤ 0. (4.57)

If C2 = 1, we have −2(A2 − 1)(B2 − 1) ≤ 0 from inequality (4.57). Because

A2 and B2 can be either plus one or minus one, −2(A2 − 1)(B2 − 1) will be

−8 or 0. These two values are no larger than 0. If C2 = −1, from inequality

(4.57) we have 4(A2 + B2 − 2) ≤ 0, which is satisfied because A2 and B2 can

be either plus one or minus one, 4(A2 +B2 − 2) will be −16, −8 or 0.

Thus, the inequality (4.53) is always satisfied whichever values Ai, Bj and Ck

take and hence inequality (4.52) is always correct under a local realistic descrip-

tion. When setting C1 = −1, C2 = 1, the inequality (4.52) reduces directly to an

equivalent form of the CHSH inequality for two qubits

Q(A1B1) −Q(A1B2) −Q(A2B1) −Q(A2B2) ≤ 2.

Similar to those done in the previous sections, by using the universal pure entan-

gled states described by expression (4.14) and calculating the correlation functions,

it is checked numerically that the above inequality (4.52) is violated by all pure

entangled states of three qubits. However, no analytical proof of the conclusion

can be constructed at this stage. In the following, some special cases will be given

to show that the inequality (4.52) is violated by all pure entangled states. The
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π π /6          π /4          π /3        5π /12 π 
ξ

Figure 4.9: Numerical results for the generalized GHZ states |ψ〉GHZ = cos ξ|000〉+
sin ξ|111〉, which violate the inequality (4.52) except 0, π/2.

Figure 4.10: Numerical results for the family of generalized W states |ψ〉W =
sin β cos ξ|100〉 + sin β sin ξ|010〉 + cosβ|001〉 which violate the inequality (4.52) for
different ξ and β. Here the cases β = π/12, π/6, π/4, π/3, 5π/12 and π/2 are con-
sidered.
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Figure 4.11: Violation of two three-qubit Bell inequalities by the generalized GHZ
states with different values of ξ, where curve A is for inequality (4.27) given in
section 4.1.2 and curve B is for inequality (4.52).

first family of quantum states considered is the family of generalized GHZ states

|ψ〉GHZ = cos ξ|000〉+sin ξ|111〉. The inequality (4.52) is violated by the generalized

GHZ states for the whole region except ξ = 0, π/2. For the GHZ state with ξ = π/4,

the quantum violation reaches its maximum value 4.40367. The variation of the vi-

olation with ξ is shown in Figure 4.9. Another family considered is the family of

generalized W states |ψ〉W = sin β cos ξ|100〉+sinβ sin ξ|010〉+cosβ|001〉. By fixing

the value of β, quantum violation of the inequality (4.52) varies with ξ (see Figure

4.10). The inequality (4.52) is violated by generalized W states except the cases

with β = π
2
, ξ = 0/ξ = π

2
. The states in these cases are product states which do not

violated any Bell inequality. For the standard W state, quantum violation of the

inequality (4.52) approached 4.54086.

Hence inequality (4.52) is also one candidate to generalize the theorem of Gisin

to three-qubit systems. One of the interests of the new inequality for three qubits is

that it is more resistant to noise. The inequality (4.52) is violated by the GHZ state

|ψ〉 = 1√
2
(|000〉+ |111〉), the threshold visibility is V GHZ

thr = 0.68125. The inequality

(4.52) is also violated by the W state, the threshold visibility is V W
thr = 0.660668. We

plot the variation of quantum violation for the generalized GHZ states with angle ξ

for inequality (4.52) and inequality (4.27) given in section 4.1.2, see Figure 4.11. In
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plotting the figure, we rewrite the expressions of inequalities (4.27) and (4.52) as

1

4
[Q(A1B1C1) −Q(A1B2C2) −Q(A2B1C2) −Q(A2B2C1) + 2Q(A2B2C2)

−Q(A1B1) −Q(A1B2) −Q(A2B1) −Q(A2B2) +Q(A1C1) +Q(A1C2)

+Q(A2C1) +Q(A2C2) +Q(B1C1) +Q(B1C2) +Q(B2C1) +Q(B2C2)] ≤ 1

(4.58)

1

3
[−Q(A1B1C1) +Q(A1B1C2) +Q(A1B2C1) +Q(A2B1C1) −Q(A2B2C2)

−Q(A1B2) −Q(A2B1) −Q(A2B2) −Q(A1C2) −Q(A2C1) −Q(A2C2)

−Q(B1C2) −Q(B2C1) −Q(B2C2) +Q(A1) +Q(B1) +Q(C1)] ≤ 1

(4.59)

respectively. In these forms, the violation degrees of the two inequalities can be

compared directly. Comparing with the results of the inequalities given in section

4.1.2, the new inequality (4.52) is really more resistant to noise. It seems that we

could derive some new 3-qubit Bell inequalities, which would be more highly resistant

to noise, if we know other Bell inequalities of tripartite N(N > 4)-dimensional

quantum systems.

4.4 Proposed Experiment for Testing Quantum

Nonlocality

Experimental verification on the conflict between quantum mechanics and local

realism for two particles have been demonstrated in several experiments [17, 66, 67].

For a system more composite than two particles, for example three particles, ex-

perimental verification of nonexistence of local realism is generally more difficult.

Recently, by exploiting the results of a fourth experiment constructed from three

specific experiments, conflicts between quantum mechanics and local realism for

three qubits and four qubits have also been verified [68, 69]. For N qubits, experi-

mental observation for violation of Bell inequalities is still lacking. In this section,

we propose an experimental scheme for testing quantum nonlocality of three qubits.

The scheme can be generalized to N qubits8.

8This work was published, see [6] in the publication list in Appendix A.



4.4. Proposed Experiment for Testing Quantum Nonlocality 118

Figure 4.12: The optical setup proposed to test nonlocality of two qubits in Ref.
[70].

In Ref. [70], the authors proposed an optical setup for testing quantum nonlocal-

ity in phase space for two qubits. The setup essentially demonstrated quantum non-

locality based on phase space measurement of the Wigner function using violation of

the CHSH inequality. The source used in Ref. [70] is a single photon incident on a

50:50 beam splitter (see Figure 4.12). The generated state is |ψ(2)〉 = 1√
2
(|10〉±|01〉)

written in terms of the exit ports a1 and a2. For example, |10〉 means one photon ex-

its at port a1 and no photon exits at port a2. ± can be realized by one phase shifter

to adjust the relative phase and the relative phase can be set to zero without loss

of generality. As pointed in Ref. [70], the measuring apparatus consists of a beam

splitter and photon counting detector. The power transmission of the beam splitter

is T. The second input port of the beam splitter is fed with an excited coherent

state |δ〉 . The action of the beam splitter is described by D̂(
√

1 − Tδ) in the limit

of T → 1 and δ → ∞. The realistic measurement proposed in Ref. [70] is a test

that the detectors can resolve the number of absorbed photons and +1/ − 1 is as-

signed to events in which an even/odd number of photons is registered. In this way,

correlation function measured in the scheme is resulted by setting α =
√

1 − Tδ,

Qab(α, β) = 〈ψ(2)|Q̂a(α) ⊗ Q̂b(β)|ψ(2)〉, (4.60)

where α and β are coherent displacements for the modes a and b. Q̂a(α) is an
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operator defined as [70]

Q̂a(α) = D̂a(α)
∞∑

k=0

|2k〉〈2k|D̂†
a(α)

−D̂a(α)

∞∑
k=0

|2k + 1〉〈2k + 1|D̂†
a(α). (4.61)

The operator Q̂a(α) is also of the form [70]

Q̂a(α) = D̂a(α)(−1)n̂aD̂†
a(α), (4.62)

and similar definition for Q̂b(β). For the state |ψ(2)〉, it was shown [70] that

Qab(α, β) = (2|α− β|2 − 1)e−2|α|2−2|β|2. (4.63)

The experimental setting of the coherent displacements was chosen as 0 or α for

observer a; 0 or β for observer b. Then from the CHSH inequality, the CHSH-Bell

quantity was constructed in Ref. [70] as

BCHSH = Qab(0, 0) +Qab(α, 0) +Qab(0, β) −Qab(α, β)

= −1 + (4r − 2)e−2r − (8r sin2 ϕ− 1)e−4r (4.64)

where |α|2 = |β|2 = r and β = e2iϕα. The minimum value of BCHSH was shown to

be about -2.2. As local realistic theories require −2 ≤ BCHSH ≤ 2, the violation of

local realism is obvious.

Since some Bell inequalities for three qubits have been constructed in the previous

sections. We would like to generalize the experimental scheme to three qubits. Sim-

ilar to the two-qubit scheme, an optical setup to demonstrate quantum nonlocality

of three qubits is shown in Figure 4.13. The source of nonclassical radiation is a sin-

gle photon incident on a beam splitter with transmittance T = 2/3 and reflectivity

R = 1/3 followed by a 50:50 beam splitter, which generates a three-qubit W state.

The quantum state of the source is of the form |ψ(3)〉 = 1√
3
(|100〉 + |010〉 + |001〉).

The measuring devices are photon counting detectors preceded by beam splitters.

The beam splitters have the transmission coefficient Ti close to one and strong co-

herent states |δi〉 injected into the auxiliary ports. In this limit, the beamsplitters

effectively perform coherent displacements D̂a1(α1), D̂a2(α2) and D̂a3(α3) on the
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Figure 4.13: The optical setup for testing nonlocality of three qubits. The beam
splitter (1) has a reflectivity R = 1/3 and the beam splitter (2) is a 50:50 beam
splitter.

three ports (modes) of the input field with αi =
√

1 − Tiδi. The correlation function

measured is

Qa1a2a3(α1, α2, α3) = 〈ψ(3)|Q̂a1(α1) ⊗ Q̂a2(α2) ⊗ Q̂a3(α3)|ψ(3)〉
=

1

3
e−2(|α1|2+|α2|2+|α3|2)(4|α1 + α2 + α3|2 − 3).

(4.65)

We next construct a Bell quantity from the 3-qubit ŻB inequality (4.1):

B(4.1) = Qa1a2a3(α
1
1, α

1
2, α

2
3) +Qa1a2a3(α

1
1, α

2
2, α

1
3)

+ Qa1a2a3(α
2
1, α

1
2, α

1
3) −Qa1a2a3(α

2
1, α

2
2, α

2
3).

(4.66)

where αi
js with i = 1, 2 and j = 1, 2, 3 are the two experimental settings of the

coherent displacements for ports a1, a2 and a3 respectively. For a local realistic

theory, B(4.1) ≤ 2. Unfortunately 3-qubit ŻB inequality does not reveal quantum

nonlocality since a numerical calculation gives B(4.1) ≤ 2. The possible reason is

that the degree of quantum nonlocality depends not only on the given entangled

state but also on the Bell operator [56]. Hence the result means that 3-qubit ŻB

inequality may not reveal quantum nonlocality for displaced parity measurements

on the system.

New Bell inequalities for three qubits have been proposed in the previous sections.

The Bell inequalities are violated for any pure entangled state. We next show that
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quantum nonlocality of three qubits can be exhibited in the proposed experimental

scheme using the correlation-form inequality (4.52).

Unlike the 3-qubit ŻB inequality where there are only three-site correlation func-

tions, the recent Bell inequality (4.52) for three qubits contains three-site, two-site

and one-site correlation functions. The two-site correlation functions and one-site

correlation functions are given by

Qa1a2(α1, α2) = 〈ψ(3)|Q̂a1(α1) ⊗ Q̂a2(α2) ⊗ 1|ψ(3)〉,
Qa1a3(α1, α3) = 〈ψ(3)|Q̂a1(α1) ⊗ 1 ⊗ Q̂a3(α3)|ψ(3)〉,
Qa2a3(α2, α3) = 〈ψ(3)|1⊗ Q̂a2(α2) ⊗ Q̂a3(α3)|ψ(3)〉,
Qa1(α1) = 〈ψ(3)|Q̂a1(α1) ⊗ 1 ⊗ 1|ψ(3)〉,
Qa2(α2) = 〈ψ(3)|1⊗ Q̂a2(α2) ⊗ 1|ψ(3)〉,
Qa3(α3) = 〈ψ(3)|1⊗ 1 ⊗ Q̂a3(α3)|ψ(3)〉.

(4.67)

The two-site correlation functions are measured when one of three observers does

not perform any measurement on his detector. The one-site correlation functions

are measured when two of three observers do not perform any measurements on

their detectors. Similar calculations to the one for three-site correlation functions,

we have

Qaiaj
(αi, αj) =

1

3
e−2(|αi|2+|αj |2)(4|αi + αj |2 − 1),

Qai
(αi) =

1

3
e−2(|αi|2)(4|αi|2 + 1),

(4.68)

where i, j = 1, 2, 3. Using the correlation form inequality (4.52) for three qubits, we
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construct a new Bell quantity for three qubits

B(4.52) = −Qa1a2a3(α
1
1, α

1
2, α

1
3) +Qa1a2a3(α

1
1, α

1
2, α

2
3)

+ Qa1a2a3(α
1
1, α

2
2, α

1
3) +Qa1a2a3(α

2
1, α

1
2, α

1
3)

− Qa1a2a3(α
2
1, α

2
2, α

2
3) −Qa1a2(α

1
1, α

2
2)

− Qa1a2(α
2
1, α

1
2) −Qa1a2(α

2
1, α

2
2)

− Qa1a3(α
1
1, α

2
3) −Qa1a3(α

2
1, α

1
3)

− Qa1a3(α
2
1, α

2
3) −Qa2a3(α

1
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2
3)

− Qa2a3(α
2
2, α

1
3) −Qa2a3(α

2
2, α

2
3)

+ Qa1(α
1
1) +Qa2(α

1
2) +Qa3(α

1
3). (4.69)

Local realism theories impose the upper bound value of 3 for the Bell quantity B(4.52).

By taking the coherent displacements as α1
1 = α1

2 = α1
3 = 0.471669, α2

1 = α2
2 = α2

3 =

−0.0205849, B(4.52) = 3.1605 which is greater than 3. Thus one can detect quantum

nonlocality of a three-qubit system in the proposed experiment.

It should be mentioned that other factors should be taken into account, such

as detector inefficiencies, in practice. If one considers the inefficiency of detector,

one has to modify the correlation slightly to account for the imperfections, which

are characterized by the quantum efficiency of detectors η (0 ≤ η ≤ 1). For ideal

detectors, η = 1 and the correlation is perfect. For non-ideal detectors, â†â is

changed to ηâ†â the correlation is modified by Q′
a1a2a3

(α1α2α3). If we assume that

all the photon detectors have the same efficiencies η, we have

Q′
a1a2a3

(α1, α2, α3) = 〈ψ(3)|Q̂′
a1

(α1) ⊗ Q̂′
a2

(α2) ⊗ Q̂′
a3

(α3)|ψ(3)〉,
(4.70)

and

Q′
a1a2

(α1, α2) = 〈ψ(3)|Q̂′
a1

(α1) ⊗ Q̂′
a2

(α2) ⊗ 1|ψ(3)〉,
Q′

a1a3
(α1, α3) = 〈ψ(3)|Q̂′

a1
(α1) ⊗ 1 ⊗ Q̂′

a3
(α3)|ψ(3)〉,

Q′
a2a3

(α2, α3) = 〈ψ(3)|1⊗ Q̂′
a2

(α2) ⊗ Q̂′
a3

(α3)|ψ(3)〉,
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Q′
a1

(α1) = 〈ψ(3)|Q̂′
a1

(α1) ⊗ 1 ⊗ 1|ψ(3)〉,
Q′

a2
(α2) = 〈ψ(3)|1⊗ Q̂′

a2
(α2) ⊗ 1|ψ(3)〉,

Q′
a3

(α3) = 〈ψ(3)|1⊗ 1 ⊗ Q̂′
a3

(α3)|ψ(3)〉,
(4.71)

where Q̂′
ai

(αi) is an operator defined as

Q̂′
ai

(αi) = D̂ai
(αi)(1 − 2η)n̂aiD̂†

ai
(αi). (4.72)

Straightforward calculations yield the modified correlation functions for the state

|ψ(3)〉,

Q′
a1a2a3

(α1, α2, α3) =
1

3
{(−2η)2|

3∑
i=1

αi|2 + 3(1 − 2η)}e−2η
∑3

i=1 |αi|2

Q′
aiaj

(αi, αj) =
1

3
{(−2η)2(|αi + αj |2) + 3 − 4η}e−2η(|αi|2+|αj |2)

Q′
ai

(αi) =
1

3
{(−2η)2(|αi|2) + 3 − 2η}e−2η(|αi|2) (4.73)

where i, j = 1, 2, 3. A Bell quantity Bη
(4.52) is constructed from the Bell inequality

(4.52),

Bη
(4.52) = −Q′

a1a2a3
(α1

1, α
1
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1
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1) +Q′
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(α1

2) +Q′
a3

(α1
3). (4.74)

Since, for a local realistic description, Bη
(4.52) ≤ 3 and for quantum nonlocality, the

Bell quantity Bη
(4.52) has a maximum value of 3.1605, which is greater than 3 when

η > 0.9804. Thus, the nonlocality of a three-qubit system exhibits in the proposed

experiment if η > 0.9804. Quantum nonlocality of N qubits ( N is an arbitrary

number) can be tested in the proposed experiment in a similar way.
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Conclusion and Outlook

The main objective of this thesis is to develop Bell inequalities for composite

quantum systems and explore quantum entanglement of different systems by using

such inequalities.

In the first part of the study, quantum entanglement of multipartite systems in

two dimensional Hilbert space (N qubits) is investigated. The most common model

of N qubits is quantum XX model (or spin chains). Two types of XX models are con-

sidered here. One is the model with site-dependent coupling strength; the other one

is the model with constant coupling strength. By violating the Żukowski-Brukner

inequalities, quantum XX models are shown to be quantum entangled. The effects

of temperature and external magnetic field on the entanglement of quantum XX

model are investigated explicitly. It is shown that the quantum entanglement could

be controlled by adjusting temperature and magnetic field strength. The results

provide exact conditions for experimental realization of quantum communication

and computation, in which entanglement is needed, in spin chains.

Another N-qubit system investigated is the multipartite system with continu-

ous variables. Based on parity measurement, correlation functions of multipartite

continuous-variable states are derived in the Wigner presentation. By using these

correlation functions, it is shown that multipartite continuous-variable states violate

the Żukowski-Brukner inequalities. The degree of violation grows with increasing

number of particles N of the system. This variation is consistent with those re-

ported for discrete-variable quantum systems [38]. The variation of the degree of

violation with N indicates that classical properties do not automatically emerge for

large quantum systems with either discrete variables or continuous variables.

124
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In the second part of this thesis, Bell inequalities for 2 quNits and their applica-

tions are discussed. Firstly, as it was shown that the Collins-Gisin-Linden-Massar-

Popescu inequalities are maximally violated by non-maximally entangled states in

Ref. [53], we extend the calculations to high dimensions of N = 8000. The de-

gree of violation grows slowly with increasing dimensions. The results appear to

confirm that the violation is asymptotically constant when N tends to infinity. An

approximate value of the constant is found numerically to be 3.9132. However, it is

possible that other approximation methods could lead to different values due to the

virtue of each method. Therefore, it is necessary to present a more accurate limit

for the violation. This could be achieved by adding more points in the calculations.

Since the higher the dimension, the more difficult to find a maximal violation is,

our results are for N ≤ 8000. From the analysis of the eigenstates which maximally

violate the CGLMP inequalities, we construct a set of entangled states |Φ〉app whose

corresponding Bell quantities are closed to the actual ones. As we know that non-

local resource which is highly resistant to noise is needed in quantum information

processing. It may be significant and interesting to apply the symmetric entangled

states |Φ〉app to quantum protocols of quantum information.

Secondly, new Bell inequalities involving correlation functions for 2 quNits are

constructed. The Bell inequalities are derived based on multi-component correla-

tion functions constructed from N-outcome measurements. Then 2-quNit systems

with continuous variables are shown to be quantum entangled by violating the Bell

inequalities. When the dimension increases, the violation of the inequalities grows

slowly. The variation of the violation is similar to that for non-maximally entangled

states given in Section 3.3. Numerical results show that the violation strength of

continuous-variable states is weaker than that of non-maximally entangled states.

The limit of the violation for the continuous-variable states is found numerically to

be 3.129, which exceeds the Cirel’son bound 2
√

2. The excess is due to the fact that

we considered N (> 2)-outcome measurement, while Cirel’son considered 2-outcome

measurement.

In the third part of this thesis, Bell inequalities for three qubits in terms of both

probabilities and correlation functions are constructed. Numerical results show that

these inequalities are violated by all pure entangled states of three qubits. An
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explanation for the violation may be that these inequalities contain both 3-particle

correlation functions and 2-particle correlation functions. The results indicate that

Gisin’s theorem can be generalized to 3-qubit systems. However, these inequalities

are not optimal Bell inequalities for 3 qubits since they are not maximally violated

by the GHZ state.

It is found that the Bell inequality (4.13) for three qubits can be reduced from

the Bell inequality (4.2) for three qutrits from an observation on Bell inequalities

for 3 qubits and 3 qutrits. Contrary to the expectation, the Bell inequality (4.2) for

three qutrits does not give the three-qubit Żukowski-Brukner inequality when it is

restricted to two dimensional systems. So it is possible to assume that a new Bell

inequality for three qubits can be constructed if Bell inequalities for 3 particles in

higher level systems than qutrits could be found.

A new probability Bell inequality (4.46) for three four-level quantum systems

is derived in Section 4.3.1. The inequality gives a necessary condition for the exis-

tence of a local realistic description of quantum correlations. The violation of the

inequality for the maximally entangled state is shown. The strength of the violation

is stronger than that for three qutrits or two four-level systems. As we know, the

higher the degree of violation of Bell inequality, the more noise-tolerant the system

is and noise is unavoidable in the practical implementations of quantum computing.

Therefore, the result makes a new quantum protocol, which is more noise-tolerant

than the ones proposed in [6], possible for realization in a system more composite

than 3 qutrits. In addition, a new Bell inequality for three qubits is derived from

the inequality for three four-level systems. Inequality (4.52) is violated by all pure

entangled states. It is also more resistant to noise than the inequalities (4.13) and

(4.27). But the inequality (4.52) is still not optimal because the degree of violation

for the GHZ state is not maximal. This may be due to the fact that the inequality

(4.52) is reduced from inequality (4.46) and the inequality (4.46) is only a necessary

condition for a local realistic description. An experimental setup to test violation of

local realism by using three-qubit Bell inequalities is proposed. The optical setup

could also be generalized to a system more composite than three qubits.

By using the method of violating Bell inequalities given in this thesis, quantum

entanglement of other types of XX models can be possibly determined. This may



Conclusion and Outlook 127

be achieved as long as we can find the solutions of the models.

Based on the results in this thesis, one possible direction for the future work is

to further explore the formulations of new Bell inequalities for M d-level quantum

systems (M and d are arbitrary integers). It is worth noting that generalization of

Gisin’s theorem to N qubits (with N is an odd number) is not explored compre-

hensively in this thesis. The problem is solved partly in the case of three qubits.

For three qubits, although the Bell inequalities (4.13), (4.27) and (4.52) are violated

by all pure entangled states, they are not optimal since they are not maximally

violated by the GHZ state. But it is possible to construct new Bell inequalities for

three qubits with improved threshold visibility by using the procedure given in this

thesis if new Bell inequalities for three d (d > 4)-level systems are developed. Sim-

ilarly, new Bell inequalities for N (= 5, 7, 9, ...) qubits could be constructed if new

Bell inequalities for N (= 5, 7, 9, ...) d (d > 2)-level systems are developed by further

investigation. It is anticipated that these inequalities will be violated by all pure en-

tangled states. The application of the new Bell inequalities in quantum information

processing, for example quantum cryptography, also deserve future investigation.

It should be noted that all the results in this thesis have been given under the

assumption that two local settings are provided for each observer. The formulation

of new Bell inequalities for composite quantum systems based on more local settings

per site than two is another possible direction for the future study. It is anticipated

that new Bell inequalities constructed under the new assumption may give stronger

restrictions for the local realistic description than those inequalities derived under

the assumption of two local settings per site.
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[3] Č. Brukner, M. Żukowski and A. Zeilinger, e-print: quan-ph/0106119.

[4] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett.

80, 1121 (1998); C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.

Smolin, W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

[5] X. S. Liu, G. L. Long, D. M. Tong, and F. Li, Phys. Rev. A 65, 022304 (2002);

A. Harrow, P. Hayden, and D. Leung, Phys. Rev. Lett. 92, 187901 (2004).

[6] A. Ekert, Phys. Rev. Lett. 67, 661(1991); D. Kaszlikowski, D. K. L. Oi, M.

Christandl, K. Chang, A. Ekert, L. C. Kwek, and C. H. Oh, Phys. Rev. A 67,

012310 (2003).

[7] A. E. Chubykalo, Instantaneous Action at a Distance in Modern Physics, P

421, Nova Science Publishers, Inc. New York 1999.

[8] J. S. Bell, Physics 1, 195 (1964); R. Jackiw and A. Shimony, Phys. Perspect.

4, 78 (2004).

[9] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23,

880 (1969).

[10] J. S. Bell, Foundations of Quantum Mechanics: Pro. of Int. School of Physics

‘Enrico Fermi’, Course 49, ed. B. D’Espagnat, Academic Press, New York 1971;

128



BIBLIOGRAPHY 129

reprinted in Speakable and Unspeakable in Quantum Mechanics, Cambridge

University Press, Cambridge, UK 1987.

[11] B. S. Cirel’son, Lett. Math. Phys. 4, 93 (1980).

[12] A. Garg and D. Mermin, Phys. Rev. D 35, 3831 (1987).

[13] D. Bohm, Quantum Physics (Prentice Hall, 1951).

[14] S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).

[15] J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).

[16] E. Santos, Phys. Rev. A 46, 3646 (1992).

[17] A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 47, 460 (1981); Phys.

Rev. Lett. 49, 91 (1982); A. Aspect, J. Dalibard and G. Roger, Phys. Rev.

Lett. 49, 1804 (1982).

[18] N. Gisin, Phys. Lett. A 154, 201 (1991); N. Gisin and A. Peres, Phys. Lett. A

162, 15 (1992).
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Phys. Rev. Lett. 91, 180401 (2003).
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