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SUMMARY 

 

Photochromism is defined as a light-induced reversible change of colour. It is a 

process whereby, a reversible transformation of a single chemical species is being 

induced in one or both directions, by the absorption of electromagnetic radiation between 

two forms. Herein we report the design and synthesis of several photochromic fulgides, 

including a new class of fulgides – the Cycloalkylidene fulgides. The photochromic 

properties of the new fulgides were also investigated. Furthermore, the development of a 

new methodology towards the synthesis of the imide derivatives of the fulgides have been 

developed and optimized. Accomplishments include the reduction in the use of organic 

solvents as well as shorter reaction times used for the reactions. 

 

Our synthetic studies towards the synthesis of anti-SARS agent AG7088 led us to 

the discovery of a novel methodology involving the application of indium-mediated 

allylation as a key step towards a key intermediate. Our study included the synthesis of 2 

key fragments, towards the synthesis of AG7088. Further extension of the project 

involved olefin metathesis, towards other compounds, analogous to AG7088.  

 

To further enhance our investigations, we also subjected small molecules in our 

molecular library to Zebrafish embryo (Danio rerio) testing. This "chemical genetic" 

approach is rapid, inexpensive, requires no long-term breeding, and can, in theory, target 

every gene product in the vertebrate genome through a variety of physiological and 

behavioural screens (see APPENDIX). 
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Introduction to Photochromism 



CHAPTER 1 – INTRODUCTION TO PHOTOCHROMISM 

1.1. INTRODUCTION TO PHOTOCHROMISM 

 

Photochromism is defined as a light-induced reversible change of colour. It is 

a process whereby, a reversible transformation of a single chemical species is being 

induced in one or both directions, by the absorption of electromagnetic radiation 

between two forms. The two states will subsequently have different absorption 

spectra.1 In addition, Organic Photochromism is straightforwardly defined as a light-

induced reversible change of colour of organic molecules. 

 

To elaborate further, two chemical species namely, A and B, having different 

absorption spectra will be used as a simple model (Figure 1). The thermodynamically 

stable form A is transformed by irradiation into form B. The back reaction can occur 

thermally (Photochromism of type T) or photochemically (Photochromism of type P).  

λA                                λB

A B
hv/λA

hv/λB

A
bs

or
ba

nc
e

 
                Wavelength

Figure 1. Diagram depicting photochromism of molecule A, converting to molecule B 

                                                 
1 Photochromism: Molecules and Systems; Dürr, H.; Bouas-Laurent, H.; Eds. Elsevier, Amsterdam, 
1990. 

PART I – SYNTHESIS OF PHOTOCHROMIC FULGIDES 1



CHAPTER 1 – INTRODUCTION TO PHOTOCHROMISM 

The most prevalent organic photochromic systems involve unimolecular 

reactions. Most common photochromic molecules have a colourless or pale yellow 

form A and a coloured form B (e.g., red or blue). This phenomenon is referred to as 

positive photochromism. Other systems are bimolecular, such as those involving 

photocycloaddition reactions. When λmax (A) > λmax (B), photochromism is negative 

or inverse. 

 

1.2. INTRODUCTION TO FULGIDES – A HISTORICAL REVIEW OF FULGIDE 

CHEMISTRY 

 

Hans Stobbe2 first investigated fulgides3 around the turn of the century. He 

reported their synthesis by the reaction now known as the Stobbe Condensation, 

which was extensively investigated by Johnson and his co-workers who reviewed the 

subject in 1951.4 Fulgides were first and extensively synthesized by Stobbe et al. 

early in the 20th century.2, 5 Stobbe, in his article stated that he named the derivatives 

of 1,3-butadiene-2,3-dicarboxylic acid and its acid anhydride as “fulgenic acid” and 

“fulgide” respectively (Figure 2). The name fulgide6 was derived due to the fact that 

some of the derivatives exhibited a variety of characteristic colours by light and they 

usually formed shiny crystals.5 

 

                                                 
2 Stobbe, H. Die Fulgide, Annalen 1911, 380, 1-129. 
3 Stobbe, H. Ber. 1904, 37, 2236. 
4 Org. Reactions. 6; Johnson, W. S.; Daub, G. H.; 1951. 
5 Stobbe, H. Ber. Dtsch. Chem. Ges. 1905, 40, 3372-3382. 
6 Latin word “fulgere” means to glitter or shine. 
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O
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Fulgenic acid                     Fulgide                      Fulgimide  
Figure 2. Depicts fulgenic acid, fulgide and fulgimide generic molecular structure with different Rn 
substituents 

 

The name “fulgimide” was first introduced by Heller et al.7 for the 

succinimide of the corresponding fulgide (Figure 2), though fulgimides had been 

synthesized earlier by Goldschmidt and co-workers in 1957.8 Fulgimides have been 

widely prepared so far, because it is convenient to attach another substituent onto the 

fulgide core without a significant change of photochromic properties. Such molecular 

tailoring of the original fulgide moiety have been carried out by several groups (e.g., 

Tomoda et al. and Matsushima et al.)9a, b and many articles have also been published 

in the 1990s.10a-e As an illustration, fulgimides were used for the attachment of the 

fulgide core to side chains of polymers,10a, b attachment of a fluorescent group for 

control of fluorescence10c and binding to proteins for regulation of substrate 

binding.10d, e  

 

                                                 
7 Heller, H. G.; Hart, R. J.; Salisbury, K. J. Chem. Soc., Chem. Commun. 1968, 1627-1628. 
8 Goldschmidt S.; Riedle, R.; Reichardt, A. Justus Liebigs Ann. Chem. 1957, 604, 121-132. 
9 (a) Tomoda, A.; Tsuboi, H.; Kaneko, A.; Matsushima, R. Nippon Kagaku Kaishi 1993, 209-212. (b) 
Matsushima, R.; Sakaguchi, H. J. Photochem. Photobiol., A 1997, 108, 239. 
10 (a) Deblauwe, V.; Smets, G. Makromol. Chem. 1988, 189, 2503-2512. (b) Cabrera, I.; Dittrich, A.; 
Ringsdorf, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 76-78. (c) Walz, J.; Ulrich, K.; Port, H.; Wolf, H. 
C.; Wonner, J.; Effenberger, F. Chem. Phys. Lett. 1993, 213, 321-324. (d) Willner, I.; Rubin, S.; 
Wonner, J.; Effenberger, F.; Bäuerle, P. J. Am. Chem. Soc. 1992, 114, 3150-3151. (e) Willner, I.; Lion-
Digan, M.; Rubin, S.; Wonner, J.; Effenberger, F.; Bäuerle, P. Photochem. Photobiol. 1994, 59, 491-
496. 
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Figure 3. Fulgimide 1 more fatigue resistant as compared to furyl-fulgide 2 

 

Comparison of various heteroaromatic fulgides and fulgimides was undertaken 

by Tomoda et al. and Matsushima et al., and superior resistance toward hydrolysis of 

the imide ring in protic solvents was shown.9a, b For example, N-benzylfulgimide 1 

(Figure 3) was shown to be more resistant to fatigue when compared to the 

corresponding furyl-fulgide 2. 

 

O

O

O

Ph

Ph
O

O

OPh

hv, I2

3     4  
 

Scheme 1. Photocyclization of bisbenzylidenefulgide 3 

 

The chemistry of the fulgides was reported in an article by Hans Stobbe in 

1907.1 1 At that time, the photocolouration mechanism of fulgides was not known. 

However, Stobbe noticed that 1-phenylnaphthalene-2,3-dicarboxylic anhydride, 4, 

was formed from photoirradiation of bisbenzylidenefulgide, 3, in a benzene or 

chloroform solution, in the presence of iodine (Scheme 1).11

 

 

                                                 
11 Stobbe, H. Ber. Dtsch. Chem. Ges. 1907, 40, 3372-3382. 
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The colouration of the fulgides was believed to occur by E-Z isomerization of 

a double bond until the 1960s.12a, b Other hypotheses such as formation of coloured 

radical intermediates during photocyclization13 and photochemical change between 

the electronic mesomeric forms14 were also considered. In 1968, Becker et al. 

confirmed that the coloured form of 3 was oxidized, this time by dioxygen, to yield 1-

phenylnaphthalene-2,3-dicarboxylic anhydride 4. They proposed that photochromism 

of 3 was due to photocyclization to the 1,8a-dihydro-1-phenylnaphthalene-2,3-

dicarboxylic anhydride (1,8a-DHN), 3C, to account for the formation of 1- 

phenylnaphthalene anhydride, 4, from the photooxidation of fulgide 3.15

 

O

O

O

Ph

Ph
O

O

OPh
H

O

O

OPh

O2hv, I2

3                              3c      4  
 

Scheme 2. Deduction of 1,8a-dihydro-1-phenylnaphthalene-2,3-dicarboxylic anhydride 3c 

 

The reinvestigation by Heller et al. of the reactions of yellow E- and Z-

benzylidene (diphenylmethylene)-succinic anhydrides 5E and 5Z showed that they 

underwent reversible photochemical conrotatory ring closure to form red cis- and 

trans-1,8a-DHN intermediates (1,8a-DHNs) 5EC and 5ZC respectively. These 

molecules showed that they also underwent ring opening by a disrotatory mode to 

yield Z- and E-fulgides, 5Z and 5E respectively. 

 

                                                 
12 (a) Chakraborty, D. P.; Sleigh, T.; Stevenson, R.; Swoboda, G. A.; Weinstein, B. J. Org. Chem. 
1966, 31, 3342-3345. (b) Brunow, G.; Tylli, H. Acta Chem. Scand. 1968, 22, 590-596. 
13 Schonberg, A. Trans. Faraday Soc. 1936, 32, 514-521. 
14 Gheorghiu, C. V. Bull. Ec. Polytech. Jassy 1947, 2, 141-155. 
15 Santiago, A.; Becker, R. S. J. Am. Chem. Soc. 1968, 52, 3654-3658. 
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Scheme 3. Heller et al. investigated and confirmed the presence of [1,5]-H shifts on prolonged UV-
irradiation of fulgides 5E and 5Z 

 

Eventually, irreversible rearrangement occurs to lead to the colourless cis- and 

trans-1,2-DHNs, 5EC’ and 5ZC’ in two competing thermal processes (Scheme 3).16  

Other related studies have also been reported.17 On exposure to visible light, 1,8a-

DHNs undergo photochemical conrotatory ring opening to the corresponding fulgides.  

 

Since then the colouration mechanism of fulgide has been well understood as 

the photochemical 6π-electrocyclization of the hexatriene moiety.18

                                                 
16 Hart, R. J.; Heller, H. G. J. Chem. Soc., Perkin Trans. 1 1972, 1321-1323. 
17 Heller, H. G.; Szewczyk, M. J. Chem. Soc., Perkin Trans. 1 1974, 1487-1492. 
18 Heller, H.G.; Oliver, S. J. Chem Soc. Perkin Trans. 1. 1981, 197. (b) Darcy, P. J.; Heller, H. G.; 
Strydom, P. J.; Whittall, J. J. Chem. Soc. Perkin Trans. 1 1981, 202. (c) Heller, H. G.; Langan, J. R. J. 
Chem Soc., Perkin Trans. 2 1981, 341. 
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UV
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Vis, UV

 
 

Scheme 4. X-ray crystallographic analysis of the coloured form of 6C 

 

In 1984, Kaftory succeeded in the X-ray crystallographic analysis of the 

coloured form of a thienylfulgide, 6C (Scheme 4).19 This result determined the 

structure of the coloured form and the photocolouration mechanism unequivocally.  

 

From the late 1960s through the 1970s Heller et al. published a series of 

articles entitled “Overcrowded Molecules”,20a-q in which the chemistry of fulgides and 

closely related compounds was dealt with. They clarified the thermal reactions of the 

coloured form of fulgides as shown (Scheme 5).20p, q, a, b 21

                                                 
19 Kaftory, M. Acta Crystallogr. 1984, 40, 1015-1019. 
20 (a) Heller, H. G.; Auld, D.; Salisbury, K. J. Chem. Soc. C 1967, 682-685. (b) Heller, H. G.; Auld, D.; 
Salisbury, K. J. Chem. Soc. C 1967, 1552-1554. (c) Heller, H. G.; Auld, D.; Salisbury, K. J. Chem. Soc. 
C 1967, 2457-2459. (d) Heller, H. G.; Salisbury, K. J. Chem. Soc. C 1970, 399-402. (e) Heller, H. G.; 
Salisbury, K. J. Chem. Soc. C 1970, 873-874. (f) Heller, H. G.; Salisbury, K. J. Chem. Soc. C 1970, 
1997-2000. (g) Hart, R. J.; Heller, H. G. J. Chem. Soc., Perkin Trans. 1 1972, 1321-1323. (h) Hastings, 
J. S.; Heller, H. G. J. Chem. Soc., Perkin Trans. 1 1972, 1839-1842. (i) Heller, H. G.; Megit, R. M. J. 
Chem. Soc., Perkin Trans. 1 1974, 923-927. (j) Heller, H. G.; Szewczyk, M. J. Chem. Soc., Perkin 
Trans. 1 1974, 1487-1492. (k) Hastings, J. S.; Heller, H. G.; Tucker, H.; Smith, K. J. Chem. Soc., 
Perkin Trans. 1 1975, 1545-1548. (l) Hastings, J. S.; Heller, H. G.; Salisbury, K. J. Chem. Soc., Perkin 
Trans. 1 1975, 1995-1998. (m) Hart, R. J.; Heller, H. G.; Megit, R. M.; Szewczyk, M. J. Chem. Soc., 
Perkin Trans. 1 1975, 2227-2232. (n) Darcy, P. J.; Hart, R. J.; Heller, H. G. J. Chem Soc., Perkin 
Trans. 1 1978, 571-576. (o) Heller, H. G.; Piggott, R. D. J. Chem. Soc., Perkin Trans. 1 1978, 989-994. 
(p) Crescente, O.; Heller, H. G.; Oliver, S. J. Chem. Soc., Perkin Trans. 1 1979, 150-153. (q) Heller, H. 
G.; Oliver, S.; Shawe, M. J. Chem. Soc., Perkin Trans. 1 1979, 154-157. 
21 (a) 4+2 Systems: Fulgides. Photochromism: Molecules and Systems; Whittall, J.; Elsevier: 
Amsterdam, 1990, 467-492. (b) Heller, H. G.; Oliver, S. J. Chem. Soc., Perkin Trans. 1 1981, 197-201. 
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Scheme 5. Thermal reactions of fulgides as reported by Heller and co-workers 

 

Other than the thermal ring opening, the major thermal reactions are hydrogen 

rearrangement and (or followed by) dehydrogenative aromatization.  

 

O

O

OH

O

O

O

Heat,
-C2H4

7                                                         8  
 

Scheme 6. Ethene liberated to gain aromaticity 
 

They observed that even ethene was liberated by thermal treatment of cyclized 

fulgide, 7 to gain aromaticity, to form molecule 8 (Scheme 6).20n
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Scheme 7. [1,5]- and [1,7]-H shifts that will lead to a loss of colour of the cyclized fulgide 

 

Heller et al. also reported that the weakly photochromic pale yellow E-fulgide 

9E (R=H) photoisomerizes reversibly to the Z-fulgide 9Z and photocyclizes to the red 

9C. The red 9C eventually undergoes a 1,5-H shift to form the colourless 1,2-DHN 

9C’. The introduction of methoxy substituents in the 3- and 5- positions of the phenyl 

moiety results in a more strongly photochromic fulgide, 10E (R=OMe).  

 

Fulgide 10E can photocyclize to form the deep blue 1,8a-DHN, 10C, which 

can in turn undergo a photochemical 1,7-H shift to the colourless 1,4-DHN 10C” on 

prolonged UV irradiation in toluene. The deep blue 1,8a-DHN, 10C can also undergo 

the thermal 1,5-H shift to form the 1,2-DHN 10C’ (Scheme 7). These photochromic 

fulgides have high intrinsic fatigue, namely photodehydrogenation to the naphthalene 

derivatives, or hydrogen-shift reactions to form the 1,2- or 1,4-dihydronaphthalene 

derivatives via their intermediates (DHNs). 
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Scheme 8. Side reactions can be prevented by removing reactive hydrogens 

 

Heller et al. also further reported that fulgide 11Z/11E, having a 

mesitylmethylene group, instead of the benzylidene group and an isopropylidene 

(IPP) group, prevented the side reactions in which the hydrogen atoms on the ring 

closing carbon atoms were involved, since there was no hydrogen to rearrange or to 

be removed (Scheme 8). Furthermore, the vicinal methyl groups on the ring closing 

aromatic carbon atoms prevented the thermal ring opening of the C-form, 11C, which 

should occur by way of, different from the photochemical ring opening, the 

disrotatory pathway; by the steric repulsion between them.  

 

Indeed, they observed that the colour did not fade at 160°C. Unfortunately, the 

conversion ratio to the coloured form at the photostationary state (pss) was so low that 

almost no coloured form remained when the solution of the colourless form of 11E 

was irradiated with 366 nm light until it reached the photostationary state.20i
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Scheme 9. Photochromism of 2, 5-dimethyl-3-furyl fulgide 2 

 

Seven years later, in 1981, Heller reported the photochromism of a 2,5-

dimethyl-3-furyl fulgide 2 (Scheme 9).22a, b For the same reasons as the mesityl-

substituted fulgide 11, furyl-fulgide 2 showed neither the side reactions nor the 

detrimental thermal back-reaction. Furthermore, because 2C had a small molar 

absorption coefficient at 366 nm where 2E had a large absorption, the photochemical 

back-reaction from 2C to 2E upon irradiation by 366 nm light was negligible. 

Therefore, the conversion of 2E to 2C was close to 100%. The thermally irreversible 

photochromic fulgide has been realized for the first time with molecule 2.  

 

This furyl-fulgide, 2, is the monument of the long research history of the 

photochromism of fulgides, as one challenge faced by researchers in this field was to 

design thermally stable, fatigue-resistant photochromic fulgides that would potentially 

be suitable for commercial applications. This included optical recording and security 

printing. The compounds should have high quantum efficiencies for colouring and 

bleaching and also achieve high conversions into the coloured forms. The valuable 

information for the molecular design to append thermal irreversibility, i.e., (1) 

                                                 
22 (a) Heller, H. G.; Oliver, S. J. Chem. Soc., Perkin Trans. 1 1981, 197-201. (b) Darcy, P. J.; Heller, H. 
G.; Strydom, P. J.; Whittall, J. J. Chem.Soc., Perkin Trans. 1 1981, 202-205. 
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introduction of substituents other than hydrogen onto the ring-closing carbon atoms 

and (2) employing a heteroaromatic ring, was thus brought about.  

 

The possible application of thermally irreversible photochromic compounds 

such as 2 is in rewritable optical recording media.23a-c The 1980s and early 1990s were 

devoted to improve the properties of 2, while after the early 1990s to date, 

development of new fulgides rather than improvement has been the main research 

interest. In this aspect, our efforts have been directed towards the extension of current 

fulgide chemistry, with the main aim, being the discovery of new photochromic 

fulgides that might display interesting and possibly useful properties. 

 

1.3. PHOTOCHROMISM OF FULGIDES 
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Scheme 10. Photochromism of fulgide under UV irradiation 

  

 The photochromism of a fulgide occurs between one of the colourless open 

forms (hereafter abbreviated as the “E-form” (E) (Scheme 10) because the geometry 

of the double bond connecting the aromatic ring and the succinic anhydride is usually 

E and the photocyclized coloured form (abbreviated as the C-form (C)). However, 

                                                 
23 (a) Heller, H. G. Spec. Publ., R. Soc. Chem., Fine Chem. Electron. Ind. 1986, 60, 120-135. (b) 
Photochromics for the Future.; Heller, H. G.; Electronic Materials, from Silicon to Organics; Miller, L. 
S., Mullin, J. B., Eds.; Plenum Publishing, New York, 1991, 471-483. (c) Feringa, B. L.; Jager, W. F.; 
de Lange, B. Tetrahedron 1993, 49, 8267-8310. 
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there is an additional photochemical E-Z isomerization pathway. The “Z-form” (Z), 

the geometrical isomer of the E-form, is not considered as an important member of 

the photochromic system. To date, there has been no report that the Z-form cyclizes 

directly by absorbing one photon to give the C-form. Therefore, E-to-Z 

photoisomerization, competing with the photochromic E-to-C isomerization, is an 

energy-wasting as well as system-complicating process in terms of “photochromism 

of fulgides”.  

 

1.4. The Stobbe Condensation 
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Scheme 11. Synthesis of fulgides via Stobbe condensations 
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The Stobbe condensation is generally an aldol-type reaction, namely, between 

carboxylic esters and aldehydes or ketones.24 This reaction is used widely for the 

synthesis of target fulgides (Scheme 11). In the presence of a strong base, the 

α−carbon of a carboxylic ester can condense with the carbonyl carbon of an aldehyde 

or ketone to give a β-hydroxy ester,25 which may or may not be dehydrated to the α,β-

unsaturated ester. This reaction is sometimes called the Claisen condensation.26 It is 

also possible for the α-carbon of an aldehyde or ketone to add to the carbonyl carbon 

of a carboxylic ester, but this involves nucleophilic substitution and not addition to a 

C=O bond. It can, however, be a side reaction if the aldehyde or ketone has an α-

hydrogen.  

 

 Besides ordinary esters (containing an α-hydrogen), the reaction can also be 

carried out with lactones and with the γ-position of α,β-unsaturated esters. For most 

esters, a much stronger base is needed, than for aldol reactions ((iPr)2NLi, Ph3CNa 

and LiNH2 are among those employed). However, one type of ester reacts more 

easily, and such strong bases are not needed: Diethyl succinate and its derivatives 

condense with aldehydes and ketones in the presence of bases such as NaOEt, NaH, 

or KOCMe3. One of the ester groups (sometimes both) is hydrolyzed in the course of 

the reaction. 

                                                 
24 For a review, see Org. React. Johnson, D. 1951, 6, 1-73. 
25 If the reagent is optically active because of the presence of a chiral sulfoxide group, the reaction can 
be enantioselective. For a review of such cases, see Solladie Chimia, 1984 38, 233-243.   
26 Because Claisen discovered it: Ber. 1890, 23, 977 
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1.5. The Stobbe Condensation mechanism 
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Scheme 12. The Stobbe Condensation mechanism 

 
 The mechanism of the Stobbe condensation was elucidated by Johnson et al.27 

who demonstrated the formation of an intermediate lactonic ester that subsequently 

undergoes an irreversible base induced elimination to give the half-ester product 

(Scheme 12). The anion formed after base addition would attack the electrophilic 

carbonyl compound. Subsequently, the electron rich oxyanion would then attack the 

electrophilic ester motif and would undergo a 2-step tetrahedral mechanism which 

would lead to the lactone transition state. In the presence of a base, the lactone would 

undergo a E1 or E2 mechanism which would lead to the anionic intermediate, which 

is hydrolysed to form the half-acid intermediate. Acid-catalysed esterification would 

afford the subsequent diester. The mechanism accounts for the fact the succinic esters 

react so much better than others. It also accounts for the mono ester group which is 

always being cleaved. Furthermore, the alcohol is not the product but the olefin. In 

addition, intermediate lactones have been isolated from the mixture.28 The isolation of 

the lactone intermediates have also been carried out in our lab, as described in the 

following chapter. 

                                                 
27 Dunnigan, D. A.; Johnson, W. S.; McClaskey, A. L. J. Am. Chem. Soc., 1950, 72, 514. 
28 Robinson, S. J. Chem. Soc. 1941, 582. 
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1.6. STRATEGY OF MODIFICATION OF FULGIDE CORE STRUCTURE 
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Figure 4. Modification strategy of fulgide structure 

 

As the photochemical 6π-electrocyclization is a known photochromic 

mechanism, modification of the carbonyl groups, as well as the aromatic rings have 

been carried out and have been reported extensively by several groups. The process 

obeys the Woodward-Hoffmann rules (i.e., the photochemical rearrangement occurs 

in conrotatory fashion).29 Replacement of the acid anhydride moiety with other 

functional groups have been carried out.  

 

We seeked to study the modification of this fragment of the molecule by 

substituting the heteroaromatic fragment with synthetically modified indoles (Figure 

4). The replacement of the hydrogen at the fifth position on the heteroaromatic 

fragment was another avenue we could explore. Our strategy towards the synthetic 

study of fulgides commenced with the synthesis of reported fulgides. To date, the 

                                                 
29 Darcy, P. J.; Heller, H. G.; Strydom, P. J.; Whittall, J. J. Chem. Soc., Perkin Trans. 1., 1981, 202-
205. 
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heteroatom, Z, has been replaced by oxygen, sulphur and nitrogen. Changing the 

heteroatom from O to S and to N causes the colour of the C-form to change from red 

to purple to blue, respectively.30a, b As such, we were also interested in the synthesis of 

such molecules in order to study their photochromic properties and explore the 

possibility of further modification.  

 

We also undertook the study of the replacement of the R1 group with some 

selected ketones in order to synthesize another class of fulgides that, to our 

knowledge, have not been reported. The R2 functionality was another option we had 

to explore the possibility of fulgide modification. The groups N1 and N2 can also be 

modified at a later stage once the target fulgide has been achieved. Last, but most 

importantly, we were also interested in the exploration of the synthesis of the imide 

derivatives of selected fulgides, in order to explore the possibility of discovering more 

robust photochromic compounds. 

                                                 
30 Heller, H. G., Harris, S. A., Oliver, S. N. J. Chem. Soc., Perkin 1. 1991, 3259. (b). Heller, H. G., 
Glaze, A. P., Whittall, J. J. Chem. Soc., Perkin 2. 1992, 591. 
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CHAPTER 2 – SYNTHESIS OF FULGIDES 

2.1. PRELIMINARY SYNTHESIS OF PHOTOCHROMIC FULGIDES 

 

As a preliminary investigation of the overall synthetic route and reaction 

dynamics, several fulgides that have been reported previously were chosen. With 

reference to Scheme 13, the highly photochromic 2E (E)-2-[a-(2,5-dimethyl-3-

furyl)ethylidene]-3-isopropylidenesuccinic anhydride, as previously reported by 

Heller et al. was synthesized to explore its photochromic properties.  
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Scheme 13. Retrosynthetic route of  2,5-dimethyl-3-furyl fulgide, 2 

 

As we can see from Scheme 13, retrosynthesis of fulgide 2 will lead to diacid 

12, which can be afforded from the mono-acid 13, synthesized from the second 

Stobbe condensation with the selected ketone or aldehyde. This mono-acid 13 can be 

obtained from the isopropylidene (IPP) diester, 14, synthesized from the first 

condensation of acetone, 16, and diethyl succinate, 17. 
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Scheme 14. Photocyclization of 18E to form 18C, 7,7a-dihydrobenzothiophene derivative (DHBT) 

 

As a key comparison of intrinsic photochromic properties, 18E (E)-2-[a-(2,5-

dimethyl-3-thienyl)ethylidene]-3-isopropylidene-succinic anhydride and 18Z (Z)-2-[-

(2,5-dimethyl-3-thienyl)ethylidene]-3-isopropylidene-succinic anhydride (Scheme 14) 

were also synthesized according to literature with a modification of some reaction 

conditions and reagents used (Scheme 14).31 In order to obtain the target fulgides 2 

and 18, the IPP diethyl succinate diester had to be synthesized first as shown in the 

retro-synthetic pathway (Scheme 13). 

 

The synthesis of the IPP diester 14 was first carried out using potassium tert-

butoxide according to the procedure reported by Overberger and Johnson et al. 

(Scheme 15),32a, b in 1949 and 1951 respectively. The initial yield (Table 2) of the 

diester obtained was very low (10 – 27%) and did not warrant a scale up of the 

reaction (Entries 1 and 2, Table 2). As the reaction did not proceed smoothly, we 

decided to adopt another more recent procedure as reported by Lees and co-workers33 

in 2001, for the first Stobbe condensation.  

 
                                                 
31 Glaze, A. P.; Harris, S. A.; Heller, H. G.; Johncock, W.; Oliver, S. N.; Strydom, P. J.; Whittall, J., J. 
Chem. Soc., Perkin Trans. 1 1985, 5, 957-61. 
32 (a) Overberger, R.; J. Am. Chem. Soc. 1949, 71, 3681 (b) Org. React. Johnson, W. S.; Daub, G. H. 
1951, 6, 1-73. 
33 Thomas, C. J.; Wolak, M. A.; Birge, R. R.; Lees, W. J. J. Org. Chem., 2001, 66, 1914-1918. 
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However, when we followed the procedure as reported, we found that the 

reaction either afforded low yields or no diester was produced at all. Using an excess 

of the tBuOK also did not afford yields that were comparable to the reported literature 

(up to 75%). In this aspect, we decided to use NaH as the base of choice instead of 

tBuOK. Upon increasing reaction times (Tables 1 and 2) of both the base 

condensation as well as the esterification step (Entries 3 and 4, Table 2), we were able 

to optimize diester 14, scale up and obtain yields of up to 68%, after distillation of the 

crude reaction mixture (Entry 5, Table 2). 

 

O

OEt

O

OEt

O
OEt

EtO
O

O
+

(1)Basea, Solventb

    Temperaturec, 
    Rxn timed;
(2)EtOHe, 
    Acidf,
    Temperatureg,
    Rxn timeh

16                             17      14  
 

Scheme 15. First Stobbe condensation to form IPP diester, 14 
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Table 1. First Stobbe condensation (Base condensation) and optimization 

Entry Scale Basea Solventb Tempc(oC) Rxn timed(hr) 

1 5 mM tBuOK THF 0 – reflux 6 

2 10 mM tBuOK THF 0 – reflux 18 

3 10 mM NaH THF 0 – r.t. 18 

4 20 mM NaH THF 0 – r.t. 20 

5 0.1 M NaH THF 0 – r.t. 18 
a: Base used for 1st stobbe condensation; b: Solvent used for reaction(pre-dried);  
c: Temperature of the reaction; d: Reaction time. 

 

Table 2. Acid-catalysed esterification and optimization 

Entry Solvente Acidf Tempg(oC) Rxn timeh(hr) % Yieldi

1 EtOH AcCl r.t. 24 10 

2 EtOH 5N H2SO4 reflux 24 27 

3 EtOH 5N H2SO4 reflux 12 36 

4 EtOH 5N H2SO4 reflux 18 56 

5 EtOH 5N H2SO4 reflux 20 68 
e: Solvent used for reaction; f: Acid used; g: Temperature of the reaction; 
h: Reaction time; i: Percentage yield spectroscopically determined. 

  

 After the successful synthesis of the target diester, we went on to synthesize 

several model fulgides as a general study of the dynamics of the reaction route. We 

decided to further modify the reported procedures in order to achieve optimum yields. 

We observed that, upon lengthening the reaction times and using an excess of selected 

reagents, we were able to enable the second key Stobbe condensation of some 

selected ketones onto the IPP diester to afford the model fulgides that we desired.  
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Figure 5. Some model fulgides synthesized 

 

 Accordingly, we synthesized the following fulgides (Figure 5) according to 

reported literature procedures, namely, fulgides 2,2 2 18,31 19 (Scheme 16),34 20,31 21,35 

2236 and 23.37 Fulgides 2 and 18 were chosen as the key model fulgides as they 

displayed good photochromic properties and have been chosen as the backbone for 

the modification of the fulgide core.  

 

 Generally, the synthetic route follows Scheme 16. The first Stobbe 

condensation is effected by the use of NaH, in the presence of diester 14 and 2-acetyl 

naphthalene, 24. This was followed by the hydrolysis of the ester motif of the crude 

                                                 
34 Fox, M. A.; Hurst, J. R., J. Am. Chem. Soc. 1984, 106(24), 7626-7. 
35 Fulgide 20 was expected to be photochromic, as with previously reported phenyl-substituted 
fulgides. However, the yellow crystals did not seem to afford any colour change even after 20 minutes 
of exposure to UV irradiation using a photochemical reactor. 
36 Heller, H. G.; Wenlock, M. C. Photochromic compounds. PCT Int. Appl. 1999, 42. CODEN: 
PIXXD2  WO  9931107  A1  19990624  CAN 131:52069  AN 1999:404971 
37 Heller, H. G.; Trundle, C. Photochromic materials. PCT Int. Appl. 1983, 19. CODEN: PIXXD2  WO  
8300568  A1  19830217  CAN 98:207488  AN 1983:207488 
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mono-ester, 25 to afford the crude diacid 26 which was purified by acid-base workup 

and was treated with a slight excess of acetyl chloride for up to 6 hours before 

subsequent workup and purification. This procedure afforded the synthesized fulgide, 

19, in 28% yield, as yellow crystals. 
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Scheme 16. Synthesis of fulgide 19 

 

 Fulgide 19 has been reported to fail to cyclize upon excitation, presumably 

because of the energetic cost for ring disruption of ring aromaticity in the transition 

state.34 Fulgide 20 has been reported to be photochromic; however, we were unable to 

observe preliminary colouration from the TLC of the pure product obtained. We 

suspect that the fulgide could be undergoing E-Z isomerizations only as compared 

with the furyl fulgide as previously reported.21b

 

 As fulgides 20 did not show promising photochromic properties, the fulgide 

was not investigated further. Fulgide 21 also did not show any photochromic 

properties that were desirable and its investigation was also abandoned. Fulgides 22 
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and 23 showed weak photochromic properties as compared to literature. However, 

due to their reported high quantum yields and high fatigue resistance, we decided to 

explore the possibility of improving their photochromic property. 

 

2.2.  SYNTHETIC STRATEGY 

 

The ability to successfully select the appropriate ketones to be used for fulgide 

synthesis and design is of critical importance. As depicted in Figure 6., When R1 is 

hydrogen, the photochromic properties are lost or are very poor, and the main photo- 

reaction is cis-trans isomerization.3 1 The quantum efficiency for colouring increases 

with the increasing size of this substituent (e.g., 20% when R1 is methyl and 62% 

when R1 is isopropyl).38 When R5 is hydrogen, the photochromic system is more 

susceptible to photodegradation. A powerful electron-releasing substituent in this 

position causes a major bathochromic shift in the absorption band of the coloured 

form and a large hyperchromic effect.39 If R1 is an aryl group, the photochromic 

properties are poor; and if R1 is hydrogen, then a hydrogen shift occurs in the 

coloured form and the thermal stability and fatigue resistance are lost. 
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Figure 6. Cyclization of a fulgide to its corresponding tri-cyclic system 

 

                                                 
38 Kurita, Y.; Yokoyama, Y.; Goto, T.; Inoue, T.; Yokoyama, M. Chem. Lett., 1988, 1049. 
39 Wood, D. Studies on Fatigue-Resistant Photochromic Systems. Ph.D. Thesis, University of Wales, 
Cardiff, 1991. 
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Figure 7. Increase in quantum efficiency for bleaching due to sterically bulky adamantylidene group 

 

Replacement of the methyl groups at R3 by cyclopropyl groups causes the 

fulgides to undergo a bathochromic shift of their long-wavelength absorption band.40 

Replacing the isopropylidene group by the bulky inflexible adamantylidene group 

causes a five- to nine-fold increase in the quantum efficiency for bleaching, 

presumably due to the weakened 7,7a-sigma bond in the coloured form (Figure 7) by 

the spiroadamantane moiety.

 

As can be observed, the selection of the R groups present on a heteroatomic 

fulgide is the most critical factor that will determine its final photochromic property. 

Initially, we decided to synthesize fulgide 27 with a bromo-functionality. Several 

attempts were made but were all unsuccessful. The strategy was to utilize the bromo-

functionality and further extend the chemistry of the fulgide by carrying out a Heck 

coupling with more conjugated systems, in effect, extending the conjugation of the 

final target molecule. However, with reference to fulgide 20, the hydrogen at the 3a 

position can also undergo a [1,5]-H shift to afford the corresponding 4,5-

dihydrobenzothiophene (DHBT) derivative, under ambient and higher temperatures. 

                                                 
40 Heller, H. G.; Oliver, S. N.; Whittall, J.; Johneock, W.; Darcy, P. I.; Trundle, C. Photochromic            
Fused-ring Organic Compounds and their Use in Photoreactive Lenses, G.B. 214327A, 1985. 
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In the presence of heat and a catalytic amount of trichloroacetic acid, the 4,5-DHBT 

can also form the subsequent 4,7-dimethyl[b]thiophene-5,6-dicarboxylic anhydride 

(Scheme 17).3 1 
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Scheme 17. Unsuccessful attempt to obtain 27 and possible degradation pathways of both 20 and 27 

 

Our efforts were then directed towards the synthesis of fulgide 2, 18, 22 and 

23 as they displayed better photochromic properties. Although literature methods 

were already reported for the synthesis of the fulgides, we had to modify some 

reaction conditions, in order to obtain the target fulgides with acceptable yields. We 

managed to obtain fulgide 2 with a yield of 45% and fulgide 18 with a yield of up to 

55%, after 3 consecutive steps. Fulgides 22 and 23 were obtained in 54% and 41% 

respectively. Interestingly, 18Z was synthesized as reported;3 1 and the authors had to 

obtain 18E via UV irradiation at 366nm, with a sample placed in toluene, until a 

nearly quantitative conversion of the 18Z into the deep-red 7,7a-

dihydrobenzothiophene derivative (DHBT) 18C was obtained.  
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Figure 8. ORTEP plot of 18E (E)-2-[α-(2,5-Dimethyl-3-thienyl)ethylidene]-3-isopropylidenesuccinic 
Anhydride 

 

This was followed by a subsequent exposure of 18C to white light until the 

toluene solution was colourless, indicating that the 7,7a-DHBT has been 

photoisomerised into the (E)-fulgide, 18E (Figure 8). In our lab, the E- and Z-fulgides 

have been successively synthesized in one step via acetyl chloride ring closure 

followed by flash chromatography of the extracted crude product using a hexane: 

ethyl acetate (20:1) eluent system. The purified product was subsequently 

recrystallized in a dichloromethane/ether system to afford two distinct crystals of the 

E- and Z-fulgide. As the crystal structure of the fulgide isomers have not been 

reported before, X-ray analysis was carried out to elucidate the structure of the 

synthesized fulgides (Figure 8 and 9). The fulgide was fully characterized using 1H 

NMR, 13C NMR, HiRes-EIMS, melting point determination, X-ray crystallography, 

IR spectroscopy as well as UV-Vis spectroscopy to study its open and closed forms. 
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Figure 9. ORTEP plot of 18Z (Z)-2-[α-(2,5-Dimethyl-3-thienyl)ethylidene]-3-isopropylidenesuccinic 
Anhydride 

  

 The (E)-fulgide 18E, displayed good photochromic properties (Scheme 14); 

and it was converted from an orange crystalline solid to a deep mahogany red 7,7a-

DHBT form, under a UV lamp (as a form of preliminary testing of photochromic 

conversion of states, i.e. from (E) to (C) form). The (Z)-fulgide 18Z (Figure 9) also 

displayed photochromic properties, as the yellow needles obtained turned purplish 

under exposure to a UV lamp albeit taking a longer time. The combined yield of 18E 

and 18Z was about 55%.41

                                                 
41 The Z-form colourizes on exposure to UV irradiation but takes up to 30 seconds longer to obtain 
comparable colouration of the E-form. All data obtained from the characterization were similar to the 
reported literature values. 

PART I – SYNTHESIS OF PHOTOCHROMIC FULGIDES 28



CHAPTER 2 – SYNTHESIS OF FULGIDES 

 
O

OEt

O

OH

O
OEt

EtO
O

O

S

O

O

OH

O

OEt

S

O OS
O

O

OHS

O

OH

O

O

O
S

O

OEt

O

OEt

O

OH

O

OH

S

10% KOH, EtOH,
reflux, 24h

+

AcCl, 6h

16                             17                                                            15

14                             28                                   29                                                                        30

31                         18E                  18Z

+

EtOH, H2SO4,
reflux, 12h

NaH, THF,
10hr, HCl

NaH, THF,
HCl

 
Scheme 18. Finalized synthetic route for the synthesis of fulgide 18 

 

 As a further example on the synthetic route to obtain fulgides, we approached 

the synthesis of 18 as shown in Scheme 18. The synthesis first started with the Stobbe 

condensation of acetone, 16, with diethyl succinate, 17, to afford the mono-acid 15, 

which was esterified to form the IPP diester 14. The diester 14 was treated with NaH 

and acetyl-thiophene, 28, to afford the mono-acid 29, which was purified using acid-

base workup. Attempts to purify 29, via flash chromatography resulted in either no 

fulgide obtained in the last step or negligible yields. Crude 1H NMR showed the 

presence of the mono-acid and thus, crude 29 was used directly in the next step to 

afford crude diacid 30 which was also purified using acid-base workup. Other 

attempts to purify diacid 30 also resulted in either no fulgide obtained in the last step 
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or very low yields. This was followed by the treatment of diacid 30 with acetyl 

chloride to afford the target fulgide 18 with appreciable yields. Having finalized the 

overall synthetic route for the synthesis of fulgide 18 (Scheme 18), we decided to 

explore the design and synthesis of new possible fulgides. Apart from applying this 

synthetic methodology towards the synthesis of fulgides 2, 22 and 23, our search for 

new classes of fulgides led us to the discovery, that to date, more than 1500 fulgides 

with different heteroatoms and substituents have been reported, under the database of 

Scifinder Scholar. 

SBr
O O

Cl3C CCl3

O O

O O

NO2

O O

 
 

Figure 10. Unsuccessful condensation of some selected ketones 

  

 We then decided to synthesize some fulgides with ketones that have not as yet 

been reported (Figure 10). However, our efforts were futile as the following ketones, 

did not display any photochromic properties that we would have expected, due to 

potential [1,5]-H shifts or unsuccessful condensation, probably due to sterically bulky 

functional groups. With this knowledge, we decided to direct our efforts towards the 

modification of the R1 groups (Figure 4), using selected cycloketones, to afford the 

proposed corresponding cycloalkylidene fulgides. A literature search revealed that the 

proposed target fulgides have not been reported as yet. As such we decided to use the 

cycloketones to obtain the target fulgides and to study the effects of increasing ring 

size on the photochromic properties of the fulgides. 
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CHAPTER 3 – SYNTHESIS OF CYCLOALKYLIDENE FULGIDES 

3.1. INTRODUCTION - SYNTHESIS AND PHOTOCHROMIC PROPERTIES OF A NEW 

CLASS OF FULGIDES 

 

 There have been many comparisons of fulgides and fulgimides with regards to 

the structural moieties attached to the anhydride core, but studies on cycloalkylidene 

fulgides such as 32, 33, 34, 35, 36 and 37 have not been reported (Figure 11). 
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Figure 11. Depicts the cycloalkylidene fulgides synthesized 

 

 Herein, we report the synthesis of a series of cycloalkylidene fulgides using 

either of the diesters obtained from both the use of tBuOK42 and NaH.43 Our efforts 

have been directed towards the general study and comparison of the structural 

relationship of the cyclo-alkyl fulgides (Open form – E-form or Z-form), with 

                                                 
42 (a) Heller, H.G.; Hughes, D.S.; Hursthouse, M.B.; Rowles, N.G.; Chem. Commun. 2000, 1397. (b) 
Sun, Z.; Hosmane, R.S. J. Heterocycl. Chem. 1995, 32, 1819. (c) Yokoyama, Y.; Takahashi, K. Chem. 
Lett. 1996, 1037. (d)  Cabrera, I.; Dittrich, A.; Ringsdorf, H. Angew. Chem. Int. Engl. 1991, 30, 76. 
43 Liu, J.; Brooks, N. R. Org. Lett. (Communication) 2002, 4(20), 3521-3524.
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increasing ring sizes, with regards to the extent of effect it had on the absorption 

maxima of the cyclized form (Coloured form – C-form). 

 

3.2. SYNTHESIS OF CYCLO-DIESTERS 
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Scheme 19. Synthesis of cyclohexylidene diethyl succinate 39 

 

 Synthesis of fulgides classically involves two successive Stobbe 

condensations.44 We expected the Stobbe condensation of diethyl succinate with 

cyclohexanone to proceed smoothly to furnish the desired α,β–unsaturated 

cyclohexylidene diethyl succinate, 38 when we used NaH as the base of choice. 

Unfortunately, we obtained the β,γ–unsaturated cyclohexenyl diethyl succinate, 39 

instead (Scheme 19). 

 

 

  

                                                 
44 For a review, see Org. React. Johnson, D. 1951, 6, 1-73. 
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The migration of the double bond to the exocyclic site had been extensively 

reported by Johnson et al. in the 1940s.45 Rao and Bagavant46 have also reported the 

Stobbe condensation of succinic esters with various aldehydes with much success 

about 20 years later. The observation of the migration of the double bond was also 

reported then. It would seem that the Stobbe condensation primarily produced 

β,γ−unsaturated diesters. As we required the position of the double bond to be 

primarily at the α,β− position instead of the easily obtained β,γ− position, we decided 

to explore some methods of causing the isomerization of the unusual β,γ-unsaturated 

diester obtained, to form the more conjugated and more stable α,β-unsaturated diester 

instead. 

O

OEt
O

EtO
O

O

OEt

O

OEt

O

OEt

O

OEt+

14                            40 41            42

Base,b Solvent,c

Conditiond

 
 

Scheme 20. Synthesis of diisoethylidene diethyl succinate 41 

 

Table 3. Reaction conditions and yields of diester 41 and 42 

Entry Scalea Baseb Solventc Conditiond % Yield 

146 5.0 tBuOK tBuOH Condensation: 2h, 15 – 20oC 
Esterification: 18h, reflux 

41 = 0 
42 = 0 

246 5.0 tBuOK tBuOH Condensation: 1.5h, 15 – 20oC 
Esterification: 48h, 0oC – r.t. 

41 = 4 
42 = 0 

347 60.0 NaH Hexane Condensation: 18h, 0oC – r.t. 
Esterification: 18h, reflux 

41 = 0 
42 = 43 

4 60.0 NaH THF Condensation: 18h, 0oC – r.t. 
Esterification: 18h, reflux 

41 = 0 
42 = 32 

a: Scale in mmol (mM);  b : Base used for reaction; c: Solvent used for reaction;  
d: Reaction conditions. 

                                                 
45 Johnson, W. S.; Davis, C. E.; Hunt, R. H.; Stork, G.; J. Am. Chem.. Soc. 1948, 70, 3021.  
46 Rao, R.; K.; Bagavant, G.; Indian J. Chem. 1969, 7, 859. 
47 Liang, Y.C.;  Dvornikov, A. S.; and Rentzepis, P. M.; Macromolecules 2002, 35, 9377-9382. 
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 We decided to use the synthesis of diisoethylidene diethyl succinate 41 as the 

model diester for the synthesis of the cyclo-diesters. The starting substrate involved, 

diethyl ketone 40 (c.f. cyclo-ketones, 40 has two hydrogens in the α-position that 

might migrate to the α-carbon adjacent to the diester carbonyl functionality (Scheme 

20)). We initially tried to obtain the desired α,β-unsaturated diester 41 by following 

the procedure reported by Rao and Bagavant, but were not successful. We were also 

not particularly successful when we increased the overall reaction time from 18h to 

48h, as only a 4% of 41 yield was obtained, even after prolonged reflux during the 

esterification step (Entry 2, Table 3). So we next tried using NaH for the condensation 

and obtained the β,γ-diester 42 instead, with yields of up to 43% (Entry 3, Table 3). A 

change in solvent for the reaction to THF did not particularly increase the yield of 42 

as well (32%, Entry 4, Table 3).  
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Scheme 21. Acid-catalyzed isomerization 

 

Table 4. Acid-catalyzed formation of α,β-diester 

Entry Scalea Acidb Solventc Conditiond % Yield 

1 1.0 H3PO4 EtOH 18h, 0oC – r.t. 41 = 0 
43 = 0 

2 1.0 HCl EtOH 18h, 0oC – r.t. 41 = 0 
43 = 0 

3 1.0 H2SO4 EtOH 18h, 0oC – r.t. 41 = 10 
43 = 41 

a: Scale in mmol (mM);  b : Conc. acid used for reaction (acid used in neat form) ;  
c: Solvent used for reaction; d: Reaction conditions. 
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As repeated attempts to obtain the desired α,β-unsaturated diester 41 met with 

failure, we decided to explore the possibility of causing the migration of the double 

bond from the β,γ-site (exocyclic) of the major diester, 42, to the α,β-site (endocyclic) 

of the minor diester, 41. With regards to this aspect, we decided to adopt the acid-

catalyzed isomerization strategy (Scheme 21).  
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Scheme 22. Acid-catalysed isomerization mechanism 

 

 We envisioned that in the presence of a strong acid, we would be able to effect 

the subsequent migration of the exocyclic double bond of 42 to afford the more stable, 

conjugated endocyclic diester 41 (Scheme 22).  
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 We hypothesized that the stabilizing effect of the hydrogen bond between the 

free-hydrogen of the exocyclic double bond and the oxygen of the ester carbonyl 

group could cause the β,γ-unsaturated diester to be formed as the major product 

(Figure 12).  

O

O

OEt
OEt

H

Stabilizing 
H-bond

42  
Figure 12. Hypothesis of stabilizing effect of H-bond 

 

We chose three concentrated acids (Table 4) as listed and were able to obtain 

partial conversion of the β,γ-unsaturated diester to afford the desired α,β-unsaturated 

diester 41, albeit low yields (Entry 3, Table 4). However, we obtained the cyclized 

oxo-furan carboxylate side product 43 as the major product with 41% yield. 

 

 With the possibility of converting the undesired β,γ-unsaturated diesters to 

afford the desired α,β-unsaturated diesters, we decided to proceed (and scale-up) with 

the actual synthesis of the target cyclo-diesters. We decided to use cyclohexanone for 

the first Stobbe condensation to afford the required α,β–unsaturated cyclohexylidene 

diethyl succinate, 38. Referring to Scheme 23, we observed that diester 38 could be 

obtained in up to 58% yield.48 As with the synthesis of 42, we also observed the 

formation of the β,γ–unsaturated cyclohexenyl diethyl succinate, 39 with yields of up 

to 72% when NaH was employed instead of tBuOK (Scheme 23).  

                                                 
48 Using the procedure developed by Bagavant et al., reference 46. 
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Scheme 23. Synthesis of cyclohexylidene diethyl succinate 38 

 

 Attempts to cause the acid catalyzed isomerization (using 2.5M to 10.0M 

conc. H2SO4, Scheme 24), of the double bond from the exocyclic site to the 

endocyclic site, resulted in the formation of the γ,γ-pentamethyleneparaconate 44 as 

the major product (40%) and cyclohexylidene diethyl succinate 38 as the minor 

product (9%) (Entry 6, Table 5). In effect, the desired diester was not obtained with 

satisfactory yields. Further attempts to cause ring opening of 44 to afford 38 also 

failed (Scheme 23).49 The γ,γ-pentamethyleneparaconate 44 also failed to condense 

with the selected ketones in both NaH and tBuOK over 4 days as previously reported 

by Rao and Bagavant.46  

 

                                                 
49 As determined from crude 1H NMR of the reaction mixture. 
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Scheme 24. Acid-catalyzed isomerization 

 

Table 5. Acid-catalysed formation of α,β-diester 

Entry Scalea Acidb Solventc Conditiond % Yield 

1 1.0 2.5M H2SO4 EtOH 18h, 0oC – r.t. 39 present 

2 1.0 5.0M H2SO4 EtOH 18h, 0oC – r.t. 39 present 

3 1.0 6.0M H2SO4 EtOH 18h, 0oC – r.t. 39 present 

4 1.0 7.0M H2SO4 EtOH 18h, 0oC – r.t. 38 = 0 
44 = 30 

5 1.0 7.5M H2SO4 EtOH 18h, 0oC – r.t. 38 = 0 
44 = 34 

6 1.0 10.0M H2SO4 EtOH 18h, 0oC – r.t. 38 = 9 
44 = 40 

a: Scale in mmol (mM);  b : Conc. acid used for reaction (acid used in neat form) ;  
c: Solvent used for reaction; d: Reaction conditions. 

 

The synthesis of the corresponding cycloalkylidene diethyl succinic diesters 

38, 45 and 46 was carried out using the procedure reported by Rao and Bagavant.46 

Careful control of the reaction temperature afforded diesters with yields ranging 18–

57%.50 The corresponding cycloalkenyl diethyl succinic diesters 39, 47, 48 and 49 

were obtained using NaH, affording yields ranging 41-87% (Scheme 25). Generally, 

for the Stobbe condensation using NaH, the reaction conditions were mild and the 

reactions were easy to setup and products easily purified. 

 

                                                 
50 Attempts to obtain the cyclooctylidene succinic diester resulted in the self condensed product from 
the cyclooctanone; which was only determined from crude NMR and not isolated. The cyclopentanone 
used to obtain 45 also tend to afford the self condensed product quite readily. 
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Scheme 25. Synthesis of key cyclodiesters 38, 39 and 45-49 

 

 We encountered problems with the self condensation of the cyclo-ketones, in 

particular, cyclopentanone, to afford the self-condensed product rather than the 

desired diesters. Acid-catalyzed isomerization of the cycloheptenyl diester also 

resulted in formation of the oxo-furan carboxylate product 50 (Scheme 26).51
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Scheme 26. Acid-catalyzed isomerization of 48 

 
  
                                                 
51 Solvent used in the reaction was EtOH; as in Table 4 and Table 5. The acid used was 10M H2SO4 
and the reaction was allowed to stir for 18h. 
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3.3. SYNTHESIS OF CYCLOALKYLIDENE FULGIDES 

 

After many attempts to cause the isomerization of the β,γ–unsaturated double 

bond to afford the diester with the desired α,β–double bond, we were not satisfied 

with the yields obtained as more than 50% of the starting diester to be converted was 

suspected to have decomposed under such harsh acidic conditions. As such we 

decided to re-look at the strategy of the isomerization of the double bond and also to 

explore if we could somehow induce the isomerization during the course of the 

reaction. 
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Scheme 27. Synthetic routes A and B towards fulgides 32-37 

 

A detailed examination of the reaction scheme revealed that we could possibly 

cause a base hydrolysis to obtain the diacid during the second last step, as well as 

possibly cause a base-induced isomerization of the exocyclic double bond to form the 

endocyclic double bond. We then decided to initiate the isomerization of the β,γ–
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unsaturated double bond to afford the diacid with the desired α,β–double bond, with 

the usage of 5% w/v ethanolic NaOH, refluxing for approximately 18h. This was 

followed by stirring in 20%-25% aqueous NaOH for 3h. This was to ensure the 

complete formation of the diacid and to maximize yield. With this key experimental 

modification in mind, we initiated the synthesis of the cycloalkylidene fulgides. 

 

 With reference to Scheme 27, the diesters were stirred in THF in the presence 

of NaH with the selected ketones to afford the half-acids. We observed that the well 

known classic synthetic pathway, involving ethanolic potassium hydroxide and acetyl 

chloride, towards 33 or 36 resulted in very low yields of the desired molecules 

(Scheme 27 – Route A), with 4% and 3% respectively. Repeated attempts to optimize 

the reaction were particularly unsuccessful. We suspected that the main reason behind 

the low yields could be that the cyclo motifs were actually causing some steric 

hinderances during the course of the second Stobbe condensation of the more bulky 

ketones when compared with the less hindered cycloalkenyl diesters (Figure 13). 
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Figure 13. Cyclo motifs suspected to cause steric hinderances during 2nd Stobbe condenation 

 

 Since we were able to obtain acceptable yields for diesters 39, 47, 48 and 49, 

we decided to proceed with the usage of the cycloalkenyl diesters as they had a more 
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flexible cyclic moiety which would not pose as much of a steric hindrance as the 

cycloalkylidene analogs. 
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Figure 14. Example of base-catalyzed isomerization of 51 

 

As an example for the base-catalyzed isomerization as illustrated in Figure 14, 

the mono-ester 51 can be converted to the desired diacid 52, via 51a.52 When we 

applied our base-catalyzed isomerization strategy (Figure 14), the reactions proceeded 

quite smoothly and we were able to obtain the corresponding fulgides. The following 

ring closure was carried out by treatment of the diacid with excess acetyl chloride, in 

the dark and stirring the reaction mixture for approximately 4-6 hours. This led to the 

formation of fulgides 32-37, with yields ranging 7-80%. An important point to note at 

this stage was that acid-base workup for each step to purify the mono-ester or diacid 

was crucial during the preparation for the final ring closure. As reported in the 

                                                 
52 The disappearance of the crude 1H NMR peak at ~5.55-5.70 ppm would indicate the success of the 
isomerization. 
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preceding Chapter, attempts to purify the mono-acid or diacid intermediates resulted 

in very poor yields of approximately 1-2%. 

 

 Good to excellent yields were obtained for 32 and 35. In an effort to use a 

milder base for the tandem saponification and isomerization of the double bond, the 

usage of a 2.5% w/v ethanolic NaOH solution for the formation of the diacid led to 

relatively lower yields obtained for 33 and 36, 6% and 8% respectively. However, 

when we repeated the reactions using the optimized conditions, we could obtain 

yields of 14 and 17% for fulgides 33 and 36 respectively. The low yield for 34 was 

exceptional and repeated attempts to improve the yield were not successful. A 

possible explanation could be attributed to the larger steric hindrance caused by the 

larger cycloheptyl moiety on the fulgide core (Figure 15). The yields of the fulgides 

synthesized were observed to decrease with an increase in the cyclo-ring size. 

Crystals could not be obtained satisfactorily for X-ray crystallographic analysis. 
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Figure 15. Photochromism of fulgide 34 and 37 

 

Repeated attempts to obtain the cyclooctyl fulgide, from the cyclooctenyl 

diester, were also unsuccessful. The reactions were monitored using TLC/UV light 

throughout the course of the ring closure step. We suspect that the low yield could be 
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due to the unfavorable formation of the new C-C bond upon exposure to UV light, as 

formation of a spot (on TLC) that colourized to purple would indicate the formation 

of a hexatriene moiety and in turn indicate the presence of the fulgide.53a, b 

 

To conclude, we have successfully synthesized and characterized a new series 

of fulgides – the cycloalkylidene fulgides. The study of the photochromic properties 

of the synthesized fulgides was carried out next. 

 

                                                 
53 Generally, the sigma bond formed after cyclization for thienyl fulgides have been known to be longer 
compared with furyl fulgides. (Thienyl fulgides = ~3.90Å c.f. Furyl fulgides = ~3.44Å) (a) Yu, L.; 
Ming, Y.; Zhang, X.; Fan, M.; Lin, N.; Yao, S.; J. Photochem. Photobiol. A: Chem. 1993, 74, 37-41. 
(b) Yu, L.; Ming, Y.; Zhao, W.; Fan, M.; J. Photochem. Photobiol. A: Chem. 1992, 68, 309. 
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3.4. COMPARISON OF PHOTOCHROMIC PROPERTIES OF CYCLOALKYLIDENE 

FULGIDES – STRUCTURAL INFLUENCES ON THE UV ABSORBANCES. 

 

 After successfully obtaining the above mentioned fulgides 32-37, we decided 

to study the implications on the photochromic properties caused by the larger 

cycloalkyl rings present on the fulgide core. The absorption spectra maxima of the 

open (E/Z) and closed (C) forms of the fulgides are listed in Table 6.  

Table 6.  UV-Vis Absorption Maxima (nm) in CH2Cl2, of open and closed form of 
the fulgides 2, 18, 32–37. 

 

Fg* λmaxOb 

(nm) 
ΑΟ

εΟ
(mol-1dm3cm-1) 

λmax Cc 

(nm) ΑC
εC  

(mol-1dm3cm-1) 
∆ λmax

d 

(nm) 
% 

Conversione

18 342 1.48 68465 538 0.69 32063 196 46.8 

32a Z: 342 
E: 338 

Z: 0.81 
E: 0.93 

Z: 409251 
E: 97367 

Z: 544 
E: 544 

Z: 0.27 
E: 0.45 

Z: 140338 
E: 47011 

Z: 202 
E: 206 

Z: 34.3 
E: 48.3 

33 332 2.00 189749 552 0.48 47015 220 24.8 

34 342 1.45 481155 550 0.16 52927 208 11.0 

2 346 0.97 52612 510 0.92 50278 164 95.6 

35 350 0.74 214335 514 0.49 143152 164 66.8 

36 346 0.76 92310 514 0.39 47892 168 51.9 

37 350 0.96 304831 526 0.36 115599 176 37.9 

*Fg=Fulgide; a: 32 was obtained as a mixture of E and Z isomers with 2 distinct spots on TLC. 1H NMR analysis of 
the spectra did not show distinct chemical shift differences of the 3 CH3 groups present. E-form of fulgide usually 
has a larger % conversion; b: Absorption maxima of Open-form. (Apart from 32, all other fulgides obtained in the Z-
form due to steric hinderances.); c: Absorption maxima of Closed-form (Coloured form); d: Difference of Closed-
form over Open-form; e: Percentage of Open-form converted to Closed-form (εc /εo x 100).  Note: [C] of stock 
solutions were prepared in 1-8µmol and were repeated in duplicate. 

 

With reference to fulgides 2 and 18 as the key benchmark fulgides, based on 

their intrinsic photochromic properties, the absorption spectra of the fulgides in their 

open form have their absorption maxima at approximately 342-346nm. The closed 
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forms have their maximum absorption at 510-550nm. With regards to the conversion 

percent of the open (E/Z) form to the closed (C) form, fulgide 2 displayed a 

conversion rate of almost 100%, which would make it a potential candidate for use in 

optical memory media. For fulgide 18, the conversion rate of close to 50%, displayed 

a drop of almost 2-fold, when compared with fulgide 2. 

 

 For the thiophene fulgides, the difference of the absorption maxima of the 

coloured form between the IPP based fulgide 18 and the cycloheptyl analog 35 was a 

12nm red shift. Referring to Table 6, it was observed that every additional carbon 

present in the cyclo-ring, for the thiophene analogs, caused a drop in formation of the 

coloured form by up to 12%. There was also an increase in the red shift by up to 

14nm. As a comparison, for fulgide 18, the difference of the absorption maxima for 

the open and closed form is 196nm. For the cyclo-thienyl fulgides, the difference can 

be up to 220nm, for fulgide 33. The large red shift of the closed form can be 

explained by the larger steric strain between the large cycloheptyl ring and the 

thiophene moiety. 

 

 Switching to the furyl fulgides, a similar trend could be seen between the IPP 

based fulgide 2 and the cycloheptyl analog 37. A bathochromic shift of up to 16nm 

was observed on UV-irradiation of the open fulgides. Replacing the furyl moiety of 

37 with a thiophene moiety, 34, caused a red shift of approximately 24nm. It has been 

observed that every additional carbon present in the cyclo-ring, for the furyl analogs, 

causes a drop in formation of the coloured form by 14% (Table 6). There was also an 

increase in the difference of the open and closed form, with a red shift of 12nm. 
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 With an increase in ring size, there was a general increase in the wavenumber. 

However, the percentage conversion of the opened form to the closed form dropped 

significantly. This decrease could be attributed to the larger steric hinderance of the 

cyclo-heptyl groups caused when compared with the much smaller cyclo-pentyl group 

on the anhydride moiety, which in turns caused an increase in the bleaching effect of 

the coloured fulgide. The decrease in conversion of the respective fulgides, in 

descending order, is generally: IPP > cyclo-pentyl> cyclo-hexyl > cyclo-heptyl. 

Yields of the fulgides with larger cyclo-alkyl groups also generally decreased. The 

large extinction coefficients observed from the UV studies were obtained using 

dichloromethane (DCM) as solvent.54

 

O

O

O

S

O

N

O

S R

N

Cl Br

Where  R =

RNH2, THF, 
reflux, 16h; 
AcCl, 6h

53 (42%)             54 (39%)

55 (42%)              56 (65%)                57 (40%)  
 

Scheme 28. Synthesis of fulgimides 53-57 

 
  

                                                 
54 For reviews on solvent effects on photochemical reactions, refer to (a) Rappon, M.; Syvitski, R. T. J. 
Photochem. Photobiol., A: Chem. 1996, 94, 243-247 (b) Liang, Y.; Dvornikov, A. S.; Rentzepis, P.M. 
J. Photochem. Photobiol., A: Chem. 1999, 125, 79-84 (c) Gou, Z.; Tang, Y.; Zhang, F.; Zhao, F.; Song, 
X. J. Photochem. Photobiol., A: Chem. 1997, 110,  29-33. 
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As we observed that the thienyl-fulgides had generally low conversion rates to 

form the coloured forms, we decided to functionalize the anhydride moiety to form 

fulgimides (Scheme 28), hoping to obtain better conversion rates and to study other 

effects. A series of anilines were selected to form the respective fulgimides 53-57. 

The IPP-based thienyl fulgide 18 was chosen as the starting material as yield of the 

fulgide was higher compared to fulgide 2. The other reason fulgide 2 was chosen was 

due to its relatively lower rate of conversion to the coloured form. We seeked to 

explore the possibility of improving the conversion percentage of the open form to the 

closed form by functionalization of the fulgide core. We also seeked to functionalize 

the fulgide to enable the possibility of extension of fulgide chemistry by incorporating 

functional groups that could be further used for other reactions (e.g. Heck coupling, 

Olefin metathesis, etc.)  

 

 The fulgimides were obtained by refluxing the selected amine with the fulgide 

in THF followed by removal of solvent and treatment of the half-acid with excess 

acetyl chloride to effect the ring-closure. Yields of the fulgimides ranged 39 – 65%. 
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Table 7.  UV-Vis Absorption Maxima (nm) in CH2Cl2, of Open and Closed form of 
the Fulgides 18, 53–57. 

 

Fga λmaxOb 

(nm) 
ΑΟ

εΟ
(mol-1dm3cm-1) 

λmax Cc 

(nm) ΑC
εC  

(mol-1dm3cm-1) 
∆ λmax

d 

(nm) 
% 

Conversione

18 342 1.48 68465 538 0.69 32063 196 46.8 

53 330 1.22 50705 526 0.31 12999 196 25.6 

54 Z: 330 
E: 328 

Z: 0.95 
E: 0.70 

Z: 33718 
E: 45171 

Z: 532 
E: 532 

Z: 0.30 
E: 0.31 

Z: 10709 
E: 20044 

Z: 202 
E: 204 

Z: 31.8 
E: 44.4 

55 Z: 330 
E: 328 

Z: 0.66 
E: 1.28 

Z: 18380 
E: 39842 

Z: 532 
E: 534 

Z: 0.28 
E: 0.52 

Z: 7879 
E: 16390 

Z: 202 
E: 206 

Z: 42.9 
E: 41.1 

56 326 1.06 342653 538 0.45 146703 212 42.8 

57 334 0.81 175631 538 0.40 86908 204 49.5 

a: Fulgide; b: Absorption maxima of Open-form. (Apart from 54 and 55, all other fulgides obtained in the Z-form 
due to steric hinderances.); c: Absorption maxima of Closed-form (Coloured form); d: Difference of Closed-form 
over Open-form; e: Percentage of Open-form converted to Closed-form (εc /εo x 100).  Note: [C] of stock solutions 
were prepared in 1-8µmol and were repeated in duplicate. 

 

 As can be observed from Table 7, the absorption maxima for the open forms 

of the fulgimides are blue-shifted by up to 16nm when the oxygen moiety on the 

anhydride core is replaced by nitrogen. This blue shift can be caused by the presence 

of the nitrogen causing the anhydride core to adopt a less planar structure. The 

absorption maxima for the closed form did not change significantly. The general trend 

observed for the fulgimides is that the presence of the more conjugated phenyl rings 

on the fulgide core did not significantly cause an increase in the conversion 

percentage.  

 

However, with the exception of fulgimide 57, the conversion percentage is 

observed to drop. However, with the attachment of the various functional groups like 

the free-terminal double bond on fulgimide 53 and the bromo functionality on 

fulgimide 57, we were given the option to further explore the possibility of enhancing 
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conjugation or attaching other structural moieties via olefin metathesis or the Heck 

coupling. 

 

3.5. CONCLUSION 

 

 In summary, a series of cycloalkyl-based fulgides have been successfully 

synthesized and fully characterized, using β,γ-unsaturated diesters and their main 

photochromic characteristics studied. The presence of a large alkyl group on the 

fulgide core generally causes a bathochromic shift for the coloured form and a 

decrease in the conversion rate (i.e. indication of relatively low quantum yields).  

 

 The synthesis of five model fulgimides was also successfully completed and 

fully characterized. Efforts directed towards the improvement of the percentage 

conversion by functionalizing the fulgide to form the corresponding fulgimides were 

generally not successful. For our next stage of the synthesis, we were also interested 

in modifying the fulgide core to explore the further functionalization of such fulgides.  

 

 The key modification was to synthesize new fulgimides from the fulgides, 

using selected amines, with various functional groups in order to allow further 

extension of the fulgide core. 
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CHAPTER 4 – MOLECULAR TAILORING OF FULGIDE CORE 

4.1. INTRODUCTION – MOLECULAR TAILORING OF FULGIDE CORE  – 

MODIFICATION OF ‘Y’ MOIETY : FULGIMIDE SYNTHESIS 

 

Fulgimides are usually less coloured than their corresponding fulgides, but 

show similar photochromic properties. Fulgimides have been known to be more 

resistant to acid- or base-catalyzed hydrolysis than the corresponding fulgides, but 

their resistance to photodegradation is not markedly improved.55 The importance of 

fulgimides is that the N-substituent can be used as a linking group to prepare 

photochromic Langmuir-Blodgett films,56 photochromic liquid crystals,57 

photochromic diagnostic devices,58 and photochromic copolymers.59

 

H2N ClO

O

O

S

O

N

O

S Cl

ZnCl2, HMDS,
THF, reflux, 18h

18                       58 56  
 

Scheme 29. Zinc-chloride mediated fulgimide synthesis of 56 - total synthesis time: ~18h 

 

Fulgimides are usually synthesized using the methodology developed by 

Heller et al.60 He reported the synthesis of fulgimides which required thermal heating 

of a fulgide and an amine, in an organic solvent (e.g. ethanol, benzene, etc.), to afford 

the mono-amides, which may take up to 2 hours. This was followed by heating of the 

                                                 
55 Wolak, M. A.; Thomas, C. J.; Gillespie, N. B.; Birge, R. R.; Lees, W. J.  J. Org. Chem. 2003, 68(2), 
319-326. 
56 Cabrera, I.; Achim, D.; Ringsdorf, H.; D.E. 4007636A1. 
57 Cabrera, I.; Achim, D.; Ringsdorf, H. Angew. Chem. Int. Ed., 1991, 30, 76. 
58 Willmer, I.; Rubin, S.; Wonner, J.; Effenberger, F.; Bauerle, P. J. Am. Chem. Soc., 1992, 114, 3150. 
59 Elliot, C. C. MSc, Thesis; University of Wales, Cardiff, 1990. 
60 Heller, H. G. Fulgimide derivatives. Brit.  1972, 7. CODEN: BRXXAA  GB 1271655  19720426  
CAN 77:61806  AN 1972:461806 
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mono-amides in acetyl chloride for up to another 2 hours.61 Rentzepis and co-workers 

also developed a novel methodology which usually involved refluxing temperatures 

of up to 80oC, followed by the addition of hexamethyldisilazane (HMDS) in benzene, 

through a dropping funnel, over a period of 10 min.62 The reaction mixture was then 

refluxed for a further 4-20 h to obtain the fulgimides desired. We synthesized 

fulgimide 56 accordingly, employing 58 and obtained a yield of only 40% (Scheme 

29).63 Generally, the methods reported required either rather stringent conditions, or 

the use of rather harsh conditions to obtain the fulgimides in good yield. In our lab, 

we seeked to explore the possibility of using microwave technology, in order to 

develop an efficient and fast method of obtaining fulgimides in a mild fashion. Many 

papers and reviews have been published in recent years concerning microwaves in 

organic chemistry.64a-f  

 

                                                 
61 Attempts at refluxing acetyl chloride resulted in many decomposed products and low yields of 
desired fulgimides. As such, we decided to search for other less harsh methods. 
62 Liang, Y.; Dvornikov, A. S.; Rentzepis, P. M. Macromolecules, 2002, 35(25), 9377-9382. 
63 Generally, we suspected that the HMDS and the ZnCl2 employed were not dry enough and reaction 
conditions had to be very stringent in order to obtain high yields as reported by Rentzepis and co-
workers. 
64 (a) Abramovitch, R. A.; Org. Prep. Proced. Int. 1991, 23, 683-711. (b) Whittaker, A. G.; Mingos, D. 
M. P. J. Microwave Power Electromangetic Energy 1994, 29, 195-219. (c) Mingos, D. M. P.; Res. 
Chem. Intermed. 1994, 20, 85-91. (d) Mingos, D. M. P.; Baghurst, D. R. Chem. Soc. Rev. 1991, 20, 1-
47. (e) Majetich, G.; Hicks, R. Radiat. Phys. Chem. 1995, 45, 567-579. (f) Caddick, S. Tetrahedron 
1995, 51, 10403-10432. 
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4.2. ADVANTAGES OF THE MICROWAVE METHODOLOGY 

 

The main advantage microwave heating has over conventional thermal heating 

methods is the reported rate enhancements of reactions.65a-f Other advantages include 

the rapid but controlled heating of viscous materials or absorbing solids (e.g. 

absorbing polymers, solvent-free reactions). Microwave is also advantageous for 

reactions that require fast heating and cooling conditions, resulting in cleaner 

reactions (e.g. acid-free hydrolysis). Microwave can also be employed for reactions 

where homogeneous heating is required (e.g. zeolite synthesis) and also for reactions 

where selective heating is important.66

 

4.3. INTRODUCTION - DEFINITION OF MICROWAVE 

 

Microwaves67 can be defined as electromagnetic radiation of wavelengths 

between 1 cm and 1 m. In order not to interfere with radar and telecommunication 

installations, the magnetrons in domestic and industrial microwave equipment must 

operate within specified frequency bands. The most common band would be 

2.45GHz. Equipment operating within this band is readily available and relatively 

inexpensive. In addition, at 2.45GHz, polar solvents such as water and DMF readily 

absorbs microwaves in such a manner that the microwaves are not totally absorbed at 

the surface but penetrate and consequently heat the interior too.  

                                                 
65 (a) Kappe C. O., Larhed M. Angew. Chem. Int. Ed. 2005, 44(47), 7666-7669. (b) Kappe C. O. 
Angew. Chem. Int. Ed. 2004, 43(46), 6250-6284. (c) Martin, B.; Sekljic, H.; Chassaing, C. Org. Lett. 
2003, 5(11), 1851-1853. (d) Sun, W. C.; Guy, P. M.; Jahngen, J. H.; Rossomando, E. F.; Jahngen, E. G. 
E.; J. Org. Chem. 1998, 53, 4414-4416. (e) Bose, A. K.; Manhas, M. S.; Gosh, M.; Raju, V. S.; Tabei, 
K.; Urbanczyk-Lipkowska, Z. Heterocycles, 1990, 30, 741-744. (f) Adamek, F.; Hajek, M. 
Tetrahedron Lett. 1992, 33, 2039-2042. 
66 Cablewski, T.; Faux, A., Strauss, C. J. Org. Chem. 1994, 59, 3408-3412. 
67 Caddick, S. Tetrahedron 1995, 51(38), 10403 – 10432. 
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The heating of microwaves arises mainly from the dielectric polarization and 

conductive losses. Since the frequency of microwaves is in the range of the time 

associated with the polarization of dipoles, interaction of the dipoles with the 

oscillating electric field of microwaves is possible and consequently energy is 

absorbed and dissipated as heat. The factors used to describe the dielectric properties 

of matter are the well known dielectric constant ε’ and the dielectic loss factor ε”. The 

quotient of ε” and ε’ (ε”/ε’ = tan δ, where δ is the dissipation factor, and tan δ is the 

loss tangent) describes how efficiently a material is heated in a microwave field. 

Generally the larger the dielectric constant, the higher the susceptibility of a material 

to microwaves. For example water, lower alcohols and DMF have large dielectric 

constants.68  

 

The relatively low cost of modern domestic microwave ovens makes them 

reasonably readily available to academic and industrial chemists; however somewhat 

surprisingly only a relatively small number of organic synthesis research groups have 

reported their use.69a-c One disadvantage is that the variable power levels are produced 

by simply switching the magnetron on and off and this may be problematic if reaction 

mixtures cool down rapidly. Other potential problems encountered would be the 

uneven heating and generation of ‘hot spots’, that might heat the reaction to undesired 

temperatures.  

 

                                                 
68 Properties of: (a) H2O, b.p.: 100oC, dipole moment: 1.85, dielectric constant: 78.4; (b) MeOH: b.p.: 
68oC, dipole moment: 1.70, dielectric constant: 33.0; DMF: b.p.: 153oC, dipole moment: 3.82, 
dielectric constant: 38.3. 
69 (a) Gedye, R.; Smith, F.; Westaway, K.; Educ. Chem. 1988, 55 (b) Ali, M.; Bond, S. P.; Mbogo, S.  
A.; McWhinnie, W. R.; Watts, P. M. J. Organometallic Chemistry, 1989, 11, 371. (c) Bose, A. K.;  
Manhas, M. S.; Ghosh, M.; Raju, V. S.; Tabei, K.; Urbanezyk-Lipkowska, Z. Heterocycles, 1990, 30, 
741. 
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4.4. SYNTHESIS OF FULGIMIDES EMPLOYING MICROWAVE 

 

The synthesis of phthalimides using microwave was reported by Bogdal et 

al.,70a,b Chandrasekhar et al.71 and Borah et al.72 we decided to investigate if we could 

also use microwave irradiation for the formation of the mono-amide, as an alternative 

to the harsher conditions usually employed for the first step towards the synthesis of 

fulgimides. We also seeked to improve the yields of the fulgimides previously 

synthesized using thermal methods. We first started an initial synthesis of fulgimide 

57 (Scheme 30) in an effort to improve the yield of the molecule using milder 

conditions.  
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Scheme 30. Microwave assisted fulgimide synthesis vs. classical fulgimide synthesis of 57 

 
 

                                                 
70 (a) Bogdal, D.; Pielichowski, J.; Boron, A. Synlett, 1996, 873. (b) Bogdal, D.; Pielichowski, J.; 
Jaskot, K. Heterocycles, 1997, 45, 715. 
71 Chandrasekhar, S.; Takhi, M.; Uma, G. Tetrahedron Lett., 1997, 38, 8089,. 
72 Borah, H. N.; Boruah, R. C.; Sandhu, J. S. J. Chem. Res. 1998, 8, 272. 
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The reaction to form the half-amide took no longer than 40 minutes, with the 

subsequent ring closure, employing an excess of acetyl chloride, stirring at room 

temperature for 4-6 hours afforded fulgimide 57 with yields of up to 73% (Scheme 

30). This improvement of yield from the thermal heating route to obtain 57 was 

almost 2-fold and the reaction time was reduced by almost 3-fold.73 We also 

employed the classical fulgimide synthetic route towards fulgimides 53-57 as a 

comparison between the microwave methodology and the thermal heating 

methodology. Thermal heating was carried out for only the formation of the mono-

amide and stirring at room temperature was carried out for the ring-closure step. This 

was to explore if milder reaction conditions could afford fulgimides with appreciable 

yields. 

 

Based on the successful result obtained from the microwave reaction, we 

decided to screen through a series of amines, to determine if we could also synthesize 

other less accessible fulgimides, based on our synthetic study. Using the microwave-

assisted strategy, we managed to successfully synthesize a series of fulgimides with 

yields up to 85% (Scheme 31). 

                                                 
73 We extended the heating time for the synthesis of the half-amide as the reaction was not completed 
even after 2-4h of heating as reported in literature. It was only after refluxing the mixture overnight or 
up to 24h were we able to obtain almost complete disappearance of the starting material. Thin layer 
chromatography (TLC) monitoring was used throughout the reaction. 
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Scheme 31. Synthesis of fulgimides using microwave assistance 

 
Table 8. Improved yields of thienyl-fulgimides obtained through microwave-assisted 
synthesis 

 

 R2NH2

R1  

(IPP/ 

ADD) 

Z 
(S/O) 

Microwave 
power 

Time 
(min) 

ZnCl2 
method 

yield 
(%) 

Thermal 
heating 
yield 
(%) 

Microwave 
yield  

(%) 

53 
 

IPP S High 40 - 5-42 47 

54 
N  

IPP S High 40 0-15 20-39 16a

55 
 

IPP S High 40 - 42 65 

56 Cl
 

IPP S High 40 40 65 85 

57 Br
 

IPP S High 40 - 40 73 

61 NO2  IPP S High 35 - 0 36 

62 
 

IPP S High 25 - 6-70 74 

63 
N  

IPP S High 40 - 0 2b

64 Br
 

ADD S High 40 0 0 60 

a: 54 was obtained in low yield and was not pursued further.; b: 63 was obtained in very low yield and 
was used as a comparison to 54. Product showed photochromic property on TLC but was not promising 
and synthetically difficult to obtain. Note: Reactions were carried out in duplicate to ensure 
reproducibility. 
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Table 9. Yields of furyl-fulgimides obtained through microwave-assisted synthesis 

 

 R2NH2

R1  

(IPP/ 

ADD) 

Z 
(S/O) 

Microwave 
power 

Time 
(min) 

ZnCl2 
method 

yield 
(%) 

Thermal 
heating 
yield 
(%) 

Microwave 
yield  

(%) 

65 
 

IPP O High 40 - ~35 42 

66 
 

IPP O High 25 - 39 57 

67 Cl
 IPP O High 40 - 60 70 

68 Br
 IPP O High 40 - 52 65 

69 
 

IPP O High 25 - 65 69 

70 Br
 ADD O High 40 - 0 75 

 

With reference to Table 8 and Table 9, we observed that the microwave-

assisted synthesis of fulgimides generally led to a yield improvement when compared 

with the other methods tried. For fulgimide 53, the yield obtained was almost 

identical to the traditional method of refluxing the fulgide with the amine. However, 

the more significant difference with the two reactions would be the faster reaction 

time and minimal use of organic solvent. We managed to obtain fulgimide 55 with a 

yield of 65%. This was generally an improvement of 23% over the classical approach. 

With this in mind, we decided to screen through several aromatic amines to determine 

if we could obtain better yields. Activated amines generally gave higher yields when 

we used the microwave approach.74

 
                                                 
74 Microwave reactions were carried out in duplicate in order to ascertain the reproducibility of the 
reaction. Scale up (5mmol) of the reaction towards fulgimide 70 also gave yields up to 70%. 
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Thienyl-fulgimides 55, 56 and 57 were obtained with improved yields of up to 

85%. Fulgimide 62 was also obtained with a respectable yield of 74%. However 

fulgimides 54 and 63 were obtained in very low yields for unknown reasons. As an 

added example to illustrate the synthetic usefulness and extent of this methodology, 

we tried our hand at using a deactivated amine to determine if we could obtain the 

fulgimide. After several failed attempts to obtain the 4-nitro-phenyl-thienyl fulgimide 

61, employing high reflux temperatures, we were still left with the starting fulgide, in 

excess. However, when we employed microwave to effect the condensation to form 

the half-amide, we were surprised that we were able to cause a high conversion of the 

starting material and obtain a rather low yield of 61 (36%). The outcome was superior 

to the thermal procedure. 

 

Prior to the discovery of this microwave methodology, we were also interested 

in synthesizing the imide derivative of adamantanone(ADD)-thienyl fulgide 22 and 

ADD-furyl fulgide 23. The reported literature methods were attempted and we could 

not obtain any desired product. Riding on the success of the ability to effect 

functionalization, even for an unactivated amine, we decided to use 4-bromo-aniline, 

64, to synthesize the brominated-adamantanone (ADD) fulgimide derivatives, 64 and 

70. This was to allow us to further extend the chemistry of the fulgimides through a 

possible Heck reaction with other potential substrates. We were able to obtain 

satisfactory yields of 60% for fulgimide 64 (Table 8) and 75% for fulgimide 70 (Table 

9). Next, we also used furyl-fulgide 2 to synthesize the corresponding fulgimides 65-

70. Yields obtained were not as favorable as the thienyl-fulgimide analogs and were 
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up to 15% lower overall.75 Comparatively, the thermal heating route afforded yields 

lower by up to 18%. 

 

H2N H2N

 
 

Figure 16. Unsuccessful usage of highly hindered amines to afford fulgimides 

 

Some highly hindered amines were also explored to determine if they could be 

used to form the desired fulgimides (Figure 16) However, we could not effect the 

formation of the imide derivatives even after employment of other methods76 or 

microwave heating. 

                                                 
75 Comparison of yields for 56 and 67 which was 85% and 70% respectively 
76 NaH was used in the hope that the presence of a base would deprotonate the amine to facilitate the 
formation of the half-amide. Wolak, M. A.; Thomas, C. J.;Gillespie, N. B.; Birge, R. R.; Lees, W. J.;  J. 
Org. Chem., 2003, 68(2), 319-326. 
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4.5. COMPARISON OF PHOTOCHROMIC PROPERTIES OF THIENYL- AND FURYL-

FULGIMIDES – STRUCTURAL INFLUENCES ON THE UV ABSORBANCES. 

 

With reference to Table 10, using thienyl-fulgides 18 and 22 as references, we 

can see that the absorption maxima for the open forms of the fulgimides are blue-

shifted by up to 16nm when the oxygen moiety on the anhydride core is replaced by 

nitrogen. This blue shift can be caused by the presence of the nitrogen causing the 

anhydride core to adopt a less planar structure. However, the absorption maxima for 

the closed form did decrease by up to 18nm for fulgimide 62. Fulgimide 64, with the 

adamantanone group, was the fulgimide that showed the biggest difference between 

the absorption maxima of the open form and the closed form. Comparison of the 

percentage conversion of the open form to the coloured form for fulgide 22 and 

fulgimide 64 showed a two-fold increase, although they displayed poor conversion 

percentages.  

 

This result indicates that the presence of an imide functionality can possibly 

promote conversion rates. The presence of the large adamantylidene (ADD) group on 

the fulgide/fulgimide core is causing the bleaching of the coloured form. The presence 

of the large ADD group of 22 and 64 also caused a red shift of up to 36 nm when 

compared with the isopropylidene (IPP) analog 18. As a general trend, the 

corresponding fulgimides displayed conversion rates to their coloured forms with 

slightly better or similar percentages. 
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 The trend observed for the furyl-fulgimides is that the presence of the imide 

functionality caused a red shift of the coloured form by up to 20 nm (Table 10, 

fulgimide 67). However, the conversion percentage was observed to decrease by up to 

69%, for fulgimide 65. Comparison of ADD-furyl fulgide 23 and ADD-furyl 

fulgimide 70 displayed that a red shift of up to 14 nm could be obtained by formation 

of the imide derivative, which is similar to the properties displayed by the IPP-furyl 

fulgimides.  

 

4.6.  CONCLUSION 

 

Conversion rates to the coloured form were almost identical which indicated 

that the presence of the imide functionality did not affect the planarity of the coloured 

hexatriene moiety on colouration. As before, the attachment of the various functional 

groups like the free-terminal double bond on fulgimides 53, 65 and the bromo 

functionality on fulgimide 57, 64, 68, and 70, provides us with the option to further 

explore the possibility of enhancing conjugation, or attaching other structural moieties 

via olefin metathesis or the Heck coupling. 

 

To conclude, we have successfully demonstrated the synthesis of fulgimides 

employing the microwave-assisted strategy to obtain satisfactory yields under mild 

conditions and short reaction times. 

PART I – SYNTHESIS OF PHOTOCHROMIC FULGIDES 62



CHAPTER 4 – MOLECULAR TAILORING OF FULGIDE CORE 

Table 10. UV-Vis Absorption Maxima (nm) in CH2Cl2, of Open and Closed form of 
the thienyl-fulgides 18 and 22, furyl-fulgides 2 and 23 and corresponding fulgimides 
53-70. 

Fga λmaxOb 

(nm) 
ΑΟ

εΟ
(mol-1dm3cm-1) 

λmax Cc 

(nm) ΑC
εC  

(mol-1dm3cm-1) 
∆ λmax

d 

(nm) 
%  

Conversione

18 342 1.48 68465 538 0.69 32063 196 46.8 

22 340 2.20 40533 574 0.06 1099 234 2.7 

53 330 1.22 50705 526 0.31 12999 196 25.6 

54 Z: 330 
E: 328 

Z: 0.95 
E: 0.70 

Z: 33718 
E: 45171 

Z: 532 
E: 532 

Z: 0.30 
E: 0.31 

Z: 10709 
E: 20044 

Z: 202 
E: 204 

Z: 31.8 
E: 44.4 

55 Z: 330 
E: 328 

Z: 0.66 
E: 1.28 

Z: 18380 
E: 39842 

Z: 532 
E: 534 

Z: 0.28 
E: 0.52 

Z: 7879 
E: 16390 

Z: 202 
E: 206 

Z: 42.9 
E: 41.1 

56 326 1.06 342653 538 0.45 146703 212 42.8 

57 334 0.81 175631 538 0.40 86908 204 49.5 

61 330 0.65 27192 548 0.31 12951 218 47.6 

62 330 1.99 199684 520 0.62 62106 190 31.1 

63 330 2.36 298602 524 0.66 83877 194 28.1 

64 340 1.09 43570 574 0.06 2297 234 5.3 

2 346 0.97 52612 510 0.92 50278 164 95.6 

23 348 1.25 51881 538 0.27 11069 190 21.3 

65 338 0.85 18178 508 0.23 4911 170 27.0 

66 336 1.19 57994 514 0.65 31587 178 54.5 

67 334 0.91 88969 518 0.45 40648 184 45.7 

68 336 1.31 60274 518 0.59 26988 182 44.8 

69 338 0.97 36251 508 0.30 11249 170 31.0 

70 340 1.08 322536 544 0.22 67897 204 21.1 

a: Fulgide; b: Absorption maxima of Open-form.; c: Absorption maxima of Closed-form (Coloured form); d: 
Difference of Closed-form over Open-form; e: Percentage of Open-form converted to Closed-form (εc /εo x 100).  
Note: [C] of stock solutions were prepared in 1-8µmol and were repeated in duplicate. 
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5.1. EXPLORATION OF THE SYNTHESIS OF OTHER POTENTIAL FULGIDES 
 

After the successful synthesis of the cycloalkylidene fulgides and the 

development of the microwave assisted fulgimide synthesis, we decided to explore the 

possibility of synthesizing more novel fulgides, in an attempt to extend the current 

chemistry of photochromic fulgides. In this respect, we decided to explore the 

synthesis of potential indolyl-fulgides,77a-g modifying the heteroatomic fragment of 

the fulgide core (Figure 4). We also seeked to explore the modification of R2, in an 

effort to synthesize more possible analogs. 
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Figure 17. Modification strategy of indolyl fulgides  

                                                 
77 (a) Minkin, V. I.; Medyantseva, E. A.; Lyashik, T.; Metelitsa, A. V.; Andreeva, I. M.; Knyazhankii, 
M. I.; Volbushiko, N. V. Khim. Geterosiki Soedin, 1986, 11, 1569-1570. (Chem. Abstr. 107, 58780, 
1987). (b) Wang, H. Z. Synthesis and photochromic reactions of indolyl fulgides, Doctoral dissertation, 
Beijing Institute oftechnology, Beijing, China 1989. (c) Li, Y. Z. Synthesis and photochromic 
properties of heterocyclic fulgides, Doctoral dissertation, Beijing Institute of technology, Beijing, 
China 1990. (d) Matsushima, R.; Kaneko, A.; Tomoda, A.; lshizuka, M.; Suzuki, H. Bull. Chem. Soc. 
Jpn., 1988, 61(10), 3569-3573. (d) Yokoyama, Y.; Kurita, Y. J. Syn. Org. Chem. Jpn., 1991, 49(5), 
364-372. (d) Wang, F.; Wang, H. Z.; Li, Y. Z.; Fan, G. Y.; Cui, X. S.; Liu, Z. C. Acta. Chimica. Sinica 
Engl. Ed., 1989, 4, 349-355. (e) Fan, G. Y.; Wang, H. Z.; Cui, X. S.; Li, V. Z.; Zhu, H. S. Acta 
Physico-Chimica Sinica, 1992, 8(4), 545-549. (f) Y. Yokoyama, Y. Kurita, Dyestuffs Chemicals, 1992, 
37(6), 143-154. (g) Yokoyama, Y.; Kurita, Y. J. Chem. Soc. Jpn., Chem. Indus. Chem., 1992, 998-
1006. 
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Referring to Figure 17, we noted that we could modify R1 with electron-

donating substituents (EDG), in order to increase bathochromic shifts.77f, g, 78 R2 could 

be modified to include bulkier groups such as CF3 or iPr (c.f. CH3). R3’ and R3” could 

also be modified with other functional groups.  

 

N O

N

O

N ON O

71 (76%)                          72 (12%)                        73 (35%)                    74 (44%)  
 

Figure 18. Some acetylated indoles synthesized 

 

With these several possible avenues of molecular tailoring options open to us, 

we managed to synthesize several acetylated indoles to be used to synthesize some 

proposed indolyl-based fulgides. The following acetyl indoles, 71-74, were designed 

and synthesized according to literature procedures and were afforded with yields 

ranging 12 – 76% (Figure 18). 
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Scheme 32. Unsuccessful synthesis of fulgide 75 

                                                 
78 Yokoyama, Y.; Tanaka, T.; Yamane, T.; Kurita, Y. Chem. Lett. 1991, 1125-1128.   
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Upon preliminary synthesis of the target indolyl-fulgides, even when we 

employed LDA instead of NaH as the base of choice for the second Stobbe 

condensation, we were not able to afford the fulgides that we desired, as even the 

crude NMR of the mono-acid did not show peaks that would indicate otherwise. To 

that extent, we suspected that the sterically bulky benzylated indoles were perhaps too 

bulky to afford even the mono-acids. We encountered this problem even when we 

tried to synthesize the already reported indolyl-fulgide using indole 71. Usage of 

indoles 72 and 73 did not lead to any desired products. 
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Figure 19. Potential [1,5]-H shifts that would potentially cause photochromic fatigue of fulgide 76 

 

We decided not to use indole 74, as from literature reports, we suspected that 

there would be in fact [1,5]-H shifts that would cause photochromic fatigue of 

proposed fulgide 76C and was deemed not a promising indolyl-fulgide to target 

(Figure 19). 
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5.2. POSSIBLE EXTENSION OF FULGIDE CHEMISTRY – INCORPORATION OF 

POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (POSS) 

 

Polyhedral Oligomeric Silsesquioxanes or POSS are a versatile class of hybrid 

materials. Silsesquioxanes usually have a general formula (RSiO1.5)n where n = 8 – 14 

and R can be an organic functionality, hydrogen, OSiR3, etc. These compounds are 

basically a hybrid between silicones (R2SiO) and silica (SiO2). Since the 1930s, 

silsesquioxanes have been used in silicone technology for coatings in electronics and 

optical devices and optical fiber coatings.79a-d

 

Some properties of POSS-based system(polymers) include "self-healing" high-

temperature nanocomposites and space-survivable coatings,80a, b increased thermal 

stability (extended temperature range), low-k dielectric materials,81 high glass 

transition temperature, lowering of overall density, reduced flammability, high 

chemical resistance, increased oxygen permeability, enhanced blend miscibility, 

oxidative resistance, altered mechanicals and reduced viscosity.82 POSS-based 

systems can also serve as templates for the preparation of nanostructured materials 

such as liquid crystalline polymers, catalysts, dendrimers, and multiarm star 

polymers.83a-e

                                                 
79 (a) Voronkov, M. G.; Lavrent’yev, V. I.; Top. Curr. Chem. 1982, 102, 199. (b) Baney, R. H.; Itoh, 
M.; Sakakibara, A.; Suzuki, T. Chem. Rev. 1995, 95, 1409. (c) Agaskar, P. A. Inorg. Chem. 1991, 30, 
2707. (d) Lucke, S.; Stoppek-Langner, K. Applied Surface Science. 1999, 144-145, 713-317. 
80 (a) Gonzalez, R. I.; Phillips, S. H.; Hoflund, G. B. J. Spacecr. Rockets 2000, 37, 463. (b) Hoflund G. 
B.; Gonzalez, R. I.; Phillips, S. H. J. Adhes. Sci. Technol. 2001, 15, 1199.  
81 Hacker, N. P. MRS Bull. 1997, 22, 33. 
82 Please refer to the website: www.hybridplastics.com for more information. 
83 (a) Laine, R. M.; Zhang, C.; Sellinger, A.; Viculis, L. Appl. Organomet. Chem. 1998, 12, 715. (b) 
Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989, 111, 1741. (c) Duchateau, R.; 
Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma, A.; Thiele, S. K.-H.; van Tol, M. F. H. 
Organometallics 1998, 17, 5663. (d) Ropartz, L.; Foster, D. F.; Morris, R. E.; Slawin, A. M. Z.; Cole-
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In our lab, we were hoping to be able to incorporate the fulgides synthesized 

earlier into POSS-based systems; in this case, we were targeting the synthesis of 

photochromic POSS-based siloxy-cubes. We intended to use the bromo- or olefin-

functionality to effect the formation of (up to eight) possible photochromic 

components on the POSS-cube. We decided to use octavinyl-POSS (OVPOSS) for the 

intended reactions. As can be seen from Figure 20, OVPOSS has a thermally and 

chemically robust framework to allow further molecular tailoring of its octavinyl-

functionality. 
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Figure 20. Octavinyl-Polyhedral Oligomeric Silsesquioxanes (OVPOSS) cage structure 

 

As a preliminary study into the possible coupling of substituents on the olefin 

substituents on OVPOSS, we decided to investigate the viability of the Heck coupling 

with vinyl substituents on a siloxy-based system. Taking this into consideration, we 

decided to utilize tri-phenyl vinyl silane, 77, and bromo-benzene, 78, for model 

Heck84, a-i85  coupling studies (Scheme 31). Attempts to use styrene or a-methyl styrene 

in place of the vinyl silane surprisingly resulted in negative results. 

                                                                                                                                            
Hamilton, D. J. J. Chem. Soc., Dalton Trans. 2002, 1997. (e) Mengel, C.; Meyer, W. H.; Wegner, G. 
Macromol. Chem. Phys. 2001, 202, 1138. 
84 Heck, R. F. Acc. Chem. Res. 1979, 12, 146-152. 
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Scheme 33. Heck coupling of tripehnyl vinyl silane 77 with bromo-benzene 78 

 

 We were not able to afford the desired target molecule when we used reported 

literature methods employing classical thermal methods or more recently reported 

procedures.86a-d As such, we decided to explore the possibility of employing other 

methods to afford the Heck-coupled product 79.  

 

  

                                                                                                                                            
85 Selected leading reviews and monographs on the Heck reaction and related reactions promoted by Pd 
catalysts: (a) Palladium Reagents in Organic Synthesis; Heck, R. F.; Academic Press: London, UK, 
1985. (b) Comprehensive Organic Synthesis; Heck, R. F.; Trost, B. M.; Flemming, I.; Eds.; Pergamon: 
New York, 1991; 4(4.3). (c) Palladium Reagents and Catalysts; Tsuji, J.; John Wiley: Chichester, UK, 
1995. (d) Metal Catalyzed Cross Coupling Reactions; Bräse, S.; de Meijere, A.; Diederich, F.; Stang, 
P. J.; Eds. Wiley: New York, 1998, 3. (e) de Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 
1994, 33, 2379-2411. (f) Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427-436. (g) Casey, M.; Lawless, J.; 
Shirran, C. Polyhedron 2000, 19, 517-520. (h) Beletskaya, I. P.; Cheprokov, A. Chem. Rev. 2000, 100, 
3009-3066. For a recent discussion on the industrial aspects of the Heck reaction, see: Tucker, C. E.; de 
Vries, J. G. Top. Catal. 2002, 19, 111-118. 
86 (a) Heck, R. F.; Nolley, Jr. J. P. J. Org. Chem, 1972, 37(14), 2320-2322. (b) Malek, N. J.; 
Moormann, A. E. J. Org. Chem, 1982, 47, 5395-5397. (c) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc., 
2001, 123(29), 6989-7000. (d) Yao, Q.; Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68, 7528-7531. 
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Table 11. Ligandless, ionic-liquid supported, microwave-assisted Heck coupling 
towards molecule 79. 

  

Entry Halide Catalyst Base Solvent Co-solvent Reaction 
conditiong

% 
Yield 

1a Br-aniline Pd[P(tBu)3]2 NCy2Me 1,4-
dioxane - Heat 110oC 

(18h) 0 

2 PhBr Pd(OAc)2 NaOAc N,N-DMF - Heat 140oC 
(24h) <1 

3 PhBr Pd(OAc)2 NaOAc N,N-DMF - MW  
(10m, M) 41 

4b PhBr Pd(OAc)2 N(nBu)3 - - MW  
(10m, M) <1 

5c PhBr Pd(OAc)2 N(nBu)3 N,N-DMF - MW  
(10m, M) 5 

6 PhBr Pd(OAc)2 NCy2Me N,N-DMF - MW  
(10m, M) 0 

7d PhBr Pd(OAc)2 NCy2Me N,N-DMF [BMIM][BF4] 
MW  

(10m, M) 3 

8e PhBr Pd(OAc)2 NaOAc N,N-DMF [BMIM][BF4] MW  
(10m, M) 79 

9 PhBr Pd(OAc)2 NCy2Me N,N-DMF [BMIM][BF4] MW  
(10m, M) 3 

10 PhBr Pd(OAc)2 NaOAc N,N-DMF [BMIM][BF4] MW  
(10m, M) 79 

11f PhBr PdCl2 NaOAc N,N-DMF [BMIM][PF6] MW  
(10m, ML) 3 

12 PhBr Pd(OAc)2 NaOAc N,N-DMF [BMIM][BF4] MW  
(10m, ML) 86 

13 PhBr Pd(OAc)2 NaOAc N,N-DMF [BMIM][PF6] MW  
(10m, ML) 82 

14f PhBr PdCl2 NaOAc N,N-DMF [BMIM][BF4] MW  
(10m, ML) 57 

a: Ref: 83c. b: Attempted solvent-free conditions. c: Use of organic base N(nBu)3. d: Employment of organic 
base with IL. e: Employment of inorganic base with IL. f: Vallin, K. S. A., Emilsson, P., Larhed , M., Hallberg 
A., J. Org. Chem., 67 (17), 6243 -6246, 2002. g: Microwave power M = Medium, ML = Medium Low 

 

We were unsuccessful trying to afford product 79 via thermal methods using 

Pd(OAc)2 or Pd[P(tBu)3]2 (Table 11, Entry 1 & 2). We then decided to employ 
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microwave heating87a-e as an alternative solution. On employing this milder and faster 

approach, we were able to successfully obtain 79 with a yield of 41%, after 10mins of 

microwave heating (Table 11, Entry 3). Solvent free microwave reaction for Entry 4 

did not generate even a trace of the product. Even with a change of base from 

N(nBu)3 to NCy2Me, we were not able to obtain any product (Table 11, Entry 5, 6).  

 

With reference to some reported literature methods that ionic liquids could be 

also used in microwave-assisted Heck reactions, we also decided to explore the 

avenue of using “green-solvents”88a-h to carry out the Heck coupling. However, when 

we tried the Heck reaction using only ionic liquids89 as the solvent, we were not able 

to obtain any coupled product. We also tried running the reaction using both organic 

base and an ionic liquid (IL), but the reaction only afforded about 3% yield of 79 

(Table 11, Entry 7). Undeterred, we went on to use a 1:10 ratio of IL:Solvent and 

were able to obtain a two-fold increase in the yield obtained for 79 (Table 11, Entry 8) 

when we employed NaOAc. The IL is suspected to act either as a support for the Pd 

catalyst or as a dispersant. Initially, we observed that the formation of palladium black 

was almost instantaneous during the microwave heating. However, we also observed 

the formation of a relatively homogeneous black solution eventually. This could 

indicate that the fine particles of the Pd could have been able to disperse and spread 

more evenly on addition of an IL. This could effectively increase the surface area for 
                                                 
87 (a) Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582-9584. (b) Vallin, K. S. A.; Larhed, M.; 
Johansson, K.; Hallberg, A. J. Org. Chem. 2000, 65, 4537-4542. (c) Drug Discovery Today; Larhed, 
M.; Hallberg, A. 2001, 6, 406-416. (d) Strauss, C. R.; Trainor, R. W. Aust. J. Chem. 1995, 48, 1665-
1692. (e) Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225-9283. 
88 (a) Curran, D. P. Angew. Chem., Int. Ed. 1998, 37, 1175-1196. (b) Aqueous Phase Organometallic 
Catalysis; Cornils, B., Herrman, W. A., Eds.; Wiley-VCH: Weinheim, Germany, 1998. (c) Jessop, P. 
G.; Ikariya, T.; Noyori, R. Chem. Rev. 1999, 99, 475-493. (d) Beletskaya, I. P.; Cheprakov, A. V. 
Chem. Rev. 2000, 100, 3009-3066.(e) Welton, T. Chem. Rev. 1999, 99, 2017-2083. (f) Wasserscheid, 
P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772-3789. (g) Sheldon, R. Chem. Commun. 2001, 
2399-2407. (h) Leadbeater, N. E.; Torenius, H. M. J. Org. Chem. 2002, 67, 3145-3148. 
89 Ionic liquids (IL) used: [BMIM][BF4] and [BMIM][PF6]. 
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the Pd to catalyze the reaction. We then went back to the usage of an organic base, 

NCy2Me, but were again disappointed with the results (Table 11, Entry 9). The usage 

of PdCl2 instead of Pd(OAc)2 and using IL [BMIM][PF6] instead of [BMIM][BF4] did 

not effectively increase the yield as well (Table 11, Entry 11). We then re-employed 

Pd(OAc)2, NaOAc and [BMIM][BF4] and were able to get a better yield of up to 86% 

(Table 11, Entry 12) with a lower power setting as well. The change of IL used from 

[BMIM][BF4] to [BMIM][PF6] in the presence of Pd(OAc)2 seemed to lower the yield 

slightly to 82% (Table 11, Entry 13). The usage of PdCl2 and [BMIM][PF6] also 

resulted in a lower yield (Table 11, Entry 14).90

  

Based on the success of this ligandless, ionic liquid supported and microwave-

assisted Heck coupling methodology, we decided to use this method towards the 

synthesis of the photochromic POSS-based siloxy-cubes.  
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Scheme 34. Octasubstituted POSS 82 

 

                                                 
90 On prolonged heating on medium power, HF is suspected to evolve from the reaction vessel as white 
fumes can be observed although not confirmed. 
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We decided to use OVPOSS, 80, with bromobenzene, 81 (R=H), as the final 

model for the Heck coupling first as we wanted to ensure that the microwave-assisted 

Heck coupling could also be applied for the POSS systems. We were not able to effect 

the coupling of bromobenzene to the OVPOSS cage and only managed to obtain the 

coupled product 82 in 17% yield (Scheme 34).91
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Scheme 35. Octasubstituted POSS 82 and 85 

 

Due to the presence of the octa vinyl-functionality on OVPOSS (Figure 20), 

we decided also to explore the possibility of carrying out olefin metathesis reactions 

on the siloxy-cage. In fact a few literature reports have already been published with 

regards to this particular strategy. Kubicki et al.92 has published an article stating this 

methodology with great success. We also employed Grubbs Second generation 

catalyst to reproducible success in the cross-metathesis reaction involving OVPOSS 

and styrene (Scheme 35). We managed to obtain 82 with an almost quantitative yield 

and 85 with a yield of up to 60%.93 82 could be obtained with excellent yield by just 

refluxing the reaction mixture overnight or up to 24h, using Grubbs second generation 
                                                 
91 This was after numerous attempts changing base used, Pd catalyst used, catalyst loading, reaction 
time, reaction temperature, microwave power, solvents used, co-solvents used and usage of phosphine 
ligands. 
92 Itami, Y.; Marciniec, B.; Kubicki, M. Chem. Eur. J. 2004, 10, 1239-1248. 
93 MALDI-TOF results indicated the presence of a major peak at 1349.5580 (c.f. 1349.0973). 
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catalyst. In fact, when we employed Grubbs first generation catalyst, we were also 

able to obtain 82 with a yield of up to 95%.94 MALDI-TOF was used to determine the 

presence of the coupled product and the obtained results matched the expected results 

very closely.  

 

However, interestingly, we were not able to obtain 85 after 18 – 24h of stirring 

at 80oC. When we stirred the mixture at 95oC for 48h, we were able to obtain the octa-

substituted product as the major product with up to 60% yield. The heptyl-substituted 

product was also present in a smaller amount. MALDI-TOF analysis indicated the 

presence of the octa-substituted product at a m/z of 1461.7550 (+ Ag; c.f. Calcd. 

1461.2225) and the heptyl-substituted product at a m/z of 1371.6720 (+ Ag; c.f. 

Calcd. 1371.1756). The presence of a free olefin motif was also confirmed by 1H 

NMR.95
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Scheme 36. Mono-substituted POSS 86 

 

 As we were able to obtain respectable yields of the required coupled products, 

we were spurred on to use fulgimide 53 to investigate if we could potentially obtain 

                                                 
94 We were able to obtain the octa-substituted product as the major product with traces of heptyl-
substituted product. 
95 Please refer to the chapter of supporting information. 
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the octyl-substituted POSS that we desired. However, from preliminary 1H NMR and 

MALDI-TOF results, we seemed to have only obtained the mono-substituted product 

86, in low unisolable yield. From TLC, we could still observe the large presence of 

the starting fulgimide 53 in the presence of streaks, which did indicate the presence of 

photochromic products as they changed from colourless to slightly purplish upon 

exposure to UV-irradiation. This result was only obtained after we refluxed the 

reaction mixture for 4 days in the presence of Grubbs second generation catalyst. 

When we employed Grubbs first generation catalyst, we did not obtain any product at 

all and only starting fulgimide 53 was present. 

 

5.3. CONCLUSION AND FUTURE WORK – EXPLORATION OF PHOTOCHROMIC 

NANOPARTICLES 

  

Our future work would include the further extension of the chemistry of 

fulgides and the possibility of synthesizing photochromic polymers with the 

utilization of OVPOSS. We hope to be able to form photochromic nanoparticles that 

could be, in turn, formed into polymers. We are also targeting the synthesis of 

photochromic indolyl-based fulgides as these fulgides seem to display good 

photochromic as well fluorescent properties. The key strategy towards such fulgides 

would be the modification of substituents on the indole moiety, in order to study other 

effects that might affect photochromic properties. We have also selected several 

fulgides to be included in the chemical genetics screening project (Please refer to 

APPENDIX section). 
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CHAPTER 1 – INTRODUCTION TO SARS 

1.1. INTRODUCTION TO SEVERE ACUTE RESPIRATORY SYNDROME (SARS) 

 

Severe Acute Respiratory Syndrome (SARS) was first reported in Asia in 

February 2003. Epidemiological evidence suggests that the transmission of this 

pathogen occurs mainly by face-to-face contact, although other routes of transmission 

cannot be fully excluded. Over a few months, the disease has spread from its likely 

origin in Southern China to more than two dozen countries in North America, South 

America, Europe, and Asia with more than 8000 cases of infection (Table 1).1  

 
Table 1. Number of infections and deaths caused by SARS (based on data as of 31st December 2003) 

Country Infections Deaths 

China 5237 349 

Hong Kong 1755 299 

Taiwan 346 37 

Canada 251 43 

Singapore 238 33 

Viet Nam 63 5 

The World 8096 774 
 

At present, no efficacious therapy is available. However, even though the 

outbreak has been well-contained, there is the possibility that the disease might re-

emerge once again, especially during the colder and more humid winter months.1b It is 

therefore paramount that we still carry on the search for a possible cure. SARS is 

mainly characterized by high fever, malaise, rigor, headache, and non-productive 

cough or dyspnoea and may progress to generalized interstitial infiltrates in the lung. 

                                                 
1 Please refer to: (a) http://www.who.int/csr/sars/country/en/ (b) http://www.cdc.gov/ncidod/sars/  (c) 
http://sarsdisease.org/who.shtml  
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This might require intubations and possible mechanical ventilation.2  The fatality rate 

among people with the illness is around 15%.1b

 

Human coronaviruses (HCoV) are major causes of upper respiratory tract 

illness in humans, in particular, the common cold.3 To date, only the 229E strain of 

HCoV has been characterized in detail because it used to be the only isolate that 

grows efficiently in cell culture. A novel coronavirus has been identified as the 

causative agent of severe acute respiratory syndrome (SARS). The viral main 

proteinase (Mpro, also frequently called 3CLpro), controlling the activities of the 

coronavirus replication complex, represents an attractive target for therapy.4b

 

1.2. SARS-COV 3CL PROTEASE (3CLPRO) BACKGROUND 

 

Generally, viruses have proteases to process their proteins into active form. 

Because of its pivotal role in the viral life cycle, proteases are primary targets for the 

development of antiviral agents. 3CL protease (3CLpro), a viral cysteine proteinase, 

plays an important role in co-translational proteolytic processing of coronavirus 

polyproteins. The 3CLpro cleaves as much as 11 sites in the replicase polyproteins and 

also releases the key replicative functions of polymerase and helicase. 3CLpro is the 

only coronavirus protein for which structural information is available and basically 

comprises three domains. The substrate-binding site is expected to be located between 

domains I and II, and domain III is a globular cluster comprising five helices. 

 

                                                 
2 Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G. M.; Ahuja, A.; Yung, M. Y.; Leung, C. B.; 
To, K. F.; Lui, S. F.; Szeto, C. C.; Chung, S.; Sung, J. N. Engl. J. Med.  2003, 348, 1986-1994. 
3 The Coronavirdae, Myint, S. H.; S. G. Siddell, Ed. 1995, 389. 
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The spike (S) glycoprotein is a good candidate for vaccines because 

neutralizing antibodies are directed against S. Blockade of the specific virus receptor 

on the surface of the host cell by monoclonal antibodies or other ligands can prevent 

virus entry. The polyprotein of the replicase protein is cleaved into functional units by 

virus-encoded protease. Protease inhibitors may block replication. The membrane (M) 

protein required for virus budding, the envelope (E) protein plays a role in 

coronavirus assembly, the nucleocapsid (N) phosphoprotein associated with viral 

RNA inside the virion. Theoretically, all these steps can be used as targets to screen 

anti-SARS drugs.4a-e
  

 

However, the SARSCoV 3CLpro
 is a preferred target for the task of 

discovering anti-SARS drugs by the following reasons: (1) the SARS-CoV 3CLpro
 

possibly plays an important role in the SARS-CoV replication as deduced from the 

function of the 3CLpro
 of other coronaviruses; (2) numerous inhibitors of other 3CLpro

 

are available and several of them are in clinical test, if some of them show anti-SARS 

activity, they can be developed as anti-SARS drug rapidly; (3) SARS-CoV 3CLpro
 can 

be expressed in E. coli strain, and thus screening model can be establish quickly; (4) 

homology modeling can be employed to construct the three-dimensional (3D) 

structure of this protease because highly homologous protein with X-ray crystal 

structure has been found, thereby structure-based drug design methods, such as virtual 

                                                 
4 (a) Holmes, K. V. J. Clin. Invest. 2003, 111, 1605-1609. (b) Anand, K.; Ziebuhr, J.; Wadhwani, P.; 
Mesters, J. R.; Hilgenfeld, R. Science 2003, 300(16), 1763-1773. (c) Li, G.; Chen, X.; Xu, A. N. Eng. J. 
Med. 2003, 349, 508-509. (d) Simmons, G.; Reeves, J.D.; Rennekamp, A.J.; Amberg, A.M.; Piefer, 
A.J.; Bates, P. Proc. Natl. Acad. Sci. 2004, 101(12), 4240-4245. (e) Loutfy, M.R.; Blatt, L.M.; 
Siminovitch, K.A.; Ward, S.; Wolff, B.; Lho, H.; Pham, D.H.; Deif, H.; LaMere, E.A.; Chang, M.; 
Kain, K.C.; Farcas, G.A.; Ferguson, P.; Latchfold, M.; Levy, G.; Dennis, J.W.; Lai, E.K.; Fish, E.N. 
Jama 2003, 290, 3222-3228. 
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screening, can be applied to search active compounds from the compound 

databases.5a-d

 

The SARS-CoV proteins required for genome replication and transcription are 

encoded by the large replicase gene. This gene encodes two very large replicative 

polyproteins, namely pp1a (~450 kDa) and pp1b (~750 kDa) that are subsequently 

processed by virus-encoded proteases to release a group of functional subunits of the 

replication complex. The cleavage of the polyproteins is usually executed by two to 

three cystein proteases, one with a chymotripsin fole and the other two with a papain-

like topology. It is known that the central and C-proximal regions of pp1a and pp1b 

are cleaved by the 33 kDa viral protease with the chymotripsin fold which was called 

‘main protease’ or alternatively, the ‘3C-like protease (3CLpro)’ to indicate the 

similarity with the picovirus 3C protease in sharing the chymotripsin fold and 

cleavage specificity.  

 

The SARS-CoV 3CLpro
 is a chymotrypsin-like protease that uses a Cys rather 

than a Ser residue as the nucleophile in the active site. The SARS-CoV 3CLpro
 

employs a catalytic Cys-His dyad and contains 304 amino acids, folded into three 

domains. Domains I and II (residues 8 to 99 and 100 to 183, respectively) are six-

stranded antiparallel β barrels and together resemble the architecture of chymotrypsin 

and of piconavirus 3C protease. The substrate-binding site is located in a cleft 

                                                 
5 (a) Chou, K. C.; Wei, D. Q.; Zhong, W. Z. Biochem. Biophys. Res. Commun. 2003, 308, 148. (b) 
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; 
Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z.; Proc. Nat. Acad. Sci. 2003, 100(23), 13190-13195. 
(c) Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, G.; Cinatl, J.; Rabenau, H.; Doerr, 
H.W.; Hunsmann, G.; Otaka, A.; Tamamura, H.; Fujii, N.; Yamamoto, N. Biochem. Biophys. Res. 
Commun. 2004, 318, 719-725. (d) Xiong, B.; Gui, C.S.; Xu, X.Y.; Luo, C.; Chen, J.; Luo, H.B.; Cheng, 
L.L.; Li, G.W.; Sun, T.; Yu, C.Y.; Yue, L.D.; Duan, W.H.; Shen, J.K.; Qinm L.; Shi, T.L.; Li, Y.X.; 
Chen, K.X.; Luo, X.M.; Shen, X.; Shen, J.H.; Jiang, H.L. Acta. Pharmacol. Sin. 2003, 24(6), 497-504. 
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between these two domains. A long loop (residues 184 to 199) connects domain II to 

the Cterminal domain (domain III, residues 200 to 300). The SARS-CoV 3CLpro
 

cleaves the polyprotein at no less than 11 conserved sites involving Leu-Gly ↓ 

(Ser,Ala,Gly) sequences (the cleavage site is indicated by ↓), a process initiated by the 

enzyme’s own autolytic cleavage from pp1a and pp1ab. This cleavage pattern appears 

to be conserved in the 3CLpro from SARS-CoV.6a-g

 

1.3. ACTIVE SITE AND BINDING POCKET OF SARS-COV 3CLPRO FOR INHIBITORS. 

 

In contrast to common serine proteases, which have a Ser-His-Asp catalytic 

triad, SARS-CoV 3CLpro
 has a Cys-His catalytic dyad (Cys-145 and His-41). This is 

similar to transmissible gastrointestinal virus main protease (TGEV Mpro) and human 

coronavirus main protease (HcoV Mpro) (Cys-144 and His-41). In the substrate 

catalytic reaction of SARSCoV 3CLpro, Cys145 acts as the nucleophilic attacking 

agent and His145 figures as an acid base catalyst. The distance between the S atom of 

Cys145 and Nε2 atom of His41 is 3.81 Å. The substrate-binding site is located in the 

deep cleft between domains I and II, lined by hydrophobic residues and oxyanion hole 

(Figure 1).5b

                                                 
6 (a) Zieburhr, J.; Heusipp, G.; Siddell, S.G. J. Virol. 1997, 71, 3992-3007. (b) Fan, K.; Wei, P.; Feng, 
Q.; Chen, S.; Huang, C.; Ma, L.; Lai, B.; Pei, J.; Lui, Y.; Chen, J.; Lai, L.; J. Bio. Chem. 2004, 1637-
1642. (c) Huang, C.; Wei, P.; Fan, K.; Liu, Y.; Lai, L.; Biochem 2004, 43, 4568-4574. (d) Lin, C.W.; 
Tsai, C.H.; Tsai, F.J.; Chen, P.J.; Lai, C.C.; Wan, L.; Chiu, H.H.; Lin, K.H. FEBS Lett 2004, 574, 131- 
137. (e) Zhang, X.W.; Yap, Y.L. Bioorg. & Med. Chem. 2004, 12, 2219-2223. (f) Lee, V.S.; 
Wittayanarakul, K.; Remsungnen, T.; Parasuk, V.; Sompornpisut, P.; Chantratita, W.; Sangma, C.; 
Vannarat, S.; Srichaikul, P.; Hannongbua, S.; Saparpakorn, P.; Treesuwan, W.; Aruksakulwong, O.; 
Pasomsub, E.; Promsri, S.; Chuakheaw, Hannongbua, S. ScienceAsia 2003, 29, 181-188. (g) Zieburhr, 
J. Curr. Opin. Microbiol. 2004, 7, 412-419. 
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Figure 1. A schematic presentation of the substrate binding pocket of SARS-CoV 3CLpro

 

There is a relatively large number of lead compounds from several molecular 

structure classes that reported thus far for inhibiting SARS-CoV 3CLpro. The SARS-

CoV 3CLpro inhibitor AG7088 fall into the general class of peptide based analogues.  

 

1.3.1. PEPTIDE SARS-COV 3CLPRO INHIBITORS 

 

The SARS-CoV 3CLpro/inhibitor complex structures have been determined by 

X-ray crystallography and have been used to guide the rational design of SARS-CoV 

3CLpro  inhibitors. Structure of the complex formed by SARS-CoV 3CLpro
 with the 

substrate analogue hexapeptidyl chloromethyl ketone (CMK) inhibitor, Cbz-Val-Asn-

Ser-Thr-Leu-Gln-CMK, showed that a covalent bond between the Sγ atom of Cys-

145 and the methylene group of the CMK stabilize the conformation of substrate-

analogue CMK in the substrate binding site. This crystal structure provides a solid 

PART II – SYNTHETIC STUDIES TOWARDS ANTI-SARS AGENT AG7088 81



CHAPTER 1 – INTRODUCTION TO SARS 

basis for the design of anti-coronaviral drugs.5b Chou et al. studied the binding 

interactions of KZ7088 by molecular docking. KZ7088 is a derivative of AG7088, the 

latter was developed by Pfizer and its currently in clinical trials for the treatment of 

rhinovirus, a pathogen that can cause the common cold (Figure 2). Although it is a 

putative candidate for docking studies related to SARS drug finding, AG7088 has a p-

fluorophenylalanine side chain (p-fluorobenzyl), with might be too long (or bulky) to 

fit into the relevant binding pocket. Accordingly, KZ7088 with a modified side chain 

by removing –CH2 could serve as a starting point for modification that will quickly 

lead to effective drug candidates for the treatment of SARS. It has been observed that 

KZ7088 interacts with the active site of SARS-CoV 3CLpro
 through six hydrogen 

bonds.5a
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Figure 2. Molecular structure of AG7088 and its analog KZ7088 

 

Amongst the many possible approaches, proteinase inhibitor development is 

perhaps the most attractive route for synthetic chemists. Proteinases play an important 

role in the process of virus replication as well as in the pathophysiology of many viral 

diseases. Many viruses, including the SARS coronavirus, rely on a protein-cleaving 

enzyme called main proteinase to activate their replication. Such viruses must 
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replicate themselves in order to cause infection, making this enzyme a primary target 

for the drug to be developed.   

 

In order to find an efficient therapy for SARS, many scientists are focusing on 

the development of drugs that inhibit the viral main proteinase (SARS-CoV Mpro) and 

disrupt the replication cycle of the virus. In May 2003, Hilgenfeld and co-workers 

showed that the substrate-binding site in SARS-CoV Mpro is well conserved compared 

to those in two other coronavirus main proteinases (HCoV 229E and TGEV Mpro).5b 

In addition, they reported similarities between substrate/inhibitor-binding modes of 

SARS-CoV Mpro and the distantly related human rhinovirus 3C proteinase (HRV 

3Cpro). Molecular modeling also showed that the lactone derivative of glutamine and 

the 5-methyl-isoxazole-3-carbonyl group on AG7088 can be easily accommodated by 

the SARS main proteinase. However, the p-fluorobenzyl moiety might be too long to 

fit into the active site of the proteinase.5a 
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Figure 3. Molecular structure of AG7088, 1 

 

Based on these findings, it was suggested that the HRV 3Cpro inhibitor, 

AG7088, could serve as a good starting point for modifications leading to an efficient 

inhibitor for the SARS-CoV Mpro and possibly other coronavirus main proteinases. 
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AG7088 is currently under clinical trial for treatment of the “common cold” caused 

by HRV. As shown in Figure 1, we envisioned the possibility to modify three key 

components of the structural core of AG7088, 1, as highlighted in Figure 3. 

 

1.4. FORMAL SYNTHESIS OF AG7088 – RETROSYNTHETIC STRATEGY 
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Scheme 1. Retrosynthesis of AG7088, 1 

 

There have been various procedures reported for the total synthesis of 

AG7088.7a-d With reference to Scheme 1, the retrosynthesis of AG7088, 1, is shown 

                                                 
7 (a) Tian, Q.; Nayyar, N. K.; Srinivasan, B.; Chen, L.; Tao, J.; Moran, T.; Dagnino, R.; Remarchuk, T.; 
Melnick, M.; Mitchell, L.; Bender, S. Canadian patent no CA 02376509 2001. (b) Tian, Q.; Nayyar, N. 
K.; Srinivasan, B.; Dagnino, R.; Remarchuk, T.; Moran, T.; McGee, K. Canadian patent no CA 
02376452 2001. (c) Dragovich, P. S.; Prins, T. J.; Zhou, R.; Johnson, T. O.; Brown, E. L.; Maldonado, 
F. C.; Fuhrman, S. A.; Zalman, L. S.; Patick, A. K.; Matthews, D. A.; Hou, X. J.; Meador, J. W. III.; 
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with the strategy of disconnecting at the amide bond. This is to make the synthetic 

route convergent and hence efficient. Our strategy is to couple lactone 2 and lactam 5 

towards the synthesis of 1. 

 

                                                                                                                                            
Ferre, R. A.; Worlandy, S. T. Bioorg. Med. Chem. Lett. 2002, 12, 733. (d) Tian, Q.; Nayyar, N. K.; 
Srinivasan, B.; Chen, L.; Tao, J.; Lee, S.; Tibbetts, A.; Moran, T.; Liou, J.; Guo, M.; Kennedy, T. P. 
Tetrahedron Lett. 2001, 42, 6807-6809.
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CHAPTER 2 – SYNTHESIS OF LACTONE 2 

2.1. INTRODUCTION – SYNTHESIS OF LACTONE 2 
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Scheme 2. Synthesis of analogous molecule 11 

 

Before we commenced on the synthesis of lactone 2 (Scheme 1), we 

conducted an in depth literature search on how this fragment had been synthesized in 

the past. We observed that the synthetic route adopted by Tian and co-workers, 

towards the synthesis of 4, was not very efficient.7 
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Figure 4. Fragment of 9 to be modified 
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Scheme 2 illustrates the synthesis of 4, according to Canadian Patent 

CA02376509.7a Firstly, we envisioned difficulty in synthesizing analogues of 

AG7088, 1, from this synthetic route, as molecular tailoring of the p-fluorobenzyl 

group, highlighted in Figure 4, would require the synthesis of other chiral molecules 

analogous to 9. This would increase the number of steps required for the synthesis of 

other analogs of fragment 4. 

 

Next, from Scheme 2, we observed that the 5-methyl-isoxazole-3-carbonyl 

group, 12 was being introduced in the second last step of the synthesis, towards 13. 

This particular step requires the addition of two steps, namely, protection and 

deprotection of the amino group (with Cbz, towards 8). This would lengthen the 

synthetic route as well as decrease the efficiency. Furthermore, Tian et al. reported, 

that the last step towards 4 was carried out using enzymes. This presented a major 

limitation in our lab as the success of the last step would greatly depend on the 

availability and quality of the enzyme used. 

 

Taking these limitations into consideration, more efficient methods towards 

the synthesis of fragment 4 and its analogs were needed. Hilgenfeld et al. suggested 

that most parts of AG7088, 1, could be accommodated by the active site of the SARS-

CoV Mpro. Based on molecular modeling, only the p-fluorobenzyl group might be too 

long to fit into the pocket. In our formal synthesis of 2, the p-fluorobenzyl group is 

introduced in the final step, allowing us to generate analogues of 1 by simply 

changing the organocuprate reagent employed. 
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2.2. RETROSYNTHESIS OF LACTONE 2 
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Scheme 3. Retrosynthesis of 2 

 

Examining the structure of 2, we can see that the p-fluorobenzyl group can be 

introduced via a Michael addition reaction to α-methylene-γ-butyrolactone 14 

(Scheme 3). Lactone 14 can be obtained from the corresponding homoallylic alcohol 

16, which can be disconnected at the C atom bearing the hydroxyl group to result in 

aldehyde 17 and the allylic bromide 18. Functional group interconversion provides 

ester 19, which can be in turn obtained from the coupling of 5-methyl-isoxazole-3-

carboxylic acid 20 and L-valine amino acid 21. L-valine (as well as L-leucine) are 

natural occurring amino acids and are commercially available. 

 

The stereochemistry of the p-fluorobenzyl group is the most critical criteria in 

determining the success in the synthesis of fragment 2. Similar types of Michael 
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addition reactions have been reported with high selectivity, provided that the 

stereochemistry of lactone 16 is correct.2 The stereochemistry of this lactone however 

is derived from the corresponding alcohol 13, which is the product of an indium 

allylation. Therefore, controlling the stereochemistry of the indium allylation reaction 

is a critical step in this synthetic route. 

 

N
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N
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O F

N
H
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N
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O F

2                                                                               23  
 

Figure 5. Analogous structures lactone 2 and 23 

 

By simply replacing L-valine amino acid with L-leucine amino acid (Figure 

5), we were able to effect a small modification to the overall structure of lactone 2 to 

generate lactone 23. We can easily modify the structure of lactone 2 in order to 

generate other analogs that might also potentially display anti-SARS properties. This 

amino acid residue is believed to remain intact during the synthesis of lactone 2. 

Accordingly, we also believed that there was not much difference between the L-

leucine analog 23 when compared with the L-valine analog 2 in terms of the reactions 

that lead towards the synthesis of fragment 2. Finally, in our synthesis of 2, the p-

fluorobenzyl group introduced in the final step, providing us with another avenue to 

generate analogues of AG7088 by simply changing the organocuprate reagent 

employed. 
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2.3.  SYNTHESIS OF KEY INTERMEDIATE 27 
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Scheme 4. Synthesis of 2 via key intermediate 27 

 

With reference to Scheme 4, the L-valine methyl ester hydrochloride salt 22 

was first coupled with 5-methylisoxazole-3-carboxylic acid 208 to give methyl ester 

24 in almost quantitative yield. Subsequently, NaBH4 reduction of 24 in methanol 

afforded β-aminoalcohol 25 in 99% yield. Alcohol 25 was then oxidized to α-

aminoaldehyde 26 under Swern conditions. As α-aminoaldehydes are particularly 

prone to epimerization, no purification was performed on 26.9 Instead, the crude 

product from Swern oxidation was used directly in the subsequent indium-mediated 

allylation reaction. Thus, crude aldehyde 26 was reacted with methyl 2-

                                                 
8 20 was obtained in yields ranging 11-45% by refluxing acetonylacetone for 1h in HNO3. 
9 Jurczak, J.; Gołębiowski, A. Chem. Rev. 1989, 89, 149-164. 
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(bromomethyl)acrylate 18 in the presence of indium metal to furnish homoallylic 

alcohol 27 in overall 66% yield (from 25) with almost complete syn 

diastereoselectivity (syn:anti = 98:2).  
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Scheme 5. Felkin – Anh chelation model 

 

The unusually high diastereoselectivity for the indium-mediated allylation 

might be explained based on the Felkin – Anh chelation model.10a, b As shown in 

Scheme 5, the α-nitrogen atom can coordinate to the indium metal to form a five-

membered chelation ring. We can see in the transition state leading to the anti isomer 

29b, that there is more pronounced steric repulsion between the i-propyl group and 

the R group in the axial position (R = COOMe). As a result, the syn isomer 29a is 

favoured.  

  

                                                 
10 (a) Cherest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199-2204. (b) Anh, N. T. Top. 
Curr. Chem. 1980, 88, 145-162. 
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Scheme 6. High syn: anti ratio obtained for isoxazole analogs 27a, b and 33a, b 

 

However, it has been reported by Podlech et. al. that when the α-amino group 

was protected using benzyloxycarbonyl (Cbz), the indium-mediated allylation of the 

corresponding L-valinal gave 29a:29b with a syn:anti diastereoisomeric ratio of only 

82:18.11a, b In addition, when we performed the same indium-mediated allylation 

reaction on N-t-butyloxycarbonyl-L-valinal, we obtained the homoallylic alcohol 

30a:30b as an 87:13 mixture of syn:anti isomers (Scheme 6). Clearly, chelation of the 

α-nitrogen atom and the steric bulkiness of the i-propyl group cannot totally account 

for the observed selectivity in our reaction. This suggests that the isoxazole motif of 

27 could have been involved. 

 

Therefore, we propose that the nitrogen atom of the isoxazole ring coordinates 

to the indium atom, forming a second five-membered chelated ring (Scheme 7). The 

                                                 
11 (a) Loh, T. P.; Wang, R. B.; Tan, K. L.; Sim, K. Y. Main Group Metal Chemistry 1997, 20, 237-240. 
(b) Steurer, S.; Podlech, J. Eur. J. Org. Chem. 1999, 1555-1560. 
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interaction of the isoxazole motif with indium metal causes the transition state to be 

more rigid (compare Schemes 5 and 7). 
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Scheme 7. Formation of 5-membered chelation ring with isoxazole motif towards 27a and 27b 

 

Less puckering of the transition state (R’ = isoxazole, 27) is now possible 

(compared to R’ = Cbz, 29 or Boc, 30) to minimize the steric repulsion between the i-

propyl group and the ester motif. The transition state leading to the anti product, 27b, 

is therefore further destabilized, resulting in the increase in the syn:anti (a:b) 

selectivity from 82:18 and 87:13 to 98:2, respectively. In our synthesis of the L-

leucine analogue of fragment 2, an improvement in the syn:anti selectivity of 32 and 

33 was also clearly demonstrated (Scheme 6). The excellent diastereoselectivity in the 

allylation step makes our synthetic strategy of 2 very efficient and paves the way for 

controlling the second stereogenic centre in the molecule. 
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2.4.  CONJUGATE ADDITION OF 34 TOWARDS LACTONE 2 
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Scheme 8. Conjugate addition of the organocuprate reagent to 34 to afford 2 

 

Upon accomplishing this critical step, homoallylic alcohol 27 was cyclized 

using p-toluenesulfonic acid in dichloromethane to afford α,β-unsaturated lactone 34 

in high yield (89%), (Scheme 8). Conjugate addition of the organocuprate reagent 

(formed in situ from p-fluorobenzylmagnesium bromide and copper(I) cyanide) to 34 

finally provided key intermediate lactone 2 in 50% yield as a mixture of isomers 

(cis:trans = 39:61). The desired trans isomer 2a was obtained as the major product 

(confirmed by NOE experiments, experimental section). Overall, fragment 2 was 

synthesized in six steps from L-valine methyl ester hydrochloride (Scheme 4 and 8). 

 

Herein, we have completed the asymmetric synthesis of a key intermediate, 

lactone 2 in our synthetic approach towards AG7088 and its analogues. The critical 

step in the synthesis involved a highly diastereoselective indium-mediated allylation 

reaction. We next moved on to the synthesis of key fragment, lactam 3.
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CHAPTER 3 – SYNTHESIS OF LACTAM 3 

3.1. INTRODUCTION – SYNTHESIS OF DIESTER 37 TOWARDS LACTAM 3 

  

 Synthesis of lactam 3 was carried out using a combination of reported 

literature procedures. The key papers were reported by Tian et al. in 20017d and in 

their patent, reported in 2002.7b We decided to adopt the scheme reported then with 

some minor modifications. 
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Scheme 9. Synthesis of protected diester 37 

 

Although the route might look simple, there are several key points and steps to 

note. The synthesis of 37 started with the esterification of commercially available L-

(+)-glutamic acid 35 to afford crude diester 36. After a standard acid-base workup, the 

crude diester was used directly of the next step. We decided to modify the protection 

step by employing sonication which reduced reaction time used and afforded the 

required protected diester 37 in 88% smoothly.12  

                                                 
12  Einhorn, J.; Einhorn, C.; Luche, J. L. Synlett, 1991, 37. This reduced the reaction time required for 
the amine protection from 18-20h employing classical conditions to 3-4h, employing sonication. 
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3.2. CYANOALKYLATION OF DIESTER 37 TOWARDS DIESTER 38 
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Scheme 10. Cyanoalkylation of diester 37 to afford 38 

 

Our synthesis continued with the next key step which was the dianionic 

alkylation of 37 using LiHMDS and bromoacetonitrile. The γ-alkylations of glutamate 

derivatives have been known to be highly dependent on the nature of the N–

substituent and the ester group.13 A method of novel stereochemistry was first 

developed by Hanessian et al. who reported a highly stereoselective 1,3-asymmetric 

dianionic alkylation of N-Boc-L-(+)-glutamic acid dimethyl ester.14a, b Accordingly, 

Tian et al. also adopted this as a key step and reported that the cyanomethylation 

reaction of the same compound was highly stereoselective (de>98%) and applied this 

as a key step to synthesize lactam 3.7d As expected, we managed to obtain the highly 

stereo-selective cyano-alkylated diester 39, in good yield after several attempts, at 

59%.15 However, unlike the reported procedure by Tian et al., we had to purify diester 

37 well before commencing the next step. If the crude reaction mixture was used as 

reported, we could not obtain any product for the next step. 

 

                                                 
13 Hanessian, S.; Schaum, R. Tetrahedron Letters 1997, 38, 163. 
14 (a) Hanessian, S.; Margarita, R. Tetrahedron Lett. 1998, 39, 5877-5890. (b) Hanessian, S.; Margarita, 
R., Hall, A.; Luo, X. Tetrahedron Lett. 1998, 39, 5883-5886. 
15 Our obtained cyano-alkylated diester was characterized and the data obtained matched the product 
from reference 6d exactly. No indication of the syn-iomer was observed in the 1H NMR. Several 
attempts had to be carried out for this step. An excess of base and bromoacetonitrile had to be used as 
well. This step in particular had to be carried out under very stringent conditions and was particularly 
demanding. 
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3.3. HYDROGENATION OF INTERMEDIATE 39 TOWARDS LACTAM 40 
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Scheme 11. Ring closure towards the synthesis of 39 

 

The next task was the selective reduction of the cyano motif in the presence of 

ester functional groups. For this step, hydrogenation offered the best method as 

reported by Secrist and Logue.16 The crude product, which was the hydrochloride salt 

form of the amine, 39 could not be separated or purified and was used immediately in 

the next step. Initially we met with some difficulties and had to carry out the 

hydrogenation under ambient conditions to obtain the amine-HCl salt, 39 (after 7 

days).17 Yields obtained for 40 were in the range of 15 – 30% (2-step yield) at best. 

When the reaction was carried out employing a hydrogenation Parr bomb, we were 

able to synthesize 40 (after 3 days) with a yield of 59%, which was comparable to the 

                                                 
16 Secrist, III, J. A.; Logue, M. W. J. Org. Chem. 1972, 37, 335-336. 
17 The reaction was carried out bubbling hydrogen from a balloon under ambient conditions with the 
needle of the balloon place in the solvent so as to allow the gas to bubble through the reaction mixture. 
This was done as we had no access to any hydrogenation bombs. Bad yields were obtained even after 
bubbling hydrogen for 10 days. 
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reported yield in the patent by Tian et al.7b In order to generate lactam 40, we also 

decided to use NaHCO3 as the base of choice over Na2CO3 as we were able to obtain 

better yields 40.18  In an alternative procedure, Reddy and co-workers reported lactam 

40 could be obtained from 38 with yields of up to 80% by employing NaBH4 and 

CoCl2.19 However, after several attempts, we were not able to obtain even a trace of 

the required lactam 40.  Furthermore, Tian et al. reported two different procedures 

towards synthesizing 40. One procedure utilizes a catalytic amount of Pd(C) for the 

hydrogenation, followed by addition of triethylamine for the cyclization. The other 

procedure utilizes a catalytic amount of PtO2 and sodium bicarbonate. Both the 

systems were attempted and the second system (PtO2/NaHCO3) afforded a much 

better yield of lactam 40 compared to the first. This was probably due to the better 

catalytic effect of PtO2 in hydrogenation.20

 

3.4. REDUCTION OF 40 TOWARDS ALCOHOL 41 
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Scheme 12. Reduction of 40 to afford alcohol 41 

 

                                                 
18 Yields obtained for 40 using Na2CO3 and Et3N were in the range of 5-30% and 3-25% respectively. 
These two bases were used by Tian et. al. in the references 6d and 6b respectively. 
19 Reddy, P. A.; Hsiang, B. C. H.; Latifi, T. N.; Hill, M. W.;Woodward, K. E.; Rothman, S. M.; 
Ferrendelli, J. A.; Covey, D. F. J. Med. Chem. 1996, 39, 1898–1906. 
20 The low yields of 20% vs 8% (2 step yield) was due to the reaction being carried out under ambient 
conditions. 
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Proceeding on, we managed to reduce lactam 40 using NaBH4 to afford lactam 

alcohol 41, a white solid, with a 71% yield (Scheme 12).21 No side products were 

observed and the ester group was reduced specifically.   

 
3.5.  TANDEM OXIDATION / WITTIG REACTION TOWARDS KEY LACTAM 3 
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Scheme 13. Oxidation and Wittig reaction towards lactam 3 

 

With reference to Tian et al.’s report that the formation of the α-

aminoaldehyde intermediate from the lactam alcohol 41 would result in high water 

solubility was also prone to epimerization,22 we anticipated difficulty of isolating the 

aldehyde and also decided to incorporate the oxidation and following Wittig reaction 

in one step (Scheme 13).23 For the initial oxidation, we could either employ Dess-

Martin Periodinane (DMP) or pyridine.SO3 in DMSO as the oxidizing agents. The 

best yield we could obtain for the final coupled lactam, 3 was 46% using DMP.24 We 

managed to obtain a de of 94% for lactam 3. Lactam 3 was exclusively the E-isomer 

as well, as no trace of the Z-isomer was observed from NMR analysis.25

                                                 
21 Huang, S.-B.; Nelson, J. S.; Weller, D. D. Synth. Commun. 1989, 3485–3496. 
22 Jurczak, J.; Gołębiowski, A. Chem. Rev. 1989, 89, 149-164. 
23 Hamada, Y.; Shibata, M.; Sugiura, T.; Hato, S.; Shioiri, T. J. Org. Chem. 1987, 52(7), 1252–1255. 
24 Our yield obtained for 3 was low (c.f. Tian et al.’s reported yield of 85%), using pyridine.SO3, we 
only obtained up to 36% yield. There was much difficulty in obtaining 3 after many numerous attempts 
as well. Lactam 3 was confirmed by comparison of 1H NMR, 13CNMR, and Hi-Res MS. 
25 The reported de by Tian et al. was 98%. de was determined using 1H NMR. 
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CHAPTER 4 – COUPLING OF LACTONE 2 AND LACTAM 5 

4.1. COUPLING OF LACTONE 2 AND LACTAM 5 TOWARDS AG7088, 1 
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Scheme 14. Deprotection of 3 to afford 5 

 

The final step towards AG7088, 1 required the deprotection of the acid labile 

amino-protecting tert-buytyloxycarbonyl (BOC) group. This was effectively obtained 

by the stirring of 3 in a solution of EtOH with the addition of AcCl dropwise at 

0oCand the reaction was stirred overnight.26 After completion of the reaction, we 

decided to use 5 directly for the next step without purification as the hydrochloride 

salt is very difficult to purify.7a Tian et al. also reported the deprotection of their 

compound using trifluoroacetic acid (TFA) in dichloromethane (DCM), stirring 

overnight and using product 5 immediately for the next step without purification 

(Scheme 14). 

 

  

 

 

 

 

                                                 
26 Nudelman, A.; Bechor, Y.; Falb, E.; Fischer, B.; Wexler, B. A.; Nudelman, A. Synth. Commun. 
1998, 28, 471. 
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According to the procedure reported by Tian and co-workers, after the 

deprotection of lactam 3, the carboxylic-acid analog of fragment 2, 4 was transformed 

into an activated ester 43 using a coupling reagent, Chloro-dimethoxy-triazine 

(CDMT). Once the reaction was completed, AG7088, 1, was precipitated out of 

solution by the slow addition of water to the reaction mixture.27
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Scheme 15. Synthesis of AG7088, 1 by Tian and co-workers 

                                                 
27 Water is used to precipitate out AG7088 and is used as an antisolvent. 
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4.2. SYNTHETIC STRATEGY OF COUPLING LACTONE 2 AND LACTAM 5 

 

Dragovich and co-workers also reported the synthesis of AG7088, 1 via a 

different protocol.28 In our lab, we decided to use sodium 2-ethylhexanoate (NaEH) to 

open up fragment 2, in order to allowing the coupling to fragment 3a.29 This 

methodology was developed by Liu et al. and as illustrated in Scheme 16, they 

observed the ring opening of lactone 44 as well as the coupling of selected amines to 

afford 45. Molecule 44 was analogous to our synthesized lactone 2 and we 

hypothesized the possible application of this methodology to our synthesis of 

AG7088, 1. 

 
 

O O

OH

O

H
N Ph

THF, r.t., 
17-24h

H2N Ph

ClH3N Ph

or
44                                                                                            45

 
 

Scheme 16. Aminolysis of γ-decanolactone with benzylamine or benzylamine hydrochloride by Liu et. 
al. 

 

                                                 
28 Peter S. Dragovich, Thomas J. Prins, Ru Zhou, Stephen E. Webber, Joseph T. Marakovits, Shella A. 
Fuhrman, Amy K. Patick, David A. Matthews, Caroline A. Lee, Clifford E. Ford, Benjamin J. Burke, 
Paul A. Rejto, Thomas F. Hendrickson, Tove Tuntland, Edward L. Brown, James W. Meador III, Rose 
Ann Ferre, James E. V. Harr, Maha B. Kosa, and Stephen T. Worland; J. Med. Chem. 1999, 42, 1213-
1224 
29 Liu, W.; Xu, D. D.; Repic, O.; Blacklock, T. J. Tetrahedron Lett. 2001, 42, 2439-2441. NaEH was 
synthesized in 2 steps and was used directly after filtration. 
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Scheme 17. Coupling studies towards AG7088, 1 
 

Prior to the actual coupling of 2 and 5, we did some model studies on the 

efficiency of the coupling reactions, employing different reagents. L-alanine methyl 

ester hydrochloride 46 was used in place of 5, obtaining 48 at 23%. The phenyl 

alanine methyl ester hydrochloride 47 analog, was obtained with yields of up to 19%. 

These two model hydrochloride amines were used in place of 5 and we observed that 

the coupled product was obtained in very small amounts. Synthesis of the coupled 

products 48 or 49 proved difficult and usually, the starting material, fragment 2 is 

recovered in up 90%. This was so even when we employed NaEH for the coupling 

reaction (Scheme 17).30

                                                 
30 For the L-alanine and phenyl-alanine methyl ester analogs of coupled product 18, we only partially 
characterized the products using 1H and 19F NMR. Once we had a positive result, we then went on to 
attempt the coupling of fragment 2 and 3 successfully. Another analog using benzyl amine was also 
attempted and a yield of only 2% was obtained (Coupling was also carried out using AlMe3). Products 
are obtained with a mixture of isomers. 
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4.3. CONCLUSION 
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Scheme 18. Coupling of fragment 2 and 5 in the presence of NaEH 

 

We met with some difficulties during the coupling of fragment 2 and 5 but 

were able to afford 47 with a low yield of 20%, using the above mentioned protocol. 

Preliminary Hi-Res MS of the sample showed that we had obtained the coupled 

product, however, we had too little of the sample for further analysis. As such, we are 
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working towards the scaling up of molecule 47, and this will be subjected to Dess-

Martin oxidation conditions to convert the alcohol into the target carbonyl 

functionality to afford AG7088, 1 (Scheme 18).  

 

Furthermore, we would need to test the compounds synthesized from this 

project against 3CL protease in a traditional inhibition assay (HPLC, fluorescence, 

etc) in order to determine if the fragments of the molecule might be potentially active 

in inhibiting the protease. To date, a number of potential inhibitors of SARS-CoV 

3CLpro
 have been proposed using molecular modeling and virtual screening 

techniques. However, the inhibitory activities of most of the proposed inhibitors have 

not yet been examined in in vitro assays. The most widely used proteolytic assays for 

SARS-CoV 3CLpro
 are HPLC-based cleavage assay and fluorescence-based kinetic 

analysis. Rather than using peptides modified with chromophores or fluorophores, 

HPLC assay allows the use of natural peptide substrate. But the analysis is relatively 

time-consuming and difficult for kinetic studies and for a high throughput screen for 

inhibitors. Clearly, a high-throughput enzyme assay for SARS-CoV 3CLpro will speed 

up discovery of novel inhibitors. Fluorescence assay has been successfully for enzyme 

kinetics studies and high-throughput screening of inhibitors.31a-c 

                                                 
31 (a) Lin C-W, Tsai C-H, Tsai F-J, Chen P-J, Lai C-C, Wan L, Chiu H-H, and Lin K-H. 
Characterization of trans- and cis-cleavage activity of the SARS coronavirus 3CLpro protease: basis for 
the in vitro screening of anti-SARS drugs. FEBS Lett 2004; 574: 131-137. (b) Kuo C-J, Chi Y-H, Hsu J 
T-A, and Liang P-H. Characterization of SARS main protease and inhibitors assay using a fluorogenic 
substrate. Biochem Biophys Res Commun 2003; 308: 148-151. (c) Hsu J T-A, Kuo C-J, Hsieh H-P, 
Wang Y-C, Huang K-K, Lin C P-C, Huang P-F, and Chen X, Liang P-H. FEBS Lett 2004; 574: 116-
120. 
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CHAPTER 5 – COUPLING OF LACTONE 2 AND LACTAM 5 

5.1. FUTURE WORK – SCALE UP OF AG7088

 

 With some limited success on the synthesis of 50, we still had to oxidize 50 in 

order to obtain AG7088, 1. In order to obtain a manageable amount of AG7088, we 

would have to synthesize a larger amount of fragments 2 and 3. We also intend to 

explore the possibility of synthesizing more analogs of AG7088 if possible. 

 

5.2. EXTENSION OF CHEMISTRY – OLEFIN METATHESIS OF FRAGMENT 2 

 

N
H

O

O
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O
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O
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Olefin metathesis reactions
1

2

3

 
 

Figure 6. Modification strategy of AG7088 

 
As we edged towards the total synthesis of AG7088, we envisioned the 

possibility of a further extension of chemistry by using olefin metathesis as a key step 

towards the generation of analogs. From Figure 6, we can replace sub-fragment 1, 2 

and 3 with analogous structures that would simplify the synthetic route. In this aspect, 

we can replace the isoxazole-p-fluoro benzyl motif (sub-fragment 1) with a 

structurally simpler leucine moiety. Leucine has been known to be able to fit in the 

sub-site of the SARS-CoV MPro well. Next, the glutamate derived lactam (sub-

fragment 2) can be replaced easily by a serine motif. And lastly, we can employ olefin 
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metathesis towards sub-fragment 3, thereby generating analogous structures to 

AG7088. 

 

5.3. SYNTHESIS OF CARBOXYLIC ACID 53 
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51                                                         52                                                               53

94% 97%

 

 
Scheme 19. Synthesis of Boc-protected leucine carboxylic acid 53 

 

The Boc-protected leucine carboxylic acid, 53 was synthesized according to 

Scheme 19. L-leucine methyl ester hydrochloride 51 was protected using tBoc to 

afford the corresponding ester, 52, with up to 94% yield. Hydrolysis of the ester was 

effected by usage of LiOH, which afforded the corresponding acid 53, with a yield of 

97%. 

 

5.4. SYNTHESIS OF METHYL ESTER 57 
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Scheme 20. Synthesis of TBDPS-protected serine methyl ester 57 
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Referring to Scheme 20, L-serine methyl ester 54 was first protected with tBoc 

to afford 55 in 77% yield. This was followed by the protection of the alcohol 

functionality using TBDPSCl, which afforded the di-protected serine methyl ester 56 

with a yield of 80%. Subsequent hydrolysis of the tBoc group afforded the TBDPS-

protected amine, 57, in 91%. 

 

5.5. SYNTHESIS OF ALLYIC PRODUCT 61 
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Scheme 21. Synthesis of allylic product 61 

 

We next coupled 53 and 57 to obtain 58 in 75% yield. NaBH4 reduction of 

ester 58 provided us with alcohol 59 with a yield of 81%. Alcohol 59 was further 

functionalized under Swern oxidation conditions to afford the epimerization prone α-

aminoaldehyde 60 which was used immediately in the next step. Zinc-mediated 

allylation of 60 afforded the key allylic product, 61, with a yield of 30% (2-step yield, 

Scheme 21).  
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5.6. SYNTHESIS OF METATHESIS PRODUCTS 68-72 

 

Key allylic product 61 was used as the starting material for the subsequent 

investigation towards the generation of possible analogs of AG7088. We employed 

the olefin metathesis strategy with the allylic functionality of 61 with other olefinic 

substrates according to Table 2. 
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Scheme 22. Synthesis of metathesis products 

 

 The synthesis of the possible metathesis is illustrated in Scheme 22. Grubbs 

2nd generation catalyst was employed in catalytic amounts, in the presence of DCM 

under ambient conditions to effect the olefin metathesis. As can be observed from the 

yields of the obtained olefin metathesis products 68-72 in Table 2, the reaction 

involving methyl acrylate 62 afforded molecule 68 with the best yield at 92% (Entry 

1). However, the presence of a methyl group at the β-positon of methyl acrylate 63 

caused the yield of 68 to decrease to 63% (Entry 2, Table 2). When we coupled 

methyl but-3-enoate 64 with 61, we obtained the metathesis product 69 in 60% yield 

(Entry 3), which was comparable to Entry 2. As such, the extension of the olefin 

functionality one extra carbon away from the ester functionality did not affect the 

yield of the coupled product drastically. Replacing the ester group of 62-64 with a 
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methyl group of 65 caused a decrease in the overall yield of 70 at 54% (Entry 4). 

Further replacement of the ketonic fragment of 65 with aldehyde 66 caused a further 

decrease in the yield of 71 to 51% (Entry 5). Yields of the metathesis product dropped 

even more drastically when we substituted aldehyde 66 with allylic alcohol 67, 

affording a 72 with 35% yield. 

 

5.7. CONCLUSION 

 

 The usage of the olefins in Figure 7 did not afford any of the expected 

products even after several attempts. To conclude, we observed that the olefin 

metathesis strategy employed to generate more analogous structures to AG7088, 1, is 

a fast and efficient method. The astute selection of olefinic substrates is required, 

preferably substituted esters, in order to obtain appreciably yields of the 

corresponding metathesis products. It is not surprising that the trans-methyl 

substituted α,β-unsaturated amides were unreactive. 
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Figure 7. Unsuccessful usage of olefins employing metathesis strategy 
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The thus synthesized products have been also sent for further biological testing in 

order to study their effects on morphology and genetics (Please refer to APPENDIX 

section). 

Table 2. Olefin metathesis products obtained through coupling of 61 with selected alkenes 

Entrya Olefin Metathesis product % Yieldb
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35 

a = Reactions were carried out with 1 eqv. of 25 and 2 eqv. of olefin with 10 mol% 
of Grubbs 2nd generation catalyst at 25oC for 24h. b = Isolated yield 
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CHAPTER 6 

 
Experimental Section  

 
Part I – Synthesis of Photochromic Fulgides 



CHAPTER 6 – EXPERIMENTAL SECTION 

6.1. GENERAL INFORMATION 

Experiments involving moisture and/or air sensitive components were performed 

under a positive pressure of nitrogen in oven/flame-dried glassware, equipped with a 

rubber septum. Solvents and liquid reagents were transferred by oven-dried syringes 

cooled in a dessicator or via double-tipped cannular needles. Reactions were stirred 

with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-

volatile reagents or compounds was removed by the addition anhydrous THF, 

followed by the removal of the solvent and traces of moisture in vacuo by means of a 

vacuum pump (~20 mmHg, 23-45oC) and subsequent purging with nitrogen. All 

experiments were monitored by analytical thin layer chromatography (TLC). Solvents 

were removed in vacuo (~30 mmHg, 23-45oC) using a Büchi rotary evaporator with 

cold (0-5oC) running water. 

 

6.2. MATERIALS 

All commercially available materials were used without further purification with the 

following exceptions: Hexane, dichloromethane, ethyl acetate were fractionally 

distilled prior to use. Anhydrous THF and diethyl ether were obtained by distillation 

under a nitrogen atmosphere from a deep purple solution resulting from sodium and 

benzophenone. Anhydrous dichloromethane (DCM) and hexane were distilled over 

calcium hydride under a nitrogen atmosphere. 

 

Triethylamine was distilled over calcium hydride under a nitrogen atmosphere and 

stored over 4Å molecular sieves. Hydrochloric acid was diluted from 12M solution. 

Sulfuric acid was diluted from 10M solution. Sodium hydroxide solution was 

prepared from sodium hydroxide pellets. Saturated solutions of sodium chloride, 
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sodium bicarbonate, sodium carbonate, sodium thiosulphate and ammonium chloride 

were prepared from their respective solids. 

 

6.3. CHROMATOGRAPHY   

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 

precoated silica gel plate (0.25 mm thickness). Subsequent to elution, ultraviolet (UV) 

illumination of the chromatogram at 254 nm allowed the visualization of UV active 

material. Further visualization was possible by staining with basic solution of 

potassium permanganate or acidic solution of ceric molybdate, followed by heating on 

a hot plate.  

 

Preparative thin layer chromatography was performed using Merck 60 F254 precoated 

silica gel plate (0.25 mm thickness, 20 cm x 20 cm). Compounds were diluted with 

100-300µL of the appropriate solvent and applied to the plate as a narrow band ~16-

18 cm long and 2 cm above the base, using a glass capillary tube. After elution, the 

chromatogram was visualized under UV light or by staining a thin strip, cut out from 

the side of the plate. The desired compound was then isolated by manually scraping 

the appropriate band off the plate using a spatula. The silica was then dissolved using 

an appropriate solvent followed by standing in anhydrous MgSO4 before filtering 

through filter paper or celite. This was followed by the removal of solvent in vacuo. 

 

Flash chromatography was performed using Merck silica gel 60 with freshly distilled 

solvents. Columns were typically packed as slurry of silica gel in hexane and 

equilibrated with the appropriate solvent system prior to use. The analyte was loaded 
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neat or as a concentrated solution using the appropriate solvent system. The elution 

was assisted by applying pressure of about 2 atm with an air pump. 

 

6.4. INSTRUMENTS AND EQUIPMENT 

 

INFRARED SPECTROSCOPY 

Infrared spectra were recorded in a Bio-RAD FTS 165 FT-IR spectrometer. Solid 

samples were analysed as a KBr pressed-disk while liquid samples were either 

examined neat between KBr salt plates or as a solution in dichlormethane using NaCl 

liquid cells. 

 

MASS SPECTROSCOPY 

Mass spectrometry (MS) was performed by the staff from the Chemical and 

Molecular analysis Centre of the National University of Singapore. MS-electron 

impact (EI) spectra were recorded on a Hewlett-Packard 5890A gas chromatogram. 

High-resolution MS (HRMS-EI) spectra were recorded on a V.G. Micromass 7035 

micromass mass spectrophotometer at a source temperature of 200 ºC and at an ion 

current of 70 eV.. MS and HRMS were reported in units of mass to charge ratio (m/z). 

MALDI-TOF spectra were obtained on an Applied Biosystems Voyger System 4134, 

with mode of operation either reflector or linear mode. Matrix used is Ag-TFA 

Ditranol. Mass reported in units of mass to charge ratio (m/z). 

 

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 

Proton nuclear magnetic resonance (1H NMR) and carbon nuclear magnetic resonance 

(13C NMR) were performed on a Bruker Avance DPX 300 (300MHz) and Bruker 
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AMX 500 (500MHz), NMR spectrometer. Chemical shifts are reported as δ  in units 

of parts per million (ppm) downfield from SiMe4 (δ 0.00) and relative to the signal of 

the residual solvent signal of, deuterio chloroform-d (1H NMR, δ 7.2600 ppm, singlet; 

13C NMR, δ 77.04 ppm, triplet) and deuterium oxide, D2O (1H NMR, δ 4.7500 ppm, 

singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd 

(doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of 

doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The 

number of protons (n) for a given resonance is indicated by nH. Coupling constants 

are reported as a J value in Hz.  

 

ULTRAVIOLET SPECTROSCOPY 

The cyclized forms (C-form) of each fulgide were obtained by irradiating the E- or Z-

form fulgide in dichloromethane solution with ~ 330-370 nm light using a Rayonet 

RPR-100 Photochemical Reactor fitted with 16 Vilber-Lourmat T-8M UV tubes. UV-

Vis studies were carried out using a Hp 8452A diode array spectrophotometer 

(Denoted: UV(VIS) O: Open form; C: Closed form).  

 

MELTING POINTS 

Melting points were determined using a Buchi B-540 melting point apparatus. An 

observable amount of the solid is placed in the melting point capilaruy and the 

temperature was raised by 1oC every 2 seconds. The melting point was recorded down 

at the instant the solid was observed to melt. 
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NOMENCLATURE 

Systematic nomenclature for the compounds would follow the numbering system as 

defined by the International Union of Pure and Applied Chemistry (IUPAC).1 

Compounds were also named using the ChembridgeSoft ChemOffice 2004, 

ChemDraw Ultra 8.0 naming feature. 

 

6.5. PROCEDURES AND SUPPORTING INFORMATION FOR PART I 

 

O

OEt

O

OEt

O
OEt

EtO
O

O
+

NaH, THF,
EtOH, H2SO4

16                                 17                                                                           14
 

 

Preparation of Isopropylidene (IPP) Diethyl Succinate (14) 

 

Diethyl succinate 17 (33.5 ml, 0.200 mol, 1.00 eq) was added to a ice-cooled solution 

of sodium hydride (55-65%, moistened with mineral oil) (7.2 g, 0.300 mol, 1.50 eq) in 

THF and stirred for 10 mins. 2 drops of EtOH or MeOH was added to initiate the 

reaction. Acetone 16 (18.4 ml, 0.250 mol, 1.25 eq) was added dropwise over 15 mins 

and the reaction mixture was allowed to stir for 18 h at room temperature. The 

reaction was quenched with 4M HCl and extracted with ethyl acetate (3 x 50 mL). 

The combined organic layers were dried (MgSO4), filtered, and the solvent was 

removed in vacuo.  

 

                                                 
1 http://www.chem.qmul.ac.uk/iupac/ 

PART 1 – SYNTHESIS OF PHOTOCHROMIC FULGIDES 116



CHAPTER 6 – EXPERIMENTAL SECTION 

The resulting brown syrup was dissolved in ethanol (200 mL) and acidified with conc 

H2SO4 (~5 – 10 mL) and stirred for 1h at 0oC. The reaction mixture was warmed up to 

room temperature and refluxed for 16 h. The reaction mixture was quenched with 

saturated aqueous NaHCO3 and extracted with ethyl acetate (3 x 50 mL). The 

combined organic layers were dried (MgSO4), filtered, and the solvent was removed 

in vacuo. Vacuum distillation afforded isopropylidene diethyl succinate, 14, as a clear 

colorless oil (29.8 g, 69% yield). 

Rf: 0.46 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ  4.18 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.13 (q, J = 7.1 

Hz, 2H, CO2CH2CH3), 3.36 (s, 2H, CH2CO2CH2CH3), 2.14 (s, 3H, C=C(CH3)(CH3)), 

1.86 (s, 3H, C=C(CH3)(CH3)), 1.27 (t, J = 7.1 Hz, 3H, CO2CH2CH3), 1.24 (t, J = 7.1 

Hz, 3H, CO2CH2CH3) ppm. 

13C NMR (500 MHz, CDCl3) δ 171.5, 167.9, 148.9, 120.7, 60.7, 60.2, 35.5, 23.3, 

23.2, 14.2 ppm. 

FTIR (Film): 2983, 2938, 2909, 1738, 1719, 1642, 1446, 1369, 1335, 1283, 1223, 

1178, 1135, 1079, 1032 cm-1.   

HRMS (EI) Calcd for C11H18O4 [M+]: 214.1205. Found: 214.1207; [M+-CH3]: 

199.0970, Found: 199.0971. 
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Preparation of Cyclopentylidene Diethyl Succinate (45) 

 

Tert-butanol (10.0 ml) was stirred and cooled to 15-20oC, followed by the addition of 

potassium tert-butoxide (0.88 g, 7.84 mmol, 1.3 eq). The mixture was stirred for 10 

mins, followed by the addition of a solution of diethyl succinate 17 (1.00 ml, 6.00 

mmol, 1.0 eq) and the corresponding cyclopentanone (0.64 ml, 7.2 mmol, 1.2 eq) in 

2.0 ml tert-butanol, dropwise. The reaction mixture was allowed to stir for 1.5-2 h at 

15-20oC. The reaction was quenched with 4M HCl and extracted with ethyl acetate (3 

x 50 mL). The combined organic layers were dried (MgSO4), filtered, and the solvent 

was removed in vacuo.  

 

The resulting reddish brown syrup was dissolved in ethanol (25 ml) and acidified with 

conc H2SO4 (2-4 ml mL) and stirred for 1h at 0oC. The reaction mixture was warmed 

up to room temperature and stirred for 48 h. The reaction mixture was quenched with 

saturated aqueous NaHCO3 and extracted with ethyl acetate (3 x 50 mL). The 

combined organic layers were dried (MgSO4), filtered, and the solvent was removed 

in vacuo.  
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The resulting reddish oil was purified via flash chromatography (8:1 hexane/ethyl 

acetate), yielding a colorless oil of 45 with 18% yield.  

Rf: 0.53 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 4.18 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.13 (q, J = 7.1 

Hz, 2H, CO2CH2CH3), 3.33 (s, 2H, CH2CO2CH2CH3), 2.82 (t, J = 7.2 Hz, 2H, 

C=C(CH2CH2CH2CH2), 2.41 (t, J = 7.0 Hz, 2H, C=C(CH2CH2CH2CH2), 1.77 – 1.67 

(m, 4H, C=C(CH2CH2CH2CH2), 1.27 (t, J = 7.2 Hz, 3H, CO2CH2CH3), 1.25 (t, J = 

7.2 Hz, 3H, CO2CH2CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 171.6, 167.2, 164.5, 117.1, 60.6, 60.1, 36.2, 34.5, 

34.2, 27.0, 25.6, 14.3, 14.2 ppm. 

FTIR (Film): 2982, 2941, 2907, 2876, 2338, 1735, 1645, 1372, 1191, 1162, 1098,  

1032 cm-1.   

HRMS (EI) Calcd for C13H20O4 [M+]: 240.1362, Found: 240.1364.  

 

O

2-cyclopentylidenecyclopentanone
 

 

Partial characterization of 2-cyclopentylidenecyclopentanone 

 

Another isolated fraction provided the β,γ−unsaturated Cyclopentenyl Diethyl 

Succinate 47 in 7% yield and the self-condensed 2-cyclopentylidenecyclopentanone 

product in more than 30% yield. 
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Rf: 0.48 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 2.80-2.77 (m, 2H, COCH2), 2.54-2.52 (m, 2H, 

CH2CCO), 2.31-2.27 (m, 6H, CH2, CH2CH2), 2.01-1.83 (m, 2H, CH2C=C), 1.71-1.69 

(m, 2H, C=C CH2) ppm. 

13C NMR (300 MHz, CDCl3) δ 207.4, 158.6, 127.9, 39.8, 34.3, 32.5, 29.5, 26.9, 25.2, 

20.1 ppm. 

 

EtO
OEt

O

O

 

 

Preparation of Cyclohexylidene Diethyl Succinate (38) 

 

Synthesis was accomplished in a manner similar to that for, 45.  

57% yield, clear yellowish oil. 

Rf: 0.48 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 4.20 (q, J = 7.1 Hz, 2H, CO2CH2CH3), 4.12 (q, J = 7.1 

Hz, 2H, CO2CH2CH3), 3.37 (s, 2H, CH2CO2CH2CH3), 2.64 (t, J = 5.4 Hz, 2H, 

C=C(CH2CH2CH2CH2CH2), 2.25 (t, J = 5.6 Hz, 2H, C=C(CH2CH2CH2CH2CH2), 

1.70 – 1.61 (m, 6H, C=C(CH2CH2CH2CH2CH2), 1.28 (t, J = 7.1 Hz, 3H, 

CO2CH2CH3), 1.25 (t, J = 7.1 Hz, 3H, CO2CH2CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 171.5, 168.6, 154.5, 117.8, 60.7, 60.3, 35.1, 32.5, 

32.4, 28.2, 28.0, 26.4, 14.2 ppm. 

FTIR (Film): 2983, 2933, 2857, 2337, 1720, 1634, 1446, 1372, 1241, 1178, 1097,  
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1035 cm-1.    

HRMS (EI) Calcd for C14H22O4 [M+]: 254.1518, Found: 254.1519; [M+- C2H5O]: 

209.1178, Found: 209.1174. 

 

EtO
OEt

O

O

 

 

Preparation of Cycloheptylidene Diethyl Succinate (46) 

 

Synthesis was accomplished in a manner similar to that for, 45.  

44% yield, clear yellowish oil. 

Rf: 0.49 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 4.21 – 4.10 (m, 4H, (CO2CH2CH3)2), 3.37 (s, 2H, 

CH2CO2CH2CH3), 2.71 (t, J = 6.1, Hz, 2H, C=C(CH2CH2CH2CH2), 2.38 (t, J = 6.2 

Hz, 2H, C=C(CH2CH2CH2CH2), 1.70 – 1.51 (m, 8H, C=C(CH2CH2(CH2)4), 1.27 – 

1.25 (m, 6H, (CO2CH2CH3)2), ppm. 

13C NMR (300 MHz, CDCl3) δ 171.6, 168.1, 157.2, 120.7, 60.3, 60.2, 35.2, 34.1, 

33.7, 28.5, 27.4, 26.3, 14.2 ppm. 

FTIR (Film): 2982, 2928, 2856, 2338, 1737, 1625, 1446, 1368, 1242, 1178, 1165, 

1096, 1034 cm-1.   

HRMS (EI) Calcd for C15H24O4 [M+]: 268.167, Found: 268.1674; [M+- C2H5O]: 

223.1334, Found: 223.1326.  
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(Note: Another fraction provided the β,γ−unsaturated Cycloheptenyl diethyl succinic 

diester 48 in a trace amount that was not separable.) 
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17                                  40                                   41

tBuOK, tBuOH
EtOH, H2SO4

 

 

Preparation of diethyl 2-(pentan-3-ylidene)succinate (41) 

 

Tert-butanol (10.0 ml) was stirred and cooled to 15-20oC, followed by the addition of 

potassium tert-butoxide (1.3 eq). The mixture was stirred for 10 mins, followed by the 

addition of a solution of diethyl succinate 17 (1.0 eq) and the corresponding 

cyclopentanone (1.2 eq) in 2.0 ml tert-butanol, dropwise. The reaction mixture was 

allowed to stir for 1.5-2 h at 15-20oC. The reaction was quenched with 4M HCl and 

extracted with ethyl acetate (3 x 50 mL). The combined organic layers were dried 

(MgSO4), filtered, and the solvent was removed in vacuo.  

 

The resulting reddish brown syrup was dissolved in ethanol (25 ml) and acidified with 

conc H2SO4 (2-4 ml mL) and stirred for 1h at 0oC. The reaction mixture was warmed 

up to room temperature and stirred for 48 h. The reaction mixture was quenched with 

saturated aqueous NaHCO3 and extracted with ethyl acetate (3 x 50 mL). The 

combined organic layers were dried (MgSO4), filtered, and the solvent was removed 
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in vacuo. The resulting reddish oil was purified via flash chromatography (8:1 

hexane/ethyl acetate), yielding a colorless oil of 41 with 4% yield.  

Rf: 0.58 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 4.18 (q, J = 7.4 Hz, 2H, CO2CH2CH3), 4.13 (q, J = 7.4 

Hz, 2H, CO2CH2CH3), 3.35 (s, 2H, CH2CO2CH2CH3), 2.48 (q, J = 7.4 Hz, 2H, 

C=C(CH2CH3)(CH2CH3)), 2.17 (q, J = 7.4 Hz, 2H, C=C(CH2CH3)(CH2CH3)), 1.27-

1.24 (dt, J = 7.4, 15.3 Hz, 6H, C=C(CH2CH3)(CH2CH3)), 1.09 (t, J = 7.4 Hz, 3H, 

CO2CH2CH3), 1.04 (t, J = 7.4 Hz, 3H, CO2CH2CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 171.6, 167.9, 158.9, 120.2, 60.6, 60.2, 35.2, 27.1, 

27.0, 14.2, 13.3, 12.5 ppm. 

FTIR (Film): 2922, 2852, 1734, 1463, 1377, 1179, 1058 cm-1. 

HRMS (EI) Calcd for C13H22O4 [M+]: 242.1518. Found: 242.1518; [M+- C2H5O]: 

196.1099, Found: 196.1103. 
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Preparation of diethyl 2-(pent-2-en-3-yl)succinate (42) 

 

Diethyl succinate 17 (1.00 eq) was added to a ice-cooled solution of sodium hydride 

(55-65%, moistened with mineral oil) (1.50 eq) in THF and stirred for 10 mins. 2 

drops of EtOH or MeOH was added to initiate the reaction. Diethyl ketone 40 (1.25 
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eq) was added dropwise over 15 mins and the reaction mixture was allowed to stir for 

18 h at room temperature. The reaction was quenched with 4M HCl and extracted 

with ethyl acetate (3 x 50 mL). The combined organic layers were dried (MgSO4), 

filtered, and the solvent was removed in vacuo.  

 

The resulting brown syrup was dissolved in ethanol (200 mL) and acidified with conc 

H2SO4 (~5 – 10 mL) and stirred for 1h at 0oC. The reaction mixture was warmed up to 

room temperature and refluxed for 16 h. The reaction mixture was quenched with 

saturated aqueous NaHCO3 and extracted with ethyl acetate (3 x 50 mL). The 

combined organic layers were dried (MgSO4), filtered, and the solvent was removed 

in vacuo. Flash chromatography afforded, 42, as a clear colorless oil (43% yield). 

Rf: 0.49 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ  5.39 (q, J = 6.9 Hz, 1H, H(CH3)C=C(CH2CH3)), 4.16-

4.09 (m, 4H, (CO2CH2CH3)2), 3.44 (dd, J = 5.6, 10.2 Hz, 1H, C=CCH(CO2Et)), 2.90 

(dd, J =10.2, 16.7 Hz, 1H, CHHCO2CH2CH3), 2.45 (dd, J = 5.09, 16.6 Hz, 1H, 

CHHCO2CH2CH3), 2.15-2.04 (m, 2H, H(CH3)C=C(CH2CH3)), 1.61 (d, J = 6.9 Hz, 

3H, H(CH3)C=C(CH2CH3)), 1.23 (dt, J = 6.9 Hz, J = 1.4 Hz, 6H, (CO2CH2CH3)2), 

0.97 (t, J = 7.6 Hz, 3H, H(CH3)C=C(CH2CH3)) ppm. 

13C NMR (500 MHz, CDCl3) δ 173.5, 172.0, 138.4, 122.5, 60.7, 60.5, 47.9, 36.4, 

22.6, 14.2, 14.1, 13.3, 12.9 ppm. 

FTIR (Film): 2980, 2937, 2909, 2877, 1737, 1466, 1372, 1244, 1160 1032 cm-1.   

HRMS (EI) Calcd for C13H22O4 [M+]: 242.1518. Found: 242.1519. 
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Preparation of ethyl 2,2-diethyl-tetrahydro-5-oxofuran-3-carboxylate 43 

 

Diester 42 (1.00 eq.) was added into 3 round bottomed flasks with 2 mls of cooled 

EtOH (0oC) each. Acids, H3PO4, HCl and H2SO4 were added neat (1ml into each 

flask) and the flasks were allowed to warm up to room temperature. Reactions were 

allowed to stir for 18h and were monitored by TLC until the disappearance of the spot 

indicative of starting material 42. After the reaction was completed, TLC indicated the 

presence of 41 and 43 as 2 distinct spots visible under UV light or KMnO4 staining. 

41 was obtained as a clear colorless oil with a yield of 10%. 43 was obtained as a 

colorless oil with a yield of 41%. Supporting information for 41 has been reported 

previously. 

Rf: 0.35 (hexane: ethyl acetate = 4:1). 

1H NMR (CDCl3) δ 4.20 (q, J = 2.0 Hz, 2H, CO2CH2CH3), 3.30 (t, J = 5.6 Hz, 1H, 

COCHCH2), 3.08 (dd, J = 5.6, 10.8 Hz, 1H, COCHCHH), 2.69 (dd, J = 5.6, 10.8 Hz, 

1H, COCHCHH), 1.89 (dd, J = 4.4, 8.6 Hz, 1H, CCHHCH3), 1.81 (dd, J = 4.4, 8.6 

Hz, 1H CCHHCH3), 1.73 (dd, J = 4.4, 8.9 Hz, 1H, CCHHCH3), 1.60 (dd, J = 4.4, 8.9 

Hz, 1H, CCHHCH3), 1.29 (t, J = 4.5 Hz, 3H, CO2CH2CH3), 0.99 (t, J = 4.5 Hz, 3H, 

CCH2CH3), 0.99 (t, J = 4.5 Hz, 3H, CCH2CH3)  ppm. 
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13C NMR (CDCl3) δ 174.5, 170.3, 89.2, 61.5, 46.8, 32.2, 29.8, 27.7, 14.1, 7.63, 7.57 

ppm. DEPT-90 (CH) δ  46.8 ppm. DEPT-135 (CH) δ  46.8 ppm. (CH3) δ  14.1, 7.66, 

7.60 ppm. (CH2) δ  61.5, 32.2, 29.8, 27.7 ppm. 

FTIR (Film): 3530, 3449, 2979, 2944, 2887, 1779, 1723, 1460, 1374, 1222, 1180, 

1033, 962 cm-1. 

HRMS Calcd for C11H18O4 – C2H5: [M+ - C2H5]: 185.0814. Found: 185.0813. 

Norminal EIMS shows presence of fragmentation of 2 moieties of -C2H5 at 157.1. 

(Molecular ion peak was still not observed after repeated attempts at EIMS). 
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Preparation of lactone 44 

 

Diester 39 (1.00 eq.) was added into several round bottomed flasks with 2 mls of 

cooled EtOH (0oC). H2SO4 was prepared accordingly to 2.5M, 5.0M, 6.0M, 7.0M, 

7.5M and 10M in H2O and 1 ml of the acid was added to each flask. The flasks were 

allowed to warm up to room temperature. Reactions were allowed to stir for 18h and 

were monitored by TLC until the disappearance of the spot indicative of starting 

material 39. After the reaction was completed, TLC indicated the presence of 44 and 

38 as 2 distinct spots visible under UV light or KMnO4 staining. 38 was obtained as a 
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clear colorless oil with a yield of 9%. 44 was obtained as a colorless oil with a yield 

of 40%. Supporting information for 38 has been reported previously. 

Rf: 0.30 (hexane: ethyl acetate = 4:1). 

1H NMR (CDCl3) δ 4.30 (q, J = 7.3 Hz, 2H, CO2CH2CH3), 3.06 (t, J = 5.2 Hz, 1H, 

COCHCH2), 3.00 (dd, J = 5.2, 13.2 Hz, 1H, COCHCHH), 2.67 (dd, J = 5.2, 14.3 Hz, 

1H, COCHCHH), 1.78-1.59 (m, 10H, (CH2)5), 1.27 (t, J= 7.3 Hz, 3H, CO2CH2CH3) 

ppm. 

13C NMR (CDCl3) δ 174.4, 169.9, 85.9, 61.4, 50.4, 37.3, 32.3, 31.5, 24.8, 22.4, 21.6, 

14.1 ppm. DEPT-90 (CH) δ 50.4 ppm. DEPT-135 (CH) δ 50.4 ppm. (CH3) δ 14.1 

ppm. (CH2) δ 61.4, 37.3, 32.3, 31.5, 24.8, 22.4, 21.6 ppm. 

FTIR (Film): 2939, 2864, 1779, 1733, 1448, 1375, 1271, 1222, 963 cm-1. 

HRMS Calcd for C12H18O4 [M+]: 226.1205. Found: 226.1202. 
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48                                                         50

 

 

Preparation of lactone 50 

 

Synthesis was accomplished with a similar procedure for lactone 44. 50 was obtained 

exclusively as a clear yellowish oil with a yield of 38%.  

Rf: 0.26 (hexane: ethyl acetate = 4:1). 
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1H NMR (CDCl3) δ 4.21 (q, J = 7.3 Hz, 2H, CO2CH2CH3), 3.08 (t, J = 7.7 Hz, 1H, 

COCHCH2), 3.03 (dd, J = 7.7, unresolved Hz, 1H, COCHCHH), 2.70-2.62 (dd, J = 

7.7, 17.0 Hz, 1H, COCHCHH), 2.12-2.01 (m, 2H, CH2(CH2)4CH2), 1.81-1.52 (m, 8H, 

(CH2)4), 1.43-1.12 (m, 2H, CH2(CH2)4CH2), 1.31 (t, J = 7.3 Hz, 3H, CO2CH2CH3) 

ppm. 

13C NMR (CDCl3) δ 174.4, 169.9, 89.9, 61.5, 51.2, 41.5, 34.5, 31.7, 29.5, 28.9, 22.7, 

21.8, 14.2 ppm. 

FTIR (Film): 3630, 3535, 2981, 2930, 2860, 1780, 1733, 1462, 1376, 1247, 1197, 

1174, 1015, 941 cm-1. 

HRMS Calcd for C13H20O4 [M+]: 240.1362. Found: 240.1357. 
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Preparation of Cyclopentenyl Diethyl Succinate (47)  

 

Synthesis was accomplished in a manner similar to that for the preparation of 

Isopropylidene (IPP) Diethyl Succinate 14. The cyclopentanone was added into the 

stirring mixture of diethyl succinate 17 and NaH dropwise over 1h. Usual 

esterification, workup and purification of the crude reaction mixture using flash 

chromatography (8:1 hexane/ethyl acetate) afforded a clear colorless oil, 47 in 41% 

yield. 
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Rf: 0.49 (hexane: ethyl acetate = 4:1). 

1H NMR (500 MHz, CDCl3) δ 5.55 (s, 1H, HC=CCH), 4.18 (q, J = 7.2 Hz, 2H, 

CO2CH2CH3), 4.12 (q, J = 7.2 Hz, 2H, CO2CH2CH3), 3.64 (dd, J = 5.2, 9.4 Hz, 1H, 

C=CCHCO2Et), 2.93 (dd, J = 9.9, 16.5 Hz, 1H, CHHCO2CH2CH3), 2.54 (dd, J = 5.4, 

16.6 Hz, 1H, CHHCO2CH2CH3), 2.35-2.30 (m, 4H, CH2CH2CH2) 1.89-1.84 (m, 2H, 

CH2CH2CH2), 1.28-1.22 (dt, J = 4.7, 6.9 Hz, 6H, (CO2CH2CH3)2) ppm. 

13C NMR (500 MHz, CDCl3) δ 172.6, 171.7, 139.9, 127.5, 60.8, 60.5, 43.5, 35.4, 

33.4, 32.3, 23.1, 14.1 ppm. 

FTIR (Film): 2981, 2935, 2907, 2850, 1738, 1647, 1446, 1371, 1275, 1161, 1096, 

1031, 858 cm-1.   

HRMS (EI) Calcd for C13H20O4 [M+]: 240.1362, Found: 240.1358; [M+- C2H6O]: 

194.0943, Found: 194.0944. 
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Preparation of Cyclohexenyl diethyl succinic diester (39) 

 

Synthesis was accomplished in a manner similar to that for 47.  

A clear colorless oil of 39 was obtained in 72% yield. 

Rf: 0.53 (hexane: ethyl acetate = 4:1). 

1H NMR (500 MHz, CDCl3) δ 5.61 (s, 1H, HC=CCH), 4.19-4.09 (dq, J = 2.0, 6.9 Hz, 

4H, (CO2CH2CH3)2), 3.40 (dd, J = 5.6, 9.8 Hz, 1H, C=CCHCO2Et), 2.89 (dd, J = 9.8, 
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16.4 Hz, 1H, CHHCO2CH2CH3), 2.46 (dd, J = 5.9, 16.4 Hz, 1H, CHHCO2CH2CH3), 

2.05-1.70 (m, 4H, CH2CH2CH2CH2), 1.63-1.54 (m, 4H, CH2CH2CH2CH2), 1.25 (dt, J 

= 2.4, 6.9 Hz, 6H, (CO2CH2CH3)2) ppm. 

13C NMR (500 MHz, CDCl3) δ 173.1, 172.0, 134.1, 125.4, 60.7, 60.5, 49.0, 35.4, 

26.4, 25.3, 22.8, 22.1, 14.2 ppm. DEPT-90 (CH) δ 125.4, 49.0 ppm. DEPT-135 (CH) 

δ 125.4, 49.0 ppm. (CH3) δ 14.2 ppm. (CH2) δ 60.7, 60.5, 35.4, 26.4, 25.3, 22.8, 22.1 

ppm.  

FTIR (Film): 2981, 2933, 2859, 2839, 1777, 1737, 1665, 1448, 1370, 1250, 1220, 

1173, 1097, 1032 cm-1.   

HRMS (EI) Calcd for C14H22O4 [M+]: 254.1518, Found: 254.1517. 
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Preparation of Cycloheptenyl diethyl succinic diester (48)  

 

Synthesis was accomplished in a manner similar to that for 47.  

A clear colorless oil of 48 was obtained in 87% yield. 

Rf: 0.60 (hexane: ethyl acetate = 4:1). 

1H NMR (500 MHz, CDCl3) δ 5.77 (t, J = 6.5 Hz, 1H, HC=CCH),  4.14 (dq, J = 3.6, 

6.6 Hz, 4H, (CO2CH2CH3)2), 3.47 (dd, J = 3.6, 5.3 Hz, 1H, C=CCHCO2Et), 2.92 (dd, 

J = 5.6, 10.0 Hz, 1H, CHHCO2CH2CH3), 2.48 (dd, J = 3.9, 9.7 Hz, 1H, 

CHHCO2CH2CH3), 2.39-2.02 (m, 4H, CH2(CH2)3CH2), 1.55-1.46 (m, 6H, 
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CH2(CH2)3CH2), 1.26 (t, J = 6.9 Hz, 3H, CO2CH2CH3) 1.25 (dt, J = 3.1, 7.0 Hz, 3H, 

CO2CH2CH3) ppm. 

13C NMR (500 MHz, CDCl3) δ 173.1, 171.9, 140.5, 130.9, 60.8, 60.5, 50.9, 35.6, 

32.5, 30.4, 28.4, 26.8, 26.7, 14.2 ppm. 

FTIR (Film): 2981, 2924, 2851, 1734, 1662, 1447, 1369, 1250, 1174, 1158, 1097,  

1032 cm-1.   

HRMS (EI) Calcd for C15H24O4 [M+]: 268.1675, Found: 268.1672. 
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Preparation of Cyclooctyneyl diethyl succinic diester (49) 

 

Synthesis was accomplished in a manner similar to that for 47.  

A clear colorless oil of 49 was obtained in 80% yield. 

Rf: 0.63 (hexane: ethyl acetate = 4:1). 

1H NMR (500 MHz, CDCl3) δ 5.56 (t, J = 8.3 Hz, 1H, 1H, HC=CCH),  4.13 (dq, J = 

3.6, 7.4 Hz, 4H, (CO2CH2CH3)2), 3.46 (dd, J = 5.3, 9.9 Hz, 1H, C=CCHCO2Et), 2.91 

(dd, J = 10.2, 16.6 Hz, 1H, CHHCO2CH2CH3), 2.42 (dd, J = 5.6, 16.6 Hz, 1H, 

CHHCO2CH2CH3), 2.35-2.03 (m, 4H, CH2(CH2)4CH2), 1.60-1.45 (m, 8H, 

CH2(CH2)4CH2), 1.26-1.22 (dt, J = 3.2, 7.1 Hz, 6H, (CO2CH2CH3)2) ppm. 

13C NMR (500 MHz, CDCl3) δ 173.3, 172.0, 136.8, 128.5, 60.7, 60.6, 48.9, 35.9, 

29.5, 28.9, 27.9, 26.4, 26.3, 26.2, 14.2, 14.1 ppm. 
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FTIR (Film): 2981, 2928, 2856, 1735, 1701, 1468, 1447, 1371, 1329, 1298, 1245, 

1212, 1162, 1096, 1032 cm-1. 

HRMS (EI) Calcd for C16H26O4 [M+]: 282.1831, Found: 282.1836; [M+- C2H6O]: 

236.1412, Found: 236.1414. 
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Preparation of 2,5-dimethylthiophene isopropylidene fulgide (18) 

 

A mixture of isopropylidene (IPP) diethyl succinate 14 (1eq) and 3-acetyl-2,5-

dimethyl thiophene 28 (1.1 eq) in a solution of THF (5ml) was added dropwise into an 

ice-cooled suspension of NaH (55-65%, moistened with mineral oil) (1.5-1.8 eq) pre-

washed with hexane and resolvated in THF. The reaction was also initiated with 2-3 

drops of EtOH before immediate addition of the reagents into the stirred NaH 

suspension. The mixture was then allowed to stir overnight followed by pouring of the 

reaction mixture onto crushed ice. 10% Na2CO3 was used to extract the half-ester 

followed by the acidification of the basic solution with 4M HCl to liberate the acid-
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ester. 4 x 25 ml of ethyl acetate was used to extract the liberated acid-ester and the 

solvent was removed in vacuo to afford a dark brown gum.  

 

Saponification of the half-ester, 29, was initiated by adding 10% w/v KOH to a 

solution of EtOH and the brown suspension stirred for 15 mins before refluxing 

overnight to afford the diacid, 30. A second acid base workup as before afforded the 

diacid as a brown solid.  

The crude reaction mixture was washed with brine and dried by standing in anhydrous 

MgSO4. Solvents were removed in vacuo before the addition of excess acetyl chloride 

to the diacid in the dark to initiate the ring closure to afford the desired fulgide. The 

mixture was allowed to stir for approximately 4-6 h before removing the acetyl 

chloride in vacuo.  

 

Purification of the crude reaction mixture using flash chromatography (7:1 

hexane/ethyl acetate) afforded 18 in 55% yield (E/Z combined yield); E-form: orange 

cubes, mp 112-114 oC, (39% of 55% combined yield). 

Rf: 0.54 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 6.52 (s, 1H, C=CH), 2.60 (s, 3H, C=CCH3), 2.40 (s, 

3H, CH3CSCCH3), 2.30 (s, 3H, CH3CSCCH3), 2.13 (s, 3H, (CH3)(CH3)C=CCO), 

1.28 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (500 MHz, CDCl3) δ 163.8, 163.2, 155.4, 149.2, 139.5, 137.8, 134.7, 125.3, 

120.9, 120.6, 25.6, 22.9, 22.8, 15.1, 14.8 ppm. 

UV(VIS)O: 342 nm, C: 538 nm.  

FTIR (KBr): 3448, 2917, 2360, 1809, 1767, 1627, 1585, 1423, 1265, 1213, 1118, 

1016, 924, 840, 760 cm-1.   
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HRMS (EI) Calcd for C15H16O3S, [M+]: 276.0820, Found: 276.0821.  

(61% of 55% combined yield) Z-form: yellow needles, mp 135-137 oC. 

Rf: 0.45 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 6.55 (s, 1H, C=CH), 2.44 (s, 3H, CH3CSCCH3), 2.41 

(s, 3H, CH3CSCCH3), 2.31 (s, 3H, (CH3)(CH3)C=CCO), 2.11 (s, 3H, C=CCH3), 2.01 

(s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (500 MHz, CDCl3) δ 163.4, 160.8, 153.9, 147.1, 139.3, 136.1, 135.4, 124.5, 

121.8, 121.5, 27.0, 26.3, 22.4, 15.1, 14.3 ppm. 

UV(VIS)O: 345 nm, C: 540 nm.  

HRMS (EI) Calcd for C15H16O3S, [M+]: 276.0820, Found: 276.0822. 
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CRYSTAL STRUCTURE OF Z-THIENYL FULGIDE (18Z) 
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CRYSTAL DATA AND STRUCTURE REFINEMENT FOR (18Z): 

 

Crystal growing solvent   Dichloromethane and Ether 

Empirical formula    C15 H16 O3 S 

Formula weight    276.34 

Temperature     293(2) K 

Wavelength     0.71073 Å 

Crystal system     Orthorhombic 

Space groups     Pbca 

Unit cell dimensions    a = 15.4088(8) Å  α = 90o. 

      b = 7.5348(4) Å  β = 90o. 

      c = 24.0381(13) Å  γ = 90o. 

Volume     2790.9(3) Å3

Z      8 

Density (calculated)    1.315 Mg/m3

Absorption coefficient   0.233 mm-1

F(000)      1168 

Crystal size     0.50 x 0.20 x 0.08 mm3

Theta range for data collection  1.69 to 25.00o. 

Index ranges     -18<=h<=17, -8<=k<=8, -28<=l<=18 

Reflections collected    14954 

Independent reflections   2455 [R(int) = 0.0353] 

Completeness to theta = 25.00o  99.8% 

Absorption correction    Sadabs, (Sheldrick 2001) 

Max. and min. transmission   0.9816 and 0.8925 

Refinement method    Full-matrix least-squares on F2

Data / restraints / parameters   2455 / 0 / 236 

Goodness of fit on F2    1.226 

Final R indices [I>2sigma(I)]   R1 = 0.0635, wR2 = 0.1430 

R indices (all data)    R1 = 0.0728, wR2 = 0.1486 

Largest diff. peak and hole   0.339 and -0.150 e. Å3
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Crystal structure of Z-thienyl fulgide (18E) 
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CRYSTAL DATA AND STRUCTURE REFINEMENT FOR (18E): 

 

Crystal growing solvent   Dichloromethane and Ether 

Empirical formula    C15 H16 O3 S 

Formula weight    276.34 

Temperature     293(2) K 

Wavelength     0.71073 Å 

Crystal system     Monoclinic 

Space groups     P2(1)/c 

Unit cell dimensions    a = 11.5984(10) Å  α = 90o. 

      b = 7.9080(7) Å  β = 90o. 

      c = 15.9745(15) Å  γ = 90o. 

Volume     1447.4(2) Å3

Z      4 

Density (calculated)    1.268 Mg/m3

Absorption coefficient   0.224 mm-1

F(000)      584 

Crystal size     0.26 x 0.30 x 0.50 mm3

Theta range for data collection  1.78 to 25.00o. 

Index ranges     -13<=h<=13, -9<=k<=9, -14<=l<=18 

Reflections collected    8100 

Independent reflections   2554 [R(int) = 0.0294] 

Completeness to theta = 25.00o  99.8% 

Absorption correction    Sadabs, (Sheldrick 2001) 

Refinement method    Full-matrix least-squares on F2

Data / restraints / parameters   2554 / 0 / 177 

Goodness of fit on F2    1.063 

Final R indices [I>2sigma(I)]   R1 = 0.0661, wR2 = 0.1692 

R indices (all data)    R1 = 0.0818, wR2 = 0.1806 

Largest diff. peak and hole   0.324 and -0.162 e. Å3
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Preparation of 2,5-dimethylthiophene cyclopentylidene fulgide (32) 

 

Cyclopentenyl diethyl succinate 47 (1eq.) was added into in a solution of ice-cooled 

THF containing NaH (55-65%, moistened with mineral oil) (1.5-1.8 eq.) prewashed 

with hexane and stirred for 15 mins. 2-3 drops of EtOH was added into the reaction 

mixture before dropwise addition of 3-acetyl-2,5-dimethyl thiophene, 28 (1.1 eq.) 

over 30 mins. The mixture was then allowed to stir overnight followed by quenching 

of the reaction using ice-cold water. 10% Na2CO3 was used to extract the half-ester 

followed by the acidification of the basic solution with 4M HCl to liberate the acid-

ester. 4 x 25 ml of ethyl acetate was used to extract the liberated acid-ester and the 

solvent was removed in vacuo to afford a dark brown oil (Crude nmr indicated the 

presence of the half-ester).  
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Saponification of the half-ester and double-bond isomerization of the β,γ-unsaturation 

to the α,β site was initiated with 5% w/v NaOH in EtOH. The mixture was allowed to 

stir for 1h before refluxing for approximately 16h. After which, an aqueous solution 

(20-50 mls) of 25% NaOH was added and the reaction mixture allowed to stir for an 

additional 3h. A second acid base workup as before afforded the diacid as a brownish 

solid. The crude reaction mixture was washed with brine and dried by standing in 

anhydrous MgSO4. Solvents were removed in vacuo before the addition of excess 

acetyl chloride to the diacid in the dark to initiate the ring closure to afford the desired 

fulgide. The mixture was allowed to stir for approximately 5 h before removing the 

acetyl chloride in vacuo. Purification of the crude reaction mixture using flash 

chromatography (8:1 hexane/ethyl acetate) afforded 32 in 80% yield (Z-isomer); 

yellow plates, mp 125-127 oC. The E-isomer was observed to be present on TLC, but 

was not isolable. 

Rf: 0.61 (E-siomer), 0.53 (Z-isomer) (hexane: ethyl acetate = 4:1). 

1H NMR (500MHz, CDCl3) δ 6.56 (s, 1H, C=CH), 3.00 (t, J = 4.4 Hz, 2H, 

CH2(CH2)2CH2C=CCO), 2.42 (s, 3H, CH3CSCCH3), 2.36 (t, J = 4.2 Hz, 2H, 

CH2(CH2)2CH2C=CCO), 2.30 (s, 3H, CH3CSCCH3), 2.13 (s, 3H, C=CCH3), 1.90 (t, J 

= 4.4 Hz, 2H, CH2(CH2CH2)CH2C=CCO), 1.82 (t, J = 4.2 Hz, 2H, 

CH2(CH2CH2)CH2C=CCO) ppm. 

13C NMR (500 MHz, CDCl3) δ 167.7, 164.3, 163.4, 148.8, 139.6, 137.7, 135.2, 125.8, 

121.1, 117.5, 36.3, 35.2, 26.2, 25.6, 23.2, 15.1, 14.9 ppm. 

FTIR (KBr): 3449, 2917, 2870, 1806, 1763, 1617, 1438, 1262, 1230, 1100, 927,  

760 cm-1. 

UV(VIS)O: 342 nm, C: 544 nm.  
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HRMS (EI) Calcd for C17H18O3S, [M+]: 302.0977, Found: 302.0973; [M+-CH3]: 

287.0742, Found: 287.0747. 

 

O
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S

 

 

Preparation of 2,5-dimethylthiophene cyclohexylidene fulgide (33) 

 

Synthesis was accomplished in a manner similar to that for the cyclopentylidene 

fulgide 32, using the corresponding diester.  

32 was obtained as orange plates with a yield of 14% (Z-isomer), mp 128-130 oC.  

E-isomer observed to be present as a faint spot on TLC, and was not isolable. 

Rf: 0.59 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 6.51 (s, 1H, C=CH), 2.95-2.86 (m, 2H, 

CH2(CH2)3CH2C=CCO), 2.55 (s, 3H, CH3CSCCH3), 2.40 (s, 3H, CH3CSCCH3), 2.14 

(s, 3H, C=CCH3), 1.65-1.57 (m, 4H, CH2(CH2CH2CH2)CH2C=CCO), 1.49-1.44 (m, 

2H, CH2(CH2)3CH2C=CCO), 1.27-1.19 (m, 2H, CH2(CH2CH2CH2)CH2C=CCO) 

ppm. 

13C NMR (500 MHz, CDCl3) δ 163.7, 163.2, 162.4, 148.7, 139.3, 137.8, 134.1, 125.2, 

120.9, 118.0, 33.9, 30.6, 27.6, 27.0, 25.3, 22.8, 15.1, 14.8.  

FTIR (KBr): 2954, 2923, 2851, 1736, 1716, 1458, 1364, 1218 cm-1

UV(VIS)O: 345 nm, C: 552 nm.  
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HRMS (EI) Calcd for C18H20O3S, [M+]: 316.1133, Found: 316.1134; [M+-CH3]: 

301.0898, Found: 301.0902. 
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Preparation of 2,5-dimethylthiophene cycloheptylidene fulgide (34)  

 

Synthesis was accomplished in a manner similar to that for the cyclopentylidene 

fulgide 32, using the corresponding diester.  

34 was obtained with a 7% yield. The E-isomer was observed to be absent on TLC. 

Rf: 0.54 (hexane: ethyl acetate = 4:1). 

1H NMR δ 6.51 (s, 1H, C=CH), 2.90-3.10 (m, 2H, CH2(CH2)4CH2C=CCO), 2.59 (s, 

3H, CH3CSCCH3), 2.40 (s, 3H, CH3CSCCH3), 2.13 (s, 3H, C=CCH3), 1.65-1.33 (m, 

4H, CH2(CH2 CH2CH2CH2)CH2C=CCO), 1.35-1.26 (m, 4H, 

CH2(CH2CH2CH2CH2)CH2C=CCO), 0.90-0.85 (m, 2H, 

CH2(CH2CH2CH2CH2)CH2C=CCO).  

13C NMR (300 MHz, CDCl3) δ 165.7, 163.9, 163.1, 148.9, 139.8, 137.8, 134.7, 125.2, 

121.3, 119.9, 36.7, 31.6, 29.7, 28.7, 27.4, 25.5, 23.0, 15.1, 14.8.  

FTIR (KBr): 3476, 2920, 2854, 1809, 1763, 1685, 1445, 1263, 1229, 924, 716, 497 

cm-1. 

UV(VIS)O: 342 nm, C: 550 nm.  
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HRMS (EI) Calcd for C18H20O3S, [M+]: 330.1290, Found: 330.1289; [M+-CH3]: 

315.1055, Found: 315.1054. 
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Preparation of 2,5-dimethylfuran isopropylidene fulgide (2)  

 

Synthesis was accomplished in a manner similar to that for the isopropylidene thienyl 

fulgide 18 analog.  

18 was obtained with a yield of 45% (E-isomer) as orange plates, mp 110-112 oC. 

Rf: 0.44 (hexane: ethyl acetate = 4:1). 

1H NMR (500MHz, CDCl3) δ 5.92 (s, 1H, C=CH), 2.58 (s, 3H, C=CCH3), 2.34 (s, 

3H, CH3COCCH3), 2.25 (s, 3H, CH3CSCCH3), 2.00 (s, 3H, (CH3)(CH3)C=CCO), 

1.36 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (500 MHz, CDCl3) δ 163.9, 163.3, 153.7, 151.3, 148.4, 146.8, 124.3, 121.0, 

114.2, 105.9, 26.8, 22.6, 22.2, 13.9, 13.3 ppm. 

FTIR (KBr): 3425, 2956, 2855, 1810, 1761, 1653, 1226, 928 cm-1. 

UV(VIS)O: 346 nm, C: 510 nm.  

HRMS (EI) Calcd for C15H16O4, [M+]: 260.1049, Found: 260.1052; [M+-CH3]: 

245.0814, Found: 245.0812. 
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Preparation of 2,5-dimethylfuran cyclopentylidene fulgide (35)  

 

Synthesis was accomplished in a manner similar to that for the cyclopentylidene 

fulgide 32, using the appropriate diester.  

32 was obtained with a 46% yield as orange plates, mp 102-105 oC. The E-isomer was 

observed to be present on TLC, but was not isolable. 

Rf: 0.60 (E-siomer), 0.53 (Z-isomer) (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 5.98 (s, 1H, C=CH), 2.98-2.93 (m, br, 2H, 

CH2(CH2)2CH2C=CCO), 2.60 (s, 3H, CH3COCCH3), 2.27 (s, 3H, CH3COCCH3), 

1.90 (s, 3H, C=CCH3), 1.72-1.69 (m, br, 2H, CH2(CH2)2CH2C=CCO), 1.57-1.54 (m, 

br, 2H, CH2(CH2CH2)CH2C=CCO), 1.28-1.24 (m, br, 2H, 

CH2(CH2CH2)CH2C=CCO) ppm. 

13C NMR (500 MHz, CDCl3) δ 165.7, 164.4, 163.5, 151.3, 148.8, 146.3, 124.5, 119.2, 

117.9, 106.3, 37.8, 35.0, 26.1, 25.7, 22.5, 14.0, 13.3 ppm. 

FTIR (KBr): 3005, 2970, 2926, 1739, 1716, 1431, 1420, 1363, 1222, 1092, 928, 529 

cm-1. 

UV(VIS)O: 350 nm, C: 514 nm.  

HRMS (EI) Calcd for C17H18O4, [M+]: 286.1205, Found: 286.1206; [M+-CH3]: 

271.0970, Found: 271.0970. 
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Preparation of 2,5-dimethylfuran cyclohexylidene fulgide (36)  

 

Synthesis was accomplished in a manner similar to that for the cyclopentylidene 

fulgide 32, using the appropriate diester.  

36 was obtained with a yield of 17% (Z-isomer) as pale yellowish needles, mp 115-

117 oC. 

Rf: 0.55 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 5.92 (s, 1H, C=CH), 2.95 (t, J = 3.7 Hz, 2H, 

CH2(CH2)3CH2C=CCO), 2.54 (s, 3H, CH3COCCH3), 2.25 (s, 3H, CH3CSCCH3), 2.03 

(s, 3H, C=CCH3), 1.71-1.61 (m, 4H, CH2(CH2CH2CH2)CH2C=CCO), 1.53-1.49 (m, 

2H, CH2(CH2)3CH2C=CCO), 1.26 (t, J = 3.7 Hz, 2H, CH2(CH2CH2CH2)CH2C=CCO) 

ppm. 

13C NMR (500 MHz, CDCl3) δ 163.7, 163.2, 161.1, 151.3, 147.4, 146.5, 128.9, 123.9, 

105.9, 34.5, 30.6, 27.8, 26.6, 25.4, 22.1, 14.0, 13.3 ppm. 

FTIR (KBr): 3411, 2956, 2918, 2850, 1735, 1719, 1486, 1376, 1217 cm-1. 

UV(VIS)O: 346 nm, C: 514 nm.  

HRMS (EI) Calcd for C18H20O4, [M+]: 300.1362, Found: 300.1366; [M+-CH3]: 

285.1127, Found: 285.1130. 
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Preparation of 2,5-dimethylfuran cycloheptylidene fulgide (37) 

 

Synthesis was accomplished in a manner similar to that for the cyclopentylidene 

fulgide 32 using the appropriate diester.  

37 was obtained with a yield of 22% (Z-isomer). The E-isomer was observed to be 

absent on TLC. 

Rf: 0.53 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 5.92 (s, 1H, C=CH), 3.01-2.99 (m, 2H, 

CH2(CH2)4CH2C=CCO), 2.57 (s, 3H, CH3COCCH3), 2.31 (t, J = 3.6 Hz, 2H, 

CH2(CH2)4CH2C=CCO), 2.25 (s, 3H, CH3CSCCH3), 1.98 (s, 3H, C=CCH3), 1.75-

1.35 (m, 8H, CH2(CH2)4CH2C=CCO), 2ppm. 

13C NMR (500 MHz, CDCl3) δ 164.2, 163.9, 163.1, 151.3, 148.1, 146.6, 124.4, 120.3, 

119.5, 105.9, 37.6, 31.9, 30.6, 28.7, 27.4, 25.3, 22.3, 14.0, 13.3 ppm. 

FTIR (KBr): 3452, 2956, 2918, 2850, 1734, 1716, 1458, 1219, 929 cm-1. 

UV(VIS)O: 350 nm, C: 526 nm.  

HRMS (EI) Calcd for C19H22O4, [M+]: 314.1518, Found: 314.1525; [M+-CH3]: 

299.1283, Found: 299.1283. 
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Preparation of 2,5-dimethylthiophene isopropylidene p-bromo-phenyl-fulgimide 

(57) 

 

METHOD A – THERMAL HEATING METHOD 

 

2,5-dimethylthiophene cyclopentylidene fulgide 18 (1 eq.) was added into a round 

bottom flask and stirred in THF. p-bromo aniline 59, (1.1 eq.) was added in 1 lot and 

the reaction mixture stirred overnight (18h). Reaction was monitored using TLC. If 

large presence of fulgide was observed to be still present, it was possible to reflux the 

mixture for about 6h. The excess solvent was removed in vacuo and excess acetyl 

chloride was added in the dark and stirred for approximately 6h. THF was added into 

the reaction flask and the liquids were removed in vacuo. Flash chromatography 

afforded 57 with a yield of 45%. 
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METHOD B – MICROWAVE HEATING METHOD 

 

To a round bottomed flask (RBF) containing fulgide 18 and amine 59, was added 

2mls of THF. The mixture was allowed to dissolve and was mixed well before being 

subjected to microwave radiation using a conventional (domestic) microwave oven. 

The reaction was carried out without a stopper or plug so as to allow the evaporation 

of solvent and prevent a build-up of pressure in the reaction vessel. After 40 minutes, 

the RBF was removed and the crude reaction mixture treated with acetyl chloride for 

up to 6 hours. This was followed by removal of excess acetyl chloride and volatiles 

via vacuo, before subjecting the crude mixture to flash chromatography which 

afforded fulgimide 57 with a yield of 73%. 

Rf: 0.60 (E-isomer), 0.50 (Z-isomer) (hexane: ethyl acetate = 4:1). 

Z-form: 1H NMR (300MHz, CDCl3) δ 7.51 (d, J = 8.7 Hz, 2H, NC(CH=CH)2), 7.22 

(t, J = 8.7 Hz, 2H, NC(CH=CH)2), 6.54 (s, 1H, C=CH), 2.46 (s, 3H, C=CCH3), 2.40 

(s, 3H, CH3CSCCH3), 2.33 (s, 3H, CH3CSCCH3), 2.11 (s, 3H, (CH3)(CH3)C=CCO), 

2.02 (s, 3H, (CH3)(CH3)C=CCO) ppm.  

13C NMR (300MHz, CDCl3) δ 167.1, 164.5, 149.4, 142.9, 137.8, 136.2, 135.6, 131.8, 

131.1, 128.5, 124.8, 123.7, 121.5, 27.1, 26.4, 21.9, 15.2, 14.3 ppm. 

FTIR (KBr): 3465, 2916, 2851, 1744, 1701, 1626, 1493, 1436, 1368, 1143, 1015, 840, 

751 cm-1. 

UV(VIS) Z-form: O: 334 nm, C: 538 nm.  

HRMS (EI) Calcd for C21H20BrNO2S, [M+]: 429.0398, Found: 429.0390; [M+-CH3]: 

414.0163, Found: 414.0159. 
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Preparation of 2,5-dimethylthiophene isopropylidene allyl-fulgimide (53) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 53 in 42% yield (E/Z combined yield).  

Method B: 47% yield. 

Rf: 0.62 (E-isomer), 0.53 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ  6.51 (s, 1H, C=CH), 5.91-5.80 (m, 1H, 

CH2CHCH2), 5.24-5.16 (dd, J = 8.0, 13.9 Hz, 2H, CH2CHCH2), 4.10 (d, J = 3.7 Hz, 

2H, CH2CHCH2), 2.60 (s, 3H, C=CCH3), 2.39 (s, 3H, CH3CSCCH3), 2.27 (s, 3H, 

CH3CSCCH3), 2.11 (s, 3H, (CH3)(CH3)C=CCO), 1.25 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 

Z-form: 1H NMR (300MHz, CDCl3) δ  6.52 (s, 1H, C=CH), 5.83-5.74 (m, 1H, 

CH2CHCH2), 5.20-5.10 (dd, J = 10.1, 12.9 Hz, 2H, CH2CHCH2), 4.10 (d, J = 5.9 Hz, 

2H, CH2CHCH2), 2.43 (s, 3H, CH3CSCCH3), 2.41 (s, 3H, CH3CSCCH3), 2.29 (s, 3H, 

CH3CSCCH3), 2.04 (s, 3H, (CH3)(CH3)C=CCO), 1.96 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 

13C NMR (300MHz, CDCl3) δ 168.1, 165.4, 147.7, 141.3, 137.1, 136.5, 135.5, 131.9, 

125.6, 124.9, 124.1, 117.6, 39.9, 26.9, 26.1, 21.6, 15.2, 14.1 ppm. 
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FTIR (KBr): 3437, 2920, 2857, 1810, 1762, 1695, 1627, 1438, 1383, 1267, 1226, 

1144, 927, 845 cm-1.  

UV(VIS)O: 330 nm, C: 526 nm.  

HRMS (EI) Calcd for C18H21NO2S, [M+]: 315.1293, Found: 315.1290; [M+-CH3]: 

300.1058, Found: 300.1067. 
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Preparation of 2,5-dimethylthiophene isopropylidene pyridin-2-yl-fulgimide (54) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 54 with a 39% yield (E/Z combined yield).  

Method B: 16% yield. 

Rf: 0.48 (E-isomer), 0.35 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ  8.70 (t, J = 1.1 Hz, 1H, C=NCH), 7.86 (dt, J = 

1.1, 4.4 Hz, 1H, C=NCHCHCHCH), 7.40-7.34 (m, 2H, C=NCHCHCHCH), 6.54 (s, 

1H, C=CH), 2.63 (s, 3H, C=CCH3), 2.40 (s, 3H, CH3CSCCH3), 2.31 (s, 3H, 

CH3CSCCH3), 2.19 (s, 3H, (CH3)(CH3)C=CCO), 1.29 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 

13C NMR (300MHz, CDCl3) δ 167.5, 166.9, 150.9, 149.7, 146.7, 145.3, 140.5, 138.0, 

137.1, 134.0, 125.7, 124.0, 123.4, 122.9, 122.8, 29.7, 25.7, 22.3, 15.1, 14.8 ppm. 
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Z-form: 1H NMR (300MHz, CDCl3) δ  8.62 (d, J = 2.5 Hz, 1H, C=NCH), 7.77 (t, J = 

4.6 Hz, 1H, C=NCHCHCHCH), 7.30-7.28 (m, 2H, C=NCHCHCHCH), 6.54 (s, 1H, 

C=CH), 2.47 (s, 3H, C=CCH3), 2.38 (s, 3H, CH3CSCCH3), 2.33 (s, 3H, 

CH3CSCCH3), 2.11 (s, 3H, (CH3)(CH3)C=CCO), 2.01 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 

13C NMR (300MHz, CDCl3) δ 167.0, 164.4, 149.5, 146.7, 142.9, 138.0, 137.9, 136.2, 

135.5, 125.1, 124.9, 123.9, 123.3, 122.9, 27.0, 26.3, 21.9, 15.2, 14.3 ppm. 

FTIR (KBr): 3448, 3160, 2919, 2360, 2338, 1750, 1701, 1627, 1465, 1434, 1341, 

1263, 1209, 1157, 906, 766 cm-1. 

UV(VIS) E-form: O: 328 nm, C: 532 nm; Z-form: O: 330 nm, C: 532 nm.  

HRMS (EI) Calcd for C20H20N2O2S, [M+]: 352.1245, Found: 352.1249; [M+-CH3]: 

337.1011, Found: 337.1011. 
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Preparation of 2,5-dimethylthiophene isopropylidene phenyl-fulgimide (55) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 55 with a 42% yield (E/Z combined yield).  

Method B: 65% yield. 
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Rf: 0.0.45 (E-isomer), 0.36 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ 7.48-7.38 (m, 5H, C(CH)5), 6.55 (s, 1H, 

C=CH), 2.63 (s, 3H, C=CCH3), 2.41 (s, 3H, CH3CSCCH3), 2.30 (s, 3H, 

CH3CSCCH3), 2.19 (s, 3H, (CH3)(CH3)C=CCO), 1.30 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 

Z-form: 1H NMR (300MHz, CDCl3) δ  7.42-7.28 (m, 5H, C(CH)5), 6.54 (s, 1H, 

C=CH), 2.47 (s, 3H, C=CCH3), 2.40 (s, 3H, CH3CSCCH3), 2.33 (s, 3H, 

CH3CSCCH3), 2.11 (s, 3H, (CH3)(CH3)C=CCO), 2.02 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 

13C NMR (300MHz, CDCl3) δ 167.5, 164.9, 148.7, 142.3, 137.5, 136.3, 135.5, 132.1, 

128.9, 128.7, 128.1, 127.9, 127.0, 125.3,124.9, 124.0, 27.1, 26.3, 21.8, 15.2, 14.2 

ppm. 

FTIR (KBr): 3469, 2915, 2851, 1743, 1701, 1627, 1497, 1437, 1369, 1141, 903, 841, 

749, 692, 621 cm-1. 

UV(VIS) E-form: O: 328 nm, C: 534 nm; Z-form: O: 330 nm, C: 532 nm.  

HRMS (EI) Calcd for C21H21NO2S, [M+]: 351.1293, Found: 351.1294; [M+-CH3]: 

336.1058, Found: 336.1057. 
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Preparation of 2,5-dimethylthiophene isopropylidene p-chloro-phenyl-fulgimide 

(56) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 56 with a 65% yield (E/Z combined yield). 

Method B: 85% yield. 

Rf: 0.65 (E-isomer), 0.56 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ 7.45 (d, J = 8.9 Hz, 2H, NC(CH=CH)2), 7.35 

(d, J = 8.9 Hz, 2H, NC(CH=CH)2), 6.53 (s, 1H, C=CH), 2.62 (s, 3H, C=CCH3), 2.40 

(s, 3H, CH3CSCCH3), 2.30 (s, 3H, CH3CSCCH3), 2.18 (s, 3H, (CH3)(CH3)C=CCO), 

1.29 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ 167.7, 167.1, 150.6, 145.0, 140.4, 137.2, 133.9, 133.7, 

130.6, 129.1, 128.2, 125.7, 25.7, 22.3, 15.1, 14.8 ppm. 

 

Z-form: 1H NMR (300MHz, CDCl3) δ 7.37 (d, 9.0 Hz, 2H, NC(CH=CH)2), 7.32 (d, 

9.0 Hz, 2H, NC(CH=CH)2), 6.54 (s, 1H, C=CH), 2.46 (s, 3H, C=CCH3), 2.39 (s, 3H, 

CH3CSCCH3), 2.32 (s, 3H, CH3CSCCH3), 2.11 (s, 3H, (CH3)(CH3)C=CCO), 2.02 (s, 

3H, (CH3)(CH3)C=CCO)  ppm. 
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13C NMR (300MHz, CDCl3) δ 167.1, 164.5, 149.2, 142.8, 137.6, 136.2, 135.6, 133.4, 

130.6, 128.8, 128.2, 124.9, 124.8, 123.7, 27.1, 26.3, 21.9, 15.2, 14.2 ppm. 

FTIR (KBr): 3494, 2978, 2937, 2874, 1675, 1596, 1579, 1448, 1378, 1213, 1165, 

1144, 1072, 845, 692, 644 cm-1. 

UV(VIS) Z-form: O: 326 nm, C: 538 nm.  

HRMS (EI) Calcd for C21H20ClNO2S, [M+]: 385.0903, Found: 385.0901; [M+-CH3]: 

370.0669, Found: 370.0665. 
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Preparation of 2,5-dimethylthiophene isopropylidene p-nitro-phenyl-fulgimide 

(61) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: 0% yield. 

Method B: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 61 with a 36% yield. 61 was obtained as the Z-

isomer. The E-isomer was present in unisolable amounts, observed to be present on 

TLC only. 

 

Rf: 0.58 (E-isomer), 0.48 (Z-isomer) (hexane: ethyl acetate = 4:1). 
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E-form: 1H NMR (300MHz, CDCl3) δ  8.34 (d, J = 5.6 Hz, 2H, NC(CH=CH)2NO2), 

7.70 (d, J = 5.6 Hz, 2H, NC(CH=CH)2NO2), 6.54 (s, 1H, C=CH), 2.63 (s, 3H, 

C=CCH3), 2.41 (s, 3H, CH3CSCCH3), 2.32 (s, 3H, CH3CSCCH3), 2.19 (s, 3H, 

(CH3)(CH3)C=CCO), 1.31 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

Z-form: 1H NMR (300MHz, CDCl3) δ  8.25 (d, 2H, NC(CH=CH)2NO2), 7.61 (d, 2H, 

NC(CH=CH)2NO2), 6.54 (s, 1H, C=CH), 2.48 (s, 3H, C=CCH3), 2.41 (s, 3H, 

CH3CSCCH3), 2.34 (s, 3H, CH3CSCCH3), 2.13 (s, 3H, (CH3)(CH3)C=CCO), 2.05 (s, 

3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ  166.6, 164.0, 150.5, 144.0, 137.9, 135.9, 127.3, 127.2, 

125.6, 124.7, 124.1, 123.9, 123.4, 27.2, 26.5, 22.1, 15.2, 14.3 ppm. 

FTIR (KBr): 3465, 2932, 2916, 2899, 2850, 1751, 1703, 1626, 1530, 1447, 1371, 

1140, 820 cm-1. 

UV(VIS) Z-form: O: 330 nm, C: 548 nm.  

HRMS (EI) Calcd for C21H20N2O4S [M+]: 396.1144, Found: 396.1135; [M+-CH3]: 

381.0909, Found: 381.0909. 
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Preparation of 2,5-dimethylthiophene isopropylidene R-(+)-methyl benzyl-

fulgimide (62R) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 62 with a 70% yield.  

Method B: 74% yield. 

Rf: 0.63 (E-isomer), 0.53 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ  7.45-7.25 (m, 5H, C(CH)5), 6.47 (s, 1H, 

C=CH), 5.53 (q, J = 7.3 Hz, 1H, NCH(CH3)Ph), 2.56 (s, 3H, C=CCH3), 2.37 (s, 3H, 

CH3CSCCH3), 2.24 (s, 3H, CH3CSCCH3), 2.09 (s, 3H, (CH3)(CH3)C=CCO), 1.87 (d,  

J = 7.3 Hz, 3H, NCH(CH3)Ph), 1.19 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

 

Z-form: 1H NMR (300MHz, CDCl3) δ 7.44-7.22 (m, 5H, C(CH)5), 6.50 (s, 1H, 

C=CH), 5.45 (q, J = 7.4 Hz, 1H, NCH(CH3)Ph), 2.41 (s, 3H, C=CCH3), 2.37 (s, 3H, 

CH3CSCCH3), 2.23 (s, 3H, CH3CSCCH3), 2.00 (s, 3H, (CH3)(CH3)C=CCO), 1.92 (s, 

3H, NCH(CH3)Ph), 1.79 (d, J = 7.3 Hz, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ 168.7, 168.2, 148.8, 143.2, 140.7, 140.6, 136.9, 133.6, 

128.4, 127.4, 127.3, 125.8, 124.4, 123.2, 48.9, 25.6, 22.0, 21.9, 17.2, 15.1, 14.7 ppm. 
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FTIR (KBr): 3486, 2955, 2951, 1677, 1497, 1455, 1379, 1140, 905, 845, 748,  

690 cm-1. 

UV(VIS) Z-form: O: 330 nm, C: 520 nm.  

HRMS (EI) Calcd for C23H25NO2S [M+]: 379.1606, Found: 379.1610; [M+-CH3]: 

376.1371, Found: 376.1373. 
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Preparation of 2,5-dimethylthiophene isopropylidene S-(-)-methyl benzyl-

fulgimide (62S) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 63 with a 72% yield.  

Method B: 76% yield. 

Rf: 0.63 (E-isomer), 0.53 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ 7.48-7.31 (m, 5H, C(CH)5), 6.47 (s, 1H, 

C=CH), 5.57 (q, J = 4.4 Hz, 1H , NCH(CH3)Ph), 2.56 (s, 3H, C=CCH3), 2.37 (s, 3H, 

CH3CSCCH3), 2.23 (s, 3H, CH3CSCCH3), 2.09 (s, 3H, (CH3)(CH3)C=CCO), 1.87 (d, 

J = 4.4 Hz, 3H, NCH(CH3)Ph), 1.19 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3)δ 168.7, 168.2, 148.8, 143.2, 140.7, 140.7, 136.9, 133.6, 

128.4, 127.4, 127.3, 125.8, 124.4, 123.2, 48.9, 25.6, 22.0, 21.9, 17.2, 15.1, 14.7 ppm. 
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FTIR (KBr): 3493, 2951, 2943, 1673, 1499, 1449, 1370, 1141, 908, 748, 697 cm-1. 

UV(VIS) Z-form: O: 330 nm, C: 520 nm.  

HRMS (EI) Calcd for C23H25NO2S [M+]: 379.1606, Found: 379.1613; [M+-CH3]: 

364.1371, Found: 364.1372. 
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Preparation of 2,5-dimethylthiophene isopropylidene pyridine-3-yl-fulgimide 

(63) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 63 with a ~2% (E/Z combined yield). Molecule was 

not pursued further as low yield was not favorable for synthetic scale up. 

Method B: 0% yield. 
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Preparation of Preparation of 2,5-dimethylthiophene adamantylidene p-bromo-

phenyl-fulgimide (64)  

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: 0% yield. 

Method B: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 64 with a 60% yield. The Z-isomer was 

synthesized exclusively. No E-isomer was detected on TLC or NMR. 

Rf: 0.80 (hexane: ethyl acetate = 4:1). 

Z-form: 1H NMR (300MHz, CDCl3) δ 7.52 (dd, J = 1.9, 6.9 Hz, 2H, NC(CH=CH)2), 

7.25 (dd, J = 1.9, 6.9 Hz, 2H, NC(CH=CH)2), 6.51 (s, 1H, C=CH), 4.54 (s, 1H, 

C=CCH(CH)), 2.73 (s, 1H C=CCH(CH)), 2.39 (s, 3H, CH3CSCCH3), 2.30 (s, 3H, 

CH3CSCCH3), 2.15 (s, 3H, (CH3)(CH3)C=CCO), 2.06-1.93 (m, 12H, ADA) ppm. 

13C NMR (300MHz, CDCl3) δ 167.2, 166.8, 164.4, 142.6, 136.3, 135.6, 131.7, 131.2, 

128.4, 124.6, 121.4, 117.2, 39.6, 37.7, 36.5, 32.8, 27.4, 26.2, 15.2, 14.2 ppm. 

FTIR (KBr): 3441, 2936, 2916, 2899, 2850, 1753, 1710, 1620, 1487, 1361, 1129, 821, 

778, 756, 504 cm-1. 

UV(VIS) Z-form: O: 340 nm, C: 574 nm.  
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HRMS (EI) Calcd for C28H28BrNO2S, [M+]: 521.1024, Found: 521.1020; [M+-CH3]: 

506.0789, Found: 506.0819. 
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Preparation of 2,5-dimethylfuran adamantylidene p-bromo-phenyl-fulgimide 

(70) 

 

Method A: 0% yield. 

Method B: Synthesis was accomplished in a manner similar to that for the 2,5-

dimethylthiophene adamantylidene p-bromo-phenyl-fulgimide, 64, affording 70 with 

a 75%. The Z-isomer was obtained exclusively. 

Rf: 0.68 (hexane: ethyl acetate = 4:1). 

Z-form: 1H NMR (300MHz, CDCl3) δ 7.58 (d, 2H, NC(CH=CH)2), 7.32 (d, 2H, 

NC(CH=CH)2), 5.94 (s, 1H, C=CH), 4.43 (s, 1H, C=CCH(CH)), 2.53 (s, 3H, 

CH3COCCH3), 2.43 (s, 1H, C=CCH(CH)), 2.26 (s, 3H, CH3COCCH3), 2.09 (s, 3H, 

(CH3)(CH3)C=CCO), 1.96-1.61 (m, 12H, ADA) ppm. 

13C NMR (300MHz, CDCl3) δ 167.3, 167.0, 166.0, 150.9, 145.7, 141.9, 131.9, 131.3, 

128.5, 124.4, 122.0, 121.6, 117.1, 106.5, 39.9, 38.4, 37.2, 36.4, 32.7, 27.3, 21.7, 13.9, 

13.4 ppm. 
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FTIR (KBr): 3429, 2911, 2849, 1746, 1701, 1621, 1489, 1377, 1170, 1136, 1013, 823, 

780, 756, 504 cm-1. 

UV(VIS) Z-form: O: 340 nm, C: 544 nm.  

HRMS (EI) Calcd for C28H28BrNO3, [M+]: 505.1253, Found: 505.1248; [M+-CH3]: 

490.1018, Found: 490.1032. 
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Preparation of 2,5-dimethylfuran isopropylidene p-bromo-phenyl-fulgimide (68)  

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 68 with a 52% yield. 68 was obtained with the E-

isomer as the major isomer with a trace of the Z-isomer which was not isolable. 

Method B: 65% yield. 

Rf: 0.68 (E-isomer), 0.60 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ 7.59 (d, J = 8.7 Hz, 2H, NC(CH=CH)2), 7.29 

(d, J = 8.7 Hz, 2H, NC(CH=CH)2), 5.93 (s, 1H, C=CH), 2.59 (s, 3H, CH3COCCH3), 

2.34 (s, 3H, C=CCH(CH)), 2.25 (s, 3H, CH3COCCH3), 2.05 (s, 3H, 

(CH3)(CH3)C=CCO), 1.38 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ 167.6, 167.1, 150.8, 149.3, 147.7, 142.7, 132.0, 131.2, 

128.5, 124.7, 123.2, 122.3, 121.7, 106.2, 26.8, 22.2, 21.7, 13.8, 13.3 ppm. 
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FTIR (KBr): 3440, 2920, 2855, 1752, 1704, 1627, 1490, 1441, 1368, 1224, 1172, 

1123, 1071, 1011, 825, 789, 756, 644, 509 cm-1. 

UV(VIS) Z-form: O: 336 nm, C: 518 nm.  

HRMS (EI) Calcd for C21H20BrNO3, [M+]: 413.0627, Found: 413.0619; [M+-CH3]: 

398.0392, Found: 398.0385. 
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Preparation of 2,5-dimethylfuran isopropylidene p-chloro-phenyl-fulgimide (67) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 67 with a 60% yield. 67 was obtained with the E-

isomer as the major isomer with a trace of the Z-isomer which was not isolable. 

Method B: 70% yield. 

Rf: 0.65 (E-isomer), 0.56 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ 7.43 (dt, J = 2.3, 8.7 Hz, 2H, NC(CH=CH)2), 

7.35 (dt, J = 2.4, 8.7 Hz, 2H, NC(CH=CH)2), 5.94 (s, 1H, C=CH), 2.60 (s, 3H, 

CH3COCCH3), 2.34 (s, 3H, C=CCH(CH)), 2.25 (s, 3H, CH3COCCH3), 2.05 (s, 3H, 

(CH3)(CH3)C=CCO), 1.38 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ 167.7, 167.1, 150.8, 149.3, 147.7, 142.6, 133.7, 130.7, 

129.1, 128.2, 124.7, 123.2, 122.3, 106.2, 26.8, 22.2, 21.7, 13.8, 13.3 ppm. 
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FTIR (KBr): 3447, 2922, 2852, 1705, 1627, 1493, 1369, 1224, 1176, 1122, 1091, 

1018, 829, 791, 757, 650, 512 cm-1. 

UV(VIS) Z-form: O: 334 nm, C: 518 nm.  

HRMS (EI) Calcd for C21H20ClNO3, [M+]: 369.1132, Found: 369.1133; [M+-CH3]: 

354.0897, Found: 354.0899. 
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Preparation of 2,5-dimethylfuran isopropylidene allyl-fulgimide (65) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 65 with a 35% yield (E/Z combined yield). 65 was 

obtained with the E-isomer as the major isomer with a trace of the Z-isomer which 

was not isolable. 

Method B: 42% yield. 

Rf: 0.61 (E-isomer), 0.55 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (500MHz, CDCl3) δ 5.90 (s, 1H, C=CH), 5.86 (dd, J = 10.2, 17.1 

Hz, 1H, CH2CHCH2), 5.23-5.16 (ddd, J = 1.4, 10.2, 17.1 Hz,  2H, CH2CHCH2), 4.21-

4.19 (dt, J = 3.2, 1.4 Hz, 2H, CH2CHCH2), 2.57 (s, 3H, C=CCH3), 2.31 (s, 3H, 

CH3CSCCH3), 2.23 (s, 3H, CH3CSCCH3), 1.98 (s, 3H, (CH3)(CH3)C=CCO), 1.32 (s, 

3H, (CH3)(CH3)C=CCO) ppm. 
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13C NMR (300MHz, CDCl3) δ 168.6, 168.1, 150.6, 147.9, 147.4, 141.3, 131.9, 124.7, 

123.5, 117.3, 106.2, 39.8, 26.6, 21.9, 21.4, 13.7, 13.3 ppm. 

FTIR (KBr): 2921, 2855, 1768, 1670, 1628, 1494, 1363, 1223, 1124, 835 cm-1. 

UV(VIS)O: 338 nm, C: 508 nm.  

HRMS (EI) Calcd for C18H21NO3, [M+]: 299.1521, Found: 299.1526; [M+-CH3]: 

284.1287, Found: 284.1285.  
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Preparation of 2,5-dimethylfuran isopropylidene phenyl-fulgimide (66) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 66 with a 39% yield (E/Z combined yield). 66 was 

obtained with the E-isomer as the major isomer with a trace of the Z-isomer which 

was not isolable. 

Method B: 57% yield. 

Rf: 0.63 (E-isomer), 0.55 (Z-isomer) (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ  7.50-7.36 (m, 5H, C(CH)5), 5.94 (s, 1H, 

C=CH), 2.61 (s, 3H, C=CCH3), 2.34 (s, 3H, CH3COCCH3), 2.25 (s, 3H, 

CH3COCCH3), 2.06 (s, 3H, (CH3)(CH3)C=CCO), 1.38 (s, 3H, (CH3)(CH3)C=CCO) 

ppm. 
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13C NMR (300MHz, CDCl3) δ 168.0, 167.5, 150.7, 148.8, 147.6, 142.1, 132.2, 128.9, 

128.0, 127.1, 124.8, 123.4, 122.6, 106.3, 26.7, 22.1, 21.6, 13.8, 13.3 ppm. 

FTIR (KBr): 2920, 1750, 1708, 1703, 1630, 1591, 1496, 1368, 1172, 1123, 1069, 803 

cm-1.   

UV(VIS) E-form: O: 336 nm, C: 514 nm.  

HRMS (EI) Calcd for C21H21NO3, [M+]: 335.1521, Found: 335.1522; [M+-CH3]: 

320.1287, Found: 320.1281. 

 

O

N

O

O
(S)

 

 

Preparation of 2,5-dimethylthiophene isopropylidene S-(-)-methyl benzyl-

fulgimide (69) 

 

Synthesis was accomplished in a manner similar to that for the fulgimide 57.  

Method A: Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 69 with a 65% yield. 69 was obtained with the E-

isomer as the major isomer with a trace of the Z-isomer which was not isolable. 

Method B: 69% yield. 

Rf: 0.60 (hexane: ethyl acetate = 4:1). 

E-form: 1H NMR (300MHz, CDCl3) δ  7.48 (d, J = 7.4 Hz, 2H, C(CH)2(CH)2CH), 

7.34-7.31 (m, 2H, C(CH)2(CH)2CH), 7.27 – 7.23 (m, 1H, C(CH)2(CH)2CH), 5.88 (s, 

1H, C=CH), 5.55 (d, J = 4.34 Hz, 1H, NCH(CH3)Ph), 2.54 (s, 3H, C=CCH3), 2.28 (s, 
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3H, CH3COCCH3), 2.20 (s, 3H, CH3COCCH3), 1.97 (s, 3H, (CH3)(CH3)C=CCO), 

1.86 (s, 3H, NCH(CH3)Ph), 1.28 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ  168.7, 168.2, 150.5, 147.5, 140.7, 130.9, 128.8, 128.4, 

127.4, 127.3, 124.8 123.5, 122.8, 106.3, 48.8, 26.7, 21.9, 21.3, 17.1, 13.7, 13.3 ppm. 

Z-form: 1H NMR (CDCl3) δ 7.44-7.22 (m, 5H), 6.50 (s, 1H), 5.45 (q, 1H), 2.41 (s, 

3H), 2.37 (s, 3H), 2.23 (s, 3H), 2.00 (s, 3H), 1.92 (s, 3H), 1.79 (d, 3H).  

FTIR (KBr): 2925, 2850, 1739, 1712, 1695, 1651, 1495, 1364, 1218, 1031, 928 cm-1. 

UV(VIS) Z-form: O: 338 nm, C: 508 nm.  

HRMS (EI) Calcd for C23H25NO3 [M+]: 363.1834, Found: 363.1822. 

 

O

O

O
S

 

 

Preparation of 2,5-dimethylthiophene adamantylidene fulgide (22) 

 

Synthesis was accomplished in a manner similar to that for the for the thienyl fulgide 

2 analog. Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 22 with a 54% yield. 22 was obtained with the Z-

isomer as the major isomer. 

Rf: 0.65 (hexane: ethyl acetate = 4:1). 
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E-form: 1H NMR (300MHz, CDCl3): δ 6.50 (s, 1H, C=CH), 4.18 (br, s, 1H, 

C=CCH(CH)), 2.51 (s, 1H, C=CCH(CH)), 2.40 (s, 3H, CH3CSCCH3), 2.22 (s, 3H, 

CH3CSCCH3), 2.16 (s, 3H, (CH3)(CH3)C=CCO), 2.07-1.93 (m, 12H, ADA) ppm. 

13C NMR (CDCl3): δ 171.7, 163.8, 163.2, 148.1, 139.2, 133.6, 129.0, 127.5, 126.9, 

124.8, 120.6, 114.5, 39.8, 38.1, 36.3, 33.6, 27.2, 27.0, 15.1, 14.6 ppm. 

FTIR (KBr): 2959, 2848, 2799, 1809, 1757, 1660, 1469, 1392, 1230, 933 cm-1. 

UV(VIS) Z-form: O: 340 nm, C: 574 nm.  

HRMS (EI) Calcd for C22H24O3S [M+]: 368.1446, Found: 368.1449; [M+-CH3]: 

353.1211, Found: 353.1213. 

 

O

O

O
O

 

 

Preparation of 2,5-dimethylfuran adamantylidene fulgide (23) 

 

Synthesis was accomplished in a manner similar to that for the for the thienyl fulgide 

2 analog. Purification of the crude reaction mixture using flash chromatography (~9-

8:1 hexane/ethyl acetate) afforded 23 with a 41% yield. 23 was obtained with the Z-

isomer as the major isomer. 

Rf: 0.63 (hexane: ethyl acetate = 4:1). 
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E-form: 1H NMR (300MHz, CDCl3) δ 5.92 (s, 1H, C=CH), 4.22 (br, s, 1H, 

C=CCH(CH)), 2.51 (s, 3H, CH3COCCH3), 2.34 (s, 1H, C=CCH(CH)), 2.25 (s, 3H, 

CH3COCCH3), 2.00 (s, 3H, (CH3)(CH3)C=CCO), 1.96-1.61 (m, 12H, ADA) ppm. 

13C NMR (CDCl3): δ 170.7, 163.7, 163.2, 151.4, 146.1, 145.9, 123.8, 119.0, 114.5, 

106.1, 40.0, 38.5, 37.3, 36.2, 33.5, 27.1, 22.2, 13.9, 13.3 ppm. 

FTIR (KBr): 3430, 2950, 2921, 2848, 1808, 1757, 1610, 1466, 1362, 1231, 932 cm-1. 

UV(VIS) Z-form: O: 348 nm, C: 538 nm.  

HRMS (EI) Calcd for C22H24O4 [M+]: 352.1675, Found: 352.1680; [M+-CH3]: 

337.1440, Found: 337.1446. 

 

O

O

OEt
OEt

 

 

Preparation of adamantylidene (ADD) diethyl succinate (31) 

 

Synthesis was accomplished in a manner similar to that for the for the IPP diester 14. 

Purification of the crude reaction mixture using flash chromatography afforded the 

diester 31 with a 57% yield. Clear yellowish oil. 

Rf: 0.53 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ  4.22 (q, J = 7.4 Hz, 2H, CO2CH2CH3), 4.12 (q, J = 7.4 

Hz, 2H, CO2CH2CH3), 3.66 (s, 1H, C=CCH(CH)), 3.35 (s, 2H, CH2CO2CH2CH3), 
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2.81 (s, 1H, C=CCH(CH)), 1.94-1.81 (m, 12H, ADA), 1.29-1.23 (m, 6H, 

(CO2CH2CH3)2) ppm. 

13C NMR (500 MHz, CDCl3) δ 171.5, 168.6, 162.4, 114.4, 60.6, 60.2, 39.3, 39.1, 

36.7, 35.1, 34.7, 34.6, 27.7, 14.2, 14.1 ppm. 

FTIR (Film): 2981, 2912, 2852, 2337, 1739, 1714, 1628, 1450, 1368, 1236, 1176, 

1063, 1044 cm-1.  

HRMS Calcd for C18H26O4 [M+]: 306.1831. Found: 306.1828; [M+-CH2CH3]: 

277.1440, Found: 277.139.  

 

O

O

O

 

 

Preparation of 2-napthyl isopropylidene fulgide (19) 

 

Synthesis was accomplished in a manner similar to that for the thienyl fulgide 18 

affording a 28% yield.  

Rf: 0.43 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ  7.85 - 7.79 (m, 3H, Napth), 7.56-7.53 (m, 2H, Napth), 

7.40-7.37 (m, 2H, Napth), 2.82 (s, 3H, C=C(CH3)(Napth)), 2.19 (s, 3H, 

C=C(CH3)(CH3)), 1.02 (s, 3H, C=C(CH3)(CH3)) ppm. 

13C NMR (300MHz, CDCl3) δ  163.9, 163.2, 128.8, 128.4, 127.8, 127.4, 127.3, 126.9, 

124.8, 26.3, 22.7, 22.6 ppm. 

PART 1 – SYNTHESIS OF PHOTOCHROMIC FULGIDES 169



CHAPTER 6 – EXPERIMENTAL SECTION 

FTIR (KBr): 3466, 2922, 1805, 1759, 1624, 1422, 1365, 1257, 1224, 1132, 977, 947, 

925, 760, 739, 480 cm-1. 

HRMS (EI) Calcd for C19H16O3 [M+]: 292.1099, Found: 292.1095; [M+-CH3]: 

277.0865, Found: 277.0866. 

 

O

O

O

S

 

 

Preparation of 2-thienyl isopropylidene fulgide (20) 

 

Synthesis was accomplished in a manner similar to that for the thienyl fulgide 18 

affording a 20% yield.  

Rf: 0.55 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ  7.46-7.44 (dd, J = 1.0, 5.2 Hz, 1H, CHCHSCCH), 

7.26-7.24 (m, 1H, CHCHSCCH), 7.07-7.05 (dd, J = 3.7, 5.1 Hz, 1H, CHCHSCCH), 

2.74 (s, 3H, C=CCH3), 2.29 (s, 3H, (CH3)(CH3)C=CCO), 1.46 (s, 3H, 

(CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ  163.8, 163.2, 155.8, 145.3, 144.2, 129.3, 127.8, 121.9, 

120.3, 119.6, 26.2, 23.2, 22.6 ppm. 

FTIR (KBr): 3460, 2924, 2852, 1808, 1760, 1633, 1516, 1458, 1260, 1224, 927, 702 

cm-1. 

HRMS (EI) Calcd for C13H12O3S [M+]: 248.0507, Found: 248.0502; [M+-CH3]: 

233.0272, Found: 233.0262. 
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Preparation of 4-fluoro-diphenyl isopropylidene fulgide (21)  

 

Synthesis was accomplished in a manner similar to that for the thienyl fulgide 18 

affording a 37% yield.  

Rf: 0.60 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ  7.38 – 7.33 (m, 4H, C(CH)4F), 7.22 – 7.06 (m, 5H, 

C(CH)5), 2.29 (s, 3H, (CH3)(CH3)C=CCO), 2.17 (s, 3H, (CH3)(CH3)C=CCO) ppm. 

13C NMR (300MHz, CDCl3) δ  163.5, 163.1, 128.8, 128.4, 127.8, 127.4, 127.3, 126.9, 

124.8, 26.3, 22.7, 22.6 ppm. 

FTIR (Film): 3466, 2955, 2922, 2850, 1806, 1761, 1506, 1223, 944, 752  cm-1. 

UV-Vis: 350 nm.  

HRMS (EI) Calcd for C20H15FO3 [M+]: 322.1005, Found: 322.1005; [M+-CH3]: 

307.0770, Found: 307.0768. 
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Table 1. UV-Vis Absorption Maxima (nm) in CH2Cl2, of Open and Closed form of 
the thienyl-fulgides 18 and 22, furyl-fulgides 2 and 23 and corresponding fulgimides 
53-70. 

Fga λmaxOb 

(nm) 
ΑΟ

εΟ
(mol-1dm3cm-1) 

λmax Cc 

(nm) ΑC
εC  

(mol-1dm3cm-1) 
∆ λmax

d 

(nm) 
%  

Conversione

18 342 1.48 68465 538 0.69 32063 196 46.8 

22 340 2.20 40533 574 0.06 1099 234 2.7 

53 330 1.22 50705 526 0.31 12999 196 25.6 

54 Z: 330 
E: 328 

Z: 0.95 
E: 0.70 

Z: 33718 
E: 45171 

Z: 532 
E: 532 

Z: 0.30 
E: 0.31 

Z: 10709 
E: 20044 

Z: 202 
E: 204 

Z: 31.8 
E: 44.4 

55 Z: 330 
E: 328 

Z: 0.66 
E: 1.28 

Z: 18380 
E: 39842 

Z: 532 
E: 534 

Z: 0.28 
E: 0.52 

Z: 7879 
E: 16390 

Z: 202 
E: 206 

Z: 42.9 
E: 41.1 

56 326 1.06 342653 538 0.45 146703 212 42.8 

57 334 0.81 175631 538 0.40 86908 204 49.5 

61 330 0.65 27192 548 0.31 12951 218 47.6 

62 330 1.99 199684 520 0.62 62106 190 31.1 

63 330 2.36 298602 524 0.66 83877 194 28.1 

64 340 1.09 43570 574 0.06 2297 234 5.3 

2 346 0.97 52612 510 0.92 50278 164 95.6 

23 348 1.25 51881 538 0.27 11069 190 21.3 

65 338 0.85 18178 508 0.23 4911 170 27.0 

66 336 1.19 57994 514 0.65 31587 178 54.5 

67 334 0.91 88969 518 0.45 40648 184 45.7 

68 336 1.31 60274 518 0.59 26988 182 44.8 

69 338 0.97 36251 508 0.30 11249 170 31.0 

70 340 1.08 322536 544 0.22 67897 204 21.1 

a: Fulgide; b: Absorption maxima of Open-form.; c: Absorption maxima of Closed-form (Colored form); d: 
Difference of Closed-form over Open-form; e: Percentage of Open-form converted to Closed-form (εc /εo x 100).  
Note: [C] of stock solutions were prepared in 1-8µmol and were repeated in duplicate. 
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H
N N N N O

KOH
EtOH
Acetone
MeI
2h

71

BF3.Et2O
AcOH
Ac2O
30mins

NaH
THF
0oC

 

 

Preparation of 2-Acetyl-1,3-dimethylindole (71) 

 

Method A 

 

A 50 ml rbf was charged with a solution of indole (1 eq.) dissolved in EtOH (25 ml ~ 

180 eq.). Solid KOH (1.25 eq.) was added into the rbf and the reaction mixture stirred 

until all the solid have been observed to be dissolved. The solvent was removed in 

vacuo and resolvated in acetone (25 ml) and stirred. Methyl Iodide (1.2 eq.) was 

added directly in one lot and the formation of a white precipitate was observed. The 

exothermic reaction was allowed to stir for 2h before purification via flash 

chromatography which afforded the 1’ methylated indole with up to 65% yield. NaH 

(up to 10 eq.) was added into an rbf with ice-cooled THF. The purified 1’ methyl 

indole was then redissolved in THF and added dropwise into the NaH/THF mixture. 

Upon completion of addition, the mixture was allowed to stir for 1h and allowed to 

warm up to room temperature. Methyl iodide (1.5 eq.) was added dropwise into the 

rbf and the reaction mixture allowed to stir for 6h resulting in the formation of 1,3-

dimethylindole with up to 51% yield. After flash chromatography of the 1,3-

dimethylindole, the compound was dissolved in acetic anhydride (15 eq.) and acetic 

acid (30 eq.). The reaction mixture was allowed to stir for 5-10 mins and was 
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followed by the dropwise addition of BF3.Et2O (0.9 eq.). The reaction was allowed to 

stir for 15-30 mins and a white precipitate was observed to be formed. After the 

reaction was deemed to be completed, water was added to the reaction mixture (150 

ml). The white precipitate was collected after filtration, washed with water and dried.  

 

H
N N N O

71

BF3.Et2O
AcOH
Ac2O
30mins

NaH
THF
0oC

 

 

Method B 

 

NaH (up to 10 eq.) was added into an rbf with ice-cooled THF. Commercially 

available 3-methylindole was then dissolved in THF and added dropwise into the 

NaH/THF mixture. Upon completion of addition, the mixture was allowed to stir for 

1h and allowed to warm up to room temperature. Methyl iodide (1.5 eq.) was added 

dropwise into the rbf and the reaction mixture allowed to stir for 6h resulting in the 

formation of 1,3-dimethylindole with up to 40% yield. After flash chromatography of 

the 1,3-dimethylindole, the compound was dissolved in acetic anhydride (15 eq.) and 

acetic acid (30 eq.). The reaction mixture was allowed to stir for 5-10 mins and was 

followed by the dropwise addition of BF3.Et2O (0.9 eq.). The reaction was allowed to 

stir for 15-30 mins and a white precipitate was observed to be formed. After the 

reaction was deemed to be completed, water was added to the reaction mixture (150 

ml). The white precipitate was collected after filtration, washed with water and dried.  
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White precipitate, 76% yield. 

1H NMR (300MHz, CDCl3) δ  7.70-7.12 (m, 4H, C(CH4)C), 3.98 (s, 3H, NCH3), 2.65 

(s, 3H, COCH3), 2.64 (s, 3H, C=CCH3) ppm. 

13C NMR (300MHz, CDCl3) δ 192.5, 139.1, 135.9, 127.3, 126.0, 120.9, 119.9, 119.5, 

110.2, 32.6, 31.6, 11.9 ppm. 

FTIR (Film): 2956, 2929, 1730, 1646, 1400, 1330, 1236, 958, 739 cm-1. 

HRMS (EI) Calcd for C12H13NO [M+]: 187.0997, Found: 187.0995. 

 

N O

72
 

 

Preparation of 2-acetyl-1-benzyl-3-methylindole (72) 

 

The synthesis of 72 was accomplished accordingly to 71 using method B, employing 

benzyl bromide instead of methyl iodide. 

12% yield. 

Rf: 0.46 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 7.77-7.03 (m, 9H, C(CH)5, C(CH)4), 5.78 (s, 2H, 

NCH2C(CH)5), 2.69 (s, 3H, COCH3), 2.61 (s, 3H, C=CCH3) ppm. 

13C NMR (300MHz, CDCl3) δ 192.2, 139.0, 138.8, 133.1, 128.4, 127.5, 126.9, 126.3, 

120.9, 120.2, 110.7, 48.3, 31.5, 11.9 ppm. 

FTIR (Film): 3460, 2911, 2855, 1685, 1647, 1559, 1408, 1263, 948, 746, 729  cm-1. 
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HRMS (EI) Calcd for C18H17NO [M+]: 263.1310, Found: 263.1310; [M+-CH3]: 

248.1075, Found: 248.1081. 

 

N O

73
 

 

Preparation of 2-acetyl-1-benzyl-3-methylindole (73) 

 

The synthesis of 73 was accomplished accordingly to 71 using method A, employing 

benzyl bromide instead of methyl iodide. 

35% yield. 

Rf: 0.60 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ  7.66–7.04 (m, 14H, (C(CH)5)2, C(CH)4), 5.79 (s, 2H, 

NCH2C(CH)5), 4.55 (s, 2H, CCH2C(CH)5), 2.48 (s, 3H, COCH3) ppm. 

13C NMR (300MHz, CDCl3) δ 192.6, 139.9, 139.1, 138.7, 128.6, 128.5, 127.9, 127.7, 

127.0, 126.32, 126.28, 126.25, 121.9, 121.3, 120.7, 110.8, 48.5, 31.4, 30.9 ppm. 

FTIR (Film): 2960, 2915, 2849, 1735, 1718, 1654, 1261, 1097, 1023, 801, 740 cm-1. 

HRMS (EI) Calcd for C24H21NO [M+]: 339.1623, Found: 339.1625. 
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N

O
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Preparation of 2-acetyl-1-benzyl-3-methylindole (74) 

 

The synthesis of 74 was accomplished accordingly to 71 using method A, employing 

benzyl bromide instead of methyl iodide. 74 was obtained as a side product leading to 

indole 73. 

44% yield. 

Rf: 0.25 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ  8.40-8.38 (m, 1H, NCH=CCOCH3) 7.75-7.15 (m, 9H, 

C(CH)5, C(CH)4), 5.35 (s, 2H, NCH2C(CH)5), 2.52 (s, 3H, COCH3) ppm. 

13C NMR (300MHz, CDCl3) δ 193.1, 137.2, 135.8, 134.9, 129.1, 128.3, 127.0, 126.5, 

123.5, 122.7, 117.6, 110.1, 50.8, 27.7 ppm. 

FTIR (Film): 3025, 2968, 2918, 2850, 1736, 1635, 1365, 1229, 1215, 732 cm-1. 

HRMS (EI) Calcd for C17H15NO [M+]: 249.1154, Found: 249.1151; [M+-CH3]: 

234.0919, Found: 234.0921. 
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Br
Si

+
Si

Pd catalyst
Base

77                        78                                                          79

 

 

Preparation of triphenyl(styryl)silane (79) 

 

Method A – Thermal heating method 

 

Entry 1, Table 11. 

Triphenylvinylsilane 77, was added into a round bottomed flask, in the presence of p-

bromoaniline. This was followed by the addition of 1,4-dioxane, NCy2Me and the 

addition of a catalytic amount of Pd[P(tBu)3]2. A reflux condenser was attached to the 

rbf and the reaction mixture was heated to 110oC using an oil-bath for 18h. The 

dark/blackish reaction mixture was allowed to cool down and a TLC was conducted. 

Presence of the starting material indicated no desired coupling had occurred. 

 

Entry 2, Table 11. 

Triphenylvinylsilane 77, was added into a round bottomed flask, in the presence of 

bromo-benzene. This was followed by the addition of N,N-DMF, NaOAc and the 

addition of a catalytic amount of Pd(OAc)2. A reflux condenser was attached to the 

rbf and the reaction mixture was heated to 110oC using an oil-bath for 18h. The 

dark/blackish reaction mixture was allowed to cool down and a TLC was conducted. 

As the TLC did not indicate the presence of the desired product, the temperature was 
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raised to 140oC and the reaction allowed to stir for another 18h. Presence of the 

starting material indicated no desired coupling had occurred. 

 

METHOD B – MICROWAVE HEATING METHOD 

 

Entries 3-14, Table 11. 

Triphenylvinylsilane 77, was added into a round bottomed flask, in the presence of 

bromo-benzene, 78. This was followed by the addition of N,N-DMF, NaOAc and the 

addition of a catalytic amount of Pd(OAc)2. A domestic microwave oven was 

employed for the heating of reaction mixture. The rbf containing the substrates was 

then heated for 10 mins employing a medium or medium-low power setting. 

Monitoring of the reaction was carried out using TLC and showed presence of 

product after 10 mins of microwave heating. Extraction of the crude reaction mixture 

was carried out using 100 ml of water with 4 x ethyl acetate. The organics were then 

combined and allowed to stand in MgSO4. After removal of solvent in vacuo, the 

crude mixture was then subjected to flash chromatography which afforded 79 with 

yield of up to 41%. Addition of a 10% w/v of an ionic liquid [BMIM][BF4] enhanced 

the yield with up to 86% of 79 synthesized. 

Rf: 0.48 (hexane 100%, 2 runs). 

1H NMR (300MHz, CDCl3) δ 7.64-7.52 (m, 6H, Ph), 7.49-7.30 (m, 14H, Ph), 7.08-

6.99 (dd, J = 3.2, 19.2 Hz, 2H, CH=CH) ppm. 

13C NMR (300MHz, CDCl3) δ 148.9, 138.1, 136.4, 136.1, 135.8, 135.2, 134.5, 129.6, 

128.6, 128.5, 127.9, 126.8, 122.9 ppm. DEPT-90 (CH) δ  148.9, 136.4, 136.1, 135.8, 

135.2, 129.6, 128.6, 127.9, 126.8, 122.9 ppm. DEPT-135 (CH) δ  148.9, 136.4, 136.1, 

135.8, 135.2, 129.6, 128.6, 127.9, 126.8, 122.9 ppm. 
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FTIR (Film): 3061, 2958, 2923, 2851, 1602, 1484, 1425, 1107, 1026, 787, 760, 735, 

505 cm-1. 

HRMS (EI) Calcd for C26H22Si [M+]: 362.1491, Found: 362.1492. 
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Preparation of octa-substituted poly oligomeric silsequioxanes (82) and (85) 

 

To a round bottomed flask was charged –equivalent of 80 in the presence of 

anhydrous CH2Cl2. Styrene 83, or a-methyl styrene, 84, was then added in one lot and 

the reaction mixture allowed to stir until the solution was clear. Grubbs 2nd generation 

catalyst was then added in one lot and the reaction mixture heated for 24h at 85oC to 

afford the styrene analog, 82 with yield of up to 95%. The reaction mixture with 84 

was heated for up to 48h at 95oC to afford 85 with 60% yield. 

82 was obtained as a white, slightly green solid, 95% yield. 

Rf: 0.58 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 7.52-7.28 (m, 40H, Ph8), 6.33 (d, J = 19.2Hz, 8H, 

(CH=CH)4) ppm. 

13C NMR (300MHz, CDCl3) δ 149.3, 137.4, 128.9, 128.6, 126.9, 117.5  ppm. 
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FTIR (Film): 3059, 2924, 1606, 1573, 1492, 1448, 1199, 989, 851, 817, 733, 688, 555 

cm-1. 

MALDI-TOF MS (Applied Biosystems Voyager System 4134) Calcd for 

C64H56AgO12Si8 [M++Ag]: 1347.0977, Found: 1347.2558, 1348.2582, 1349.2575, 

1350.2608, 1351.2569. 

MALDI-TOF MS (Bruker Daltonics FlexAnalysis) Calcd for C64H56AgO12Si8 

[M++Ag]: 1347.0977, Found: 1349.5580. 

 

85 was obtained as a white, slightly green solid, 60% yield. 

Rf: 0.63 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ  7.55-7.51 (m, 17H, Ph3), 7.38-7.20 (m, 24H, Ph5), 

6.15-6.12 (m, ~1H, CH=CH), 5.89-5.61 (m, ~7H, (CH=C)7-8), 5.63-5.60 (m, 2H), 

2.45-2.31 (m, 24H, (CH3)8) ppm. 

Note: Even after repeated attempts to repurify the product, the desired octa-

substituted product was not isolated cleanly. 1H NMR indicates the slight presence of 

the heptyl-substituted product as well. This is observed in the MALDI-TOF MS results 

as well. 

13C NMR (300MHz, CDCl3) δ  156.8, 156.6, 156.2, 143.6, 128.6, 128.2, 128.1, 128.0, 

127.8, 127.1, 125.7, 117.2, 117.0, 28.7, 21.3 ppm. DEPT-90 (CH) δ  128.2, 128.0, 

127.1, 125.7, 117.2, 117.0 ppm. DEPT-135 (CH) δ  128.2, 128.0, 127.1, 125.7, 117.2, 

117.0 ppm. (CH3) δ  28.7, 21.3. 

Note: The CH2 indicative of the presence of the heptyl-substituted product was not 

observed from the DEPT-135 spectra. A small additional peak indicative of CH3 was 

present at 28.7ppm  and its presence is unknown and is suspected to be due to 

impurities. 
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FTIR (Film): 2919, 1603, 1492, 1442, 1100, 814, 748, 692 cm-1. 

MALDI-TOF MS (Applied Biosystems Voyager System 4134)  

Calcd for C72H72AgO12Si8 [M++Ag]: 1459.2229, Found: 1459.3014, 1461.3028, 

1463.3006, 1464.2996. 

Calcd for C65H66AgO12Si8 [M++Ag]: 1369.1759, Found: 1371.2873, 1372.3065, 

1373.2874. 

MALDI-TOF MS (Bruker Daltonics FlexAnalysis)  

Calcd for C72H72AgO12Si8 [M++Ag]: 1459.2229, Found: 1461.7550.  

Calcd for C65H66AgO12Si8 [M++Ag]: 1369.1759, Found: 1371.6520.  
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6.6. GENERAL INFORMATION 

 

Experiments involving moisture and/or air sensitive components were performed 

under a positive pressure of nitrogen in oven/flame-dried glassware, equipped with a 

rubber septum. Solvents and liquid reagents were transferred by oven-dried syringes 

cooled in a dessicator or via double-tipped cannular needles. Reactions were stirred 

with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-

volatile reagents or compounds was removed by the addition anhydrous THF, 

followed by the removal of the solvent and traces of moisture in vacuo by means of a 

vacuum pump (~20 mmHg, 23-45oC) and subsequent purging with nitrogen. All 

experiments were monitored by analytical thin layer chromatography (TLC). Solvents 

were removed in vacuo (~30 mmHg, 23-45oC) using a Büchi rotary evaporator with 

cold (0-5oC) running water. 

 

6.7. MATERIALS 

 

All commercially available materials were used without further purification with the 

following exceptions: Hexane, dichloromethane, ethyl acetate were fractionally 

distilled prior to use. Anhydrous THF and diethyl ether were obtained by distillation 

under a nitrogen atmosphere from a deep purple solution resulting from sodium and 

benzophenone. Anhydrous dichloromethane (DCM) and hexane were distilled over 

calcium hydride under a nitrogen atmosphere. 

 

Triethylamine was distilled over calcium hydride under a nitrogen atmosphere and 

stored over 4Å molecular sieves. Hydrochloric acid was diluted from 12M solution. 
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Sulfuric acid was diluted from 10M solution. Sodium hydroxide solution was 

prepared rom sodium hydroxide pellets. Saturated solutions of sodium chloride, 

sodium bicarbonate, sodium carbonate, sodium thiosulphate and ammonium chloride 

were prepared from their respective solids. 

 

6.8. CHROMATOGRAPHY   

 

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 

precoated silica gel plate (0.25 mm thickness). Subsequent to elution, ultraviolet (UV) 

illumination of the chromatogram at 254 nm allowed the visualization of UV active 

material. Further visualization was possible by staining with basic solution of 

potassium permanganate or acidic solution of ceric molybdate, followed by heating on 

a hot plate.  

 

Preparative thin layer chromatography was performed using Merck 60 F254 precoated 

silica gel plate (0.25 mm thickness, 20 cm x 20 cm). Compounds were diluted with 

100-300µL of the appropriate solvent and applied to the plate as a narrow band ~16-

18 cm long and 2 cm above the base, using a glass capillary tube. After elution, the 

chromatogram was visualized under UV light or by staining a thin strip, cut out from 

the side of the plate. The desired compound was then isolated by manually scraping 

the appropriate band off the plate using a spatula. The silica was then dissolved using 

an appropriate solvent followed by standing in anhydrous MgSO4 before filtering 

through filter paper or celite. This was followed by the removal of solvent in vacuo. 
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Flash chromatography was performed using Merck silica gel 60 with freshly distilled 

solvents. Columns were typically packed as slurry of silica gel in hexane and 

equilibrated with the appropriate solvent system prior to use. The analyte was loaded 

neat or as a concentrated solution using the appropriate solvent system. The elution 

was assisted by applying pressure of about 2 atm with an air pump. 

 

6.9. INSTRUMENTS AND EQUIPMENT 

 

INFRARED SPECTROSCOPY 

Infrared spectra were recorded in a Bio-RAD FTS 165 FT-IR spectrometer. Solid 

samples were analysed as a KBr pressed-disk while liquid samples were either 

examined neat between KBr salt plates or as a solution in dichlormethane using NaCl 

liquid cells. 

 

MASS SPECTROSCOPY 

Mass spectrometry (MS) was performed by the staff from the Chemical and 

Molecular analysis Centre of the National University of Singapore. MS-electron 

impact (EI) spectra were recorded on a Hewlett-Packard 5890A gas chromatogram. 

High-resolution MS (HRMS-EI) spectra were recorded on a V.G. Micromass 7035 

micromass mass spectrophotometer at a source temperature of 200 ºC and at an ion 

current of 70 eV.. MS and HRMS were reported in units of mass to charge ratio (m/z). 
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NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 

Proton nuclear magnetic resonance (1H NMR) and carbon nuclear magnetic resonance 

(13C NMR) were performed on a Bruker Avance DPX 300 (300MHz) and Bruker 

AMX 500 (500MHz), NMR spectrometer. Chemical shifts are reported as δ  in units 

of parts per million (ppm) downfield from SiMe4 (δ 0.00) and relative to the signal of 

the residual solvent signal of, deuterio chloroform-d (1H NMR, δ 7.2600 ppm, singlet; 

13C NMR, δ 77.04 ppm, triplet) and deuterium oxide, D2O (1H NMR, δ 4.7500 ppm, 

singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd 

(doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of 

doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The 

number of protons (n) for a given resonance is indicated by nH. Coupling constants 

are reported as a J value in Hz.  

 

NOMENCLATURE 

Systematic nomenclature for the compounds would follow the numbering system as 

defined by the International Union of Pure and Applied Chemistry (IUPAC).1 

Compounds were also named using the ChembridgeSoft ChemOffice 2004, 

ChemDraw Ultra 8.0 naming feature. 

                                                           
1 http://www.chem.qmul.ac.uk/iupac/ 
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6.10. PROCEDURES AND SUPPORTING INFORMATION FOR PART II 

 

O
N

O

OH

20

O

O

HNO3,
reflux

 

 

Preparation of 5-methyl-3-isoxazole carboxylic acid (20) 

 

To a 2-necked 100 ml round bottomed flask (rbf) was fitted a condenser and 5.88 ml 

of acetonylacetone and 40 ml dilute HNO3 (diluted from 20 ml HNO3 and 43 ml H2O) 

was added via a dropping funnel. The oxidation was initiated by refluxing the reaction 

mixture in an oil-bath set at 120oC. The reaction mixture was allowed to reflux for 1 

hr before allowing to cool -15oC (using ethylene glycol/dry ice bath) before the 

appearance of yellow crystals was observed. The reaction mixture was filtered using a 

Buchner funnel and the filtrate washed twice with ice-cold H2O. The yellow crystals, 

20, were then pressed dried using filter paper, with a yield of 42%. 

Rf: 0.15(hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, D2O) δ 6.47 (s, 1H, NOC=CH), 2.45 (s, 3H, NOCCH3) ppm.  

Note: Peak indicating acidic proton was not resolved. 

13C NMR (500 MHz, D2O) δ 175.6, 165.5, 159.5, 104.6, 13.9 ppm. 

FTIR (Film): 3474, 3139, 2744, 1707, 1595, 1488, 1466, 1369, 1269, 1225, 1002, 

925, 858, 766, 545 cm-1.  

HRMS Calcd for C5H5NO3 [M+]: 127.0269. Found: 127.0269. 
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Preparation of methyl 2-(5-methylisoxazole-3-carboxamido)-3-methylbutanoate 

(24) 

 

To a 25 ml round bottomed flask (rbf) containing 5-methyl-isoxazole-3-carboxylic 

acid, 20 (0.1271g, 1.00 mmol, 1eq), L-valine methyl ester hydrochloride, 22 (0.1844g, 

1.10 mmol, 1.1 eq),  1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride 

(EDC.HCl) (0.2100g, 1.10 mmol, 1.1 eq) and 1-hydroxy benzotriazole hydrate 

(HOBT) (0.1486g, 1.10 mmol, 1.1 eq) in dichloromethane (5 ml) was added N-ethyl 

diisopropyl amine (DIEA) (0.6 ml, 3.50 mmol, 3.5 eq) dropwise, while maintaining 

the reaction temperature at 0oC. The reaction was allowed to warm to room 

temperature and was stirred overnight or for up to 20h. The reaction mixture was then 

diluted with 10 ml of ether and washed with 20 ml of saturated NaHCO3 solution 

followed by 10 ml of brine. The organic layer was dried over anhydrous MgSO4. 

Solvents were removed in vacuo. Purification through flash column chromatography 

afforded 24 as a white solid (0.2350g , 99% yield). 

Rf: 0.30 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 7.21 (d, J = 8.03 Hz, 1H, CONH), 6.43 (d, J = 0.81 

Hz, 1H, C=CH), 4.70 (dd, J = 5.02, 9.03 Hz, 1H, CONHCH), 3.76 (s, 3H, OCH3), 

2.48 (d(hept), J = 5.22, 6.82 Hz, 1H, CH(CH3)2), 1.00 (d, J = 7.63 Hz, 3H, 

CHCH3(CH3)), 0.98 (d, J = 7.23 Hz, 3H, CH(CH3)CH3) ppm. 
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13C NMR (500 MHz, CDCl3) δ 171.6, 171.2, 158.9, 158.3, 101.3, 57.1, 52.2, 31.3, 

18.9, 17.7, 12.2 ppm. 

FTIR (Film): 3583, 3407, 3343, 3140, 2966, 1715, 1681, 1597, 1539, 1458, 1208, 

1003, 921, 813, 775 cm-1.   

HRMS Calcd for C11H16N2O4 [M+]: 240.1110. Found: 240.1112. 
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Preparation of 1-hydroxy-3-methylbutan-2-yl)-5-methylisoxazole-3-carboxamide 

(25) 

 

To a solution of 24 (0.7625g, 3.00 mmol, 1 eq) in 9 ml of THF, pro-cooled at 0oC, 

was added 0.9705 g NaBH4 (24.00 mmol, 8 eq) slowly in several portions. The 

solution was allowed to stir for 15 minutes before 3 ml of methanol was added 

dropwise to initiate the reaction. The reaction was allowed to warm to room 

temperature before allowing to stir overnight. Upon completion of the reaction, the 

reaction mixture was cooled using an ice bath. 1M HCl was added slowly until all the 

solids dissolved. The reaction mixture was then extracted with ethyl acetate (3 x 15 

ml) and the combined extracts were washed with saturated sodium bicarbonate and 

dried over anhydrous MgSO4. Solvent was removed in vacuo. Purification through 

flash column chromatography afforded 0.6245g of the desired product 25 as a white 

solid with 99 % yield. 
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Rf: 0.22 (hexane: ethyl acetate = 4:1). 

1H NMR (300 MHz, CDCl3) δ 6.95 (d, J = 6.42 Hz, 1H, CONH), 6.43 (d, J = 0.80 

Hz, 1H, C=CH), 3.95-3.86 (m, 1H, CONHCH), 3.80 (dd, J = 3.82, 11.45 Hz, 1H, 

CHHOH), 3.74 (dd, J = 6.02, 11.64 Hz, 1H, CHHOH),  2.47 (s, 3H, CH3C=C), 2.04-

1.93 (m, 1H, CH(CH3)2), 1.01 (d, J = 7.23, 3H, CHCH3(CH3)), 0.99 (d, J = 6.83 Hz, 

3H, CH(CH3)CH3) ppm. 

13C NMR (500 MHz, CDCl3) δ 170.9, 159.5, 158.6, 101.3, 62.6, 56.9, 28.7, 19.3, 

18.6, 12.0 ppm. 

FTIR (Film): 3441, 3314, 3155, 2967, 2939, 1655, 1602, 1548, 1456, 1289, 1219, 

1145, 1068, 1006, 908, 819, 696, 622, 548 cm-1.   

HRMS Calcd for C10H16N2O3 [M+-H]: 211.1083. Found: 211.2421. 
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Preparation of homoallylic alcohol (27) 

 

A flame-dried rbf was purged, with nitrogen and charged with CH2Cl2 (6 ml) and 

oxalyl chloride (0.78 ml, 9.00 mmol, 3 eq). The solution was cooled to -78oC and 1.28 

ml of DMSO (18.00 mmol, 6 eq) was added dropwise. The solution was allowed to 

stir for a few minutes before a solution of 25 (0.6784g, 3.00 mmol, 1 eq) in 6 ml of 

CH2Cl2 was added dropwise. This was followed by the addition of Et3N (3.76 ml, 

27.00 mmol, 9 eq) and the solution stirred for 5 mins at -78oC before being allowed to 

warm up to room temperature. After reaction completion, water was added to dissolve 

the solids (25 ml). The aqueous layer was then separated and extracted with CH2Cl2 

(2 x 30 ml). The combined organic extracts were washed with water (2 x 30 ml), 

saturated sodium bicarbonate (20 ml), brine (20 ml) and dried over anhydrous 

MgSO4. Solvent was removed in vacuo. The crude α-aminoaldehyde 26 (viscous 
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yellow liquid) was used immediately in the allylation step without any further 

purification.  

26, Rf: 0.53 (hexane: ethyl acetate = 1:1). The TLC for the oxidation indicated the 

presence of the desired aldehyde as one spot with the disappearance of the spot at Rf: 

0.22 from alcohol 25.  

Rf: 0.24 (ether: hexane = 2:1).  

1H NMR (syn) (300 MHz, CDCl3) δ 9.65 (s, 1H, CHO), 7.29 (d, J = 6.83 Hz, 1H, 

CONH), 6.37 (d, J = 1.20 Hz, 1H, C=CH), 4.63 (dd, J = 4.62, 8.23 Hz, 1H, 

CONHCH), 2.42 (d, J = 0.81 Hz, 3H, C=CH3), 2.42-2.31 (m, 1H, CH(CH3)2), 1.02 

(d, J = 6.82 Hz, 3H, CHCH3(CH3)), 0.97 (d, J = 6.83 Hz, 3H, CH(CH3)CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 198.8, 171.3, 159.4, 158.1, 101.2, 63.1, 28.9, 18.9, 

17.6, 12.1 ppm. 

HRMS Calcd for C10H14N2O3 [M+]: 210.1004. Found: 210.0996. 

 

The crude α-aminoaldehyde 26 was dissolved in 24 ml of ethanol followed by the 

addition of 6 ml of water. The solution was then charged with 0.6880g of Indium 

powder (6.00 mmol, 2 eq) followed by 1.074g of 18 (7.50 mmol, 2.5 eq) at room 

temperature. The reaction was monitored by TLC and was completed after 5 hours. 

1M HCl (10 ml) was then added to dissolve the metal. The solution was then 

extracted with ethyl acetate (3 x 30ml). The combined organic layer was washed with 

a saturated solution of sodium bicarbonate, brine and was dried over anhydrous 

MgSO4. Solvents were removed in vacuo. Purification through flash column 

chromatography afforded 0.6140g of product 27 (syn:anti = 94:6) as a white solid, 

with a yield of 66% 2 step yield (total yield of 2 products)). 
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Rf: 0.30 (syn) (ether: hexane = 2:1).  

Rf: 0.24 (anti) (ether: hexane = 2:1).  

1H NMR (syn) (300 MHz, CDCl3) δ 7.14 (d, J = 10.03 Hz, 1H, CONH), 6.39 (s, 1H, 

C=CH), 6.18 (s, 1H, C=CHH), 5.66 (s, 1H, C=CHH), 4.01 (ddd, J = 1.60, 4.32, 8.13 

Hz, 1H, CONHCH), 3.73 - 3.67 (m, 1H, CHOH), 3.69 (s, 3H, OCH3); 2.48 (dd, J = 

4.22, 13.85 Hz, 1H, CHH(=CH2)), 2.42 (s, 3H, =CCH3), 2.39 (dd, J = 8.03, 14.05 Hz, 

1H, CHH(=CH2)),  2.00 – 1.88 (m, 1H, CH(CH3)2), 0.96 (d, J = 6.83 Hz, 3H, 

CHCH3(CH3)),  0.92 (d, J = 6.82 Hz, 3H, CH(CH3)CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 171.0, 168.2, 159.4, 158.6, 136.8, 128.6, 101.4, 69.5, 

58.5, 52.0, 38.6, 30.2, 19.6, 19.3, 12.1 ppm. 

FTIR (neat) (syn): 3404, 2959, 1720, 1666, 1543, 1440, 1209, 1155, 1059, 950, 818 

cm-1.  

HRMS Calcd for C15H22N2O5 [M+]: 310.1529. Found: 310.1516. 

1H NMR (anti) (300 MHz, CDCl3) δ 6.75 (d, J = 10.02 Hz, 1H, CONH) 

FTIR (neat) (anti): 3402, 2960, 1717, 1667, 1541, 1450, 1210, 1155, 1059, 1035, 

1003, 818 cm-1.  

 

PART II – SYNTHETIC STUDIES TOWARDS ANTI-SARS AGENT AG7088 
 

193



CHAPTER 6 – EXPERIMENTAL SECTION 
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Preparation of lactone (34) 

 

To a solution of 27 (0.3240g, 1.00 mmol, 1.0 eq) in CH2Cl2 (10 ml) was added p-

TsOH (0.095g, 0.50 mmol, 0.5 eq) and the reaction mixutre was stirred overnight. 

After reaction completion, 10 ml of saturated sodium bicarbonate solution was added. 

The 2 layers were separated and the aqueous layer was further extracted with CH2Cl2 

(2 x 10 ml). The combined organic layer was then extracted with brine and dried over 

anhydrous MgSO4. Solvents were removed in vacuo. Purification through flash 

column chromatography afforded 0.2471 g of product 34 with 89% yield. 

Rf: 0.28 (ether: hexane = 2:1) (syn) 

Rf: 0.15 (ether: hexane = 2:1) (anti) 

1H NMR (syn) (300 MHz, CDCl3) δ 6.75 (d, J = 10.03, 1H, CONH), 6.39 (d, J = 0.80, 

1H, C=CH),  6.14 (dd, J = 2.81, 3.22, 1H, C=CHH), 5.55 (dd, J = 2.41, 2.41, 1H, 

C=CHH), 4.85 (ddd, J = 1.61, 6.32, 7.93 Hz, 1H, CHOCO), 4.00 (ddd, J = 1.61, 8.73, 

10.14 Hz, 1H, CONHCH), 2.99 (ddt, J = 2.56, 7.83, 17.47 Hz, 1H, CHHC(=CH2)), 

2.79 (ddt, J = 3.01, 6.43, 17.27 Hz, 1H, CHHC(=CH2)),  2.45 (d, J = 0.8 Hz, 3H, 

C=CCH3), 2.03 (d(hept), J = 6.82, 8.83 Hz, 1H, CH(CH3)2),  1.08 (d, J = 6.83 Hz, 3H, 

CHCH3(CH3)), 1.00 (d, J = 6.83 Hz, 3H, CH(CH3)CH3) ppm. 
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13C NMR (300 MHz, CDCl3) δ 171.4, 169.9, 160.1, 157.9, 133.7, 122.2, 101.3, 76.0, 

57.4, 30.7, 30.5, 19.7, 19.4, 12.3 ppm. 

FTIR (neat): 3406, 2967, 1770, 1683, 1600, 1508, 1456, 1216, 1188, 1159, 1001, 822 

cm-1.  

HRMS Calcd for C14H18N2O4 [M+]: 278.1267. Found: 278.1260. 
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Preparation of lactone (2) 

 

To a 150 ml flame-dried rbf was added CuCN (2.82g, 31.50 mmol) and ether. (20 ml).  

p-fluorobenzylmagnesium bromide (Prepared from 60.00 mmol C6H4BrF, 6.60g; 75 

mmol Mg, 1.80g and 60 ml ether), was prepared and added dropwise, via a dropping 

funnel at -78oC. The reaction mixture was then stirred at 0oC until a homogeneous 

mixture was observed. 34 was then dissolved in 100 ml of ether and added via 

dropping funnel at 0oC. Upon completion of addition, the reaction mixture was 

allowed to stir for an additional 3 hr at 0oC. Workup of the reaction was initiated by 
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the addition of saturated NH4Cl (60 ml) followed by the extraction of the organic 

extract using ether (3 x 30 ml). The combined organic layer was then extracted with 

brine and dried over anhydrous MgSO4, filtered and concentrated. Flash 

chromatography afforded 1.4609g of lactone 2 with a yield of 50% [2 was obtained as 

a mixture of isomers (cis:trans = 39:61). The desired trans isomer 2a was obtained as 

the major product (confirmed by NOE experiments)]. 

Rf: 0.60 (100% ether) (trans, 2a) 

1H NMR (300 MHz, CDCl3)  δ 7.14-6.94 (m, 4H, C(C4H4)F),), 6.74 (d, J = 10.04 Hz, 

1H, CONH), 6.40 (d, J = 0.80 Hz, 1H, C=CH), 4.47 (ddd, J = 2.01, 6.32, 8.13 Hz, 

1H, CHOCO), 3.91 (ddd, J = 2.01, 8.33, 10.14 Hz, 1H, CONHCH), 3.04-2.80 (m, 3H, 

CH2PhF), 2.47 (s, 3H, C=CCH3), 2.19 – 2.01 (m, 2H, CHCH2CH), 1.93 (d (hept), J = 

6.83, 8.03 Hz, 1H, CH(CH3)2), 0.98 (d, J = 6.83 Hz, 3H, CHCH3(CH3)), 0.95 (d, J = 

6.82 Hz, 3H, CH(CH3)CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 178.4, 171.6, 161.9, 160.0, 158.1, 133.3, 130.5, 115.6, 

101.4, 77.6, 57.3, 41.0, 35.8, 30.6, 29.4, 19.7, 19.2, 12.3 ppm. 

19F NMR (300 MHz, CDCl3) δ  -40.36 (s, 1F) ppm. 

FTIR (KBr): 3391, 3328, 2928, 2851, 2360, 1771, 1682, 1627, 1536, 1509, 1219, 

1154, 1020, 805 cm-1. 

HRMS Calcd for C20H23FN2O4 [M+]: 374.1642. Found: 374.1631. 

 

Rf: 0.54 (100% ether) (cis, 2b) 

1H NMR (300 MHz, CDCl3)  δ 7.05-6.75 (m, 4H, C(C4H4)F),), 6.60 (d, J = 10.04 Hz, 

1H, CONH), 6.34 (d, J = 0.80 Hz, 1H, C=CH), 4.65 (ddd, J = 1.61, 5.82, 10.44 Hz, 

1H, CHOCO), 3.91 (ddd, J = 1.61, 8.43, 10.24 Hz, 1H, CONHCH), 2.95-2.87 (m, 3H, 

CH2PhF), 2.50 (s, 3H, C=CCH3), 2.28-2.14 (m, 2H, CHCH2CH), 1.96 (d (hept), J = 
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6.83, 8.03 Hz, 1H, CH(CH3)2), 1.03 (d, J = 6.83 Hz, 3H, CHCH3(CH3)), 0.96 (d, J = 

6.83 Hz, 3H, CH(CH3)CH3) ppm. 

13C NMR (300 MHz, CDCl3) δ 177.3, 171.5, 161.5, 159.6, 157.6, 133.1, 130.7, 115.1, 

101.2, 77.1, 55.8, 41.7, 33.9, 30.9, 29.5, 19.6, 19.3, 12.2 ppm. 

19F NMR (300 MHz, CDCl3) δ  -40.36 (s, 1F) ppm. 

FTIR (KBr): 3406, 3145, 2967, 2926, 1770, 1683, 1600, 1530, 1508, 1456, 1216, 

1186, 1159, 1026, 1001, 822, 561 cm-1. 

 

COSY spectrum of 2a 
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NOESY spectrum of 2a 
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HMQC spectrum of 2a 
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35                                                        36
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Preparation of N-Boc-L-(+)-glutamic dimethyl ester (37) 

 

An oven dried 100 ml rbf was charged with 1.4713g of L-(+)-glutamic acid, 35 (10.00 

mmol, 1 eq) and 25ml of methanol (excess). The mixture was cooled to 0oC before 

acetyl chloride (0.15 ml, 2.00 mmol, 0.2 eq) was added dropwise until all the solid 

had dissolved. After which, the mixture was stirred in the presence of an ice bath for 

30 mins. A 100 ml dropping funnel containing activated molecular sieves (4Å) was 

attached to the top of the rbf which was further attached to an ice-cooled reflux 

condenser above it. The mixture was then allowed to reflux overnight. Molecular 

sieves were used to remove water (generated during the reaction) from the reaction 

mixture. The excess solvents were removed in vacuo. The crude diester, 36, was used 

immediately in the next step without any further purification. To a 150 ml rbf, was 

added 2.5g NaHCO3 and 30 ml of MeOH. 36 was transferred in together with 20 ml 

MeOH (Magnetic stirring bar must be removed and not placed in rbf as vibrations 

might cause the rbf to crack). Di-tert-butyldicarbonate (2.4ml, 12 mmol, 1.2 eq) was 

added next. The rbf was then placed in the ultrasonic bath and was sonicated for up to 
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4 hrs. The reaction was monitored by TLC until reaction completion after 3 hrs. The 

solid was filtered and the reaction mixture was diluted with ether and was further 

washed with brine and then concentrated via vacuo. Purification through flash column 

chromatography afforded 1.9835g of diester 37 as a colorless, viscous liquid, 7.21 

mmol, with up to 72% yield from 35.  

Rf: 0.55 (solvent Hex: EA = 1:1) 

1H NMR (300MHz, CDCl3 solvent): δ 5.09 (b, 1H, NH) 4.32 (b, 1H, NHCH), 3.74 (s, 

3H, OCH3), 3.61 (s, 3H, OCH3), 2.44-2.37 (m, 2H, CH2COOMe), 2.02-1.88 (m, 1H, 

CHCHCH2COOMe), 2.25-2.11 (m, 1H, CHCHCH2COOMe), 1.44 (s, 9H, -C(CH3)3) 

ppm. 

13C NMR (300MHz, CDCl3 solvent): δ 173.1, 172.6, 55.0, 60.3, 52.8, 52.3, 51.7, 

30.0, 28.2, 27.8 ppm. 

FTIR (Film): 3420, 3363, 2980, 2927, 1716, 1510, 1438, 1368, 1263, 1166, 1055, 738 

cm-1.   

HRMS (ESI): Calcd for C12H21NO6 [M++Na+]: 298.1267. Found: 298.1260. 
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Preparation of alkylated diester (38) 

 

A solution of N-Boc L-(+)-glutamic acid dimethyl ester (0.7984, 2.90 mmol, 1 equiv.) 

in THF (10 mL) was added dropwise to a stirring solution of LiHMDS (8.7 mL, 1M 

in THF, 8.70 mmol, 3 equiv.) at -78oC under a N2 atmosphere. The resulting dark 

mixture was stirred at -78oC for 2 hrs. Freshly distilled bromoacetonitrile (0.4mL, 

5.90 mmol, 2.0 equiv.) was added dropwise over a period of 1 hour. The reaction 

mixture was stirred at -78oC for an additional 2 hrs. The reaction was quenched by 

addition of pre-cooled 1M HCl (20 mL) and cold H2O (10 mL). The layers were 

separated, and the aqueous layer was further extracted with ether (3 x 30 ml). The 

combined organic extract was washed with saturated NaHCO3 brine and dried over 

anhydrous MgSO4. Solvent was removed in vacuo to afford a brown oil (15.2 g). 

Purification through flash column chromatography afforded 0.2808g of product 38 as 

a brown liquid, with a 59% yield. 

Rf: 0.46 (solvent Hex: EA = 1:1) 

1H NMR (300MHz, CDCl3 solvent) δ 5.09 (d, J = 6.0 Hz, 1H, NH), 4.39 (b, 1H, 

NHCH), 3.76 (s, 3 H, OCH3), 3.75 (s, 3 H, OCH3), 2.89-2.80 (m, 1 H, CHCH2CN),  

2.77-2.73 (m, 2 H, CH2CN), 2.24-2.12 (m, 2 H, CH2CHNHBoc), 1.44 (s, 9 H, 

C(CH3)3) ppm. 
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13C NMR (300 MHz, CDCl3 solvent): δ 172.4, 171.9, 155.9, 117.1, 80.4, 52.6, 50.9, 

38.1, 33.7, 28.1, 19.6 ppm. 

FTIR (Film): 3370, 2980, 2957, 1734, 1713, 1514, 1442, 1368, 1250, 1164, 1051, 

1027, 736 cm-1. 

HRMS (ESI): Calcd for C14H22N2O6, [M++Na+]: 337.1376. Found 337.1379. 
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38                                                                                    39
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(2 steps from 38)

OMe

40

 

 

Preparation of N-Boc-lactone (40) 

 

To a glass-sleeved, Parr high-pressure bomb, equipped with a stirring bar was added 

0.515g of 38 (1.64 mmol, 1 eq) in a mixture of 6 ml MeOH and 0.6 ml CHCl3. 

0.0397g PtO2 (0.17 mmol, 0.11 eq) was added in one lot and the Parr bomb charged 

with H2 with a pressure of 10bar. The reaction was then allowed to stir for 3 days and 
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the pressure maintained. After 3 days, the pressure was released and the crude 

reaction mixture transferred to a 50 ml rbf via a glass pipette. NaHCO3 (0.212g, 2 

mmol) was added to the reaction mixture and the reaction mixture was heated to 60oC 

(oil bath ~ 850C) for 18 hr. The reaction mixture was then filtered through celite and 

washed with ethyl acetate. The filtrate was then washed with brine (30 ml) and dried 

over anhydrous MgSO4. Solvents were removed in vacuo and purification via flash 

column chromatography afforded lactone 40 as a white solid with 59% yield. 

Rf: 0.30 (100% ethyl acetate) 

1H NMR (300MHz, CDCl3 solvent) δ 6.40 (s, br, 1 H, CH2NH), 5.56 (d, J = 8.4 Hz, 1 

H, CHNH), 4.36-4.21 (m, 1 H CHNH), 3.72 (s, 3H, COOCH3), 3.34 (d, J = 8.7 Hz, 

2H, CONHCH2), 2.51-2.39 (m, 1 H, CHCONH), 2.09-2.07 (m, 2 H, CONHCH2CH2,) 

1.84-1.72 (m, 2H CH2CHNHBoc) 1.37 (s, 9 H, C(CH3)3) ppm. 

13C NMR (300MHz, CDCl3 solvent): δ 179.7, 172.9, 155.8, 79.9, 52.4, 52.3, 40.4, 

38.1, 34.1, 28.3, 28.1 ppm. 

FTIR (Film): 3367, 2978, 1736, 1678, 1522, 1439, 1390, 1361, 1215, 1167, 1051, 735 

cm-1.   

HRMS (ESI): Calcd for C13H22N2O5, [M++Na+]: 309.1426. Found 309.1450. 
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Preparation of lactone alcohol (41) 

 

To a solution of 40 (0.0858g, 0.30 mmol, 1 eq) in 0.9 ml of THF, pre-cooled to 0oC, 

was added 0.068 g NaBH4 (1.80 mmol, 6 eq) slowly in several portions. The solution 

was allowed to stir for 15 minutes before 0.3 ml of methanol was added dropwise. 

The ice bath was then removed and the reaction mixture was allowed to stir overnight. 

Upon reaction completion, the reaction mixture was cooled in an ice bath and 1M HCl 

was added slowly until all the solids dissolved. The reaction mixture was then 

extracted with ethyl acetate (3 x 15 ml) and the combined organic extract was washed 

with saturated sodium bicarbonate and dried over anhydrous MgSO4. Solvent was 

removed in vacuo. Purification through flash column chromatography afforded 

43.37mg of the desired alcohol 41 as a white solid, 0.168 mmol with 71 % yield. 

Rf: 0.15 (solvent EA) 

1H NMR (300MHz, CDCl3 solvent): δ 6.24 (s, br, 1H, NHBoc), 5.47 (s, br, 1H, 

NHCOCH), 3.79-3.65 (m, 1H, CHNH), 3.61 (dd, J = 2.4, 4.0 Hz,  2H, CH2OH), 3.37-

3.33 (dd, J = 4.0, 9.2 Hz, 2H, NHCH2CH2), 2.51-2.40 (m, 3H, CH2CHCH2NH) 2.04-

1.91 (m, 2 H, CH2CHNHBoc), 1.89-1.58 (m, 1H, CHCH2CH), 1.44 (s, 9H, C(CH3)3) 

ppm. 
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13C NMR (300MHz, CDCl3 solvent): δ 181.0, 156.6, 79.5, 65.9, 51.0, 40.5, 38.1, 

32.6, 28.3, 28.1 ppm. 

FTIR (Film): 3447, 3267, 2984, 2663, 1691, 1555, 1470, 1280, 1047, 729 cm-1. 

HRMS (ESI): Calcd for C12H22N2O4, [M++Na+]: 281.1488. Found 281.1478. 
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Preparation of lactone (3) 

 

METHOD A 

 

To a solution of 41 (0.0903g, 0.35 mmol, 1 eq.), in CH2Cl2 (7.5 ml) was added 

benzoic acid (0.1710g, 1.40 mmol, 4 eq.), (Carboethoxymethylenetriphenyl)-

phosphorane (0.7316g, 2.10 mmol, 6 eq.) and DMSO (0.45 ml). Dess-Martin 

periodinane (0.6000g, 1.40 mmol, 4 eq.) was prepared and added in several portions 

to the solution. The reaction mixture was then stirred for 5-6 hrs at ambient 

temperature until the disappearance of the starting material 41. Saturated NaHCO3 

solution was added and the mixture allowed to stir for 30 mins. A white soild was 

observed to precipitate out. Workup of the reaction included washing with saturated 

brine and using CH2Cl2 (3 x 30 ml) to extract the organic component. The organic 
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layer was combined, allowed to stand in anhydrous MgSO4 and concentrated via 

vacuo. Flash chromatography afforded 3 with 46% (0.0521g) yield as a white solid. 

 

METHOD B 

 

To a solution of 41 (0.0700g, 0.17 mmol, 1 eq.), DMSO (1.00 ml) was added Et3N ( 

0.0180 ml, 0.14 mmol, 0.5 eq.). The resulting solution was cooled to 0-5oC using an 

ice-bath. This was followed by the addition of sulfur trioxide-pyridine complex 

(0.2588g, 1.62 mmol, 6.0 eq.). The reaction was stirred for 20 mins and the ice-bath 

removed. The reaction was then allowed to stir for an additional 1 hr. 

(Carboethoxymethylenetriphenyl)-phosphorane (0.1696g, 0.49 mmol, 1.8 eq.) was 

added in one lot and the reaction stirred at ambient temperature for 3 hrs. The reaction 

was quenched by the addition of saturated brine, and extracted with ethyl acetate (3 x 

30 ml). The combined organic phases were washed with saturated brine and allowed 

to dry over anhydrous MgSO4. The crude reaction mixture was filtered, concentrated 

and purified via flash chromatography. 3 was obtained as a white solid (0.0200g, 

35%). 

 

COMPARISON OF DATA FROM PATENT2 AND SYNTHESIZED LACTONE 3. 

REPORTED DATA FROM PATENT. 

 

1H NMR (CDCl3 solvent): δ 6.80 (dd, J = 5.1, 15.6 Hz, 1H), 5.90 (dd, J = 1.8, 15.6 

Hz, 1H), 5.68 (s, 1H), 5.13 (d, J = 7.5 Hz, 1H), 4.35-4.20 (m, 1H), 4.13 (q, J = 7.2 Hz, 

                                                           
2 Tian, Q.; Nayyar, N. K.; Srinivasan, B.; Dagnino, R.; Remarchuk, T.; Moran, T.; McGee, K. 
Canadian patent no CA 02376452 2001.
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2H), 3.37-3.20 (m, 2H), 2.50-2.30 (m, 2H), 2.00-1.85 (m, 1H), 1.84-1.66 (m, 1H), 

1.58-1.53 (m, 1H), 1.38 (s, 9H), 1.22 (t, J = 7.2 Hz, 3H) ppm. 

HRMS (EI) Calcd for C16H26N2O5, [M+]: 326.1842. Found: 326.1846. 

98% de, 100% E-isomer 

 

DATA FROM SYNTHESIZED LACTONE 3. 

 

Rf: 0.15 (solvent 100% EA) 

1H NMR (300MHz, CDCl3 solvent): δ 6.85 (dd, J = 5.22, 15.67 Hz, 1H, 

HCHC=CHCOOEt), 5.95 (dd, J = 1.62, 15.63 Hz, 1H, HCHC=CHCOOEt), 5.70 (s, 

1H, NHCOCH), 5.19 (d, J = 7.17 Hz, 1H, NHCOCH),  4.35-4.25 (m, 1H, 

HCHC=CHCOOEt), 4.18 (q, J = 7.20 Hz, 2H, COOCH2CH3),  3.38-3.33 (m, 2H, 

NHCH2CH2), 2.49-2.38 (m, 2H, NHCH2CH2), 2.06-1.89 (m, 1H, NHCH2CH2CH), 

1.86-1.67 (m, 1H, CHHCHNH), 1.58-1.55 (m, 1H, CHHCHNH), 1.44 (s, 9H, 

C(CH3)3), 1.28 (t, J = 7.14 Hz, 3H, COOCH2CH3) ppm. 

13C NMR (300MHz, CDCl3 solvent): δ 179.8, 166.3, 155.6, 148.1, 120.9, 79.8, 60.5, 

50.2, 40.3, 38.1, 35.9, 28.5, 28.4, 14.2 ppm. 

FTIR (Film): 3467, 3139, 2855, 2745, 1707, 1595, 1487, 1447, 1369, 1269, 1220, 

1001, 925, 856, 766, 545 cm-1. 

HRMS (ESI) Calcd for C16H26N2O5, [M++Na+]: 349.1739 (100%), 350.1773 (17.3%). 

Found: 349.1751 (100%), 350.1773 (17.8%). 

94% de, 100% E-isomer 
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Preparation of product (50) 

 

To a 5 ml rbf containing lactone 3 (0.0056g, 0.017 mmol, 1 eq.) was added 0.30 ml of 

EtOH. The contents were allowed to stir with an ice-bath at 0oC for 30 mins before 

the dropwise addition of AcCl (~0.03 ml, 0.043 mmol, 2.5 eq.). The reaction mixture 

was then allowed to stir for 5 hrs at 0oC. As TLC did not show any presence of the 

product, another 5 eq. of AcCl (~0.06 ml, 0.085 mmol, 5 eq.) was added and 0.20 ml 

of EtOH was again added. The reaction mixture was then allowed to stir overnight. 

TLC (Rf (5) = 0.05, 100% ether; Rf (3) = 0.20, 100% ether) revealed the presence of 

the product with no starting material present. The solvents were then removed in 

vacuo and the crude product used directly in the next step.  
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Compound 2 (0.0320g, 0.018 mmol, 1 eq.) was dissolved in 0.20 ml of CH2Cl2 and 

was added via syringe to the rbf containing the crude product 5 (0.017 mmol, 1 eq.). 

After which, the solvents were removed and THF (2 x 1.0 ml) was used to removed 

water azotropically. After purging with nitrogen, 0.20 ml of CH2Cl2 was added into 

the rbf and Sodium 2-ethylhexanoate (NaEH) (0.1495g, 0.90 mmol, 5 eq.). Another 

0.20 ml of CH2Cl2 was added to allow better stirring efficiency, and the reaction 

mixture was allowed to stir for 4 days. Flash chromatography afforded compound 50 

in low yield at 20% (0.0014g) as a pale gel. (Crude NMR of the reaction mixture 

shows a large amount of the starting material 2) 
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Rf: 0.38 (solvent 100% EA, 2 runs) 

1H NMR (300MHz, CDCl3 solvent): δ 7.20-6.72 (m, 5H, C(C5H4)F, 

HCHC=CHCOOEt), 6.41 (s, br, 1H, CONH), 5.95 (dd, seen as a doublet; J = 

unresolved, 1H, HCHC=CHCOOEt), 5.80 (s, br, 1H, NHCOCH), 5.30-5.28 (m, 1H), 

4.28-4.11 (m, 3H, HCHC=CHCOOEt, COOCH2CH3), 4.05-3.91 (m, 1H, CHOH), 

3.72-3.49 (m, 1H, CHiPr), 3.46-2.81 (m, 2H, NHCH2CH2), 2.76-2.59 (m, 2H, 

CH2PhF), 2.52-2.32 (s, br, 4H, NOCHCH3, CH(CH3)2), 2.35-1.90 (m, br, 1H, 

CHOH), 1.90-1.63 (m, br, 1H, NHCH2CH2CH), 1.56-1.12 (m, br, 7H, CH2CHNH, 

COOCH2CH3), 1.05-0.81 (m, br, 6H, CH(CH3)2) ppm.3

19F NMR (300 MHz, CDCl3) δ  -41.55 (s, 1F) ppm. 

FTIR (Film): 3391, 2982, 2939, 2897, 1708, 1650, 1446, 1379, 1323, 1124, 1091, 

1046, 948, 842, 800 cm-1. 

HRMS (ESI) Calcd for C31H41FN4O7, [M++Na+]: 623.2857 (100%), 624.2891 

(33.5%). Found: 623.2858 (100%), 624.2896 (36.18%). 

 

                                                           
3 Due to time constraints and the small amount of compound 50 synthesized, we were unable to obtain 
the 13C NMR spectrum. 
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10 - 23%

O
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Where R = CH3, 48; or -CH2Ph, 49

 

 

Preparation of (48) or (49) 

 

48 and 49 were prepared before the actual coupling of fragment 2 and 5, employing 

NaEH in CH2Cl2 stirred at 40oC. Synthesis of 48 and 49 was analagous to the method 

employed towards the synthesis of 50. Partial characterization was carried  out for 48. 

On observation of a successful coupling to afford 48, we proceeded with the coupling 

of the bulkier benzyl analog to afford 49. 
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48 was obtained as a mixture of 2 isomers with a 23% yield (0.0272g).  

Rf: 0.48 (solvent 100% ether) (1st isomer) 

Rf: 0.33 (solvent 100% ether) (2nd isomer) 

1H NMR (300MHz, CDCl3 solvent): δ 7.19-6.72 (m, 4H, C(C4H4)F), 6.62 (d, J = 8.43 

Hz, 1H, CONHCH), 6.36 (s, 1H, CONH), 4.67 (dd, J = 6.01, 10.50 Hz, 1H, 

CONHCHCH3COOCH3), 3.94 (t, br, J = 9.55 Hz, 1H, CHOH), 3.12-2.90 (s, br, 3H, 

COOCH3), 2.55 (s, 1H, CHiPr), 2.15-2.28 (m, 3H, NOCCH3), 1.78-1.49 (m, br, 6H, 

CHCH2CH, CH3), 0.93 (dd, J = 4.50, 6.60 Hz, 6H, CH(CH3)2)  ppm.4

FTIR (KBr) (48): 3456, 2964, 1751, 1651, 1548, 1603, 1450, 1385, 1220, 1152, 1035 

828, 777, 654 cm-1. 

49 was obtained as a mixture of 2 isomers with a 10% yield (0.0090g).  

Rf: 0.30 (solvent 100% ether) (1st isomer) 

Rf: 0.28 (solvent 100% ether) (2nd isomer, very low yield ~35% of 0.0090g) 

1H NMR (300MHz, CDCl3 solvent): δ 7.20-6.72 (m, 9H, C(C4H4)F, C(C5H5)), 6.41 

(s, 1H, CONH), 5.95 (d, J = 8.43 Hz, 1H, CONHCH), 4.89-4.83 (m, 1H, CHCH2Ph), 

3.92-3.88 (m, 1H, CHOH), 3.66 (s, 3H, COCH3), 3.65-3.63 (m, 1H, CHiPr), 3.59-

3.56 (m, 1H, CHCH2Ph), 3.00-2.77 (m, 2H, CHCH2Ph), 2.60-2.55 (m, CHiPr), 2.48 

(s, 3H, CH3CON), 1.98-1.86 (m, 1H, OH), 1.72-1.62 (m, 2H, OHCHCH2CH), 0.95 

(dd, J = 5.22, 6.42 Hz, 6H, CH(CH3)2) ppm. 

13C NMR (300MHz, CDCl3 solvent): δ 174.6 (CONH), 171.5 (COOCH3), 171.3 

(CNOC=C), 160.6 (ON=CCONH), 158.6 (ONCCONH), 136.2 (C(C5H5)), 134.8 

(C(C5H4)F), 130.3, 130.2 (C(C5H4)F), 128.6, 127.1 (C(C5H5), 115.2, 115.0 

(C(C5H4)F), 101.5 (NOC=C), 67.7 (CHOH), 59.7 (CHiPr), 53.1 

(CONHCHCOOCH3), 52.3 (CONHCHCOOCH3), 37.9 (CH2PhF), 37.2 (CH2Ph), 

                                                           
4 We were only interested in obtaining a positive result for the coupling reaction. As such, we decided 
to carry out another reaction to synthesize compound 49.  
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36.9 (CHOHCH2), 29.6 (CHCH(CH3)2), 20.0, 18.8 (CHCH(CH3)2), 12.3 (NOCCH3) 

ppm. 

19F NMR (300 MHz, CDCl3) δ  -41.36 (s, 1F) ppm. 

FTIR (KBr) (49): 3412, 2954, 1741, 1650, 1541, 1508, 1456, 1219, 1156, 1031, 920, 

745, 699 cm-1. 

HRMS (ESI) Calcd for C30H36FN3O6, [M++Na+]: 576.2486 (100.0%), 577.2519 

(32.4%). Found: 576.2479 (100.0%), 577.2518 (34.40%). 

 

NH2.HCl

O

OMe
NHBoc

O

OMe

Et3N, 
Boc2O,
DCM, reflux

51                                                         52

 

 

Preparation of Boc-protected L-leucine methyl ester (52)5

 

To a 150 ml rbf was charged L-leucine methyl ester hydrochloride 51 (1.8166g, 10.00 

mmol, 1 eq.), CH2Cl2 (30 ml) and Et3N (1.82 ml, 13.00 mmol, 1.3 eq). Di-tert-

butyldicarbonate (3.45 ml, 15.00 mmol, 1.5 eq) was added in one lot and the reaction 

mixture allowed to reflux overnight, up to 20 hr. The reaction was allowed to cool and 

1M HCl was added to quench the mixture. The organic layer was washed with 

NaHCO3, H2O and brine solution and extracted with CH2Cl2 (2 x 40 ml). The organic 

                                                           
5 Partial characterization was carried out for compounds 52-71, as further characterization is for future 
work. The compounds synthesized here is to display the possibility of the extension of the study 
towards other possible analogs of AG-7088. 
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layer was allowed to stand in anhydrous MgSO4 and concentrated via vacuo. Flash 

chromatography afforded 2.2940g of 52 with a yield of 94%. 

Rf: 0.38 (hexane: ethyl acetate = 8:1). 

1H NMR (300MHz, CDCl3) δ 4.87 (m, br, 1H, NHBoc), 4.31 (d, br, J = 5.22 Hz, 1H, 

CHNH), 3.73 (s, 3H, COOCH3), 1.78-1.41 (m, 3H, CHCH2CH), 1.44 (s, 9H, 

OC(CH3)3, 0.94 (dd, J = 2.60, 6.62 Hz, 6H, (CH3)2CH)  ppm. 

13C NMR (300MHz, CDCl3) δ 173.9 (COOCH3), 155.3 (COOC(CH3)3), 79.6 

(COOC(CH3)3), 60.2 (COOCH3), 51.9 (NHCH), 41.6 (CH2NHCH), 28.2 

(COOC(CH3)3), 24.6 (CH(CH3)3), 22.7 and 21.7 (CH(CH3)3) ppm. 

HRMS (ESI) Calcd for C12H23NO4, [M++Na+]: 268.1525 (100.0%), 269.1558 

(13.0%). Found: 268.1526 (100.0%), 269.1557 (15.25%). 

 

   52                                                               53

NHBoc

O

OMe
NHBoc

O

OH

LiOH,
THF/H2O (2:1),
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Preparation of Boc-protected L-leucine carboxylic acid (53) 

 

To a 100 ml rbf charged with 52 (2.2766g, 9.30 mmol, 1 eq.), was added THF (20 ml) 

and H2O (10 ml). This was added followed by the addition of LiOH.H2O (0.6714g, 

16.00 mmol, 1.72 eq.). The reaction was allowed to stir for 1.5 hr and was monitored 

via TLC. On the disappearance of the starting material 52, the reaction mixture was 
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acidified to pH=2 using 1M HCl. The reaction mixture was extracted using ethyl 

acetate (4 x 30 ml), allowed to stand in anhydrous MgSO4 and concentrated via 

vucuo, affording 2.0860g of 53 with a yield of 97%. 

Rf: 0.20 (hexane: ethyl acetate = 2:1). 

1H NMR (300MHz, CDCl3) δ 10.10 (s, br, 1H, COOH), 6.24 (s, br, NHBoc, due to 

intermediate H exhange), 4.98 (d, br, J = 7.62 Hz, 1H, CHNH), 4.30 (d, br, 

unresolved, 1H, CHNH), 1.78-1.49 (m, 3H, CHCH2CH), 1.43 (s, 9H, OC(CH3)3, 0.94 

(d, br, J = 6.03 Hz, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 178.2 (COOH), 155.7 (COOC(CH3)3), 80.1 

(COOC(CH3)3), 52.0 (NHCH), 41.5 (CH2NHCH), 28.3 (COOC(CH3)3), 24.8 

(CH(CH3)3), 22.8 and 21.8 (CH(CH3)3) ppm. 

HRMS (ESI) Calcd for C11H21NO4, [M++Na+]: 254.1368. Found: 254.1369. 

 

OH

ClH.H2N
O

OMe

OH

BocHN
O

OMe

Et3N, 
Boc2O,
DCM, 
reflux

54                                                  55

 

 

Preparation of Boc-protected L-serine methyl ester (55) 

 

To a 50 ml rbf was charged L-serine methyl ester hydrochloride 54 (0.7779g, 5.00 

mmol, 1 eq.), CH2Cl2 (20 ml) and Et3N (0.9060 ml, 6.50 mmol, 1.3 eq). Di-tert-

butyldicarbonate (1.72 ml, 7.50 mmol, 1.5 eq) was added in one lot and the reaction 
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mixture allowed to reflux overnight, up to 20 hr. The reaction was allowed to cool and 

1M HCl was added to quench the mixture. The organic layer was washed with 

NaHCO3, H2O and brine solution and extracted with CH2Cl2 (2 x 30 ml). The organic 

layer was allowed to stand in anhydrous MgSO4 and concentrated via vacuo. Flash 

chromatography afforded 0.8440g of 55 with a yield of 77%. 

Rf: 0.35 (hexane: ethyl acetate = 1:1). 

1H NMR (300MHz, CDCl3) δ 5.42 (s, br, 1H, NH), 4.39 (s, br, 1H, NHCH), 3.96-

3.91 (m, 2H, CH2OH), 3.79 (s, 3H, COOCH3), 1.46 (s, 9H, OC(CH3)3 ppm. 

13C NMR (300MHz, CDCl3) δ 171.4 (COOCH3), 155.8 (COOC(CH3)3), 80.3 

(COOC(CH3)3), 63.2 (CH2OH), 55.7 (NHCH), 52.5 (COOCH3), 28.2 (COOC(CH3)3) 

ppm. 

HRMS (ESI) Calcd for C9H17NO5, [M++Na+]:  242.1004 (100.0%), 243.1038 (9.7%). 

Found: 242.1002 (100%), 243.1037 (29.18%) 

 

OH

BocHN
O

OMe
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BocHN
O
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 55                                                   56

TBDPSCl,
AgNO3,
DMF,
25oC

 

 

Preparation of TBDPS/Boc-protected L-serine methyl ester (56) 

 

To a 150 ml rbf was charged ester 55 (0.6554g, 3.00 mmol, 1 eq.), N,N-DMF (15 ml) 

and AgNO3 (1.0193g, 6.00 mmol, 2.0 eq). Tert-butylchlorodiphenylsilane (1.17 ml, 

4.50 mmol, 1.5 eq) was added in one lot and the reaction mixture allowed to stir at 
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ambient temperature. After the disappearance of the starting material, the organic 

layer was washed with H2O (50 ml) and extracted with ethyl acetate (3 x 40 ml). The 

organic layer was allowed to stand in anhydrous MgSO4 and concentrated via vacuo. 

Flash chromatography afforded 0.8990g of 56 with a yield of 80%. 

Rf: 0.80 (hexane: ethyl acetate = 1:1). 

1H NMR (300MHz, CDCl3) δ 7.73-7.35 (m, 10H, (C6H5)2), 5.40 (d, J = 8.04 Hz, 1H, 

NH), 4.40 (d, J = 8.82 Hz, 1H, NHCH), 4.09-3.87 (m, 2H, CH2OH), 3.74 (s, 3H, 

COOCH3), 1.46 (s, 9H, OC(CH3)3, 1.03 (s, 9H, SiC(CH3)3 ppm. 

13C NMR (300MHz, CDCl3) δ 171.2 (COOCH3), 155.3 (COOC(CH3)3), 135.5 

(OSiC(C5H5)), 134.8 (OSiC(C5H5)), 129.8 (OSiC(C5H5)), 127.7 (OSiC(C5H5)),  79.9 

(COOC(CH3)3), 64.6 (CH2OSi), 55.5 (NHCH), 52.2 (COOCH3), 28.3 

(COOC(CH3)3), 26.7 (OSiC(CH3)3), 19.2 (OSiC(CH3)3) ppm. 

HRMS (ESI) Calcd for C25H35NO5Si, [M++Na+]: 480.2182 (100.0%), 481.2216 

(27.0%). Found: 480.2187 (100.0%), 481.2212 (34.48%). 
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Preparation of TBDPS-protected L-serine methyl ester hydrochloride (57) 

 

To a 50 ml rbf was charged ester 56 (3.2113g, 7.00 mmol, 1 eq.) and 20 ml ethyl 

acetate, pre-saturated with HCl (HCl (g) was generated from a saturated stirring 

solution of NaCl in H2O, with the slow addition of H2SO4. Upon formation of fumes, 

a tubing was connected to the rbf containing 50 ml of ethyl acetate to allow the fumes 

to mix with the ethyl acetate. An exhaust was fitted to allow the escape of excess HCl 

fumes. The ethyl acetate was stirred with the HCl fumes for up top 6 hr.). The 

reaction mixture allowed to stir at ambient temperature overnight. Saturated Na2CO3 

was added to the reaction mixture followed by extraction with ethyl acetate (3 x 30 

ml). The combined extracts was washed with brine and allowed to stand in anhydrous 

MgSO4. After concentration via vacuo, 57 was afforded a yield of 91% (2.3800g). 

Rf: 0.35 (hexane: ethyl acetate = 2:1). 

1H NMR (300MHz, CDCl3) δ 7.73-7.34 (m, 10H, (C6H5)2), 4.02-3.90 (m, 2H, 

CH2OH), 3.71 (s, 3H, COOCH3), 3.64 (s, br, 1H, NHCH), 1.04 (s, 9H, SiC(CH3)3 

ppm. 
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13C NMR (300MHz, CDCl3) δ 173.5 (COOCH3), 135.5 (OSiC(C5H5)), 134.8 

(OSiC(C5H5)), 129.9 (OSiC(C5H5)), 127.7 (OSiC(C5H5)), 65.4 (CH2OSi), 56.0 

(NHCH), 52.2 (COOCH3), 26.7 (OSiC(CH3)3), 19.3 (OSiC(CH3)3) ppm. 

Nominal MS (FAB) Calcd for C20H27NO3Si, [M+]: 357.18. Found: 358.20. 
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Preparation of peptide (58) 

 

To a 25 ml round bottomed flask (rbf) containing 57 (0.3939g, 1.00 mmol, 1eq), 53 

(0.2544g, 1.10 mmol, 1.1 eq),  1-(3-dimethylaminopropyl)-3-ethyl carbodiimide 

hydrochloride (EDC.HCl) (0.2863g, 1.50 mmol, 1.5 eq) and 1-hydroxy benzotriazole 

hydrate (HOBT) (0.1486g, 1.10 mmol, 1.1 eq) in N,N-DMF (5 ml) was added N-ethyl 

diisopropyl amine (DIEA) (0.6 ml, 3.50 mmol, 3.5 eq) dropwise, while maintaining 

the reaction temperature at 0oC. The reaction was allowed to warm to room 

temperature and was stirred overnight or for up to 20h. The reaction mixture was then 

diluted with 10 ml of ethyl acetate and washed with saturated NaHCO3 (20 ml) 

solution followed by H2O (2 x 10 ml) and brine (30 ml). The organic layer was dried 

over anhydrous MgSO4. Solvents were removed in vacuo. Purification through flash 

column chromatography afforded 58 (0.5701g , 75% yield). 
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Rf: 0.43 (hexane: ethyl acetate = 4:1). 

1H NMR (300MHz, CDCl3) δ 7.62-7.32 (m, 10H, (C6H5)2), 6.79 (d, J = 7.62 Hz, 1H, 

NHBoc), 4.81 (br, 1H, CONH), 4.63 (dt, br, J = 3.00, 8.04 Hz, 1H, NHCH), 4.16-

4.09 (dt, br, J = 3.51, 12.84, 2H, NHCH2OSi), 3.89 (dd, J = 3.02, 10.25 Hz, 1H, 

CHNHBoc), 3.73 (s, 3H, COOCH3), 1.70-1.66 (m, br, 1H, (CH3)2CH), 1.53-1.50 (m, 

br, 2H, (CH3)2CHCH2), 1.45 (s, 9H, OC(CH3)3, 1.04 (s, 9H, SiC(CH3)3), 0.94 (dd, J = 

2.61, 6.21 Hz, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 172.3 (COOCH3), 170.4 (CONH), 155.3 

(COOC(CH3)3), 135.4 (OSiC(C5H5)), 132.6 (OSiC(C5H5)), 129.8 (OSiC(C5H5)), 

127.7 (OSiC(C5H5)),  79.7 (COOC(CH3)3), 64.1 (CH2OSi), 60.2 (NHCH), 54.0 

(CHNHBoc), 52.2 (COOCH3), 41.7 (CH2C(CH3)3), 28.4 (COOC(CH3)3), 26.6 

(OSiC(CH3)3), 24.6 (CH(CH3)3), 19.1 (OSiC(CH3)3) ppm. 

HRMS (ESI) Calcd for C31H46N2O6Si, [M++Na+]: 593.3023 (100.0%), 594.3056 

(33.5%). Found: 593.3017 (100.0%), 594.3047 (40.52%). 
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Preparation of (59) 

 

To a solution of 58 (0.5707g, 1.00 mmol, 1 eq) in 9 ml of THF, pro-cooled at 0oC, 

was added NaBH4 (0.1617g, 4.00 mmol, 4 eq) slowly in several portions. The solution 

was allowed to stir for 30 minutes before 3 ml of methanol was added dropwise to 

initiate the reaction. The reaction was allowed to warm to room temperature before 

allowing to stir overnight. Upon completion of the reaction, the reaction mixture was 

cooled using an ice bath. 1M HCl was added slowly until all the solids dissolved. The 

reaction mixture was then extracted with ethyl acetate (3 x 15 ml) and the combined 

extracts were washed with saturated sodium bicarbonate and dried over anhydrous 

MgSO4. Solvent was removed in vacuo. Purification through flash column 

chromatography afforded 0.4390g of the desired product 59 with 81 % yield. 

Rf: 0.38 (hexane: ethyl acetate = 2:1). 

1H NMR (300MHz, CDCl3) δ 7.65-7.36 (m, 10H, (C6H5)2), 6.80 (d, J = 7.62 Hz, 1H, 

NHBoc), 5.15 (br, 1H, CONH), 4.00 (br, 1H, NHCH), 3.84 (dd, J = 4.21, 10.25 Hz, 

2H, NHCH2OSi), 3.78-3.64 (m, 3H, CHCH2OH), 1.62-1.58 (m, br, 1H, (CH3)2CH), 

1.57-1.40 (m, 2H, (CH3)2CHCH2), 1.39 (s, 9H, OC(CH3)3), 1.06 (s, 9H, SiC(CH3)3), 

0.89 (dd, J = 2.79, 6.42 Hz, 6H, (CH3)2CH) ppm. 
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13C NMR (300MHz, CDCl3) δ 172.9 (COOCH3), 171.0 (CONH), 155.5 

(COOC(CH3)3), 135.4 (OSiC(C5H5)), 132.8 (OSiC(C5H5)), 129.7 (OSiC(C5H5)), 

127.7 (OSiC(C5H5)),  79.9 (COOC(CH3)3), 62.6 (CH2OSi), 61.8 (NHCH), 52.3 

(CHNHBoc), 41.4 (CH2C(CH3)3), 28.1 (COOC(CH3)3), 26.7 (OSiC(CH3)3), 24.6 

(CH(CH3)3), 19.0 (OSiC(CH3)3) ppm. 

HRMS (ESI) Calcd for C30H46N2O5Si, [M++Na+]: 565.3074 (100.0%), 566.3107 

(32.4%). Found: 565.3079 (100.0%), 566.3101 (40.80%). 
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Preparation of homoallylic alcohol (61) 

 

A flame-dried rbf was purged, with nitrogen and charged with CH2Cl2 (6 ml) and 

oxalyl chloride (0.78 ml, 9.00 mmol, 3 eq). The solution was cooled to -78oC and 1.28 

ml of DMSO (18.00 mmol, 6 eq) was added dropwise. The solution was allowed to 

stir for a few minutes before a solution of 59 (0.5420g, 1.00 mmol, 1 eq) in 6 ml of 
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CH2Cl2 was added dropwise. This was followed by the addition of Et3N (1.25 ml, 

9.00 mmol, 9 eq) and the solution stirred for 5 mins at -78oC before being allowed to 

warm up to room temperature. After reaction completion, water was added to dissolve 

the solids (25 ml). The aqueous layer was then separated and extracted with CH2Cl2 

(2 x 30 ml). The combined organic extracts were washed with water (2 x 30 ml), 

saturated sodium bicarbonate (20 ml), brine (20 ml) and dried over anhydrous 

MgSO4. Solvent was removed in vacuo. The crude α-aminoaldehyde 60 was used 

immediately in the allylation step without any further purification. (Note: 1H and 13C 

NMR indicates the possible presence of the epimer of the aldehyde.) 

60, Rf: 0.83 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 9.60 (d, J = 6.00 Hz, 1H, CHO), 7.75-7.34 (m, 10H, 

(C6H5)2), 7.08 (d, J = 6.84 Hz, 1H, NHBoc), 5.12 (d, br, J = 8.82 Hz, 1H, CONH), 

4.53 (br, 1H, NHCH), 4.22 (dt, J = 2.01, 12.45 Hz, 2H, NHCH2OSi), 4.18-4.10 (m, 

1H, CHNHBoc), 1.72-1.61 (m, br, 1H, (CH3)2CH), 1.50-1.41 (m, 2H, 

(CH3)2CHCH2), 1.39 (s, 9H, OC(CH3)3), 1.05 (s, 9H, SiC(CH3)3), 0.89 (dd, J = 2.42, 

3.62 Hz, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 198.14 (CHO, 198.10, possible epimer), 173.03 

(CONH, 172.99, possible epimer), 155.4 (COOC(CH3)3), 135.41 (OSiC(C5H5), 

135.38, possible epimer), 132.47 (OSiC(C5H5), 132.29, possible epimer),  129.98 

(OSiC(C5H5), 129.92, possible epimer), 127.81 (OSiC(C5H5), 127.64, 127.45, 

possible epimer), 80.0 (COOC(CH3)3), 61.65 (CH2OSi, 62.52, possible epimer),  60.3 

(NHCH), 41.5 (CH2C(CH3)3), 28.25 (COOC(CH3)3, 28.17, possible epimer), 26.70 

(OSiC(CH3)3), 26.66, possible epimer), 24.7 (CH(CH3)3), 19.1 (OSiC(CH3)3) ppm. 
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The crude α-aminoaldehyde 60 was dissolved in 10 ml of THF followed by the 

addition of Zinc powder (0.1308g, 2.00 mmol, 2 eq). The reaction mixture was cooled 

to 0oC using and ice-bath followed by the addition of 10 ml of 0.3M solution of 

NH4Cl followed by the addition of allyl bromide (0.2419g, 2.00 mmol, 2 eq). Upon 

completion of reaction, 5 ml ethyl acetate was added followed by the dropwise 

addition of 1N NaOH until the disappearance of the white precipitate. The solution 

was then extracted with ethyl acetate (3 x 30ml). The combined organic layer was 

washed with a saturated solution of brine and was dried over anhydrous MgSO4. 

Solvents were removed in vacuo. Purification through flash column chromatography 

afforded 0.1750g of product 61 as a mixture of isomers which could not be separated, 

with a yield of 30%. 

Rf: 0.63, 0.55 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 7.64-7.36 (m, 10H, (C6H5)2), 6.57 (d, J = 8.82 Hz, 1H, 

NHBoc), 5.80 (m, 1H, HC=CH2), 5.11-5.06 (m, 2H, HC=CH2), 4.92-4.79 (m, 1H, 

NHCH), 4.13-3.78 (m, br, 4H, NHCH2OSi, CHCHOH, NHCHCHOH), 2.24-2.19 (m, 

2H, CH2CH=CH2), 1.67-1.64 (m, 3H, (CH3)2CH, (CH3)2CHCH2), 1.43 (s, 9H, 

OC(CH3)3), 1.06 (s, 9H, SiC(CH3)3), 0.94 (dd, J = 2.79, 8.11 Hz, 6H, (CH3)2CH) 

ppm. 

13C NMR (300MHz, CDCl3) δ 172.67 (CONH, 172.60, possible epimer), 155.4 

(COOC(CH3)3), 135.57 (OSiC(C5H5), 135.53, possible epimer), 134.22 (CH=CH2, 

134.17, possible epimer), 132.63 (OSiC(C5H5), 132.60, possible epimer),  130.1 

(OSiC(C5H5)), 127.9 (OSiC(C5H5), 118.08 (CH=CH2, 117.98, possible epimer),   

80.1 (COOC(CH3)3), 71.48 (CHOH, 71.16, possible epimer), 65.67 (CH2OSi, 65.47, 

possible epimer), 52.49 (NHCH, 52.45, possible epimer), 41.7 (CH2C(CH3)3), 38.5 

(CH2CH=CH2), 28.3 (COOC(CH3)3), 26.90 (OSiC(CH3)3, 26.87, possible epimer), 
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24.85 (CH(CH3)3, 24.75, possible epimer),  19.17 (OSiC(CH3)3, 19.14, possible 

epimer) ppm. 

HRMS (ESI) Calcd for C33H50N2O5Si, [M++Na+]: 605.3387 (100.0%), 606.3420 

(35.7%). Found: 605.3391 (100.0%), 606.3425 (42.82%). 

 

COSY spectrum for 61 
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NOESY spectrum for 61 
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Preparation of olefin metathesis product (68) 

 

To a 25 ml rbf charged with 61 (g, 0.05 mmol, 1 eq) and 62 (g, 0.05 mmol, 1 eq), was 

added Grubbs 2nd Generation catalyst (g, 5 mol %, 0.05 eq) and CH2Cl2 (5 ml). After 

stirring for 30 mins, another equivalent of Grubbs 2nd Generation catalyst (g, 5 mol %, 

0.05 eq) was added and the reaction allowed to stir for 6 hr. Workup of the reaction 

involved the filtering of the reaction mixture through celite followed by concentration 

of the reaction mixture via vacuo. Flash chromatography afforded 0.0290g of 68 with 

a 92% yield as a mixture of unisolable isomers. 
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Employment of 63 afforded 0.0200g of 68 with a yield of 63%. 

Rf: 0.53 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 7.63-7.38 (m, 10H, (C6H5)2), 7.01-6.90 (m, 1H, 

HC=CH2), 6.64 (d, J = 8.82 Hz, 1H, NHBoc), 5.89 (dd, J = 5.21, 15.65 Hz, 1H, 
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HC=CHCOOCH3), 4.81 (d, J = 6.03 Hz, 1H, NHCH), 3.95-3.74 (m, br, 4H, 

NHCH2OSi, CHCHOH, NHCHCHOH), 3.68 (s, 3H, COOCH3), 2.39-2.28 (m, br, 

3H, CHCH2CH=CH), 1.72-1.58 (m, 3H, (CH3)2CH, (CH3)2CHCH2), 1.42 (s, 9H, 

OC(CH3)3), 1.06 (s, 9H, SiC(CH3)3), 0.93 (dd, J = 3.81, 5.82 Hz, 6H, (CH3)2CH) 

ppm. 

13C NMR (300MHz, CDCl3) δ 172.8 (CONH), 166.8 (COOCH3), 155.4 

(COOC(CH3)3), 144.9 (CH=CHCOOCH3), 135.5 (OSiC(C5H5)), 132.5 

(OSiC(C5H5)), 130.0 (OSiC(C5H5)), 127.9 (OSiC(C5H5), 123.5 (CH=CHCOOCH3),  

80.2 (COOC(CH3)3), 70.8 (CHOH), 65.3 (CH2OSi), 53.6 (NHCH), 52.9 (COOCH3), 

41.5 (CH2C(CH3)3), 36.9 (CH2CH=CH2), 28.3 (COOC(CH3)3), 26.9 (OSiC(CH3)3), 

24.8 (CH(CH3)3), 22.9 (CH(CH3)2), 21.9 (CH(CH3)2), 19.1 (OSiC(CH3)3) ppm. 

FTIR (KBr): 3421, 2959, 2934, 2858, 1711, 1661, 1518, 1428, 1166, 1111, 738, 703 

cm-1. 

HRMS (ESI) Calcd for C35H52N2O7Si, [M++Na+]: 663.3441 (100.0%), 664.3475 

(37.9%). Found: 663.3453 (88.58%), 664.3485 (38.95%). 
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Preparation of olefin metathesis product (69) 

 

To a 25 ml rbf charged with 61 (g, 0.05 mmol, 1 eq) and 64 (g, 0.05 mmol, 1 eq), was 

added Grubbs 2nd Generation catalyst (g, 5 mol %, 0.05 eq) and CH2Cl2 (5 ml). After 
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stirring for 30 mins, another equivalent of Grubbs 2nd Generation catalyst (g, 5 mol %, 

0.05 eq) was added and the reaction allowed to stir for 6 hr. Workup of the reaction 

involved the filtering of the reaction mixture through celite followed by concentration 

of the reaction mixture via vacuo. Flash chromatography afforded 0.0194g of 69 with 

a 60% yield as a mixture of unisolable isomers. 

Rf: 0.45 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 7.64-7.40 (m, 10H, (C6H5)2), 6.56 (d, br, J = 9.24 Hz, 

1H, NHBoc), 5.59 (m, 2H, HC=CHCH2COOCH3), 4.89 (br, 1H, NHCH), 4.03-3.78 

(m, br, 4H, NHCH2OSi, CHCHOH, NHCHCHOH), 3.68 (s, 3H, COOCH3), 3.06 (d, 

J = 5.22 Hz, 2H, HC=CHCH2COOCH3), 2.23-2.17 (m, 2H, CH2HC=CHCH2), 1.81-

1.55 (m, 3H, (CH3)2CH, (CH3)2CHCH2), 1.43 (s, 9H, OC(CH3)3), 1.07 (s, 9H, 

SiC(CH3)3), 0.93 (dd, J = unresolved, 6.03 Hz, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 172.7 (CONH), 172.3 (COOCH3), 155.0 

(COOC(CH3)3), 135.6 (OSiC(C5H5)), 132.6 (OSiC(C5H5)), 130.0 (OSiC(C5H5)), 

127.9 (OSiC(C5H5), 125.4 (HC=CHCH2COOCH3), 80.1 (COOC(CH3)3), 71.84 

(CHOH), 65.5 (CH2OSi), 52.6 (NHCH), 51.8 (COOCH3), 41.8 (CH2C(CH3)3), 37.9 

(HC=CHCH2COOCH3), 37.2 (CH2HC=CHCH2), 28.3 (COOC(CH3)3), 26.9 

(OSiC(CH3)3), 24.9 (CH(CH3)3), 23.0 (CH(CH3)2), 22.0 (CH(CH3)2), 19.2 

(OSiC(CH3)3) ppm. 

FTIR (KBr): 3412, 3342, 2956, 2933, 2858, 1736, 1716, 1670, 1513, 1428, 1365, 

1166, 1111, 739, 703 cm-1. 
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Preparation of olefin metathesis product (70) 

 

To a 25 ml rbf charged with 61 (g, 0.05 mmol, 1 eq) and 65 (g, 0.05 mmol, 1 eq), was 

added Grubbs 2nd Generation catalyst (g, 5 mol %, 0.05 eq) and CH2Cl2 (5 ml). After 

stirring for 30 mins, another equivalent of Grubbs 2nd Generation catalyst (g, 5 mol %, 

0.05 eq) was added and the reaction allowed to stir for 6 hr. Workup of the reaction 

involved the filtering of the reaction mixture through celite followed by concentration 

of the reaction mixture via vacuo. Flash chromatography afforded 0.0168g of 70 with 

a 54% yield as a mixture of unisolable isomers. 

Rf: 0.48 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 7.63-7.37 (m, 10H, (C6H5)2), 6.80 (dt, J = 7.58, 16.02, 

1H, HC=CHCOCH3), 6.68 (d, J = 9.06 Hz, 1H, NHBoc), 6.10 (dd, br, J = 4.17, 16.02 

Hz, 1H, HC=CHCOCH3), 4.78 (br, 1H, NHCH), 3.88-3.75 (m, br, 4H, NHCH2OSi, 

CHCHOH, NHCHCHOH), 2.38-2.30 (m, br, 2H, CHCH2CH=CH), 2.23 (s, 3H, 

COCH3), 1.58-1.73 (m, 3H, (CH3)2CH, (CH3)2CHCH2), 1.42 (s, 9H, OC(CH3)3), 1.07 

(s, 9H, SiC(CH3)3), 0.93 (dd, J = 4.19, 5.93 Hz, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 198.4 (COCH3), 172.9, (CONH,), 155.5 

(COOC(CH3)3), 143.6 (CH=CHCOCH3), 135.6 (OSiC(C5H5)), 133.5 

(CH=CHCOCH3), 132.5 (OSiC(C5H5)), 130.0 (OSiC(C5H5)), 127.9 (OSiC(C5H5), 

80.4 (COOC(CH3)3), 71.3 (CHOH), 65.6 (CH2OSi), 52.9 (NHCH), 41.5 
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(CH2C(CH3)3), 37.1 (CH2CH=CH2), 28.3 (COOC(CH3)3), 26.9 (OSiC(CH3)3), 24.8 

(CH(CH3)3), 22.9 (CH(CH3)2), 21.9 (CH(CH3)2), 19.1 (OSiC(CH3)3) ppm. 

FTIR (KBr): 3412, 3353, 2957, 2936, 2859, 1710, 1660, 1518, 1428, 1367, 1167, 

1111, 703 cm-1. 
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Preparation of olefin metathesis product (71) 

 

To a 25 ml rbf charged with 61 (g, 0.05 mmol, 1 eq) and 66 (g, 0.05 mmol, 1 eq), was 

added Grubbs 2nd Generation catalyst (g, 5 mol %, 0.05 eq) and CH2Cl2 (5 ml). After 

stirring for 30 mins, another equivalent of Grubbs 2nd Generation catalyst (g, 5 mol %, 

0.05 eq) was added and the reaction allowed to stir for 6 hr. Workup of the reaction 

involved the filtering of the reaction mixture through celite followed by concentration 

of the reaction mixture via vacuo. Flash chromatography afforded 0.0155g of 71 with 

a 51% yield as a mixture of unisolable isomers. 

Rf: 0.45 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 9.53-9.50 (m, 1H, CHO), 7.63-7.38 (m, 10H, (C6H5)2), 

6.88 (dt, br, J = 7.43, 16.05, 1H, HC=CHCHO), 6.69 (d, J = 8.43 Hz, 1H, NHBoc), 

6.15 (dd, br, J = 8.01, 15.66 Hz, 1H, HC=CHCHO), 4.71 (br, 1H, NHCH), 4.23-3.71 

(m, br, 4H, NHCH2OSi, CHCHOH, NHCHCHOH), 2.54-2.36 (m, br, 2H, 
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CHCH2CH=CHCHO), 1.60-1.73 (m, 3H, (CH3)2CH, (CH3)2CHCH2), 1.44 (s, 9H, 

OC(CH3)3), 1.08 (s, 9H, SiC(CH3)3), 0.97-0.91 (m, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 193.8 (CHO), 172.8, (CONH,), 154.0 (COOC(CH3)3), 

135.6 (OSiC(C5H5)), 134.9 (CH=CHCOCH3), 132.3 (OSiC(C5H5)), 130.2 

(OSiC(C5H5)), 128.0 (OSiC(C5H5), 81.0 (COOC(CH3)3), 71.3 (CHOH), 65.7 

(CH2OSi), 52.9 (NHCH), 41.3 (CH2C(CH3)3), 37.2 (CH2CH=CH2), 28.3 

(COOC(CH3)3), 26.9 (OSiC(CH3)3), 24.8 (CH(CH3)3), 21.9 (CH(CH3)2), 21.7 

(CH(CH3)2), 19.2 (OSiC(CH3)3) ppm. 

FTIR (KBr): 3421, 3357, 2957, 2936, 2858, 1715, 1664, 1511, 1424, 1365, 1166, 

1111, 702 cm-1. 
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Preparation of olefin metathesis product (71) 

 

To a 25 ml rbf charged with 61 (g, 0.05 mmol, 1 eq) and 67 (g, 0.05 mmol, 1 eq), was 

added Grubbs 2nd Generation catalyst (g, 5 mol %, 0.05 eq) and CH2Cl2 (5 ml). After 

stirring for 30 mins, another equivalent of Grubbs 2nd Generation catalyst (g, 5 mol %, 

0.05 eq) was added and the reaction allowed to stir for 6 hr. Workup of the reaction 

involved the filtering of the reaction mixture through celite followed by concentration 

of the reaction mixture via vacuo. Flash chromatography afforded 0.0095g of 72 with 

a 30% yield as a mixture of unisolable isomers. 
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Rf: 0.30 (hexane: ethyl acetate = 2:1).  

1H NMR (300MHz, CDCl3) δ 7.63-7.40 (m, 10H, (C6H5)2), 6.61 (d, J = 8.43 Hz, 

NHBoc), 5.94-5.52 (m, 1H, OHCHHC=CH2), 5.68-5.57 (ddd, br, J = 1.59, 3.62, 

17.27, 1H, CH=CHCHOHCHHC=CH2), 5.14-5.09 (dq, J = 1.40, 10.44 Hz, 1H, 

CH=CHCHOHCHHC=CH2), 4.74 (br, 1H, NHCH), 4.57 (br, 1H, 

CH=CHCHOHCHHC=CH2), 4.13-3.95 m, br, 4H, NHCH2OSi, CHCHOH, 

NHCHCHOH), 3.85-3.71 (m, br, 3H, CHCH2OSi), 3.68-3.60 (m, br, 1H, CHOH), 

1.72-1.58 (m, 5H, CHCH2CH=CH, (CH3)2CH, (CH3)2CHCH2), 1.43 (s, 9H, 

OC(CH3)3), 1.07 (s, 9H, SiC(CH3)3), 0.94-0.92 (m, 6H, (CH3)2CH) ppm. 

13C NMR (300MHz, CDCl3) δ 172.6, (CONH,), 155.4 (COOC(CH3)3), 139.5 

(CH2CH=CHCHOHCH=CH2), 135.6 (OSiC(C5H5)), 134.9 (CH2CH=CHCHOH), 

135.1 (CH2CH=CHCHOH), 132.5 (OSiC(C5H5)), 130.0 (OSiC(C5H5)), 127.9 

(OSiC(C5H5), 127.0 (CH=CHCOOCH3), 114.9 (CH2CH=CHCHOHCH=CH2), 80.2 

(COOC(CH3)3), 73.5 (CH2CH=CHCHOHCH=CH2), 71.4 (NHCHCHOH), 65.7 

(CH2OSi), 52.3 (NHCH), 41.6 (CH2C(CH3)3), 36.9 (CH2CH=CH2), 28.3 

(COOC(CH3)3), 26.9 (OSiC(CH3)3), 24.8 (CH(CH3)3), 23.0 (CH(CH3)2), 21.8 

(CH(CH3)2), 19.2 (OSiC(CH3)3) ppm. 

FTIR (Neat): 3424, 2956, 2927, 1655, 1517, 1463, 1367, 1296, 1165, 1111, 989, 703 

cm-1. 
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APPENDIX – SCREENING OF ZEBRAFISH EMBRYOS 

A.1. PHENOTYPE AND TRANSGENIC SCREENING OF ZEBRAFISH EMBRYOS.  
- FORWARD CHEMICAL GENETICS USING ZEBRAFISH EMBRYO (DANIO 
RERIO)1

 
Chemical genetics, in its simplest form, is the systematic use of small molecules as 
tools for studying complex biological systems.2 This approach serves as an important 
complement to bio-chemical and genetic analyses. Small molecules allow rapid, 
conditional, reversible, selective, and dose-dependent control of biological functions. 
The zebrafish embryos were generated by natural pairwise matings of wild-type 
Singapore zebrafish as described by Westerfield.3, 4Embryos were screened for 
developmental defects in structures such as brain, heart, somites, notochord, otoliths 
etc.5
 
A.2. INFERENCE FROM PHENOTYPE SCREENING OF ANTI-SARS AGENT AG7088 

AND ITS FRAGMENTS USING THE ZEBRAFISH EMBRYO 
 
As can be observed from Table 1, we did not observe any phenotypic effects on the 
zebrafish embryo. This result is expected and not surprising as we suspected that the 
anti-SARS fragments would most likely have an effect on a similar coronavirus. 
 

                                                 
1 Biological testing was conducted by Ms. Wu Yilain (Phenotype screening), Dr. K. N. Sulochana 
(Transgenic screening - GFP) and Dr. Farooq (Transgenic screening – GFP/RFP) in the Department of 
Biological Sciences, National University of Singapore. 
2 Mitchison, T. J. Chem. Biol. 1994, 1, 3-6. 
3 Westerfield, M., The Zebrafish book: a guide for the laboratory use of the zebrafish (Danio rerio). 
Eugene, OR: University of Oregon, Institute of Neuroscience, 1995.
4 For the preliminary screening, synchronized developing embryos were collected and aliquoted, three 
per well, in 96-well plates containing 200 µl of E3 medium4 supplemented with 40 units of penicillin G 
and 40 µg of streptomycin (Sigma, USA). Compounds were prepared and diluted to a stock 
concentration of 3 µM in dimethylsulfoxide (DMSO). 1 µl of the stock solution was added to the 
embryos at the 16-32 cell stage. Molecules to be tested were prepared with a concentration of ~ 3.000 x 
10-6 M in DMSO. Control embryos were treated with equivalent amount of DMSO solution. Embryos 
were incubated at 28.5oC and phenotypic changes were observed using a Zeiss inverted microscope 
over 1, 2 and 3 days. 
5 Sprague, J.; Doerry, E.; Douglas, S.; Westerfield, M.; The Zebrafish Information Network (ZFIN): a 
resource for genetic, genomic and developmental research. Nucleic Acids Res. 2001, 29, 87-90. 
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A.3. INFERENCE FROM PHENOTYPE  AND TRANSGENIC6, 7 SCREENING OF 
PHOTOCHROMIC FULGIDES 

 
As can be observed from Table 2 and 3, the fulgides are essentially a class of 
photochromic molecules that could be potentially used as non-toxic optical media 
memory as they do not seem to cause any observable phenotypical developmental 
malformations or defects.  
 
The effects observed from the transgenic screen could indicate the possibility of using 
fulgides as potential anti-angiogenic molecules that could again be potentially turned 
‘on’ or ‘off’ according to their open or closed conformations. This would be an 
avenue for future work in our lab. 
 
However, we must be aware that small molecules can also cause intrinsic effects like 
the retardation of blood vessel formation and other effects not observed as yet. This 
line is currently unpublished, and as such, is the focus of future work from our group.8
 

                                                 
6 The samples of the molecules were diluted by 100x, 1000x and 10,000 times in milli Q water. The 96-
well plate format was used for this screen. 5-10 embryos were added into each well plate followed by 
200 µl of the diluted solution containing the test chemicals. The chemicals were added at the 16 somite 
stage, as after this stage, the blood vessel system in the zebrafish embryo will be formed. The main aim 
of addition of the chemicals at this stage is to study the effect the selected chemicals would have on the 
formation of the blood vessels in the zebrafish embryo. After which, on complete formation of the 
blood vessels, addition of the chemicals would have no effect on the formation; as the blood vessels 
would then have already been formed. Embryos were incubated at 28.5oC and at 24 hpf, the formation 
of intrasomitic vessels were being compared to the control. After every 24 hours the intrasomitic 
vessels were compared to the control before pictures were taken. Cardiac development related 
phenotype like cardiac size, blood circulation, cardiac beating, any other abnormalities like cardia 
edema, etc. were checked in each treated chemical well and were compared to the non-treated control. 
Similarly, the toxicity of the chemical was judged by the mortality rate compared to the untreated 
control. For liver formation, a transgenic line was constructed in our lab, which was a triple transgenic 
line. The blood vessels are under fli-1 promoter expressing the GFP, and GFP was fused to elastase A 
promoter, so that the pancreas will also express GFP. RFP was fused to LFABP promoter so the liver 
would also express red fluorescence. The size, presence or absence of liver function can be checked by 
observing the RFP. 
7 All GFP pictures are taken at approximately 3 dpf unless otherwise stated. 
8 Dr. K. N. Sulochana (Transgenic screening - GFP) and Dr. Farooq (Transgenic screening – 
GFP/RFP) in the Department of Biological Sciences, National University of Singapore. 
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Table 1. Phenotype effects caused by anti-SARS fragments 
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Table 2. Phenotype Screening – Photochromic fulgides 

Molecular 
Structure 

Primary 
effect 

Mark 
day 

Lethal 
day 

All 
general 
effect 

Suspected 
gene 

affected 
Pictures

N

O

O

S

 

Lethal 1 1 - Unknown - 

N

O

O

S
N
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N

O

O

S Cl

E  
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N

O

O

S

Cl

Z
 

- - - No 
effect N/A - 

O

O

O

S

 

- - - No 
effect N/A - 

O

O

O

O

 

- - - No 
effect N/A - 

O

O

O

S

 

- - - No 
effect N/A - 
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O

O
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- - - No 
effect N/A - 

O

O

O
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- - - No 
effect N/A - 

O

O

O

O

 

- - - No 
effect N/A - 

O

O

O

S

 

- - - No 
effect N/A - 

O

N

O

S
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effect N/A - 

O

N

O

S

 

- - - No 
effect N/A - 

O

N

O

S
N

 

- - - No 
effect N/A - 
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Table 3. Transgenic Screening – Photochromic fulgides 
 

Molecular 
Structure 

Primary 
effect 

All general 
effect Pictures 
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O

O
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ISV change 
Slow blood 
vessel 
development
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O
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N

O

O

S Cl

E
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development N/A 

 

 

N

O

O

S
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ISV Over-
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blood vessel 
development

 

 
 

 A7



APPENDIX – SCREENING OF ZEBRAFISH EMBRYOS 

 

Molecular 
Structure 

Primary 
effect 

All general 
effect Pictures 

O

O

O

S

 

ISV Over-
expression 

Slow blood 
vessel 
development

 
 

 
 
 

O

O

O

O

 

ISV change N/A 
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O
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N
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development

 

 
 

O

O

O

S

 

ISV change Abnormal 
development
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A.4. INFERENCES AND FUTURE WORKS 
 
We have tested a series of molecular fragments from anti-SARS agent AG7088. The 
screening of a series of photochromic fulgides was also carried out and further tests 
are required to determine other possible morphological or phenotypical effects these 
molecules might cause (use of transgenic GFP zebrafish embryos). 
 
Until the target of a given small molecule is identified, it would be difficult to 
demonstrate conclusively its specificity for that target. However, phenotypic 
specificity and reproducibility over a broad concentration range are suggestive of high 
molecular specificity for a given gene product.  
 
Small molecules with poor specificity would be expected to cause a broad range of 
developmental defects, especially at high concentrations. The results of this study 
indicate that large-scale developmental screens can identify small molecules that 
disrupt developmental events with specificity approaching that of genetic mutation. 
Through careful and creative design of screens, any developmental or clinically 
relevant process can be studied.  
 
The zebrafish can thus provide a forward genetic approach for assigning function to 
genes, and positioning them in developmental and/or disease-related pathways.  
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