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Summary 

 

The Multi-carrier Multilevel Frequency Shift Keying (MC-MFSK) system is a form 

of multi-tone MFSK systems, and it transmits on multiple frequency carriers 

simultaneously. The number of frequency-carriers used is termed the diversity order.  

 

We derive a new analytical solution for the optimal diversity order of the multiple-

access MC-MFSK system for achieving maximum throughput. The new formula 

relates the optimal frequency diversity order to the modulation level and number of 

users. We present numerically searched results for the optimal diversity order of MC-

MFSK systems in both Rayleigh and Rician fading channels based on previously 

published works. We highlight that our formula gives very close results for optimal 

diversity order compared to the numerically-searched ones at SNR above 40dB. We 

also derive the optimal parameters for systems with several constraints such as error 

probability limit and restricted number of users.  

 

For the first time, we also derive the steady state solution of the MC-MSFK system 

when control of the diversity orders is distributed to the users. We formulate the 

diversity control problem for two scenarios: 1) non-cooperative system users, where 

every user’s objective is to maximize its own throughput, 2) cooperative system users, 

where every user’s objective is to maximize overall system throughput. For each 

scenario, we present a steady state solution for the optimal diversity order. Using the 

concept of game theory, the solution in the first scenario corresponds to a Nash 



 vi

equilibrium point but is Pareto inefficient, while the solution in the second scenario 

gives the desired Pareto efficient point.  

 

Next we propose a method to select frequency-carriers in MC-MFSK systems to 

improve error performance. The method uses a combinatorial construction called 

Balanced Incomplete Block (BIB) Design to form selections of multiple frequency-

carriers. With BIB design, any two selections will only coincide in at most one 

frequency-carrier. The selections are uniquely assigned to each symbol of every user, 

thus reducing the interference between the users in symbol transmission. We also 

present a selection process for optimal BIB design parameters. The performance of 

MC-MFSK systems using BIB design is compared to conventional MC-MFSK 

systems in Rayleigh channels. Our results show significant improvement for the 

proposed system for low number of user, while the performance is worse for larger 

number of users. Given a suitable user number, the method can be employed in MC-

MFSK systems with the benefit of better error performance. 

 

We also extend the MC-MSFK system to the Frequency-Hopping Multi-carrier 

(FHMC)-MFSK system by introducing additional frequency-hopping. We present an 

analysis for the frequency-time encoding techniques that provide maximum error 

performance. We show that the optimal frequency diversity order has the same 

relationship as the conventional MC-MFSK system, and is unaffected by the time-

diversity. Hence the frequency-hopping, which improves error rate exponentially, can 

be used to achieve better error performance for the conventional MC-MFSK system.  

 



 vii

Thus we show the versatility of the MC-MFSK system, along with its maximum 

capability in several practical conditions. We conclude that the MC-MFSK is a strong 

candidate for future spread-spectrum communication systems, which required high 

data rate and spectral efficiency. 



 viii

List of Figures 

 

Fig. 2.1 MC-MFSK Transmitter           9 

Fig. 2.2 MC-MFSK Receiver          10 

Fig. 3.1 Symbol error rate Pe versus Diversity order L for analytical and    

simulation Pe in non-fading AWGN channel with high SNR      

channel at M = 256             16 

Fig. 3.2  Numerically searched optimal diversity order Lopt versus SNR for    

{M=1024, K=20}, {M=512, K=10}       19 

Fig. 3.3  BER versus Diversity order L for fading channels for various M,     

K, and SNR          20 

Fig. 3.4  User capacity Kmax versus SER limit P0 at M = 256, 512, 1024   22 

Fig. 4.1  Adaptation of Diversity order for User 1      34 

Fig. 4.2  Adaptation of Diversity order for User 2      34 

Fig. 4.3  Pe,1 and Pe,2 versus L1 for two user system, M = 256, L2 = 40&118   37 

Fig. 5.1  BIB-MC-MFSK Transmitter        42 

Fig. 5.2  Analytical BER versus number of users K for M=256, N=256 and         

various diversity order L        48 

Fig. 5.3  Analytical BER versus number of users K for η = 32
1 , L = 4 and         

various M          50 

Fig. 5.4  BER versus number of users K for BIB-MC-MFSK and     

conventional MC-MFSK systems in Rayleigh Channel and with        

Bit SNR = 40 dB         54 

Fig. 6.1  Frequency-Time matrix representation      60 



 ix

Fig. 6.2  FHMC-MFSK system decoding process      62 

Fig. 6.3  Type I code          64 

Fig. 6.4  Type II code          64 

Fig. 6.5  Type III code          65 

Fig. 6.6  Type IVa code          66 

Fig. 6.7  Type IVb code         67 

Fig. 6.8  Auto-correlation of Frequency-Time codes with M=256, L=10,       

H=5            72 

Fig. 6.9  Analytical and simulation SER for M=256, H=1, SNR= 40dB in 

Rayleigh channels         76 

Fig. 6.10 Analytical and simulation SER for M=256, H=2, SNR= 40dB in 

Rayleigh channels         77 



 x

List of Tables 

 

Table 5.1  Examples of existent BIB designs       52 

Table 6.1  Frequency-Time Code Types        63 

Table 6.2  Distribution, mean and variance of auto-correlation for all code     

types             71 

 

 

 

 



 1

Chapter 1  

Introduction 

 

In recent years, much research interest has been focused on multiple-access spread 

spectrum systems. This is due to the need for a new generation of communication 

systems, capable of delivering high data rate at wide bandwidth to mobile users. The 

system must also be spectrally efficient.  

 

One of such candidates is the Multi-carrier Multilevel Frequency Shift Keying (MC-

MFSK) system, which is proposed recently in [1,2] by Sinha as a candidate for future 

high-speed spread spectrum communication systems. The performance of this system 

is further analyzed for the Rician channel in [3] by Yu. It is a form of multi-tone 

MFSK system, and MC-MFSK systems transmit on multiple frequency carriers 

simultaneously. The system allows multiple-user access with its users sharing the 

same frequency and time space. These multiple users are differentiated by the unique 

permutations of frequency carriers, which each user uses to transmit its symbol. This 

system has several desirable properties such as frequency diversity and immunity to 

near-far effect. It also allows for an OFDM based multi-carrier implementation. 

 

It is shown in [2] that the MC-MFSK system is able to achieve better performance 

than Goodman’s frequency-hopping MFSK system. This motivated us to study the 

MC-MFSK system in greater depth. We discovered that the MC-MFSK system has 

the potential of delivering better performance, but so far, no research has been carried 

out to optimize its performance. In this thesis, our objective is to exploit the maximum 
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capability of the MC-MFSK system. Based on our results, the MC-MFSK system is 

presented as a strong candidate for future spread-spectrum communication systems. 

 

In MC-MFSK systems, the number of frequency-carriers used per symbol 

transmission is termed the diversity order L. Along with the modulation level M, they 

are the main parameters in the MC-MFSK system. Throughout this thesis, we 

optimize the system with respect to these two parameters. In addition, we derive 

optimal parameters for the system under several system constraints such as error 

probability limit and fixed number of users.  

 

We also optimize the MC-MFSK system when control of the diversity orders is 

distributed to the users. In this case, the diversity control problem is formulated for 

two scenarios: 1) non-cooperative system users, where every user’s objective is to 

maximize its own throughput without any regard to other users. 2) cooperative system 

users, where every user’s objective is to maximize the overall system throughput. 

 

Next we propose a novel method of selecting the multiple sub-channels used by all 

users for symbol transmission. The selection of sub-channels improves the error 

performance of the multiple-access MC-MFSK system by reducing the degree of 

interference between the users. This method uses a combinatorial construction called 

Balanced Incomplete Block (BIB) design to form a collection of sub-channels 

selections, where any two selections will coincide in at most one sub-channel. These 

selections of sub-channels are uniquely assigned to each symbol of every user. Thus 

on symbol transmission, the effect of multiple-access interference is reduced. 
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Lastly, we extend the conventional MC-MFSK system to the Frequency-Hopping 

MC-MFSK system by introducing additional frequency-hopping to every user. In this 

system, each symbol transmission will span over several time hops and a different 

permutation of sub-channels will be used per hop. We analyze the error performance 

of this frequency-hopping MC-MFSK system, and optimize the system throughput 

with respect to the diversity order.  

 

1.1 Literature Review 

The MC-MFSK system is first introduced by Sinha in [1]. The MC-MFSK system is a 

multiple-access system based on OFDM implementation [1]. By making use of 

advances in OFDM technologies, the system can be easily implemented with the 

IFFT/FFT operations, which eliminate the need for banks of oscillators [4]. The MC-

MFSK system has some advantages over both FH-MFSK and conventional Direct-

Sequence (DS)-CDMA systems as follows. Firstly, compared to FH-MFSK system, 

the MC-MFSK system is more robust against the effect of large delay spreads as it 

has a lower signaling rate on individual sub-channels. Secondly, the DS-CDMA 

system is highly susceptible to the near-far effect [5] while the MC-MSFK system is 

immune to this effect. Thirdly, the MC-MFSK system achieves frequency diversity. 

Due to these advantages, Sinha et al. propose the MC-MFSK system as a strong 

candidate for future high-speed wireless system [1]. 

 

In [2], Sinha presents a derivation for the error performance of the MC-MFSK 

system. The main assumptions made in this evaluation are: 1) the system is under a 

Rayleigh fading channel, and 2) all its users have the same diversity order. The 

derived upper-bound for the symbol error rate of the system can be found in [2]. 
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Using this expression, Sinha proves that the MC-MFSK system achieves a higher user 

capacity than conventional FH-MFSK systems. The expression is also shown to be an 

effective upper-bound for the error probability, with the bound been tighter for higher 

SNR. However, the proposed expression is mathematically complicated. The results 

in [2] show that there exists an optimal diversity order, which maximizes the MC-

MFSK system performance. However, no further attempt has been made to evaluate 

this optimal diversity order analytically.  

 

Yu et al. [3] evaluate the error performance of MC-MFSK systems for Rician fading 

channels. For a Rician channel, the authors use a novel approach of combining the 

line-of-sight (LOS) carriers of the multiple signals into a single LOS carrier, and 

combining the multipath components of multiple signals with other Gaussian noises 

to form a single Gaussian process. Hence, the probability density function (pdf) for 

the output of envelope detectors in MC-MFSK systems is first derived. This pdf is 

then used to evaluate of the false alarm and deletion probability of the tones in MC-

MFSK systems. The false alarm refers to erroneous detection of a tone when none is 

actually sent, while deletion refers to failure to detect a tone when it is actually sent. 

Applying these probabilities using Sinha’s analysis in [2], they derive the upper-

bound for the error probability of the system. The difference between Sinha and Yu’s 

analysis is in the expression for the false alarm and deletion probabilities. Therefore 

the error performance expression in [3] for the Rician channel is also as 

mathematically complicated as its counterpart in [2] for the Rayleigh channel. Similar 

to Sinha’s analysis in [2], an optimal diversity order is also observed in [3]. Again no 

effort has been taken to optimize the performance of the MC-MFSK system. 
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In [6], Atkin et al. propose to use a combinatorial construction, called Balance 

Incomplete Block (BIB) design, for selection of frequency carriers in multi-tone 

MFSK modulation. Multi-tone (MT)-MFSK systems are an extension of basic MFSK 

systems, where the MT-MFSK system utilizes a permutation of frequency carriers for 

signaling instead of one carrier in basic MFSK systems. The authors in [6] use the 

BIB design to form the permutations of the frequency carriers. The interesting 

attribute of the BIB design is that the permutations will overlap on at most λ carriers, 

where λ is a user-defined parameter in BIB design. The authors show that the system 

using BIB design achieves a better performance than other MT-MFSK systems using 

designs such as Hadamard matrices. As for more details on the BIB design, we advise 

readers to refer to the works in [7] and [8]. 

 

The MC-MFSK system is evolved from the multiple-access Frequency Hopping 

(FH)-MFSK system proposed by Goodman et al. in [9]. In this thesis, the term FH-

MFSK system refers to Goodman’s system in [9]. The FH-MFSK system is different 

from the conventional FH spread spectrum system [10-12] as follows. In FH-MFSK 

systems, there is no segregation of bandwidth into sub-bands and the entire bandwidth 

is made up of M orthogonal sub-channels, where M is also the modulation level of the 

system. As for conventional FH spread spectrum systems, the entire system 

bandwidth B is segregated into multiple sub-bands each of M orthogonal sub-

channels. To transmit a symbol m in the FH-MFSK system, the frequency-hopping 

sequence is generated by cyclic-shifting the user’s hop-address by the value m. Since 

the pioneering work of [9], the FH-MFSK system has been studied by several 

researchers and it has been shown to offer a higher capacity than its conventional 

counterpart [13,14].  
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1.2 Thesis Overview 

In Chapter 2, we describe the MC-MFSK system model. The decoding process of the 

system is explained. We also present derivations of the MC-MFSK system capacity 

and system throughput.  

 

In Chapter 3, we derive a mathematically simpler expression for the error probability 

of the MC-MFSK system, by assuming that the channel is non-fading and of high 

SNR. We make use of this expression to derive a new analytical solution for the 

optimal diversity order, which maximizes throughput and minimizes error probability. 

By comparing it with the numerical results from previous works in [2,3], we verify 

that the optimal diversity order is valid for fading channels at SNR above 40 dB. By 

using our error probability expression again, we maximize the throughput of the MC-

MFSK system under the constraints of an error probability limit and constant number 

of users. We also maximize the user capacity for the MC-MFSK system constrained 

by an error probability limit. 

 

For Chapter 4, we study the diversity control problem in the MC-MFSK system when 

control of the diversity orders is distributed to each user. We formulate the objective 

functions for two different scenarios: 1) system users are non-cooperative and each 

user’s objective is to maximize its own throughput; 2) system users are cooperative 

and their objective is to maximize the total system throughput. We then derive a new 

steady state expression for the solution of optimal diversity in each case. The 

solutions are then explained using game theory.  
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Next, in Chapter 5, we propose a method of sub-channels selection based on a 

combinatorial construction called Balanced Incomplete Block (BIB) design in MC-

MFSK systems. The method improves the MC-MFSK error performance by limiting 

the overlapping of selected sub-channels between any two users to at most a single 

sub-channel. We will also introduce the properties of the BIB design and describe its 

deployment into MC-MFSK systems for our method of sub-channels selection. We 

derive the error probability and user capacity of the system, and use these derivations 

to analyze the effect of various BIB design parameters. Based on our analysis on the 

parameters, we also propose a method in selecting a suitable parameter pair for BIB 

design, which will maximize the error performance of the system. We will simulate 

and compare the performances of both MC-MFSK systems using our proposed 

method and conventional MC-MFSK systems. 

 

In Chapter 6, we extend the MC-MFSK system to the Frequency-Hopping Multi-

carrier (FHMC)-MFSK system. This is achieved by introducing additional frequency-

hopping to the MC-MFSK system. Frequency-time code is needed for the system to 

select the permutation of frequency sub-channels at different time-hops. Thus we 

examine all practical forms of the frequency-time code, the distribution of their 

correlations, as well as their implementations. Using the same approach as in Chapter 

3, we derive the error probability, bandwidth and optimal frequency diversity order of 

the FHMC-MFSK system. Based on these derivations, we also study the effect of 

system parameters such as time diversity, frequency diversity and modulation level, 

on the system measures like error probability and bandwidth. Finally we conclude the 

thesis in Chapter 7. 
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Chapter 2 

Multi-Carrier MFSK System Model 

 

The MC-MFSK system is adapted from a multiple-access Frequency-Hopping MFSK 

(FH-MFSK) system proposed by Goodman in [9]. The MC-MFSK system uses 

address code to generate a permutation of frequency-carriers for each symbol. A tone 

is sent simultaneously on each of the selected carriers for a given symbol duration. 

The system is also viewed as a special case of the Multi-tone Frequency-Hopping 

MFSK system [15,16] when the time diversity equals to unity. 

 

2.1 Transmitter and Receiver 

In the MC-MFSK system, the total bandwidth is divided into M sub-channels, each 

with an orthogonal carrier frequency like the MFSK system in [9]. M=2k is also the 

modulation level of the data, where k is the number of bits per symbol. 

 

The block diagrams of the transmitter and receiver are shown on Figures 2.1 and 2.2 

respectively. All system users are assumed to have the same diversity order L, and 

each one of them is assigned a unique address code, represented by a binary vector a 

of length and Hamming weight equal M and L, respectively. The operators ⊕  and  

represent the modulation and demodulation process, and Si represents a cyclic shift 

operation by i position.  
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At the transmitter, a transmit vector is formed by cyclically shifting the user address 

code by the symbol value m. Each entry in the transmit vector represents a sub-

channel. The presence of frequency tones at the set of sub-channels selected to 

transmit the symbol is indicated by a “1” on the corresponding entries. For unique 

mapping of each transmit vector to a user-specific symbol, every address code has to 

be a-periodic; and must not be cyclic shifted versions of one another.  

 

 

Fig. 2.1 MC-MFSK Transmitter 

 

At the receiver, envelope detector is used on each sub-channel to make a hard 

decision on the received tone. Note also that individual envelope detector cannot 

amS  
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differentiate between the tones sent amongst the users, and the same output is given 

even when more than one user transmits on the same sub-channel. A binary received 

signal vector v, is then formed at the spectrum analyzer. The vector v represents sub-

channels that are transmitted on by at least one user. This vector is then passed to the 

decoder. 

 

 

Fig. 2.2 MC-MFSK Receiver 

 

2.2 Decoder 

The desired signal is decoded by comparing the correlations of v with all possible M 

cyclic-shifted versions of the address vector a. The shift associated with the largest 

a1−• MS  

a0S•    
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correlation will be decoded as the desired symbol. Mathematically, the decoding rule 

can be expressed as 

 
}{maxargˆ av i

i
Sm ⋅= ,      (2.1) 

 
where m̂  denotes the decoded symbol, and · denotes the dot product operator. In the 

case where 2 or more shifts have the maximum correlation value, one of these 

contending shifts is chosen randomly.  

 

The decoding process can also be seen as the selection of a completely occupied row 

from the M x L decision array. We show the M x L decision array of the MC-MFSK 

system in Figure 2.2. Each row corresponds to one of the possible symbols. The 

number of occupied entries in a row reflects the correlation of that symbol.  

 

For a non-fading AWGN channel with high SNR, we assume that each envelop 

detector makes its decision based on the received tone without error. Hence, the 

desired symbol always has a complete row filled by its L transmitted tones, while 

interference from other users and self-interference will scatter and occupy entries in 

other rows. Decoding error occurs when the interfering tones fill up the row of any 

erroneous symbol, and the erroneous symbol is selected in the random choice. 

 

2.3 System Capacity and Normalized Throughput 

We consider system capacity as the amount of useful information that can be 

transmitted through the system of symbol error rate, Pe. The diversity order L and 

modulation level M have significant effect on the error performance of the MC-MFSK 

system, and hence on the system capacity and throughput. Thus we formulate the 
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system capacity and normalized throughput for the MC-MFSK system to show the 

relationship with the system parameters. The MC-MFSK system capacity C is similar 

to the capacity of the multiple-access FH-MFSK system, which is given in [17] as 

 
( ) ( ) ( ) ( )1lnln1ln1ln −−+−−+= MPMPPPPC eeeee ,            (2.2) 

 
in nats per channel use. 

 

We use normalized system throughput as our performance measure, which is defined 

as  

 

sTB
CKW = ,          (2.3) 

 
where K, B and Ts denote respectively, the number of user, system bandwidth and 

symbol duration. Since the MC-MFSK system has M sub-channels and frequency 

separation of 
sT

1 is used to preserve the orthogonality of each sub-channel, the 

bandwidth is therefore equal to
sT

MB 1
×= . We can then simplify (2.3) into  

 

M
CKW = .         (2.4) 

 

In the next chapter, we will derive the optimal system parameters for MC-MFSK 

systems that will maximize the throughput. We will consider the maximization of 

throughput for systems subjected to error probability and user number constraints. We 

also derive the optimal diversity which maximizes the user capacity of MC-MFSK 

systems with error probability constraint. 
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Chapter 3 

Optimal Diversity Order of Multiple Access Multi-Carrier 

MFSK Systems 

 

3.1 Introduction 

In MC-MFSK systems, the number of frequency-carriers used per symbol 

transmission is termed the frequency diversity order L. For a given total frequency 

bandwidth, the diversity order is directly related to the amount of multiple-access 

interference (MAI) experienced by all users. Hence a trade-off exists between the 

diversity gain and MAI. Another parameter of interest is the modulation level M. 

Similar to conventional MFSK systems, the value of M refers to the alphabet size, and 

also the number of orthogonal sub-channels. We use these two parameters to optimize 

the MC-MFSK system performance. 

 

Previous analyses [1-3] have evaluated the analytical error probability for MC-MFSK 

systems in Rayleigh and Rician channels. Computational results show that there exists 

an optimal diversity order. However, an analytical evaluation of this optimal diversity 

order has not been made, plausibly due to the complexity of the evaluations.  

 

The objective of this chapter is to work out an analytical solution for the optimal 

diversity order that maximizes throughput and minimizes error probability. We 

approach the problem by re-evaluating the system for a non-fading AWGN channel 

with high SNR, focusing only on the diversity gain and MAI trade-off. A simpler 
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error rate expression is derived in this case, and we use this expression to find the 

optimal diversity order. This solution is later verified to approximate the true optimal 

diversity order, for reasonable SNR under fading channel. We also attempt to 

optimize the system under various conditions such as an error probability constraint 

and a fixed number of users. 

 

3.2 Derivation of Symbol Error Rate and Optimization of 

Diversity Order 

3.2.1 Derivation of Symbol Error Rate  

We derive an upper bound for the symbol error rate (SER) of MC-MFSK systems 

based on the following assumptions: 

a) Systems in a non-fading, AWGN channel with high SNR 

b) All users have a common diversity order and modulation level 

c) All users’ address codes are distinct and consist of random binary codes 

We will show that this channel model can be used to approximate fading channels 

with high SNR in Section 3.3. 

 

On MC-MFSK modulation, each of the K simultaneous users transmits on L out of M 

sub-channels. By assuming that users’ address codes are random and treating self-

interference as equivalent to interference from another external user, the probability of 

insertion of a tone in an erroneous row is given by  

 
K

I M
LP ⎟
⎠
⎞

⎜
⎝
⎛ −−= 11 .     (3.1) 

 
In practice, L/M <<1, and K >>1, hence we approximate PI as  
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)exp(1
M
LKPI −−= .     (3.2) 

 
Let Pfilled denotes the probability that an erroneous row is completely filled. By 

assuming that the insertion of each entry is mutually independent, an upper-bound for 

Pfilled can be formulated as a product of PI’s from L entries, 

 
L

filled M
LKP ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−≤ exp1 .          (3.3) 

 
A union bound for the symbol error rate (SER) Pe can then be formulated as [18], 

 

( )
L

e M
LKMP ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−−≤ exp11

2
1 ,               (3.4) 

 
where the factor ½ accounts for the random choice between the correct and the 

erroneous symbol.  

 

In Figure 3.1, we compare the union bound derived in (3.4) with the simulation results 

of MC-MFSK systems in non-fading channel with high SNR. It shows that (3.4) gives 

a close upper bound to the SER of MC-MFSK systems. For the rest of the chapter, we 

will consider the SER to be at its worst level. Therefore, we mathematically treat Pe as 

equal to its upper bound in (3.4). 
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Fig. 3.1 Pe versus L for Analytical and Simulation Pe in non-fading AWGN channel 

with high SNR channel at M = 256  

 

3.2.2 Optimization of Diversity Order 

Our objective is to find the optimal diversity order L of MC-MFSK system, which 

maximizes the normalized system throughput W. From (2.2) and (2.4), we observe 

that system throughput varies inversely with respect to Pe, for practical region of Pe, 

i.e. 
M

MPe
1−

≤ . Hence the optimal L that maximizes throughput W will also 

minimizes the SER Pe: 

 
}{min}{max PeW

LL
= . 

 
Therefore, we minimize the Pe with respect to L by solving,  
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where
L
Pe

∂
∂  denotes the first partial derivative of Pe with respect to L. From (3.5), we 

yield for the first time a useful expression of the optimal diversity order [18], 

 

2ln*
K
ML = .            (3.6) 

 
 

3.3 Numerical Results and Comparison 

In this section, we present numerical results to compare the optimal diversity order 

formula in (3.6) with the numerically searched value. This is to prove the validity of 

our results for MC-MFSK systems in fading channels.  

 

We numerically search for the optimal diversity order by using the SER upper-bound 

for MC-MFSK systems in fading channel that is derived by Sinha in [2] as 

 

∑
=

⎥⎦
⎤

⎢⎣
⎡ +−<

L

i
de iPiPiPP

0
)1,(

2
1)0,()(1 .    (3.7) 

 
In (3.7) above, Pd(i) denotes the probability that the desired symbol gives a 

correlation value i; and P(n,k) denotes the probability that among the M-1 erroneous 

symbols, k symbols gives the maximum correlation value n. The probability of false 

alarm, PF (probability that a tone is detected when there is none), and probability of 

deletion, PD (probability that a tone is sent but is not detected) are evaluated in [2 

(eqn. 16,17)] for Rayleigh channel, and in [3 (eqn 19,20)] for Rician channel.  
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Using the expression for Pe in (3.7), we numerically search for the optimal diversity 

order which results in the minimum error rate. We denote the numerically searched 

optimal diversity order as Lopt and our analytical optimal diversity order as L*. 

 

We compare the cases of {M=1024, K=20} and {M=512, K=10}, in both Rayleigh 

and Rician channels. An identical Rice factor, KS = 10, is assumed for all users in the 

Rician channel. In all the above cases, L* = 35 (rounded up to the nearest integer). We 

plot Lopt and L* with respect to the SNR per bit in Figure 3.2, where the SNR is 

defined as the energy per bit over average AWGN power. We see that the optimal 

diversity order L* given by (3.6) becomes closer to the numerically searched optimal 

diversity order Lopt for larger SNR. We also observe that L* gives a reasonable 

prediction of the optimal diversity order for SNR equal and above 40 dB. 

 

For SNR below 40 dB and shown in Figure 3.2, the Lopt in Rician channel converges 

to L* at a lower SNR than Lopt in Rayleigh channel. This is due to the Line-of-sight 

component in Rician channel that allow a more accurate detection of the tones 

compared to transmission over Rayleigh channel of the same SNR.  

 

We believe that at high SNR, the MAI becomes dominant and effects of fading 

become negligible. Thus the optimal L predicted by (3.6), which is derived based on 

the assumption of interference-limited and non-fading channel becomes more 

accurate. 
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Fig. 3.2 Lopt versus SNR for {M=1024, K=20}, {M=512, K=10}. Lopt searched using 

(3.7) for Rayleigh and Rician channels, compared to L* computed from (3.6) 

 

In Figure 3.3, we show the plot of BER versus L for several M, K, and SNR values 

computed using (3.7). The asterisk on each curve corresponds to the BER 

performance at optimal diversity order L = L*. We can see that the BER at diversity 

order, computed from our theoretical result in (3.6), has negligible difference to the 

minimum value.  
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Fig. 3.3 BER versus L for fading channels for various M, K, and SNR, asterisk (*) 

marks the error performance at optimal diversity order L* 

 

3.4 Optimal Diversity Order for Maximum User Capacity Subject 

to Symbol Error Probability Constraint 

In the previous section, we need to know the number of active users in the system to 

optimize the system. However as with most multiple-access systems, it is not practical 

to adjust the diversity order according to changes in the number of users, as users 

constantly leave or enter the network. In addition, a system is often conditioned to 

provide every user with a certain level of service quality, in terms of error rate. 

Therefore, we formulate the following optimization problem: optimal diversity order 

to maximize the user capacity Kmax instead, given a SER limit P0. Mathematically, 
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}{max maxK
L

          (3.8) 

subject to:  

0PPe ≤        

 
From (3.4) and (3.6), we find the minimum SER, 
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2
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2
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2
1
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⎜
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⎠
⎞

⎜
⎝
⎛−= .        (3.9) 

 
Noting that Pe is monotonic increasing with respect to K, we apply (3.9) to the SER 

constraint Pe ≤ P0 and derive the inequality on K as 

 

1)(log)1(log
2ln

022 −−−
≤

PM
MK .             (3.10) 

 
The user capacity is reached (K= Kmax) when Pe is raised to its SER limit, P0. 

Therefore the maximum user capacity is derived as 

 

1)(log)1(log
2ln

022
max −−−

=
PM

MK .    (3.11) 

 
Substituting (3.11) into (3.6), an expression of the optimal diversity order L* for 

maximum user capacity is derived as 

 
1)(log)1(log* 022 −−−= PML .           (3.12) 

 
Both L* and Kmax depend only on the SER limit and M. The optimal diversity order 

given by (3.12) achieves the maximum user capacity. However this diversity order in 

(3.12) does not guarantee the minimum error rate when the number of users is below 

the capacity. Figure 3.4 shows the plot of user capacity against the SER limit. 
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Fig. 3.4 Kmax versus P0 at M = 256, 512, 1024 
 
 

3.5 Throughput Maximization Subject to Symbol Error 

Probability Constraint and Constant Number of Users 

Now we want to maximize the normalized throughput W, given a SER limit P0 and a 

fixed number of users K0. The objective function for this problem can be expressed 

mathematically as, 

 
}{max

,
W

ML
        (3.13) 

subject to: 

K = K0        

Pe ≤ P0                           
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We approach this problem by first maximizing W with respect to L only. The solution 

to this maximization problem is presented in Section 3.2, where the optimal diversity 

order is given by 

 

2ln*
K
ML = .          (3.14) 

  
Also we derive the minimized symbol error rate Pe (with respect to L) as 

 

( ) K
M

e MP
2ln

2
11

2
1

⎟
⎠
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⎜
⎝
⎛−= .    (3.15) 

 

Given (3.14) and (3.15), we want to maximize the throughput W with respect to M 

next. By numerical computation of W using (2.4), we find that W has a maximum 

point when M is of value between 3 to 4 at practical Pe values. However this range of 

M is not useful because it cannot satisfy the Pe constraint for P0 ≤ 0.1. According to 

(3.15), a larger value of M is required to achieve lower SER performance for the 

system. The computation of (2.4) also shows that beyond the maximum point, W will 

decrease with M. Therefore, we deduce that the optimal M is the smallest value that 

satisfies the Pe and K constraints in (3.13). We can numerically solve for this optimal 

modulation level M* using 

 

( ) 0

2ln
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11

2
1 PM
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⎞
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⎛− .    (3.16) 

 
The corresponding optimal L is solved by substituting the optimal M into equation 

(3.14). 
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When maximization is performed with respect to a single constraint: Pe ≤ P0, there 

will be no numerical solution to the optimization problem. From (3.15), the number of 

users K is a factor of M instead and is derived as 

 

1)(log)1(log
2ln

22 −−−
=

ePM
MK .            (3.17) 

 
Numerical computation of the throughput with K given by (3.17) then shows that 

normalized throughput W increases monotonically with the modulation level M. For 

the maximization of throughput W with only SER constraint, this relationship between 

W and M is not intuitional. The relationship also provides a useful consideration in the 

design of MC-MFSK systems as follows. Since the bandwidth is directly proportional 

to M, the system will become more efficient, transmitting more information per Hertz, 

when operating at a larger bandwidth.  

 

3.6 Conclusion 

We have derived the expression for the optimal diversity order in MC-MFSK systems 

for interference-limited and non-fading channels. At higher SNR where the MAI is 

the dominating factor, our analytical results can be used to approximate the optimal 

diversity order L* for fading channels. Results show that BER performance of 

systems using L*, is very close to the simulation results. 

 

In addition, instead of an optimal diversity order for minimizing Pe given the number 

of users present, we also present solution for an optimization problem of maximizing 

the user capacity given an error probability constraint.  
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Chapter 4 

Diversity Control in Multiple Access Multi-Carrier MFSK 

Systems 

 

4.1 Introduction 

In this chapter, we study a MC-MFSK system where the base controller does not exist 

or has no control on the diversity order in each transmitter. Unlike previous works 

[1,2] where the diversity orders of all transmitters are required to be equal, here the 

control of all diversity orders is distributed to the individual user.  

 

Note that the diversity order adopted by a user affects the amount of multiple access 

interference (MAI) experienced by all users. A competing situation thus arises, 

because each user has the capability to increase its diversity order that will better its 

performance but increase the level of system-wide interference. There are three issues 

that we are trying to uncover here: 

a) Does a steady state solution for the diversity orders exist? 

b) What is this steady state solution if it exists? 

c) Is this steady state solution truly “optimal” for the system? 

So far, no study has been carried out to address these issues.  

 

Given an initial state where all transmitters begin with arbitrary diversity orders, the 

system will optimize itself to a set of diversity orders if a steady state exists. 

Throughout this chapter, we call the steady state solution for the diversity order of 
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such systems as the optimal diversity order.  We evaluate the optimal or steady state 

diversity orders for the following 2 scenarios: 

1) Non-cooperative system users, where the objective of each user is to maximize 

its own throughput by adjusting its diversity order. The user has no regard on 

the effect of its action on other users. 

2) Cooperative system users, where the objective of each user is to maximize the 

overall system throughput by adjusting its diversity order. All users cooperate 

and are assumed to know the performance level of every user. 

We will refer to these two scenarios respectively as Case 1 and Case 2 throughout this 

chapter.  

 

The MC-MFSK system model is as described in Chapter 2. The only difference in this 

chapter is that each user has its own diversity order. We let Li denotes the diversity 

order of user i, and M denotes the modulation level. This time each user is assigned a 

unique address code, represented by binary vector, ai of length equals M and 

Hamming weight equals Li. 

 

4.2 Symbol Error Probability, System Capacity and Throughput 

In previous works, the authors have analyzed the performance of MC-MFSK systems 

in the Rayleigh [1,2] and Rician channel [3]. These works lead to complex analytical 

results, which provide little or no insight on how the diversity order and MAI affect 

the system performance.  
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Similar to the evaluation of MC-MFSK system performance in Chapter 3, we derive 

an upper bound for the symbol error rate (SER) of the distributed diversity control 

MC-MFSK systems based on the following assumptions: 

a) System in a non-fading, AWGN channel with high SNR 

b) All users have the same modulation level M 

c) All users’ address codes are distinct and consisting of random binary codes 

The only difference from the previous assumption is that all users do not necessarily 

have equal diversity order. It is shown in Chapter 3 that this channel model can be 

used to approximate fading channels with high SNR. 

 

The decoding process for user i can be seen as a particular selection of Li elements 

from v, to form a row in the M x Li decision matrix in Figure 2.2. The desired symbol 

will always have its row completely filled by its transmitted tones, while interference 

from other users and self-interference will occupy entries in other rows.  

 

The jth user transmits on Lj out of M sub-channels. Considering that the address codes 

are randomly formed and approximating self-interference as interference by an 

external user of the same diversity, the probability of insertion of a tone in an 

erroneous row is given by  
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where K is the number of active users in the system. 
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Let Pf,i denotes the probability that an erroneous row is completely filled for the ith 

user. We can derive its upper-bound by assuming that the insertion probability for 

each entry is independent.  
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And by union bound, the symbol error probability for the ith user is formulated as, 
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where the ½ accounts for the random choice between the correct and the erroneous 

symbol.  

 

We now formulate the system capacity and the normalized throughput for MC-MFSK 

systems. The ith user’s capacity Ci for an MC-MFSK system is similar to the capacity 

for the multiple-access Frequency-Hopping MFSK system. This capacity is given in 

[17] as 

 
( ) ( ) ( ) ( )1loglog1log1log ,,,,, −−+−−+= MPMPPPPC ieieieieiei .  (4.4) 

 
Note that for practical range of Pe,i (Pe,i < 0.1), the capacity decreases monotonically 

with Pe,i. Hence maximization of the user capacity is equivalent to minimizing its 

error probability.  

 

We define the normalized throughput Wi for the ith user as 
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s

i
i TB

C
W = ,          (4.5) 

 
where B and Ts denote respectively the system bandwidth and symbol duration. Since 

the MC-MFSK system has M sub-channels and frequency separation of 
sT

1 is used 

to preserve the orthogonality of each sub-channel, the bandwidth therefore equals 

to
sT

MB 1
×= . We can then simplify the individual throughput in (4.5) to  
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The total system throughput W, is the sum of all K individual throughputs and given 

by 
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1
.      (4.7) 

 
Both throughputs in (4.6) and (4.7) are respectively the performance measures of Case 

1 and 2 in this system. 

 

4.3 Optimal Diversity Order for Multi-Carrier MFSK System 

4.3.1 Optimal Diversity Order for Maximizing Individual Throughput 

We evaluate the optimal solution for Case 1, where all users adapt only to maximize 

its individual throughput. Since M is constant, the maximization of individual 

throughput is equivalent to the minimization of error rate. Hence the objective 

function is  
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Denoting the optimal diversity solution as vector L* = [L1*,…, LK*], where Li* is the 

optimal diversity order for the ith user, we can evaluate L* by letting  
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We approximate (4.9) by using Taylor series expansion and derive 
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(4.10), we resolve the expression to  
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Since the expressions are symmetric for all K users, we deduce that all Li* are equal in 

the solution for (4.8). Therefore letting Li* = L* for all i and multiplying the equations 

in (11), a solution for (4.8) can be found by solving the equation (4.12) below [19]. 
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Hence we prove that a solution exists for the optimized diversity order in Case 1. The 

users’ diversity orders will always converge to this solution at steady state.  

 

4.3.2 Optimal Diversity Order for Maximizing Total System Throughput 

We now evaluate the optimal solution for Case 2, where all users will cooperate for 

the common goal of maximizing the normalized system throughput. Since the system 

throughput is defined in (4.6) as the sum of individual throughput and M is constant, 

the maximization of system throughput is equivalent to the maximization of the sum 

of individual capacities Ci. The objective function can be written as, 
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Hence the necessary condition for the solution L* is  

 

Ki
L

C

i

K

j
j

,,101 …=∀=
∂

∂∑
=        (4.14) 

 
where  
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Again, since the expressions for 
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=1  are symmetric for all K users, we deduce 

that all Li* are equal in the solution for (4.13). By letting Li* = L* for all i and 

summing the equations in (4.14), the optimal L* is found by solving equation (4.16), 
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Similarly for Case 2, we prove that a solution exists for the optimized diversity order 

[19]. The users’ diversity orders will always converge to this steady state solution. 

Note that the optimal diversity order L* obtain in (4.16) is different from the solution 

in (4.12), though for both cases all Li* are equal. Their differences will be discussed in 

Section 4.5. 
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4.4 Adaptation of Diversity Order 

In simulation we use the following iterative steps for the system users to adapt their 

diversity order. In each iteration, all users take turn to update their diversity order. We 

assume that all users are constantly informed of their objective measures. For Case 1, 

the objective measure is the user’s own throughput Wi. For Case 2, the objective 

measure is the total system throughput ∑
i

iW . We denote Li(k) as the diversity order 

of user i at the k-th iteration. The adaptation processes involved are, 

Step 1: Set Li(0) = ci, i = 1,…,K , where ci is a arbitrary value, [ ]1,...,1 −∈ Mci . 

 Set iterative index, k = 0. 

Step 2: Update iteration index k = k+1. 

For user i = 1 to K, 

  Search Li(k) that maximize the objective measure. 

Replace Li(k-1) with Li(k) for user i. 

Step 3: Repeat Step 2 until all Li(k) converge to a steady state value. 

 

The above iteration is repeated until the system reaches a steady state, where there is 

no further change in diversity order for all users. Note that the diversity order of all 

system users always converge to their steady state solution regardless of the order in 

which the users’ diversity orders are updated, or how frequent is their update.  
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Fig. 4.1 Adaptation of Diversity Order for User 1 (figure not to scale) 

 

 

Fig. 4.2 Adaptation of Diversity Order for User 2 (figure not to scale) 
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Without loss of generality, we illustrate the above iterative steps for a 2-user case. We 

denote the diversity order of user 1 and 2 at the kth iteration as L1(k) and L2(k) 

respectively. At the start of the kth iteration, user 1 first updates its diversity from 

L1(k-1) to L1(k) (shown by (a) on Figure 4.1). L1(k) is the diversity order maximizing 

user 1’s objective measure. This change in user 1’s diversity order consequently 

affects user 2’s objective measure (shown by (a) in Figure 4.2). 

 

Next, user 2 updates its diversity order from L2(k-1) to L2(k) (shown by (b) in Figure 

4.2). Similarly, L2(k) is the diversity order maximizing user 2’s objective measure at 

that iteration. The consequential effect on user 1’s objective measure is that the 

maximum point may shift to a different value (shown by (b) in Figure 4.1).  

 

The iteration is repeated for user 1 and 2 until there is no further change in their 

diversity orders. The diversity orders of both users always converge to the steady 

solution (4.12) or (4.16) given in Section 4.3.  

 

We carry out simulations for systems with various number of users and arbitrary 

initial diversity orders. Our results show that their diversity orders indeed converge to 

the steady state solution (4.12) or (4.16) in Section 4.3. 

 

4.5 Explanation Using Game Theory 

Since the system consists of users with conflicting interests, the above results can be 

explained using the concept of game theory. In game theory, Case 1 and Case 2 of the 
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diversity control problem are modeled as a non-cooperative game and a cooperative 

game respectively. We will now summarize two key concepts in game theory: 

a) Nash Equilibrium 

b) Pareto Efficiency 

 

In the above context, the Nash Equilibrium is defined as a set of diversity orders such 

that no user can improve its objective measure by unilaterally changing its diversity 

order. The next concept is the Pareto efficiency. A Pareto efficient point is defined as 

a set diversity orders where there exist no other set, which at least one user has a 

better objective measure while the rest remain the same. In other words, a Pareto 

efficient point is a set of diversity orders where it is impossible to improve the 

performance of any one user without sacrificing performance of other users. For more 

detailed explanation of game theoretic concepts for communication systems, readers 

can refer to works by MacKenzie & Wicker in [20]. 

 

For Case 1, all users are at the maximum of their individual throughput at the steady 

state. None of the system users can increase its throughput unilaterally. Therefore the 

optimal solution given by (4.12) also represents a Nash Equilibrium point. However it 

is not a Pareto Efficient point. We can prove this by reducing the diversity order of all 

users by a small equal amount, and everyone will achieve a higher throughput. 

 

For Case 2, the users achieve the common goal of maximizing the system throughput 

at steady state. Since the system throughput is the equal-weighted sum of all the 

individual throughputs, the solution for this case is a set of diversity orders, which no 

other set can improve the throughput of any user without increasing error probability 
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of another user. Therefore the solution given by (4.16) is Pareto efficient. We want to 

point out that the Pareto efficient solution is also the ideal operating point for MC-

MFSK systems. 

 

An example of the Nash Equilibrium and Pareto efficient point of a two user system is 

shown in Figure 4.3 below. Note that L = 118 and L = 40 are the solution to (4.12) 

and (4.16) respectively, for K=2, M=256. The figure highlights the effect of user 1’s 

diversity order L1 on the performance of both users. As L1 increases, the performance 

of other user will degrade due to the increase in interference level. Also the increase 

in L1 will improve user 1’s own performance as long as the performance degradation 

due to self-interference is smaller than the performance gain. The figure also shows 

that both users achieve a better performance at the Pareto efficient point than at the 

Nash Equilibrium point.  

 
Fig. 4.3 Pe,1 and Pe,2 versus L1 for two user System, M = 256, L2 = 40 & 118  
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With the solutions for the Nash Equilibrium and Pareto efficient points, we can also 

implement policies such as pricing to influence a Pareto improvement to the system 

for Case 1, such that it can achieve the same level of throughput as Case 2. The users 

will be imposed with a price that monotonically increases with their diversity order to 

influence an equilibrium point of lower diversity orders. The price will be a factor in 

their objective function, and a properly designed pricing can lead the system’s 

equilibrium point to the desired Pareto efficient point. Shah et al. develop such pricing 

implementation in [21] for power control in CDMA system, which is analogous to our 

diversity control in MC-MFSK system.  

 

4.6 Conclusion 

We have analyzed the characteristic of the Multicarrier MFSK system where control 

of the diversity orders is distributed to the users. Two scenarios are considered: Case 

1 when the users are concern only with its own throughput, Case 2 when the users are 

concern with the overall system throughput. For each case, we define the appropriate 

objective function and derive an optimal solution for the diversity orders. Our 

simulations have verified that the system in both cases always converge to their 

respective steady operating solutions. We have also explained the results using the 

concept of game theory. Case 1 is an instance of non-cooperative game and its 

solution works out the Nash equilibrium point. As for Case 2, its solution works out 

the Pareto efficient point for the MC-MFSK systems. The Pareto efficient point also 

represents the desired operating point for Case 1. With these solutions, economic 

policies such as pricing can be applied in the diversity control of the system. In future 
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work, pricing policies can be imposed on the users in Case 1 to influence a Pareto 

efficient equilibrium point. 
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Chapter 5 

Balanced Incomplete Block Design to Improve Performance 

of Multi-Carrier MFSK Systems 

 

5.1 Introduction 

Conventional Multi-carrier Multilevel Frequency Shifted Keying (MC-MFSK) 

systems [1-3] select the active sub-channels randomly for transmission of each 

symbol. For the first time in multiple-access MC-MFSK systems, we propose a 

method of selecting the active sub-channels to improve error performance. We 

attempt to improve the MC-MFSK system performance by reducing the degree of 

interference between system users.  

 

In our method, we use a combinatorial construction called Balanced Incomplete Block 

(BIB) Design. The BIB design is a collection of permutations (as known as blocks) 

such that any two permutations will have at most λ number of coincidental elements, 

where λ is a design parameter. The permutations in a BIB design will be distributed 

among all users, and each permutation will uniquely represent the selection of active 

sub-channels for each symbol. Hence using our proposed method in the multiple-

access MC-MFSK system, symbol transmissions of any two users overlap at most λ 

number of sub-channels. Therefore the effect of multiple-access interference (MAI) is 

reduced. For the rest of this chapter, we denote the MC-MFSK system using this 

method of sub-channels selection based on BIB design as BIB-MC-MFSK system. 
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Atkins in [6] first uses BIB design to represent the multi-tone signaling of each 

symbol in multi-tone MFSK modulation. His results show that the BIB design 

achieves a better error performance and higher bandwidth efficiency than 

conventional MFSK systems in fading channel, but his works are limited to single-

user systems. Our objective is to introduce BIB design in the multiple-access MC-

MFSK system to improve performance. By choosing a low value for λ, all sets of 

active sub-channels have a low degree of coincidence with each other. Hence the 

users in BIB-MC-MFSK systems will experience a low level of multiple-access 

interference (MAI). This is unlike conventional MC-MFSK systems where there is no 

control over the degree of interference.  

 

5.2 Balanced Incomplete Block Design for Multi-Carrier MFSK 

A BIB design [7,8] is a collection of b blocks, formed by the arrangement of N 

distinct elements satisfying the following conditions: 

a) each block contains exactly L distinct elements,  

b) each element occurs in r blocks, and  

c) every pair of distinct elements occurs together in exactly λ blocks.  

Any block design that satisfies the above conditions is a BIB design with parameters 

(N, b, r, L, λ). There are two elementary relationships among these five parameters 

[7]. 

 
rNbL =         (5.1) 

( ) ( )11 −=− NLr λ               (5.2) 
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The first equation is derived by counting the total number of single incidence, while 

the second equation is derived by counting the number of pairs containing a particular 

element.  

 

In our method of sub-channels selection, we use each block of the BIB design to 

represent the multiple sub-channels transmission of each symbol. For example in a 

BIB design with parameter (N=7, b=7, r=3, L=3, λ=1), the blocks are given by  [(0 1 

2), (0 3 4),(1 4 5),(2 5 3),(6 3 1),(6 4 2),(6 5 0)]. Each block contains the permutation 

of the active sub-channels, such as block (0 1 2) means that sub-channel 0, 1 and 2 are 

selected. These blocks are divided among the users. Within each user, each block is 

uniquely assigned to a symbol.  

 

We show a block diagram of the BIB-MC-MFSK transmitter in Figure 5.1. The BIB-

MC-MFSK system will transmit using the assigned blocks in the same way as the 

conventional MC-MFSK system using its assigned random code. The details on the 

transmitting and receiving process can be found in Chapter 2.  

 

 

Fig. 5.1 BIB-MC-MFSK Transmitter  

 

Since each of the N elements refers to a distinct sub-channel, the total number of sub-

channels in BIB-MC-MFSK systems is N. Note that unlike conventional MC-MFSK 

systems, the number of sub-channels in BIB-MC-MFSK is independent of the 
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modulation level M. Also each block will select a permutation consisting of L sub-

channels. Therefore, L represents the frequency diversity order in the BIB-MC-MFSK 

system.  

 

In this analysis, we consider designs where λ=1. Hence, any 2 distinct blocks will 

coincide in at most 1 element. BIB designs with λ=1 are also known as Steiner 

Systems. Due to the relationships in (5.1) and (5.2), a BIB design is only dependent 

on 2 of its parameters. We will express all formulation in terms of L and N, because L 

determines the type of BIB construction method and the diversity order of the system, 

while N affects the bandwidth requirement of the system. However, note that BIB 

designs do not exist for all combinations of N and L. 

 

5.3 Analysis and Derivations 

5.3.1 Derivation of User Capacity and Bandwidth Efficiency 

For the modulation level M, each user will require M number of blocks. Since the 

number of blocks in BIB designs is finite and given by b, there is a limit on the 

number of users which the system can support. We denote this user capacity as Kmax 

and it is given as, 

 

⎥
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where ⎣ ⎦•  denotes a floor function. 
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To preserve the orthogonality of the sub-channels, a frequency separation of 
sT

1  

must be maintained, where Ts is the symbol interval. Since the BIB-MC-MFSK 

system will require N number of sub-channels, therefore the bandwidth of the system 

W is given by 
sT

NW = . Taking MTT bs 2log=  , where Tb denotes the bit interval, we 

derive the bandwidth efficiency η [22] as 

 

N
M

W
Tb 2log

1
==η .                 (5.4) 

 
In contrast, for a conventional MC-MFSK system described in Chapter 2, its number 

of sub-channels is fixed as M. Hence bandwidth efficiency η of a conventional MC-

MFSK system is given as 

 

M
M2log

=η .          (5.5) 

 

5.3.2 Derivation of Error Probability 

In this section, we analyze the error performance of BIB-MC-MFSK systems that is 

due solely to its multiple-access interference (MAI). We also assume a non-fading 

AWGN channel with high SNR as in Chapter 3, and the BIB blocks are randomly 

assigned among the various users.  

 

As presented in the MC-MFSK system model at Chapter 2, a decoding error will 

occur when the erroneous symbol has more sub-channels occupied than the desired 

symbol. When erroneous and the desired symbols have equal number of sub-channels 

occupied, a random choice is made among the contending symbols. Since perfect 
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channels are assumed, a decoding error will only occur when an erroneous symbol has 

all its sub-channels occupied and is selected in the random choice. 

 

Given that in BIB design, each element (sub-channel) occurs in exactly r blocks, and 

there is at most 1 coincidence. There will be x number of interfering blocks for every 

erroneous symbol, where x is given by 

 

( ) ( )
1

1
−
−

=−=
L

LNLrLx .       (5.6) 

 
The probability of each user interfering on a erroneous symbol is then given by 

1−b
x . For K number of users (K≤ Kmax), and assuming the interference of each user 

to be independent of one another, the number of interfering users Q can be assumed to 

have a binomial distribution, 
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Considering any erroneous symbol, each interferer will occupy only 1 of the L sub-

channels with equal probability. Therefore, the probability that all L sub-channels 

being filled by Q interferers is given as 

 
Q

filled L
QLCQP ⎟

⎠
⎞

⎜
⎝
⎛×=

1),()( ,         (5.8) 

 
where C(L,Q) represents the number of interference patterns satisfying the condition 

of Pfilled(Q). We need to derive C(L,Q) as follows. 
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We group the interference patterns into classes of coincidence count. Each 

coincidence count is expressed as an L dimension vector [ ]Lggg ,,, 21 …=g , where gi 

represents the number of interferer occupying the ith sub-channel, 

therefore Qg
L

i
i =∑

=1
. The number of distinct permutations for each coincidence count 

is given by 
∏=

L

i ig
Q

1
!

! . For interference patterns that occupy all sub-channels, they are 

grouped under g such that  

 
Ligi ,,1for ,1 …=≥ .      (5.9) 

 

Summing the number of permutations in all g that satisfy (5.9), we derive 
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where ∑
=

+=
a

i
igaG

1
)1()( . Therefore, the probability of an erroneous symbol having 

all its sub-channels filled by interference is, 
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An alternative approach to derive Pfilled which gives same result can be found in [23]. 

Using union bound, we derive the new expression for the upper bound of the symbol 

error probability (SER) [24] as 
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where the factor ½ accounts for the random choice between the correct and the 

erroneous symbol. The bit error rate is then given by  

 

BER = eP
M

M

1
2
−

.         (5.13) 

 

5.4 Effect and Selection of Various BIB Design Parameters 

5.4.1 Optimal Diversity Order for Minimum Error Rate 

The performance of BIB-MC-MFSK systems for varying L is evaluated using (5.13) 

and shown on Figure 5.2. We observe that an increasing L will improve the BER 

performance. This effect is known as the diversity gain. Since each BIB block can 

only coincide on at most 1 sub-channel, hence at higher L, the error probability 

decreases as more sub-channels of the erroneous symbols have to be occupied. This is 

unlike the case for random code, where increasing L increases the degree of self 

interference. 

 

However there is trade-off for the diversity gain. As L increases while the number of 

sub-channels N remains constant, the technique of sub-channels selection based on 

BIB design will have lesser number of blocks that can still coincide on at most 1 sub-
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channel. Thus the user capacity Kmax will decrease for increase in L. This relationship 

is shown on (5.3), and on the decreasing K limit of the lines in Figure 5.2. Thus the 

optimal choice of diversity order L is the largest possible value of L under the 

constraint K< Kmax.  

 

 

Fig. 5.2 Analytical BER versus number of users K for M=256, N=256 and various L, 

where the decreasing K limit on the lines are due to lowering user capacity as L 

increase. BER performance improves with increases in L. 

 

5.4.2 Optimal Modulation Level for Maximum User Capacity at Constant 

Bandwidth Efficiency 

For constant bandwidth efficiency, η = c
1  where c is an arbitrary constant, we have  

 
McN 2log= .         (5.14) 



 49

 
Applying (5.14) to (5.3), we can re-write Kmax as 
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Since the floor function ⎣ ⎦•  is monotonic and L is treated as constant, the 

maximization of Kmax with respect to M is equivalent to maximization of the function,  

 
( )
M

McMcMf 1loglog)( 22 −×
= .             (5.16) 

 
We can solve for the optimal modulation level M*, which maximize f(M), as 
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In practice, c ≥ 1, therefore the optimal modulation level falls within a narrow range 

of 7.39≥ M* ≥11.1, which corresponds to the convention value of M=8 for binary 

systems. Hence, we can maximize Kmax when taking M towards a conventional value 

of 8. 
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Fig. 5.3 Analytical BER versus number of users K for η = 32
1 , L = 4 and various M 

 

In addition, the bit error rate is relatively unchanged for variation in M when η is kept 

constant. An example of its independence from M for η = 32
1  is shown on Figure 

5.3. Therefore the error performance is not degraded when this optimal M is used.  

 

5.4.3 Selection of BIB Design Parameters for Maximum Error Performance at 

Constant Bandwidth Efficiency 

To select the BIB design parameters which maximize error performance at constant η 

in BIB-MC-MFSK systems, we must take into consideration the effects of parameters 

L and M simultaneously. The modulation level M will first be set at the optimal value, 

but with the purpose of keeping the constraint K< Kmax satisfied so we can employ the 



 51

largest diversity order L. We then look for suitable BIB design parameters by 

searching through a list of existent design parameters. Using the choice of M value 

and (5.4), we will select design parameters that allows for a BIB-MC-MFSK system 

of bandwidth efficiency η reasonable close the required value, and have a large 

diversity order L.  

 

Note that BIB designs do not exist for all combinations of design parameters N and L, 

thus there may not exist a pair of design parameters {N, L} that results in the required 

η when M=8. For the same reason, there might also be designs at other values of M 

that result in the required η and with larger L, and thus better performance. Therefore 

M*=8 serves only as a guide for the parameter choice of M. The search for suitable 

design parameters {N, L} must also be done for adjacent values of M in the binary 

system, such as M=4 and M=16. We will illustrate the selection of suitable design 

parameters {N, L} by an example below.  

 

In this example, we want to first choose suitable parameters of BIB designs 

for η
1 =32. We use the inverse of bandwidth efficiency η

1  as a clearer quantity to 

present and to compare the bandwidth efficiencies. We will search through a list of 

existent of BIB design parameters {N, L} on Table 5.1, and choose designs that have 

η
1  reasonably close to 32 for cases of M=4, 8 and 16. Table 5.1 lists examples of 

existent BIB designs parameters {N, L} from [7]. 

  

The design parameter pairs that satisfy 321 ≈η  are highlighted on the table. Out of 

these designs we select designs with large diversity order. In this example we will 
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select BIB designs of parameter set {N=91, L=10, M=8} and {N=121, L=11, M=16}. 

In the next section, we will apply these two designs in the simulation of BIB-MC-

MFSK systems for a performance comparison with conventional MC-MFSK systems.  

 

Table 5.1 Examples of existent BIB designs 

BIB Design 
Parameter 

Inverse of Bandwidth Efficiency, η
1  

L N η
1 when M=4 η

1  when M=8 η
1  when M=16 

31 15.50 10.33 7.75 
6 

126 63.00 42.00 31.50 

49 24.50 16.33 12.25 
7 

343 171.50 114.33 85.75 

57 28.50 19.00 14.25 
8 

64 32.00 21.33 16.00 

73 36.50 24.33 18.25 
9 

81 40.50 27.00 20.25 

91 45.50 30.33 22.75 
10 

730 365.00 243.33 182.50 

121 60.50 40.33 30.25 
11 

1331 665.50 443.67 332.75 

133 66.50 44.33 33.25 
12 

1332 666.00 444.00 333.00 
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5.5 Performance Comparison with Conventional Multi-Carrier 

MFSK Systems 

We now present simulation results on the BIB-MC-MFSK system in the Rayleigh 

fading channel, and compare its performance with the conventional MC-MFSK 

system for a similar η. We assume that the conventional MC-MFSK system 

constantly adopts the optimal diversity order as presented in Chapter 3. Note that for 

different number of users K, the diversity order for the conventional system will 

change accordingly, to its optimal value give by the expression 
K

ML 2ln
= . To 

compare with a conventional MC-MFSK system of modulation level, N =M =256 and 

hence η
1 =32; we simulate BIB-MC-MFSK systems of the parameter sets {N=91, 

L=10, M=8} and {N=121, L=11, M=16}, with η
1  of 30.3 and 30.25 respectively. The 

selection of these sets of optimal BIB design parameters is shown at the example on 

section 5.4.3. Since the systems operate on different modulation level, we compare 

their error performances by their bit error rate. Under a common bit rate and bit SNR, 

all the above systems utilize a similar amount of system resources.  
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Fig. 5.4 BER versus number of users K for BIB-MC-MFSK and conventional MC-

MFSK systems in Rayleigh Channel and with Bit SNR = 40 dB  

 

The comparison is shown on Figure 5.4. Based on the performance of BIB-MC-

MFSK systems with parameter set {N=91, L=10, M=8}, we observe that there is a 

crossing point in K, where below it, BIB-MC-MFSK systems achieve better BER 

performance than conventional MC-MFSK systems. The improvement increases as 

the number of users K is lower than the switching point. However, the BIB-MC-

MFSK system performs worse for K greater than the switching point.  

 

The quantitative variation of this switching point with different parameter set is not 

uncovered. Hence for any parameter set, the range of K, which gives a better 

performance, is derived only by performance comparison as exemplify in Figure 5.4. 
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The improvement by BIB-MC-MFSK systems is shown at lower value of K because, 

at that region, multiple-access-interference alone is unable to cause decoding error. As 

described in the system model of MC-MFSK systems, an erroneous symbol must 

have all its L sub-channels occupied for error to occur. Since interference occupies at 

only one sub-channel per interferer in the BIB-MC-MFSK system, interference 

occupy at most K out of L sub-channels when the number of users K is less than the 

diversity order L. For the decoding error to occur, fading effects such as false alarm or 

deletion will have to occur on specific sub-channels. For example, false alarms 

occurring on the remaining un-interfered sub-channels, or deletions occurring on the 

desired symbol’s sub-channels. The probability of these occurrences on the specific 

sub-channels is low, and the probability further reduces when the difference between 

K and L increases. Thus the error probability will vary with K correspondingly.  

 

Also in Figure 5.4, the BIB-MC-MFSK system with parameter set {N=121, L=11, 

M=16} is shown to achieve a better error performance than the BIB-MC-MFSK 

system with parameter set {N=91, L=10, M=8}. This result is because the former 

system employs a larger diversity order. However, as mentioned in section 5.4.1, the 

trade-off is that the system has a smaller user capacity of 8 users. 

 

The BIB-MC-MFSK system of both parameter sets achieves better error performance 

than the conventional MC-MFSK system at region of low K. Therefore we deduce 

that BIB design is a useful technique for selecting the active sub-channels when the 

number of users is low. 
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5.6 Conclusion 

In this chapter, we have proposed a method of sub-channels selection based on BIB 

design to improve the MC-MFSK system performance. This is the first time a 

deterministic design has been used to select the sub-channels in MC-MFSK systems. 

The selections of sub-channels will represent each symbol of every user. Using BIB 

design, any two of these selections will overlap in at most one sub-channel, thus 

reducing the degree of interference in the system. By analyzing the system model 

under perfect channel, we have derived expressions for the error rate and user 

capacity of our BIB-MC-MFSK system. From the analysis of these expressions for 

the various system parameters, we find the optimal diversity order and optimal 

modulation level that respectively maximize the error performance and user capacity. 

Also we introduce a selection method for optimal parameters of BIB design which 

maximizes error performance for constant bandwidth efficiency. We compare the 

performance of the BIB-MC-MFSK system with the conventional MC-MFSK system 

by simulation. Both systems are simulated at their optimal parameters and under a 

Rayleigh fading channel. Although the BIB-MC-MFSK system perform worse than 

the conventional MC-MFSK system when number of users is large. We find that the 

BIB-MC-MFSK system achieves significantly better bit error performance for lower 

number of users. With appropriate choice of parameters for BIB design in the system, 

the improvement in performance can be more than ten times.  

 

So far we have studied the MC-MFSK system which do not employ time diversity. In 

the next chapter, we will extend the system by introducing frequency hopping. We 

shall evaluate the performance and characteristics of this so-called Frequency-
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Hopping Multi-carrier MFSK system. Previous analytical results, such as 

optimization of diversity order and usage of BIB design, can be applied in this system. 
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Chapter 6 

Extension to Frequency-Hopping Multi-Carrier MFSK 

Systems 

 

6.1 Introduction 

Now we explore an extension of the MC-MFSK system by including a frequency-

hopping component. We call the extended system the Frequency-Hopping Multi-

Carrier MFSK (FHMC-MFSK) system. Previously in MC-MFSK systems, a set of 

frequency sub-channels are used simultaneously for transmission over the symbol 

interval. Now in FHMC-MFSK systems, the transmission occurs over several time 

hops (or chip interval) and a different set of sub-channels will be used at each time 

hop.  

 

The FHMC-MFSK system possesses both frequency diversity and time diversity. The 

frequency diversity is parameterized as the average number of transmitting sub-

channels per time hop, and the time diversity is parameterize as the number of time 

hops per symbol. We use L to denote frequency diversity due to MC-MFSK 

transmission and use H to denote time diversity due to frequency hopping. Since the 

FHMC-MFSK system retains inherent frequency diversity as in the MC-MFSK 

system, it inherits the advantages of the MC-MFSK system such as robust 

performance against fading effects. The FHMC-MFSK system also has the benefits of 

near-far immunity and high spectral efficiency. Likewise, the FHMC-MFSK system 
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can be easily implemented by making use of OFDM based technology, the IFFT/FFT 

operations eliminate the need for banks of oscillators [1].  

 

The FHMC-MFSK system is first introduced by Timor [15] and then by Mabuchi et 

al. [16] for use in mobile radio. Like previous works in [2,3], an optimal diversity 

order is observed in Timor and Mabuchi’s results, however, they did not make an 

analytical evaluation for it. We believe that by applying the same analysis as in 

Chapter 3 to this FHMC-MFSK system, we can extend the earlier contributions to this 

new system. Hence, we can advance both the MC-MFSK system and its frequency-

hopping variant, the FHMC-MFSK system, as candidates for future high speed 

communications systems. 

 

In this chapter, we will first describe the FHMC-MFSK system model. We then study 

the different types of random codes that can be applied to the system and discuss their 

performance and implementations. Using the approach in Chapter 3, we present a 

mathematically simpler expression for the error performance of FHMC-MFSK 

systems than previous works [15,16]. From the expression, we then derive an 

analytical solution for the optimal frequency diversity. Lastly, a discussion on the 

effect of various system parameters, such as diversity order and modulation level, is 

presented.  

 

6.2 Frequency-Hopping Multi-Carrier MFSK System Model 

In FHMC-MFSK systems, the channel is divided into its frequency sub-channels and 

time hops. For each symbol transmission, a tone will be transmitted on a permutation 

of sub-channels over different time hops. Hence each symbol can be represented by a 
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binary Frequency-Time (FT) matrix/code as shown in Figure 6.1. Considering that the 

system utilizes N frequency sub-channels and H time hops per symbol, the matrix will 

be of size N x H. Note that in FHMC-MFSK systems, the total number of sub-

channels N need not be equal to the modulation level M. The FT matrix denotes the 

signaling pattern of the symbol, where the column and row position of the selected 

entries (indicated by “X”) denote the transmitting sub-channel’s index and hop 

interval respectively. The matrix representation of each symbol must be unique 

among all users. We assume that all users in FHMC-MFSK systems operate with the 

same number of time hops H and the same mean number of sub-channels per hop L. 

Therefore the FT matrices used are all of the same weight with the value L·H. 

 

 

Fig. 6.1 Frequency-Time matrix representation 

 

Note that Goodman’s FH-MFSK system [9] and Sinha’s MC-MFSK system [1,2], can 

be considered as special cases of this FHMC-MFSK system where L=1 or H=1 

respectively.  

 

At the receiver, envelope detector on each sub-channel will determine if a tone is 

transmitted. This hard decision is made at every hop interval, and the results will form 
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a N x H received energy matrix R. Under a perfect channel, R is composite (OR sum) 

of all K frequency-time matrixes of the transmitted symbols, where K represents the 

number of users.  

 

For a modulation level M, every user will be assigned M number of FT matrixes to 

represent each of its M symbols. Each user decodes its symbol by correlating its 

assigned FT matrixes with R. This decoding process can be visualized as a selection 

of L·H entries from R, where locations of the L·H entries are based on each assigned 

FT matrix. Each selection is then arranged as a row in the decision matrix D. Hence 

there will be M number of rows in D, and the size of the decision matrix D for each 

user will be M x L·H. Each row in D corresponds to a symbol, and the number of 

occupied entries on any row reflects the correlation of that symbol. The decoder will 

select the symbol with the greatest correlation, and in cases of more than one symbol 

having the maximum correlation, a random choice is made among the contending 

symbols. An example of the decoding process is shown in Figure 6.2.  
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Fig. 6.2 FHMC-MFSK system decoding process 

 

For a perfect channel, the correct symbol always has a complete row filled by its L·H 

transmitted tones, while interference (from other users and self-interference) will 

scatter and occupy entries in other rows randomly. A decoder error will occur when 

an erroneous row either 1) has more occupied entries than the desired row, or 2) has 

the same number of entries as the desired row and is chosen in the random choice. 

Due to the intrinsic multiple access interference (MAI) in the system, such error can 

occur, even in the absence of fading and AWGN. 

 

6.3 Types of Random Frequency-Time Code and Comparison 

As we extend the system to include frequency-hopping, there arises various methods 

which the FHMC-MFSK encoder can be implemented. Therefore, different forms of 

random FT codes/matrixes can be generated. These codes can be distinguished by the 

presence of two properties: 
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a) The number of tones at each hop is constant and equal to L. 

b) Codes for the same user are cyclic-shifted version of each other. 

 

For the rest of the chapter, these two properties are called Property (a) and Property 

(b) respectively. The cyclic-shifting is in terms of frequency sub-channels and can 

also be illustrated by upward shifting of the matrix. Since no prior analysis has been 

done, we will evaluate and compare all forms of random codes to uncover those that 

give a better performance. The implementation issues of the corresponding encoders 

will also be discussed in this section. 

 

6.3.1 Types of random Frequency-Time codes 

We categorize the random FT codes into four main types based on presence of the 

above two properties. The codes types are labeled accordingly in Table 6.1. Examples 

of all types of FT code in this section will be presented with frequency diversity order 

L = 2, and time hop H = 3. 

 

Table 6.1 Frequency-Time Code Types 

FT Codes 
 

Type I Type II Type III Type IVa & 
IVb 

Properties (a) No Yes No Yes 

Properties (b) No No Yes Yes 

 

For Type I, it is the most randomized code without both properties (a) and (b). An 

example of such code is shown in Figure 6.3. In this type, the total weight of value 
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L·H is distributed, with equal probability, among all N·H number of entries. Since it is 

possible that a column in this code is without any weight, a hopping interval without 

any tone transmission on all sub-channels can exist. 

 

Fig. 6.3 Type I code 
 

In Type II, the code has property (a) but not property (b). Its example is shown in 

Figure 6.4. Within each column of the code, L tones are distributed with equal 

probability among N number of entries. There are always L transmitting sub-channels 

at every hop. 

 

Fig. 6.4 Type II code 
 

Type III code has property (b) but not property (a). When the FT codes assigned to 

the same user are cyclic-shifted versions of one another, they can be grouped and 

represented by a single address code/matrix instead. The encoding process will then 

consist of frequency-shifting a random address code by the symbol value mi as shown 

in Figure 6.5. 
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Fig. 6.5 Type III code 
 

In Type IVa, the code has both properties (a) and (b). As in Type III code, an address 

code can be used to represent all the codes assigned to the same user. In addition, the 

weight of the address code must be equal to L at each column. The encoding process 

and an example of the code are shown in Figure 6.6. The encoding used in [15,16] 

belongs to this type. This encoding is also equivalent to an implementation of Sinha’s 

MC-MFSK system [2], when the MC-MFSK signal is sent repetitively and a different 

address vector is used at each repetition. 
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Fig. 6.6 Type IVa code 
 

As for Type IVb code, it is a variant of the Type IVa code. Type IVb code not only 

has properties (a) and (b), but the columns of the codes are cyclic shifted versions of 

one another as well. An example of the code is shown in Figure 6.7. This encoding is 

equivalent to an implementation of the MC-MFSK system [2] with repetitive 

signaling as above. But the same address vector is used at each repetition and is 

further cyclic-shifted by a frequency hopping sequence. The encoding process is also 

shown in Figure 6.7. 
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Fig. 6.7 Type IVb code 
 

6.3.2 Performance of Codes 

We now analyze the correlations of these codes and compare their performances. Two 

kinds of correlation are of concern here, the cross-correlation and auto-correlation. 

The former indicates the degree of interference with other user, while the latter 

indicates the degree of self-interference.  

 

Cross-Correlation 

Let random variables aY  and aY  denote the cross-correlation of codes with and 

without property (a) respectively. Codes without property (a) have all their L·H 

weights distributed evenly among the N·H entries. We assume that the occupancy 

among the entries in a code to be mutually independent. Hence aY  is approximated to 

be a binomial distribution of L·H trials, each with N
L  probability of being occupied. 
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We denote a binomial distribution with n trials and p probability of success as B(n, p), 

therefore the distribution of aY  can be represented as aY  ~ B(HL, L/N).  

 

As for aY , it is the sum of cross-correlation at each hop. Within each hop, L tones are 

distributed evenly among N entries, thus the correlation of each hop approximates to 

the binomial distribution B(L, L/N). For random codes, the correlations among the 

hops are independent. Therefore, the random variable aY  is given by the sum of H 

independent random variables, each of binomial distribution with the same occupancy 

probability. Hence the distribution of aY  can be represented as aY  ~ B(HL, L/N).  

 

Since aY  and aY  have the same distribution, we deduce that property (a) does not 

affect the cross-correlation of the codes. In addition, property (b) also does not affect 

the cross-correlation distribution, as the property is only applicable to codes assigned 

to the same user. Hence we conclude that the level of cross-correlation (thus the 

degree of external interference) is the same for all code types.  

 

Auto-Correlation 

For codes without property (b), a set of codes is randomly allocated to each user. Each 

code in the set is uniquely assigned to each of the M symbols from that user. These 

codes of the same user are independent, and correlations between them are equivalent 

to correlations with codes from other users. Hence the off-peak auto-correlation of 

Type I and II codes have the same distribution as the cross-correlation, and are given 

by B(HL,L/N) 
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For codes with property (b) (Type III, IVa, IVb codes), only an address code is 

allocated to each user. Frequency cyclic-shifted versions of the same address code are 

assigned as codes to the symbols of that user. Therefore, these codes of the same user 

are not independent, and cannot be treated like cross-correlation. We denote Lh,i and 

random variable Zi as the number of tones and the off-peak auto-correlation of the ith 

hop respectively. Considering the total correlation over all erroneous cyclic-shifts 

within a hop, there is a total correlation of Lh,i (Lh,i -1) spread over Lh,i (N -1) entries. 

Therefore Zi has a binomial distribution, Zi ~ B(Lh,i, 
1
1,

−

−

N
L ih ). The auto-correlation of 

a code will be the sum of correlations in each hop Zi.  

 

For Type III code, since the number of tones in each hop is not necessary equal, the 

distributions of each Zi’s will also not have the same occupancy probability. The off-

peak auto-correlation of this code will be a sum of H binomial distribution with 

unequal occupancy probability. Mathematically, the resulting distribution of the Type 

III auto-correlation will be given by ∑
=

H

i
iZ

1
, where Zi’s are independent for all i and 

HLL
H

i
ih =∑

=1
, . 

 

As for Type IVa code, all hops have the same number of tones, Lh,i = L for all i. The 

auto-correlation of Type IVa code will be sum of H binomial distributed Zi’s, where 

Zi’s are independent and have same occupancy probability 
1
1
−
−

N
L . Hence the auto-

correlation of this code has distribution given by B(HL, L-1 / N-1).  
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In the case of Type IVb code, the columns of the FT code at every hop are cyclic-

shifted version of the same vector. After they are de-hopped by the frequency hopping 

sequence, the columns of the FT code will be repetition of one another. On decoding, 

the auto-correlation at each hop will then be the same. Therefore, we drop the 

subscript in Zi and denote the auto-correlation of each hop here 

as i
N
LLBZZi ∀
−
−

= ),
1
1,(~ . The off-peak auto-correlation of the Type IVb code is 

then given by H·Z. 

 

Comparison of codes 

We summarize the auto-correlation of each type in Table 6.2. We also show the mean 

and variance in Table 6.2, where D =
N

HL2

, 'D =
1

)1(
−
−

N
LHL , E = 2

2 )(
N

LNHL − , and 

'E = 2)1(
))(1(

−
−−

N
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N
L
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≈
−
−

1
1  and 22)1(

1
N
L

N
L

≈
−
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Table 6.2 Distribution, mean and variance of auto-correlation for all code types 

Code 
Type 

Distribution of 
Auto-correlation 

Mean Variance 

I B(HL,L/N) D E 

II B(HL,L/N) D E 

III 
)
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IVa B(HL,L-1 /N-1 ) 'D  'E  

IVb 
H·Z, )

1
1,(~
−
−

N
LLZ Β  'D  'EH ⋅  

 

Since all cross-correlations are independent and are of common distribution for all 

code types, we can compare the performance of the codes solely by analyzing their 

auto-correlations. The nature of the system is that the error performance is largely 

dependent on the value of the maximum correlation. Although most of the erroneous 

symbols can have low correlation value, the error performance will be poor as long 

there is one erroneous symbol with high correlation value. Hence a good code is one 

which has correlation distribution of low variance and mean. We shall identify the 

good codes by first eliminating the undesirable ones. 

 

Type III is a bad code because it has greater mean auto-correlation than the rest by the 

term 
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Since T ≥ 0, with equality only when all Lh,i is equal to the average frequency 

diversity order L, therefore the system using Type III code will suffer a higher degree 

of self-interference. 

 

Type IVb is also a bad code as it has a greater variance than the rest by a factor H. Its 

performance will deteriorate drastically as the number of hops increases. Figure 6.8 

shows an instance of the Type IVb code auto-correlation compared with a Type I, II 

or IVa code. The side auto-correlation of the Type IVb code always take values in 

multiples of H, and often has a maximum value greater than those of other codes. 

 

Fig. 6.8 Auto-correlation of FT codes with M=256, L=10, H=5 
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Hence out of the codes introduced, the good codes will be the remaining Type I, II 

and IVa codes. Since these three codes have similar auto-correlation distribution, they 

will also produce similar error performance in FHMC-MFSK systems.  

 

6.3.3 Implementation Considerations of Codes 

Depending on the possessed properties, the various code types will have different 

implementation considerations which we will discuss now. For codes without 

property (a) (Type I and III codes), the number of tones transmitted will change at 

each hop. The output power of the transmitter will then be irregular. There might also 

be a limit on the number of tones the transmitter can send in a hop, depending on the 

power limitation of the amplifier. However, with property (a), the size of the code is 

reduced. 

 

For codes without property (b) (Type I and II codes), a multiplexer is required to map 

each symbol to the corresponding FT transmission. Memory is required to store the 

codes for every symbol. As for the rest with property (b) (Type III, IVa and IVb 

codes), the multiplexing of the transmission can be implemented by a frequency shift 

operation on an address code. In addition, only the address code of the users will have 

to be stored. However the sizes of these codes are reduced also for having property 

(b). 

 

Although Type I, II and IVa codes produce the best performance equally, they all 

have different implementation considerations. Therefore the choice between these 
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three codes will depend on matching their considerations to the operation 

requirements. 

 

6.4 Derivations and Optimization of Frequency Diversity Order 

6.4.1 Derivation of Symbol Error Probability 

In this section, we derive an analytical upper bound for the symbol error rate (SER) of 

FHMC-MFSK systems. This evaluation considers that the better-performing codes 

(Type I, II and IVa) are used, and where self-interference can be reasonably 

approximated as interference from an external user.  

 

Unlike the complex evaluation provided by earlier studies [15,16], we derive a much 

simpler solution by using the same approach as in Chapter 3. Similar to the analysis in 

Chapter 3, we will assume that the system is a non-fading, AWGN channel with high 

SNR. The rationale is that since MAI has a more dominating effect on error 

performance than channel noise and fading, evaluation of error performance due only 

to it is sufficient. The effect of fading is curbed by the frequency and time diversity of 

the system and hence can be neglected. We will verify that our solution is still 

applicable to systems in fading channel for reasonable SNR. 

 

In this system, each of the K simultaneous users transmits L·H tones equally 

distributed over N·H frequency-time slots. Taking that the codes are assigned 

randomly and with self-interference treated as external interference, the probability 

that an entry in R is occupied is given by 
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In practical systems, L/N<<1, and K>>1, hence we approximate PI as 
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Let Pfilled denotes the probability that an erroneous row in D has all its L·H entries 

occupied. Approximating that the occupancy of each entry is mutually independent, 

we derived an upper-bound for Pfilled as 
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With (M-1) erroneous symbols, a union bound for the symbol error probability Pe can 

then be formulated as 
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where the factor ½ accounts for the random choice between the desired and the 

erroneous symbol.  

 

Note that the SER in (6.5) is similar to our expression in (3.4) in Chapter 3 for the 

MC-MFSK system, except for the L·H exponential term. Hence by extending the MC-

MFSK system (H=1) to the FHMC-MFSK system (H >1), we will improve the error 

performance exponentially. 
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The above analysis can be considered as an evaluation for the asymptotic performance 

at sufficiently large SNR. Therefore, it is also an upper bound for systems in fading 

channels at high SNR level. Our comparisons shows that (6.5) is valid for bounding 

performance at a reasonable bit SNR level of above 40 dB. An example is the 

comparison between our analytical SER upper-bound, and the simulation results of 

systems using Type IVa code in Rayleigh fading channels and operating at bit SNR = 

40dB. The results are shown in Figure 6.9 and 6.10 for H=1 and H=2 respectively. In 

both cases, the analytical SER give a close bound of the simulation results. Note that 

an optimal L is observed at the minimum point of the error rate. This optimal point is 

closely predicted by the analytical solution, and will be evaluated in the later section. 

 
Fig. 6.9 Analytical and simulation SER for M=256, H=1, SNR= 40dB in Rayleigh 

channels 
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Fig. 6.10 Analytical and simulation SER for M=256, H=2, SNR= 40dB in Rayleigh 

channels 

 

6.4.2 Derivation of System Bandwidth and Normalized Throughput 

To preserve the orthogonality of the sub-channels, a frequency separation of 1/Th has 

to be maintained between them. Th here denotes the hop interval and is related to the 

symbol interval Ts, and bit rate Rb by 

 

b

s
h RH

M
H
T

T 2log
== .     (6.6) 

 
For a total N sub-channels, the bandwidth of the FHMC-MFSK system is hence given 

as 

 

b
h

R
M
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T
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2log

== .      (6.7) 
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Similar to the MC-MFSK system, the frequency diversity L is intrinsic to the system 

and does not affect the bandwidth. However, the bandwidth is a function of the 

number of time hops H and bandwidth will increase with H. 

 

We denote C as the system capacity in nats per channel use. The system capacity of 

the FHMC-MFSK system is similar to the capacity of the multiple-access Frequency-

Hopped MFSK system [17], and can be expressed as 

 
( ) ( ) ( ) ( )1lnln1ln1ln −−+−−+= MPMPPPPC eeeee .     (6.8) 

 
For the normalized system throughput, it is defined as 

 

sBT
KCW = ,         (6.9) 

 
and expressed in units of nats per second per hertz. Substituting (6.7) in (6.9), we can 

simplify the throughput expression into 

 

NH
KCW = .       (6.10) 

 
 

6.4.3 Optimization of Frequency Diversity Level 

Here we evaluate for an optimal L that will maximize the system throughput W. We 

can observe from (6.8) and (6.10) that W will vary inversely with Pe, when Pe is in a 

typical region (
M

MPe
1−

≤ ). Taking that the other parameters, K, N, H and M, are 

independent of L, the optimal L that maximizes W will minimize Pe as well, 
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We then evaluate the optimal L by solving the first derivative of Pe in (6.5), 
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From (6.12) we yield the condition for the optimal frequency diversity as 

 

2ln
K
NL = .        (6.13) 

 
Note that this solution is unaffected by the number of time hops, and is the same for 

both FHMC-MFSK and MC-MFSK systems. 

 

6.5 Effects of System Parameters 

In this section, we will study the effect of each of several parameters, number of time 

hops, frequency diversity order, number of sub-channels, and modulation level, on the 

system behavior and the system demands.  

 

First is the number of time hops, also known as the time diversity, H. From (6.5), 

increase in H improves the SER exponentially. However, as seen from (6.7), it also 

multiplies the bandwidth requirement. Increase in time hops will increase the number 

of tones used to transmit a symbol. With more tones per symbol, the power in each 
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tone is reduced. This will degrade the performance of our multi-tone system in 

AWGN channel [6]. 

 

Next is the number of tones per hop, known also as the frequency diversity, L. A 

higher L can improve error performance by increasing the system diversity, but it also 

can degrade performance by increasing the degree of interference. The extent of each 

effect will depend on the code employed. For random codes, a balance is found on the 

optimal value for L as shown in (6.13). The L has no effect on the system bandwidth. 

However, it does directly affect the power division among the tones like H above, 

thus affects performance in AWGN channel. 

 

In the case of the number of frequency sub-channels N, a greater number will improve 

the error rate and will increase the cardinality of the code. However, it will multiply 

the bandwidth requirement.  

 

Lastly, on the modulation level M. A higher M will mean more symbols, and a higher 

demand on the code cardinality when the number of user is constant. The error 

performance will also degrade due to more erroneous symbols. However, as long that 

the code cardinality demand is satisfied, a higher M will increase the spectral 

efficiency. For a constant power per bit, a greater M increases the power of each tone, 

hence improving performance in AWGN channel.  

 

6.6 Conclusion 

We have analyzed the FHMC-MFSK system, which is an extension of the MC-MFSK 

system to include time diversity via frequency-hopping. Since Frequency-Time (FT) 
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codes are required in FHMC-MFSK systems to select the multiple sub-channels at 

different hop interval, an analysis of the various types of the random FT code is made. 

We identify the types of random FT code with good performance and present their 

corresponding implementation considerations. By choosing the better-performing 

codes and evaluating the system performance due solely to multiple access 

interference, we derive a simpler expression for the error probability of FHMC-MFSK 

systems than previous works in literatures. This expression is verified to closely 

upper-bound the simulation result of the system in Rayleigh fading channels for bit 

SNR above 40 dB. Our expression shows the exponential relationship between time 

diversity and the error performance. We also derive the expressions for the system 

bandwidth and throughput, thus highlighting the relationship of these measurements 

to the system parameters such as frequency diversity, and modulation level. We then 

find the optimal frequency diversity order for maximum throughput. Interestingly, the 

condition for optimal frequency diversity order is the same as the condition in MC-

MFSK systems, and is independent of time diversity. Based on our results, we discuss 

the effects of all the system parameters on the FHMC-MFSK system in order to 

understand the system behavior. We conclude the FHMC-MFSK system a feasible 

frequency-hopping variant for the MC-MFSK system. Similar to the MC-MFSK 

system, the FHMC-MFSK system can be optimized for maximum performance by 

making use of the analysis in chapter 3. 
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Chapter 7 

Conclusion 

 

We have derived a new error probability formula for the MC-MFSK system in 

interference-limited and non-fading channels. This error formula is mathematically 

simpler than previously published results. By making use of this analytically tractable 

formula, for the first time we derive the expression for the optimal diversity order. 

Since the multiple-access-interference is the dominating factor at high SNR, our 

expression for optimal diversity is also applicable in fading channels at high SNR. We 

compare our newly derived optimal diversity with the numerically searched results 

from previous works, and verify that our expression is valid for both Rayleigh and 

Rician fading channels at a practical SNR of above 40dB. We also present the optimal 

solutions for diversity order and modulation level for the system when under several 

constraints such as the minimum error rate and restriction on number of user. 

 

Next we analyze the MC-MFSK system for distributed control of the diversity order. 

By formulating the objective functions for cases of non-cooperative and cooperative 

users, we show that a steady state solution for the optimal diversity orders exists at 

each case. We also derive the formulas for these solutions. We present computation 

results based on these formulas and verify them using simulations. We have pointed 

out that these solutions for non-cooperative and cooperative users are significant as 

they represent respectively the Nash equilibrium point and Pareto efficient point in 

game theory. Base on our analytical results for the steady state diversity order for 
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non-cooperative case and cooperative case, we can further optimize this distributed-

control MC-MFSK system by using the concepts of pricing [21].  

 

We propose a method for sub-channels selection in MC-MFSK systems for the first 

time. The selections of sub-channels, based on Balanced Incomplete Block (BIB) 

design, are assigned to each symbol of every user. The selections are such that any 

two selections coincide at most in a single sub-channel. Hence the method reduces the 

degree of multiple-access interference, and improves the error performance. We 

derive the expressions for the error probability and user capacity of MC-MFSK 

systems using this method of sub-channels selection based on BIB design. These 

expressions show the optimal diversity order for maximum error performance, and the 

optimal modulation level for maximum user capacity. Based on the effect of these 

parameters, we also present a method in selecting optimal parameter pair for BIB 

design that will maximize error performance. We simulate the performance of MC-

MFSK systems employing our sub-channels selection method and conventional MC-

MFSK systems. Our simulations show that the proposed system does achieve a 

substantial improvement in error performance than conventional MC-MFSK systems. 

While this improvement is limited for only lower number of users, our results 

motivate further research for better codes/designs in sub-channels selection. 

 

Also we extend the MC-MFSK system to the Frequency-Hopping Multi-carrier 

(FHMC)-MFSK system by introducing additional frequency-hopping to the MC-

MFSK system. In FHMC-MFSK systems, various types of frequency-time code can 

be generated to select the multiple sub-channels at different time-hops. We select 

three types of frequency-time codes based on their superior correlation distribution, 
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and present their implementation issues. We derive an expression for the error 

probability of FHMC-MFSK systems by considering a interference-limited channel. 

Our analysis shows that the optimal frequency diversity order is the same for 

conventional MC-MFSK systems, and is unaffected by the number of time-hops. 

Although the number of time-hops increases the bandwidth requirement, it also 

improves the error performance exponentially.  

 

We acquired more understanding on the relationships of various parameters that will 

achieve optimal performance. We have demonstrated the versatility of the MC-MFSK 

system by presenting various performance results on distributed diversity control, 

selection of sub-channels based on BIB design, and extension to frequency-hopping. 

We show how the maximum capability of MC-MFSK systems can be exploited in all 

these cases. With optimal choice of system parameters, the MC-MFSK system can 

achieve a better performance than previously considered in the literature.  
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