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Summary

Error control coding is designed to solve the problem of reliable transmission

of information over a noisy channel. BCH codes and Reed-Solomon codes are two

kinds of widely used error control codes. In the last two decades, various ideas of

algebraic geometry are used in the construction of error control codes and their

decoding algorithms. These codes are usually called algebraic geometric codes.

Algebraic geometric codes could be considered as a generalization of Reed-Solomon

codes. The introduction of turbo codes by Berrou, Glavirux and Thitimajshima

also has considerably modified our approach of channel coding in the last ten

years. Later the general concept of iterative soft-input soft-output decoding has

been extended to block turbo codes(BTC) by Pyndiah. Both BCH codes and Reed-

Solomon codes have been used in the block turbo decoding scheme. In this thesis,

one-point algebraic geometric codes are used as the component codes of block turbo

codes.

This thesis is intended to investigate the soft-decision decoding algorithms of

algebraic geometric codes to achieve good performance of digital communications

in both AWGN channel and Rayleigh fading channels.

The first part presents the fundamental theory of algebraic geometry, which is

important in the construction of AG codes and their decoding algorithms. Codes

defined over Hermitian curves and Klein quartic curves are selected as the example

of functional AG codes and residual AG codes respectively. Their encoding meth-

ods and code parameters are introduced. In addition, the relationship between

functional Hermitian codes and generalized Reed-Solomon codes are shown.

In the second part, we use the Chase algorithm with an inner hard-decision de-

coder, which is a parallel implementation of Berlekamp-Massey algorithm(PBMA),

viii



in the soft-decision decoding of one-point AG codes over Klein quartic curves. The

simulations in AWGN channel and Rayleigh fading channel shown that the decod-

ing scheme can achieve remarkable coding gains compared with the hard-decision

PBMA decoder.

In the last part, we presented the iterative Chase decoding algorithm for the

product codes constructed by one-point AG code over Klein quartic curves. Since

the iterative Chase decoder compute the extrinsic information with respect to bit,

the product codes are represented in binary codes. Because the AG codes used as

component codes are defined over F8, two concatenation method can be utilized.

One is bit concatenation, the other is symbol concatenation. We proposed the

codeword validation step used in the decoding algorithm to mitigate the restriction

of the PBMA hard-decision decoder of AG codes. The simulation results show

that the block turbo code constructed by AG codes can achieve good performance

comparable to those of the block turbo codes constructed by BCH codes and Reed-

Solomon codes in both AWGN channel and Rayleigh fading channel.
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Chapter 1

Introduction

1.1 Error Control Coding

The objective of data transmission is to transfer information from the source

through a physical channel to the destination reliably. A canonical digital commu-

nication/storage system can be represented by a block diagram shown in Figure

1.1.

Error control coding provides a systematic way of adding redundancy to a

message before transmitting it. As a result, even a somewhat corrupted message

was received, the redundancy in the message enables the receiver to figure out

the original message that the sender intended to transmit. Error control coding

is always implemented in the channel encoder and channel decoder modules of a

typical digital communication/storage system. As shown in figure 1.1, the channel

encoder and decoder in conjunction with the physical channel create a error control

channel which provides a reliable data transmission between the data source and

the destination.

We will define several basic notations concerning error control coding, which

would be necessary to our discussions in all chapters of this thesis.

1



CHAPTER 1. INTRODUCTION 2

��������	��


����
�
����
�
��
���� �������
��
����

����������


������	����

����	
��
�������

��
�	����


�����������
�������
��
��������
�
��
��������	���	��

�����
�������
�������

Figure 1.1: Block diagram of a digital communication system

• Encoding. An encoding function with parameter k and n is a function

E : Σk → Σn, which maps a message consisting of k symbols over some

alphabet Σ into a longer, redundant string of length n over Σ. The encoded

string is called a codeword.

• Decoding. The receiver gets a possibly distorted copy of the transmitted

codeword, and need to figure out the original message which the sender intend

to transmit. The decoding function D : Σn → Σk maps the strings of length

n, which are the noisy code word, to strings of length k(i.e., what the decoder

thinks were the transmitted messages).

• Code Rate. The ratio of the number of information symbols to the length

of the codeword k/n is called the Code Rate. It is a measure of the amount

of redundancy added by the encoding.

• Hamming Distance. The Hamming distance of between two codewords is
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the number of coordinates at which they differ. In the rest of this thesis,

distance are all referred to Hamming distance. The minimum distance of a

code is the smallest distance between two distinct codewords. The minimum

distance is of great importance to determine the error correcting ability of a

code.

The frequently used error control codes presently can be grouped into 2 groups,

the convolutional codes and the linear block codes. In this thesis, all the codes are

linear block codes. Let’s explain several basic concepts of linear block codes first.

A linear block code C defined in Fq of with block length n is a linear subspace

of Fn
q . Generally, C has qk elements, where k is the dimension of the code. As a

standard notation, we refer to a q-ary linear block code of block length n, dimension

k and minimum distance d as an (n, k, d) code. Linear block codes can be divided

into two classes, systematic codes and non-systematic codes. For systematic codes,

the redundant symbols are appended to information symbols to obtain a codeword.

Such an encoding is said to be systematic. In practical, the information symbols

always appear in the first or last k positions of a codeword. The remaining n− k

symbols in a codeword are obtained by some function of the information symbols,

and can provide the redundancy to be used for error correction.

An (n, k, d) linear block code can be specified in one of two equivalent ways:

using the generator matrix or the parity check matrix.

• An (n, k, d) linear block code can always be described as the set {Gx : x ∈ Fk
q}

for an n× k matrix G. Such a G is called a generator matrix of C.

• An (n, k, d) linear block code can also be described as the set {y : y ∈ Fn
q

and Hy = 0} for an (n− k)× n matrix G. Such a H is called a parity check

matrix of C.



CHAPTER 1. INTRODUCTION 4

Consider a received vector r = c + e, where c is a valid codeword and e is an

error pattern introduced by noisy channel. The matrix product rH is the syndrome

vector of the received vector. It is obvious that rH equals to eH. The syndrome

vector is solely the function of the error pattern e and the parity check matrix H

and is independent of the transmitted codeword c.

One class of the widely studied and used linear block codes are Reed-Solomon

codes. We will introduce some important properties of Reed-Solomon codes first.

1.1.1 Reed-Solomon Codes

Reed-Solomon codes were first described in 1960s by I. S. Reed and G. Solomon.[17]

Reed-Solomon codes are defined first as a special case of BCH codes. However,

Reed-Solomon codes display some properties that are not found in any of the

other BCH codes. Particularly, Reed-Solomon codes are maximum distance sepa-

rable(MDS). They present the best code rate for a given minimum distance. Reed-

Solomon codes’ initial definition focus on the evaluation of polynomials over the ele-

ments in a finite field. This approach has been generalized to an algebraic-geometric

definition involving rational curves. There are also some modified Reed-Solomon

codes, such as generalize Reed-Solomon codes, punctured Reed-Solomon codes and

extended Reed-Solomon codes. Reed-Solomon codes are widely used both in mil-

itary and commercial. A shortened pair of cross interleaved Reed-Solomon codes

provide error control for the digital audio disc. They are also used for the data

transmission and communications of man-made satellites.

Reed-Solomon codes are decoded up to half their minimum distance by first

finding the error positions as zeros of a polynomial, which is known as the error-

locator polynomial. If the error positions are known and their numbers is strictly

smaller than half of the minimum distance, error values can be obtained by solving
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linear equations involving syndromes. Berlekamp-Massey algorithm is one of the

most efficient hard-decision decoding algorithms for Reed-Solomon codes.

1.1.2 Algebraic Geometric Codes

From the theoretical view of error control coding, a significant research objective

is to construct asymptotically good codes, whose parameters could achieve the

Gilbert-Varshamov lower bound. This bound is defined about the relationship

of the code rate, code dimension, minimum distance and the code alphabet. In

1982, M. A. Tsfasman, S. G. Vl̊adut and T. Zink [18] showed that there exists

asymptotically good sequence of geometric Goppa codes satisfying the Tsfasman-

Vl̊adut-Zink bound. This bound is better than the Gilbert-Varshamov bound when

the codes are defined over alphabets of size q ≥ 49. This is a truly remarkable

achievement of algebraic geometric codes. In other words, algebraic geometric

codes have advantages over the commonly used Reed-Solomon codes in term of the

codes parameters. It is possible to construct algebraic geometry codes that have

better code rates and error correction capabilities.

However, the use of algebraic-geometric codes is hindered by two significant

difficulties. The first difficulty is the abstract nature of the concepts behind the

AG codes. The second difficulty is the greater complexity of the decoder for AG

codes compared to the Reed Solomon codes decoder. From the end of 1980s, some

decoding algorithms of AG codes were provided, and most of them were generalized

from decoding algorithms of Reed-Solomon codes. Similar to the decoding algo-

rithm of Reed-Solomon codes, AG codes determine the error positions by finding

the error-locator functions on curves. The resulting basic algorithm can decode up

to half the designed minimum distance minus the genus of the underlying curve

of the AG codes. Later, a technique called major voting of unknown syndromes
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makes an algorithm which is able to decodes up to half the designed distance. R.

Koetter [11] provided a fast decoding algorithm for AG codes, which can be viewed

as a parallel implementation of Berlekamp-Massey algorithm.

1.2 Hard-decision and Soft-decision Decoding

In a natural noise environment, the received signals are always continuous. For

hard-decision decoding, the input symbols are binary or F2m symbols. While for

soft-decision decoding, the received values from the channel are directly processed

by the decoder in order to estimate a code sequence.

Soft-decision decoding improves error correcting performance of the decoders.

However, soft-decision decoding usually leads to significant increase in decoding

complexity. There are many soft-decision decoding algorithms developed. For

convolutional codes, soft-decision Viterbi algorithm is widely used. The Viterbi

algorithm can also be applied to linear block codes with a trellis. For linear block

codes such as BCH code and Reed-Solomon,Generalized minimum distance de-

coding(GMD) algorithm [8], Chase algorithm [4], the ordered statistic decoding

algorithm [9] and list-decoding algorithm [12] all can be used for sub-optimum

soft-decision decoding.

1.2.1 Chase Decoding

The Chase algorithm [4] is a soft-decision decoding method which approximates

optimum sequence decoding of block codes with relatively low computation com-

plexity and a small performance degradation. The Chase algorithm works with

a inner hard-decision decoder. According to the received values, a list of error

patterns are generated. Each error pattern is added to the hard-decision received
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word, and the resulting word is fed into the hard-decoder. Thus a list of candidate

codewords are found. Based on the received value we can calculate a metric for

each candidate codeword. The candidate with the largest metric will be selected

as the output of the Chase decoder. Chase algorithm would improve the BER

performance of almost all kind of block codes in both AWGN channel and fading

channel.

1.2.2 Turbo Codes and Iterative Decoding

Turbo codes, introduced by Berrou et al. [2] are the new paradigm for error cor-

recting codes. These codes are one of the first successful attempts of achieving

error-correcting performance near the theoretical Shannon bound. For a BER of

10−5 and code rate 1/2, the authors presented an impressive Eb/N0 ratio of 0.7dB

in AWGN channel. Here N0/2 is the variance of the zero mean Gaussian noise in

the AWGN channel, and Eb is the power(or energy) of one transmitted bit. The

ratio Eb/N0 is usually called the signal-to-noise ration per bit(SNR).

Turbo coding introduces some new concepts such as iterative decoding and

random interleaving to achieve remarkable result. The decoding algorithm adopted

is a soft-input soft-output(SISO) iteration decoding algorithm, which minimize the

error probability. And turbo codes have a weight distribution that approaches

that of random codes for long interleavers. Those turbo codes are made from

two concatenated recursive convolutional codes. The codes using such coding and

decoding scheme are usually called convolutional turbo codes(CTC).

Later, R. Pyndiah [16] [15] investigated an equivalent turbo block code. Prod-

uct codes and iterative decoding are used as two major technique of block turbo

codes(BTC). It is shown that block turbo codes also can achieve good performance

similar to convolutional turbo codes.
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1.3 Contributions of this Thesis

Our accomplishments and contributions, which are elaborated throughout this the-

sis, can be briefly listed as follows:

• Using the Chase algorithm collaborating with R. Koetter’s parallel Berlekamp-

Massey algorithm to implement the soft-decision decoding of AG codes. The

BER performance was improved greatly in both AWGN channel and Rayleigh

fading channel.

• Present a iterative Chase decoding scheme for product codes constructed by

AG codes. Because of the relatively low error correcting ability of the hard-

decision decoder, we have to include a codeword validation procedure before

we use a list of candidate codewords to generate the soft-output.

1.4 Thesis Outline

• Chapter 2 is devoted to the basic concepts of algebraic geometry and some

important definitions for algebraic geometric codes with special emphasis on

functional codes over Hermitian curves and residual codes over Klein quartic

curves. We also presented some interesting similarities between functional

Hermitian codes and Generalized Reed-Solomon codes.

• In chapter 3, the Chase algorithm for algebraic-geometric codes is investi-

gated. R. Koetter’s parallel implementation of Berlekamp-Massey algorithm

is selected as the hard-decision decoder of Algorithm. In this chapter, simula-

tion results of one-point AG code using the Chase algorithm in both AWGN

channel and Rayleigh fading channel are presented.

• In chapter 4, basic concepts and structure of product codes are introduced
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including the symbol concatenation and bit concatenation scheme for non-

binary product codes. We adopt iterative Chase decoding algorithm to decode

product codes construed by AG codes. The simulation results are shown

in this chapter, and the BER performance of these product codes are also

discussed.

• Chapter 5 draws the remark for this thesis and points out some promising

future research areas of the iterative Chase decoding of algebraic-geometric

codes.



Chapter 2

Algebraic Geometric Codes

2.1 Introduction

In this chapter, the basic concepts in algebraic geometry required for the under-

standing of algebraic geometric error-correcting codes will be explained. The aim

here is to provide the reader with the most basic knowledge of algebraic geometry

for making sense of the codes presented in this report rather than to give a full

treatment of the complex subject of algebraic geometry. For a more concise and

extensive review of algebraic geometry, the readers are encouraged to read up on

[3].

Consider an algebraic curve χ with a subset P consisting of n points which are

enumerated P1, . . . , Pn( which are the rational points of χ, i.e. points that have

coordinates in Fq). Suppose that we have a vector space L over Fq of functions on

χ with values in Fq. Thus f(Pi) ∈ Fq for all i and f ∈ L. In this way we can define

a code over Fn
q as the image of the evaluation map below

αP : L → Fn
q (2.1)

which is defined by αP(f) = (f(P1), . . . , f(pn)). The evaluation map is linear, so

10
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its image is a linear code. We call the above codes Algebraic Geometric codes(or

AG codes, for short). This one of the two different ways to define an Algebraic

Geometric code, known as functional code. The other class of Algebraic Geometric

codes is called residual code, which is the dual code of the functional code. We will

give the strict definition of AG codes in the following sections.

2.2 Definition of Algebraic-Geometric Codes

Algebraic Geometric codes can be viewed as a generalization of famous Reed-

Solomon codes(or RS codes, for short) because RS codes also could be defined

under above situation. In the case of RS codes, the algebraic curve χ is the affine

line over Fq, the points are n distinct elements of Fq and L is the vector space of

polynomials of degree at most k − 1 and with coefficients in Fq, assuming k ≤ n.

Let {α0, α1, . . . , αn−1} be a set of n distinct elements from Fq, We can define the

code C by

C = {(f(α0), f(α1), . . . , f(αn−1)), f ∈ L} (2.2)

The vector space L has dimension k, and the polynomials in the vector space have

at most k − 1 zeros, so the nonzero codewords have at least n − k + 1 non-zeros.

This code has parameter [n, k, n − k + 1]. The length of a RS code is at most

q. The major shortcoming of RS codes is that they require an alphabet size at

least as large as the block length. There are many applications where codes over

a small alphabet are required. AG codes of long block length can be defined over

small alphabet. In other words, over the same alphabet, an algebraic geometric

code would be longer than an Reed-Solomon code. For example, the code length

of the Hermitian code defined over Fq2 is q3, while code length of the extended

Reed-Solomon code defined over the same alphabet is only q2.
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First, we introduce some important notions and theorems about algebraic func-

tions fields that will be necessary for defining algebraic-geometric codes.

2.2.1 Algebraic Function Fields and Algebraic Curves

In the following, F is the algebraic closure of Fq. An denotes n-dimension affine

space with coordinates x1, x2, . . . , xn, and Pn denotes n-dimension projective space

with homogeneous coordinates x0, x1, . . . , xn. F[X1, . . . , Xm] denotes the polyno-

mial ring in m variables with coefficient in F.

Definition 2.1 Consider a prime ideal I in the ring F[X1, . . . , Xn], the set χ of

zeros of I is called an affine variety.

Definition 2.2 The ring F[X1, X2, . . . , Xn]/I is called the coordinate ring F[χ] of

the variety χ.

Definition 2.3 The quotient field of the ring F[χ] is denoted by F(χ). It is called

the function field of χ. The element of F(χ) are called rational functions. The

dimension of the variety χ is the transcendence degree of F(χ) over F. If the

dimension is 1, χ is called an algebraic curve.

Definition 2.4 Let χ be a curve defined over Fq, that is to say, the defining equa-

tions have coefficient over Fq. Then the points on χ with all coordinates in Fq are

called rational points.

Given a function field F(V ) and a point set P associated with the function field,

we can define a valuation map v : F(V ) × P → Z
⋃{∞}, which intuitively tell us

how many poles or zeros a function in the function field has at the point. The

exact definition of the valuation map can be found in [3]. If vP (x) < 0, we say that
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x has a pole at P , and −vP (x) is the pole order of x at P . If vP (x) > 0, we say

that x has a zero at P , and vP (x) is the zero order of x at P .

The valuation map vP at any point satisfied the following properties:

• vP (a) = ∞ iff a=0 vP (a) for all a ∈ Fq\{0}

• vP (ab) = vP (a) + vP (b) for all a, b ∈ F(V )\{0}

• vP (a + b)≥min{vP (a), vP (b)} for all a, b ∈ F(V )

Consider a function of a function field,we can also define the degree of a point

deg(P ). When we pick a function f ∈ F(V ) which has no pole at point P and

evaluate the function at P , we get a value in the field Fqdeg(P ) . Points with degree

one are the rational points of the curve.

Definition 2.5 Consider a curve χ in A2, defined by the equation F (X,Y ) = 0.

Let P be a point on this curve. If at least one of the derivatives FX or FY is not

zero at P , then P is called a nonsingular point of the curve. A curve is called

nonsingular, regular or smooth if all the points are nonsingular.

The number of rational points is important in defining an algebraic geometric

codes. A well known result is the Hasse-Weil bound. Let χ be a regular curve

defined over Fq and let Nm be the number of rational points on χ over Fqm . The

Hasse-Weil bound provide the inequality below:

|Nm − (1 + qm)| ≤ 2g
√

qm. (2.3)

Here g is the genus of the curve χ, we will give the definition of genus in the next

subsection. This inequality actually gives both the upper bound and the lower

bound of the number of rational points.
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2.2.2 Divisors and Vector Space

Definition 2.6 Consider an irreducible smooth projective curve χ over F, a divi-

sor is a formal sum D =
∑

P∈χ nP P with nP ∈ Z and nP is zero for all but a finite

number of points P . The support of a divisor is the set of points with nonzero coef-

ficient nP . And the degree of a divisor can be defined as deg(D) =
∑

P∈χ nP deg(P )

Definition 2.7 Let f be a nonzero rational function on χ, we can define the divisor

of f as (f) =
∑

P∈χ vP (f)P

Definition 2.8 Let D be a divisor on a curve χ, we can define a vector space

L(D) over F by L(D) = {f ∈ F(χ)|(f) + D ≥ 0}⋃{0}

The dimension of L(D) is denoted as l(D). The Theorem of Riemann says that

there exist a nonnegative integer m such that for every divisor G of χ

l(G)≥deg(G) + 1−m (2.4)

and the smallest nonnegative integer with this property is called the genus of χ.

In order to determine l(G) we need to know the so-called differentials. We

can think of the differentials as objects in a form fdh where f and h are rational

functions, and dh is the derivation of h. We denote the set of differentials on χ by

Ωχ. At every point P , there exist a localparameter that is a function u such that

vP (u) = 1, and for every differential ω there exist a function f such that ω = fdu.

Based on the definition of differential and local parameter, we can define residue,

which is also important to the definition of AG codes.

Definition 2.9 Let P be a point on χ, u is a local parameter at P and ω can be

represent by ω = fdu. The function f can be written as
∑

i aiu
i. We define the

residue of ω in the point P as ResP ω = a−1.
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One of the basic results about curves is known as the residue theorem.

Theorem 2.1 If ω is a differential on a smooth projective curve χ, then

∑
P∈χ

ResP (ω) = 0. (2.5)

Definition 2.10 The divisor (ω) of a differential ω is defined by

(ω) =
∑

vP (u)P . (2.6)

Similar to the definition of vector space L(D), we can also define the vector

space Ω(G).

Definition 2.11 Let D be a divisor on a curve χ, we can define a vector space

Ω(G) over F by

Ω(G) = {ω ∈ Ωχ|ω = 0, or(ω) ≥ G} (2.7)

The following theorem, known as the Riemann-Roch theorem is not only a

central result in algebraic geometry with applications in other research areas, but

also the key to the many new results in coding theory.

Theorem 2.2 (Riemann-Roch) For a divisor G of a curve of genus g

l(G) = deg(G) + 1− g + l(K −G) (2.8)

where K is a canonical divisor.

Here we ignore the definition of canonical divisor. For a canonical divisor always

has degree 2g− 2, we can get the result that for any divisor with deg(G) > 2g− 2,

l(G) = deg(G) + 1− g (2.9)

Let χ be a nonsingular projective curve over Fq of genus g and let P1, P2, . . . , Pn

be n rational points on χ. Define divisor D as D = P1 + P2 + · · ·+ Pn, and let G
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be a divisor with support disjoint from D, and assume 2g− 2 < deg(G), n. We can

define the linear code CL(D,G) over Fq as the image of the linear map from L(G)

to Fn
q

α : f → (f(P1), f(P2), . . . , f(Pn)) (2.10)

where L(G) is define as definition 2.8.

The code defined as above is always called functional algebraic geometric code.

Lemma 2.1 The code CL(D,G) has dimension k = deg(G)− g + 1 and the mini-

mum distance d≥d∗ = n− deg(G).

Another class of algebraic geometric codes are defined by residue construction.

Select same D and G as the construction of functional algebraic geometric code.

We can define the linear code CΩ(D,G) over Fq as the image of the linear map

from Ω(G−D) to Fn
q

α∗ : ω → (ResP1(ω), ResP2(ω), . . . , ResPn(ω)) (2.11)

where Ω(G−D) is define as definition 2.11.

CΩ(D,G) is always called residual algebraic geometric code.

Lemma 2.2 The code CΩ(D,G) has dimension k = n − deg(G) + g − 1 and the

minimum distance d≥d∗ = deg(G)− 2g + 2.

It follows the residue theorem that the code CL(D,G) and CΩ(D,G) are dual

code each other.

In this thesis, we will focus only on so called one-point AG codes. For the

one-point AG code, the divisor G = mP0, which means that the functions of the

vector space L(G) = L(mP0) are allowed to have poles at only one point.
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2.3 Hermitian Codes

There are several kinds of algebraic curves commonly used to construct AG codes,

such as Klein quartic, elliptic, hyperelliptic curves and Hermitian curves. The AG

codes from Hermitian curves are called Hermitian codes. In this section, functional

Hermitian codes are select as the example to demonstrate the basic properties and

construction methods of functional AG codes.

2.3.1 Basis of the Hermitian Function Field

Consider a Hermitian curve χ defined with equation xq+1 = yq+y over the field Fq2 .

The curve has genus q(q − 1)/2 and contains q3 Fq2-rational points plus the point

P∞ corresponding to the point at infinity on the homogenization of the Hermitian

curve. Then we can define the one-point Hermitian codes C(P,mP∞), here P is

the sum of the q3 rational points. The set

{xiyj, i ≥ 0, 0 ≤ j ≤ q − 1, iq + j(q + 1) ≤ m} (2.12)

is a basis of L(mP∞). For m ≥ 2g − 1, the dimension of L(mP∞) is m−g+1. This

basis is called the standard basis of the vector space. It is obvious that in above

basis, each term has a different pole order with respect to P∞. Because x and y

has pole order q and q + 1 at P∞ respectively, xiyj has pole order iq + j(q + 1).

Consider the case of Hermitian codes when q = 4,m = 15, the basis of L(15P∞)

with increasing pole order at P∞ should be:

{1, x, y, x2, xy, y2, x3, x2y, xy2, y3} (2.13)

From Definition 2.8, it is obvious that for a positive integer n, l((n+1)P∞)≥l(nP∞).

The dimension of the vector space L(nP∞) is the number of the monomials xiyj

that satisfy 0 ≤ j ≤ q − 1, iq + j(q +1) ≤ n, and each element of the set has a pole
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order no larger than n at P∞. For an integer k, if there is no function in F(χ) has

pole order k at P∞, k is called a gap number of P∞. As a result, for a gap number

k, the vector space L((k− 1)P∞) and L(kP∞) is identical. In the case of one-point

Hermitian codes, the number of the gap numbers is the genus of the Hermitian

curve χ.

Theorem 2.3 (cf. [3] Theorem 3.32) Suppose g > 0 and P is a closed point of

degree one. Then there are exactly g gap numbers i1 < i2 < · · · < ig of P , and

i1 = 1 and ig ≤ 2g − 1.

Let’s consider the vector space below:

R =
∞⋃
i=0

L(iP∞) (2.14)

It is obvious that {xiyj, j < q} is the basis of above vector space. iq + j(q + 1) can

be also viewed as a weighted degree function of the monomials {xiyj, j < q}. For

example, we consider the case q = 4. With the increasing order of the weighted

degree, we can display the elements of the basis of R in the following sequence:

{1, x, y, x2, xy, y2, x3, x2y, xy2, y3, xi, xi−1y, xi−2y2, xi−3y3, . . . }i = 4, 5, . . . . (2.15)

And the weighted degree of above monomial sequence is

{0, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, . . . }. (2.16)

In this example, there are 6 gap numbers {1, 2, 3, 6, 7, 11}, while the genus g =

4(4−1)
2

= 6.

In general, the standard basis of a Hermitian function field defined over Fq2 can
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be described as:

1

x, y

x2, xy, y2

. . .

xq−1, xq−2y, . . . , xyq−2, yq−1

xq, xq−1y, . . . , x2yq−2, xyq−1

. . .

2.3.2 Generator Matrix of Hermitian Codes

Given the basis of the vector space L(mP∞) provided in the previous subsection,

we can construct a generator matrix of the code CL(P,mP∞) using the monomials

of equation 2.12.

Example 2.1 Let q = 2 and m = 4, the Hermitian curve x3 = y2 + y is defined

over F4 = {0, 1, α, α2} has 8 rational points as

P1 = (0, 0), P2 = (0, 1), P3 = (1, α), P4 = (1, α2)

P5 = (α, α), P6 = (α, α2), P7 = (α2, α), P8 = (α2, α)

The basis of L(4P∞) is {1, x, y, x2}.
The generator matrix is


1 1 1 1 1 1 1 1

0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

0 0 1 1 α2 α2 α α




Since the corresponding residual code CΩ(P,mP∞) is the dual code of CL(P,mP∞),

we can construct the parity check matrix of the residual code CΩ(P,mP∞) using
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the similar method.

It is obvious that the generator matrix of a functional code is the parity check

matrix of the corresponding residual code.

For other classes of AG codes, we can construct the basis of function field in a

similar way. With the knowledge of rational points and basis of function field, we

could construct the generator matrix for correspond functional code. The matrix

is also the parity check matrix for the residual code. From the parity check matrix,

we can compute the generator matrix of the residual code easily. In this thesis, all

the simulations are implemented on the decoding of one-point residual AG codes

over Klein quartic. Actually, all the algorithms discussed in this thesis can also

implemented to decode one-point residual Hermitian codes.

2.3.3 The relationship between Hermitian Codes and Gen-

eralized Reed-Solomon Codes

The Hermitian codes we defined in the previous subsection has intrinsic relationship

to Reed-Solomon codes. In [19], Yaghoobian and Blake presented that Hermitian

codes can be expressed as concatenated generalized Reed-Solomon codes. We in-

troduce the definition of generalized Reed-Solomon codes firstly.

Definition 2.12 We define the generalized Reed-Solomon codes GRSq(k, v) over

Fq as

GRSq(k, v) = {(vq−1f(αq−1), v0f(α0), . . . , vq−2f(αq−2)|f(x) ∈ Fq[x], deg(f(x) < k}
(2.17)

where Fq = {0, 1, α, α2, . . . , αq−2} and by notation αi = αi for 0 ≤ i ≤ q − 2 and

αq−1 = 0; and v = (vq−1, v0, . . . , vq−2) with vi ∈ Fq for 0 ≤ i ≤ q − 1.

According to 2.12, we can get the lemma below:
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Lemma 2.3 The functions in the vector space L(mP∞) have the following form.

L(mP∞) = {f0(x) + yf1(x) + · · ·+ ykfk(x)} (2.18)

where deg(fj(x)) < bm−j(q+1)
q

c+ 1 for 0 ≤ j ≤ k, and k = min(q − 1, b m
q+1
c)

As a result, if we arrange the rows of the generator matrix of the Hermitian codes

in the increasing order of y-degree, we can divide the rows into k +1 blocks, where

k +1 is defined as the lemma above. Consider the Hermitian curve x5 = y4 +y and

the Hermitian function field L(37P∞), the basis of the function field can be divided

into following four groups: {1, x, . . . , x10}, {y, xy, . . . , x8y}, {y2, xy2, . . . , x6y2} and

{y3, xy3, . . . , x5y3}.
Now we consider the columns of the generator matrix of the Hermitian codes.

Each column corresponds to a rational point(not the point at infinity) of the Her-

mitian curve. There q3 rational points for the Hermitian curve xq+1 = yq+y. These

rational points can be divided into q groups, and in each group the x-coordinate

of the q2 points would be distinct. Since the Hermitian curve is defined over Fq2 ,

these x-coordinate will be {0, 1, α, . . . , αq−2} respectively. For example, the 64 ra-

tional points of Hermitian curve x5 = y4 + y is shown in table 2.1. It is obvious

that the 64 rational points can be divided into 4 groups as we discussed above.

As a result, the columns of the generator matrix of Hermitian codes can be di-

vided into q blocks. In each block, the x-coordinates of the rational points are

{0, 1, α, . . . , αq−2} respectively.

In conclusion, the generator matrix of Hermitian code could be divided into

(k + 1) × q blocks, and each block is a generator matrix of a Generalized Reed-

Solomon codes.( In each block, the vector v is determined by the y-degree of the

rows of the block, and the y-coordinates of the columns of the block). So the

Hermitian codes can be the sum of k + 1 concatenated generalized Reed-Solomon
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X Y

0 0, 1, α5, α10

1, α3, α6, α12, α9 α, α2, α4, α8

α, α4, α7, α13, α10 α6, α7, α9, α13

α2, α5, α8, α14, α11 α11, α12, α14, α3

Table 2.1: Rational Points of Hermitian Curve

codes( concatenated by q GRS codes). In the case of above example, the generator

matrix of the Hermitian codes can be divided into 4× 4 blocks as below:

GHermitian =




GGRS1(16, 10) GGRS2(16, 10) GGRS3(16, 10) GGRS4(16, 10)

GGRS1(16, 9) GGRS2(16, 9) GGRS3(16, 9) GGRS4(16, 9)

GGRS1(16, 7) GGRS2(16, 7) GGRS3(16, 7) GGRS4(16, 7)

GGRS1(16, 6) GGRS2(16, 6) GGRS3(16, 6) GGRS4(16, 6)




(2.19)

Where the generator matrices GGRS1(16, 10), GGRS2(16, 10), GGRS3(16, 10) and

GGRS4(16, 10) are identical, since the y-degree of these basis elements of the func-

tion field for these matrices are all zero, and the four ordered rational points groups

only differ on the y-coordinates. Among the rest of the generator matrices of GRS

codes, there are no any two matrices are identical, since the y-coordinate difference

has been taken into account.

2.4 Residual Algebraic Geometric Codes over Klein

Quartic Curves

In this section, the construction of a specific residual code will be given in details.

The curve and the finite field under considerations is the Klein quartic curve and F8.

The projective form of the Klein quartic curve χ is given by : X3Y +Y 3Z+Z3X = 0
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while F8 is constructed using the irreducible polynomial x3 + x + 1 over F2.

2.4.1 Rational Points of Klein Quartic Curve

The length of the code CΩ(D,mP∞) is dependent on the number of rational points

of the curve over the finite fields. Hence finding the number of the rational points

over the field of interest is the very first thing to do. Recall the Hasse-Weil bound

in Equation 2.3 presented in the previous section, we can calculate the upper bound

and the lower bound for the number of rational points in Klein quartic curves. This

bound states that the number of rational points n over F8 would be equal to or

less than q + 1 + 2bg√qmc = 8 + 1 + b6√8c = 24.

In fact, there are 24 rational points over F8. Over F2, three rational points

(1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) are easily found. Using the automorphisms

described in [3], we can find other 21 rational points over F8. All the 24 rational

points are displayed in Table 2.2.

2.4.2 Codes Definition and Parameters

To define a one-point residual algebraic geometric code, the choice of P∞ , D and

the degree of P∞ , m must be specified. The curve χ contains 24 rational points

over F8, of which the point (0 : 1 : 0) will be chosen to be P∞ while the rest of

the points would be chosen to be the elements of Supp(D). The degree of P∞ ,

m is arbitrarily taken to be 7 and hence the code that is examined in this thesis

is the residual code CΩ(D, 7P∞). The designed minimum distance d∗(CΩ) of the

code CΩ(D, 7P∞) is deg(7P∞)− 2g + 2. The genus of Klein quartic curves is 3. So

the designed minimum distance is 3.
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Rational points Coordinates Rational points Coordinates

P∞ (0, 1, 0) P12 (α3, 1, α3)

P1 (1, 0, 0) P13 (α3, α3, 1)

P2 (0, 0, 1) P14 (1, α3, α3)

P3 (1, α2, α4) P15 (1, 1, α)

P4 (α4, 1, α2) P16 (α, 1, 1)

P5 (α2, α4, 1) P17 (1, α, 1)

P6 (1, α5, α5) P18 (α5, α, 1)

P7 (α5, 1, α5) P19 (1, α5, α)

P8 (α5, α5, 1) P20 (α, 1, α5)

P9 (α, α2, 1) P21 (α4, α3, 1)

P10 (1, α, α2) P22 (1, α4, α3)

P11 (α2, 1, α) P23 (α3, 1, α4)

Table 2.2: Rational Points of Klein Quartic Curve over F8



CHAPTER 2. ALGEBRAIC GEOMETRIC CODES 25

2.4.3 Function Field Basis for Klein Quartic Curve

For the Klein quartic curve over F8 defined by X3Y + Y 3Z = Z3X, to define a

standard basis for L(7P∞), we must obtain a set of rational functions {φi} with

pole order i at P∞, where 0 ≤ i ≤ 7. The gap at P∞ is 1,2 and 4. As a result, the

rational function with the lowest pole order at P∞ is φ3.

To determine these rational functions, we can using the intersection divisors of

the coordinate functions. For the case of X = 0, the equation of χ is reduced to

the following equation.

Y 3Z = 0 (2.20)

Obviously, the two curves X = 0 and χ, intersect at the point (0, 0, z) with multi-

plicity 3 and at the point (0, y, 0) with multiplicity 1. Therefore, the divisor of X =

0, denoted as (X) is represented in projective points, (X) = 3(0 : 0 : 1)+(0 : 1 : 0).

Similarly, we can get (Y ) = 3(1 : 0 : 0)+(0 : 0 : 1) and (Z) = 3(0 : 1 : 0)+(1 : 0 : 0).

As mentioned in previous section, the divisor of a rational function f = Ψ
Φ

is defined

as (f) = (Ψ)− (Φ). Then we can get

(
Y

Z
) = 2(1 : 0 : 0) + (0 : 0 : 1)− 3(0 : 1 : 0). (2.21)

It is obvious that Y
Z

has pole order 3 at P∞. So we can choose Y
Z

as φ3. Using same

method, we can find that

(
X

Z
) = 3(0 : 0 : 1)− (1 : 0 : 0)− 2(0 : 1 : 0). (2.22)

Then X
Z

has pole order 2 at P∞, but it can not be used as φ2 since it also has

pole order 1 in P1. Noticed that φ3 has zero order 2 in P1, we can construct φ5 by

multiplying X
Z

and Y
Z

since the pole of X
Z

can be compensated by the zero of Y
Z
.

Let consider the rational function Y
X

, where

(
Y

X
) = 3(1 : 0 : 0)− 2(0 : 0 : 1)− (0 : 1 : 0). (2.23)
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φ0 φ3 φ5 φ6 φ7

1 Y
Z

XY
Z2

Y 2

Z2
Y 3

Z2X

Table 2.3: Standard Basis of L(7P∞)

This rational function has pole order 1 at P∞ and pole order 2 at P2. These 3

rational functions can be used as factors to construct all the basis elements of

L(7P∞), although Y
X

and X
Z

can not be included to function field.

So φ5 = XY
Z2 . Similarly, φ6 is represented as φ2

3, and φ7 could be obtained as the

product of φ6 and Y
X

.

Actually, the functions φ3, φ5 and φ7 generated the ring of functions with poles

at P∞. It is easy to verify that the basis has the relationship below:

φiφj =





0, i ∈ {1, 2, 4} ∨ j∈{1, 2, 4};
φi+j + φi+j−7, i /∈ {1, 2, 4} ∧ j /∈ {1, 2, 4} ∧ i 6≡ j mod 3;

φi+j, otherwise.

(2.24)

Since the basis of the function field could be used to generate the parity check

matrix for residual AG codes, this relationship is especially useful for the calculation

of the syndromes of the one-point residual AG code over Klein quartic curves. This

method is adopted in the decoding algorithm of residual AG codes in next chapter.

For more details, readers can refer to [11].

As a result, we can get the standard basis of L(7P∞) as Table 2.3.

2.4.4 Parity Check Matrix and Generator Matrix

Using the standard basis for L(7P∞) and the 24 rational points presented in the

previous part of this chapter, the parity check matrix H of the code CΩ(D, 7P∞)

can be obtained by evaluate the element of the basis of the function field L(7P∞)

at each rational point.
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Note that for P1 and P2, the functions φi i = 3, 5, 6, 7 can not be evaluated

normally because the denominators are zeros. However, considering the zeros of

the divisors, the values of φi(P1) i = 3, 5, 6, 7 should be all zeros. Similarly, the

values of φi(P2) i = 3, 5, 6 should be all zeros and φ7(P2) = 1. The parity check

matrix of the code CΩ(D, 7P∞) is shown in Table 2.4.4.

Using the parity check matrix H, the generator matrix of the code CΩ(D, 7P∞)

can be determined by the relationship GHT = 0. The matrix G can be obtained

by solving a system of linear equations.

Solving the system of equations by Gaussian elimination would show that there

is more than one solution, which is consistent with the fact that G represents a

vector space.

To realize systematic encoding, which is more convenient to construct product

codes in later chapters, we use linear permutation to make the sub-matrix(the last

18 columns of the generator matrix) an identity matrix. Using such a generator

matrix shown in Table 2.5, in a codeword of CΩ(D, 7P∞) the last 18 symbols are

actually the information symbols, and the first 5 symbols are parity check symbols.

2.5 Asymptotically Good AG Codes

As mentioned in the previous chapter, one major advantage of algebraic geometric

codes is that those codes can be used to give an asymptotically good sequence

of codes with parameters better than the Varshamov-Gilbert bound in a certain

range of the code rate and with large enough alphabets. This is one of the primary

reasons for the importance of enormous interests in algebraic geometric codes.

A linear block code C defined over Fq will be denoted by (n, k, d)q code, if C is

a subset of Fn
q with minimum distance d and the code dimension is k. The quotient

k
n

is called the code rate, and can be denoted by R. The relative minimum distance
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


1 0 0 0 0

1 0 0 0 1

1 α5 α α3 α5

1 α5 1 α3 α6

1 α4 α6 α α3

1 1 α2 1 α5

1 α2 α2 α4 α6

1 α5 α3 α3 α3

1 α2 α3 α4 α5

1 α6 α4 α5 α6

1 α6 1 α5 α3

1 α4 α4 α α5

1 α3 α6 α6 α6

1 1 α4 1 α3

1 α6 α5 α5 α5

1 1 α 1 α6

1 α α α2 α3

1 α α6 α2 α5

1 α4 α3 α α6

1 α2 α5 α4 α3

1 α3 1 α6 α5

1 α α5 α2 α6

1 α3 α2 α6 α3




Table 2.4: Parity Check Matrix of (23,18,3) Residual Code over Klein Quar-

tic Curve
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


0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α2 0 α5 0 α 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α3 α3 α5 α4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α6 1 α3 α2 α 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

α4 α α6 α3 α3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

α3 α5 1 α5 α3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

α4 α4 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 α6 α5 1 α 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 α5 α4 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

α3 α5 α3 α6 α3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

α4 α5 α α3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

α α5 α4 1 α3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

α6 0 α α6 α3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

α α α α 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 α2 α4 1 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

α3 α4 α α2 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

α α5 α6 α α3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 α2 1 α5 α 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




Table 2.5: Generator Matrix of (23,18,3) Residual Code over Klein Quartic

Curve
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d
n

is denoted by δ. The dimension k and the minimum distance d of an algebraic

geometric code on a curve of genus g with code length n defined over Fq satisfy

k + d ≥ n + 1− g. (2.25)

by Lemma 2.1 and Lemma 2.2. Hence

R + δ ≥ 1− g − 1

n
(2.26)

In order to construct a sequence of good codes, we have to find curves with low

genus and many rational points.

Definition 2.13 A sequence of codes Cm (m ∈ N) with parameters (nm, km, dm)

over a fixed finite field Fq is called asymptotically good if nm tends to infinity,

and dm

nm
tends to a nonzero constant δ, and km

nm
tends to a nonzero constant R for

m →∞.

Here R can be defined as a function of δ.

α(δ) = lim sup
m→∞

km

nm

(2.27)

It is easy to see that α(δ) = 0 for 1− 1
q
≤ δ ≤ 1. The Varshamov-Gilbert bound is

the fact that

α(δ) ≥ 1−Hq(δ) (2.28)

for 0 ≤ δ ≤ 1− 1
q
. Here Hq(x) is the q-ary entropy function defined by

Hq(0) = 0

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x), 0 < x ≤ 1− 1

q

In [18], it is shown that by using algebraic geometric codes it is possible to

prove that

α(δ) + δ ≥ 1− 1√
q − 1

(2.29)
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if q is a square. It is called Tsfasman-Vl̊adut-Zink bound. It turns out that the

TCZ bound is better than VG bound when q ≥ 49 in a certain range of δ.

Let

A(q) = lim sup
g→∞

N(g)

g
(2.30)

where N(g) is the maximal number of Fq rational points on a curve of genus g.

The Hasse-Weil bound implies that

A(q) ≤ 2
√

q. (2.31)

Vl̊adut improved this result to A(q) ≤ √
q − 1. And in [18], Tsfasman, Vl̊adut and

Zink showed that

A(q) =
√

q − 1 (2.32)

by studying modular curves over finite field. It is obvious that the above equation

can derive the Equation 2.29.

However, the construction using modular curves is difficult, and the actual

construction of generator and parity-check matrix is intractable. Many researchers

have tried to find a more simple construction. In [7], Feng and Rao suggested that

asmptotically good codes can be obtained over so-called generalized Klein curves.

Recently, two sequences of asymptotically good codes defined over modular curves

were presented by Elkies [6].

2.6 Summary

In this chapter, we presented some necessary definitions and lemmas of algebraic ge-

ometry, which are important to the definition and properties of algebraic-geometric

codes. We also provide the definition and some important properties of one-points

Hermitian codes. And the structure similarities of functional Hermitian codes and
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generalized Reed-Solomon codes are discussed. In the last part of this chapter,

we discussed the construction method and code parameters of residual algebraic

geometric codes over Klein quartic curves, which will used in the simulations of

subsequent chapters.



Chapter 3

Chase Decoding of AG Codes

3.1 Introduction

In this chapter, we described the Chase algorithm [4], which is an sub-optimum

soft-decision decoding algorithm for block codes. Based on the reliability of the

received symbols, the Chase algorithm will generate a list of most likely error

patterns. Each error pattern is added to the hard-decision received word and

decoded using a hard-decision decoder. A list of candidate codewords are found

and scored by computing their metrics with respect to the reliability sequence of

the soft-decision received symbols. The codeword with the best metric is selected

as the output of the algorithm.

Chase decoding is attractive since it is applicable to all block codes for which

a binary decoding method exists. For non-binary block codes, we can represent

them in binary form to decode using algorithm. The BER performance of a Chase

decoder will greatly depend on the error correcting ability of the hard-decoder used

in it. In the simulations of this chapter, the algebraic geometric code defined over

Klein quartic curve was decoded using a Chase decoder.

33
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3.2 Parallel Berlekamp-Massey Algorithm

As we mentioned above, the Chase works with a inner hard-decision decoder. In

1998, Ralf Koetter [11] presented a fast parallel decoder for algebraic geometric

codes with the computation complexity that is in the same range as the Berlekamp-

Massey decoder of Reed-Solomon codes.

Let γ be the first non-gap in the non-gap sequence of the space associated with

the AG codes, the PBMA decoder could be viewed as γ independent Berlekamp-

Massey decoder processing units. The time requirements of the PBMA decoder

are determined by the time requirements for one of the γ processing units. This

feature is important to make AG codes a competitive and reasonable alternatives

to Reed-Solomon codes in many applications.

3.3 Soft-Decision Decoding

In a digital communication system, we can get the reliability information in the

demodulation module. If we use the reliability information in the decoding module,

it is called soft-decision decoding.

Generally, the computational overhead of soft-decision decoding is more inten-

sive than hard-decision decoding. There are two main reasons for this. One is that

soft-decision decoding usually have to implement real number computation, while

hard-decision decoding only needs to implement integer computation. In practi-

cal applications of soft-decision decoding, real numbers will be quantized a finite

number of bits. The other reason is that in soft-decision decoding, the a-posterior

possibilities of the coded symbols given received values have to be computed.
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3.4 The Chase Algorithm

In this section, Chase algorithm will be fully discussed. Let’s describe the general

form of Chase algorithms first.

3.4.1 General Description

Let C be a binary linear (n, k, d) block code( n, k and d are the code length, code

dimension and minimum Hamming distance of the code respectively. ), the Chase

algorithm is designed to work with any hard-decision decoder that can correct up

to b(d − 1)/2c errors. Denote c = (c1, c2, . . . , cn) a codeword with binary symbols

ci taking values ±1. Let r = (r1, r2, . . . , rn) be the received word using BPSK

modulation from the physical channel.

ri = ci + wi, i = 1, 2, . . . , n (3.1)

where wi is a zero-mean Gaussian random variable with variance σ2. The reliability

of symbol ci at the input of decoder is evaluated by the Log-Likelihood-Ratio(LLR)

defined as:

Λi = ln
Pr(ci = +1|ri)

Pr(ci = −1|ri)
(3.2)

It is obvious that in the case of BPSK,

ri =
σ2

2
Λi (3.3)

If ri ≥ 0, the LLR value is ln Pr(ci=+1|ri)
Pr(ci=−1|ri)

= 2
σ2 ri, while if ri < 0, the LLR value

would be ln Pr(ci=−1|ri)
Pr(ci=+1|ri)

= − 2
σ2 ri. As a result, if normalize with 2

σ2 , the reliability of

the received channel values are the amplitudes |ri|.
The hard-decision received word is defined as:

z = (z1, z2, . . . , zn) (3.4)
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where zi = 0 if ri ≥ 0, otherwise zi = 1.

In Chase algorithm, a list of error patterns are generated first, and each error

pattern is added to the hard-decision received word. And the result word is fed

into a hard-decision decoder. Let u denote the output of the hard-decision decoder.

Then the metric of uj with respect to the received word r = (uj1, uj2, . . . , ujn)

M(uj) =
n∑

i=1

(−1)ujiri (3.5)

is computed. The output codeword with the largest metric is selected as the hard

output of Chase algorithm. Chase algorithm can be viewed as a Minimum Distance

decoding algorithm since the metrics used to select the output codeword from the

candidate list are determined by the Euclidean distances between the received word

r and the candidate codewords uj. Here each element of uj should be represent in

the form of ±1. In another word, we use yj to compute the Euclidean distance,

where yji = (−1)uji for i = 1, . . . , n. The square Euclidean distance between r and

yj is

|r − yj|2 =
n∑

i=1

(ri − yji)
2 =

n∑
i=1

(ri − (−1)uji)2 = |r|2 + n− 2
n∑

i=1

(−1)ujiri. (3.6)

So we can obtain

|r − yj|2 = |r|2 + n− 2M(uj). (3.7)

Because the first two items are constant values, the codeword with the largest

metric defined in Equation 3.5 is the codeword nearest to the received word among

the candidate codewords in the list. In binary transmission over an AWGN channel,

the metric M(uj) is also called the correlation between the generated codeword uj

and the received word r.

According to the error pattern generation, Chase algorithm can be classified

into three types.
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Type-I Test all error patterns within a sphere of radius (d− 1) from the received

word. In practical, we do not have to test all error patterns of binary weight

less than d. The binary hard-decision decoder are capable of correct up to

b(d − 1)/2c. The decoder combined with an appropriate test pattern can

yield any error pattern that has binary weight up to (d− 1).

Type-II Test the error patterns with no more than b(d − 1)/2c errors located

outside the set of the positions with the bd/2c lowest reliabilities. Similar

to Type-I algorithm, we no longer test all possible error patterns of binary

weight up to (d − 1). All the error patterns generated among the positions

with bd/2c lowest reliabilities combined with the hard-decision decoder could

yield any error pattern required. So we only have to test 2bd/2c error patterns.

Type-III Test those patterns with i 1’s located at the i least reliable bit positions,

where i is odd and 1 ≤ i ≤ d− 1. This algorithm has the smallest set of

possible error patterns.

With less computation complexity compared to Type-I, and better performance

compared to Type-III, Chase algorithm Type-II is the most popular among the

three algorithms. A flow chart of Chase algorithm Type-II is shown in figure 3.1.

In the AWGN channel, all the three types Chase algorithm extend the error

correcting ability of the hard-decision decoder.

Chase algorithm can generate a list of candidate codeword. This is especially

useful in producing soft-output. As a result, Chase algorithm is widely used in the

iterative decoding of block turbo codes. We will discuss this in next chapter.
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Figure 3.1: Flow Chart of Chase Algorithm

3.4.2 The Chase Algorithm in Fading Channels

Fading occurs in wireless communication systems in the form of a time-variant

distortion of the transmitted signal. In this thesis, we only consider the case of flat

Rayleigh fading. Flat means that the channel is not frequency selective, and its

transfer function in the frequency domain is constant.

In a flat Rayleigh fading channel, we assumed that the transmitted signal xi is

perturbed by Rayleigh distributed multiplicative noise αi in addition to the white

Gaussian noise ni.

vi = xi × αi + ni (3.8)
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Where xi =
√

Eb if 0 is transmitted, and xi = −√Eb if 1 is transmitted. The

variance of ni is denoted by N0/2. When the multiplicative noise is normalized so

that E(αi
2) = 1, the SNR for this case is still Eb

N0
.

Similar to the case in AWGN channel, Chase algorithm can improve the error

correcting performance of block code greatly. For more details, please refer [4].

3.4.3 The Chase Algorithm for Non-Binary Block Codes

Generally, the Chase algorithm is used for soft-decision decoding of binary linear

block codes. For non-binary linear block codes, we can modify the Chase algorithm

using two different methods.

The first method is to decode with respect to the reliability of symbols. In this

case, the LLR value of each symbol will be expressed as:

Λi = ln(
Pr(ci = xi|ri)

Pr(ci 6= xi|ri)
) (3.9)

where xi is not ±1. If defined in F8, xi would be one element of F8. Then Pr(ci 6=
xi|ri) would be a sum of 7 possibilities.

Λi = ln(
Pr(ci = xi|ri)∑8

j=1,j 6=i Pr(ci = xj|ri)
) (3.10)

where x1, . . . , x8 is the set of eight symbols. And Λi could not be computed in a

simple form like Equation 3.3. As a result, we have to implement power and log

computation in the decoding algorithm. Thus the computation complexity increase

greatly.

The second method is to represent the non-binary linear block codes in binary

form. In this case, all the codewords are transmitted in binary form. Only when

the received word plus a error pattern is fed into a hard-decision decoder, the input

word and output codeword would be converted to non-binary form.
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Table 3.1: Binary Representation of elements of F8

Element Polynomial Representation Binary Representation

0 0 000

1 1 001

α α 010

α2 α2 100

α3 α2 + 1 101

α4 α2 + α + 1 111

α5 α + 1 011

α6 α2 + α 110

In this chapter, we implemented the Chase algorithm for the soft-decision de-

coding of AG codes defined over F8. In table 3.1 the representations of the elements

of F8 is explained.

In the simulations, PBMA is adopted as the hard-decision decoder. The one-

point AG code is a non-binary code. The error correcting ability of the hard-

decision decoder is always with respect to symbol errors. As a result, if we represent

the word in binary form, whether the hard-decoder can correct the bit errors is not

only determined by the bit error numbers, but also determined by the positions of

the bit errors. For example, the design minimum distance of (23,18,3) AG codes

over Klein quartic is 3, the hard-decision decoder(PBMA) can only correct 1 symbol

errors. In binary form, the hard-decoder can correct 3 bit errors if these 3 bits who

construct 1 symbol in 8-ary form. While if there are two bits errors who belong

to different symbols, the hard-decision decoder might not be able to correct the

bit errors. We can show this in the following example. It is known that PMBA

decodes based on the syndrome values which are determined only by the code error

patterns. So we select zero codeword as the transmitted codeword.
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Example 3.1 Let’s consider the PBMA decoder for the residual AG code (23, 18, 3)

over Klein quartic curve. When there are two symbol errors in the received word

at the 1st and 3rd position of the codeword, the error magnitudes are 1. In another

word, if represented in binary form, there are only two bit errors.

The output of PBMA decoder is

α5 α5 1 α6 1 α5 α2 α2 α4 1 α6 α3

α5 α2 α2 α3 α5 α α α 1 α6 α4

It shows that in some error patterns the PBMA decoder can not correct 2 bit errors.

However, if we use the Chase Type-II algorithm and select the least reliable

bit positions to generate error pattern, we can mitigate the shortcoming of the

hard-decision decoder. In AWGN or Rayleigh fading channel, the bit errors caused

by channel noise would appear randomly in a word. The error-correcting ability

of the PBMA decoder will affect the performance of the Chase decoder compared

with those of binary linear block codes using the Chase decoder.

3.5 Simulation Results and Discussion

In this section, the simulation results we have done for the Chase decoding of AG

codes would be shown. Because of its reduced complexity and good error-correcting

performance among three types of Chase algorithm, only Type-II Chase algorithm

is implemented in our simulations. The (23,18,3) residual AG codes over F8 from

Klein quartic curves are selected to demonstrate the Chase decoding of AG codes.

Since the codes are not binary, we adopted the second method discussed in the

previous section about the Chase decoding of non-binary codes. All the codewords

transferred are represented using binary form.



CHAPTER 3. CHASE DECODING OF AG CODES 42

Figure 3.2: Performace of Chase Decoding of (23,18,3) AG codes over Klein

quartic curves in AWGN channel
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Figure 3.2 indicates the different bit error rate (BER) performance of the

(23,18,3) algebraic geometric code using PBMA and the Chase algorithm oper-

ating on an AWGN channel with BPSK modulation. In this scenario, the number

of test error patterns in the simulations are limited to 16 and 32 respectively. The

Chase algorithm obtained a coding gain of about 3dB at BER = 10−6 from the

PBMA. And the Chase decoder with 32 error patterns can obtain 0.15dB from the

Chase decoder with 16 error patterns. This shows that with 16 test error patterns,

we can achieve a good trade-off between complexity and performance.

It is observed that the PBMA algorithm can only excel the uncoded BPSK

system when the SNR is very high. As we have discussed in the above section, the

error correcting ability of the PBMA algorithm is always with respect to symbol

errors. However, binary transmissions are used in our simulations. For example,

the design minimum distance of (23,18,3) AG codes over Klein quartic is 3, the

hard-decision decoder(PBMA) can only correct 1 symbol errors. In binary form,

the hard-decoder can correct 3 bit errors if these 3 bits who construct 1 symbol

in 8-ary form. While if there are two bits errors who belong to different symbols,

the hard-decision decoder might not be able to correct the bit errors. As a result,

the BER performance of PBMA algorithm are worse than uncoded BPSK system

when the SNR is relatively low. The Chase algorithm is able to improve the error-

correcting ability of the PBMA decoder, but it also increases the computation

complexity greatly.

The BER performance of the Chase decoder is greatly restricted by the error

correcting ability of the hard-decision decoder. Reed-Solomon codes are MDS,

while one-point AG codes are not. With similar binary code length and code

dimension, the minimum distance of AG codes in binary representation is less than

the minimum distance of Reed-Solomon codes in binary representation. As a result,



CHAPTER 3. CHASE DECODING OF AG CODES 44

the performance of the Chase decoder for one-point AG codes is not as good as the

performance of the Chase decoder for Reed-Solomon code of similar binary code

length and code rate.

Figure 3.3: Performace of Chase Decoding of (23,18,3) AG codes over Klein

quartic curves in Rayleigh fading channel

Figure 3.3 shows the BER performance of one-point AG codes using the Chase

algorithm and PBMA operating on flat Rayleigh fading channel with BPSK modu-

lation. The BER curve of PBMA shows that the hard-decision decoder almost can

not obtain a reasonable coding gain even in a high SNR, like 20dB. However, if we

using the Chase algorithm plus the PBMA decoder, the BER performance is greatly

improved. The BER curves of the Chase decoding have a steep descend compared

to the curves of corresponding to uncoded BPSK and PBMA hard-decision de-
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coding. We can conclude that the Chase algorithm is a very useful soft-decision

scheme in flat fading channels.

Besides the Chase algorithm, the ordered statistics decoding(OSD in short)

algorithm [9] is also a soft-decision decoding algorithm which must work with a

hard-decision decoder of block codes. Similar to the Chase algorithm, the OSD

algorithm also has to compute the reliability values of each bit in the received

word. However, unlike the Chase algorithm, which deals with the least reliable

code positions, the OSD algorithm considers a list of codewords obtained from a

set of most reliable information positions. For more details, readers can refer to

[9].

3.6 Summary

In this chapter, we described the general information about the Chase algorithm.

The Chase algorithm is designed to implement soft-decision decoding for all linear

block codes with a hard-decision decoder. We adopt the Chase algorithm in con-

junction with PBMA to realize soft-decision decoding for one-point AG codes.

From the simulation results, we can conclude that the Chase algorithm could

greatly improve the BER performance of one-point AG codes in both AWGN chan-

nel and Rayleigh fading channel.



Chapter 4

Block Turbo Codes

4.1 Introduction

In 1993, Berrou[2] introduced a new coding scheme, which can achieve an extraor-

dinary low BER with a SNR per information bit (Eb/N0) close to Shannon’s limit

on an AWGN channel. Their coding scheme consists of two recursive systematic

convolutional codes concatenated in parallel and which are decoded using itera-

tive maximum-likelihood decoding(MLD) of the component codes. So we can call

the codes convolutional turbo codes(CTC) since they use convolutional codes as

component codes. Later, R. Pyndiah[16][15] presented a new coding scheme for

product codes constructed by linear block codes. We can call these codes block

turbo codes(BTC). A new iterative soft-input soft-output decoder is used in this

coding scheme. The product codes constructed from BCH codes and Reed-Solomon

codes have produced good performance. In this chapter, we will use this scheme in

decoding product codes whose component codes are one-point AG codes.

46
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4.2 Product Codes

Codes obtained using multidimensional techniques have random-error and burst-

error correcting ability. Product codes are constructed using multidimensional

techniques. Product codes, also called iterated codes, are serially concatenated

codes which were first introduced by Elias in 1954 [5].

Consider a k1 × k2 matrix of information bits, the columns are encoded using

an (n1, k1, d1) linear systematic code C1, and the rows of the resulting n1 × k2 bit

matrix are encoded using an (n2, k2, d2) linear systematic code C2. The resultant

(n1n2, k1k2, d1d2) product code C1 ⊗C2 has code rate k1k2

n1n2
. The linear codes C1

and C2 are called constituent codes or component codes. In this thesis, we always

use the same code to encoding both the columns and rows. The construction of

a product code is shown in figure 4.1. In the product codes, both column and

row component codes should be systematic codes. And the column codes and the

row codes should place their systematic bits either both in their first k1 and k2

positions, or both in their last k1 and k2 positions.

As indicated by Elias [5], product codes can be decoded by sequentially decoding

the rows and columns in order to reduce the computation complexity. In order

to achieve optimum performance, SISO (Soft-Input Soft-Output) decoding of the

column and row codewords and iterative decoding are used in the decoding of

product codes. We will introduce these algorithms in the next section.

From Figure 4.1, it is obvious that the code length and code dimension of the

product code are n1 × n2 and k1 × k2 respectively. For the minimum distance,

we can prove it is d1 × d2 below. The product codes are also linear code, so the

minimum distance of the codes equals to minimum Hamming weight of all non-zero

codewords.

First, we can obtain the result that any k1×k2 information matrix which is not
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Figure 4.1: Product Codes

all zero, the encoded n1×n2 matrix would have a weight at least d1×d2. Consider

the situation after the column encoding, since the k1 × k2 information matrix is

not all zeros, the resultant n1 × k2 matrix has at least 1 column is not all zero.

Because the minimum distance of C1 is d1, the n1× k2 matrix would have at least

d1 rows are not all zeros. Then consider the case after the row encoding, since the

minimum distance of C2 is d2, the resultant n1×n2 matrix has at least d1 rows are

not all zeros, and each of these rows would have at least d2 positions are non-zero.

The weight of the n1 × n2 matrix is at least d1 × d2. From the discussion above,

we can conclude that the minimum distance of the product codes d ≥ d1 × d2.

Second, we can construct a non-zero product codeword with weight d1×d2. We
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assume that the code C1 and C2 arrange their systematic symbols in their first k1

and k2 positions. For code C1, let c1 be the non-zero codeword with minimum Ham-

ming weight d1, and the non-zero positions in this codeword are {x1, x2, . . . , xd1}.
For code C2, let c2 be the non-zero codeword with minimum Hamming weight d2,

and the non-zero positions in this codeword are {y1, y2, . . . , yd2}. We set the posi-

tion (xi, yj) to 1 in the n1 × n2 matrix, where i = 1, 2, . . . , d1 and j = 1, 2, . . . , d2.

This matrix is a valid product codeword, and the Hamming weight of this codeword

is d1 × d2.

According to the discussion above, it can be shown that the minimum distance

of the product code C1 ⊗C2 is d1 × d2.

There are two methods have been used for the construction of non-binary prod-

uct codes. Using the first methods each product code contains k1 × k2 Q-ary

information symbols as the information matrix. Here the component codes C1 and

C2 should be define over FQ and Q = 2q. This product code can be transformed

to binary representation as figure 4.2. In this case, each symbol is represented by

q bits. The number of matrix rows is increased q times. Each row represents a

row codeword, while q columns represent a column codeword. Here each bit is en-

coded in row-encoding and column-encoding with the same neighbour bits to form

a Q-ary symbol.As a result, this method is always called symbol concatenation.

Using the second method, each product code contains k1q × k2q information

bits as the information matrix. As shown in figure 4.3, each column of k1 × q bits

is a column codeword, and each row of k2 × q bits is a row codeword. Here each

bit is encoded in row-encoding and column-encoding with different neighbour bits

to form a Q-ary symbol. This method is called bit concatenation.

With the same component codes, bit-concatenated product code has the same

code rate as the symbol-concatenated product code. However, the block length of
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Figure 4.2: Non-binary Product Codes with Symbol Concatenation

bit-concatenated product code is q times of that of symbol-concatenated product

code.

In the simulations presented in this chapter, the algebraic geometric codes de-

fined over Klein quartic curve are used as the component codes of the product

codes. Both symbol concatenation and bit concatenation will considered.

4.3 Iterative Chase Decoding of Product Codes

In the previous chapter, we have introduced the basic concepts of soft-decision

decoding and investigated the performance of the Chase decoder for one-point AG

codes. Assume r = (r1, r2, . . . , rn) is the received values from the output of an

AWGN channel with transmitted binary codeword x = (x1, x2, . . . , xn).

r = x + n (4.1)

where the elements of n are AWGN samples with standard deviation σ. Let

y = (y1, y2, . . . , yn) be the hard-decision codeword. As mentioned in the previ-
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Figure 4.3: Non-binary Product Codes with Bit Concatenation

ous chapter, the reliability of component yi is defined using the log-likelihood-ratio

Λ(yi) = ln(
Pr(xi = +1|ri)

Pr(xi = −1|ri)
) = (

2

σ2
)ri. (4.2)

If we normalize the LLR with respect to 2
σ2 , the reliability of yi is give by |ri|.

Chase algorithm can yield a decision codeword d for each received word r. In

order to compute the soft-output, we have to compute the reliability of each bit of

the decision d given the received word r.
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4.3.1 Reliability of a Decision Given by Soft-Input Decoder

Let’s consider the j-th component dj of the decision d, the value of dj should be

1 or -1. Then from Chase algorithm, we know d should be the closest codeword

to r in Euclidean distance sense. Let c the closest codeword to r and dj 6= cj is

satisfied. It is obvious that c is farther from r than d.

The reliability of dj can be expressed as [15]

Λ(dj) =
2

σ2
(|r − c|2 − |r − d|2) (4.3)

After normalization and simplification, we can get the soft-output as

Λ′(dj) = rj +
n∑

i=1,i6=j,di 6=ci

ridi = dj

n∑

i=1,di 6=ci

ridi
nridi (4.4)

The term

wj = dj

n∑

i=1,i6=j,di 6=ci

ridi (4.5)

can be viewed as a correction term to the soft-input rj. This term plays a role as

the extrinsic LLR in the classic convolutional turbo codes.

So in the iterative Chase decoding, each element of the soft-output is computed

base on the received word r and two codewords c and d from the output candidate

codeword list of the original Chase decoder.

In practice, we always use a scale factor αi in the computation of the soft-output.

r′j = rj + αiwj (4.6)

The factor αi is used to compensate for the difference of variances of rj and r′j where

i is referred to the iteration stage. The value αi would be different in different

iteration stages.

Consider the case that there is no other codeword in the candidate list that

satisfies dj 6= cj. We can generate an estimation extrinsic LLR value by

wj = βidj. (4.7)
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Here βi should be an estimation value of | log(
Pr(djcorrect)

Pr(djincorrect)
)|.

Based on the soft-output computation method above, we can implement the

iterative Chase decoding. The flow chart of iterative chase decoding is shown in

figure 4.4. Chase algorithm is not the only SISO algorithm used in the iterative

decoding of product codes. A Soft-Input Soft-output ordered statistic decoding

algorithm proposed in [10] can also be applied to the iterative decoding of product

codes.

������������

	
��
��
���
�

�
���

����

����

����

������

����

������

����

Figure 4.4: The Flowchart of Iterative Chase Decoding

4.3.2 Codeword Validation

In the iterative Chase decoding scheme, the soft-output of each received word

is determined by two factors. One is the received symbol values from channel.

The other one is the candidate codeword list generated by the Chase decoder. In

previous chapter, we have discussed the error correcting ability of PBMA. This

algorithm can correct bd−1
2
c errors, where d is the design minimum distance of the

one-point AG codes.
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As a result, when decoding using the Chase algorithm, if the symbol errors

beyond the error correcting ability, the output candidate codeword would not be

closest codeword from the input to the hard-decision decoder. Some output candi-

date codeword might be far from the input codeword. In iterative Chase decoding

algorithm, each candidate codeword would be used to the computation of soft-

output. Such fail-decoded codeword would greatly influence the soft-output. As

shown in Example 3.1, the PBMA decoder failed to correct the error in that situa-

tion, and the output codeword is far from both the received word and transmitted

codeword. If such codewords exist in the list of candidate codeword, the extrinsic

information generated by Equation 4.5 would be inaccurate.

To reduce the bad influence, we should delete these fail-decoded codeword. A

simple method is compare the input and output of the hard-decision decoder, if

they have more than d different symbols, we believe it is a fail-decoded codeword

and delete it.

4.3.3 Parameter Settings

The setting of the parameters α and β will greatly influence the performance of

the iterative Chase decoder. In practice, we can determine there parameters by

experiments. In the simulations, both the elements of α and β should be increased

gradually from 0 to 1.0.

In [14] and [13], these coefficients could be computed adaptively based on the

statistics of the processed codewords. Although the performance would be better,

the computation complexity is increased greatly.

In summary, our iterative decoding algorithm for algebraic geometric codes

with soft-output based on a set of codewords produced by Type-II algorithm is as

follows:
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Step 1: Initialization Set iteration counter i = 0. For each column or row of

the product code, Let r[0] be the received channel value r.

Step 2: Soft Input For each column or row of the product code, j = 1, . . . , n,

let rj[i + 1] = r[0] + αiwj[i].

Step 3: Chase Algorithm For each column or row of the product code, j =

1, . . . , n, execute the Type-II Chase algorithm with soft-input rj[i + 1] and

obtain a list of candidate codeword.

Step 4: Codeword Validation Compare each codeword of the list generated

by Step 3 with the hard-decision received word. Delete those codewords

whose distance from the received word are larger than the designed minimum

distance of the component AG code. Arrange the list in descending order with

respect to the metric of each codeword.

Step 5: Extrinsic information For each column or row of the product code,

generate the extrinsic information. For each bit position of the column or

row, if there are at least two codeword different in the position, calculate

the extrinsic information using Equation 4.5. If all codewords in the list are

identical in a position, calculate the extrinsic information using Equation 4.7.

Step 6: Soft Output Let i = i + 1, if i is less than the maximum number of

iterations, then go to step 2. Else calculate the soft-output, For j = 1, . . . , n,

ui = r[0] + αiwj[i].

4.4 Simulation Results and Discussions

In this section, the simulation results of the iterative Chase decoding of both bit-

concatenated and symbol-concatenated one-point AG product codes in AWGN
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channel and flat Rayleigh fading channel are shown.

Figure 4.5 shows the BER performance of the bit-concatenated AG block turbo

codes in AWGN channel, while Figure 4.6 shows that of the symbol-concatenated

AG block turbo codes in AWGN channel. In these simulations, for each column or

each row, the number of the test error patterns is 32. The number of the iterations

is set to 8.( The column decoding, or the row decoding, is considered as a half

iteration ) The coefficients α and β are selected as

α = (0, 0.1, 0.2, 0.25, 0.3, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.9, 1.0, 1.0) (4.8)

β = (0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0). (4.9)

The code rate of our AG product codes is (18
23

)2 = 0.6125.

Figure 4.7 shows the BER performance of the bit-concatenated AG block turbo

codes in AWGN channel, while figure 4.8 shows that of the symbol concatenated

AG block turbo codes in Rayleigh fading channel. In these simulations, for each

column or each row, the number of the test error patterns is 32. The number of

the iterations is set to 8.( The column decoding, or the row decoding, is considered

as a half iteration ) The coefficients α and β are selected as

α = (0, 0.1, 0.2, 0.25, 0.3, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.9, 1.0, 1.0) (4.10)

β = (0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0). (4.11)

From the simulation results above, we find that both in fading channel and

AWGN, the performance of bit-concatenated product code is slightly better than

that of symbol-concatenated product code. The reason might be the bit-concatenated

code has longer block length.

The performance of AG product codes are slighted worse than that of Reed-

Solomon or BCH product codes. Based on the simulation results of [15], we can get
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Figure 4.5: Performance of Iterative Chase Decoding of (23,18,3) AG codes

over Klein quartic curves in AWGN channel using bit concatenation

the performance of the iterative Chase decoding of Reed-Solomon and BCH product

codes. For the iterative Chase decoding BCH product codes, the performance will

not improve greatly after 4 iterations. While for the iterative Chase decoding of

AG product codes, we have to run at least 8 iterations to get relatively good BER

performance. The BER performances of BCH product codes and AG product codes

are compared in Table 4.1, where the Eb

N0
column indicates the SNR where the BER

achieves 10−5. In [1] and [15], there are more performance curves and simulation

results about the iterative Chase decoding of Reed-Solomon product codes and

BCH codes.

There are two reasons. One is that the error correcting ability of the hard-
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Figure 4.6: Performance of Iterative Chase Decoding of (23,18,3) AG codes

over Klein quartic curves in AWGN channel using symbol concatenation

decision decoder restricts the performance of AG codes. The other is that the

RS codes are MDS, while AG codes are not MDS, and are even farther from

MDS than BCH codes. Let’s compare the minimum distance and dimension of

the one point AG codes over Klein quartic curves with those of BCH codes with

similar binary code length. The binary code length of the one-point AG codes we

used in simulations is 69, the code parameters are shown in Table 4.2. We select

narrow sense binary BCH code with length 63, whose parameters are shown in

Table 4.3.The code rate of the AG code we used as the component codes of the

product code in simulation is 0.7826, and the length of its binary representation is

69. As we have discussed in previous chapter, the PBMA hard-decoder can only
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Figure 4.7: Performance of Iterative Chase Decoding of (23,18,3) AG codes

over Klein quartic curves in Rayleigh channel using bit concatenation

guarantee to correct 1 bit error in any position. From Table 4.3, we select the

(63, 51) BCH code, whose code rate is 0.8095. The hard-decoder of the BCH code

and correcting 2 bit errors in without position restriction, although the code length

is a bit shorter, and the code rate is a bit higher than those of the AG code we

use. We can conclude that the one point AG codes over Klein quartic curves are

less MDS than BCH code when the code rate is high. Besides, the hard-decoder

for BCH codes can correcting errors with respect to bit, while the hard-decoder

for one-point AG codes over Klein quartic curves could only correcting errors with

respect to symbols. In a other word, the hard-decoder’s bit error correcting ability

not only restrict by the bit error numbers, but also by the bit error positions. In

previous chapter, Example 3.1 has shown this problem.
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Product Codes Code Rate Eb

N0
Channel

BCH (63, 51, 5)2 0.8095 2.8 AWGN

AG (23, 18, 3)2 0.7826 4.5 AWGN

BCH (63, 51, 5)2 0.8095 7.0 Rayleigh Fading

AG (23, 18, 3)2 0.7826 7.4 Rayleigh Fading

Table 4.1: Performance Comparison of BCH product codes and AG product

codes

dimension k designed minimum distance d error correcting ability t

18 3 1

17 4 1

16 5 2

15 6 2

14 7 3

13 8 3

12 9 4

10 10 4

9 11 5

8 12 5

Table 4.2: Code Parameter of One-point AG Codes over F8
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Figure 4.8: Performance of Iterative Chase Decoding of (23,18,3) AG codes

over Klein quartic curves in Rayleigh channel using symbol concatenation

One important remark concerning the performance curves above in AWGN

channel is that using symbol concatenation, the iterative Chase decoding of the

AG product codes can guarantee the mitigation of error phenomena in high SNR

region. However, using bit concatenation, this phenomena exists in high SNR

region.

The computation complexities of the iterative Chase decoding of the product

codes are mainly determined by the complexity of the hard-decision decoder of

the component codes and two parameters of the algorithm. One parameter is the

number of the error patterns used in the Chase decoding step of each component

code. The other parameter is the number of the iterations.
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dimension k designed minimum distance d error correcting ability t

57 3 1

51 5 2

45 7 3

39 9 4

36 11 5

30 13 6

24 15 7

18 21 10

16 23 11

10 27 13

7 31 15

Table 4.3: Code Parameter of BCH codes

4.5 Summary

In this chapter, we described the basic concepts of product codes. We adopt one-

point AG codes as the component codes of product codes. We also implemented

iterative Chase Algorithm for the decoding of one-point AG product codes. The

simulation results are also discussed in this chapter.
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Conclusion

In this chapter, we attempt to sum up the results and discussions that were put

forward in the previous chapters. In addition, the possible future research area is

also included in the final part of this chapter.

5.1 Summary of Thesis

This thesis has been intended to investigate iterative Chase decoding algorithm for

product codes, whose component codes are one-point AG codes, to achieve a better

BER performance.

In Chapter 2, we briefly introduced the basic concepts of algebraic geometry.

The definitions of the two class AG codes, functional codes and residual codes, are

also explained. Furthermore, the construction method of one-point AG codes is

presented.

In Chapter 3, we presented the Chase algorithm and examined the benefits of

implement this algorithm for soft-decision decoding of one-point AG codes in both

AWGN channel and Rayleigh fading channel. R. Koetter’s parallel implementation

of Berlekamp-Massey algorithm is used as the hard-decision decoder of AG codes.

63
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Because AG codes is not a MDS codes, and the error-correcting ability of the hard-

decision decoder of AG codes is not as good as that of Reed-Solomon codes, the

BER performance of the Type-II Chase algorithm for AG codes is a bit worse than

that of the Chase algorithm for RS codes with similar code rate.

In Chapter 4, we presented some important knowledge of product codes. We

also briefly discuss two methods to construct non-binary product codes. Itera-

tive Chase decoding algorithm for product codes are discussed in this chapter.

One-point AG codes are used as the component codes of these product codes.

Simulations of these product codes in both AWGN channel and Rayleigh fading

channel were implemented. The performances of these product codes were also

compared with other product codes constructed by BCH codes or Reed-Solomon

codes. We also provided several reasons for the degradation of the performance of

AG block turbo codes with respect to the performance of BCH block turbo codes

and Reed-Solon block turbo codes.

5.2 Future Work

Although we have managed to reveal and propose the iterative Chase decoding

algorithm for product codes composed of one-point AG codes in this thesis, we still

highlight some promising work that could be done in the near future.

As we mentioned in previous chapter, the coefficient overlineα and β will de-

termine the performance of iterative Chase decoder. In [14] [13], adaptive methods

to determine these coefficients were presented. We can apply similar method in the

iterative Chase decoding of AG product codes.

In this thesis, we have shown that when represented in binary form, the one-

point AG codes we used in simulations are even less MDS than binary BCH codes.

And the hard-decision decoding algorithm of the AG codes with respect to symbols
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will restrict the performance of iterative Chase decoding of the AG product codes.

In future, we might develop new iterative decoding algorithm for the AG product

codes in non-binary form.

As one of the most prominent advantages of algebraic geometric codes is that

asymptotically good code could be constructed. In future research, we can employ

our algorithm in decoding the product codes, whose component codes are other

AG codes with longer code length, and defined over larger alphabet.
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