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Summary 

Terpenes are components of essential oils.  Their enhancing effects on human skin and 

interactions with skin lipids were studied.  Firstly, mathematical and statistical models 

for in vitro permeation studies using both Franz and flow-through cells were derived and 

tested.  For Franz cells, the model allowed the accumulation of chemicals in the receptor 

compartment and gave comparable results as those obtained from infinite outflow 

methods.  For flow-through cells, the proposed model provided more precise estimates 

than the existing models.  Secondly, based on the models, the enhancing efficacies of 49 

terpenes were studied.  For monoterpenes and sesquiterpenes, the enhancing efficacies 

increased as their lipophilicities increased.  Melting points and boiling points were 

negatively correlated with their enhancing effects.  Monoterpenes, sesquiterpenes and 

diterpenes were found to be effective enhancers and sesquiterpenes were better compared 

to monoterpenes.  Terpenes with ester and aldehyde functional groups were found to be 

better than the others.  Thirdly, the enhancing effects of two terpenes on the skin were 

found to be reversible and the permeability of skin recovered once the enhancers were 

removed from the excised skin.  Fourthly, the drug and enhancers were incorporated into 

Small Molecule Gelling Agents (SMGA) gels without affecting the aesthetic properties.  

The novel SMGA gels are suitable for topical or transdermal delivery.  Lastly, the 

solubilities of Stratum Corneum (SC) lipids and ligand binding studies suggest that the 

enhancing mechanism of farnesol could be due to lipid extraction and/or lipid phase 

transition in the SC lamella.  In conclusion, terpenes are effective skin penetration 

enhancers with reversible effects in both solutions and gels, that can bind and solubilize 

stratum corneum intercellular lipids.  
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I Introduction 

Transdermal drug delivery systems offer many advantages over conventional dosage 

forms such as sustained delivery, improved patient compliance, reduced side effects, 

elimination of first-pass effect, interruption or termination of treatment when 

necessary [1,2].  Haloperidol, an antipsychotic drug, is a suitable candidate for 

transdermal drug delivery [3].  It is a lipophilic compound with low molecular weight 

(375.9) and low daily maintenance dose (3 to 10 mg).  There is a clinical need to develop 

a long-acting formulation for maintenance therapy to prevent the relapse of 

psychosis [4,5].  Haloperidol can only penetrate sub-therapeutically through the human 

skin in vitro, so that penetration enhancement is required for the drug to reach the 

therapeutic level.   Chemical enhancers can increase the skin permeability by interacting 

with lipids and proteins in the stratum corneum, the top layer of the skin.  Terpenes may 

increase the skin permeability by interacting with the skin lipid domains. 

 

1.1 Human Skin Lipids and Transdermal Drug Delivery 

Transdermal administration of drug has been exploited extensively in the past few years.  

In USA, out of 129 drug delivery candidate products under clinical evaluation, of which 

51 are transdermal or dermal systems and 30% of 77 candidate products in preclinical 

development fall under this drug delivery category [6].  The value of market for 

transdermal delivery is $12.7 billion in the year 2005 and is expected to increase to $21.5 

billion in 2010 and $31.5 billion in the year 2015 [7]. 

However, the major function of skin is as a rigid biological barrier protecting the interior 

milieu, rather than an amenable passage for chemicals to penetrate.  Human skin is 
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composed of three layers, i.e., hypodermis, dermis and epidermis (Figure 1.1-1).  

Epidermis has five anatomical layers, which, from outermost to bottom, are stratum 

corneum, stratum lucidum, stratum granulosum, stratum spinosum and stratum basale 

(Figures 1.1-2).  The stratum lucidum presents only in thick skins.  All layers usually 

thinner in thin skin than in thick skin.  Stratum corneum (SC) is the outermost layer that 

consists of keratin enriched dead cells, i.e., the corneocytes, surrounded by crystalline 

intercellular lipid domains (Figures 1.1-2 and 1.1-3).  SC provides a permeability barrier 

that prevents desiccation and thereby permits life on dry land and at the same time 

prevents exogenous substances from entering our bodies so that a stable inner 

physiological condition can be maintained.  In addition to the almost impermeable 

corneocytes, the barrier function is offered by the presence of a unique mixture of lipids 

in the intercellular spaces of the SC (Figure 1.1-4).  These lipids, though acting as 

barriers, can provide a passage for permeation of exogenous chemicals, including drugs. 
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Figure 1.1-1 The human skin.  Reproduced from Marieb E.N. (2003).  Human Anatomy 
and Physiology.  Pearson Education Inc. 
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Figure 1.1-2 The human epidermis.  Reproduced from Marieb E.N. (2003).  Human 
Anatomy and Physiology.  Pearson Education Inc. 
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Figure 1.1-3 Stratum corneum diagram, reproduced from Mark E.J., Darnel B., Robert L. 
(1997).  J. Pharm. Sci., 86, 1162-1172. 
 
 
 
 

 

 

 

 

 

 
 
Figure 1.1-4 Stratum corneum intercellular lipids,  transmission electron microscope 
image fixed by ruthenium tetroxide.  Reproduced from Downing D.T. (1992).   J. Lipid 
Res., 33, 301-312. 
 
Lipids accumulate in small organelles known as lamellar granules as the epidermal 

keratinocytes differentiate, which occurs in the stratum granulosum, the layer just 

underneath the stratum corneum.  The lamellar granules are extruded into the intercellular 

spaces where it undergoes enzymatic processing to produce a lipid mixture consisting of 

ceramides, cholesterol and fatty acids.  The lipids are uniquely organized into a 
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mutilamellar complex that fills most of the intercellular space of the SC.  The barrier 

properties of the SC are related to the phase behavior of the SC intercellular lipids.  It has 

been proposed that a structurally unusual acylglucosylceramide is thought to be involved 

in assembly of the lamellar granules, and a related ceramide may have a major influence 

on the organization of the lamellae in the SC [8]. 

Intercellular lipids are organized in lamellar phases and these lamellae are oriented 

approximately parallel to the surface of the keratin-enriched cells.  When visualized by 

transmission electron microscopy, the lamellae exist as broad and narrow bands (Figure 

1.1-4).  The broad bands are approximately 5 nm wide, and the narrow band is about 3 

nm wide.  Three patterns are identified as paired lipid layers, lipid monolayers and lipid 

envelopes. 

At physiological temperature, lipids in lamellar bilayers of liposomes and membranes 

exist in either of two main states depending on their hydrocarbon chain lengths, a fluid 

crystalline state and a crystalline or gel state.  If the temperature is lowered, the lipids are 

forced into a crystalline state.  When such crystalline bilayers have water on both sides 

they are termed as the gel phase.  A system containing aliphatic chain lengths in the range 

of C18-C34 is likely to be in a crystalline or a gel phase at normal skin surface 

temperature (approximately 28° to 32°C). 

The major lipid classes that can be extracted from SC are ceramides, cholesterol and fatty 

acids, which make up approximately 50, 25, 10 percent of the stratum corneum lipid 

mass, respectively.  At least 9 different subclasses of ceramide have been 

identified [9,10].  Each individual ceramide differs from the others in its head-group 

architecture and chain length distribution.  The chain length of the fatty acids linked to 
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the (phyto) sphingosine backbone is approximately C24 and C26.  The free fatty acids are 

straight-chained saturated species with chain lengths ranging from 16 through 30 carbons 

and the most abundant species are those with C24, C26 and C28.  Cholesterol is a 

ubiquitous membrane lipid and is capable of either fluidizing membrane domains or of 

making them more rigid, depending on the physical properties of the other lipids and the 

proportion of cholesterol relative to the other components [11,12].  

There are several models proposed for the arrangement of these lipids.  The Singer-

Nicholson model [13] has undoubtedly influenced many dermatologists and scientists 

who perceive the arrangement of these lipid units in the barrier as completely 

randomized.  However, this is not compatible with the fact that there are very long 

hydrocarbon chains in the barrier lipids, i.e. a crystalline or gel phase, other than a liquid 

crystalline phase, would dominate the barrier.  If the barrier lipids were in the 

crystalline/gel state, the mechanical properties of the lipid barrier would be compromised.  

This contradiction gives rise to the following two models that hypothesize the existence 

of a liquid crystalline sub-lattice, and another model that contradicts them.  In the 

‘domain mosaic model’ [11,14], lipids with very long chain lengths are segregated into 

domains in the crystalline/gel phase separated by grain borders populated by lipids with 

relatively short chain lengths in the liquid crystalline state.  The liquid phase is a narrow 

continuous phase from the superficial SC layers down to the stratum granulosum-stratum 

corneum interface.  In the ‘sandwich model’ [15,16], the fluid phase is mainly present in 

the narrow layer located in the center of the 13 nm repeating unit (Figure 1.1-5).  This 

central lipid layer is not a continuous fluid phase as the amount of lipids forming the fluid 

phase in the SC is very limited.  In ‘single phase model’ proposed by Norlen  [17,18], no 
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phase separation between liquid crystalline and gel phases nor between different 

crystalline phases with hexagonal and orthorhombic chain packing, respectively, is 

present in the unperturbed barrier structure.  The intercellular lipid within the stratum 

corneum exists as a single and coherent lamellar gel structure in the intercellular space of 

the stratum corneum.  The latter two models do not adequately reconcile the proposed 

crystalline lamellae that would be rigid with the observed elasticity of the skin.  An 

effective skin barrier also requires flexible and elastic lamellae to line the edge of the cell 

boundaries. 

 

 

 

 

 

 

 

 

 

Figure 1.1-5 The ‘sandwich model’ of stratum corneum intercellular lipids.  Reproduced 
from Bouwstra J.A. et al (2002). J. Invest. Dermatol., 118, 606-617. 
 

From a pharmaceutical point of view, these proposed models provide general concepts of 

the barrier function and the permeation pathways found in the skin.  It is conceivable that 

the fluid crystalline state sub-lattice is a region where lipids and corresponding 

hydrophobic molecules can permeate the barrier by diffusion forces.  Penetration 
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enhancers, generally have short chain lengths, will preferentially reside in the fluid 

crystalline phase and to a certain extent, fluidize lipid units at the border of domains 

whereby the width of the grain border will increase and hence, permeability will increase 

perceivably.  Terpenes are chemical skin penetration enhancers of natural sources. 

 

1.2 Terpenes and Terpenoids 

Plants contain many strong smelling components and since ancient times these 

components have been termed essential oils due to their volatility. Certain hydrocarbons 

were isolated from these essential oils.  They are named ‘terpenes’ after ‘turpentine’ as 

turpentine oil is a mixture of these compounds [19,20].  They are usually named after the 

plants from which they were first isolated.  Some terpenes share the same composition by 

percentage and some have even the same molecular weights and similar boiling points.  

However, they smell different, have different optical properties and behave differently in 

chemical reactions, therefore they are not identical. 

The term ‘terpene’ is used to describe a compound, which is a constituent of an essential 

oil containing carbon and hydrogen or carbon atoms, hydrogen and oxygen atoms, and is 

not aromatic in character [21,22].  This definition is usually extended to include other 

compounds called terpenoids, which are not of natural occurrence, but are very closely 

related to the natural terpenes.  In this report unless otherwise specified, the term terpene 

will refer to both the terpenes and terpenoids.  Most terpenes are invariably 

hydrocarbons, alcohols, aldehydes, ketones, or oxides, and they may be solids or liquids.  

Terpene hydrocarbons are usually liquids, while terpenes of higher molecular weights, 
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mostly obtained from the natural gums and resins of plants and trees, are not steam-

volatile. 

Terpenes are defined and classified by the so-called ‘isoprene rule’, introduced by 

Wallach in 1887 [22].  Two isoprene units make one ‘terpene unit’.  Thus, isoprene unit 

number of two, three, four, five, six, and eight refers to monoterpene, sesquiterpene, 

diterpene, sesterterpene, triterpene and tetraterpene, respectively.  A subsidiary 

classification is based on the number of carbon-rings present in the terpene; 

monoterpenes, for example, may be acyclic, monocyclic or bicyclic. 

Terpenes are considered as less toxic compounds with low irritancy compared to 

surfactants and other skin penetration enhancers.  Some are designated as generally 

recognized as safe (GRAS) by FDA [23,24].  These chemicals have been utilized for a 

number of therapeutic purposes, such as in antispasmodics, carminatives, and perfumery.  

Some terpenes have been reported to enhance the permeation of various drugs in 

transdermal drug delivery [24,25].  The permeation of drugs through human skin can be 

evaluated by in vitro methods.  Franz cells and flow-through cells are among the most 

established cells for in vitro skin permeation studies.  However, the mathematical and 

statistical models developed for them need further improvement to get more reliable 

estimation of the parameters such as permeability coefficient. 

 
1.3 Modeling In Vitro Skin Permeation 

1.3.1 Finite Outflow Volume Using the Franz Diffusion Cell 

The SC, the viable epidermis and the upper layer of the papillae form the effective 

composite diffusion barrier layer of human skin.  Subjacent are the capillaries of the 

microcirculation, where substances can easily diffuse into the blood stream [26].  
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Although the viable epidermis and the upper layer of the papillae can affect the diffusion 

of hydrophobic molecules, SC is the major rate-limiting barrier [26-28].  The thickness of 

SC is variable in different parts of the body [29,30], normally thicker in the sun-exposed 

areas, such as the outer forearm (12.96 ± 2.3 µm) and the inner forearm (9.58 ± 0.8 

µm) [31].  The SC was generally regarded as a homogenous membrane in mathematical 

models of the skin permeation study.  In vitro skin permeation studies are used to 

evaluate in vivo skin absorption.  Two types of diffusion cells commonly used are the 

flow-through cell [32]  and static cell [33] with continuously-replaced and finite receptor 

solution, respectively.  If the concentration of the receptor solution can be retained 

effectively at zero, a closed form of mathematical solution can be derived for the 

diffusion process  [34-36], which was used for in vitro skin permeation study [5,26,37-

39].  It is easy for the receptor solution concentration to be maintained effectively at zero 

with a flow-through cell by adjusting the flow rate. But with a static cells this appears to 

be more difficult.  The aim here is to derive an equation of membrane diffusion based on 

finite outflow volume and to establish a statistical model to estimate the permeability 

coefficient.  The method was exemplified by an in vitro skin permeation study. 

 

Theory 

The Fick’s second law for one-dimensional diffusion is [35], 

2

2

C CD
t x

∂ ∂
=

∂ ∂
          (1) 

For a thin plane sheet or membrane of thickness l and diffusion coefficient D, almost all 

the diffusing substances will pass through the planar faces and only a negligible amount 

through the edges.  With initial and boundary conditions stipulated as Eqs (2)-(4), the 
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solution is Eq (5) [35,40].  Eq (2) states that the concentration of the solute in the donor 

compartment is constant.  Eq (3) stipulates that the membrane is absent of solute when 

permeation starts.  Eq (4) describes the condition that the solution in the receptor 

compartment is well stirred so that the rate at which solute leaves the membrane is 

always equal to that at which it enters the solution.    The parameters are Q, cumulative 

amount of permeated drug or chemical; A, the area of permeation; K, the partition 

coefficient between skin and donor solution; 0C , donor concentration of the solute; and 

time t.  The dimensionless parameter h is given by AlKh
V

= , where V is the outflow 

volume. 

0C KC=  at x=0 for 0t ≥ ,           (2) 

0C =  for  0 x l< ≤ when t=0,        (3) 

0C l CD
x h t

∂ ∂ + = ∂ ∂ 
 for x l= and 0t ≥             (4) 

2

2
2 2

0 2
1

sin1 2
( 1)

n D t
n n l

n n

hQ VC e
h h

αα α
α α

∞ − ⋅ ⋅ + = − ⋅ ⋅ + +  
∑            (5) 

The nα  is the nth positive root of Eq (6) 

tan hα α =           (6) 

It follows that 

10 / 2α π< ≤ , 2 3 / 2π α π< ≤ , …,  1( 1) ( 0.5)n nπ α π− < ≤ −    (7) 

For small h,  [40] 

1 (1 / 6 )h hα = − + ⋅⋅⋅ , and ( 1) /( 1)n n h nα π π= − + − + ⋅⋅⋅     (8) 
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With the parameter D unknown, Eq (5) can be developed into a nonlinear model to fit the 

data from in vitro skin permeation experiments.  The model is shown as Eq (9), in which 

the expectation function is a nonlinear function of the parameter D  [41,42]. 

( , )i i iQ f t D ε= +          (9) 

An observation iQ  can be expressed as the summation of a fixed part given by the 

nonlinear function ( , )if t D  and the random error term iε .  The error terms are assumed 

to be normal variables with zero expectation, constant variance and random distribution.  

Based on large-sample theory, the least squares estimators of the two parameters for the 

nonlinear regression model are approximately normally distributed, almost unbiased and 

with minimum variance.  Therefore, the estimator of D has the t-distribution as follows: 

{ }
( )D D t n p

s D
−

−
�

∼�          (10) 

Where D
�

 and { }s D
�

 are the estimator and its standard deviation, respectively, with a 

sample size of n and parameter number of p.  Hence, the approximate (1 α− ) confidence 

interval for D is: 

{ }(1 / 2; )D t n p s Dα± − −
� �

        (11) 

The prediction of a new observation iQ , corresponding to a given level of t, can be 

derived similarly.  The (1 α− ) confidence interval for iQ  is: 

{ }(1 / 2; 2)i iQ t n s Qα± − −
� �

        (12) 
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1.3.2 Infinite Outflow Volume Using Flow-through Diffusion Cell 

Compared with the Franz type diffusion cells, the flow-though diffusion cells obviously 

make it much easier to retain the sink condition in the receptor compartment.  Still the 

mathematical model can be derived from Fick’s law [26,35].  When the donor 

concentration is kept constant at 0C  and receptor compartment maintains the sink 

condition, cumulative amount of permeated drug Q, is expressed as a function of time t.  

The mathematical expression relates Q to t in a nonlinear way with respect to the 

parameters.  Therefore a nonlinear regression model has to be fitted to estimate the 

unknown parameters.  The resultant estimates are used to calculate permeability 

coefficient and/or perform further hypothesis tests, but generally the error terms of the 

estimates from the nonlinear regression process are dropped arbitrarily, resulting in 

degradation of the information originally obtained from the permeation 

experiments [38,39,43]. 

This study is to establish a statistical model to encompass both the estimates and their 

error terms obtained from the nonlinear regression analysis, with which further pairwise 

comparisons can be made on the basis of all relevant information from the in vitro 

permeation.  Furthermore, the prediction corresponding to a given level of t was also 

suggested. The method is exemplified by an in vitro skin permeation study with the use 

of chemical permeation enhancers, and the same method can be applied to exposure 

measurement to toxic chemicals. 

 

Theory 

The Fick’s second law for one-dimensional diffusion is [35], 
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2

2

C CD
t x

∂ ∂
=

∂ ∂
          (13) 

With initial and boundary conditions stipulated as Eqs (14)-(16), it has the solution of Eq 

(17) [35].  Eq (14) indicates that the membrane is absent of drug or chemical when 

permeation starts.  Eq (15) and (16) state that the constant concentration of the drug in the 

donor compartment and the sink condition in the receptor compartment, respectively.  

The parameters are Q, cumulative amount of permeated drug or chemical, A, the area of 

permeation, K, the partition coefficient between skin and donor solution, D, the diffusion 

coefficient and l, path length of diffusion, 0C , donor concentration of the drug or 

chemical, and time t.   

0C =  for 0 < x < l when t=0,       (14) 

0C KC=  at x = 0 for 0t ≥ ,           (15) 

0C =  for x l= .                          (16) 

( ) 2 2
2

0 2 2 2
1

11 2
6

n D n t
l

n

DQ AlKC t e
l n

π

π

 ∞ − 
 

=

 −
= − − 

  
∑            (17) 

Eq (17) basically describes the two stages of diffusion process, i.e., the initial transient 

diffusion corresponding to the exponential terms and as t increases the exponential terms 

become negligible so rapidly that Q becomes a linear function of t, showing the steady 

state diffusion.   As t approaches infinity, it approaches to its asymptote as Eq (18).   

0 2

1
6

DQ AlKC t
l
 = −  

         (18) 

The intercept of the curve on t-axis is defined as lag time, Lt. The so-named time-lag 

method [34] gives an easy solution to determine experimentally the diffusion coefficient, 

D, i.e. 2 / 6D l Lt= .  However, it is difficult to find precisely the intercept of this 
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asymptote with the time axis.  The pseudo-steady-state is achieved after a period of 3 

times Lt. However, if the intercept of this pseudo-steady-state curve is used as the 

estimate of Lt, it will lead to a systematic over-estimation of the diffusion coefficient by 

4%, without considerating all the other subjective errors involved to determine the 

intercept [35,40].  The measurement of diffusion path length l, on the other hand, causes 

even more difficulty because of the tortuous passages of the stratum corneum and its 

swelling behavior in water [44,45].  Values such as 10 µm [38], 13.1 µm [46], 15 

µm [47], 20 µm [48], 30 µm [24] have been suggested by different authors.  The 

application of time-lag method, originally designed for homogenous membrane like 

rubber, therefore, may not be suitable for the studies on skin permeation. 

To circumvent the determination of diffusion path length, an alternative to diffusion 

parameter, the permeability coefficient pK , also known as the permeance, is defined as 

Eq (19) [34,36,48-50].  Although pK  is a much less fundamental parameter than 

diffusion coefficient, it provides an easy solution for the skin permeation process, just as 

its other forms used in various diffusion applications [35]. 

p
DK K
l

=                (19) 

The slope of the asymptote as in Eq (18), divided by the permeation area, is the definition 

of the unit flux J, which intrinsically comply with Fick’s first law. 

0
dQ DJ KC
Adt l

= =          (20) 

Therefore, pK  can be calculated by Eq (21) 

0
p

JK
C

=           (21) 
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Eq (21) is the most frequently used method to calculate permeability coefficient [3,46,51-

53].  In order to determine the permeability coefficient from Eq (21), it is necessary to 

find J.  Generally, J is estimated from the linear portion of the permeation plot.  By doing 

so the linear portion of the curve has to be determined subjectively and all the data on the 

curved region of plot, defined by Eq (17), are discarded.  This can be improved by a 

statistical method using Eq (17) as the model to fit the full data set.  Eq (17) includes both 

the transient and the linear portions, independent of the asymptote approximation.  Since 

it is difficult to determine the diffusion path length, two intermediate parameters were 

defined as Eq (22) and (23), respectively [39]. 

'K Kl=           (22) 

2' DD
l

=           (23) 

As a result, Eq (17) and (19) can be re-parameterized as, 

( ) ( )2 2'
0 2 2

1

11 2' '
6

n
D n t

n

Q AK C D t e
n

π

π

∞
−

=

 −
= − − 

  
∑      (24) 

' 'pK K D=           (25) 

With the two unknown parameters K’ and D’, Eq (24) is used as the nonlinear model to 

fit the data from in vitro skin permeation experiments.  The estimates of K’ and D’ are 

then used to calculate pK .   Here the model is shown as Eq (26), in which the expectation 

function is a nonlinear function of the parameters K’ and D’ [41]. 

' '( , , )i i iQ f t K D ε= +          (26) 
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An observation iQ  can be expressed as the summation of a fixed part given by the 

nonlinear function ' '( , , )if t K D  and the random error term iε .  The error terms are 

assumed to be normal variables with zero expectation, constant variance and random 

distribution.  Based on large-sample theory, the least squares estimators of the two 

parameters for the nonlinear regression model are approximately normally distributed, 

almost unbiased and with minimum variance.  Therefore, the estimators of K’ have the t-

distribution as follows. 

{ }
( )K K t n p

s K
′ ′−

−
′

�
∼�          (27) 

Where K ′
�

 and { }s K ′
�

 are the estimator and its standard deviation, respectively, with a 

sample size of n and p parameters.  Hence, the approximate (1 α− ) confidence interval 

for K’ is: 

{ }(1 / 2; )K t n p s Kα′ ′± − −
� �

        (28) 

Similarly, estimates of D’ are obtained and a (1 2 )α−  confidence interval of pK  can be 

constructed as the product of the confidence intervals of K’ and D’.  Once confidence 

intervals of pK  from difference groups with or without enhancers are so obtained, 

pairwise comparisons would follow [54,55]. 

When large-sample theory applies, K ′
�

 and 'D
�

 are approximately normally distributed.  

If X and Y are bivariate normal random variables and the correlation between X and Y is 

ρ , the mean and variance of the product XY are [56]: 

( ) x y x yMean XY µ µ σ σ ρ= +         (29) 

2 2 2 2 2 2 2( ) 2 (1 )y x x y x y x y x yVar XY µ σ µ σ µ µ σ σ ρ σ σ ρ= + + + +     (30) 
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Therefore the point estimates of K’ and D’ can be calculated as Eq (29) and Eq (30), in 

which the estimates are obtained from the nonlinear regression. 

Bootstrap sampling was employed to check the precision of sample estimates [41,57].  

The method resamples from the observed data with replacement and calculates the 

estimated regression coefficients from the bootstrap samples with the same fitting 

procedure as the original fitting.  The process is repeated many times to get the bootstrap 

estimates and their standard deviations, which are used to measure the precision of the 

large-sample estimates.  In addition, the difference between the large-sample estimates 

and the mean of bootstrap sampling is an estimate of the bias of the regression coefficient 

estimate. 

The prediction of a new observation iQ , corresponding to a given level of t, can be 

derived similarly.  The (1 α− ) confidence interval for iQ  is: 

{ }(1 / 2; 2)i iQ t n s Qα± − −
� �

        (31) 

Pairwise comparisons of the predictions of iQ can be performed in the same way as the 

permeation coefficient. 

The proposed statistical models formed the basis for in vitro skin permeation study.  The 

efficacy and reversibility of skin penetration enhancers can be better evaluated by these 

models. 

 
1.4 In Vitro Skin Permeation Study with Terpene Enhancers 

1.4.1 Enhancing Efficacy of Terpenes 

The efficacy of a skin penetration enhancer can be demonstrated by the permeability 

coefficient of the drug.  It is interesting to establish the enhancing effects of terpene 
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enhancers of different categories with different functional groups.  The relationship 

between the physicochemical properties of terpenes and their permeation enhancing 

effects of drugs through the skin can be investigated by statistical methods.  Multiple 

linear regression (MLR) and other models can be used to determine relations between the 

permeability coefficient of the drug and the physicochemical properties of the 

enhancers [41].  The terpenes’ properties were set as the predictor variables and the 

permeability coefficient (Kp) of HP was chosen as the response variable.   

 

1.4.2 Reversible Effects of Terpenes 

In addition to the evaluation of enhancer efficacy, the in vitro permeation method can 

also be used to test the reversibility of enhancers.  An ideal skin penetration enhancer is 

effective, non-irritating, and reversible [58,59].  As stratum corneum (SC) regeneration 

takes 25 to 30 days, the loss of barrier function will persist [60].  Therefore, the effect of 

chemicals, in particular enhancers, on the skin is important.  Some enhancers cause 

permanent epidermal damage that can only be repaired by SC regeneration [61-63].  On 

the other hand, the increased permeability of SC can return to its normal state when other 

enhancers are used and then removed.  This temporary effect is attributed to the transient 

interactions between the enhancers and SC, mainly the SC lipids, which is the major 

diffusion passage of most small chemicals.   

Carvone and eucarvone are ketone monoterpene and terpenoid, respectively.  The 

hexagonal-ring carvone can be converted to heptagonal-ring eucarvone by a simple 

chemical process [64].  Carvone has two enantiomers, of which the (R)-form smells of 

spearmint and the (S)-form smells of caraway seeds [65].  The (S)-carvone is a skin-
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irritant, so the (R)-form is a better candidate as a skin permeation enhancer [66].  

Carvone is an important flavoring that is widely used in chewing gum, toothpaste, 

toiletries, food, drinks and other products [67].  It has been reported that carvone can 

enhance the skin permeation of 5-fluorouracil, tamoxifen and zidovudine [65,68-70].  

Eucarvone is found in sugar mango, spearmint leaf, blackcurrant buds, Zieria and some 

Chinese medicinal plants like Asari Herba and Asiasari Radix [65,69,70] .  Asari Herba 

was reported to be used as a skin penetration enhancer for administration of 

buprenorphine [71].  The aim of this study is to investigate the reversibility of their 

enhancing effects on excised human skin by in vitro permeation methods.   

 

1.4.3 Incorporation of Terpenes in SMGA Gels 

In all the precious permeation studies, only pure solutions of HP and enhancers in PG 

have been used.  These form the basis for the development of semi-solid dosage forms.  

With similar functionality, supramolecular substances offer many advantages over 

traditional semi-solid dosage forms.  Small molecule gelling agents (SMGA) or low-mass 

gelling agents (LMGA), of molecular weights less than 3000, can form supramolecular 

networks and immobilize water or organic solvents to yield SMGA gels [72-74].  The 

gelators for organic solvent are classified into five categories: fatty acids, steroids and 

their derivatives, anthracene derivatives, cyclo-(dipeptides), and sorbitols [74,75].  

Hydrogelators consist mainly of four classes: conventional amphiphiles, bola 

amphiphiles, Gemini surfactants and sugar-based systems.  SMGA can be used as gelling 

agents for almost all kinds of polar and non-polar liquids.  The inherent physicochemical 

properties of gels, such as hardness, elasticity, clarity, and liquid-carrying capacity, 
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depend on the microstructure of the fiber network structure of SMGA, which in turn is 

determined by the mutual interactions between SMGA molecules and solvent, the degree 

of supersaturation, and branching agents [76-78].  The thermomechanical processing 

conditions such as the stress, strain, and temperature, would also influence the 

microstructure formation and macroscopic properties of the gels [79].  The gelation 

process is controlled by a crystallographic mismatch branching that leads to the formation 

of the Caley fractal-like interconnecting fiber network structures in the liquid [80].  These 

networks form highly porous superstructures and immobilize a large volume of liquid 

efficiently via capillary and other related forces.  It is known that a SMGA can form a gel 

in one solvent, but may fail to form a gel in other isomeric solvents, or if formed, the 

network structures and properties may differ. 

The gels are prepared by dissolving or dispersing the gelators in the organic solvents to 

prepare the sol phases which, on cooling, set to the gel state. Cooling the sol phase results 

in a self-assembly of the gelator molecules into 3-D permanent interconnecting 

nanocrystal fibrous networks, which immobilize the organic solvent.  In contrast, systems 

consisting of nonpermanent or transient interconnecting fibers or needles can only form 

weak and viscous paste at low concentrations.  The resultant organic gels are opaque or 

transparent in some cases, and thermoreversible in nature.   On heating, the gel normally 

melts to the sol phase with an increase in the solubility of the gelator, but in some cases, 

complexes between gelator and solvent form at low temperature and the resulting 

solution will gelate with rising temperature [81].  The transition is thermoreversible in 

both cases.  
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SMGA gels are intrinsically different from microemulsions or polymeric gels.  The 

essential components of microemulsion are oil, water and surfactant, which form circular 

units, stabilized by surfactant, dispersed in the leftover water or oil, i.e., the continuous 

phases [82].  The formation process is achieved by strong mechanical forces.  Polymers 

immobilize bulk solvents by forming networks with their covalently connected long 

chains, such as the organogels formed by PG and Carbopol [83].  Some copolymers with 

relatively low molecular weights and narrow molecular-weight distributions possess self-

assembly properties, but their molecular weights are generally two magnitude higher than 

that of SMGA, which is below 3000 [84-86].  For SMGA gels, the self-assembled three-

dimensional fibrous network structures are formed by interconnecting nanosized fibers.  

The strands of SMGA gels are organized through noncovalent interaction, one of the 

reasons that make them thermoreversible.  Apart from this, in the area of colloidal and 

nanoscale physics, the networks of aggregations are often found to have fractal geometry. 

These supramolecular materials find many applications in various fields, such as 

nanomaterials, lithography, biomaterial processing, tissue engineering, water purification 

and others  [74,87-89].  In the fields of drug delivery, however, SMGA gels remain 

largely unexplored.  The few cases that have been reported so far were briefly reviewed 

as follows.  It is reported that a non-ionic surfactant, sorbitan monostearate, can gelate 

biodegradable oils and the SMGA gels formed may be suitable for a depot preparation for 

intramuscular administration [90].  Another study shows that L-alanine derivatives, as the 

gelling agent, immobilized soybean oil and medium-chain triglycerides, which can lead 

to in situ formation of an implant [91].  The most remarkable study is the antibiotic, 

vancomycin, which was derivatized into a hydrogelator by adding a pyrene group to its 



________________________________________________________________________ 

______________________________________________________________________________________ 
  24 

molecule.  The modified vancomycin, 11-fold more powerful than vancomycin, can 

dissolve in water to form a gel without additional heating.  The novel mechanism of 

targeted delivery was attributed to the gelator-antibiotic molecules forming a lethal layer 

of SMGA gel which encapsulated the bacteria through self-assembly.  The results could 

have led to a new area of drug design and delivery [92,93].   

For topical or transdermal applications, only microemulsion-based organic gels have 

been previously reported [94-96].  The application of SMGA gels in transdermal drug 

delivery is thus investigated for the first time, to our best knowledge.  Two SMGA gels 

are prepared by dissolving a small molecule gelling agent, N-lauroyl-L-glutamic acid di-

n-butylamide (GP-1), into propylene glycol (PG) or isostearyl alcohol (ISA).  While the 

ISA gels have already been extensively studied, PG is found to be gelated by GP-1 for 

the first time. Its rheological properties were studied by a rheological expansion system.    

A skin penetration enhancer, farnesol, is also incorporated.  The effects of enhancer, 

gelator and solvent on skin permeability process are evaluated by means of in vitro skin 

permeation study with flow-though diffusion cells using a factorial design. 

 

1.5 Actions of Terpenes on Skin Lipids 

Apart from the in vitro permeation studies, which provide useful information at 

macroscopic level, the interactions between terpene enhancers and skin lipids can be 

studied in detail by isothermal titration method at microscopic level.  The SC intercellular 

lipid composition differs markedly from that of typical biological membranes. The 

predominant extractable lipid classes are ceramides, cholesterol, and free fatty acids, the 

percentage (w/w) of which are about 50, 25 and 10, respectively.  Nine subclasses of 
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ceramides have been identified in the human SC [9,10].  They are classified according to 

the different combinations of sphingosine and fatty acid moieties joined by an amide 

bond, and numbered by ascending polarity determined by TLC [97,98].  The three 

sphingosines are sphingosine (S), phytosphigosine (P) and 6-OH-sphingosine (H) and the 

three types of fatty acid are non-OH fatty acid (N), α-OH fatty acid (A) and acylated ω-

OH fatty acid (O).  Therefore, the 9 ceramides named as EOS, EOP, EOH, NS, NP, NH, 

AS, AP and AH, correspond to the ceramides 1, 9, 4, 2, 3, 6, 5, 7, 8  [9,99] (Figure 3.6-1).   

Ceramide 1, found in both human and pig SC, is essential for the formation of the 13-nm 

lamellar pattern in the X-ray diffraction study of SC lipids [100].  Ceramides 4, 6 and 8, 

with the 6-OH-spingosine moieties that are present only in human SC lipids, may not be 

essential for barrier formation [97,100,101].  The approximate ceramide composition 

(w/w) as determined by TLC was as follows: ceramide 1 (10%), ceramide 2 (30%), 

ceramide 3 (20%), ceramide 4 (10%), ceramide 5, ceramide 6, and ceramide 7 (together 

15%), ceramide 8 (15%), re-numbered on ascending polarity [97,98].  Ceramide 3 was 

the most well characterized among all the SC ceramides [102,103].  Two artificial 

ceramides, i.e., ceramide 3A and ceramide 3B can also be classified as ceramide 3 

although their origins in human SC have yet to be reported.  Free fatty acid constituents 

in the human skin range from C14:0 to C28:0, and the predominant ones are palmitic acid 

(C16:0), stearic acid (C18:0), behenic acid (C22:0), lignoceric acid (C24:0) and cerotic 

acid (C26:0), which accounts for approximately of 10%, 10%, 15%, 25% and 10% (w/w) 

of the free fatty acids, respectively [104,105]. 

Farnesol is a sesquiterpene alcohol, widely distributed in the essential oils of rose and 

other plants [22], and is also produced in humans [106].  It has many applications in 
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cosmetic, food and pharmaceutical industry, for examples, food additives [107], 

antibacterial agents [108-110], antifungal agents [111,112],  fragrance [113,114], and 

skin penetration enhancers for topical [115-118] or transdermal [53,119,120] delivery.  

As an activator of a nuclear receptor [121], farnesol can stimulate epidermal barrier and 

stratum corneum development [122,123].  Its interaction with lipid bilayers 

dimyristoylphosphatidylcholine (DMPC) revealed its preferable partitioning into and 

stabilizing of the liquid crystalline phase rather than the crystalline or gel 

phase [124,125].  The aim of this study is to investigate the interactions between farnesol 

and four SC intercellular lipids, i.e., cholesterol, behenic acid, ceramide 3 and ceramide 

9, respectively, in propylene glycol (PG).  PG is a common solvent for skincare 

products [126-128] and used here as the medium to dissolve farnesol and the lipids.  

When farnesol and the lipid interact with each other, heat is either generated or absorbed.  

Isothermal titration calorimetry (ITC) technique can monitor the heat flow in any 

physical or chemical reactions.  Measurement of this heat allows the determination of 

reaction parameters [129,130].  Knowledge of these parameters is very helpful to 

elucidate the reaction of relatively weak binding [131], like the bindings in this study.  

The partition of the binding free energy G∆  into its enthalpy H∆  and entropy S∆  by 

ITC can provide information on structural changes and binding driving forces [132], 

while the determination of the binding stoichiometry enables the quantification of the 

process [133]. 
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1.6 Objectives and hypotheses 

Terpenes are promising skin penetration enhancers with low toxicity and irritancy 

profiles.  Some terpenes have already been used in transdermal drug delivery.  However, 

no systematic study has yet been done to address terpene skin penetration enhancement.  

This study, encompassing all the major terpenes from different subclasses, is to 

investigate systematically the efficacy, reversibility and dosage form compatibility of 

these chemicals, using in vitro skin permeation method and other techniques.   

The first part of the study is to improve on the models of in vitro skin permeation 

experiments.  Franz cells and flow-through cells are the most commonly used apparatus 

to investigate in vitro skin permeation of chemicals.  However, the mathematical and 

statistical models of the permeation parameters derived from these experiments could be 

further improved.  For Franz cells which feature finite outflow volumes, no mathematical 

models have been proposed.  Models based on approximation methods are available but 

such models require the receptor solution to be maintained effectively at zero 

concentration, which, in some situations, is difficult to achieve, or very laborious if 

achievable.  Therefore, an estimation method for the permeability coefficient of the 

membrane diffusion based on finite outflow volume could be developed and the resultant 

equation may offer a statistical solution, which allows the accumulation of chemicals in 

the receptor compartment.  Mathematical models for flow-through cells have been 

proposed by other groups, but the statistical models for this experimental set-up need 

improvement.  Statistical models that can include both the estimates together with their 

error terms and avoid the degradation of estimation from the nonlinear regression 

analysis would improve on the estimation and prediction of permeation parameters.  With 
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these models, the permeation profiles of the drug and the terpene enhancers can be 

evaluated, which will form the basis of the second part of the study. 

The second part of the study is to utilize the in vitro permeation method to study the 

efficacy and reversibility of terpenes across excised human skin, as well as their 

compatibilities within dosage forms.  This is also an attempt to establish the relationship 

between the drug penetration-enhancing efficacy of each terpene with its 

physicochemical properties.  Some useful relationships could be identified to allow the 

screening of other terpenes and chemicals as penetration enhancement candidates, thus 

avoiding laborious in vitro skin permeation studies and to conserve scarce human skin 

samples.  It may also be possible to differentiate the penetration enhancing efficacies of 

terpenes with different functional groups.  A desired characteristic of skin penetration 

enhancers is the reversibility of their effects on the skin so that the skin barrier function is 

restored upon the removal of such enhancers from the skin.  An adaptation of the in vitro 

skin permeation studies could allow the reversibility effects of chemicals on skin to be 

evaluated.  These terpene enhancers would have to be incorporated with the drug and 

other excipients into dosage forms for application on the skin.  Their compatibilities with 

other excipients and the effects of novel SMGA gel formulations on the release and 

permeation profiles of the drug could be determined from in vitro skin permeation studies 

and rheological studies. 

As it has been hypothesized that intercellular lipids of the human stratum corneum are the 

permeation passages for chemicals into the body, therefore extraction and/or phase 

transition of these lipids would affect permeation of drugs.  Lastly, a mechanistic study 

of the thermal calorimetric interactions between terpenes and the intercellular lipids of 



________________________________________________________________________ 

______________________________________________________________________________________ 
  29 

the human skin stratum corneum could offer the explanation for the underlying the 

kinetic investigations of terpenes on drug permeation via in vitro skin permeation 

method. 
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2. Materials and Methods 

2.1 Materials 

The following chemicals were purchased from Sigma-Aldrich Chemical Company 

(Steinheim, Germany): haloperidol, droperidol, DL-lactic acid, anitibiotic antimycotic 

solution (100 x), propylene glycol, terpinolene, α-phellandrene, ocimene, myrcene, (1R)-

(-)-myrtenal, (S)-(-)-perillaldehyde, carvacrol, thymol, (R)-(-)-carvone, (1R)-(-)-

myrtenol, (-)-α-thujone, (R)-(+)-pulegone, (+)-dihydrocarvone, (-)-carveol, citral, (-)-

isopulegol, (+)-dihydrocarveol, (-)-dihydrocarveol, (S)-(-)-citronellal, geraniol, nerol, (±)-

linalool, menthone, β-citronellol, L-(-)-menthol, cyclohexanemethanol, Α-humulene, (-)-

α-cedrene, (+)-β -cedrene, (+)-aromadendrene, (+)-longifolene, (-)-trans-caryophyllene, 

(-)-caryophyllene oxide, (-)-epiglobulol, (-)- guaiol, (+)-cedrol, (-)-isolongifolol, (-)-α-

santonin, octisalate, (+)-cedryl acetate, retinol, phytol, squalene, cholesterol, palmitic 

acid, stearic acid, eicosanoic acid, behenic acid, lignoceric acid, cerotic acid.  The 

following terpenes were purchased from TCI chemical company (Kyoto, Japan): (±)-α-

bisabolol, farnesol, (±)-nerolidol, eucarvone, retinoic acid, β-carotene.  Isostearyl alcohol 

(ISA) was purchased from Kishimoto Sangyo Asia Ltd (Singapore) and N-lauroyl-L-

glutamic acid di-n-butylamide (GP-1) from Ajinomoto Co (Japan).  Ceramide 9 (93%), 

ceramide 3 (94%), ceramide 3A (92.4%), ceramide 3B (98.5%) and ceramide 7 (95.6%) 

were provided as gifts from Cosmoferm BV (Delft, The Netherlands).  All other chemical 

reagents were of at least reagent grade and used as supplied without further purification.   
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2.2 Preparation of Excised Human Epidermis 

Abdominal skin was obtained from 3 different Chinese female donors with informed 

consent after plastic surgery at the Singapore General Hospital, Singapore.  Epidermis 

was prepared by immersing the whole skin in 60 0C water for 2 min, followed by careful 

removal of the epidermis from the connective tissues [134].  Samples were stored in 

plastic bags at –80 0C until use.  Prior to experiments, these membranes with the stratum 

corneum sides up were floated over 0.9% (w/v) sodium chloride solution containing 

antibacterial antimycotic solution (1 in 100 dilution) at 22 ± 1 0C for 2 h to equilibrate.    

 

2.3 HPLC Method 

Drug concentrations were determined by a reversed phase HPLC method (C18 column, 

Hewlett Packard) [3].  A photodiode array (PDA) detector was used to obtain the 

chromatographs corresponding to the wavelengths ranging from 170 to 800 nm. Mobile 

phase consisted of 0.05 M phosphate buffer (pH adjusted to 3) and acetonitrile with a 

ratio of 50:50.  Droperidol was used as the internal standard.  Flow rate was 1.3 ml/min 

and injection volume was 100 µl.  Retention times of the internal standard and drug were 

approximately 4.9 and 6.7 min at 254 nm, respectively.  Mean peak area ratios of the 

drug and internal standard in 0.03% (v/v) lactic acid were linearly related to the drug 

concentrations for the samples containing 20 to 1000 ng/ml (r2 = 0.9990).   

For the reversibility study the same HPLC method was used.  Retention times of carvone 

and eucarvone were 5.1 and 5.6 min at 240 and 306 nm, respectively.  External standard 

method shows the peak areas were linearly related to the enhancer concentrations in 
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0.03% (v/v) lactic acid ranging from 0.1 to 4 mg/ml (r2 = 0.9999) for (R)-(-)-carvone and 

eucarvone, respectively. 

 

2.4 Solubility Study of the Drug 

30 mg of HP was added to 1 ml of 5% (w/v) terpene solution in PG in plastic cuvettes. 

The cuvettes were sonicated for 1 h in a water bath at 37 °C and kept in the water bath at 

37 °C for up to 72 h.  The solution was then centrifuged at 16000 rpm for 5 min and then 

100 µl of the solution was carefully withdrawn from PG phase.  The centrifuge time for 

β-carotene was 15 min to achieve better phase separation.  The solution was diluted 

appropriately with mobile phase solution before HPLC assay. 

 

2.5 Solubility Study of Terpenes 

The enhancer was added to 1 ml of 0.03% (v/v) lactic acid in plastic cuvettes. Continuous 

stirring was performed for 72 h at 37 °C on a heater-stirrer (PermeGear, US).  The 

solution was then centrifuged at 2000 rpm for 5 min and the aqueous phase was carefully 

withdrawn using a 1.2 x 38 mm metal needle attached to a gas tight syringe.  The solution 

was diluted appropriately with 0.03% (v/v) lactic acid before the HPLC assay. 

 

2.6 Solubility Study of Skin Lipids 

The required amount of sample was weighed and solutions of various concentrations 

were made using PG as solvent in the receptor compartment of the Franz cell.  A 

magnetic stirrer was placed into the flask which was stirred at 37 °C using a dry block for 

3 days.  The arms and mouth of the receptacle were sealed off with Parafilm® to avoid 
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contamination.  At the appropriate time intervals, the sample was observed with naked 

eye to determine if the lipids were completely dissolved [135,136].  For the solubility of 

cholesterol in PG, the starting point was taken to be 1.8 mg/ml as reported [137].  The 

solubility of the rest of the lipids was largely determined via trial and error.  A fixed 

amount of lipid was added in PG.  The lipid concentration at which lipid particles cannot 

be detected by the naked eye was taken as its solubility. Tests were performed in 

triplicates. 

 

2.7 In Vitro Skin Permeation Study 

2.7.1 In vitro Skin Permeation Study Using Franz Diffusion Cell 

In vitro permeation studies in the absence and presence of 5% w/v terpenes were carried 

out using amber glass Franz diffusion cells with a receptor compartment capacity of 6 ml.  

The receptor compartment was first filled with 0.03% v/v lactic acid containing 1% v/v 

antibiotic antimycotic solution.  High vacuum silicone grease was then applied to both 

the donor and receptor compartments.  The receptor solution was first degassed via 

sonication to ensure the absence of bubbles beneath the epidermis throughout the 

permeation study.  Hydrated epidermis was then mounted between the donor and receptor 

compartments with the stratum corneum facing the donor compartment.  Excess 

epidermis was scrapped off with forceps to minimize any lateral diffusion.  The surface 

area of skin available for diffusion was approximately 0.79 cm2.  The epidermis was 

allowed to equilibrate with the receptor solution for about 0.5 h before the start of the 

permeation. A 1 ml of HP solution (3 mg/ml) in 100% v/v with or without enhancer was 

added to the donor compartment.  Antibiotic antimycotic solution was added to the 
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receptor solutions at the concentration of 1% v/v to maintain the integrity of skin 

throughout the experiment and to minimize microbial contamination of samples.  Both 

the donor compartment and sampling port were covered with parafilm and aluminium foil 

to prevent evaporation and minimize degradation of drug by light.  The diffusion cells 

were maintained at the temperature of 37 ± 1°C over a dry block heater (PermeGear, 

USA).  The contents of the receptor compartment were stirred throughout the experiment 

with a magnetic stirrer.  Aliquots of 300 µl were withdrawn from the receptor 

compartment via the sampling port at predetermined time intervals for 48 h.  After each 

sampling, the same volume of receptor solution was then replaced to maintain constant 

volume within the receptor compartment.  Samples were then diluted appropriately with 

0.03% v/v lactic acid containing 1% v/v antibacterial antimycotic solution and assayed 

using HPLC. 

 

2.7.2 In Vitro Skin Permeation Study Using Flow-through Diffusion Cell 

Flow-through type diffusion cells were used for permeation studies.  Human epidermis 

was mounted between donor and receptor compartments and excessive skin at the sides 

was trimmed off to minimize lateral diffusion.  Stratum corneum faced towards the donor 

compartment and the circular skin area for permeation was 0.785 cm2.  Since the 

solubility of HP in 0.03% (v/v) lactic acid solution is approximately 1 mg/ml, the 

receptor solution of 500 ml of 0.03% (v/v) lactic acid solution containing 1% (v/v) 

antibacterial antimycotic solution was placed in the reservoir bottle and allowed to flow 

through the receptor compartment at 0.75 ml/h. The pH of the receptor solution was 

approximately 3.3 but that did not affect the integrity of the epidermis [3,138].  Receptor 
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solution was thoroughly degassed to prevent the formation of bubbles beneath the 

membrane.  An antibacterial and antimycotic solution was added to the receptor solutions 

to maintain the integrity of the skin throughout the experiment and to minimize the 

microbial contamination in samples during analysis.  HP (3 mg/ml) in PG solutions with 

5 %(w/v) of enhancer or without enhancer (control) were prepared.  When the solubility 

of HP fell below 3 mg/ml, the solution used was at the actual concentration, for example, 

the concentration of HP in PG with 5 %(w/v) (R)-(-)-carvone is 2.43 mg/ml.  A 1-ml 

solution was added to the donor compartment and covered with Parafilm to minimize 

the contamination of the solution.  Ambient temperature of the cells was controlled at 37 

°C by a heater/circulator (Haake, Germany).  The receptor solution is pumped by a 16-

channel peristaltic cassette pump (Ismatec, Switzerland) continuously through the 

receptor compartment and drained into test-tube sitting in the fraction collector (ISCO 

Retriever IV, US).  Cumulated receptor liquid samples were taken at 6-h intervals for 

HPLC assay. 

 

2.8 In Vitro Skin Permeation Setup for Reversibility Study 

Epidermis was cut into smaller pieces before treatment. An enhancer solution, 50 µl of 

5%(w/v), or PG (as control) was applied onto the SC of the epidermis floating on 100 ml 

of 0.9%(w/v) sodium chloride solution containing 1 %(v/v) antibacterial antimycotic 

solution (hydration solution).  The epidermis was then kept at room temperature for 24 h.  

The skin samples were rinsed five times with fresh hydration solution to remove excess 

enhancers left on the skin surface prior to in vitro permeation study.  The donor solution 
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was 3 mg/ml HP in PG without enhancers.  The rest of the permeation setup is similar to 

the study on untreated epidermis. 

 

 

2.9 Preparation of the Terpene Solutions and Gels 

Farnesol is easily miscible with PG or ISA.  Clear solutions were obtained at 37 °C for all 

the formulae without GP-1.  For the 4 gel formulae, GP-1 was weighed into a test tube 

and the organic solvent PG or ISA was added.  The mixture was heated at 120 0C  in an 

oven to dissolve GP-1 [76].  Upon dissolution, haloperidol or farnesol was added and the 

solution was vortexed until haloperidol was completely dissolved, normally within 30 

min at about 60-120 0C .  On cooling at room temperature of 22 ± 1 0C , the solution 

became a white, opaque or translucent organogel.  For the 4 solution formulae, PG or ISA 

was heated to 60 0C  to accelerate the dissolution of haloperidol and the solution was 

vortexed till haloperidol was dissolved completely.  Haloperidol is photosensitive but 

very stable in solution [139,140].  The preparation of each of the 8 formulae was done in 

the dark.  The first-order rate constant of drug degradation is 0.0248 day-1 at 110 

0C  [140].  Therefore approximately 0.0517% of the drug decomposed within the 30 min 

preparation period.   

 

2.10 Factorial Design for the Gel Study 

A 23 full factorial design is used to study the effect of three factors, i.e., the permeation 

enhancer, the gelator and the solvent, each at two levels, on the in vitro permeation 

profiles of the drug in solutions/gels, with specific focus on the permeability coefficient 
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pK  and lag-time Lt .  For enhancer and gelator, the high level indicates their presence in 

the formulation and low level indicates their absence from the formula.  The high and low 

levels of solvent are ISA and PG, respectively.  Eight formulations were generated 

following the Yate’s order [141,142].  Concentrations of haloperidol are 3 mg/ml in all 

the 8 formulations, respectively.  The concentration of farnesol or GP-l was 5% (w/v) 

when applicable in the formulations.  Data were analyzed by the statistical software 

Minitab. 

 

2.11 Gel Rheology Study by Advanced Rheometric Expansion System 

A strain-controlled dynamic mechanical spectrometer with a temperature range from -150 

to 600 ± 0.1 0C  (ARES, Rheometric Inc., US) was used for the linear viscoelastic 

measurements [76,143].  A mixture of air and liquid nitrogen was used to control the 

cooling rate and the temperature.  The sample was placed between two circular plates of 

diameter 25 mm having a gap of 1.5 mm between, and then subjected to sinusoidal 

oscillations by moving both the upper and lower plates. The frequency was set to 0.1 Hz.  

The amplitude of the oscillations was controlled to obtain a 0.1% maximum strain in the 

sample.  Under this strain limit, the structure of supramolecular materials would not be 

destroyed by the measurements.  The instant measurement of the applied stress and the 

resultant strain allowed the calculation of the storage modulus 'G  and the loss modulus 

''G , and consequently the complex modulus *G ( * ' 2 '' 2( ) ( )G G G= + ). 
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2.12 Ligand Binding Study by Isothermal Titration Calorimetry 

The ITC experiments were done using a TAM2277 (Thermometric AB, Sweden) 

calorimeter, with 4-ml stainless steel ampoules [144].  Farnesol in PG solution was 

prepared at 71 or 20 mmol/L.  PG solutions of cholesterol, behenic acid, ceramide 3 and 

ceramide 9 were prepared at 2 mmol/L, 0.667 mmol/L, 0.333 mmol/L and 0.333 mmol/L, 

respectively.  A 0.12 ml solution of farnesol was titrated consecutively into 2.7 ml of 

lipid solutions in 15 aliquots.  The lipid solution was stirred with a turbine at 60 rpm. The 

system’s temperature was maintained at 37 °C.  A control experiment was done by 

titrating farnesol solution into pure PG.  ITC data were analyzed by Digitam® software 

(Scitech Software, Sweden) supplied with TAM2277 [43,145].  The measured heat of 

farnesol titrated into the lipid solution by ITC technique includes the binding heat of 

farnesol with the lipid, the dilution heat of farnesol, and other nonspecific heat.  So the 

binding heat was derived from the measured heat subtracting the heat of the control 

experiment.  The area under each peak is proportional to the fraction of the lipid that has 

reacted.  The binding stoichiometry n, binding constant K, and enthalpy change H∆ were 

estimated from the nonlinear regression analysis procedure of Digitam®.  The standard 

Gibbs free energy can be obtained from binding constant K, i.e., lnG RT K∆ = −D , where 

R is the gas constant, 8.314 (J/mole.K), and T is the temperature (0K).  Since both G∆ and 

H∆ are known, the entropy change S∆  can be calculated from G H T S∆ = ∆ − ∆D D D  [146]. 
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3. Results and Discussions 

3.1 Finite Outflow Volume Using Franz Diffusion Cell 

Unpublished data from a study in our lab gave the value of D as approximately 1* 10-7 

cm2/h, determined by in vitro permeation experiments using the flow-through cell.  In the 

study using flow-though cells, the donor solution is HP in PG and the concentration is 3 

mg/ml (w/v).  The diffusion coefficient D is calculated by measuring the permeability 

coefficient.  Thus 1* 10-7 cm2/h is chosen as the initial value for the nonlinear regression.  

Quick convergence of all the three groups, generally within 4 iterations indicates that 

large-sample theory is applicable [41].  The fitted curves and original data points are 

shown in Figure 3.1-2 to Figure 3.1-5.  The fittings appear to be adequate.  Normality 

plot of residuals, together with residuals against fits or order plots did not suggest any 

serious departures from the assumptions that the error terms are normal random variables 

with equal variances, though for the control group the variances moderately increased 

when the fit became larger.  Weighted least square or transformation of the response 

variable Q can be used to stabilize the variances if necessary [147]. 

The diffusion path length l is difficult to measure because of the tortuous passages of the 

stratum corneum and its swelling behavior in water.  In this study, the thickness of SC 

was assumed to be 10 µm from female abdominal skin sample [148,149] and for easy 

calculation.  The partition coefficient was assumed to be unity, since PG is amphiphilic 

and to simplify the modeling process [35,50]. 

The estimates of the diffusion coefficient are shown in Table 3.1-1, together with the 

solubility results of HP.  The 95% confidence interval of the control is (3.72, 5.09) * 10-8 

cm2/h, which, according to p
KDK

l
=   [36], gives the 95% confidence interval of the 
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permeability coefficient as (0.372, 0.509) * 10-4 cm/h.  This interval estimate of the 

permeability coefficient is in agreement with the following one, (-0.000520, 3.23) * 10-4 

cm/h, estimated from the model with infinite outflow volume (unpublished data from our 

lab).  The confident interval of (0.372, 0.509) * 10-4 cm/h was more efficient than (-

0.000520, 3.23) * 10-4 cm/h as the estimate of permeability coefficient.  Comparisons of 

the 95% confidence intervals of the diffusion coefficients of all the 4 groups give the 

following results.  The control, thymol and linalool group’s confidence intervals 

overlapped with one another, but not with carvacrol.  Therefore, compared with the 

control, only carvacrol significantly increased the permeation of HP. 

Since p
KDK

l
= , and Kp is assumed to be constant for a certain enhancer so that D is 

proportional to l/D.  When the l is more than 10 µm, D will increase.  On the other hand 

when K is bigger than unity, D will decrease.  However, when both l and D are assumed 

to be constant then D is proportional to Kp, which can be useful to evaluate the relative 

enhancing abilities of the enhancers, especially to test if the addition of the enhancer will 

increase the drug permeation at all. 

The model can be used to predict the cumulative permeation of HP for extended time 

period beyond the degradation of the excised SC when it does not represent the in vivo 

status (Eq 12).  The model is useful for in vitro skin permeation study in transdermal drug 

delivery [150], cosmetics industry [151], and risk assessment on dermal exposure to toxic 

substances [152,153]. 
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Figure 3.1-2 Control    Figure 3.1-3 Linalool 

  

Figure 3.1-4 Thymol    Figure 3.1-5 Carvacrol 

Figure 3.1-2 to 3.1-5.  Plot of the cumulative amount of permeated HP (µg) against time 
(h) without enhancer though a circular area of the epidermis of diameter of 1 cm. The 
fitted line is from the nonlinear regression (n = 48).  Figure 3.1-2, without enhancer (n = 
48).  Figure 3.1-3, linalool (5%, w/v), (n = 24).  Figure 3.1-4, thymol (5%, w/v), (n = 24).  
Figure 3.1-5, carvacrol (5%, w/v), (n = 36). 
 
 
Enhancer HP solubility in 5% (w/v) 

enhancer (mg/ml) 
Diffusion coeff. 
D*108 (cm2/h) 

95% conf. interval  
D*108  (cm2/h) 

Control 3.08 ± 2.80 4.41 ± 0.337 (3.72, 5.09) 
Thymol 3.56 ± 0.38 4.43 ± 0.579 (3.28, 5.58) 
Linalool 3.59 ± 0.04 6.04 ± 0.824 (4.38, 7.70) 
Carvacrol 3.85 ± 0.26 12.40 ± 1.59 (9.16, 15.6)* 
Table 3.1-1 The solubility of HP in PG with or without 5% (w/v) enhancers.  The point 
estimates of the diffusion coefficient, D, obtained from the nonlinear regression, and their 
95% confidence interval.  Data is given as Mean ± SD.  * p < 0.05 (comparing treatment 
to the control) 
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3.2 Infinite Outflow Volume Using the Flow-through Diffusion Cell 

Although the Q(t) functions are derived from Fick’s law, it cannot be applied in the strict 

mathematical sense to the skin permeation process because the actual diffusion process 

violates more or less the boundary and initial conditions with the changing of the 

diffusion path lengths, varying permeability coefficients,  and imperfect sink conditions.  

But it can serve as a good statistical model to quantify skin permeability.  Previous study 

shows the values of D’ and K’ are around 0.01 numerically [154].  Thus 0.01 is chosen as 

the initial value for the nonlinear regression.  Quick convergence of all the three groups, 

generally within 10 iterations indicates that the large-sample theory is applicable [41].  

The fitted curves and original data points are shown in Figures 3.2-1 to 3.2-3, and the fit 

appears to be adequate.  Normality plot of residuals, together with residuals against fits or 

order plots, did not suggest any serious departures from the assumptions that the error 

terms are normal random variables with equal variances, though for the control group the 

variances moderately increased when the fit became larger.   
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Figure 3.2-1 Control    Figure 3.2-2  (+)-isolongifolol 

 

 

Figure 3.2-3 (-)-trans-caryophyllene 

 

Figure 3.2-1 to 3.2-3.  Plot of the cumulative amount of permeated haloperidol against 
time. The fitted line is from the nonlinear regression.  Figure 3.2-1, no enhancer (n = 72).  
Figure 3.2-2, (+)-isolongifolol (5% w/v), (n = 32).  Figure 3.2-3, (-)-trans-caryophyllene 
(5% w/v), (n = 24). 
 

Weighted least square or transformation of the response variable Q can be used to 

stabilize the variances if necessary [147]. 

As the parameters of the nonlinear model, the inferences of D’ and K’ are based on 

Large-Sample theory.  The sample sizes of control, (+)-longifolene and (-)-trans-

caryophyllene groups are 72, 32 and 24, respectively, from 8, 4 and 3 replicated 
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permeation experiments, respectively.  Point and interval estimates of D’ and K’ are 

given in Table 3.2-1, along with the bootstrapping estimates to confirm the 

approximateness of large-samples assumption, which are presented in columns 3 and 4.  

The chemical structures of the drug and enhancers are shown in Figure 3.2-4.  One 

thousand bootstrap samples were generated for each of three groups. The histograms of 

bootstrapping distributions appear to be consistent with normal sampling distribution, 

with the bootstrap sampling distribution of control group slightly skewed to the right.  

The means, standard deviations and confidence intervals of bootstrapping estimates are 

very close to those of the large-sample’s, again supporting the application of large-

sample inference procedures here.  The difference between the large-sample mean and 

the bootstrapping distribution estimate are small, which shows that the bias is negligible. 

The 90% confidence intervals of permeability coefficient pK  are given in Table 3.2-2.  

The results carry an error rate of 10%, since the error rates of D’ and K’ are 5% each.  

Comparisons of the 90% large-sample confidence intervals of the permeability 

coefficients of the three groups give the following results.  The control group’s 

confidence interval overlaps with that of (+)-longifolene but not with (-)-trans-

caryophyllene and the confidence intervals of (+)-longifolene and (-)-trans-caryophyllene 

overlap.   Therefore, compared with the control, (-)-trans-caryophyllene significantly 

increased the permeation of the drug and, with an error rate of 10%, but there is no 

significant difference between the two enhancers with respect to the enhancement of skin 

permeation.  The comparisons of bootstrapping confidence intervals yielded the same 

result.  However, the overlapping part of control and (+)-longifolene is marginal, either 

for the large-sample confidence intervals (-0.00520, 3.23) vs. (2.78, 8.58) or for the 
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bootstrapping intervals, (0.167, 2.41) vs. (2.08, 8.49).  Therefore, further studies are 

needed to obtain more effective confidence intervals for their comparisons. 

 

Enhancer 
groups 

'K    'D   *'K   *'D   

Control 
(n = 72) 

0.00708 ± 0.00360 
-0.000130, 0.0143 

0.0133 ± 0.00465 
0.00404, 0.0226 

0.00872 ± 0.00626 
-0.0102, 0.0119 

0.0145 ± 0.00606 
-0.00164,0.0203 

(+)-longifolene 
(n = 32) 

0.0741 ± 0.0130 
0.0476, 0.101 

0.00718 ±0.000662 
0.00583, 0.00853 

0.0749 ± 0.0164 
0.0380, 0.101 

0.00729 ±0.000781 
0.00547, 0.00843 

(-)-trans-
caryop- 
hyllene (n = 24) 

0.0772 ± 0.00634 
0.0641, 0.0904 

0.00913 ±0.000442 
0.00821, 0.0100 

0.0766 ± 0.00746 
0.0546, 0.0877 

0.00921 ±0.000497 
0.00837, 0.0103 

Table 3.2-1 The point estimates (Mean ± SD) of 'K and 'D obtained from the nonlinear 
regression, and their 95% confidence intervals.  The bootstrapping estimates of 'K and 

'D , denoted by *'K  and *'D , are obtained after 1000 resampling. 
 

 

Enhancer groups pK  (cm/h) *104  *
pK   (cm/h) *104 

Control 0.777 ± 0.283 
-0.00520, 3.23 

0.889 ± 0.660 
0.167, 2.41 

(+)-longifolene 5.23 ± 0.465 
2.78, 8.58 

5.33 ± 0.643 
2.08, 8.49 

(-)-trans-
caryophyllene 

7.02 ± 0.245 
5.26, 9.08 

7.01 ± 0.316 
4.57, 9.04 

Table 3.2-2 The point estimates (Mean ± SD) of permeability coefficient and their 90% 
confidence intervals, given by ' 'pK K D= . 
 
 
Enhancer groups After 72 h (µg)  After 168 h (µg) 
Control 16.84 ± 1.69 

13.48, 20.21 
44.02 ± 6.18 
31.69, 56.35 

(+)-longifolene 78.13 ± 3.45 
71.08, 85.18 

231.06 ± 16.06 
198.26, 263.87 

(-)-trans-
caryophyllene 

113.73 ± 2.19 
109.17, 118.28 

316.68 ± 9.12 
297.76, 335.60 

Table 3.2-3 The point estimates (Mean ± SD) and the 95% confidence intervals of 
cumulative amount of permeated drug, after 72 hours and 168 hours, respectively. 
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The confidence intervals of D’ overlapped for all three groups while for K’, only (+)-

longifolene and (-)-trans-caryophyllene overlapped.  Compared with the control, the 

enhancer,  (+)-longifolene, increased K’ significantly but not the permeability coefficient 

pK , suggesting that it may have increased the diffusion coefficient D of the drug through 

skin.  For (-)-trans-caryophyllene, the increased permeation could be due to the increase 

of the partition coefficient K between the donor solution and top layer of stratum 

corneum since both the K’ and pK  increased significantly compared to the control.   

The predicted cumulative amounts of permeated drug on days 3 and 7 are given in Table 

3.2-3.  None of the 6 confidence intervals overlapped, indicating cumulative permeated 

drugs among three study groups are significantly different at 5% level on days 3 or 7, 

respectively.  The estimates of permeated drug/chemical are important in that, unlike in 

vivo environment where stratum corneum is replenished by the adjacent live stratum 

granulosum through keratinization, the excised stratum corneum, though composed of 

dead corneocytes, will deteriorate after days in contact with solvents, which will cause 

over-hydration of stratum corneum that can destroy the lamella and decomposition that 

will leave highly permeable passages in the stratum corneum.  The predictions are 

relevant for transdermal drug delivery, for the cosmetic industry and for regulatory risk 

assessment on dermal exposure to toxic substances [152,155].  

Although the interval estimate of permeability coefficient carries an error rate of 10% 

because of the error propagation, it is still accountable and it can be set at 5% by lowering 

the error rate of the two intermediate parameters to 2.5%.  However, if the error terms 

from the nonlinear regressions are discarded and only ‘clean’ mean values are retained 

for further tests, the result could be misleading and the uncertainty is unforeseeable. 
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3.3 Enhancing Efficacy of Terpenes 

Results.  The permeability coefficients and solubilities of HP in PG and respective 

enhancers are listed with the physicochemical parameters of 49 terpenes, including 

terpene type (T), melting point, boiling point, LogP and molecular weight in Table 3.3-1.  

Octisalate is not a terpene but a UV-absorbent used in sunscreen compositions approved 

by US FDA (Figure 3.3-1) [156].  It is a promising skin penetration enhancer [157].  It 

consists of 15 carbon atoms, has similar structure to sesquiterpene and is included as one 

of the sesquiterpenes for model fitting.  The MLR model is shown as Eq (2). 

0 1 2 3 4 5 6 6 16 16...i i i i i i i i iY MW mp bp LogP Sol X Xβ β β β β β β β ε= + + + + + + + + +     Eq (2) 

Kp was set as the response variable (Yi).  Seven potential predictor variables were chosen, 

five of which are quantitative predictors, i.e., solubility of HP in PG with 5% (w/v) 

terpene, mp, bp, logP and MW of each terpene. The two qualitative predictors are terpene 

type and functional group, requiring 11 indicator variables, as X variable inputs are 

shown in Tables 3.3-2 and 3.3-3, respectively.  The coefficients of predictor variables are 

β1, β2…β16, respectively.  β0 and εi are constant and error terms, respectively.  Eq (2) was 

used to fit the data in Table 3.3-1.  The resultant regression equation based on stepwise 

selection procedure is Eq (3), followed by fitting parameters. 

6 9 11 12

0.00337 0.000022

0.00195 0.00317 0.00332 0.00197
pK mp

X X X X

= −

− − + +
                     Eq(3) 

(R2 = 26.7%, Mallows Cp = 10.1, average VIF= 1.43, P residual normality < 0.05) 

Subsequently, diagnostic procedures were used to evaluate the fitting.  The Box-Cox 

procedure indicated that a logarithmic transformation of the response variable Kp can 

improve the fitting (λ = 0).  Therefore the Yi in Eq(2) was changed to LogKp and the data 
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was fitted again with this revised model.  The resultant regression equation based on 

stepwise selection is Eq (4), followed by the diagnostic parameters. 

7

8 10 11 12 13 14 15

8.31 0.0111 0.00434 1.08

2.05 1.80 3.74 3.47 2.23 1.59 2.79
pLogK mp bp X

X X X X X X X

= − − − +

+ + + + + + +
          Eq(4) 

(R2 = 55.0%, Mallows Cp = 26.2, average VIF = 2.98, P residual normality > 0.05) 

For the 5 quantitative predictors, SLR models were used to fit the data with the full 

database and reduced database consisting of only monoterpenes and sesquiterpenes, 

respectively.  The results are shown in Table 3.3-4.  For the 2 qualitative predictors, 

ANOVA models were used to test the influence of terpene type and functional group on 

Kp, respectively. 
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No Terpene Name, [CAS]  
and purity / % 

T MW mp 
/oC 

bp 
/oC 

LogP Sol 
/mg.ml-1 

Kp*104 

/cm.h-1 
0 Haloperidol - - - - - 3.08± 0.28 1.19 ± 0.20
1 terpinolene [586-62-9] 97 1 136.2 liquid 182 4.67 2.30± 0.10 8.72 ± 4.01 
2 α-phellandrene [99-83-2] 92 1 136.2 liquid 171 4.43 4.83± 0.21 59.39 ± 12.82 
3 ocimene [3338-55-4] 70 1 136.2 liquid 175 4.70 7.74± 0.70 43.43 ± 10.37 
4 myrcene [123-35-3] 95 1 136.2 liquid 167 4.58 6.03± 0.66 64.73 ± 12.82 
5 (1R)-(-)-myrtenal [564-94-3] 98 1 150.2 liquid 216 2.52 7.27± 0.16 40.64 ± 17.21 
6 (S)-(-)-perillaldehyde [18031-40-8] 1 150.2 liquid 238 2.81 6.34± 0.06 13.78 ± 1.21 
7 carvacrol [499-75-2] 98 1 150.2 3.5 237 3.28 5.84± 0.26 1.69 ± 1.04 
8 thymol [89-83-8] 98 1 150.2 51 233 3.28 6.69± 0.55 1.84 ± 1.17 
9 eucarvone [503-93-5]   1 150.2 liquid 227 2.21 5.47± 0.02 4.71 ± 0.54 
10 (R)-(-)-carvone [6485-40-1] 98 1 150.2 liquid 231 2.27 2.43± 0.19 4.77 ± 0.90 
11 (1R)-(-)-myrtenol [515-00-4] 95 1 152.2 liquid 225 2.64 5.51± 0.05 23.71 ± 0.71 
12 (-)-α-thujone [76231-76-0] 96 1 152.2 liquid 206 1.90 6.83± 0.08 1.78 ± 0.44 
13 (R)-(+)-pulegone [89-82-7] 98 1 152.2 liquid 229 2.56 3.53± 0.07 13.47 ± 3.34 
14 (+)-dihydrocarvone [7764-50-3] 98 1 152.2 liquid 222 2.47 6.92± 0.18 7.13 ± 1.00 
15 (-)-carveol [99-48-9] 97 1 152.2 liquid 232 2.68 6.32± 0.59 12.31 ± 6.51 
16 citral [5392-40-5] 96 1 152.2 liquid 229 3.17 6.33± 0.62 59.91 ± 17.88 
17 (-)-isopulegol [89-79-2] 99 1 154.2 liquid 197 2.93 6.60± 0.49 1.91 ± 0.09 
18 (+)-dihydrocarveol [22567-21-1] 97 1 154.2 liquid 220 2.92 6.28± 0.53 1.71 ± 0.38 
19 (-)-dihydrocarveol [20549-47-7] 97 1 154.2 liquid 220 2.92 5.89± 0.45 1.28 ± 0.24 
20 (S)-(-)-citronellal [5949-05-3] 96 1 154.2 liquid 208 3.48 9.43± 0.61 60.71 ± 33.73 
21 geraniol [106-24-1] 98 1 154.2 liquid 230 3.28 6.11± 0.69 6.03 ± 1.42 
22 nerol [106-25-2] 97 1 154.2 liquid 230 3.28 5.54± 0.20 4.10 ± 0.05 
23 (±)-linalool [78-70-6] 96 1 154.2 liquid 199 3.28 5.05± 0.13 1.00 ± 0.60 
24 menthone [14073-97-3] 90 1 154.2 liquid 209 2.63 7.53± 0.08 1.47 ± 0.28 
25 β-citronellol [106-22-9] 95 1 156.2 liquid 225 3.38 5.29± 0.20 10.61 ± 10.14 
26 L-(-)-menthol [2216-51-5] 98 1 156.2 43 215 3.20 5.11± 0.51 6.12 ± 0.66 
27 cyclohexanemethanol [565-50-4] 99 1 172.7 117 265 1.07 5.16± 0.14 3.34 ± 1.75 
28 α-humulene [6753-98-6] 99 2 204.3 liquid 276 7.03 5.28± 0.43 19.30 ± 1.96 
29 (-)-α-cedrene [469-61-4] 99 2 204.3 liquid 263 6.38 4.62± 0.10 12.13 ± 3.31 
30 (+)-β -cedrene [546-28-1] 97 2 204.3 liquid 263 6.37 4.72± 0.13 12.67  ± 5.31 
31 (+)-aromadendrene [489-39-4] 97 2 204.3 liquid 258 6.41 4.77± 0.15 6.82 ± 1.29 
32 (+)-longifolene [475-20-7] 99 2 204.3 liquid 252 6.39 4.55± 0.18 5.61 ± 0.67 
33 (-)-trans-caryophyllene [87-44-5] 99 2 204.3 liquid 268 6.78 5.09± 0.02 7.07 ±0.34 
34 (-)-caryophyllene oxide [1139-30-6] 99 2 220.3 63 280 4.57 4.49± 0.38 22.2 ± 17.35 
35 (±)-α-bisabolol [515-69-5] 99 2 222.3 liquid 315 5.01 6.26± 0.48 66.48  ± 25.14 
36 farnesol [4602-84-0] 97 2 222.3 liquid 283 5.31 5.65± 0.26 16.13 ± 7.15 
37 (±)-nerolidol [7212-44-4] 97 2 222.3 liquid 276 5.31 5.10± 0.20 82.67  ± 32.96 
38 (-)-epiglobulol [88728-58-9] 95 2 222.3 liquid 294 4.81 4.95± 0.38 110.34 ± 20.31 
39 (-)- guaiol [489-86-1] 99 2 222.3 90 288 4.75 4.73± 0.31 2.9 ± 2.47 
40 (+)-cedrol [77-53-2] 99 2 222.3 84 277 4.77 4.35± 0.12 3.76 ± 0.44 
41 (-)-isolongifolol [1139-17-9] 99 2 222.3 112 - 4.05 4.63± 0.19 2.39 ± 0.60 
42 (-)-α-santonin [481-06-1] 98 2 246.3 171 423 1.80 5.71± 0.38 3.66 ± 2.91 
43 octisalate [118-60-5] 99 2  250.3 liquid 332 5.77 3.14± 0.34 55.86 ± 7.82 
44 (+)-cedryl acetate [77-54-3] 95 2 264.4 45 292 5.67 5.76± 0.35 41.27 ± 13.22 
45 retinol [68-26-8] 97 3 286.4 63 421 6.84 7.11± 0.23 13.94 ± 2.21 
46 phytol [7541-49-3] 97 3 296.5 liquid 336 8.66 4.77± 0.31 61.29 ± 12.23 
47 retinoic acid [302-79-4] 98 3 300.4 146 463 6.83 8.79± 1.46 0.20 ± 0.18 
48 squalene [111-02-4] 97 4 410.7 liquid 429 13.09 3.91± 0.16 2.25 ± 0.60 
49 β-carotene [7235-40-7] 102.8 5 536.8 181 655 15.51 18.6± 1.60 0.24 ± 0.17 
Table 3.3-1 The solubilities of HP in PG with terpene enhancers 5% (w/v).  In the first 
column No, ‘0’ stands for HP in PG 5% (w/v) without terpene enhancer and numbers 1 to 
49 are assigned to the 49 terpenes.  The second column is the name of each terpene, 
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followed by its CAS entry and purity.  The third column T indicates the terpene category.  
Key: 1 monoterpene, 2 sesquiterpene, 3 diterpene, 4 triterpene, 5 tetraterpene.  From the 
fourth to seventh column is the molecular weight, melting point, boiling point and LogP 
of each terpene, respectively.  The data were from SciFinder Scholar and original 
product information.  The melting points of liquid terpenes are set as –1 0C for those 
liquid terpenes that do not have published melting points.  The boiling point of (-)-
isolongifolol is not available and is estimated at 300 0C, similar to the boiling points of 
other sesquiterpenes.  The eighth column, Sol, is the solubility of HP in PG at 37 °C 
without or with 5% (w/v) enhancer.    The last column Kp is the permeability coefficient 
of HP though human skin.  Data are given as Mean ± SD.   
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OH
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45 retinol     46 phytol 
 

CO2H

 
47 retinoic acid      48 squalene 
 

 
49 β-carotene 

Figure 3.3-1 The molecular structures of haloperidol, propylene glycol and the 49 
terpenes.   
 
 
 
 
Terpene type MW mp LogP Sol X6 X7 X8 X9 
Monoterepne MWi mpi LogPi Soli 1 0 0 0 
Sesquiterpene MWi mpi LogPi Soli 0 1 0 0 
Diterpene MWi mpi LogPi Soli 0 0 1 0 
Triterpene MWi mpi LogPi Soli 0 0 0 1 
Tetraterpene MWi mpi LogPi Soli 0 0 0 0 
Table 3.3-2 The data input for X variables, indicating terpene type. 

 

Terpene type MW mp LogP Sol X10 X11 X12 X13 X14 X15 X16
Alcohol MWi mpi LogPi Soli 1 0 0 0 0 0 0 
Aldehyde MWi mpi LogPi Soli 0 1 0 0 0 0 0 
Ester MWi mpi LogPi Soli 0 0 1 0 0 0 0 
Hydrocarbon MWi mpi LogPi Soli 0 0 0 1 0 0 0 
Ketone MWi mpi LogPi Soli 0 0 0 0 1 0 0 
Oxide MWi mpi LogPi Soli 0 0 0 0 0 1 0 
Phenol MWi mpi LogPi Soli 0 0 0 0 0 0 1 
Acid MWi mpi LogPi Soli 0 0 0 0 0 0 0 
Table 3.3-3 The data input for X variables, indicating functional group of each terpene. 
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Row Variable 
(Xi) 

Database Fitted line R2 p-value 

1 LogP Full Logkp = -7.037 – 0.03449 LogP 0.3% 0.491 
2 LogP Reduced Logkp = -.8.578 + 0.3742 LogP 15.9% 0.000 
3 MW Full Logkp = -6.208 – 0.005003 MW 4.5% 0.006 
4 MW Reduced Logkp = -8.158 + 0.006095 MW 2.3% 0.081 
5 mp Full Logkp = -6.830 – 0.01614 mp 22.6% 0.000 
6 mp Reduced Logkp = -6.905 – 0.01026 mp 8.1% 0.001 
7 bp Full Logkp = -5.622 – 0.005897 bp 9.9% 0.000 
8 bp Reduced Logkp = -7.160 – 0.000350 bp 0.0% 0.895 
9 Sol Full Logkp = -5.952 – 0.2121 Sol 8.7% 0.000 
10 Sol Reduced Logkp = -7.511 + 0.07833 Sol 0.5% 0.423 
Table 3.3-4 Simple linear regression LogKp against each predictor respectively.  The p-
value of less than 0.05 indicates the two variables are correlated.  The column, ‘database’ 
indicates either ‘full’, indicating that all the 149 data points would be fitted, or ‘reduced’, 
indicating only data points of monoterpenes and sesquiterpenes would fitted. 
 

Discussion. The results showed that LogKp, the monotonic increasing function of Kp, is a 

better response variable than Kp itself in the MLR model, for the following three reasons.  

First, the coefficient of determination, i.e., R2, increased from 26.7% to 55%, indicating 

that the predictors in Eq(4) explained more of the variances than those in Eq(3).  Second, 

the Anderson-Darling test showed that the residuals in Eq(3) did not follow normal 

distribution (P residual normality < 0.05) while those in Eq(4) did (P residual normality > 0.05).  The 

test was substantiated by the residual plots.  The residuals generated in Eq(3) were 

random, approximately with equal variance, but did not follow normal distribution very 

well.  But the histogram of the residuals generated in Eq(4) showed satisfactory bell-

shape normal distribution pattern.  Third, Mallows Cp did not suggest any substantial bias 

in Eq(4).  Furthermore, considering that the number of predictors was 10 in Eq(4) and 5 

in Eq(3), the Mallows Cp of 10.1 in Eq(3) and of 26.2 in Eq(4) were comparable.  Similar 
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to Mallows Cp, the average of the variance inflation factor (VIF) did not indicate any 

serious multicollinearity problems in both models.  Hence, Eq(4) was chosen as the final 

MLR model.  Similarly, it was shown that LogKp was a better response variable than Kp 

in SLR and ANOVA models.  Therefore LogKp was used to fit the models.  Kp is 

referred to in following discussions since LogKp is a monotonic increasing function of 

Kp. 

The MLR model provided a preliminary screening tool to evaluate terpene enhancers 

based on human skin.  It is valuable because human skin samples are not readily available 

and in vitro permeation studies are time-consuming.  It is not as informative as SLR 

models for the evaluation of relations between two variables.  SLR regressions were 

conducted between LogKp and other 5 quantitative predictors, respectively.   

Table 3.3-4 showed 10 regression results, in which LogKp was regressed against LogP, 

MW, mp, bp and Sol, respectively, with either the full or the reduced database consisting 

of only monoterpenes and sesquiterpenes.  The reduced database was used because 

monoterpenes and sesquiterpenes were identified as more promising enhancer candidates.  

Diterpenes, triterpenes and tetraterpenes were not as efficient as monoterpenes and 

sesquiterpenes probably due to the following reasons.  First, they contain 20, 30 and 40 

carbon atoms respectively, which makes most of them biologically active and not suitable 

as pharmaceutical excipients.  They were included in this study for the purpose of testing 

the relationship between the enhancement abilities and physicochemical properties of 

different types of terpenes.  Second, there is a large number of monoterpenes and 

sesquiterpenes available but the numbers of diterpenes, triterpenes and tetraterpenes are 
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limited.  However, it should be noted that phytol, a diterpene, showed remarkable 

penetration enhancement. 

Row 1 of Table 3.3-4 showed that LogP did not correlate with Kp.  In row 2, however, 

they were positively related for monoterpenes and sesquiterpenes only.  Compared with 

the total number of data points, which is 149, the number of monoterpenes and 

sesquiterpenes, which is 132, accounts for most of the data points.  But the 17 data points 

from diterpenes, triterpenes and tetraterpenes did exert an influential effect on the 

regression, which masked the positive relation between Kp and LogP of monoterpenes 

and sesquiterpenes.  The positive relation between Kp and LogP may be an indication of 

the lipid passage in the stratum corneum barrier [46,100].  Terpenes with higher 

lipophilicity may solubilize more stratum corneum intercellular lipids into the vehicle.  

As a result the permeation rate of the drug increased. 

The relation between Kp and MW was similar to that of Kp and LogP since MW and 

LogP were positively correlated (Pearson correlation is 0.880 for the full database, and 

0.569 for the reduced database).  For the reduced database, from row 4 of Table 3.3-4 

monoterpenes and sesquiterpenes with larger MW may lead to better enhancing effects, 

although the p-value indicates that more samples are required to verify the significance.  

For the full database, Kp and MW should not be correlated if their relation was consistent 

with that of Kp and LogP as shown in row 1 of Table 3.3-4.  However, from row 3 it 

appears that Kp is negatively related to MW, i.e., as terpene molecules became bigger, 

their enhancing abilities decreased regardless of their increased lipophilicities.  Therefore 

MW, other than LogP, may be a suitable predictor for terpenes of all categories.  So for 
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all terpenes, their enhancing abilities decreased as MW increased but for monoterpenes 

and sesquiterpenes, their enhancing abilities increased as LogP or MW increased. 

Rows 5 to 8 show the influence of mp and bp on Kp.  It is shown in rows 6 and 7 that Kp 

decreases as the melting point increases.  The main reason was because the mp of all 

liquid terpenes was set to be –1, which put too much weight on regression.  However it 

can be demonstrated that apart from those data points with a mp of –1, the rest of the 

points still showed a trend that lower mp correlated with greater Kp.  Similar patterns 

were identified with the boiling point.  For the full database, the enhancing ability 

correlated negatively with bp.  But for the reduced database, it shows that enhancing 

abilities did not correlate with bp.  This may be because most monoterpenes and 

sesquiterpenes share similar bp so that Kp cannot be differentiated by bp. 

The relationship between Kp and solubility of HP in PG with 5% (w/v) terpene is shown 

in rows 9 and 10.  Although row 9 shows that Kp decreased as the solubilization effect of 

the terpenes increased, it can be proven that the trend is dictated by outliers, i.e., the last 

three data points of carotene.  Once these three points are removed, Kp did not correlate 

with Sol (p = 0.389).  In fact, row 10 shows that Kp may be positively related to Sol, 

though the correlation is not significant.  However, greater solubilizatoin is advantageous 

in transdermal drug delivery since a higher drug concentration will create a higher 

concentration gradient across the skin, which may result in greater drug permeation. 

While the relation between the enhancing effects and quantitative variables can be 

addressed by SLR models, its relation with qualitative variables can be better explained 

by ANOVA models.  When ‘terpene type’ is assumed to be the only factor that influences 

Kp, one-way ANOVA shows that terpenes had different enhancing effects (p < 0.05).  
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The pairwise comparison with Tukey’s method showed that compared with tetraterpene, 

monoterpene, sesquiterpene and diterpene were better enhancers but no significant 

difference was detected among the three.  For the reduced database, the two-sample t-test 

showed that the Kp of sesquiterpene is significantly greater than that of monoterpene (p < 

0.05).  This indicates that terpene enhancers with 15 carbon atoms are better than those 

with 10 carbon atoms.  Apart from terpene type, it is also interesting to find out by one-

way ANOVA that there are significant differences among various function groups (p < 

0.05).  The overall ranking of enhancing ability is as follows: ester > aldehyde > oxide > 

hydrocarbon > alcohol > ketone > phenol > acid.  Tukey’s tests showed that not all 

pairwise comparisons are significant.  For example, the effect of ester and aldehyde are 

not significantly different from one another, but aldehyde’s enhancing effect is 

significantly greater than that of alcohol, hydrocarbon, ketone, phenol and acid. 

 

3.4 Reversible Effects of Terpenes 

Results.  The solubility results are shown in Table 3.4-1.  With the addition of 5 % (w/v) 

(R)-(-)-carvone, the solubility of HP in PG dropped from 3.08 to 2.43 mg/ml and when 5 

% (w/v) eucarvone was added, it increased to 5.47 mg/ml.  Eucarvone should have 

greater permeation enhancing potential than (R)-(-)-carvone.  For the enhancers in 0.03 

%(v/v) lactic acid, (R)-(-)-carvone has a higher solubility of 0.729 mg/ml than that of 

eucarvone at 0.566 mg/ml.  Both enhancers have relatively lower solubility compared to 

HP with a solubility of approximately 1 mg/ml in 0.03 %(v/v) lactic acid. 

The permeation profiles of both drugs and enhancers, from permeation studies using 

either normal or pretreated epidermis, are shown in Figure 3.4-2.  For the permeation 
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study using pretreated epidermis, the permeation profile of eucarvone was obtained but 

that of (R)-(-)-carvone was not, since (R)-(-)-carvone was presumably washed away prior 

to the permeation.  The permeation profile of eucarvone was distinctly different from 

other exponential curves because, for all the others, the donor concentration was constant 

but, for eucarvone, its amount was finite in the epidermis.  The estimated values and 

confidence intervals of the permeability coefficient of pK  are given in Table 3.4-2, 

except for the finite-dosed eucarvone.  It was demonstrated that the pK  of HP with 5% 

w/v (R)-(-)-carvone, HP with 5% w/v eucarvone, and (R)-(-)-carvone 5% w/v in PG 

(50mg/ml) were comparable to one another but significantly larger than the rest. (One-

way ANOVA and Tukey’s method comparing all pairs, p < 0.05).   

In the extraction study, 3.82 ± 0.0521 µg of eucarvone was extracted from the eucarvone-

treated epidermis but no (R)-(-)-carvone was extracted from the (R)-(-)-carvone-treated 

epidermis after the 48-h permeation period.  HP of 295.27 ± 60.62, 242.45 ± 31.98 and 

48.94 ± 13.90 µg were extracted from the control, (R)-(-)-carvone-pretreated and 

eucarvone-pretreated epidermis, respectively. 
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Figure 3.4-2   Time course of mean cumulative amounts of HP permeated through 0.786 
cm2 of human epidermal membrane in the PG solutions.  Each point represents mean 
value (n = 3).  In the study using normal epidermis, three permeation experiments with 
different donor solutions gave five permeation curves: (a) the control of which HP (3 
mg/ml) was in pure PG gave the permeation profile of HP (Ctrl), (b) HP (3 mg/ml) in PG 
with 5% (w/v) of eucarvone solution gave the permeation profiles of HP (EuHP) and 
eucarvone (Eu), and (c) HP (2.43 mg/ml) in PG with 5% (w/v) of (R)-(-)-carvone gave 
the permeation profiles of HP (CarHP) and (R)-(-)-carvone (Car).  In the study using 
pretreated epidermis, the three permeation experiments using the same donor solutions 
(HP in PG, 3 mg/ml, w/v) gave 4 permeation curves: (a) the epidermis treated with pure 
PG gave the permeation profile of HP (Ctrl rev), (b) the study with eucarvone solution 
(5%, w/v)-pretreated epidermis gave the permeation profiles of HP (EuHP rev) and 
eucarvone (Eu rev), and (c) the study with (R)-(-)-carvone (5%, w/v)-pretreated 
epidermis gave the permeation profile of HP (CarHP rev). 
 
 

Discussion.  In the study using normal epidermis, three permeation experiments with 

different donor solutions gave five permeation curves (Figure 3.4-2).  Both enhancers can 
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enhance the permeation of HP to similar level, about 4-folds higher than the control 

(Table 3.4-2).  The permeability coefficient of (R)-(-)-carvone was also 4 times higher 

than that of eucarvone.  It appears that the permeation of HP was independent of 

enhancer’s permeability through the skin.  In the study using pretreated epidermis, three 

permeation experiments using the same donor solutions (HP 3 mg/ml, w/v in PG) yielded 

four permeation curves (Figure 3.4-2).  For the three HP permeation results, their pK  

were not significantly different from one another, nor different from the control resulting 

from the untreated epidermis (One-way ANOVA, p > 0.05).   

Combined with the results from skin extraction study, it was found that only about 1% 

(w/w) of the trapped eucarvone remained in the epidermis after the 48-h permeation, 

which infers that eucarvone could have been washed away by PG.  Unlike eucarvone, 

(R)-(-)-carvone was not detected in the receptor solution or in the epidermis under the 

same conditions. Most of the R-(-)-carvone in epidermis was probably rinsed off by the 

vehicle prior to the permeation study.  This is consistent with the findings from the 

solubility study, which shows that the solubility of eucarvone is lower than (R)-(-)-

carvone in 0.03% lactic acid and eucarvone permeates much slower than (R)-(-)-carvone 

(Table 3.4-2).  

Solute and solvent Concentration (mg/ml) 
HP in PG 3.08 ± 0.280 
HP in PG with 5% (w/v) (R)-(-)-carvone 2.43 ± 0.185a 
HP in PG with 5% (w/v) eucarvone 5.47 ± 0.0189a 
(R)-(-)-carvone in 0.03% (v/v) lactic acid 0.729 ± 0.0510b 
Eucarvone in 0.03% (v/v) lactic acid 0.566 ± 0.0171 
Table 3.4-1 Solubility study of HP in PG and enhancers in 0.03% (v/v) lactic acid at 37 
°C. aOne-way ANOVA, Tukey’s method comparing to control, p < 0 .05. 
b2-sample t-test comparing (R)-(-)-carvone with eucarvone, p < 0.05. 
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Enhancer groups 'K    'D   pK  (cm/h) *104 
HP without enhancer 
 

0.0128 ± 0.00404 
0.00656, 0.0246 

0.00932 ± 0.00175 
0.00651, 0.0143 

1.12 ± 0.185 
0.546, 2.70 
1.19 ± 0.199 

HP with 5% w/v  
(R)-(-)-carvone 
 

0.0863 ± 0.0533 
0.0356, 0.225 

0.00519 ±0.00144 
0.00353, 0.00806 

3.72 ± 1.88 
1.26, 18.1 
4.77 ± 0.896a 

HP with 5% w/v  
eucarvone  

0.0471 ± 0.00484 
0.0381, 0.0582 

0.00997 ±0.000627 
0.00879, 0.0114 

4.67 ± 0.196 
3.34, 6.63 
4.71 ± 0.544a 

(R)-(-)-carvone 5% w/v 
 in PG (50 mg/ml) 

0.0591 ± 0.0267 
0.0192, 0.141 

0.00811 ±0.00233 
0.00494, 0.0152 

3.59 ± 1.31 
1.58, 7.83 
4.40 ± 0.217a 

Eucarvone 5% w/v 
 in PG (50 mg/ml) 

0.0247 ± 0.0064 
0.0153, 0.038 

0.00387 ±0.00038 
0.00312, 0.0046 

0.932 ± 0.158 
0.732, 1.24 
0.966 ± 0.121 

HP without enhancer 
Skin pretreated with PG 

0.0134 ± 0.0102 
0.00522, 0.0301 

0.0127 ± 0.0065 
0.00775, 0.0257 

1.04 ± 1.03 
0.404, 7.74 
1.71 ± 0.729 

HP without enhancer 
Skin pretreated 
 with carvone 

0.0187 ± 0.0154 
0.00775, 0.0462 

0.0076 ± 0.00339 
0.00489, 0.0119 

0.902 ± 0.916 
0.379, 5.96 
1.44 ± 0.614 

HP without enhancer 
Skin pretreated 
 with eucarvone 

0.0142 ± 0.00175 
0.0108, 0.0185 

0.01 ± 0.000757 
0.00853, 0.0119 

1.41 ± 0.0716 
0.921, 2.20 
1.42 ± 0.262 

Table 3.4-2 The point estimates (Mean ± SD) of 'K and 'D obtained from the nonlinear 
regression, and their 90% confidence intervals.  The point estimate (Mean ± SD) of 
permeability coefficient and its 90% confidence interval, given by ' 'pK K D= .  For the 
column pK , each cell contains three estimates, of which the first and second are the point 
and interval estimates from pooled data (n = 24) with estimation errors generated by the 
nonlinear regression, respectively, and the third is the point estimate from individual data 
set (n = 8) discarding the estimation errors generated by the nonlinear regression. (aOne-
way ANOVA, Tukey’s method comparing all the pairs, p < 0.05). 
 

From the two studies, it was found that when the enhancers were removed, the HP 

permeability coefficients returned to normal from a 4-fold increase in the presence of 

enhancers.  In addition, results from the permeation study with pretreated epidermis also 

showed that the permeability coefficients of HP were comparable among all groups.  

Therefore, the effects of both enhancers on skin permeability to HP were reversible. 
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After 48-h permeation study, the amount of HP extracted from the epidermis pretreated 

with PG, (R)-(-)-carvone and eucarvone was 295.27 ± 60.62, 242.45 ± 31.98 and 48.94 ± 

13.90 µg, respectively.  The eucarvone-pretreated epidermis retained less HP than that 

treated with (R)-(-)-carvone or PG (One-way ANOVA, Tukey’s method, p < 0.05).  If all 

the eucarvone were rinsed off from the epidermis prior to it being mounted for the 

permeation study, then it should not have much influence on HP deposition in epidermis.  

This is not the case as the eucarvone-pretreated epidermis retained only about 20% of the 

amount in the PG-pretreated or the 5% (w/v) (R)-(-)-carvone-pretreated epidermis.  As 

the permeability coefficients of HP through the three types of pretreated skin were 

similar, the trapped eucarvone probably did not facilitate the permeation of HP and may 

have decreased the diffusion path length and partition coefficient proportionally.   

To estimate pK , two different methods were used.  In the first method, all replicates were 

pooled for nonlinear regression, which gave point and interval estimates.  In the second 

method, each replicate was used as individual data set for nonlinear regression.  

Consequently, one point estimate was obtained from each replicate and the error term 

was dropped.  These clean estimates, therefore, became the sampled pK , subject to 

further statistical comparisons.  In the first method, pK  was estimated from the original 

permeation data, but in the second method, the quality of estimation was compromised 

because of the arbitrary omission of the error term.  When the data variance is small, 

effective confidence interval can be obtained by the first method and pairwise 

comparisons can be conducted by comparing the variable’s confidence intervals.  But 

when the data variation is large the confidence intervals tend to be so wide that 
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comparisons become too conservative.  In this case, the second method will be an 

alternative at the expense of reduced data quality. 

 

3.5 Incorporation of Terpenes in SMGA Gels 

Results 

SMGA gels.  The PG gels start to gelate almost immediately as the ambient temperature 

changed from 120 0C to room temperature (22 ± 1) whereas the ISA formulation began to 

gel an hour later and the process was much slower than for the PG gels.  For both ISA 

and PG gels, the formulae without farnesol gelated faster than those with farnesol.  Flake-

like white spots appeared ubiquitously in the clear solution and intensified slowly until a 

uniform gel was formed.  The PG gels (formula ‘b’ and ‘ab’) are opaque and white in 

color while the ISA gels are translucent, indicating that PG gels possess thicker fibers and 

a lower degree of network branching than the ISA gels.  The improved clarity of ISA gels 

is due to the formation of thinner fibers and more densely branched three dimensional 

network structures [79].  

The structure of interconnecting fiber networks is directly associated with the rheological 

properties.  As shown in Figure 3.5-2, where the moduli were recorded as a function of 

time, the elastic and viscous moduli gels formed at 0.01% of strain, 20 0C and 1 Hz 

frequency and are almost parallel to each other; therefore the gels possess the mesh-like 

interconnecting networks of micro/nano structures.  Figure 3.5-3 shows the change of the 

moduli of the gels as functions of various oscillating strain amplitudes, γ . The strain 

corresponds to the deformation of the networks caused by the applied shear stress.  The 

storage modulus, 'G , remains stable under small strains and decreases abruptly when γ  
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exceeds a certain value 0γ , which corresponds to the breakage of the junctions in the 

networks.  The gels can withstand up to 0.25% of the strain.  Below this strain, the mesh-

like micro/nanostructure is intact and above this, it crumbled.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5-2   Dependence of the storage modulus 'G , the loss modulus ''G , and the 
complex modulus *G  on time.  Time sweep method for formula ‘ab’ gel at 20 0C . 
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Figure 3.5-3   Dependence of the storage modulus 'G , the loss modulus ''G , and the 
complex modulus *G  on strain.  Dynamic strain method for formula ‘ab’ gel at 20 0C . 
 

In vitro permeation study.  The original permeation data are shown in Figure 3.5-4.  The 

estimated values of pK  and Lt are given in Table 3.5-1, and as the response variables for 

the three factors, their changes in response from low levels to high levels of the factors 

were analyzed with a statistical model and the results are shown in Table 3.5-2. 

For the permeability coefficient pK , factors A and C are significant, indicating that the 

enhancer and solvent exerted their influences upon pK  when changing from low level to 

high level, but the gelator did not.  The effect of enhancer farnesol is positive, showing it 

can increase pK  when present in the formula.  The factor C, solvent, shows a negative 

effect, which indicates that when the solvent changed from low level (PG) to high level 

(ISA), the permeability coefficient pK  decreased.  Therefore PG delivered haloperidol at 
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a faster rate than ISA on average.  One of the two-way interactions, A*C, also showed 

significant negative effect.  This can be due to the enhancer being less effective in ISA 

than in PG.  The three-way interaction term is not significant. 

Unlike pK , the lag-time, Lt , is sensitive to all the three factors, as well as, their 

combinations.  The enhancer and gelator increased lag-time, while ISA decreased the lag-

time compared to PG.  The positive two-way interaction term shows that when the 

gelator was present, the enhancer increased lag-time to a larger extent than when there 

was no gelator in the formula and vice versa.  The other two negative two-way 

interactions showed that ISA can counteract the elongation effect of the enhancer or the 

gelator on drug permeation.  The three-way interaction is negative, for which the most 

intuitive explanation is that when the solvent is ISA, the A*B interaction is not as strong 

as when the solvent is PG, therefore the enhancer/gelator will not increase the lag-time 

much more than when the gelator/enhancer is absent. 

 

Foumula 
Name 

Enhancer 
(factor A) 

Gelator 
(factor B) 

Solvent 
(factor 
C) 

Permeability 
coefficient 

pK *104 (cm/h) 

Lag-time  
Lt (h) 

1 - - PG 1.35 ± 0.21 17.98 ± 1.37 
a + - PG 16.13 ± 7.15 32.27 ± 6.77 
b - + PG 0.52 ± 0.09 38.52 ± 7.50 
ab + + PG 40.69 ± 27.32 98.27 ± 11.24 
c - - ISA 5.52 ± 0.09 11.52 ± 0.49 
ac + - ISA 4.19 ± 0.46 10.69 ± 0.63 
bc - + ISA 5.28 ± 1.73 9.14 ± 2.70 
abc + + ISA 4.71 ± 0.66 9.41 ± 0.63 
Table 3.5-1 The formulae of the 8 solutions/gels, the permeability coefficient pK  and the 
lag-time Lt of the drug haloperidol.  Factor A refers to farnesol and factor B refers to GP-
1.  The plus sign stands for presence (high level) and minus sign for absence (low level).  
The low and high levels of factor C are propylene glycol (PG) and isostearyl alcohol 
(ISA), respectively (n = 3 or 4). 
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Factors  Effect on pK  p, effect on pK  Effect on Lt  p, effect on Lt  

A 13.388 0.006* 18.36 0.000* 

B 6.016 0.180 20.74 0.000* 
C -9.738 0.036* -36.55 0.000* 
A*B 6.583 0.144 11.63 0.000* 
A*C -14.167 0.004* -18.65 0.000* 
B*C -5.931 0.186 -22.53 0.000* 
A*B*C -6.029 0.179 -11.10 0.000* 
Table 3.5-2: The effects and levels of significance of the factors and their interaction 
terms.  The results were confirmed by ANOVA tests (p < 0.05*). 
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Figure 3.5-4   Time course of mean cumulative amounts of haloperidol permeated 
through 1 cm2 of human epidermal membrane in the solutions/gels formulated according 
to Table 1. Each point represents Mean ± SD (n = 3 or 4). 
 



________________________________________________________________________ 

______________________________________________________________________________________ 
  68 

Discussion.  The gels accommodated both the drug and the permeation enhancer while 

still retaining their rheological and aesthetic properties, demonstrating that the SMGA 

gels have the potential to deliver drugs through the skin.  The in vitro permeation study 

was then conducted to evaluate the transdermal delivery of the drug, haloperidol, by the 

SMGA gels. 

The permeability coefficient, pK , and the lag-time, Lt , defined a permeation curve of the 

cumulative permeated drug against time with all the other parameters constant.  Pseudo-

steady permeation with a flux of 0pK C  is expected after a transitional period of 3 times 

Lt   [35,40]. Both parameters can be influenced by the three factors and their interaction 

terms, all of which are estimated in the factorial design as shown in Table 3.5-2. 

The factor A, a skin penetration enhancer, may increase pK  by modifying the lipid 

compositions and structures.  The factor C is the solvent.  PG is an established solvent for 

transdermal delivery, miscible with water.  It can dissolve many essential oils, but is 

immiscible with fixed oils.  ISA is a saturated fatty alcohol, clear and viscous.  It is a 

biocompatible solvent widely used in cosmetic industry.  Factor B is the gelator, the 

SMGA, also being used for cosmetics, such as lipstick, eyeliner, deodorant and makeup 

lotions [158-161].  It may retard the permeation process by its steric supramolecular 

structure, reducing the permeation area on the skin and by Fick’s law this is linearly 

related to pK .   

On average, however, as the results have shown, the gelator did not influence pK  

significantly as it did with Lt .  This is also shown in Figure 3.5-4, where the curve ‘a’ is 

well above curve ‘ab’, but the slopes of their linear parts are quite similar to each other.  
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The definitions of permeability coefficient and lag-time are p
DK K
l

=  and 
2

6
lLt
D

= , 

respectively.  The partition coefficient between the donor solution and the top layer of the 

stratum corneum, K, is difficult to define as there are no distinct lipid interfaces as the 

vehicle passed through the stratum corneum.  If K is assumed to remain constant with the 

introduction of the gelator into the delivery system, a plausible explanation is that both 

the diffusion path length, l, and the diffusion coefficient, D, increased while their ratio 

remains constant.  The lipophilic gelator GP-1 (MW = 453.70, Log P = 5.02) could have 

posed some extra spatial hindrance to propylene glycol (MW = 76.09, Log P = -0.81), 

which literally increased the path length.  The increased D could be due to the synergistic 

effect between the enhancer, farnesol (MW = 222.37, Log P = 2.47), and the gelator, both 

lipids in nature.  As for the other solvent, ISA, the scenario is partially different as the 

gelator present did not affect either the pK  or Lt  values significantly.   As shown in 

Figure 3.5-4, compared with the formula ‘ac’, the presence of the gelator in formula ‘abc’ 

did not cause any significant effect on the permeation profile (two-sample t-test, p > 

0.05).  The solvent ISA (MW = 270.49, Log P = 7.19) is similar to GP-1 structurally as 

well as sizeably, and they are both lipophilic.  The aliphatic long-chain gelator, GP-1, 

thus presented a lesser permeation barrier to the drug in ISA than to that in PG.  This 

ISA-controlled permeation was in line with the statistical result that ISA could 

significantly counteract the delayed effect of the enhancer or gelator on drug permeation. 

Some other interaction effects among the three factors were also revealed by the 

statistical analysis, of which the most prominent one is that, the enhancer performed 

much better in PG than in ISA, judging by pK .  In fact, the enhancer in ISA did not exert 
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any significant effect (two-sample t-test, p > 0.05).  Since the main barriers are caused by 

the stratum corneum intercellular lipids, the penetration of PG is retarded, to some extent, 

due to its hydrophilicity [11,162,163].  The situation was changed with the addition of 

farnesol, which bridged the lipids and PG so that the solutions moved faster as a whole 

through the lamella of the intercellular lipids. 

The main components of these intercellular lipids, i.e., cholesterol, free fatty acids and 

ceramides, are more compatible with ISA than with the enhancer, due to their lipophilic 

properties [97].  Thus the combination of ISA and farnesol did not facilitate drug 

permeation further as much as ISA alone.  In PG formulation, the gelator and enhancer 

increased lag-time to a larger extent in combination than individually.  The synergistic 

effect could be due to the fact that the gelator GP-1 is lipid in nature and it reinforced the 

diffusion barrier of the SC lipids. 

In summary, ISA-based delivery systems are robust, less susceptible to effects of the 

enhancer or gelator, which is preferable for dosage form design, but not for permeation 

enhancement.  The four formulae of ISA share almost identical permeation profiles (two-

sample t-tests, p > 0.05).  Solvent PG-based systems are sensitive to the level change of 

the three factors.  With the addition of farnesol, the permeation coefficient increased 12 

times.  Further addition of the gelator results in a 3-fold increase of lag-time, but the 

increase of permeation coefficient is not significant due to the large variances involved 

(two-sample t-tests, p > 0.05).   
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3.6 Terpenes Bind and Solubilize Skin Lipids 

Results.  The complete array of structures of major SC intercellular lipids is shown in 

Figure 3.6-1.  The 9 extractable ceramides are arranged in a manner such that the 

molecular moieties of sphingosine, phytosphingosine and 6-OH-sphingosine appear 

periodically, matching the corresponding moieties of acylated ω-OH fatty acid, non-OH 

fatty acid, and α-OH fatty acid, respectively [97]. 
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Ceramide 3A, N-linoleoyl-phytosphigosine, (C36H69NO4, MW = 579.94) 
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Lignoceric (tetracosanoic) acid [557-59-5] (C24H48O2, MW= 368.64, Log P = 11.40) 
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O

OH

 
Cerotic (hexacosanoic) acid [506-46-7] (C26H52O2, MW= 396.69, Log P = 12.47) 
 
Figure 3.6-1.  The molecular structure of ceramides 1-8 including ceramide 9, 
cholesterol and free fatty acids (C16:0, C18:0, C20:0, C22:0, C23:0, C24:0, C26:0). 
 
 

Solubilities of SC intercellular lipids in PG are in Table 3.6-1.  Cholesterol, palmitic acid 

and stearic acid were the most soluble among all the lipids in PG.  With the addition of 

5% (w/v) farnesol, the three lipids were further solubilized to a significant extent.  This 

suggests that the loss of these three lipids may enhance skin permeability while the other 

lipids and the highly impermeable corneocytes of SC remain as the intact skin barrier. 

 

Lipid In pure PG In PG with
5% (w/v) farnesol

Increase % with 
5% (w/v) farnesol 

Cholesterol 1.84 ± 0.01 *4.88 ± 0.03 165.0 
Palmitic acid 3.53 ± 0.02 *15.03 ± 0.06 326.0 
Stearic acid 2.04 ± 0.02 *6.31 ± 0.02 209.0 
Arachic acid 0.71 ± 0.01 *1.21 ± 0.04 70.5 
Behenic acid 0.51 ± 0.01 *0.91 ± 0.02 76.5 
Tricosanoic acid 0.30 ± 0.02 *1.60 ± 0.05 430.0 
Ligonoceric acid 0.21 ± 0.01 0.22 ± 0.01 4.7 
Cerotic acid 0.11 ± 0.00 0.11 ± 0.01 7.9 
Ceramide 9 0.61 ± 0.01 0.61 ± 0.01 0.0 
Ceramide III 0.91 ± 0.01 *1.21 ± 0.02 33.7 
Ceramide IIIA 0.71 ± 0.01 *0.90 ± 0.02 26.9 
Ceramide IIIB 1.11 ± 0.01 1.10 ± 0.01 0.0 
Ceramide VII 0.24 ± 0.06 *0.40 ± 0.01 65.3 
Table 3.6-1.  Solubility (mg/ml) of skin lipids in PG and PG with 5% (w/v) farnesol.  
Data is Mean ± SD (n = 3).  * Two-sample t-test (p < 0.05) comparing the lipid solubility 
in 5% (w/v) farnesol to the solubility in pure PG. 
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Interaction between the lipids and farnesol by ITC follows.  Figure 3.6-2 shows the 

isothermal titration results of farnesol solutions titrated into cholesterol, behenic acid, 

ceramide 3 and ceramide 9 solutions, respectively.  Figure 3.6-3 summarizes the binding 

parameters fitted by nonlinear regression analysis.  The energy (integral) of each peak 

was plotted as a function of the ratio between the moles of farnesol added to the moles of 

the lipid in the ampoule (Figure 3.6-2).  It was shown in Figure 3.6-3 that one farnesol 

molecule bound one cholesterol molecule while two farnesol molecules bound one 

molecule of each of the other lipids, respectively.  These four interactions were 

spontaneous processes with negative free energy change.  For cholesterol, ceramide 3 and 

ceramide 9, the positive entropy changes showed their interactions with farnesol were 

entropy-driven but for behenic acid, the binding was enthalpy-driven with decreased 

entropy after binding.  The negative enthalpy-change of the latter indicated it was 

exothermic while the former three binding processes were all endothermic with increased 

entropy. 
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Figure 3.6-2.  Results obtained from ITC. The positive heat peak indicates an exothermic 
process, i.e., the heat flows from the system to the surroundings and the negative heat 
flow-rate indicates an endothermic process whereby heat flows in the opposite direction. 
0.12 ml of farnesol solution (71 mmol/ml) was titrated consecutively by 15 aliquots into 
2.7 ml of (a) cholesterol solution (2 mmol/ml), (b) behenic acid solution (0.667 
mmol/ml), and (c) pure PG.  0.12 ml of farnesol solution (20 mmol/ml) was titrated 
consecutively by 15 aliquots into 2.7 ml of (d) ceramide 3 solution (0.333 mmol/ml), (e) 
ceramide 9 solution (0.333 mmol/ml), and (f) pure PG. 
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Figure 3.6-3.  Nonlinear regression analyses to estimate the binding stoichiometry, n, the 
binding constant K, and the enthalpy change H∆ using software Digitam®.  The energy 
(integral) of each peak as in Figure 3.6-2 was plotted as a function of the ratio of the 
moles of farnesol added to the moles of the lipid in the ampoule.  The binding heat was 
derived from the measured heat subtracting the heat of the control as shown in Figure 
3.6-2.  The nonlinear regression model is based on nM nL ML error+ = + , which 
describes the binding reaction in this study between a host molecule M (the lipid), and a 
ligand molecule L (farnesol).  Replicates were pooled for the nonlinear regression 
(replicates are 2, 3, 3 and 3 for (a), (b), (c) and (d), respectively).  Result of farnesol 
solution titrated into (a) cholesterol solution.  Binding stoichiometry n = 1, binding 
constant K = 6.79*104 M-1 and ∆H = 1.40 kJ/mol, endothermic entropy-driven process.  
∆G = -28.67 kJ/mol and ∆S = 97.02 J mol-1 K-1, (b) behenic acid solution.  Binding 
stoichiometry n = 2, binding constant K = 7.62*103 M-2 and ∆H = -112.93 kJ/mol, 
exothermic enthalpy-driven process.  ∆G = -23.04 kJ/mol and ∆S = -289.98 J mol-1 K-1, 
(c) ceramide 3 solution.  Binding stoichiometry n = 2, binding constant K = 3.10*106 M-2 
and ∆H = 44.81 kJ/mol, endothermic entropy-driven process.  ∆G = -38.53 kJ/mol and 
∆S = 268.81 J mol-1 K-1, and (d) ceramide 9 solution.  Binding stoichiometry n = 2, 
binding constant K = 5.28*104 M-2 and ∆H = 24.20 kJ/mol, endothermic entropy-driven 
process.  ∆G = -28.03 kJ/mol and ∆S = 168.47 J mol-1 K-1.   
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Discussion.  For cholesterol, ceramide 3 and ceramide 9, the increased entropy indicated 

that the final state (after binding) became more disordered than the original state.  Since 

the dilution heat of farnesol has been discounted and the dilution effect of the lipid was 

negligible due to the limited volume of the titrant, the increased entropy resulted from the 

binding between farnesol and the lipid molecules.  The original aggregation state of the 

lipid in PG solution was more ordered than afterwards with the intrusion of farnesol, 

which bound the lipids and rearranged the lipid aggregates.  For behenic acid, however, 

the binding decreased the entropy.  The binding happened only because it released heat 

and decreased the system energy.  It showed that the aggregates of behenic acid in PG 

were more ordered than the binding complexes with farnesol.  The introduction of 

farnesol into the behenic solution, therefore, aligned the behenic acid molecules in PG. 

The solubility results showed that cholesterol, behenic acid and ceramide 3 were 

significantly solubilized by farnesol while ceramide 9 was not (Table 3.6-1).  Therefore, 

for cholesterol and ceramide 3, their formed complexes were more disordered and have 

higher solubilities in PG with farnesol than in PG alone.  Although the formed complexes 

of behenic acid were more ordered, they have higher solubilities in PG with farnesol than 

behenic acid in PG alone.  For ceramide 9, its solubility was not affected by farnesol, but 

its aggregation state was disturbed.  The results suggest that the skin penetration 

enhancing mechanism of farnesol is most likely due to lipid extraction and/or triggering 

lipid phase transition of the SC lamella, where the lipid molecules are in crystalline or 

liquid crystalline phases [100].  For cholesterol and ceramides with non-acylated ω-OH 

fatty acids, farnesol may increase their solubilities and disrupt their structures.  For 

ceramides with long chain acylated ω-OH fatty acids such as ceramides 1 and 4, farnesol 
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could have bind to them and disturb the crystalline phase.  For free fatty acids, with the 

exception of lignoceric acid and cerotic acid, farnesol increased their solubilities 

significantly. Some binding complexes of fatty acids with farnesol could pose as a 

permeation barrier, but much less impervious than the compact crystalline or liquid 

crystalline phases of SC lipids. 

Inter- and intra-molecular hydrogen bonds could be the driving forces for the bonds.  

Between cholesterol and farnesol, the binding ratio is unity, suggesting that they were 

mutual bond donors and acceptors.  The carboxyl group of behenic acid could 

accommodate two farnesol molecules via hydrogen bonds.  It is plausible that an intra-

molecular hydrogen bond was formed within the ceramide 3 or the ceramide 9 molecule, 

between the hydroxyl and the neighboring carboxyl groups whereas the other hydroxyl 

groups of each ceramide formed hydrogen bonds with the two farnesol molecules. 

Compared with the physical enhancing methods of circumventing the SC barrier by 

piercing multiple micro-sized passages in it, chemical enhancement may be safer. 

Chemical enhancers would disturb only some of the SC lipids, leaving the highly 

impermeable corneocytes unchanged, so that the SC can still be functional as an effective 

biological barrier [2,51]. 
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4. Conclusion 

The modeling of drug permeation process through excised skin using both Franz cell and 

flow-through cell facilitated the studies on the efficacies and reversibilities of enhancers, 

and also from the SGMA gels.  The permeation behaviors of the model drug and the 

enhancers are further investigated by studying the interactions between skin lipids and 

terpene enhancers. 

 

4.1 Models for Franz and Flow-through Cells 

Mathematical and statistical models for Franz cell with finite outflow volume and flow-

through cell with infinite outflow volume have been derived. 

A mathematical solution based on finite outflow volume was derived from the Fick’s law.  

It can serve as a statistical model to estimate the permeability coefficient from in vitro 

skin permeation study with the accumulation of penetrants in the receptor compartment 

of the static diffusion cells.  The model is suitable to describe the in vitro drug or 

chemical permeation studies using Franz cells.   

However, the flow-though cells have infinite outflow volume, so a different model that 

enables the parameter estimation without impairing the integrity and quality of the 

original permeation data was proposed.  The nonlinear regression model derived from 

Fick’s law is appropriate.  Bootstrap sampling is useful for checking the precision of 

parameter inference based on the large-sample theory.  For the in vitro permeation study 

that we conducted with flow-through cells, the method proved to be robust.  The 

estimates of permeated drug/chemical are important in that, unlike in vivo environment 

where stratum corneum is replenished by the adjacent live stratum granulosum through 
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keratinization, the excised stratum corneum, though composed of dead corneocytes, will 

deteriorate after days in contact with solvents, which will cause over-hydration of stratum 

corneum that can destroy the lamella and decomposition that will leave highly permeable 

passages in the stratum corneum.  The predictions are relevant for transdermal drug 

delivery, the cosmetic industry and regulatory risk assessment on dermal exposure to 

toxic substances. 

 

4.2 Enhancing Efficacy of Terpenes 

The enhancing effects of 49 terpenes are compared by in vitro drug permeation studies 

through excised human epidermis.  The results are tabulated and analyzed by statistical 

methods.  The derived multiple linear regression (MLR) models can be used for the 

estimation of permeability coefficients of haloperidol in the presence of terpene 

enhancers.  Models which can provide an estimation of drug or chemical permeability 

coefficient though human skin are useful for the preliminary screening of enhancers.  For 

monoterpenes and sesquiterpenes, the permeability coefficients of haloperidol increased 

as the lipophilicities of terpenes increased.  For terpenes of all categories, their enhancing 

abilities decreased as their MW increased.  Melting points and boiling points of terpenes 

were negatively correlated with the permeability coefficients of haloperidol.  

Sesquiterpenes were better than monoterpenes when only the enhancing effects were 

considered.  The overall ranking of enhancing ability is as follows: ester > aldehyde > 

oxide > hydrocarbon > alcohol > ketone > phenol > acid.   
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4.3 Reversible Effects of Terpenes 

In addition to the enhancing effects, the reversibility of the effects of terpenes on the skin 

is also an important characteristic of an ideal enhancer.  From the results of this study, the 

permeability of the pre-treated epidermis was comparable to that of the control, so the 

insult to the barrier function of the skin caused by the enhancers was restored.  As an in 

vitro study was performed, the recovery of the epidermal barrier function could not be 

due to the cellular regeneration at the horny layer restoring its physical barrier.  The 

mechanism for this reversible enhancement would be attributed to the insertion of these 

enhancers within the SC intercellular lipid lamella.  The disruptions in the lipid lamella 

eased the permeation of the lipophilic drug through the tortuous pathway, hence resulting 

in enhancement of drug permeation.  Likewise, once the enhancers were removed, bonds 

between the lipids could start to re-form and the depletion of the enhancers could allow 

the packing of the lipids to revert back to its original alignment.  (R) - (-) carvone had a 

much faster elution profile out of the epidermis than eucarvone.  The results also showed 

that (R) - (-) carvone, rather than eucarvone, retained more HP within the epidermis. This 

suggests that (R) - (-) carvone could be useful as an enhancer for depot HP therapy.  In 

conclusion, both (R) - (-) carvone and eucarvone were shown to be effective and 

reversible enhancers for the in vitro permeation of HP through human epidermis. 

 

4.4 Incorporation of Terpenes in SMGA Gels 

The enhancing effect of a selected enhancer, farnesol, incorporated into gels containing 

small molecule gelling agents (SMGA), was evaluated.  The SMGA gels developed for 

application on the skin retained their characteristic aesthetic and rheological properties 
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with the incorporation of the drug and enhancer.  These in vitro human skin permeation 

studies showed that the gels possessed desirable properties for both topical and 

transdermal delivery.  The translucent lipophilic gels with ISA were stable and the 

permeation of the drug reached the pseudo steady state in less time compared to the PG-

based gel.  The latter, opaque white in color, delivered the drug at a faster rate with the 

addition of the enhancer.  The gelator, GP-1, did not influence the drug permeation rate 

but increased its permeation lag-time. 

 
 
4.5 Terpenes Bind and Solubilize Skin Lipids 

To better understand the effects of the terpenes on drug permeability through the skin, 

their interactions with SC intercellular lipids were studied using isothermal titration  

(ITC) method.  Cholesterol, palmitic acid and stearic acid were the most soluble among 

all the lipids in propylene glycol and they were further significantly solubilized upon the 

addition of farnesol.  The interactions between farnesol and four representative lipids, 

i.e., cholesterol, behenic acid, ceramide 3 and ceramide 9 were studied using the ITC 

method.  The binding ratios of farnesol to cholesterol, behenic acid, ceramide 3 and 

ceramide 9 were found to be 1, 2, 2 and 2, respectively.  All were endothermic and 

entropy-driven except for that between farnesol and behenic acid, which was exothermic 

and enthalpy-driven.  Hydrogen bonding may be the driving force of these interactions.  

The results suggest that the skin penetration enhancing mechanism of farnesol could be 

due to lipid extraction and/or triggering lipid phase transition of the SC lamella. 

The result is consistent with the permeation study results, which showed the permeability 

coefficient of the drug increased as the lipophilicities of monoterpene and sesquiterpenes 
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increased.  It is perceivable that terpenes with high lipophilicities will have more 

interactions with skin lipids. 

In summary, this thesis has contributed the following new knowledge on the use of 

penetration enhancers as a chemical approach to breach the human skin barrier.  (1) 

Mathematical and statistical models for in vitro permeation studies using both Franz and 

flow-through cells were derived and tested.  (2) A scheme to relate the enhancing 

efficacies of 49 terpenes to their physiochemical properties.  The approach may be 

relevant for assessment of other chemicals as enhancers.  (3) The enhancing effects of 

two terpenes on excised skin were demonstrated to be reversible.  (4) The novel SMGA 

gels are suitable for topical or transdermal drug delivery.  (5) The enhancing mechanism 

of farnesol could be due to lipid extraction and/or lipid phase transition in the SC lamella. 

 

4.6 Future Work 

This study shows that monoterpenes and sesquiterpenes with ester or aldehyde function 

groups are the most promising candidates.  However, it should be noted that the drug 

used in this study, i.e., haloperidol, is a hydrophobic compound and the finding may not 

apply to other drugs, in particular the hydrophilic drugs.  Further studies may be 

conducted as follows.  First, the relationship between permeability coefficient and the 

amount of SC lipids extracted can be studied by testing the solubilities of the SC lipids in 

different enhancers.  It is useful to find out if the complete removal of SC lipids is a 

feasible penetration enhancement method.  Second, it is important to determine if the 

terpene is in the monomer or aggregated state in the skin.  Existence of a hydrophobic 

micelle core can entrap the lipids, and therefore, solubilization may occur only above the 
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critical micelle concentration (CMC).  The CMC of terpenes can be determined by ITC 

method.  Third, the relationship between pore-size of membrane and its permeability may 

be studied to explain the enhancing effects resulting from lipid extraction.  Fourth, the 

transport of therapeutic doses of the haloperidol, safety and stability of the delivery 

systems may also be studied. 
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