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Summary 

 

The general solution for the problem of unsteady-state mass transfer in the 

continuous phase around axisymmetric drops of revolution developed by Favelukis and 

Mudunuri (2003) has been applied for two specific cases, prolate and oblate spheroid in 

potential flow, under the condition of high Peclet numbers. The problems have been 

solved analytically with the aid of Mathematica, which can deal with symbolic 

mathematics. This work has been accepted for publication by Chemical Engineering 

Science ( Favelukis and Ly, 2005). 

 

In order to solve the problems, the shape of the drop and the tangential velocity at 

the surface of the drop are required. The shape of the drop in terms of the eccentricity has 

been obtained by establishing the relations between the spheroidal coordinates system 

and the coordinates system of an axisymmetric body of revolution. And then, the 

Laplace’s equation has been considered to find the tangential velocity at the surface of 

the drop expressed also in terms of eccentricity. The special well known case of spherical 

drop is deduced. 

 



 vi

With an assumption of the resistance to mass transfer only in a thin concentration 

boundary layer in the continuous phase, the analytical solutions for the concentration 

profile, the molar flux, the concentration boundary layer thickness, and the time to reach 

steady-state have been obtained. The solution suggests that the total quantity of material 

transferred to or from the drop decreases with time and it was determined that when the 

dimensionless time is greater than 2, then steady-state is, in practice, obtained. Also, 

prolate drops attain steady-state conditions faster than oblate drops. Furthermore, as the 

eccentricity increases, the total quantity of material transferred to or from the drop 

decreases (for a prolate spheroid) and increases (for an oblate spheroid). 
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Chapter 1: 

Introduction 

 

The problem of mass transfer between a gas bubble or a liquid drop in a 

continuous fluid phase is one of the most important aspects of chemical engineering 

science. The development of mathematical models for the problem of mass transfer is 

very useful and relevant to a variety of engineering technologies such as designing 

industrial equipments, biochemical engineering, biological and environmental processes, 

and industrial food processing. 

 

For specific equipments such as bubble column reactors and fluid beds, the 

problem of mass transfer needs to be solved as a basic step for designs and operations. 

Bubble column reactors have used for a wide range of experimentation and industrial 

applications including absorption, bioreactions, and catalytic slurry reactions. In a bubble 

column, the gas rises through the liquid providing an effective mass transfer rate. 

Understanding the problem of mass transfer on the surface of the bubble will be useful 

for the design and scale-up of bubble reactors for industry. Also, fluid beds have been 

used widely in many industrial systems such as chemical industry fluid beds, food and 

dairy fluid beds, pharmaceutical fluid beds for drying, cooking, etc. One example is the 
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fluid bed dryer designed to dry products including food, chemical, mineral and polymer, 

in which the air is supplied to the bed through a special perforated distributor plate 

causing bubbles form and collapse within the fluidized bed of material. In short, a 

mathematical model for mass transfer around a bubble is very necessary for effectively 

designing and operating industrial equipments. 

 

In biochemical engineering, there are many cases of transport phenomena related 

to gas-liquid, liquid-liquid mass transfer. Gas-liquid mass transfer mainly concerns with 

oxygen supply to cells in aerobic processes as the interfacial transport through the liquid 

boundary layer adjacent to the bubble or the cell. Other examples are the supply or 

removal of other gases, like methane supply parallel to oxygen supply for single-cell 

protein production, as well as methane removal out of solution in anaerobic wastewater 

treatment. For liquid-liquid systems, we can observe mass transfer in two or even 

multiphase systems such as extraction of pharmaceuticals using organic solvents.  

 

Transport of energy and mass is a general and fundamental approach to study 

many biological and environmental processes. It can be found that the various application 

areas in biological engineering involve mass transfer. For example, in the mammalian 

system, we can see the liquid diffusion in tissue such as drug delivery, the diffusion of 

saline water from veins, and the diffusion of gastric juice in the stomach. In plant system, 

transportation of solute and water into roots by diffusion and convection is very 

important for plant growth. Furthermore, in biological processing, mass transfer occurs in 

fermentation as convective oxygen transfer form a bubble to a cell. In addition, it is 
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obvious that mass transfer has been studied in environmental processes for air pollution, 

surface water and ground water pollution, for example, dispersion of pollutants in air, 

dispersive movement of surface water pollutants, and so on. 

 

The problem of mass transfer is very important for design and operation of 

industrial food processing, such as drying, extraction, distillation, and absorption. Many 

applications of mass transfer to food systems are involved in several physical, chemical, 

and biological food processes, such as salting, sugaring, oxygen absorption, deaeration, 

crystallization, and cleaning of process equipment. And, it is really important in food 

packaging and storage, where transfer of moisture, vapors or gases, and flavor 

components may influence food quality. An understanding of the mechanism of mass 

transfer will be helpful in maintaining the food quality. 

 

Several analytical mass transfer solutions for the case of a thin concentration 

boundary layer thickness (high Peclet numbers) have been widely investigated under 

steady-state condition and then developed for unsteady-state condition. The key of the 

solutions for the mass transfer problem is to solve the continuity equation and the partial 

differential mass balance equation. As the simplicity of the solution, the majority of the 

theoretical models presented in the literature were developed under steady-state 

conditions, especially for the case of a spherical drop (Levich, 1962; Ruckenstein, 1964; 

Lochiel and Calderbank, 1964; Brid et al., 2002). One more example is the problem of 

mass transfer between a slender bubble and a viscous liquid in axisymmetric extensional 

flow studied by Favelukis and Semiat (1996). However, in practice, unsteady-state 
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condition can effect significantly on the operation, especially at the initial stages of the 

processes.  

 

Since the problem of mass transfer is studied between a body and a continuous 

fluid phase around this body, the shape of the body plays an important role in solving the 

problem. The problem of spherical drop or bubble is known as the simplest and ideal case 

in which the problem can be considered in spherical coordinate system. However, there 

are many physical situations in which flow conditions can cause a drop to deform. Since 

mass transfer between a drop and a liquid is proportional to the surface area of the drop, 

drop deformation should be taken into account. And, the most general case developed by 

many authors is axisymmetric bodies of revolution in which the flow of fluid pass the 

axisymmetric body along its axis of revolution (Lochiel and Calderbank, 1964; Favelukis 

and Mudunuri 2003).  

 

Bubbles and drops rising or falling in a stagnant fluid under the influence of 

gravity usually obtain the following main shapes: sphere, ellipsoid or spherical-cap, 

depending on the values of the governing dimensionless numbers. Under creeping flow 

conditions (zero Reynolds numbers) the drop is an exact sphere, however at high values 

of the Reynolds numbers, the ellipsoidal regime can be obtained. Ellipsoidal fluid 

particles can be approximated as oblate spheroids, however this approximation may not 

be fully correct as bubbles and drops in this regime often lack fore-and-aft-symmetry and 

may show shape oscillations (Clift et al., 1978). 
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The behavior of a fluid depends strongly on the Reynolds numbers (Re), laminar 

flow for low Re and turbulent flow for high Re. The fluid behavior may approach that of 

an ideal fluid which is incompressible and has zero viscosity. The flow of such an ideal 

fluid is called potential flow or irrotational flow, presenting two important characteristics: 

(1) zero vorticity, and (2) the velocity can be written as the gradient of a scalar potential 

called velocity potential. As a result, the velocity potential satisfies the Laplace’s 

equation. 

 

In a previous work, the steady-state mass transfer in the continuous phase around 

axisymmetric drops of revolution, at high Peclet numbers, has been theoretically studied 

for both low and high Reynolds numbers (Lochiel and Calderbank, 1964; see also Clift et 

al., 1978). General equations for the concentration profile and the molar flux for any type 

of axysimmetric drop were derived, with the only requirements being the shape of the 

drop and the tangential velocity at the surface of the drop. Recently, Favelukis and 

Mudunuri (2003) extended their work, by presenting general solutions for the unsteady-

state problem.  

 

At large Reynolds numbers and without flow separation, the velocity profile 

around a drop can be approximated by the potential velocity or inviscid flow (Leal, 

1992). This method was applied by many researchers and also by Lochiel and Calderbank 

(1964) for their study on the steady-state mass transfer around prolate and oblate 

spheroidal drops in potential flow. Although ellipsoidal drops seldom adopt prolate 

spheroidal forms, for the sake of completeness both cases were reported in their report.  
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The purpose of this thesis is to provide theoretically two new unsteady mass 

transfer solutions for the cases of prolate and oblate spheroidal drops under potential 

flow. The main body of the thesis is divided into five chapters as the following brief 

description. Chapter one is an introduction of the thesis. Chapter two provides the mass 

transfer governing equations derived by solving the continuity equation and partial 

differential mass balance equation (Favelukis and Mudunuri, 2003). In the third chapter, 

the problem of unsteady mass transfer in the continuous phase around a prolate spheroid 

at high Peclet numbers is investigated with an introduction of the prolate spheroidal 

coordinate system. The shape and the tangential velocity at the surface of the prolate 

spheroid have been obtained. Once again, the problem has been considered for an oblate 

spheroid in chapter four, distributing an in-depth study of mass transfer in spheroidal 

system. Finally, the results have been discussed deeply and concluded in chapter five. All 

the calculations in this thesis have been done with the aid of Mathematica, one of the 

most powerful software for symbolic work, and given in the appendices. 

 

Most of the work presented in this Thesis was done by me with the guidance of 

my supervisor: Dr Favelukis, who has developed the theory given in the chapter two. I 

have converted his solution, originally written in the coordinates of an axisymmetric 

body of revolution, into the prolate and oblate spheroidal coordinate system, and obtained 

the solutions presented in chapters three and four. My work has mainly contributed to the 

paper: Favelukis M., and Ly C.H., “Unsteady Mass Transfer Around Spheroidal Drops in 

Potential Flow”, Chem. Eng. Sci., 60, 7011-7021 (2005). 
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Chapter 2: 

The mass transfer governing equations 

  

Several analytical unsteady mass transfer solutions have been presented in the 

literature, for the case of a thin concentration boundary layer thickness (high Peclet 

numbers). In creeping flow (zero Reynolds numbers), Levich (1965), Ruckenstein (1967) 

and Chao (1969) obtained solutions for the problem of uniform flow around a spherical 

drop, while the case of a simple extensional flow was treated by Gupalo et al. (1978) for 

a spherical drop, and by Favelukis (1998) for a slender bubble. At the other asymptotic 

regime of potential flow (infinite Reynolds numbers), Ruckenstein (1967) and Chao 

(1969) presented solutions for uniform flow around a spherical drop. 

 

In this chapter, the general solution for the unsteady mass transfer in the 

continuous phase around axisymmetric drops of revolution at high Peclet numbers (see, 

e.g. Favelukis and Mudunuri, 2003) is revisited.  

 

Consider a stationary axisymmetric drop of revolution (see Figure 2.1). The 

coordinates x and y represent tangential and normal directions to the surface of the drop 
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respectively, where x = 0 is the forward stagnation point. The local radius R(x) is defined 

as the distance from the axis of revolution to the surface of the drop.  

U

                      

x 

y 

R(x) 

Figure 2.1: An axisymmetric drop of revolution. R(x) is the local radius; 
 x and y are the tangential and normal coordinates respectively. 

 

The differential mass balance, in the liquid phase, for a binary axisymmetric 

system of constant density and diffusion coefficient (D) and assuming the thin 

concentration boundary layer approximation is reduced to: 

 

 2

2

y
cD

y
cv

x
cv

t
c

yx
∂

∂
=

∂
∂

+
∂
∂

+
∂
∂  (1) 
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where vx and vy are the disturbed velocity components, c is the molar concentration of the 

solute and t is the time. The above equation is solved with the following constant and 

uniform boundary and initial conditions: 

 

 c = cs     at     y = 0 (2) 

 c = c∞    at     y = ∞ (3) 

 c = c∞    at     x = 0 (4) 

 c = c∞    at     t = 0 (5) 

 

The solution to the problem is obtained using the transformation c = c(ψ, φ) 

where ψ = ψ(x, y) is the stream function and φ = φ(x, t): 

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

−
−

∞

∞
φ

ψ
2

erfc
cc
cc

s
 (6) 

 

subject to the following conditions: 

 

 c = cs      at     ψ = 0 (7) 

 c = c∞     at     ψ = ∞ (8) 

 c = c∞     at     φ = 0 (9) 
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With the help of the continuity equation and the definition of the stream function, 

it is possible to obtain an approximate expression for the stream function, in the liquid 

phase, close to the surface of an axisymmetric drop of revolution:  

 

 Ryvx0=ψ  (10) 

 

Here vx0 is the tangential velocity at the surface of the drop (y = 0) and it is a function of x 

only. Note that according to Eq. (10), Eqs (2) and (3) reduce to Eqs (7) and (8) 

respectively. 

 

On the other hand, the function φ(x,t) can be found by the method of 

characteristics: 

 

  (11) ∫
−

− −
= )(

)(
2

0
1

1 dmm
tmm x xRvDφ

 

where the function m(x) is defined as follows: 

 

 ∫=
0

d)(
xv
xxm  (12) 

 

and the notation x = m-1(m) is used. Note that a solution to the problem can be found only 

if both Eqs (4) and (5) reduce to Eq. (9) so that at x = t = 0, φ = 0. When t = 0, and 

according to Eq. (11), this condition is always satisfied. However, this is not the case 
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when x = 0 resulting that not every physical situation can be solved by this method. 

Luckily, the two problems presented in this work satisfy this condition.  

 

We define the following dimensionless parameters: 

 

 
eqR
x*x =  (13) 

 
eqR
y*y =  (14) 

 
eqR

Ut*t =  (15) 

 
U
v*v x

x
0

0 =  (16) 

 
eqR
R*R =  (17) 

 
∞

∞
−
−

=
cc
cc*c

s
 (18) 

 2
eqUR

* ψψ =  (19) 

 3
eqDUR

* φφ =  (20) 

 2π4 eqR
A*A =  (21) 
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Here U is a characteristic velocity, Req is the equivalent radius (the radius of a sphere of 

an equal volume to that of the deformed drop) and A is the surface area of the drop. 

 

The concentration profile, given by Eq. (6), can be written in a dimensionless 

form as: 

 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 21

2
erfc /Pe

*
**c
φ

ψ  (22) 

 

where Pe is the Peclet number, the ratio of convection to diffusion, defined as: 

 

 
D

UR
Pe eq=  (23) 

 

The instantaneous local molar flux can be written in a dimensionless form as: 

  

 210
π

1)(
)( /xeq Pe

*
*R*v

D
R*t*,xk

*t*,xSh
φ

==  (24) 

 

here Sh(x*, t*) is the local Sherwood number, the ratio of the total mass transfer 

(diffusion and convection) to the diffusional mass transfer and k(x*, t*) is the 

instantaneous local mass transfer coefficient (the ratio of the instantaneous local molar 

flux, at the surface of the drop, to the concentration difference). 
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The instantaneous local concentration boundary layer thickness is given by: 

 

 
*ShRPe*R*v

*
R /

x

11π 212
0

==
φδ  (25) 

 

where δ is the concentration boundary layer thickness (D/k). Since according to the thin 

concentration boundary layer approximation, the above ratio must be much smaller than 

1, the following condition: Pe1/2 >> 1, must be met. 

 

The total quantity of material transferred to or from the drop is proportional to the 

average flux times the surface area of the drop. In a dimensionless form, it is given by: 

 

 21
21

0
2

0
eq )(d

π
1)(

)( /
/

x
x Pe*t*x*R*v*A

D
R*tk

*A*tSh
*
max λ⎟

⎠

⎞
⎜
⎝

⎛
== ∫  (26) 

 

where ( )*tk  is the instantaneous average (of position) mass transfer coefficient and the 

function λ(t*) is the ratio of the instantaneous average flux to the average flux at steady 

state: 

 

 
( )

21

0
2

0

0
2

0

d2

d
)( /

x
x

x
x

*
max

*
max

*x*R*v

*x*/*R*v
*t

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∫

∫ φ
λ  (27) 
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At steady state, λ(∞) = 1, and the final result given by Eq. (26) reduces to the useful 

equation derived by Lochiel and Calderbank (1964) for axisymmetric drops of revolution.      

 

 A practical estimation at short times (t* << 1) that was used by many authors, can 

be obtained by solving Eq. (1) without the two convective terms on the left hand side: 

 

 21

0
2

0

0

d2

d1)( /
x

x

x

*
max

*
max

*x*R*v

*x*R

*t
*t

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∫

∫λ  (28) 

 

However, we found that this estimation for short times is not correct for every 

physical situation and cannot be used in the present work, except for the case of a 

spherical drop.  
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Chapter 3: 

Prolate spheroid 

 

 In this chapter, the problem of mass transfer will be considered in the prolate 

spheroidal coordinates system. As presented in the previous chapter, in order to solve the 

problem, the shape of the drop and the tangential velocity at the surface of the drop are 

required. That is the reason why the relations between the prolate spheroidal system and 

the coordinates of an axisymmetric body of revolution (shown in figure 2.1) should be 

developed. The relations between the Cartesian and the prolate spheroidal system 

presented by Moon and Spencer (1971) will be applied for this purpose.  

 

3.1.  Prolate spheroidal coordinates: 

  

 Figure 3.1 describes the prolate spheroidal coordinate system (η, θ, ψ) as given 

by Moon and Spencer (1971).  
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η = const. 

θ = 0 

θ = π 

z 

r

b

F

d

F

a
 

θ = const. 

r 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The prolate spheroidal coordinate system 

 

The coordinate surfaces are prolate spheroids (η = constant) and hyperboloids of 

revolution (θ  = constant). The angle ψ is not shown in the figure as it is of little interest 

in our axisymmetric problem. The range of the coordinates are: 0 ≤ η < ∞, 0 ≤ θ ≤ π and 

0 ≤ ψ < 2π. The following relations exist between the Cartesian and the prolate 

spheroidal system: 

 

 ψθη cossinsinhdx =  (29) 

 ψθη sinsinsinhdy =  (30) 

 θηcoscoshdz =  (31) 
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where d is the distance from the origin to the focus of the ellipse (F). Note that infinity is 

defined in this system as η = ∞. The surface of the prolate spheroid (η = η0 = constant) is 

described by: 

 

 12

2

2

2

2

2
=++

b
z

a
y

a
x  (32) 

 

Here a = dsinhη0 and b = dcoshη0 are shown in Figure 3.1 (a ≤ b). We can define an 

eccentricity as follows: 

 

 
212

1
/

b
ae

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=  (33) 

 

where e = 0 corresponds to a sphere and e → 1 denotes a slender prolate spheroid. Some 

useful mathematical relations are: coshη0 = 1/e and a = b(1 - e2)1/2. 

  

The local radius of the spheroid (see Figure 2.1) can be easily obtained from the 

above equations: 

 

 θsinaR =  (34) 

 

while the equivalent radius is defined as: 
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 ( ) 312 /
eq baR =  (35) 

 

Combining the last two equations we have: 

 

 ( ) θsin1
612 /

eq
e

R
R*R −==  (36) 

 

 Finally, the infinitesimal distance along the surface of the prolate spheroid is 

given by (Moon and Spencer, 1971): 

 

 ( ) θθη dsinsinhd
212

0
2 /

ds +=  (37) 

 

In a dimensionless form and in terms of the eccentricity, we have: 

 

 
( )

θθ dsin1
1

d*d
2/1

2
2

2

3/12 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

−
==

e
e

e
e

R
sx
eq

 (38) 

 

3.2.  Fluid mechanics: 

 

Consider the motion of an ideal fluid with constant density and zero viscosity, a 

situation which can describe the flow at high Reynolds numbers. We shall review here 

and in section 4.2 the solution of uniform potential flow around a stationary spheroidal 

drop (Luiz 1967, 1969) and obtain from it the tangential surface velocity. The similar 
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problem of the movement of a spheroidal drop in a stagnant fluid can be found in Lamb 

(1945) and Batchelor (1967). Since the flow is irrotational, it follows that the velocity 

potential (Φ) satisfies the Laplace equation. The general solution to the Laplace equation 

in the prolate spheroidal coordinate system is given by (Moon and Spencer, 1971): 

 

  (39)  ( ) ( )[ ] ( ) ([ ]θθηηΦ coscoscoshcosh
0

nnnn
n

nnnn QDPCQBPA ++= ∑
∞

=
)

 

where Pn are the Legendre polynomials and Qn are the Legendre functions of second 

kind. Clearly that Dn = 0 since Qn(cosθ) is not defined at cosθ = ±1, and we may set Cn = 

1 without loss of generality. 

  

Consider now the problem of uniform velocity U in the –z direction around a 

stationary prolate spheroid in potential flow. From the definition of the velocity potential 

in the Cartesian coordinate system, together with Eq. (31), we find that the velocity 

potential far away from the spheroid (η → ∞) is: 

 

 θηUdUz coscosh−=−=Φ  (40) 

 

From the last equation we conclude that n = 0 or 1, with P0(x) = 1, P1(x) = x, 

Q0(x) = coth-1(x), and Q1(x) = xQ0(x) - 1. Note that there are two definitions for Q0(x) 

depending on the value of x, in our case ⏐x⏐ > 1.  Substituting Eq. (40) into Eq. (39) for 

the case where η → ∞, results in: 
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 UdA −=1  (41) 

 

 From the definition of the velocity potential gradient in the prolate spheroidal 

coordinate system, the velocity components can be easily obtained: 

 

 
( ) η
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θη
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+
= 2122 sinsinh

1
/

d
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( ) θ

Φ

θη
θ ∂

∂

+
= 2122 sinsinh

1
/

d
v  (43) 

 

At the surface of the spheroid (η = η0) the normal velocity (vη) must vanish, 

leading to: BB0 = 0. Also A0 can be set to zero without any loss of generality resulting in: 

 

 
( )0

1-
0

2
0

0
2

1
coshcothsinhcosh-

sinh
ηηη

η
+

=
UdB  (44) 

 

By substituting Eqs (41) and (44) into Eqs (39) and (43), the tangential velocity at 

the surface of the prolate spheroid can be obtained: 
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212
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Note that when we solve the problem of potential flow around a stationary object, 

the conditions of both zero normal and tangential velocities at the surface cannot be 

satisfied. Thus, the potential solution, close to the object, is not appropriate for a solid, 

however it is good for a drop or a bubble where a tangential surface velocity exists. 

Furthermore, if we solve the complete fluid mechanics problem (and not just the 

Laplace’s equation), for the case of a spherical bubble, we find that the tangential surface 

velocity can be approximated by the potential solution plus a very small correction of 

O(Re-1/2) (Leal, 1992). Thus, for all practical purposes we may take the potential solution 

for the tangential surface velocity as an excellent approximation at high Reynolds 

numbers. In a dimensionless form and in terms of the eccentricity, the last equation can 

be written as:                

 

 
( ) ( )[ ]ee/e/e/U

v
/ 1-22122

0

tanh111sin11

sin

−−+−
=

θ

θθ  (46) 

 

For a spherical drop, e = 0, and the well known result of vθ0/U = 3(sinθ)/2 is obtained. On 

the other hand, for a slender prolate drop, e → 1, and as expected, vθ0/U = 1. The 

tangential surface velocity as a function of θ, for different values of the eccentricity e, is 

illustrated in Figure 3.2. The method presented here for the solution of the tangential 

surface velocity is different than the one presented by Lochiel and Calderbank (1964) 

based on the work of Zahm (1926). 
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Figure 3.2: The tangential surface velocity of a prolate spheroid as a function  
                   of θ, for different values of the eccentricity e. 

 

 

3.3.  Mass transfer 

 

 We start this section by applying Eqs (38) and (46) in order to evaluate the 

functions m(θ), m-1(m) and m-1(m - t): 
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Note that f(0, t*) = 0 and f(θ, 0) = θ. The next step is applying Eqs (36), (38), (46) and 

(49) in order to evaluate the integral in Eq. (11). In a dimensionless form we have: 

 

 ( ) ( ) ( ) ( ) ( )[ ]
( )[ ]eee

ffe*x*R*v*t,* f x 12

3
2

0
tanh1

3coscos93coscos9
12

d −−−
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== ∫

θθθφ θ  (50) 

 

At this point one can verify that the function φ* satisfies the conditions given by Eqs. (4) 

and (5) or (9). At steady state, f(θ, ∞) = 0, the last equation reduces to: 

 

 ( ) ( ) ( )[ ]
( )[ ]eee

e,* 12

3

tanh1
3coscos98

12 −−−

+−
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θθθφ  (51) 

 

 The local Sherwood number and the local concentration boundary layer thickness 

can be calculated by substituting Eqs (36), (46) and (50) into Eqs (24) and (25) to give: 
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 The local Sherwood number, at different times, and for different values of the 

eccentricity e, is plotted in Figure 3.3  

 

 

Figure 3.3: The local flux of a prolate sheroidal drop as a function of θ, at different 
times. (a) e = 0; (b) e = 0.5; (c) e = 0.9; and (d) e = 0.99. 
  

  At very short times, the liquid is quite clean from solute and the lines are almost 

symmetric around θ = π/2. At steady-state the concentration boundary layer is cleaner 

from solute close to the leading edge (θ = 0), and therefore there the local flux is higher, 

than close to the end of the drop (θ = π) where the concentration boundary layer is 

contaminated with solute. It is interesting to note that, at short times, and close to the 
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middle of the drop (θ = π/2), the local flux obtain a minimum. Note also that as the 

eccentricity increases, the local flux decreases, and it takes less time to reach steady-state 

conditions (see Table 3.2).  

 

Finally, the total quantity of material transferred to or from the drop can be found 

from Eqs (26) and (27): 

 

 ( ) ( ) 21
π
2 /Pee*,teh*ASh λ=  (54) 

 

where the dimensionless shape and time functions are given by: 
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Some numerical values for the functions h and λ are listed in Tables 3.1 and 3.2 

respectively. For a spherical drop, e = 0, and h = 1, while for a slender drop, e → 1, we 

have h = 32 / .  
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e h (prolate) h (oblate) 

0 1 1 

0.2 0.9960 1.004 

0.4 0.9832 1.018 

0.6 0.9596 1.049 

0.8 0.9186 1.128 

0.99 0.8307 1.886 

1 0.8165 ∞ 

Table 3.1: Numerical values of the shape function h, according to Eqs (55) and (84). 

 

t* e = 0 e = 0.2 e = 0.4 e = 0.6 e = 0.8 e = 0.99 

0.001 22.36 22.15 21.46 20.08 17.32 7.295 

0.01 7.072 7.004 6.786 6.351 5.477 2.319 

0.1 2.250 2.229 2.162 2.027 1.761 1.019 

1 1.014 1.013 1.010 1.005 1.001 1.000 

2 1.000 1.000 1.000 1.000 1.000 1.000 

∞ 1 1 1 1 1 1 

Table 3.2: Numerical values of the time function λ, according to Eq. (56) for the case of 
a prolate spheroid. 

 

As expected, the total quantity of material transferred to or from the drop 

decreases with time, since then the boundary layer is more concentrated with solute. 

Furthermore, as the eccentricity increases, and the spheroid becomes more slender the 

value of the product *ASh (which is proportional to the product hλ) decreases (see Figure 
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3.4). Therefore, the total quantity of material transferred to or from a prolate spheroidal 

drop at any time is always smaller than that of a spherical drop.   

 Figure 3.4: The total quantity of material transferred to or from a prolate 
spheroidal drop as a function of time, for different values of the eccentricity e. 
 

 As explained before, Eq. (28) cannot be used in the present case. However, a 

practical estimation at short times can be obtained by expanding Eq. (50) as a power 

series in time, around t* = 0, and considering the first term only. After some algebraic 

manipulation, Eq. (56) reduces to:    

 

 ( ) ( ) ( )[ ]
23

211-2312 tanh11
2

3
/

//

e
eeee

*t
e*,t −−−
=λ  (57) 

 

For the case of a sphere (e = 0), the last equation reduces to: *t/ 21=λ .
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Chapter 4 

Oblate spheroid 

 

 This chapter deals with the problem of mass transfer solved in the oblate 

spheroidal coordinates system. The relations between the oblate spheroidal system and 

the coordinates of an axisymmetric body of revolution shown in figure 2.1 will also be 

derived for defining the shape of an axisymmetric drop of revolution. Then, the Laplace’s 

equation will be solved again to determine the tangential velocity at the surface of the 

drop, completing the requirements for solving the problem. 

 

4.1.  Oblate spheroidal coordinates 

 

The oblate spheroidal coordinate system, (η, θ, ψ) as given by Moon and Spencer 

(1971), is depicted in Figure 4.1.  
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η = const. θ = 0 

θ = π

z 

r 

b 

F 
d 

F 

a 

 

Figure 4.1: The oblate spheroidal coordinate system 

 

Here the coordinate surfaces are oblate spheroids (η = constant) and hyperboloids 

of revolution (θ  = constant). The ranges of the coordinates are the same as before: 0 ≤ η 

< ∞, 0 ≤ θ ≤ π and 0 ≤ ψ < 2π. The following relations exist between the Cartesian and 

the oblate spheroidal coordinate system: 

 

 ψθη cossincoshdx =  (58) 

 ψθη sinsincoshdy =  (59) 

 θηcossinhdz =  (60) 

 

As before d is the distance from the origin to the focus of the ellipse (F). Also infinity is 

defined as before (η = ∞). The surface of the oblate spheroid (η = η0 = constant) is given 

by: 

θ = const.

r 
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 12

2

2

2

2

2
=++

b
z

a
y

a
x  (61) 

 

where a = dcoshη0 and b = dsinhη0 are shown in Figure 4.1 (a ≥ b). The eccentricity is 

defined somehow different this time: 

 

 
212

1
/

a
be

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=  (62) 

 

Here e = 0 corresponds to a sphere and e → 1 describes a disk. Some useful mathematical 

relations are: coshη0 = 1/e, a = b/(1 - e2)1/2. Other geometrical parameters required to 

solve the problem are: the local and equivalent radii and the infinitesimal distance along 

the surface of the oblate spheroid: 

 

 θsinaR =  (63) 

 ( ) 312 /
eq baR =  (64) 

 ( ) θθη dsincoshd
212

0
2 /

ds −=  (65) 

 

In a dimensionless form and in terms of the eccentricity, we have: 
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4.2.  Fluid mechanics 

 

The solution to the Laplace’s equation in the oblate spheroidal coordinate system 

can be represented as (Moon and Spencer, 1971): 

 

  (68)  ( ) ( )[ ] ( ) ([ ]θθηηΦ coscossinhisinhi
0

nnnn
n

nnnn QDPCQBPA ++= ∑
∞

=
)

 

where Dn = 0 since Qn(cosθ) is not defined at cosθ = ±1, and we may set Cn = 1 without 

loss of generality. 

  

Consider the problem of uniform velocity U in the –z direction around a 

stationary oblate spheroid in potential flow. Combining the definition of the velocity 

potential in the Cartesian coordinate system and Eq. (60) we obtain that far away from 

the spheroid (η → ∞), the velocity potential reduces to: 

 

 θηUdUz cossinh−=−=Φ  (69) 
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The last equation suggests that n = 0 or 1, with Q0(x) = coth-1(x) as defined for the 

ordinary Legendre functions of the second kind for imaginary arguments (Abramowitz 

and Stegun, 1965).  Combining the last two equations for the case where η → ∞, results 

in: 

 

 i1 UdA =  (70) 

 

The velocity components, in the oblate spheroidal coordinate system, can be 

easily obtained from the definition of the velocity potential gradient: 
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Φ
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At the surface of the spheroid (η = η0) the normal velocity (vη) must vanish, leading to: 

BB0 = 0. Also, A0 can be set to zero without any loss of generality to give: 
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Substituting Eqs (70) and (73) into Eqs (68) and (72), the tangential velocity at the 

surface of the oblate spheroid can be found: 
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In a dimensionless form and in terms of the eccentricity, we have:                
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For a spherical drop, e = 0, and the well known result of vθ0/U = 3(sinθ)/2 is recovered. 

On the other hand, for a disk, e → 1, no simple expression for the velocity profile can be 

given as it must be described by a series with many terms. The tangential surface velocity 

as a function of θ, for different values of the eccentricity e, is plotted in Figure 4.2. 
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Figure 4.2: The tangential surface velocity of an oblate spheroid as a function  
                   of θ, for different values of the eccentricity e. 

 

4.3.  Mass transfer 

 

 The first step in the solution of the mass transfer problem is to obtain the 

functions m(θ), m-1(m) and m-1(m - t) from Eqs (67) and (75): 
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where f(0, t*) = 0 and f(θ, 0) = θ. From Eqs (66), (67), (75) and (78), the dimensionless 

form of Eq. (11) can be evaluated: 
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where the function φ* satisfies the conditions given by Eqs. (4), (5) or (9). Under steady 

state conditions, f(θ, ∝) = 0, and the last equation can be simplified to: 

 

 ( ) ( ) ( )[ ]
( ) ( ) ⎥⎦

⎤
⎢⎣
⎡ −−++−

+−
=∞

− 21211/223

3

11cot1

3coscos98
12 /

e/eee

e,* θθθφ  (80) 

 

 The local Sherwood number and the local concentration boundary layer thickness 

can be calculated by substituting Eqs (66), (75) and (79) into Eqs (24) and (25) to give: 
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 Figure 4.3 shows the local Sherwood number, at different times, for different 

values of the eccentricity.  

Figure 4.3: The local flux of an oblate sheroidal drop as a function of θ, at different 
times. (a) e = 0; (b) e = 0.5; (c) e = 0.9; and (d) e = 0.99. 
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Finally, we can represent the total quantity of material transferred to or from the 

drop, given by Eqs (26) and (27), in a similar form like the previous problem: 
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where this time the shape and time functions are defined as follows: 
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Some numerical values for the functions h and λ are listed in Tables 3.1 and 4.1 

respectively. For a spherical drop, e = 0, and h = 1, while for a disk, e → 1, we have h → 

∞. We found that the total quantity of material transferred to or from the drop decreases 

with time, but increases with an increase in the eccentricity, see Figure 4.4. We conclude 

that, the total quantity of material transferred to or from an oblate spheroidal drop at any 

time is always greater than that of a spherical drop. 
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t* e = 0 e = 0.2 e = 0.4 e = 0.6 e = 0.8 e = 0.99 

0.001 22.36 22.57 23.28 24.73 27.87 43.76 

0.01 7.072 7.139 7.361 7.820 8.814 13.84 

0.1 2.250 2.271 2.340 2.483 2.794 4.378 

1 1.014 1.016 1.021 1.033 1.073 1.441 

2 1.000 1.000 1.000 1.001 1.004 1.127 

∞ 1 1 1 1 1 1 

Table 4.1: Numerical values of the time function λ, according to Eq. (85) for the case of 
an oblate spheroid. 

 

 

 

 Figure 4.4: The total quantity of material transferred to or from an oblate 
spheroidal drop as a function of time, for different values of the eccentricity e. 
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 Finally a practical estimation at short times can be obtained by applying the same 

procedure as in the previous problem: 
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For the case of a sphere (e = 0), the last equation simplifies again to: *t/ 21=λ . 
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Chapter 5: 

Conclusions and recommendations 

 

The problem of unsteady mass transfer around prolate and oblate spheroidal drops 

in potential flow has been theoretically studied. Assuming that the resistance to mass 

transfer is only in a thin concentration boundary layer in the continuous phase, analytical 

solutions for the concentration profile, the molar flux, the concentration boundary layer 

thickness, and the time to reach steady-state have been obtained. 

 

The solution method applied was derived by Favelukis and Mudunuri (2003) for 

axisymmetric drops of revolution, with the only requirements being the shape of the drop 

and the tangential velocity at the surface of the drop as shown in chapter 2. The shape of 

the drop can be obtained easily from the relationships between the spheroidal system and 

the coordinates of an axisymmetric body of revolution, and expressed in dimensionless 

form and in terms of eccentricity (e). In addition, the tangential velocity at the surface of 

the drop has been derived by solving Laplace’s equation, and expressed in terms of 

eccentricity (e). As expected, the well known result of vθ0/U = 3(sinθ)/2 is recovered for a 

spherical drop, e = 0. For both cases of prolate and oblate spheroid, the tangential 
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velocities at the surface of the drop increase with θ from 0 to π/2, being maximum at θ = 

π/2, and then decreasing from π/2 to π. And when the eccentricity (e) increases in prolate 

spheroid or decreases in oblate spheroid, the lower of the maximum tangential velocity at 

θ = π/2 has been obtained. 

 

The local Sherwood number and the local concentration boundary layer thickness 

have been calculated. At short time, and close to the middle of the drop (θ = π/2), the 

local Sherwood number or local molar flux is found to be minimum for prolate drop, and 

maximum for oblate. And at steady-state, the local flux close to the forward stagnation 

point is higher than close to the end of the drop. 

 

Finally, the total quantity of material transferred to or from the drop, *ASh , has 

been obtained and presented in terms of the dimensionless shape and time functions. It 

has been found that the total quantity of material transferred to or from the drop decreases 

with time and it was determined that when the dimensionless time is greater than 2, then 

steady-state is, in practice, obtained. Also, prolate drops attain steady-state conditions 

faster than oblate drops. Furthermore, as the eccentricity increases, the total quantity of 

material transferred to or from the drop decreases (for a prolate spheroid) and increases 

(for an oblate spheroid). 

 

Many situations faced in chemical engineering science deal not only with the 

condition of high Reynolds number but also with the condition of medium and low 

Reynolds, as well as Peclet numbers. So far, the problem of unsteady mass transfer 
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presented has been completely investigated at high Peclet numbers for prolate and oblate 

spheroid in potential flow. As a result, we can extend the work to another axisymmetric 

body of revolution, such as spherical cap. 
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Appendix A 

Mathematica programs for Chapter 3 

 

         A1.  Calculation for dimensionless velocity of the prolate spheroid. 

                     A2.  Programs for mass transfer calculation. 



A1.  Calculation for dimensionless velocity of the 
prolate spheroid

H∗∗ Calculation for dimensionless velocity in chapter 3.2 ∗∗L

Clear@Ao, Bo, A1, B1, φ, φo, φ1, U, d, g, Vθ0, V∗, η, ηo, θD;

φ@η_, θ_D =

HAo + Bo ArcCoth@Cosh@ηDDL + HA1 Cosh@ηD + B1 HCosh@ηD ArcCoth@Cosh@ηDD − 1LL Cos@θD;

φo@η_D = Ao + Bo ArcCot@Cosh@ηDD;

Solve@∂ηo φo@ηoD m 0, BoD

88Bo → 0<<

Ao = 0;
Bo = 0;
A1 = −U d;

φ1@η_, θ_D = HA1 Cosh@ηD + B1 HCosh@ηD ArcCoth@Cosh@ηDD − 1LL Cos@θD;

Solve@∂ηo φ1@ηo, θD m 0, B1D;

Simplify@%D

99B1 →
d U Sinh@ηoD2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−Cosh@ηoD + ArcCoth@Cosh@ηoDD Sinh@ηoD2 ==

B1 =
d U Sinh@ηoD2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−Cosh@ηoD + ArcCoth@Cosh@ηoDD Sinh@ηoD2

;

Vθ0@η_, θ_D =
1

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
d HSinh@ηoD2 + Sin@θD2L1ê2

 ∂θ φ@ηo, θD;
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Vθ0@η_, θ_D = Simplify@%D

−
U Sin@θD

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"##############################################Sin@θD2 + Sinh@ηoD2 H−Cosh@ηoD + ArcCoth@Cosh@ηoDD Sinh@ηoD2L

V∗@θ_, e_D =
Vθ0@η, θD
cccccccccccccccccccccccccc

U
ê. 9Sinh@ηoD2 →

1
ccccccc
e2

− 1, Cosh@ηoD → 1êe=

−
Sin@θD

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H− 1cccce + H−1 + 1ccccce2 L ArcCoth@ 1cccce DL "########################################−1 + 1ccccce2 + Sin@θD2

Series@V∗@θ, eD, 8e, 0, 1<D

3 Sin@θD
ccccccccccccccccccccccc

2
+ O@eD2

Series@V∗@θ, eD, 8e, 1, 0<D;

Simplify@%, Sin@θD > 0D

1 + O@e − 1D1

H∗∗ Plot Fig 3.2 ∗∗L

g = PlotA9 3
cccc
2

 Sin@θD, V∗@θ, 0.5D, V∗@θ, 0.9D, V∗@θ, 0.99D=, 8θ, 0, π<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
vθ0
ccccccccc

U
", 8"Times", 14<E=,

RotateLabel → False, AspectRatio → 3ê4, PlotRange → 8−0.001, 1.75<E

h Graphics h

Show@g, Graphics@8Text@"0", 81.575, 1.54<D, Text@"0.5", 81.575, 1.36<D,
Text@"0.9", 81.575, 1.22<D, Text@"0.99", 81.575, 0.98<D<DD

h Graphics h
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A2.  Program for mass transfer calculation

Clear@Req, R∗, d, d∗, dx, dx∗, Vθ0, V∗, m, f, e, θ, t∗, φ∗, Sh, Pe, δRD;

<< Graphics`Graphics`

R∗@θ_, e_D = H1 − e2L1ê6
 Sin@θD;

H∗∗ dx = d dθ and dx∗= dcccccccc
Req

 dθ= d∗ dθ ∗∗L

d@θ_, e_D = Req 
e

ccccccccccccccccccccccccccc
H1 − e2L1ê3

 
i
k
jjjj

1 − e2

ccccccccccccccc
e2

+ Sin@θD2y
{
zzzz

1ê2

;

d∗@θ_, e_D =
d@θ, eD
cccccccccccccccccccc

Req
;

Vθ0@θ_, e_D =
U Sin@θD

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H 1ccccc

e2 − 1 + Sin@θD2L1ê2
 H 1cccc

e
− H 1ccccc

e2 − 1L ArcCoth@ 1cccc
e
DL 

;

V∗@θ_, e_D =
Vθ0@θ, eD
cccccccccccccccccccccccccc

U
;

m@θ_, e_D = ‡
d@θ, eD

cccccccccccccccccccccccccc
Vθ0@θ, eD  Åθ

Req He + H−1 + e2L ArcCoth@ 1cccce DL H−e2 Cos@θD + H−1 + e2L HLog@Cos@ θcccc2 DD − Log@Sin@ θcccc2 DDLLcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
e3 H1 − e2L1ê3 U

H∗∗ Log@zD gives the natural logarithm of z Hlogarithm to base eL ∗∗L

f@θ_, e_, t∗ _D = 2 ArcTanATanA θ
cccc
2
E ExpA −e3 t∗

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
He − H1 − e2L ArcCoth@ 1cccc

e
DL H1 − e2L2ê3

EE;
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φ∗@θ_, e_, t∗ _D = ‡
f

θ

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD Åθ

e3 H9 Cos@fD − Cos@3 fD − 9 Cos@θD + Cos@3 θDL
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

12 He + H−1 + e2L ArcCoth@ 1cccce DL

Sh =
1

ccccccccccè!!!!
π

 
V∗@θ, eD R∗@θ, eD
cccccccccccccccccccccccccccccccccccccccccccccè!!!!!!

φ∗
 Pe1ê2

H1 − e2L1ê6 è!!!!!!Pe Sin@θD2
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!π H 1cccce − H−1 + 1ccccce2 L ArcCoth@ 1cccce DL "########################################−1 + 1ccccce2 + Sin@θD2 è!!!!!!φ∗

δR =
1

cccccccccccccccccccccccccccccc
Sh R∗@θ, eD

è!!!π H 1cccce − H−1 + 1ccccce2 L ArcCoth@ 1cccce DL Csc@θD3 "########################################−1 + 1ccccce2 + Sin@θD2 è!!!!!!φ∗

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H1 − e2L1ê3 è!!!!!!Pe

H∗∗ Plot Fig 3.3 ∗∗L

Clear@f, φ∗, τ, A, ShPe, ShPea, ShPeb, ShPec, ShPed, g1, g2, g3, g4, f1, f2, f3, f4D;

H∗∗ t∗= τ ∗∗L

f@θ_, e_, τ_D = 2 ArcTanATanA θ
cccc
2
E ExpA −e3 τ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
He − H1 − e2L ArcCoth@ 1cccc

e
DL H1 − e2L2ê3

EE;

φ∗@θ_, e_, τ_D = ‡
f@θ,e,τD

θ

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD Åθ;

ShPe@θ_, e_, τ_D =
1

ccccccccccè!!!!
π

 
V∗@θ, eD R∗@θ, eD
cccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!

φ∗@θ, e, τD
;

ShPea@θ_, τ_D = ShPe@θ, 0.0001, τD;

ShPeb@θ_, τ_D = ShPe@θ, 0.5, τD;

ShPec@θ_, τ_D = ShPe@θ, 0.9, τD;

ShPed@θ_, τ_D = ShPe@θ, 0.99, τD;
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g1 = PlotA8ShPea@θ, 0.01D, ShPea@θ, 0.1D, ShPea@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 8<E;

g2 = PlotA8ShPeb@θ, 0.01D, ShPeb@θ, 0.1D, ShPeb@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 8<E;

g3 = PlotA8ShPec@θ, 0.01D, ShPec@θ, 0.1D, ShPec@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 8<E;

g4 = PlotA8ShPed@θ, 0.01D, ShPed@θ, 0.1D, ShPed@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 8<E;

f1 = Show@g1, Graphics@8Text@"HaL", 80.2, 7.2<D, Text@"0.01", 81.575, 6<D,
Text@"0.1", 81.575, 2.15<D, Text@"1", 81.575, 1.2<D<D, GridLines → NoneD;

f2 = Show@g2, Graphics@8Text@"HbL", 80.2, 7.2<D, Text@"0.01", 81.575, 5.3<D,
Text@"0.1", 81.575, 1.95<D, Text@"1", 81.575, 1.05<D<D, GridLines → NoneD;

f3 = Show@g3, Graphics@8Text@"HcL", 80.2, 7.2<D, Text@"0.01", 81.575, 2.9<D,
Text@"0.1", 81.575, 1.2<D, Text@"1", 80.6, 0.8<D<D, GridLines → NoneD;

f4 = Show@g4, Graphics@8Text@"HdL", 80.2, 7.2<D, Text@"0.01", 81.575, 1.2<D,
Text@"0.1", 83, 0.5<D, Text@"1", 80.6, 0.5<D<D, GridLines → NoneD;

Show@GraphicsArray@88f1, f2<, 8f3, f4<<DD

h GraphicsArray h

H∗∗ Sh
¯̄̄ ¯̄

 A∗= "######2cccc
π

 h HeL λ Ht∗,eL Pe1ê2 ∗∗L

Clear@h, λ, λ1D;

h@eD =
1

ccccccccccè!!!!
2

 i
k
jjj‡

0

π

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD Åθy
{
zzz

1ê2

$%%%%%%2
cccc
3 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%e3

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
e + H−1 + e2L ArcCoth@ 1cccce D
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H∗∗ λ He_,t∗ _L= λ1 HeL ‡
0

π
HSin@θDL3
ccccccccccccccccccccè!!!!!!!

φ∗
 Åθ ∗∗L

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD;

Simplify@%D

e3 Sin@θD3
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
e + H−1 + e2L ArcCoth@ 1cccce D

H∗∗ λ@e_,t∗ _D=
‡

0

π
V∗@θ,eD HR∗@θ,eDL2  d∗@θ,eDcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!

φ∗
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

πV∗@θ,eD HR∗@θ,eDL2 d∗@θ,eD ÅθM1ê2 =

e3
cccccccccccccccccccccccccccccccccccccccccccccccccccc
e+H−1+e2L ArcCothA 1

ccccce E
 ‡

0

π HSin@θDL3
cccccccccccccccccccccccè!!!!!!!

φ∗
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

πV∗@θ,eD HR∗@θ,eDL2 d∗@θ,eD ÅθM1ê2 ∗∗L

λ1@e_D =

e3
ccccccccccccccccccccccccccccccccccccccccccc
e+H−1+e2L ArcCothA 1cccce Eccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

2 IŸ0

π
V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD ÅθM1ê2

;

Simplify@%D

1
cccc
4
è!!!3 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%e3

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
e + H−1 + e2L ArcCoth@ 1cccce D

H∗∗ Plot Fig 3.4 ∗∗L

Clear@λ, y, gp, gp1D;

λ@e_, τ_D =
NIntegrateA V∗@θ,eD HR∗@θ,eDL2  d∗@θ,eDccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!

φ∗@θ,e,τD
, 8θ, 0, π<E

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

π
V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD ÅθM1ê2

;

y@e_, τ_D = $%%%%%%2
cccc
π

 h@eD λ@e, τD;
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gp =

LogLogPlotA8y@10−5, τD, y@0.5, τD, y@0.9, τD, y@0.99, τD<, 8τ, 10−3, 10<, Frame → True,

FrameLabel → 9FontForm@"t∗", 8"Times", 14<D, FontFormA"
Sh
¯̄̄ ¯̄

 A∗

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, AspectRatio → 3ê4,
PlotDivision → 1000, MaxBend → 1, PlotRange → AllE

h Graphics h

gp1 = Show@gp, Graphics@8Text@"0", 8−2, 0.8<D, Text@"0.5", 8−2, 0.63<D,
Text@"0.9", 8−2, 0.415<D, Text@"0.99", 8−2, 0.07<D<DD;

H∗∗ short time ∗∗L

Clear@A1, λD;

H∗∗ λ@e_,t∗ _D=
‡

0

π
V∗@θ,eD HR∗@θ,eDL2  d∗@θ,eDcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!

φ∗
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

πV∗@θ,eD HR∗@θ,eDL2 d∗@θ,eD ÅθM1ê2 ∗∗L

A1 = Normal@Series@φ∗@θ, e, τD, 8τ, 0, 1<DD;

λ@e_, t∗ _D =
‡

0

π
V∗@θ,eD HR∗@θ,eDL2 d∗@θ,eDccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!

A1
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

π
V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD ÅθM1ê2

;

Simplify@%D

è!!!3 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%e3
ccccccccccccccccccccccccccccccccccccccccccc
e+H−1+e2L ArcCothA 1cccce E

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 "#############################################################e6 τcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccH1−e2L2ê3 He+H−1+e2L ArcTanh@eDL2
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Appendix B:   

 Mathematica programs for Chapter 4 

 

                     B1.  Calculation for dimensionless velocity of the oblate spheroid. 

                     B2.  Programs for mass transfer calculation. 

 

 



B1.  Calculation for dimensionless velocity of the 
oblate spheroid

H∗∗ Calculation for dimensionlass velocity in chapter 4.2 ∗∗L

Clear@Ao, Bo, A1, B1, φ, φo, φ1, U, d, g, Vθ0, V∗, η, ηo, θD;

φ@η_, θ_D =

HAo − Bo Ç ArcCot@Sinh@ηDDL + HA1 Ç Sinh@ηD + B1 HSinh@ηD ArcCot@Sinh@ηDD − 1LL Cos@θD;

φo@η_D = Ao − Bo Ç ArcCot@Sinh@ηDD;

Solve@∂ηo φo@ηoD m 0, BoD

88Bo → 0<<

Ao = 0;
Bo = 0;
A1 = U d Ç;

φ1@η_, θ_D = HA1 Ç Sinh@ηD + B1 HSinh@ηD ArcCot@Sinh@ηDD − 1LL Cos@θD;

Solve@∂ηo φ1@ηo, θD m 0, B1D ê. Sinh@ηoD2 → Cosh@ηoD2 − 1;

Simplify@%D

99B1 →
d U Cosh@ηoD2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ArcCot@Sinh@ηoDD Cosh@ηoD2 − Sinh@ηoD ==

B1 =
d U Cosh@ηoD2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
ArcCot@Sinh@ηoDD Cosh@ηoD2 − Sinh@ηoD

;

Vθ0@η_, θ_D =
1

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
d HCosh@ηoD2 − Sin@θD2L1ê2

 ∂θ φ@ηo, θD;
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Vθ0@η_, θ_D = Simplify@%D

U Sin@θD
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"##############################################Cosh@ηoD2 − Sin@θD2 HArcCot@Sinh@ηoDD Cosh@ηoD2 − Sinh@ηoDL

V∗@θ_, e_D =
Vθ0@η, θD
cccccccccccccccccccccccccc

U
ê. 9Sinh@ηoD → i

k
jj 1

ccccccc
e2

− 1y
{
zz

1ê2

, Cosh@ηoD → 1êe=

Sin@θD
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccci
k
jjj−"#################−1 + 1ccccce2 +

ArcCotA"#################−1+ 1ccccccc
e2 E

cccccccccccccccccccccccccccccccccce2
y
{
zzz "##############################1ccccce2 − Sin@θD2

Series@V∗@θ, eD, 8e, 0, 1<D

3 Sin@θD
ccccccccccccccccccccccc

2
+ O@eD2

Series@V∗@θ, eD, 8e, 1, 1<D;

Simplify@%, Sin@θD > 0D

−
2 Sin@θD

cccccccccccccccccccccccccccccc
π
è!!!!!!!!!!!!!!!!!!!

Cos@θD2
+

16 Ç Sin@θD è!!!!!!!!!!!e − 1
ccccccccccccccccccccccccccccccccccccccccccccccc

π2 è!!!!!!!!!!!!!!!!!!!!!!!!!!!!1 + Cos@2 θD
−

2 HH2 H−8 + π2L + H−16 + π2L Cos@2 θDL Sin@θDL He − 1L
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

π3 HCos@θD2L3ê2 + O@e − 1D3ê2

H∗∗ Plot Figure 4.2 ∗∗L

g = PlotA9 3
cccc
2

 Sin@θD, V∗@θ, 0.5D, V∗@θ, 0.9D, V∗@θ, 0.99D=,

8θ, 0, π<, Frame → True, PlotRange → 8−0.01, 6<,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
vθ0
ccccccccc

U
", 8"Times", 14<E=,

RotateLabel → False, AspectRatio → 3ê4E

h Graphics h

Show@g, Graphics@8Text@"0", 81.575, 1.33<D, Text@"0.5", 81.575, 1.75<D,
Text@"0.9", 81.575, 2.45<D, Text@"0.99", 81.575, 5.5<D<DD

h Graphics h
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B2.  Program for mass transfer calculation

Clear@Req, R∗, d, d∗, dx, dx∗, Vθ0, V∗, m, f, e, θ, t∗, φ∗, Sh, Pe, δRD;

<< Graphics`Graphics`

R∗@θ_, e_D = H1 − e2L−1ê6
 Sin@θD;

H∗∗ dx = d dθ and dx∗= dcccccccc
Req

 dθ= d∗ dθ ∗∗L

d@θ_, e_D = Req 
e

ccccccccccccccccccccccccccc
H1 − e2L1ê6

 i
k
jj 1

ccccccc
e2

− Sin@θD2y
{
zz

1ê2

;

d∗@θ_, e_D =
d@θ, eD
cccccccccccccccccccc

Req
;

Vθ0@θ_, e_D =
U Sin@θD

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H 1ccccc

e2 − Sin@θD2L1ê2
 I−H 1ccccc

e2 − 1L1ê2
+ 1ccccc

e2  ArcCotAH 1ccccc
e2 − 1L1ê2EM 

;

V∗@θ_, e_D =
Vθ0@θ, eD
cccccccccccccccccccccccccc

U
;

m@θ_, e_D = ‡
d@θ, eD

cccccccccccccccccccccccccc
Vθ0@θ, eD  Åθ;

Simplify@%D

−
Req I"#################−1 + 1ccccce2 e2 − ArcCotA"#################−1 + 1ccccce2 EM He2 Cos@θD − Log@Cos@ θcccc2 DD + Log@Sin@ θcccc2 DDLccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

e3 H1 − e2L1ê6 U

H∗∗ Log@zD gives the natural logarithm of z Hlogarithm to base eL ∗∗L

f@θ_, e_, t∗ _D = 2 ArcTanATanA θ
cccc
2
E ExpA−

e3 H1 − e2L1ê6 t∗

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e H1 − e2L1ê2 + ArcCotAH 1ccccc

e2 − 1L1ê2E
EE;
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φ∗@θ_, e_, t∗ _D = ‡
f

θ

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD Åθ;

Simplify@%, e > 0D

e3 H9 Cos@fD − Cos@3 fD − 9 Cos@θD + Cos@3 θDL
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

12 I−e + e3 +
è!!!!!!!!!!!!!1 − e2 ArcCotA"#################−1 + 1ccccce2 EM

Sh =
1

ccccccccccè!!!!
π

 
V∗@θ, eD R∗@θ, eD
cccccccccccccccccccccccccccccccccccccccccccccè!!!!!!

φ∗
 Pe1ê2

è!!!!!!Pe Sin@θD2
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

H1 − e2L1ê6 è!!!π i
k
jjj−"#################−1 + 1ccccce2 +

ArcCotA"#################−1+ 1ccccccc
e2 E

cccccccccccccccccccccccccccccccccce2
y
{
zzz "##############################1ccccce2 − Sin@θD2 è!!!!!!φ∗

δR =
1

cccccccccccccccccccccccccccccc
Sh R∗@θ, eD

H1 − e2L1ê3 è!!!π i
k
jjj−"#################−1 + 1ccccce2 +

ArcCotA"#################−1+ 1ccccccc
e2 E

cccccccccccccccccccccccccccccccccce2
y
{
zzz Csc@θD3 "##############################1ccccce2 − Sin@θD2 è!!!!!!φ∗

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!Pe

H∗∗ Plot Fig 4.3 ∗∗L

Clear@f, φ∗, τ, ShPe, ShPea, ShPeb, ShPec, ShPed, g1, g2, g3, g4, f1, f2, f3, f4D;

H∗∗ t∗= τ ∗∗L

f@θ_, e_, τ_D = 2 ArcTanATanA θ
cccc
2
E ExpA−

e3 H1 − e2L1ê6 τ
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e H1 − e2L1ê2 + ArcCotAH 1ccccc

e2 − 1L1ê2E
EE;

φ∗@θ_, e_, τ_D = ‡
f@θ,e,τD

θ

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD Åθ;

ShPe@θ_, e_, τ_D =
1

ccccccccccè!!!!
π

 
V∗@θ, eD R∗@θ, eD
cccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!!

φ∗@θ, e, τD
;

ShPea@θ_, τ_D = ShPe@θ, 0.0001, τD;

ShPeb@θ_, τ_D = ShPe@θ, 0.5, τD;

ShPec@θ_, τ_D = ShPe@θ, 0.9, τD;
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ShPed@θ_, τ_D = ShPe@θ, 0.99, τD;

g1 = PlotA8ShPea@θ, 0.01D, ShPea@θ, 0.1D, ShPea@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 8<E;

g2 = PlotA8ShPeb@θ, 0.01D, ShPeb@θ, 0.1D, ShPeb@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 8<E;

g3 = PlotA8ShPec@θ, 0.01D, ShPec@θ, 0.1D, ShPec@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 14<E;

g4 = PlotA8ShPed@θ, 0.01D, ShPed@θ, 0.1D, ShPed@θ, 1D<, 8θ, 10−2, 3.14<, Frame → True,

FrameLabel → 9FontForm@"θ", 8"Times", 14<D, FontFormA"
Sh

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, GridLines → Automatic, PlotRange → 8−0.001, 42<E;

f1 = Show@g1, Graphics@8Text@"HaL", 80.2, 7.2<D, Text@"0.01", 81.575, 6<D,
Text@"0.1", 81.575, 2.15<D, Text@"1", 81.575, 1.2<D<D, GridLines → NoneD;

f2 = Show@g2, Graphics@8Text@"HbL", 80.2, 7.2<D, Text@"0.01", 81.575, 6.9<D,
Text@"0.1", 81.575, 2.4<D, Text@"1", 81.575, 1.2<D<D, GridLines → NoneD

h Graphics h

f3 = Show@g3, Graphics@8Text@"HcL", 80.2, 12.5<D, Text@"0.01", 81.575, 11.5<D,
Text@"0.1", 81.575, 4.6<D, Text@"1", 81.575, 2<D<D, GridLines → NoneD

h Graphics h

f4 = Show@g4, Graphics@8Text@"HdL", 80.15, 38<D, Text@"0.01", 81.8, 40<D,
Text@"0.1", 81.575, 14<D, Text@"1", 81.575, 5.9<D<D, GridLines → NoneD

h Graphics h

Show@GraphicsArray@88f1, f2<, 8f3, f4<<DD

h GraphicsArray h

H∗∗ Sh
¯̄̄ ¯̄

 A∗= "######2cccc
π

 h HeL λ Ht∗,eL Pe1ê2 ∗∗L

Clear@h, λ, λ1D;
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h@eD =
1

ccccccccccè!!!!
2

 i
k
jjj‡

0

π

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD Åθy
{
zzz

1ê2

;

Simplify@%, e > 0D

$%%%%%%2
cccc
3 &'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

e3
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e + e3 +

è!!!!!!!!!!!!!1 − e2 ArcCotA"#################−1 + 1ccccce2 E

H∗∗ λ He,t∗L= λ1 HeL ‡
0

π
HSin@θDL3
ccccccccccccccccccccè!!!!!!!

φ∗
 Åθ ∗∗L

V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD;

Simplify@%, e > 0D

e3 Sin@θD3
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e + e3 +

è!!!!!!!!!!!!!1 − e2 ArcCotA"#################−1 + 1ccccce2 E

H∗∗ λ@e_,t∗ _D=
‡

0

π
V∗@θ,eD HR∗@θ,eDL2  d∗@θ,eDcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!

φ∗
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

πV∗@θ,eD HR∗@θ,eDL2 d∗@θ,eD ÅθM1ê2 =

e3
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e+e3+

è!!!!!!!!!!!!!
1−e2 ArcCotA$%%%%%%%%%%%%%%%%%%%−1+

1
cccccccc
e2 E

 ‡
0

π HSin@θDL3
cccccccccccccccccccccccè!!!!!!!

φ∗
 Åθ

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

πV∗@θ,eD HR∗@θ,eDL2 d∗@θ,eD ÅθM1ê2 ∗∗L

λ1@e_D =

e3
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e+e3+

è!!!!!!!!!!!!
1−e2 ArcCotA$%%%%%%%%%%%%%%%%%−1+ 1ccccccc

e2 E
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

π
V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD ÅθM1ê2

;

Simplify@%, e > 0D

1
cccc
4
è!!!3 e3ê2

&'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
1

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
−e + e3 +

è!!!!!!!!!!!!!1 − e2 ArcCotA"#################−1 + 1ccccce2 E

H∗∗ Plot Fig 4.4 ∗∗L

Clear@y, λ, gp, gp1D;

λ@e_, τ_D =
NIntegrateA V∗@θ,eD HR∗@θ,eDL2  d∗@θ,eDccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!!!!!!!!!!!!!!!

φ∗@θ,e,τD
, 8θ, 0, π<E

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

π
V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD ÅθM1ê2

;
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y@e_, τ_D = $%%%%%%2
cccc
π

 h@eD λ@e, τD;

gp =

LogLogPlotA8y@10−5, τD, y@0.5, τD, y@0.9, τD, y@0.99, τD<, 8τ, 10−3, 10<, Frame → True,

FrameLabel → 9FontForm@"t∗", 8"Times", 14<D, FontFormA"
Sh
¯̄̄ ¯̄

 A∗

cccccccccccccc
Pe1ê2

", 8"Times", 14<E=,

RotateLabel → False, AspectRatio → 3ê4,
PlotDivision → 1000, MaxBend → 1, PlotRange → AllE

h Graphics h

gp1 = Show@gp, Graphics@8Text@"0", 8−2, 0.68<D,
Text@"0.5", 8−2, 0.87<D, Text@"0.9", 8−2, 1.08<D, Text@"0.99", 8−2, 1.42<D<DD

h Graphics h

H∗∗ short time ∗∗L

Clear@A1, λD;

H∗∗ λ@e_,t∗ _D=
‡

0

π
V∗@θ,eD HR∗@θ,eDL2  d∗@θ,eDcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!

φ∗
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

πV∗@θ,eD HR∗@θ,eDL2 d∗@θ,eD ÅθM1ê2 ∗∗L

A1 = Normal@Series@φ∗@θ, e, τD, 8τ, 0, 1<DD;

λ@e_, t∗ _D =
‡

0

π
V∗@θ,eD HR∗@θ,eDL2 d∗@θ,eDccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!

A1
 Åθ

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
2 IŸ0

π
V∗@θ, eD HR∗@θ, eDL2 d∗@θ, eD ÅθM1ê2

;

FullSimplify@%D

è!!!3 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%− e3
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccè!!!!!!!!!!!!1−e2 I"#################−1+ 1ccccccc

e2 e2−ArcCotA"#################−1+ 1ccccccc
e2 EM

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

2 $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%e6 τccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
H1−e2L1ê3 I"#################−1+ 1ccccccc

e2 e2−ArcCotA"#################−1+ 1ccccccc
e2 EM Ie è!!!!!!!!!!!!1−e2 −ArcCotA"#################−1+ 1ccccccc

e2 EM
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