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Summary 

This thesis proposes a framework for popular music structure detection, which 

incorporates music knowledge with audio signal processing techniques.  

 

The important components of the music structure are modelled hierarchically in the 

layers of the music structure pyramid. The bottom layer of the pyramid is the time 

information (Tempo, Meter, Beats) of the music. The second layer is the 

harmony/melody, which is created by playing music notes. Information about the 

Music regions i.e. Pure instrumental region, Pure vocal region, Instrumental mixed 

vocal region and Silence region are discussed in the third layer. The fourth layer and 

the higher layers in the music structure pyramid discusses semantic meaning(s) of the 

music which are formulated based on the music information in the first, second and 

third layers.  The popular song structure detection framework discussed in this thesis 

covers methodologies for the layer-wise music information in the music pyramid.  

 

The process of any content analysis consists of three major steps. They are signal 

segmentation, feature extraction, and signal modelling. For music structure analysis, 

we propose a rhythm based music segmentation technique to segment the music. This 

is called Beat Space Segmentation. In contrast, the conventional fixed length signal 

segmentation is used in speech processing. The music information within the beat 

space segment is considered more stationary in its statistical characteristics than in the 

fixed length segments. The process of beat space segmentation covers the extraction 

of bottom layer information in the music structure pyramid. 

 



 vi

 

Secondly, to design the features to characterize the music signal, we consider the 

octave varying temporal characteristics in the music. For harmony/melody 

information extraction (information in the 2nd layer), we use the psycho acoustic 

profile feature and obtain a better performance compared to the existing pitch class 

profile feature.  To capture the octave varying temporal characteristics in the music 

regions, we design a new filter bank in the octave scale. This octave scale filter bank 

is used for calculating cepstral coefficients to characterise the signal content in music 

regions (information in the 3rd layer).  This proposed feature is called Octave Scale 

Cepstral Coefficients and its performance for music region detection is compared with 

existing speech processing features such as linear prediction coefficients (LPC), LPC 

derived cepstral coefficients, Mel frequency cepstral coefficients. This feature is 

found to perform better than speech processing features. 

 

Thirdly, existing statistical learning techniques (i.e. HMM, SVM, GMM) in the 

literature are optimized and used for modelling the music knowledge influenced 

features to represent the music signals. These statistical learning techniques are used 

for modelling the information in the second and third layers (Harmony/melody line 

and the music regions) of the music structure pyramid. 

  

Based on the extracted information in the first three layers (time information, 

harmony/melody, music regions), we detect similarity regions in the music clip.  We 

then develop a rule based song structure detection technique based on detected 

similarity regions. Finally, we discuss music related applications, based on proposed 

framework of popular music structure detection. 
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1 Introduction 

Recent advances in computing, networking and multimedia technologies have 

resulted in a tremendous growth of music-related data and have accelerated the need 

for both analysis and understanding of the music content. Because of these trends, 

music content analysis has become an active research topic in recent years.  

 

Music understanding is the study of the methods by which computer music systems 

can recognize patterns and structures in the musical information. One of the research 

difficulties in this area is the general lack of formal understanding of music. For 

example, experts disagree over how music structure should be represented, and even 

within a given system of representation, the music structure is often ambiguous. 

Considerable amounts of research have been devoted to music analysis, yet we do not 

appear to be appreciably closer to understanding the properties of musical signals 

which are capable of evoking cognitive and emotional responses in the listener. It is 

the inherent complexity in the analysis of music signals which draws so much 

attention from such diverse fields as engineering, physics, artificial intelligence, 

psychology, and musicology. 

 

One of the main attractions of digital audio is the ability to transfer and reproduce it in 

the digital domain without degradation. Many hardware and software tools exist to 

replace the array of traditional recording studio hardware, performing duties such as 

adding effects, reducing noise, and compensating for other undesired signal 

characteristics, all without introducing loss in the signal paths between the processing 
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components. The digital environment has opened up opportunities for researchers of 

different expertise to collaborate with each other to analyze and characterize the 

music signals in high dimensional space. 

 

We believe that music relationships (beats arrangement with tempo, music notes, 

chord progression, vocal alignment with the instrumental music etc) form the basis of 

music. The degree of understanding of these relationships is reflected by the depth 

levels of the music structure.  This basic music structure is shown in Figure 1-1.  

 

Timing information
{Bar, Meter, Tempo, notes}

Harmony /Melody
{Duplet, Triplet, Motif, scale, key}

Music regions

Song
structureIntro

Verse
Chorus

Bridge

Outro

Semantic meaning(s) of the song

 
Figure 1-1: Conceptual model for song music structure 

 
The foundation of music structure is the timing information (rhythm structure), which 

is the bottom layer of the music structure pyramid. Music signals are characteristically 
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very structured: at the lowest level, sinusoids are grouped together to form music 

notes of particular pitches. Notes are grouped to form chords or harmonies (the 2nd 

layer in the pyramid). Even higher levels of structure (the 3rd layer) may establish 

themes through repetition and simple transformations of smaller elements. This 

successive abstraction to higher levels can be called music context integration.  

 

It is difficult to understand how the human brain decodes embedded information from 

perceived music. At the very basic level, listeners are capable of identifying melody 

fluctuations and contours in the music in terms of note level discrete steps. For 

example, even listeners who have had very little music training still snap their fingers 

or clap their hands to the temporal structure they perceive in music with little effort. 

Usually, music phrases describe messages which are delivered by the performer. How 

these messages are embedded within the music structure and the level at which the 

brain decodes such information would generate auditory sensations in the listener’s 

mind. At a high-level, these sensations may be the reflections of sensations generated 

in the composer/performer’s mind or may be very different. However, we have not 

attained the level of modelling of those aspects of the mind yet. 

 

The analysis of basic components of music structure is important for many 

applications such as lyrics identification, music transcription, genre classification, 

music summarization, singer identification, music information retrieval (MIR), music 

streaming, music watermarking and computer aided music tools for composers and 

analyzers. The importance of music structural analysis for these applications is 

detailed in chapter 7. 
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In this thesis, we propose methodologies for extracting and analyzing different layers 

of music structure information. Figure 1-2 explains the overview of this thesis. In 

contrast with conventional fixed length audio segmentation (Rabiner and Juang 1993 

[94]), an alternate segmentation technique, in which the length of the signal segment 

is proportional to the rhythm of the music (i.e. inter beat intervals) is proposed for 

music segmentation. Thereafter, dynamic behaviour of music signal properties such as 

octave-based spectral behaviours is studied for designing features and their 

performance is compared with that of existing speech signal characterizing features.  

 

Music is a way of expressing both the depth and height of human thoughts in a 

creative manner. Based on its content, we can categorize music into different genres 

such as popular (POP), rock, classic and jazz. Creation of music is highly influenced 

by different cultures, communities, and societies, which has its own way of making 

and breaking rules. Thus, it is difficult to judge what music belongs to which genre.  

Figure 1-1 is a simple way of visualizing the underlying layers of music content, 

which helps to decode important information for designing music applications. In this 

thesis we have narrowed down the scope of music structural analysis to popular music 

with 4/4 time signature, which is the most commonly used meter in popular (mostly in 

POP music) music (Goto 2001 [48]) in this thesis.  

 

Music theory reveals that the temporal properties in music change in the steps of 

music notes (chapter 2). In our proposed approach, we first extract rhythm 

information such as the length of inter-beat intervals. Since the song’s meter is 

assumed to be 4/4, the length of the inter-beat interval is equal to the duration of the 

quarter note, which reveals the tempo of the song.  Further analysis of the note 
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structure using onset detection indicates the appearance of smaller notes such as 

eighth, sixteenth, and thirty-second notes in the song (see chapter 4). The music signal 

is then segmented according to the length of the smallest note (eighth, sixteenth or 

thirty-second) that can be seen in the music, unlike the conventional fixed length 

segmentation in speech processing. This new acoustic segmentation method is called 

beat space segmentation (BSS) in this thesis. Spectral domain analysis shows that 

signal section is harmonically quasi-stationary within the beat space segment (BSS). 

After a song is segmented, musically inspired features are extracted to characterize 

the music content. To detect both pitch fluctuations and melody / harmony contours in 

the song, pitch class profile features (PCP) and psycho-acoustic profile features (PAP) 

are extracted from the beat space segmented frames. Chapter 4 discusses melody/ 

harmony detection and chord progression in detail.  

 

A music signal’s complexity varies with the source mixtures, which clearly defines 

four regions in the music signals. They are pure vocal regions (vocal only)-PV, 

instrumental mixed vocal regions-IMV, pure instrumental regions-PI, and silence 

regions -S. In our survey, we noticed that the appearance of pure vocal regions in 

popular music is very rare. Thus, PV and IMV regions are merged into a general class 

called vocal regions.  Chapter 5.1 discusses the identification procedures of these 

regions. For the characterization of vocal/instrumental regions, feature extraction 

technique in octave scale is proposed and compared against existing Mel-scale 

cepstral features. In addition, an octave scale linear predictive coefficients (OSLPCs), 

octave scale linear predictive cepstral coefficients (OSLPCCs) and Twice-Iterated 

Composite Fourier Transform Coefficients (TICFTC) have been explored for the 

vocal / instrumental region detection problem. 
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Figure 1-2: Thesis Overview 

 
The performance of statistical models i.e. Hidden Markov Model (HMM), Gaussian 

Mixture Model (GMM), and Support Vector Machine (SVM), has been compared for 

both chords detection and vocal/instrumental region detection in music. Music 

structure formulation is discussed in chapter 5.3. Based on the existence of similar 

chord transition patterns, melody based similarity regions are identified. Using a more 
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detailed similarity analysis of the vocal content in these melody based similarity 

regions, content-based similarity regions can be identified.  Using heuristic rules 

which are commonly employed by music composers, music structure has been 

defined.   

 

Contributions of the thesis 

The scope of this thesis has been limited to the analysis of popular music structure 

where the meter of the songs is 4/4. The important information in the music structure 

is conceptually visualized in the layers of the proposed music structure pyramid 

(Figure 1-1).  

 

Incorporation of music knowledge into audio signal processing for music content 

analysis is the main contribution of this thesis.   We propose a novel rhythm based 

music segmentation technique for music signal analysis, whose performance has been 

shown to be superior to that of the conventional fixed length segmentation that has 

been used in speech processing. 

 

Two features, pitch class profile (PCP) feature and psycho acoustic profile (PAP) 

feature, are studied for polyphonic music pitch representation. It is found that the PAP 

feature can more effectively characterize polyphonic pitches than the commonly used 

PCP feature. Thus, we use the PAP feature for our harmony line creation via music 

chord detection. 

 

We studied the octave varying temporal characteristics of the music signals and 

applied these characteristics to various speech processing features such as linear 
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prediction coefficients (LPC), LPC derived cepstral coefficients, and Mel frequency 

cepstral coefficients. Then, we proposed the Octave Scale Cepstral Coefficient 

(OSCC) feature and the Twice-Iterated Composite Fourier Transform Coefficient 

(TICFTC) feature for music region (vocal/instrumental) detection in music. The 

comparison between all features showed that OSCC can detect vocal/instrumental 

regions more accurately than other features.  

 

We studied the existing statistical learning techniques, i.e. SVM, GMM and HMM, 

and optimized the models’ parameters for both the chord detection task and the music 

region detection task. It is found that HMM can model temporal properties of the 

music signals better than GMM or SVM. We conducted a survey to analyse the 

characteristics of popular song structures. Based on the analysis results, we designed a 

rule-based algorithm to detect the song structures of the popular music genre.  

 

Overview of the thesis 

The overview of this thesis is depicted in Figure 1-2. We incorporate music 

knowledge with signal processing techniques in order to extract music information. 

Chapter 2 discusses the music knowledge. Existing music processing techniques are 

surveyed in chapter 3.  Chapter 4 details our proposed methods for rhythm based 

signal segmentation and harmony line detection. Detection of music regions, music 

similarity regions, and semantic clusters are explained in chapter 5. From the 

experimental results, we analyse the strength and weakness of the proposed music 

information extraction techniques in chapter 6. Chapter 7 discusses the possible music 

applications, which can benefit using our proposed music structure analysis 

techniques. Finally, we conclude the thesis in chapter 8. 
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2 Music Structure 

Music is universal language for sharing information among the same or different 

communities. The amount of information embedded in music can be huge and 

designing computer algorithms for decoding semantic level information is an 

extremely complex task. The human mind is superior in such refined decoding tasks.   

 

In this thesis, we extract basic ingredients which have been used in the music 

composition and which are useful for developing important applications.   Figure 2-1 

explains the conceptual model of music structure. The foundation of music structure 

is the timing information (i.e. Time signature and Tempo), which is the bottom layer 

of the music structure pyramid. The harmony /melody (the second layer) is created by 

playing music notes together at different scales according to the beats. The vocal line 

is then embossed on the surface of the melody, which creates two important regions in 

the music, the instrumental region and the vocal region. The layout of these regions in 

the harmony / melody contours is conceptually visualized in Figure 4-7. The top layer 

of the music pyramid depicts the semantics of the song structure, which describes the 

events or messages to the audience [28]. Understanding the information in the top 

most layer is the most difficult and is too complex for current technologies.  The 

information in popular songs can be semantically clustered as Intro, Verse, Chorus, 

Bridge, Middle eighth and Outro.  When we think of the semantic meaning of music, 

these clusters can be considered the least complex level of semantics in the song. 

However, it is challenging to detect even these clusters. 
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Timing information
{Bar, Meter, Tempo, notes}

Harmony /Melody
{Duplet, Triplet, Motif, scale, key}

Music regions
{(PV), (PI), (IMV) and (S)}

Song
structureIntro

Verse
Chorus

Bridge

Outro

Semantic meaning(s) of the song

Melody based
similarity regions

Content based
similarity regions

 
Figure 2-1:  Information grouping in the music structure model 

 

The scope of this thesis encompasses the extraction of the layer-wise information of 

the music structure pyramid, which is useful for developing music related applications 

(detailed in chapter 7).  We have simplified the task of mining semantic meanings for 

the top of identifying semantic clusters, i.e. Intro, Verse, Chorus, Bridge and Outro, of 

the song. The following sections of this chapter discuss music terms, different units, 

and entities that are used for composing music information at the different layers of 

the music structure pyramid. 
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2.1 Time information and music notes 

The duration of a song is measured in number of bars [100]. The term bar is 

explained with the other music terms below. While listening to music, the steady 

throb to which one could clap is called the Pulse, or the Beat, and the Accents are the 

beats which are stronger than others. The number of beats from one accent to an 

adjacent one is equal and divides the music into equal segments. Thus, these segments 

of beats from one accent to another are called the bar (see Figure 2-8). 

 

The music note length can be changed by varying attack, sustain and decay 

characteristics of the note. Figure 2-2 discuses the correlation between different 

lengths of music note. In the 1st column, Semibreve, Minim, Crotchet, Quaver, 

Semiquaver and Demisemiquaver are the names of the notes played in western music, 

and are respectively classified as Whole, Half, Quarter, Eighth, Sixteenth and Thirty-

second notes according to their durations (onset to offset), which are the fractions of 

the Semibreve. In the third column, the durations of silence (Rests) are also equal to 

the note length.  

Value in terms of a
Semibreve

1
1/2
1/4
1/8

1/16
1/32

Rest

Semibreve
Minim

Crotchet
Quaver

Semiquaver
Demisemiquaver

Note Shape Corresponding names commonly use
in U.S.A and Canada

or

Whole Note
Half Note

Quarter Note
Eighth Note

Sixteenth Note
Thirty-second Note  

Figure 2-2: Correlation between different lengths of music note 

 

Time signature (TS) (alternatively called Meter) indicates the number of beats per bar 

in a music piece. TS is 4/4 indicates four crotchet beats in each bar. Similarly, 3/8 

means three quaver beats in a bar, and 2/2 means two minim beats in a bar.  The 
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frequency of the beats is known as the Tempo and is measured at BPM (Beats per 

Minutes).  At TS equals to 3/8, the tempo is the number of quaver beats per minutes. 

 

As an example, Figure 2-3 shows the first three bars of the music sheet. Vertically 

aligned notes in the Staff (treble clef or bass clef) means that they are played 

simultaneously. The staff consists of a series of five parallel lines. The red coloured 

horizontal dashed line marks the position of the C4 (middle ‘C’) note, which appears 

on neither the bass clef nor the treble clef.   The boundaries of the bars are marked in 

red colour vertical lines. The TS is four crotchet beats per bar (4/4). In the treble clef, 

the first and third bars are constructed by 4-quarter notes and 2-half notes 

respectively. However, the second bar is constructed by 3-quarter notes and 2-eighth 

notes. All three bars of bass clef contain whole notes. In the first bar of the Treble 

clef, the C, F, and A Crotchet notes are played simultaneously in the first quarter note, 

which formulates the F major chord.  

 

Staff of 3 bars
Treble clef

Bass clef

C4 (Middle ‘C’)

Bar 1 Bar 2 Bar 3

Notes
higher

than C4

Notes
lower

than C4

 
Figure 2-3: Three bars of a staff 

 

Melody is constructed by playing solo notes according to TS and Tempo. Melody is 

monophonic in nature. In contrast, harmony, which creates the polyphonic music 

nature, is generated by playing more that a note at a time, i.e. Chords.   Note that 

A4=440Hz is commonly used as the reference pitch in concerts and is the American 
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standard pitch (Zhu et al 2005 [144]). Based on this reference pitch, the fundamental 

frequencies of the 12 pitch class notes with their octave alignments are noted in Table 

2-1.  The frequency ranges shown in row number 3 are calculated using Log2 scale 

and all the fundamental frequencies (F0s) of the 12 pitch class notes in the octaves fall 

within these frequency ranges. Thus, these frequency ranges can be considered the 

limits of Octave envelopes (see Figure 5-5).  The F0s of the notes in the C0B0 and 

C1B1 octaves are spaced narrowly than those of the other higher octaves. In order to 

differentiate these notes, we need a very high frequency resolution (≤1Hz). Also very 

few percussion instruments play in those lower octaves. Thus, C0B0, C1B1, and 

C2B2 are merged together and considered a single band i.e. sub-band 01.  

 

Table 2-1: Music note frequencies (F0) and their placement in the Octave scale sub-
bands. 

Sub-band No 01 02 03 04 05 06 07
Octave scale

Freq-range (Hz)
~ B1 C2 ~ B2 C3 ~ B3 C4 ~ B4 C5 ~ B5 C6 ~ B6 C7 ~ B7 C8 ~ B8
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ISO 16 standard specifies A4 = 440Hz and it  is called as concert pitch  
 

 
Though the common practice pitch standard value of A4 is 440Hz, the old instrument 

pitch standard was A4=435Hz. In general, music instruments may not be exactly 

tuned to the standard reference pitch due to the physical conditions of the instruments. 

Thus, there is a tendency for the music pitches to fluctuate due to the physical 

conditions of the instruments. The idea we elaborate in this thesis is the octave 
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behaviours of the music signals. We consider octave behaviours for music signal 

analysis and modelling. Therefore, it is important to measure the music pitch 

fluctuation within an octave. The upper and lower limits of an octave are noted in 

Table 2-1 row 3. These frequency ranges are called Octave envelopes, where 12 pitch 

class notes fluctuate with the octave envelope. It is found that +3.6% and -2.2% are 

the upper and lower limits of the A4=440Hz variations (430Hz ~ 456Hz) which allow 

the F0 of the 12 music notes to vary within their respective octave envelopes. Figure 

2-4 shows the 12 notes’ pitch variations within the octave envelope in sub-band 07 

with respect to the pitch variation of A4.  

 

4092

4500

5000

5500

6000

6500

7000

7500

8000
8192

C8 C#8 D8 D#8 E8 F8 F#8 G8 G#8 A8 A#8 B8

A8 A#8 B8
7000

7500

8000
8192

A4=440Hz   -3% variation

A4=440Hz   +6.1% variation

A4=440Hz   +3.6%
variation

A4=440Hz   -2.2%
variation

4092

4500

5000

C8 C#8 D8

C8~B8 Octave (sub band 07) shift with the +% variation of A4=440Hz (ISO 16 standard specifies)

12 pitch class in C8 ~ B8  
Figure 2-4: The variation of the F0s of the notes in C8B8 octave when standard value 

of A4 = 440Hz is varied in ± percentage 

 
 
Though the physical octave ratio is 2:1, cognitive experiments have revealed that this 

ratio increases by 3% at about 2 kHz (see Chapter 3.2).  Such an octave enhancement 

effect would not exceed the limits of its respective octave envelope. We have 

considered these frequency limits of octave envelopes explicitly in our algorithms for 

music signal analysis.  
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2.2 Music scale, chords and key of a piece 

A set of notes, which forms a particular context and note pitches arranged in 

ascending or descending order, is called a music scale. The eight basic notes (C, D, E, 

F, G, A, B, C), the white notes on the keyboard, can be arranged in an alphabetical 

succession of sounds ascending or descending from the starting note. This note 

arrangement is known as the Diatonic Scale [100] and is the most common scale used 

in traditional western music (Krumhansl 1979 [66]). Psychological studies have 

suggested that the human cognitive mechanism can effectively differentiate the tones 

of the diatonic scale (Krumhansl 1979 [66]). Chromatic scale, which is the cyclic 

nature in octave periodicities, shares the same symbol/value for two tones separated 

by an integral number of octaves (see Figure 2-5 left top).  

 

In a music scale, the pitch progression for one note to the other is either the half step 

(a Semitone-S) or the whole step (a Tone –T). Thus, this expands the eight basic notes 

into 12 pitch classes. The first note in the scale is known as Tonic and is the keynote 

(tone-note) from which the scale takes the name. Music scales are divided into four 

scale types, one Major scale and three minor scales (Natural, Harmonic and Melodic), 

according to the pitch progression patterns. These four scale types are commonly 

practiced in western music [100]. The Major scale, Natural Minor scale, Harmonic 

Minor scale and Melodic Minor scale follow the pattern of “T-T-S-T-T-T-S”, “T-S-T-

T-S-T-T”, “T-S-T-T-S-(T+S)-S”, and “T-S-T-T-T-T-S” respectively. Figure 2-5(left-

bottom) shows the note progression in the G scale. The Table in the Figure (right) lists 

the notes that are present in the Major and Minor scales for the G pitch class. Music 

chords are constructed by selecting notes from the corresponding scales. Types of 

commonly used chords are Major, Minor, Diminished, and Augmented. 



 16

Major

G Scale

Natural Minor

Harmonic Minor

Melodic Minor

Notes in the C - Scale

I      II     III     IV    V    VI    VII    I

    G     A      B       C     D    E      F#     G
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    G     A      A#     C     D    D#    F       G

    G     A      A#     C     D    D#    F#     G

    G     A      A#     C     D    E      F#     G
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semi tone

C
C#

D

D#

E

F
F#G

G#

A

A#

B

Chromatic scale

 
Figure 2-5: Succession of music notes and music Scale 

 
 
The first note of the chord is the key–note in the scale and Table 2-2 shows the note 

distances to the second and third notes of the chord from the key note. Since three 

notes in the scale are used to generate the chord, these chords are called Triads. 

 

Table 2-2: Distance to the notes in the chord from the key note in the scale 

Major (maj)

Notes

Minor (min)

Diminished (dim)

Augmented (aug)

Distance in whole step (T) to the notes from Key note

1st note 2nd note 3rd noteChord type

     0.0T                             2.0T                    3.5T

     0.0T                             1.5T                    3.5T

     0.0T                             1.5T                    3.0T

     0.0T                              2.0T                    4.0T

T - Implies a Tone / whole step in music theory  
 

When we know the notes that are in the different scales, the note distance relationship 

in the Table 2-2 can be used to find all the possible chords that can be derived from 

the scale. Figure 2-6 illustrates all possible chords in the different music scales.  The 

scale’s name is derived from its key note (first note) and 12 scales appear in one type 

of music scale. All four chord types (Major, Minor, Diminished and Augmented) 

appear in both the Melodic Minor and the Harmonic Minor scale types. In contrast, 

the Augmented chord type doesn’t appear in both the Major and the Natural Minor 
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scale types. We can see from Figure 2-6 that the chords in a particular major scale 

appear in a different natural minor scale. For example, chords in the C major scale 

appear in the A natural minor scale.  It implies that notes in both the C major scale 

and the A natural minor scale are the same. This cyclic scale equality in both the 

Major scale and the Natural Minor scale can be formulated as {C C# D D# E F F# G 

G# A A# B}Major scale = {A A# B C C# D D# E F# G G#}Natural Minor Scale.  
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Figure 2-6: Chords that can be derived from the notes in the four music scales types 

 
 
The set of notes on which the piece is built is known as the Key. Furthermore, by 

grouping these notes we can identify the set of chords which belong to the key.  These 

top-down relationships of notes, chords, and keys are illustrated in Figure 2-7. In 

Figure 2-7, the top layer represents the music notes in different octaves. In the second 

layer, chords are formulated by combining notes according to the note relationships, 

which are described in Table 2-2.  Based on the different chord combinations we 

derive 12 music scales, each in four different types of scales (the 3rd layer).  Major 

and Minor are the two possible types of keys derived from the major and the natural 

minor scales respectively (Shenoy et al 2004 [109]).  For example, all the chords in 
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the D Major scale (i.e. Dmaj Emin F#min Gmaj Amaj Bmin C#dim) belong to the D 

Major key, and all the chords in the C Natural Minor scale (i.e. Cmin Ddim D#maj 

Fmin Gmin G#maj A#maj) belong to the D Minor key. The set of chords derived in a 

Natural Minor scale can be found in a different Major scale. Thus, a Minor key 

(chords in natural minor scale) which has the same set of chords as a Major key is 

called relative Minor key of the Major key. For example, the relative Minor key of the 

C major is A minor.  Since notes in the major scale and the minor scale are arranged 

differently, music of these scales generates different feelings altogether.  Sad feelings 

may be developed upon hearing music in a minor key. Although the Minor key is 

derived from notes in the natural minor scale, musicians usually play notes in both 

Harmonic and Melodic minor scales to harmonize their piece.  

 

C C# D D# E F F# G G# A A# BD A

ith Octave(i-1)th Octave (i+1)th Octave

Major Chords Minor Chords Diminished Chords Augmented Chords

Major Keys Minor Keys

Major scale
type

Natural Minor
scale type

Melodic Minor
scale type

Harmonic Minor
scale type

 
Figure 2-7: Overview of top down relationship of notes, chords and key 

 
 

The Key identification in music is useful for error correction in chord detection 

algorithms because the key indicates the possible fluctuation of the set of chords in 

the harmony line (see chapter 4.4.3 for more details). 
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2.3 Composition of music phrases  

The rhythm of words can be made to fit into a music phrase [100]. The vocal regions 

in music are constructed using words and syllables, which are spoken according to a 

time signature(TS). Figure 2-8 shows how the words “Little Jack Horner sat in the 

Corner” form themselves into a rhythm, and the music notation of those words. The 

important words or syllables in the sentence fall onto accents to form the rhythm of 

the music. Typically, these words are placed at the first beat of a bar. When TS is set 

to two Crotchet beats per bar, we see that the duration of the word “Little” is equal to 

two Quaver notes and the duration of the word “Jack” is equal to a Crotchet note.   

 

 

4
2

B a r  1 B a r  2 B a r  3 B a r  4

A c c e n ts

“ L i t t le J a c k H o r n e r s a t in th e C o r n e r "

 
Figure 2-8: Rhythmic groups of words 

 

The durations of music phrases in popular music are commonly two or four bars [100] 

[120]. However, accents are still placed on the first beat of the bar even though the 

rhythmic effect is different. The incomplete bars are filled with rests (Figure 2-3 the 

2nd and 3rd bars) or humming (duration of humming is equal to the length of a note). 

 

2.4 Popular song structure 

Popular song structure often contains Intro, Verse, Chorus, Bridge, Middle eighth, 

INST-instrumental sections and Outro [120]. As shown in Figure 2-1, these parts are 

built upon melody-based similarity regions and content-based similarity regions. 

Melody-based similarity regions are defined as the regions which have similar pitch 
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contours constructed from the chord patterns. Content-based similarity regions are 

defined as the regions which have both similar vocal content and melody. 

Corresponding to the music structure, the Chorus sections and Verse sections in a 

song are considered the content-based similarity regions and melody-based similarity 

regions respectively. These parts can be considered semantic clusters and are shown 

in Figure 2-9. All the chorus regions in a song can be clustered into a chorus cluster. 

All the verse regions in the song can be grouped into a verse cluster and so on. 

 

Chorus 1
Chorus 2Chorus 3

Chorus n
Chorus i

Verse 1

Verse 2

Verse 3

Verse nVerse k

Intro
Outro

Middle Eighth 1 Middle Eighth 2

Middle Eighth j

Bridge 1
Bridge 2Bridge k

INST 1 INST 2

INST 3 INST j

Semantic clusters (regions) in
a popular song

 
Figure 2-9: Semantic similarity clusters which define the structure of the popular 

song 
 

The intro may be 2, 4, 8 or 16 bars long, or there maybe no intro in a song. The intro 

is usually composed of instrumental music. Both verse and chorus are 8 or 16 bars 

long. Typically, the verse is not as strong melodically as the chorus.  However, in 

some songs they are equally strong and most people can hum or sing both. A bridge 

links the gap between the verse and chorus, and may be only two or four bars. Silence 

may also act as a bridge between the verse and chorus of a song, but such cases are 

rare.  Middle eighth, which is 4, 8 or 16 bars long, is an alternate version of a verse 

with a new chord progression possibly modulated by a different key. Many people use 

the term “middle eighth” and “bridge” synonymously. However, the main difference 

is that the middle eighth is longer (usually 16 bars) than the bridge and usually 
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appears after the third verse in the song. There are instrumental sections (i.e. INST) in 

the song and they can be instrumental versions of the chorus, verse, or entirely 

different tunes with a set of chords together. Outro, which is the ending of the song, is 

usually a fade–out of the last phrases of the chorus. We have described the parts of the 

song which are commonly arranged according to the simple verse-chorus and repeat 

pattern. Two variations on the themes are listed below: 

 
(a). Intro, Verse 1, Verse 2, Chorus, Verse 3, Middle eighth, Chorus, Chorus, Outro 

(b). Intro, Verse 1, Chorus, Verse 2, Chorus, Chorus, Outro 

 
Figure 2-10 illustrates two examples for the above two patterns.  Song “25 minutes” 

by MLTR follows the pattern (a) and “Can’t Let You Go” by Mariah Carey follows 

the pattern (b). For a better understanding of how artist have combined these parts to 

compose a song, we conducted a survey on popular Chinese and English songs. 

Details of the survey are discussed in the next section. 
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Figure 2-10:  Two examples for verse- chorus pattern repetitions. 
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2.5 Analysis of Song structures 

We have conducted a survey using popular English and Chinese songs to better 

understand song structures. One aspect of the survey is to discover characteristics of 

the songs such as tempo variation, total vocal signal content variation, and the 

different smallest notes (Quarter note, Eighth note, Sixteenth note, or Thirty second 

note). The other aspect is to find out how the components of the popular song 

structure [120] (i.e. Intro, Verse, Chorus, Bridge, INST, Middle eighth and Outro 

[120]) have been arranged to formulate the song.  A total of 220 songs, consisting of 

10 songs from each singer, have been used in the survey. They are listed in Table 2-3. 

 

Table 2-3: Names of the English and Chinese singers and their album used for the 
survey 

 
 
 

2.5.1 Song characteristics  

To find out the vocal content variation of the songs, we first manually annotate the 

vocal and instrumental regions in the songs by conducting listening tests. The song 

annotation procedure is detailed in chapter 6.3.1. Figure 2-11 shows the percentage of 
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the vocal signal content of the 200 songs. It is found that the average vocal signal 

content of a song is around 60%. The vocal content of the songs vary between 50 to 

75%.  
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Figure 2-11: Percentage of the average vocal content in the songs 

 
 
The details of the songs such as tempo, meter and note are collected from the music 

sheets. Figure 2-12 shows the tempo variation of the songs. All the songs have a 4/4 

meter. Thus, the tempo is the number of quarter notes per minute. The songs have 

tempo variations of between 30 to 190 BPM (Beats per minutes). The average tempo 

of a song is around 80 BPM, which implies that the quarter note is 750ms long.   

 

We then look for the smallest note that appears in a song. Figure 2-13 shows the 

percentage of different notes which appear as the smallest note in a song. According 

to the results, the sixteenth note is the smallest note for around 50% of Chinese and 
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English songs. Overall, the eighth note or the sixteenth note appears most frequently 

as the smallest note in popular songs.  
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Figure 2-12:  Tempo variation of songs 
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Figure 2-13:  Percentage of the smallest note in songs 

 

2.5.2 Song structures 

We performed further analysis on popular song structures. The analysis uncovered 12 

facts and which are explained below.  Based on these findings, we formulated some 

heuristic rules to automatically detect popular song structures. Our music structure 

detection algorithm is explained in chapter 5.3.  



 26

 7  CHORUS and VERSE combinations

Chinese English Overall

97.9% 95.0% 96.3%

1.0% 5.0% 3.2%

1.0% 0.0% 0.5%

1.

2

94.8% 85.0% 89.4%

3 72.9% 31.7% 50.0%

6

5 25.0% 44.2% 35.6%

31.3% 80.8% 58.8%

5.2% 17.1% 19.4%

4

Songs which have INTRO:

Instrumental INTRO:

Songs which do not have INTRO

Songs which start with the CHORUS

Songs which start with the VERSE

Songs which have instrumental OUTRO

Songs which have chorus melody as
instrumental OUTRO

Songs which don not have Instrumental OUTRO

Songs with fading CHORUS (vocals or /and
humming)

Songs which have MIDDLE-EIGHTH

Number of VERSEs and CHORUSes

1.7% 0.9%
1.7% 6.3% 1.7% 3.7% 0.9%

65.0% 40.6% 19.2% 31.3% 54.2% 24.5%
20.8% 35.4% 50.8% 47.9% 27.3% 49.5%
10.0% 12.5% 21.7% 9.4% 11.1% 16.2%
0.8% 4.2% 4.2% 8.3% 2.3% 6.0%
0.8% 0.8% 2.1% 0.5% 1.4%

1.0% 1.0% 0.5% 0.5%

English (V) Chinese (V) English (C) Chinese (C) Total (V) Total (C)
Number of

Verses (V) or
Choruses (C)

0
1
2
3
4
5
6
7
8 0.8% 0.5%

0 1 2 3 4 5 6
0
1 2.4% 0.9% 0.5%
2 10.2% 30.1% 19.6% 2.8%
3 0.5% 6.5% 12.0% 5.1% 2.3% 0.9%
4 0.5% 0.5% 3.7% 5.6% 0.5% 0.5%
5 1.4% 0.9%
6 0.5%
7 0.5%

7

0.5%

8 0.5%

Chorus - C

V
er

se
 - 

V

= 0.0%  
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8.  Length of the Chorus and Verse in bars

 
 
 

Chinese English Overall

38.5% 68.3% 55.1%

4.2% 8.3% 6.5%

9.

10. 25.0% 15.0% 19.4%

6.3% 36.7% 23.1%

10.4% 6.7% 8.3%

11.

10.4% 5.8% 7.9%

12.

Songs which have V1-C1-V2-C2 pattern

Songs which have MIDDLE-EIGHTH

Songs which have V1-V2-C1-V3-C2 patten

Other V-C repetitions

Song structures

Songs which have MIDDLE-EIGHTH

V1-V2-C1-V3-V4-C2

V1-V2-C1-C2

The rest of the song structure followed by V1-C1-V2-C2 and V1-V2-C1-V3-C2

Patterns followed by the pattern P1 and P2 Pattern P1 (V1-C1-V2-C2) Pattern P2 (V1-V2-C1-V3-C2)
C 17.6% 6.9%

C-C 7.9% 1.4%
MIDDLE EIGHTH-C 9.7% 3.2%

MIDDLE EIGHTH-C-C 3.2% 0.9%
V 1.4% 1.9%

V-C 1.4% --
V-C-C 0.9% --

(V1-Verse 1 and C1-Chorus 1)
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Summary of the statistical analysis 

• It is found that over 95 % of both the Chinese and the English popular songs 

have an introduction (i.e. Intro) and over 85% of the songs of each language 

have instrumental Intros.  

• Around 40% of the songs have either an instrumental or a mixed vocal Outro, 

which is composed from the chorus melody.   

• The Middle eighth part is more commonly used in the English songs than in 

the Chinese songs.  

• The chorus and verse are always four bar, eight bar and sixteen bar long. Most 

songs have the same chorus and verse length either eight bars or sixteen bars.  

• Over 80% of English songs have either V1-C1-V2-C2 or V1-V2-C1-V3-C2 

patterns.  

• Over 55% of the songs have a chorus before the Outro.  

 

We will utilize these popular music structure characteristics in the design of our 

algorithms in Chapter 5.3. 
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3 Literature Survey 

In Chapter 2, we have briefly described information embedded in the music structure 

and laid out the information in the music structure pyramid according to bottom-up 

hierarchy. The music research community has been exploring different methodologies 

to extract music structure information. These methodologies incorporate perceptual, 

statistical and psychological characteristics of music signals. Past music research has 

been mainly focused on symbolic music like MIDI (Music Instruments for Digital 

Interface), which requires a small amount of storage space and has access to music 

score information (beat structure, melody, harmony, music sources- tracks, tempo, 

etc.). Figure 3-1 (top) describes the MIDI song generating platform of the Cakewalk 

software. Figure 3-1 (down) shows the text format of the created MIDI information.  

Most music information retrieval (MIR) systems have been implemented on symbolic 

databases (Zhu 2004. [143]) and key research challenges have been in sequential 

music content matching and the extraction of music symbols which are mainly in text 

format.  However, present computing algorithms are mature enough to handle such 

challenges.  

 

Recent developments in high bandwidth data transmission, large data storage, and 

high computing power have allowed the research efforts to shift to real sound 

recordings. Past research publications have revealed that understanding the 

ingredients on which music structure is formed is necessary for developing music 

applications. Some of the focuses of interest are error concealment in music 

streaming, music protection (watermarking), and real music representation techniques 
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such as music summarization, compression, genre classification and artist 

identification. In chapter 7, we discuss how the proposed music structural analysis 

framework can help develop these applications. The following discussions in this 

chapter give general idea of where researchers stand in trying to solve real world 

music problems.  Our level of awareness of music structure leads to confidence in the 

solving of real world music problems.  The following sections, which discuss 

previous research contributions to music research, are organized according to the 

order of information layers in the music structure pyramid (shown in Figure 2-1). 

 

Music score

Tempo (BPM)Bar measure

So
un

d 
tra

ck
s

Note time details

Note distribution in the piano key board

Sample text format for representing MIDI information

MIDI music creating platform in
Cakewalk  Express 8.04

 
Figure 3-1:  MIDI music generating platform in the Cakewalk software (top) and 
MIDI file information representation in text format (bottom). 
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3.1 Time information extraction (Beats, Meter, Tempo) 

Time information extraction is the primary step in achieving deep understanding of 

music content. Researchers have been actively working on designing algorithms for 

detecting beats, the meter, and the tempo of music. In chapter 2, we have pictorially 

explained (Figure 2-1) how music chords, harmony, music phrases, and semantic 

regions are built upon this time information.      

 

Rhythm tracking research was initially focused on symbolic music data, i.e. MIDI. 

Allen and Dannenberg (1990) [3] have proposed a real time beat tracking / prediction 

technique for a MIDI sequence using a beam search tool. Since all beats and music 

notes are represented in symbolic format, the rhythm tracking problem turns out to be 

pattern matching exercise. However, real sound recordings do not provide such 

symbolic stampings on the signal. Therefore, low-level signal analysis steps have 

been introduced to extract the time information (beats, meter and tempo) from the 

music signals.   

 

To give a good idea of the target problem, Figure 3-2 shows 6 seconds of the drum, 

bass guitar, piano, and  edited track (mixture  of 3 instrumental tracks) of the song “I 

Let you Go” by Iven. Dotted vertical lines denote the inter-beat intervals (IBIs), 

quarter notes in this case.  As seen in the Figure, inter-beat intervals are very clear in 

the time domain signal of the drum track. However, after mixing all the tracks it is 

hard to find the positions of the beats. Successful detection of beat positions and inter-

beat intervals can define the tempo and meter of the music. The drum track is 

considered the time stamp in a song because, like most the percussion instruments, the 

drums produces high energy impulses, which are significant in the signal.  
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Drum Track
First six seconds of   a Ballad in E-major “ I Let You Go” by IVAN

Mixed Track

0 1000 2000 3000 4000 5000 6000-1

0

1

Time in milliseconds (ms)

-1

0

1

Piano Track

-1

0

1

Bass Guitar Track

-1

0

1

 

Figure 3-2: Instrumental tracks (Drum, Bass guitar, Piano) and edited final tract (mix 
of all the tracks) of a ballad (meter- 4/4 and tempo -125 BPM) “I Let You Go” sung 
by Ivan.  First 6 seconds of the music is considered. 
 

In the drum track, strong1 and weak2 beat pattern repetition helps to detect the meter 

and tempo of the music (Goto 2001 [48]). Thus, the absence of a drum track in the 

music makes meter and tempo detection much harder. To reduce the time information 

extraction to a simpler task, many of the previous works have been carried out with 

the assumptions given below.  

 Meter doesn’t change in the music  

 Tempo doesn’t change in the music 

 Expected tempo range is fixed 

 
Commonly discussed basic steps in the time information extraction systems are 

shown in Figure 3-3.  Onset detection has been considered the first step towards 

detecting beats, meter, and tempo. Energy transient analysis in both the time domain 

                                                 
 
1 Strong beats are the high energy impulses generated from bass drums and side drums and cymbals. 
They are commonly played on accents (see Figure 2-8 )  
2 Weak beats are generated from low energy impulses from instruments such as snares.   
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and the frequency domain has been considered the main step for onset detection in 

music signals.  

 

Signal segmentation

Music signal

Beats, meter, tempo, detection

Inter onset interval (IOI) analysis

Time domain energy (magnitude
of the signal) transients

Frequency domain energy
(phase of the signal) transients

Onset detection

 
Figure 3-3: Basic steps followed for extracting time information. 

 

Duxburg et al. (2002) [34] detected energy fluctuations in both the time and the 

frequency domains. In order to increase energy fluctuation resolution, the signal is 

first decomposed into 5 sub-bands whose frequency ranges are {(0~1.1), (1.1~2.2), 

(2.2~5.5), (5.5~11.0) and (11~22)} KHz.  Thresholds were set in each sub-band to 

detect onsets. Bello and Sandler (2003) [9] only analyzed frequency fluctuations 

(Phase) to detect onsets in the music. Scheirer (1998) [102] decomposed the signal 

into 6 sub-bands (0~200, 200~400, 400~800, 800~1600, 1600~3200, and 

3200~higher freq Hz) and passed the decomposed signals through a combo filter bank 

to analyze the tempo and beats of the signal. The algorithm, known as the “perceptual 

model”, was tested on 60 different classes of genres. Although beat detection reveals 

the meter of the music, no direct information could be found in that paper about meter 

estimation. Klapuri (1999) [64] described a psycho acoustical model which consists of 

critical filter bank (21 filters) in 44Hz~17kHz frequency range to decompose the 
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music signal. Then sub-band onsets are detected by operating first order 

differentiation on detected time domain energy transients in each sub-band signals. By 

summing up all the sub-band onsets and using a global threshold, genuine onsets are 

detected. 

 

Dixon (2001) [29] used the time-domain local peak tracking technique to detect 

onsets and cluster inter-onset intervals (IOI) in order to detect tempo and meter in 

classical, jazz and popular music. Tzanetakis et al. (2001) [124] proposed 

computation of a beat histogram to characterize the different music genres. The beat 

histogram was generated by decomposing the signal in to sub-bands by wavelets. 

However, they didn’t describe how meter or tempo can be detected from the beat 

histogram. 

  

Cemgil et al. (2001) [18] proposed a stochastic dynamic system for tempo tracking. 

Tempo was modelled as a hidden state variable of the system. Their simulation results 

on two Beatles songs illustrated a tracking accuracy of 90% of the beats. Since the 

authors have not tested their approach on real music data such as vocal mixed 

instrumental lines, there is no guarantee that the algorithm will work well on complex 

music data.    

 

Gouyon et al (2002) [50] discussed the extraction of rhythmic attributes from 

percussive signals. They analyzed energy transients to construct an IOI histogram and 

computed the position of the smallest rhythmic pulse units also known as “Ticks”, 

from the peak tracker. Since the system was only tested on synthetically generated 

samples, which consist of 5-second drum clips, there is no guarantee that the system 
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will work well with polyphonic music. Jensen and Andersen (2003) [55] introduced a 

beat probability vector to keep track of previous beat intervals and enhance beat 

prediction capabilities. For beat tracking, they constrained the tempo to be within the 

(50~200) BPM range. Alonso et al (2003) [2] used the noise/harmonic decomposition 

technique to estimate the tempo of 54 excerpts from different music genres, and 

claimed an averaged accuracy, of 96%. The signal was first decomposed into 12 

uniform non-overlapping sub-bands using a 200th order FIR filter bank with 80dB 

stop band ripples. Then the sub-band signals were projected into a noise subspace to 

detect periodicities. These detected periodicities indicate the tempo.  

 

To detect tempo, micro time, and time signature, Uhle and Herre (2003) [128] first 

decomposed the signal into 7 sub-bands whose frequencies are in the range of 

{(0~125), (125~250), (250~500), (500~1000), (1000~2000), (2000~4000) and 

(4000~8000)} Hz. Sub-band onsets were detected from half wave rectified amplitude 

envelopes of each sub-band. Based on inter-onset interval (IOI) analysis, the rhythm 

characteristics of the signal were detected. Goto (1994 [46] & 2001 [48]) assumed the 

music’s meter to be 4/4 and its tempo to be between 61~185 BPM. His initial work, 

Goto (1994), was focused on beat tracking for signals with drum tracks. Onsets were 

detected by analyzing frequency transients. Based on the inter-onset interval (IOI) 

histogram, beats were predicted in the song. Later, Goto (2001) [48] proposed a real 

time beat tracking system which deals with music without drum sounds.  In this 

system, information about onset times, chord change, and drum patterns were taken 

into consideration for identifying the inter-beat intervals (quarter-note level, half-note 

level, and bar level). However, the frequency resolution (21.53Hz) used for detecting 



 36

chord changes is arguable since the F0 (fundamental frequency) differences of notes 

in lower octaves (see Table 2-1) are as low as 1Hz. 

 

Gao and Lee (2004) [42][41] extracted 12-MFCCs from 23.3 ms, 50% overlap music 

segments and fed them into a maximum a posterior algorithm to detect both onsets 

and beats in the music. However, this prediction method inadequately accounted for 

the beats and meter correlation in the music. This is because without knowing the 

meter of a song, it is difficult to identify beats from the detected onsets.  Scaringella 

and Zoia (2004) [103] proposed a real time beat tracking system based on the 

combination of lossy onset detection, note accentuation evaluation (to estimate 

metrically essential events), and a multi-agent mechanism. For lossy onset detection, 

they used a signal energy fluctuation tracking technique in the time domain, similar to 

that used by Dixon (2001) [29]. To track tempo, Davies and Plumbley (2004) [26] 

first detected onsets in music using a similar method as described in Bello et al (2004) 

[9]. Beats were then predicted by running an auto-correlation function (ACF) over 

detected onsets. However, the evaluation of the performance of the proposed tempo 

tracking system is weak because they didn’t mention the characteristics (time 

signature, actual, and tempo variation) of the data set used for experiments and how 

these characteristics would effect the results.  

 

Pikrakis et al (2004) [92] proposed a method to extract meter and tempo for 300 audio 

recordings of Greek dance folklore music and neighbouring Eastern music traditions. 

They assumed that the meter remains constant throughout the music and the tempo 

varying in 40~330 BPM range. The algorithm is based on the analysis of self-

similarity of Mel frequency cepstral coefficient features, which were extracted from 
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100ms windows with 97% overlap. Sethares and Staley (2001) [104] measured the 

periodicities and meter of music by projecting octave based decomposed music 

signals onto a set of non-orthogonal periodic sub spaces. Sethares et al. (2005) [105] 

discussed two beat tracking methods for real audio data based on both the Bayesian 

decision framework and the gradient strategy. They claimed that the gradient 

approach is numerically less complex than the Bayesian framework. However, 

authors were disappointed by the overall performance of the gradient algorithm due to 

the unacceptable user interaction over tuning both window and step sizes. Since they 

discussed neither performance evaluation of the algorithms based on ground truth data 

sets nor characteristics of the dataset, the algorithm couldn’t be validated. 

 

Wang and Vilermo (2001) [131] proposed a compressed domain beat tracking system 

based on full band and sub-band analysis of the Modified Discrete Cosine Transform 

(MDCT) coefficients. An inter-onset interval (IOI) histogram was used to select the 

correct beats. Out of 6 popular songs (all the songs have 4/4 meter), beats in 4 songs 

were correctly tracked. However, the test dataset is too small to validate the 

algorithm.  

 

3.2 Melody and Harmony analysis  

Playing music notes according to time step (meter and tempo) forms complex tonal 

structures such Chords and Keys.  Figure 2-7 illustrates the correlations between 

music notes, chords, and keys (chapter 2.2).  Different approaches have been 

discussed in the literature to detect notes, chords and keys based on the detection of 

F0 and harmonic components of the notes. The foundations of these approaches are 

based on early 20th century research on the psychological representation of tones. 
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Stevens et al. (1937) [114] and Stevens and Volkmann (1940) [115] described pitch 

perception as a continuous psychological effect proportional to the magnitude of the 

frequency (i.e. pitch height).   The octave, which is the basis of the music tonal 

system, has been studied by many researchers (Dowling and Harwood 1986 [31]). It 

was proved that tones which differed by an octave interval are psychologically closely 

related (Allen 1967 [1], Bachem 1954 [6], Deutsch 1973 [26] & [28]). Based on this 

evidence, circular representation of the music pitch over octaves (see Figure 2-5) was 

proposed (Bachem 1950 [5], Shepard 1964 [110], Krumhansl 1979 [66] , Bharucha 

and Stoeckig 1986 [12] & 1987 [13]). This circular representation is known as the 

chroma cycle (Rossing et al 2001 [99]). 

 

The frequency ratio of a physical octave is 2:1 (Rossing et al 2001[99] and see Table 

2-1). However, cognitive experiments have highlighted that this subjective octave 

ratio is close to 2:1 at lower frequencies but increases with the frequency and exceeds 

the physical octave ratio by 3% at about 2 kHz. (Ward 1954 [135], Terhardt 1974 

[121], Sundberg and Lindqvist 1973 [117], Ohgushi 1978 [89] & 1983 [90]).  

Musically trained/untrained listeners (Ward 1954 [135]) and number of music cultures 

(Dowling and Harwood 1986 [31]) presented this octave enlargement effect. In order 

to study this octave enlargement, Ohgushi (1978 [89] & 1983 [90]), Hartmann (1993) 

[53], McKinney and Delgutte (1999) [82] suggested an octave matching scheme 

based on a temporal model which predicts the octave enlargement effect. However, 

the constant 2:1 physical octave ratio is commonly practiced to simplify the 

complexity of musicology. All algorithms proposed in this thesis are also based on the 

same constant ratio.  
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Listening tests have also revealed that octave judgments for music tones over 2 kHz is 

difficult. Pitch perception experiments conducted by Ritsma (1967) [96] concluded 

that fundamental frequencies in the 100-400Hz range and their 3rd,4th, and 5th 

harmonics, which cover up to 2kHz in frequency range, produce well-defined pitch 

perception by human ears. Biasutti (1997) [14] conducted hearing tests using 12 

subjects to find the frequency limits (lower and upper) of musicians in identifying 

major and minor triads. These lower and upper limits were found in the (120~3000) 

Hz frequency range. Ward (1954) [135], Attneave and Olson (1971) [4] have also 

acknowledged that the upper limit of music pitch is in the range of 4-5 kHz. Thus, the 

useful upper limit of the fundamental frequencies of tones produced by music 

instruments is set below 5 kHz. The highest tone (C7) of the piano has a frequency of 

4186 Hz.  

 

There are two approaches discussed in the literature for representing music pitch. 

Goldstein (1973) [45] and Terhardt (1974 [121] & 1982 [122]) proposed two psycho-

acoustical approaches, harmonic representation and sub-harmonic representation of 

complex tones, respectively. In Goldstein’s pitch representation, music tone is 

characterized by the fundamental frequency (F0) with harmonic partials. Terhardt 

proposed that each separable component of a complex tone generates eight sub-

harmonics and that the frequency of the most commonly generated sub-harmonic 

determines the perceived pitch. Houtgast (1976) [52] also claimed that listeners can 

discriminate the sub-harmonics of the higher frequencies. Laden and Keefe (1989) 

[67] examined representation of music pitch in a neural net designed to classify music 

chords (Major, Minor, and Diminished). They implemented Goldstein’s harmonic 

perceptual model and Terhardt’s sub-harmonic perceptual model in terms of the pitch 
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classes in octaves. Five harmonic components and six sub-harmonic components were 

considered in their neural net classification models. They claimed that the psycho-

acoustical representation of music pitches has advantages in encoding information 

concerning chord inversions and spectral content over the Pitch Class representation.  

In the higher level, they concluded that the merger of psycho acoustical and cognitive 

approaches in a neural net paradigm might offer a way to model a musician’s 

cognitive processes from ear to brain.  

 

Moorer (1975) [85], in his thesis, discussed techniques for the harmonic content 

analysis of continuous music signals for transcription. His work was limited to the 

mixture of duets. In the initial round, an optimum-comb periodicity detector was used 

to estimate the loose boundaries of different harmonic content. Then, band pass 

filtering was used to eliminate unwanted sub-harmonics. Based on the detected 

harmonics, music notes are identified.  Moorer’s fundamental research on music 

signal analysis for transcription is useful for further research by the music community. 

  

Most music communities see the set of music tones as consisting of a finite set of 

pitches (Deutsch 1999 [28] and Rossing et al. 2001 [99]). An octave is divided into 12 

tones (dodecaphonic notes3 or 12 pitch class notes) which are about equally spaced in 

terms of log frequency, and the interval between adjacent pitches is called a half step 

or a semitone. Two tones separated by 12 half-steps form an octave interval, with a 

frequency ratio of approximately 2:1 (see Table 2-1). Krishnaswamy (2003) [65] 

investigated one of the claims in Indian classical (Carnatic) music, “there are some 

musicologists who maintain more than 12 intervals per octave”.  He used 3 pitch 

                                                 
 
3 Dodecaphonic notes are the twelve tones (C, C#, D, D#, E, F, F#, G, G#, A, A#, B) in an octave. 
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trackers i.e. the short time Fourier transform (STFT), the time domain autocorrelation 

function, and a harmonic source separation technique, with a frame size of 25 to 50ms 

to analyze the note pitch transitions. In his examination, he found only 12 distinctive 

pitches per octave.  

 

The twelve-pitch class profile arrangement has been commonly used to characterize 

music notes and chords in the literature. Krumhansl (1979) [66] and Bharucha (1986 

[12] & 1987 [13]) discussed the Pitch-Class approach where music tones are 

characterized by vectors of F0s of dodecaphonic notes. In his real time chord 

recognition system, Fujishima (1999) [40] compared the nearest neighbour classifier 

and the weighted sum matching methods to identify the chords from music frames, 

which are characterized by 12 dimension chroma vectors. Experimental audio data 

were sampled at 8 kHz and framed into 256ms (2048-point) non-overlapping frames. 

For extracting chroma feature vectors from frames, C was set to 12 (12 pitch class) 

and fref was set to 65.4Hz, which is the frequency of C2 notes (see Table 2-1 ) in 

equation (5-7). Experiments were performed to identify 27 chords (sub-sets of G and 

F chords) generated by the Yamaha synthesizer and in CD recordings, and claimed 

over 90% accuracy. Although he reasoned that previous methods suffered recognition 

errors because of both noise and the overlapping harmonics of notes due to the 

polyphonic nature of the signals, it is not clear how he overcame these difficulties by 

using 12 dimensional chroma vectors to characterize the signal frames. Su and Jeng 

(2001) [115] represented the harmonic content of chords types (i.e.  Major, Minor, 

Argument, and Diminished) in the time-frequency map using wavelets and modelled 

them in a self-organizing map. The performance of the system was evaluated on only 
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480 isolated chord samples. Thus, this setup may not work well in identifying chord 

types with continuous chord progression.   

 

Sheh and Ellis (2003) [108] tested 24 dimensions of both pitch class profile (PCP) 

features and MFCCs for chord detection. Features were extracted from 100ms frames 

with nearly 2.7 Hz frequency resolution in the (0~5) kHz frequency range and were 

modelled by HMMs. A test was conducted on 20 songs with known chord boundaries. 

Though the authors claimed that PCP features performed better than MFCCs, they 

have not validated their system for detecting the correct chord boundaries. Shenoy et 

al. (2004) [109] discussed a rule based technique to detect the key of a song (only 4/4 

music) by identifying Major and Minor chords. Inter-beat interval frames were 

characterized by 12 dimensional chroma vectors which accounted for 5 octaves 

(C2~B6). Then authors ran a 16 bar window to detect the key and reported 90% 

accuracy over 20 English songs with the key assumed to be constant. However, their 

analysis procedures were inadequate to justify the selection of inter-beat frame size 

and did not mention the minimum percentage of chords required to identify the key. 

 

The twelve dimensional chroma based signal characterizing system was proposed by 

Yoshioka et al. (2004) [141] for chord analysis assuming that songs have only major 

keys. The authors claimed that the mutual dependency of chords causes errors in 

detecting chord boundaries and identifying chord symbols. However, their claims 

were inadequately supported by the experimental steps. Melody of the music is 

created by playing solo notes with time. Eggink and Brown (2004) [35] proposed a 

method to extract the melody line from complex audio using knowledge of the signal 

source and fundamental frequency (F0) detection. Multiple F0s were computed for 
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70ms with a 33% overlapping of frames by setting a threshold on the frequency 

spectrums, which were computed on signal frames. However, the detection accuracy 

of the melody boundaries was not discussed in the paper. 

 

Goto (2001) [47] proposed a method to detect both the melody line and the bass line, 

which is independent of the number of sources in the CD recording.  In experiments 

on jazz and popular music using an adaptive tone model whose parameters were 

estimated using the EM algorithm, he achieved 88.4% and 79.9% frame based 

accuracies on melody and bass line detection respectively. However, it is not clear in 

the paper how well melody and bass line boundaries were detected. 

 

Szczerba and Czyżewski (2002) [119] ran autocorrelation over the signal section 

within the frame to calculate the pitch of the music. Since experiments were 

conducted on solo instrumental lines, it is difficult to judge how well the system may 

perform on polyphonic music. Klapuri (2003) [63] used a recursive algorithm for 

multiple F0 frequency estimation.  For frequency analysis, music signals were 

segmented into 93ms and 190ms frames. Then, these frames were transformed into 

the frequency domain using the Discrete Fourier Transform (DFT). The proposed 

algorithm claimed to detect both in-harmonic and harmonic sounds in the polyphonic 

environment. However, the author did not justify his selection of the fixed frame size. 

Thus, this frame size may not provide good performance detection on both harmonics 

and in-harmonics when the music’s rhythm is changed.   

 

Previous methods for harmonic structure analysis have commonly utilized linear 

frequency transformation techniques such as Discrete Fourier Transform (DFT). 
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However, Brown (1991) [15] discussed the importrance of the music signal analysis 

based on their octave fashion temporal behaviours. She highlighted that non-linear 

frequency analysis is more sensitive to the frequency components of music tones.  In 

her method, she used a wider window to calculate lower octave frequencies and a 

smaller window for higher octave frequency. Results revealed that constant Q 

transformation performs better in identifying F0s and harmonics in music tones than 

DFT does.  

 

Zhu et al. (2005) [144] proposed a music scale root4 and key determination method 

based on pitch profile features and a tone clustering algorithm. Constant Q 

transformation was used instead of Fourier transformation, to extract the 12 

dimensional pitch class profile feature from 11.6ms frames covering 7 octaves (27.5 

~3520 Hz). The experiments only considered only two minutes of the song, with the 

assumption that the key remains constant throughout the song. 

 

3.3 Music region detection 

Information about music regions is placed in the 3rd layer of the music structure 

pyramid (Figure 2-1). Music regions that can be seen in a song can be classified into 

pure instrumental (PI), pure vocal (PV), instrumental mixed vocal (IMV), and silence 

(S) regions. The detection of these regions’ boundaries aids in the further analysis of 

their signal content. Therefore, music region detection is an important step in many 

applications such as singer identification, music synthesis, transcription, etc.  

Generally, PV regions are rare in popular music. Therefore, the PV and IMV regions 

                                                 
 
4  Root is the note from which the chord originates [100]. For example, note C is the root note of C 
major chord. 
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can be considered together as Vocal (V) regions. Since silence doesn’t technically 

carry meaningful information, our focus is to effectively detect the PI and V regions 

in music.  Music region detection is useful for semantic information analysis in the 4th 

and above layers. Some previous works have focused mainly on the analysis of 

content in the instrumental region. Those methods assumed the entire music content 

to be solely instrumental music. Therefore, the focus was to identify the types and the 

names of the instruments (string, bowing, blowing, brass, percussion etc.) played. In 

this section, we survey past research for both content analysis in the instrumental 

region and the techniques used for detecting music regions (PI, PV, IMV, and S) in 

the music.  

 

For instrument identification, Coei et al. (1994) [23] trained a Self-Organizing-Map 

(SOM) with Mel frequency Cepstral coefficients (MFCC) extracted from the isolated 

music tones of 40 different music instruments for the purpose of timbre classification. 

Brown and Cooke (1994) [16] built a system to recognize instruments, in which note 

similarity and onset asynchrony were used to group duets played by synthesized brass 

and clarinet.  Kaminskyj and Materka (1995) [59] extracted amplitude envelope 

features from an octave isolated tones to identify the guitar, piano, marimba, and 

accordion. The instrument classification abilities of a feed-forward neural network 

with a K-nearest neighbour classifier were compared. They found that both classifiers 

achieved nearly 98% accuracy. Kashino and Murase (1998) [60] designed a note 

transcription (pitch and instrument name) system, which initially matched the input 

note with notes in the database. A probabilistic network was then employed for music 

context integration for the purpose of instrument identification. Their system was 

evaluated with single pitch music, consisting of piano, violin and flute notes. The 
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authors claimed that instrument identification improved from 67.8% to 88.5% after 

integration of the music context block.  To identify music instruments, Fujinaga 

(1998) [39] trained a K-nearest neighbour classifier with features extracted from 1338 

spectral slices representing 23 instruments playing a range of pitches.  

 

Martin (1999) [79] trained a Bayesian network with different types of features, 

including spectral feature, pitch, vibrato, tremolo features, and note characteristic 

features, in order to recognize non-percussive music instruments. Eronen et al. (2000) 

[36] proposed a system for instrument recognition using a wide set of features to 

model both the temporal and spectral characteristics of sounds.  They used the 

hierarchical classification approach proposed earlier by Martin (1999) [79]. Few 

instrument recognition systems have been proposed to operate on real music 

recordings. Brown (1999) [17] trained two Gaussian Mixture Models (GMMs) with 

constant-Q Cepstral coefficients extracted from the oboe and the saxophone, using 

approximately one minute of music data for each. Dubnov and Rodet (1998) [32] used 

quantized MFCC feature vectors to characterize the music played on instruments. 

Then, they used a clustering algorithm to group similar vectors and measured the 

similarity of the instruments. Marques (1999) [80] built a classifier to recognize flute, 

clarinet, harpsichord, organ, piano, trombone, violin and bagpipes. MFCCs were 

extracted from the recordings of solo instruments to train the classifier. 

 

For singing voice detection, Berenzweig and Ellis (2001) [10] used probabilistic 

features generated from Cepstral coefficients using a multilayer perceptual neural 

network acoustic model with 2000 hidden units. Two Hidden Markov Models (vocal–

HMM and non-vocal-HMM) were trained with the above mentioned features 
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originally extracted from 61 fragments5 of training data to classify the vocal and 

instrumental sections of a given song. The reported accuracy was 81.2% with a 40- 

fragment training dataset. Kim and Brian (2002) [62] first filtered the music signal 

using an IIR band-pass filter (200~2000 Hz) to highlight the energy of the vocal 

region. The vocal regions were detected by analysing the high amount of harmonicity 

of the filtered signal using an inverse comb filter bank. They achieved 54.9% 

accuracy with a test set of 20 songs. Zhang and Kuo (2001) [145] used a simple 

threshold, calculated using energy, average zero crossing, harmonic coefficients and 

spectral flux features, to find the starting point of the vocal part of the music. The 

same technique was applied to detect the semantic boundaries of the online audio 

data, i.e. speech, music and environmental sounds, for classification. However, the 

vocal detection accuracy was not reported. Tsai et al. (2003) [123] trained a 64-

mixture vocal GMM and  a 80-mixture non-vocal GMM using MFCCs extracted from 

32ms signal frames which are 10ms overlapped with each other. In total they used 

216 song tracks for the experiments. They achieved 79.8% accuracy with 200 test 

tracks. Bartsch and Wakefield (2004) [8] extracted spectral envelopes to characterize 

10ms frames of vocal notes sung by 12 singers. Singers were then identified using a 

quadratic classifier. However, authors only used vocal music data in their 

experiments. 

 

Tzanetakis (2004) [127] simplified the vocal detection problem by applying a song- 

specific bootstrapping technique which he claimed outperformed normal statistical 

learning techniques (a classifier trained with bulk data being used to classify an 

unknown song). He collected 8 or 16 random vocal clips (snippets) of two seconds in 

                                                 
 
5 One fragment = 15 seconds 
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length to train the classifier. He detected all the vocal regions in the song using 

spectral shape features (Centroid, Roll off, Relative Sub-band Energy). These features 

were previously proposed in his PhD thesis [125] for genre classification. Though he 

claimed that spectral shape features are better than speech processing features (MFCC 

and LPC), there were no comparison results noted in the paper to support this claim. 

Test results (on 10 jazz songs) mentioned in the paper indicate that Logistic 

Regression and Neural Net classifiers both perform better than SVM, Nearest 

Neighbours, Bayes, and J48 classifiers. However, how the classifier results were 

compared based on classifier parameter optimization was not discussed in the paper. 

The major drawback is that music domain knowledge has not been applied to give a 

solid ground truth for vocal/instrumental boundary detection. The previous methods 

have borrowed mature speech processing ideas, including fixed frame size 

segmentation (usually of 20~100ms frame size with frame overlap), speech 

processing/coding feature extraction, and statistical learning procedures or linear 

threshold for segment classification, and applied them to detect the vocal/non-vocal 

boundaries of music signals. Although such methods have achieved up to 80% in 

terms of frame level accuracy, their performance is still limited because available 

music knowledge has not been effectively exploited.  For example, the desired regions 

are aligned with beats and the durations of the regions are multiples of music notes 

(see chapter 2.3). 

 

Many current research efforts have considered rhythm-based segmentation for music 

content analysis. Nwe et al (2004) [87], [88] used similar quarter note length 

segmentation techniques similar to those initially proposed by Maddage et al (2004) 

[73].  The signal within a quarter note frame is sub-framed into 20ms durations with 
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13ms overlap with each other in order to build a 2-D feature matrix. They claimed 

that Log Frequency Power Coefficients (LFPCs), which tap spectral strengths from 12 

logarithmically spaced band pass filters in the 130Hz to 16 kHz frequency range, 

perform better than MFCCs.  An HMM based high computational multi-model 

approach based on music structure (Intro, Verse, Chorus, bridge, and Outro) was 

discussed for vocal detection. They proposed that signal strengths are different in 

intro, verse, etc., and can be used as in the multimodality scenario. Although the 

authors claimed using that their proposed approach worked better, we have no basis to 

believe that studio recorded music would always exhibit different signal strengths in 

their song structures.   In addition, quarter note level resolution for signal 

segmentation has been found to be inadequate for vocal boundary detection (Maddage 

et al 2004 [75]). 

 

Leung and Ngo (2004) [68] characterized music segments using 39 dimensional 

perceptual linear predictive coding (PCP) features and classified them into either the 

vocal class or the instrumental class using an SVM classifier. In the first step, PCP 

features were extracted from 500ms signal frames and the generalized likelihood ratio 

(GLR) distance between adjacent frames was calculated. The local maximums were 

then detected on the frame –GLR distance plot and the authors claimed that the signal 

section between adjacent maximums belongs to either the vocal class or the 

instrumental class. These signal sections, known as signal segments, were further 

framed into smaller 16ms sections and PCP feature extraction was repeated. However, 

the feature dimensions were reduced through the ICA-FX. Five pop songs were used 

for training the SVM and 25 songs were used for testing. Results were verified with 

manual annotations. A frame level accuracy of over 75%was reported.  However, 
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boundary detection is inefficient because the frame level resolution or error rate will 

be in the multiples of 500ms.   

 

3.4 Music similarity detection 

We have discussed earlier in this chapter the previous methods that have been used 

for analyzing information in the different layers (beats, melody, harmony, chords and 

music regions) of the music structure pyramid (Figure 2-1). Based on similarities 

between information in the different layers, we can group the music content into 

different similarity regions. For example, some similarity regions may consist of 

similar vocals and some regions can be grouped based on similar harmonies. 

Techniques have been proposed in the literature for music similarity analysis.  

 

Previous works on music structure analysis have focused on feature-based similarity 

matching for the detection of repeated patterns in music.  Dennenberg and Hu (2002) 

[25] proposed using chroma based and autocorrelation based   techniques to detect the 

melody line in music. Repeated segments in the music were identified using 

Euclidean distance similarity matching and clustering of the music segments. Goto 

(2003) [49] and Bartsch and Wakefield (2001) [7] used pitch sensitive chroma-based 

features to detect repeated sections (i.e. chorus) in the music. Foote et al. (2002) [38] 

constructed a similarity matrix and Cooper and Foote (2002) [22] defined a global 

similarity function based on extracted MFCCs to find the most salient sections in the 

music. Logan and Chu (2000) [69] used clustering and hidden Markov models 

(HMM) to detect key phrases in the choruses. Lu and Zhang (2003) [70] estimated the 

most repetitive segments of the music clip using MFCC and octave-based on the 

spectral contrast. Pikrakis et al. (2003) [92] used a context dependent dynamic time 
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warping algorithm to find the music patterns in a monophonic environment. Although 

the authors claimed an accuracy of over 95% in pattern recognition of Greek 

traditional music, it is not clear what ground truths they used for recognition. Xu et al. 

(2005) [140] used an adaptive clustering method based on the features, linear 

prediction coefficients (LPC) and MFCCs, to create a music summary. Chai and 

Vercoe (2003) [19] characterized music with pitch, spectral, and chroma based 

features and then analyzed recurrent structures to generate a music thumbnail. Gao et 

al. (2004) [43] proposed a rhythm based clustering technique to detect certain kinds of 

music structures. They used their unsupervised beat detection technique [42] for onset 

based segmentation. The music frames were then characterized with 12 dimensional 

MFCCs and   clustered into similar music groups. The authors haven’t given any 

justification as to how they have assessed their music grouping or what kind of 

structural information they were interested in their algorithm. 

 

3.5 Discussion  

Overall, music structure analysis can be considered the extraction of information in 

the different layers of the music structure pyramid. Previous methods for music 

structure analysis commonly followed fixed length signal segmentation, feature 

extraction, and statistical modelling techniques. These general steps are similar to the 

steps being followed in speech signal processing.  However, the important argument 

is how well these speech processing techniques are suitable for music signal 

processing, because speech and music differ significantly from each other in both 

production and perception. Unlike speech signals, music signals’ sources are 

heterogeneous in nature and change over time.  
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The main question that we address in this thesis is how well conventional fixed length 

signal segmentation is suited for music content analysis. From the music composition 

point of view, the transition of melody, harmony, music regions and semantic music 

regions are proportional to inter-beat time intervals.  We argue that information in the 

music signal change in discrete inter-beat interval steps. Thus, information within 

inter-beat intervals can be considered to be stationary rather than fixed with regards to 

signal frame length. The proposed beat proportional signal segmentation for layer-

wise music structure analysis, which incorporates music domain knowledge, is the 

major contribution of this thesis. 

 

The other question that we aim to answer in the thesis is how well signal 

characterization techniques from speech processing are suitable for music content 

analysis tasks such as the detection of music regions and the identification of harmony 

/ melody contours. In the chapter 6, we experimentally prove that the incorporation of 

music domain knowledge can increase the efficiency of signal processing for music 

content analysis. The rest of the chapters in this thesis are organized as follows. 

Chapter 4 discusses the proposed rhythm based segmentation technique for music 

segmentation. Then, chord detection and error correction methods for creating the 

harmony line of the music are discussed. The steps for detecting music regions, music 

similarity regions and song structure are detailed in chapter 5. Experimental results 

are explained in chapter 6, and proposed music applications based on music structure 

analysis are discussed in chapter 7. We conclude the thesis in chapter 8.  
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4 Music Segmentation and 
Harmony Line Creation via 
Chord Detection 

 

The fundamental step in audio content analysis is signal segmentation, where 

information within the segment, can be considered fairly quasi-stationary. Feature 

extraction and statistical learning followed by music segmentation are essential steps 

in music content analysis tasks such as  music region detection and hamony contour 

extraction (via chord detection).  High accuracy in the above steps would lead to 

better performance in music applicaions such as music transcription, music 

information retrieval, lyrics identification, polyphonic music transcription, and music 

summarization, as discussed in chapter 7.  

 

The determination of segment size, which is needed to extract certain levels of 

information, requires a better understanding of the rates of information flow in the 

audio data. Over three decades of speech research has revealed that 20~40 ms of fixed 

length signal segmentation is appropriate for speech content analysis (Rabiner et al 

1993 [94]). The composition of music (see chapter 2) reveals that the rate of 

information (notes, chords, key, vocal phrases, instruments) flow is proportional to 

inter-beat6 time intervals. Figure 4-1 shows the quarter, eighth and sixteenth note 

boundaries in a song clip. We see that the fluctuations of signal properties in both 

spectral domain and time domain are aligned with note boundaries.  Usually, smaller 

notes (Quaver, Semiquaver and Demisemiquaver) or rests are played in the bars to 

                                                 
 
6 Since meter of the song is assumed to be 4/4, inter- beat interval is equal to quarter note length.  
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align the harmony contours with the rhythmic flow of the lyrics and fill the gaps 

between lyrics.  

 
(0 ~ 3657)ms of the song “25 Minutes -MLTR”
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Figure 4-1: Spectral and time domain visualization of (0~3667) ms long clip played 
in “25 Minutes” by MLTR. Quarter note length is 736.28ms and note boundaries are 
highlighted using dotted lines. 
 

The conceptual model of music structure shown in Figure 2-1 emphasizes that 

information in different layers is constructed by different music notes. Figure 4-2 

illustrates the different notes played in the 6th, 7th and 8th bars of 3 tracks. We see that 

only quarter notes are played in these 3 bars of the bass guitar track.  The note 

resolution increases to eighth note and sixteenth note levels in the electric organ and 

rhythm guitar tracks, respectively. When these tracks are mixed together, the time 

domain signal representation is shown at the bottom of the Figure 4-2.  

 

As seen in Figure 4-1, the fluctuation of temporal properties in the time domain and 

the spectral domain is proportional to the inter-beat interval.  This behaviour tells us 
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that the ideal segmentation for music information extraction (melody/harmony 

contour extraction, vocal/instrumental region detection, etc) is to segment the music 

according to the length of the individual music note. However, after mixing all the 

tracks together, it is extremely difficult to detect individual note boundaries in the 

final track using existing onset detection techniques (see time domain signal 

representation in Figure 4-2 ). 

 

 
Figure 4-2: Notes played in the 6th , 7th , and 8th bars of the rhythm guitar, bass guitar, 
and electric organ tracks of the song “Whose Bed Have Your Boots Been Under” by 
Shania Twain. Notes in the electric organ track are aligned with the vocal phrases. 
Blue solid lines mark the boundaries of the bars and red solid lines mark quarter note 
boundaries. Grey dotted lines within the quarter notes mark eighth and sixteenth note 
boundaries. Some quarter note regions which have smaller notes are shaded with pink 
colour ellipses. 

 
As detailed in Figure 2-2, longer notes (Semibreve, Minim, Crotchet) are integer 

multiples of the smaller notes (Quaver, Semiquaver, Demisemiquaver). Therefore, the 

smallest note length segmentation (for the song in Figure 4-2, it is a sixteenth note 

level segmentation) is a better solution over segmenting the music according to the 

individual notes.   
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Our proposed inter-beat time proportional segmentation (at the smallest note level) is 

called Beat Space Segmentation (BSS). Reasons why BSS is used instead of fixed 

length segmentation, which has been widely used in the speech processing over 3 

decades, are summarized below. 

From the music composition point of view: 

• A careful analysis of the song structure reveals that the time lengths of the 

music regions (PV, IMV, & PI) are proportional to the inter-beat time interval 

of the music (Chapter 2). 

• Harmony /melody changes in the music occur at note boundaries. This is more 

likely to occur at the half note (meter is 4/4) in popular music (Goto 2001 

[48]). 

From the signal processing point of view: 

• Based on above 2 points, we can consider the information within the beat 

space segment to be quasi-stationary.   

 

Inter–beat level signal analysis and correction was initially discussed in the correction 

algorithm for music sequence (CAMS) in Maddage et al 2003 [72]. To carry out BSS, 

it is necessary to compute the smallest note length that appears in a song. The smallest 

note length detection via time information extraction is discussed in the next section. 

Section 4.2 discusses the windowing effect on music signals. After the music is 

segmented into the smallest note-length frames, silent (rest) frames are identified in 

section 4.3.  This chapter concludes with section 4.4, which discusses chord detection 

for harmony contour creation. 
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4.1 Music segmentation 

Time information (meter, tempo) is the foundation layer of the music structure 

pyramid (see Figure 2-1). Meter and tempo illustrate the beat structure, i.e. how many 

different music notes per bar and duration of the note (detailed in chapter 2.1).  The 

literature survey in chapter 3.1 reveals that many research efforts have been carried 

out to find meter and tempo. Yet, this task is a challenging problem due to the 

polyphonic nature of the music signals.  The ultimate goal of this thesis is to combine 

the layered information in the music structure pyramid towards understanding the 

semantic meaning(s) of the music. To achieve this, the accuracy of the time 

information extraction task should be high.  To maintain a high accuracy level in the 

analysis and reduce algorithm complexity, we narrow down the scope of the time 

information analysis by applying the below constraints  

• Meter is assumed to be 4/4. This is the most frequently used meter of popular 

songs. 

• Meter is constant throughout the song. 

• Tempo is constrained between 30-190 BPM. Since meter is 4/4, tempo implies 

the number of quarter notes per minute (see Figure 2-12).  

 

Since the meter is assumed to be 4/4, the main task is to find the length of the quarter 

note and the smallest note (eighth note, sixteenth note or thirty-second note) in a song. 

In our survey, we found that most popular songs have the eighth note or the sixteenth 

note as the smallest note. Therefore, the 3rd constrain implies that the minimum 

duration of the sixteenth note is roughly 79ms.  
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Our proposed approach for smallest note length detection is shown in Figure 4-3. 

Since the music harmonic structures are in octaves (Rossing et al. 2001 [99], chapter 

3.2), we decompose the signal into 8 sub-bands using the discrete wavelet transform 

technique. The frequency ranges of the sub-bands are shown in Table 2-1.  Wavelets 

analyze the signal with multi-frequency resolutions and are more capable of 

describing discontinuities and sharp spikes in the signal than single resolution 

traditional Fourier transform technique. Therefore, wavelets are a good choice for 

analysing beats and onsets, which describes the starting of different events in the 

music signals.  Previous research by Tzanetakis et al. (2001) [124] has also discussed 

the strengths of wavelets for rhythm analysis (formulation of beat histograms) of 

music signals.  We selected 5th order the Daubechies wavelet for decomposing music 

signals because of its better performance of reducing correlated information in the 

decomposed signals (Rao and Bopardikar 1998 [97]).  
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Figure 4-3: Rhythm tracking and extraction 

 
The sub-band signals are segmented into 40ms with 50% of overlap.  This frame size 

is smaller than the minimum length of the sixteenth note within the 30-190 BPM 

tempo range. Both the frequency and the energy transients are then analyzed using a 

method similar to the one described in Duxburg et al (2002) [34]. Duxburge used 
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quadrature filter bank whose frequency ranges are {(0~1.1), (1.1~2.2), (2.2~5.5), 

(5.5~11.0) and (11~22)} KHz, whereas we use octave scale filter bank for 

decomposition of the music signals. Then exponential weighting function is used as 

the detection function, which emphasises both frequency and time domain energy 

transitions. We measure the frequency transients in terms of the progressive distances 

between the spectrums in sub-band 01 to 04 because the fundamental frequencies 

(F0s) and harmonics of the music notes in popular music are strong in these sub-

bands. Equation (4-1) explains the progressive distance calculation between the 

(n+1)th frame  and the (n)th frame where f(n+1) is the vector representation of frequency 

strengths in the (n+1)th frame. 

 

( ) ( )1 th th

( 1) Progressive distance
( 1)  

between the (n+1)  frame and the n  frame        nn
where PD n is the

PD n f f+

+
+ = −  (4-1)

 
The progressive distance calculated from the frequency components in the frames of 

sub-band 01 to 04 indicate the chord changes in the music. The point where the 

distance is high indicates a chord change. We apply the following chord knowledge 

(Goto 2001 [48]) towards estimating the length of the bar or the half note.  

• Chords are more likely to change on beat times than at other positions. 

• Chords are more likely to change on half note times than at the other 

positions of beat times. 

• Chords are more likely to change at the beginning of the measures (bars) 

than at the other positions of half note times. 

The above chord knowledge reveals that the progressive distance is very high at the 

start of the bar and the start of the half note. To estimate the length of the bar, we 

normalized the progressive distance calculated in sub-band 01 to 04. Then, we filter 

out the normalized distances below 80% of each sub-band. We measure the gap 
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between two adjacent progressive distance values in the sub-bands. These gaps 

indicate the bar length or the half note length, which is the half of the bar measure. 

We estimate the length of the bar by taking the average of the computed bar lengths. 

After estimating the bar length we continue to detect sub-band onset using similar 

method described in Duxburg et al (2002) [34]. 

 

The progression of bass clef notes, which are mainly generated from bass guitars, is 

highlighted in sub-bands 01 and 02. The onsets, which are computed on these two 

sub-bands, describe mostly the half note level or the bar level rhythm transition. The 

onsets of the quarter, eighth, or sixteenth notes appear mainly in sub-bands 03 and 04. 

The energy transients, computed from sub-bands 05 to 08, are more sensitive to 

quarter note, half note, and full note (or bar) level rhythm progressions.  In order to 

consider different note level rhythm progressions, we take the weighted summation of 

the onsets, detected in each sub-band as described in Equation (4-2). The value On(n) 

is the weighted sum of the sub-band onsets detected in all eight sub-bands Sbi(n) at 

frame no -n- of the music signal. In our experiments, we noticed that the onsets of 

bass drums, bass guitars and the bass notes of pianos are found in sub-bands 01 and 

02. The timing of snares and side drums are highlighted in sub-bands 06 to 08. The 

weight matrix w = {0.6, 0.9, 0.7, 0.9, 0.7, 0.5, 0.8, 0.6} is empirically found to be the 

best set for calculating the final onset On(.) in the music. 
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(4-2)

 
The positions of local maxima are computed by differentiating the auto correlated 

signal On(.).  Since we already estimated the length of the bar from the progressive 

distance in sub-bands 01 to 04, we can further estimate the length of either the 
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quarter, eighth, or sixteenth note by measuring the distance between adjacent local 

minima. Then, we employ dynamic programming to check for patterns of equally 

spaced strong and weak beats from among the detected dominant onsets Ont(.), and 

compute both the inter-beat length and the smallest note length. Figure 4-4 (a) 

illustrates a 10 second song clip. The detected onsets are shown in Figure 4-4 (b). The 

autocorrelation of the detected onsets is shown in Figure 4-4 (c). Both the eighth note 

level segmentation and the bar measure are shown in Figure 4-4  (d) and computed 

eighth note length is 183.106065ms. 
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Figure 4-4: Beat space segmentation of a 10 second clip 

 
 

4.2 Windowing effect on music signals 

The song is first segmented into the smallest note length frames. Then, different 

features are extracted from the signal section to find both the chord and the music 

region (vocal/instrumental) that the signal segment belongs to. In speech processing, 

the sliding window technique is used for signal segmentation. The 10-20ms length 

Hamming window and rectangular window with 10 kHz sampling frequency are 
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commonly used for extracting speech information such as voice/un-voice regions, 

vowels, consonants, etc (Rabiner et al 1993 [94]). However, the question is how to 

find the suitable window for music signal analysis. Figure 4-5 shows the time domain 

and frequency domain characteristics of Hamming windows and rectangular 

windows. Figure 4-5 (a) and (d) respectively show time domain 10000 points length 

Hamming and rectangular windows, which are generated at a 44.1 kHz sampling 

frequency. Their frequency domain characteristics are shown in Figure 4-5 (b) and 

(e), respectively. Figure 4-5 (c) and (f) show the frequency domain characteristics of 

when the window lengths are 100 points each. 

 

Both rectangular and Hamming windows act like low-pass filters. The Hamming 

window (Figure 4-5 (c)) has nearly twice the passband cuttoff (560Hz) than of 

rectangular window passband cuttoff (388Hz) (Figure 4-5 (f)).  However, the 

bandwidth of the window decreases directly with an increase in the window length. 

This can be seen in Figure 4-5 (b) and (e). When the number of points increases to 

10000 from 100 (Figure 4-5 (c) and (f)) i.e. increases 100th fold, the bandwidth 

decreases 100th fold.  In terms of stopband characteristics, the Hamming window has 

sharper cutoff than the rectangular window. The Hamming window has nearly 30dB 

more attenuation than the rectangular window (Figure 4-5 (b) & (e), and Figure 4-5 

(c) & (f)).  

 

Unlike speech signals, music signals are wide band signals (Everest 2001 [37], 

Rossing et al [99]). Thus, music information is spread widely over 15 kHz in the 

frequency spectrum, whereas speech information is spread below 5 kHz in the 

frequency spectrum.  The bandwidths of both the windows are significantly small for 
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music signals. Compared to the rectangular window, the Hamming window has a 

sharp attenuation and suppresses valuable information in the higher frequencies by 

nearly 3 fold over the rectangular window. From that point of view, the rectangular 

window is better than the Hamming window for music signal analysis. However, 

when we take the short time Fourier transform, the rectangular window frequency 

response comes to the picture due to the properties of short time Fourier transform, 

which is neither avoidable nor as bad as the Hamming window effect. Thus, the 

rectangular window is considered in all our feature extraction processes.  
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Figure 4-5:  The frequency responses of Hamming and rectangular windows. 

 
Beat space segmentation is utilized to find the harmony contour and music regions 

(pure vocal-PI, pure instrumental-PI, instrumental mixed vocal-IMV, and silence-S). 

Silence frames (regions) are detected during pre-processing in order to avoid further 
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analysis of those frames as they carry no valuable information. Silence detection is 

explained in the next section. Harmony contour detection via chord detection is 

explained in section 4.4. Chapter 5 discusses the music region detection. 

 

4.3 Silence detection 

After music is segmented into beat spaced segments, we need to detect silent 

segments and remove them from the music sequence.  

 
Clip of the song name Duo Hao (217.096~220.293)ms

Silence region

 
Figure 4-6: Silence region in a song 

 
Silence is defined as a segment of imperceptible music, including unnoticeable noise 

and very short clicks.  A silence region in a song is shown in Figure 4-6. We use the 

short-time energy feature to detect silence. If the short-time energy function is 

continuously lower than a certain set of thresholds the segment is indexed as silence. 

Note that there may be durations in which the energy is higher than the threshold, but 

the durations should be short enough and far apart from each other. Equation (4-3) 

describes how to calculate short time energy in the beat space segmented frame, 

where x(m) is the discrete time music signal, n is the time index of the short-time 

energy, and w(m) is a rectangle window.  N is the length of the window and is the 

length of beat space segment. 
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4.4 Harmony Line Creation via Chord Detection 

The concept of music regions floating on the harmony/melody flow can be visualized 

as boats sailing on the sea waves, as shown in Figure 4-7.   Detection procedures of 

both harmony and music regions are independent from each other, even though they 

share the same music segments (see Figure 1-2). Chapter 5.1 discusses the music 

region detection.  
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Figure 4-7: Concept of sailing music regions on harmony and melody flow 

 
Playing music notes according to time steps described by both meter and tempo forms 

complex structures such as chords, melodies, and large music units. Harmony, in 

music is created by playing several music notes simultaneously.  When more than 2 

notes are played together, a chord is created. Thus, chord identification of a given 

music piece can stamp the harmonic line with chord symbols. Chord composition and 

chord notations are described in chapter 2. Detection of a harmony line in the music is 

useful for many music applications such as query by humming for music information 

retrieval systems, music transcription, music synthesis, error concealment, 

watermarking, etc. The harmony line created by a chord contour is depicted in Figure 

4-8. The smallest blocks/units shown in the music sheet denote the quarter note 
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length, since the meter of the music is 4/4.   Figure 4-8 shows the notes played on the 

bass clef and the treble clef by a guitar and a piano. Music is composed such that all 

the notes played at a particular time belong to a chord. The bottom of the figure shows 

the chords flow. Notes played on the first bar belong to the F major (F) chord. In the 

twelfth bar, the first half note duration belongs to the F major chord and the second 

half note duration belongs to the A diminished (Adim) chord.   
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Figure 4-8: Both bass line and treble line created by a bass guitar and a piano .The 
chord sequence, which is generated using notes played on both the bass and treble 
clefs, is shown at the bottom of the figure.  

 
This section discusses the incorporation of acoustic signal processing techniques into 

music knowledge for chord detection and error correction.  Different techniques for 

characterizing the polyphonic music pitch are discussed in the following sub sections.  

Then, statistical modelling methods are investigated to classify these polyphonic 

pitches into chords. Finally, chord detection errors are corrected via Key 

determination of the music piece. The chord detection steps are shown in Figure 4-9. 

The first step is the beat space segmentation of the music signal. Thereafter, features 

are extracted from the smallest note length signal frames (BSS frames) to represent 
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the polyphonic music pitches embedded in the signal frames. In section 4.4.1.1, we 

discuss two polyphonic pitch representation techniques. Statistical learning followed 

by the polyphonic pitch representation enables us to detect the chords in the music. 

Only four popular chord types (Major, Minor, Augmented, and Diminished) are 

considered in this thesis. Therefore, there are only twelve chords per each chord type 

to be modelled resulting 48 models. Statistical learning techniques for modelling 

chords are detailed in section 4.4.2.  
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Figure 4-9: Chord detection steps 
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4.4.1 Polyphonic music pitch representation  

Detecting the fundamental frequencies (F0s) of notes, which comprise the chord, is 

the main idea towards identifying the chord. Many previous chord detection systems 

utilized a pitch class profile (PCP) representation of music signals (Krumhansl 1979 

[66], Bharucha and Stoeckig 1986 [12] & 1987 [13] and see chapter 3.2). In the 

following sub-section, we describe the procedure for PCP feature derivation. 

Experimental results of the analysis of  PCP feature behaviour are discussed in 

chapter 6.2. 

Psychological experiments conducted in 1970s and 1980s have revealed that human 

ear is sensitive to not only the fundamental frequency (F0) of pitches but also several 

harmonics and sub-harmonics (Goldstein 1973 [45]  and Terhardt 1974 [121] & 1982 

[122]). However, there is no adequate information in the literature discussing how 

well these psychological pitch representations characterize the polyphonic music 

signals.  The functionality of the psychological polyphonic pitch representation is also 

discussed in this section, and its capabilities for pitch representation are 

experimentally analyzed in chapter 6.2. 

 

4.4.1.1 Pitch class approach to polyphonic music pitch representation 

In musicology, the octave is divided into 12 tones, and the frequency ratio of two 

consecutive octaves is assumed to be 1:2 (see chapter 2 and chapter 3.2). As shown in 

Figure 4-10 (upper), the pitch class profile (PCP) feature is derived by projecting all 

the fundamental frequencies (F0s) of the notes in each octave to 12 pitches.  

Therefore, this pitch class representation is called the 12 pitch class profile feature.  In 

a such projection, only the effects of the fundamental frequencies of the music notes 

are accounted for, and harmonic or sub-harmonic effects are inactive. In order to 
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construct the 12 Pitch Class Profile (PCP) feature vector (12 components), the music 

signal is first transformed into the frequency domain. Secondly, the squared strengths 

of the fundamental frequencies of the music note in different octaves (see Table 2-1) 

are summed together to compute the coefficient of the 12 PCP feature vector, which is 

depicted in Figure 4-10 (lower). 
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Figure 4-10: Music notes in different octaves are mapped into 12 pitches 

 
The polyphonic music contains the signals of different music notes played at lower 

and higher octaves. Some instruments, for example string instruments have a strong 

3rd harmonic component (Rossing et al 2001 [99]) which nearly overlaps with the 8th 

semitone of the next higher octave. This is problematic in lower octaves and leads to 

wrong chord detection. For example, the 3rd harmonic of the note C3 and the F0 of 

note G4 nearly overlap (see Table 2-1). To overcome such situations, our 

implementation begins by transforming the music frames into the frequency domain 

using FFT with a 2Hz frequency resolution (i.e. [sampling frequency (Fs) / number of 
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FFT points (N)] ≈ 2Hz).  Secondly, the value of C in equation (4-4), which maps 

linear frequencies into the octave scale, is set to 1200, where the pitch of each 

semitone is represented with as high a resolution as 100 cents. This frequency 

mapping is shown in Figure 4-10 and Figure 5-7. We consider only the 128 to 8192Hz 

frequency range  (sub-bands 02 to 07 in Table 2-1) for constructing the PCP feature 

vectors in order to avoid adding percussion noise, i.e. base drums in frequencies 

below 128 Hz and cymbal and snare drums in frequencies over 8192Hz, to these 

features. By setting Fref to 128 Hz, the lower frequencies can be eliminated. The initial 

1200-dimensional PCPINT(.) vector is constructed based on equation (4-5), where X(.) 

is the normalized linear frequency profile, computed from the beat space segment 

using FFT.   
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In order to obtain an optimal balance between computational complexity and 

efficiency, the original 1200 dimensions of the PCP feature vector is reduced to 60 

using equation (4-6). Thus, each semitone is represented by summing 100 cents into 5 

bins according to equation (4-6). In equation (4-6), p denotes the pth coefficient of the 

60 dimensional vector.  Finally, each segmented music frame is represented by a 60 

coefficient feature vector.  
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4.4.1.2 Psycho-acoustical approach to polyphonic music pitch 

representation 

Pitch class representation only characterizes the effects of the F0 of music pitches and 

maps all the harmonic and sub-harmonic effects of polyphonic pitches into the same 

space of F0s of the 12 music tones.  Earlier experiments on pitch perception reveal 

that the central processing mechanism of the human auditory system responds to not 

only the fundamental frequencies of the pitch but also its harmonics and sub-

harmonics (Goldstein 1973 [45],  Houtgast 1976 [52], Laden and Keefe 1989 [67], 

Terhardt 1974 [121] & 1982 [122] and Rossing et al 2001 [99]). Thus, Goldstein 

modelled the pitch with F0 plus its harmonic partials, and Terhardt modelled the same 

pitch with up to the 7th sub-harmonic. Sub-harmonic derivation is described in 

equation (4-7).  
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Figure 4-11 shows the harmonics and sub harmonics of the C Major Chord, which are 

approximated up to the nearest music notes. 
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Figure 4-11: Harmonic and sub-harmonics of C Major Chord is visualized in terms of 

closest music note.  
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Overlapping harmonics and sub-harmonics are marked by a grey background. The 

F0s of the music notes are noted in Table 2-1. We incorporate this psycho-acoustical 

effect of music perception i.e. harmonic and sub-harmonic strengths, towards 

characterizing the polyphonic pitch of the music. Another reason for harmonic 

complex analysis is that singing voice and most music instruments (wind type – flute 

and mouth organ, bow type – violin and cello, string type piano and guitar, and some 

percussion instruments) produce harmonic spectra. Therefore, the effect of these 

harmonic spectra of complex tones 7 is useful for identifying music chords. Figure 

shows the harmonic spectra of pure female vocal, mouth organ, and piano music.  In 

order to take the harmonics and sub-harmonics into account, the beat space segmented 

music frames are first transformed into the frequency domain with a nearly 2Hz 

frequency resolution.  
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Figure 4-12:  Spectral visualization Female vocal, Mouth organ and Piano music 

 

                                                 
 
7  Complex tone is a mixture of pitches. A music chord, which is generated playing several notes at 
same time, is considered as a complex music tone. 
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As shown in Figure 4-11, harmonics and sub-harmonics can be approximated to the 

F0 of a note in another octave. Thus, the strengths of the F0s of music notes in the 128 

to 8192 Hz frequency range (i.e. sub-band 02 to 07 in Table 2-1) are mapped into the 

feature vector in order to represent the psycho-acoustic effect of the polyphonic pitch.  

Equation (4-8) describes the psycho-acoustic feature vector for the ith music segment. 

This feature is called a Psycho-acoustic profile (PAP) feature. 

 
 vectorfeaturedimention  72..... B8) ~  (C3 notes  theof F0s=iV  (4-8)

 

4.4.2 Statistical learning for chord modelling  

Different statistical learning techniques have been surveyed for modelling music 

chords. Figure 4-13 shows the steps for detecting the chord of the ith beat space 

segment. In this thesis, four types of chords are considered, namely, Major, Minor, 

Augmented, and Diminished.  Since each chord type has 12 different chords, we have 

a total of 48 statistical models in our chord detection system. In Figure 4-13, Mj 

denotes the jth chord statistical model, which is learned from the training data of the jth 

chord.   

 

In this thesis, we employ three statistical learning techniques, Support Vector 

Machine (SVM), Gaussian Mixture Model (GMM), and Hidden Markov Model 

(HMM), to model these 48 chords.  These techniques are discussed in the following 

sub-sections.  The experimental results discussed in chapter 6.2 shows that HMM is 

more capable of modelling music chords than SVM or GMM. After the detection of 

music chords, we apply knowledge of the “Key of the music” to correct the detected 

error chord. The error correction procedure is detailed the next sub-section. 

 



 74

 

[ ])( 48...1P ij
j

VCHMax =

CH j

F1 F nF i

nth frame

ith beat space
signal segment

Vi - feature vector for polyphonic pitch representation

M1 M2 Mj M48
48 Statistical models

12 models each for Major,
Minor, Augmented and
Diminished chord types

M -statistical model formulated from either SVM or GMM or HMM  
 

Figure 4-13: Chord detection for the ith beat space signal segment 
 

4.4.2.1 Support Vector Machine (SVM) 

The mechanism of this principle learning method follows the structural risk 

minimization method which is rooted in VC (Vapnik-Chervonenkis) dimension 

theory (Vapnik 1998 [129]). There are two major differences between this popular 

back-propagation (BP) algorithm and the SVM learning algorithm. Firstly unlike BP, 

SVM operates only in the batch mode. Secondly, the BP algorithm minimizes a 

quadratic loss function regardless of the learning task. In contrast, the SVM algorithm 

for pattern recognition minimizes the number of training samples that fall inside the 

margin of separation between positive and negative samples. It is considered more 

appropriate than the mean-square error criterion used in the BP algorithm for 

classification tasks. SVM handles the quadratic programming problem. It is attractive 

because it guarantees finding the global maximum of the error surface. In terms of run 

time, SVMs are currently slower than other neural networks (e.g. MLP trained with 

BP algorithm) for similar generalization performance. The SVM algorithm can 

construct a variety of learning machines by use of different kernel functions. Three 

kinds of kernel functions are usually used. They are: 
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 Polynomial kernel of degree d 

dyxyxk )1,(),( +><=  (4-9)
 Radial basis function with Gaussian kernel of width C >0 

)exp(),( 2 cyxyxK −−=  (4-10)

 Neural networks with tanh activation function, gain k and shift µ 

),tanh(),( µ+><= yxkyxk  (4-11)
Where x is input vector and y is input pattern. 

 
Our earlier experimental results have shown that equation (4-10) performed better for 

music signal classification (Maddage et al 2003 [72] & 2004 [75], Xu et al 2003 

[139]). In the implementation, we used the SVM Torch II package (Collobert and 

Bengio 2001 [21]). 

 

4.4.2.2 Gaussian Mixture Model (GMM) 

In recent years, GMM has been used for speaker identification (Reynolds and Rose 

1995 [95]) and singer identification (Kim and Brian 2002 [62]). The multiple 

weighted Gaussians, which attempt to model each class of training data, are beneficial 

when analyzing data that has a distribution not well modelled by a single cluster. 

Based on the calculated distances between test points and the multiple Gaussians 

distributed in the class distributions, the maximum likelihood discriminant function, 

classifies the test point to the closest class. The Expectation–Maximization (EM) 

algorithm is used to estimate the parameters (mixture weights, mean, and variance) of 

the GMMs. Since GMM can be considered a one state HMM, we use the continuous 

density Hidden Markov Model (CDHMM) in the HTK package (Young et al 2002 

[142]) in the implementation. 
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4.4.2.3 Hidden Markov Model (HMM) 

The HMM is also a powerful statistical tool which has been widely used in speech 

recognizing systems (Rabiner and Juang 1993 [94]). It is a finite state network with N 

states, with each state modelled by a probability density function. Figure 4-14 

illustrates a HMM topology with five states, where the first is an entry state, and the 

last is an exit state. Unlike these two states, each middle state has a probability 

distribution bj where, in speech recognition, mixture Gaussian densities are chosen. 

For vocal/instrumental region detection and harmony detection, the music data 

distribution is also assumed to be a mixture of Gaussians. The mixture weights, mean, 

and covariance of the Gaussian mixtures in each state and both initial and state 

transition probabilities are estimated using either the Baum-Welch or the segmental 

K-means algorithm.  

 

1 2 3 4 5

a22 a33 a44

a12 a23 a34 a45

b2(O) b3(O) b4(O)
 

Figure 4-14: The HMM Topology 

 

4.4.3 Detected chords’ error correction via Key determination  

The pitch difference between the notes of the two chord pairs Major and Augmented 

chord) and Minor chord and Diminished is small. In our experiments, we sometimes 

find that the observed final state probabilities of HMMs corresponding to these chord 

pairs are high and close to each other. This may lead to a wrong chord detection. 

Thus, we apply a rule-based method (key determination) to correct these wrongly 



 77

detected chords. Then, we apply heuristic rules based on popular music composition 

to correct the chord transition. 

 

The key is defined by a set of chords, as detailed in chapter 2.2. Songwriters 

sometimes use relative major and minor key combinations in different sections, such 

as a minor key for the Middle eighth and a major key for the rest, in order to break up 

the perceptual monotony of the song (Shenoy et al 2004 [109]). However, songs with 

multiple keys are rare [120]. Therefore, a 16-bar length window is run over the 

detected chords to determine the key of that section.  A key is assigned to that section 

according to the corresponding to a majority of the chords. The 16-bar length window 

is sufficient to identify the key (Shenoy et al 2004 [109]). If Middle eighth (chapter 

2.4) is present, we can estimate the region where it appears in the song by detecting 

the key change. Once the key is determined, the error chord is corrected as follows: 

 
 First, we normalize the observations of the 48 HMMs representing 48 

chords according to the highest probability observed from the error chord.  

 The next highest observed chord whose observation is above a certain 

threshold (THchord) and belongs to the same key replaces the error chord. 

  We replace the error chord with the previous chord if there is no 

observation which is above the THchord and which belongs to the chords 

of same key. 

 

The value THchord=0.64 is empirically found to be good for correcting chords. The 

music signal is assumed to be quasi stationary between the inter-beat intervals, 

because the melody transition occurs on beat time. Thus, we apply the following 

chord knowledge (Goto 2001. [48]) to correct the chord transition within the window.  
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• Chords are more likely to change on beat times than at other positions. 

• Chords are more likely to change on half note times than at other beat 

times. 

• Chords are more likely to change at the beginning of the measures (bars) 

than at other positions of half note times. 

 

The above three points are explained in Figure 4-15. In Figure 4-15, the size of the 

beat space segment is the eighth note and the size of the half note is four beat space 

segments. After the correction, bar i has two chord transitions and a chord in bar i+1. 

 

Time signature 4/4

Bar i Bar (i+1)

Chords

Detected chords
sequence

Corrected chord
sequence

Size of the beat space segment = 8th note length -

Half a note length

 
Figure 4-15: Correction of chord transition 
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5 Music Region and Music 
Similarity detection  

 

This chapter details the procedures for extracting the information in layers 3 and 4 of 

the music structure pyramid. Section 5.1 discusses different features which can be 

used for music region detection via statistical learning. We incorporate music 

knowledge to design better features with to characterize the signal sections in the 

music regions.   

 

Section 5.2 is focused on detecting two types of similarity regions in the music, 

namely, melody-based similarity regions and content-based similarity regions.  These 

similarity regions help us to formulate a procedure to detect the components of 

popular song structures (i.e. Intro, Verse, Chorus, Bridge, Middle eighth, INST, and 

Outro). This procedure is explained in section 5.3.   

 

5.1 Music region detection 

Based on the music source mixtures (accompaniment), an acoustical music signal can 

be divided into different regions. Figure 5-1 shows the possible regions in the music, 

Pure vocals (PV), Instrumental Mixed Vocals (IMV), Pure Instrumental (PI), and 

Silence (S). Silence regions are identified in the pre-processing detailed in chapter 

4.2. 
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Silence (S)

Pure Instrumental
(PI)

Pure Vocals (P
V)

Instrumental Mixed
Vocals (IMV)

Music signal

 
Figure 5-1:  Regions in the music 

 

Music region detection can simplify the process of music content analysis because it 

helps to identify the signals sections, which have different music sources. The points 

discussed below highlight the necessity of accurate region detection in achieving 

better performance in music applications. 

• The information in the vocal line (PV and IMV regions) is important for 

building a content-based music retrieval system and an automatic lyrics 

generator. 

•  PI and IMV should be carefully analyzed in order to extract the music note 

information in a music transcription system. This information can be about the 

type of the instrument, the name of the instrument which generates the note, 

the position of the note in the music score and the note characteristics i.e. 

attack, sustain, decay times.   

• For music summarization, repetitive portions in a song should be accurately 

identified in order to avoid their repetition in the summary. The similarity 

analysis between the music regions assists in identifying semantic clusters in 

the music. For example, choruses in a song usually have similar vocal and 

instrumental regions (Maddage et al 2004 [75]). 



 81

• For singer identification, the first step is to detect the vocal regions in the 

music.  

• Signal complexity varies between different music regions. Therefore, 

customized signal restoration techniques can be applied to these music regions 

in order to conceal errors in music streaming (Maddage et al 2004 [75]). 

• Compared to the properties of singing voice, properties of instrumental music 

are spread across a wide spectrum. Music region detection is helpful in 

designing a robust music watermarking scheme. Watermarks can be embedded 

in different ways for vocal and instrumental signal sections so that the signal 

properties of these regions are not distorted. 

• Removal of the vocal line from music is useful for applications such as 

Karaoke music generation.  

 

The above application scenarios motivate the need for identifying music regions. 

These applications are discussed in chapter 7. It is found in our survey (chapter 2.5) 

that on an average, singing voice occupies 65% of the duration of a popular song. 

These vocals can be pure vocals or instrumental mixed vocals.  Both IMV and PI are 

the most frequently occurring regions in popular music. Earlier research efforts reveal 

that vocal region detection is a difficult task in comparison with the detection of other 

regions (Gao et al 2003 [41], Maddage et al 2003 [72]). The vocal cord is the oldest 

music instrument. Both the human auditory physiology and the human perceptual 

apparatus have evolved to develop a high level of sensitivity to the human voice. 

After more than three decades of extensive research speech recognition technology 

has matured to the level of practical applications. However, speech processing 

techniques have limitations when they are applied to singing voice analysis because 
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speech and singing voice differ significantly in terms of their production as well as 

their perception by humans (Sundberg 1987 [118], Miller 1986 [84]). Singing voice 

has more dynamic characteristics than speech (Saitou et al 2002 [101]). The dynamic 

range of the fundamental frequency (F0) contours in singing voice is wider than that 

of speech. The F0 fluctuation of singing voice is larger and more rapid than that of in 

speech (Everest 2001 [37], Sundberg 1987 [118]). 

 

We believe that a combination of bottom-up and top-down approaches, which 

combine the strength of low-level features and high-level music knowledge, can 

provide us a powerful tool towards improving our music analysis. In our recent work 

(Maddage et al 2004. [73], [74], [75]), we have incorporated music knowledge for 

both segmentation and feature extraction for music content characterization.  We 

investigated the performances of speech processing techniques on the task for music 

region detection, and found that it does not work well. Therefore, we have developed 

a novel approach, one that considers both signal processing and music knowledge, to 

detect music regions.  

 

The block diagram of the proposed method is shown in Figure 5-2.  After the music 

piece is segmented into the smallest note length frames, the silent frames are then 

identified. Music segmentation and silence region detection have been discussed in 

chapter 4.1 and 4.2, respectively. 

  



 83

Pre-processing (silence removal)

Statistical learning for region classification

Musically modified feature extraction for region characterization

Instrumental region

Pure Instrumental (PI)

Vocal region

Instrumental Mixed
Vocals (IMV)

Pure Vocal
(PV)

Beat space music segmentation

Music

Chapter 4.1 & 4.3

 
Figure 5-2:  The steps for vocal instrumental region detection 

 

5.1.1 Applying music knowledge for feature extraction 

Feature selection is very important for music content analysis. In this section, we 

analyze both time and frequency domain features, i.e. the cepstral coefficient feature 

and the linear prediction coefficient feature. These features are traditionally used in 

speech processing because of their excellent ability to model speech in terms of both 

production and perception. Though these features have been tested for speech signals, 

there has not been sufficient analysis to determine to what degree they can be applied 

to music content analysis. 

 

5.1.1.1 Cepstral Coefficients 

The cepstral coefficients have been widely used for detecting the pitch and formant 

structures of voice/speech (John et al 1999 [58]). Equation (5-1) describes the 



 84

calculation of the nth cepstral coefficient {C(n)}, where )(ωS is the strength of the 

spectrum of the signal at angular frequency ω.  

 

∫−=
π
π
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2
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The basic steps for calculating the cepstral coefficients are shown in Figure 5-3. The 

signal is first segmented using a sliding window (L points). For music content 

analysis, we assume a non-overlapping rectangular window whose size (L points) is 

equal to the beat space segment (chapter 4.2). The signal properties are assumed to be 

stationary inside the window and zero signal strength is assumed to be outside the 

window (Rabiner at al [94], John and Dimitris 1995 [57]).  

 
windowing Log |.| IDTFTDTFT

Speech signal Cepstrum

X(n) C(n)Frequency
scaling

 
Figure 5-3:  Steps for calculating cepstral coefficients 

 
Second, the linearly scaled spectrum is computed using a Discrete Fourier transform 

(DFT). In order to highlight the low varying frequency characteristics of the signal, 

the strengths of the frequencies are scaled using their log magnitudes. Cepstral 

coefficients are sensitive to the sources, which are multiplied together to generate a 

signal. The Log magnitude of the DFT of a signal reflects the sum of the 

transformation of the individual signals. Cepstral coefficients can identify these 

individual signal characteristics if they are highlighted at different places of the 

spectrum (Moorer (1975) [85]). Therefore, a frequency scaling block is used for 

emphasising the important areas of the spectrum.  Mel-scale, which arrange the 

frequency spectrum of the signal according to the perception mechanism of the human 

ear, has popularly been used in speech processing (see next sub-section a). We 



 85

propose an octave scale for music processing because, as discussed in chapter 2 and 

chapter 3.2, music properties fluctuate in an octave scale.  

 

Finally, we take the inverse DFT (IDFT) of the spectrum to calculate the cepstral 

coefficients. The DFT and IDFT are computed according to equation (5-2) and (5-3), 

where N is the frequency resolution. To avoid time domain aliasing in the IDFT, the 

value of N is always chosen to be  N ≥ L (L is the window size). The value x(n) is the 

nth sample value of the signal, which is within the window. 
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In the following two sub-sections, we discuss two frequency scaling techniques, i.e. 

Mel scale and Octave scale, for deriving the cepstral coefficients.  Mel scale has 

popularly been used among the speech community because it measures the perceived 

pitches and their harmonics in the spectrum. The mechanism behind Mel scale based 

cepstral coefficients is detailed in section (a). Then we propose Octave scale based 

cepstrum coefficients in section (b).  Brown (1991) [15] has also acknowledged that 

octave scaling has advantages for highlighting music properties in the frequency 

domain.  

 

(a)  Mel- Frequency Cepstral Coefficients (MFCCs) 

The Mel-frequency cepstral coefficient has been found to be highly effective in 

recognizing speech signals and modelling the subjective pitch and harmonic content 

of audio signals (John et al 1999 [58]). Figure 5-4 illustrates the relationship between 



 86

the Mel scale and the linear frequency scale. The positions of the frequencies in the 

linear frequency scale are transformed into the Mel scale using the equation (5-4), 

where C is a scaling factor which controls the slope of the curve (John et al 1999 

[58]).   
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When C is 100, 300, 500 and 700, Figure 5-4 shows the respective values in the Mel 

scale for  flinear=3000. The non-linear filter positions in the linear frequency scale 

(flinear) are calculated by transforming the equally spaced filter positions in the Mel 

scale using equation (5-4). It can be visualized that when C is increased, the number 

of filters placed in the lower frequencies, 200Hz to 1200Hz of the linear frequency 

scale (flinear) is lower (compare C=700 with C=100).  Thus, tuning C in equation (5-4) 

is essential to positioning triangular filters accurately on the linear frequency axis to 

extract dominant pitches and their harmonics in the spectrum. The value of C in the 

range of 250 to 350 has been empirically found to be efficient for detecting vocal and 

instrumental signals. 

 

After filter positions in the linear frequency scale are computed, the full band 

spectrum is represented piece-wise according to the triangular filter regions. As 

shown in Figure 5-4 (bottom), Y(i) represents the strength of the ith triangular filter 

region and is calculated using equation (5-5). The values S(j) and Hi(j) are magnitude 

of the jth frequency component of the spectrum and the jth output of the ith triangular 

filter, respectively. The ith filter boundaries in the linear frequency scale and Mel scale 

are {mi, ni} and {mi, ni}, respectively. The centre frequency of the triangular filter 
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region is considered to be the frequency representative for the particular region. The 

value  flinear = ki is the centre frequency of the ith filter region.  
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The Mel scale cepstral coefficients are calculated according to equation (5-6), where 

N, Ncb, and n are the number of frequency sample points, number of band-pass filters, 

and number of cepstral coefficients, respectively. In contrast to equation (5-3), 

equation (5-6) omits the phase information in the spectral transformation. 
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Figure 5-4: The filter distribution in both Mel scale and linear scale. 

 



 88

(b) Octave Scale Cepstral Coefficients (OSCC) 

The locations of the fundamental frequencies (F0s) and the harmonics of the music 

notes are closely related with the octave scale. The pitch contour of the professional 

vocal line is kept as close as possible to the instrumental line. Therefore, vocal F0s 

and harmonics also fluctuate in octave.  Figure 5-5 shows the frequency domain 

representation of quarter note length music signals and fixed length speech signal. 

Figure 5-5 (a) and (b) depict spectral envelopes scaled in octaves. However, such 

octave scale spectral envelopes cannot be noticed in the spectrum of the speech signal. 

This is because the vocal code, which generates the speech, is not tuned for the octave 

scale.  Ideal octave scale spectral envelopes which encapsulate the music signal 

spectrum are drawn in Figure 5-5 (d). This octal behaviour of music signals is 

experimentally discussed in chapter 6. 

 
Beat space segments are extracted from the Sri Lankan song "                       " (Ma Bala Kale)
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Figure 5-5: Music and speech signal characteristics in frequency domain. (a) – 
Quarter note length (662ms) instrumental (Guitar) mixed vocal (male) music, (b) – 
Quarter note length (662ms) instrumental (Mouth organ) music, (c) – Fixed length 
(600ms) speech signal, (d) – Ideal octave scale spectral envelopes. 

 
Because of these noticeable octave scale spectral envelopes, we can assume that the 

fluctuation of the spectral properties of the music signal is in octave scale. Therefore, 
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we propose using an “Octave Scale” instead of the Mel scale. In octave scaling, filters 

are positioned on octaves so that they can capture the spectral properties, which 

fluctuate on octaves.   The cepstral coefficient calculated on the octave scale is called 

the Octave Scale Cepstral Coefficient (OSCC). 

 

In our approach, filters are positioned on all of the octaves in the 0 to 16.4 kHz 

frequency range where 44.1 kHz audio sampling frequency is assumed. The 

frequency range of 0 to 128Hz, which comprises the first two octaves C0~B0 and 

C1~B1, is mostly dominated by percussion instruments (e.g. Bass drums). The 

spectral properties of the percussion instruments can be considered unstructured8, and 

spectral behaviours are not closely related to the octave scale (Rossing 2001[98]). 

Figure 5-6 illustrates the log magnitude spectrum of the bass drum and the side drum. 

It can be seen that these instruments concentrate a higher energy in the spectrum at 

the 0~128 Hz frequency range, and their spectrums are weak in harmonic structures. 

Thus, twelve 50% overlapping filters are linearly placed on the first two octaves i.e. 

C0~B0 to C1~B1 (0~128 Hz).  
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Figure 5-6: Log magnitude spectrums of bass drum and side drum 

 
The octave scaling is used to find the filter positions within the rest of the octaves 

(C2~B2, to C9~B9 – eight octaves). The equation (5-7) describes how to transform 
                                                 
 
8 Structured signal has a F0 and its harmonics  are spread all over the spectrum   
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linear frequencies flinear to the octave scale foctave, where Fs and N are the sampling 

frequency and the number of FFT points, respectively. The variable Fref refers to the 

starting point of the linear to octave frequency mapping and C is the number of 

equally spaced points in an octave. 
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Compared with Mel-scale, which is approximately in log10(.) (See equation (5-4)), 

Octave Scale can be approximated in log2(.). In the equation (5-7), Fref is set to 128 

Hz, because the filter positions in C2~B2 and higher octaves (i.e. 128 ~22050 Hz) are 

calculated using the octave scale. 
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Figure 5-7: The filter band distribution in Octave scale for calculating cepstral 

coefficients 
 
In western music, twelve pitches are considered to be within an octave (see chapter 2). 

These pitches are noted in Table 2-1. To capture the effects of the pitches and their 

harmonics in the spectrum, 12 filters are placed in each octave. By setting C=12 in 

equation (5-7), the upper limit of  foctave is set to 12 and Figure 5-7 depicts the linear 

positioning of 12 filters in the octave scale and their positions’ transformation to 
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linear frequency scale flinear  in the C4~B4 octave. A Total of 96 filters accommodate 

the full spectrum (0~16.4 kHz) and they are detailed in Table 5-1. 

 

Table 5-1: Filter distribution for computing Octave Scale Cesptral Coefficients 

Sub-band No S2 S3 S4 S5 S6 S7 S8

Number of
filters 12 12 12 12 12 12 12

Frequency
range (Hz) 128~256 256~512 512~1024 1024~2048 2048~4096 4096~8192 8192~16384

Octaves C0~B0 C1~B1 C2~B2 C3~B3 C4~B4 C5~B5 C6~B6 C7~B7 C8~B8

S1

0~128

12
(linearly spaced with 50%

overlap)  
 
Singular value decomposition (SVD) can be used to measure the level of 

uncorrelation among the coefficients derived from the Octave Scale and the Mel 

Scale. Appendix-A discusses the relationship between principle component analysis 

and SVD. Singular values in the diagonal matrix reflect both the noise and 

uncorrelated coefficients when diagonal values are low and high respectively.  Figure 

5-8 shows the normalized singular value variation of 20 OSCCs and 20 MFCCs 

extracted from both vocal and instrumental regions.  
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Figure 5-8: Plot of the 20 Singular values, which are computed from OSCCs and 
MFCCs for vocal and instrumental music frame.  
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The frame size is equal to the duration of the beat space segment.   It can be seen that 

the normalized singular values of OSCCs are higher than that of MFCCs for both 

vocal and instrumental frame. Figure 5-9 describes the different averages of singular 

values for OSCCs and MFCCs. The average normalized singular values per OSCC for 

both vocal and instrumental frames are 0.1294 and 0.1325. However, for MFCC, they 

are much lower, at 0.1181 and 0.1093, respectively. As shown in the Figure 5-9, the 

singular values are in descending order with respect to the ascending coefficient 

numbers. Lower singular values at the higher coefficient numbers describe the higher 

noise level or the lower uncorrelation level. The average of the last 10 singular values 

of OSCCs is nearly 10% higher than they are for MFCCs, which means that the last 

10 OSCCs are more uncorrelated than the last 10 coefficients of MFCCs. Therefore, 

we can conclude that OSCCs are more uncorrelated than MFCCs.  
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5.1.1.2 Linear Prediction Coefficients (LPCs)  

The Linear Prediction Coefficients (LPCs), which approximate the speech parameters 

such as vocal tract area functions, pitch, and formants, have been widely used for 

speech content representation in low bandwidth. The details of calculating LPCs are 

well documented in the literature( John et al (1999) [58], Rabiner and Juang (1993) 

[94]). Since music is created by mixing different sets of sources/instruments with 
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respect to the time, music signals can be considered more complex than speech 

signals. Thus, finding out how well the LPCs can represent different layers of music 

information is still considered open research. In this section, we briefly discuss the 

frequency domain interpretation of linear prediction analysis and propose selective 

band linear predictive analysis (Makhoul 1975 [78]) to approximate the wide band 

music signal. The cepstral coefficients, which are derived from LPCs, may also be 

useful for music information representation and classification. The next paragraphs 

explain briefly the LPCs’ interpretation in both frequency and time domains. 
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Equation (5-8) describes a time varying all pole (the pth order) modelled system 

{H(z)} which approximates the characteristics of speech signals. For voice and 

unvoiced output signals, the system {S(z)} is excited with an input {U(z)} which 

consists of an impulse train and random noise respectively.  The value G and {ak} are 

the gain parameter and the digital filter coefficients, respectively, and vary slowly 

with time. With the above speech model, we write the n-th speech sample s(n) related 

with the excitation u(n) in the equation (5-9).  
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The LPCs are the approximate filter coefficients {bk  k=1…p} of the original speech 

model coefficients {ak k=1….p}, and these coefficients are derived from the given 

speech samples.   Then, the predicted nth speech sample )(~ nS  from previous samples 

can be written with the calculated filter coefficients {bk} as according to equation 

(5-10). Equation (5-11) describes the nth prediction error e(n) between S(n) and )(~ nS . 
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It can be seen from Equation (5-11) that the error sequence is the output of a system 

whose transfer function A(z) is noted in equation (5-12). Thus, A(z) can be considered 

the transfer function of the prediction error filter. If ak = bk, A(z) is the inverse filter of 

the speech model H(z). 
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The time domain mean-squared signal prediction error (obtain using autocorrelation 

method) of the mth speech segment is represented in equation (5-13). By applying 

Parseval’s theorem, it can be represented in the frequency domain according to 

equation (5-14).  )( ωj
m eS  is the Fourier transformation of the mth speech segment Sm(.) 

and  )( ωjeA is the frequency response of the prediction error filter.  
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With a good estimation LPC (i.e. bk ≈ ak) and connecting equation (5-12) with 

equation (5-14), we can represent the time domain mean-squared signal prediction 

error using the equation (5-15). Thus, by minimizing the integral of the ratio of the 

energy spectrum of the speech segment over the magnitude squared of the frequency 

response of the speech model, we minimize Em. 
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When the order of the filter in the speech system is large, (i.e. P is large) the 

expression given in equation (5-16) is valid.  This implies that the power spectrum of 

the speech signal segment can be approximated using the all-pole model H(z). As 

discussed in Rabiner and Juang 1993 [94], it has been suggested that the order P of 

the linear prediction coefficients would control the degree of smoothness of the 

resulting spectrum. 
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Octave influence in LPC: 

Compared to speech, music is a wide band signal (Rossing et al 2001 [99], Sundberg 

1987 [118] ) spanning over a 10 kHz frequency range. The useful range of 

fundamental frequencies and the harmonics of tones produced by music instruments is 

considerably smaller than the audible frequency range. Therefore, it is important to 

conduct piecewise spectral analysis for the full spectrum (0~20) kHz instead of taking 

full spectrum as one. Thus, we apply selective linear prediction (Makhoul 1975 [78]) 

to model regions of the spectrum with different order (P) of the prediction.  
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Figure 5-10: Computation of selective band linear predictive coefficients (LPCs)  
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As shown in Figure 5-10, we first filter the signal according to the octaves and then 

the segment sub-band signals into beat space segments. The frequency ranges of the 

sub-bands are detailed in Table 5-2. Finally, we calculate LPCs with different orders 

for each sub-band beat spaced signal segment. Since these LPCs are calculated in 

octaves, they are called Octave Scale Linear Prediction Coefficients (OSLPCs). Table 

5-2 details the design parameters of the elliptic filter bank (IIR type) which is used for 

decomposing the signal in octave scale. It is found that the elliptic filter characteristics 

give sharp frequency cutoffs with lower filter orders. 

 

Table 5-2: Parameters of the Elliptic filter bank used for sub-band signal 
decomposition in octave scale 

Sub-band no 01 02 03 04 05 06 07 08

Frequency range (Hz) 0~128 128~256 256~512 512~1024 1024~2048 2048~4096 4096~8192 8192~22050

Octave C0-B0 & C1-B1 C2-B2 C3-B3 C4-B4 C5-B5 C6-B6 C7-B7 C8-B8

Pass band ripples (dB) 0.5 0.5 0.5 0.5 0.6 0.6 0.5 0.5

Stopband attenuation (dB) 150 100 80 100 100 100 100 100

Filter type Low pass Band pass Band pass Band pass Band pass Band pass Band pass High pass

Filter order 6 3 4 5 6 7 8 18

Cutoff frequency (Hz) 128 {128, 256} {256, 512} {512, 1024} {1024, 2048} {2048, 4096} {4096, 8192} {8192}

Stopband corner frequency
limits(Hz) 145.3 {107.7, 290.7} {242.2, 532.9} {430.7, 1195} {942.1, 2218} {1960, 4264} {3994, 8360} {8156}

Elliptic filter (IIR) specifications for octave scale sub-band decomposition

 
 
Figure 5-11 depicts an example of the selective-band power spectrum approximation 

using the all pole model H(z).  For this analysis, we used a quarter note length 

instrumental frame of the song “25 Minutes” by MLTR. First, we passed the song 

through an octave scale filter-bank. Filter specifications are discussed in Table 5-2. 

Then, we estimate OSLPCs using the same quarter note length instrumental frame of 

each sub-band signal. For sub-band 01 and sub-band 02, we estimated 20th order all 

pole models. For all the other sub-bands, 60th order all pole models are estimated. 

These two orders for the modes are randomly selected to show their modelling 

effectiveness of sub-band spectrum against the full band spectrum. Red coloured 

dash lines show the approximation of the power spectrums from sub-band signal.  
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For a comparison, we plotted the 60th order all pole model approximation of the full 

band power spectrum (Figure 5-11 bottom).  It can be seen that the all-pole model 

doesn’t effectively approximate the full band power spectrum when compared with 

the all-pole model’s sub-band power spectrum approximation. Therefore, OSLPCs, 

which emphasize the octave scale sub-band signal information, can better represent 

the wide band music signals. 
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Figure 5-11: Selective-band power spectrum approximation using all pole speech 
model H(z). 

 

5.1.1.3 Linear Predictive Cepstral Coefficients (LPCC) 

Linear predictive cepstral coefficients are derived from the filter coefficients of the all 

pole speech production system H(z) assuming an impulse response to the system. 
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From equation (5-16) we can approximate the frequency response of the system H(z) 

to the spectrum of the signal S(ω), and the calculation of cepstral coefficients is 

similar to equation (5-1). The impulse response of the all-pole system H(z) described 

in equation (5-8) implies the output of a voiced signal, which has a minimum phase. 

Thus, we can neglect phase information while calculating the cepstral coefficients. 

Equation (5-17) describes the computational process where C(n), bn and p are the nth 

cepstral coefficient, nth LPC and order of the all-pole system, respectively.  The 

impulse response, h(n), of the all-pole system H(z) can be solved recursively by using 

LPCs as in equation (5-18), where )(nδ  is the nth impulse to the system H(z). 
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(5-18)

  
Compared with the LPC, the LPCC is more robust against sudden signal changes or 

noise because LPCCs are derived from the filter coefficients of the speech system 

with the impulse response of the system H(z).  Previous experiments have shown that 

the LPCCs perform better in detecting vocal and instrumental regions in music (Gao 

et al 2003 [41], Maddage et al 2003 [72], Xu et al 2005 [140]). 

 

Octave influence in LPCC: 

For a better characterization of wide band music signals, we calculate the selective 

band LPCC of the signal, following the steps discussed in Figure 5-10, where earlier 

computed sub-band LPCs are used for calculating LPCCs in the respective sub-band. 

Similar to OSLPCs, these coefficients can be called Octave Scale Linear Predictive 

Cepstral Coefficients (OSLPCCs).  
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Since OSCCs do approximate the spectrum, in chapter 6.3, we compare the 

performances of OSCC, MFCC, and OSLPCC to determine which features are better 

for the vocal/instrumental region detection problem 

 

5.1.1.4 Harmonic Spacing measurement using Twice-Iterated Composite 

Fourier Transform Coefficients (TICFTC) 

Singing voice and music instruments generate harmonics, which can be visualized as 

spikes in the frequency domain. Figure 5-12 shows the harmonic structures extracted 

from beat space signal segments of male vocal, female vocal, guitar, mouth organ, 

guitar mixed female vocal and guitar mixed male vocal. Compared with the vocal 

harmonic structures, instrumental harmonic structures are widely spread over in the 

entire frequency spectrum (Sundberg 1987 [118]).  Musical instruments generate 

different harmonic structures because their sound production mechanisms differ from 

each other.  

 

The careful analysis of harmonic and sub-harmonic spacing of singing voice reveals 

that they are narrowly spaced over the 512 to 2048 Hz frequency range. However, 

these spikes are widely spread for music instruments for the same frequency range. 

These frequency spacings are shown in Figure 5-14 (upper). The differences between 

harmonic and sub-harmonic spacing   in singing voice and instrumental music can be 

used as a potential measure to identify vocal and instrumental music. Thus, we 

propose a mathematical model whose coefficients are sensitive to the frequency 

spacing of acoustic signals. These coefficients are known as Twice-Iterated 

Composite Fourier Transform Coefficients (TICFTCs). 
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Figure 5-12: Harmonic structures of vocal and instrumental signal segments 

 
The procedure to calculate TICFTCs is described as follow. First, beat spaced music 

segments are transformed into the frequency domain by applying a FFT algorithm 

with a high frequency resolution (nearly 1Hz). The phase information of the signal 

frame is discarded and only frequency magnitudes are considered for further analysis. 
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The magnitude spectrum (strengths of harmonics and sub-harmonics) can be modelled 

as a frequency pulse train X(f) with periodicity Fp, pulse width τ and amplitude A. 

Figure 5-13 (middle) shows the 1st FFT of the ith beat space segment, where the 

spectrum is approximated by a pulse train. A second FFT now operates to produce a 

sine cardinal envelope as shown in Figure 5-13 (lower), with Sinc magnitude Yi as: 
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Where α  and β  are the height and the span of the first semi globe of Yi(k) 

respectively.  Yi(k) is inversely proportional to Fp where Fp is the spacing between 

adjacent spectral lines. Thus, it can be seen that Fp controls the intensity distribution 

of the sine cardinal envelope. 
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Figure 5-13:  Twice –iterated composite Fourier transform of ith signal frame 
 
Samples of log magnitude spectrums (512 ~ 2048) Hz and Sinc envelopes on real 

music signals are shown in Figure 5-14.  
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Figure 5-14: The 1st & 2nd FFT of instrumental and vocal frames. Frame size is a 
quarter note length (735ms) 
 
We can immediately see the structural difference between instruments and the vocal 

tract in that the vocal Fp is much shorter than that of instruments, resulting in a bigger 

amplitude α  in the TICFT domain. The Sinc envelope in Figure 5-14 (lower) also 

reveals that the energies of the frequency components are compressed in the lower 

values k of Yi. 

 

The net effect of TICFT is to compress the original energy into the lower coefficients 

of the 2nd FFT. The cumulative energy within these lower regions can be used to 

efficiently separate the vocal and instrumental frames.  According to equation (5-20), 

by summing Yi(k) along the first γ coefficients, we calculate the first energy bin of the 

ith frame bin B1(i) (see Figure 5-13).   
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Similarly, the  2nd, 3rd  and  jth energy bins, B2(i), … Bj(i) are calculated. The values γ, 

ψ, ω, and σ are set manually based on experiments. Since Fp controls the intensity 

distribution of the sine cardinal envelope, we take the ratios of the energy bins 

according to equation (5-21).  The value Cj where j=1…n measures the harmonic and 

sub-harmonic spacing in the frequency spectrum. These coefficients Cj=1..n are called 

Twice-Iterated Composite Fourier Transform Coefficients (TICFTCs).    
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We conducted an experiment to evaluate the ability of the first energy bin B1(.)  in 

discriminating vocal and instrumental frames. In this test we consider harmonics in 

the (512 ~ 2048) Hz, i.e. sub-band 04, frequency range in Table 5-1. Then, we took 

the 2nd FFT over the log magnitude spectrums in the (512 ~ 2048) Hz range and 

computed the energy first bin B1(.). We found empirically that γ=50 yielded a good 

performance.  The value B1(.) is normalized by removing the mean of B1(.) over all n 

frames using equation (5-22), to yield B1
MR (i) for the ith frame.   
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(5-22) 

 
In our experiments, we found that B1

MR (.) is positive for most of the vocal frames and 

negative for instrumental frames.  Figure 5-15 shows the B1
MR (.) plot for a full song 

“Sleeping Child” by MLTR. The regions covered with grey lines show the actual 

instrumental and vocal mixed instrumental regions.  Mean removed first energy bin 

B1
MR(.) can correctly classify the vocal/instrumental frames of the song with 83.27% 

accuracy.  
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Figure 5-15:  The mean-removed bin B1(.) with beat space (662ms) frames of 
“Sleeping child” by MLTR 
 
 
Octave influence for calculating TICFTCs: 

To accommodate harmonics and sub-harmonics in the octaves, we divide full 

frequency range into 8 sub-bands whose frequency ranges are noted in Table 2-1. 

Figure 5-16 shows the procedure to calculate twice –iterated composite Fourier 

transform coefficients (TICFTCs) for each sub-band.  
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Figure 5-16: Twice –iterated composite Fourier transform coefficients 

 
The optimum number of TICFTCs can represent the characteristics of the sub-band 

frequency spectrum (i.e. spacing between harmonics and sub-harmonics of the sub-

band spectrum).  Equation (5-23) describes the vector representation of the ith frame 

using TICFTCs, where j and sb are the number of coefficients calculated from each 

sub-band and the sub-band number, respectively. 
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5.1.2 Statistical learning for vocal / instrumental region 

detection 

Since the number of pure vocal regions (PV) in popular music is few, we merge both 

PV and IMV together and call the merged parts vocal regions. As shown in Figure 

5-17, it is a two class classification problem. Three statistical models, i.e. HMM, 

SVM, and GMM, are examined for vocal/instrumental region detection.  These 

classifiers were explained in chapter 4.4.2. 
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Figure 5-17:  Classification 

 

5.2 Music similarity analysis 

Music similarity analysis is important for the semantic level understanding of music 

structure and useful for many music applications such as automatic music 

summarisation, music streaming, and music retrieval (see chapter 7). Earlier 

researches as surveyed in chapter 3.4 mainly focused on feature based similarity 

analysis. These methods are not accurate in both detecting and interpreting the level 

of similarities we find in the music content, because music knowledge has not been 

effectively exploited. For example, feature based similarity detection methods are not 

accurate in detecting the boundaries of the similarity regions.  Different types of 

similarities that can be seen in the music.  They are: 

 Beat cycle - beat pattern that repeats in every bar 
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 Melody  based similarity - repetition of the chord patterns  

 Vocal similarity - similar lyrics appearing in the song i.e. chorus 

 Semantic level similarity - music pieces or extracts that create similar 

auditory scenes or sensation  

Based on these different similarities we can index the music into different similarity 

regions. Thus, we can call melody-based similarity regions MBSRs. If the vocals 

within some of the MBSRs are similar, then those MBSRs are called content-based 

similarity regions (CBSRs). CBSRs, which have both similar chord pattern and 

similar vocals, are a subset of MBSRs. These two regions usually appear in popular 

music and Figure 5-18  shows them in the conceptual music pyramid.  

Melody based
similarity regions

Content based
similarity regions

Timing information
{Bar, Meter, Tempo, notes}

Harmony /Melody
{Duplet, Triplet, Motif, scale, key}

Instrumental / Vocal
region

{Musical phrases}

Song
structure

 
Figure 5-18: Similarity regions in the music 

 
 Thus, detection of these two types of similarity regions is necessary for the popular 

song structure formulation discussed in the next section. The choruses in popular 

music have similar melodies and similar vocals, and are considered CBSRs. Though 
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the melody is similar in verse, the verses do not carry similar vocals. Thus, verses are 

the MBSRs. The following sub-sections describe the detection of these regions.  

 

5.2.1 Melody-based similarity region detection 

Melody-based similarity regions have the same chord patterns. In Figure 5-19, the 

regions R2, R3,.. Ri,., Rj have the same chord pattern as R1 (denoted as Destination 

Region). Therefore, R1, R2, Ri, …., Rj are melody similarity regions.   
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Figure 5-19: Melody based similarity region detection by matching chord patterns 

 
Since we cannot detect all the chords without error, the region detection algorithm 

should have tolerance to errors.  We employ Dynamic Programming for approximate 

string matching [86] as our melody-based similarity region detection algorithm.   

 

Figure 5-20 illustrates the matching results of both 8 and 16 bar length chord patterns 

extracted from the beginning of Verse 1 in the song “Cloud No 9” by Bryan Adams. 

The Y-axis denotes the normalized cost of matching the pattern and the X- axis 

represents the frame number. We set the threshold THcost and analyze the matching 

cost below the threshold to find the pattern matching points in the song. The 8-bar 

length regions R2 to R8 have the same chord pattern as the first 8-bar chord pattern 

(R1-Destination Region) in Verse 1. When we extend the Destination Region to 16 
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bars, only the r2 region has the same pattern as r1, where r2   is the first 16 bars from 

the beginning of Verse 2 in the song. 
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Figure 5-20: 8 and 16 bar length chord pattern matching results 

 

5.2.2 Content-based similarity region detection 

Content-based similarity regions are regions, with similar lyrics. More precisely, they 

are the chorus regions in the song. As shown in Figure 5-19, the melody-based 

similarity regions Ri and Rj can be analyzed further to detect whether they are content-

based similarity regions through the following steps. 
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Figure 5-21: Vocal similarity matching in the ith and jth MBSRs 
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Step1:  The beat space segmented vocal frames of the two regions are first sub-

segmented into 30 ms with 50% overlapping sub-frames. Although the two choruses 

have both similar vocal content (lyrics) and melody, the vocal content may be mixed 

with a different set of instrumental setup. Therefore, to find the vocal similarity, it is 

important that the extracted features from the vocal content of the regions should be 

sensitive only to the lyrics and not to the instrumental line mixed with the lyrics.  

 

Typically, when the coefficient order increases in the features, then the correlation 

between the coefficients increases or the coefficient sensitivity to information 

decreases. Figure 5-22 illustrates the variation of the 9th coefficient of the OSCC, 

MFCC and LPC features for the three words ‘clue number one’, which are mixed with 

notes from the rhythm guitar. It can be seen that OSCC is more sensitive to the 

syllables in the lyrics than MFCC and LPC.  Thus, we extract 20 coefficients of the 

OSCC feature per sub-frame to characterize the lyrics in the regions Ri and Rj. 
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Figure 5-22: The response of the 9th OSCC, MFCC and LPC to the Syllables of the 
three words ‘clue number one’. The number of filters used in OSCC and MFCC are 
64 each. The total number of coefficients calculated from each feature is 20. 
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Figure 5-23 illustrates SVD analysis of the OSCCs and MFCCs extracted from both 

the solo male track and the guitar mixed male vocals of a Sri Lankan song “Ma Bala 

Kale ( )”. The quarter note length is 662ms and the sub-frame size is 30ms 

with 50% overlap. Singular value variation of 20 OSCCs and 20 MFCCs for both 

pure vocals and vocal mixed with guitar are shown in Figure 5-23 (a), (b), (d), and (e) 

respectively.   
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Figure 5-23: Vocal sensitivity analysis of OSCCs and MFCCs using SVD.  

 
Singular values indicate the variance of the corresponding structure. Comparatively 

high singular values describe the number of dimension, which can be represented 

orthogonally, while smaller singular values indicate the correlated information in the 

structure and are considered noise. The percentage in variation of the singular values 

of each OSCC and MFCC when guitar music is mixed with solo vocals are shown in 

Figure 5-23 (c) and (f) respectively. When all of the 20 coefficients are considered, 

the average singular value variation for OSCC and MFCC are 17.18% and 34.35%, 

respectively. When the first 10 coefficients are considered, they are 18.16% and 
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34.25%, respectively. It can be concluded that even when guitar music is mixed with 

vocals, the variation of OSCCs is much lower than the variation of MFCCs. Thus 

compared with MFCCs, OSCCs are more sensitive to vocal line than to the 

instrumental music. 

 

Step 2:  The distances between feature vectors of Ri and Rj are computed. The 

equation (5-24) explains how the kth
 distance dist(k) is computed between the kth 

feature vectors Vi and Vj in the regions Ri and Rj, respectively. The ‘n’ distances 

calculated from the region pair Ri and Rj are summed up and divided by ‘n’ to 

calculate the “ dissimilarity (Ri Rj) ”, which gives a lower value for the content-based 

similarity region pairs as shown in equation (5-25). 
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Step 3: To overcome the pattern matching errors due to detected error chords, we shift 

the regions back and forth in one bar step with the maximum size of the shift being 4 

bars. Then, Steps 1 & 2 are repeated to find the positions of the regions, which give 

the minimum value for “dissimilarity (Ri Rj)” in equation (5-25). 

 

Step 4:  We compute “dissimilarity (Ri Rj)” in all region pairs and normalize them. 

We set a threshold (THsmlr) such that the region pairs below the THsmlr are detected as 

content-based similarity regions, which also implies that they belong to chorus 

regions. Based on our experimental results THsmlr = 0.389 gives a good performance. 

Figure 5-24 illustrates the calculated content-based similarity regions between 
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melody-based similarity region pairs, which are found in Figure 5-20 for the song 

“Cloud No 9” by Bryan Adams. It is obvious that the dissimilarity is very high 

between R1, which is the first 8-bar length of Verse 1, and other regions. Therefore, if 

R1 is the first 8-bar region of Verse 1, the similarity between R1 and other regions is 

not compared in our algorithm. 
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Figure 5-24: The normalized content-based similarity measure between regions R1 
through R8 computed from melody-based similarity regions of the song as shown in 
Figure 5-20 (Red dash line) 
 
 

5.3 Song structure formulation with heuristic rules 

The structure of a song is detected by applying heuristics which agree with most of 

the songs. Popular song structure follows the verse–chorus pattern repetition [120], as 

shown below. 

 

(a) Intro, Verse-1, Chorus-1, Verse-2, Chorus-2, {Verse, 

Chorus, Middle Eighth}, Outro. 

(b) Intro, Verse-1, Verse-2, Chorus-1, Verse-3,{Verse, 

Chorus, Middle Eighth}, Outro. 
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According to our survey of 220 songs (see chapter 2.5), most of the songs follow 

either structure (a) or (b) and they are followed by the parts in the brackets i.e. 

{Verse, Chorus, Middle Eighth}. For example, some songs may have 

five choruses with eight verses and middle eighth component may also appear in the 

song.  Following constraints are considered for song structure analysis: 

• The minimal number of verses that appears in a song is 2. 

• Verse and chorus are 8 or 16 bars long. 

• All the verses in a song share a similar melody and all the choruses also share 

a similar melody. In some songs, the melody of the chorus may be partially or 

fully identical to the melody of the verse.   

• In a song, the lyrics of all verses are quite different, but the lyrics of all the 

choruses are similar.  

• The length of the middle eighth is 8 or 16 bars 

 

5.3.1 Intro detection 

Since Verse 1 starts at either the beginning of the bar or the second half note in the 

bar, we extract the instrumental section until the 1st vocal frame of Verse 1 and 

designate that section as the Intro. If silent frames are present at the beginning of the 

song, they are not considered to be part of the Intro because they do not carry a 

melody. 

 

5.3.2 Verses and Chorus detection 

The end of the Intro is the beginning of Verse 1. Thus, we can detect Verse 1 if we 

know whether it is of length 8 or 16 bars and then detect all the melody-based 
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similarity regions. Since the minimum length of the verse is 8 bars, we find the 

melody-based similarity regions (MBSR) based on the first 8-bar chord pattern of 

Verse 1 according to the method specified in section 5.2.1. We assume the 8-bar 

MBSRs are R1, R2, R3 ….Rn in a song where n is the number of MBSRs. Case 1 & 2 

describe how to detect the boundaries of the verses and the choruses when the number 

of MBSRs (n) is smaller and equal to three and greater than three. 

Case 1: n ≤3 

The melodies of the verse and chorus are different in this case. 

 

Verse boundary detection:  

To decide whether the length of the verse is 8 or 16 bars, we further detect the 

MBSRs based on the first 16-bar chord pattern extracted from the beginning of Verse 

1. If the detected number of 16-bar MBSRs is same as the earlier detected 8-bar 

MBSRs (i.e. n), then the verse is 16 bars long. Otherwise, it is 8-bars long.  

 

Chorus boundary detection:  

Once the verse boundaries are detected, we check the gap between the last two verses. 

If the gap is more than 16 bars, the length of the chorus is 16 bars otherwise 8 bars. 

Since the chorus length is computed, we find the chorus regions in the song according 

to section 5.2.1.  

 

The verse-chorus repetition patterns described in song structures (a) and (b) imply that 

Chorus 1 appears right before and right after Verse 2, respectively.  A bridge may 

appear between Chorus 1 and the verse before it. Thus, we assume that Chorus 1 ends 

at the beginning of the Verse (i.e. in (a) this is Verse-2 and in (b)  this is Verse-3) and 
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then the MBSRs are found based on the chord pattern of the approximated Chorus 1. 

In order to find the exact boundaries of the choruses, we use a content-based 

similarity measure (see section 5.2.2) between the detected chorus regions.  

• We compute the dissimilarity of Chorus 1 and other estimated chorus regions 

based on step 1, 2, and 3 in section 5.2.2. We sum all the dissimilarities as 

Sum_dissm (0) where 0 is the zero shift. 

• We shift the chorus backward by one bar and re-compute Sum_dissm (-1B), 

where -1B is 1-bar backward shift.  

• We repeat the process of shifting and computing of Sum_dissm () until 

Chorus 1 comes to the end of the 2nd to last verse.  

• The position of Chorus 1 which gives the minimum value for Sum_dissm () 

defines the exact chorus boundaries.  

 

Case 2: n>3, 

The melodies of the chorus and verse are partially or fully identical in this case. It can 

be seen from Figure 5-20 that there are 8 MBSRs detected with the 8-bar length verse 

chord pattern.  

• First, we compare content-based similarities among all the regions except R1 

based on step 1, 2, 3 and 4 in section 5.2.2. The region pairs, which have 

dissimilarities lower than THsmlr, are the 8-bar length chorus sections (see 

equation (5-25)). 

• If the gap between R1 and R2 is more than 8 bars, the verse is 16 bars. Then 

based on the 16-bar long chord pattern of Verse 1 we find the other verse 

regions. 
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• If a found verse region overlaps with an earlier detected 8-bar chorus region, 

the verse region is not considered to be a verse.  

• Once the verse regions are found, we can detect the chorus boundaries in the 

same way as was described in Case 1. 

 

5.3.3 Instrumental sections (INST) detection 

The Instrumental section may have a melody similar to the chorus or verse. Therefore, 

the melody-based similarity regions, which have only instrumental music, are 

detected as INSTs. However, some INSTs contain a different melody. In that case, we 

run a window of 4 bars to find regions which have INSTs.  

 

5.3.4 Middle eighth and Bridge detection 

The middle eighth is 8 or 16 bars long and its key is different key from the song’s 

main key. Chapter 4.4.2 discusses the key determination of the song where a 16 bar 

length window is run over the detected chord to find the key. If a key different from 

the main key of the song is detected at any point, we further check to see whether the 

changed key area is of 16 bar length or 8 bar length.   

 

Once the boundaries of verses, choruses, INSTs, and middle eighths are defined, the 

appearance of a bridge can be found by checking the gaps between these regions.  

 

5.3.5 Outro detection 

Before the Outro, there is usually a chorus in the song. Thus, we detect the Outro 

based on the length between the end of the final chorus and the end of the song. 
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6 Experimental Results 

This chapter presents the results of our analysis and the system level performance of 

the techniques used for information extraction in the layers of the music structure 

pyramid (Figure 2-1). All experimental data are limited to songs with 4/4 meter (see 

chapter 4.1), which is the commonly used meter of popular music (Goto 2001[48]). 

Therefore, time information extraction (the bottom layer of the pyramid) only focused 

on identifying the smallest note length of a song. Section 6.1 discusses the 

performance of the proposed system for time information extraction. The analysis 

results of the proposed musically and perceptually modified features, which 

characterise the information in layer 2 and layer 3 of the pyramid, (i.e. information 

about harmony/melody contours and vocal/instrumental regions), are discussed in 

section 6.2 and 6.3, respectively. The effectiveness of song composition level 

heuristic rules for finding semantic clusters (i.e. Intro, Verse, Chorus, Bridge and 

Outro) in a song is discussed in section 6.4.    

 

All the experimental data are sampled at 16 bits 44.1 kHz stereo format and are 

converted to mono to reduce the high computational power.  

 

6.1 Smallest note length calculation and silent segment 

detection 

The steps for calculating the smallest note length have been discussed in chapter 4.1.  

We use 120 songs, which consist of 10 songs by each artist. They are detailed in 
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Table 6-2. To compute the average length of the smallest note, is seen in a song, we 

test the first 30, 60, and 120 seconds of the song and then compute the average length 

of the smallest note seen in a song. The smallest note lengths of 106 songs were 

correctly detected with ±30 ms error margin, i.e. 89.16 % accuracy. A 30ms error 

margin is set because the window size (frame size) in our rhythm tracking system is 

60ms with 50% overlap. Figure 6-1 shows the actual and computed 16th note lengths.  

Listening tests with the help of music scores  sheets are carried out to compute the 

actual 16th note lengths of the songs. 
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Figure 6-1:  Actual and computed 16th note lengths of songs 

 
We set the frame size to be equal to the smallest note length and then segment the 

music. As discussed in chapter 4.1, this segmentation is called Beat Space 

Segmentation (BSS). The frames with normalized short time energies below a 

threshold (THs =0.18) are detected as silence frames   

 

6.2 Chord detection for creating harmony contour 

As discussed in chapter 4.4, we use statistical learning techniques for modelling 48 

music chords using the training data.  The first step is to optimize the parameters of 

both the polyphonic pitch representation features (pitch class profile PCP feature and 
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psycho acoustic profile PAP feature) and the statistical models (SVM, HMM, and 

GMM).  All the parameters are optimized in a synthetic environment because it is 

difficult to collect large annotated datasets from the original soundtracks. Synthetic 

data is comparatively less noisy than the original soundtracks. In the synthetic 

environment, we generated music chords by mixing the related notes. The 

performances of the optimized features and the statistical models are evaluated with 

the original soundtracks in a real music environment. The real music environment is 

the orchestra, where music notes of different instruments are played together as time 

progresses. This continuous chord progression is depicted in Figure 4-8.  

  

6.2.1 Feature and statistical model parameter optimization in 

synthetic environment 

We optimize the parameters of the polyphonic music pitch representation features i.e. 

Pitch Class Profile (PCP) feature and Psycho Acoustic Profile (PAP) feature. Using 

optimized features, we tune the parameters of the 3 statistical models (i.e. HMM, 

GMM, and SVM) which are used for modelling 48 chords.  

 

The synthetic dataset is used for parameter optimization of the features and the 

classifiers.  We create music chords by mixing music notes according to Table 2-2 

and the music notes are generated at 100 BPM (beats /quarter notes per minutes -4/4 

meter).  The note mixing procedure for creating a chord is shown in Figure 6-2.  By 

setting different delays while mixing the notes, we can generate the same chord 

differently. As shown in this figure, we set the delay x to be {0, T/4, T/8, T/16, T/32} 

and mix the notes to generate 5 different samples of each chord. These time delays are 

set to make synthetically generated chords as close as possible to the real chords 
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generated in the orchestra. For example, the strumming delay of strings to generate a 

chord is proportional to the tempo of the music. We circulate the note mixing such 

that note 3 will take the position of note 1, note 1 takes the note 2 position, and note 2 

takes the note 3 position.  Therefore, in total we can generate 13 samples of the same 

chord.  

 

Note 1

Note 2

Note 3  x delay

 x delay

T- 600 ms note length (100 BPM)

Effective length of the
notes (ELN) for mixing

Chord = ELN (note 1) + ELN (note 2) + ELN (note 3)Delay x = {0, T/4, T/8, T/16, T/32}

 
Figure 6-2:  Note mixing procedure for creating a synthetic chord 

 
Chord data is generated from both natural instruments such as piano, bass guitar, 

rhythm guitar, and synthetic instruments like acoustic grand piano, acoustic nylon 

guitar, electric bass fingered, and fretless bass using a Roland RS- 70 synthesizer and 

the cakewalk software. Notes generated from natural music instruments are tuned to 

the ISO 16 standard, which specifies that A4 is 440 Hz, the concert pitch (see Table 

2-1). Synthesizers and MIDI tone generating softwares generally follow the same 

standards. All generated music notes cover the range of C3 to B7.  In total, we have 

over 6 minutes of each chord sample in the synthetic data set. 

 

(a) Parameter optimisation of the polyphonic pitch representation features 

In order to optimize the parameters of the PCP and PAP features, we use a 5 state 

(including entry and exit) HMM with 2 Gaussian mixtures for each hidden state as a 
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test model to evaluate modelling accuracy when the feature parameters are changed. 

We use the entire synthetic dataset with cross-validation where, half of the data of 

each chord is used for training. The HTK toolbox [142] was used to model 48 chords 

with the HMM. We segment the music chords into 600ms beat space segments 

because the tempo of music notes which comprise the chord is 100BPM. It is found in 

our initial experiments that the chord detection accuracies of both the features (PCP 

and PAP) are higher when the frequency range for feature calculation is set to (128 ~ 

8192) Hz.  

 

The chapter 4.4.1.1 discusses technical details about the feature calculation. The 

optimized number of coefficients for PCP is 60 and they are calculated by setting 

value of C=1200 in equation (4-4) and following the other equations (4-5) and (4-6). 

This PCP feature parameter setting can improve the average chord detection accuracy 

up to 8.2%, compared to the value of C=12 (total 12 PCP coefficients) in the equation 

(4-5).  When the value of C=12, then the number of coefficients in the PCP feature 

vector is 12.  Since we approximate the harmonic and sub-harmonic to the nearest 

music tone in the corresponding octave, we have 12 coefficients for each octave in the 

PAP feature vector. Therefore in the 128~8192 Hz frequency range we have 72 

optimized coefficients.  With the optimized parameters, 81.59% and 86.28% 

accuracies are reported by both PCP and PAP features respectively.  

 

(b) Parameter optimisation of the statistical models  

We use optimized the PCP and PAP features to tune the parameters of the statistical 

models, i.e. HMM, GMM, and SVM. The technical details of the SVM, GMM, and 
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HMM classifiers are discussed in chapter 4.4.2. Experimentally discovered optimized 

parameters for these classifiers are listed below.  

 SVM: Radial based kernel function (RBF) with the C= 0.145 in Equation 

(4-10) 

 GMM:  13 Gaussian mixtures (GMs) in the GMM for each chord  

 HMM: 7 states HMM including entry and exit states, two GMs in each hidden 

states. 

Figure 6-3 shows the chord classification performance of the HMM, SVM, and 

GMM. It can be seen that the HMM outperforms the SVM and GMM in modelling 

chords.  All the statistical models are able to model PAP features better than PCP 

features. With HMMs, the PAP feature can achieve around 4% higher average 

accuracy for chord detection than the PCP feature. We then use these optimized 

parameters of both the HMM and the PAP feature for real music environment 

experiments. 
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Figure 6-3: Average chord classification accuracy of the statistical models 

 
 

6.2.2 Performance of the features and the statistical models in 

the real music environment 

We use 50 songs by cross validation, where 30 songs are used for training and 20 

songs are used for testing during each turn. In addition to the song training chords, we 
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use a synthetic dataset to train the 48 HMM models. For the ground truth we manually 

annotate the songs. Figure 6-4 shows a sample annotation of a song section.  

 

 
Figure 6-4: Manually annotated the intro and the verse 1 of the song “Cloud No 9 by 

Bryan Adams” 
 
The reported average frame-based accuracy of chord detection is 77.48%. We 

managed to determine the correct Key of all the songs. Therefore, frame-based 

accuracy of 83.25% is achieved after error correction with the Key information. 

 

Results comparison with a previous method 

Using both our data set and the procedures described in section 6.2.2 for data training, 

and testing, we compare the performances of our method with the method proposed 

by Sheh and Ellis (2003) [108]. The technical details of both the methods are 

highlighted in Table 6-1.   

 
Table 6-1: Technical details of our method and the other method  

Sampling frequency
(fs) of the data

Frequency resolution used
for feature calculation Feature Segmentation step size Statistical model

Other method 11025 Hz 2.7 Hz PCP - 24 dim Fixed length (100 ms), non
overlapping frames

HMM (3-hidden states,
32 mixtures per state)

Our method 44100 Hz 2 Hz PAP - 72 dim Beat space segment HMM (5-hidden states,
3 mixtures per state)  

 
We can achieve up to a 67.12 % frame-based accuracy with Sheh and Ellis’s method, 

while a 77.48% frame based accuracy has been reported by our method. Our 

experiments found that the inclusion of information  from harmonics, sub-harmonics 
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information, and fundamental frequencies (F0s), can more effectively characterize 

polyphonic pitches (PAP feature) than the usage of only the F0s of the pitches (PCP).  

As shown in Table 6-1, Sheh and Ellis’s method considered only the 0 to 5 kHz 

frequency range. Most of the F0s of the music pitches are within this frequency range. 

Sheh and Ellis made the correct choice in using the 0 to 5 kHz frequency range for 

calculating the PCP feature because this feature only considers the F0s of the music 

pitches. However, the harmonics and the sub harmonics of the music pitches are 

spread wider than the (0~5) kHz range. Therefore, we used a broader frequency range, 

i.e. (0~20) kHz, to account for most of the harmonics and sub-harmonics of the music 

pitches. 

 

6.3 Vocal/instrumental region detection 

Experiments have been conducted to find how robustly the musically modified 

features discussed in chapter 5.1.1 can characterize these vocal and instrumental 

regions and how accurately existing statistical learning techniques (SVM, GMM and 

HMM) model these features to classify the regions. Thus, the experimental 

procedures consist of the parameter optimization of both individual features and 

classifiers. The Vocal/instrumental region detection problem must be language 

independent. Thus, features must be least sensitive to the language of singing. The 

following subsections describe these experimental procedures. Experiments have been 

conducted using 120 popular songs sung by male and female artists with each artist 

singing ten of these songs. All the artists are categorized according to their gender and 

language. They are detailed in Table 6-2.  Each song is over 3.5 minutes in average 

length. A total of around 420 minutes of data have been used in this series of 

experiments. 



 125

Table 6-2: Details of the Artists 

English Chinese

M
al

e
Fe

m
al

e

Language

G
en

de
r Westlife

Celine Dion

Bryan Adams

Mariah Carey

Michael Learns
To Rock (MLTR)

Shania Twain Liu Ruoying (Rene)

Huang Pingyuan A Du

Li QiLeung (Jasmine)

Wen Zheng

Artists

 
 
 

6.3.1 Manual labelling of experimental data for the ground 

truth 

All the experiment results are compared with the manually annotated data. A sample 

of this manual annotation is shown in Figure 6-5.  

 

 
Figure 6-5: This manual annotation describes the time information of the vocal and 
instrumental boundaries in the first few phrases of the song “On a day like today” by 
Bryan Adams. The frame length is equal to the16th note length beat space segment 
(182.49052 ms).It is the smallest note length that can be found in the song. 
 
 
The lyrics and scores of the songs have been obtained from commercially available 

music sheets. This information is useful for our manual annotation. Even through 

listening, we can determine that the length of the vocal and instrumental regions are 

integer multiples of the smallest notes i.e. eighth note, sixteenth note, or thirty second 

note, which again confirms the idea that the length of these regions are proportional to 
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the inter-beat interval.  This manual labelling of vocal and instrumental regions in the 

song is labour intensive. Listening tests of over 3 hours have been carried out 

manually for each song, in order to find the vocal/instrumental boundaries with about 

100 ms precision. We can go to such high precision to find the region boundaries by 

using the knowledge that regions are multiples of the smallest note that can bee seen 

in a song. 

 

6.3.2 Feature and classifier parameter optimization 

A series of initial experiments are carried out to optimize the parameters of both the 

features and the classifiers used for vocal / instrumental boundary detection. The 

construction of features, which are used for characterizing the vocal and instrumental 

music signal sections, are discussed in chapter 5.1.1.  These features are: 

 Mel-frequency cepstral coefficients (MFCCs) 

 Octave scale cepstral coefficients (OSCCs) 

 Linear prediction coefficients (LPCs) and Octave scale linear 

prediction coefficients (OSLPCs) 

 Linear predictive cepstral coefficients (LPCCs) and Octave scale linear 

predictive cepstral coefficients (OSLPCCs) 

 Twice-iterated composite Fourier transform coefficients (TICFTCs) 

and  Octave scale TICFTCs  (OSTICFTCs) 

 

Exactly 44100 sample points are used for the time to frequency signal transformation 

in the process of calculating MFCCs, OSCCs, TICFTCs and OSTICFTCs. For the 

second FFT operation for calculating TICFTCs, we used 22050 points. The total 

number of points in each sub-band is used for the second FFT operation in calculating 



 127

the OSTICFTCs. As described in equation (5-20), we manually set the boundary 

limits of the bins. We found empirically that the linear boundary limits are good 

enough for calculating equal size energy bins for generating TICFTCs.  Equation 

(6-1) describes the calculation of lower and upper limits of the jth bin of the ith frame, 

where C is the number of points or the width of the bin.   

 
th th( ) ( ) for i beat space segment and the j  bin

{1 ( 1)}

j i
k

B i Y k

where C j and C j

σ

ω

ω σ
=

= ∑

= + ∗ − = ∗
 (6-1)

 
It is noticed in our previous study (Gao 2003 [41]) that 5-state HMM, including entry 

and exit states and 2 mixture models for each hidden state, perform as a good 

classifier for vocal/instrumental boundary detection. For feature parameter 

optimization, the entire data set has been used with cross validation, where 5 songs for 

each artist were used for training. For each feature, we vary the number of extracted 

coefficients between 1 and 60, and note down the vocal/instrumental classification 

accuracies. The set of coefficient(s) and the feature parameters (such as number of 

filters in MFFCs and OSCCs, value C in TICFTC), which give the highest average 

classification accuracy are considered the optimum parameters for that feature. These 

optimized feature parameters are described below in Table 6-3.  

 
Table 6-3: Optimized parameters for features 

SB-1 SB-2 SB-3 SB-4 SB-5 SB-6 SB-7 SB-8

OSLPC --- --- 10 5 5 5 5 10 5 10

OSLPCC --- --- 5 5 5 10 10 5 5 5

OSTICFTC C=50 in each sub-band --- 2 3 4 4 4 4 3 4

LPC --- --- 25

LPCC --- --- 15

TICFTC C=100 --- 15

MFCC --- 20 35

OSCC --- 96 20

Number of coefficients        {SB sub-band}Number of
filtersFeature Other parameters
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The total number of OSLPCs, OSLPCCs, and OSTICFTCs used for characterizing the 

signal frames are the sum of the coefficients in the individual sub-band (i.e. OSLPC- 

55, OSLPCC -50 and OSTICFTC-23). We then tune the classifiers in order to achieve 

their best performance in vocal and instrumental region classification. Experimentally 

found optimized parameters for these classifiers are listed below.  

 SVM: Radial based kernel function (RBF) with C= 0.145 in Equation (4-10). 

 GMM:  62 Gaussian mixtures (GMs) in vocal class GMM, 48 GMs in 

instrumental class GMM. 

 HMM: 11-state HMM including entry and exit states, two GMs in each 

hidden states. 

 

The robust vocal/instrumental boundary detector should be less sensitive to both the 

language of the song and the gender of the singer. After tuning the parameters of the 

features and classifiers, we conduct two experiments to study the language 

(Chinese/English) and gender (male/female) sensitivities of the feature. 

 

6.3.3 Language sensitivity of the features 

This experiment was conducted by dividing the dataset (Table 6-2) according to the 

language of the songs. First, we trained the HMM with Chinese songs (60 songs) and 

test with English songs. Then we repeated the test with the language reversed. The 

average frame classification accuracies of the vocal/instrumental regions are listed in 

Figure 6-6. All the features, except for the LPCC, are able to better identify vocal 

frames than instrumental frames. This implies that the features are more sensitive to 

singing voice than instrumental music. The average (Avg) performance of the OSCC 

is higher than that of other features. Thus, it is less sensitive to the language of the 
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song than the other features. The OSLPC, OSLPCC, and OSTICFTC, which account 

for the information in octaves, give higher classification accuracies than the normal 

LPC, LPCC and TICFTC, respectively. The average accuracy of the LPCC is nearly 

3% higher than the OSLPC, and it is less sensitive to languages than the OSLPC is. 

Thus, it can be concluded that feature extraction in octaves, which divides the full 

band music information into octaves and highlights them as independent octave 

information, results in lower language sensitive for both vocal signals and 

instrumental signals than treating the full band music information as whole.  
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Features OSCC MFCC OSLPCC LPCC OSLPC LPC OSTICFTC TICFTC
Vocal % 89.91 87.62 71.68 69.5 78.56 77.75 78.42 73.38
Inst  % 70.31 67.414 73.59 71.25 57.12 50.06 70.19 68.47

Average % 80.11 77.517 72.635 70.375 67.84 63.905 74.305 70.925

%

Vocal % - percentage of the correct classification of  vocal frames
Inst % - percentage of the correct classification of  Instrumental (Inst) frames
Average % - percentage of the average correct classification of  vocal and instrumental frames

Language sensitivity test

 
Figure 6-6:  Average classification accuracies of the features in the language 

sensitivity test 
 

6.3.4 Gender sensitivity of the features 

A total of 120 songs are divided equally among the four gender-language categories. 

Thus, we conduct a total of four experiments. First, an HMM is trained on the male 

Chinese artists’ songs and then tested on the female Chinese artists’ songs. Then, the 

experiment is ran again with the training and test sets reversed. We then  repeated 

these two experiments with the English data sets. 
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The average accuracies of vocal and instrumental frames classification are shown in 

Figure 6-7. Pitche of the female voices span a wider range than the male voices 

covering the spectrum of 200 to 2000Hz. Thus, spectral fluctuations are wider in 

female vocals than in male vocals. It can be seen that vocal and instrumental frame 

detection is higher with OSCCs than with other features. Again, the accuracy of 

OSLPCC, OSLPC, and OSTICFTC are higher than the normal LPCC, LPC and 

TICFTC, which implies that octave based music information extraction can better 

suppress the gender sensitive characteristics in vocal and instrumental music signals. 

We conclude that OSCC can effectively model both male and female spectral 

characteristics.   

 

Features OSCC MFCC OSLPCC LPCC OSLPC LPC OSTICFTC TICFTC
Vocal % 88.013 79.6 73.89 69.375 76.63 75 69.23 63.79
Inst  % 71.32 68.1253 60.14 57 49.88 49.0625 61.67 59.39

Average % 79.6665 73.86265 67.015 63.1875 63.255 62.03125 65.45 61.59
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Figure 6-7: Average classification accuracies of the features in their gender 

sensitivity test 
 

6.3.5 Overall performance of the features and the classifiers 

Overall correct vocal/instrumental classification accuracies are shown in Figure 6-8. 

In the experiments, all the songs by each artist are used in cross validation, where five 

songs by each artist are trained at each turn. When the number of hidden states 

increased from 3 to 9, the average classification accuracy of OSCC increased from 
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89.17% to 91.105%. This is explained by the fact that HMM can model temporal 

properties with higher a order of hidden states. Compared with the accuracies noted in 

section 6.3 and 6.4, this result presents a 10% increase in accuracy in OSCC.  

 

In music recoding, the melody contour of the instrumental line is always kept as close 

as possible to vocal pitch (Miller 1986 [84], Sundberg 1987 [118]). Otherwise, the 

music would be off tune. In our perceptual analysis (Maddage et al [75]), we found 

that there are structural similarities (e.g. chords mixtures, music scales, rhythm, and 

instrumental setup) in the instrumental music composition of songs by same singer. In 

this experiment, vocal and instrumental HMMs are trained with 5 songs for the same 

artist. Thus, it can be concluded that OSCC can characterize vocal similarities 

independent for instrumental similarities of different spaces.  

 

Features OSCC MFCC OSLPCC LPCC OSLPC LPC OSTICFTC TICFTC
Vocal % 97.44 95.016 80.26 72.98 78.85 74.31 78.57 72.73

Inst  % 84.77 69.115 71.32 65.4 64.93 57.43 70.76 67.49

Average % 91.105 82.0655 75.79 69.19 71.89 65.87 74.665 70.11
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Figure 6-8: Overall classification accuracy of features with HMM 

 
From the feature performance results shown in Figure 6-6, Figure 6-7, and Figure 6-8, 

we can conclude that OSCC is the best feature and MFCC produces the second 

highest accuracy. We repeat the same training and testing setup with SVM and GMM 

classifiers in order to compare the classifiers performances. From the results shown in 
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Figure 6-9, we can conclude that the HMM is better than all other classifiers for 

vocal/instrumental classification. With all the classifiers, the OSCC can characterize 

vocal and instrumental music more accurately than the MFCC. 
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Figure 6-9: Classifier performances in vocal / instrumental classification 

 
Music structure analysis reveals that the length of the music region is proportional to 

the beat space segment size, and that musically driven signal properties such as music 

harmonic structure and octave spectral spacing change in beat space-time steps. This 

signal behaviour reveals that within the beat space segment, the signal section can be 

considered quasi-stationary. Figure 6-10 shows the average HMM classification 

accuracy for extracted OSCC and MFFC from different frame size segments. X 1.0, X 

0.5, and X 0.25 denote that frame size is equal to the beat space size (the smallest note 

length that can be seen in a song), half, and quarter of the smallest note length, 

respectively. From the results, we notice that the features extracted from inter-beat 

proportional segments give better accuracy than those are extracted from fixed length 

segments (30ms). Thus, feature stability improves with beat space proportional frame 

size. It can be concluded that the signal section within the beat space segment can be 

considered more to be stationary than the signal section of fixed length.  In addition, 

OSCC seems to perform better than MFCC in characterizing vocal and instrumental 

frames when they are extracted even in less signal stability conditions (fixed length 

segments). 
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quarter of Beat space length  

Figure 6-10:  Effect of classification accuracy with frame size 
 
 
Results comparison with a previous method 

We compare our results with a previous method proposed by Berenzweig and Ellis 

(2001) [10].   They used the 12th order perceptual linear predictive (PLP) cepstral 

coefficients together with delta and double delta coefficients extracted from 100ms 

fixed length music frames to characterize the vocal and instrumental frames (Williams 

and Ellis 1999 [136]). Then, PLP cepstral coefficients are modelled with a HMM 

configuration similar to that of a speech recognizer (two state and single Gaussian 

mixtures per state).  We employed our training and testing procedures, described in 

section 6.3.5 to evaluate their system. Their method achieved 68.56% of frame based 

accuracy with our data set, whereas we are able to achieve around a 91% frame based 

accuracy.  

 

6.4 Detection of semantic clusters in the song  

Semantic clusters which define the structure of the popular song are Intro, Verse, 

Chorus, INST-instrumental sections, Middle eighth, Bridge, and Outro. These clusters 

are detailed in chapter 2.4. A rule based technique which incorporates music 

composition knowledge in detecting these semantic clusters has been explained in 

chapter 5.3.  
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Our experiments are conducted using 70 popular English songs (10 by MLTR, 10 by 

Bryan Adams, 10 by Shania Twain, 10 by Mariah Carey, 10 by Celine Dion, 8 by 

Westlife, 6 by the Beatles and 6 by the Backstreet Boys). The original keys and chord 

timing of the songs are obtained from a commercially available music sheet. We 

evaluate the results of the detected semantic clusters in two aspects. 

• How correctly are all the parts in the semantic cluster identified? For example, 

if 2/3 of the choruses are identified in a song, the accuracy of identifying the 

choruses is 66.66%. 

 

 

cluster semantic the
in   sections ofnumber  Actual

etc.)   versesof no  choruses, of no (i.e.cluster 
 semantic  in the identified sections ofnumber 

   
sections  theof

accuracytion Identifica
=

(6-2)

 
• How correctly are the sections detected? In equation (6-3), the accuracy of the 

section detection is explained. For example, if the accuracies of detecting 3 

chorus sections in a song are 80.0%, 89.0% and 0.0%, then the average 

accuracy of detecting chorus section in the song is (80+ 89+0)/3 = 56. 33 %. 

 

100
lengthCorrect 

section detectedcorrectly  ofLength 
(%)section  a of

accuracyDetection 
 ∗=  

(6-3)
 
 
In Table 6-4, the accuracy of both the identification and detection of structural parts in 

the song “Cloud No 9” by Bryan Adams is reported. Since the song has 3 choruses 

and they are all identified, 100% accuracy is achieved in the identification of chorus 

sections in the song.  However, the average correct length detection accuracy of the 

chorus is 99.74%.  
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Table 6-4: Evaluation of identified and detected parts in a song 

Semantic cluster names I V C INST B O

Actual number of parts 1 2 3 1 1 1

Number of parts identified 1 2 3 1 1 1

Identification accuracy of  Number of parts in a semantic cluster (%) 100 100 100 100 100 100

Average detection accuracy of the parts in the semantic cluster (%) 100 100 99.74 99.26 98.88 100

I - Intro, V - Verse, C - Chorus, B - Bridge, INST- Instrumental section, O - Outro

Both identification and detection accuracy of the parts in the semantic clusters of the song “Cloud No 9” by Bryan Adams

 
 
Figure 6-11 illustrates our experimental results for the average detection accuracy of 

different sections. It can be seen that Intro (I) and the Outro (O) have been detected 

with very high accuracy. However, the detection accuracy of Bridge (B) section is the 

lowest.  
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Figure 6-11: The average detection accuracies of different sections 

 
 

Results comparison with a previous method 

Using our test data set, we compare our method with a chorus cluster detection 

method described in Goto (2003) [49]. In his method, a 12 dimension PCP features 

are extracted from was used for characterizing 256ms. Then,  feature similarity 

analysis was performed to detect the chorus regions in a song. Table 6-5 summarizes 

the key technical differences of our method and the other method. Using their method, 

we achieved 54.33% and 66.18% accuracies for both chorus identification and 

detection respectively. With our method, accuracies were over 75%. The results 
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comparison (both identification and detection) reveals that our method is more 

accurate than the Goto’s method. 

 
Table 6-5:  Technical detail comparison of other method with ours. 

Sampling
Freq - (Fs)

Window size Frequency
resolution

Other
method

44.1 kHz Fixed length
256ms frames
with 80ms
shift

Not given.
(assumed
2 Hz)

STEP 1:  PCP
feature based
similarity regions
are detected with
time lag of 80ms
terns

STEP 2: Similarity
region selection-
threshold based on
discriminant
criterion

STEP 3: Key change
detection via
circular modulation
of the PCP vector

STEP 4: Assumptions -
1. Chorus length - 7.7~40s
2. Tested mostly on V-V-C song
structure
3. middle eighth regions are
considered as choruss

Our
method

16 kHz Beat-space
segment
(smallest note)

2 Hz STEP 1: Melody
based similarity
regions (MBSRs)
detection  via chord
detection (PAP
feature +HMM)

STEP 2: Content
based similarity
region (CBSRs)
detection  - (OSCC
feature + HMM)

STEP 3: Chorus
sections are detected
using the
information of
MBSRs +CBSRs +
heuristic rules
derived from our
survey

STEP 4: Assumptions -
1. Chorus lengths - 8 or 16 bars
2. Mostly on V-V-C and V-C-V-
C song structures
3. Middle eighth regions are not
considered as choruses

Steps for chorus detection

 
 
  The reasons closely related for the lower accuracy of Goto’s method is given below. 

1. The feature i.e. PCP feature, is highly sensitive to the harmony line (see 

chapter 4.4). Verses and choruses of many of popular songs have similar 

harmonies. Therefore, PCP feature based similarity analysis frequently 

wrongly identifies and detects verse regions as chorus regions.  

2. The fixed length signal segmentation (256ms frame size) used in the other 

method simply can’t compute the exact boundaries of chorus regions, since 

chorus regions are proportional to the tempo of the music  

3. The assumption on chorus length (7.7~40 ms) in the other method doesn’t 

assist computation on exact chorus boundaries. 

 

A Failure cases of the semantic cluster detection algorithm 

Rules are meant to be broken. Song writers always have full freedom in writing  and 

composing songs according to their own imagination and creativity.  We designed our 

heuristic rules for detecting popular song structures based on the survey discussed in 

chapter 2.5. However, some songs do not completely satisfy all our heuristic rules.  
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Our heuristic rules assume that the Intro of the song is an instrumental signal and that 

verse 1 follows the Intro. However, in some songs, the Intro is not fully instrumental. 

It contains instrumental music and humming by the singer. Our music region 

detection algorithm, as described in chapter 5.1, classifies the humming sections as 

vocal regions. This classification is correct.  As we assume that verse 1 starts right 

after the instrumental Intro, in this case, the verse 1 region would be wrongly 

identified and detected. Such a situation is explained in Figure 6-12 (a) and (b).  

Figure 6-12 (a) shows the correct song structure of the song “Can’t let go” by Mariah 

Carey, and Figure 6-12 (b) shows the detected song structure. The identification 

accuracy and detection accuracy of the different semantic clusters are shown in Figure 

6-12 (c). Even though verse 1 is wrongly detected, the harmony contour of the 

wrongly detected verse 1 is partially equal to the harmony contour of the correct verse 

1 and the choruses. Therefore, verse 2 was detected with 86.8% accuracy and all the 

choruses were detected with 82.12% average accuracy. 

 
Song: "Can't let go" by Mariah Carey

(a)

Intro
Pure inst (PI) Verse 1 Chorus 1 BridgeChorus 2 Chorus 4 Outro (Inst)Verse 2 Chorus 3Bridge(b)

Semantic cluster names I V C INST B O

Actual number of parts 1 2 4 0 2 1

Number of parts correctly identified 1 1 4 0 1 1

Identification accuracy of  Number of parts in a semantic cluster (%) 100 50 100 0 50 100

Average detection accuracy of the parts in the semantic cluster (%) 50 43.4 82.12 0 27.81 100

I - Intro, V - Verse, C - Chorus, B - Bridge, INST- Instrumental section, O - Outro

Intro
HummingPure inst (PI) Verse 1 Chorus 1 Verse 2 Chorus 2 Bridge Chorus 3 Chorus 4 Outro (Inst)

(c)

 
Figure 6-12: A failure case of our semantic clusters detection algorithm. Figure (a) 
shows the manually annotated positions of the components in the song structures. 
Figure (b) shows the detected components and their positions. Figure (c) shows the 
identification and detection accuracy of the components in the semantic clusters. 
 
Result comparison of semantic cluster detection and identification with both 

fixed length and beat space signal segmentation 
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We examine the algorithm accuracies of semantic cluster identification and detection 

when the song is segmented with fixed length 80ms segments. The song selected for 

this test is Cloud No 9 by Bryan Adams. The smallest note in the song is the eighth 

note and is of 272.977ms duration. The song has “V1 - C1 - V2 - C2 - INST - C3 – 

O” structure where all the verses are 8 bars and all the verses are 16 bars.  The 

selected fixed frame size, 80ms is close to the smallest sixteenth note in the 30 to 190 

BPM tempo range (see chapter 4.1) and over 52.5% of English songs have sixteenth 

note as the smallest note (see Figure 2-11).  

 

Table 6-6 describes the semantic cluster detection accuracies when the song is beat 

space segmented and fixed length segmented.  Even though semantic cluster detection 

algorithm managed to correctly identify all the parts in different clusters, it failed to 

correctly detect ¾ of the lengths of verses and choruses. However, the chorus 

identification and detection accuracies are better than the previous method discussed 

in Table 6-5. The close reasons for the low performances of our semantic cluster 

detection algorithm with fixed length signal segmentation are explained below. 

 
Table 6-6: Accuracies of semantic cluster detection and identification of the song 

“Cloud No 9 by Bryan Adams” based on beat space and fixed length segmentations 
Semantic cluster name I V C INST B O

Actual number of parts 1 2 3 1 1 1

BSS Identification accuracy (%) 100 100 100 100 100 100

Detection accuracy (%) 100 100 99.74 99.26 98.88 100

Fixed length Identification accuracy (%) 100 100 100 100 100 100
segmentation Detection accuracy (%) 84.12 71.34 65.78 52.98 12.1 73.47

Other method Identification accuracy (%) 66.66

Detection accuracy (%) 52.74  
 
The experimental results for detecting harmony line and vocal/instrumental 

boundaries, discussed in section 6.2.2 and 6.3.5 respectively reveals that the signal 

characterization and modelling, with fixed length segmentation is less accurate than 
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with BSS. Therefore, errors in chord detection lead to shift the melody based 

similarity regions. It is also required to detect the correct starting point of the first 

verse to detect correct semantic regions by using our algorithm. However, 

vocal/instrumental boundary detection algorithm has wrongly detected instrumental 

frames as vocal frames within the last 16% of the Intro region in this song. Therefore 

starting point of the first is incorrect. From the heuristic rules in semantic cluster 

detection algorithm point of view, all the cluster regions are measured in terms of beat 

space segment. When the fixed length segmentation is used, then the minimum of 1% 

error is added to the region detection. However, higher error rate in chord detection 

and vocal/instrumental boundary detection with fixed length segmentation has led the 

majority of the errors in semantic cluster detection in the song.  

 

6.5 Summary of the experimental results 

We have conducted these experiments to evaluate our methodologies for layer-wise 

information extraction in the conceptual music structure pyramid (see Figure 1-1). 

Compared to speech information processing, which employs fixed length 

segmentation, the fundamental change we propose in the thesis is the Beat Space 

segmentation (BSS).  To conduct the BSS, we first calculate the smallest note that can 

be seen in a song, using the algorithm discussed in chapter 4.1. We assume the meter 

of the song is 4/4, which is widely used in popular music. We have achieved 89.16% 

accuracy in detecting the smallest note length in 120 songs with ±30 ms error margin. 

After BSS, we compare the Pitch Class Profile (PCP) feature and the Psycho Acoustic 

Profile (PAP) feature for their effectiveness in modelling music chords. The PAP 

feature incorporates the knowledge of fundermental frequencies, harmonics and sub-

harmonics generated by music tones. The PCP feature mainly considers the 
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fundamental frequencies of music notes in all the octaves and project them onto the 

twelve notes in one octave. It is found that the optimized PAP feature with HMM 

models the 48 chords with the highest accuracy. By running the error correcting 

algorithm which we discussed in chapter 4.4.2, we are able to correctly detect the 

music chords of 50 songs with a 83.25% frame based accuracy.  Compared to fixed 

length segmentation, BSS can improve the average chord detection accuracy by 10%. 

 

 Music regions are the information in the 3rd layer of the structural pyramid.  We 

incorporate octave scale music property fluctuations for feature design. We found that 

Octave Scale Cepstral Coefficients (OSCCs) are more robust than Mel Scale Cepstral 

Coefficients (MFCCs) in detecting vocal and instrument regions. Out of 120 songs, 

OSCCs with HMM are able to achieve a frame based average accuracy of 91.11%. 

 

Information in the 4th layer includes semantic music clusters, i.e. Intro, Verse, Chorus, 

Middle eighth, Bridge and Outro. We have explained the results of our popular song 

structures survey in chapter 2.5.  Chapter 5.3 explained our rule-based semantic 

cluster detection algorithm. Out of 70 songs, we are able to correctly detect these 

semantic clusters with over 70% accuracy.   
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7 Applications 

Music structure analysis is essential for music semantic understanding, and is useful 

for developing many applications in various domains such as musicology, 

psychology, and information technology.  In this chapter, we outline how the layer 

information in the music structure can be helpful in developing these applications.  

 

7.1 Lyrics identification and music transcription 

Lyrics identification in a song is useful for many applications. One direct application 

is automatic lyrics alignment in Karaoke music. Wang et al 2004 [133] presented a 

method to align the text of lyrics with a song’s tack. However, the key challenge, 

music audio to text conversion, remains unsolved. Singing voice carries more 

information than the music (Xu et al 2005 [140]). Thus, to understand the higher 

semantic structure of the music (the 4th and higher layers in Figure 1-1), we need to 

extract the meaning(s) of the vocal phrases. Lyrics identification can help to decode 

semantic meaning and analyze the music scenes. These music scenes are useful for 

developing music documentaries.   

  

Both time information extraction and vocal/instrumental boundary detection are the 

preliminary measures for lyrics identification and music transcription. The primary 

information required for formulating these tasks are summarized in Figure 7-1. Since 

music phrases are constructed with rhythmically spoken lyrics [100] (see chapter 2.3 

Figure 2-8, Figure 2-8), time analysis and beat space segmentation can be used to 
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identify the word boundary in the polyphonic music signal. Singing voice 

enhancement by the reduction or separation of background music reduces the 

complexity of identifying voiced/unvoiced regions within the beat space signal 

segment (see Figure 5-22). This direction would simplify the lyrics identification 

process.  

 

In addition to vocal/instrumental region detection, chord detection extracts the 

pitch/melody contour of music. Further analysis of beat space segmented music 

signals helps to estimate the signal source mixture. This is the turning point of music 

transcription. 

 

Beat structure Analysis

Harmony / melody line detection

String type (Guitar, Piano)
Bow type (Violin, Cello)
Percussion type (Drums cymbals)
Blow type (Mouth organ, flutes)
………….

Meter,
Tempo,
Smallest note length,
Bar measure

Semantic region detection

Silence

Instrumental regions

Vocal regions

Male female
Key of the music
Chord progression

Music signal

 
Figure 7-1: Primary information required for lyrics identification and music 

transcription 
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7.2 Music Genre classification 

Music genre is a high-level index of the music content.  It is useful for many 

applications such music information retrieval MIR systems, music summarization and 

singer identification. 

 

Music content analysis is necessary for developing a robust genre classification 

system.  It is more difficult to discriminate between music genres than to discriminate 

music from speech or other sounds. Several research efforts focus on music genre 

classification of MIDI files. Shan et al. (2002) [106] investigated the classification of 

music style by melody from a collection of MIDI music. Chai [3] employed HMM to 

classify the melodies of Irish, German, and Austrian folk songs. Dannenberg et al. 

(1997) [24] extracted 13 features from MIDI and used different classifiers to 

recognize the music style. However, since MIDI data is a structured format, it is easy 

to extract features according to its structure. Real sounds such as wav and mp3 files 

are different from MIDI, meaning that MIDI style classification is not practical for 

real applications. Matityaho and Furst (1995) [81] discriminated between classic and 

pop music by using the average amplitude of Fourier transform coefficients and 

neural networks. Soltau et al. (1998) [113] classified music into rock, pop, techno, and 

classic genres using HMM and ETMNN to extract temporal structure from the 

sequence of cepstral coefficients. Han et al. (1998) [50] classified music into classic, 

jazz, and pop genres using simple spectral features and the nearest mean classifier. 

Pye (2000) [93] used Mel-frequency cepstral coefficients (MFCC) and Gaussian 

mixture model (GMM) to classify music into six types; blues, easy listening, classic, 

opera, dance, and rock. Jiang et al. (2002) [56] used octave-based spectral contrast 

features and GMM to classified music into five types. Tzanetakis and Cook (2002) 
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[126] trained GMM models using timbral texture features, rhythmic content features, 

and pitch content features in order to differentiate between 20 music genres.  

 

All these methods have followed fixed length segmentation, feature extraction, and 

parameter modelling, which are similar to speech processing techniques. In our 

previous method, Xu et al 2003 [139], genre hierarchical classification techniques 

were proposed, yet the robustness of the genre classification systems was not 

satisfactory. Shaoxi et al 2004 [106] incorporated beat information for genre 

classification.  We believe that by extracting layer-wise structural information in the 

music, we can design more robust genre classification systems, as each genre has an 

identical beat structure that’s correlated with harmony/ melody contours and 

instrumental setup.  

 

7.3 Music summarization 

The creation of a concise and informative extraction describing the original digital 

content is extremely important in large-scale information organization and processing.  

Music content summarization has a high commercial value. Advertising summaries 

instead of full length songs in customer interaction web pages can be a way to have 

users from illegal downloading. Many music recording companies such as EMI, Sony, 

and PolyGram invest a lot of money into manually generating music summaries of 

newly released songs for advertisements on websites and music radio stations. Manual 

summarization is time consuming and labour intensive. Automatic music 

summarization is the straightforward answer to this problem.   
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A number of techniques have been proposed for music summary generation (Logan 

and Chu 2000 [69], Xu et al 2002 [138], Lu and Zhang 2003 [70], Chai and Vercoe 

2003 [19]). All these approaches face the difficulties of avoiding content repetition 

and detecting boundaries of content-based similarity regions (i.e. chorus sections) 

which are assumed to be most suitable for music summarization.  In regards of legal 

issues, a summary should be a continuous clip of the original song, and the merging 

of multiple clips is not allowed. Thus, this task’s key challenge is the choosing of  a 

song section which represents the semantic meaning of the entire song.  This kind of 

music summarization can be considered “Legal”. However, a legal summary would 

not contain all the scenes in the song. Rather, it would contain the most important 

music scene (or the key message). This presents a big drawback in representing a 

concise summary of the full music content. To represent all the important elements of 

the song, we need to merge these clips. This described “Technical Summary” is useful 

for music information retrieval (MIR) systems, since low-level coefficients of the 

technical summary can be considered as agent which represents the entire music 

content and interacts with the query request in order to reduce the query processing 

time. The following subsections discuss how music structural analysis can be used for 

legal summary making and technical summary making. 

 

7.3.1 Legal summary making 

Summary making is subjective. Since the chord patterns (melody and harmony 

contours) in verses and choruses are detected, perceptually attractive melody regions 

with continuous verse chorus sections can be used to generate a good summary 

(Maddage et al 2004 [75]). The rhythm information is useful for aligning music 

phrases so that the generated summary has a smooth melody. Figure 7-2 illustrates the 
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process of generating a music summary using music structure analysis. First, the 

choruses are detected using our proposed method. Since the chorus occurs more than 

once in a song, we can create the music summary based on just one of them. If the 

length of selected chorus is less than the desired length of the final music summary, 

we can include the music phrases anterior or posterior to the selected chorus. For the 

summary to be acceptable, this music phrase should be intact, which can be achieved 

by proposed rhythm analysis, as music phrases in a song last a fixed number of music 

bars (generally, 4, 6 or 8 bars for popular music). 
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Music summarization in
desirable length
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Figure 7-2: Illustration of music summary generation using music structure analysis. 

 
 

7.3.2 Technical summary making 

Generally, music scenes embedded in music structures are correlated with the genre 

of the song. Further, there are two types of music. One type is pure instrumental 

music, and the other type is instrumental mixed or vocal music. When the song is of 

pure instrumental, music scenes are sensitive to the harmony/melody created by 

different instruments, whereas when the song is vocal mixed, many of the music 

scenes are described by vocal phrases. 
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The basic idea of technical summary generation is to merge as much important 

information as possible in the required summary length. In order to detect important 

scenes, we need to first identify the nature of the song (i.e. its genre and whether it’s 

composed of pure instrumental music or instrumental mixed vocal music).   

 

Genre classification
(Rock Pop Classic Jazz)

Song

Pure instrumental music Mix music (vocal and instrumental mix)

Genre specific instrumental music
sensitive feature extarction

Genre specific vocal
sensitive feature extarction

Clustering

Cluster 1
Cluster 2 Cluster 3 Cluster i Cluster n

Clusters are arranged according to
the decending order of the cluster

distances

Selected beat space segmented frames are rearranged according to the time

Technical summary

 
Figure 7-3:  Technical summary making steps 

 
Figure 7-3  illustrates the block diagram of the proposed technical summary making 

steps.   The first step, genre identification, was described in section 7.2.   After the 

song is identified as pure instrumental or mix music, we can define content specific 

features to characterize the content. For example, power related features such as 

power spectrum, amplitude envelopes, and cepstral coefficients can be used for pure 

instrumental music characterization. For mixed music characterization, vocal related 

features such as LPCC, OSCC spectrum flux, zero crossing, and cepstrum flux  are 

used (Xu et al 2005 [140]). 
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Similar music scenes at different locations of the song are grouped with the help of 

clustering tools. It is useful to embed semantic meaning in the clusters so that 

different clusters represent different music scenes. Cluster distance measure is a good 

tool in that respect. When the cluster distance is high, it is more likely that those 

clusters contain redundant information (i.e. different music scenes). Finally, we can 

pick beat space segmented frames from different clusters to make the summary.  By 

applying audio fading techniques for smooth perception, we can create a perceptually 

smooth technical summary. It is a difficult to task to define generic procedure to 

evaluate the quality of the generated summaries. A subjective listening test is one 

method which can be used for summary evaluation.  

 

7.4 Singer identification system 

Singer identification is one piece of useful information which is required in music 

information retrieval (MIR) systems. Singing voice is human beings’ oldest musical 

instrument. Human auditory, physiology, and perceptual apparatuses have evolved to 

a high level of sensitivity to the human voice. After over three decades of extensive 

research on speech recognition, such technologies have matured to the level of 

practical applications. However, speech recognition techniques have limitations when 

applied to singing voice identification, because speech and singing voice differ 

significantly in terms of their production and perception (Sundberg 1987 [118]).  

 

Several approaches have been proposed to identify the singer of a query song from 

databases. Zhang 2003 [146] trained GMMs using Linear Prediction derived Cepstral 

Coefficients (LPCC) calculated from manually labelled vocal sections of each singer. 

In this method, the beginnings of the vocal sections were detected using simple 
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threshold settings calculated from extracted features, i.e. energy, zero crossing rate, 

spectral flux, and harmonic coefficients. It was assumed that vocal sections lasted for 

up to 10 to 30 seconds, and these vocal sections were fed into GMMs for further 

singer identification. Berenzweig et. al., 2002 [11] trained a multilayer perceptron 

neural network with LPCCs to detect the vocal passages in the song, and the same 

neural network was trained with Mel-Frequency Cepstral Coefficients (MFCC) for 

singer identification. Kim and Brian 2002 [62] used inverse combo filter bank to 

analyze the harmonicity, and the vocal regions were detected by setting a fixed 

hatmonicity threshold. Then, GMM and SVM classifiers were trained with the warped 

Linear Prediction Coefficient to identify the singer. Although the above mentioned 

methods have achieved frame level accuracies of up to 80%, their performances are 

inefficient due to reasons given below. 

 Experiments are performed on studio recorded pure vocal music, not 

on normal instrumental mixed vocal music. 

 Vocal/instrumental boundary detection in the music is inaccurate.  

 Music knowledge has not been effectively exploited for modelling the 

singers in existing (mostly bottom-up) methods. 

 

We believe that a combination of the bottom-up and top-down approaches, which 

combines the strengths of low-level features and high-level music knowledge, i.e. 

structural information of the music, can provide a powerful tool for improving system 

performance.   

 

Usually, in their albums, popular singers follow similar instrumental setup and music 

patterns such as chord combinations and music scale changes. Therefore, the melody 
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contour of a song is closely correlated with the formant structures of the singer. In the 

proposed singer identification technique, in addition to vocal tract characteristics such 

as formant and harmonic structures of the singing voice, we also use the structural 

similarities of the instrumental music sections of the same singer, in order to identify 

the singer with a high confidence level (Maddage et al 2004 [74]).  

 

7.4.1 Singer characteristics modelling at the music archive  

Figure 7-4 illustrates the proposed steps for modelling both singer and surrounding 

instrumental music. New techniques for music segmentation and vocal / instrumental 

region detection are explained in chapter 4 and chapter 5, respectively.   

 

Vocal model

Instrumental sectionsVocal sections

Feature extraction and  Semantic region detection (vocal / instrumental)

Vocal sensitive feature extraction
(Sub divide the BSS frames to enhance the

singing voice dynamics)

Harmony fluctuation sensitive feature
extraction from beat space segmented

frames

Instrumental model

Beat space segmentation (BSS)

Song data base

 
Figure 7-4: Vocal and the relative instrumental section modelling of songs of same 

singer. 
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As discussed in section 2.3 in chapter 2, in rhythmic phrases, the lengths of words are 

proportional to the beat space signal segments.  However, in order to model the 

singer’s vocal structure, we need to break the beat spaced signal segments into smaller 

sub-frames (20~40ms) which increase the sensitivity of the signal at the phonetic 

level. Then, vocal structure sensitivity features (E.g. Octave scale cepstral 

coefficients-OSCC and linear predicted coefficients’ derived cepstral coefficients-

LPCC) are extracted from the sub-frames. To characterize harmony transition and 

instrumental dynamics, sensitive features (E.g. OSCCs) are extracted from the beat 

space segmented instrumental frames. Then, existing statistical/temporal modelling 

techniques can be employed to build a singer model, which includes both vocal and 

instrumental models. 

 

7.4.2 Test song identification 

To identify the singer of a test song, the vocal and instrumental regions of the song 

are identified. First the content of these regions are characterized using vocal and 

instrumental feature vectors, respectively. The block “Feature extraction process of 

singer model” in Figure 7-5 is same as the “Feature extraction” in Figure 7-4. The 

vocal feature vectors of the test song are fed to the vocal models of different singers in 

the database to find a close match. Similarly, instrumental feature vectors of the test 

song are matched with known instrumental models in the database. The singer model, 

which gives the highest match of both vocal and instrumental models with the test 

song, is considered the singer of the test song.  The combination of vocal and 

instrumental model responses for singer identification decision making is discussed 

below.  
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Yi in Figure 7-5 is the final response of the ith singer model in the test song and is 

calculated using Equation (7-1), where the scalar weights α and β are the degrees of 

the responses of both vocal and instrumental models respectively. The calculation of 

total vocal or instrumental model (i.e. i

InstorVocal
Model ) corresponding to the vocal 

or instrumental frames of the test song is described in Equation (7-2), where n is the 

total number of frames of either the vocal or the instrumental model. 

 
. .i iiY Vocal Model Instrumental Modelα β= +

 
(7-1) 

∑=
n

j

i

nstVocal or i

i

nstVocal or i
(j)ModelModel  (7-2) 

 
For a test song, if Yi is greater than the response of the rest of the models, the ith singer 

model will be assigned to be the singer of the test song. By taking vocal and 

instrumental model behaviours into consideration, the scalar weights α and β can 

experimentally be computed. 
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Figure 7-5:  Singer identification of the test song 

 
 
The combination of vocal and instrumental models in singer identification system is 

suitable for MIR systems because in query by humming, we are more likely to map it 

into harmony contours than vocal models. When the clip of the song is the query 

segment, we can benefit for using either or both of the vocal and instrumental models. 
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7.5 Music information retrieval (MIR) 

Ever increasing music collections require efficient and intuitive methods of searching 

and browsing. Music information retrieval (MIR) explores how music databases can 

best be searched by providing input queries in music form. These queries can be in the 

form of text based, humming, or a clip of music. For people who are not trained or 

educated in music theory, humming is the most natural way to formulate music 

queries. MIR systems can help musicians interact with other music according to their 

interests, which may include composition level and background information (history).  

 

Many commercial players read the song information which is written in the header 

file (in text format) of the original recoding  of the song.  However, when the original 

song is mixed, edited, or clipped, such song information can only be retrieved via 

analysis of the song content. For example, Figure 7-6 (upper) shows the original 

album “Sings the Standards“ played by Cliff Richard in Windows Media Player 10.  

We can retrieve all song titles, singer names, genres, and online shopping information.  

However, when the same album is converted to wave format and in the same player, 

we can no longer find such information about the album (Figure 7-6 bottom).  This 

problem illustrates the importance of music content analysis. 

 

In most MIR by humming systems, a fundamental frequency tracking algorithm is 

used to parse a sung query for melody content (Ghias et al 1995 [44]). The resulting 

melodic information is used to search a music database using either string matching 

techniques (McNab et al 2000 [83]) or other models such as Hidden Markov Models 

(Shifrin et al 2002 [111]). However, due to the lack of the music structure information, 

these MIR systems can solve only the simple and synthetic “toy” problem. 
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Original album (CD) is played using Windows Media Player (version 10)

Song name and album
information are missing

in the conversion

Name of the song

Name of the artist

Same album is
first converted
to Wave files

and then played
on Windows
Media Player
(version 10)

Singer information
Artist name - Cliff Richard

Genre - Pop
Album name - Sings the Standards

 
Figure 7-6:  Singer information retrieval comparison  when original album and  
converted wave files are played on Windows Media Player (version 10).Test album is 
Sings the Standards by Cliff Richard.  
 
 
Figure 7-7 illustrates the proposed architecture and the major components of a MIR 

system. The input query can be either microphone input such as a duration of 

humming, a clip of pre-recorded music, a text-based description of the song, or a 

combination of the above mentioned query types. The audio-based queries are then 

pre-processed to extract important information, which can help the query matching.  

Complex pitch contour is an important piece of information that can be extracted from 

the audio-based queries. Since unprofessional vocalists may generate humming 

queries, the pitch contours of the query are then fine-tuned to match the possible 

harmonic/melody contours.  Audio clip query exhibits more accurate pitch contours 

than audio humming query since they are generated by the professionals in a high 

quality sound recording environments. In addition to pitch contour, information about 

the harmony /melody line, possible beat structures, and information about the 
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instrumental/vocal information can be gathered from the audio queries with the help 

of music structure analysis tools.  Text based query is limited to how much 

information the user remembers about the song, which can include instrumental setup,  

genre, singer gender, language, and additional music information like Key, tempo, 

meter, etc. These queries are then transmitted over the channel to music data archive 

which is at remote location.  
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Figure 7-7:  Architecture of music information retrieval system 

  
 
Music data archive management itself is an open research problem because of the 

difficulty of music data indexing. Achieving of MIR real sounding recordings, 

requires extracted information such as instrumental setup, rhythm, harmony/melody 

contours, key changes, and multi-source vocal information. The blocks of the MIR 

system, music summarization, music transcription, singer identification, and music 
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genre classification, are discussed in the previous sections.  To support the query 

decision making, we believe that music content should be grouped into a high 

dimensional space based on genre, singer, and transcription. Such a grouping requires 

different levels of understanding of the music content. This is where music structural 

analysis plays a big role.  The technical summary of the music content, an agent that  

represents the entire song, can be used to match the query to the song. The agent’s 

interaction with the query can reduce the retrieval time.  

 

7.6 Music streaming  

There has been great concern regarding how to stream media content in real-time over 

different networks, which gives a chance for distant viewers to experience real-time 

interaction with the same event. For example, listening to a live music concert which 

is held in a remote location or listening to a music station from a different country 

would be interesting opportunities for distant music fans to experience in real time. 

Figure 7-8 shows an online music station application in Yahoo. This application, 

known as Yahoo Music Launchcast, allows users to listen to, select, and skip songs of 

their choice. The concept of media streaming has drawn the public’s attention for over 

two decades, yet the quality of service (QoS) at the receiver continues to hinder 

adoption due to various limitations in modern networks.    

 

We are particularly concerned about how to solve or improve the problem of 

continuous music streaming over unreliable networks such as Internet and wireless 

networks. The objective of packet loss recovery schemes in audio streaming is to 

reconstruct the data packets so that the received audio is perceptually 

indistinguishable or sufficiently similar to the original audio. Some schemes, which 
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have been proposed for audio streaming mainly for speech, were well surveyed in 

Perkins et al (1998) [91] and Wah et al (2000) [130].  Different error concealment 

schemes are discussed in the following sub sections to give an idea as to where the 

music structural analysis can play a major role in improving perceptual QoS in music 

streaming.  

 

Streaming music on Yahoo Messenger -Yahoo Music  Launchcast
 

Figure 7-8: Music streaming software “Yahoo Music Launchcast Radio” given in 
Yahoo messenger for listening to the songs played at different music stations. 
 
 
 

7.6.1 Packet loss recovery techniques for audio streaming 

Packet loss recovery techniques for voice and speech transmitted over networks such 

as the Internet have achieved high perceptual QoS based on single channel audio 

transmission. Yet, stereo channel and multi-channel audio transmission are commonly 

practised for high bandwidth music streaming. Existing error concealment methods 
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can be divided into 3 types, and the key challenges of these methods are mentioned 

below. 

 Receiver-based methods - They are only effective if the packet loss is 

infrequent, the packet size is small, or the signal behaviours are quasi-

stationary.    

 Network based methods – Must consider system latency and availability of 

feedback channels  

 Sender-Receiver based method – Must balance between redundancy and QoS. 

 

(a)  Receiver based schemes 

Receiver based error concealment schemes act independent of from the sender 

information of the packet. Concealment is done by analyzing the behaviours of the 

neighbouring packets. The possible techniques are given below. 

1. Packet replacement – A lost packet is replaced with silence, white noise, or the 

packet before or after the lost packet. 

2. Packet repairing – different interpolation or extrapolation techniques 

(Kauppinen, 2002 [61]) can be applied for packet repair. Time domain or 

frequency signal characteristics of neighbouring packets can be used for to 

predict  the lost packet.  

 

These techniques work well only when losses are infrequent and when packet size is 

small. Due to the high probability of loss in the Internet and other networks like 

wireless networks, these techniques are not promising. 
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(b) Network-Based schemes 

The activities of networks and their controlling protocols are predefined. Thus, 

network based error concealment techniques are narrow in scopes due to the low level 

of involvement of high computing in the routers and the other controlling hubs.  The 

retransmission or duplicate transmission of packets without receiver 

acknowledgement is a good option within local area networks, in order to avoid 

packet loss. 

 

(c) Sender-Receiver Based schemes 

At sender’s end, this scheme analyse the signal and encode the information. At the 

receiver’s end, those encoded information is decoded to recover the lost packet. These 

schemes are sometimes called Sender Based schemes due to the bigger role played by 

the sender side. However, from our point of view, the sender and the receiver hold 

equal roles in the error concealment task. The existing schemes are discussed below. 

 
• Retransmission 

In the sender- receiver interaction, the simplest error concealment scheme is the 

retransmission of the lost packet with the receiver’s acknowledgement.  

 
• Forward error correction (FEC) 

Several forward error correction schemes have been proposed in the literature 

(Perkins et al 1998 [91]). Two schemes are shown in Figure 7-9. First, signal analysis 

is carried out at the sender’s end. Then, information about the signal characteristics 

are embedded with the original audio stream. At the receiver’s end, the sent signal 

characteristics information is utilized for lost packet recovery.  In the scheme shown 

in Figure 7-9 (a), packet FEC carries the information about the signal characteristics 
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of packet 1, 2, 3, and 4. In general, this scheme can be formulated as (n-k) additional 

packets are transmitted with k original packets. This concept can be seen as a parallel 

FEC. In Figure 7-9 (b), a packet carries information about the next packet to be sent. 

This concept can be called series FEC. 

 
1 2 3 4

21 32 43

21 43

1 2 3 4

1

1

1 2 3 4

1 2 3 4 FEC

1 3 4 FEC

1 2 3 4

Original stream

Packet loss

Reconstructed stream

Forward error correction

(a) (b)  
Figure 7-9: Forward error correction (FEC) mechanism for packet repair 

 
 

• Interleaving 

Here, the packet size is divided into smaller sections called “Units”. These units are 

re-sequenced before transmission. The formulation steps of the interleaving scheme 

are shown in Figure 7-10.  It can be seen that the loss of single packet in interleaving 

scheme results in multiple small gaps in the reconstructed stream at the receiver’s end. 

This scheme may not be suitable for music streaming since these small gaps in the 

reconstructed stream may distract the audience. 

 
Original stream

Interleaved stream

Packet loss

Reconstructed stream1 2 4 5 7 8 9 10 12 13 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 7 9 13 16 10 2 8 3 6 11 14 4 12 15 5

1 7 9 13 16 10 2 8 4 12 15 5

 
Figure 7-10: Interleaving mechanism for packet repair 
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7.6.2 Role of the music structure analysis for music streaming 

The brief survey of existing error concealment techniques in section 7.6.1 reveals that 

an efficient scheme for error repairing at the receiver’s end needs information from 

the sender. Thus, sender-receiver based schemes, especially media specific FEC 

schemes, are more common in music streaming over networks. Few techniques have 

been proposed for packet loss recovery in music streaming. Wang et al 2004 [134] 

discussed a multi-stage interleaving scheme which reorganizes units by taking 

perceptually less significant frequency components of the packets into consideration. 

An unequal sized packetization method was proposed for the subsequent packet 

transmission. The drawback of this method is that it guarantees equal treatment 

(frequency domain) for all music content, though the different frequency ranges in the 

music have significantly different impacts on the human auditory system. Another 

approach, the content–based unequal error protection technique (Wang et al 2003 

[132] ), effectively repairs lost packets which have percussion signals. Wyse et al 

2003 [137] synthesized percussion sounds in the music signal using LPCs and FFT-

derived power spectrum coefficients. These coefficients are used as an audio 

codebook for packet recovery at the receiver end. However, these methods are 

inefficient at repairing lost packets, which contain signals other than percussion 

sounds (i.e. vocal signals and string, bowing & blowing types of instrumental signals).  

 

We conclude that the identification of music structure is necessary for an efficient 

packet loss recovery scheme. For example, instrumental/vocal boundary detection 

simplifies signal content analysis at the sender’s side.  Such analysis, together with 

pitch information (melody contour) is helpful for better signal restoration at the 

receiver’s side. Content-based similarity region identification can be argued to be 
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another music signal compression scheme. Since structure analysis helps to identify 

content-based similarity regions such as chorus and instrumental music sections, we 

can avoid re-transmitting packet from similar regions and reduce bandwidth 

consumption. Figure 7-11 shows the schematic representation of the sender-receiver 

based structural information embedded packet loss recovery scheme.  While 

designing such an architecture, there is always a trade off between bandwidth 

consumption and computing complexity. These are all open issues to be taken into 

consideration at the design stage.   
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Figure 7-11: Sender-receiver based music information embedded packet loss 

recovery scheme 
 
 
 
 



 163

7.6.3 Music compression 

The greatest challenge in music compression is how to deal with the trade-off  

between the size of the music file (storage space) and the loss signal information 

(perceptual quality). MPEG-1, MPEG-2, ATRAC-2, ATRAC -3 and DOLBY AC-3 

are some existing compression techniques. However, these compression approaches 

are not robust. Figure 7-12 details the architecture of the most popular compression 

technique (MP3) in the world.    
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Figure 7-12: MP3 codec architecture 

 
 

The most important block in the compression scheme is the signal characterization 

block, where different signal processing techniques are used to represent the signal 

sections. Existing schemes at the encoding stage commonly use fixed length signal 

segmentation and logarithmic filter-banks to extract signal indexing coefficients from 
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the frequency domain. The psychoacoustic model guides the process of extracting 

these coefficients. 

 

Earlier research on music perception reveals the strong relationship between the 

intervallic structure (harmonics) of the music tones and our cognitive mechanism 

(Pitts and McCulloch 1947 [92], chapter 2. section 3.2).  The music structure, which 

reasons the cognitive research findings, is useful for designing or modifying the signal 

characterization block. With the help of beat space signal segmentation, within which 

the music signal can be considered quasi-stationary, octave scaling in the filter design 

can minimize the loss of music information in the compression.  

 

Compared with conventional audio compression techniques such as MP3, which 

produces a 5:1 compression ratio, incorporation of music structure analysis 

(especially with semantic similarities in the music) produces much higher 

compression ratios, which can reach up to10:1 or even higher. 

 

7.7 Watermarking scheme for music 

Existing watermarking techniques are evenly applied to the entire music content. 

However, these techniques may not detect the watermark on the randomly clipped 

song section.  We can use music structure information to design a robust 

watermarking scheme so that there is a high probability that the watermark can be 

detected in any possible music extract of the song.  For example, listeners can 

remember and recall chorus sections better than verse sections. So, there is a high 

probability that the song clips contain choruses rather than verses. With this 
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knowledge, we can design a watermark scheme which gives higher priority to 

watermarking chorus rather than verses.  

 

A song is measured in terms of bars, and all music content fluctuations are 

synchronized according to the beat structure. Most of the editing, mixing, or clipping 

of the song are proportional to multiples of the beat space segments of the song. Thus, 

beat space level watermarking is better than evenly distributed watermarking  from 

the point of view of testing a section of the music. Figure 7-13 describes the design 

level architecture of the music content specific watermarking scheme.  With the help 

of structural information, the music is segmented at the beat level.  Instrumental 

/vocal  region detection can identify the different source mixtures in the song, which 

then gives useful information for content specific watermark design. Watermark 

testing scheme follows the reverse procedure. Structural analysis of the watermarked 

music content assists the scheme in identifying the watermarked location and nature 

of the watermark for its recovery.    
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7.8 Computer aid tools for music composers and 

analyzers 

Not all musicians can  naturally analyze music content. Therefore, it is useful  to have 

computer music tools which can assist musicians to analyze not only others’ music 

but also their own music.  Music transcription and summarization can aid in the 

understanding all music. Students who are trained to become musicians mostly 

analyze music which not composed by themselves. They incorporate pieces of those 

music to bridge a gap between creating new music  and making mixes out of bits and 

pieces. To edit such music, music tools  to find beat structures (tempo, meter, and 

time signature) of the pieces are required to create smooth drum, harmony, melody 

loops, and content mixers. Being able to study one’s own music is the best way to 

understand one’s own mistakes. All the music structure analysis ideas discuss in this 

thesis can produce a complete set of tools which can help musicians analyze music 

from a completely objective point of view and a logical prospective.  

 

Music region detection, which isolates and extracts individual vocal and instrumental 

parts of the music, can create whole new ways of composing music. Today, DJs (Disc 

Jockeys) are making mixers from manually cutting vocal phrases and music pieces 

from various songs. However, with the help of computer-aid music structure analysis 

tools, they can effectively analyze much bigger music archives in a short time and 

find an interesting music clips.  By combining these extracted clips we can create 

remix version of songs which sound much more organic and naturally miraculous that 

the original one.  
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7.9 Music for video applications 

Automatic insertion of music into video content explores efficient ways of making 

different audio-visual documentaries. For example, TV channels like National 

Geographic would like to have an audio-visual platform which can assist in the 

selection of different background music for visual content. Entertainment channels 

like MTV may be interested in making automatic music videos, and sport channels 

like ESPN may consider generating music sport videos.   

 

To formulate these audio-visual applications, it is required to understand both audio 

and video contents. Music structure analysis can help in selecting suitable music for 

the visual content.       
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8 Conclusions 

8.1 Summary of contributions 

This thesis emphasizes a music structure analysis framework which integrates music 

theory knowledge with digital audio signal processing techniques. The conceptual 

music structure pyramid has been proposed to explain the important components of 

music structure for the popular songs genre (chapter 2). Then, we develop a 

framework to extract the important pieces of information in the music structure 

pyramid (i.e. time information, harmony, music regions, and music semantics).  The 

contributions of this thesis include: 

 

1. Music segmentation 

A new segmentation technique, i.e. Beat Space Segmentation (BSS), has been 

proposed to replace conventional fixed length segmentation for processing the music 

information in the 2nd, 3rd, and upper layers of the music structure pyramid. In the new 

technique, we segment the music into the smallest note length frames. The idea 

behind the BSS is that music information within the beat space signal segment can be 

considered to be more stationary than those within the fixed length signal segment. 

The experimental results have convinced that this idea, which takes into account 

knowledge of music composition, leads to better music information extraction 

procedures. Our rhythm extraction algorithm is able to detect the smallest note length 

with a 89.16% accuracy. 

 

 



 169

2. Harmony/melody line detection (information in the 2nd layer of the pyramid) 

We have compared the psycho acoustic profile (PAP) feature with the pitch class 

profile (PCP) feature for their performances in characterizing polyphonic music 

signals. The PCP feature, which has been commonly used for music chord detection 

in the literature, accounts for only the effects of the fundamental frequency (F0s) of 

the music notes. The PAP feature extracts the F0s, harmonics, and sub-harmonics of 

the music note. Laden and Keefe (1989) [67] used the PAP feature to differentiate 

between two chord types (Major and Minor). Yet the PAP feature has not been 

thoroughly studied for individual chord detection. Our experiments have revealed that 

the PAP feature is more robust than the PCP feature for chord detection. Three 

statistical learning techniques, i.e. HMM, GMM, and SVM, have been experimented 

for modelling the chords. HMM performs better in modelling the chords than SVM 

and GMM.  Then, we apply music knowledge of the Key to correct the chord 

detection errors. Our method achieved 10% more frame level chord detection 

accuracy than an existing method. 

  

3. Music region detection (information in the 3rd layer) 

For music region detection, we apply music knowledge to formulate features which 

characterize signal sections that belong to different regions (vocal/instrumental). 

Music signals have octave varying temporal characteristics. We modify speech 

analysis features, i.e. Linear Prediction Coefficients (LPCs), LPC derived Cepstral 

Coefficients (LPCCs), and Mel Frequency Cepstral Coefficients (MFCCs), to capture 

octave varying temporal properties of the music signal. These modified features are 

called  Octave Scale LPCs (OSLPCs), Octave Scale LPCCs (OSLPCCs), and Octave 

Scale Cepstral Coefficients (OSCCs). We propose two other features, Twice-Iterated 
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Composite Fourier Transform Coefficients (TICFTCs) and Octave Scale TICFTCs 

(OSTICFTCs), to measure the harmonic spacing of the vocal and instrumental music.  

 

The experiments for vocal/instrumental region that the detection reveal musically 

modified features, OSLPCs, OSLPCCs, OSCCs, and OCTICFTCs, are more robust 

than LPCs, LPCCs, MFCCs, and TICFTCs, respectively. Out of all the features we 

used, OSCCs are able to detect vocal/instrumental regions the most accurately. HMM 

is found to be more capable of modelling music regions with OSCCs than SVM or 

GMM. The result comparison shows that our method out performed the existing 

method by 20%. 

 

4. Semantic music cluster detection (i.e. Intro, Chorus, Verse, Middle eighth 

Bridge and Outro, detection - 4th layer) 

The 4th and higher layers in the music structure pyramid describe the song structure 

and the semantic meaning(s), respectively. Popular song structure consists of 

semantically similar meaning clusters, namely Intro, Verse, Chorus, INST, Bridge, 

Middle eighth and Outro (4th layer). Previous research focused only on the detection 

of choruses in a song (Goto 2003 [49], Bartsch and Wakefield 2001 [7]). However, to 

best of our knowledge, we couldn’t find an approach which describes the detection of 

cluster other than the chorus semantic cluster.  We conducted a survey of 220 popular 

songs to understand their song structures (see chapter 2.5). Based on our survey, we 

defined heuristic rules to detect these semantic clusters. Our framework can achieve 

10% more chorus detection accuracy than the previous method.  
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Music structure analysis is useful for many music related applications. Our ideas on 

how this structural information can potentially be used in applications are discussed in 

chapter 7. 

  

8.2 Future direction  

After submitting this thesis, our immediate research focus will be on converting the 

proposed framework for music structure analysis to a real time system.  

 

The current framework for music structure analysis is limited to popular music. One 

of the future directions will be to extend our framework to other genres such as Rock, 

Classical, Jazz etc.  Semantic meaning(s) decoding is a very difficult problem and the 

current framework is limited to the identification of semantic music cluster in popular 

songs.  One of our long-term goals is to formulate a generic procedure to decode the 

semantic meaning(s) of the music signals. The success of long-term music research is 

based on how well we can integrate domain knowledge of relevant communities such 

as musicology, psychology, and signal processing. In the future, we will work with 

these communities to synergize their research finding to music applications. 

 

For long-term research goals, we would like to develop music related multimedia 

applications for different types of users such as mobile users.  
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Appendix - A 
 

The appendix -A highlights the relationship between principle component analysis 

(PCA) and singular value decomposition (SVD) 

 

Principle component analysis (PCA)  

Principle component analysis is useful for transforming original feature vector (X) to 

another space (Y) which gives maximum variance among the components in the 

vector. This idea is described in Figure A- 1.  
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Figure A- 1: Transformation of feature vector ‘X’ to another space ‘Y’ to find 
uncorrelated elements in the vector  

 

Now we can write this linear transformation as: 

XAY T=
 

(b- 1)

 

Let ΣΣ yyxx
andµµ ,, are the mean vector and covariance matrix of vector X and Y 

respectively and their relationships are shown below. 

AAA x
T

yx
T

y
and ΣΣ == µµ

 
(b- 2)

 



 192

To remove the mutual correlation between the elements of X, Σ y  must be diagonal. 

Thus matrix A must be the similarity transform of Σx   and columns of A are 

eigenvectors of Σx  (Duda et al [33]).  Then the diagonal elements in Σy  are 

eigenvalues of Σx . Reordering the diagonal values in Σy  in descending order we 

can find the elements which are highly uncorrelated in Y.  

 

Singular Value Decomposition (SVD) 

Any m x n matrix A can be decomposed into: 

TVUA Σ=
 

(b- 3)
 

U: m x m – columns are left singular vectors - eigenvectors of AAT 

Σ: m x n – diagonal - singular values – square roots of eigenvalues of  ATA or AAT 

V: n x n – columns are right singular vectors- eigenvectors of ATA 

Assume AAT the covariance matrix of A is Σx  in PCA. Then we know Σy  

(diagonal matrix) represents the eigenvalues of Σx  and Σy has the maximum 

variance. Then equation (b- 4) describes the relation ship between Σy and Σ . 

2

⎥⎦
⎤

⎢⎣
⎡= ΣΣ y

 
(b- 4)

 

Thus the singular values can be used as a measurement to assess how uncorrelated the 

original data (i.e. matrix A). Higher the singular values describe higher uncorrelation 

between elements in the matrix A.  SVD operation is useful for data compression and 

filtering noise in the data set.  Typically small singular values in matrix “Σ” are 

caused by noise. Singular values are diagonally set in the matrix Σ in descending 

order.  
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