
ADVANCED SIMILARITY QUERIES AND THEIR APPLICATION
IN DATA MINING

Xia Chenyi

NATIONAL UNIVERSITY OF SINGAPORE
2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADVANCED SIMILARITY QUERIES AND THEIR APPLICATION
IN DATA MINING

Xia Chenyi
(Bachelor of Engineering)

(Shanghai Jiaotong University, China)

A THESIS SUBMITTED
FOR THE DEGREE OF DOCTOR OF PHILOSOPY

DEPARTMENT OF COMPUTER SCIENCE
SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE
2005

iii

Summary

This thesis studies advanced similarity queries and their application in knowledge dis-

covering and data mining. The similarity queries are important in various database

systems such as multimedia, biological, scientific and geographic databases. In these

databases, data are usually represented by d-dimensional feature vectors. The similar-

ity of two data points is measured by the distance between two feature vectors. In this

thesis, two variants of similarity queries - the k-Nearest Neighbor join (kNN join) and

the Reverse k-Nearest Neighbor query (RkNN query) have been closely investigated and

efficient algorithms for their processing are proposed. Furthermore, as one illustration of

the importance of such queries, a novel data mining tool - BORDER which is built upon

the kNN join and utilizes a property of the reverse k-nearest neighbor is proposed.

The kNN join combines each point of one dataset with its kNNs in the other dataset.

It facilitates data mining tasks such as clustering and classification and is able to pro-

vide more meaningful query results than just the range similarity join. In this thesis,

an efficient kNN join algorithm, Gorder (theG-orderingkNN join method) is proposed.

Gorder is a block nested loop join method which achieves its efficiency by sorting data

into theG-order that enables effective join pruning, data blocks scheduling and distance

computation filtering and reduction. It utilizes atwo-tier partitioning strategyto opti-

mize I/O and CPU time separately and reduces distance computational cost by pruning

redundant computation based the distance of fewer dimensions. It does not require an

iv

index for the source datasets and is efficient and scalable with regard to both the dimen-

sionality and the size of the input datasets. Experimental studies on both synthetic and

real-world datasets are conducted and presented. The experimental results demonstrate

the efficiency and the scalability of the proposed method, and confirm the superiority of

the proposed method to the previous solutions.

The Reverse k-Nearest Neighbor (RkNN) query aims to find all points in a dataset

that have the given query point as one of their k-nearest neighbors. Previous solutions are

very expensive when data points are in high dimensional spaces or the value ofk is large.

In this thesis, an innovativeestimation-basedapproach called ERkNN (the estimation-

based RkNN search) is designed. ERkNN retrieves RkNN candidates based on thelocal

kNN-distance estimationmethods and verifies the candidates using the efficientaggre-

gated range query. Two local kNN-distance estimation methods, the PDE method and

the kDE method, are provided and both work effectively on uniform as well as skewed

datasets. By employing the effective estimation-based filtering strategy and the efficient

refinement procedure, ERkNN outperforms previous methods significantly and answers

RkNN queries in high-dimensional data spaces and of large values ofk efficiently and

effectively.

To the end, we show how the kNN join and RkNN query can be utilized for data min-

ing. We introduce a novel data mining tool - BORDER (a BOundaRy points DEtectoR)

for effective boundary point detection. Boundary points are data points that are located

at the margin of densely distributed data (e.g. a cluster). The knowledge of boundary

points can help in data mining tasks such as data preparation for clustering and classifica-

tion. BORDER employs the state-of-the-art kNN join technique Gorder and makes use

of a property of the RkNN. Experimental study demonstrates BORDER detects bound-

ary points effectively and can be used to improve the performance of clustering and

classification analysis considerately.

v

In summary, the contributions of thesis is that we have successfully provided efficient

solutions to two types of advanced similarity queries - the kNN join and the RkNN query

and illustrated their application in data mining with a novel data mining tool - BORDER.

We hope that ongoing research in similarity query processing will continue to improve

the query performance and put forward more abundant data mining tools for users.

vi

Acknowledgements

”In every end, there is a beginning. In every beginning, there is an end. In the middle,

there is a whole mess of stuff.” This describes accurately my PhD candidature time, a

very precious and memorable period of my life, in which there is an end and there is a

beginning, in which there are happiness and joyfulness and also depression and sadness,

in which the most precious and wonderful person in my life I was given, in which the

most important and joyous transformation of my life happened, during which I have met

people of various types and learned different knowledge from them, and during which

the thesis has been worked on and is finally materialized. I am thankful to the One who

gives me this epoch of life and all who have shared this period of life with me and helped

me in all kinds of ways.

First, I would like to express my thanks to my supervisor, Professor Ooi Beng Chin

and Dr. Lee Mong Li and Professor Wynne Hsu. I am thankful to their extraordinary

patience on me, their guidance and all kinds of supports which they have given me gen-

erously. I also want to thank the professors I have worked with, Professor Lu Hongjun,

Dr. Anthony Tung and Dr. David Hsu, who gave me lots of help ranging from refining

ideas to drafting and finalizing the papers.

To my beloved parents and sister, together with my best friend, who are always trust-

ing me and having confidence in me, always caring me and missing me, and always

encouraging me and supporting me, I am longing to give them a tight and warm embrace

vii

to express my unspeakable gratitude toward them.

Finally, I would like to thank all my colleagues of database and bioinformatics labo-

ratories for their help and friendship. We have not only worked together but also shared

our leisure time together. And I hope our friendship endures in our lives.

This thesis contains three pieces of the work that I have done as a PhD candidate and

have been accepted by VLDB 2004, CIKM 2005 and TKDE respectively. I dedicate the

thesis to the period of life when the thesis has been worked on, as a memorization of the

end and the beginning.

Contents

Summary iii

Acknowledgements vi

1 Introduction 2

1.1 Similarity Queries . 3

1.1.1 Data Representation . 3

1.1.2 Similarity . 4

1.1.3 Range Query . 5

1.1.4 kNN Query . 6

1.1.5 Range Similarity Join . 6

1.1.6 kNN Similarity Join . 7

1.1.7 RkNN Query . 7

1.1.8 Classification of the Similarity Queries 9

1.2 Motivation . 10

1.2.1 Motivation of the Study of the kNN Join 10

1.2.2 Motivation of the study of the RkNN Query 13

1.2.3 Motivation of BORDER . 15

1.3 Contributions . 17

1.4 Organization . 19

viii

ix

2 Related Work 20

2.1 Index Techniques . 20

2.2 Basic Similarity Queries with Index 23

2.2.1 The R-tree . 23

2.2.2 Algorithms for the Range Query 25

2.2.3 Algorithms for the kNN Query 27

2.3 Algorithms for the Range Similarity Join 31

2.3.1 Index-based Similarity Range Join Algorithms 32

2.3.2 Hash-based Similarity Range Join Algorithms 37

2.3.3 Sort-based Similarity Range Join Algorithms 39

2.4 Algorithms for kNN Similarity Join 41

2.4.1 Incremental Semi-distance Join 42

2.4.2 Mux kNN Join . 42

2.5 Algorithms for the RkNN Query . 43

2.5.1 Pre-computation RkNN Search Algorithm 44

2.5.2 Space Pruning RkNN Search algorithms 45

2.6 Summary . 49

3 Gorder: An Efficient Method for kNN Join Processing 50

3.1 Introduction . 50

3.2 Properties of the kNN Join . 52

3.3 Gorder . 54

3.3.1 G-ordering . 55

3.3.2 Scheduled Block Nested Loop Join 60

3.3.3 Distance Computation . 65

3.3.4 Analysis of Gorder . 68

3.4 Performance Evaluation . 70

x

3.4.1 Study of Parameters of Gorder 71

3.4.2 Effect of k . 75

3.4.3 Effect of Buffer Size . 78

3.4.4 Evaluation Using Synthetic Datasets 80

3.5 Summary . 85

4 ERkNN: Efficient Reverse k-Nearest Neighbors Retrieval with Local kNN-

Distance Estimation 86

4.1 Introduction . 86

4.2 Properties of the RkNN Query . 88

4.3 Estimation-Based RkNN Search . 91

4.3.1 Local kNN-Distance Estimation Methods 92

4.3.2 The Algorithm . 96

4.3.3 Accuracy Analysis . 103

4.3.4 Cost Analysis . 108

4.4 Performance Study . 110

4.4.1 Study of kNN-Distance Estimation 112

4.4.2 Study of the Recall . 113

4.4.3 Study on Real Dataset . 115

4.4.4 Study on Synthetic Datasets 118

4.5 Summary . 121

5 BORDER: A Data Mining Tool for Efficient Boundary Point Detection 122

5.1 Introduction . 122

5.2 Preliminary Study . 125

5.3 BORDER . 128

5.3.1 kNN Join . 129

xi

5.3.2 RkNN Counter . 130

5.3.3 Sorting and Output . 130

5.3.4 Cost Analysis . 130

5.4 Performance Study . 132

5.4.1 On Hyper-sphere Datasets . 134

5.4.2 On Arbitrary-shaped Clustered Datasets 139

5.4.3 On Mixed Clustered Dataset 139

5.4.4 On the Labelled Dataset for Classification 141

5.5 Conclusion . 142

6 Conclusion 144

6.1 Thesis Contributions . 144

6.2 Future Works . 146

6.2.1 Microarray Data . 146

6.2.2 Sequential Data . 146

6.2.3 Stream Data . 147

List of Figures

1.1 An example of mono-chromatic RkNN query. 8

1.2 An illustration of resource allocation with quota limit. 13

1.3 A preliminary study. 16

2.1 An R-tree Example . 22

2.2 A Query Example . 25

2.3 An RSJ Join Example . 31

2.4 Multipage Index (MuX) . 35

2.5 Replication of GESS. 40

2.6 Illustration of SAA algorithm. 46

2.7 Illustration of SRAA algorithm. 47

2.8 Illustration of half-plane pruning. 48

3.1 Illustration of G-ordering. 56

3.2 Illustration of the active dimension of the G-order data 59

3.3 Illustration of MinDist and MaxDist. 62

3.4 Effect of grid granularity (Corel dataset) 72

3.5 Effect of sub-block size (Corel dataset) 74

3.6 Effect of buffer size for R data (Corel dataset) 76

3.7 Effect ofk (Corel dataset) . 77

3.8 Effect of buffer size (Corel dataset) . 79

xii

xiii

3.9 Effect of dimensionality (100k clustered dataset) 81

3.10 Effect of data size (16-dimensional clustered datasets) 82

3.11 Effect of relative size of datasets (16-dimensional clustered datasets). . . 83

4.1 Query aggregation and illustration of pruning. 100

4.2 Illustration of using triangular inequality property to reduce distance

computation. 101

4.3 Points within the shade area are false misses. 104

4.4 Density distribution of estimation errors of Zipf dataset (dim=8,K=15,

k=8) . 105

4.5 Illustration of estimation error distribution after global adjustment. . . . 107

4.6 Expected aggregated range. 108

4.7 Comparison of kNN-distance Estimation Methods 111

4.8 Study of recall of ERkNN . 114

4.9 Effect ofk (Corel dataset) . 116

4.10 Number of distance computation on Corel dataset 117

4.11 Effect of buffer size on Corel dataset 118

4.12 Effect of Data Dimensionality (Clustered Dataset, 100K) 119

4.13 Effect of Data Size (Clustered Dataset, Dim=16) 120

5.1 Preliminary Studies. 126

5.2 kNN graph vs. RkNN graph . 127

5.3 Overview of BORDER . 128

5.4 Data distribution of Dataset IV on each dimension. 133

5.5 Study on hyper-sphere datasets. 135

5.6 Incremental output of detected boundary points of dataset 1. 137

5.7 Study on other datasets. 138

1

5.8 Study on mixed clustered datasets. 140

Chapter 1

Introduction

Similarity queries are important operations for databases and have received much at-

tention in the past decades. They have numerous applications in various areas such as

Multimedia Information System [36, 47, 96], Geographical Information Systems [92,

97, 98, 48], Computational Biology research [64, 63], String and Time-Series Analysis

applications [110, 51, 104, 132], Medical Information Systems [80], CAD/CAM appli-

cations, Picture Archive and Communication Systems (PACS) [39, 94] and data mining

tasks such as clustering and outlier detection [52, 117, 130, 55, 22, 23, 75].

A similarity query operates on a dataset containing a collection of objects (e.g., im-

ages, documents and medical profiles). Each object in the dataset is represented by a

multi-dimensional feature vector extracted by feature extraction algorithms [50]. For ex-

ample, the features of an image can be the color histograms describing the distribution

of colors in the image [46]. The similarity or dissimilarity between two objects is deter-

mined by a distance metric, e.g., Euclidean distance. There are five types of similarity

queries: the range query, the k-nearest neighbor (kNN) query, the range similarity join,

the kNN similarity join and the reverse k-nearest neighbor (RkNN) query. According

to their computation complexities, they can be categorized into two groups - thebasic

similarity querywhich includes the range query and the kNN query, and theadvanced

similarity querywhich includes the range similarity join, kNN similarity join and the

2

3

RkNN query.

In this thesis, we examine the problem of two advanced similarity queries - the kNN

similarity join and the RkNN query. Two novel algorithms - Gorder for efficient kNN

join and ERkNN for approximate RkNN search are proposed.

Moreover, we conduct an initial exploration of utilizing the kNN similarity join and

RkNN query for the data mining tasks. An interesting data mining tool - BORDER has

been devised. BORDER is built on top of the kNN join algorithm Gorder utilizing the

property of the reverse k-nearest neighbor. It can find boundary points efficiently and

effectively.

In the following sections, we first define the similarity queries and then present the

motivations of our study. At last, we give a summarization of the contribution of the

study and present the outline of the thesis.

1.1 Similarity Queries

In this section, the basic concepts of the similarity queries are introduced. We first

present formally the concepts ofdatasetand thesimilarity and then the definitions of

the range query, the k-nearest neighbor (kNN) query, the range similarity join, the kNN

similarity join and the reverse k-nearest neighbor (RkNN) query and categorize them

according to their search complexity.

1.1.1 Data Representation

In similarity search applications, objects are feature-transformed into vectors with fixed

length. Therefore, a dataset is a set of feature vectors (or points) in ad-dimensional data

spaceD, whered is the length of the feature vector and the data spaceD ⊆ Rd. Each

data pointp in a dataset is in the form

4

p =<x1, ..., xd >.

Definition 1.1.1 (Dataset): A dataset S is a set ofN points in a d-dimensional data

space D,

S = {p1, ..., pN}
pi ∈ D, i = 1, ..., N, D ⊆ Rd.

N is number of objects in the dataset or the cardinality of the dataset.

1.1.2 Similarity

Similarity is measured by the distance between the feature vectors of two objects ac-

cording to the given distance metric. The distance metric is application-dependant -

one may choose different ways of measuring distance that are appropriate for different

applications. The distance metric always satisfies the following conditions:

• Given two data pointsp andq (p 6= q), Dist(p, q) > 0;

• Given any pointp, Dist(p, p) = 0;

• Given two data pointsp andq, Dist(p, q) = Dist(q, p).

The commonly-used distance metrics are:

• Lρ metric:

DistLρ(p, q) =
(∑d

i=1 |p.xi − q.xi|ρ
)1/ρ

, 1 ≤ ρ ≤ ∞

Particularly,L1 is called the Manhattan distance. It is also known as city block

distance, boxcar distance, or absolute value distance. The distance between two

data points are the sum of the absolute differences between coordinates of a pair

of objects. Queries using Manhattan metric are rhomboid shaped.

5

DistManhattan(p, q) =
∑d

i=1 |p.xi − q.xi|

L2 is the Euclidean distance, which is the most widely applied distance metric. It

is the straight line distance between two points. Queries using Euclidean distance

are hyper-spheres.

DistEuclidean(p, q) =
(∑d

i=1 |p.xi − q.xi|2
)1/2

L∞ is called the maximum metric. Queries using maximum metric are hypercubes.

Distmaximum(p, q) = max(|p.xi − q.xi|), 1 ≤ i ≤ d

• WeightedLρ metric:

DistweightedLρ(p, q) =
(∑d

i=1 wi · |p.xi − q.xi|ρ
)1/ρ

, 1 ≤ ρ ≤ ∞

wherewi is the weight assigned to dimensioni. WeightedLρ metric is a gener-

alizedLρ distance. There are weighted Manhattan distance, weighted Euclidean

distance and weighted maximum distance correspondingly.

In the rest of the thesis, we use the most commonly used metric - Euclidean distance

for demonstration purposes. The proposed methods can be extended to other distance

metrics straightforwardly.

1.1.3 Range Query

A range query specifies a query ranger in the predicate clause and asks questions like

”What are the set of objects whose distance (dissimilarity) to the given query object are

within r ?”

6

Definition 1.1.2 (Range Query): Given a datasetS, a query objectq, a positive realr

and a distance metricDist(), the range query, denoted asRange(q, r, S), retrieves all

objectsp in S such thatDist(p, q) ≤ r.

Range(q, r, S) = {p ∈ S|Dist(p, q) ≤ r}

There is a special range query called the window query. The window query specifies

a rectangular region which is parallel to the axis in data space and selects all data points

inside of the hyper-rectangle. The window query can be regarded as a range query using

the weighted maximum metric, where the weightswi represent the inverse of the side

lengths of the window.

1.1.4 kNN Query

The kNN query specifies a rank parameterk in the predicate clause and asks questions

like ”What are thek objects that are closest to or most similar to the given query object?”

Definition 1.1.3 (k-Nearest Neighbor Query) Given a datasetS, query objectq, a

positive integerk and a distance metricDist(), k-nearest neighbor query, denoted as

kNN(q, S), retrieves thek closest objects toq in R.

kNN(q, S) = {A ⊆ S|∀p ∈ A, p′ ∈ S − A, Dist(p, q) ≤ Dist(p′, q) ∧ |A| = k}

1.1.5 Range Similarity Join

The range similarity join (range join in short) is the set-oriented range query. The range

join has a set of query objects (the query set R) and retrieves objects which are within

ranger from the dataset S for each point in query set R. The result of a range join is a set

of object pairs(p, q) such thatDist(p, q) ≤ r, wherep is from data set S andq is from

query set R, . Query set R and the data set S can be the same dataset. In this case, the

range join is called the self range join.

7

Definition 1.1.4 (Range Join)Given one data set S and one query set R, a realr and

a distance metricDist(), the kNN join, denoted asR ./r S, returns pairs of points

(p, q) such thatq is from the outer query set R andp from the inner data set S, and

Dist(p, q) ≤ r.

R ./r S = {(p, q)|q ∈ R, p ∈ S, Dist(p, q) ≤ r}

1.1.6 kNN Similarity Join

The k-nearest neighbor similarity join (kNN join in short) is the set-oriented kNN query

and combines each point of the query (outer) set R with its k-nearest neighbors from the

inner data set S defined firstly in [18]. When R is equal to S, the kNN join is called the

self kNN join[20].

Definition 1.1.5 (kNN Join) Given one point dataset S and one query dataset R, an

integerk and a distance metricDist(), the kNN join, denoted asR nkNN S, returns

pairs of points(p, q) such thatq is from the outer query set R andp from the inner data

set S, andp is one of the k-nearest neighbors ofq.

RnkNN S = {(p, q)|q ∈ R ∧ p ∈ S ∧ p ∈kNN(q, S)}

1.1.7 RkNN Query

The Reverse k-Nearest Neighbors (RkNN) query retrieves all objects in a datasetS that

have the given query pointq as one of theirk nearest neighbors. The RkNN problem

was first introduced in [78] and was also known as the influence set problem. The RkNN

query has the mono-chromatic case and the bi-chromatic case.

In the mono-chromatic case, there is only one input dataset - the point datasetS.

8

p

7p

6p5p

8

1

2p

p

p3

p4

Figure 1.1: An example of mono-chromatic RkNN query.

Definition 1.1.6 (Mono-chromatic Reverse k-Nearest Neighbor Query)Given a dataset

S, query objectq, a positive integerk and a distance metricDist(), mono-chromatic

reversek-nearest neighbor query, denoted asRkNN(q, S), retrieves all objectsp in S

such thatDist(p, q) ≤ Dist(p, q′), for ∀ q′ ∈ kNN(p, S), wherekNN(p, S) are the

k-nearest neighbors of point p in dataset S.

RkNN(q, S) = {p|p ∈ SDist(p, q) ≤ Dist(p, q′),∀ ∧ q′ ∈ kNN(p, S)}.

In the bi-chromatic case, the RkNN query has two input datasets - the point dataset

S and the query datasetR (also calledsite dataset in [115]). The query datasetR is

different from the point datasetS. The query pointq is from the site dataset R.

Definition 1.1.7 (Bi-chromatic Reverse k-Nearest Neighbor Query)Given a point

datasetS, a query datasetR, a query objectq ∈ R, a positive integerk and a distance

metricDist(), bi-chromatic reversek-nearest neighbor query, denoted asRkNN(q, R, S),

retrieves all objectsp in S such thatDist(p, q) ≤ Dist(p, q′), for ∀ q′ ∈ kNN(p,R),

wherekNN(p,R) are the k-nearest neighbors of point p in dataset R.

9

RkNN(q, R, S) = {p|p ∈ SDist(p, q) ≤ Dist(p, q′), ∀ ∧ q′ ∈ kNN(p,R)}.

Figure 1.1 illustrates an example of the mono-chromatic RkNN query. Let dataset

S = {p1, p2, ..., p8}, p2 be the query point andk=2. Sincep2 is one of the 2-nearest

neighbors ofp1, p3 andp4, R2NN(p2, S) = {p1, p3, p4}.

1.1.8 Classification of the Similarity Queries

Both the range query and the kNN query are classified as the basic similarity query

because of their comparatively low query cost. The naive solution to the range query

(the sequential scan method) scans the dataset S sequentially, computes the distance of

each object to the query object and then outputs the objectsp such thatDist(p, q) ≤ r.

The naive solution to the kNN query maintains a sorted array of sizek to store the k-

nearest neighbor candidates. Similarly, it scans the dataset S sequentially. When it finds

an objectp that is closer to the query objectq than the current k-th nearest neighbor

candidate, it insertsp into the sorted array and removes the current k-th nearest neighbor

from the candidates set. So both query is upper bounded byO(N) and can be solved

in O(N) time by scanning the point dataset S sequentially.N is the cardinality of point

dataset S. By utilizing the index techniques which will be introduced in Chapter 2, the

complexity of both queries can be reduced toO(logN) [16].

The range join and the kNN join are much more expensive than their single query

counterparts. Naive approach to answer a range join or a kNN join performs the range

query or the kNN query for each point in the query set R. This involvesM (M is the

cardinality of R) times scanning of the dataset S, which introduces tremendous distance

computation and disk accesses. The query complexity of both the range join and the

kNN join is upper-bounded by theO(NM), whereN is the cardinality of S andM is

the cardinality of R. For the self range join or the self kNN join, their query complexity

is upper-bounded by theO(N2), whereN is the cardinality of S. Therefore, both queries

10

are categorized as the advanced similarity query.

Although the RkNN query only has one query point, it is also categorized as the

advanced similarity query because of its high computation complexity. Note that the k-

nearest-neighbor relation is not symmetric, that is, ifp is one ofq’s k-nearest neighbors,

q is not necessary to be one ofp’s k-nearest neighbors. Therefore, the RkNN query is

much more complex than the kNN query. The naive solution for RkNN search has to

first compute the k-nearest neighbors for each pointp in the dataset S (for the mono-

chromatic RkNN query) or R (for the bi-chromatic RkNN query). Then pointsp whose

distance from the query pointDist(p, q) is equal or less than the distance betweenp

and its k-th nearest neighbor can be determined asq’s reverse k-nearest neighbors. The

complexity of the first step is equal to the kNN join, so the complexity is upper-bounded

by O(N2) for mono-chromatic case andO(NM) for the bi-chromatic case. The second

step is a sequential scan of the dataset S. Therefore, it is also categorized as the advanced

similarity query.

1.2 Motivation

In the section, we describe the interesting applications of the kNN join, the RkNN query

and a specially property of the number of a point’s reverse k-nearest neighbors, which

motivated our research.

1.2.1 Motivation of the Study of the kNN Join

The kNN-join, with its set-oriented nature, can be used to efficiently support many im-

portant data mining tasks which have wide applications. In particular, it is identified that

many standard algorithms in almost all stages of knowledge discovery process can be

accelerated by including the kNN join as a primitive operation. For examples,

11

• Outlier analysis. Outlier analysis is to find out data objects that do not comply

with the general behavior or model of the data [52]. It has important applica-

tions such as the fraud detection (detecting malicious use of credit card or mobile

phone), customized marketing (identifying the spending behavior of customers

with extremely low or extremely high incomes) or medical analysis (finding un-

usual responses to various medical treatments) [52]. In the first step of LOF [23](a

density-based outlier detection method), the k-nearest neighbors for every point in

the input dataset are materialized. This can be achieved by a single self kNN-join

of the dataset.

• Data Classification. Data classification predicts the new data objects’ categorical

labels according to the model built according to a set of objects with known cate-

gorical labels (the training set). The knowledge of the new objects’ category can

be used for making intelligent business decisions. For example, it can be used to

analyze the bank loan applicants to identify the loan is either safe or risky. It also

can be used in the medical expert system to diagnose the patients. The k-nearest

neighbor classifier is one of the simplest but effective classification methods which

identifies the new object’s category by examining that object’s k-nearest neighbors

in the training set. The unknown sample is assigned the most common class among

its k-nearest neighbors. Given a set of unlabelled objects (the testing set), the kNN

join can be used to classify them efficiently by joining the testing set with the

training set.

• Data Clustering. Clustering is the process of grouping a set of physical or ab-

stract objects into classes of similar objects so that important data distribution

patterns and interesting correlations among data attributes can be identified [52].

It is also known as theunsupervised learningand has wide applications such as

pattern recognition, image processing, market or customer analysis and biological

12

research. The kNN join can be used in many clustering algorithms to accelerate

the process.

In each iteration of the well-known k-means clustering process [54], the nearest

cluster centroid is computed for each data point. A data point is assigned to the

its new nearest cluster if the previously assigned cluster centroid is different from

the currently computed one. A kNN join withk = 1 between the data points and

the cluster centroids can thus be applied to find all the nearest centroid for all data

points in one operation.

In the hierarchical clustering method called Chameleon [72], a kNN-graph (a

graph linking each point of a dataset to its k-nearest neighbors) is constructed

before the partitioning algorithm is applied to generate clusters. The kNN-join can

also be used to generate the kNN-graph.

Compared to the traditional point-at-a-time approach that computes the k-nearest

neighbors for all data points one by one, the set oriented kNN join can accelerate the

computation dramatically [19].

However, after the kNN join has been proposed recently in [20], to the best of our

knowledge, the MuX kNN join [20, 19] is the only algorithm that has been specifically

designed for the kNN-join. The MuX kNN join algorithm is an index-based join algo-

rithm and MuX [21] is essentially an R-tree based method. Therefore, it suffers as an

R-tree based join algorithm. First, like the R-tree, its performance is expected to degen-

erate with the increase of data dimensionality. Second, the memory overhead of the MuX

index structure is high for large high-dimensional data due to the space requirement of

high-dimensional minimum bounding boxes. Both constraints restrict the scalability of

the MuX kNN-join method in terms of dimensionality and data size.

As a consequence, new algorithms for efficient support of the kNN join in high-

dimensional spaces are highly desired. In this thesis, we design Gorder (the G-ordering

13

A

qB

C

E

D

Figure 1.2: An illustration of resource allocation with quota limit.

kNN join) which is based on the block nested loop join and exploits optimization tech-

niques such as sorting, data blocks scheduling, distance computation filtering and reduc-

tion to improve the query efficiency.

1.2.2 Motivation of the study of the RkNN Query

The RkNN query has received much attention in the recent years because of its important

applications in profile-based marketing, information retrieval, decision support systems,

document repositories and management of mobile devices [78, 115, 125, 114, 76]. For

examples,

• Decision support. The knowledge of the reverse k-nearest neighbors enables a

decision maker to arrive at the best trade-off decisions. For example, when two

banks are to be merged, many branches have to be closed and services have to be

redistributed. The decision as to which branches to close and how to reallocate the

services requires the knowledge of the existing customers who view the branch

among their topk preferred branches. For any two branches, if there is a big

overlap between two such sets of customers, one of the branches can possibly be

closed without sacrificing the quality of service to the customers.

14

• Profile-based Marketing. The RkNN query helps a company to have insights into

the attractiveness of the products/services offered, and thus enable the tailored

marketing. For example, a telecommunication company may offer many types

of package targeting different groups of consumers. The knowledge that which

customers will find the package the most suitable plan can assist the marketing de-

partment in recommending the most appropriate package tailored to the customers.

These customers form the influence set of the package and can be determined by

an RkNN query based on the the distance between the profiles of the customers

and the feature vector representing the new package.

• Resource Allocation with Quota Limit. Consider Figure 1.2. Suppose each un-

filled circle ′◦′ denotes a resource with a quota limit of 3. In other words, each

resource can serve at most 3 filled points′•′ which denote clients. If we wish to

determine which recourse should be assigned to serveq, we may do so by look-

ing for the nearest resources ofq, e.g. the 3 nearest resources A, B, C. However,

checking for quota limit, we realize that none of the A,B, nor C, can serveq be-

cause they each have 3 nearest neighbors that they are serving already. Instead,

issuing a reverse 3-nearest neighbor query on the resource points, immediately we

know D, E will considerq as one of their 3-nearest neighbors. Hence, we can

assign either D or E to serveq.

• Risk profiling in medical system [61]. It is often necessary to know the risk profile

of each patient in order to recommend a most effective care strategy for the pa-

tient. One way to determining the risk profile of a patient is to classify the patient

into a risk group according to the characteristics of the patient and the features

characterizing different risk groups using the RkNN query.

15

A number of methods have been developed for the efficient processing of RkNN

queries. They can be divided into two categories:pre-computationandspace pruning.

Pre-computationmethods [78, 125] pre-compute the nearest neighbors of each point

in the datasets and store the pre-computed information in hierarchical structures. This

approach cannot answer an RkNN query unless the corresponding k-nearest neighbor

information is available.Space pruningmethods such as [112, 116, 114] utilize the

geometry properties of RNN to find a small number of data points as candidates and

then verify them with NN queries or range queries. However, these methods are all very

expensive when data dimensionality is high or when the valuek is large. Designing ef-

ficient search algorithm for the RkNN query in high-dimensional spaces is challenging

and interesting. In this thesis, we overcome the difficulty of the RkNN query with es-

timation techniques. The ERkNN - an estimation-based RkNN search algorithm is put

forward.

1.2.3 Motivation of BORDER

Data mining, also known as knowledge discovery in database, is the process of finding

new and potentially useful knowledge from data. Advancements in information tech-

nologies have led to the continual collection and rapid accumulation of data in reposito-

ries. Turning such data into useful information and knowledge is desired. Consequently,

numerous data mining technologies, including data cleaning and preparation techniques,

data classification, association rules analysis, data clustering, and outlier analysis [52],

have been proposed in the recent years.

In this thesis, we propose a novel data mining tool - BORDER for effective boundary

point detection which is based on the finding that data points that have much fewer

reverse k-nearest neighbors tend to locate at the margin of densely distributed data. As

illustrated in Figure 1.3 (a), there is a 2-dimensional dataset with quadrangle-shaped

16

(a)

(b)

Figure 1.3: A preliminary study.

17

clusters. In Figure 1.3 (b), we plot the points whose reverse 50-nearest neighbors are

fewer than 30 points. The plot shows that those points having fewer reverse k-nearest

neighbors clearly define the boundaries of the clusters.

Boundary points are potentially useful in data mining applications since first, they

represent a subset of population that are at the verge of the densely-distributed region

and possibly straddle two or more classes. For example, this set of points may denote

a subset of population that should have developed certain diseases, but somehow they

do not. Special attention is certainly warranted for this set of people since they may

reveal some interesting characteristics of the disease. Secondly, the knowledge of these

points is also useful for data mining tasks such as classification and clustering [67]

since these points are most likely to be mis-classified and mis-clustered. Removing such

points before the classification or clustering analysis could improve the classification or

clustering results.

Motivated by the usefulness of boundary points in data mining and the interesting

observation of the relationship between the location of a point and its number of reverse

k-nearest neighbors, we design BORDER, a data mining tool which finds the boundary

points efficiently and effectively.

1.3 Contributions

The major contributions of this dissertation are three-fold:

1. A novel kNN-join algorithm, calledGorder(or the G-ordering kNN join method),

is proposed to answer the kNN join operation efficiently.Gorder is a block nested

loop join method which achieves its efficiency by sorting data based on an ordering

that enables effective join pruning, data blocks scheduling and distance computa-

tion filtering and reduction. It utilizes atwo-tier partitioning strategyto optimize

18

I/O and CPU time separately and reduces distance computational cost by pruning

redundant computation based the distance of fewer dimensions. It does not require

an index for the source datasets and is efficient and scalable with regard to both

the dimensionality and the size of the input datasets. Experimental studies on both

synthetic and real-world data sets are conducted and presented. The experimental

results demonstrate the efficiency and the scalability of the proposed method, and

confirm the superiority of the proposed method to the previous solutions.

2. An innovativeestimation-basedapproach called ERkNN (the estimation-based

RkNN search) is designed to handle RkNN queries in high-dimensional data spaces

and for large values ofk. ERkNN retrieves RkNN candidates based on thelocal

kNN-distance estimation(kNN-distance is the distance from a data point to its k-th

nearest neighbor) and verifies the candidates using an efficientaggregated range

query. Two local kNN-distance estimation methods, the PDE method and the

kDE method, are provided, which work effectively on both uniform and skewed

datasets. Employing the effective estimation-based filtering strategy and the ef-

ficient refinement procedure, ERkNN outperforms previous methods by a signif-

icant margin. Extensive experiments on various datasets proves that ERkNN re-

trieves the reverser k-nearest neighbors efficiently and accurately.

3. A novel data mining tool, BORDER (a BOundaRy points DEtectoR) is proposed

to detect boundary points. Boundary points are data points that are located at

the margin of densely distributed data (e.g. a cluster). The knowledge of bound-

ary points can help in data mining tasks such as data preparation for clustering and

classification. BORDER detects boundary points according to the finding that data

points that are located at the margin of densely distributed data tend to have much

fewer reverse k-nearest neighbors. It transforms the expensive set-oriented RkNN

query into the kNN join by utilizing thereversal-shipbetween the k-nearest neigh-

19

bor and the reverse k-nearest neighbor and employs the state-of-the-art kNN join

technique - Gorder. Experimental study shows that BORDER finds the boundary

points effectively. Moreover, the performance of the clustering and classification

analysis can be improved considerably by removing the boundary points in ad-

vance.

1.4 Organization

The rest of the thesis is arranged as follows:

• Chapter 2 presents a survey of related work of similarity queries with particular

focus on the kNN join and the RkNN query.

• Chapter 3 investigates the kNN join. Gorder, an efficient kNN join processing

algorithm that exploits sorting, data page scheduling and distance computation

filtering and reduction to reduce both I/O and CPU costs is proposed.

• In Chapter 4, we study the problem of the RkNN query . An innovativeestimation-

basedsolution -ERkNN (the estimation-based RkNN search) which can efficiently

handle RkNN queries in high-dimensional data spaces and for large values ofk is

provided.

• Chapter 5 presents BORDER - a data mining tool for boundary points detection.

We propose a novel method BORDER (a BOundaRy points DEtectoR) which em-

ploys the state-of-the-art kNN join technique and makes use of the property of the

RkNN.

• Chapter 6 concludes the thesis with a summary of our contributions and a discus-

sion of the future research.

Chapter 2

Related Work

In order to process similarity queries efficiently, numerous indexing techniques and

search algorithms have been proposed in the recent decades. In this chapter, we first

introduce the indexing techniques and algorithms for the basic similarity search with

index, and then review algorithms for the advanced similarity queries, i.e., the range

join, the kNN join and the RkNN query.

2.1 Index Techniques

Database Index is a mechanism to locate and access data within a database [1, 107,

91]. Given a dataset for similarity search, we build an index upon the feature vectors

(which are keys) of the input dataset first and then apply the similarity search algorithms.

Utilizing the index structures, the search algorithms can effectively locate data which are

highly likely to be the answers, prune away those that are surely not answers, and retrieve

data points that meet the query condition more efficiently. Numerous index structures

have been proposed. They can be classified into three classes: data partitioning methods,

space partitioning methods, and data transformation methods.

• Data partitioning methods: data partitioning methods group (or cluster) nearby

(similar) data points together and organize them in multi-layered hierarchical struc-

tures. The R-tree family [49, 10, 111, 12], the A-tree [109]), the MuX index [21],

20

21

the SS-tree [121], the M-tree [131, 29], and the SR-tree [73] all belong to this

category.

• Space partitioning methods: Space partitioning structures partition the data space

iteratively along predefined lines regardless of the distribution of data. Space par-

titioning methods include the multi-dimensional hashing [83, 34, 85, 43, 86], grid-

files [57, 95, 40, 120, 56, 14], kdB-trees [8, 9], hB-tree [89] etc.

• Data transformation methods: Data transformation methods transform the original

d-dimensional data into single attribute values (or codes) and then index them with

the one dimensional index structures such as B-trees [99] or simply stored them

in a flat file. Such methods include the pyramid tree [11], iminmax [100, 127,

101], iDistance [129, 128], the space filling curves [102, 35, 66, 93], and the VA-

file [119, 118].

Compared with the space partitioning methods, data partitioning methods are more

adaptive to the data distribution and work more efficiently on real life and skewed dis-

tributed datasets. However, in high-dimensional space, data partitioning structures are

seriously affected by thecurse of dimensionality[11] problem and a similarity search

based on an index could perform even worse than a simple search which scans the dataset

sequentially (called thesequential scan). The data transformation methods are usually

the most effective index methods for data of very high dimensionality.

Recently a number of dimensionality reduction techniques - the discrete fourier trans-

form (DFT) [5], the discrete wavelet transform (DWT) [82, 106, 122], the principal com-

ponent analysis (PCA) [53, 77, 71, 26] (also known as the single value decomposition)

have been proposed. Dimensionality reduction techniques reduce data dimensionality by

condensing the important information into a smaller number features. Some improved

indexing methods [30, 68] utilize dimensionality reduction techniques so that they are

22

p2
p3

p4

p6

p8

p9

p10

R1
R2

R3

R4
R5

R6

R7

p18
p5

p16

p19

p7
p20

p15

p11

p17

p13

p14

p12

R8

p1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

(a) Point Position

R3 R4 R5 R6 R7 R8

R1 R2

Internal

Root

Leafp2p14p6p17p16 p13p7p18p5p4p1

R1 R2

p3 p11 p20 p19 p8 p9 p10

R8

p15p12

R7R6R5R4R3

(b) Tree Structure

Figure 2.1: An R-tree Example

less affected by the problem of thecurse of dimensionalityand more scalable to high-

dimensional spaces.

The comprehensive surveys of the multidimensional index structures can be found

in [42, 16, 13, 126].

23

2.2 Basic Similarity Queries with Index

2.2.1 The R-tree

In the following discussions, we use the R-tree to illustrate the similarity search algo-

rithms with index. We first give a detailed description of the R-tree [49].

Figure 2.1 illustrates an R-tree example. The R-tree belongs to data partitioning

methods. As most of the other index structures, it is designed primarily for secondary

storage and each tree node in the hierarchical tree corresponds to a page of the secondary

storage. Nodes at the lowest level are called theleaf nodesor data nodes. Nodes at all

other layers of the tree are called thedirectory nodesor internal nodes. The only node at

the highest level of the tree is called theroot of the tree. An R-tree isheight-balanced,

i.e., the lengths of the paths from the root to all data nodes are identical. The length of a

path between the root and a data page is called the tree height.

Each entrye contained in the internal nodes are of the form of(Rect, pointer).

pointer points to a node underneath. The node is called thechild nodeof e. Rect is

a minimal bounding rectangle (MBR) that bounds the data objects in the subtree rooted

at the child note pointed bypointer. The data points (or feature vectors) are stored in

the data nodes of the R-tree.

The number of entries stored in every internal node of the R-tree has a lower bound

m and upper boundM (except the root which has no lower bound).M is called the

fanout of the tree. It is the maximal number of entries can be stored in an internal node

and can be derived from the predefined page size of the R-tree and the size of an entry.

M =
page size of the R-tree

size of an entry

24

m is defined to ensure efficient storage utilization.

m ¿ M

2

The R-tree allows inserting and deleting data points dynamically. When a new data

point is inserted into the tree, the insertion algorithm first routes the new data from the

root node to a leaf node by picking a child node that needs least enlargement of the MBR

to enclose the new data point. If the insertion causes overflow (i.e., the number of entries

in a node is greater than its capacity), the node will be split. To remove a data point, the

deletion algorithm traverses the tree to locate the leaf node containing the point and then

removes it from the node and shrinks the MBR. The deletion of a data point may cause

underflow (i.e., the number of entries stored in a node is smaller than the lower bound).

In this case, the node will be removed and all data points inside will be reinserted into

the tree.

The R-tree works effectively for data spaces of relatively small number of dimen-

sions. But its performance degrades rapidly when the number of data dimensions in-

creases. Variants methods have been proposed to improve the R-tree. The R*-tree [10]

employs theforced reinsertpolicy and a sophisticated node-splitting policy to improve

the storage utilization of the R-tree and minimize the combination of overlap between

bounding rectangles and their total area. TheR+-tree [111] uses clipping to prevent

overlap between bounding rectangle at the same tree level to overcome the problems as-

sociated with overlapping regions in the R-tree. The X-tree [12] introduces thesupern-

odewhich are of larger page size into the R*-tree. The A-tree [109] (Approximation

tree) replaces minimum bounding rectangles (MBRs) in the internal nodes with virtual

bounding rectangles (VBRs) which represents MBRs approximately and compactly and

thereby, increases the fanout of the tree and reduces the tree height.

Since the R-tree is the most fundamental hierarchical index structure, most similarity

25

MinDist

2

3
6

1

r

1

4
5

p8
6

7

p11

p9

p12

p10

R5

R

R

qR4
p

p3
p2

��
��
��
��

p

��

��

��

��

��
��

��

��

��

��

��
��

p
p p

R

R

Figure 2.2: A Query Example

query algorithms are developed upon it and they can be migrated to other hierarchical

index structures straightforwardly.

2.2.2 Algorithms for the Range Query

Search algorithms for the range query utilizing the R-tree traverses the tree in a branch-

and-bound manner. It starts from the root of the tree. Upon visiting an internal node

of the R-tree, the search algorithm calculates the MinDist (Definition 3.3.3) between

each entry inside and the query point and applies the following Pruning Strategy 2.2.1 to

decide whether the child node pointed by this entry should be visited.

Pruning Strategy 2.2.1 If MinDist(R, q) > r, then nodeR can be pruned from search

because it cannot contain any pointsp such thatDist(p, q) ≤ r.

MinDist(R, q) is the minimum distance between the minimum bounding rectangle

of nodeR and the query pointq (see Figure 2.2 as an illustration).

Definition 2.2.1 (MinDist between MBR and point) The minimum distance between

the minimum bounding rectangle of nodeR and a pointq(x1, x2, ..., xd), denoted as

26

MinDist(R, q), is defined as follows:

MinDist(R, q) =
d∑

i=1

lbi − q.xi if q.xi < lbi

0 otherwise

q.xi − ubi if ubi < q.xi

2

wherelbi is the lower bound of the minimum bounding rectangle at dimensioni andubi

is the upper bound of the minimum bounding rectangle at dimensioni.

Upon visiting a data node, the search algorithm calculates the distances between the

data pointsp and the query point. Data points such thatDist(p, q) ≤ r are output as the

results of the range query.

Different range query algorithms traverse the tree nodes in different sequences. The

depth-first algorithm always visits the unpruned child node first and the breadth-first al-

gorithm always visits the qualified sibling node first. The depth-first algorithm is imple-

mented in a recursive way and the breadth-first algorithm is implemented in an iterative

way.

Figure 2.2 gives a range query example, whereq is the query point andr is the query

radius. The depth-first range search algorithm visits the tree nodes in the following

sequence:

tree root=⇒ R1 =⇒ R3 =⇒ R2 =⇒ R5

The breadth-first range search algorithm visits the tree nodes in the following sequence:

tree root=⇒ R1 =⇒ R2 =⇒ R3 =⇒ R5

NodesR4 andR6 are discarded by applying Pruning Strategy 2.2.1, which saves both

I/O and CPU costs.

27

2.2.3 Algorithms for the kNN Query

The kNN query is more complex than the range query because the query range is un-

known first. The kNN search algorithms maintain an array of sizek to store the k-nearest

neighbor candidates (the kNN candidate array). The distance of thekth nearest neighbor

candidate to the query pointdnnk(q) (called the kNN-distance ofq) is used for pruning

tree nodes. The following pruning strategy is adopted by the kNN query algorithms.

Pruning Strategy 2.2.2 If MinDist(R, q) > dnnk(q), nodeR can be pruned from

search because it cannot contain any pointsp that are closer to the query point than

the current k-nearest neighbor candidates.

The pruning distancednnk(q) = Dist(ck, q), where{c1, ..., ck} are the k-nearest neigh-

bor candidates sorted in ascending order accordingly to their distances to the query point.

dnnk(q) is∞ at the beginning of the search and converges during the search.

There are three types kNN search algorithms: the depth-first method, the best-first

method and the incremental method [108, 58, 59].

Depth-first kNN Search Algorithm

The depth-first search algorithm [108] accesses a tree node in the following way:

• If the node is an internal node, the depth-first search algorithm first sorts the en-

tries inside of the node according to their minimum distances to the query point.

Then, starting from the first entry with the minimum MinDist, the algorithm calls

recursively the depth-first search algorithm for the child node pointed by the entry

if the entry cannot be pruned by Pruning Strategy 2.2.2.

• If the node is a leaf node, it computes the distance between each data point and

the query point and inserted data pointsp such thatDist(p, q) < dnnk(q) into the

kNN candidate array.

28

Visit Node dnnk(q) Candidate Set
Tree root ∞ ∅

R1 ∞ ∅
R3 Dist(q, p2) {p3, p2}
R2 Dist(q, p2) {p3, p2}
R5 Dist(q, p7) {p8, p7}

Table 2.1: The procedure of the depth-first 2-nearest neighbor search.

Given a kNN query (k=2) in Figure 2.2 whereq is the query point, the search algo-

rithm visits the tree nodes in the following sequence:

Tree Root→ R1 → R3 → R2 → R5.

NodesR4 andR6 are pruned from search andp7 andp8 are found as the 2-nearest neigh-

bor of q. Table 2.1 summarizes the procedure of the depth-first search.

Best-first kNN Search Algorithm

The best-first approach [58] uses a priority queue to maintain the nodes that shall be

visited. Entries in the priority queue are sorted in ascending order according to their

MinDist to the query point. In the initial, only the tree root is in the priority queue.

The search algorithm always dequeues the first entry in the priority queue and processes

according to the node type:

• If a node is an internal node, for each entry inside, the algorithm computes its

MinDist to the query point and inserts it into the priority queue if its MinDist is

smaller thandnnk(q).

• If a node is a leaf node, for each data in the node, the search algorithm calculates

its distance from the query point. If the distance is smaller thandnnk(q), the data

point is inserted into the kNN candidate array.

29

Visit Node dnnk(q) Priority Queue Candidate Set
Tree root ∞ {R1, R2} ∅

R1 ∞ {R2, R3, R4} ∅
R2 ∞ {R5, R3, R6, R4} ∅
R5 Dist(q, p7) {R3, R6, R4} {p8, p7}

Table 2.2: The procedure of the best-first 2-nearest neighbor search.

The process is stopped whendnnk(q) is smaller than the MinDist of the first entry in

the priority queue or the priority queue is empty.

For the 2NN query in Figure 2.2, the nodes will be visited in the following sequence:

tree root→ R1 → R2 → R5.

The algorithm stops after visitingR5 and outputp8 andp7 as results becauseMinDist(R3, q)

is greater thandnnk(q) = Dist(q, p7). NodesR3, R6, R4 which are remained in the pri-

ority queue are neglected. Compared with the depth-first method, the best-first approach

is more efficient because it accesses fewer tree nodes. In this example, the depth-first

approach accesses 5 nodes in total, while the best-first approach accesses only 4 nodes.

Table 2.2 summarizes the procedure of the best-first kNN search.

Incremental kNN Search Algorithm

The incremental k-nearest neighbor search [59] is very similar to the best-first approach

and also employs a priority queue to maintain the nodes that shall be visited. However,

the incremental search algorithm stores both the tree nodes and the data points in the

priority queue and therefore, need not maintain a separate kNN candidate array.

The priority queue is initialized with the tree root. Items in the queue is sorted in

ascending order according to their distance or MinDist to the query point. At each itera-

tion, the incremental kNN search algorithm dequeues the first entry from the queue and

30

Entry Dequeued Priority Queue Output
root {R1, R2}
R1 {R2, R3, R4}
R2 {R5, R3, R6, R4}
R5 {p8, p7, R3, R6, p9, R4}
p8 {p7, R3, R6, p9, R4} p8 as the 1st nearest neighbor
p7 {R3, R6, p9, R4} p7 as the 2nd nearest neighbor
R3 {p3, R6, p2, p9, R4, p1}
p3 {R6, p2, p9, R4, p1} p3 as the 3rd nearest neighbor

Table 2.3: The procedure of an incremental k-nearest neighbor search.

checks its type.

• If the item is a data point, it is reported as a next nearest neighbor.

• If the item is an internal node, for each entry inside, the algorithm computes its

MinDist to the query point and inserts it into the priority queue.

• If the item is a leaf node, for each data point inside, the algorithm computes its

distance to the query point and inserts it into the priority queue.

The algorithm stops when there arek points being reported as k-nearest neighbors.

Given the 2NN query in Figure 2.2, the incremental search algorithm traverses the

following nodes:

tree root→ R1 → R2 → R5.

Table 2.3 summarizes the search procedure of the incremental 2NN query in Figure 2.2.

The incremental approach accesses the same number of tree nodes as the best-first

approach in the same sequence. Both are proved to be optimized in terms of the number

of node accesses [16]. An advantage of the incremental approach over the best-first

approach is that after thek nearest neighbors are found, the(k + 1)th nearest neighbor

can be produced immediately without reinvoking the query algorithm and processing

the query from scratch by utilizing the information in the priority queue. As shown in

31

root

R1 R2 R3 R4

(a) Index of Dataset R

root

S1 S2 S3 S4

(b) Index of Dataset S

S4
R1

R2

R3

R4

S1

S2
S3

MinDist

r

(c) The Planar Presentation

Figure 2.3: An RSJ Join Example

Table 2.3, after finding the 2-nearest neighbors ofq, the incremental algorithm can find

the third nearest neighborp3 quickly.

2.3 Algorithms for the Range Similarity Join

The range similarity join has been well-studied and a large number of techniques have

been proposed for it. They can be broadly classified into three categories: the index-

based algorithms, the hash-based algorithms and the sort-based algorithms.

Note that some join algorithms which we will introduce in the following sections are

designed originally for the spatial join1. They can be applied to the range similarity join

1The spatial join computes the pairs of the spatial objects that intersect with each other.

32

by treating the data pointsp as hypercubes centered atp and of lengthr, wherer is the

query radius for the range join.

2.3.1 Index-based Similarity Range Join Algorithms

In the first category, the join algorithms utilize hierarchical index structures pre-constructed

upon the datasets. The R-tree Spatial Join (RSJ) [24], the breadth-first R-tree join [62],

the incremental distance join [59] and the MuX range-join [21] all belong to this cate-

gory.

These methods first build the hierarchical indexes upon the input datasets R and S and

then traverse the indexes of R and S synchronously to form joining node pairs according

to the following pruning strategy.

Pruning Strategy 2.3.1 Given a range similarity joinR ./r S, if MinDist between a

node (page) ofR Ri and a node (page) ofS Si MinDist(Ri, Sj) > r, node pair

(Ri, Sj) can be excluded from being examined because they cannot contain any point

pairs (qn, pm) such that areDist(qn, pm) ≤ r.

MinDist(Ri, Sj) is the minimum distance between the MBRs of the nodesRi and

Si (see Figure 2.3 for illustration).

Definition 2.3.1 (MinDist between two MBRs) The minimum distance between two

minimum bounding rectangles of nodeR andS, denoted asMinDist(R, S), is defined

as follows:

MinDist(R, S) =
d∑

i=1

R.lbi − S.lbi if S.lbi < R.lbi

0 otherwise

S.lbi −R.lbi if R.lbi < S.lbi

2

whereR.lbi (S.lbi) is the lower bound of the minimum bounding rectangle ofR(S) at

33

dimensioni andR.ubi (or S.ubi) is the upper bound of the minimum bounding rectangle

of R(S) at dimensioni.

For example, given two datasetsR andS in Figure 2.3 and the radiusr illustrated

at the right side of Figure 2.3 (c), the nodes pairs to be joined together are(R2, S1),

(R2, S2), (R2, S3), (R3, S2), (R3, S3), and(R4, S3).

R-tree Spatial Join

The R-tree Spatial Join (RSJ)[24] is the simplest index-based join method which tra-

verses the indexes in the depth-first manner. The R-trees are built on the input datasets R

and S beforehand. The RSJ algorithm starts from the root nodes of R and S and traverses

the indexes of R and S synchronously. For each internal node pairs(Ri, Sj) being under

consideration, the algorithm calculates the minimum distance between all pairs of the

child nodes ofRi andSj and forms the pairs having distances equal to or smaller than

r. For each unpruned child node pairs, the RSJ algorithm is called recursively so that it

traverses the R-treesdepth-firstly. If Ri andSj are leaf nodes, it calculates the distance

between all pairs of points insideRi andSj and point pairs such thatDist(qn, pm) ≤ r

are output as join results.

Breadth-First R-tree Join

The breadth-first R-tree join (BFRJ) [62] is an improvement of RSJ which traverses

the R-trees in the breadth-first manner. BFRJ computes join pairs one level at a time and

creates anintermediate join index(IJI) which are node pairs to be joined at the next lower

level at each level. Based on IJIs, the BFRJ algorithm applies the following optimization

strategies to speed up the join processing: i) theordering optimizationthat orders the

nodes by the space-filling curve (e.g. the Z-order [102]) to minimize page faults during

join computation at the next level; ii) thebuffer managementoptimization that schedules

34

the buffer paging so that the nodes to be processed in the near future are more likely hit

in the memory. These optimizations makes BFRJ more efficient than RSJ in terms of the

I/O cost.

Incremental Distance Join

The incremental distance join (IDJ) [59] works in the similar way of the incremental k-

nearest neighbor algorithm [58]. It traverses the indexes of R and S synchronously from

the tree roots and employs a priority queue to maintain pairs(e1, e2), wheree1 ande2

can be either a tree node or a data point. The priority queue is initialized with the pair of

the tree roots of R and S. Items in the queue is sorted in ascending order according to the

MinDist or distance between them. At each iteration, IDJ dequeues the first entry from

the queue and processes it according to the types ofe1 ande2.

• If both e1 ande2 are points, this pair is reported as a join result.

• If one of e1 ande2 is a point and the other is leaf nodes, the algorithm computes

the distance between the point to all points in the leaf nodes and inserts the point

pairs into the priority queue.

• If both e1 ande2 are leaf nodes, for each point ine1, the algorithm computes its

distance to all points ine2 and inserts the point pairs into the priority queue.

• If one of e1 and e2 is an internal node and the other is a point, the algorithm

computes the minimum distance between the point to all entries in the internal

nodes and inserts the pairs into the priority queue.

• If both e1 ande2 are node (either internal node or leaf node) and one of them is an

internal node, for each item ine1, the algorithm computes its minimum distance to

all items ine2 and inserts the pairs into the priority queue.

35

hosting directory page

accommodated
directory bucket

accommodated data
bucket

hosting data page

page

directory

page

directory

page

directory

Figure 2.4: Multipage Index (MuX)

The process is stopped whenr is smaller than the MinDist or distance of the first

entry in the priority queue or the priority queue is empty.

MuX Range Join

The MuX range join is based on theMultipage index(MuX) [21, 20]. MuX is motivated

by the observation that the fine-grained index with small node (page) size benefits the

CPU performance, whereas index with large node (page) size has better I/O performance,

especially for data in high-dimensional spaces. MuX solves this confliction between the

optimization of the CPU cost and the optimization of the I/O cost by with a two-tiered

structure.

Figure 2.4 illustrates the MuX index. Same as the R-tree, MuX is a height-balanced

hierarchical structure and uses minimum bounding rectangles as the bounding objects in

the internal nodes. Each node of the MuX is called thehosting page. In each hosting

page, a hash-table-liked secondary structure is maintained for the purpose of the opti-

mization of the CPU cost. The secondary structure consists of a flat directory (called the

36

page directory) and theaccommodated buckets. The page directory consists of an array

of MBRs and pointers. Each pointer points to an accommodated bucket. If the host-

ing page is a directory page, the accommodated buckets are calleddirectory bucketsand

store entries of the form(Rect, pointer). Rect is an MBR andpointer points to a child

hosting page. If the hosting page is a data node, the accommodated buckets are called

data buckets. The data buckets contains feature vectors of the objects. The hosting pages

are usually of large size in order to optimize I/O cost. The accommodated buckets are

tuned to partition the data finely in order to optimize the CPU cost. By this way, MuX

achieves optimized I/O cost and CPU cost at the same time.

The MuX range join is very similarity to the RSJ algorithm. It starts from the roots

of the MuX indexes built on R and S in advance and traverses the indexes synchronously

in the depth-first manner. For each pair of hosting pages(Ri, Sj) being under consider-

ation, the MuX range join algorithm examines each pair of the accommodated buckets

inside and forms the accommodated buckets pairs that should be examined according to

Pruning Strategy 2.3.1. Then for each generated accommodated buckets pair(ri, sj), the

algorithm calculates the minimum distance between all pairs of the entries inside ofsi

andrj and forms the hosting page pairs that have MinDist equal to or smaller thanr. For

each generated hosting page pairs, the MuX range join is called recursively. IfRi andSj

are leaf hosting pages, the algorithm first generates accommodated buckets pairs(ri, sj)

such thatMinDist(ri, sj) ≤ r, whereri (sj) is accommodated bucket inside ofRi (Sj).

Then for each unpruned accommodated buckets pair, it calculates the distance between

all pairs of points insideri andsj. Point pairs such thatDist(qn, pm) ≤ r are output as

join results, whereqn (pm) is a point inside ofri (sj).

37

2.3.2 Hash-based Similarity Range Join Algorithms

The second category of techniques are the hash-based algorithms which partition the

data space into buckets which can be fit in allocated memory and perform the join on

pairs of joinable buckets to produce results.

The hash-based methods have the advantage over the index-based methods that in-

dexes are not necessary to be built on the input datasets in advance. The major drawback

of such techniques is that they may replicate a data item into multiple buckets and the

data replication rates usually are high in high-dimensional spaces, which makes such

methods very expensive in terms of both CPU cost and I/O cost when data dimension-

ality is high. Typical hash-based similarity range join algorithms are the partition-based

spatial merge join [105], the spatial hash join [88] and theε-kdB-tree range join [70].

The spatial merge join [105] and the spatial hash join [88] are proposed originally for

the spatial join.

Partition-Based Spatial Merge Join

The partition-based spatial merge join (PBSM) [105] algorithm divides the space into a

set of cells by applying a regular grid to it. Each partition (bucket) is a set of tiles and

the partitions are disjoined. The PBSM algorithm first decomposes datasetR into the

partitions and then inserts each object of datasetS into every bucket which intersects

with that object. The number of partitions depends on the size of the inputs datasets and

the size of the available memory. If the partition does not fit in the available memory,

it is subdivided in a repartition process. In a second step, the PBSM algorithm loads

each partition into main memory and joins them using a computational geometry based

plane-sweeping algorithm.

38

Spatial Hash Join

The spatial hash join (SHJ) [88] provides a general two-step framework for the spatial

hash joins. The first step of SHJ partitions the input datasets into buckets using partition

functions which comprises two components - a set ofbucket extentswhich describes the

buckets and anassignment functionwhich assigns data item to buckets. The partition

functions for the two datasets may different. A data item may be mapped into multiple

buckets. The algorithm assumes after the data partitioning step, data in each bucket can

be fit in memory. The second step then joins inner and outer buckets to obtain results

with either nested-loop join (that is, for each point in in bucket ofR, it scans the bucket

of S and outputs pairs intersecting with each other) or the indexed nested loop join (that

is, it constructs an R-tree on theS data in the memory first and then for each point inR,

performs an intersection query on the R-tree).

The ε-kdB-tree Range Join

Theε-kdB-tree range join [70] partitions the data space on one selected dimension into

stripes of the widthε (ε is equal to the range join radiusr). Thus, the join operation is

restricted to the subsequent stripes. The algorithm assumes that the database cache is

large enough to hold all the data points of two subsequent stripes so that it is possible to

join two stripes in a single pass. When joining two stripes of data, it constructs a main

memory data structure called theε-kdB-tree for each stripe. Theε-kdB-tree structure

partitions the data in memory into stripes of widthε according to the other dimensions

until a defined node capacity is reached. Again, only adjacent partitions are needed to

be joined together. Theε-kdB-tree [70] is particularly suited for the self range join.

However, this method is not scalable to large dataset according to the study in [17].

39

2.3.3 Sort-based Similarity Range Join Algorithms

The third category is the sort-based techniques. The ORE algorithm [103], Multi-dimensional

Spatial Join (MSJ) [81], GESS [31], and the Epsilon Grid Order (EGO)[17] all belong

to this category. ORE and MSJ are original proposed for the spatial join.

ORE Join

The ORE algorithm [103] is based on the Z-curves [102]. For each input dataset, the

algorithm imposes a binary recursive partitioning of the data space until a specified gran-

ularity is reached and obtains a set of hypercubes. Each hypercube has its corresponding

Z-value (a bit string). ORE sorts the hypercubes into the nondecreasing order with re-

gard to their Z-values and after that, merges the hypercubes intersecting with each other

in main memory utilizing two main-memory stacks StackR and StackS. Making use

of the property of Z-curves, it detects the intersection by checking if the Z-values of two

hypercubes have a prefix-suffix relationship. A deficiency of ORE is that it allows to de-

compose the spatial objects into several pieces which leads to substantial data replication

especially in high-dimensional spaces and this increases both space and CPU overhead

for sorting and joining. In addition, replication causes duplicates in the result set and

ORE has not dealt with this problem.

MSJ Join

MSJ imposes a dynamic hierarchical decomposition of the space into level files. It scans

each input dataset and place each pointp(x1, x2, ..., xd) in a level filel,

l = min
1≤i≤d

= ncb
(
xi − r

2
, xi +

r

2

)

40

subspace 01

subspace 10

subspace 11

subspace 01

p

Figure 2.5: Replication of GESS.

wherencb(b1, b2) denotes the number of most significant common bits in bit sequences

of b1 andb2. Each point is then assigned to a Hilbert value based on the level file to

which it belongs. MSJ sort the level files into nondecreasing order of Hilbert [66] values

and perform a multi-way merge of all level files. Deficiency of this method is that in

high-dimensional spaces a high fraction of the input data will be in level 0 [16]. Points

in level 0 need to be joined with the other dataset entirely in a nested-loop manner, so it

is very expensive for high-dimensional data [32].

Generic External Space Sweep Join

The Generic External Space Sweep (GESS) [31] has three steps. In the first step, each

point (vector) of the input datasetsp is transformed into a hyper-cube centered atp and of

lengthr, wherer is the query range radius. The hypercubes are then passed to the repli-

cation algorithm which generates codes (Z-values or Hilbert values) that represent the

subspaces of each hypercube. In order to avoid the problem of MSJ in high-dimensional

spaces, GESS allows replication at this step. A hypercube can be split and assigned to

different subspaces. As illustrated in Figure 2.5, the hypercube is split into 4 parts and

assigned to 4 subspaces. The second step of GESS is similar to the ORE algorithm. It

sorts the hypercubes into nondecreasing order based on their Z-values or Hilbert values

41

and merges the hypercubes intersecting with each other in main memory utilizing two

main-memory stacks StackR and StackS. In the last step, GESS removes duplicates

which are caused by the replication from the result set using a method called Refer-

ence Point Method (RPM). GESS improves both ORE and MSJ and is more scalable to

high-dimensional data.

The Epsilon Grid Order Join

The epsilon grid order join (EGO) [17] was proposed for the self range join, that is,

the inner and outer datasets of the range join are same. It applies an equidistance grid

with cell lengthε = r over the data space and sorts the data points into theepsilon grid

order [17] according to the grid cells where they are located. It divides the sorted data

points into theI/O units and loads them with a sophisticated I/O scheduling strategy

which is made up of two scheduling modes - the gallop mode and crab-step mode. For

two I/O units (each corresponding to an ordered data sequence) in memory, EGO joins

them following the divide and conquer paradigm. The algorithm selects one sequence

and divides it into two subsequences of approximately same length recursively until

the minimum sequence capacityis reached or the pair of sequence does not join (their

distance exceedsr). For two subsequences with less thanminimum sequence capacity

data points, EGO computes the distances between each point pair and reports the point

pairs whose distances are smaller thanr. The EGO works very efficient for massive

datasets.

2.4 Algorithms for kNN Similarity Join

There are not many works on the kNN join operation. We introduce the incremental

semi-distance join algorithm [59] and the MuX kNN join [18, 20, 19] algorithm in this

42

section.

2.4.1 Incremental Semi-distance Join

The incremental semi-distance join [59] is proposed for the semi-distance join which

is essentially same to the kNN join. It is an R-tree based solution and almost same as

the incremental distance join algorithm for the range similarity join that we described

in Section 2.3.1. The only difference is the termination condition. The incremental

semi-distance join algorithm maintains a counter for each point in datasetR p to record

the number of pairs which have been already output and whose first element isp. It

terminates when the counters for all points in datasetR reachesk. The shortcoming

of this method is the size of the priority queue could be very large if the kNN join is

performed on a large dataset and thek value is big. In addition, because the R-tree is not

scalable to datasets in high-dimensional spaces, the incremental semi-distance join also

works only efficiently in low-dimensional spaces.

2.4.2 Mux kNN Join

The MuX kNN join [18, 20, 19] is the most up-to-date method specifically designed

for the kNN join in high-dimensional spaces. The algorithm works on the MuX in-

dexes pre-constructed on the datasetsR andS and iterates over theR hosting pages. In

each iteration, it loads anR hosting page PR (which has not been processed) into the

memory and joins it with the hosting pages ofS PS such thatMinDist(PR,PS) <

pruning distance(PR). The pruning distance ofPR is the maximal kNN-distance of

points inPR. It joins the hosting pagePR in memory with the hosting pagePS with

the highestquality first. The quality of a hosting pagePS Q(PS) is computed as the

43

following:

Q(PS) = max
BR∈PR

{
pruning distance(BR)

MinDist(PS, BR)

}

whereBR is a bucket in hosting pagePR. The pruning distance ofBR is the maximal

pruning distance of points inBR.

When joining two hosting pagePR andPS, it employs a priority queue to sort the

bucket pairs(BR,BS) according to theirqualityQ(BR, BS) which is computed as the

following:

Q(BR, BS) =
pruning distance(BR)

MinDist(BS,BR)

whereBR (BS) is a bucket in hosting pagePR (PS).

Bucket pairs such thatQ(BR, BS) < 1 are pruned. For each joinable pair(BR, BS),

for each pointp in BR, the algorithm computes its distance to each pointq in BS. If

Dist(p, q) is smaller than the pruning distance ofp - distance betweenp and its current

kth nearest neighbor candidate,q is inserted as one ofp’s k-nearest neighbor candidate.

Though the MuX index has much better performance than the R-tree in high-dimensional

spaces, its performance is still expected to degenerate with the increase of data dimen-

sionality. In addition, the memory overhead of the MuX index structure is high for

large high-dimensional data due to the space requirement of high-dimensional minimum

bounding boxes. Both constraints restrict the scalability of the MuX kNN-join method

in terms of dimensionality and data size.

2.5 Algorithms for the RkNN Query

Algorithms for the RkNN query can be classified into two categories: thepre-computation

methods and thespace pruningmethods. Most of them have been proposed initially for

the RNN query (i.e., RkNN query whenk = 1).

44

2.5.1 Pre-computation RkNN Search Algorithm

Thepre-computationmethods [78, 125] pre-compute and store the nearest neighbor in-

formation of each point in the dataset in advance. The RNN-tree[78] and the Rdnn-tree

[125] provided two index-based solutions for the RNN query.

The RNN-tree[78] is virtually a R-tree storing the MBRs (minimal bounding rectan-

gle) of the hyper-spheres (p, dnn) centered atp and of radiusdnn. dnn is the distance

betweenp and its nearest neighbor (NN-distance).

The Rdnn-tree [125] modifies the structure of the R-tree slightly. It augments the leaf

entries of R*-tree withdnn and the internal entries withmax dnn respectively. Theleaf

nodes of the Rdnn-tree contain the data points and their NN-distance. Each entrye of

the leaf node is of the form

(p, dnn(p)),

wherep is the data point anddnn(p) is the NN-distance ofp.

In the internalnodes of the Rdnn-tree, each entrye is of the form

(ptr, max dnn, mbr).

ptr points to a child-node (sub-node)N ′; mbr is the minimum bounding rectangle

(MBR) of N ′; max dnn is the maximaldnn of all data points in the subtree rooted

atN ′.

max dnn = Maxm
i=1dnn(pi) (2.1)

wherep1, ..., pm are all points withinN ′.

With the nearest neighbor information stored RNN-tree or the Rdnn-tree, the RkNN

query is transformed into thepoint enclosure query[78] which checks if a query pointq

falls within the circle (p, dnn). Pointsp that haveq within that circle are reported as the

45

answers to the RNN query. The Rdnn-tree is more efficient than the RNN-tree for both

static and dynamic data sets[125].

The RNN-tree and the Rdnn-tree can also be used to support the RkNN query. We

only need to pre-compute the k-nearest neighbor information of the whole dataset, store

the information in these data structures and apply the same point enclosure search.

The drawback ofpre-computationmethods is that they cannot answer an RkNN

query unless the corresponding k-nearest neighbor information is available. Since the

values ofk may vary greatly in many applications, storing the k-nearest neighbor infor-

mation for all possible values ofk is expensive and sometimes infeasible, and maintain-

ing such a large amount of k-nearest neighbor information in the presence of frequent

updates is even more costly.

2.5.2 Space Pruning RkNN Search algorithms

Space pruningmethods [112, 116, 114], include SAA [114], SRAA [115], SFT [112]

and TPL [116], utilize the geometry properties of RNN to first retrieve a small number of

data points as candidates and then verify them with NN queries or range queries. These

approaches are useful in dynamic environments since they do not require pre-computed

nearest neighbor information.

SAA Algorithm

SAA [114] makes use of thebounded outputproperty, e.g. for an RNN query in the

2-dimensional space, a query pointq has at most 6 RNNs [113]. Thus, SAA divides the

data space into six equal regions by straight lines that intersect at the query pointq as

illustrated in Figure 2.6. SAA retrieves the nearest neighbors ofq in each region as RNN

candidates and then verified them with NN queries.

SAA is useful in two-dimensional space and has been adopted to answer the re-

46

p5

p6

p4

p1
q

p2

p3

Figure 2.6: Illustration of SAA algorithm.

verse nearest neighbor query for moving objects [76]. However, it is costly for high-

dimensional data because the bounding number increases exponentially with respect to

data dimensionality[113]. It is also expensive for the RkNN queries. The number of re-

verse k-nearest neighbors of a point in two-dimensional space is bounded by6 · k [116].

Therefore, whenk is big, a large number of candidates need to be retrieved and verified.

SRAA Algorithm

[115] investigates the bi-chromatic RNN problem and proposes SRAA. The bi-chromatic

RNN query has two input datasets - thesitedataset where the query points are located

and thepoint dataset where the answers of the RNN query are found. The main idea

of SRAA is to calculate the Voronoi cellVq of the query site with respect to othersites

in thesitedataset and then retrieve objects withinVq from thepoint dataset as answers

(see Figure 2.7 for illustration). To speed up the query processing, SRAA employs an

approximate-and-refine procedure which computes the approximate Voronoi cell first

and then refines the RNN candidates which are retrieved according to the approximate

Voronoi cell.

The method is not scalable to largek values because computation of the k-degree

47

Voronoi cell of q

site
point

q

p1p2

Figure 2.7: Illustration of SRAA algorithm.

Voronoi cell is expensive. It is not scalable to high-dimensional data either because

computation of Voronoi cell in high-dimensional spaces is very complex.

SFT Algorithm

SFT [112] is based on the assumption that the reverse k-nearest neighbors are close to

the query point and are expected to be among the K-nearest neighbors ofq, whereK is

a value bigger thank. It retrievesK nearest points toq as candidates and then verifies

the candidates with boolean range queries. The boolean range query is basically a range

query that does not retrieve the answer points but only counts the number of points

within the query range and stops whenever there arek points being found within the

query range. Since there are multiple candidates and each candidate should be evaluated

by the boolean range query, SFT uses a batch boolean range query which traverses the

R-tree once in order to reduce the I/O cost. However, as we illustrated in Figure 1.1,

the correlation between RkNN and KNN is not strong and a reverse k-nearest neighbor

of query pointq can lie far from theq. Hence,K should be set to be sufficiently big in

order to reducefalse misses(points that are RkNN but missed from the found answer

set), which makes SFT expensive for RkNN queries of largek values.

48

R1

R2

q

p1
p2

Figure 2.8: Illustration of half-plane pruning.

TPL Algorithm

The most recent work TPL [116] makes use of thehalf-planespruning strategy, that is,

if we divide the data space into two half-planes by the perpendicular bisector betweenq

and an arbitrary data pointp, any point in the half plane ofp cannot be a reverse nearest

neighbor ofq. For example, in Figure 2.8, the points lying within the half-plane left to

the line perpendicular to linep1q will not contains any reverse nearest neighbors ofq, so

nodeR2 can be pruned safely. Similarly, the points lying within the half-plane right to

the line perpendicular to linep2q will not contains any reverse nearest neighbors ofq and

the un-shaded area ofR1 can also be pruned away. The shaded area is called theresidual

areaand points lying there are retrieved as candidates and then refined with a refinement

procedure.

TPL traverse the R-tree to retrieve nearest neighbors incrementally (in the same way

as the incremental k-nearest neighbor search algorithm) as RkNN candidates and uses

the candidates to prune tree nodes using thetrim algorithm according to thehalf-planes

pruning strategy. The node is pruned when it is entirely trimmed by the half-planes pro-

duced byq and multiple candidates. Therefore the pruning procedure renders expensive

49

computation cost. The candidate retrieval procedure stops when all nodes of R-tree are

either pruned or visited. The retrieved candidates are then verified by an I/O optimized

refinement algorithm using range queries.

For the RkNN query, thek-trim algorithm is used to prune R-tree nodes based on

the extendedhalf-planesstrategy. TPL is the most efficient and effectivespace pruning

method for RkNN queries in low-dimensional spaces and of small values ofk. However,

its performance degrades rapidly with the increase of data dimensionality andk. The

major reason is thek-trim algorithm that TPL used to prune a node has the complexity

(
nc

k
) · d, wherenc is the number of RkNN candidates (nc > k), andd is the number

of dimensionality2. Moreover, the number of node to be trimmed also increases linearly

with data dimensionality. As a result, the trimming cost becomes prohibitive whenk is

large or data dimensionality is high.

2.6 Summary

In this chapter, we reviewed the indexing techniques and search algorithms being pro-

posed to efficient similarity query processing. The review shows that intensive research

has been conducted on the basic similarity queries and the range join. However, studies

on the kNN join and the RkNN query are not sufficient. More studies are required to

improve their query performances.

2k-trim calls(
nc

k
) timesclipping algorithm in the worst case [116] and theclipping algorithm has

complexity ofO(d) [44].

Chapter 3

Gorder: An Efficient Method for kNN
Join Processing

3.1 Introduction

The kNN join is a wildly-recognized important and expensive primitive operation of

high-dimensional databases. The operation combines each point of one dataset with its

k-nearest neighbors in another dataset. With its set-a-time nature, the kNN join can

be used to efficiently support various applications where multidimensional data is in-

volved and in particular, many data mining tasks such as the density-based outlier de-

tection (LOF) [23], the k-means clustering [54] and the hierarchical clustering method

(Chameleon) [72].

Most existing work focuses on the other similarity join - the range joins [17, 105,

87, 70, 81, 21]. However, there is an increasing need to study the kNN join in view of

the observation that the parameterr of the range join can not be easily estimated in most

cases. A oversized or undersizedε results in either a much larger or smaller answer set,

hence affecting the meaningful of the result. On the contrary, the kNN similarity join

returns a predefined number of answers and the parameterk is definitely much easier to

determine than ther in most cases.

To the best of our knowledge, the MuX kNN join algorithm [20, 19] is the only up-

50

51

to-date method specifically designed for the kNN join in high-dimensional space. Since

MuX [21] is essentially an R-tree based method, like the R-tree, its performance is ex-

pected to degenerate with the increase of data dimensionality. Second, the MuX index

should be built in advance before the join operation. Third, the memory overhead of the

MuX index structure is high for large high-dimensional data due to the space require-

ment of high-dimensional minimum bounding boxes. All these constraints restrict the

scalability of the MuX kNN join method in terms of dimensionality and data size.

In this chapter, we present a novel algorithmGorder (or the G-ordering kNN join

method). Gorder is a block nested loop join method which achieves its efficiency by

sorting data points based on an ordering that enables effective join pruning, data blocks

scheduling and distance computation filtering and reduction. It first sorts input datasets

into theG-order (an order based on grid), so that the the dataset can be partitioned into

blocks that are amenable for efficient scheduling for join processing. Then, it applies the

scheduled block nested loop jointo find the k-nearest neighbors for each block of R data

points.

Gorder is efficient due to the following factors:

1. It inherits the strength of the block nested loop join in being able to reduce random

reads.

2. It prunes away unpromising data blocks from probing to save both I/O and simi-

larity computation costs by exploiting the property of the G-ordered data.

3. It utilizes atwo-tier partitioning strategyto optimize I/O and CPU time separately.

4. It reduces distance computational cost by pruning redundant computation based

the distance of fewer dimensions.

The remainder of the chapter is organized as follows.

52

• Section 3.2 investigates the properties of the kNN-join problem.

• Section 3.3 presents the algorithm Gorder, including its data scheduling and dis-

tance computation pruning and reduction techniques to optimize the both I/O and

CPU time. A cost analysis is also given.

• Section 3.4 describes a performance study and presents the experimental results.

• Section 3.5 concludes this chapter with a summarization.

3.2 Properties of the kNN Join

The kNN join has the following properties:

• It is asymmetric, that is,

RnkNN S < S nkNN R.

The reason is that the k-nearest neighbor relationship is asymmetric. If a point

p is one ofq’s k-nearest neighbors,q is not necessary to be one ofp’s k-nearest

neighbors.

• The cardinality of the answer set of a the kNN join is predictable, since a the kNN

join returns k-nearest neighbors for each point of R.

• The distance from each point in R to its nearest neighbors is unknown apriori.

Property 2 makes the kNN join more useful than another similarity join – the range

join in situations where a good ranger cannot be determined easily. The range join

returns pairs of points from two datasets with their similarity distance not exceeding a

given value. One of the difficulties to use the range join in real application is that the

distribution of data points are often unknown and pre-defining an appropriate similarity

53

distance threshold between points is rather difficult, if not impossible. As such the results

of the range join are somehow unpredictable and applications are subject to run on trial-

and-error basis. The kNN join overcomes this difficulty by employing the rank predicate

as the selection condition. The cardinality of the query result of the kNN join is always

N · k, whereN is the cardinality of the query (outer) dataset R. The kNN join has the

following advantages over the range join:

• The kNN join returns a predefined number of answers, that is, the size of its answer

set is controllable.

• The parameterk of the kNN join is much easier to determine than the parameterr

of the range join.

Therefore, the kNN join is a more practical operation than the range join in many situa-

tions.

Property 3 inherits the difficulty of the k-nearest neighbor query and makes the kNN

join more complex than the range join. Given the k-nearest neighbor query, in order

to filter unnecessary distance computation and page (node) access, the search algorithms

based on an index such as the R-tree [49] (the RKV [60, 108] and the HS [108]) schedule

the loading of data page by computing MinDist and choosing to traverse the node with

the minimum MinDist first. MinDist is also compared with the pruning distance (the

distance between the query point and itskth nearest neighbor candidate) to prune away

nodes with MinDist greater than the pruning distance. The page scheduling and pruning

strategies are very important for the kNN query processing and affect the query efficiency

significantly. In the same way, they affect the efficiency of the kNN join processing

substantially. It is important to consider the data schedule and the pruning strategy when

we design the kNN join algorithm.

There are two starting points as the devising of the kNN join algorithm based on

exiting kNN query methods.

54

• indexed-based multiple kNN query (index nested loop join)

• block sequential search (block nested loop join).

Both have its strength and weakness. The index-based multiple kNN query is op-

timized for the CPU cost, however, introduces tremendous I/O time because of large

number of random accesses[20]. In addition, it is widely recognized that most high-

dimensional indexes do not scale up well, and in fact, many perform worse than sequen-

tial scan when the dimensionality is high. kNN join further escalates the complexity and

search cost of a high-dimensional index.

On the contrary, the block sequential search is optimized for I/O time. However,

without any distance computation pruning, the CPU cost is enormous since the number

of distance computation is|R| · |S|.
Gorder therefore is developed based on the block nested loop join with the sorting,

data scheduling, and distance computation filtering and reduction technologies to achieve

good the kNN join performance. For ease of discussion, in the following, the data space

in our discussion is a unit hypercube[0..1]d.

3.3 Gorder

Gorder kNN join is a simple yet efficient kNN join algorithm based on an ordering

according to grid – theG-ordering. It is a block nested loop method which achieves its

efficiency by exploiting sorting, data scheduling and distance computation reduction. As

shown in Algorithm 1, it consists two phases. In the first phase (line 1), it sorts the input

datasetsR andS based on theG-ordering. In the second phase (line 2), it performs the

scheduled block nested loop joinon the G-ordered data and outputs the join results. The

algorithm is described in detail in this section.

55

Algorithm 1 GorderkNN(R, S)
Input:

R andS are two data sets.
Description:

1: G OrderingR andS;
2: Join Grid OrderedData(R,S);

3.3.1 G-ordering

In relational databases, sorting is used not only to arrange the tuples according to an or-

der, but to group tuples with the same value on the joining attribute together to facilitate

processing based on partitions. Similarly in Gorder, an ordering based on grid called

the G-ordering is designed to group nearby data points together, so that in thesched-

uled block nested loop joinphase the G-ordered data can be partitioned into blocks and

scheduled for join.

As illustrated in Figure 3.1, the G-ordering has two steps – the PCA (principal com-

ponent analysis) transformation and theGrid Order sorting.

PCA Transformation

The first step of G-ordering performs the principal component analysis [69] on the input

datasets R and S together and transforms the original data into the principal component

space.

The principal component analysis (PCA) is a mathematical procedure that transforms

a number of (possibly) correlated variables into a (smaller) number of uncorrelated vari-

ables called principal components. The principal components are defined as a set of

variables (features) that define a projection that encapsulates the maximum amount of

variation in a dataset and are orthogonal (and therefore uncorrelated) to the previous

principal component of the same dataset. The first principal component accounts for as

much of the variability in the data as possible, and each succeeding component accounts

56

principal
component 2

component 1
principal

(a) Original Data Space

(b) Principal Component Space

di
m

en
si

on
 2

dimension 1
2 3 4 5 71 6

1
2

3
4

5
6

7

Segment
ID

ID
cell identification

<3, 7>
Segment

(c) Grid Order

Figure 3.1: Illustration of G-ordering.

57

for as much of the remaining variability as possible. PCA captures the variance in the

dataset and determines the directions along which the data exhibit high variance. After

PCA processing, most of the information in the original space is condensed into the first

few dimensions along which the variances in the data distribution are the largest.

The PCA transformation takes two steps. Let the dataset be regarded as aN × d

matrix whereN is the cardinality of the dataset andd is the dimensionality of data. In the

first step, the mean and covariance matrix of the dataset are first calculated to get thed×d

eigenmatrix[30]. Each row of the eigenmatrix is an eigenvector and each eigenvector

has its corresponding eigenvalue. The eigenmatrix is sorted according to the eigenvalues

of the eigenvectors. The first principal component is the eigenvector with the largest

eigenvalue and the second principal component corresponds to the eigenvector with the

second largest eigenvalue and so on. In the second step, data points are transformed into

a new space by multiplying the feature vector of each point with the eigenmatrix.

Figure 3.1 (a) - (b) illustrates the transformation of the data from the original data

space to the principal component data space.

Grid Order

The secondary step of G-ordering sorts R and S into theGrid Order. The Grid Order

applies a grid onto the data space and partitions it intold rectangular cells, wherel is

the number of segments per dimension of the grid. Figure 3.1 (c) is an illustration of a

two-dimensional space partitioned by a 7x7 grid. Cell length of the grid can be equal or

variable. In the following discussions, the cells are assumed to be of same length1
l

for

the simplicity of presentation, while the methods can be easily generalized to the grid

with variable cell length.

Theidentification vectorof cell is defined as ad-dimensional vectorν = < s1, ..., sd >,

wheresi is the segment number to which the cell belongs on theith dimension. Based

58

on the identification vector of the cell, the cells can be ordered lexicographically as il-

lustrated in Figure 3.1.

TheGrid Order is defined as below.

Definition 3.3.1 (Grid order ≺g) Given a grid which partitions thed-dimensional data

space intold rectangular cells, pointspm ≺g pn if and onlyνm ≺ νn, whereνm (νn) is

the cell surrounding pointpm.

νm ≺ νn if and only if a dimensionk exists that,νm.sk < νn.sk andνm.sj = νn.sj,

for ∀j < k.

Essentially, the grid order is to sort the data points according to the cell surrounding the

point, so after the second phase of G-ordering, points within the same cell are grouped

together.

Properties of the G-ordered Data

The G-ordered data exhibit two interesting properties:

1. Suppose there are two pointsp andq in the dataset in the originald-dimensional

space. Letpk(qk) denote the projection of the pointp (q) on the firstk dimensions

after G-ordering. Because the first few dimensions are most important,dist(pk, qk)

can be very near to the actual distance betweenp andq [27].

2. Given a block of G-ordered data B containingm pointsp1,...,pm, abounding box

which covers all points in that block can be calculated by examining the first point

p1 and last pointpm of the ordered data.

Before thebounding boxis computed, theactive dimension[17] of the G-ordered

data is first calculated.

59

>
>

>

>

>

>

>

<

<

<

<

<

<

<

<

<

<

<
<
<
<
<

Id
en

tif
ic

at
io

n
V

ec
to

rs

active dimension

R S

>

3 2 1 0

3 2 1 1

3 2 2 0

3 2 2 0

3 2 2 2

3 2 2 3
3 2 3 0
3 2 3 1
3 2 3 2
3 2 3 3

1 0 3 0

1 0 3 0

1 0 3 1

1 0 3 2

1 0 3 3

>

>

>

>

>

>
>

Figure 3.2: Illustration of the active dimension of the G-order data

Definition 3.3.2 (Active Dimension of the G-order Data)Let ν1 (νm) be the identifi-

cation vector of the cell surroundingp1(pm), dimensionα is theactive dimensionof the

G-ordered data B, if

(1) ν1.sα < νm.sα

(2) ν1.sj = νm.sj ∀j < α.

Literally, α is the first dimension thatν1.sj < νm.sj (1 ≤ j ≤ d). Figure 3.2 illustrates

an example of the active dimension for two G-ordered datasets R and S. The active

dimension is 3 and 4 for dataset R and S respectively.

The bounding box ofB is represented by the low-left point E =< e1, ..., ed > and

high-right point T =< t1, ..., td >.

ek =

(ν1.sk − 1) · 1
l

if 1 ≤ k ≤ α

0 if k > α

60

tk =

νm.sk · 1
l

if 1 ≤ k ≤ α

1 if k > α

The properties of the G-ordered data are used effectively in Gorder for join schedul-

ing and distance computation reduction. Property 1 implicates that the partial distance of

the first k dimensions between two points can approximate the real distance effectively

and Property 2 will be used to measure the similarity of two blocks of G-ordered data

and schedule the data for joining.

3.3.2 Scheduled Block Nested Loop Join

In the second phase of Gorder, G-ordered data of R and S are examined for joining. The

join stage of Gorder is characterized by two properties. First, Gorder employs thetwo-

tier partitioning strategyto optimize the I/O time and CPU time separately. Secondarily,

it schedules the data for joining in order to optimize the kNN processing.

Two-tier partitioning

The first-tier partitioning is optimized for I/O time. Gorder partitions the G-ordered

input datasets into blocks consisting of several physical pages. Suppose we allocatenr

andns buffer pages for the data ofR andS respectively, we partitionR andS into blocks

of the allocated buffer sizes. The blocks ofR are loaded into memory sequentially and

iteratively one block at a time and theS blocks are loaded into memory in the sequence

scheduled based on their similarity to the block of R data in buffer. The similarity of two

blocks of G-ordered data of R and S is measured by the distance between theirbounding

boxes. This loading of multiple pages at a time is efficient in terms of I/O time as it

significantly reduces seek overhead.

In addition, in order to optimize the kNN processing, it schedules theS blocks so that

61

the S blocks that are most likely to yieldk nearest neighbors can be loaded into memory

and joined withk data in buffer early.

The large block size reduces disk seek time, however, as a side effect, it may intro-

duce additional CPU cost due to redundant pair-wise checking of tuples for the kNN join.

To overcome such a problem, here the second-tier partitioning in memory is introduced.

Thesecond-tier partitioningsegments the R and S data in memory into blocks of much

smaller size (the sub-blocks). The optimized size of the sub-block is2 · k – 5 · k data

points according to our experiment results. Again, similarity of two blocks data of R and

S is used to schedule the join sequence and filter distance computation between blocks

of data.

Similarity of G-ordered Data

The similarity of two blocks of G-ordered data is measured by the minimum distance

(MinDist) between theirbounding boxes. As presented in Section 3.3.1, thebounding

boxof a block of G-ordered data can be computed by examining the first and last points

of the G-ordered data.

Definition 3.3.3 (MinDist of G-ordered Data) The minimum distance of two blocks

of G-ordered dataBr and Bs, denoted as MinDist(Br, Bs) is defined as the minimum

distance between their bounding boxes.

MinDist(Br, Bs) =
d∑

k=1

d2
k

dk = max(bk − uk, 0) (3.1)

bk = max(Br.ek, Bs.ek); uk = min(Br.tk, Bs, tk)

For blocks with same MinDist, they are sorted by the MaxDist.

62

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

0 1 2 3

0

 1

 2

 3

dimension 1

di
m

en
si

on
 2

dimensioin 3

MinDist

0
1

2
3

bounding box

MaxDist

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

Figure 3.3: Illustration of MinDist and MaxDist.

Definition 3.3.4 (MaxDist of G-ordered Data) The maximum distance of two blocks

of G-ordered dataBr andBs, denoted as MaxDist(Br, Bs) is defined as the maximum

distance between their bounding boxes.

MaxDist(Br, Bs) =
d∑

k=1

(uk − bk)
2

bk = min(Br.ek, Bs.ek); uk = max(Br.tk, Bs, tk)

Pruning Strategy

A direct observation is that MinDist is a lower bound to the distance of any two points

from blocks of R and S respectively. The following corollary follows this observation

directly.

Corollary 3.3.1 For pointpr in blockBr and pointps in blockBs, MinDist(Br, Bs) is

63

Algorithm 2 Join Grid OrderedData(R, S)
Input:

R andS are two G-ordered data sets that have been partitioned into blocks.
Description:

1: for eachblockBr ∈ R do
2: ReadBlock(Br);
3: SortBlocks(S, Br);
4: for eachBs ∈ NotPruned(S,Br) do
5: ReadBlock(Bs);
6: MemoryJoin(Br, Bs);
7: OutputkNN(Br);

a lower bound to the distance betweenpr andps, that is,

∀pr ∈ Br, ps ∈ Bs, MinDist(Br, Bs) ≤ dist(pr, ps)

Based on Corollary 3.3.1, we have the following pruning strategies:

1. If MinDist(Br, Bs) > pruning distance ofp, Bs does not contain any points

belonging to the k-nearest neighbors of the pointp, and therefore the distance

computation betweenp and points inBs can be filtered. Pruning distance of a

pointp is the distance betweenp and itsk-th nearest neighbor candidate. Initially,

it is ∞.

2. If MinDist(Br, Bs) > pruning distance ofBr, Bs does not contain any points

belonging to the k-nearest neighbors of any points inBr, and hence the join ofBr

andBs can be pruned away. The pruning distance of an R block is the maximum

pruning distance of the R points inside.

Join Algorithm

Algorithm 2 outlines the scheduled block nested loop join algorithm of Gorder. It loads

blocks ofR into memory sequentially (lines 1-2). For theR block in memoryBr, S

64

Algorithm 3 MemoryJoin(Br, Bs)
Input:

Br andBs are two blocks fromR andS respectively.
Description:

1: Divide Br, Bs into sub-blocks;
2: for each sub-blockB′

r ∈ Br do
3: SortBlocks(Bs, B

′
r);

4: for each sub-blockB′
s ∈ NotPruned(Bs, B

′
r) do

5: for each pointpr ∈ B′
r do

6: if MinDist(B′
r, B

′
s) ≤ PrunDist(pr) then

7: for each pointps ∈ B′
s do

8: ComputeDist(ps, pr,d2
α);

blocks are sorted in the increasing order of their distance toBr (line 3). Note that this

sorting does not require any disk accesses because there are only a small number of

blocks and the bounding box for each block of S can be kept in in memory. At the same

time, blocks withMinDist(Br, Bs) greater than the pruning distance ofBr are pruned

(pruning strategy 2). That is, only the remaining blocks are loaded into memory one by

one (lines 4-5). With each pair ofR andS block, we join them in memory by calling

functionMemoryJoin (line 6). After all unprunedS blocks are processed withBr, the

kNN candidate sets for points inBr are output as the join results (line 7).

The memory join algorithm is shown in Algorithm 3. BothR-block andS-block are

divided into sub-blocks (line 1). For eachR sub-blockB′
r, theS sub-blocks are arranged

according to their distance toB′
r. Pruning strategy 2 is again used to pruning thoseS sub-

blocks with MinDist(B′
r, B

′
s) greater than the pruning distance ofB′

r. Those unprunedS

sub-blocks participate the join withR sub-blocks one by one (lines 4-5). To joinR and

S sub-blockB′
r andB′

s, each data pointpr in B′
r is compared withB′

s. For each pointpr

in B′
r, we examine whether MinDist(B′

r, B
′
s) is greater than the pruning distance ofpr. If

true, by pruning strategy 1,B′
s cannot contain any points that are k-nearest neighbors of

pr and so theB′
s can be skipped (lines 6-7). Otherwise, functionComputeDist is called

for pr and each data pointps in B′
s (line 8). FunctionComputeDist, as described in the

65

following subsection, inserts thoseps with dist(pr, ps) smaller than the pruning distance

of pr into the kNN candidate set ofpr. dα
2 is the distance between the bounding boxes

of B′
r andB′

s on theα-th dimension,1 whereα = min(B′
r.α, B′

s.α) andB′
r.α andB′

s.α

are active dimension ofB′
r, B′

s respectively.

3.3.3 Distance Computation

Distance computation reduction is important for optimization of CPU time because of

the complexity of the distance metric and the high-dimensional data.

The bounding boxes of the G-ordered data has some special properties which can be

utilized for distance computation reduction.

Property 3.3.1 The edge of the bounding box of a block G-ordered dataB extends the

full domain from 0 to 1 on dimensionj (j > B.α), whereB.α is the active dimension of

B.

This property is directly observable from the computation ofbounding box. There-

fore, when we compute the similarity of two blocks of G-ordered data, we only need to

take the firstα dimensions into account, whereα=min(B1.α, B2.α) andB1.α (B2.α) is

the active dimensionB1 (B2). As a result, the computation of MinDist and MaxDist are

reduced to:

MinDist(B1, B2) = MinDist(B1,α, B2,α)

MaxDist(B1, B2) = MaxDist(B1,α,B2,α) + d− α

B1,α (B2,α) is the projection ofB1 (B2) on the firstα dimensions.

The next important property of thebounding boxis as follows:

1Refer to Equation 3.1 in Definition 3.3.3.

66

Property 3.3.2 The projection of the bounding box of a block of G-ordered data B con-

tainingm pointsp1,...,pm on the firstB.α− 1 dimensions is corresponding to a grid cell

in the firstB.α− 1 dimensions.

The reason is, according to the definition ofGrid Order, p1 ≺g...≺g pm ⇔ ν1 ≺...≺ νm,

whereνk is the cell surrounding pointpk. Based on the definition ofactive dimension,

ν1.sj = νm.sj (∀j < B.α), so we haveν1.sj = ... = νm.sj (∀j < B.α).

This property indicates that the projection of all points in a block of G-ordered data

B on the firstB.α−1 dimensions are within one grid cell in the firstB.α−1 dimensions.

Hence, for any pointsp andq from B1 andB2 respectively,MinDist(B1,α−1, B2,α−1)

can be used to approximate the distance between the projection ofp andq on the first

α − 1 dimensions when the grid is of fine granularity. The approximated distance is the

low bound of the real distance. That is,

MinDist(B1,α−1, B2,α−1) ≈ dist(pα−1, qα−1). pα−1 (qα−1) is the projection ofp

(q) on the firstα− 1 dimensions.

Based on the above two properties, we now are able to define the pruning strategy

based on the approximate distance as formalized by the following corollary.

Corollary 3.3.2 For any pointp and q from the G-ordered blocksBr and Bs respec-

tively, if MinDist(Br,α−1, Bs,α−1) + dist(p{α,k}, q{α,k})(α ≤ k ≤ d) is greater than

the pruning distance ofp, q cannot be a k-nearest neighbor candidate ofp, whereα

=min(Br.α, Bs.α) andp{i,j} (q{i,j}) is the projection ofp (q) on the dimensions fromi to

j.

Algorithm 4 outlines the algorithm in reducing distance computation. It calculates

MinDist(Br,α−1, Bs,α−1) from MinDist(Br, Bs) first (line 1). Then, it accumulates

the distance betweenp and q from dimensionα, whereα=min(Br.α, Bs.α) (lines 2-

5). Wheneverpdist is greater than the pruning distance ofp, q cannot be one of the

67

Algorithm 4 ComputeDist (p, q, d2
α)

Input:
p, q are two data points fromBr andBs respectively.d2

α is the distance between the
bounding boxes ofBr andBs on theα-th dimension.2

Description:
1: pdist := MinDist(Br, Bs)− dα

2;
2: for k := α to d do
3: pdist :=pdist+(p.xk − q.xk)

2;
4: if pdist > pruning distance ofp then
5: Pruneq;
6: pdist := pdist− (MinDist(Br, Bs)− dα

2);
7: for k:=1 toα-1 do
8: pdist :=pdist+(p.xk − q.xk)

2;
9: if pdist > pruning distance ofp then

10: Pruneq;
11: Insertq into the kNN candidate set ofp;

k-nearest neighbors ofp and can be pruned away (lines 4-5). Ifq cannot be pruned by

the approximation distance, we remove the approximation factor (line 6) and calculate

their real distance (lines 7-10). Ifdist(p, q) is smaller than the pruning distance ofp, q

is inserted into the kNN candidate set ofp.

According to the algorithm of Gorder, Gorder produces the kNN join results cor-

rectly. Firstly, the MinDist of two blocks of G-ordered data is the low bound to the

distance of any two points from these two blocks respectively (Corollary 3.3.1). Sec-

ondly, Gorder only skips the S blocks (sub-blocks) whose MinDist from the R block

(sub-blocks) is greater than the pruning distance of R block (sub-blocks). Finally, the

reduced distance computation only prunes away S data points that are not one of the k-

nearest neighbors of a R point (Corollary 3.3.2). Hence, for all blocks of R data, Gorder

finds the correct k-nearest neighbors.

68

3.3.4 Analysis of Gorder

The I/O and CPU cost of Gorder is analyzed in the following. Suppose the number of

R (S) data pages isNr (Ns). In the G-ordering phase, the PCA transformation needs to

perform the sequential scan of R and S twice. The cost is2(Nr +Ns). Suppose that there

are B buffer pages available in memory, the sorting step of the G-ordering requires

2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+ 2Ns

(⌈
logB−1

Ns

B

⌉
+ 1

)

page accesses using the external merge sort algorithm [107].

In thescheduled block nested loop joinphase, suppose we allocatenr buffer pages

to R data andns buffer pages to S data. The I/O cost is

Nr +
Nr

nr

·Ns · γ1

whereγ1 is the selectivity of the S blocks. Consequently, the total I/O cost in terms of

the number of page accesses is:

2(Nr + Ns) + +Nr + Nr

nr
·Ns · γ1

+2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+ 2Ns

(⌈
logB−1

Ns

B

⌉
+ 1

)

The major CPU cost of Gorder is the distance computation in thescheduled block

nested loop joinphase. The number of distance computation is:

Pr · Ps · γ2

wherePr (Ps) is the number of points of R (S),γ2 is the selectivity of distance com-

putation. The PCA processing of G-ordering performs(Pr + Ps) · d2 multiply [45].

However, the multiply and comparison operations incurred in the G-ordering phase are

69

comparatively much less significant.

We estimate the selectivity ratioγ1 andγ2 using the Minkowski Sum model proposed

in [15] and [21] which has been shown to be effective in high-dimensional data.

γ =
d∑

l=0

 ∑

{i1...il∈2{0...d−1}}

(
l∏

j=1

aij

)
 · V d−l

sphere(ε) (3.2)

V d−l
sphere(ε) =

√
πd−l

Γ
(

d−l
2

+ 1
) · εd−l (3.3)

ε = d

√
k · Γ(d/2 + 1)

PS

· 1√
π

(3.4)

where,Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π.

Following the analysis in [15], we simplify Equation 3.2 by approximating the

bounding boxeswith the hypercube. Therefore,

γ =
d∑

l=0

d

l

(
d

√
Mr

Pr

+ d

√
Ms

Ps

)l

· V d−l
sphere(ε) (3.5)

whereMr (Ms)is the number of points in the block of R (S) data. When we replace

Mr andMs with the number of points in the block of data R (pr) and S (ps), we getγ1.

γ1 =
d∑

l=0

d

l

(
d

√
pr

Pr

+ d

√
ps

Ps

)l

· V d−l
sphere(ε) (3.6)

where,

pr =
nr · page size

size of data vector
andps =

ns · page size
size of data vector

70

Parameter Default Setting
page size 8192Byte
number of nearest neighbors (k) 10
buffer size 8% of total size of R and S
maximum buffer size for R 20% of buffer size
number of points in sub-block 30
number of segments per dimension 100

Table 3.1: Default parameter values.

nr andns are the number of buffer pages allocated toR data andS data.

When we replaceMr andMs with the number of points in the sub-block of data R

(p′r) and S (p′s), we getγ2.

γ2 =
d∑

k=0

d

l

(
d

√
p′r
Pr

+ d

√
p′s
Ps

)l

· V d−l
sphere(ε) (3.7)

3.4 Performance Evaluation

We conducted extensive experimental study to evaluate the performance of Gorder and

present the results in this section. In the study, we used both synthetic cluster datasets

and real life datasets. The synthetic cluster datasets were generated using the method

described in [68]. The real life datasets are the Corel dataset from UCI KDD data repos-

itory [3] which contains 32 dimensional feature vectors of around 60K images.

We compared Gorder with MuX and simple block nested loop join (NLJ). The MuX

join [21, 20] is the current state-of-art method for the kNN join processing, which has

been shown to be optimized for both CPU and I/O time and that it outperforms the join

algorithm based on the R-tree (RSJ) significantly.

The experiments were conducted on a Pentium 4 2.6GHz PC running WinXP. The

buffer allocated for all methods is around 8% of the datasets of R and S. Extra memory

71

was allocated to MuX for storing the internal nodes. The number of nearest neighbor (k)

is 10 by default. The default settings of Gorder are summarized in Table 4.2.

Performance is presented in terms of the elapsed time (which includes I/O and CPU

time), the I/O time and the distance computation selectivity. The elapsed time and I/O

time of Gorder includes the time for both G-ordering and joining phases. Time of MuX

does not include the index building time. Distance computation selectivity is calculated

by the following equation:

number of point distance computations

|R| · |S| .

3.4.1 Study of Parameters of Gorder

In this set of experiments, we study the performance of Gorder using the real life KDD

dataset.

The first set of experiments evaluates the effect of various parameters on the per-

formance of Gorder. With the expectation that the real life dataset is usually skewed,

we implemented the GorderH for comparison purposes. GorderH applies a grid with

variable cell length onto the data space during the G-ordering phase. We compute an

equi-width histogram for each dimension in the PCA transformation stage and partition

each dimension into segments with equal number of points inside. We performed the

self the kNN join on the datasets. The measured time for GorderH includes the time for

histogram processing.

Effect of grid granularity We first evaluate the effect of the granularity of the grid

by varying the number of segments per dimension of the grid from 8 to 256. Figure 3.4

presents the results of on the Corel dataset. From the results, we observe that when

we increase the number of segments from 8 to 32, the performance of Gorder improves

72

50 100 150 200 250
0

50

100

150

200

250

E
la

ps
ed

 T
im

e
(S

ec
)

Number of Segments Per Dimension

Gorder
GorderH

(a) Elapsed Time

50 100 150 200 250
0

0.5

1

1.5

2

I/O
 T

im
e

(S
ec

)

Number of Segments Per Dimension

Gorder
GorderH

(b) I/O Time

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Number of Segments Per Dimension

Gorder
GorderH

(c) Distance Computation Selectivity

Figure 3.4: Effect of grid granularity (Corel dataset)

73

noticeably with a speed-up factor of 0.88. The speed-up factor of GorderH is 0.12.

The reason is that with finer granularity grid, thebounding boxbounds the data points

more tightly. Hence, the MinDist low bound becomes more accurate and more effec-

tive in pruning. An interesting observation is that when we further increase the number

of segments per dimension, Gorder (which uses the equi-length grid) becomes as effi-

cient as and even better than the GorderH (which uses the variable length grid based on

histogram). This indicates the fine-granularity grid makes Gorder adaptive to the data

distribution and eliminates the need to maintain the histogram.

Comparing the I/O time with the total elapsed time, we notice that the I/O time is

much less significant than the CPU time (less than 1% of the total response time), which

confirms the benefit of using the block accessing and that the kNN join is CPU critical

due to the large number and the complexity of the distance computations.

Effect of sub-block size

Figure 3.5 summarizes the effect of the size of the sub-block on the kNN join pro-

cessing. In this experiment, the size of the sub-block is varied from 15 to 960 and we

conducted the experiment on the Corel dataset. As can be observed, the selectivity of

distance computation degrades when the number of points in the sub-block grows. The

volume of the sub-block increases when there are more points in it, and consequently, its

pruning ability become ineffective. This is consistent with the cost analysis. However,

on the other hand, smaller sub-blocks do not necessarily lead to better elapsed time. We

observed that when the size of the sub-block increases from 15 to 30, the performance of

Gorder in terms of the elapsed time improves around 10% despite the slight degeneration

of the distance computation selectivity. The reason is that the decrease of sub-block size

increases the number of sub-blocks and therefore, introduces more MinDist computa-

tions. So there is a trade-off between the MinDist computation and the point distance

computation. The results indicate that the best setting of the size of sub-block is around

74

0 200 400 600 800 1000
0

50

100

150

200

250

E
la

ps
ed

 T
im

e
(S

ec
)

Number of Points in Sub−block

Gorder
GorderH

(a) Elapsed Time

0 200 400 600 800 1000
0

0.5

1

1.5

2

I/O
 T

im
e

(S
ec

)

Number of Points in Sub−block

Gorder
GorderH

(b) I/O Time

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Number of Points in Sub−block

Gorder
GorderH

(c) Distance Computation Selectivity

Figure 3.5: Effect of sub-block size (Corel dataset)

75

30, that is3 · k.

Effect of buffer size for R data Next we study the effect of buffer size allocated to

R data and present our study in Figure 3.6. We fixed the buffer size at around 10% of

input data set and decreased the number of buffer pages for R from around 85% of buffer

to around 16% of buffer. Figure 3.6 shows that as we reduce the buffer size for R, the

I/O time increases quickly with the drop of the number of R buffer pages because the

reduction in R buffer size causes the loading time of the S blocks to increase. However,

the overall performance of Gorder with regard to the elapsed time has not been influenced

a lot. The reason is when R buffer size shrinks, more S data can be loaded in buffer and

hence, the R data in memory are more likely to join with the S data that yield real k-

nearest neighbors first. Therefore the selectivity is improved and the increase of the I/O

time is absorbed by the decrease of CPU time.

3.4.2 Effect of k

We now study the effect ofk and compare the performance of Gorder with MuX and

NLJ. Figure 3.7 presents the results on the Corel dataset when we varied the number of

nearest neighborsk form 5 to 50.

From the results, we observe that with the increase of number of nearest neighbors,

the elapsed time of Gorder increases moderately. Comparatively, MuX is more affected

by the increase ofk and even becomes worse than NLJ. The gap of the elapsed time

between MuX and Gorder widens while the value ofk increases. On average, Gorder

outperforms MuX with the speed-up factor of around 2 with regard to the elapsed time.

In terms of distance computation selectivity, selectivity of Gorder keeps lower than the

selectivity of MuX. Note that the speed-up of the elapsed time is more significant than the

improvement of selectivity. This is due to the distance computation reduction technique

Gorder employs. Gorder uses a subset of dimensions for block similarity computation

76

20406080
0

50

100

150

200

250

E
la

ps
ed

 T
im

e
(S

ec
)

Buffer size for R Data (%)

Gorder
GorderH

(a) Elapsed Time

20406080
0

0.5

1

1.5

2

I/O
 T

im
e

(S
ec

)

Buffer size for R Data (%)

Gorder
GorderH

(b) I/O Time

20406080
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Buffer size for R Data (%)

Gorder
GorderH

(c) Distance Computation Selectivity

Figure 3.6: Effect of buffer size for R data (Corel dataset)

77

10 20 30 40 50
0

200

400

600

800

1000

E
la

ps
ed

 T
im

e
(S

ec
)

k

MuX
Gorder
NLJ

(a) Elapsed Time

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

I/O
 T

im
e

(S
ec

)

k

MuX
Gorder
NLJ

(b) I/O Time

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

S
el

ec
tiv

ity

k

MuX
Gorder
NLJ

(c) Distance Computation Selectivity

Figure 3.7: Effect ofk (Corel dataset)

78

and the block similarity is also used to reduce point distance computation; hence the

speed-up in terms of elapsed time is even better than the reduction of selectivity. Fig-

ure 3.7(b) presents the I/O time incurred by different methods. Memory allocation of

NLJ is the same as Gorder. That is, around 20% for R data and 80% for S data. Gorder

outperforms MuX due to its one time accessing one block of data so that the expensive

disk seeking time is saved. The I/O cost of Gorder is similar to the I/O cost of NLJ

because Gorder filters out S blocks that will not yield kNNs with the pruning strategy

but it also has more disk seek time because the S blocks are not loaded into memory

sequentially.

The reason that the cost of MuX increases significantly mainly because of the signif-

icant increase of the distance computation between the internal nodes and buckets.

3.4.3 Effect of Buffer Size

In dealing with large datasets, the kNN join algorithm must be efficient in utilizing the

limited buffer space. In this experiment, we study the behavior of the join methods with

respect to buffer sizes.

The study is performed on the Corel dataset and we reduced the buffer size from

around 600 pages (30% of the dataset size) to around 200 pages (10% of the dataset

size). The buffer size for R was kept at 50 pages. In Figure 3.8, we compare the perfor-

mance of Gorder and MuX. The result shows that buffer size does not affect the overall

performance the kNN join much because the major cost of the kNN join is the CPU cost.

The speed-up factor of Gorder over MuX and NLJ keeps steadfastly at around 1.8 and 4

respectively.

We also observe that the reduction in buffer space does not lead to the degeneration of

the I/O performance of Gorder. The reason is that the reduction in buffer size reduces the

volume of the bounding box and consequently, improves the effectiveness of the filtering

79

200300400500600
0

100

200

300

400

500

600

700

800

E
la

ps
ed

 T
im

e
(S

ec
)

Number of Buffer Pages

MuX
Gorder
NLJ

(a) Elapsed Time

200300400500600
0

0.2

0.4

0.6

0.8

1

I/O
 T

im
e

(S
ec

)

Number of Buffer Pages

MuX
Gorder
NLJ

(b) I/O Time

200300400500600
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Number of Buffer Pages

MuX
Gorder
NLJ

(c) Distance Computation Selectivity

Figure 3.8: Effect of buffer size (Corel dataset)

80

of S blocks. Therefore, more S blocks are filtered from being loaded into memory.

Hence, the I/O time of Gorder reduces instead.

3.4.4 Evaluation Using Synthetic Datasets

We study the scalability of Gorder on the synthetic datasets of various sizes and dimen-

sions. Since real life data set are often clustered and correlated, we utilized method

in [68] to generate clustered datasets containing 10 clusters.

Effect of Dimensionality

In this experiment, we evaluate the effect of data dimensionality on the join performance

by varying the number of dimensions from 8 to 64. Figure 4.12 presents the results on

the 100K clustered datasets. We observe that the efficiency of MuX is more affected by

the increasing dimensionality. The reason is that MuX, like the R-tree, its performance

degenerates with the increase of data dimensionality. The performance gain of Gorder

over MuX widens as the dimensionality grows. Figure 4.12(c) shows that the distance

computation selectivity of both MuX and Gorder degenerates with the increase of the

number of dimensions. However, Gorder employs the distance computation reduction

technique to alleviate the increase of distance computation cost for high dimensional

data. Therefore, the deterioration of the elapsed time of Gorder with the increasing

dimensionality is moderate. So Gorder is more scalable to high-dimensional data than

MuX.

Effect of Size of Dataset

In the second experiment, we study the performance behavior with varying size of

datasets. We performed the self kNN join of the clustered data in the 16-dimensional

space and varied the dataset size from 10,000 to 500,000 objects. The results are sum-

81

10 20 30 40 50 60
0

500

1000

1500

E
la

ps
ed

 T
im

e
(S

ec
)

Number of Dimensions

MuX
Gorder
NLJ

(a) Elapsed Time

10 20 30 40 50 60
0

1

2

3

4

5

I/O
 T

im
e

(S
ec

)

Number of Dimensions

MuX
Gorder
NLJ

(b) I/O Time

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Number of Dimensions

MuX
Gorder
NLJ

(c) Distance Computation Selectivity

Figure 3.9: Effect of dimensionality (100k clustered dataset)

82

100 200 300 400 500
0

2000

4000

6000

8000

10000

E
la

ps
ed

 T
im

e
(S

ec
)

Number of Points(K)

MuX
Gorder
NLJ

(a) Elapsed Time

100 200 300 400 500
0

1

2

3

4

5

I/O
 T

im
e

(S
ec

)

Number of Points(K)

MuX
Gorder
NLJ

(b) I/O Time

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Number of Points(K)

MuX
Gorder
NLJ

(c) Distance Computation Selectivity

Figure 3.10: Effect of data size (16-dimensional clustered datasets)

83

100 200 300 400 500
0

2000

4000

6000

8000

10000

E
la

ps
ed

 T
im

e
(S

ec
)

Size of S Dataset (K)

MuX
Gorder
NLJ

(a) Elapsed Time

100 200 300 400 500
0

1

2

3

4

5

I/O
 T

im
e

(S
ec

)

Size of S Dataset (K)

MuX
Gorder
NLJ

(b) I/O Time

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

S
el

ec
tiv

ity

Size of S Dataset (K)

MuX
Gorder
NLJ

(c) Distance Computation Selectivity

Figure 3.11: Effect of relative size of datasets (16-dimensional clustered datasets).

84

marized in Figure 3.10. From the result, Gorder is noted to be the most efficient method

for datasets of various sizes. With the increase of dataset size, the elapsed time of MuX

grows faster than Gorder. The speed-up factor of Gorder over MuX ranges from 1.2

to 2.8. Note that even for small datasets where the distance computation selectivity of

Gorder is similar to MuX, the elapsed time of Gorder is still much lower than MuX due

to the use of distance computation reduction technique.

From Figure 3.10 (c), we observe that the distance computation selectivity of Gorder

improves slightly when the number of data points grows. The reason is that the increase

of the number of data points makes the clusters denser and reduces the distance between

a point and its k-nearest neighbors. Therefore, more points can be filtered from distance

computation. The study demonstrates that Gorder is scalable to large size of data and

has even better performance than MuX for large datsets.

Effect of Relative Size of Dataset

In the last set of experiments, we joined two datasets of different sizes and studied the

effect of the relative sizes on the performance of the join algorithms. To study such an

effect, we fixed the size of R at 100K points and varied the size of S from 10K to 1,000K

so that the relative size of R:S is changed from 10:1 to 1:5. Figure 3.11 shows the results.

Both the elapsed time and I/O time of Gorder increase moderately with the increase

in S data size. The cost of MuX goes up comparatively faster, which leads to the wider

performance gap between Gorder and MuX as S dataset size increases. Furthermore,

note that even at S size of 10K and 50k, where the selectivity of MuX is better than

Gorder, Gorder is still much faster. With regard to the elapsed time, the average speed-

up factor of Gorder over MuX is 1.3, which confirms the scalability of Gorder with

respect to the data size again.

85

3.5 Summary

This chapter investigates the kNN join problem. The k-nearest neighbor (kNN) similar-

ity join is an operation that combines each point of one data set with its kNNs in the

other dataset, and it can be used to facilitate data mining tasks such as clustering, clas-

sification and outlier detection. It is also capable of providing more meaningful query

results than just the range similarity join. We proposeGorder, an efficient kNN join

processing algorithm that exploits sorting, data page scheduling and distance computa-

tion filtering and reduction to reduce both I/O and CPU costs. We prove that Gorder is

efficient and scalable with regard to both data dimensionality and size with the intensive

performance study on both synthetic cluster and real life datasets. The comparative study

also confirms that Gorder outperforms existing methods by a significant margin.

Chapter 4

ERkNN: Efficient Reverse k-Nearest
Neighbors Retrieval with Local
kNN-Distance Estimation

4.1 Introduction

The reverse k-Nearest Neighbors (RkNN) query aims to find points in a dataset that have

the given query point as one of their k-nearest neighbors (kNN). It has many applica-

tions in profile-based marketing, information retrieval, decision support and data mining

systems and has received considerable attention in the recent years[78, 115, 125, 114,

76, 79]. The RkNN query is much more complex than the traditional one point simi-

larity queries such as the kNN query and the range query because the reverse k-nearest

neighbors are not necessary to localize to the neighborhood of the query point.

The naive solution for the RkNN search is very expensive. A number of methods

have been proposed to process the RkNN query efficiently[78, 125, 112, 116, 114]. They

can be divided into two categories -pre-computationmethods[78, 125] andspace prun-

ing methods [112, 116, 114]:

• Pre-computationmethods (the RNN tree [78] and the Rdnn-tree [78, 125]) pre-

compute the nearest neighbors of each point in the datasets and store the pre-

86

87

computed information in hierarchical structures. This approach cannot answer an

RkNN query unless the corresponding k-nearest neighbor information is available.

• Space pruningmethods (SFT [112], TPL [116] and SAA [114]) utilize the geome-

try properties of RNN to find a small number of data points as candidates and then

verify them with kNN queries or range queries.

A shortcoming ofpre-computationmethods is that they cannot answer an RkNN

query unless the corresponding k-nearest neighbor information is available. Since the

values ofk of RkNN queries may vary greatly in many applications, storing the k-nearest

neighbor information for all possible values ofk is expensive and sometimes infeasible,

and maintaining such a large amount of k-nearest neighbor information in the presence

of frequent updates is even more costly.Space pruningmethods can answer an RkNN

query without the priori knowledge of the k-nearest neighbor information. However,

all these methods become very expensive when data dimensionality is high or when the

valuek is large.

Our work, motivated by the deficiencies of previous methods, aims to design a

search algorithm which works efficiently for the RkNN query in the high-dimensional

spaces and need not store k-nearest neighbor information for all possible values ofk.

We overcome the difficulty of the RkNN query with the estimation techniques. The

ERkNN - an estimation-based RkNN search algorithm is proposed. ERkNN employs

the filter-and-refine framework. It retrieves RkNN candidates based on the estimated

kNN-distance (kNN-distance is the distance from a data point to itskth-nearest neigh-

bor). This estimation-based filter has the advantage that its computation cost is much

lower than the filtering strategies employed by space pruning methods, which improves

the RkNN query speed by orders of magnitude. We provide two local kNN-distance esti-

mation methods - the PDE method and the kDE method, which enable ERkNN to answer

an RkNN query even the corresponding kNN-distance information is unavailable. Ex-

88

Symbol Definition
d data dimensionality

k orK an integer, number of nearest neighbors
p andq data point and query point

Dist(p, q) distance between pointsp andq
dnnk(p) kNN-distance - distance betweenp and itskth-nearest neighbor
ednnk(p) estimated kNN-distance
dnnK(p) KNN-distance - distance betweenp and itsKth-nearest neighbor

Table 4.1: Symbols and definitions.

tensive experiments on both synthetic and real-world datasets demonstrate that ERkNN

finds RkNN efficiently and effectively and is scalable with respect to data dimensionality,

the value ofk, and data size.

The remainder of the chapter is organized as follows.

• Section 4.2 investigates the RkNN problem and presents its interesting properties.

• Section 4.3 introduces the local kNN-distance estimation methods, describes the

algorithm of ERkNN and provides an accuracy and cost analysis of the ERkNN

algorithm.

• Section 4.4 presents the extensive performance study on both synthetic and real life

datasets which compares the query performance of the ERkNN with other RkNN

query algorithms.

• Section 4.5 concludes this chapter with a summarization.

Table 4.1 gives a summarization of the symbols being used frequently in this chapter.

4.2 Properties of the RkNN Query

The RkNN query has the following properties:

89

1. The points in the answer set of an RkNN query are not necessary to localize to the

query point’s neighborhood.

2. If we know apriori thekNN-distance(the distance between a point and its k-th

nearest neighbor) of each point in the dataset, the RkNN query can be transformed

into a point enclosure query [78].

3. The monotonicity property: ifk < K, RkNN(q, R) ⊆ RKNN(q, R).

The first property is unique to the RkNN query and makes the RkNN query more

difficult than otherone pointsimilarity queries - the range query and the kNN query.

The example in Figure 1.1 illustrates this behavior. Letp2 be the query point andk=2.

We observep2 is one of the 2-nearest neighbors ofp1, p3, andp4. Hence,p2’s reverse

2-nearest neighbors arep1, p3, andp4. Note thatp4 is an R2NN ofp2 although it is far

from the query pointp2. In contrast,p5 andp7 are not answers of the R2NN query ofp2

although they are close top2.

This property has serious impact on the design of the RkNN search algorithm. In

order to retrieve all the correct answers, algorithms that zoom in to the query point and

iteratively expand the search region to look for promising answers cannot be terminated

until the k-nearest neighbors of all the points in the dataset are evaluated. Therefore, the

complexity of the RkNN query is upper-bounded byO(N2), whereN is the cardinality

of the input dataset.

However, as stated in Property 2, if we know thekNN-distanceof each point in

advance, the RkNN query can be simplified to a point enclosure query [78] (also known

as the point containment query). The point enclosure query checks the distance between

the query pointq and data points in the dataset and retrieves data pointp such that the

distance betweenp andq, Dist(p, q) is less than or equal top’s kNN-distance(denoted

as dnnk(p)). The reason is ifDist(q, p) ≤ dnnk(p), then q is one ofp’s k-nearest

90

neighbors. Therefore,p is one of the reversek-nearest neighbors ofq. By this way, the

searching speed of the RkNN query is improved significantly and an RkNN query can be

answered in at mostO(N) time. Thepre-computationmethods work according to this

mechanism. An obvious shortcoming is that for each possiblek value, the corresponding

kNN-distanceinformation of each point in the dataset should be calculated in advanced

and stored for the RkNN query.

The estimation-based RkNN search algorithm (ERkNN) makes use of this property

of the RkNN query as well but overcomes the shortcoming of the pre-computation meth-

ods by utilizing thelocal estimation methodsto estimate thekNN-distanceof data points

in the dataset. It uses the point enclosure query to retrieve RkNN candidates according to

the estimated kNN-distance in the filter step of ERkNN. Thus, it is able to give approx-

imate answers to an RkNN query when the corresponding kNN-distance information is

unknown.

Property 3 - the monotonicity property is obvious for the kNN query but not so

apparent for the RkNN query because of Property 1 - the non-locality property. We

prove it as the following:

Proof: For any data pointp in the the answer set ofRkNN(q, R), we have

Dist(q, p) ≤ dnnk(p).

whereDist(q, p) is distance betweenp andq, anddnnk(p) is pointp’ kNN-distance.

Sincek < K, we have

dnnk(p) ≤ dnnK(p).

wherednnK(p) is pointp’ KNN-distance.

So,

Dist(q, p) ≤ dnnK(p).

91

Algorithm 5 ERkNN(T , q, k)
Input:

T is the index tree,q is the query point,k is an integer.
Output:

RkNN answers.
Description:

1: A = ∅; /*A is the RkNN candidate set*/
2: Filter (T , q, k,A);
3: Refinement(T , q, k,A);

Therefore,p is an answer to the queryRKNN(q, R) too.

Thus, we have

RkNN(q, R) ⊆ RKNN(q, R)

4.3 Estimation-Based RkNN Search

The ERkNN algorithm employs the filter-and-refine framework. Algorithm 5 outlines

the algorithm. The first stepFilter retrieves a set of pointsp whose distance to the query

point q is equal to or greater thanp’s estimated kNN-distance as RkNN candidates. The

second stepRefinementverifies the candidates with theaggregated range query.

The novelty of ERkNN lies in its efficient candidate retrieval based on thelocal

kNN-distance estimationwhich accurately approximates each point’s kNN-distance. It

answers RkNN queries of arbitraryk efficiently without requiring the corresponding

kNN-distanceinformation. This estimation-based filter outperforms the filter methods

used by methods significantly especially when data dimensionality is high andk is big.

In addition, the refinement step of ERkNN employs the aggregated range query to effi-

ciently reduce the CPU and I/O cost and makes ERkNN more efficient.

In the following subsections, we first introduce thelocal kNN-distance estimation

methods, then give the details of each procedure and provide an analysis of the ERkNN

92

algorithm.

4.3.1 Local kNN-Distance Estimation Methods

Previous studies on the kNN-distance estimation [15] employ theglobal uniform as-

sumption, that is, the data are uniformly distributed over the whole data space. We call

these approaches theglobal kNN-distance estimation. The kNN-distance computed by

theglobal kNN-distance estimationis theaverageof the kNN-distance of all the points in

the dataset. However, the local density of each point in a dataset varies considerately and

so does the kNN-distance of each point. RkNN candidate retrieval that is based on the

average kNN-distance tends to produce a large number of false misses (data points that

are answers but missed) and false hits (data points that are not answers but retrieved),

which decreases the recall of the correct RkNN answers and as well as increases the

refinement cost.

In this work, we introduce the idea of thelocal kNN-distance estimationwhich is

based on the nonparametric density estimation [41]. The nonparametric density estima-

tion estimates a point’s local density function by a small number of neighboring samples

around the point. The resulting local density function gives a much better approxima-

tion of the data distribution compared to the global uniform assumption. Hence, the

local kNN-distance estimationapproximates the kNN-distance of each point much more

accurately than the global approach.

We develop twolocal kNN-distance estimationmethods - the PDE method and the

kDE method. The PDE method is based on the parzen density estimator with uniform

kernel [41], which is a most commonly-used non-parametric density estimator. The kDE

method, as an alternative to the PDE method, is based on the interesting finding which

is deduced from the kNN density estimator [41]. Our experiment study show that these

methods produce similar estimation results, work effectively on both synthetic and real

93

life datasets and outperform the global approach significantly.

The PDE method

The PDE method is based on the parzen density estimator with uniform kernel [41]. Let

L(p) be a small sphere region centered atp. The Parzen Density Estimator counts the

number of points falling inL(p) and estimates the local probability density function at

p, X̂(p) as follows:

X̂(p) =
k/N

V
(4.1)

whereN is the cardinality of dataset,k is the number of points withinL(p) andV is the

volume ofL(p). L(p) is ad-dimensional hyper-sphere of radiusr = dnnk(p), so

V = Vd,r(p) =

√
πd · rd

Γ(d/2 + 1)
=

√
πd · dnnk(p)d

Γ(d/2 + 1)
(4.2)

where

Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π.

Combining Equation 4.1 and 4.2, we have

X̂(p) =
k/N · Γ(d/2 + 1)√

πd · dnnk(p)d
(4.3)

Applying the uniform kernel assuming that the data density is uniform overp’s kNN

vicinity to KNN vicinity (k andK are two integers - the number of data points inL(p),

the hyper-sphere region centered atp, k 6= K), we obtain

X̂(p) =
k/N · Γ(d/2 + 1)√

πd · dnnk(p)d
=
K/N · Γ(d/2 + 1)√

πd · dnnK(p)d
(4.4)

94

Hence we have

dnnk(p) = dnnK(p) · d

√
k

K (4.5)

Thus, we have the PDE method which estimates kNN-distance ofp using the following

equation:

ednnk(p) = dnnK(p) · d

√
k

K (4.6)

whereednnk(p) is the estimated kNN-distance ofp andd is data dimensionality.dnnK(p)

is theKNN-distance (the distance betweenp and itsKth nearest neighbor). It works as

a base of estimation and is pre-computed in advance. For thekNN-distanceof different

values ofk, the sameKNN-distance is used for estimation.

Note that although the PDE method employs the uniform kernel, the uniform as-

sumption is applied only in the local region of a pointp, that is, the hyper-sphere

(p, kdist) which is centered atp and of radiuskdist = max(dnnk(p), dnnK(p)). Since

theKNN-distance of each pointp captures the local density of a pointp, the PDE method

estimates a point’s kNN-distance much more accurately than the global approach does.

The kDE method

The kDE method is based on an interesting finding which is deduced from the kNN

density estimator [41, 74]1, that is, the ratio of (k+1)NN-distance to the kNN-distance

is as follows [41, 74]:
dnnk+1

dnnk

∼= 1 +
1

kd

1Refer [41] for the detail of deduction

95

Thus, we have,

dnnk+1
∼= dnnk · (1 + 1

kd
)

dnnk+2
∼= dnnk+1 ·

(
1 + 1

(k+1)d

)

∼= dnnk ·
(
1 + 1

kd

) ·
(
1 + 1

(k+1)d

)

. . .

So for any two integersk1 andk2 (k1 6= k2),

if k1 < k2 dnnk2
∼= dnnk1 ·

∏k2−1
i=k1

(1 + 1
i·d)

if k1 > k2 dnnk2
∼= dnnk1Qk1−1

i=k2
(1+ 1

i·d)

Therefore, we have the kDE method which estimates kNN-distance using Equation 4.2:

ednnk(p) =

dnnK(p) ·∏k−1

i=K(1 + 1
i·d) if k > K

dnnK(p) if k = K
dnnK(p)

QK−1
i=k (1+ 1

i·d)
if k < K

(4.7)

whereednnk(p) is the estimated kNN-distance ofp andd is data dimensionality.dnnK(p)

is theKNN-distance ofp.

Discussions

The kNN-distance estimated by the PDE or the kDE methods is an approximation of the

real kNN-distance, so the candidate set retrieved by the filter procedure of ERkNN may

contain false hits and miss true answers due to the estimation error. The false hits will

be removed with the refinement procedure of ERkNN. The problem of false misses will

be discussed in Section 4.3.3.

96

For RkNN queries of differentk values, ERkNN uses the sameKNN-distance as

the basic for estimation. It is observed that whenk is far fromK, the approximation

becomes less accurate. This problem can be alleviated by a multipleKs version of

ERkNN. That is, we store severalKNN-distances (K1NN-distance,K2NN-distance,...

KmNN-distance) and estimate a point’s kNN-distance according to theKiNN-distance

such thatKi is closest tok. ERkNN with multipleKs is a straightforward extension of

the singleK case, so we will focus on the singleK version ERkNN here.

The data dimensionalityd can be evaluated by either theembeddeddimensionality

or the intrinsic dimensionality [123]. Theembeddeddimensionality is the length of

the feature vector of data and theintrinsic dimensionality is the number of theeffective

features of data. Studies in query cost analysis and pattern recognition show that cost

estimation and data analysis based on intrinsic dimensionality are more accurate. This

is same for thelocal kNN-distance estimationaccording to our experimental study. The

PDE and kDE methods estimate the kNN-distance more accurately when theintrinsic

dimensionality is used in Equation 4.6 and 4.7. Approaches for intrinsic dimensionality

computation are in [123].

4.3.2 The Algorithm

We now present the filter and refinement procedures of ERkNN. We use the Rdnn-

tree [125] data structure for the search.

Data Structure: The Rdnn-tree is basically an R-tree that is augmented with the

nearest neighbordistance(NN-distance). We store the data points and theKNN-distance

in the leaf nodes of the Rdnn-tree. Each leaf node entrye has the form (p, dnnK(p)),

wherep is the data point anddnnK(p) is theKNN-distance ofp.

Each entrye in the internal nodes of the Rdnn-tree has the form (ptr, MaxDnnK,

mbr). ptr points to a sub-nodeN ′; mbr is the minimum bounding rectangle (MBR) of

97

Algorithm 6 Filter(T , q, k,A)
Input:

T is the Rdnn-tree,q is the query point,k is an integer,A is the set of RkNN
candidates.

Description:
1: Initialize queueQ with root ofT ;
2: while Q is not emptydo
3: Dequeue a nodeN from Q;
4: if N is an internal nodethen
5: for eachsub-nodeN ′ of N do
6: if MinDist(N ′, q) ≤Max ED(N ′) then
7: InsertN ′ to Q;
8: else
9: for eachpointp in N do

10: if Dist(p, q) ≤ ednnk(p) then
11: Insertp intoA;

N ′; MaxDnnK is the maximalKNN-distance of all data points in the subtree rooted at

N ′.

MaxDnnK = Maxm
i=1dnnK(pi) (4.8)

wherep1, ..., pm are all points withinN ′. We use the algorithm described in [125] to

build the Rdnn-tree withKNN-distance, except that the NN queries are replaced by the

KNN queries. The tree can also be constructed using the bulk approach proposed in [84].

Filter Procedure

In the filtering step, ERkNN retrieves a set of pointsp whose estimated kNN-distance

is equal to or greater than distance fromp to the query pointq. The estimated kNN-

distanceednnk(p) is computed with either the PDE or the kDE method. This estimation-

based filter has the advantage that its computation cost is much lower than the filtering

strategies employed by space pruning methods [115, 116, 112].

During the tree traversal, we apply the followingpruning strategy:

If MinDist(N, q) ≥ Max ED(N), tree nodeN can be pruned from traversal,

98

whereMinDist(N, q) is the minimum distance between the query pointq and the MBR

of N andMax ED(N) is computed as follows:

• The PDE method is employed for kNN-distance estimation:

Max ED(N) = MaxDnnK · d

√
k

K (4.9)

• The kDE method is employed for kNN-distance estimation:

Max ED(N) =

MaxDnnK ·
∏k−1

i=K(1 + 1
i·d) if k > K

MaxDnnK if k = K
MaxDnnK)
QK−1

i=k (1+ 1
i·d)

if k < K
(4.10)

SinceMaxDnnK = Maxm
i=1dnnK(pi), according to the computation ofMax ED(N),

Max ED(N) =Maxm
i=1ednnk(pi), whereednnk(pi) is the estimated kNN-distance of

pi andpi is a point inN . Therefore, a nodeN such thatMinDist(N, q) > Max ED(N)

can be pruned from traversal.

Algorithm 6 presents the candidate retrieval procedure that traverses the Rdnn-tree

in a breadth-first manner. It utilizes a queueQ to store tree nodes that shall be visited.Q

contains the root of the Rdnn-tree initially. WhileQ is not empty, the algorithm dequeues

a nodeN from Q and processes it according to the node type:

• If N is an internal node (line 4-7): for each sub-nodeN ′ represented by an

entry e in N , it calculatesMinDist from the query pointq to N ′, computes

Max ED(N ′) and insertsN ′ such thatMinDist(N ′, q) ≤ Max ED(N ′) into

Q to be visited later.

99

Algorithm 7 Refinement(T , q, k,A)
Input:

T is the Rdnn-tree,q is the query point,k is an integer,A is the set of RkNN
candidates.

Description:
1: Initiate range queries;
2: Refine in memory(<,A);
3: RangeQueries(T , k, <, Ra,A);
4: Output pointspi in A;

• If N is an leaf node (line 8-11): for each pointp in N , it computes the distance

betweenp and the query pointq, estimates the kNN-distance ofp and inserts points

such thatDist(p, q) ≤ ednnk(p)) into the candidate setA.

The algorithm stops whenQ is empty, that is, all the tree nodes have been either

visited or pruned. All the data pointsp such thatDist(p, q) ≤ ednnk(p) are retrieved

and stored in the candidate setA.

Refinement Procedure

The candidate setA contains false hits due to the over-estimation of a pointp’s kNN-

distance. A refinement step is needed to remove the false hits.

A point p is a reverse k-nearest neighbor ofq if and only if there areless thank points

p′ such thatDist(p′, p) < Dist(p, q) [112, 116]. According to this property, the refine-

ment procedure removes candidates with a set of range queries. These range queries

have the candidate points as the query points and the distances between the candidate

points and the query point of the RkNN queryq as query ranges. Candidates that have at

leastk points within their corresponding query ranges shall be removed fromA.

Algorithm 7 shows the four steps in the refinement procedure.

Step 1: Initialization of queries: for each pointpi in A, a range queryRi(pi, ri) is

initialized and inserted into the query set<, wherepi is the query point,ri is the query

range andri = Dist(pi, q).

100

q
N

1

r2

r3

ra

r

p

1

N 2

pa p
2

p
3

p
1

N 3

Figure 4.1: Query aggregation and illustration of pruning.

Step 2: A fast refinement in memory: the range queries are first evaluated among the

candidates. That is, for each range queryRi, it checks how many candidate points are

within Ri’s query range. Candidatepi that has at leastk points within its query ranges is

removed fromA.

Step 3:Range queries: it performs the range queries on the Rdnn-tree and removes data

points that has at leastk points in their query ranges from the candidate set.

Step 4: Points remains inA are output as RkNNs.

Steps 1-2 and 4 are straightforward. Step 3 dominates the cost incurred in the re-

finement procedure. In order to reduce both I/O and CPU cost, we apply theaggre-

gation strategyin this step. The basic idea is to first compute anaggregated range

queryRa(pa, ra) before carrying out the individual range queries. The query range of

Ra, which is centered atpa and of radiusra, covers the search ranges of allRi in <.

Figure 4.1 gives an example. There are three candidatesp1, p2 andp3. The dashed cir-

cles are their query ranges. The solid circle is the aggregated queryRa. The computation

query sphere ofRa is corresponding to theminimum enclosing ballproblems [38] whose

complexity is lower bounded byO(|A|), where| · | is the cardinality of a set.

We design the followingpruning strategiesbased on the aggregated queryRa:

101

q

1

r2

r3

ra

r

p

pa p
2

p
3

p
1

r4

4
p

Figure 4.2: Illustration of using triangular inequality property to reduce distance compu-
tation.

• Node pruning: For a nodeN , if MinDist(N, pa) ≥ ra, N is surely out of the

query range of anyRi in < and can be cut off safely (e.g. N1 in Figure 4.1). If

MinDist(N, pa) < ra, we then check whetherN intersects with at least one range

queryRi in <. If N intersects with none of them,N can also be pruned away (e.g.

N2 in Figure 4.1).

• Point pruning: For a data pointp, if Dist(p, pa) ≥ ra, p is surely out of the query

range of anyRi in <. (e.g.p in Figure 4.1).

• Query pruning: When a nodeN is being visited, ifMinDist(N, pi) ≥ ri, all the

entries inN are surely out of the query range ofRi. Thus,Ri is markedignored

while N is being visited (e.g., whenN3 in Figure 4.1 is being visited,R1 andR2

are to be ignored).

• Distance computation pruning: The triangular inequality propertycan be used to

prune distance computations When the similarity is measured by metric distance.

For any pointp within the aggregated search region(pa, ra), before computing the

distance betweenp and each unpruned candidate pointspi, we check first whether

| Dist(pa, p)−Dist(pa, pi) |≥ ri. If | Dist(pa, p)−Dist(pa, pi) |≥ ri, p is out-

102

Algorithm 8 RangeQueries(T , k, <, Ra,A)
Input:

T is the Rdnn-tree,k is an integer,< is a set of range query,Ra is the aggregated
query of<.

Description:
1: Initialize ci=0 for each queryRi in <;
2: Initialize priority queueQ with root ofT ;
3: while Q is not empty and< is not emptydo
4: Dequeue a nodeN from Q;
5: Apply query pruning;
6: if N is an internal nodethen
7: for eachsub-nodeN ′ of N do
8: Apply node pruning;
9: InsertN ′ into Q if it cannot be pruned;

10: else
11: for eachpointp in N do
12: if p cannot be pruned bypoint pruningthen
13: for eachnot ignoredRi in < do
14: if Dist(p, pi) < ri then
15: Increaseci by 1;
16: if ci = k then
17: RemoveRi from< andpi fromA;

side of query region ofRi because of thetriangular inequality property. There-

fore, distance computation betweenpi andp can be pruned2. Figure 4.2 illus-

trates an example. Distance computation betweenp4 andp can be saved because

| Dist(pa, p)−Dist(pa, p4) |≥ r4.

The above pruning strategies show that with the aggregated queryRa, a pointp or

a nodeN can be pruned away with a single distance computation ofDist(p, pa) or

MinDist(N, pa) instead of checking its distance to each query pointpi. This saves a

large amount of distance computation and reduces the CPU cost.

Algorithm 8 describes the procedure RangeQueries.ci counts the number of points

within query range ofRi. Q is a priority queue and sorts nodes in ascending order of

their MinDist to pa. Initially, Q contains the tree root. When the first queue item

2Note thatDist(pa, pi) andDist(pa, p) are already known and need not to be calculated again.

103

N is dequeued, the query pruning strategy is applied to mark the queries such that

MinDist(N, pi) ≥ ri as ignored (line 5). NodeN is then processed according to its

type:

• If N is aninternal node (line 6-9): for each sub-nodeN ′ represented by an entry

e in N , it applies thenode pruningstrategies. NodeN ′ that cannot be pruned are

inserted into the priority queueQ and shall be visited later.

• If N is an leaf node (line 10-17): for each pointp in N , it first applies thepoint

pruningstrategy. Ifp is not pruned, it checks whetherp is within the query range

of eachnot ignoredqueryRi. If true, ci is increased by 1. Whenever there arek

points inside of query range ofRi, pi is identified as a false hit and removed from

A and range queryRi is also removed from<.

The procedure stops when eitherQ is empty or< is empty, implying that all the

tree nodes that intersect with at least one range queryRi in < have been searched or the

RkNN query has an empty answer set (e.g., the R2NN ofp8 in Figure 1.1 is empty).

4.3.3 Accuracy Analysis

With the refinement procedure, the precision of the answer set produced by ERkNN is

100%. However, ERkNN may miss some correct answers due to the estimation error.

We study therecall of the RkNN answer set retrieved by ERkNN in this section.

Lower Bound of the Recall

Definition 4.3.1 LetA be the RkNN answer set retrieved by ERkNN andΩ be the com-

plete answer set of the RkNN query, therecallofA is denoted asRA= |A|
|Ω| , where| · | is

the cardinality of a set.

104

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

p

^ qdnn (p)k

dnn (p)k

Figure 4.3: Points within the shade area are false misses.

Theorem 4.3.1 The recall of the answer set retrieved by ERkNN is lower-bounded by
∫∞

0
f(x)dx, wheref(x) is the probability distribution of the estimation errors.

Proof: For a pointp in the complete answer setΩ, p is falsely missed when both the

following conditions are true: (1)ednnk(p)< dnnk(p); (2) ednnk(p) < Dist(p, q) (see

Figure 4.3 as an illustration). LetPr{·} be the probability of an event.

RA = 1− | Ω | ·Pr {ednnk(p) < Dist(p, q) ∩ ednnk(p) < dnnk(p)}
| Ω |

= 1− Pr {ednnk(p) < Dist(p, q) ∩ ednnk(p) < dnnk(p)}

SincePr {ednnk(p) < Dist(p, q) ∩ ednnk(p) < dnnk(p)}< Pr {ednnk(p) < dnnk(p)},

RA ≥ 1− Pr {ednnk(p) < dnnk(p)}

= 1− Pr {ednnk(p)− dnnk(p) < 0}

Let err(p) be the estimation error,

err(p) = ednnk(p)− dnnk(p).

105

−0.02 0 0.02 0.04
0

20

40

60

80

D
en

si
ty

Estimation Error
Normal
Logistic
Extreme value
t location−scale

Figure 4.4: Density distribution of estimation errors of Zipf dataset (dim=8,K=15,k=8)

Let f(x) be the probability distribution oferr(p).

RA ≥ 1− Pr {err(p) < 0}

= 1−
∫ 0

−∞
f(x)dx =

∫ ∞

0

f(x)dx

Hence, we have Theorem 4.3.1.

The probability distribution function of the estimation errorf(x) can be modelled by

sampling the estimation errors. Our study on various datasets shows that the estimation

errors can be well fitted with the Student’st distribution. Figure 4.4 shows an example.

We letK = 15 and estimate 8NN-distance using the kDE method on an 8-dimensional

Zipf dataset. We plot the frequency of estimation errors with gray dots in the graph and

fit it with various distributions. It shows thet location-scale distribution fits the density

distribution of estimation errors best. The probability distribution function of estimation

errorsf(x) can be modelled as follows [2]:

106

f(x) =
Γ

(
ν+1
2

)
√

νπ Γ
(

ν
2

)
[

ν +
(

x−µ
σ

)2

ν

]−(ν+1
2)

(4.11)

µ is the location parameter (i.e., the mean of estimation error);σ is the scale parameter;

ν is degrees of freedom. In this exampleµ=-0.000437092,σ=0.00455945,ν=4.07209.

Improvement of the Recall

The above study shows that the false misses are introduced by the under-estimation of

the kNN-distance. Therefore, we can improve the recall by simply introducing a positive

adjustment to the estimated kNN-distance. Here, we present two approaches, thelocal

adjustment and theglobal adjustment. Letednnk
′(p) be p’s estimated kNN-distance

after adjustment.

• local adjustment: Letξ be a real number andξ > 1.

ednnk
′(p) = ednnk(p) · ξ (4.12)

ξ is called the local adjustment factor.

• globaladjustment: Letλ be a real number andλ > 0.

ednnk
′(p) = ednnk(p) + λ (4.13)

λ is called the global adjustment factor.

ednnk(p) in both Equation 4.12 and 4.13 shall be substituted with either Equation 4.6

or 4.7. ERkNN then retrieves a set of pointsp such thatDist(p, q) ≤ ednnk
′(p) in the

filtering phase and then apply the same refinement algorithm to verify the candidates.

These adjustments reducesPr {err(p) < 0} and hence increases the recall. At the

same time, the adjustment makes the filtering step of ERkNN retrieve more data points

107

f(x)

f '(x)

xx-

Figure 4.5: Illustration of estimation error distribution after global adjustment.

as candidates which may increase the refinement cost. However, the in-memory refine-

ment procedure filters a number of candidates effectively, so its impact on the overall

performance is not significant.

The adjustment of the local method is proportional to the local density of each point.

Therefore, local adjustment is more effective than the global adjustment especially for

the skewed datasets and real life datasets. The global adjustment has its own advan-

tage as well. Since the distribution of the estimation error after global adjustment only

moves along the x-axis (See Figure 4.5 for illustration). The lower bound of the recall

after the global adjustment can be predicted immediately according to the distribution of

estimation error before the global adjustment.

Theorem 4.3.2 The recall ofA after global adjustment is lower bounded by
∫∞
−λ

f(x)dx,

whereλ is the global adjustment factor,A is a set of data points retrieved by ERkNN ac-

cording to the estimated kNN-distance withλ global adjustment.f(x) is the probability

distribution function of estimation error before the global adjustment.

Proof: Let err′(p) = ednnk(p, λ) − dnnk(p). As err′(p) = err(p) +λ, proba-

bility distribution function oferr′(p), f ′(x) = f(x − λ) (see Figure 4.5). According to

108

q

p

3

Er

arE

Figure 4.6: Expected aggregated range.

Theorem 4.3.1,RA ≥
∫∞
0

f ′(x)dx =
∫∞
−λ

f(x)dx. Therefore, we prove Theorem 4.3.2.

Moreover, given a required lower bound of recallr, we can calculate the global ad-

justment factorλ by solving equation
∫∞
−λ

f(x)dx = r. Using the example in Figure 4.4,

assume that the required recall is 90%. By checking the table of upper critical values

of Student’st distribution, we find the upper critical point of 10% accumulated prob-

ability is 1.53 when degrees of freedom (ν) of Student’st distribution is 4 [2]. Then,

λ = 1.53σ − µ=0.0074130505.

4.3.4 Cost Analysis

The filter step of ERkNN executes the point enclosure query and accesses the R-tree

nodes containing data pointp such thatDist(p, q) ≤ ednnk(p). Let Er be the expected

estimated distance of data points in a dataset. The filter step of the ERkNN is expected

to access the R-tree nodesnr such thatMinDist(nr, q) ≤ Er and its query cost is equal

to the query cost of the range query of query radiusEr.

The refinement step of ERkNN executes the aggregated range query and accesses the

R-tree nodesnr such thatMinDist(nr, q) is smaller than the aggregated query radius

109

ra. So the cost of the refinement step of the ERkNN is equal to the expected cost of the

range query of query radiusEra. As illustrated in Figure 4.6, the expected aggregated

range

Era = 2 · Er.

According to the Minkowski Sum model proposed in [15] and [21], the number of

node accesses of a range query of query radiusr,

A(r) =
N

Ceff

d∑

l=0

d

l

 ·

((
1− 1

Ceff

)
· d

√
Ceff

N

)k

·
√

πd−l

Γ
(

d−l
2

+ 1
) · rd−l (4.14)

whereCeff is effective data page capacity, that is, the average number of entries per

node.

Therefore the total number of node accesses of ERkNN

Aall = AEr + AEra
(4.15)

AEr =
N

Ceff

d∑

l=0

d

l

 ·

((
1− 1

Ceff

)
· d

√
Ceff

N

)k

·
√

πd−l

Γ
(

d−l
2

+ 1
) · Ed−l

r (4.16)

AEra
=

N

Ceff

d∑

l=0

d

l

 ·

((
1− 1

Ceff

)
· d

√
Ceff

N

)k

·
√

πd−l

Γ
(

d−l
2

+ 1
) ·(2 ·Er)

d−l (4.17)

The expected estimated distanceEr is close to the average kNN-distance of the

dataset.

Er ≈ d

√
k · Γ(d/2 + 1)

N
· 1√

π

where,Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π.

110

The number of distance computation of the filter step is:

AEr · Ceff .

The number of distance computation of the refinement step is:

AEra
· Ceff · Ecnum .

WhereEcnum is the expected number of reverse k-nearest neighbor candidates.

Ecnum is equal to the expected number of points within the hyper-sphere of radius

Er.

Ecnum =
N ·

√
πd · Ed

r

Γ(d/2 + 1)

Therefore, the expected total number of distance computation is:

AEr · Ceff + AEra
· Ceff · N ·

√
πd · Ed

r

Γ(d/2 + 1)
.

4.4 Performance Study

In this section, we present the results of our experiments to evaluate ERkNN. We use

both synthetic and real life datasets. The synthetic datasets are of different distributions

- uniform distributed, Zipf distributed and clustered. The synthetic cluster datasets were

generated using the method described in [68]. The real life datasets are the Corel dataset

from UCI KDD data repository [3] which contains 32 dimensional feature vectors of

around 60K images.

We compare ERkNN with TPL [116] and SFT [112]. We exclude SAA because its

performance is significantly worse than SFT and TPL [116]. For both the R-tree (used

by SFT and TPL) and the Rdnn-tree (used by ERkNN), the node size is 8192 bytes.

111

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

−3

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

k

PDE−id
kDE−id
PDE−ed
kDE−ed
GEM

(a) Uniform Dataset (dim=8)

0 5 10 15 20 25 30
0

1

2

3

x 10
−4

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

k

PDE−id
kDE−id
PDE−ed
kDE−ed

(b) Clustered Dataset (dim=64)

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−4

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

k

PDE−id
kDE−id
PDE−ed
kDE−ed

(c) Zipf Dataset (dim=8)

0 5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

−4
M

e
a

n
 S

q
u

a
re

 E
rr

o
r

k

PDE−id
kDE−id
PDE−ed
kDE−ed

(d) Corel Dataset (dim=32)

Figure 4.7: Comparison of kNN-distance Estimation Methods

By default, SFT retrieves5 · k nearest neighbors as candidates in its filtering phase and

KNN-distance used by ERkNN is 15NN-distance. The experiments are conducted on a

Pentium 4 2.6GHz PC running WinXP. We measure the performance in terms of CPU

time, number of node accesses and the total cost which includes both CPU time and I/O

overhead by charging each node access 20ms [28]. The results are the average of 200

RkNN queries. The query points are randomly picked from the datasets.

112

Dataset Uniform Zipf Corel Clustered
Embedded 8 8 32 64
Intrinsic 7.2 5.74 6.48 14.451

Table 4.2: Dimensionality of datasets.

4.4.1 Study of kNN-Distance Estimation

The first set of experiments study the proposed local kNN-distance estimation methods
- the PDE method and the kDE method. We estimate the kNN-distance of k=1,2,..., 30
and evaluate the estimation accuracy by the mean square error (MSE).

MSE =

PN
i=1(ednnk(pi)− dnnk(pi))

2

N
(4.18)

whereN is the number of data points in the dataset.

Figure 4.7 shows the results on the uniform, Zipf, clustered and real life Corel

datasets. PDE-id (or kDE-id) indicates PDE (or kDE) method using theintrinsic di-

mensionality. PDE-ed (or kDE-ed) is the PDE (or kDE) method using theembedded

dimensionality. GEM is a global estimation method that calculates the average kNN-

distance using the method proposed in [15].

ednnkGEM =
d

√
k · Γ(d/2 + 1)

N
· 1√

π
(4.19)

whereN is the cardinality of the dataset.

Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π.

We observe that the PDE method and the kDE method have similar accuracies on

all the datasets. Estimations using the intrinsic dimensionality are better than the es-

timations using the embedded dimensionality. The superiority of PDE-id and kDE-id

over PDE-ed and kDE-ed is very clear on the Zipf dataset, the Corel dataset and the

113

clustered dataset where the intrinsic dimensionality is much lower than the embedded

dimensionality (see Table 4.2). As for the uniform dataset, its intrinsic dimensionality

and embedded dimensionality are similar, so there is not much difference between the

estimations using the intrinsic dimensionality and the embedded dimensionality.

The local estimation methods are much more accurate than the global estimation

method. Graphs (a) and (b) in Figure 4.7 demonstrate that the MSE of GEM is much

greater than the MSE of PDE and kDE on the Uniform and the clustered datasets. On

the uniform dataset, the local estimations are on average 37 times better than GEM.

On the Corel and the Zipf datasets, the local estimations outperform GEM even more

significantly.3 On the Zipf dataset, the MSE of GEM using the intrinsic dimensionality

is 351 times of the MSE of the local methods averagely. On the Corel dataset, the MSE

of GEM with the intrinsic dimensionality is 5310 times of the MSE of local methods

averagely. On the 64-dimensional clustered dataset, the MSE of GEM with the intrinsic

dimensionality is around 40,000 times of the MSE of local methods averagely. GEM

using the embedded dimensionality is even worse. Its MSE is 1530 and 1,210,000 higher

than the MSE of the local methods on the Zipf and the Corel datasets respectively.

The study demonstrates that local estimations outperform the global approach signif-

icantly and yield more accurate approximation of the kNN-distance of each point on both

uniformly distributed datasets and real and skewed datasets. The study also confirms that

the intrinsic dimensionality captures the effective data dimensionality and leads to better

estimations.

4.4.2 Study of the Recall

Next, we evaluate the recall of the answer set retrieved by ERkNN. We query RkNN

k = 10 and use the PDE method to estimate local kNN-distance. We first evaluate the
3We do not plot the MSE of GEM on the clustered, Zipf and Corel datasets in the graphs because they

are too big.

114

1 1.01 1.02 1.03 1.04 1.05 1.06
0

0.2

0.4

0.6

0.8

1

R
e
ca

ll

Local Adjustment

Lower bound
Real recall

(a) Recall (local adjustment)

1 1.01 1.02 1.03 1.04 1.05 1.06
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

T
ot

al
 Q

ue
ry

 C
os

t (
S

ec
)

Local Adjustment

10.9
11.4

12 12.7
13.4

14.1
15

(b) Query Cost (local adjustment)

0 0.0025 0.005 0.0075 0.01 0.0125 0.015
0

0.2

0.4

0.6

0.8

1

R
e

ca
ll

Global Adjustment

Lower bound
Real recall

(c) Recall (global adjustment)

0 2.5 5 7.5 10 12.5 15

x 10
−3

0

0.01

0.02

0.03

0.04

0.05

0.06

T
o

ta
l Q

u
e

ry
 C

o
st

 (
S

e
c)

Global Adjustment

10.9
12.3

14.2
16.2

18.2

20.3
22.3

(d) Query Cost (global adjustment)

Figure 4.8: Study of recall of ERkNN

local adjustment. Figure 4.8 (a) and (b) present the results on the 100K 8-dimensional

Zipf datasets. Figure 4.8(a) exhibits the average recall when we vary the local adjustment

factor ξ from 1 to 1.06. As expected, the actual recall is always higher than the lower

bound. Asξ increases, the recall approaches 1 and the lower bound becomes tighter.

Figure 4.8(b) shows the influence of the local adjustment on the performance of ERkNN

in terms of the total query cost. The real number on top of the bars indicate the num-

ber of RkNN candidates retrieved. Both the cost of ERkNN and the number of RkNN

115

candidates increase moderately with the increase ofξ.

We evaluate the effect of global adjustment on various datasets. Figure 4.8 (c) and (d)

show the results of the study on the 8-dimensional Zipf dataset. The global adjustment

factor λ is varied from 0 to 0.015. Our study finds that the global adjustment has the

similar influence on the recall and performance of ERkNN as the local adjustment on the

uniform data but works more effectively on the skewed Zipf dataset. On the Zipf dataset,

when ERkNN with local adjustment reaches 100% recall, only 15 RkNN candidates are

retrieved. While ERkNN with global adjustment needs to retrieve 22 candidates. The

reason is the local adjustment is more adaptive to the data density distribution.

The experiment shows that the recall of ERkNN can be adjusted effectively and the

adjustments affect the performance of ERkNN moderately.

4.4.3 Study on Real Dataset

We now compare the performance of ERkNN with SFT and TPL on real datasets with

varying values ofk. Figure 4.9 presents the results on the Corel datasets when we vary

k from 1 to 30. Note that the lines of ERkNN have a break atk=15 because when

k = K the RkNN queries are answered using the point enclosure query directly. The

reasons that SFT is more efficient than TPL in our experiments, which is contrary to

the experiment results in [116], are two-fold. First, SFT retrieves only5 · k points as

candidates in our experiments, while SFT retrieves10 · d · k points as candidates in the

experiments in [116]. Second, we use an optimized SFT with batch execution of the

boolean range queries [112]. The batch execution of boolean range queries reduces I/O

cost and speeds up the query performance considerably [112].

This study shows that ERkNN outperforms both TPL and SFT significantly. The

speed-up factor in terms of the total query time is 50.5 whenk is 1 and 2024.45 whenk

is 3. The average speed-up of ERkNN over SFT is more than 20. TPL is expensive when

116

0 5 10 15 20 25 30

10
−1

10
0

10
1

10
2

k

C
P

U
 T

im
e

 (
S

e
c)

ERkNN
SFT
TPL

(a) CPU Time

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

k

N
u

m
b

e
r

o
f
N

o
d
e

 A
cc

e
ss

e
s

ERkNN
SFT
TPL

(b) Number of Node Accesses

0

5

10

15

20

25

30

35

T
o

ta
l Q

u
e

ry
 C

o
st

 (
S

e
c)

Filter
Refine

ERkNN SFT TPL ERkNN SFT TPL ERkNN SFT ERkNN SFT ERkNN SFT ERkNN SFT

1 3 5 10 20 30k

2.3 5.4 8.3 14.2 28.7 52.4

(c) Total Query Time

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

k

R
e

ca
ll

ERkNN
SFT

(d) Recall

Figure 4.9: Effect ofk (Corel dataset)

k is large mainly because thek-trim algorithm used by TPL to prune an R-tree node

requires to do(
nc

k
) timesclippings[116], wherenc is the number of RkNN candidates.

ERkNN is more efficient than SFT because its low CPU cost for candidates retrieval

and refinement. During the filtering phase, ERkNN performs the point enclosure query,

while SFT performs the kNN query. kNN query is more expensive due to the addi-

tional CPU cost to sort and insert the kNN candidates. It is considerable especially

whenk is large. The refinement procedure of ERkNN is also more efficient because

117

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 10

6

k

N
u
m

b
e
r

o
f
D

is
ta

n
ce

 C
o
m

p
u
ta

tio
n
s

Multiple boolean range query
With aggregation strategy

Figure 4.10: Number of distance computation on Corel dataset

ERkNN retrieves much fewer candidates than SFT and theaggregation strategyem-

ployed by ERkNN prunes a large number of distance computations, thus reducing the

CPU cost greatly. Experiment results on the Corel dataset show that theaggregation

strategyprunes around 75% distance computations on average (see Figure 4.10).

We observe that ERkNN incurs more node accesses than SFT. This is because ERkNN

accesses more nodes during the filtering phase (ERkNN accesses 1863.95 nodes for

the Corel dataset while SFT accesses 1319.65 nodes on average). The reason is that

ERkNN may access more tree nodes to retrieve some potential RkNNs which are far

from the query point according to the estimated kNN-distance. Further, the lowest recall

of ERkNN is 97.12% on the Corel dataset. The lowest recall of SFT is 79.6%.

The study also shows that for the RkNN query, I/O cost is no longer the dominant

cost. For SFT and ERkNN, both methods execute a set of range queries simultaneously

and traverse the index tree only once in the refinement procedure. CPU cost is more

expensive because there are multiple candidates to be verified. On Corel data, the average

I/O overhead of ERkNN and SFT is 0.069 sec (3342.26 node accesses) and 0.055 sec

(2763.46 nodes accesses) respectively, while the CPU cost is 0.19 sec and 4.68 sec. CPU

118

(a) Total Query Time (b) Number of Disk Accesses

Figure 4.11: Effect of buffer size on Corel dataset

cost of TPL is expensive mainly because of its expensive pruning method in the filter

procedure.

Figure 4.11 presents the study of the effect of buffer size on the RkNN query. The

buffer size is improved from 10 pages to 2000 pages. The queryk is 5. As we expected,

the number of page accesses decreases when the buffer size is increased. However, the

total query time does not change much since the CPU cost is the major cost of the RkNN

query.

4.4.4 Study on Synthetic Datasets

In this section, we study ERkNN, SFT and TPL on synthetic clustered datasets of various

sizes and dimensions. On all these datasets, we adjust ERkNN with a local adjustment

factor 1.06 so that the recall of ERkNN is almost 1.

119

10 20 30 40 50 60
10

−2

10
0

10
2

Number of Dimensions

C
P

U
 T

im
e

 (
S

e
c)

ERkNN
SFT
TPL

(a) CPU Time

10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

Number of Dimensions

N
u
m

b
e
r

o
f
N

o
d

e
 A

cc
e

ss
e
s

ERkNN
SFT
TPL

(b) Number of Node Accesses

0

2

4

6

8

10

Number of Dimensions

T
o

ta
l Q

u
e
ry

 T
im

e
 (

S
e

c)

Filter
Refine

ERkNN SFT
 8

ERkNN SFT
 16

ERkNN SFT
 32

ERkNN SFT
 64

13 14.5 17.6
21.9

(c) Total Query Time

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

Number of Dimensions

R
e

ca
ll

ERkNN
SFT

(d) Recall

Figure 4.12: Effect of Data Dimensionality (Clustered Dataset, 100K)

Effect of Dimensionality

First, we evaluate the effect of data dimensionality on the RkNN query by varying the

number of dimensions from 8 to 64.k is equal to 10. We conduct the study on the

clustered datasets. Figure 4.12 presents the results.

We observe that ERkNN keeps being the most efficient method. The speed-up factor

of ERkNN over SFT increases from 11 to 17 when the number of dimensions increases

from 8 to 64. ERkNN outperforms TPL even more significantly. In 16-dimensional

120

100 200 300 400 500

10
0

10
2

Data Size (K)

C
P

U
 T

im
e

 (
S

e
c)

ERkNN
SFT
TPL

(a) CPU Time

100 200 300 400 500
0

100

200

300

400

500

600

Data Size (K)

N
u
m

b
e
r

o
f
N

o
d

e
 A

cc
e

ss
e
s

ERkNN
SFT
TPL

(b) Number of Node Accesses

0

0.5

1

1.5

Data Size (K)

T
o

ta
l Q

u
e
ry

 C
o

st
 (

S
e

c)

Filter
Refine

ERkNN SFT
 100

ERkNN SFT
 200

ERkNN SFT
 300

ERkNN SFT
 400

14.5 14.7 16.2 17.316.3

ERkNN SFT
 500

(c) Total Query Time

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

Data Size (K)

R
e

ca
ll

ERkNN
SFT

(d) Recall

Figure 4.13: Effect of Data Size (Clustered Dataset, Dim=16)

spaces, TPL and SFT take 464.36 sec and 0.28 sec to answer an RkNN query respec-

tively. ERkNN takes only 0.021 sec. The study demonstrates that ERkNN is more

scalable to RkNN queries in high-dimensional spaces than TPL and SFT.

Effect of Data Size

We examine the RkNN query performance on datasets of varying sizes. We query RkNN

k = 10 on the clustered datasets and vary the dataset size from 100K to 500K objects.

121

Figure 4.13 shows the results. We observe that ERkNN outperforms SFT and TPL sig-

nificantly. In terms of elapse time, the average speed-up factor of ERkNN over SFT and

TPL is 16.9 and 60565.67 respectively. When we increase data size from 100K to 500K,

the speed-up factor of ERkNN over SFT increases from 12.5 to 21.6. So ERkNN is more

scalable to data size.

4.5 Summary

RkNN queries have important applications in many database systems. However, existing

methods are expensive and not scalable to RkNN queries in high-dimensional spaces or

of large values ofk. In this chapter, an innovativeestimation-basedapproach -ERkNN

(the estimation-based RkNN search) which can efficiently handle RkNN queries in high-

dimensional data spaces and for large values ofk is proposed. ERkNN retrieves RkNN

candidates based on thelocal estimated kNN-distanceand verifies the candidates using

an efficientaggregated range query. Two local kNN-distance estimation methods, the

PDE method and the kDE method, are provided, which are proved to work effectively

on both uniform and skewed datasets. Employing the effective estimation-based filtering

strategy and the efficient refinement procedure, ERkNN outperforms previous methods

by a significant margin. Extensive experiments demonstrate that ERkNN is efficient,

scalable and outperforms pervious methods significantly.

Chapter 5

BORDER: A Data Mining Tool for
Efficient Boundary Point Detection

5.1 Introduction

Advancements in information technologies have led to the continual collection and rapid

accumulation of data in repositories. Knowledge discovery in databases is a non-trivial

process of identifying valid, interesting and potentially valuable patterns in data [37].

Given the urgent need for efficient and effective analysis tools to discover informa-

tion from these data, many techniques have been developed for knowledge discovery

in databases to identify valid, interesting and potentially valuable patterns from the data.

Such techniques include data classification and mining association rule, cluster and out-

lier analysis [52] as well as data cleaning and data preparation techniques to enhance the

validity of the data by removing anomalies and artifacts.

In this chapter, we present a novel data mining tool - BORDER for effective bound-

ary point detection. Boundary points are data points that are located at the margin of

densely distributed data such as a cluster. Boundary points are useful in data mining

applications because they represent a subset of population that possibly straddles two

or more classes. For example, this set of points may denote a subset of population that

should have developed certain diseases, but somehow they do not. Special attention is

122

123

certainly warranted for this set of people since they may reveal some interesting char-

acteristics of the disease. The knowledge of these points is also useful for data mining

tasks such as classification [67] since these points can be potentially mis-classified.

Intuitively, boundary points can be defined as follows:

Definition 5.1.1 A boundary pointp is an object that satisfies the following conditions

i) It is within a dense regionR;

ii) ∃ regionR′ nearp, Density(R′) À Density(R) or Density(R′) ¿ Density(R).

Note thatboundary pointsare different from outliers [4, 23, 6] or its statistical

counterpart - the change-point [90, 25, 7]. While outliers are located in the sparsely-

populated areas,boundary pointsoccurs at the margin of dense regions.

We develop a method called BORDER (a BOundaRy points DEtectoR) that utilizes

the special property of the reversek-nearest neighbor (RkNN) [78], and employs the

state-of-the-art database technique - the Gorder kNN join [124] to find boundary points

in a dataset.

As illustrated in Figure 1.3 in Chapter 1, the points whose reverse 50-nearest neigh-

bors are less than 30 clearly define the the boundaries of the clusters in the dataset. Uti-

lizing this property of the reverse k-nearest neighbor in data mining tasks will require the

execution of a RkNN query for each point in the dataset (the set-oriented RkNN query).

However, this is very expensive and the complexity will beO(N3) since the complexity

of a single RkNN query isO(N2) time using sequential scan for non-indexed data [116],

whereN is the cardinality of the dataset. In the case where the data is indexed by some

hierarchical index structure [16], the complexity can be reduced toO(N2 · logN). How-

ever, the performance of these index structures is often worse than sequential scan in

high-dimensional spaces.

Instead of running multiple RkNN queries, the proposed approach utilizes Gorder

kNN join [124] (or the G-ordering kNN join method) to find the reverse k-nearest neigh-

124

bors of a set of data points. BORDER processes a dataset in three steps. First, it executes

Gorder kNN join to find the k-nearest neighbors for each point in the dataset. Second, it

counts thenumber of reverse k-nearest neighbors(RkNN number) for each point accord-

ing to the kNN-file produced in the first step. Third, it sorts the data points according

to their RkNN number and the boundary points whose RkNN number is smaller than a

user predefined threshold can be output incrementally. Experimental studies show that

the proposed BORDER method is able to detect boundary points effectively and effi-

ciently. Moreover, it helps the density-based clustering method DBScan [33] to find

out the correct clusters and improves the classification accuracy for various classifiers.

Note that BORDER is based on the observation that boundary points tend to have fewer

reverse k-nearest neighbors. This assumption is usually true when the dataset contains

well-clustered data. However, this assumption may not hold for datasets which are not

well-clustered and the boundary is not so clear, in which case, BORDER may fail to find

the correct boundary points.

The remainder of the chapter is organized as follows.

• Section 5.2 presents the preliminary study of the relationship between the location

of a point and the number of its reverse k-nearest neighbors.

• Section 5.3 describes BORDER algorithm in detail and analyzes the cost of BOR-

DER.

• Section 5.4 presents the results of our performance study.

• Finally, Section 5.5 concludes this chapter with a summary.

125

5.2 Preliminary Study

The reverse k-nearest neighbors (RkNN) of an objectp are points that look uponp as one

of their k-nearest neighbors. A property of reverse k-nearest neighbor is that it examines

the neighborhood of an object with the view of the entire dataset instead of the object

itself. Hence, it can capture the distribution property of the underlying data and allow

the identification of boundary points that lie between two or more distributions.

Figure 1.3 in Chapter 1 shows the results of one of our preliminary studies. Given

a 2-dimensional dataset as shown in Figure 1.3(a), we plot the points whose reverse 50-

nearest neighbors answer set contain less than 30 points. Figure 1.3(b) shows that the

boundaries of the clusters are clearly defined by those points having fewer number of

RkNN.

We also carry out another preliminary study to find out the relationship between

the location of a pointp and the number of its RkNN in high-dimensional spaces. In

order to determine the boundary of a densely distributed region, we use hyper-sphere

datasets1 which contain the dense regions of the shape of the high-dimensional spheres.

The boundary points of spherical regions are always located at the area farthest from the

center of the sphere and so can be easily determined by calculating the distances between

the data points and the centers of the hyper-spheres they belong to.

Figure 5.1 summarizes the results of the experiments on the hyper-sphere datasets of

different distributions. We compute the number of reverse k-nearest neighbors of each

point in the dataset and the distance of each point to the center of the cluster that the point

belongs to. Then we sort the data points according to the distance of each point to the

center of the cluster that the point belongs to and plot the distance to cluster center and

the number of reverse k-nearest neighbors of each point as in Figure 5.1. Each vertical

line in the graphs in Figure 5.1 corresponds to one data point. The height of the lines in

1The generation of hyper-sphere data is given in the experiment section.

126

(a) Uniform Distribution (Dimension = 8, Data Size = 6000)

(b) Normal Distribution (Dimension = 8, Data Size = 6000)

(c) Zipf Distribution (Dimension = 8, Data Size = 6000)

Figure 5.1: Preliminary Studies.

127

(b) RkNN graph

p2

p1

p3

p4

(a) kNN graph

p2

p1

p3

p4

Figure 5.2: kNN graph vs. RkNN graph

the upper sub-graphs represents the distance to cluster center and the height of the lines

in the lower sub-graphs is corresponding to the number of reverse k-nearest neighbors

of each point. This study indicates that the number of RkNN decreases as the distance

of a point from the center increases. The result confirms that for well-clustered datasets

in high-dimensional spaces, the boundary points which lie at the margin of the clusters

tend to have fewer reverse k-nearest neighbors.

Utilizing this property of RkNN to detect boundary points will require the execution

of a RkNN query for each point in the dataset (the set-oriented RkNN query). However,

this is very expensive and the complexity will beO(N3) using sequential scan for non-

indexed data orO(N2 · logN) for indexed data, whereN is the cardinality of the dataset.

BORDER overcomes this difficult by transforming the set-oriented RkNN query into the

set-oriented kNN query (i.e., the kNN join) by utilizing thereversal-shipbetween the k-

nearest neighbor and the reverse k-nearest neighbor, that is, ifpi is one ofpj ’s k-nearest

neighbors, thenpj is one ofpi’s reverse k-nearest neighbors.

Lemma 5.2.1 The reverse k-nearest neighbors of all points in datasetR can be derived

from the k-nearest neighbors of all points inR. By reversing all pairs(pi, pj) produced

by the self-kNN join ofR, we obtain the complete set of pairs (pj, pi) that pi is pj ’s

reversek-nearest neighbor.

128

Gorder

kNN

Join

RkNN

Number

Counting

Input
Dataset Processing Procedure of BORDER

Sorting &

Incremental

output

Figure 5.3: Overview of BORDER

Figure 5.2 illustrates the kNN and RkNN relationship with an edge−−→pipj. Figure 5.2(a) is

the kNN graph and each edge−−→pipj denotes a kNN pair (pi, pj) such thatpj is pi’s kNN.

Figure 5.2(b) is the RkNN graph and each edge−−→pipj denotes a RkNN pair (pi, pj) such

thatpj is pi’s RkNN. Given the kNN of all points in a dataset, we can derive the RkNN

of each point by simply reversing the direction of the edges in the kNN graph. Hence,

we have the lemma.

5.3 BORDER

Figure 5.3 gives an overview of BORDER. It comprises of three main steps:

1. A kNN-join operation with Gorder to find the k-nearest neighbors for each point

in the dataset.

2. An RkNN counter to obtain each point’s RkNN number (the cardinality of each

point’s RkNN answer set).

3. Points are sorted according to their RkNN number. Points that its RkNN number is

smaller than a user defined threshold are output incrementally as boundary points.

In the following sections, we will give the details of each step.

129

Algorithm 9 GorderSelf kNN(R)
Input:

R is input dataset.
Description:

1: G OrderingR;
2: Join Grid OrderedData(R,R);
3: Output kNN pairs into the kNN-file;

Algorithm 10 RkNN Counter(R, kNN-file)
Input:

R: the input dataset; kNN-file: a file records k-nearest neighbors of each points in
R.

Description:
1: for eachpointp ∈ R do
2: Read its k-nearest neighborskNN(p,R) from kNN-file;
3: for eachpointpi ∈ kNN(p,R) do
4: increasernumpi

by 1;

5.3.1 kNN Join

Based on above discussion, the first step of BORDER performs a self kNN join of the

input datasetR to compute all the k-nearest neighbors pairs ofR. It makes use of the up-

to-date kNN join algorithm - Gorder, which is an optimized block nested loop join with

efficient data scheduling and distance computation filtering and outperforms previous

works significantly.

Algorithm 9 presents Gorder self kNN join algorithm which regards the input dataset

R as both the query dataset and the point dataset.

In Line 1 of algorithm 9, datasetR is sorted into the G-order as we introduced in

Chapter 3. Line 2 calls the scheduled block nested loop join (see Section 3.3.2 for the

detail of the algorithm). It takes datasetR as both the query dataset and the point dataset.

At the end, the k-nearest neighbors of all points inR are found and saved in the kNN-file

(Line 3).

130

Algorithm 11 Sort andOutput(R, kthreshold)
Input:

R: the input dataset;
Description:

1: Sort points in R in ascending order according to their RkNN number;
2: for Pointspi in R do
3: if rnumpi

< kthreshold then
4: Outputpi;

5.3.2 RkNN Counter

In this step, BORDER counts the number of reverse k-nearest neighbors (RkNN number)

for each pointp (denoted asrnump) utilizing the kNN information saved in the kNN-

file. According to the reversal-ship between kNN and RkNN which we have discussed

in Lemma 5.2.1, the number of each point’s k-nearest neighbor can be obtained by a

scanning of the kNN-file and for each pointpi in the kNN set of a pointp, increasing

rnumpi
by 1.

Algorithm 10 depicts the count procedure.

5.3.3 Sorting and Output

Data points then can be sorted according to their RkNN number so that they can be

output incrementally. We letkthreshold be a user defined threshold which is tunable. For

all pointp, if its RkNN numberrnump < kthreshold, they are output as detected boundary

points. Algorithm 11 shows the details.

5.3.4 Cost Analysis

Next, we analyze the I/O and CPU cost of BORDER.

The major cost of BORDER lies in the kNN join procedure. The number of I/O

131

reading incurred during the kNN join procedure in terms of the number of page is [124]:

3Nr + 2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+ Nr

nr
·Nr · γ1

whereNr is the total number of R data pages,nr is the allocated buffer pages for query

data, andB is the total buffer pages available in memory.

Since the kNN-file is written on the disk and scanned during the step of RkNN

counter. There are additionalNknn pages I/O writing andNknn I/O reading, whereNknn

is the size of the kNN-file.

Hence, the total number of pages of I/O reading is:

(
3Nr + 2Nr

(⌈
logB−1

Nr

B

⌉
+ 1

)
+

Nr

nr

·Nr · γ1 + Nknn

)

And the total number of pages of I/O writing isNknn.

The major CPU cost of BORDER is the distance computation in the kNN join phase.

The number of distance computations is:

P 2
r · γ2

wherePr is the number of objects in the dataset,γ2 is the selectivity of distance compu-

tation.

The selectivity ratioγ1 andγ2 are estimated as following [124]:

γ1 =
d∑

l=0

d

l

(
d

√
pq

Pr

+ d

√
pp

Pr

)l

· V d−l
sphere(ε) (5.1)

where,pq andpp are the numbers of points in the query buffer of sizenr buffer pages

and in the point buffer of sizens buffer pages.

132

pq =
nr · page size

size of data vector
andpp =

ns · page size
size of data vector

γ2 =
d∑

k=0

d

l

 d

√
p′q
Pr

+ d

√
p′p
Pr

l

· V d−l
sphere(ε) (5.2)

Wherep′q andp′p are the numbers of points in the sub-block of the query buffer and the

point buffer.

V d−l
sphere(ε) =

√
πd−l

Γ
(

d−l
2

+ 1
) · εd−l (5.3)

ε = d

√
k · Γ(d/2 + 1)

Pr

· 1√
π

(5.4)

Γ(x + 1) = xΓ(x), Γ(1) = 1, Γ(1/2) =
√

π

5.4 Performance Study

We conducted extensive experimental study to evaluate the performance of BORDER

and present the results in this section. We implemented BORDER in C++ and studied its

effectiveness as follows:

1. Dataset I. A set of high-dimensional hyper-sphere datasets with various data dis-

tributions and sizes.

These hyper-sphere datasets are used to demonstrate the ability of BORDER in

detecting boundary points in high-dimensional spaces. The hyper-sphere datasets

are generated as follows: Given the distribution, the number and the centers and

133

(a) Dimension 1 (b) Dimension 2 (c) Dimension 3

(d) Dimension 4 (e) Dimension 5

Figure 5.4: Data distribution of Dataset IV on each dimension.

the radii of the hyper-spheres, data points are generated according to the specified

distribution. Points that are within the defined hyper-spheres are inserted into the

dataset, whereas points that are outside of the hyper-spheres are discarded. To

show the location of the found boundary points, we capture and present the distri-

bution of thè (p, c), wherep is a detected point,c is the center of the hyper-sphere

whichp belongs to, and̀(p, c) is the distance betweenp andc.

2. Dataset II. A set of 2-dimensional clustered dataset of arbitrary cluster shapes.

This set of datasets aims to exhibit the ability of BORDER to find out boundary

points located at the border ofarbitrary-shapedclustersvisually. We use the 2-

dimensional datasets so that we can plot the detected boundary points in a plane to

134

show the effectiveness of BORDER.

3. Dataset III: A clustered dataset with mixed clusters.

In this dataset, the dense clusters mix with some less dense clusters. Traditional

density-based clustering method such as DBScan cannot identify the clusters prop-

erly in this type of datasets. We show that removing the boundary points will help

DBScan to find the clusters correctly. The removed boundary points can be in-

serted back into the identified clusters with a post-processing procedure by check-

ing their connectivity and density.

4. Dataset IV. Labelled datasets for classification.

This synthetic dataset contains 7 classes with 5 attributes. The dataset is generated

as follows: We divide the first dimension into 7 segments. Each segment corre-

sponds to one class. We assign points within each segment to its corresponding

class and those points lying at the adjacent region of each segment to different

classes. Thus, the 7 classes do not have a distinct separable boundaries. Data

points are distributed randomly in the rest of the dimensions. Figure 5.4 shows the

data distribution of the dataset on each dimension. Note that in dimension 1, points

that are located at the boundary region of two adjacent classes belong to different

classes. We use this dataset to show that by removing the boundary points which

straddle two classes of difference density can improve the accuracy of classifiers.

5.4.1 On Hyper-sphere Datasets

We first study the effectiveness of BORDER on the hyper-sphere datasets of various dis-

tributions, different numbers of dimension and containing different number of clusters.

Figure 5.5 summarizes the experiment results. We incrementally output 300 points with

135

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70

80

F
re

qu
en

cy

Distance to Center

(a) Normal distribution, dimension=8, number of
clusters=1, radius=0.3

(b) Normal distribution, dimension=10, number of
clusters=5, radius=0.3

(c) Zipf distribution, dimension=4, number of clus-
ters=2, radius=0.5

(d) Zipf distribution, dimension=6, number of clus-
ters=3, radius=0.2

(e) Uniform distribution, dimension=8, number of
clusters=2, radius=0.3

(f) Uniform distribution, dimension=12, number of
clusters=2, radius=0.1

Figure 5.5: Study on hyper-sphere datasets.

136

Distribution Cluster Number Size Radius Dimension k Processing Time (Sec)
Normal 1 6000 0.3 8 50 6.547
Normal 5 6000 0.3 10 50 4.313

Zipf 3 6000 0.2 6 50 4.625
Zipf 2 6000 0.5 4 50 2.89

Uniform 2 6000 0.2 8 50 3.938
Uniform 2 6000 0.1 12 50 5.875

Table 5.1: Hyper-sphere datasets and processing time.

Distribution Dimension Radius Mean Standard Deviation
Normal 8 0.3 0.2868 0.0141
Normal 10 0.3 0.2868 0.0133

Zipf 6 0.2 0.1955 0.0043
Zipf 4 0.5 0.49 0.0092

Uniform 8 0.2 0.1959 0.0037
Uniform 12 0.1 0.0981 0.0019

Table 5.2: Mean and standard deviation of the distance of detected boundary points to
the hyper-sphere center.

lowest RkNN number of as boundary points. For each graph, the x-axis is the pointp’s

distance to the center of the hyper-sphere thatp belongs to (̀(p, c)) and the y-axis is the

frequency. We observe that for all datasets,`(p, c) of the output points by BORDER is

equal or close to the radii of the hyper-spheres.

Table 5.2 summarizes the mean and standard deviation of the distance of detected

boundary points to the hyper-sphere center. Both the plotting and statistical information

of the output of BORDER indicate that these points are indeed the boundary points of the

hyper-spherical-shaped clusters. The properties and the processing time of BORDER on

the hyper-sphere datasets are presented in Table 5.1.

137

(a) Original Dataset (b) Detected Boundary Points (kthreshold=30)

(c) Detected Boundary Points (kthreshold=33) (d) Detected Boundary Points (kthreshold=35)

Figure 5.6: Incremental output of detected boundary points of dataset 1.

138

(a) Dataset 2
(b) Detected Boundary Points of Dataset 2
(kthreshold=35)

(c) Dataset 3
(d) Detected Boundary Points of Dataset 3
(kthreshold=38)

(e) Dataset 4
(f) Detected Boundary Points of Dataset 4
(kthreshold=35)

Figure 5.7: Study on other datasets.

139

Size Dimension k Processing Time (Sec)
dataset 1 40000 2 50 9.985
dataset 2 10680 2 50 2.781
dataset 3 9050 2 50 2.562
dataset 4 12950 2 50 3.469

Table 5.3: Datasets (with clusters) and processing time.

5.4.2 On Arbitrary-shaped Clustered Datasets

Next, we study the effectiveness of BORDER on datasets containing arbitrary-shaped

dense regions. Although BORDER is also applicable to high-dimensional spaces, the

experiments are carried out on 2-dimensional cluster datasets in order to visualize the

results.

Figure 5.6 demonstrates the incremental output of BORDER executed on dataset

1. The thresholds are set as 30, 33 and 35. The graphs in Figure 5.6 shows that the

plotted points outline the boundaries of the clusters in dataset clearly. Note that with the

incremental output, we can stop whenever we are satisfied with the quality of detected

boundary points. Figure 5.7 shows the results of boundary point detection on datasets 2,

3, 4. It is clear that BORDER can find the boundary points effectively. The processing

time of BORDER is summarized in Table 5.3.

5.4.3 On Mixed Clustered Dataset

In this set of experiments, we mix the dense clusters with less dense clusters and study

the ability of using BORDER for preprocessing data for clustering.

Figure 5.8 shows that it is difficult for DBScan [33] to identify the correct clusters in

this type of datasets. Figure 5.8 (b), (c) and (d) plot the clusters detected by DBScan with

different colors. We observe that if we set the density requirement of DBScan high, that

is, Eps=0.00967926, MinPts=10, points in the sparse cluster are all regarded as outliers

140

(a) Original Dataset
(b) Clusters detected by DBScan (high density re-
quirement, Eps=0.00967926, MinPts=10)

(c) Clusters detected by DBScan (low density re-
quirement, Eps=0.0223533, MinPts=10)

(d) Clusters detected by DBScan (low density re-
quirement, Eps=0.0469042, MinPts=10)

(e) After boundary points are removed
(f) Clusters detected by DBScan after boundary
points are removed(Eps=0.0469042, MinPts=10)

Figure 5.8: Study on mixed clustered datasets.

141

(Figure 5.8(b)). If we set the density requirement of DBScan low, that is, Eps=0.0223533

and MinPts=10 (Figure 5.8(c)) or Eps=0.0469042, MinPts=10 (Figure 5.8(d)), DBScan

returns clusters that mix dense and sparse regions.

Figure 5.8 (e) shows the dataset after we remove the boundary points (kthreshold =

40). Figure 5.8(f) shows the result of DBScan working on the dataset after the boundary

points are removed. DBScan with parameters Eps=0.0469042 and MinPts=10 can easily

identify the dense clusters as well as the sparse clusters correctly because they are now

well separated. The removed boundary points can be inserted into the clusters with a

post-processing procedure which examines the density of the points and their connectiv-

ity with the clusters.

5.4.4 On the Labelled Dataset for Classification

Finally, we conduct experiments on the labelled dataset for classification. We test various

classification methods provided by Weka [65] and compare the classification accuracy

before and after we remove the detected boundary points. The test accuracy is evaluated

by 10-fold cross validation. The results show that removing the boundary points reduces

the ratio of misclassified data points and improves the classification accuracy effectively.

Table 5.4 and Table 5.5 summarizes the results when we define different thresholds

for the RkNN number. When we set thekthreshold 25 or 30, the average improvement

ratios in terms of incorrectly classified ratio are 20.03% and 43.51% respectively and the

average improvement ratios in terms of incorrectly classified instance are 22.07% and

46.60% respectively.

142

Before After (kthreshold=25) improvement
Classification
Method

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Decision Ta-
ble

3.20% 391 2.57% 306 19.69% 21.74%

OneR 3.26% 398 2.21% 263 32.21% 33.92%
Nnge 3.25% 397 2.12% 252 34.77% 36.52%
Jrip 3.43% 418 2.36% 280 31.20% 33.01%
AdaBoost
M1

19.14% 2335 18.13% 2156 5.28% 7.67%

MultiBoost
AB

19.14% 2335 18.13% 2156 5.28% 7.67%

Raced Incre-
mental Logit
Boost

3.20% 391 2.53% 301 20.94% 23.02%

IB1 15.48% 1888 14.02% 1667 9.43% 11.71%
Naive Bayes
Simple

3.48% 425 2.57% 306 26.15% 28.00%

SMO 5.93% 723 5.02% 597 15.35% 17.43%
Average 7.95% 970.1 6.97% 828.4 20.03% 22.07%

Table 5.4: Comparison of classification accuracy (kthreshold=25).

5.5 Conclusion

In this chapter, we introduce a novel data mining tool - BORDER for effective bound-

ary point detection. The knowledge of boundary points can help in data mining tasks

such as data preparation for clustering and classification. BORDER detects boundary

points according to the finding that data points lying at the margin of densely distributed

data tend to have much fewer reverse k-nearest neighbors. It transforms the expensive

set-oriented RkNN query into the kNN join by utilizing thereversal-shipbetween the

k-nearest neighbor relationship and the reverse k-nearest neighbor relationship and em-

ploys the state-of-the-art kNN join technique - Gorder. Experimental study demonstrates

that BORDER is able to detect boundary points effectively and efficiently. Moreover, by

143

Before After (kthreshold=30) improvement
Classification
Method

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Incorrectly
Classified
Ratio

Incorrectly
Classified
Instances

Decision Ta-
ble

3.20% 391 1.37% 158 57.19% 59.59%

OneR 3.26% 398 1.34% 155 58.90% 61.06%
Nnge 3.25% 397 1.26% 145 61.23% 63.48%
Jrip 3.43% 418 1.40% 162 59.18% 61.24%
AdaBoost
M1

19.14% 2335 16.90% 1950 11.70% 16.49%

MultiBoost
AB

19.14% 2335 16.90% 1950 11.70% 16.49%

Raced Incre-
mental Logit
Boost

3.20% 391 1.39% 160 56.56% 59.08%

IB1 15.48% 1888 12.44% 1435 19.64% 23.99%
Naive Bayes
Simple

3.48% 425 1.36% 157 60.92% 63.06%

SMO 5.93% 723 3.67% 423 38.11% 41.49%
Average 7.95% 970.1 5.80% 669.5 43.51% 46.60%

Table 5.5: Comparison of classification accuracy (kthreshold=30).

applying it as part of data pre-processing step, we observe an improvement in the clus-

tering quality of DBScan [33], as well as an overall increase in classification accuracies

of various classifiers.

144

Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss future work on

the advanced similarity queries and their application in data mining.

6.1 Thesis Contributions

This thesis studied advanced similarity queries and their application in knowledge dis-

covering and data mining. Two advanced similarity queries - the k-Nearest Neighbor join

(kNN join) and the Reverse k-Nearest Neighbor query (RkNN query) have been studied

and efficient algorithms for their processing are proposed. Furthermore, we investigated

how to utilize these queries in data mining. A novel data mining tool - BORDER which

is built upon the kNN join and utilizes a property of the reverse k-nearest neighbor was

proposed. The contributions are detailed as follow:

• We designed an efficient algorithm Gorder (theG-orderingkNN join method) for

the kNN join. Gorder is a block nested loop join method which achieves its ef-

ficiency by sorting data into theG-order that enables effective join pruning, data

blocks scheduling and distance computation filtering and reduction. It utilizes a

two-tier partitioning strategyto optimize I/O and CPU time separately and reduces

145

distance computational cost by pruning redundant computation based the distance

of fewer dimensions. It does not require an index for the source datasets and is ef-

ficient and scalable with regard to both the dimensionality and the size of the input

datasets. Experimental study shows that Gorder outperforms previous solutions

with great margin.

• For the RkNN query, we proposed an innovative solution - ERkNN (the estimation-

based RkNN search). ERkNN retrieves RkNN candidates based on thelocal kNN-

distance estimationmethods and verifies the candidates using the efficientaggre-

gated range query. Two local kNN-distance estimation methods, the PDE method

and the kDE method, are provided and both work effectively on uniform as well

as skewed datasets. By employing the effective estimation-based filtering strategy

and the efficient refinement procedure, ERkNN outperforms previous methods sig-

nificantly and answers RkNN queries in high-dimensional data spaces and of large

values ofk efficiently and effectively.

• At last, we designed BORDER (a BOundaRy points DEtectoR) a novel data min-

ing tool for effective boundary point detection. BORDER detects boundary points

according to the finding that data points that are located at the margin of densely

distributed data tend to have much fewer reverse k-nearest neighbors. It transforms

the expensive set-oriented RkNN query into the kNN join by utilizing thereversal-

shipbetween the k-nearest neighbor relationship and the reverse k-nearest neigh-

bor relationship and employs the state-of-the-art kNN join technique - Gorder. Ex-

perimental study demonstrates BORDER detects boundary points effectively and

can be used to improve the performance of clustering and classification analysis

considerately.

146

6.2 Future Works

In this section, we suggest possible future research directions based on the work reported

in this thesis.

6.2.1 Microarray Data

Microarray data are gene expressions of thousands of genes produced by DNA microar-

ray analysis. Biologists have found that genes of similar function yield similar expres-

sion patterns in microarray data. Therefore, the computational analysis of microarray

data provides accurate means for extracting biological significance and using the data

to assign functions to genes. Currently microarray data are usually analyzed with the

basic similarity queries or data mining functions such as classification or clustering. A

property of microarray data is that they are of extremely high dimension (usually are of

more than thousands features), which creates much challenge to the query processing.

Our future works include: 1) Apply the RkNN query and BORDER to the microar-

ray data and study their outputs with biologists to find whether the RkNN query and

BORDER can be addition analysis tools. 2) Design efficient algorithms for advanced

similarity queries in extremely high-dimensional spaces. 3) Integrated kNN join into

currently-used data mining tools which involve set-oriented kNN search.

6.2.2 Sequential Data

Sequential data include genome or protein sequences, text and times series data. There

are many studies on the similarity search and data mining of sequential data. Examples

include frequent pattern discovery of genome sequences, classification and clustering of

protein sequences, pattern discovery and rule extraction in time series. The similarity

of sequential data is usually measured by edit distance, a distance metric which is much

147

more expensive than commonLp distance metric.

Apart from applying the RkNN query and BORDER to the sequential data (partic-

ularly the genome and protein sequences) and analyze the results, we are interested in

designing efficient advanced similarity query algorithms involving expensive distance

metrics such as edit distance.

6.2.3 Stream Data

In applications such as network monitoring, telecommunications data management, web

personalization, manufacturing, sensor networks, data come in continuously in multiple,

rapid, time-varying, and unpredictablestreams. Queries on stream data are usually time

sensitive and allow high-quality approximate answers. In the recent years, many propos-

als have been made to improve the traditional data management and query processing

technologies so that they can handle the infinite and continuous stream data efficiently.

Our future work is to design algorithms for the kNN join and the RkNN query which

could produce high-quality approximate answers efficiently for data streams.

In addition, we are also interested in being able to integrate the advance similarity

query algorithms into existing data management systems cost effectively.

Bibliography

[1] www.georgetown.edu/uis/ia/dw/GLOSSARY0816.html.

[2] Engineering Statistics Handbook. http://www.itl.nist.gov/

div898/handbook/eda/section3/eda3664.htm.

[3] http://kdd.ics.uci.edu/.

[4] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. InProc.

of SIGMOD, 2001.

[5] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in se-

quence databases. InProc. 4th Int. Conf. of Foundations of Data Organization

and Algo-rithms, pages 69–84” YEAR=1993, ADDRESS=San Diego, CA, USA.

[6] V. Barnett and T. Lewis.Outliers in Statistical Data. John Wiley and Sons, 1994.

[7] M. Basseville and I.V. Nikiforov.Detection of abrupt changes. P T R Prenstice

Hall, 1993.

[8] D. A. Beckley, M. W. Evens, and V. K. Raman. An experiment with balanced and

unbalanced k-d trees for associative retrieval. InProc. 9th International Confer-

ence on Computer Software and Applications, pages 256–262. 1985.

148

149

[9] D. A. Beckley, M. W. Evens, and V. K. Raman. Multikey retrieval from k-d

trees and quad trees. InProc. 1985 ACM SIGMOD International Conference on

Management of Data, pages 291–301. 1985.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An effi-

cient and robust access method for points and rectangles. InProc. 1990 ACM SIG-

MOD International Conference on Management of Data, pages 322–331. 1990.

[11] S. Berchtold, C. B̋ohm, and H-P. Kriegel. The pyramid-technique: Towards break-

ing the curse of dimensionality. InProc. 1998 ACM SIGMOD International Con-

ference on Management of Data, pages 142–153. 1998.

[12] S. Berchtold, D.A. Keim, and H.P. Kriegel. The X-tree: An index structure for

high-dimensional data. InProc. 22nd International Conference on Very Large

Data Bases, pages 28–37. 1996.

[13] E. Bertino. A survey of indexing techniques for object-oriented databases. In

Proc. Dagsthul Seminar on Query Processing in Object-Oriented, Complex-

Object and Nested Relational Databases, pages 383–418. 1993.

[14] H. Blanken, A. Ijbema, P. Meek, and B. Akker. The generalized grid file: De-

scription and performance aspects. InProc. 6th International Conference on Data

Engineering, pages 380–388. 1990.

[15] C. Böhm. A cost model for query processing in high dimensional data spaces.

ACM TODS, 25(2):129–178, 2000.

[16] C. Böhm, S. Berchtold, and D.A. Keim. Searching in high dimensional spaces:

index structures for improving the performance of multimedia databases.ACM

Computing Surveys, 33(3):322–373, 2001.

150

[17] C. Böhm, B. Braunmueller, F. Krebs, and H.-P. Kriegel. Epsilon grid order: An

algorithm for the similarity join on massive high-dimensional data. InProc. of

ACM SIGMOD, pages 379 – 388, 2001.

[18] C. Böhm and F. Krebs. High performance data mining using the nearest neighbor

join. In ICDM, pages 43–50, 2002.

[19] C. Bohm and F. Krebs. Supporting kdd applications by the k-nearest neighbor

join. In Proc. of DEXA, pages 504–516, 2003.

[20] C. Böhm and F. Krebs. Thek-nearest neighbour join: Turbo charging the kdd

process.Knowledge and Information Systems, 6(6):728–749, 2004.

[21] C. Böhm and H.-P. Kriegel. A cost model and index architecture for the similarity

join. In Proc. of ICDE, pages 411–420, 2001.

[22] M. M. Breunig, H.-P. Kriegel, P. Kr̈oger, and J. Sander. Data bubbles: quality

preserving performance boosting for hierarchical clustering.SIGMOD Record.,

30(2):79–90, 2001.

[23] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying density-

based local outliers. InProc. of SIGMOD, pages 93–104, 2000.

[24] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins

using r-trees. InProc. of ACM SIGMOD, pages 237–246, 1993.

[25] B.E. Brodsky and B.S. Darkhovsky.Nonparametric methods in change-point

problems. Kluwer Academic Publishers, 1993.

[26] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: a new approach

to indexing high dimensional spaces. InProc. 26th International Conference on

Very Large Databases, pages 89–100, 2000.

151

[27] K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: a new approach

to indexing high dimensional spaces. InProc. of VLDB, pages 89–100, 2000.

[28] L. Chung, J. Gray, B. Worthington, and R. Horst.Windows 2000 Disk IO Perfor-

mance. http://research.microsoft.com/ research/pubs/.

[29] P. Ciaccia, M. Patella, and P. Zezula. M-trees: An efficient access method for

similarity search in metric space. InProc. 23rd International Conference on Very

Large Data Bases, pages 426–435. 1997.

[30] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan. Contorting high dimensional data for

efficient main memory knn processing. InProc. of ACM SIGMOD, pages 479–

490, 2003.

[31] J.P. Dirtrich and B. Seeger. Gess: a scalable similarity-join algorithm for mining

large data sets in high dimensional spaces. InProc. of ACM SIGKDD, pages

47–56, 2001.

[32] J.-P. Dittrich and B. Seeger. Data redundancy and duplicate detection in spatial

join processing. InProceedings of the 16th International Conference on Data En-

gineering, pages 535–546, Washington, DC, USA, 2000. IEEE Computer Society.

[33] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. InSIGKDD, pages

226–231, 1996.

[34] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing —

A fast access method for dynamic files.ACM Transactions on Database Systems,

4(3):315–344, 1979.

[35] C. Faloutsos. Gray-codes for partial match and range queries.IEEE Transactions

on Software Engineering, 14(10):1381–1393, 1988.

152

[36] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber. Ef-

ficient and effective querying by image content.Journal of Intelligent Information

Systems, 3(3):231–262, 1994.

[37] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.Advances in Knowledge Dis-

covery and Data Mining. AAAI Press, 1996.

[38] K. Fischer.Smallest enclosing ball of balls. Diploma thesis, Institute of Theoreti-

cal Computer Science. ETH Zurish, 2001.

[39] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and

video content: The QBIC system.IEEE Computer, 28(9):23–32, 1995.

[40] M. Freeston. The BANG file: A new kind of grid file. InProc. 1987 ACM SIG-

MOD International Conference on Management of Data, pages 260–269. 1987.

[41] K. Fukunaga.Introduction to Statistical Pattern Recognition (2nd edition). Aca-

demic Press, 1990.

[42] V. Gaede and O. G̈unther. Multidimensional access methods.ACM Computing

Surveys, 30(2):170–231, 1998.

[43] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. InProc. 25th International Conference on Very Large Databases, pages

518–529, 1999.

[44] J. Goldstein, R. Ramakrishnan, U. Shaft, and J. B. Yu. Processing queries by

linear constraints. InProc. of ACM SIGACT-SIGMOD-SIGART, pages 257–267,

1997.

153

[45] G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins

University Press, 1989.

[46] Y. Gong, H. C. Chua, and X. Guo. Image indexing and retrieval based on color

histograms. InProc. 2nd Multimedia Modeling Conference, pages 115–126. 1995.

[47] V. Gudivada and R. Raghavan. Design and evaluation of algorithms for im-

age retrieval by spatial similarity.ACM Transactions on Information Systems,

13(1):115–144, 1995.

[48] O. Gunther. The design of the cell tree: An object-oriented index structure for

geometric databases. InProc. 5th International Conference on Data Engineering,

pages 598–605. 1989.

[49] A. Guttman. R-trees: A dynamic index structure for spatial searching. InProc.

1984 ACM SIGMOD International Conference on Management of Data, pages

47–57. 1984.

[50] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.Jour-

nal of Machine Learning Research, 3:1157–1182, 2003.

[51] P.A.V. Hall and G.R. Dowling. Approximate string matching.Computing Surveys,

12(4):381–402, 1980.

[52] J. Han and M. Kamber.Data Mining Concepts and Techniques. Morgan Kauf-

mann Publishers, 2000.

[53] A. Hanjalic, R.L. Lagendijk, and J.Biemond. Improving text retrieval for routing

problem using laten semantic indexing. InProc. of the 17th Int. ACM SIGIR Conf.

on Research and Development in Information Retrieval, pages 282–291, 1994.

154

[54] J. Hartigan and M. Wong. A k-means clustering algorithm. InApplied Statistics,

28, pages 100–108, 1979.

[55] K. Hattori and Y. Torii. Effective algorithms for the nearest neighbor method in

the clustering problem.Pattern Recognition, 26(5), 1993.

[56] K. Hinrichs. Implementation of the grid file: Design concepts and experience.

BIT, 25:569–592, 1985.

[57] K. Hinrichs and J. Nievergelt. The grid file: A data structure designed to support

proximity queries on spatial objects. InProc. International Workshop on Graph-

theoretic Concepts in Computer Science, pages 100–113. 1983.

[58] G. Hjaltason and H. Samet. Ranking in spatial databases. InSymposium on Large

Spatial Databases, pages 83–95, 1995.

[59] G. Hjaltason and H. Samet. Incremental distance join algorithm for spatial

databases. InProc. of ACM SIGMOD, pages 237–258, 1998.

[60] G. Hjaltason and H. Samet. Distance browsing in spatial databases.ACM TODS,

24(2):265–318, 1999.

[61] W. Hsu, M.-L. Lee, B. C. Ooi, P. K. Mohanty, K. L. Teo, and C. Xia. Advanced

database technologies in a diabetic healthcare system. InProc. of VLDB, pages

1059–1062, 2002.

[62] Y. Huang, N. Jing, and E. A. Rundensteiner. Spatial joins using r-trees: Breadth-

first traversal with global optimizations. InProc. of VLDB, pages 396–405, 1997.

[63] E. Hunt, M. P. Atkinson, and R. W. Irving. A database index to large biological

sequences. InVLDB, pages 139–148, 2001.

155

[64] E. Hunt, M. P. Atkinson, and R. W. Irving. Database indexing for large dna and

protein sequence collections.Journal of VLDB, 11(3):256 – 271, 2002.

[65] Data Mining Software in Java.http://www.cs.waikato.ac.nz/ml/weka/.

[66] H. V. Jagadish. Linear clustering of objects with multiple attributes. InProc.

ACM SIGMOD International Conference on Management of Data, pages 332–

342, May 1990.

[67] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.ACM

Computing Surveys, 31(3):264–323, 1999.

[68] H. Jin, B. C. Ooi, H. T. Shen, C. Yu, and A. Y. Zhou. An adaptive and efficient

dimensionality reduction algorithm for high-dimensional indexing. InProc. of

ICDE, pages 87–98, 2003.

[69] I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, 1986.

[70] R. Agrawal K. Shim, R. Srikant. High-dimensional similarity joins. InProc. of

ICDE, 1997.

[71] K. V. Ravi Kanth, D. Agrawal, and A. Singh. Dimensionality reduction for sim-

ilarity searching in dynamic databases. InProc. ACM SIGMOD Int. Conf. on

Management of Data, pages 166–176, 1998.

[72] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using

dynamic modeling.Computer, 32(8):68–75, 1999.

[73] N. Katamaya and S. Satoh. The SR-tree: An index structure for high-dimensional

nearest neighbor queries. InProc. 1997 ACM SIGMOD International Conference

on Management of Data. 1997.

156

[74] N. Katayama and S. Satoh. Distinctiveness-sensitive nearest-neighbor search for

efficient similarity retrieval of multimedia information. InProc. of ICDE, pages

493–502, 2001.

[75] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large

datasets. InProc. of VLDB, 1998.

[76] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a mobile

environment. InSpatio-Temporal Database Management, pages 119–134, 1999.

[77] F. Korn, H. Jagadish, and C. Faloutsos. Effciently supporting ad hoc queries in

large datasets of time sequences. InProc. ACM SIGMOD Int. Conf. on Manage-

ment of Data, pages 289–300, 1997.

[78] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor

queries. InProc. of ACM SIGMOD, pages 201–212, 2000.

[79] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggre-

gates over data streams. InProc. of VLDB, 2002.

[80] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast nearest

neighbor search in medical image databases. InProc. 22nd International Confer-

ence on Very Large Data Bases, pages 215–226. 1996.

[81] N. Koudas and K.C. Sevcik. High dimensional similarity joins: algorithms and

performance evaluation.IEEE TKDE, 12(1):3–8, 2000.

[82] K.P.Chan and A.W-C Fu. Efficient time series matching by wavelets. InProc.

15th Int. Conf. on Data Engineering, pages 126–133, 1999.

[83] P. Larson. Dynamic hashing.BIT, 13:184–201, 1978.

157

[84] K.-I. Lin, M. Nolen, and C. Yang. Applying bulk insertion techniques for dynamic

reverse nearest neighbor problems. InIDEAS, pages 290–297, 2003.

[85] W. Litwin. Linear hashing: A new tool for file and table addressing. InProc. 6th

International Conference on Very Large Data Bases, pages 212–223. 1980.

[86] W. Litwin, N. A. Neimat, and D. A. Schneider. LH* — Linear hashing for dis-

tributed files. InProc. 1993 ACM SIGMOD International Conference on Man-

agement of Data, pages 327–336. 1993.

[87] M.-L. Lo and C. V. Ravishankar. Spatial joins using seeded trees. InProc. of

ACM SIGMOD, 1994.

[88] M.-L. Lo and C.V. Ravishankar. Spatial hash-joins. InProc. of ACM SIGMOD,

pages 247–258, 1996.

[89] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method

with good guaranteed performance.ACM Transactions on Database Systems,

15(4):625–658, 1990.

[90] L. Horváth M. Cs̈orgö. Limit Theorems in Change-Point Analysis. Wiley, 1997.

[91] Y. Manopopoulos, Y. Theodoridis, and V.J. Tsotra.Advanced Database Indexing.

Kluwer Academic, 2000.

[92] T. Matsuyama, L.V. Hao, and M. Nagao. A file organization for geographic infor-

mation systems based on spatial proximity.International Journal on Computer

Vision, Graphics, and Image Processing, 26(3):303–318, 1984.

[93] B. Moon, H.V. Jagadish, C. Faloutsos, and J.H. Saltz. Analysis of the clustering

properties of hilbert space-filling curve.Technical Report, Maryland, 1996.

158

[94] W. Niblack, R. Barber W. Equitz, M. Flicker, E. Glasman, D. Petkovic, P. Yanker,

and C. Faloutsos. The QBIC project: Query images by content using color, texture

and shape. InStorage and Retrieval for Image and Video Databases, Volume

1908, pages 173–187. 1993.

[95] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable, sym-

metric multikey file structure.ACM Transactions on Database Systems, 9(1):38–

71, 1984.

[96] V. E. Ogle and M. Stonebraker. Chabot: Retrieval from a relational database of

images.IEEE Computer, 28(9):40–48, 1995.

[97] B. C. Ooi. Efficient Query Processing in Geographical Information Systems.

Springer-Verlag, 1990.

[98] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Extending a dbms for geographic

applications. InProc. 5th International Conference on Data Engineering, pages

590–597. 1989.

[99] B. C. Ooi and K. L. Tan. B-trees: Bearing fruits of all kinds. InProc. Australasian

Database Conference. 2002.

[100] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan. Indexing the edge: a simple and

yet efficient approach to high-dimensional indexing. InProc. 18th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 166–

174. 2000.

[101] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan. Transformation-based method for

indexing high dimensional data.patent pending #200002639-3, 2000.

159

[102] J. A. Orenstein. Spatial query processing in an object–oriented database system.

In Proc. 1986 ACM SIGMOD International Conference on Management of Data,

pages 326–336. 1986.

[103] J. A. Orenstein. An algorithm for computing the overlay of k-dimensional spaces.

In Proceedings of the Second International Symposium on Advances in Spatial

Databases, pages 381–400, London, UK, 1991. Springer-Verlag.

[104] O. Owolabi and D.R. McGregor. Fast approximate string matching.Software —

Practice and Experience, 18:387–393, 1988.

[105] J.M. Patel and D.J. DeWitt. Partition based spatial-merge join. InProc. of ACM

SIGMOD, pages 259–270, 1996.

[106] I. Popivanov and R. J. Miller. Similarity search over time series data using

wavelets. InProc. 17th Int. Conf. on Data Engineering, pages 212–121, 2001.

[107] R. Ramakrishnan and J. Gehrke.Database Management Systems. McGraw-Hill,

2000.

[108] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. InProc. of

ACM SIGMOD, pages 71–79, 1995.

[109] Y. Sakurai, M. Yoshikawa, and S. Uemura. The a-tree: An index structure for

high-dimensional spaces using relative approximation. InProc. 26th International

Conference on Very Large Data Bases, pages 516–526. 2000.

[110] B. Salzberg and V. J. Tsotras. A comparison of access methods for time evolving

data. InTechnical Report NU-CCS-94-21. Northeastern University, 1994.

160

[111] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for

multi–dimensional objects. InProc. 13th International Conference on Very Large

Data Bases, pages 507–518. 1987.

[112] A. Singh, H. Ferhatosmanoglu, and A. Ş. Tosun. High dimensional reverse nearest

neighbor queries. InProc. of CIKM, pages 91–98, 2003.

[113] M. Smid. Closest point problems in computational geometry. InHandbook on

Computational Geometry. Elsevier Science Publishing, 1997.

[114] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse nearest neighbor queries for

dynamic databases. InProc. of ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, pages 44–53, 2000.

[115] I. Stanoi, M. Riedewald, D. Agrawal, and A. El Abbadi. Discovery of influence

sets in frequently updated databases. InProc. of VLDB, pages 99–108, 2001.

[116] Y. Tao, D. Papadias, and X. Lian. Reverse knn search in arbitrary dimensionality.

In Proc. of VLDB, pages 744–755, 2004.

[117] A. K. H. Tung, J. Han, L. V.S. Lakshmanan, and R. T. Ng. Constraint-based

clustering in large databases. InProc. of ICDE, pages 405–419, 2001.

[118] R. Weber and S. Blott. An approximation-based data structure for similarity

search. InTechnical Report 24, ESPRIT project HERMES (no. 91941), pages

194–205. 1997.

[119] R. Weber, H. Schek, and S. Blott. A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. InProc. 24th Interna-

tional Conference on Very Large Data Bases, pages 194–205. 1998.

161

[120] K. Whang and R. Krishnamurthy. Multilevel grid files. Technical Report RC-

11516, IBM Thomas J. Watson Research Center, 1985.

[121] D.A. White and R. Jain. Similarity indexing with the SS-tree. InProc. 12th

International Conference on Data Engineering, pages 516–523. 1996.

[122] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of dft and dwt based

sim-ilarity search in time-series databases. InProc. 9th Int. Conf. on Information

and Knowledge Management, pages 488–495, 2000.

[123] N. Wyse, R. Dubes, and A.K. Jain. A critical evaluation of intrinsic dimensionality

algorithms.Pattern Recognition in Practice, pages 415–425, 1980.

[124] C. Xia, H. Lu, B. C. Ooi, and J. Hu. Gorder: An efficient method for knn join

processing. InProc. of VLDB, 2004.

[125] C. Yang and K.-I. Lin. An index structure for efficient reverse nearest neighbor

queries. InProc. of ICDE, pages 485–492, 2001.

[126] C. Yu.High-Dimensional Indexing. PhD thesis, Department of Computer Science,

National University of Singapore, 2001.

[127] C. Yu, S. Bressan, B. C. Ooi, and K. L. Tan. Query high-dimensional data in

single dimensional space.VLDB Journal, 13(2):105–119, 2004.

[128] C. Yu, B. C. Ooi, and K. L. Tan. Transformation-based method for similarity

search.patent filed, 2000.

[129] C. Yu, B. C. Ooi, K. L. Tan, and H. Jagadish. Indexing the distance: an efficient

method to knn processing. InProc. 27th International Conference on Very Large

Data Bases. 2001.

162

[130] M. Zait and H. Messatfa. A comparative study of clustering methods. InFGCS

Journal, Special Issue on Data Mining, pages 149–159. 1997.

[131] P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approximate similarity retrieval

with m-trees.VLDB Journal, 7(4):275–293, 1998.

[132] J. Zobel and P. Dart. Phonetic string matching: Lessons from information re-

trieval. InProc. 19th ACM-SIGIR International Conference on Research and De-

velopment in Information Retrieval, pages 166–173, 1996.

