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Summary

SUMMARY

The control chart is a graphical tool that aids in the discovery of assignable causes of
variability in these quality measurements. Shewhart type control charts are the most
commonly used method to test whether or not a process is in-control. The basic idea is that
given a quality measurement, which independently identically follows normal distribution,
k-sigma limits would be use to detect an out-of-control signal. Usually £ is set as 3 to
achieve very desirable ARL properties. However, the assumption of having iid normal
population is invalid in many cases, especially encountered frequently in real-application.
Thus, the traditional 3-sigma limits for the Shewhart charts may not be appropriate in

certain situations.

Exact probability limits are good alternatives to traditional 3-sigma control limits. The
deduction of exact probability control limits of R- and S- charts has shown better
properties in sense of signals at both sides of the limits in this thesis. This results in
revised values for control chart construction constants Dz and D,. The new values of the
constants provide a positive lower control limit for the process when the sampling
subgroup size is lee than 6. Thus, the decrease of the process deviation can be detected at

earlier stage.

VI



Summary

The theoretical achievements in normalizing transformations provide another way to deal
with the non-normality problem in constructing control charts with broader area of
applications. In this paper, after being transformed to a normal distribution, the quality
characteristic of traditional control charts can be simply monitored by a traditional
Shewhart type individual chart. Although the transformed chart has its intrinsic defects,
such as the extreme difficulty in interpretation and uncertainty in approximation, a
valuable trade-off between the accuracy of normalizing and the simplicity of application is
obtained. We illustrate that normalizing transformation could improve the performance of
control limits in the sense that it achieves more desirable ARL performance, such as faster
signals to process deterioration and symmetric responding. Moreover, sometimes, the
control charts based on normalized data performs better than the exact probability charts
as well. In this thesis we recommend some good forms of transformations to use and

propose some simplifies forms for particular cases.

This thesis consists of 6 chapters. Chapter 1 is the brief introduction of this study. Chapter
2 is literature review of the related topics, non-normality problems in traditional control
charting scheme and normalizing transformations. Chapter 3 focuses on the application of
modifying the traditional control limits in R- and S-charts, which is probability limits
related. Chapter 4 discusses more general method by applying various normalizing
transformations on traditional Shewhart type control charts. Chapter 5 discusses the
normalizing transformations, in particular, on multivariate control charts. Simplified forms

have been raised. At the end of the thesis, the conclusion is given in Chapter 6.

VII



Nomenclature

AD

ARL

CL
CuSum
EWMA
iid

LCL

LPL
MBB
MEWMA

pdf

SD
SPC
UCL

UPL
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Anderson-Darling test

average run length

center line

cumulative sum

exponentially weighted moving average
independently identically distributed
lower control limit

lower probability limit

moving blocks bootstrap

multivariate exponentially weighted moving average control chart
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run length

standard deviation

statistical process control

upper control limit

upper probability limit
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Chapter 1

Introduction

1.1. Research Background and Motivation

Quality control schemes are widely used to improve the quality of a manufacturing
process. It is often the case that some aspects of the quality of the output of a process can
be described in terms of one or more parameters of the distribution of a quality
measurement. The control chart is a graphical tool that aids in the discovery of assignable
causes of variability in these quality measurements. It is used to monitor a process for the
purpose of detecting special causes of process variation that may result in lower-quality

process output.

Shewhart type control charts are the most commonly used method to test whether or not a
process is in-control. The basic idea is that given a quality measurement, a Shewhart chart

with 3-sigma control limits can be constructed as

UCL=pu+ko
CL=u
LCL = pu—-ko (1.1)
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where x4 and o denote the mean and the standard deviation of the quality measurement,
respectively, k=3, usually. Define E;to be the event that i-th sample measurement X 1is
either above UCL or below LCL. Then the events {E, }are independent and for all > 1,
P(E,)=P(X, >UCLU X, < LCL)=1-®(3)+ ®(-3)=10.0027 (1.2)
where ® is the distribution function of a N(0,1) random variable. If we define U to be the
number of samples until the first £, occurs, then U is known as the run length of the chart
and has a geometric distribution with parameter p = P(E,)=0.0027. It follows that the

average run length (4ARL) defined as the mean (E) of U and the standard deviation (SD) of

U are given by

1

E(U)=—=370.4

p
and

1-

sp(U)=Y"2 -369.9 (1.3)
p

All the above calculations are often based on two assumptions: that sample observations
are statistically independent, and that the monitoring statistic follows a normal distribution.
These are the two assumptions for constructing both Shewhart type variable charts and
attribute charts. However these assumptions are invalid in many cases and subsequently
become debatable. Especially, non-normality is encountered frequently in real-application.
Winterbottom (1993) mentioned this problem as very often the exact distribution is
positively skewed, and this means that control limits are set significantly lower than they

should be in order to come reasonably close to giving false alarm probabilities that
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correspond to those on X charts. Moreover, even if the quality characteristic monitored
follows normal distribution some variables we plot on the control charts, i.e. the range R
and the sample deviation S, differ from normal distribution, so that the traditional 3-sigma

limits of R-chart and S-chart do not perform as well as desired.

The validity of normal distribution has been questioned in some control charting
applications. Some authors had studied the problem. Since the statistic used for
monitoring with attribute data usually have underlying distributions which are skewed to
the right, the traditional 3-sigma limits for the Shewhart charts may not be appropriate as
pointed out by Woodall (1997) and Xie et al. (2002). For geometric distribution, Xie et al.
(1997) suggested that the traditional 3-sigma limits should not be used in this case because
the geometric distribution is always skewed and normal approximation is not valid. Xie et
al. (1992) calculated the exact probability limits that have been adopted in most of the
publications. Probability-based methods for determining control limits have been
discussed by Ryan and Schwertman (1997). They provided tables producing optimal
control limits for u and ¢ charts. Shore (2000) developed a methodology to construct
control charts for attributes data. One of the features is to use far-tail quantile values to
determine probability limits, control limits, or other performance measures. These quantile
values are derived from a fitted distribution that preserves all first three moments of the

plotted statistic.

However, few literatures have addressed the issues on solving non-normality problem in

traditional Shewhart control charting scheme. Therefore, it would be very useful and
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contributive if any approach on that could be raised. Moreover, the approach should be

simple and friendly-to-use without losing much of the accuracy and precision.

1.2. Objective of the Thesis

We have raised two approaches in this research to solve the non-normality problem we
introduced in the section 1.1. The first approach is based on the exact distribution for the
sample ranges and sample standard deviations. Control limits, especially the lower control
limits are derived based on a fixed false alarm probability. The new control limits will
always be positive and hence enable the chart users to detect process shift in terms of
reduction in the process variability. The second approach is to make use of
transformations. This solution succeeds in making a balanced control limits so that the
ARL is large when the process behaves normally and smaller when the process deviates
(Yang and Xie (2000)). However, this issue has not gained much attention in control
charting scheme though many statisticians examined the transformation forms for various
kinds of distributions to normalize them. To summarize those existing transforming
formulas could contribute to the work dealing with non-normal data in process monitoring.
Extensive simulation has been done to prove that using normalizing transformation results
in satisfactory control chart performance in the sense of some desirable properties with
ARL achieved under some circumstances. Moreover, simplified transformations are also
proposed for more convenient use of certain distributions. A valuable trade-off between
the accuracy of normalizing transformation and simplicity of applications has been

obtained, which would benefit the industrial applications.
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1.3. Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 reviews the relative literature mainly focused on non-normality problems in
traditional Shewhart type control charts and multivariate charts, and summarizes the
papers looking into normalizing transformations.

Chapter 3 studies the application of modifying the traditional control limits in R- and S-
charts. The procedures are presented and the tables for modification are provided as well.
Chapter 4 discusses more general method by applying various normalizing
transformations on traditional Shewhart type control charts, including transformation
selection and performance improvement comparison.

Chapter 5 contains the mathematical background and simplified approach of using
transformations in multivariate control charts; the procedures to apply the chart are
presented followed by an example.

Chapter 6 concludes the study. Further study and limitation are also discussed.



Chapter 2

Literature Review

2.1. Introduction

Non-normality problem has a vital influence on the performance of control charting
schemes. Therefore, volumes of research have been carried out on this issue. The research
ideas on applying control charts for non-normal populations can be divided into three
categories. The first category has concentrated on the robustness of various control charts’
performance to departures from the normality assumption so that the traditional charts can
be employed within a reasonable scope. Borror et al (1999) even studied the issue of
robustness on exponential weighted moving average (EWMA) control charts. However,
this limits our intention in implementing the control charting scheme in more cases.
Stoumbos and Sullivan (2002), The second category of research effort has attempted to
develop control charts that either may be generally applied to non-normal populations
after certain adjustment, like Xie et al (2000) to solve the so-called ARL-biased
phenomenon or control charts that explicitly specify an underlying non-normal population;
that is exact probability limits. The third category of endeavors to address the non-

normality of process distribution has focused on transforming to normality the given data,
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so that traditional Shewhart control charting schemes could be employed with desirable

average run length.

In the following section, we will review the literatures on non-normality problem in
traditional Shewhart type charts, including the emergence of the problem, its effect, the
solutions proposed as well as the related research trend. In section 2.2.1, section 2.2.2 and
section 2.2.3, we will review the research work, in particular on attribute charts, variable
charts and individual and multivariate charts. We will generalize some of the
achievements that have been made by mathematicians and statisticians in the area of
normalizing transformations in section 2.3. Section 2.3.1 and section 2.3.2 will discuss the
transformation forms for generic distributions, some specific distributions and statistic

families, respectively.

2.2. Review on Non-normality Issue on Control Charts

2.2.1. Attribute Charts

Control charting methods based on attribute data were first proposed by Shewhart in 1926.
The p and np charts are widely used, primarily to monitor the fraction of non-conforming
products. The ¢ chart and u chart, on the other hand, can be used to monitor the number of
non-conformities. The p and np chart control limits and performance measures are
typically based on the binomial distribution whereas those of the ¢ and u charts are based

on the Poisson distribution. Woodall (1997) pointed out that, since the statistics used for
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monitoring with attribute data usually have underlying distributions which are skewed to

the right, the traditional k-sigma limits for the Shewhart charts may be inappropriate.

Among others Ryan and Schwertman (1997) proposed some probability-based methods
for determining control limits in order to improve the control charts’ performance, They
pointed out that control chart properties are determined by the reciprocals of the tail areas,
but most approximations, including normal approximation, perform the poorest in the tails
of the distributions. Normal approximations can also be poor when the binomial and
Poisson parameters are small, as will occur frequently in applications. They, therefore,
provided tables that can be used to produce optimal control limits for u and ¢ charts. They
used regression to extrapolate the optimal limits between the tabular values. The
regression equations are then suitably adapted for use with p and np charts, for which a

complete set of tables of optimal control limits would not be practical to construct.

Ryan (1998) indicates the contradiction in employing approximations. He showed that
most approximations, including the normal approximations to the binomial and Poisson
distributions, generally perform the poorest in the tails of a distribution. But control chart
properties are determined by the reciprocals of the actual tail areas. These problems have
resulted in new methods being proposed for determining the control limits for attribute

charts.

Actually, Winterbottom (1997) talked about this problem as very often the exact

distribution is positively skew, and this means that control limits are set significantly
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lower than they should be in order to come reasonably close to giving false alarm

probabilities that correspond to those on X charts. He also mentioned that for attribute
charts one can always calculate exact control limits in the sense that the false alarm
probabilities are as close as possible, but do not exceed, designate levels. The inequality is
due to the discrete nature of attribute data. Winterbottom, thus, improved the probabilistic
accuracy of control limits for all of the previously mentioned attribute charts by
determining the adjustment which makes use of the Cornish-Fisher-expansions (Cornish
and Fisher (1937)). These adjustments given by Cornish and Fisher, or corrections, depend
in simple ways on sample sizes, process parameter values and the standard normal value

used as a multiplier of sigma in the unmodified formula.

H. Shore (2000) developed a new methodology to construct control charts for attributes
data. Let Y be a measured attribute with known mean x , standard deviation o and
skewness sk . The general expressions for the probability limits of a general control chart

for attribute is developed as

UPL= u+z,, (4+C)o—0.7978Co —%

CL= u

LPL= p+z,_, (4 —C)O'—O.7978CJ+%, 2.1)

where A4 and C are the solution to
A* =1-0.3635C*
and

sk =2.3940C — 0.6523C*
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For highly skewed distribution, modifications were made by Shore (2000). He also
developed simplified limits based on some approximation assumptions and extended them
into probability limits for the binomial, the Poisson, the geometric and the negative

binomial distributions.

For p-chart, more specifically, Simon (1995) suggested using probability limits such that it
would be equally likely for a false alarm to happen on either side of the control chart.
Ryan (1997) studied the arcsine transformation, as given by Freeman and Tukey (1996) to
construct a chart for monitoring p. Chen (1997) developed a variant of Ryan’s chart.
Another approach to the problem is to use a Q chart as developed by Quesenberry (1999).
The Q chart provides a better approximation to the nominal upper tail area than arsine
approach. Acosta-Mejia (1999) proposed an alternative to replace the lower control limit

by a simple runs rule.

For c-chart, the modified 3-sigma control limits has been proposed by Winterbottom
(1997) using Cornish and Fisher expansions for c¢ chart. Q charts, proposed by
Quesenberry (1992) can also be employed as an alternative to replace a ¢ chart or u chart,
and also as an alternative to standardized versions of these charts. Ryan (1995) indicated
that it seems preferable to seek closeness to the reciprocals of the nominal tail areas rather

than closeness to those tail areas. For u chart, Ryan also used a similar method.

As pointed out by Woodall (1997), more recently, it has been recommended that it is

useful to base control charts on the number of conforming items found between non-

10
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conforming items. Here the underlying distribution is typically assumed to be the
geometric distribution. Control charts based on geometric distribution have shown to be
very useful in the monitoring of high yield manufacturing process and other applications.
The traditional control limits have been given in Kaminsky (1992). It is pointed out in Xie
and Goh (1994) that the traditional 3-sigma limits should not be used in this case because
the geometric distribution is always skewed and normal approximation is not valid. Xie
and Goh (1997) suggested using the exact probability limits. Further studied had been
carried out by Xie, et al (2002). A new procedure for determination of control limits is
developed, which provides maximum ARL when the process is in control. Moreover, a
simple adjustment factor was suggested so that the probability limits can be used after the
adjustment and compensate for the shortcoming that the control limits given above do not

have a direct probabilistic interpretation.

In many situations which are characterized by a burn-in process, it seems appropriate to
use the inverse Gaussian process to model the failure rate function. R. L. Edgeman
proposed a Shewhart control charting scheme for the inverse Gaussian distribution which
is a member of the exponential family. D. H. Olwell improved R. L. Edgeman’s scheme
and proposed a second scheme based on symmetric probability limits. The Cusum scheme
for any distribution belonging to the exponential family was proposed by Bruyn (1968)
and Hawkins (1992). Based on these, Hawkins and Olwell (1997) developed optimal
decision interval Cusum schemes for both the location and the shape of the inverse

Gaussian distribution. Hawkins and Olwell also sketched computational routines to

11
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complete the design process of the Cusum by determining their in-control and out-of-

control ARLs.

2.2.2. Variable Charts

Recall that traditional Shewhart type variable control charting methods are often based on
two assumptions: that sample observations are statistically independent, and that the
monitoring statistic follows a normal distribution. However, these assumptions are invalid
in many cases. When the distribution of the monitoring statistic used in process control is
non-normal, traditional Shewhart variable charts may not be applicable. If the
performance of the SPC scheme is adversely affected by a violation of the assumptions,

modification of the methods used is essential to guarantee the required performance.

The most common approach nowadays to deal with non-normal data in quality-related
applications involves the use of the Box-Cox transformation. The basis for this
transformation, as articulated by Box and Cox (1964), is the empirical observation that a

power transformation is equivalent to finding the right scale for given data.

Shore (2000) generalized the log term by presenting it as a Box-Cox transformation and

obtained:

x=M -EXP{b[(l +az)’* —1]+ dz}, z> —% (2.2)

He examined four modified versions of this transformation, which result in inverse
normalizing transformation with a reduced number of parameters. The four versions are as

x ~ M - EXP{B[EXP{Cz}-1]+ Dz} (2.3)

12
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x =~ M - EXP{B[EXP{Cz}-1]} (2.4)
x~ M- EXPIB|(1+ 4z)° —1)/C} x > —% (2.5)
X = EXP{LogM + ABz /(1 + Az)} (2.6)

Shore (2000a), then, introduced a unified approach that applies to both normal and non-
normal populations. Thus the traditional distinction between statistical process control
(SPC) for normal and for non-normal processes is eliminated. The procedures for
constructing the control charts are suggested as

* Draw K independent samples of n observations each. Calculate from the j-th

(=1,2,...,K) sample the median, M I the mean, /[ ; and the mean of the log of the

original observations, /i, (LT )

= Given the K values of {1\;[ i }, estimate the median, the mean and the mean of the log of

the distribution of the sample-median. Repeat these same calculations for the distributions
of the sample-mean and the sample mean-of-the-log.

= Based on procedures for fitting the distribution and the given sample estimates, find
the approximations for the distributions of the three monitoring statistics; namely, the
sample median, the sample mean and the sample mean of the log. From the fitted

transformations, calculate the control limits.

Liu and Tang (1996) also developed some valid control charts for independent data that
are not necessarily nearly normal. They derived the proposed charts from the standard
bootstrap methods of which the constructions are completely nonparametric and no

distributional assumptions are required. Let {X . ¢ N}be an iid sample following the

13
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distribution £ with mean u and variance o . The standard bootstrap procedure is to draw

with replacement a random sample of size N from {X,,...,X,}. Denote the bootstrap

sample by {X D ¢ N*} and denote their mean and standard deviation by X v and Sy . To

construct an X chart for iid observations — to repeat the bootstrap procedure say K times

and form a histogram of the resulting K terms of N ()? - X N ), and then locate the %and

. Thus they obtained the control limits

a

l—% quantiles, and denote them by 7, and 7
=z 1-=
2

2

for the X chart as:

UCL=X, +7,/\n

LCL=X, -1 ,/n 2.7)

Moreover, Liu and Tang (1996) studied the control charts for dependent data making use

of the moving blocks bootstrap (MBB) method which was introduced by Kunsch (1989).

They obtained the control limits for the X chart which will still give correct results when

the data are independent as shown in simulations.

Bai and Choi (1995) proposed a heuristic method for controlling the mean of the skewed

distribution based on a Weighted Variance method. The control limits of their X chart are:

vcL=x-—R_hp -X+w,R

d,\n
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rcL=x-—R J20-P)=X-W,R (2.8)
d

where 7 is the sample size, & is the number of pre-run samples. ﬁX is the proportion that X

will be less than or equal to the estimated process mean X and it can be calculated in the

process pre-run stage.

Dou and Sa (2002) designed a new approach to construct the one-sided X chart for
positively skewed distributions. This method is based on the Edgeworth expansion to
adjust the #-statistic for the non-normality of the process. It can preserve an appropriate in-
control ARL and also shows reasonably good power. When one has very little knowledge

about the process except the positively skewed shape of the distribution, the proposed

X control charting method is recommended.

2.2.3. Individual and Multivariate Charts

There are many process monitoring problems where application of the rational
subgrouping principal leads to a sample size of n=1. The traditional method of dealing
with the case is to use the Shewhart individuals control chart to monitor the process mean.

The individual control chart, although, as indicated by Borror et al (1999), is easily
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implemented and can assist in identifying shifts and drifts in the process over time, one of
its two widely cited disadvantages is that the performance of the chart can be adversely
affected if the observations are not normally distributed. Thus, the individuals chart is not
robust at all to the normality assumption if false alarms are a concern. To enhance the
traditional chart, the main purpose of which is to have a quicker signal, Kittlitz (1999)
made the long-tailed, positively skewed exponential distribution into an almost symmetric
distribution by taking the fourth root of the data. The transformed data thus can be plotted
conveniently on an individual charts, an EWMA chart, or a Cusum chart for statistical
process control. The rationale for the use fourth-root transformation of the exponential
distribution is that it produces essentially a bell-shaped distribution and can be obtained by
depressing the square-root key twice on a pocket. The usual interpretations can then be
easily made for prompt attention if a deterioration occurs or captured quickly for an
improvement. Borror et al (1999) showed that the ARL performance of the Shewhart
individuals control chart when the process is in control is very sensitive to the assumption
of normality. They, therefore, suggested the EWMA control chart as an alternative to the
individuals chart for non-normal data. They showed that, in the non-normal case, a
properly designed EWMA control chart will have an in-control ARL that is reasonably

close to the value of 370.4 for the individuals chart for normally distributed data.

With the rapid growth of data-acquisition technology and the use of online computers for
process monitoring, more and more authors cast their lights on multivariate process

control so that many advances in this have been proposed. Alt (1984) reviewed the topics

on the use of Hotelling T* -control chart to monitor mean and charts for the process
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variability for Phase I and Phase II. Detailed explanations were given to distinguish
between the uses of charts for retrospectively testing whether the process was in control

when the first subgroups were being drawn versus testing whether the process was in

control when the future subgroups are drawn. Jackson (1985) discussed the Hotelling 7~ -
control chart, the use of principal components for control charts and multivariate analogs
of Cusum charts, Andrew plots and multivariate acceptance sampling. Lowry (1994) gave
a review of the literatures on control charts for multivariate quality control with a
concentration on developments occurring during the mid-1980s. Basic issues concerned
with T* -control chart, have been discussed besides the topics on multivariate Cusum
procedures and multivariate exponentially weighted moving average control chart. In the
mean time, many authors began studying the sensitivity of the 7> -control chart with
regard to the orthogonal decomposition of the statistic. This particular 7> - decomposition
is shown to encompass most of the research findings on the interpretation of 7> signals by
many literatures, such as Wade (1993), Mason (1995), Manson (1997) and Manson (1999).
They showed that by improving model specification at the time that the historical data set
is constructed, it may be possible to increase the sensitivity of the T -statistic to signal
detection. The resulting regression residuals also can be used to improve the sensitivity of
the T -statistic to small but consistent process shifts. Some other authors examined the
effects of using estimated parameters to construct the control limits of multivariate control
charts, such as Quesenberry (1993) and Nedumaran (1999). They considered the issue of
the minimum number of subgroups necessary for the control chart constructed using
estimated parameters to perform similar to the control chart constructed using true

parameters during the on-line monitoring stage. Implementation procedures were
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suggested so that on-line monitoring with 7> -control charts can begin at the crucial start-

up stages of the process.

2.3. Literature Review on Normalizing Transformations

2.3.1. Transformations on Generic Distributions

Generally, it is not always the case that we know the exact underlying distribution.
Moreover, most of the time, we do not have any method to determine which distribution it

is. Thus, normalizing transformations for general distributions are in need.

Box-Cox Transformation

The most common approach nowadays to deal with non-normal data in quality-related
applications involves the use of the Box-Cox transformation. The basis for this
transformation, as articulated by Box and Cox (1964), is the empirical observation that a

power transformation is equivalent to finding the right scale for given data. It is defined by

X* -1

,AZ0
logX,4=0

X(’i) —

where A is determined by maximizing the likelihood function L__ (A1) defined by:

max

d Xi(ﬂ)
dx;

L,..(4)= —%nlog G2 (A)+ 1ogf[ (2.9)
i=1

This transformation has the advantage that almost all of the popular statistical and

mathematical application softwares have the built-in feature to realize the function.
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Therefore, it is easy and convenient to use. Moreover, this transforming form is proved to
have good approximation, which, when the accuracy is not tightly required, provides
moderate good results. However, the well-known power normal family has a serious
defect, i.e. the correlation structure of the maximum-likelihood estimates of the

parameters is not preserved under a scale transformation of the response variables ( Isogai,

1999).

Johnson Curve Fitting

Johnson (1949) provided an alternative to the Pearson system of curves for modeling non-
normal distributions. This approach was to start with a small set of curves capable of
approximating the shape of a wide spectrum of probability distributions and then to find
simple transformations that would convert these curves into the standard normal

distribution. The three functional forms used in the Johnson system are

Sy k(x,A,¢)= sinh‘l(x;gj

- &
S, ky(x,A,6)= h{ﬁj

S, : k3(x,z,g)=1n(x;5j (2.10)

each of which can be transformed into a standard normal distribution by the proper choice

of the parameters 77,7, A and ¢ in the formula
z=y+nk,(x,2,¢) fori=1,2 or 3 (2.11)

The procedures in fitting a Johnson curve are described in Johnson (1949). After

determining a positive value of z (a good compromise is the choice z=0.524), we can find
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the cumulative probabilities P, , P _, P, and P, . Slifker and Shapiro (1980) suggested

using those percentiles to calculate m=x,, —x_, n=x__—x, , p=x_—x__. Thus, we

z9

: . mn .
may choose the appropriate Johnson curve according to the value of —-. In particular,

mn . mn . mn
— >1is for S, curves, —-<1 is for §, curves and —-=

p p p

1 is for §, curves. Compared to

Box-Cox transformation, Johnson-curve fitting has the drawback that it is not widely
included in the application softwares. People have to design the codes themselves or

download from some websites, such as Matlab™ central file exchange, etc.

2.3.2. Transformations for Specific Distributions and Statistic Families

When the underlying distribution is known or can be specified through some statistical
methods, an appropriate transforming formula may be used to seek an accurate
approximation to normal distribution. Heading for this aim, many mathematicians and
statisticians examined the transformation forms for various kinds of distributions and

statistic families.

t-distribution
Prescott (1974) examined five normalizing transformations of a f-distribution with v
degrees of freedom. The five transformations included in his comparative study are listed

below.

2
Quenouille: z, = ++/v—1sinh™ \/Z (2.12)
v
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2
Anscombe: z, = i‘/zv lsinh‘1 3 (2.13)
3 2v
t2
Chu: z, == vlog[1+— (2.14)
v

2
Wallace: z, ==+ B+l vlog 1+t— (2.15)
8v+3 v
z2 +1
Scott and Smith: z; = t(l— ‘Z J (2.16)
v

Comparisons showed that for small v, Wallace’s transformation is more accurate than the
others. For large v, Anscombe’s form of the transformation may be expected to be very

accurate, and Wallace’s form is accurate as well.

Bailey (1980) derived a transformation which is uniformly more accurate than any
previously given. He generalized from the forms proposed by Wallace and Micky and

gave a general class of transformations as

z=iv+b\/(v—a)log{l+ i } (2.17)

v+c v+h

where a, b, ¢ and h are constants. He suggested using a simplest choice of the constants

which gave the transformation

2

z:igv+1 v+E log| 1+ d
8v+9 12 1
vt —

12

(2.18)

In case only a few critical values of the normal distribution to be stored; there is a

particular need for a transformation that is accurate locally at a prescribed deviate of the
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standard normal distribution. Therefore, Bailey (1980) also derived such a transformation.

For any chosen value z = z,, at which the transformation is very accurate locally

4, 220 +3) :
A 42242 = vlog[1 +ﬂ (2.19)

4 +v+

It is useful for transforming an observed value of ¢ into a value of z for comparison with a
critical value z_ when testing a hypothesis. Balancing the convenience of use and the

performance of transforming, the recommended the formula to use for #-distribution is

expression (2.18) above.

F-distribution
Isogai (1999) introduced two types of formula for power transformation of the F variable

to transform the F distribution to a normal distribution. One formula is an extension of the

Wilson-Hilferty transformation for the y* variable, which is

T.(F)= sign(h)(Fh —E[Fh]) (2.20)

(ar [ )

where F is distributed as F sign(-) is a function that gives the sign of its argument, and

m,n 2

h:_lm—n

. The other type is based on the median of the F distribution, which is

T, (F): sign (h){Xh - [ﬁl(O.S)]h } (2.21)
(Var [Fh])E
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where F (0.5) denotes the median of F,, . Isogai combined those two formulas and

derived a simple formula for the median of the F distribution, which leads to a power

normal family from the generalized F distribution. This transformation is expressed as:

T,(F)= Sig"(h){xh - [ﬁ(of)]h } (2.22)
()]

When m and n have the same degrees of freedom, the limiting form of T} (F)is:

InF
(4m)1/z

where we put m=n.

Non-central 7-distribution

2

If U and V are independent random variables and U is N(0,1), V'is ZA (where y?denotes
n

the central chi-square variable with n degrees of freedom), and ¢ is a real umber, then the

1s known as the non-central ¢ variable with »

+
random variable defined by ¢ =

NG

degrees of freedom and with non-centrality parametero . Assume throughout that n > 4.

The first moment about zero, the second and third central moments of non-central ¢ were

obtained, respectively

gAlLS

M, =qa’ erzy2
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My = u{n<§2+—2n_3) —-2u, } (2.23)

where

2r2("j
b= 2 -1

(n— 2)r2(”2_1j

which is a positive number for n > 4. The variance-stabilizing transformation is

&)= A sinn (), (2.24)

0a + b2l

where 05:l and ﬂ:é.
b a

Based on a corollary from a theorem stated by Rao, Laubscher (1960) proposed three

transformations for non-central 7-distribution as

& (t)=&() - asinh ™ (Bu)

(2.25)

These three transformations have approximately, mean value zero and unit variance. &, is

not a very good approximation for simultaneous small values of » and large values of ¢ .
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When the values of n are large, &, and &; are seen to be very close to normality. Numerical

work showed that & is the most suitable transformation when & =0.05anda = 0.01. The

selection, thus can be made based on the values of n, 6 and o .

Non-central F distribution
IfX,,..., X, are independently distributed and X,is N(g,,1), then the random variable

7> =X +..+ X_is called a non-central chi-square variable with m degrees of freedom

and non-centrality parameter A = g +...+u. . If y'* has the non-central chi-square
distribution with m degrees of freedom and non-centrality parameter A, and if y*,

independently of y'*, follows the central chi-square distribution with n degrees of
freedom, then the ratio

F X’Z/m

- 1’ /n
has the topside non-central F' distribution with m and n degrees of freedom respectively,

and with non-centrality parameter A . It is well known that /2> is approximately

normal with mean +/2n —1 and unit variance. Also, 4/27'> is approximately normal with

m+2A . m+2A
, and variance

m+ A m+l

mean \/2(m )

From a theorem due to Fieller, if X and Y are normally and independently distributed with

means m, andm, and standard deviations o, and o  respectively, then the function
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mJV —m
R=—— (2.26)

2172 2
oV +o,

Y : L : : :
where V = will be nearly normally distributed with zero mean and unit variance,

provided the probability of X being negative is small. Applying this theorem, Laubscher

(1960) proposed two normal transformations as

m+ A
mF  m+2A
—+
n m+ A
[1_92) mFﬂ_1+2(m+2/12)
7, =1,(F)=~ 2T m+4) (2.27)

2
2[ mF ja s 2(m+22)
On\m+ A4 9(m+A)
The closeness of approximation of two transformations is quite satisfactory. The first form

is slightly simpler, as it only involves the square root calculation.

z’ -distribution

In multivariate analysis, chi-square distribution is mostly made used of. Konish (1981)
gave a general procedure for finding normalizing transformations of statistics including
some previous forms of transformation of chi-square data and presented results for some
statistics in multivariate analysis. Konish (1981) also derived a differential equation for

making a normalizing transformation under certain assumptions of moments which is

2.(1,)= ﬂ{l(e““‘*" —1)—1[;11 %025}} (2.28)
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Taneichi et al (1998) examined the normalizing transformation for multinomial
populations and extended the results with chi-square distribution. In order to propose a

power approximation of the test of homogeneity, they consider the distribution of the
approximation D“, which was the test statistics. The mean and first three moments about

the mean of D“ under the reject hypothesis are evaluated as

e

" )Lﬂ[

)

E[{D“ ~E(p ) ]: RN {ﬁ} (2.29)

n“
with n_is the total number of responses in the test, so that the general method to find the

normalizing transformation discussed by Konish can be applied. Therefore, for sufficient

large n , the distribution of g( “)under the reject hypothesis is approximated well to

N(0,1), where

o) Lo ) o 22 o

with f (D”)is a strictly monotone function of D“, and twice continuously differentiable

at D“ = u. From the numerical comparisons, the approximation proposed based on the

transformation above was found to be very effective for the statistics under « =-1,-2,-0.5

and 0. Moreover, it is easy to calculate the approximation. Therefore, it is practically

useful.
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On the basis of Konish’s study, Taneichi et al. (2002) derived a concrete normalizing
transformation. They assumed that the mean, variance and third moment about the mean

are expanded as

E(T,)=u+tp +0(lj
2 n

and

E[(Tn ~ E(T, ))3]: izv + o(izj (2.31)

n n

They obtained a transformation form as

£H(L] IHM +iazgj],n¢o
aLTIH " 2 (2.32)

Jn T, 1 1,
—| plog—=——\ py+-o°g||.n=
U n 2

o

X
Let X, be distributed as chi-square distribution with v degrees of freedom. Let 7, = ,

then

c- - 2]

2
vl 3 T3(1,-1) 2
T )=.—|—— =1+ — 2.33
gl( v) 2[ 2{6 } 3V ( )

Comparisons showed that the proposed transformation g, really improves the

approximation to the distributions of the statistics, and the proposed transformation
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g, performs better than the exponential-type transformation g, discussed by Kornish

(1981) in almost all of the simulation studies. Therefore, we recommend g, to be used.

Exponential distribution
When control chart is used to monitor time-between-event data, the distribution is
exponential. When the quantity characteristic follows exponential, the following
transformations can be used. The common way for transforming exponential distribution
is to use log transformation. This approach is more suitably used for proper analysis of
variance calculations since it stabilizes the variance. It produces however a very
negatively skewed distribution that is not suitable for SPC applications. Kittlitz (1999)
proposed a method to make the long-tailed, positively skewed exponential distribution
into an almost symmetric distribution by taking the fourth root of the data, i.e.

flx)=%Yx, x>0 (2.34)
The observations for the fourth root can be easily calculated with a pocket calculator by
depressing the square root key twice. The transformed data can then be plotted
conveniently on an individual chart, an exponentially weighted moving average chart, or a
cumulative sum chart. Yang and Xie (2000) discussed the best transformation within the
power family, and investigated the properties of the control charts for exponentially
distributed data. Denote by Y = X* the power transformed observation and f (y; (9,/1) its
probability density function. Minimizing the so-called Kullback-Leibler information
number, they derived the best power transformation for exponential variables. The
resulted optimal parameter values are:

A, =0.2654
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1, =0.90346%

o, =0.26750™ (2.35)

When the parameter is unknown, the Y chart was constructed by using the mean of past

data as an estimator of g, and the mean of the moving ranges as an estimator ofc, .

Simulation results showed that the power transformation-based chart will be able to detect
a process shift at a comparably fast speed to the original X chart. This study indicated that
it is easy to use and possesses a number of interesting statistical properties; in particular, it
is of great advantage that the transformation to normality does not depend on the specific
parameter value of the exponential distribution. For simpler calculation, Kittlitz’s

expression (2.34) is better to use.

U-statistics
For a symmetric kernel h(x1 yeees X ) , the U-statistic with degree r is given by

U, =~ Shlx,...x,) (2.36)

" N\ 1<y <..<ip <n
,
Fujioka and Maesono (2000) studied the normalizing transformations of asymptotic

U-statistics. They firstly defined

(2.37)

P L4
é Jno 67 Jn
which is the transformation that removes the bias and the skewness. The improved
monotone transformation which was proposed by Hall (1992), is quoted in Fujioka and

Maesono (2000).
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S ﬂ{ﬁe-e]’ (2.38)

where

A A2
P 3

P2 4
m(s)=s+=s? + L+ L5
NP
Based on the transformation S », they discussed the transformations which remove the bias,

skewness and kurtosis. Let 2 and v be the consistent estimators of u and v, respectively.

The normalizing transformation which removes the bias, skewness and kurtosis is
~Ax \3

(S:F

A monotone transformation was constructed as well which is given below.

7 =,(80)= ﬂz[m[ﬂi_—em (2.40)

s (2.39)

S | <

where

* * 12 *\3 \,} * 3122 * \5 \;2 *
72'2(S )=S +—(s ) +—5 + 2(s ) +—
n n S5n n

The simulation results showed that the normalizing transformation fn* is better than S‘;

and both transformations are better than the normal approximation. To improve the
approximations based on these transformations, Fujioka and Maesono (2000) suggested
making good estimators of p, ¢, u and v. These transforming forms suit sample standard

deviation very well. They can be especially applied on S-chart.

Multinomial Populations
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Taneichi at al (1998) examined the normalizing transformation for multinomial
populations. In order to propose a power approximation of the test of homogeneity, they

made use of the general normalizing transformation given by Konish. Consider the
distribution of the approximation D“, which was the test statistics. The mean and first

three moments about the mean of D“ under the reject hypothesis are evaluated as

E(p*)= ﬂ+nL"yl +0(n\1/n_}

’ )Lﬂ(

)

E[{D“ -~ E( “)}3]= 1 +{ﬁ} (2.41)

n“
which 7 is the total number of responses in the test, so that the general method to find the

normalizing transformation discussed by Konish can be applied. Therefore, for sufficient

large n_, the distribution of g( “)under the reject hypothesis is approximated well to

N(0,1), where

A O I

with f (D”) is a strictly monotone function of D“, and twice continuously differentiable

at D” = u. From the numerical comparisons, the approximation proposed based on the

transformation above was found to be very effective for the statistics under  =-1,-2,-0.5

and 0. Moreover, it is easy to calculate the approximation. Therefore, it is practically

useful.
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Unifying Density

Ross S.M. presented an improved unifying density function in 1980 which was shown that
the unifying density function is the parent of the Weibull, gamma, Erlang, chi-square,
exponential, and Rayleigh distribution. The improved unifying density function has the
following form:

{a?-a-1
a 3 _71 (a (24
ale=Fy ,¥y>0

F0)=1 g r(ge 1)

(2.43)
0,y<0

Let the random variable Y have the improved unifying distribution f (y), Waissi (1993)

find the distributions of

Z, = JY (2.44)
Combine the two distributions into one, Waissi demonstrated that the last expression has
the format of the standard normal distribution multiplied by a constant. Thus the improved
unifying density function has been extended to serve as a parent of the normal and

standard normal distributions.

2.3.3. Summary

From the literature, despite the substantial number of normalizing transformations
proposed, there is no prefect form for all the distributions. Generally speaking, the more
accurate transformations tend to have more complexity for application. Therefore, we

recommend some transformations below which achieve a good trade-off between
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accuracy and simplicity. These proposed transformations are summarized in the Table 2.1

below.
e Proposed Normalizing Transformation
Category Distribution Transformation Formula
Generic Box-Cox transformation (2.9)
distributions Johnson curve fitting (2.10)
t-distribution Bailey’s transformation (2.18)
F-distribution Isogai’s transformation (2.22)
Non-central ‘
o Laubscher’s transformation (2.25)
Common t-distribution
specific Non-central ‘
o Laubscher’s transformation (2.27)
distributions F-distribution
¢ -distribution Taneichi’s transformation (2.33)
Exponential ' '
o Yang and Xie’s transformation (2.35)
distribution
o Fujioka and Maesono’s
U-statistics _ (2.40)
transformation
Multinomial o '
_ Taneichi’s transformation (2.42)
populations
Unlfylng Waissi’s transformation (2.44)
density

Table 2.1. Summary table of recommend normalizing transformations
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Chapter 3
Investigation of the Probability Limits

in Traditional Shewhart R-Charts

3.1. Introduction

The X -R charts are widely used in industry. For each sample of size n, the mean X and
range R can be computed, and control limits can be obtained. We first introduce the

formulas commonly used for the calculation of the UCL and LCL here

UCL. =X + 4,R

(3.1
LC < =X-A4,R
and
UCL, =D,R
(3.2)
LCL, =D,R

In the above, X is the mean of all observations and R is the average of the ranges. The

values of Ay, D3 and D, are taken from standard tables (see, e.g., Grant and Leavenworth,

1986 and Montgomery, 2001).
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It can be noted that the control limits are 3-sigma limits equal to the mean plus and minus
three times the standard deviation. Since under the assumption of normality, the process
mean is also normally distributed, the control limits lead to a false alarm probability of
0.0027, a standard values in control chart analysis and interpretation. We can use the
constant factors table in standard statistical process control texts to find the multiple of

sigma associated with 0.0027 probabilities.

The distribution of X , which is normal or approximately normal in general, is usually
symmetric. The probability limits on an X chart such as 3-sigma limits is thus,
equidistant from the central line on the chart. However, the subgroup range does not
follow normal distribution and is not symmetrical. It is easily proved because the range is
always positive. Hence, to let the LCL for R-chart to remain positive, we have to set D;=0
when the subgroup size is small. From the standard tables, D; equals to zero for subgroup
size of 6 or smaller. At the same time, it is not advisable to use a large subgroup size as
the sampling interval might be too long or the sampling cost might go up. Hence, we

usually face a zero LCL for R-chart.

On the other hand, it is clear that when the range value is zero or even only very small,
there is a high probability that something has happened. This chapter investigates the
interesting question of variability monitoring with probability limits. Because the range is
a continuous positive random variable and the probability for it to be zero is zero, the

lower probability limit will always be positive. Hence with probability limit, it is always

36



Chapter 3 Investigation of the Probability Limits in Traditional Shewhart R-Charts

possible to detect a reduction in the process variability, which is important in continuous

improvement framework.

The validity of normal distribution has been questioned in some control charting
applications. Some authors had investigated the problem. Woodall (1997) and Xie et al.
(2002) pointed out that the traditional 3-sigma limits for the Shewhart charts may not be
appropriate since the statistic used for monitoring with attribute data usually have
underlying distribution which are skewed to the right. Several authors have discussed the
probability-based methods for determining control limits, such as Ryan and Schwertman
(1997), Shore (2000). However, few literatures have discussed the non-normality
problem in variable control charts, especially for chart monitoring variability such as s-

chart and R-chart.

The need for and the possibility of a positive LCL for the R-chart will be further
discussed in section 3.2 and the probability limits for the R-chart derived. We first give
the exact formula for calculating the probability limits, and then some approximate
formulas are discussed. A numerical example is presented to illustrate the simplicity and
usefulness of the study following the discussion in section 3.3. Conclusions are drawn in

section 3.4.
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3.2. Positive LCL of R-chart for Improvement Detection

3.2.1. The need of a positive LCL for R-/S-chart

For the case of standard normal distribution, as mentioned in Tippett (1925), the mean of

R is given by

E[R]= [T~ (- () )- o(x) s, (3.3)

where ®(x) is the cumulative standard normal distribution. Here, E[R] is a function of

the sample size n, which gives the definition of the coefficient. E[Rz] can also be

obtained (Tippett, 1925) and let

d (3.4)
where R/d, is an estimate of population standard deviation and it is used here to adjust

for the case of general normal distribution with standard deviation different from that of

standard normal. That is we have,

D, :1—3’% (3.5)

2

d3

Since R cannot be negative, D;is set to be zero whenever 1— is negative.

2

Modern quality control philosophy and techniques are built upon the idea of continuous

improvement and variability reduction. To be able to reduce the variability, a mean to
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detect a reduction in the variability would be very useful; it gives us positive signal and
enables us to look for positive assignable cause. Hence, it is very important to be able to
have positive LCL for R-chart. Fortunately, the LCL for R-chart can be positive and not
zero as the standard tables provide. This is even the case for small subgroup size and can

be seen by studying the quantity that is plotted on the R-chart.

The R-chart plots the difference between the largest and smallest values. Assuming
normally distributed characteristic, the largest and smallest values should be quite
different. Even for a subgroup of size 2, say, if the range is zero, it means that the two
values are exactly the same. This will happen with probability zero. In fact, a small range
should indicate that there are assignable causes that have lead to a small variability. If the

cause can be retained, then a reduction in variability has been achieved.

It is traditional to use D, =0 for small n. Grant and Leavenworth (1980) suggested

constructing R charts using probability limits. Due to the asymmetrical distribution of the
range, it is necessary to have separate factors for the upper and lower control limits if the
probabilities of extreme variations are to be made equal. The probabilities given for these

limits are strictly accurate when sampling from a normal universe and all positive.

It can be noted that it is possible to incorporate run rules or Cusum /EWMA scheme for
R-chart (Acosta-Mejia, 1998; Srivastava, 1997; Crowder and Hamilton, 1992; and Nelson,

1990) to detect variability reduction. However, these advanced charts are not commonly

used and the interpretation of out-of-control signals can be different from that of X —
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chart. In what follows, the use of probability limits will be studied in details, and it

provides a simple, but statistically justified solution to the problem of detecting

variability reduction with simple R-chart that are commonly used together with X -chart.

The distribution of the range for a sample taken can be obtained by the convolution of the
distribution of the extremes. The problem of the range for the normal distribution is of

most importance in statistical process control. It will be discussed in details here.

3.2.2. The Distribution of the Range

Consider observations X,,..., X, , where n is the subgroup size. The order statistics

n?o

are X(),..., X,y . Let R denote the range defined as X =X the distribution of

R=Xx (1)~ X1y can be obtained as follows:

u) - J'io fX(n)‘quX(n) (u’ V)dv
= ‘r;(n%'Z)' [Flu+v)-F0)" flu+v)f()dv, (3.6)

where f(x) is the probability density function of individual measurement X, and F(x)
is the cumulative distribution function of X,. The probability distribution function of R

can be shown to be:
n-2

fel)=[" —= (n 1P J_IW exp(-! )>dx S+ fdv, (3.7

where

provided X, is normally distributed.
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The distribution of R was a widely discussed topic in statistics in the middle of twentieth
century. The focus was on the computational issues which was a difficult problem when
computers were not available. Several papers also deal with the expression of the mean

and variance for the range. In fact, this has lead to the numerical values of D, and D, in

the traditional R-chart.

The probability distribution function of R can be shown to be (Gumbel, 1947):

2
o271 o

Fy(u)=n[ ! [ exp(- (x= 1) Ydx | f)dv
N ' 2 (3.8)

McKay and Pearson (1993) showed a general expression of f, (u) as:

-2

fow) = nln=1)[" f[t + %uj f[t = %”j( J;; f(x)dx]n dt (3.9)

McKay and Pearson (1993) inferred that when the u is small enough, the distribution

function of range can be approximated as:
froltr) = n(n =1 r’ f(t + %uj f(t - %uj[ F(X)] P, (3.10)
while the u is large enough, the distribution function of range can be approximated as:
oo 1 1
o) = nln=1)[ f[t+5ujf[t—5ujdt (3.11)

This approximation provides a way to conduct the more reasonable control limits.

Besides the deduction of the range distribution formula, several authors have studied the
computation of the moments, percentage points of the range distribution. Pearson and

Hartley (1942) and (1943) have examined the probability integral of the range. Later,
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Harter (1960) has presented comprehensive results on the computation of the percentage
points of the range distribution. Harter suggested that since the moments of the range
distribution from a Normal population can be calculated, the use of probability limits as

control limits for R-charts is possible.

3.2.3. The probability limits for R

For a subgroup of size n, given an acceptable level of false alarm probability «, the
probability limits can be computed with the distribution of R. Note that the traditional 3-
sigma limits correspond to the false alarm probability of a =0.0027 . In general, the
lower control limit and upper control limit for R, LCLg and UCLy can be determined by
solving the following equations

F(ucL,)=1 —%
and

F(LCLR):%, (3.12)

where F(r) is the cumulative distribution function of R. Alwan (2000) has given an
abridged version of some of the results of using probability limits for R-charts. The

estimated probability limits are given as

UCL =D

e
2

7\
S| =
N—

LCL=D [

S| =

J. (3.13)

R
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Here we assume that the underlying distribution of each sample follows normal

distribution. That is,

fle)= \/%G exp{— (xz_;y }

where 4 is the mean and o is the variance. For the simple case with n=2, we can

(3.14)

generate the curve of the pdf of the range distribution as in Figure 3.1. As expected, it is

highly skewed.
x)
n=4

---------

Figure 3.1. Probability density function of the range

From Figure 3.1, it is clear that the distribution is an asymmetric and very skewed normal
approximation. D, and D, derived from this normal approximation are subsequently not
appropriate. Actually, the distribution of the range flattens when the subgroup size
increases, which is totally distinct from normal distribution. Therefore, simply using

0.0027 as the false alarm probability of the 3-sigma control limits of the range is
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somehow unreasonable. The exact false alarm probability can be computed with the exact

distribution for the range.

Table 3.1 shows the LCL/UCL for the standard normal distribution computed by using
Mathematica™. Note that the mean has no effect here. When the standard deviation is not
1, the control limits can be computed using the value multiplied with the standard

deviation since (X - y)/ o is standard normal.

LCL Dl*
o n=2 n=3 n=4 n=> n=6
0.0027 0.00239 0.0700 0.2206 0.3965 0.5690
0.01 0.00886 0.1348 0.3427 0.5549 0.7490
0.05 0.04432 0.3031 0.5946 0.8497 1.066
UCL D;
o n=2 n=3 n= n=>5 n=6
0.0027 4.5328 4.9503 5.1996 5.3775 5.5151
0.01 3.9697 4.4241 4.6941 4.8856 5.0335
0.05 3.1698 3.6823 3.9822 4.1970 4.3609

Table 3.1. Some probability LCL/UCL for R-chart (o =1) for different false alarm

probability

Table 3.1 is actually the modification of traditional D, and DZ(DI* ,D;). From the

relationship between sample mean R and o, which is:
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(3.15)

D}*:ﬂ
d2
and
. D,
D, =—% 3.16
$= (3.16)

The values of D; and D, are shown in Table 3.2.

*

D,

a n=2 n=3 n=4 N=5 n=6
0.0027 0.002119  0.041347  0.107139  0.170464  0.224546
0.01 0.007855  0.079622 0.16644 0.238564 0.29558
0.05 0.039291  0.179031  0.288781  0.365305  0.420679

*

D,

a n=2 n=3 n=4 N=5 n=6
0.0027 4.01844 2.923981  2.525304  2.311909 2.17644
0.01 3.519238  2.613172  2.279796 2.10043 1.986385
0.05 2.810106  2.175015  1.934046  1.804385  1.720955

Table 3.2. Some probability D; / D, for R-chart (o =1) for different false alarm

probability.
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3.2.4. False alarm probability and run length properties

With the exact distribution of the range, the run length properties can be studied. Recall
that the ARL is the expected number of points plotted before an alarm is observed. For
Shewhart-type control chart, this can be simply computed with

1
P(R < LCL)+ P(R>UCL)

ARL, = (3.17)

The denominator is the alarm probability which becomes false alarm probability when
the process is in control. Usually, the ARL is simply computed as follows:

ARLO = i = 1 =
a 0.0027

371,

where « is the probability of Type I error according to the 3-sigma limits of normal
distribution. Since the range distribution is neither normal nor symmetrical, the

probability of a point falls beyond the control limits cannot be expected to be equal to « .

Given the range distribution, we can compute the real ARL of the traditional control
limits for the R charts. From Montgomery (2001), we can see the traditional LCL for the
R chart is 0 for the subgroup with sample size less equal than 6. Therefore, the ARL may
be revised as:

1

ARL = —————
P(R > UCL)

(3.18)

Using the range distribution, the accurate ARL for the traditional control limits can be

calculated for various subgroup sample size by:

ARL, = (3.19)

1
a
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In case of out-of-control, the ARL represents one over the probability of acceptance of a

out-of-control point.

ARL = —— (3.20)

To compare the performance of the traditional control limits and our proposed scheme,

we have constructed the ARL-curves.

| n=10
-2 -1.5 -1 -0.5 il 0.5 k

Figure 3.2. ARL-curve of traditional R-chart

Figure 3.2 shows the ARL for traditional R-chart when subgroup size varies from 2 to 10.

The parameter on the vertical axis of these curves is the ARL,, i.e. the ARL to detect a

. . . o S
process shift. The parameter on the horizontal axis is k£ = —, which is the process sample
o
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standard deviation shift (5 ) in terms of the process target standard deviation (a). From
the plot we can see that it is almost impossible to detect the process variance decrease
when subgroup size is lee than 7. When the process shift is about -0.5 o, the 4ARL is about
40,000. When the process variance shift is about -1.50, ARL increases dramatically to
far more than 100,000. This results in almost no reaction of the control chart to great
process variance improvement. Moreover, for any size of the subgroup, the ARL is

severely biased.

5 60,

o
Figure 3.3. Full OC-curves for R-charts. (Adapted from Duncan(1979), pp44%)

Figure 3.3 is the OC-curve of the traditional R-chart. The abscissa of the chart is the ratio

of the new standard deviation o, to the old &, and the ordinate is the probability that

the shift in o, will not be caught by the R-chart on a single sample. The OC-curves for

n < 6 do not drop to the left but continue getting closer to P=1, since in these cases there

is no lower limit. For n > 6, an R-chart making use of 3 o limits does have a lower limit,
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and the OC curves for such charts are similar in shape to that for n=10. This result is

corresponding to the properties of the ARL curves of the traditional R-chart.

500 - —

=2
400~ —

200
n=4

100 - n=f

1.5 2 &5k

Figure 3.4. ARL-curve of modified R-chart

Figure 3.4 is the ARL-curve of modified R-chart by using the proposed D, and D, .

Compared to Figure 3.2, Figure 3.4 indicates the great improvement of the control limits
performance. Although the ARL distribution is still skewed, it is much closer to the ideal
shape. Another merit of the modified limits is that since it is derived from the exact
distribution of range, it has the exact tail probability, which is 0.003 as used in the
example. We may change this probability to any numbers we favor and derive the
corresponding control limits. This is in line with the basic concept of traditional Shewhart

type control charts.
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e T T T T T
1.0
a.a b -
0.6 L ]
.4l _
a2z} .
0 I I 1 1 I
0.5 [ 1.5 7 P t 0
Oy

Figure 3.5. Full OC-curves for modified R-charts.

The OC curves of the modified R-chart indicate a similar property. Figure 3.5 is the OC
curves of the modified R-charts when n < 6. It is clear to see that after the modification,
the OC curves turn to have a shape similar to that of n > 6. When the process deviation is
decreasing, the probability of Type II error is decreasing, which translates to a faster
signal of out-of-control. This is due to the fact that the positive lower limits have been

assigned.

Using positive lower control limit enable us to observe variability reduction in
manufacturing processes. This is also a way to ensure more accurate tail probability

matched. Denote the tail probability at the lower control limit end as P, and the tail
probability at the upper control limit end as P, when the process is in control. The tails

probabilities can be computed by using the formulas below
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Pro = J:L:L Sr (x )dx = J.OLCL Sr (x )dx

Pucr = J;:L fR (x)dx

(3.21)

where f, (x) is the probability density function of Range distribution. Thus, the real tail

probability of R-chart is obtained as in Table 3.3.

n 2 3 4 5 6

Puc, 0.00315  0.00553  0.00495  0.00486  0.00436
P, 0 0 0 0 0

n 7 g 9 10

Puc, 0.00421  0.00427  0.00434  0.00449

Prc 0.00001  0.0001  0.0002  0.0003

Table 3.3. Tail probability of traditional R-chart

The tail probability at the two ends is severely biased in Table 3.3. This is due to the

biased traditional setting of D, and D, . In contrast to that, the proposed setting of the

parameters insures the ideal unbiased tail probability as 0.00135 at both ends since the

lower and upper control limits are directly derived from the real range distribution.
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3.3. Implementation example and Discussions

The X -chart can be set up in the same way as before. For R-chart, instead of using

traditional D, and D,, the probability limits can be used. In particular, this is the case
when the subgroup size is less than 7 for which D, is zero and hence reduction in

variability cannot be detected with the standard formula. Instead, the LCL limit can be

determined in such a way that a different factor is used. Note that the factor depends on

the subgroup size.

Table 3.4 is a set of simulated data. The first 30 observations are simulated with a mean

of 100 and a standard deviation of 5 and the last 20 observations are simulated with a

mean of 100 and a standard deviation of 2.

subgroup X1 X2 X3 X4 X5 X-bar R
1 90.45 106.31 108.4 97.25 100.09 100.5 17.96
2 107.97 97.2 112.52 90.71 96.94 101.07 21.8
3 101.33 99.05 99.46 101.98 92.46 98.86 9.52
4 106.35  103.96 99.17 106.07 94.3 101.97 12.05
5 101.54  101.81 92.35 101.74  105.87 100.66 13.53
6 93.06 109.38 97.09 102.84  103.74 101.22 16.32
7 111.81 97.5 100.9 98.81 95.42 100.89 16.39
8 98.29 103.5 108.19  105.05 98.09 102.62 10.09
9 99.71 94.34 103.69  105.74  106.66 102.03 12.32
10 111.48  100.39 99.18 101.57 101.4 102.8 12.3
11 95.06 103.06 92.12 100.49 93.35 96.82 10.94
12 107.7 97.74 104.53 99.82 97.14 101.39 10.56
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

108.92
102.98
99.59
106.06
97.51
95.82
100.52
110.54
96.69
103.47
104.78
93.63
102.88
105.8
107.48
96.11
113.42
106.01
102.394
99.03
102.21
102.416
103.162
101.895
101.55
98.209
100.616
104.203
98.362
98.733
100.003
100.26
95.82

97.09
100.83
96.8
97.01
92.99
101.96
93.11
105.44
103.61
108.51
93.85
104.26
92.79
97.04
103.62
97.63
98.29
101.8
101.201
98.993
99.664
98.483
101.766
98.797
100.838
99.347
100.97
105.991
102.188
103.233
97.741
104.245
97.154

91.97
99.42
96.5
103.69
98.41
107.54
103.03
92.35
98.46
94.41
95.97
93.71
108.83
94.25
102.91
95.66
103.27
98.74
98.079
98.076
97.975
102.545
97.163
97.546
102.415
95.685
99.345
98.125
98.688
100.344
99.196
95.065
102.24

92.81
100.05
92.91
96.82
99.16
105.81
101.2
96.47
99.34
101.56
97.32
101.18
98.41
97.21
101.58
100.44
103.18
90.86
98.149
99.647
98.366
99.846
99.416
102.12
96.576
98.829
101.459
98.579
98.399
101.889
101.847
99.184
101.495

98.82
97.64
96.46
102.83
112.44
97.24
86.16
97.66
90.12
101
103.6
99.65
105.41
98.95
109.47
105.05
102.01
99.84
101.616
100.983
102.148
102.921
100.717
96.787
101.397
103.371
99.725
101.141
99.76
99.085
95.888
102.452
103.758

97.92
100.18
96.45
101.28
100.1
101.67
96.8
100.49
97.64
101.79
99.1
98.49
101.66
98.65
105.01
98.98
104.03
99.45
100.2878
99.3458
100.0726
101.2422
100.4448
99.429
100.5552
99.0882
100.423
101.6078
99.4794
100.6568
98.935
100.2412
100.0934

16.95
5.34
6.67
9.23
19.45
11.72
16.87
18.19
13.5
14.1
10.93
10.62
16.03
11.56
7.88
9.39
15.13
15.15

4315

2.907

4.235

4.438

5.999

5.333

5.839

7.686

2.114

7.866

3.826

4.5

5.959
9.18

7.938
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46
47
48
49
50

100.158
100.116
101.411
100.697
96.413

98.83
103.111
102.299
97.816
100.036

99.933
105.309
97.747
103.834
102.194

99.803  99.979
99.301 103.172
101.943  99.51

99.803  102.634
102.269  96.827

99.7406 1.328
102.2018  6.008
100.582  4.552
100.9568  6.018
99.5478  5.856

Using the value of D, and D, , we conduct the traditional R chart as:

107

102

ar

Sample Mean

az
Subgroup

20

Sample Range

Table 3.4. A set of simulated data with subgroup size of five.

UCL

=24.59

CL=11.63

LCL

=0.

Figure 3.6 X and R charts for the data in Table 3.4.

UCL=106.7

hean=100

LCL=83.249

UCL=24 .59

F=1152

LCL=D

Although it is clear from the plot that the variability is reduced, an R-chart with

probability limit would have detected the change at an earlier stage (unless some run
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rules are used). Now consider applying the probability control limits. From the Table 3.1,
as the square root of variance is 5 and sample size of rational subgroup is 5, the modified
LCL for the R-chart is 1.98, while UCL is 26.94. Therefore, we conduct a new R-chart
with the modified probability limits as:
UCL=26.94
CL=11.63
LCL=1.98.

The new control chart is shown in Figure 3.7.

a7 UCL=105.7
e
m
o0z M /\f\
ﬁ - - T\ﬁ. bR r'vhv* -"ﬁ"-tyﬂ -:.,J'J'X"\i Mean=100
= ) V'\y.-" vv L_!-' Wi w W
= a7 —
@
LCL=23.29
92 B T T T T T T
Subgroup u} 10 20 jein] 40 a0
: : : : : : UcL=26.94
[ h)
20 —
E T yﬂy""‘wA __fr\ ﬂ R=1162
= V v
=
i
«og LCL=1.498

Figure 3.7 X and R charts for the example by using probability limits

The control charts indicated that the process is in control, until the range value from the
forty-sixth sample is plotted. Due to the fact that the new control limits are derived
accurately from the range distribution, the ARL may be calculated as follows:

arL, =L- 1 3y
a 0.0027
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when the process is in control. At the same time, if the process is out-of-control, with
0.5 o in range shift,

1 1
= =15
P(X <LCL,X >UCL) 0.068

ARL, =

Compared with the ARL in these two R-charts, the numerical example indicates that when
the process is in control, the traditional R-charts tend to signal false alarm more
frequently. On the other hand, when the process is out of control, the modified R-charts
are able to detect the shift earlier.

This can be compared with the case when the process is in control. The ARL for R-chart
with traditional limit is:

ARL, = L 9
P(X >UCL)

Also, when the process is out of control, with 0.5 ¢ in range shift, the ARL with
traditional limits is:

1

— _=085%10"
P(X >UCL)

ARL, =

This means, one out-of-control signal will be given every 28500 trillion points monitored.
Therefore, there is no way to detect the out-of-control signal when LCL=0. In this case, as
expected, no alarm will probably be raised and without additional rules, process changes

will not be detected as the ARL increases significantly.
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3.4. Conclusions

We have raised the question of whether a range of zero or even very small value should
still be treated as out-of-control signal. When the subgroup size is small, between 2 to 6,
the LCL for R-chart is usually set as zero. However, the exact distribution of the range
can be used to derive the probability control limits which are always positive. In this
chapter, exact formulas are given for the calculation of the probability limits, and we also
discuss some approximate analytical results that can help with the calculation. Using
positive lower control limit enable us to observe variability reduction in manufacturing

processes. This is a widely discussed issue in many quality control texts.

A value below the LCL of an R-chart is probably because of positive assignable causes
that have led to a reduction of the variability. Therefore, a positive LCL is always useful.
Variability reduction is as important as, if not more than, targeting exactly at the mean.
Hence, this study may help industrial statisticians to make better use of the statistical

principles in developing process monitoring technique.
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Chapter 4
Using Normalizing Transformations

in Shewhart Charts

4.1. Introduction

As we discussed in the previous chapter, using the exact probability limits for R- and
S-charts can have the control charts react faster to process deterioration and therefore
improve their sensitivity. Mathematicians have investigated the distributions of the range
and standard deviation of some well-known distribution families and have enabled us to
calculate the probability limits based on those known probability density functions. This
helps us to achieve the exact probability of our interest. Moreover, in this chapter, we will
study the non-normality problem in traditional Shewhart type control chart in a more

general way when the specific distribution is unkown.
Shewhart type control charts are the most commonly used method to test whether or not a

process is in-control. As discussed in the Chapter 2, the normality assumption is invalid in

many cases and very often the exact distribution is positively skewed (Winterbottom
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(1993)). We recall that one of the consequences is that the control limits are set

significantly lower than what they should be in order to come reasonably close to giving

false alarm probabilities that correspond to those on X charts. Moreover, some quality
measurements, such as the range R and the sample deviation S, differ from normal
distribution, so that the performances of the traditional 3-sigma limits of traditional

Shewhart type control charts are not satisfactory.

As reviewed in Chapter 2, the research on applying control charts for non-normal
populations has been divided roughly into three categories. One of the categories of
endeavors has focused on normalizing the given data, so that traditional Shewhart control
charting schemes could be employed with desirable ARL. Transformation based approach
succeeds in making a set of balanced control limits so that the ARL is large when the
process behaves normally and smaller when the process deviates from that (Yang and Xie
(2000)). However, this issue has not gained much attention in control charting scheme
though many statisticians examined the transformation to normalize various kinds of
distributions. We have summarized those existing transforming formulas in Chapter 2,
which would contribute to the work dealing with non-normal data in process monitoring in

this chapter.

In the coming section 4.2, we will discuss the transformation in traditional Shewhart type
control charts in further depth and summarize the appropriate transformation forms for
different type of control charts. Performance comparisons have been included based on the

results of extensive simulation study. Detailed procedures on applying transformation in
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control chart constructing will be given in section 4.3, as well as numerical examples. In

section 4.4, conclusions will be drawn.

4.2. Adaptation of Transformation in Control Charting Scheme

4.2.1. The need for a Transformation in Non-normal Process

As discussed in Chapter 2, the original purpose of constructing the traditional control
limits as described in the introduction part is to apply the three-sigma philosophy directly
under the normality assumption. Define E; to be the event that i-th sample range R (or
sample standard deviation s) is either above UCL or below LCL. The events {E,} are
independent and for all i> 1,

P(E,)= P(R, >UCLUR, < LCL)=1-®(3)+ ®(-3)=10.0027,

where @ is the cumulative distribution function of a N (0,1) random variable. Define U to
be the number of samples until the first £, occurs, then U is known as the run length of
the chart and has a geometric distribution with parameter p :P(E[):0.0027. Care

should be exercised that all the calculations above are based on the fundamental
assumption that the underlying distribution of the monitored characteristic is normal.
However, the validity of the assumption is questionable sometimes, especially in real-
world applications. The underlying distribution of the monitored data can never be exactly

independently identically normally distributed. Moreover, even when sampling from the
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normal distribution, some quality measurements are not normal. Thus, the standard

interpretation of traditional control charts is not well applicable.

Alternatively, many authors have suggested the use of exact probability models to
calculate the limits so that both ends are likely to have equal probability to decide the out
of control state of a process. For instance, one possibility in constructing an R-chart would

be to use D, and D, 4, in place of D,and D, . This would give equal tail areas of 0.001.

The probability limits would then be obtained as

R
UCL = Dy 00| —
0.999 d2

LCL = Dy | & (4.1)
ol

These limits obviously differ greatly from the 3-sigma limits. In particular (Ryan, 2000),
the (0.001 and 0.999) probability limits will always be higher than the 3-sigma limits. The
calculated limits are expected to have exact tail probabilities. However, it is not possible
sometimes to meet the exact probabilities due to the discreteness of the models. In Chapter

3, we have also recommended to use the modified D; and D, to construct the R-chart,

though it still has the flaw that the ARL is not symmetric. Let us recall ARL is a measure of
the performance of a control chart which should be large when the process behaves
normally and small when the process deviates from the target. Furthermore, for
probability limits, it causes ARL to be biased which means the sensitivities of the control
limits towards the increasing shift and decreasing one are different. It is common to see

other control charts performing poorly under the non-normality data circumstance.
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More generally, we study a right-skewed distribution without loss of universality. Figure
4.1 features the general shape of such distribution. For comparison, we draw the PDF of a

standard normal distribution in the Figure 4.2.

Frobabllity
;
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-
1
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1

oo

Figure 4.1. PDF of a right-skewed distribution
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Figure 4.2 PDF of a standard normal distribution

From the two figures above, it is clear that in order to achieve same probability area

beyond the control limits, the probability limits setting for skewed distribution and normal
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distribution should differ. For skewed distributions, we will only have asymmetric
probability limits, which deteriorate the performance of the control charts in one of its

sides.

This figure gives a strong indication of biased-4RL under the exact probability control
limits. The curve shows an increasing-decreasing pattern. When the process variability
increases, the ARL decreases steadily. However, when the process variability decreases,
the ARL decreases faster than it does under up shift. Moreover, the maximum of the ARL
is not located at shift equals 0. Instead, ARL achieves its peak around -0.2c . All these
features are not good to perform accurate process variability monitoring. However, our

desired ARL is presented in the Figure 4.16 below for comparisons.

Moreover, sometimes the quality characteristic of concern does not follow normal
distribution. In this case, it is almost impossible to derive the distributions for range or
sample standard deviation. Therefore, we cannot calculate the exact probability limits. A
method other than using real probability limits should be proposed to solve the problem.
This results in our raising of normalizing transformation method. Our general idea here is
to transform the distribution of the quality characteristics into normal distribution. The
mapping is constructed as

‘X: Flx)—L=r glx)
where f(x) is the original distribution and ¢#(x) is the normal distribution. Thereafter,

traditional Shewhart type individual chart can by applied as

UCL=X +2.68MR
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CL=X

LCL=X —2.68MR (4.2)

4.2.2. Performance Discussion on some Distributions

In the present section, we will discuss the transformation control limits on some most
commonly met distributions in quality control area. For each distribution, extensive
simulation has been conducted for traditional control limits, probability limits and
normalized limits to compare the control limits performance. In each run, different
parameter settings have been applied for 1,000,000 x 10,000 sample points. ARL curves
are drawn based on the simulation results. Tail probability properties have also been

investigated for comparison purpose.

S- Distribution

S-chart is a popular alternative to R-chart. Traditional construction of S-chart is the same
as R-chart; assume the sample standard deviation follow normal distribution and apply the
3-sigma limits. Unfortunately, the distribution of sample standard deviation is again far
away from normal distribution. Therefore, traditional S-chart faces the same problem as R-
chart does in process monitoring. For instance, the in-control 4RL is supposed to be
smaller than out-of-control ARL under the valid assumption. However, for the very
skewed S-distribution, it is not the case. With very skewed distribution, the 3-sigma limits
tend to deteriorate to be able to detect the shift in one side only, which cause the
dramatically large ARL for out-of-control case, when sample size is less than 7.

Figure 4.3 shows the ARL-curves of traditional S-chart with different subgroup sample
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sizes, knowing that the mean and variance of the sample distribution do not affect the ARL
properties. The y-axis represents the ARL. The x-axis represents k, which is the shift of

process standard deviation o, in terms of target process standard deviation o ; that is

ns k

Figure 4.3. ARL-curves of S-chart with different sizes of subgroups

In the traditional parameter settings for S-chart, the LCL remains 0 when n varies from 2
to 6. Therefore, the control chart is not able to react to process deterioration (see the tail
probability in the Table 4.1 for some subgroup sample size). This is one the most

undesirable feature of using traditional Shewhart type control chart when the normal

65



Chapter 4 Study on Normalization Transformation in Traditional Shewhart Charts

assumption is not valid. This phenomenon is quite common for skewed distribution. Other

example includes R-chart.

N 2 3 4 5 6

P, 0.00932  0.00557  0.00145  0.00405  0.00353
Bra 0 0 0 0 0

N 7 8 9 10

Py 0.00316  0.00308  0.00301  0.00294

P, 0.00002  0.00004  0.00013  0.00011

Table 4.1. Tail probability of traditional S-chart

As discussed before, some authors have suggested using exact probability limits instead of

the traditional control limits. The probability control limits can be set as follows

S
UCL =D, —F
0.99865 (04 \/;]

S
LCL =D, — |, 43
0.00135(04\/;] (4.3)

where S is the average sample standard deviation, n is the sample size, D, 90565 and

Dy 0135 are 0.99865 and 0.00135 percentiles, respectively. Figure 4.4 shows ARL-curves

of the probability limit S-charts with different subgroup sample sizes. From the figure, one

can see that the tail probability is achieved at 0.00135 for both ends; the biasness of ARL

is not eliminated though. The smaller the subgroup sample size is, the more difficult it is
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to detect the process variance decrease. On the other hand, the larger subgroup sample size

is, the more difficult it is to detect the process variance increase.

sof BL

15 k

Figure 4.4. ARL-curves of the probability limit S-charts with different sizes of subgroups

By using the transformation in Fujioka and Maesono (2000) for U-statistics, we are able to
normalize the sample standard deviations. Based on the transformed data, traditional 3-

sigma limits can be applied and the new ARL-curves are drawn in Figure 4.5.

ARL
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Figure 4.5. ARL-curves of the control chart on normalized S with different sizes of
subgroups
In Figure 4.5, ARL is approximately symmetric with tail probability close to 0.0027. The
sensitivity of the control chart improves dramatically when the subgroup sample size is
larger than 3. The performance of such transformation is understandably bad when the
subgroup size is only 2. This is due to the fact that sample standard deviation loses its
accuracy greatly when the subgroup is too small to provide sufficient information.
Adjustment multiplier can also be used to adjust the transformed data to standard Normal
data, so that the standard properties of the control limits would be achieved. Range

distribution has very similar properties as S-distribution, which we have discussed in

Chapter 3. Normalization thus is a good application for Range distribution as well.

Exponential Distribution

Similar to the discussion above, the ARL distribution comparison for Exponential

distribution can be seen the Figure 4.6 and Figure 4.7 below.
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Figure 4.6. ARL-curve of traditional limits for Exponential-distribution
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Figure 4.7. ARL-curves of probability limits and traditional limits on normalized datakfor

Exponential-distribution
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Figure 4.6 shows the ARL distribution for traditional control limits. Again, the
phenomenon that out-of-control ARL is greater than in-control ARL happens. Under this
circumstance, the control chart fails to signal at both sides. The tail probability for the
traditional 3-sigma limits is approximately 0.0257, which is almost ten times the desired

value of 0.0027 (indicated in Table 4.3).

2 0.1 0.2 0.3 0.4 0.5 0.6

Puo 0.025789  0.025933  0.0256  0.025525  0.025535  0.025847
P 0 0 0 0 0 0

2 0.7 0.8 0.9 I 2 3

Pu 0.02555  0.025881  0.025526  0.025732  0.025551  0.025958
P 0 0 0 0 0 0

2 4 5 6 7 8 9

Pu 0.025871  0.025525  0.025906  0.025613  0.025853  0.025814
P 0 0 0 0 0 0

2 10 11 12 13 14 15

Puo 0.025732  0.025418  0.025553  0.025856  0.025674  0.025839
P 0 0 0 0 0 0

2 18 20 25 30 40 50

Pu 0.025645  0.025877  0.025643  0.026033  0.026781  0.025676
P 0 0 0 0 0 0

Table 4.3. Tail probability of traditional limits on Exponential distribution with some A

Figure 4.7 has two curves that reflect the ARL distribution of the probability limits and the

limits on normalized data. The normalizing transformation works very well. The tail-
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probability for transformed data is approximately 0.00262, which is very close to the
target 0.0027. Moreover, the skewness has been reduced greatly compared to the
probability limits. Although the two curves have very similar in-control ARL, the

sensitivities to the process shift differ. The probability limits are much more biased.

t- distribution
t- distribution is another commonly seen distribution in quality control area. ARL
distributions of the traditional limits and the limits on normalized data are drawn in the

figures below with different sets of parameters. Denote the sample distribution as 7, .

Figure 4.8 is the ARL distributions when 7 is set to 2. Figure 4.9 is the ARL distributions

when 7 is fixed at 10. Figure 4.10 illustrates the ARL distributions when 7 set to 20.

ARL

450 T T T T

400+

350

Before normalization
250

o After nonmalization
150
100

50

k

Figure 4.8. ARL distributions of control limits on #-distribution and normalized ¢ for n=2
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ARL
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Figure 4.9. ARL distribution of control limits on #-distribution and normalized ¢ for n=10
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Figure 4.10. ARL distribution of control limits on #-distribution and normalized ¢ for n=20
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t-distribution has an opposite property to the distributions we have discussed before. It
reacts very fast to the process deterioration when the shift is negative, but slow when the
shift is positive. From Figure 4.8, 4.9 and 4.10, we can see that the higher the degree of
freedom, the slower the reaction to positive deviation, but the faster the reaction to
negative deviation. After transformation, the ARL distribution tends to be stable. Although
the skewness does exist, the sensitivities to two sides shift are closer. The control chart
performance improves greatly especially when the process tends to move far above the
target. Another good point of the normalizing transformation used here is that the
performance of the control chart does not change as much as before when the -

distribution parameter n varies.

4.2.3. Implementations

The application of normalizing transformation in control charting scheme involves six

steps.

L. Specify the quality characteristic to be monitored

I1. Specify the underlying distribution of the variable

1. Select the corresponding normalizing transformation form

IV. Transform the original data

V. Construct traditional Shewhart individual control chart based on the transformed
data

VL Monitor the process, detect the out-of-control signal and trace the assignable

causes i1f necessary
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One should be very careful about the selection of the transforming formulas. Although
many accurate formulas have been given for certain distributions, our recommendation is
those with simpler forms as it is of convenience in application. In general, we recommend
Box-Cox transformation (Box and Cox, 1964) for their convenient applications when the
underlying distribution is unknown. For more specific distributions, section 2.3.2 details

the appropriate corresponding formulas.

4.3. Implementation Examples and Discussions

Two numerical examples are given below to help visualize the procedures described

above.

4.3.1. Transformation on z-distribution: Application on individual chart

Suppose we have a group of 50 data, see Table 4.4. Say these data are representing the

product yield from a process we are monitoring, which is denoted as X, i=1...50. We

would like to know whether the process is in statistical control.

1.2621  0.2074  2.1287  7.2466  1.7631
0.5925 1.1198 6.8843 1.6392  0.7897
2.0059 1.4020 0.1103  1.3438 14.3413
1.2792  6.2193  2.8140 0.4515 0.7249
3.4651 2.5757 6.5523  1.3939 16.6878
1.1341 15.7454 0.2038  0.2832  5.4179
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0.6581 4.1708 2.5775 3.4204 0.3771
3.5541 119934 6.3382  0.8586  2.8017
3.0380 0.7971  1.2738  2.1927  2.4429
3.7558 11.0146 4.7066  0.1788  1.2245

Table 4.4. Data from a Production Line

We follow the procedures to conduct the complete analysis.
L. Specify the quality characteristic on monitoring of concern

In this example, the variable of our concern is the product yield X, shown in Table 4.4.

II. Specify the underlying distribution of the variable

There are numbers of approaches to check the distribution of the given data. First of all,
we should check to determine whether the data the needs to be normalized. We plot the
histogram and the Normal probability plot of the data as in Figure 4.11 and Figure 4.12

below.

20

10

Figure 4.11. Histogram of the Data in Table 4.4
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Figure 4.12 Normal probability plot of the data in Table 4.4

From the histogram, it is clearly seen that the underlying distribution is non-normal.

Therefore, we use probability plot to estimate the distribution roughly. Care should be

exercised that we may use normal probability plot to further investigate the normality if

the histogram shows a bell-shaped curve. After several trials, we find out that the data fit

exponential distribution well. The exponential probability plot is shown in Figure 4.13.

The mean of the data is estimated as 3.503. Therefore, we conclude the underlying

probability density function of the data is:

X

f(x): %e 35 x>0

(4.4)

76



Chapter 4

Study on Normalization Transformation in Traditional Shewhart Charts

aa

oa
ar

a5

an

Percent

an
o

60
a0

a0
0

hiL Estimates - 95°% CI

L Estimates
hkzan 2.40320

Zoodness of Fit
ADF 0.7a3

Figure 4.13. Exponential Probability Plot of the Data in Table 4.4

I1I. Select the corresponding normalizing transformation form

We refer to part2.1. and decide to use the transforming form in Kittlitz (1999). That is as

follows,

IV.  Transform the original data

Y =4/x

(4.5)

We use the Bailey transforming formula to calculate the transformed value. The

transformed data are shown in Table 4.5.

1.05992
0.87737
1.19009
1.06350
1.36436
1.03196

0.67487
1.02870
1.08815
1.57919
1.26684
1.99200

1.20789
1.61981
0.57628
1.29519
1.59992
0.67188

1.64072
1.13151
1.07667
0.81972
1.08658
0.72949

1.15232
0.94268
1.94602
0.92271
2.02115
1.52566
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0.90069 1.42907 1.26706 1.35994 0.78364
1.37304 1.86095 1.58669 0.96261 1.29377
1.32023 0.94487 1.06236 1.21687 1.25019
1.39212  1.82177 1.47291 0.65023 1.05193

Table 4.5. Kittlitz Transformation of Table 4.4 Data

V. Construct traditional Shewhart individual control chart based on the transformed

data

We first plot the normal probability plot of the transformed data to see its normality. The

histogram in Figure 4.14 shows a good normal fitting of the data.

ML Estimates - Q5% CI

ML Estimates
hi=an 122368
StOew 0355013

zoodness of Fit
AR 0.57

Fercent

0.2 1.2 2.2

Figure 4.14. Normal Probability Plot of Data in Table 4.4

Then we directly apply the traditional Shewhart type individual chart on the transformed

data, i.e. to use the formula for calculating control limits as below:
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LCL=X-3—— (4.6)

From the control chart shown in Figure 4.15, the data indicate an in-control status. The
features of both in-control and out-of-control 4RLs are the same as the ones of Shewhart
individual chart. Therefore, a false alarm will be given every 370 points when the process
is in control and the speeds of signaling are expected to be the same when the process
mean decreases or increases. Therefore, the individual chart based on normalizing

transformed data excels the chart based on original data and performances as well as exact

probability chart.
UCL=2 450
a |
i}
; I A
jas]
s f
g i M 1" jﬂg ¥ 3‘.\%( Mean=1.224
g
=
£
0 LCL=-2 4E-03
| I l ' ' !
o 10 20 30 40 50

Chservation Number

Figure 4.15. Traditional Individual Chart for Transformed Table 4.4 Data
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VI.  Monitor the process, detect the out-of-control signal and trace the assignable

causes if necessary.

Further Discussions

For comparisons, the ideal out-of-control ARL for traditional Shewhart type control chart

is plotted in Figure 4.16 below.

ARL to detect the shift

-3 1

»(A)

Magnitude of the shift, in terms of o

Figure 4.16. Ideal ARL-curve for Traditional Shewhart Type Control Chart

In order to show the effect of the transformation, we construct the traditional Shewhart
individual chart on the original data first as shown in Figure 4.17. The control chart shows
two points beyond the control limits though the data are actually in control. Calculating

the in-control ARL as follows

ARL, = ! =71
P{X, < LCL, X, >UCL}
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We find that under the traditional control limits, the data would arise a false alarms every
71 points. This is much smaller than the expected number of 370 which is achieved by the
normalizing transformation. Therefore, control chart based on original data gives more
frequent false alarm than that based on transformed data when the process is in statistical

control.

20 — ;
L’ i JCL=1:3.09
u_é 10 — /
-
E e LA I
S, W P Gl s
LL=-3.078
A0 —

I I I I I I
0 10 20 30 40 a0

Chservation MUmber

Figure 4.17. Traditional Individual Chart for z-distributed Data in Table 4.4

Then we construct the exact probability limits on the data as shown in Figure 4.18 by
using 0.00135-percentile and 0.99865-percentile as upper and lower control limits,

respectively.
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Figure 4.18. Exact Probability Limits for Exponential-distributed Data in Table 4.4

For these exact probability control limits, the in control ARL is 370 as desired. However,
due to the asymmetric property of #-distribution, the out-of-control ARL is biased. Suppose
the shift of the process mean is 0 . We can simply compute the out-of-control ARL as:

! 1
ARL, = -
: P{X <LCL, X > UCL} —0.00473  23.127

1 —e 0+3.5 +e 3.5+0

The function is plotted below in Figure 4.19. It can be seen that the out-of-control ARL is
biased for exact probability limits. When the process mean increases, it can detect the out-
of-control signal quickly, especially when the shift is larger than one sigma (process
standard deviation). However, when the process mean decreases, it takes even longer time
to detect than to give a false alarm. When the decrease in the magnitude is larger than
0.2 o approximately, the control chart signals faster. Therefore, the ARL is neither
symmetric nor having its peak at in-control points. Thus, compared to Figure 4.16,

transformation excels in the performance of the ARL.
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Figure 4.19. ARL-curve of Exact Probability Limits

4.3.2. Transformation on U-statistic: Application on S-chart

In this example, we have a set of 50 subgroups data each containing 5 observations
generated from standard normal distribution. These data are the product yield from

., i=1...50, j=1...5. We would

another process we are interested in, which is denoted as X,
like to monitor the process variability.

L. Specify the quality characteristic to be monitored

To monitor the process variability, we choose S-chart to use. Therefore, the concerned

variable is sample standard deviation of each subgroup. We compute the values and fill in

Table 4.6.

0.59763 1.03511 0.89162 1.22941 0.88331
0.96901 0.90043 1.56136 0.98573 0.77389
1.05484 1.11837 0.85740 0.75769 0.69058
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0.98579 1.00698 0.85089 1.05963 0.62896
1.06666 1.37867 1.33374 0.77487 0.47154
0.56547 0.95779 0.79117 1.38009 0.84692
0.50424 0.77726 0.98545 1.15553 0.77087
1.41343 0.79711 0.57969 0.42040 1.43369
1.05562 0.52079 1.67372 1.03972 0.82874
1.73062 0.75216 0.57505 0.72048 0.54592

Table 4.6. Data of Sample Standard Deviation from N(0,1)

IL. Specify the underlying distribution of the variable

The distribution of standard sample deviation for the dataset can be expressed as:

2 _r 3
P{S < x}= ;J‘“ e *ridr 4.7)

5 0
zzrm
2

I1I. Select the corresponding normalizing transformation form
As the distribution of sample standard deviation belongs to U-statistic family, we make

use of the transformation in Fujioka and Maesono (2000). That is,

S, =7f{4—)\/;61_6], (4.8)

o

where

A ~ A2

7(s)=s+ s+ L4 B¢

o T
We use the values of p and g selected in the example of Fujioka and Maesono (2000).

IV.  Transform the original data

After calculating, the transformed data are shown in Table 4.7.
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0.23360 -2.89568 1.49355 -1.03401 0.02050
1.06382 -0.51412 -0.86245 1.40172  0.48720
2.08847 -1.95010 0.27661 -0.25688 0.52153
-1.17305  0.29322  0.03460 -0.02832 1.98191
0.67464 -1.66449 -0.76999 -0.81813 0.49189
-2.68243  0.41715  0.56989  -0.40564 -1.21832
0.35335 1.48738 1.10730  0.90409  0.69515
0.19312  -0.14898 1.40447 -2.31095 -0.57037
0.77692  0.38390  0.53017  0.49277 -0.17997
1.47522  -0.47087 0.73191  1.35790 -0.34449

Table 4.7. Fujioka & Maesono Transformed Data in Table 4.6

Plot the histogram of the transformed data and it is roughly a bell-shape.

V. Construct traditional Shewhart individual control chart based on the transformed
data

Now we can apply the traditional Shewhart individual chart on the transformed data. The

control chart is constructed as follows in Figure 4.21.
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Figure 4.20. Histogram of Transformed Data in Table 4.7
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Figure 4.21. Traditional Individual Chart for Transformed Data in Table 4.7

As the data fulfill the normality assumption, the in-control average length is about 370.

Moreover, the out-of-control ARL is drawn in Figure 4.22 against the shift in terms ofo .

It is an unbiased-4RL and maximizes at 0.

ARL to detect the shift

-3 2 -1 o 1 2 3
Magnitude of the shift, in terms of o

Figure 4.22. ARL-curve for Individual Chart on Transformed Table 4.7 Data
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Therefore, the individual chart based on normalizing transformed data performs much
better than traditional S-chart and exact probability limits as well.
VI.  Monitor the process, detect the out-of-control signal and trace the assignable

causes if necessary

Further Discussions
To compare the performance of the control limits, we first set up the traditional S-charts
plotted in Figure 4.23. The in-control ARL can be calculated as:

ARL, = 1 =106

 P{X, <LCL,X,>UCL}

Similar to example 1, this in control ARL is shorter than the desired one as 370. This is

due to the fact that the underlying distribution departs from normal.

5 | UCL=1.851
;g 1 - JM\J xﬁj\.\avf Jf\l Hﬂﬁl vfwhi Mean=0.9337
. LCL=0

I I I I I I
0 10 20 30 40 a0

Chservation Number

Figure 4.23. Traditional S chart for Data in Table 4.6
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Now we look at the out-of-control ARL under these control limits. Figure 4.24 shows the

curve of ARL versus the shift of the process variability from 0 to 3, in terms of o .

70
60
50
40
30

20

ARL to detect the shift

10

0.5 1 1.5 2 2.5 3 k

Magnitude of the shift, in terms of o

Figure 4.24. ARL-curve for control chart in Figure 4.21 under shift from 0 to 3o

From Figure 4.24, we can see that the curve falls within interval [0, 3] monotonically. This
is a strong evidence of a biased-4RL phenomenon. It is subsequently easier to detect the
upward process variability and the frequency of the signal does not change too much as
the magnitude of the increase grows. Comparatively, it is almost impossible to detect the
process variability deterioration. Therefore, traditional S-chart does not performance as

well as individual chart based on normalizing transformation does.

Following the distribution of sample standard deviation, we can get the exact probability

upper and lower control limits as:
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— 2

UCL = | £ =5 09533
c, \ n—1
S 2 00135

LCL == |20 416152
c, \ n—1

These control limits ensure the in control ARL at the level of 370.

2 UcCL=2.09333

LT -
TS gy

| | [ | | [
u] 10 20 30 40 a0

Chservation Mumber

Individual Yalue
|

LCL=0.16132

Figure 4.25. Exact Probability Limits for Data in Table 4.6

Now we study the performance of the ARL of the exact probability limits when the process

is out of statistical control. Figure 4.26 below shows the behavior of the out-of-control

ARL with magnitude of the process variability shift varying from -0.5 to 2.
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ARL to detect the shift

-0.5 0.5 1 1.5 2k
Magnitude of the shift, in terms of o

Figure 4.26. ARL-curve for S-chart under Exact Probability Limits on Data in Table 4.4
with shift from -0.50 to 2o
These figures show the strong indication of biased-4RL under the exact probability control
limits. The curve shows an increasing-decreasing pattern. When the process variability
increases, the ARL decreases steadily. However, when the process variability decreases,
the ARL decreases faster than it does under up shift. Moreover, the maximum of the ARL
is not located at shift equals 0. Instead, ARL achieves its peak around -0.2c . All these
features are not good for conducting accurate process variability monitoring. Therefore,
although exact limits chart ensures same in-control ARL, it is not as good as the chart

based on transformation when it comes to detecting out-of-control signal quickly.
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4.4. Conclusions

The theoretical achievements in normalizing transformations provide a way to monitor
non-normal data more precisely. Very accurate transformation forms have been proposed
in literatures on ¢, F, non-central ¢, non-central F, Exponential, Chi-square distributions.
To widen the application area, transforming formulas have been presented on U-statistic
and unifying density statistic as well. If the underlying distribution is detectable or
approximately detectable, the appropriate transformations above could be done to apply
the standard 3-sigma limits. Two numerical examples reveal that normalizing
transformation could improve the performance of control limits greatly. Mostly, the
control charts based on transformed data are better than the ones based on original data.
Sometimes, the control charts based on normalized data excel the exact probability charts

as well. This move would be of benefit to traditional Shewhart type control charts, for

instance X — R chart and X — S chart. when non-normal or undesirably distributed data are

encountered.
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Chapter 5
Study on Normalization Transformation

in Multivariate Charts

5.1. Introduction

In many situations, the simultaneous monitoring and control of two or more related quality
characteristics are necessary. For example, physical dimensions of parts can be measured
at several locations and various parameters of systems are typically derived
simultaneously. In practice, one will frequently use a critical dimension as the one to
record and track for purposes of quality control. In process-monitoring problems, several
related variables are of interest; these problems are commonly called multivariate quality
control. Harold Hotelling (1931) proposed a measure of distance that takes into account
the covariance structure. Based on this measure, Hotelling T ? chart, one of the most

popular control charts for monitoring a multivariate normal process, has been developed.
Hotelling 77 chart is sometimes referred to as a multivariate Shewhart chart because it is
a direct analog of the univariate Shewhart X chart. As long as the points plotted on

the y* or T7 control chart fall below the UCL of the chart, the process is assumed to
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operate under a stable system of common causes, and hence, in a state of control. When
one or more points exceed the UCL, the process is deemed out of control and an

investigation is carried out to detect the special underlying causes.

The parameters of concern in multi-variate control charting are the process mean vector

and covariance matrix. When these in-control parameters are known, the plotting statistics
ona y’control chart are directly derived from their values. The UCL of this chart is based

on the chi-square distribution. Most of the time, however, these parameter values are
unknown. In such case, they are estimated from some m initial subgroups of size n taken
when the process is believed to be stable. The UCL of this chart is based on the F

distribution. When a future subgroup is drawn from the process, Hotelling 7 statistic is

calculated using parameter estimates and is plotted on a 7> control chart without

changing the control limits.

Geometrically T can be viewed as proportional to the squared distance of a multivariate
observation from the target where equidistant points form ellipsoids surrounding the target.
When the data are grouped, the chart displaying the distance of the group means from the
targets can be accompanied by a chart depicting a measure of dispersion within the
subgroups for all the analyzed characteristics. However, with only upper control limits, we
can easily see that any Hotelling’s multivariate type control procedure is not suitable to
detect process deterioration or improvement. Moreover, the run rules for univariate
Shewhart chart cannot be applied, so that the sensitivity of the Hotelling 7 chart to the

mean shift is not as good as desired. Employing ARL as the indicator, analysis and
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simulation runs show the merits of the simple usage of the transformation. Aware of that a
control chart using an exact statistic can never be inferior to that using a transformed
statistic, we develop a new methodology based on the normalizing approach which
demonstrates good properties in certain cases. The subsequent simulation study shows that
a valuable trade-off between the simplicity of use of the normalizing procedures and fair
performances of the related charts can be achieved. A simple power transformation is
recommended for the easy implementation of the method. However, one should be
cautious when using our method since the transformed data do not have direct

interpretations.

The present chapter is organized as follows. First, the multivariate process model and
Hotelling 7 control charts issues in particular are reviewed in Section 5.2. In section 5.3

we propose the simple power transformations used for T statistics. The performance is
evaluated by adopting Stephens (1974) modified AD test. Section 4 investigates the
properties of the control charts based on transformation methods with vivid procedures on
application. Section 5 studies the performance of the transformed control chart, where

extensive simulation study results are presented. Conclusions are drawn in Section 6.

5.2. Multivariate Process Model and Control Limits Setting

5.2.1. Multivariate Process Model and control limits setting
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Modern computers and data collection devices allow for more and more data to be

gathered automatically. As a popular control statistic for monitoring multivariate

processes, Hotelling 7° has been extensively studied. We let X , :(X D, I, ¢ )’
denote a px1 vector that represents the p observations on the j-th component in the i-th
subgroup, i=1,2,... and j=1,2,...,n. Assume that X ;S to be independent and identically
distributed normal random variables with mean wx and covariance matrix X when the

process is in control. Let X, denote the average vector for the i-th subgroup, and let S,

denote the unbiased estimate of the covariance matrix for the i-th subgroup,
— 1
X =— Z X,
i

and

When the process is in control and the in-control process parameter values are known, the

statistic plotted on the y* control chart for the i-th subgroup is

!

2 =X, - p) 2 (X, - ) (5.1)
When the process is in control this statistic has a chi-square distribution with p degrees of

freedom (Montgomery, 1996). It is plotted on a y* control chart with a UCL given by

UcL- 42, (52)
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where ;(fw is the (l —a)th percentile point of chi-square distribution with p degrees of

freedom and « is the probability of a false alarm for each subgroup plotted on the y’

control chart. The LCL is set to 0.

If the process parameter values are not known, data from m initial subgroups are collected
when the process is believed to be in control. Then, pooling data from these m subgroups

and assuming that the process was in control, unbiased estimates of the mean vector

X and the covariance matrix S are given by

and S =

respectively. A T2 control chart is constructed and the  initial subgroups at sample size n
are tested retrospectively to ensure that the process was in control when these initial
subgroups were drawn. When a future subgroup is drawn from the process for on-line

monitoring purposes, the statistic plotted on the control chart is

T = n()?i - )?) 5 ()?i - )?) (5.3)
It follows theorem (iv) in Appendix II that

m(n—l)—p+1

7> ~F
m(n —l)p

i pom(n=1)-p+1

This statistic is plotted on a 7> control chart. The UCL of this control chart is given as

plm—1)n-1
UCLTZ = wﬁv&,p,mn—m—pﬂ (54)

mn—m-—p+1
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where F, ,  is the (1 - a)th percentile point of the F distribution with v, and v, degrees

of freedom, and « is the specified acceptable false alarm probability for each subgroup
plotted on the T control chart. If the process parameters are estimated from a reasonably
large number of initial subgroups, the usual practice for constructing 7> control chart is to

use UCLZ2 instead of the exact UCLTZ. The LCL, same as y° control chart, is set to 0.

For Phase II, the control limits are:

p(m+1)(n—l)
UucL , =——+~~
™ mn-m-p+1

a,p,mn—m—p+1
LCL=0 (5.5)

When a point falls over upper control limits, the control chart indicates an out-of-control

signal.

5.2.2. Non-normality Drawbacks on Hotelling 7’ chart
The drawback of Hotelling’s multivariate type control charts lies in the original
conception of any Hotelling’s multivariate type control procedure. For instance, Hotelling

T? -control chart only has the upper control limits, which cannot be used to detect process

deterioration or process improvement and the run rules are not applicable on the Hotelling

T? -control chart.

Let us elaborate on these limitations by considering the following example. Two quality
characteristics are to be jointly monitored. We collected 20 preliminary data with sample
size of 5 for each variable. We will consider this to be Phase I, establishing statistical

control in the preliminary samples, and calculate the upper control limit from formula
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(5.2). Assume that the process is in control in Phase I, we would proceed to Phase II.

Phase II control limits could be calculated from formula (5.3). If @ =0.001, the upper

control limit is:

UCL . = p(m+1)(n—1)
mn—m-—p+1

T

_ 2x(20+1)5-1)

20x5-20-2+1

=16.0526

a,p,mn—m—p+l

0.001,2,20x5-20-2+1

We simulate the data from a new process, of which one quality characteristic shifted from

its original parameters. The T -statistics are calculated in Table 5.1.

4.6583  4.3236
8.9812 7.1102
15.8137 4.6497
13.1988 2.3933

5.6251
8.4883
2.6264
1.7526

8.9789
2.5609
6.4381
2.4732

2.7281
6.9204
1.9433
1.8584

Table 5.1 T -statistics for the shifted process 1
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UCL=16.0526
15 —
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Figure 5.1. The Hotelling 7 control chart for data in Table5.1 (Phase II)

Figure 5.1 shows an in-statistical-control state although the process level shifted. This is
due to the fact that the process variance decreased. Since only the distance of the vectors
of observed means from the target values are taken into account, the reduction of variance
counterbalances the increase of the process average. Thus, the change of the process
cannot be expressed by the 77 -statistics. Therefore, there is no out-of-control signal on

the Hotelling 7> chart.

We can study this problem by further investigation of the process ARL performance.

Given the type II error £, the out-of-control ARL can formulated as,

ARL, = = : (5.6)
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where S is type II error, UCL, is the UCL set when the process was in control, and
S (x) is the probability density function of 7> computed from the shifted process.

Assume we monitor two quality characteristics simultaneously, denoted by 4 and B. The
upper control limit is set by using the 99.9-percentile. We vary the mean value of the
distribution of variable 4 to detect the ARL of the 7> chart. Then we decrease the variance

of variable 4 by 20% while varying its mean. The pattern of the ARL is shown in Figure

5.2 below.
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Figure 5.2. ARL performance of Hotelling 7> chart
Magnitude of the shift, in terms of o

The x-axis is the magnitude of the shift of the mean of variable 4. The y-axis is the value
of the ARL. The dash line represents the ARL without any change in variance. The solid

line represents the ARL with 0.2-sigma decrease in the variance of variable 4. The figure

shows the properties of the Hotelling 7° chart settings. When there is no change in the
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process’s variance, it has a good responding rate of detection. This is very desirable, as we
expect to have out-of-control signals sooner when the shift of the process is increasing.
However, when there is the reduction of the process’s variance, we have to wait for more
sampling points until we can get a signal. Moreover, it would lead to the illusion that the

process is improved. This results in misjudgments on the process performance.

Moreover, usually zone rules are considered to be applicable only for the X chart under
the normality assumption. It is not considered to be useful for the Hotelling T° chart,
although it is a direct analog of traditional univariate Shewhart type control chart. That is,
we cannot divide the area within the control limits into zones. Thus, it is impossible to
apply the other run rules though the idea of using information from more than one point
should be applicable as well. It is known that in case of simultaneous shift of mean and
decrease in variance, Hotelling T° chart has difficulty to signal. The privilege of applying
the other run rules is not only to increase the sensitivity of the control chart, but also to
detect the process deterioration as soon as possible. Thus, if these run rules could be
applied, the Hotelling 7> control chart would be able to detect the shift of both process

mean and process variance.

0.46285 0.4685 0.70812 2.16781 2.19452
0.82333 1.50731 1.09594 0.02018 0.8372
0.31802 0.10281 1.2022 1.08346 4.63336
3.24242 3.46168 2.45687  7.0098 0.41252

Table 5.2. T -statistics for the shifted process 2
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We change the process variables setting by reducing the variance of the two variables.
Now the new data come from the shifted process. The T statistics are calculated in Table
5.2 above. Figure 5.3 is the Hotelling T'* control chart on the data below. The figure shows
an un-random pattern which is that the majority of the points are close to the lower control
limit. However, since run rules cannot be applied on this type of the charts, no out-of-
control signal will be detected. If we assume there is a one-sigma limit, it can be

considered as out-of-control state according to the run rules.

20 —
UCL=16.0226
ai]
=0
™
=0 -
AN}
=
=
=
L=
= . R
. 1-sigrma limit {assumed)
0 — LZL=0

| | |
1] 10 20
Observation Number

Figure 5.3. Hotelling 7> chart for variance reduced process data

Another important drawback in direct application of Hotelling 7> control charting method
is that, the established control limits in Phase I is not the exact control limits for new
observations in phase II. Indeed, when the new observations are collected and new

plotting statistics are computed, the distributions of the new statistics are no longer the
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ones used to estimate the previous UCL. Thus, the ARL is not well applicable and the

properties are not as we expected.

Following the approach in Chapter 4, we are thinking of normalizing the multi-variate
charts. The advantages of this approach are well as the ones mentioned in Chapter 4,
including expected ARL properties, feasible application of run-rules, etc. However, we
have also noticed that this approach has its intrinsic defaults. Designed based on the real
distribution of the original statistics, Hotelling-T> charts are explainable with the pattern
they reflect. For normalized charts, since the plotting statistics are no more the original
statistics, interpretation is difficult. Yet, Normalizing transformations does not
intrinsically change the relative positioning of the data values. What they do is to re-
express the data, while preserving the rank order, to a scale that allows the normal
distribution to serve as a benchmark for interpretation and judgment (Alwan L., 2000).
Therefore, normalized charts can be used to monitor the process of the original statistics.
A good trade-off between the simplicity and the accuracy of the transformation is valuable
for industry applications. Other approaches should be employed to investigate into the out-

of-control interpretation, if a signal does happen.

5.3. The Best Normalizing Transformation

5.3.1. y*-distribution
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Given known distribution parameters, the plotting statistics in Shewhart type multivariate

control charts follow y* -distribution. We, therefore, first review the transforming methods

for y*-distribution at first.

On the basis of Konish’s (1981) study, Taneichi et al (2002) derived a concrete

normalizing transformation. They assumed that the mean, variance and third moment

about the mean of a y [2] -distribution are expanded as

E(r, )= ,u+%,ul +0[%J
rr)=Lo o(lj

p p

and

Er, - ()] #v + {%J (5.7).

p

They obtained the following transformation form as

@ ﬁ{(T—pj —1}—l(y1+102§] ,n#0
o|n|lu P 2

a(r,)= o (5.8).
—p{ﬂlog—"—l(ﬂl +1025ﬂ,77 =0
o L p 2
Let X, be distributed as chi-square distribution with p degrees of freedom. Let7, = £
P

then

&(r,)= §{3{(Tp )? —1}+i} (5.9)
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Since the transforming formula proposed by Taneichi et al (2002) is shown to have the

best performance under the comparative studies, we adopt formula (5.9) to apply

normalizing transformation on y° -distribution. For each given value X, ~ ;(12, , the

transformed values can be expressed as

1/3
Y =23 Xl 2 (5.10)
2 p 3p

This transforming formula is polynomial and hence can be also expressed in the form of
Y, =a,X'" —a, (5.11)

where a, and a, are the coefficients. This formula transforms an F-distributed value to

standard normal. To simplify, we just ignore the location parameter and scale parameter.
That is, the expression (5.12) below can be wused to transform an

F-distributed value to a normally distributed value:

Y = X, (5.12)

1

.1 L . .
The power of the transformation is 3’ which is a very convenient number that can simply

be handled by a pocket calculator. By using this simple power transformation, a control

chart for the Hotelling j° statistics can be constructed in the traditional way.

5.3.2 F-distribution

Normalizing transformation on F-distribution

When all of the parameters of the variates’ distributions are unknown, it is proved that the
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Hotelling 7> statistics follow F-distribution. We now examine the normalizing

transformations for F-distribution and find out the best one to use.

Isogai (1999) introduced two types of formula for power transformation of the F variable

to transform the F distribution to a standard normal distribution. One formula is an

extension of the Wilson-Hilferty transformation for the y* variable, which is:

TI(F)sign((h)(I}h ];f[Fh]) (5.13)
Var|F" |2

where F is distributed as F sign(-) is a function that gives the sign of its argument, and

u,y?

h:_lu—v

. The other type is based on the median of the F distribution, which is:

T, (F)z sign(h){)(h — [ﬁ(o-s)]h } (5.14)

where F(0.5)denotes the median of F, . Isogai (1999) combined those two formulas and

derived a simple formula for the median of the F distribution, which leads to a power

normal family from the generalized F distribution. This transformation is defined by:

T,(F)= Sig”(h){Xh _[ﬁ(O;S)]h } (5.15)
=)

When u and v have the same degrees of freedom, the limiting form of 7, (F)is:

InF

(4u )%

: (5.16)

where we have u=v.
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From Isogai’s study, the best transforming form is the formula (5.9) above. That is, given

the data X, from F, , the transformed value is expressed as:

u,v >

y - sz’ -[Fos) | -
»()

This formula transforms an F-distributed value to standard normal. To simplify, we just
ignore the location parameter and scale parameter. That is, the expression (5.18) below

can be used to transform an F-distributed value to a normally distributed value
v, =X/ (5.18)
Thus, a power transformation is proposed for normalizing F-distribution with a

transforming power parameter as:

h=- (5.19)

lu-v
3u+v
It is shown that the power of the transformation /# depends only on the degrees of freedom

of the distribution.

Simple power transformation

We calculated the / values for some common settings of the triple (p, n, m) to assist the
construction of the transformation Hotelling 7> chart ( some of the / values can be found
in Appendix III). Here, p is the number of the quality characteristics being monitored
simultaneously; 7 is the sample size of the observed subgroups; and m is the number of the
preliminary subgroups. Recall the expressions for the numerator and denominator degree

of freedom of an F-distribution, we can determine the two degrees of freedom by
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calculating u=p and v=mn—m—p+1 , respectively. Therefore, the transforming
parameter is computed as

1 2p+m—mn-1

h= (5.20)

3 mn-m+l
From Appendix III, we notice that the 4 values are very close to 0.3, which is a simple
constant. Inspired by this, we consider that the transformation may have the possibility of
being turned into simple constant power transformation. Thus a simple power

transformation could be used as,
Y =X (5.21)
where ¢ is a constant. To find out the feasibility of using formula (5.21) as the

transformation power for this simplicity, we conducted the simulation study.

A goodness of fit test
The Anderson-Darling test (Stephens, 1974) is used to test if a sample of data came from a
population with a specific distribution. The test is defined as:

H,, : The data follow a specified distribution.

H, : The data do not follow the specified distribution.
The test statistic, i.e. the quantitative measure of the goodness-of-fit used, is the
Anderson-Darling test statistic, which is defined as:
A*=-N-8, (5.22)

where

5= 32Dl p(w ) mli- £(7,.,)]

i=1 N
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N is the total number of the observations, F' is the cumulative distribution function of the

specified distribution, Y, is the i-th observation among the ordered data. The AD’ statistic
is based on a comparison of F(x) with the empirical distribution function F,(x). By

adopting modified test statistic (Stephens, 1974) with unknown distribution parameters,
the test procedure is as follows:

1. Sort the given values in ascending order.

2. Calculate the required test statistic by applying the formula (5.21).

3. Test by using preceding statistic, calculate the modified statistic AD" as:

2

AD" = AD-(Hi—éj (5.23)
N N

4. Reject Hat a chosen level of significance if AD" exceeds the significant point

given.
With 99% significance level therefore, if the AD" of using a constant as the transformation
power is less than the critical value, we may use the constant to construct a simple power

transformation. The critical value is 1.091.

Therefore, we construct a test to evaluate the performance of two different normalizing
transformations for F-distribution. Calculated 4D" values under different degrees of
freedom for both transformations. If the both of the below criteria are met, the conclusion
can be drawn that the two different normalizing transformations do not have significant
difference in terms of normalizing performance:

1. P {AD* values of transformation 4 is less than critical value] AD" values of

transformation B is less than critical value} > p,.
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2.

P, {AD" values of transformation B is larger than critical value| AD" values of

transformation A is larger than critical value} > p,.

p, and p, are the accepting confidence levels of performance comparison. The higher the

p, and p, are, the more confident we are about the conclusion that the two

transformations do not make different performances. In the simulation we use 95% for

both p, and p,. This probability can be approximately calculated as:

1.

Compute the number of times that AD” values of transformation A is less than
critical value given that AD" values of transformation B is less than critical value.

Denoted by F, .

Compute the number of times that AD" values of transformation B is less than

critical value. Denoted by P;.
P

R=t.
PB

Compute the number of times that 4D values of transformation B is larger than
critical value given that AD” values of transformation 4 is larger than critical value.

Denoted by F,, .

Compute the number of times that AD" values of transformation A is larger than

critical value. Denoted by P, .

If >0.95 and P, >0.95, we consider the two transformations do not have different

performances.
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Simulation and results
The simulation is conducted as follows. For each F-distribution with different degrees of
freedom settings, 100,000 data are generated. The degrees of freedom (u, v) are calculated

as u=pandv=mn—m— p+1. We make p vary from 2 to 50, m from 10 to 200 and n

from 3 to 50. The process is repeated 1000 times. Then transformations by using constant
power (specifically 0.3, % and 0.35) and A-values as the power are applied onto the data

to compute a AD" value. The final AD" value for each setting is the average of the 1000

trials.

Simulations show a satisfactory performance of using 0.3 as the constant power of the
transformation. The data show an obvious domination; when the difference between the
first degree of freedom and the second degree of freedom is large, using 0.3 as the power
achieves smaller AD" value than using A-value. This translates to that when the u-v is
moderately large; using 0.3 as transforming power excels in normalization on F-
distribution. More specifically, there are three different cases:
1. For u=2, 3, 4, 5, simple power transformation with parameter 0.3 has better
performance than with parameter 2 when v is larger than 30.
2. For u=6, 7, 8, 9, 10, simple power transformation with parameter 0.3 has better
performance than with parameter 2 when v is larger than 60.
3. For u larger than 10, simple power transformation with parameter 0.3 has better
performance than with parameter 2 when v is larger than 80.
Special care has been focused on certain range of # and v in the study of simulation results.

Recall the expression of # and v in terms of m, n and p, we have:
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{ Hep (5.24)

v=mn—-m-p+1

Substitute (m, n, p) with the settings that are commonly used in industry, we are able to
draw more reliable and practical conclusions for real application. For this purpose, we
have investigated the results with m varies from 15 to 50, n from 3 to 10 and p from 2 to
10. The calculated AD" values for Box-Cox transformation, power transformation by
using s-value and power transformation by using 0.3 are presented in Appendix III. In this
simulation, 2592 different settings of degrees of freedom are tested. There are 1289 times
that s-value power transformation has AD’ value smaller than the critical value, 1273
times that 0.3 power transformation has AD’ value larger than the critical value, 1241
times that both /-value and 0.3 power transformation has AD” value smaller than the
critical value, and 1212 times that both /-value and 0.3 power transformation has AD’
value larger than the critical value. Thus we have,

P,=1241, P,=1212, P,=1273, P,=1289,

P
P =2 =0.963,
P

B

P
P, =% =0.952.
P

A
Therefore, we conclude that 0.3 can be used instead of real A-value for the power
transformation to achieve same level of performance under common settings. Further
investigation has shown that when we use reasonable sample size of the subgroups such as
3 to 5 or larger and moderate number of preliminary data such as 25 to 30 or larger,
together with less than 10 simultaneously monitored variables, we can just use 0.3 as the

transforming power. While for more than 10 variables, slightly more data need to be
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collected with larger sample size in order to apply the simple power transformation. The
suggestion could be 30 to 40 data with sample size of 3 to 5. Therefore, our proposed

transforming formula is:

Y, =Xx" (5.25)
Care should be exercised that using 0.3 as the transforming power parameter value is for
common proper settings mentioned above on transforming multi-variate chart only.

Otherwise, if given very few samples at relatively large sample size, it is better to adopt

h-value, that is:

Y, =X/ (5.26)

However, this will not be the common practice in industry as the setting is not

recommended for constructing reliable control limits.

5.4. Implementation and Examples

5.4.1. Transformation selection and Implementing Procedures
When the parameters’ values are known, the plotting statistics follow y* distribution.
Therefore, our corresponding transforming scheme is to normalize the y’ -statistics.

Having the y”-values, we can just simply use the formula (5.10) on each value.

When the parameters of the underlying distribution are unknown, the statistics plotted on
multivariate chart follows F-distribution. Therefore, we need to know the number of

quality characteristics p, the number of preliminary data m and the sample size n of each
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subgroup. For each set of (p,m,n) we can find out the corresponding transforming
parameters in Appendix II. Substituting the values of the parameters into formula (5.16),
we can get the transforming formula for the data. To transform the F-values, just simply

use the formula on each value.

The procedures of constructing control charts for multivariate analysis with transformation
involve the normalizing transformation and individual chart construction. The basic steps
are as follows:

L Find out the values of p, m, and n.

p is the number of quality characteristics that are monitored simultaneously. m is the

number of preliminary data at sample size n.

I1. Calculate 7> ( x*) statistics for subgroups.
When the distribution parameters of the variables being monitored are known, we use

formula (5.1) to calculate the y* statistic, which is:

2 v ' -1 v
i :n(Xi _/JO) Z, (Xi _/Jo)a
where 4 is the mean vector and X is the covariance matrix.
When the parameters are unknown, we use formula (5.3) to calculate the

corresponding T statistic, which is:

T’ =n()?i —)?)'571()?,- —):(),
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where X = ZSi are the unbiased estimates of the mean vector

1
m- -

1l & — —
—> X =
m; . and S

and the covariance matrix.

I11. Specify the distribution of the T° ( y° ) statistics. Get the transforming
parameters or transforming formula.
The distribution of y” -statistics is y~ -distribution. We use formula (5.13) to perform
the normalizing transformation. That is,
Y, =x,""

1

The distribution of 7> -statistics is F-distribution. Based on the settings of (m,n,p) we

can choose from using formula (5.25) or formula (5.26).

IV.  Transform the 77> ( y*) statistics for subgroups.
By using the selected formula in step III, we substitute the calculated 7> ( y°)

statistics for X, . The Y, is the plotted statistic.

V. Construct traditional individual chart on the transformed data.

Based on data Y, we just follow the procedures of constructing traditional Shewhart

type chart to get the individual chart.

VI.  Interpret the control chart.
The interpretation of the individual chart is similar to the traditional ones. The

beyond-control-limits points indicate the out-of-control state. Special further
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investigations, i.e. the upward or downward shifts, are needed as the plotting statistics

do not have the same meaning as the ones in traditional individual chart.

5.4.2. An implementation example

In this section, an example is used as an illustration of the control charts discussed in the
previous section. It uses the data set in Montgomery (1996) for illustrating the parameters
unknown case.

Example: Montgomery (1996)

The data are tensile strength and diameter of the textile fiber, which are to be jointly
controlled. The engineer has decided to use n=10, 20 preliminary samples have been taken.

L Find out the values of p, m, and n.
In the process, we have two quality characteristics to control simultaneously. Therefore,

p=2. We collect 20 preliminary data of sample size equals 5. That is m=20, n=10.

II. Calculate T statistics for subgroups. The data are shown in Table 5.3.

2.16 2.14 6.77 8.29 1.89
0.03 7.54 3.01 5.92 241
1.13 9.96 3.86 1.11 2.56
0.70 0.19 0.00 0.35 0.62

Table 5.3. T? values of the data in the example
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Freguency
|

Figure 5.4. Histogram of T’ statistics data in the example

I1I. Specify the distribution of the T statistics. Get the transforming parameters.

In this example, the 7> values follow F-distribution. p=2, m=20, n=10. Therefore, the
degrees of freedom are 2 and 179. According to our decision rule, with p=2, since 179-
2>>30, we can use 0.3 as the power for the transformation. That is, the transforming

formula is:

IV.  Transform the 77 statistics for subgroups. The transformed data are shown in

Table 5.4.

1.2599 1.256389  1.774911 1.886107  1.210427
1.037346  1.992865 1.499603  1.031803  1.325782
0.34925  1.833207 1.391778  1.704891 1.301982
0.898523  0.607612 0 0.729828  0.866398

Table 5.4. Transformed data in Table 5.3
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Figure 5.5. Normal probability plot of transformed data in Table 5.5
The probability plot and AD value above show a good approximation of normal

distribution.

V. Construct traditional individual chart on the transformed data and analyze the

control chart. After the transformation, the control chart in Phase I is:

3 —
UCL=2 671
a2 —
_
=
- F//\ M
™ i Mean=1 230
3 1 h i
=
=
=
D —1
LCL=-0.2111

[ [ [
0 10 20
Chservation Mumber

Figure 5.6. Individual chart for transformed data

118



Chapter 5 Study on Normalization Transformation in Multivariate Charts

All the points are lower than the upper control limit. Therefore, from the chart, we may
draw the conclusion that the process is in statistical control. Thus, we may use the set of
data to set the control limits for Phase II. In this example, we may use as well the control

limits (-0.2111, 2.671) for future monitoring.

5.5. Performance Comparisons

5.5.1. An investigation of the ARL and discussions

As we discussed in the beginning of this chapter, traditional Hotelling 7> -control chart
only has the upper control limit. The setting of this upper control limit is that of exact
probability limits. Considering that the traditional 3-sigma limits provides the feasibility to
apply the run rules and achieves the desired ARL properties, we think of using normalizing
transformation approach as the alternative. Normalizing transformation is substantially
helpful as for this aspect. The transformed data follow or approximately follow normal

distribution, so that the ideal ARL properties could be achieved.

Recall that the desired features of traditional 3-sigma-limit control chart are that it detects
the process improvement and deterioration at the targeted rate, and it signals both
directions of process change at same sensitivity level. For multivariate chart, the exact
probability limit can be used to achieve the desired run length when the process is in

control, like R-chart, being discussed in Chapter 3. However, due to the skewed nature of

F-/ Chi-square distribution, although traditional Hotelling- 7> chart has symmetric ARL, it
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lacks ability to detect the process shift with desired probability. The proposed control
chart scheme consists of introducing the characteristics in one chart, so that it has the same
ability as the traditional 3-sigma-limit chart. This, indeed, is done by compromising part
of the accuracy. For instance, in Phase II, the plotting statistics are following F-
distribution. ARL distributions of the traditional limits and the limits on normalized data
are drawn in the figures below with different sets of parameters. Denote the sample

distribution as £, ,. The mean and the variance of the F-distribution can be expressed as

follows:

5 2v2(v+u—2)
u(v—2)2(v—4).

Figure 5.7 is the ARL distributions when v is fixed at 400. Figure 5.8 is the ARL
distributions when v is fixed at 100. Figure 5.9 is the ARL distributions when v is fixed at
20. In each figure, u varies from 2 to 10 and 20. In these figures, d represents the
magnitude of the shift of 7' in terms of the standard deviation of 7. The control limits
are set by using the exact probability limits of F-distribution. For the normalized curve,

traditional Shewhart type control limits are set.
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Figure 5.7. ARL distribution of probability limits and limits on normalized F-distribution
(v=100)
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Figure 5.8. ARL distribution of probability limits and limits on normalized F-distribution

(v=20)
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Figure 5.9. ARL distribution of probability limits and limits on normalized F-distribution

(v=400)

Unlike Hotelling 7> -chart, exact probability limits tend to give slower signal when the
process moves farer away from the target. Control chart on normalizing transformed data
is acting to off-set traditional Hotelling 7> -chart and the exact probability limit chart.
Although it is clear from the figures that the data after transformation are not perfect
normal, in these cases the in-control ARL is close to the expected 370 and the out-of-
control ARL perform more satisfactory compared to the exact probability limits do. When
the process is far away from the target, the ARL is shorter at any point than the ARL of the

probability limits. At the same time, when the process is close to the target, the ARL is

shorter at any point than the ARL of the Hotelling T limits. One should bear in mind that
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this comparison study has been done based on examining the Hotelling 7> statistics
themselves. It showcases the intrinsic properties of the the Hotelling T* statistics.
However, it overlooks how the control charts perform when the change in the variables is

of concern.

A more straightforward comparison between the two control charting scheme is presented
in the simulation study below. We examine exactly how 4RL moves when the means of
the variables are changing. Without loss of generosity, we assume that the rest of all the p

variables are dependent on one variable (say x,) with a linear relationship. We monitor the
ARL based on the shift of the mean of x,. Denote the mean of x, as g, the standard

deviation of x, as o, the shifted mean of this variable as u'. k represents the magnitude

'

H—Hy
Oy

of the variable’s mean shift in terms of its standard deviation, that is &k = . For

n=2,...,10, p =2,...,10, m=15,...,50, we generate the samples of multi-variables that
follow standard normal distributions. S and x is thus estimated to calculate 7°. To

calculate an ARL, 1000,000 simulation runs are needed to ensure the good approximation.

The ARL’s for k values are computed by taking the average of 300 ARL values for each
different k. By using normalizing transformation (5.25), that is ¥, =X i0.3 , ARL are

computed for normalized chart as well. We present selected simulation results in Figure

5.10, Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14 and Figure 5.15 below.
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Figure 5.11. ARL-curves of Hotelling-T* chart and normalized chart (p=2, n=3)
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Figure 5.12. ARL-curves of Hotelling-T?> chart and normalized chart (m=15, n=3)
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Figure 5.13. ARL-curves of Hotelling-T*> chart and normalized chart (p=8, m=35)
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Figure 5.14. ARL-curves of Hotelling-T* chart and normalized chart (m=50, n=10)
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Figure 5.15. ARL-curves of Hotelling-T*> chart and normalized chart (p=8, n=10)
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It is clear from the figures above that the ARL curves of original multi-variate charts are
symmetric, when it is dependent on the change of the variables. This meets one of the
desired criteria of a good ARL curve, which is to be symmetric. However, the normalized
chart shows a more reasonably sensitive response to mean shift. Comparing the shapes of
ARL curves has revealed that the kurtosis of the curve is smaller for Hotelling- 7> charts.
Therefore, if the control limits are determined in the way that the in-control ARLs are set
at same level, the out-of-control ARL of Hotelling-T> charts will be larger than that of
normalized chart. In this case, normalized chart will detect a real out-of-control signal
faster than the Hotelling- 7> charts do. On the other hand, if the control limits are
determined in the way that the out-of-control ARLs at one given point k are set at same
level, the in- control ARL of Hotelling- T charts will be smaller than that of normalized
chart. In this case, normalized chart will give out a false out-of-control signal slower than
the Hotelling- T charts do. In a word, Normalized chart shows good sensitivity for both

types of signals in this case.

Another one of the interesting results from the simulation is that despite the fact that the

UCL for Hotelling-T? charts is set at 99.73% probability point, the in-control ARL are
never anywhere close to the expected 370. This is actually due to small size of preliminary

samples when lead to relatively rough estimation of § and . The trend is that the larger

m 1is, the closer the in-control ARL gets to 370.

Comparing the tail probability also helps to determine the performance. We calculate the

exact tail probability by using extensive simulation in Table 5.5 below.
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u=2

v 1 2 5 10 20 50 100 200 400

PTZ 0.00058 0.01724 0.03324 0.03215 0.02909 0.0279  0.02601 0.02637 0.02531
P, 0.00285 0.00287 0.00293 0.00298 0.00311 0.0313 0.00357 0.00384 0.00398
u=5

% 1 2 5 10 20 50 100 200 400

PT2 0.00114 0.00924 0.03217 0.02772 0.02311 0.01774 0.01759 0.01613 0.01589
Py 0.00257 0.00274 0.00293 0.00299 0.00310 0.0333 0.00337 0.00369 0.00392
u=10

% 1 2 5 10 20 50 100 200 400

PT2 0.0004 0.01186 0.03107 0.02694 0.01958 0.01498 0.01365 0.01128 0.01101
Py 0.00255 0.00268 0.00290 0.00289 0.00310 0.0313 0.00335 0.00378 0.00394
u=20

v 1 2 5 10 20 50 100 200 400

PTZ 0.00039 0.01618 0.03012 0.02579 0.01861 0.01286 0.0095 0.00885 0.00849
P, 0.00252 0.00267 0.00269 0.00290 0.00301 0.0312 0.00327 0.00348 0.00378

Table 5.5. Tail probabilities for F-distribution for some of the parameters

P, : tail probability of traditional Hotelling 7’ ? Jimits

P, : tail probability of limits on transformed Hotelling 7' > statistics

To calibrate with the ideal probability, we can see from Table 5.5 that the limits on

transformed data produce tail probability that is closer to the ideal tail probability than the
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traditional limits do. For example, with u=2 and v=2, the difference between the real tail

probability and the ideal one decreases from 538.5% to 6.3%.

Moreover, in section 5.3, we provide very simple settings of the transformation parameters.
When the new observations are collected and new plotting statistics are computed, the
distributions of the new statistics are the very one used to estimated the previous UCL.
Thus, we avoid the case that the control limits in Phase I and Phase II are different which
could also lead to the problem with ARL performance. This ensures the consistency of the

control limits used for one process, so that the limits for Phase I and II are same.

Although normalized charts can never be superior to the original Hotelling- 7> charts, we
have found a beneficial trade-off to make the normalized charts useful. Besides, the
proposed methodology would be even more interesting for professionals accustomed to
work with Shewhart type control charts, which are based on normal transformation. They
will, to a certain extent, be given the opportunity to continue using the charts based on

normal distribution and detecting signals as they are familiar with.

5.5.2. Simulation studies on Comparison to Box-Cox transformation

Nowadays, Box-Cox is one of the most popular transforming methods used to deal with
non-normality problems as it provides very good normal approximation. We conduct the
simulation work to compare the performance of the Box-Cox transformation with our

simple power transformation.
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The simulation is done by measuring the goodness-of-fit of the two transforming methods

in the way of using Anderson-Darling test as described before. The whole simulation
studies are divided into two parts. In the first part, we simply generate data from y’ -
distribution. Transform the data by using formula (5.11). Then, 4D values are calculated
and stored. The second part, we simulate data from F-distribution. Then the
transformation of formula (5.26) is applied to calculate the 4D values again. In each part,
we generate 10,000 data as a set to perform the transformations in each run. For y”-
distribution, we test the data with degrees of freedom from 2 to 30. For F-distribution, we

test the data with setting as in Appendix III.

In the simulation for y° -distribution, 29 different settings of degrees of freedom are

tested. There are 19 times that Box-Cox transformation has AD" value smaller than the
critical value, 12 times that 0.3 power transformation has AD" value larger than the critical
value, 14 times that both Box-Cox transformation and 0.3 power transformation has AD"
value smaller than the critical value, and 7 times that both Box-Cox transformation and
0.3 power transformation has AD " value larger than the critical value. Thus we have,

P,=14, P,=7, P,=12, P,=19,

P
P == =0.737,
P

B

P
P, =% =0.583.
P

A

Box-Cox transformation excels in the goodness-of-fit of normalization.
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In the simulation for F-distribution, 2592 different settings of degrees of freedom are
tested. There are 19 times that Box-Cox transformation has AD" value smaller than the
critical value, 1273 times that 0.3 power transformation has AD" value larger than the
critical value, 14 times that both Box-Cox transformation and 0.3 power transformation
has AD" value smaller than the critical value, and 1159 times that both Box-Cox
transformation and 0.3 power transformation has AD" value larger than the critical value.
Thus we have,

P,=1117, P,,=1259, P,=1273, P,=1189,

P

P == =0.939,
PB
P

P, =% =0.989.
P

A

Box-Cox transformation seems to be slightly better than 0.3 power transformation.

However, the difference of comparison is rather small. Besides, the Box-Cox power
normal family has a serious defect, i.e. that the correlation structure of the maximum-
likelihood estimates of the parameters is not preserved under a scale transformation of the
response variable. Our simple power family is free from this defect. Moreover, the Box-
Cox power transformation is not easy to apply while our simple power transformation can
be done with Appendix III or a pocket calculator. Therefore, the simple power
transformation is promising in industrial applications because of its ease of

implementation.
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5.6. Conclusions

Data non-normality is a common problem encountered in statistical process control. In
multivariate process monitoring, Hotelling 7> -chart is widely used. However, this classic
control chart is based on the normality assumption and thus fails to properly monitor an
asymmetric distribution. Transformation is one of the convenient and easy ways to remedy
the problem. Inspired by some existing normalizing transformation, we have proposed two
simple power transforming on x> - and F-distributions to get some approximately normal
data. Based on these data, the traditional Shewhart type 3-sigma individual control chart

can be constructed. Thus a Hotelling 7> -chart is remodeled into a traditional control chart.
Simulation study focuses on the selection of transforming parameters and comparison of

the transformation performance which aids the simplification of the transforming formulas.

By developing simple power transformation, both numerical examples and analytical

results show a satisfactory performance. Because of the non-negative property of the
Hotelling 7> -chart, the run rules are not applicable due to the asymmetric property of
both distributions of > and F. After transformations data tend to be normally distributed.

Under the better fulfillment of the normality assumption, traditional individual chart is

properly constructed and performs as expected.

Although this methodology has its intrinsic flaw that the transformed control charts will
never be beyond the original charts with exact probability limits, it provides an easy and

moderately satisfactory way in real applications. The physical interpretation of the
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variables may be lost through the transformation. Subsequently the transformed data may

not be directly interpretable. This may be of concern in future studies.
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Conclusions

6.1. Concluding Remarks

The theoretical achievements in normalizing transformations provide a new approach to
more precise monitoring on non-normal data. After being transformed to a normal
distribution, the quality characteristic of traditional control charts can be simply monitored

by a traditional Shewhart type individual chart.

Very accurate transformation forms have been proposed in literatures on ¢, F, non-central ¢,
non-central F, Exponential, Chi-square distributions and some statistic families as well. If
the underlying distribution is detectable or approximately detectable, the appropriate
transformations above could be employed to further apply the standard 3-sigma limits.
Otherwise, some formulas for generic distribution would be chosen as an alternative. One

can follow the procedures described for implementation.

Performances analysis and numerical examples reveal that normalizing transformation

could improve the performance of control limits in the sense that it achieves more
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desirable ARL performance. Moreover, the control charts based on normalized data
outperforms the exact probability charts in certain situations on ARL properties when a
proper normalizing transformation is employed. This approach would be beneficial when
the underlying distribution of the monitored variable differs from normal and provide

faster signals for multivariate charts and symmetrically responses for R-/S-charts.

6.2. Limitations and Recommendations for Future Research

As we have discussed in the previous chapter, a control chart using an exact statistic
cannot be inferior to that using a transformed statistic which may or may not be normal
after normal transformation. It is one of the most important limitations of this study.
Another limitation is that transforming a non-normal statistic does not provide a valid
physical interpretation of an out-of-control signal. Future research may address these two
issues which are critical for in-depth analysis. Normalizing transformations do not
intrinsically change the relative positioning of the data values, but re-express the data,
while preserving the rank order, to a scale that allows the normal distribution to serve as a
benchmark for interpretation and judgment (Alwan, 2000). Thus, we could conduct
evaluation on the control chart performance based on data with different degrees of
departure from normality, comparison on performances by using some indicators other
than ARL properties or new methodology and investigation on the mapping of

interpretation on original data and that of transformed data. In this way, a better solution
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could be brought up for the industry to enjoy using traditional 3-sigma limits for non-

normal applications.

It is also critical to find out more reasonable and accurate estimators for the reason that the
way of estimation affects greatly the results of process monitoring. An interesting
continuation of this study is to embody the estimators and to assess their post-
transformation accuracy. Involved in most of the control charts, assumption of non-
normality is really questionable either in practice or in theory. Research has shown that
more accurate results can be obtained if taking the non-normality into account when
designing the 3-sigma control limits. Many methods have been employed to compute the
process capability indices with non-normal data, such as non-parametric approach,
probability plot, distribution-free tolerance method, weighted variance method, Box-Cox
power transformation, Clements’ method, Johnson transformation, etc. Using some of
these methods to modify the 3-sigma limits for non-normal data is another solution, so that

the real ARL could achieve the desirable value. It is especially relevant for R-, S- chart.
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Appendix I

Exact Distribution of the Range

Consider observations X,,..., X,, where n is the subgroup size. The order statistics

n?o

are X X, - Let R denote the range defined as X, - X, , and L denotes X, the

1)>r 2<% (n) (OX (n)>

distribution of R= X, - X can be obtained as follows:

u) = J: fX(anm,X(n) (u, v)dv

LG f!z) [Flu+v)= PO St Gy

Here f(x) is the probability density function of individual measurement X,and F (x)
is the cumulative distribution function of X,. The probability distribution function of R

can be shown to be:

n-2

felw)=[" e '2 U\/—I exp(— ( ))dx Fu+v)fw)dv,

where

provided X,is normally distributed.

The probability distribution function of R can be shown to be (Gumbel, 1947):

n—1

) ~——)dx | f(v)dv

u+v

[ \/—f exp(-

Fy(u)=
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McKay and Pearson (1993) showed a general expression of f, (u) as:

-2

sl =t 0 o= 2 5 |

McKay and Pearson (1993) inferred that when the u is small enough, the distribution

function of range can be approximated as:

while the u is large enough, the distribution function of range can be approximated as:
folu) = n(n—l)ro f t+lu f t—lu dt .
o 2 2

This approximation provides a way to conduct the more reasonable control limits.

For larger normal samples up to n=20, Pearson and Hartley (1954) calculated numerical
tables of the probability of the range. Tippett (1925) also computed the mean, the standard
deviation, and the k-th moment for the range of normal distribution up to n=1000. Several
papers also deal with the expression of the mean and variance for the range. In fact, this

has lead to the numerical values of D, and D, in the traditional R-chart based on the

mean plus and minus three standard deviations.
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Appendix 11

Multivariate normal distribution analysis

In univariate statistical quality control, we generally use the normal distribution to
describe the behavior of a continuous quality characteristic. This same approach can be

used in the multivariate cases. Suppose that we have p variables, given by X, X,,...,X .
Arrange these variables in a p-component vector X'=[X,,X,,.,X ] . Let

' =4y, 4y, 1, ] be the vector of the means of the X’s, and let the variances and

covariances of the random variables in X be contained in a px p covariance matrix X .

The main diagonal elements of X are the variances of the X’s and the off-diagonal
elements are the covariances. Therefore, the multivariate normal probability density

function is

1 =) 7 (=)

J) = e
(27[)” |Z|

where —o0<x, <o, j=12,.,p.The y*-statistic is defined as

20 =n(X = u) 27X - p)
where 4’ = Lul sl sees 1 pJ is the vector of in-control means for each quality characteristic

and X is the covariance matrix. Denote the sample mean vector as
_ 1
X==>X,.
n iz

The Hotelling T* statistic for the vector is defined as:
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T =n(x -X) s (X - X)
where X and S are the common estimators of the mean vector and covariance matrix
obtained from a historical data set. The theoretical properties of the estimates X and S
have been extensively studied and were determined to be optimal under a variety of
criteria. The distribution properties of those two estimates for a ransom normal sample

X,,X,,..., X are given by the following theorems (Seber, 1984):

!

@ (X -u)2' (X —u)~ 2

(iii) If the Hotelling 7' -statistic, denoted by T, , is given by

!

Ty =n(X—p) ™ (X - p).

The T, -statistic is distributed as

n—p o
T, ~F .
(I’l _ l)p M p,n—p

(iv) When a sample of kn independent normal observations are grouped into m rational

subgroups of size #, then the distance between the mean X ; of the j-th subgroup and the
expected values u is computed by 7, defined as
Ty = ”()?_,- _)?) Sp_l()?j _)?)

It follows (iii) above that

m(n—l)—p+1
m(n—l)p

TA%INFP,(

m n—l}pﬂ .
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The distributional properties of these statistics provide the theoretical basis for deriving
the distributions of the statistics used in the multivariate quality control procedures. These
statistics assess the overall distance of a p-dimensional vector of observed means from the

target values.
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Appendix II1

Simulation Results of Comparing Different Transforming Forms of

F-distribution

p m n h Box-Cox h-value 03 |p m n h Box-Cox h-value 0.3

2 15 3 0.2903 9.9116 8.4443 5.2844 2 33 3 03134 9.5874 8.1758 5.6811
2 15 4 03043 8.6608 7.2648 5.6957 2 33 4 0.3200 8.6842 7.3650 6.2152
2 15 5 03115 8.3363 7.0521 6.2756 2 33 5 0.3233 8.4723 7.1316 6.5498
2 15 6 03158 8.0357 6.7229 63240 | 2 33 6 0.3253 8.0266 6.7274 6.5231
2 15 7 03187 7.7380 6.4841 6.3653 2 33 7 0.3266 8.2956 7.0329 7.0685
2 15 8 0.3208 8.3319 7.1332 7.1985 2 33 8 0.3276 7.4746 6.2634 6.4578
2 15 9 03223 8.2779 6.9812 7.2015 2 33 9 0.3283 7.2231 6.0861 6.3798
2 15 10 0.3235 7.3974 6.1521 6.4722 |2 33 10 0.3289 7.5601 6.3414 6.7574
2 16 3 0.2929 7.9058 6.6781 2.0654 |2 34 3 03140 7.7162 6.4955 2.5565
2 16 4 0.3061 6.2100 5.0240 2.4493 2 34 4 03204 5.6909 4.5328 2.4857
2 16 5 03128 5.4884 4.3754 2.8741 2 34 5 03236 5.3414 4.2753 3.1422
2 16 6 03169 5.4393 4.3565 33722 |2 34 6 0.3255 5.2122 4.1486 34115
2 16 7 03196 5.3084 4.1973 3.5066 2 34 7 0.3268 4.8910 3.8104 3.3417
2 16 8 03215 5.5412 4.4667 4.0393 2 34 8 03278 4.8488 3.8964 3.6789
2 16 9 0.3230 4.9283 3.9309 3.7079 2 34 9 03284 4.0040 3.0609 2.9805
2 16 10 0.3241 4.3033 3.4040 3.3215 2 34 10 0.3290 5.3172 4.2934 43190
2 17 3 0.2952 8.2485 7.1777 1.3799 [ 2 35 3 03146 6.9641 5.9081 1.0257
2 17 4 03077 6.3258 5.2913 1.8842 [ 2 35 4 0.3208 4.6494 3.6184 0.9543
2 17 5 03140 4.3694 3.3740 1.3335 2 35 5 0.3239 4.0562 3.0922 1.5139
2 17 6 03178 43152 3.3299 1.8173 2 35 6 03258 3.7704 2.8598 1.8392
2 17 7 03204 3.5139 2.6136 1.7181 2 35 7 03270 3.5411 2.6244 1.8605
2 17 8 03222 3.8232 2.8807 2.1030 |2 35 8 0.3279 3.4738 2.6662 2.2226
2 17 9 03236 4.0283 3.1028 25352 12 35 9 0.3286 3.5212 2.6033 2.2087
2 17 10 0.3247 3.7425 2.8112 23964 | 2 35 10 0.3291 3.4151 2.6482 2.4534
2 18 3 0.2973 8.5159 7.5537 1.3223 2 36 3 03151 7.2449 6.2967 1.1223
2 18 4 0.3091 5.6301 4.6980 0.6702 2 36 4 03211 5.6845 4.7683 1.3466
2 18 5 03151 4.8688 3.9564 1.2103 2 36 5 0.3241 4.0419 3.1534 1.0789
2 18 6 03187 4.3468 3.4380 1.3908 [ 2 36 6 0.3260 3.4681 2.5665 0.9110
2 18 7 03211 3.8729 3.0066 1.6008 [ 2 36 7 03272 3.1341 2.2767 1.1948
2 18 8 0.3228 3.2857 24514 1.4573 2 36 8 0.3281 3.2852 2.4496 1.6191
2 18 9 0.3241 2.7364 1.9917 14112 |2 36 9 0.3287 2.7854 1.9416 1.3057
2 18 10 0.3252 2.9909 2.2164 1.6657 | 2 36 10 0.3292 2.8263 2.0197 1.5687
2 19 3 0.2991 8.8801 7.9889 12582 | 2 37 3 03156 8.6066 7.7334 1.5984
2 19 4 03103 6.1002 5.2450 0.7047 |2 37 4 03214 5.8438 4.9984 1.0284
2 19 5 03160 4.4485 3.6167 0.7856 |2 37 5 0.3244 4.2241 3.3925 0.7386
2 19 6 0319 4.3509 3.5522 13846 | 2 37 6 0.3262 3.5717 2.7598 0.8578
2 19 7 03217 3.5498 2.7576 1.1125 2 37 7 03274 2.5264 1.7701 0.8642
2 19 8 0.3234 3.2394 2.4335 1.0289 2 37 8 0.3282 1.9371 1.2770 0.9800
2 19 9 0.3246 2.4389 1.6576 0.7036 2 37 9 0.3288 2.4922 1.6969 0.8235
2 19 10 0.3256 2.7454 2.0369 1.3437 (2 37 10 0.3293 2.5868 1.8739 1.3092
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0.3008
0.3115
0.3169
0.3201
0.3223
0.3239
0.3251
0.3260
0.3023
0.3125
0.3176
0.3208
0.3228
0.3243
0.3254
0.3263
0.3037
0.3134
0.3184
0.3213
0.3233
0.3247
0.3258
0.3266

0.3050

0.3143
0.3190
0.3218
0.3237
0.3251
0.3261
0.3269
0.3061
0.3151
0.3196
0.3223
0.3241
0.3254
0.3264
0.3272
0.3072
0.3158
0.3201
0.3228
0.3245
0.3258
0.3267
0.3274
0.3082
0.3165

9.8333
6.2330
4.5311
4.2206
3.5075
2.4863
2.6612
2.2268
11.0130
6.5418
5.0099
3.6741
3.8833
3.2806
2.9310
2.6737
11.4970
7.2257
5.1748
4.3218
3.2992
3.0042
2.8118
2.6010

12.3000

7.4882
5.9504
43159
4.2357
2.8645
2.6446
3.1641
9.2651
8.4963
7.9143
8.1791
7.8567
7.2019
7.9567
7.5826
7.0618
6.2689
5.5835
4.9893
4.9854
4.4530
4.4313
4.6937
6.8624
5.0898

8.9973
5.4362
3.7592
3.4765
2.7498
1.7784
1.9853
1.5207
10.2210
5.7928
4.2881
2.9564
3.1716
2.5756
2.2465
2.0385
10.7310
6.5128
4.4854
3.6432
2.6344
2.3560
2.1609
1.9720

11.5550

6.8054
5.2899
3.6709
3.5959
2.2445
2.0280
2.5569
7.8418
7.1095
6.6365
6.9083
6.6621
5.9422
6.6958
6.3825
5.8610
5.0962
4.4351
3.9093
3.9043
3.3526
3.4782
3.7280
5.8045
4.0485

1.0905
0.6432
0.6974
1.0620
0.7054
0.7683
1.0464
0.6731
1.5845
1.0798
0.8545
0.4052
0.8286
0.7027
0.8457
1.0642
1.4560
0.4772
0.4997
0.4882
0.5845
0.6609
0.6197
0.7720

1.3048

0.9123
0.6863
0.6160
0.8025
0.6001
0.4911
1.0544
5.1135
5.7259
5.9884
6.6227
6.6269
6.0820
6.9722
6.7436
1.8888
2.7803
2.9906
3.0587
3.3449
3.0080
3.3370
3.6969
1.2281
0.9600
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38
38
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38
38
38
38
38
39
39
39
39
39
39
39
39
40
40
40
40
40
40
40
40
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41
41
41
41
41
41
41
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4
42
4
4
4
4
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43
43
43
43
43
43
43
43
44
44
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0.3160
0.3217
0.3246
0.3264
0.3275
0.3283
0.3290
0.3294
0.3165
0.3220
0.3248
0.3265
0.3277
0.3285
0.3291
0.3295
0.3169
0.3223
0.3251
0.3267
0.3278
0.3286
0.3292
0.3296

0.3173

0.3226
0.3253
0.3269
0.3279
0.3287
0.3293
0.3297
0.3176
0.3228
0.3254
0.3270
0.3281
0.3288
0.3294
0.3298
0.3180
0.3231
0.3256
0.3272
0.3282
0.3289
0.3295
0.3299
0.3184
0.3233

8.5078
5.4102
4.5185
3.4454
3.1202
2.5384
2.6296
2.5109
8.7562
6.1680
4.3816
3.6923
3.8453
3.2579
2.6444
2.1211
9.4387
6.6823
4.5272
3.4850
3.3296
2.9103
3.0935

2.4771

NaN +
NaNi

7.0176
4.5480
3.7666
2.7739
3.1059
2.0496
2.6994
9.0383
8.7848
7.7709
7.9207
7.7553
7.8221
7.6262
7.5548
7.1878
5.6865
5.8190
4.9166
4.8292
4.5727
4.6313
4.3535
7.0320
5.0537

7.6874
4.6275
3.7537
2.6901
2.3737
1.8072
1.9761
1.8003
7.9812
5.4286
3.6590
2.9948
3.1445
2.5579
1.9737
1.4590
8.6939
5.9809
3.8436
2.8122
2.6662
2.2512
2.4522

1.8426

NaN +
NaNi

6.3438
3.8958
3.1270
2.1580
2.4825
1.4484
2.0943
7.6263
7.4649
6.4610
6.6719
6.5642
6.6208
6.4734
6.3106
5.9762
4.5329
4.7010
3.8634
3.8172
3.5414
3.6951
3.4338
5.9768
4.0267

1.0722
0.5397
0.9147
0.5953
0.7108
0.6215
1.2070
0.9837
1.1089
0.7200
0.4643
0.7825
1.1819
0.9656
0.8541
0.6330
1.1414
1.1288
0.5738
0.4478
0.6526
0.5426
1.0789
0.7635

1.2935

0.9188
0.4902
0.5816
0.6905
0.6427
0.6317
0.8838
5.3477
6.4370
5.9976
6.5536
6.6581
6.8674
6.8184
6.7807
2.3827
2.6667
3.5745
3.2305
3.4649
3.3659
3.6654
3.5015
1.3534
1.4016
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26
26
26
26
26
26
27
27
27
27
27
27
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28
28
28
28
28
28
28
28
29
29
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30
30
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32
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0.3206
0.3232
0.3248
0.3260
0.3270
0.3277
0.3091
0.3171
0.3211
0.3235
0.3252
0.3263
0.3272
0.3279
0.3099
0.3176
0.3215
0.3239
0.3254
0.3266
0.3274
0.3281
0.3107
0.3182
0.3219
0.3242
0.3257
0.3268
0.3276
0.3282
03115
0.3187
0.3223
0.3245
0.3260
0.3270
0.3278
0.3284
0.3122
0.3191
0.3227
0.3248
0.3262
0.3272
0.3280
0.3286
0.3128
0.3196
0.3230
0.3251
0.3264

43107
3.8607
4.0843
3.6698
3.5620
2.9253
7.7118
5.6669
4.1943
4.5039
3.0151
2.9321
2.8426
3.0004
8.0646
5.2552
3.9386
3.7585
3.0901
3.2551
29314
2.7339
8.6060
5.9764
4.1368
3.4761
2.8001
3.1388
2.4586
2.6513
9.1367
6.1609
4.8501
3.4151
3.4253
2.6774
2.8553
2.4476
10.6330
7.3227
5.2228
3.9653
3.6398
2.7914
3.1609
1.9274
11.4540
6.6068
5.3265
3.6989
3.8177

3.3579
2.9001
3.1684
2.6984
2.6982
2.0551
6.7583
4.7371
3.2894
3.6082
2.1435
2.1467
2.0378
2.2013
7.1844
4.4051
3.1191
2.9393
23143
2.4582
2.1400
2.0217
7.7811
5.1871
3.3612
2.7306
2.0540
2.4054
1.7259
1.9264
8.3548
5.4174
4.1265
2.7042
2.7213
1.9818
2.1746
1.7598
9.8804
6.6159
4.5381
3.2900
2.9845
2.1352
2.5080
1.2985
10.7230
5.9321
4.6717
3.0574
3.1799

1.6727
1.6285
2.2863
1.9846
22751
1.7667
0.8868
1.0211
0.8714
1.7885
0.9499
1.3916
1.3893
1.6839
0.8160
0.6454
0.6734
0.8330
0.9955
1.2107
1.1590
1.3851
1.1114
0.5963
0.4780
0.6629
0.5123
0.9926
0.6272
0.9729
1.5096
0.9602
0.7435
0.5026
0.6831
0.5219
0.8725
0.6520
1.5706
1.1111
0.9195
0.5598
0.8454
0.5343
0.9734
0.5621
1.5605
1.0635
0.8162
0.6249
0.6039
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44
44
44
44
44
44
45
45
45
45
45
45
45
45
46
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0.3258
0.3273
0.3283
0.3290
0.3296
0.3300
0.3187
0.3235
0.3260
0.3274
0.3284
0.3291
0.3296
0.3300
0.3190
0.3237
0.3261
0.3276
0.3285
0.3292
0.3297
0.3301
0.3193
0.3239
0.3263
0.3277
0.3286
0.3293
0.3298
0.3302
0.3196
0.3241
0.3264
0.3278
0.3287
0.3294
0.3299
0.3303
0.3199
0.3243
0.3266
0.3279
0.3288
0.3295
0.3299
0.3303
0.3201
0.3245
0.3267
0.3280
0.3289

4.7271
3.8438
3.6930
3.3070
3.6752
3.3069
7.0057
4.6682
3.4619
3.5625
3.0611
2.7984
2.6980
3.0932
7.7930
4.7718
4.5934
3.0694
3.3253
2.5715
2.3541
2.5419
7.4714
5.6675
4.5104
3.2928
2.8224
3.0051
2.4844
2.2904
8.5853
5.5892
4.2044
3.0454
2.9553
2.4559
2.7556
2.5180
9.2716
6.1855
4.3386
3.3750
2.5646
3.1901
2.5385
2.2036
9.9718
6.1801
4.2064
3.4543
2.7708

3.7286
2.9067
2.7917
2.4021
2.7445
2.4801
6.0574
3.7558
2.5692
2.6803
2.2026
2.0191
1.9620
2.2889
6.9235
3.9313
3.7641
2.2704
2.5330
1.8485
1.5843
1.8070
6.6601
4.8799
3.7447
2.5379
2.0903
2.2728
1.9225
1.5939
7.8168
4.8559
3.4938
2.3814
2.2546
1.8074
2.0899
1.8348
8.5345
5.4893
3.6581
2.7079
1.9041
2.5387
1.8896
1.6251
9.2605
5.5134
3.5609
2.8280
2.1504

2.0522
1.9037
2.1174
1.9327
2.4089
23123
0.7430
0.7987
0.7316
1.2395
1.2040
1.4044
1.5362
1.8934
0.9813
0.5314
1.2276
0.7593
1.2358
1.0958
0.8627
1.2646
1.0180
0.7653
0.8874
0.5829
0.7141
1.0625
1.4478
0.9074
0.7148
0.8487
0.7170
1.0084
0.5661
0.8187
1.0420
0.8932
1.1818
0.9429
0.5589
0.5656
0.4677
0.9631
0.6473
0.9152
1.1846
0.7093
0.7580
0.8100
0.6010
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0.3274
0.3281
0.3287
0.2688
0.2899
0.3005
0.3070
03114
0.3145
0.3168
0.3186
0.2727
0.2925
0.3026
0.3086
0.3127
0.3156
0.3178
0.3195
0.2762
0.2949
0.3043
0.3101
0.3139
0.3167
0.3187
0.3203
0.2793
0.2970
0.3059
03114
0.3150
0.3176
0.3195
0.3211
0.2821
0.2989
0.3074
0.3125
0.3159
0.3184
0.3203
0.3217
0.2846
0.3005
0.3086
0.3135
0.3168
0.3191
0.3209
0.3223

2.9388
2.9803
2.4520
9.1155
8.2629
8.5291
7.8454
7.8107
7.9194
7.5565
7.6017
6.3900
5.5115
5.7472
4.3348
4.7440
4.1187
4.2498
4.2474
5.9335
4.9194
4.3298
3.6417
3.7648
3.4757
2.9667
3.3925
7.0296
4.7197
3.5852
3.5115
2.8642
3.1605
2.7736
2.7306
7.1269
5.0040
3.8568
3.2591
3.1322
2.6907
2.4986
2.1659
7.3677
5.3615
3.9438
3.4324
2.8761
24116
2.3369
2.4008

2.3146
2.3666
1.8476
7.7000
6.9115
7.1866
6.6064
6.5065
6.6867
6.3652
6.4384
5.1819
4.3695
4.6533
33131
3.7190
3.1590
3.3733
3.4042
4.8904
3.8847
3.3583
2.7115
2.7912
2.6141
2.1367
2.5037
6.0878
3.8005
2.7299
2.6285
2.0695
2.3333
1.9607
1.9796
6.2614
4.1665
3.0418
2.4412
2.3180
1.9183
1.7983
1.5809
6.5586
4.5807
3.1782
2.6780
2.1445
1.6933
1.6363
1.7268

0.4908
0.8149
0.6052
5.5799
5.9730
6.7965
6.5568
6.6727
6.9910
6.7656
6.9117
1.8876
2.6796
3.6707
2.7984
3.4275
3.0551
3.3887
3.5013
0.9028
1.4032
1.9280
1.8130
2.0992
2.2347
1.9172
2.3682
1.1093
0.8470
1.1642
1.2966
1.3284
1.6723
1.4990
1.6851
0.8014
0.7339
0.9073
0.7873
1.0449
1.0610
1.2614
1.3143
0.5807
0.7736
0.5913
0.7425
0.7996
0.7349
0.8694
1.1289
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50
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0.3295
0.3300
0.3304
0.3035
0.3133
0.3183
0.3213
0.3233
0.3247
0.3258
0.3266
0.3043
0.3139
0.3187
0.3216
0.3236
0.3250
0.3260
0.3268
0.3052
0.3145
0.3191
0.3220
0.3239
0.3252
0.3262
0.3270
0.3059
0.3150
0.3195
0.3223
0.3241
0.3254
0.3264
0.3272
0.3067
0.3155
0.3199
0.3226
0.3244
0.3256
0.3266
0.3273
0.3074
0.3159
0.3203
0.3229
0.3246
0.3258
0.3268
0.3275

2.8458
2.2803
1.9228
9.2389
7.9383
7.8034
7.6057
7.6429
7.7188
7.3456
7.4790
6.4258
5.7127
4.9503
5.1609
4.4427
5.1734
4.4066
4.6943
5.7191
4.4951
3.8767
3.5629
4.0771
3.7572
2.9123
2.9963
6.0730
4.2469
3.0454
3.1098
3.3485
2.7478
2.7774
3.0182
6.5717
4.5004
3.4492
3.1461
2.6199
3.0045
3.0212
2.2614
6.3840
4.6103
3.4938
3.3900
2.7224
2.4475
2.7314
1.9965

2.2375
1.6684
1.3387
7.8189
6.6115
6.5391
6.4452
6.3958
6.4827
6.1783
6.2579
5.2744
4.5731
3.8969
4.1744
3.4760
4.1547
3.4883
3.7253
4.6827
3.5072
29179
2.6697
3.1990
2.8440
2.1284
2.2018
5.1357
3.3427
2.1830
2.2715
2.5059
1.9455
2.0955
2.3263
5.7170
3.6636
2.6293
2.3433
1.9278
2.2302
2.2418
1.5210
5.5853
3.8455
2.7643
2.6387
1.9779
1.7049
2.0414
1.3798

0.7090
0.4746
0.5903
5.9988
5.8998
6.3257
6.5076
6.6531
6.8734
6.6405
6.8244
2.6494
3.1151
3.1576
3.7972
3.3165
4.1415
3.5840
3.9197
1.1548
1.6144
1.7406
1.9808
2.7338
2.5399
2.0069
2.1649
0.6989
0.8988
0.8910
1.2896
1.7436
1.4590
1.8338
2.1380
0.9228
0.7586
0.6867
0.9656
1.2414
1.4817
1.6577
1.1373
0.8164
0.8503
0.8856
0.9690
0.7566
0.7390
1.3719
1.0056
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21
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22
22
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23
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0.2868
0.3021
0.3098
0.3145
0.3176
0.3198
0.3215
0.3228
0.2889
0.3035
0.3109
0.3153
0.3183
0.3204
0.3220
0.3233
0.2908
0.3048
0.3118
0.3161
0.3189
0.3210
0.3225
0.3237
0.2925
0.3059
0.3127
0.3168
0.3195
0.3215
0.3230
0.3241
0.2941
0.3070
0.3135
0.3175
0.3201
0.3220
0.3234
0.3245
0.2956
0.3080
0.3143
0.3181
0.3206
0.3224
0.3238
0.3248
0.2970
0.3089
0.3150

8.1158
5.1261
4.0882
3.4035
3.2682
2.5905
2.7315
2.7596
8.9928
5.8009
4.5820
3.3959
3.1825
2.8914
2.1343
2.5557
9.1328
6.3999
4.5956
3.5280
3.3045
2.4201
2.1499
2.3550
9.0023
8.2084
7.7435
7.8258
7.3363
7.8124
7.9242
7.1733
6.8116
5.4388
4.9506
4.5434
4.3945
4.6443
3.9705
4.2250
6.3867
5.1915
4.3283
3.7338
3.5919
3.2078
3.4365
3.0596
6.9979
4.1073
3.7972

7.3505
4.3936
33714
2.7007
2.5655
1.9023
2.0678
2.1012
8.2621
5.1049
3.9038
2.7461
2.5336
2.2370
1.5030
1.9509
8.4307
5.7346
3.9538
2.9050
2.6843
1.8089
1.5472
1.7509
7.6299
6.8948
6.4834
6.5450
6.1070
6.5968
6.7522
6.0135
5.6195
4.3545
3.9194
3.5075
3.4611
3.7063
3.0397
3.2954
5.3439
4.1741
3.3461
2.7560
2.7149
2.3956
2.5820
2.2309
6.0634
3.2128
29135

0.8194
0.7210
0.5394
0.6513
0.8777
0.6564
1.0946
1.2906
1.1671
0.7091
0.7084
0.7897
0.8239
0.7670
0.5470
1.1049
1.3118
0.8878
0.7230
0.6937
0.8484
0.5240
0.5476
0.6946
5.7614
6.0963
6.2023
6.5573
6.3127
6.9400
7.1837
6.5170
2.5656
2.9324
3.1325
3.0468
3.2619
3.6511
3.0977
3.4438
1.3979
1.9007
1.9732
1.8532
2.2059
2.1059
2.3930
2.1527
1.3715
0.9311
1.2158
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0.3080
0.3164
0.3206
0.3231
0.3248
0.3260
0.3269
0.3277
0.3086
0.3168
0.3209
0.3234
0.3250
0.3262
0.3271
0.3278
0.3092
0.3172
0.3212
0.3236
0.3252
0.3264
0.3273
0.3279
0.3098
0.3176
0.3215
0.3239
0.3254
0.3266
0.3274
0.3281
0.3103
0.3179
0.3218
0.3241
0.3256
0.3267
0.3275
0.3282
0.3109
0.3183
0.3220
0.3243
0.3258
0.3269
0.3277
0.3283
03114
0.3186
0.3223

6.9364
53711
3.5167
3.7618
2.7950
2.4089
2.1088
2.1584
7.5933
5.3544
3.7493
3.1551
2.6234
2.3634
2.0064
1.8419
7.8055
5.0257
42114
3.2431
3.5275
2.2769
1.8453
2.3522
8.8420
8.8414
8.0735
7.7441
7.4457
7.6723
7.5944
7.2575
6.2234
5.3866
4.6298
4.6773
4.4754
4.4197
4.6120
4.5868
5.9499
4.9556
37616
3.5640
3.4577
3.1369
3.2630
3.1555
6.1467
43123
3.1765

6.1828
4.6443
2.8077
3.0616
2.1245
1.7536
1.4705
1.4903
6.8808
4.6679
3.0796
25116
1.9676
1.7297
1.3912
1.2462
7.1150
4.3744
3.5768
2.6146
2.9041
1.6669
1.2679
1.8064
7.4606
7.4901
6.8169
6.5287
6.2171
6.4673
6.3781
6.1187
5.0691
4.2864
3.5698
3.7239
3.5126
3.4864
3.6567
3.5443
4.9322
3.9319
2.8845
2.6408
2.5604
2.2793
2.5329
2.3759
5.2139
3.4145
2.2927

0.4985
0.9376
0.4626
1.1847
0.8735
0.8373
0.7882
0.8209
1.4952
0.6800
0.5426
0.7757
0.4724
0.6445
0.6090
0.6676
1.1339
0.8415
0.7510
0.6178
1.1217
0.5056
0.6079
1.0995
5.8509
6.8447
6.6679
6.6445
6.5122
6.8830
6.8950
6.6694
2.5882
3.0220
2.9056
3.4227
3.3995
3.5142
3.7943
3.7935
1.6873
1.9266
1.9868
1.9645
2.1469
2.0575
2.4525
2.3724
1.0057
1.1411
0.8545
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0.3186
0.3211
0.3228
0.3241
0.3251
0.2982
0.3098
0.3156
0.3191
0.3215
0.3232
0.3244
0.3254
0.2994
0.3106
0.3162
0.3196
0.3219
0.3235
0.3247
0.3257
0.3005
03114
0.3168
0.3201
0.3223
0.3239
0.3250
0.3260
0.3016
0.3121
0.3173
0.3205
0.3226
0.3242
0.3253
0.3262
0.3026
0.3127
0.3178
0.3209
0.3230
0.3244
0.3256
0.3264
0.2473
0.2754
0.2896
0.2982
0.3040
0.3082

3.2162
3.0823
2.8702
2.7850
2.6630
6.6887
4.4837
3.4805
3.2853
2.8604
3.1292
2.5825
2.4439
7.2180
5.0213
4.0129
2.9548
2.6821
2.4079
2.0190
2.4325
7.2136
5.1398
4.0591
3.3387
2.7962
2.5985
2.2742
2.2007
8.2685
5.5961
3.9690
3.1446
2.7229
2.4352
1.8837
2.0225
8.7404
5.6206
3.8901
3.3917
2.8175
2.5965
2.1654
22157
8.8164
8.6574
7.7331
7.5972
7.7972
7.5929

2.3496
2.2341
2.0197
2.0138
1.9067
5.8336
3.6481
2.6554
2.4861
2.0607
2.3962
1.8155
1.6672
6.4161
4.2431
3.2538
22113
1.9483
1.7380
1.3738
1.7623
6.4522
44110
3.3470
2.6385
2.1174
1.9225
1.6110
1.5186
7.5450
4.9040
3.2972
2.4813
2.0717
1.7890
1.2871
1.3957
8.0422
4.9610
3.2478
2.7580
2.1963
1.9953
1.5798
1.6187
7.4549
7.3322
6.5053
6.3629
6.5519
6.4006

1.1824
1.4054
1.4052
1.6433
1.6550
0.7637
0.5599
0.5711
1.0317
0.9607
1.6601
1.2002
1.1842
0.9149
0.7456
0.8981
0.6088
0.7295
0.9878
0.8742
1.2214
0.8182
0.6784
0.6588
0.6872
0.7651
0.8158
0.7600
0.7447
0.9392
0.7521
0.5905
0.4763
0.5313
0.5522
0.6732
0.6012
1.1189
0.5978
0.6291
0.4859
0.5072
0.7149
0.6511
0.6888
5.9950
6.7836
6.4171
6.5271
6.8926
6.8443
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0.3245
0.3260
0.3270
0.3278
0.3284
0.3118
0.3189
0.3225
0.3247
0.3261
0.3271
0.3279
0.3285
0.3123
0.3192
0.3228
0.3249
0.3263
0.3273
0.3280
0.3286
0.3127
0.3195
0.3230
0.3250
0.3264
0.3274
0.3281
0.3287
0.3131
0.3198
0.3232
0.3252
0.3266
0.3275
0.3282
0.3288
0.3135
0.3201
0.3234
0.3254
0.3267
0.3276
0.3283
0.3289
0.2935
0.3067
0.3133
0.3173
0.3199
0.3218

3.5308
2.9907
2.8696
2.7408
2.3714
6.1313
4.3249
3.4143
2.9814
3.1063
2.6935
2.7492
1.8575
6.5075
4.4651
3.5170
2.9374
2.8333
2.7387
2.2987
2.1573
6.6258
4.4388
3.3034
3.2080
2.5833
2.4802
2.2001
2.3644
7.7211
4.5963
3.7601
3.2986
2.8098
2.1889
2.6326
2.0145
7.9549
4.7720
3.2629
3.1768
2.6390
2.5161
2.4179
1.9125
8.5477
8.0261
7.6721
8.2052
7.2568
7.8161

2.6853
2.1448
2.1055
2.0229
1.6312
5.2755
3.4981
2.6087
2.2494
2.3386
1.9678
1.9552
1.4182
5.7122
3.6947
2.7540
2.1997
2.0994
2.0056
1.6311
1.4811
5.8743
3.7202
2.5917
2.5312
1.9481
1.8283
1.5471
1.7164
7.0072
3.9152
3.0873
2.6334
2.1691
1.5450
1.9978
1.4552
7.2732
4.1190
2.6323
2.5737
2.0194
1.9157
1.8041
1.3328
7.1636
6.7570
6.3993
6.9669
6.0678
6.6166

1.7053
1.4590
1.7003
1.7742
1.4694
0.6143
0.7407
0.8693
1.2716
1.4488
1.3789
1.4201
1.3361
0.9761
0.6246
0.6296
0.7676
0.9741
1.1186
1.0876
1.0374
0.8486
0.6361
0.4104
0.9764
1.0040
0.9487
0.8330
1.1215
0.8968
0.6414
0.4784
0.6616
0.8097
0.5059
1.0724
0.9467
1.1692
0.4796
0.7734
0.8694
0.4533
0.7781
0.7477
0.6378
5.8848
6.3746
6.4114
7.2154
6.4559
7.1224
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0.3113
0.3137
0.2525
0.2789
0.2923
0.3004
0.3058
0.3097
0.3127
0.3149
0.2571
0.2821
0.2947
0.3023
0.3074
03111
0.3139
0.3160
0.2613
0.2848
0.2968
0.3040
0.3089
0.3123
0.3149
0.3170
0.2650
0.2874
0.2987
0.3056
0.3101
0.3134
0.3159
0.3178
0.2683
0.2896
0.3004
0.3069
0.3113
0.3144
0.3168
0.3186
0.2713
0.2917
0.3020
0.3082
0.3123
0.3153
0.3176
0.3193
0.2741

7.6315
7.5508
6.3512
5.9333
4.7201
4.8294
4.6863
4.4046
4.6363
4.3481
5.5908
4.3618
3.7705
3.4134
3.8486
2.9160
2.9629
3.3030
5.9932
4.4021
3.7515
3.4153
2.8158
2.8243
2.2652
2.3430
6.3451
4.3448
3.0514
3.1450
2.6835
2.4692
2.6348
2.2872
5.9347
4.1972
3.2390
2.7682
2.9276
2.1516
2.0359
2.0278
7.0838
4.8749
3.8455
2.9637
3.0082
2.3447
22224
1.7222
7.4887

6.4453
6.3772
5.1622
4.7829
3.7016
3.8714
3.7027
3.4756
3.6602
3.5032
4.5542
3.3973
2.8551
2.5777
2.9789
2.1545
2.1849
2.5422
5.0655
3.5018
2.8732
2.5918
2.0421
2.0260
1.5893
1.5586
5.4941
3.5190
2.2455
2.3580
1.9084
1.7574
1.8707
1.5645
5.1413
3.4307
2.4858
2.0281
2.2424
1.4347
1.4664
1.3660
6.3353
4.1531
3.1408
2.2734
2.3169
1.6960
1.5549
1.2199
6.7750

6.9774
6.9727
2.6469
3.5049
3.1364
3.6154
3.6299
3.5393
3.8362
3.7208
1.2694
1.8031
1.9310
2.0741
2.6283
2.0079
2.1303
2.5684
1.1111
1.2921
1.4594
1.7366
1.5251
1.6340
1.4114
1.4166
1.0055
0.9227
0.6850
1.1940
1.0859
1.2506
1.4211
1.2797
0.7675
0.6310
0.5613
0.6737
1.3433
0.7040
1.1485
0.9874
0.9760
0.7972
0.9394
0.7460
1.0599
0.8920
0.8562
0.9883
0.8577
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0.3233
0.3244
0.2947
0.3074
0.3139
0.3177
0.3203
0.3222
0.3236
0.3246
0.2958
0.3082
0.3144
0.3182
0.3207
0.3225
0.3238
0.3249
0.2968
0.3089
0.3149
0.3186
0.3210
0.3228
0.3241
0.3251
0.2978
0.3095
0.3154
0.3190
0.3214
0.3231
0.3244
0.3253
0.2987
0.3101
0.3159
0.3194
0.3217
0.3233
0.3246
0.3256
0.2996
0.3107
0.3163
0.3197
0.3220
0.3236
0.3248
0.3258
0.3004

7.7265
8.1542
5.6222
5.0250
5.0016
4.6881
4.1640
4.5590
4.4751
4.0905
5.1908
4.2863
3.7166
3.7648
3.1969
34111
2.8258
3.1575
5.1679
4.0261
3.3432
3.1942
3.1334
2.6844
2.7150
2.6003
5.1241
3.9410
3.2459
2.5912
2.5054
2.2497
2.3877
2.3787
5.4929
3.8098
3.4437
3.0513
1.7925
2.1764
1.4401
1.5228
6.7006
4.1869
2.5154
3.0404
2.6984
2.4759
2.0341
1.7716
6.2376

6.4826
6.9659
4.4671
3.9219
3.9538
3.6739
3.1648
3.6312
3.5527
3.1531
4.1887
3.3464
2.7466
2.9268
2.3029
2.5265
2.1350
2.4536
4.2435
3.1437
2.5121
2.3785
2.2952
1.9905
2.0067
1.8854
4.2924
3.1256
2.4485
1.8654
1.7249
1.5920
1.7626
1.7390
4.7052
3.0442
2.6877
2.3265
1.1426
1.5428
0.7824
0.8457
5.9579
3.4757
1.8438
2.3653
2.0583
1.8404
1.4524
1.1345
5.5346

7.0968
7.6174
2.3979
2.9232
3.4775
3.4931
3.1710
3.7596
3.7731
3.4518
1.4994
1.9875
1.8501
2.4958
2.0368
2.4132
2.1378
2.5243
0.7921
1.2697
1.4418
1.6577
1.7768
1.7528
1.8574
1.8187
0.8831
0.9164
1.0209
1.0997
1.0146
1.2420
1.5197
1.5633
0.4982
0.5043
0.8768
1.1280
0.7333
1.0713
0.5057
0.5587
1.2013
0.5737
0.8608
1.0313
1.1747
1.1403
1.0262
0.7224
0.7705
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0.2935
0.3034
0.3093
0.3133
0.3161
0.3183
0.3199
0.2766
0.2952
0.3047
0.3103
0.3141
0.3169
0.3189
0.3205
0.2789
0.2968
0.3058
03113
0.3149
0.3176
0.3195
0.3210
0.2810
0.2982
0.3069
0.3122
0.3157
0.3182
0.3201
0.3215
0.2830
0.2996
0.3079
0.3130
0.3163
0.3188
0.3206
0.3220
0.2848
0.3008
0.3089
0.3137
0.3170
0.3193
0.3210
0.3224
0.2865
0.3020
0.3097
0.3144

4.4038
3.2471
2.7172
2.2348
2.2996
2.4250
1.9463
7.4538
4.9074
3.4737
3.0146
2.4451
2.2524
2.0393
2.1136
8.7120
8.2355
8.1792
8.0093
7.6017
7.8294
7.6255
7.8274
6.7867
5.6246
4.6236
5.0922
4.8694
4.4800
4.2986
4.2683
5.5881
3.9425
4.0605
3.7197
3.3199
3.4943
3.1399
3.1007
5.2674
3.9168
3.4361
3.0001
3.0708
2.8610
2.8882
2.5247
5.8531
3.6669
3.7123
2.9011

3.7249
2.5855
2.0658
1.5884
1.6815
1.7989
1.3862
6.7703
4.2547
2.8340
2.3895
1.8486
1.6444
1.4424
1.6381
7.3148
6.9731
6.8655
6.7600
6.4322
6.5778
6.4071
6.7000
5.6286
4.5019
3.6216
4.0479
3.9490
3.4855
3.4269
3.3333
4.5692
2.9799
3.0984
2.7979
2.5037
2.6510
2.4139
2.2433
4.3411
3.0427
2.5756
2.1650
2.2410
2.1128
2.0866
1.8041
5.0036
2.8514
2.9018
2.1363

0.5754
0.5960
0.5346
0.4288
0.7712
0.9759
0.9081
1.0490
0.6133
0.4449
0.6026
0.6728
0.5521
0.5801
1.2095
5.9150
6.5288
6.8259
6.9706
6.7828
7.0787
6.9822
7.2936
3.3389
3.3691
3.1298
3.8095
3.9196
3.5916
3.6062
3.6066
1.5701
1.5229
2.1379
2.2372
2.2356
2.5096
2.3914
2.3060
0.7746
1.1999
1.3400
1.3679
1.6853
1.8000
1.8659
1.7086
0.7257
0.7112
1.2654
1.1463
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0.3113
0.3168
0.3201
0.3223
0.3238
0.3250
0.3259
0.3012
0.3118
0.3172
0.3204
0.3225
0.3241
0.3252
0.3261
0.3020
0.3123
0.3176
0.3207
0.3228
0.3243
0.3254
0.3263
0.3027
0.3128
0.3179
0.3210
0.3230
0.3245
0.3256
0.3265
0.3034
0.3133
0.3183
0.3213
0.3233
0.3247
0.3258
0.3266
0.3040
0.3137
0.3186
0.3215
0.3235
0.3249
0.3259
0.3268
0.3047
0.3141
0.3189
0.3218

4.2995
3.1476
2.8869
2.2616
2.1199
1.7611
1.5236
6.8121
4.6202
3.9634
3.0149
2.8827
2.5291
2.0301
1.8858
9.2916
7.8494
7.8783
7.8123
7.8950
7.8863
8.0649
7.4337
5.9436
5.1188
5.0788
5.0014
4.4822
4.6762
4.2946
4.7758
5.0846
4.0592
3.4704
3.4537
3.1476
3.4834
3.2104
3.5877
4.5768
3.7270
3.2061
3.3818
2.6291
2.2021
2.5736
24310
5.1606
3.5743
2.7808
2.4261

3.6215
2.5167
2.2487
1.6152
1.4887
1.1444
0.9671
6.1400
3.9714
3.3350
2.3922
2.2724
1.9468
1.4796
1.3079
7.8930
6.5026
6.6328
6.5625
6.6603
6.6502
6.8839
6.2809
4.7627
4.0732
3.9992
4.0010
3.5439
3.7457
3.3050
3.8536
4.0679
3.0570
2.4914
2.5914
2.4048
2.6105
2.3703
2.6940
3.6590
2.8428
2.3453
2.5825
1.8397
1.4989
1.8859
1.7066
4.3263
2.7593
1.9777
1.6634

0.4605
0.9745
0.8262
0.4792
0.6351
0.5379
0.6378
0.9656
0.5515
0.9641
0.6888
0.9732
1.0158
0.8642
0.7046
6.6866
6.1554
6.6901
6.8505
7.0981
7.2003
7.4880
6.9287
2.6692
3.2170
3.5579
3.8642
3.5828
3.9036
3.5731
4.1729
1.4410
1.5894
1.6519
2.1901
2.2371
2.5346
2.4038
2.8225
0.7321
1.1143
1.2704
1.9309
1.4330
1.3009
1.7718
1.6659
0.8759
0.7077
0.6312
0.8513
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0.3176
0.3198
0.3215
0.3228
0.2881
0.3030
0.3105
0.3151
0.3181
0.3203
0.3219
0.3232
0.2896
0.3040
0.3113
0.3157
0.3186
0.3207
0.3223
0.3235
0.2910
0.3050
0.3120
0.3162
0.3191
0.3211
0.3226
0.3238
0.2923
0.3058
0.3127
0.3168
0.3195
0.3215
0.3230
0.3241
0.2258
0.2609
0.2787
0.2895
0.2967
0.3019
0.3058
0.3088
0.2323
0.2653
0.2821
0.2922
0.2990
0.3038
0.3075

2.2168
2.5585
2.1606
1.9302
6.3701
4.0850
3.3670
2.7169
2.3079
1.9153
2.2166
2.0332
6.0339
4.3218
29136
2.7255
2.2837
2.3463
1.6419
2.1749
6.7705
4.2370
3.4443
2.5611
2.3096
1.9914
2.0253
1.8754
7.0375
4.4864
4.1811
2.6076
2.5626
1.8931
1.5462
1.6106
8.1387
7.9488
7.9183
7.7463
7.2072
7.5413
8.0321
7.6470
5.7512
5.1883
4.9435
4.6167
5.0556
4.7493
4.3444

1.5836
1.8097
1.4821
1.4345
5.5803
3.3202
2.6277
2.0036
1.6417
1.2053
1.5544
1.3920
5.2918
3.6030
2.2164
2.0286
1.6080
1.6636
0.9977
1.5486
6.0650
3.5611
2.7759
1.9249
1.6843
1.4413
1.4043
1.2977
6.3624
3.8389
3.5443
2.0322
1.9554
1.2995
1.0380
1.1098
6.7596
6.6782
6.6915
6.5341
6.0085
6.3457
6.8847
6.4688
4.6294
4.1405
3.8790
3.6491
3.9932
3.8719
3.4746

1.1783
1.2820
1.1782
1.3276
1.0927
0.5972
0.8640
0.8791
0.9504
0.5791
1.1003
1.0689
0.8979
0.7282
0.5939
0.5552
0.5995
0.7892
0.5123
1.0861
0.7155
0.6735
0.5262
0.6523
0.6548
0.9183
0.6878
0.8167
1.1481
0.5936
0.9708
0.9341
0.6807
0.5286
0.7736
0.7786
5.6770
6.4111
6.7891
6.8451
6.4584
6.8993
7.4900
7.1514
2.8497
3.3471
3.4993
3.5568
4.0756
4.0445
3.7252
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46
46
46
46
47
47
47
47
47
47
47
47
48
48
48
48
48
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48
49
49
49
49
49
49
49
49
50
50
50
50
50
50
50
50
33
33
33
33
33
33
33
33
34
34
34
34
34
34
34

0.3237
0.3251
0.3261
0.3269
0.3053
0.3146
0.3192
0.3220
0.3239
0.3253
0.3263
0.3270
0.3058
0.3149
0.3195
0.3223
0.3241
0.3254
0.3264
0.3272
0.3064
0.3153
0.3198
0.3225
0.3243
0.3256
0.3265
0.3273
0.3069
0.3157
0.3201
0.3227
0.3245
0.3257
0.3267
0.3274
0.2836
0.3000
0.3083
0.3133
0.3166
0.3190
0.3208
0.3221
0.2850
0.3010
0.3090
0.3138
0.3171
0.3194
0.3211

2.4897
2.0690
2.5149
1.7570
5.9229
4.0870
3.2417
3.1629
2.7745
2.1312
2.3423
2.1911
5.5957
4.2871
2.8337
2.6046
1.7308
2.1299
1.6904
1.8841
6.0589
3.6004
2.9492
2.6594
2.0099
2.0434
1.5047
1.7488
6.1988
3.8622
2.5285
2.6002
1.9546
2.4291
1.8749
1.4758
8.4967
79117
7.7450
7.5523
8.0069
7.0994
7.7339
7.6931
5.8128
4.7119
5.2884
49167
4.6196
4.1987
4.0644

1.7939
1.4746
1.7865
1.0988
5.1379
3.3262
2.4927
2.4163
2.1368
1.4371
1.6915
1.5448
4.8568
3.5758
2.1433
1.9411
1.1738
1.4936
1.0738
1.2705
5.3581
2.9294
2.2880
2.0501
1.3903
1.4979
0.9168
1.1660
5.5287
3.2189
1.9022
2.0063
1.3468
1.8384
1.2873
0.9433
7.1393
6.6137
6.5644
6.3575
6.8239
5.9234
6.4933
6.5360
4.7045
3.6612
4.2621
3.9127
3.7003
3.2984
3.2259

1.2878
1.2305
1.4954
0.9593
0.8589
0.8542
0.8440
1.1908
1.4998
0.8861
1.3089
1.2672
0.5089
0.7928
0.6052
0.8164
0.9070
0.8763
0.6680
0.9127
0.5984
0.6144
0.4719
0.9314
0.5627
0.9820
0.5183
0.7435
0.5234
0.5118
0.6955
0.8065
0.4363
0.9248
0.6036
0.5951
6.2325
6.4428
6.7290
6.7223
7.3187
6.5076
7.1913
7.2389
3.1304
2.9854
3.9882
3.8866
3.8231
3.5206
3.5026
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0.3103
0.2381
0.2692
0.2850
0.2946
0.3010
0.3056
0.3090
0.3117
0.2432
0.2727
0.2877
0.2967
0.3028
0.3071
0.3103
0.3129
0.2479
0.2759
0.2900
0.2986
0.3043
0.3085
0.3115
0.3140
0.2520
0.2787
0.2922
0.3003
0.3058
0.3097
0.3126
0.3149
0.2558
0.2813
0.2941
0.3019
0.3071
0.3108
0.3136
0.3158
0.2593
0.2836
0.2959
0.3033
0.3083
0.3118
0.3145
0.3166
0.2624
0.2857

4.2595
4.7787
4.1098
3.7151
3.6933
3.4750
3.2322
2.9414
3.1521
5.2726
3.9141
2.8774
2.6969
2.5078
2.8227
1.9835
2.6252
5.2647
3.6561
3.7613
3.2781
2.3841
2.2068
2.3438
2.0408
5.2478
3.3155
2.9248
2.6055
2.6738
2.0449
2.1760
1.7847
5.2287
4.2386
3.0285
2.5761
2.0716
1.8898
1.7838
1.6215
5.2048
3.9553
3.2928
2.8946
2.1282
1.9046
1.7893
1.4333
6.5536
4.4097

3.3880
3.7953
3.1253
2.7585
2.8563
2.6477
2.3811
2.1746
2.3565
4.3457
3.0175
2.0382
1.8852
1.7321
1.9995
1.4040
1.9456
4.4197
2.8674
2.9436
2.5384
1.6326
1.5825
1.5995
1.4284
4.4711
2.5555
2.1801
1.8699
1.9502
1.3881
1.5008
1.3766
4.4938
3.5252
2.3260
1.9029
1.4668
1.2763
1.1975
1.0632
4.5131
3.2775
2.6365
2.2400
1.5226
1.3148
1.1957
0.8999
5.8863
3.7678

3.7046
1.5299
1.7901
2.0047
2.5058
2.4781
2.3398
2.2278
2.4887
1.1183
1.2409
1.1250
1.2988
1.3808
1.7541
1.3462
1.9310
0.7453
1.0619
1.5345
1.7328
1.0766
1.3160
1.3350
1.3176
0.7995
0.4772
0.6425
0.7974
1.1624
0.9507
1.1301
1.2948
0.5234
0.8185
0.5828
0.7790
0.8900
0.7778
0.8429
0.8207
1.1303
0.4587
0.7592
0.8024
0.7446
0.7272
0.6969
0.6552
0.8858
0.7581
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34
35
35
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35
35
35
35
35
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37
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0.3225
0.2864
0.3019
0.3097
0.3144
0.3175
0.3198
0.3215
0.3228
0.2877
0.3028
0.3103
0.3149
0.3180
0.3202
0.3218
0.3231
0.2889
0.3036
0.3110
0.3154
0.3184
0.3205
0.3221
0.3234
0.2900
0.3043
03115
0.3159
0.3188
0.3208
0.3224
0.3236
0.2911
0.3051
0.3121
0.3163
0.3191
0.3212
0.3227
0.3239
0.2922
0.3058
0.3126
0.3167
0.3195
0.3215
0.3229
0.3241
0.2932
0.3065

4.5498
4.6120
3.7152
3.6357
3.6917
3.3922
3.0707
2.7501
3.2781
4.5573
3.4793
2.6751
2.8135
2.6031
2.3324
2.3568
2.8020
4.4898
3.8595
3.1621
2.7088
2.3651
2.3806
3.0089
1.5072
4.8228
3.4594
2.9488
2.1766
1.9528
1.9938
2.1891
2.1522
5.3264
3.4492
2.7769
2.7232
2.3443
1.9120
1.6203
1.4778
5.8892
3.3743
2.6886
2.8618
2.0628
1.5408
1.9363
1.4438
5.3350
3.9803

3.6800
3.5913
2.8008
2.7198
2.7664
2.5490
2.4136
2.1334
2.6110
3.6470
2.6629
1.9023
2.0053
1.8287
1.6788
1.6213
2.0614
3.6522
3.0473
2.3576
1.9618
1.6072
1.6662
2.2943
1.0281
4.0518
2.7115
2.2331
1.4928
1.2513
1.3420
1.5298
1.4778
4.5944
2.7427
2.0814
2.0677
1.6631
1.2493
0.9785
0.9619
5.1965
2.7205
2.0395
2.2043
1.5676
0.9164
1.3664
0.8861
4.6749
3.3690

4.0331
1.2934
1.8128
2.1251
2.4421
2.4387
2.4242
2.2034
2.7506
0.8968
1.4708
1.2602
1.4932
1.5357
1.5641
1.5740
2.0928
0.6088
1.1814
1.1563
1.2657
1.1116
1.3686
2.1006
0.9953
0.8991
0.6882
0.9805
0.7974
0.6705
0.9660
1.2356
1.2685
0.7201
0.6101
0.5667
1.0650
0.8419
0.6913
0.5975
0.8084
0.8209
0.7433
0.5320
0.8692
1.1646
0.3747
0.9346
0.6140
0.8564
1.2479
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23
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0.2975
0.3046
0.3094
0.3128
0.3153
0.3173
0.2653
0.2877
0.2990
0.3058
0.3103
0.3136
0.3161
0.3180
0.2680
0.2895
0.3003
0.3069
03113
0.3144
0.3167
0.3186
0.2704
0.2911
0.3016
0.3079
0.3121
0.3151
0.3174
0.3191
0.2727
0.2927
0.3028
0.3088
0.3129
0.3158
0.3180
0.3197
0.2749
0.2941
0.3038
0.3097
0.3136
0.3164
0.3185
0.3202
0.2768
0.2955
0.3048
0.3105
0.3143

3.3538
2.8301
2.2065
2.0453
1.8716
1.6362
8.0446
7.8335
7.8747
8.0853
7.5269
7.7187
7.1884
7.6762
5.5933
4.7281
4.8963
4.5540
4.4425
4.5249
4.3753
4.5181
4.5673
3.7122
3.7736
3.1474
3.1821
3.0969
3.3879
3.2453
4.8240
3.5391
3.5344
2.6315
2.7864
2.7203
2.2973
2.5607
5.0116
3.4525
3.0571
2.8613
2.0749
2.1711
2.3396
2.2979
5.4039
3.8077
2.5061
2.7988
2.2277

2.7255
2.2207
1.6551
1.4753
1.3192
1.0912
6.7228
6.4884
6.5824
6.9085
6.3421
6.5008
6.0084
6.4552
4.4400
3.7263
3.8513
3.5193
3.5784
3.5396
3.4178
3.6663
3.5774
2.7484
2.9353
2.2309
2.3377
2.3106
2.6736
2.5176
3.9071
2.7132
2.7256
1.8147
1.9692
2.0240
1.5825
1.7339
4.1768
2.6346
2.2759
2.0939
1.4892
1.4436
1.6871
1.5533
4.6266
3.0533
1.7739
2.0874
1.5178

0.6287
0.7642
0.8906
0.7591
0.7684
0.6791
5.7789
6.2577
6.7272
7.2401
6.8127
7.0883
6.6497
7.1826
2.6665
3.0550
3.5288
3.4565
3.6669
3.7647
3.7229
3.9934
1.3914
1.5664
2.3818
1.8772
2.1981
2.3000
2.7442
2.6556
0.9038
1.4138
1.8534
1.2624
1.6088
1.8648
1.5148
1.7433
0.9057
0.7139
1.1134
1.3050
1.2268
1.1113
1.5033
1.4229
0.9238
0.8509
0.5728
1.1363
0.8360
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0.3131
0.3172
0.3198
0.3218
0.3232
0.3243
0.2941
0.3071
0.3136
0.3175
0.3202
0.3220
0.3234
0.3245
0.2950
0.3077
0.3141
0.3179
0.3205
0.3223
0.3237
0.3247
0.2959
0.3083
0.3145
0.3183
0.3208
0.3225
0.3239
0.3249
0.2967
0.3088
0.3149
0.3186
0.3210
0.3228
0.3241
0.3251
0.2975
0.3094
0.3153
0.3189
0.3213
0.3230
0.3243
0.3253
0.2982
0.3099
0.3157
0.3192
0.3216

3.0556
2.4656
2.1456
2.2831
1.8060
2.0992
8.2760
7.8548
7.4004
7.9601
7.7459
7.3906
7.5029
7.5759
5.4865
4.5186
4.4866
4.8481
4.3388
4.3767
4.4282
3.8918
5.0872
3.9908
3.0846
3.0747
3.2408
3.6561
3.1199
2.7719
4.6702
3.1939
3.1799
2.3655
2.6297
2.5288
2.5710
2.6145
4.4010
3.1803
2.4358
2.6465
2.0428
1.9506
2.1606
2.2471
5.1970
3.3517
2.8276
2.5168
2.1560

2.4356
1.8498
1.5535
1.7169
1.2077
1.5304
6.9276
6.5906
6.1188
6.7699
6.5259
6.1941
6.2634
6.4227
43773
3.4385
3.4323
3.8431
3.3446
3.4741
3.5303
3.1440
4.0741
3.0298
2.2034
2.1871
2.4336
2.8079
2.3529
1.9980
3.7616
2.3221
2.3847
1.7127
1.9387
1.8060
1.8296
1.9533
3.5722
2.4145
1.6516
1.8743
1.4778
1.2479
1.5150
1.5121
4.4175
2.5950
2.1056
1.7880
1.5250

0.6227
0.5304
0.6399
1.0114
0.5861
1.0620
6.0991
6.4704
6.3350
7.1604
7.0601
6.8102
6.9777
7.1370
2.8961
2.7892
3.1943
3.8495
3.5064
3.7194
3.8521
3.4486
1.8389
1.9633
1.7115
1.9266
2.3577
2.8497
2.4715
2.1828
1.0649
0.9728
1.6545
1.4349
1.7248
1.6899
1.8046
1.9984
0.7085
1.0439
0.6886
1.1664
1.2613
1.0033
1.3828
1.4380
0.7988
0.5917
0.9072
0.8996
1.0773
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0.3170
0.3190
0.3206
0.2787
0.2967
0.3058
03113
0.3149
0.3175
0.3195
0.3210
0.2804
0.2979
0.3067
0.3120
0.3155
0.3180
0.3199
0.3214
0.2821
0.2990
0.3075
0.3126
0.3161
0.3185
0.3204
0.3218
0.2043
0.2464
0.2678
0.2807
0.2894
0.2956
0.3003
0.3039
0.2121
0.2517
0.2718
0.2840
0.2921
0.2979
0.3023
0.3057
0.2190
0.2564
0.2754
0.2868
0.2945
0.3000
0.3041
0.3074

2.5853
2.5207
1.9077
5.5517
3.2807
2.8834
2.5248
2.3980
2.1080
1.4962
2.0732
4.8437
3.9971
2.6122
2.3207
2.0068
1.9317
1.9650
1.2825
6.0806
3.4244
3.2007
24319
2.3314
1.7831
1.4596
1.3985
8.6662
8.1515
7.5370
7.3518
7.5371
7.6617
7.5116
7.0877
5.8775
5.0010
4.9981
4.4410
4.5234
4.0312
4.1939
4.5317
4.7214
3.8954
4.2298
3.6717
3.0815
2.8431
3.2523
3.1912

1.9241
1.8797
1.3974
4.8186
2.5705
2.1853
1.9219
1.7478
1.4819
0.8951
1.4883
4.1488
3.3277
1.9552
1.6843
1.3746
1.3412
1.3619
0.7404
5.4180
2.7874
2.5809
1.8191
1.7331
1.1886
0.9729
0.8782
7.2814
6.8365
6.3167
6.1727
6.3552
6.4786
6.2955
5.9396
4.7882
3.9294
4.0478
3.4632
3.5419
3.1950
3.3942
3.5591
3.7095
2.9465
3.2919
2.8695
2.2519
2.0198
2.5012
2.4549

1.4666
1.5622
1.2633
0.6654
0.5010
0.5803
1.1413
0.9669
0.9463
0.5982
1.2014
1.1251
0.6024
0.4424
0.5634
0.5200
0.7651
0.8389
0.5419
0.7024
0.6759
0.7013
0.5034
0.7171
0.4762
0.7291
0.5961
6.4896
6.7548
6.5524
6.5826
6.8915
7.1062
7.0114
6.6633
3.3980
3.3294
3.8727
3.4985
3.7272
3.4345
3.6884
3.9970
1.6128
1.9593
2.7542
2.6677
2.1997
2.0815
2.6359
2.6475
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0.3232
0.3245
0.3255
0.2990
0.3103
0.3161
0.3195
0.3218
0.3234
0.3247
0.3256
0.2997
0.3108
0.3164
0.3198
0.3220
0.3236
0.3249
0.3258
0.3003
0.3113
0.3167
0.3201
0.3223
0.3238
0.3250
0.3259
0.2736
0.2933
0.3033
0.3092
0.3132
0.3161
0.3182
0.3199
0.2754
0.2945
0.3041
0.3099
0.3138
0.3166
0.3187
0.3203
0.2770
0.2956
0.3050
0.3106
0.3144
0.3171
0.3191
0.3207

2.1044
1.9813
1.7988
4.5731
3.8560
3.0838
2.4155
2.4505
1.8540
2.0947
1.8774
5.5138
3.4161
2.9650
2.1263
2.1913
1.8844
1.6295
1.4325
6.1704
3.6046
3.1417
2.6297
2.0192
1.9825
1.7180
1.6642
8.1170
7.7044
7.9397
7.4335
7.4122
7.7682
7.3233
7.8302
5.7771
5.2339
5.0139
4.2410
4.3606
4.3609
4.3658
4.3231
4.1392
3.7480
3.2992
3.4787
3.0503
3.4399
2.8785
3.2127

1.4278
1.3468
1.2096
3.8454
3.1706
2.3850
1.7362
1.7845
1.1926
1.4631
1.3941
4.8230
2.7516
23171
1.5010
1.6118
1.2893
1.0306
0.8908
5.5134
2.9698
2.5158
2.0146
1.4211
1.3929
1.3055
1.1061
6.7710
6.4401
6.6825
6.2266
6.1823
6.5286
6.1706
6.6566
4.6543
4.1517
4.0793
3.3606
3.6205
3.3925
3.4695
3.4536
3.1859
2.8669
2.4123
2.5547
2.3731
2.7397
2.1395
2.4858

1.0354
1.1057
1.0752
0.6051
1.1073
0.8379
0.7205
1.0411
0.6653
1.0887
1.2352
0.8275
0.4767
0.7489
0.5767
0.9547
0.7530
0.6121
0.6549
1.2669
0.5693
0.6806
0.6976
0.5433
0.6993
1.1033
0.7183
6.1327
6.4401
6.9867
6.6939
6.7822
7.2238
6.8745
7.4249
3.3303
3.6354
3.9691
3.4379
3.7828
3.7213
3.8401
3.8652
1.5866
2.1084
2.0115
2.3740
2.3703
2.8256
2.3023
2.7059
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0.2252
0.2606
0.2785
0.2894
0.2966
0.3018
0.3057
0.3088
0.2308
0.2644
0.2814
0.2917
0.2986
0.3035
0.3072
0.3101
0.2358
0.2678
0.2840
0.2937
0.3003
0.3050
0.3085
0.3112
0.2403
0.2708
0.2863
0.2956
0.3018
0.3063
0.3097
0.3123
0.2444
0.2736
0.2884
0.2973
0.3033
0.3075
0.3107
0.3132
0.2482
0.2762
0.2903
0.2989
0.3046
0.3086
0.3117
0.3141
0.2517
0.2785
0.2921

4.3328
4.0368
2.6202
2.5529
2.6464
2.7116
2.3460
2.4591
4.2538
3.2594
2.3537
2.8189
2.2475
2.0811
2.3791
2.1099
4.9572
3.3465
2.3635
1.8601
2.0727
1.6149
1.6467
1.5759
5.0680
2.6130
2.3624
2.1240
2.3020
2.1523
1.8402
2.1042
5.0935
3.6931
3.0444
2.5738
2.1731
2.1602
1.9063
1.9089
5.4847
2.8679
2.7595
2.0619
1.8410
2.0777
1.7712
1.9917
8.3120
8.4922
7.4939

3.4351
3.1741
1.8993
1.7967
1.8052
2.0165
1.6261
1.7353
3.4204
2.4624
1.5959
2.0811
1.5256
1.3880
1.7133
1.4035
4.1806
2.6020
1.6562
1.2135
1.3632
0.9549
1.1250
0.9567
4.3408
1.9112
1.7394
1.4961
1.7349
1.5714
1.2448
1.6010
4.4047
3.0294
2.4050
1.9222
1.5677
1.5253
1.3278
1.3409
4.8247
2.2489
2.1353
1.4748
1.2828
1.4773
1.2064
1.4753
7.0121
7.2189
6.3224

1.0045
1.8332
1.4026
1.4234
1.5355
1.9278
1.6235
1.8059
0.5623
0.9248
0.7836
1.4717
1.1477
1.1659
1.5928
1.3573
0.7411
0.7545
0.7154
0.7586
0.8070
0.6541
0.9982
0.8352
0.7053
0.6464
0.9525
0.8068
1.2512
1.1828
0.9526
1.4325
0.7134
0.7051
0.9107
0.7317
0.8596
0.8860
0.9345
1.0450
0.3940
0.9350
0.4518
0.6094
0.6783
0.7583
0.7309
1.1413
6.3447
7.1807
6.5753
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36
36
36
36
36
36
36
36
37
37
37
37
37
37
37
37
38
38
38
38
38
38
38
38
39
39
39
39
39
39
39
39
40
40
40
40
40
40
40
40
41
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0.2785
0.2966
0.3057
0.3112
0.3149
0.3175
0.3195
0.3210
0.2800
0.2976
0.3065
0.3118
0.3154
0.3179
0.3199
0.3214
0.2814
0.2986
0.3072
0.3124
0.3159
0.3184
0.3202
0.3217
0.2827
0.2994
0.3079
0.3129
0.3163
0.3187
0.3206
0.3220
0.2840
0.3003
0.3085
0.3134
0.3167
0.3191
0.3209
0.3223
0.2851
0.3011
0.3091
0.3139
0.3171
0.3194
0.3212
0.3225
0.2863
0.3018
0.3097

4.4916
3.7234
3.4107
2.4140
2.3454
2.5691
2.5128
2.5464
3.8759
3.4708
3.0681
2.1807
2.3404
2.4489
2.4322
1.8212
4.7454
3.4084
2.2743
1.7841
2.4796
1.7398
2.0652
2.0228
4.3686
3.2554
2.4105
2.4963
1.6375
1.6140
1.8448
2.1635
4.9562
3.3313
2.4748
2.2479
1.9754
2.0739
1.5833
1.7221
5.2758
3.2374
2.6273
2.3231
2.2074
1.8650
1.8615
0.8002
8.3531
7.5059
7.4527

3.5869
2.8855
2.5766
1.6856
1.7154
1.9481
1.7881
1.8864
3.0552
2.6576
2.3274
1.5476
1.6528
1.7238
1.7533
1.4268
3.9703
2.6602
1.5479
1.2343
1.8173
1.0869
1.4172
1.3329
3.6483
2.5541
1.7450
1.8389
0.9976
0.9847
1.2041
1.5916
42713
2.6727
1.8376
1.6338
1.3781
1.4532
0.9838
1.1337
4.6199
2.6038
2.0141
1.7129
1.6152
1.4039
1.3255
0.6332
7.0358
6.3193
6.3242

1.2049
1.7473
1.8896
1.3943
1.5950
1.9086
1.8253
1.9806
0.6765
1.0823
1.5070
1.2035
1.3555
1.5276
1.6719
1.4253
0.8412
0.8715
0.5719
1.0061
1.3723
0.8163
1.2324
1.2189
0.4986
0.6579
0.7126
1.0110
0.5354
0.6271
0.9088
1.4201
0.8058
0.6626
0.6241
0.7757
0.7624
0.9155
0.6334
0.8684
0.6800
0.4137
0.5464
0.6200
0.8159
1.0839
0.9338
0.8210
6.4667
6.3521
6.6159
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0.3003
0.3057
0.3097
0.3126
0.3149
0.2549
0.2807
0.2937
0.3016
0.3068
0.3106
0.3134
0.3156
0.2579
0.2827
0.2952
0.3028
0.3079
03115
0.3142
0.3163
0.2606
0.2846
0.2966
0.3039
0.3088
0.3123
0.3149
0.3169
0.2632
0.2863
0.2979
0.3050
0.3097
0.3130
0.3156
0.3175
0.2655
0.2879
0.2991
0.3059
0.3105
0.3137
0.3162
0.3181
0.2678
0.2894
0.3003
0.3068
0.3112
0.3144

7.4023
7.9732
7.8485
7.1756
7.6412
5.2128
4.8541
5.1284
5.0297
4.6738
4.4807
43379
4.3178
4.7150
3.8659
3.7084
3.6872
2.9835
3.1389
2.7862
2.6709
4.5957
3.3108
2.7830
2.8718
3.1395
2.3676
2.0351
2.4021
4.6785
3.5680
2.7004
2.4385
2.2281
2.0870
1.7977
2.0457
4.2083
3.3489
2.9675
2.4541
1.8817
1.9178
1.3850
1.5778
4.0185
3.4624
3.0575
2.9459
1.9880
1.6027

6.2707
6.7195
6.6605
6.0046
6.4901
4.1275
3.7762
4.1175
3.9844
3.7253
3.5189
3.3574
3.3929
3.7278
2.9408
2.8047
2.8132
2.1578
2.3035
2.1189
1.9729
3.6917
24221
1.9803
2.0206
2.5087
1.6215
1.4362
1.6644
3.8426
2.7621
1.9552
1.7425
1.5065
1.4740
1.2091
1.4876
3.4455
2.5948
2.2295
1.7405
1.2169
1.3128
0.9622
0.9151
3.3045
2.7610
2.3694
2.2946
1.3367
1.1227

6.6838
7.3141
7.3082
6.7059
7.2301
2.8404
3.2207
3.9617
4.0536
3.9259
3.8261
3.7515
3.8207
1.8168
2.0542
2.3452
2.6157
2.1308
2.3899
2.2456
2.1621
1.2027
1.1036
1.3466
1.5743
2.3541
1.5482
1.4485
1.7556
0.8977
1.1538
1.1384
1.2578
1.1599
1.3172
1.1373
1.4708
0.6789
0.7437
1.0143
0.9773
0.7974
1.0562
0.9180
0.7938
0.8867
0.6916
1.0011
1.4104
0.7496
0.9531
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0.3144
0.3175
0.3198
0.3215
0.3228
0.2874
0.3026
0.3102
0.3148
0.3179
0.3201
0.3217
0.3230
0.2884
0.3033
0.3107
0.3152
0.3182
0.3204
0.3220
0.3233
0.2894
0.3039
0.3112
0.3156
0.3186
0.3207
0.3223
0.3235
0.2903
0.3046
0.3117
0.3160
0.3189
0.3209
0.3225
0.3237
0.2912
0.3052
0.3122
0.3164
0.3192
0.3212
0.3227
0.3239
0.2921
0.3057
0.3126
0.3167
0.3195
0.3215

7.6342
7.5416
7.4716
7.4635
7.4186
5.1188
4.1919
4.5527
43122
4.1306
4.1053
4.1894
4.4751
4.6223
3.1745
3.4387
2.9986
2.8539
3.0401
3.4123
2.8931
4.3828
3.3848
2.9365
2.9571
2.7099
2.4351
2.2707
2.6829
4.0060
3.1277
2.7626
2.7211
2.0743
2.1973
1.8432
1.9814
3.6842
2.8287
2.5195
2.2154
2.5771
2.1194
1.8750
1.5459
4.2150
3.0143
2.2894
2.4930
1.9287
1.7015

6.4879
6.3148
6.2559
6.3081
6.1564
4.0056
32114
3.6282
3.4187
3.2791
3.1211
3.2874
3.6028
3.6226
2.2748
2.5969
2.1930
2.0715
2.2155
2.5983
2.0893
3.4908
2.5070
2.1189
2.1216
2.0741
1.7823
1.4624
1.9376
3.1773
2.3194
1.9898
1.9394
1.4147
1.4724
1.3253
1.3676
2.9217
2.0921
1.7977
1.4846
1.9452
1.4760
1.2950
0.9942
3.4919
2.3229
1.6036
1.8536
1.3142
1.0812

6.9494
6.9316
6.9512
7.0268
6.9984
27977
2.8174
3.5483
3.5195
3.4887
3.4729
3.6748
4.0297
1.8190
1.5720
2.2575
2.0746
2.0883
2.3406
2.8039
2.3521
1.2896
1.3199
1.5137
1.7581
1.9612
1.7572
1.5267
2.0678
0.5775
0.8750
1.1555
1.3757
1.1766
1.3037
1.2901
1.3794
0.6248
0.6410
0.8000
0.7686
1.5582
1.2177
1.1662
0.9384
0.3797
0.6768
0.5018
1.1172
0.8572
0.7461
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0.3167
0.3186
0.2698
0.2908
0.3013
0.3077
0.3119
0.3150
0.3173
0.3190
0.2718
0.2921
0.3023
0.3085
0.3126
0.3156
0.3178
0.3195
0.1828
0.2319
0.2568
0.2719
0.2821
0.2893
0.2948
0.2990
0.1919
0.2381
0.2615
0.2757
0.2852
0.2920
0.2972
0.3011
0.2000
0.2436
0.2657
0.2791
0.2880
0.2944
0.2993
0.3030
0.2072
0.2485
0.2694
0.2821
0.2905
0.2966
0.3011
0.3047
0.2137

2.1974
1.6213
4.5196
3.3395
2.9820
1.9640
2.0822
1.9456
1.4142
1.9045
4.9801
3.8061
3.0633
2.2421
1.9663
1.8236
1.1588
1.0094
7.8426
7.9476
7.8440
7.3466
7.8666
7.3913
7.2308
7.5151
5.1818
4.7278
4.5537
4.2764
4.6061
4.2860
3.9456
4.2613
4.8853
3.5896
3.7294
3.4217
3.2869
2.5107
3.1741
3.3047
4.0895
3.1439
2.5373
2.4760
2.8619
2.1522
2.1363
2.2902
4.1051

1.6177
1.1037
3.8346
2.6895
2.3244
1.3226
1.4771
1.3844
0.8228
1.3359
4.3237
3.1731
2.4372
1.6492
1.3794
1.2433
0.7537
0.6802
6.5724
6.6830
6.6350
6.1522
6.6665
6.1835
6.0364
6.3329
4.0791
3.7029
3.5512
3.3222
3.6188
3.3905
3.0558
3.3407
3.8788
2.6392
2.8494
2.5589
2.5413
1.7291
2.4656
2.4940
3.2174
23114
1.7078
1.7161
2.1916
1.3401
1.3977
1.7497
3.2824

1.3419
0.9655
0.5749
0.7361
0.7495
0.4292
0.8024
0.9512
0.4916
1.0599
0.4150
0.7581
0.6930
0.6602
0.6216
0.6420
0.7328
0.7373
6.0814
6.7523
6.9762
6.6542
7.2860
6.8881
6.7935
7.1297
2.9374
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3.4909
3.4543
3.8933
3.7214
3.4492
3.8067
2.0965
1.8601
2.5104
2.4496
2.5758
1.8583
2.6509
27774
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1.3443
1.1465
1.4426
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1.3278
1.4710
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0.3063
0.3130
0.3171
0.3198
0.3217
0.3232
0.3243
0.2937
0.3068
0.3134
0.3174
0.3200
0.3219
0.3234
0.3245
0.2637
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0.2982
0.3052
0.3099
0.3132
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0.3177
0.2657
0.2880
0.2993
0.3060
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0.3138
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0.3181
0.2676
0.2893
0.3002
0.3068
0.3112
0.3144
0.3167
0.3186
0.2694
0.2905
0.3011
0.3076
0.3118
0.3149
0.3172
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1.6921
4.9628
3.0717
2.8643
1.9936
1.6721
1.9401
1.3981
2.1866
4.8379
3.5550
2.7019
23132
1.5646
1.8160
1.3776
1.2235
8.2350
7.3576
7.8643
7.6437
7.6873
7.4363
7.3921
7.0656
4.9495
4.6585
4.0882
4.2210
4.3434
4.4800
4.1088
4.2926
3.9732
3.9040
3.4472
3.0330
2.7801
2.7739
2.8937
2.9435
4.0198
2.9017
2.8929
2.4407
2.5841
2.5980
1.7941
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2.0863
1.6990
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0.8693
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6.5538
6.2695
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3.6449
3.1040
3.3759
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3.5491
3.2954
3.3800
3.0085
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2.2168
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2.0506
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2.2438
3.1255
2.0970
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1.0917
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7.0034
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3.3276
3.0979
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3.8655
1.5861
2.2463
2.1453
2.1619
2.0986
2.1977
2.3102
2.5000
1.1451
1.2901
1.5273
1.4080
1.9033
1.9544
1.1856
1.7529
0.6369
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0.3070
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1.8061
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1.8868
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2.8042
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1.7980
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2.8064
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1.3999
4.9850
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7.4086
7.7876
7.2123
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7.3567
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5.3662
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2.2870
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1.3840
3.9981
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2.2981
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4.1489
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1.2242
1.1470
0.9723
4.3336
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6.6610
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6.2022
6.3171
4.2450
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0.8888
0.6809
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0.6383
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0.6257
0.9011
0.6233
0.9056
0.9469
0.7118
0.8444
0.5953
0.6409
0.9716
0.7850
1.0386
0.8782
0.5813
0.5367
0.7571
0.5750
0.6742
1.2298
1.0309
0.7708
6.2020
6.5231
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7.1341
6.6581
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7.1362
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0.3194
0.2727
0.2928
0.3028
0.3089
0.3130
0.3159
0.3180
0.3197
0.2743
0.2938
0.3036
0.3095
0.3135
0.3163
0.3184
0.3201
0.2757
0.2948
0.3043
0.3101
0.3140
0.3167
0.3188
0.3204
0.2771
0.2957
0.3051
0.3107
0.3144
0.3171
0.3191
0.3207
0.2784
0.2966
0.3057
03112
0.3149
0.3175
0.3195
0.3210
0.2797
0.2974
0.3064
0.3117

3.3070
2.3317
2.4473
2.1002
1.9647
2.2641
1.9823
3.5030
3.3009
23514
2.1158
1.8635
1.9569
1.7993
1.8149
4.5137
3.6296
2.5583
2.1959
2.0309
1.7285
2.0239
1.6621
4.6115
3.2428
2.4128
2.0025
2.0806
1.4367
1.8625
1.8616
4.5374
2.9259
2.4046
2.2094
1.9314
1.9161
1.3434
1.3426
8.3987
7.9628
7.5304
7.1532
7.3485
7.2271
7.6236
7.4747
5.0748
4.6705
4.9109
4.1897

2.5586
1.6229
1.6999
1.5505
1.2637
1.6811
1.3205
2.7430
2.5609
1.6709
1.4061
1.3131
1.3093
1.2544
1.2637
3.7950
2.9351
1.8876
1.5492
1.4508
1.1846
1.3984
1.0658
3.9340
2.5958
1.8189
1.4117
1.4809
0.8310
1.3227
1.2788
3.8942
2.3031
1.7942
1.6041
1.3544
1.3279
0.8375
0.8156
7.0946
6.7277
6.3476
5.9964
6.1613
6.0700
6.4803
6.3808
4.0518
3.6441
3.9302
3.3684

1.4690
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1.2804
1.4186
1.1685
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1.3810
0.6176
1.0777
0.9433
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1.1048
1.1135
1.1798
1.2422
0.8431
1.2063
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0.9011
1.0913
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1.1989
0.9634
0.6772
0.8512
0.9401
0.7732
0.9515
0.4809
1.0927
1.0938
0.6263
0.4789
0.5488
0.6804
0.7401
0.8304
0.6183
0.6192
6.7192
6.8836
6.7448
6.5321
6.8162
6.7799
7.2364
7.1426
3.1923
3.3529
3.9484
3.5276
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0.2821
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0.3140
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0.3084
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0.3146
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4.0941
4.6609
4.2962
4.2064
3.6123
3.2835
3.2815
2.8983
2.9135
2.8910
3.1052
4.1247
2.7367
3.0708
2.7882
2.5139
2.8025
2.4538
2.3729
4.4237
3.2976
2.5875
2.3104
2.9261
2.1140
1.7351
2.0096
4.1024
3.3460
2.5238
1.7986
2.1856
1.5308
1.6145
1.6531
4.4932
3.1168
2.4374
1.7454
1.8934
1.9150
1.3090
2.0769
4.4901
2.7789
2.3698
2.5420
1.8889
1.2289
1.7540

3.4948
3.2344
3.6634
3.4313
3.2611
2.7202
2.4377
2.4761
2.1269
2.1707
2.1951
2.4424
3.2321
1.8802
2.2682
1.9341
1.8253
2.1870
1.7707
1.7738
3.5946
2.4903
1.8819
1.5762
2.1622
1.4648
1.0850
1.3903
3.3334
2.6027
1.8551
1.2545
1.5318
0.8542
1.0851
1.0132
3.7793
2.4180
1.7588
1.1876
1.3658
1.3387
0.7843
1.5348
3.8074
2.1523
1.7233
1.8998
1.3027
0.7467
1.1327

3.7395
3.5630
4.1317
3.8771
1.8372
2.0634
2.1540
2.4002
2.1804
2.3097
2.3861
2.6725
1.2020
0.9294
1.7466
1.6219
1.7363
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1.8526
1.8924
1.0964
1.1368
1.2775
1.1533
1.8803
1.3628
1.0646
1.4313
0.5548
1.0459
1.1099
1.0183
1.1884
0.6384
1.0089
0.9704
0.8540
0.6682
0.7005
0.8636
1.0773
1.0698
0.6708
1.4275
0.5276
0.8499
0.5509
0.9904
0.7974
0.6432
0.8075
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0.3179
0.3198
0.3213
0.2809
0.2982
0.3070
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0.3157
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0.3201
0.3216
0.2821
0.2990
0.3076
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0.3161
0.3186
0.3204
0.3218
0.2832
0.2998
0.3081
0.3131
0.3165
0.3189
0.3207
0.3221
0.2842
0.3005
0.3086
0.3136
0.3168
0.3192
0.3210
0.3223
0.2852
0.3011
0.3092
0.3140
0.3172
0.3195
0.3212
0.3226
0.2862
0.3018
0.3096
0.3144
0.3175
0.3198
0.3215

4.4409
4.6890
4.2420
4.6168
4.2296
4.1404
3.0066
3.3833
3.1411
2.9293
3.1340
2.9550
3.7043
2.8699
2.8686
2.6124
2.1840
2.4541
2.3617
2.0008
3.8595
2.4288
2.8521
1.9482
1.9575
2.2625
2.7116
1.9104
4.0952
3.0959
2.1630
2.1791
2.3750
2.1013
1.3916
1.4903
3.5394
2.7952
2.5975
2.0344
1.5721
1.6761
2.6365
1.2914
4.5912
3.5932
2.4541
2.3280
2.1115
1.5612
1.3857

3.6089
3.7154
3.2870
3.6694
3.2564
3.2151
2.1208
2.5582
2.2647
2.2539
2.3093
2.2027
2.8320
2.1876
2.1018
1.8986
1.6112
1.7270
1.7392
1.3702
3.0507
1.7208
2.0913
1.2273
1.2726
1.5626
2.0447
1.4478
3.3372
2.3580
1.4665
1.5768
1.6995
1.4183
0.7969
0.8923
2.8306
2.1120
1.9425
1.4939
1.0816
1.0891
1.9592
0.6966
3.9127
2.9398
1.8168
1.7063
1.5680
1.1236
0.9945

3.8757
4.1290
3.7567
4.1889
1.8299
2.5724
1.8750
2.5225
2.3699
2.4021
2.5788
2.4950
1.1479
1.6758
1.6817
1.7117
1.5736
1.7688
1.8352
1.5160
0.9564
1.0241
1.4188
0.8923
1.0964
1.4838
2.0548
1.4901
0.8113
0.9595
0.7689
1.2050
1.3702
1.2209
0.7329
0.8824
0.5729
0.6776
1.0206
1.1182
0.9094
0.8568
1.7512
0.6182
0.7665
1.1165
0.7082
0.9403
1.1502
0.9747
0.9170
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0.3152
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1.9041
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3.5003
3.0203
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1.7879
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3.8264
2.6698
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1.0916
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6.3496
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3.0592
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3.2979
3.2927
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2.4890
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4.3180
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0.2000
0.2438
0.2659
0.2793
0.2882
0.2946
0.2994
0.3032
0.2057
0.2476
0.2688
0.2816
0.2902
0.2963
0.3009
0.3045
0.2109
0.2511
0.2715
0.2837
0.2920
0.2978
0.3022
0.3057
0.2157
0.2544
0.2739
0.2857
0.2936
0.2992
0.3035
0.3068
0.2201
0.2574
0.2762
0.2875
0.2951
0.3005
0.3046
0.3078
0.2242
0.2602
0.2783
0.2892
0.2965
0.3018

1.9655
2.1176
1.6126
1.2540
1.4079
3.5395
2.5994
2.2239
2.1578
1.7600
1.5024
1.6272
1.3585
3.9042
2.5969
2.1624
1.9517
1.6581
1.5403
1.3434
1.4325
7.7370
7.9000
7.2840
7.6482
7.1906
7.1930
7.6116
7.4488
5.2931
4.4964
4.4521
4.3644
3.7914
4.6162
4.1004
4.2677
3.5372
3.4955
3.7023
3.2405
2.9031
2.6773
3.2013
2.7129
3.6614
2.8967
2.6494
2.4339
2.5769
2.3675

1.3167
1.5465
1.0062
0.9889
1.0202
2.8624
1.9643
1.5877
1.5817
1.1987
1.0431
1.0452
0.7933
3.2626
1.9806
1.5536
1.4308
1.1144
1.0083
1.0132
0.8689
6.4510
6.6657
6.1276
6.4518
6.0393
6.0903
6.4774
6.2863
4.2441
3.5342
3.4541
3.4958
2.9435
3.6893
3.2557
3.3347
2.5686
2.6600
2.8116
2.5541
2.0054
1.9915
2.4471
1.9889
2.7922
2.0597
1.9019
1.7122
1.8935
1.6670

0.8330
1.2862
0.8391
0.9857
1.0133
0.3859
0.6931
0.6631
1.0639
0.8675
0.9078
0.8882
0.7167
0.4610
0.5177
0.5243
0.9480
0.7261
0.7339
0.9612
0.7229
6.2980
6.9635
6.6158
7.0945
6.7416
6.8216
7.2786
7.1456
3.5749
3.4210
3.5990
3.7567
3.2863
4.1508
3.7193
3.8993
1.4844
2.2937
2.7021
2.6106
2.2164
2.2058
2.7549
2.3225
1.3538
1.3908
1.6372
1.6302
1.9277
1.7881
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0.3027
0.3078
03114
0.3142
0.3163
0.2593
0.2837
0.2961
0.3035
0.3084
0.3120
0.3146
0.3167
0.2610
0.2849
0.2970
0.3042
0.3090
0.3125
0.3151
0.3171
0.2627
0.2861
0.2978
0.3049
0.3096
0.3130
0.3155
0.3175
0.2644
0.2872
0.2987
0.3056
0.3102
0.3135
0.3159
0.3179
0.2659
0.2882
0.2994
0.3062
0.3107
0.3139
0.3163
0.3182
0.2674
0.2892
0.3002
0.3068
0.3112
0.3143

1.8189
2.0067
1.1052
1.5843
0.9576
3.5580
2.7729
2.0650
1.9715
1.1522
1.2974
1.5226
1.1939
3.0258
2.2302
2.3754
1.9389
1.7295
2.1011
1.5862
1.2812
8.0579
7.5536
7.5966
7.6498
7.6425
7.4084
7.4006
7.3515
5.0728
5.2032
4.2836
4.5935
4.2546
4.1086
4.4319
4.0534
3.7055
3.5919
3.1098
2.8469
2.8754
2.7713
2.7367
2.8967
3.6283
3.0342
2.1091
2.6907
2.2397
2.4536

1.1976
1.4004
0.6994
0.9724
0.6421
2.8881
2.1411
1.4454
1.3395
0.7321
0.9160
1.0318
0.6405
2.3914
1.6593
1.7970
1.3557
1.1360
1.5634
0.9915
0.9107
6.7613
6.3477
6.3745
6.5449
6.4345
6.2519
6.2498
6.2081
4.0613
4.1623
3.3681
3.7548
3.4049
3.3155
3.5437
3.2714
2.7794
2.7226
2.4153
2.0395
2.3412
2.0078
1.9478
2.0794
2.7652
2.1636
1.3880
1.9591
1.4638
1.7109

0.8094
1.1471
0.6758
0.9131
0.6424
0.4848
0.8716
0.6915
0.7568
0.6936
0.8589
0.9412
0.5925
0.8053
0.8207
0.9352
0.7370
0.6734
1.2806
0.7722
0.8658
6.6667
6.6753
6.9240
7.1564
7.1952
7.0384
7.0776
7.0654
3.4951
4.0830
3.5295
4.0303
3.7728
3.7149
4.0535
3.7474
1.8445
2.3759
2.3688
2.1379
2.4603
2.2766
2.2881
2.4859
1.4319
1.4950
1.1933
1.9049
1.5342
1.8675
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0.3057
0.3087
0.2281
0.2627
0.2802
0.2908
0.2978
0.3029
0.3067
0.3096
0.2316
0.2652
0.2821
0.2922
0.2990
0.3039
0.3076
0.3104
0.2350
0.2674
0.2837
0.2936
0.3002
0.3049
0.3084
0.3112
0.2381
0.2695
0.2853
0.2949
0.3012
0.3058
0.3092
0.3119
0.2410
0.2715
0.2868
0.2961
0.3022
0.3067
0.3100
0.3126
0.1183
0.1884
0.2240
0.2456
0.2601
0.2704
0.2782
0.2843
0.1313

2.3655
1.8743
3.5011
2.7745
2.3697
2.4399
2.3420
1.6580
1.8793
1.9660
3.5883
2.1599
2.4256
1.8729
2.1880
1.8565
1.5088
1.9441
3.5724
2.5533
2.6177
1.8053
1.5218
1.5792
1.4012
1.3446
3.7355
2.5192
2.4330
1.2599
1.9105
1.8400
1.8177
1.5334
3.6985
25112
2.4964
1.4070
1.7538
1.3334
1.2406
1.0814
8.1860
7.7365
7.7611
7.7331
8.0735
7.6208
7.4644
7.7295
4.8583

1.5846
1.3859
2.6808
2.0310
1.6148
1.7416
1.6571
0.9688
1.2240
1.4816
2.8296
1.4514
1.6988
1.2626
1.5583
1.2190
1.0379
1.3080
2.8607
1.8918
2.0572
1.2005
0.8973
1.0904
0.9084
0.9346
3.0700
1.8701
1.8220
0.6973
1.3925
1.3787
1.2592
1.0317
3.0644
1.9026
1.8890
0.8613
1.3132
09118
0.7336
0.5736
6.8944
6.4746
6.5409
6.5273
6.9037
6.4116
6.2803
6.5618
3.8678

1.8019
1.5251
0.8117
1.2373
1.1415
1.5184
1.5756
0.9862
1.3116
1.5763
0.7340
0.6480
1.0207
0.9949
1.3802
1.1442
1.0406
1.3777
0.5931
0.8055
1.5129
0.8250
0.6414
0.9934
0.8634
0.9328
0.7875
0.5249
1.0040
0.5069
1.1146
1.2255
1.1232
0.9780
0.5882
0.6123
0.8627
0.5337
1.0784
0.7918
0.5888
0.4848
6.8285
6.8386
7.1040
7.2105
7.6489
7.2445
7.1402
7.4449
3.3533
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0.3167
0.3186
0.2688
0.2902
0.3009
0.3074
0.3117
0.3148
0.3171
0.3189
0.2702
0.2911
0.3016
0.3079
0.3121
0.3152
0.3174
0.3192
0.2715
0.2920
0.3022
0.3084
0.3126
0.3155
0.3177
0.3195
0.2727
0.2928
0.3029
0.3089
0.3130
0.3159
0.3181
0.3198
0.2739
0.2936
0.3035
0.3094
0.3134
0.3162
0.3184
0.3200
0.2338
0.2667
0.2832
0.2932
0.2998
0.3046
0.3082
0.3110
0.2367

1.9968
2.5057
3.2927
2.7057
2.7136
2.3936
1.8861
2.2556
1.8068
1.7080
4.0138
2.4796
2.2103
1.7811
1.8331
1.3265
1.5898
1.8632
3.6825
2.5816
1.6664
1.6016
1.4920
1.6431
1.9068
2.0570
3.8462
2.3059
1.8118
2.2046
1.8556
1.6948
1.4988
1.4171
3.7426
1.9830
1.8523
2.2571
1.0216
1.2620
1.9875
1.3070
7.4799
7.6830
7.5035
7.5222
7.2404
7.8579
7.7390
7.2534
4.9237

1.3613
1.8190
2.4854
2.0355
1.9848
1.6362
1.3048
1.5958
1.2847
1.3095
3.2539
1.7874
1.5746
1.1087
1.2865
0.7984
1.1007
1.3534
2.9786
1.9200
1.0881
1.0494
0.9010
1.1235
1.3439
1.5280
3.1771
1.6707
1.2178
1.5938
1.2330
1.1828
0.9133
0.9172
3.1063
1.3764
1.3358
1.6557
0.6353
0.8188
1.4183
0.8570
6.1949
6.4602
6.2802
6.3608
6.0654
6.6675
6.4884
6.1033
3.8928

1.5391
2.0742
0.8429
1.4535
1.5715
1.4215
1.2676
1.6385
1.3617
1.3851
1.1995
0.9339
1.1332
0.8148
1.1791
0.7706
1.1190
1.4200
0.8204
0.8696
0.7469
0.8013
0.7009
1.0301
1.3022
1.5450
0.7506
0.5668
0.6454
1.0604
0.8692
1.0254
0.7991
0.8840
0.5463
0.5608
0.8705
0.9911
0.6684
0.6972
1.2269
0.7922
6.1824
6.8461
6.8707
7.0367
6.8295
7.5020
7.4134
6.9829
3.4005
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10
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0.1973
0.2308
0.2510
0.2646
0.2743
0.2817
0.2874
0.1429
0.2051
0.2367
0.2558
0.2686
0.2778
0.2847
0.2900
0.1532
0.2121
0.2420
0.2601
0.2722
0.2808
0.2874
0.2924
0.1624
0.2184
0.2468
0.2639
0.2754
0.2836
0.2898
0.2946
0.1707
0.2240
0.2510
0.2673
0.2782
0.2861
0.2919
0.2965
0.1783
0.2292
0.2549
0.2704
0.2808
0.2883
0.2939
0.2982
0.1852
0.2338
0.2584
0.2733

4.2837
4.7043
4.5406
3.8800
4.0695
4.2161
4.5591
4.1245
3.8406
3.6875
3.2119
3.2614
3.0039
2.9031
2.8627
3.8144
2.6936
2.9975
2.3036
2.2400
2.0774
2.1756
2.4527
3.5063
2.4139
2.9510
1.7441
2.0215
1.9723
1.7248
1.7392
3.6135
2.6842
2.7823
2.0631
1.9709
1.5185
2.1801
1.7182
2.9010
1.7438
1.7975
24110
1.6541
1.1633
1.0418
1.1689
3.9516
2.2341
1.9360
1.5786

3.3319
3.7450
3.7477
3.0970
3.2325
3.3710
3.6984
3.1863
29171
2.8881
2.5265
2.5014
2.3205
2.1684
2.0757
2.9287
1.9487
2.2103
1.5439
1.6234
1.5468
1.5596
1.8104
2.6987
1.7249
2.2255
1.2682
1.5352
1.4330
1.2776
1.2931
2.8571
1.9376
2.0663
1.4067
1.5480
0.8273
1.5233
1.2273
2.2017
1.0873
1.2383
1.7591
1.0942
0.6971
0.8510
0.8111
3.2853
1.5900
1.3123
1.0162

3.2827
3.9332
4.0153
3.4372
3.6658
3.8597
4.2378
2.2262
2.5594
2.8456
2.6178
2.7079
2.5647
2.4902
2.4720
1.5330
1.4970
1.9760
1.5035
1.6826
1.6476
1.7410
2.0525
1.0709
1.1691
1.8303
1.2026
1.5147
1.4722
1.3424
1.3914
0.8969
0.8777
1.4800
1.1305
1.4849
0.7885
1.5679
1.2963
0.5362
0.5888
0.8917
1.3329
0.9176
0.6526
0.8560
0.8200
0.8832
0.4759
0.5861
0.6717

10
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10
10
10
10
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10
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10
10
10
10
10
10
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36
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0.2686
0.2847
0.2943
0.3008
0.3054
0.3089
03116
0.2394
0.2704
0.2861
0.2955
0.3017
0.3062
0.3096
0.3122
0.2420
0.2722
0.2874
0.2965
0.3026
0.3070
0.3103
0.3128
0.2444
0.2738
0.2886
0.2975
0.3034
0.3077
0.3109
0.3134
0.2468
0.2754
0.2898
0.2984
0.3042
0.3084
0.3115
0.3139
0.2489
0.2768
0.2909
0.2993
0.3050
0.3090
0.3120
0.3144
0.2510
0.2782
0.2919
0.3002

4.7332
4.3059
4.4008
4.1869
4.3931
4.0675
4.2280
3.9106
3.4661
3.1612
2.5778
3.1661
2.8312
2.4528
3.1575
2.8272
3.0495
2.8481
2.0884
2.3564
1.9063
2.1316
2.4041
3.0517
2.6152
2.5275
2.3450
1.9539
1.9792
2.1774
2.0406
2.8966
2.5568
1.5963
2.4952
1.9650
1.4698
1.7005
1.6694
3.2480
2.3145
1.6729
1.9431
1.6656
1.5829
1.8541
1.4054
3.5911
1.9488
1.6911
1.7538

3.7380
3.4030
3.4904
3.3820
3.4853
3.2275
3.3827
3.0009
2.5598
2.3079
1.8799
2.2873
2.2039
1.8415
2.4644
2.0141
2.3249
2.1810
1.5185
1.8046
1.4059
1.5429
1.7562
2.2422
1.9516
1.7871
1.7756
1.2387
1.3766
1.5269
1.4205
2.1477
1.8348
0.9347
1.8127
1.3833
0.8311
1.1975
1.1523
2.5525
1.6296
1.0580
1.3336
1.0663
1.0147
1.2910
0.9281
2.9295
1.3384
1.0852
1.2520

3.7253
3.6040
3.8288
3.7536
3.9804
3.7259
3.9225
2.1737
2.2626
2.2959
1.9904
2.5597
2.4363
2.1040
2.8209
1.0890
1.9104
2.0304
1.5118
1.8724
1.5071
1.7276
2.0155
0.7387
1.4372
1.4315
1.6765
1.2276
1.4427
1.6687
1.6027
0.4695
0.9353
0.5915
1.5409
1.2929
0.8216
1.2411
1.2413
0.6716
0.5728
0.6407
1.0090
0.8859
0.9381
1.2821
0.9625
0.7547
0.6268
0.5388
0.9814
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0.2832
0.2903
0.2957
0.2998
0.1915
0.2381
0.2616
0.2759
0.2854
0.2922
0.2973
0.3013
0.1973
0.2420
0.2646
0.2782
0.2874
0.2939
0.2988
0.3026
0.2026
0.2456
0.2673
0.2804
0.2892
0.2955
0.3002
0.3038
0.2075
0.2489
0.2698
0.2824
0.2909
0.2969
0.3014
0.3050
0.2121
0.2520
0.2722
0.2843
0.2924
0.2982
0.3026
0.3060
0.2164
0.2549
0.2743
0.2861
0.2939
0.2995
0.3037

1.0802
1.3372
1.1624
1.1958
3.6806
2.4974
2.2084
1.9971
1.7871
1.4954
1.1388
1.2527
8.1822
7.4980
8.0186
7.9666
7.7308
7.9517
7.2591
7.5746
4.9793
4.7353
4.3873
4.3029
4.5426
4.5048
3.9536
3.9096
4.1746
3.4062
3.8323
2.9922
2.9468
2.8636
3.0517
2.3919
3.0054
2.5279
2.8894
2.6047
2.3133
2.1861
1.9713
2.1280
3.0535
2.9755
2.5750
1.8663
2.3626
1.8930
2.0338

0.6688
0.7765
0.7658
0.7418
3.0438
1.9074
1.6086
1.4553
1.2891
1.0002
0.7754
0.8972
6.9612
6.2460
6.8304
6.7910
6.4836
6.7817
6.1877
6.4402
4.0203
3.7573
3.4592
3.4125
3.6645
3.6059
3.1065
3.1378
3.2701
2.5771
3.0641
2.1630
2.2383
2.1614
2.3595
1.8330
2.1372
1.7196
2.0741
1.9964
1.8182
1.5562
1.3127
1.6819
2.2572
2.2261
1.8209
1.4018
1.7131
1.4656
1.4737

0.6545
0.6185
0.7324
0.7237
0.4857
0.7849
0.7037
0.9649
0.9988
0.8124
0.7321
0.8645
6.9250
6.6248
7.3906
7.4671
7.2900
7.5940
6.9672
7.3025
3.5541
3.7256
3.6536
3.7300
4.0681
4.0876
3.6015
3.6177
2.4104
2.2999
3.0388
2.2940
2.4346
2.4213
2.6677
2.0929
0.9464
1.2191
1.8475
1.9778
1.8684
1.6973
1.5166
1.8319
0.8043
1.4972
1.4305
1.3387
1.6910
1.4974
1.5792

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

40
40
40
40
41
41
41
41
41
41
41
41
4
42
4
4
42
4
4
4
43
43
43
43
43
43
43
43
44
44
44
44
44
44
44
44
45
45
45
45
45
45
45
45
46
46
46
46
46
46
46

0.3057
0.3096
0.3126
0.3149
0.2530
0.2796
0.2929
0.3010
0.3063
0.3102
0.3131
0.3153
0.2549
0.2808
0.2939
0.3017
0.3070
0.3107
0.3136
0.3157
0.2567
0.2821
0.2948
0.3025
0.3076
0.3113
0.3140
0.3162
0.2584
0.2832
0.2957
0.3032
0.3082
0.3118
0.3144
0.3165
0.2601
0.2843
0.2965
0.3038
0.3087
0.3122
0.3149
0.3169
0.2616
0.2854
0.2973
0.3045
0.3093
0.3127
0.3153

1.3546
1.3560
1.4313
0.9267
3.9590
2.5462
2.0140
1.7823
1.4669
1.1029
1.3051
1.1648
8.0933
7.0939
7.7544
7.2689
7.2711
6.9828
7.6831
7.3922
5.0047
4.8555
4.3494
4.4526
4.3484
4.1980
4.4710
4.2788
3.1539
3.4175
3.0018
3.1738
3.0789
2.9570
3.4144
2.8957
3.1735
2.3501
2.5097
2.8054
1.9291
2.7214
2.2867
2.2680
3.3219
2.3451
2.3404
2.2823
1.7459
2.0829
1.9791

0.9931
0.8048
0.9321
0.5250
3.3251
1.9444
1.4136
1.2830
1.0659
0.9517
0.8227
0.8456
6.8222
59115
6.5364
6.0914
6.1435
5.7739
6.5136
6.2724
3.9651
3.8634
3.4930
3.4792
3.3977
3.2962
3.6810
3.4147
2.1933
2.5403
2.1460
2.5216
2.3863
2.3847
2.6649
2.1699
2.2898
1.4992
1.8062
2.1746
1.3755
2.0586
1.6428
1.6528
2.5223
1.6407
1.7907
1.5808
1.1814
1.4793
1.4766

0.9374
0.6721
0.8761
0.5225
0.8096
0.7112
0.5850
0.9273
0.9365
1.0070
0.7267
0.8283
6.8344
6.2972
7.1368
6.7864
6.8825
6.6277
7.3818
7.1332
3.4936
3.8696
3.6939
3.8570
3.8589
3.7947
4.1544
3.9741
1.3468
2.2799
2.1499
2.6368
2.5962
2.5998
3.0231
2.5506
1.0692
0.9908
1.6630
2.1768
1.4459
2.2337
1.8621
1.9010
1.0688
1.1031
1.6014
1.4569
1.1828
1.5558
1.5797
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10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

28
29
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
31
31
31
31
31
31
31
31
32
32
32
32
32
32
32
32
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0.3070
0.2203
0.2576
0.2764
0.2877
0.2952
0.3007
0.3047
0.3079
0.2240
0.2601
0.2782
0.2892
0.2965
0.3017
0.3057
0.3087
0.2275
0.2624
0.2800
0.2906
0.2977
0.3028
0.3066
0.3095
0.2308
0.2646
0.2817
0.2919
0.2988
0.3037
0.3074
0.3103

2.0089
3.1049
3.1421
1.8431
2.1074
1.7572
1.5110
1.7478
1.7215
3.2558
1.8854
2.1712
1.3965
1.3133
1.3650
1.1166
1.3878
3.1267
2.5193
1.8957
1.7849
1.6331
1.1428
1.2653
1.4282
3.3293
24218
2.0696
1.7513
1.3652
1.6586
1.2127
0.9356

1.3739
2.3605
2.4537
1.1889
1.5488
1.0647
0.9758
1.2089
1.2133
2.5586
1.3120
1.5699
0.8895
0.8560
0.8713
0.7070
0.9543
2.4639
1.8816
1.2901
1.2107
1.0831
0.8124
0.9644
1.1645
2.7105
1.8271
1.4772
1.1973
0.8335
1.0960
0.7914
0.7521

1.5521
0.6626
1.5711
0.7954
1.3539
0.9296
0.9607
1.2495
1.2938
0.6388
0.9341
1.0613
0.7442
0.7809
0.8121
0.7002
0.9771
0.5066
0.6952
0.6567
0.8172
0.8422
0.7959
0.9485
1.1602
0.7404
0.6755
0.6696
0.7286
0.5718
0.8529
0.7227
0.7649

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

46
47
47
47
47
47
47
47
47
48
48
48
48
48
48
48
48
49
49
49
49
49
49
49
49
50
50
50
50
50
50
50
50
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0.3173
0.2632
0.2864
0.2981
0.3051
0.3098
0.3131
0.3156
0.3176
0.2646
0.2874
0.2988
0.3057
0.3103
0.3136
0.3160
0.3179
0.2660
0.2883
0.2995
0.3062
0.3107
0.3140
0.3164
0.3183
0.2673
0.2892
0.3002
0.3068
0.3112
0.3143
0.3167
0.3186

1.8846
3.0839
2.6892
2.3322
1.6365
1.2942
1.5748
1.6034
1.5464
3.1678
1.6472
1.7356
1.2978
1.7180
1.3770
1.6686
2.2390
29121
2.2372
1.9478
1.4479
1.5343
1.5749
1.6522
1.4707
3.7244
2.4248
1.5680
1.2137
1.7315
1.6515
1.2691
1.5226

1.4649
2.3423
1.9671
1.6919
1.0642
0.9205
1.1156
1.0730
1.1585
2.4650
1.0199
1.1385
0.7609
1.0902
1.0299
1.1393
1.6111
2.2602
1.6035
1.3497
0.9389
1.0497
1.0163
1.2641
1.1006
3.0935
1.8177
1.0371
0.6837
1.1584
1.1155
0.8084
1.0552

1.5729
0.7104
1.0795
1.2916
0.9087
0.9042
1.1165
1.1272
1.2176
0.5542
0.6558
0.7439
0.6189
0.9065
1.0095
1.1404
1.6798
0.6740
0.6022
0.7600
0.7264
0.8914
0.8817
1.2314
1.1011
0.6751
0.6037
0.6787
0.4814
0.8161
0.9205
0.7299
1.0139






