
A HYBRIDIZED APPROACH FOR SOLVING GROUP
SHOP PROBLEMS (GSP)

TAN MU YEN

NATIONAL UNIVERSITY OF SINGAPORE

2005

A HYBRIDIZED APPROACH FOR SOLVING GROUP
SHOP PROBLEMS (GSP)

TAN MU YEN
(B.Eng (Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

I

Acknowledgement

I would like to express my most sincere gratitude to my supervisors, A/Prof Ong

Hoon Liong and Dr Ng Kien Ming, for providing me with the opportunity to work on

this project and for introducing me to the world of machine scheduling. While they

have given autonomy in this research study, they were very enthusiastic and

helpful in providing the much treasured support in dealing with both academic and

administrative issues. Their patience as well as guidance throughout the project

has benefited me significantly.

II

Table of Contents

Acknowledgement I

Table of Contents II

List of Symbols V

List of Figures XI

List of Tables XII

Abstract XIII

Chapter 1: Introduction

 1.1 Overview 1

 1.2 Motivation Factors 5

 1.3 Objective and Scope 7

 1.4 Thesis Outline 9

 1.5 Research Contribution 9

Chapter 2: Literature Survey on Shop Scheduling

 2.1 Overview 11

 2.2 Basic Framework and Notation 12

 2.3 Disjunctive Graph Representation 18

 2.4 Classification of Schedules 22

 2.5 Active Chain Concepts 25

 2.6 Group Shop Problem 27

 2.7 Local Search 32

III

 2.8 Meta-Heuristics 37

 2.9 Fitness Landscape 42

 2.10 Known Shop Scheduling Approaches 45

 2.11 Common Neighborhood Definition 48

 2.12 Concluding Remarks 53

Chapter 3: GSP Scheduling Methodology

 3.1 Overview 54

 3.2 Algorithm Outline 54

 3.3 Schedule Construction 56

 3.4 Search Strategy 59

 3.5 Memory Structures 68

 3.6 Neighborhood Definitions 69

 3.7 Critical Path Determination 74

 3.8 Makespan Estimation Method 76

 3.9 Schedule Regeneration 79

 3.10 Concluding Remarks 81

Chapter 4: Computational Experiments

 4.1 Overview 82

 4.2 Experimental Inputs 82

 4.3 Empirical Results 85

 4.4 Effect of Fitness Function on Algorithm Performance 95

 4.5 Concluding Remarks 97

IV

Chapter 5: Conclusion

 5.1 Overview 98

 5.2 Group Shop Scheduling: A Review 98

 5.3 Main Contribution of the Present Study 100

 5.4 Future Work 101

References 103

Appendix 117

V

List of Symbols

COP Combinatorial optimization problem

P Polynomial-time verifiable problem

NP Non-deterministic polynomial-time verifiable problem

PLS Polynomial-time local search problem

FSP Flow shop problem

JSP Job shop problem

MSP Mixed shop problem

OSP Open shop problem

GSP Group shop problem

n Number of jobs in the shop scheduling problem

m Number of machines in the shop scheduling problem

jM A specific machine in the shop scheduling problem

iJ A specific job in the shop scheduling problem

in Number of operations in job iJ

ijO Operation from job iJ that is processed on machine jM

ijp Processing time of operation ijO

ir Release date of job iJ ; time when the first operation of iJ

becomes available for processing

VI

ijµ Set of machines that is associated with operation ijO

()tfi Cost function that computes the cost of completing job iJ

at time t

id Due date of iJ ; committed completion time of job iJ

iw Priority factor denoting the importance of job iJ relative to

other jobs in the system

iC Completion time of job iJ

γβα Graham’s three field machine scheduling classification

system

α Parameter that specifies machine environment

β Parameter that specifies job characteristics

γ Parameter that specifies optimality criterion

()DCVG ,,= Disjunctive graph representation that consists of a node set

V , conjunctive arc set C and disjunctive arc set D

V Set of nodes on the disjunctive graph that represents all the

operations in the scheduling problem

C Set of directed conjunctive arcs which reflect the

precedence relations between the operations

D Set of disjunctive arcs which are used to present

disjunctive constraints that arises naturally in machine

scheduling

ff Next-follow relation specifies the relationship between two

VII

operations in a schedule

O Set of finite operations in a shop scheduling problem

jψ Set of operations which have to be processed on machine

jM

iξ Set of operations which belong to job iJ

() p∈',oo Partial order that specifies that the processing of operation

o has to be completed before the processing of operation

'o can begin

()opredp Set of predecessors of an operation o

()osuccp Set of successors of an operation o

()om Function denoting the machine on which an operation o

has to be processed on

()oj Function denoting the job on which an operation o belongs

to

()og Function denoting the group which an operation o belongs

to

maxC Maximum completion time or makespan

Γ Set consisting of groups of operations

()sN Set of neighborhood moves of schedule s

()sN Set of schedules ()sNs∈ that satisfies a pre-defined

acceptance and admission criteria such that ()sNsN ⊆)(

][iM The machine that processes operation i .

VIII

][iPM The operation processed on][iM just before operation i , if
it exists.

][iSM The operation processed after][iM just after operation i , if
it exists.

][iJ The job to which operation i belongs to.

][iPJ The operation belonging to job][iJ that precedes
operation i , if it exists.

][iSJ The operation belonging to job][iJ that follows operation
i , if it exists.

][iG The group to which operation i belongs to.

][iPG The operation belonging to group][iG that precedes
operation i , if it exists.

][iSG The operation belonging to job][iG that follows operation
i , if it exists.

ie Length of a longest path from node 0 to node i , excluding
ip

il Length of a longest path from node i to node 1+N ,
excluding ip

PS Partial Schedule

+O List of unscheduled operations

ect Earliest completion time of operation

est Earliest start time of operation

CS Current schedule

LBS Local Best Schedule

GBS Global Best Schedule

TList Tabu List

IX

LB Lower bound of shop scheduling problem

TS Tabu search algorithm

SA Simulated Annealing

GA Genetic Algorithm

VNS Variable Neighborhood Search

GLS Guided Local Search

EC Evolutionary Computation

ACO Ant Colony Optimization

()Tα The geometric temperature function of simulated annealing

method.

MaxRestart The maximum number of iterations before a restart is

initiated in the GSP scheduler during the diversification

phase.

MaxBacktrackPoints The maximum number of solutions that will be stored in the

backtrack memory of the GSP Scheduler.

MaxDivIterations The maximum number of iterations allowed in the

diversification phase of the GSP Scheduler.

MinPercentDev The minimum percentage deviation from the lower bound

solution.

MaxIntIterations The maximum number of iterations allowed for each

backtracked solution in the intensification phase of the GSP

Scheduler.

TBListLen The tenure of the Tabu List in the GSP Scheduler.

NCIterations The maximum number of iterations allowed before a

neighborhood structure change in the diversification phase

of the GSP Scheduler.

BSTS The best solution obtained for the computational runs of a

particular problem instance.

X

AVGS The average solution value obtained for all the

computational runs of a particular problem instance.

AVGT The average computational time required to obtained the

final solution for the computational runs of a particular

problem instance.

vc The coefficient of variation of the solutions obtained

through the computational runs for a particular problem

instance.

XI

List of Figures

Figure 2.1 Pictorial of Disjunctive Graph Representation

Figure 2.2 Pictorial of Active Chain

Figure 2.3 Pictorial of GSP Instance

Figure 2.4 Algorithmic Skeleton of Tabu Search

Figure 2.5 Algorithmic Skeleton of Simulated Annealing

Figure 3.1 Algorithmic Skeleton of GSP Scheduler

Figure 3.2 Algorithmic Skeleton of ConstructSchedule Procedure

Figure 3.3 Algorithmic Skeleton of Restrict Procedure for Active Schedule

Figure 3.4 Algorithmic Skeleton of Restrict Procedure for Non-Delay

Schedule

Figure 3.5 Algorithmic Skeleton of SelectRModelmoves Procedure

Figure 3.6 Algorithmic Skeleton of SelectDModelmoves Procedure

Figure 3.7 Algorithmic Skeleton of OptimizeSchedule Procedure

XII

List of Tables

Table 2.1 Parameters for Specifying Machine-Operation Models

Table 2.2 Parameters for Specifying Job Characteristics

Table 3.1 List of Priority Rules

Table 3.2 Neighborhood Definition Notations

Table 3.3 GSP Scheduler Neighborhood Definitions

Table 3.4 Estimated Makespan Values for GSP Scheduler

Table 4.1 Selected Algorithm Parameter Values

Table 4.2 Solution Quality for GSP Scheduler

Table 4.3 Comparison of the Algorithms’ Best Case Performance

Table 4.4 Comparison of the Algorithms’ Average Case Performance

Table 4.5 Effect of Fitness Function on GSP Scheduler’s Performance

XIII

Abstract

The objective of shop scheduling problems is to determine the optimal allocation

of machines to jobs with respect to some specified criteria. As these problems

have been commonly acknowledged as being difficult to solve, previous research

efforts has focused mainly only on developing customized approaches for each of

these classes of problems. However, in recognition of the prevalence of machine

scheduling problems as well as industries’ need for a single and robust algorithm

for the differing scheduling scenarios, this thesis addresses the application of

meta-heuristics approaches to tackle a generalized formulation of shop

scheduling problems known as the Group Shop Problem (GSP) by developing a

hybridized approach.

The proposed scheduling approach consists of two main phases, namely: the

diversification phase and the intensification phase. In the diversification phase,

the proposed algorithm incorporates features of simulated annealing and variable

neighborhood search to diversify its search. Additionally, the algorithm adopts the

use of tabu-lists from Tabu Search throughout to prevent cyclical search from

arising. Backtrack memories are also implemented to store promising solutions

that are found during the initial phase so that the search during the intensification

phase will be limited to only these promising regions of the search space.

XIV

To evaluate its performance, the algorithm has been subjected to extensive

computational experiments using a set of benchmark problems for comparison

with other known approaches for solving GSP. Among many benchmark

problems used, the famous WHIZZIKD97 group shop problem has also been

included for the experiment. The empirical results show that the proposed

algorithm produces solutions of comparable quality but with shorter processing

time.

A Hybridized Approach for Solving Group Shop Problems

1

Chapter 1 Introduction

1.1 Overview

Scheduling is the science and art of allocating finite and scarce resources over

time to perform a collection of tasks in a variety of situations, with differing

resource capacities and technological constraints, so as to optimize one or more

pre-defined objectives. While there was considerable research interest in this

field at the beginning of the twentieth century with the works of prominent

manufacturing pioneers such as Henry Gantt, it took many years for the first

scheduling publications to appear in the industrial engineering and operations

research literature. Since problems arising from manufacturing were the main

source of motivation for the early development in the field of scheduling, the

vocabulary of manufacturing was employed when describing scheduling

problems. Thus, resources were usually denoted as machines and basic task

modules were termed as jobs. In scenarios where jobs may consist of several

elementary tasks that are interrelated by precedence constraints, such elementary

tasks are referred to as operations.

The voluminous amount of related research results since 1950s, including

Johnson (1954), have culminated in a more definitive scheduling theory, which

embodies numerous mathematical models to characterize the various classes of

A Hybridized Approach for Solving Group Shop Problems

2

scheduling problems that range from those that involve single-stage models1 to

those that involve multi-stage models2, from those of a deterministic nature to

those of a stochastic nature and from those that are concerned with single

objective optimization to those that are concerned with multiple objective

optimization.

In the broader context, scheduling problems belong to a larger problem class,

known as Combinatorial Optimization Problems (COPs), which are concerned

with determining the "best" configuration from a set of parameters to achieve

some pre-defined goals. Usually, the objective of COPs is to locate an entity,

which can be an integer, a subset, a permutation or a graph structure, from a finite

or possibly countable infinite set. (See Papadimitriou and Steiglitz, 1982). An

important aspect of COPs is to determine its solvability. In particular, the

landmark study by Karp (1972), on Computational Complexity Theory,

demonstrated that many of the most commonly studied optimization problems can

be reduced to a single underlying problem of known computational complexity.

Central to the theory of Computational Complexity, NP -completeness provides

the required formalization to differentiate the easy problems from the difficult

problems. In essence, there are two basic classes of problems namely: class P

of tractable problems and class NP of polynomial-time verifiable problems. The

class P is the class of decision problems that can be solved by a polynomial-time

1 Single-stage model refers to model with either a single machine or a number of parallel machines.
2 Multi-stage model is synonymous with shop scheduling models. Like single-stage model, every stage in the multi-stage
model may consist of either a single machine or a number of parallel machines. However, the number of machines in each
stage should be the same.

A Hybridized Approach for Solving Group Shop Problems

3

algorithm while the latter consists of those problems that can be solved by a non-

deterministic polynomial-time algorithm. Within the Class NP , NP -Complete

problems are the most difficult problems. At present, all known algorithms for

NP -complete problems require time that is not bounded by a polynomial function

of the problem’s input size. See Papadimitriou (1993). Moreover, most COPs, in

general, are difficult to solve in nature.

As research works on scheduling in 1970s were strongly influenced by the work of

Karp (1972), the difficulty of scheduling problems can be gleaned from the

complexity status of such problems as reported in works such as Applegate and

Cook (1991), and Brucker (1998). Earlier notable works include Lenstra et al.

(1977), and Lenstra and Rinnooy (1979), which focus mainly on the complexity

hierarchy of scheduling problems. Through these works, it is becoming

increasingly clear that except for rare cases where polynomial time algorithms are

available to solve the specific problems to optimality, most scheduling problems

are NP -hard in the ordinary sense or strongly NP -hard. Despite the substantial

amount of research directed to complexity study, there remains scheduling

problems whose computational complexities have yet to be ascertained.

Earlier scheduling techniques focused on finding exact solutions via the

application of enumerative algorithms with elaborate and sophisticated

mathematical constructs. Particularly, the Branch and Bound technique, which

searches a dynamically constructed tree representing the solution space of all

feasible schedule, is the main enumerative technique. However, the general

A Hybridized Approach for Solving Group Shop Problems

4

limitations of these enumeration techniques coupled with the results of complexity

studies on scheduling problems prompted the search for better scheduling

algorithms. By the end of 1980s, the use of approximation methods emerged as

the next viable alternative. Such methods typically forego guarantees of an

optimal solution for gains in speed. The earliest approximation algorithms made

use of priority rules to assign priorities to all the operations which are available to

be sequenced and then choose the operation with the highest priority for the

schedule construction. (See Panwalkar and Iskander, 1977). Despite its ease of

implementation and its low computational demand, these algorithms were not

effective in generating quality solutions especially for problems of high

dimensionality.

The need for better approximation algorithms fueled the development of many

innovative techniques, including but not limited to Large Step Optimization (Martin

et al., 1992), Tabu Search (TS) (Glover, 1989 and Glover, 1990) and Simulated

Annealing (SA) (Van Laarhoven et al., 1989), to bridge the basic gaps found in

those algorithms based on priority dispatch rules. These innovative algorithms,

which combine basic heuristic methods in higher level frameworks aimed at

exploring search space, are also known as meta-heuristics. Today, meta-

heuristics are almost a de facto method for solving scheduling problems.

Research efforts in the field of scheduling will continue to remain relevant, if not

more important, given the recent trends in both the manufacturing and services

industries. See Ashby and Uzsoy (1995), and Pinedo (2002). In particular, shop

A Hybridized Approach for Solving Group Shop Problems

5

scheduling formulations represent theoretical efforts to simplify models of

scheduling problems often arising in industrial settings. The popularity of such

models has led to the rapid growth of the shop scheduling research literature.

Typically, a shop scheduling problem will consist of n jobs with operations to be

scheduled on m machines. Depending on the nature of the problem, there may

or may not be precedence relationship between the operations on each job.

Though the previous decades of research have availed a compendium of both

exact and approximate scheduling methods attuned to solving specific problems,

the differing characteristics of the various shop scheduling problems and

specialized nature of most methods do not facilitate easy adaptation for more

generic applications. For example, a successful approach to tackle a particular

class of job scheduling problem may not work very well when modified to tackle

another class. Considering the prevailing industrial trends, an algorithm that is

robust and works well on a wide range of shop scheduling problems will be most

desired. This study focuses on the general shop scheduling problem called

Group Shop Problem (GSP) first coined in Sampels et al. (2002).

1.2 Motivation Factors

The motivating factors for the present research proposal can be discerned from

the following perspectives:

A Hybridized Approach for Solving Group Shop Problems

6

a. Firstly, it has been spurred by the increasing importance of

scheduling functions in both manufacturing and service sectors.

Contextual changes in these arenas have been evidently marked by both

paradigm shifts in Supply Chain Management (SCM) models and

technological improvements such as Flexible Manufacturing System (FMS)

and Enterprise Resource Planning (ERP) systems. (See Handfield and

Nichols, 2002). Along with these changes, business planners today face

greater challenges in deciphering information and making decisions.

Specifically, manufacturing planning and transportation scheduling, which

are two key areas in SCM, will benefit from advances in scheduling

methodology. The emergence of the various shop scheduling models and

the continual development of associated solving strategies represent

significant efforts undertaken by researchers not only to relieve business

planners of the burden of performing the traditional secondary role of

scheduling but also to give them additional leverage in operations

management.

b. Secondly, from an academic perspective, scheduling is one of the

fundamental areas of combinatorial optimization, and shop scheduling

problems has been commonly acknowledged for being hard to solve

optimally. Traditionally, research efforts in shop scheduling have been

delineated into Flow Shop Problems (FSP) (Johnson, 1954), Job Shop

Problems (JSP) (Fisher and Thompson, 1963), Mixed Shop Problems

(MSP) (Masuda et al., 1985) and Open Shop Problems (OSP) (Rock and

A Hybridized Approach for Solving Group Shop Problems

7

Schmidt, 1983). This division of research efforts has resulted in a myriad

set of customized techniques that will perform well on a particular shop

scheduling problem but will show unsatisfactory results when applied to

other shop scheduling problems. Since Group Shop Problem (GSP) is a

generalization of the classical JSP, MSP and OSP, investigation into its

properties will likely lead to a generalized approach to solving the various

classes of shop scheduling problems and thus meeting the industries’ need

for single and robust algorithm for the differing scheduling scenarios.

Advances in the design of scheduling algorithm design will also shed new insights

into how solving strategies for other COPs, such as Traveling Salesman Problem

(TSP) (Lawler et al., 1985) and Vehicle Routing Problem (VRP) (Laporte, 1991),

can be enhanced. With better understanding of these approximate methods,

better meta-heuristics can be developed.

1.3 Objectives and Scope

Given the generality of the GSP formulation, it is unlikely that the new algorithm

will reach the performance of the state-of-the-art meta-heuristics approaches for

more specific shop scheduling problems, which tend to be more restricted in

problem definition. Therefore, the primary aim of this research is to develop an

algorithm that is both scalable in its applications and robust in its performance

over a wide range of GSP instances. To facilitate the design of a new GSP

A Hybridized Approach for Solving Group Shop Problems

8

scheduling algorithm, a comparative study of existing meta-heuristics will be

essential.

The collection of benchmark problem instances for comparative analysis will also

be an important task in this study to circumvent situations where good

performance results are achieved due to coincidence. Presently, there are

already many benchmark problem instances available for JSP and OSP to allow

JSP and OSP instantiations of the GSP formulation to be tested out by the various

approaches. Since GSP is a relatively new scheduling problem, the consolidation

of “true” and “good” GSP benchmark instances will be challenging.

While dynamic3 and stochastic versions of shop scheduling formulations show

higher degree of industrial relevance (Righter, 1994, and Floudas and Pardalos,

2001), current research will only focus on deterministic GSP formulation since

research in GSP is still in its infancy stage of development. Likewise, parallel

computing implementation, multiple objectives optimization and parallel machines

environments formulations will not be explored in this thesis. Rather, the focus

will be on non-parallel implementation of a GSP scheduling algorithm for

makespan optimization in single machine environment.

3 Dynamic Scheduling is sometimes known as Reactive Scheduling.

A Hybridized Approach for Solving Group Shop Problems

9

1.4 Thesis Outline

Having dealt with the introduction of this research, which forms the first chapter,

the organization of the subsequent chapters is as follows: Chapter 2 covers the

theoretical background on COPs, meta-heuristics as well as the various

deterministic models of shop scheduling problems and the prevalent methods for

solving them. Following that, the approach and rationale for the design of the

scheduling algorithm for GSP will be outlined in Chapter 3. The computational

results and analysis will be addressed in Chapter 4. Finally, Chapter 5 concludes

this thesis by summarizing the specific research issues that have been dealt with

and also highlighting possible directions for future research.

1.5 Research Contribution

This study demonstrates the feasibility of devising an algorithm that is both

scalable in its applications and robust in its performance on a wide range of GSP

instances. Moreover, this study has shown that it is possible to devise a good

scheduling algorithm that is easy to implement and yields solutions of good quality

in a reasonable amount of time. This is illustrated through comparison with the

computational results of other known approaches for solving GSP problems.

In the literature, most researchers tend to focus on making tactical improvements

to existing meta-heuristics for solving specific shop scheduling problems. While

A Hybridized Approach for Solving Group Shop Problems

10

the implementation of good neighborhood definitions and extensive memory

structures in search algorithms are important, it is imperative that researchers do

not lose sight of the underlying features of the problem that they are solving.

Therefore, this study attempts to construct an algorithm that aligns its search

strategy based on known results about the search space of GSP and to

incorporate an array of existing techniques from known meta-heuristics into the

algorithm so as to achieve maximum effectiveness. The result of this is a

hybridized approach for solving GSP.

A Hybridized Approach for Solving Group Shop Problems

11

Chapter 2 Literature Survey on Shop Scheduling

2.1 Overview

The significant amount of research efforts in the field of deterministic scheduling

over the past four decades have led to the growth of scheduling models and

related solving strategies. Given the astounding number and variety of scheduling

models, a quick exposition of the entire scheduling landscape is not an easy task.

However, this chapter attempts to create clarity for understanding the pertinent

issues related to deterministic scheduling by elucidating the necessary theoretical

foundations as well as key findings from existing research literature on shop

scheduling. In particular, the basic scheduling framework and its related notation

will also be briefly discussed. This will be followed by a general introduction to the

various shop scheduling models, the disjunctive graph representation and the

different types of schedules. An overview of local search techniques, meta-

heuristics as well as the concept of fitness landscape will also be provided herein

to establish the relevant context for an outline on the known approaches for shop

scheduling. Finally, the topic on common neighborhood definition will serve as

the concluding section.

A Hybridized Approach for Solving Group Shop Problems

12

2.2 Basic Framework and Notation

Common scheduling terminology makes a distinction between a sequence and a

schedule. While a sequence is a permutation of a set of jobs on a given machine,

a schedule consists of both the sequencing of jobs in time and the allocation of

finite resources to the appropriate jobs within a machine setting, allowing for

possible preemptions of jobs by other jobs that are released at later points in time.

Similarly, the term scheduler is also differentiated from the term scheduling policy.

Usually, a scheduler corresponds to an algorithm performing the function of

generating schedules. On the other hand, a scheduling policy is a rule or a set of

operating principles that prescribes the actions for a scheduler that is best suited

to the current state of a typically stochastic system.

In all scheduling problems, the number of jobs and machines are assumed to be

finite. Typically, m machines ()mjM j ,...,1= have to process n jobs ()niJi ,...,1= .

A job iJ consists of a number in of operations
iini OO ,...,1 with each operation ijO

being assigned a processing requirement ijp . If job iJ has only one operation

()1=in , iJ can be identified as 1iO with processing requirement of ip .

Sometimes, a release date ir , on which the first operation of job iJ becomes

available for processing, may be specified.

A Hybridized Approach for Solving Group Shop Problems

13

Furthermore, each operation ijO is associated to a set of machines

{ }mij MM ,...,1⊆µ . In a dedicated machine environment, all ijµ are one element

sets. On the contrary, all ijµ are sets equal to the set of all machines in a parallel

machine environment and this allows problems in flexible manufacturing, where

machines are equipped with different tools, to be formulated. Problems of this

type are termed as scheduling problems in multi-purpose machine environments,

where an operation can be processed on any machine equipped with the

appropriate tool. As for multi-processor task scheduling problems, all machines in

the set ijµ are used simultaneously by ijO during the entire processing period.

A cost function ()tfi is commonly included in the problem formulation to

determine the cost of completing job iJ at time t . In many cases, a due date id ,

which represents the committed completion time of job iJ , and a weight iw ,

which is a priority factor denoting the importance of job iJ relative to other jobs in

the system, are used in defining ()tfi .

Given the wide span of problem formulations subsumed under the general theory

of scheduling, a comprehensive classification scheme will be essential. The three

field γβα classification system, which was introduced by Graham et al. (1979), is

one such scheme that provides the basic notations required to characterize most

scheduling problems in terms of machine environment α , job characteristics β

A Hybridized Approach for Solving Group Shop Problems

14

and optimality criterion γ . Brucker (1998) provides a systematic and detailed

classification of scheduling problems.

The machine environment is characterized by a string 21ααα = of two parameters

such that { }XOFJGQMPMPMPMRQP ,,,,,,,,,,1 o∈α is used to specify machine-

operation models with o denoting the empty symbol and +Ζ∈2α is used to

indicate the number of machines in this system. An overview of the possible

parameter values of 1α for specifying the various Machine-Operation models is as

follows:

Table 2.1: Parameters for Specifying Machine-Operation Models
Parameters Characteristics

o=1α • Each job must be processed on a dedicated machine.

{ }RQP ,,1 ∈α
• Each job can be processed on each of the machine.

• P=1α for identical parallel machine environment where processing

time ijp of job iJ on jM is equal to the processing time ip of job iJ

for all machines jM .

• Q=1α for uniform parallel machines environment where processing

time ijp of job iJ on jM is equal to ji sp / with js specifying the

speed of machine jM for all machines jM .

• R=1α for unrelated parallel machines environment where

processing time ijp of job iJ on jM is equal to iji sp / given job-

dependent speeds ijs of jM .

{ }QMPMPMPM ,1 ∈α

• PMPM=1α and QMPM=1α denote multi-purpose machines with

A Hybridized Approach for Solving Group Shop Problems

15

identical speeds and multi-purpose machines with uniform speeds

respectively.

{ }XOFJG ,,,,1 ∈α • System is made up of a set of dedicated machines i.e. all ijµ are

one-element sets and a collection of jobs with each job iJ consisting of

a set of operations
iini OO ,...,1 .

• G=1α denotes the Group Shop Model where there are precedence

relations between arbitrary operations.

• J=1α denotes the Job Shop Model where precedence relations is

of the form
iinii OOO →→→ ...21 for ni ,...,1= such that)1(+≠ jiij µµ

for 1,...,1 −= ni . When)1(+= jiij µµ , the model will be labeled as Job

Shop with Machine Repetition.

• F=1α denotes the Flow Shop Model, which is a special case of

Job Shop Model, where mni = for ni ,...,1= and { }jMij =µ for

ni ,...,1= and mj ,...,1= . If jobs in a Flow Shop model are processed in

the same order on each machine, then it is known as a Permutation

Flow Shop model.

• O=1α denotes the Open Shop Model, which is basically a Job

Shop Model with the exception that there is no precedence relations

between operations.

• X=1α denotes the Mixed Shop Model, which is a combination of a

Job Shop Model and an Open Shop Model.

On the other hand, the job characteristics are specified by a set β containing at

most six elements 54321 ,,,, βββββ and 6β . The tabulation below provides a brief

summary of these parameters:

A Hybridized Approach for Solving Group Shop Problems

16

Table 2.2: Parameters for Specifying Job Characteristics
Parameters Characteristics

1β • pmtn=1β indicates that preemption (or job splitting) is allowed.

2β • This parameter is used to describe precedence relations between jobs.

• prec=2β corresponds to scheduling problems with precedence relations

between jobs defined by an arbitrary cyclic directed graph.

• Other values, include chains, intree, outtree, tree or series-parallel directed

graph, are used to describe more restricted precedence structures.

3β • If ir=3β , then release dates may be specified for each job.

4β • This parameter is used to specify any restrictions on the processing times or

on the number of operations.

5β • If id=5β , then a deadline id is specified for each job iJ .

6β • This parameter is used to specify sets of jobs that must be grouped into

batches for joint processing on machines. E.g. batchp − and batchs − .

Like all other combinatorial optimization problems, the goal of a scheduling

problem is often stated in the form of an objective function or performance

measure. Very often, the optimization of a scheduling problem entails the search

for a feasible solution which minimizes the performance measure. In this context,

the performance measure is also known as a total cost function and this is

indicated as γ in Graham’s three field classification system. Thus, denoting the

completion time of job iJ by iC and its associated cost by ()ii Cf , the two types of

A Hybridized Approach for Solving Group Shop Problems

17

total cost functions, bottleneck objectives and sum objectives, are defined

respectively as follows:

 () () }{ ,...,1 max:max niCfCf ii ==
(2.1)

 () ()∑=∑
=

n

i iii CfCf
1

:
(2.2)

While makespan { }niCi ,...,1max ==γ , total flow time ∑=
=

n

i iC
1

γ and weighted

(total) flow time ∑=
=

n

i iiCw
1

γ are often defined as objective functions, other

functions are also possible. However, only some of the quantities belong to an

important class of performance measures that are known as regular measures of

performance, stated formally as follows:

Definition 2.1.

A performance measure Z is regular if:

a. The scheduling objective is to minimize Z .

b. The value of Z can increase only if at least one of the completion times in

the schedule increases.

This definition is significant because it is usually desirable to restrict attention to a

limited set of schedules called a dominant set. In this case, makespan is regular.

A Hybridized Approach for Solving Group Shop Problems

18

Definition 2.2.

A set R is a dominant set of regular measures of performance if there exists a schedule

RS ∈ with completion time jC and regular measure Z and RS ∉' with completion time

'
jC and regular measure 'Z such that:

a. '
jj CC ≤ for all j .

b. 'ZZ ≤ for any regular measure.

From the above definition, it is clear that a dominant set of schedules must also

contain the optimal schedule.

2.3 Disjunctive Graph Representation

Graphical methods such as Gantt charts, see Porter (1968), are often employed

to represent schedules. A Gantt chart is essentially a horizontal bar chart

developed as a production control tool in 1917 by Henry L. Gantt, an American

engineer and social scientist, which may be either machine-orientated or job-

orientated in the context of machine scheduling. While these graphical tools are

useful for visualization purposes, they lack the conciseness offered by

mathematical constructs.

A Hybridized Approach for Solving Group Shop Problems

19

In particular, the disjunctive graph model of Roy and Sussmann (1964) provides a

convenient means to represent feasible schedules for shop scheduling problems.

It has replaced the solution representations by Gantt charts, which is useful in

user interfaces to graphically depict a solution to a problem. When the objective

function of the shop scheduling problem is regular, the set of feasible schedules

represented in this way always contains an optimal solution to the problem. For

any given instance of a shop scheduling problem, its definition is given below:

Definition 2.3.

A disjunctive graph representation ()DCVG ,,= consists of a node set V , conjunctive

arc set C and disjunctive arc set D such that:

a. }{ ,,...,...,,...,,, 1111 , snkiiniinsce OOOOOOV = is the set of nodes representing

the operations of all jobs, where ijO is the j -th operation on ()niJi ,...,1= , with

two additional dummy nodes sceO (source) and snkO (sink), to denote the start and

end of a schedule.

b. C is the set of directed conjunctive arcs which reflect the precedence

relations between the operations with the numbers on the arcs reflecting the

processing times. If u and v are two operations with up and vp as their

respective processing requirement, there exists a conjunctive arc ()vu, with length

A Hybridized Approach for Solving Group Shop Problems

20

up for every Vu∈ , Vv∈ pair where u has to be processed before v .

Moreover, there are conjunctive arcs, denoted by subset O , between the source

and all operations without a predecessor and between all operations without a

successor and the sink. Therefore, { }OBAC ∪∪= where ()JiAA i ∈= :U for

precedence relations iA between operations of the same job iJ and

()MjBB j ∈= :U for precedence relations jB between operations on the same

machine jM .

c. D contains disjunctive arcs which are used to present disjunctive

constraints that arise naturally in machine scheduling. Mathematically, this set

can be represented as FED ∪= consisting of two distinct subsets of disjunctive

arcs E and F where ()JiEE i ∈= :U and ()MjFF j ∈= :U . Furthermore,

there is a pair of disjunctive arcs ()vu, and ()uv, , with lengths up and vp

respectively, in either iE for each pair of operations belonging to the same job iJ

which are not connected by a conjunctive arc or jF for each pair of operations

processed on the same machine jM which are not connected by a conjunctive arc.

Evidently, the sets E and F are very similar: E decomposes into iE subgraphs,

one for each job iJ and F decomposes into jF subgraphs, one for each machine

jM . Let MJK ∪= , where each element k of the set K is either a job or a

machine. Hence, ()KkDD k ∈= :U where kk ED = if JKk ∩∈ and kk FD = if

A Hybridized Approach for Solving Group Shop Problems

21

MKk ∩∈ . Figure 2.1 provides an illustration of a disjunctive graph

representation for a schedule with n jobs on m machines.

Figure 2.1: Pictorial of Disjunctive Graph Representation

Since the basic scheduling decision is to define an ordering between the

operations connected through disjunctive arcs by turning these undirected

disjunctive arcs into directed ones, the concept of selection kΩ is therefore

important.

Definition 2.4.

kΩ is a set of directed disjunctive arcs, called fixed arcs, chosen from the kD ’s such that

it contains exactly one member of each disjunctive pair of kD .

A feasible schedule can only be obtained from G when the selection is a

complete selection.

A Hybridized Approach for Solving Group Shop Problems

22

Definition 2.5.

A selection ()Kkk ∈Ω=Ω :U is a complete selection if:

a. Each disjunctive arc has been fixed.

b. The resulting graph () ()Ω∪=Ω CVG , is acyclic.

Given a complete selection Ω , a corresponding schedule S , which defines an

order of operations for each job and each machine, may be constructed. For

each path γ from vertex i to vertex j in ()ΩG , define the length of γ to be the

sum of lengths of arcs in that path.

2.4 Classification of Schedules

Since the taxonomy of schedules (Pinedo, 2002) is pivotal to the analysis of shop

scheduling problems, a short discourse on the various classes of schedules will

be essential in establishing the basic shop scheduling concepts.

Definition 2.6.

A schedule is called feasible if the precedence relations are maintained and the resource

constraints are met.

A Hybridized Approach for Solving Group Shop Problems

23

In principle, there are an infinite number of feasible schedules for a shop

scheduling problem since an arbitrary amount of idle time can be inserted at any

machine between adjacent pairs of operations. Accordingly, there are various

possible moves on a schedule, with respect to its representation on Gantt chart,

which can be made to improve its viability in terms of any specific regular

performance measure. Nevertheless, schedules are classified as semi-active,

active, non-delay. The ensuing text outlines their respective definitions:

Definition 2.7.

A feasible schedule is called semi-active if no operation can be completed earlier without

changing the order of processing on any one of the machines.

The start times of operations on each machine of a semi-active schedule are

adjusted so that that there are no idle times between each operation on the same

machine whenever possible. This form of adjustment, known as a local left-shift,

is equivalent to moving an operation block to the left on the Gantt chart while

preserving the operation sequence on the machine.

Definition 2.8.

A feasible schedule is called active if it is not possible to construct another schedule by

changing the order of processing on the machines and having at least one operation

finishing earlier and no operation finishing later.

A Hybridized Approach for Solving Group Shop Problems

24

Global left-shift refers to an adjustment in which some operation is begun earlier

without delaying any other operation. An active schedule is a schedule in which

no global left shift can be made. However, many semi-active schedules can often

be compacted into the same active schedule through a series of global left-shifts.

Clearly, the set of active schedules dominates the set of semi-active schedules.

Therefore, it is sufficient to consider only active schedules when optimizing any

regular measure of performance.

Definition 2.9.

A feasible schedule is called non-delay if no machine is kept idle while an operation is

waiting for processing.

Since the number of active schedules still tends to be prohibitive, it is often

convenient to focus on an even smaller subset of schedules known as non-delay

schedules. All non-delay schedules are active schedules as no global left-shifting

is possible for these schedules. However, many active schedules may not be

non-delay schedules since requiring a schedule to be non-delay is equivalent to

prohibiting unforced idleness. This implies that the number of non-delay

schedules may be significantly less than the number of active schedules. The

dilemma is that there is no guarantee that the set of non-delay schedules will

contain an optimum.

A Hybridized Approach for Solving Group Shop Problems

25

2.5 Active Chain Concepts

Given that the set of active schedules is the smallest dominant set of schedules, it

is sufficient to consider only active schedules for scheduling problems with regular

performance measures. Therefore, it will make sense for some algorithms to

search only in the active schedule space. To facilitate subsequent description of

the active chain, the notion of the next-follow will be introduced here:

Definition 2.10.

A next-follow relation ff is a relation between two operations o and 'o in a schedule

such that oo ff' if and only if:

a. The starting time of 'o is equal to the finishing time of o .

b. o is either the preceding operation of 'o of the same job or the operation

of a different job processed on the same machine as 'o .

Given that an operation can at most next-follow two other operations, the formal

definition of an active chain is as follows:

Definition 2.11.

An active chain of an operation o is a set of operations including o and an operation

without a predecessor, such that:

A Hybridized Approach for Solving Group Shop Problems

26

a. Except for the operation without a predecessor, each operation in the set

next-follows exactly one operation in the set.

b. Except for operation o , there is exactly one operation in the set that next-

follows the operation for every operation in the set.

An example of an active chain is included in Figure 2.2. It is clear from the

definition that the length of an active chain of operation o is the sum of the

processing times of all operations in the chain. Therefore, if the earliest starting

times of all jobs are all zero, the finishing time of o will be simply the length of its

active chain. In this case, the makespan of the schedule is equivalent to the

length of the longest active chain in the schedule.

Figure 2.2: Pictorial of Active Chain

Based on this concept of active chain manipulation, Sun et al. (1995) proposed a

scheduling algorithm for JSP and further proved that the necessary condition for

A Hybridized Approach for Solving Group Shop Problems

27

the makespan of an active schedule to be shortened is that at least one

precedence relation between operations in one of the longest active chains of an

active schedule is changed.

2.6 Group Shop Problem

The prevalence of many simplified models of scheduling problems often occurring

in manufacturing and production settings signifies not only the growing needs for

efficient scheduling tools but also marks the imperative to narrow the gap between

academic research and industrial practice. However, as these simplified models

are purely abstraction of real life problems, it is often difficult to fit real life

problems into these very specialized formulations. Furthermore, stemming from

the differing characteristics of the various Shop Scheduling problems, the

repeated applications of a successful scheduling approach tailored for a particular

problem type to another problem type often do not yield satisfactory results.

To bridge this gap, Sampels et al. (2002) advocated the use of a broad Shop

Scheduling definition, which is known as Group Shop Problem (GSP), for the

design and implementation of single and robust algorithm for the differing

scheduling scenarios. Indeed, the GSP formulation generalizes several disparate

formulations including Flow Shop Problem (FSP), Job Shop Problem (JSP), Open

Shop Problem (OSP) and Mixed Shop Problem (MSP) succinctly into a simple

canonical form outlined as follows:

A Hybridized Approach for Solving Group Shop Problems

28

Definition 2.12.

A group shop problem, as depicted in Figure 2.3, consists of a finite set of operations O ,

which can be partitioned into m subsets { }mψψψ ,...,1= such that Oj
m
j == ψ1U and n

subsets { }nξξξ ,...,1= such that Oi
n
i == ξ1U , together with a partial order4 OO×⊆p

where φξξ =×∩ jip for ji ≠ and a function ℵ→O:λ that assigns processing times to

operations.

jψ is the set of operations which has to be processed on machine jM whereas

iξ is the set of operations which belong to job iJ .

Figure 2.3: Pictorial of GSP Instance

With respect to the partial order defined above, () p∈',oo (also denoted by 'oop)

means that the processing of operation o has to be completed before the

4 A relation R is a partial ordering if it is a pre-order (i.e. it is reflexive (xRx), transitive (xRzxRyRz ⇒) and anti-

symmetric (yxxRyRx =⇒) with elements x and y for which neither xRy nor yRx . Comparing the partial order

denoted by ' oop and the next-follow relation oo ff' , it is clear that only the former is transitive in nature whereas the
latter imposes a more stringent requirement on the starting time of 'o to be equal to the finishing time of o .

A Hybridized Approach for Solving Group Shop Problems

29

processing of operation 'o can begin. Moreover, () p∈',oo and () p∈",' oo implies

that () p∈",oo . Therefore, the partial order defines the technological sequences

with the set () (){ }pp ∈= oooopred ,'' and the set () (){ }pp ∈= ',' oooosucc known as

the set of predecessors of an operation o and the set of successors of an

operation o respectively.

Definition 2.13.

A feasible solution is a refined partial order pp ⊇* for which the restrictions

jj ψψ ×∩*p and ii ξξ ×∩*p are total ji,∀

Denoting the machine on which an operation o has to be processed on as ()om

and the job on which an operation o belongs to as ()oj , a feasible solution

defines a sequential ordering of the operations in a job and on a machine such

that either () *', p∈oo or () *,' p∈oo for every pair of operations o , 'o with

() ()'ojoj = or () ()'omom = . Furthermore, each machine can process at most one

operation at a time, operations must be processed without preemption and

operations belonging to the same job must be processed sequentially.

A Hybridized Approach for Solving Group Shop Problems

30

Definition 2.14.

The cost of a feasible solution is defined by:

() () ()
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
∈η

ηλ
o

O oC ** ,in chain activean ismaxmax pp

where maxC is called the makespan of a solution such that the goal is to find a feasible

solution that minimizes maxC .

Given a feasible schedule, the corresponding acyclic graph can be easily

constructed. If the redundant arcs are removed, every operation, except node 0

and node 1+N , has at most two immediate predecessors and at most two

immediate successors. Moreover, there are also operations that can be

postponed without increasing the makespan as well as those that cannot be

postponed. The former is labeled as slack operations whereas the latter is known

as critical operations. Accordingly, a critical path is an ordered sequence of

critical operations, which can be further decomposed into subsequences of

operations, called blocks.

A Hybridized Approach for Solving Group Shop Problems

31

Definition 2.15.

A block is a maximal subsequence of operations processed on the same machine or

belonging to the same group, where the set of groups Γ is defined as the basic unit of

segregation for the partition ξ such that }{ ,...,1 gΓΓ=Γ .

It should be noted that the restriction ii ξξ ×∩p is total (i.e. means that there are

precedence relations defined between operations for all operations belonging to

the same job) in JSP and FSP, trivial (i.e. means that there are no precedence

relations defined between operations for all operations belonging to the same job)

in OSP, and either total or trivial for each i in MSP. For GSP, the segregation of

partition ξ into groups Γ , with ()og denoting the group which an operation o

belongs to, imposes a weaker restriction on p such that ii Γ×Γ∩p has to be

trivial. Moreover, for o , 'o from the same job with io Γ∈ and jo Γ∈' such that

ji ≠ , either 'oop or 'oof holds. Note also that the coarsest refinement ξ=Γ

(group sizes equal to job sizes) is equivalent to OSP and the finest refinement

{ }{ }Ooo ∈=Γ (group sizes of 1) is equivalent to JSP. In short, for group shop

scheduling, operations of each job can be partition into many groups, which may

be of different sizes with precedence constraints applying only between groups of

operations when these operations are scheduled.

A Hybridized Approach for Solving Group Shop Problems

32

2.7 Local Search

As most scheduling problems are NP -hard in nature, the use of approximate

methods has been a popular approach for solving scheduling problems. In

particular, local search algorithms have been widely used for attacking NP -hard

problems. Similarly, these algorithms have also been employed and adapted

extensively for scheduling problems. Therefore, it is important that a basic

appreciation of local search algorithms is developed since these search

techniques are often the basis of more complex scheduling algorithms.

While the use of local search algorithms has been reported as early as in Croes

(1958), initial interest in local search algorithms decreased over time due to the

lack of new conceptual development. Despite its practical usefulness then, the

computational resources required for higher quality solutions and larger size

problems were beyond the reach of the early years of computer science. The

recent decade of renewed interest in local search algorithms is attributed to

several factors as reported in Aarts and Lenstra (1997), of which, the

understandability, flexibility and ease of implementation of local search algorithms,

in comparison with exact algorithms, justify practical application of these

algorithms in solving large problem instances. Together with parallel development

in data structures to facilitate more efficient neighborhood solution search and

exponential improvement in computer speed and memory availability, these have

given much thrust to research in the design of local search algorithms.

A Hybridized Approach for Solving Group Shop Problems

33

Since the crux of local search algorithm design rests primarily on the definition of

its neighborhood structure, the following formalization necessarily follows:

Definition 2.16.

A neighborhood structure is a function SSN 2: a that assigns to every Ss∈ a set of

neighbors () SsN ⊆ . ()sN is also called the neighborhood of s .

The choice of an appropriate neighborhood structure is often done in a problem

specific manner as it critically determines the performance of the local search

algorithm. Indeed, local search algorithms present an interesting trade-off

between the size of neighborhood ()sN and the efficiency of the search. Small

neighborhoods are faster to evaluate but do not result in good moves consistently,

which can retard the progress of search. Large neighborhoods may guarantee

good moves only at high computational cost. Despite the large variety of

neighborhood structures reported in the literature, there are few general principles

to rely on for the structural design of neighborhoods.

While neighborhood structure stipulates the set of solutions that can be reached

from s in a single step of a local search algorithm, it may be defined by either

explicit enumeration of the set of possible neighbors or implicit definition of the set

of possible local changes that may be applied to a solution. The former is termed

as an explicit neighborhood while the latter is called an implicit neighborhood.

A Hybridized Approach for Solving Group Shop Problems

34

Very often, an implicit neighborhood requires some auxiliary structure, such as

memory list, other than simply the variables and values for its characterization.

Other neighborhood structures depend on either problem instance or

randomization. Certainly, local search algorithms may have several different

neighborhood structures to select from, in which case, the choice of the

neighborhood to use at each state may be made on the basis of a fixed schedule,

dynamic selection or a combination of both mechanisms.

As it is not always necessary to generate all possible elements of a neighborhood,

the solution found by a local search algorithm may not be a globally optimal

solution. It may only be optimal with respect to local changes.

Definition 2.17.

A local minimum is a solution s such that () () ()':' sfsfsNs ≤∈∀ . A local minimum is

termed as a strict local minimum if () () ()':' sfsfsNs <∈∀ .

Since neighboring solutions are generated by a move-generation mechanism that

selects and accepts from a pool of solutions according to some pre-defined

criteria, the following definitions are essential.

A Hybridized Approach for Solving Group Shop Problems

35

Definition 2.18.

A move-generation mechanism generates the set of neighbors by changing one attribute or

a combination of attributes of a given instance s . A move-generation is a transition from

a solution s to another ()sNs ∈' in one step (or iteration).

Definition 2.19.

A candidate list of solutions ()sN is a set of solutions ()sNs ∈' that satisfies some pre-

defined acceptance and admission criteria such that ()sNsN ⊆)(.

Moreover, to design a local search algorithm, the following choices need to be

specified clearly:

a. Generation Mechanism. Rules that determine how (feasible)

neighbors 's from ()sN can be obtained.

b. Acceptance and Selection Strategy. This is sometimes termed as

the pivoting rule, which determines which neighborhood solution 's from

()sN replaces the current one.

A Hybridized Approach for Solving Group Shop Problems

36

c. Stopping Test. These functions determine when the algorithm

terminates a particular line of search. If a local search algorithm finds a

satisfying assignment, then it can terminate. However, if the algorithm gets

trapped in local minima or other parts of the search space from which

escape is likely to be costly, there should be criteria for when to abandon

search and restart from a different initial point.

Given the myriad of choices that a designer needs to specify when designing local

search algorithms, it is not surprising that there exist many variants of local search

algorithms. The most basic form for generation mechanism is the iterative

improvement, commonly employed in hill-climbing techniques or steepest descent

techniques5. Within this basic framework, design variation hinges on the pivoting

rule with the first-improvement rule and the best-improvement rule being the most

commonly used ones. While the first improvement rule repeatedly generates

neighboring solutions of s but only returns the first lower cost solution, the best-

improvement rule examines the whole neighborhood and returns the best solution

at each step. The time needed to check the entire neighborhood at each step is

known as the check-out time. Papadimitriou and Steiglitz (1982) provide more

elaborate discussion.

Another interesting aspect of local search is complexity analysis. Conventional

computational complexity classes offer easy means of classifying problems

5 The term “hill-climbing” pertains to a maximization problem, but the equivalent descent method refers to minimization
problems.

A Hybridized Approach for Solving Group Shop Problems

37

according to their difficulty, which are then solved by any known algorithm. Yet,

these classes cannot capture the local search problems associated with usual

local search algorithms. To address the question of worst-case complexity of

local search algorithms, the class PLS of polynomial-time local search problems

is introduced in Johnson et al. (1988). In general, local search algorithms in this

class require polynomial time for each local search step.

2.8 Meta-Heuristics

It is easy to observe that one of the major drawbacks of iterative improvement

local search is that it may stop at a poor quality local minimum. While one

possibility is to restart the local search whenever some criterion is met so as to

avoid being trapped in local minima, the increasing dimensionality of the search

space with respect to problem size will inevitably make this approach less

attractive. Moreover, the possible search space structures are not exploited with

restarts from random initial solutions.

Procedure TabuSearch(s∈S)

 Determine initial candidate solution s;

 while (termination condition not satisfied)

 Determine set N of non-tabu neighbors of s;

 Choose a best improving solution s’ in N;

 Update tabu attributes based on s’;

 s=s’;

 end

 return s;

End TabuSearch

Figure 2.4: Algorithmic Framework of Tabu Search

A Hybridized Approach for Solving Group Shop Problems

38

The inadequacies found in the iterative improvement local search have paved the

way for the design and development of general heuristic methods, which are

applicable to a wide range of COPs. The term meta-heuristics, which was first

coined in Glover (1986) together with the introduction of Tabu Search, as outlined

in Figure 2.8.1, to describe another kind of approximate algorithm that attempts to

combine basic heuristic methods in higher level frameworks aimed at exploring

search space is defined as follows:

Definition 2.20.

A meta-heuristic is a master strategy that governs the behavior of other subordinate

heuristics through intelligent combination of concepts for exploring and exploiting the

search spaces, including the possible use of learning strategies to structure information,

so as to produce solutions beyond those that are normally generated through iterative

improvement local search efficiently.

The generality of the definition encompasses numerous forms of approximate

methods based on various interpretations of what constitutes “intelligent search”.

Notably, the dichotomy between meta-heuristic orientation and heuristic

orientation is distinct so as to accentuate the significance of the departure from

classical heuristic design. Moreover, the emphasis on governance differentiates a

meta-heuristic from a simple random restart procedure or a random perturbation

procedure albeit the fact that these naive restarting and perturbation procedures

A Hybridized Approach for Solving Group Shop Problems

39

are sometimes classed as low-level meta-heuristics. These interpretations

present design choices which in turn can be used for classification purposes.

Depending on the features selected to differentiate between various meta-

heuristics, several classifications are possible:

a. Nature Inspired vs. Non-nature Inspired. The origins of the

algorithm provide one intuitive means of classifying meta-heuristics.

Colorni et al. (1996) offers some insights to the importance and promise of

utilizing natural and social analogies to derive meta-heuristics. Notably,

nature inspired meta-heuristics tend to loosely model a phenomenon

existing in nature. Not only are they non-deterministic and adaptive, they

present implicitly a parallel structure (multiple agents). Genetic Algorithm

(Winter et al., 1995) is an example of nature inspired algorithms.

b. Population Based vs. Single Point Search. The manner in which the

search is being conducted by the algorithm is another distinguishing

characteristic. Tabu Search and Variable Neighborhood Search (VNS)

(Mladenovic and Hansen, 1997) are examples of meta-heuristics based on

single-point search, in which a single solution is manipulated at each step

(or iteration) of the algorithm. On the contrary, the search process in

population based meta-heuristics has the property of describing the

evolution of a set of points in the search space. More importantly, the

population in search space is brought about through conscious and

A Hybridized Approach for Solving Group Shop Problems

40

iterative treatment on sets of points. An example of a population based

method is Ant Colony Optimization (ACO) (Dorigo and Stützle, 2004).

d. Trajectory vs. Discontinuous Methods. An essential difference

between various meta-heuristics is whether there exists only one single

search trajectory corresponding to a closed walk on the neighborhood

graph or whether there are larger jumps in the neighborhood graph.

Interestingly, trajectory methods, such as Simulated Annealing (Kirkpatrick

et al., 1983), as depicted in Figure 2.5, and Tabu Search, share the

property of describing a trajectory in the search space during the search

process. In fact, the search process of these methods can be seen as the

evolution in (discrete) time of a discrete dynamical system as reported in

Devaney (1989) and Bar-Yam (1997).

Procedure SimulatedAnnealing(s∈S)

 Determine initial candidate solution s;

 Set initial temperature T;

 while (termination condition not satisfied)

 Choose a neighbor s’ of s probabilistically;

 If (s’ satisfies probabilistic acceptance criterion)

 s=s’;

 end

 Update T according to annealing schedule;

 end

 return s;

End SimulatedAnnealing

Figure 2.5: Algorithmic Framework of Simulated Annealing

A Hybridized Approach for Solving Group Shop Problems

41

d. Dynamic vs. Static Objective Function. Another form of

differentiation is based on the manner in which the objective function is

used in the algorithm. While most algorithms keep the objective function

given in the problem formulation i.e. “as it is”, some others like Guided

Local Search (GLS) (Voudouris and Tsang, 1995), adjust6 their objective

functions during the search in order to escape local optima via search

landscape transformation.

e. Single vs. Multiple Neighborhood Structures. Most meta-heuristics

operate on single neighborhood structure whereas other meta-heuristics

such as VNS uses a set of neighborhood structures to diversify the search

process.

f. Memorizing vs. Memory-less Algorithms. The use of search history

has also dichotomized the entire family of meta-heuristics into memorizing

algorithms and memory-less algorithms. Typically, memory-less algorithms

are Markovian in nature as the information they need is only the current

state of the search process. Considering the use of memory as one of the

fundamental elements of a powerful meta-heuristic, the design of

appropriate memory structures has become an important consideration in

meta-heuristic design. Consequently, there are a variety of ways in which

memory can be exploited in meta-heuristics. Short term and long term

6 Very often, these algorithms also incorporate information during the search process into the modification of the objective
functions.

A Hybridized Approach for Solving Group Shop Problems

42

memory structures are predominantly used in many meta-heuristics. The

former usually keeps track of recently performed moves, visited solutions

or, in general, decisions taken. The latter forms an accumulation of

synthetic parameters and indices about the search.

Other than the taxonomy for meta-heuristics, an important dimension to think

about is the interplay between the degree of exploitation and the degree of

exploration during the conducting of the search. The degree of exploitation, or

sometimes known as degree of intensification, refers to the amount of effort

directed to local search in the present region of the search space. In contrast, the

degree of exploration, commonly referred to as degree of diversification, refers to

the amount spent to search in distant regions of space, including the selection of

solutions in a far region and the acceptance of a worsening solution, relative to

the current solution, so as to gain the possibility of discovering new and better

solutions. Since these two requirements are conflicting in nature, a reasonable

tradeoff between them is imperative and they must be carefully tuned in each

meta-heuristic depending on the problem. Additionally, trade-off between effort, in

terms of computational time, and efficacy, in terms of quality of final solution, will

also need to be considered.

2.9 Fitness Landscape

In the broadest sense, optimization can be conceived to occur in three interrelated

number spaces. The search space contains the legal values of all elements that

A Hybridized Approach for Solving Group Shop Problems

43

can be entered into the objective function(s). On the other hand, an objective

function is a set of operations on parameters while the function space contains the

results of those operations. The last type of number space is one-dimensional

and is termed as the fitness space. It contains the degrees of success with which

patterns of parameters optimize the values in the function space, measured as

goodness or error. Generally, each point in the parameter space maps to a point

in the function space, which further corresponds to a point in the fitness space.

Interestingly, direct mapping of search space to fitness space is possible in many

cases.

Despite the limitations of conventional theoretical analysis, there is no doubt that

the performance of meta-heuristics depends strongly on the configuration of these

underlying spaces. This has led to the dominance of empirical methods for

evaluation of approximate methods in many research works. Works such as

Colletti and Barnes (2000), Grover (1992), and Gutin and Yeo (2001), which

emphasize theoretical analysis of COPs and the approximate methods for solving

them, are generally rare.

In the recent years, several research papers, such as Boese et al. (1994), Reeves

(1999), and Mattfeld et al. (1999), have attempted statistical investigations on

search spaces to either account for the performance of meta-heuristics or devise

specific algorithmic variants to better exploit the known characteristics of the

COPs. Works such as Weinberger (1990) and Stadler (1995) have demonstrated

the apparent similarities between COPs search spaces and genotype space.

A Hybridized Approach for Solving Group Shop Problems

44

Despite its origin in theoretical biology, the notion of fitness landscape is central to

COP’s search space analysis. The metaphorical view of a genotype space of a

species as a landscape, where related genotypes occupy nearby locations, states

a model of genotype space as a mountainous region consisting of peaks, valleys,

ridges and plateaus. The same model is applicable in the description of the

evolutionary process of a species adapting to regions of higher fitness through

natural selection. In the domain of optimization, fitness landscape is the topology

of the fitness surface over the entire search space with the objective function

playing the role of an artificial fitness function. This topology, which describes the

shape of the search space as encountered by search algorithms, is defined as:

Definition 2.21.

A fitness landscape is a topology on S which defines for each solution Ss∈ a set of

neighborhood solutions () SsN ∈ and assigns to every Ss∈ a fitness value ()sf

governed by the mapping ()sfsSf a ,: ℜ→ with respect to N . If arbitrary elements

of S can be transformed into each other by a finite sequence of neighborhood moves, N

is called a connected neighborhood.

Though the present research in search space analysis seems rudimentary, the

need for characterizing search space properties of COPs will continue to drive

research efforts in this area. With better understanding of the underlying features

of COPs, approximate methods will in turn be attuned to deliver better results.

A Hybridized Approach for Solving Group Shop Problems

45

2.10 Known Shop Scheduling Approaches

So far, most works on deterministic shop scheduling have centered on JSP, FSP,

OSP and MSP. Among them, JSP has attracted the most research interest with

the famous 10 jobs 10 machines instance formulated for the first time by Fisher

and Thompson (1963) and subsequently solved by Carlier and Pinson (1989)

using a Branch and Bound algorithm. Following this, other Branch and Bound

algorithms have been proposed, including Applegate and Cook (1991), and

Brucker et al. (1994), to improve computational performance. In addition, many

simple heuristics, including the use of priority rules, were employed in the early

stage. Among these, the Shifting Bottleneck Procedure (SBP), which was

proposed by Adam et al. (1988), is known to be a simple and effective heuristic

method as the algorithm builds up and improves a schedule via iterative

construction of a single bottleneck machine problem. Nevertheless, the

fundamental problems with SBP are its difficulties in performing re-optimization of

schedules as well as the algorithm’s tendencies in generating infeasible

schedules.

Many of the search algorithms developed for maxCJ between the late 1980s and

early 1990s can be considered to be innovative. Examples include the SA

approach by Larrhooven et al. (1992), TS Approach by Taillard (1994), TS

Approach by Amico and Trubian (1993), as well as GA by Nakano and Yamada

(1991). To date, the best known algorithm for maxCJ is the TS Algorithm of

A Hybridized Approach for Solving Group Shop Problems

46

Nowicki and Smutnicki (1996a). Apparently, TS algorithms generally exhibit

better empirical performance in comparison with those based on SA and those

based on variants of SBP. Reviews by Vaessens et al. (1996) as well as Jain et

al. (1999) provide good overview of the research development in this area.

As a special case of JSP, FSP also enjoyed considerable attention from

researchers. However, most works focused on the Permutation Flow Shop

Problem (PFSP), which refers to a FSP whose processing order of the jobs on

machines is the same for every machine. Several methods have been proposed

for PFSP in the literature. These include SA Algorithms of Osman and Potts

(1989), and Ogbu and Smith (1990), TS Algorithms of Taillard (1990), and

Nowicki and Smutnicki (1996b) as well as GA of Reeves (1995). In contrast, very

few papers address the General Flow Shop Problem (GFSP).

Comparatively, there are lesser papers that deal with maxCO . Among the few

earlier heuristic methods published, the more notable ones are Rock and Schmidt

(1983), Shimoys et al. (1994) as well as the generalized SBP approach by

Ramudhin and Marier (1996). However, in recent times, local search based meta-

heuristics have been developed that solve OSP more effectively. These include

TS Approach by Liaw (1999a), Hybrid GA by Prins (2000), and Liaw (2000) as

well as SA Approach by Liaw (1999b). As Liaw’s algorithms for maxCO are based

on makespan estimation, they perform extremely well on both benchmarks and

randomly generated problems.

A Hybridized Approach for Solving Group Shop Problems

47

Recognizing that a multi-stage system may be a mixture of “pure” shops in

practice, Masuda et al. (1985) introduced the concept of MSP and initiated the

theoretical investigation of MSP. This was followed by an algorithm by Strusevich

(1991), which improved upon the results of Masuda et al.. Thereafter, works of

Shakhlevich et al. (1999) and Shakhlevich et al. (2000), presented some

polynomial / pseudo-polynomial algorithms for solving some special cases and

provided a survey for the recent results about the complexity of MSP respectively.

GSP was first introduced in the context of a mathematical competition organized

by TU Eindhoven, Netherlands7. Although GSP shares many characteristics of

MSP, it is generally considered a further extension of the MSP framework. Similar

to MSP, there are little known works on GSP. Furthermore, GSP is an NP -hard

problem since it is well known that its special cases, the JSP and the OSP, are

both NP -hard. So far, there are only three working GSP algorithms: one based

on ACO Approach (Blum, 2003) and two based on TS Approach (Sampel et al.,

2002 and Liu et al., 2005).

The key contribution from Sampel et al.’s (2002) is the formulation of the first GSP

neighborhood definition, which is an extension of the neighborhood definition by

Nowicki and Smutnicki (1996a). Moreover, in the Sampel et al.’s TS Approach,

there are three characterizing features, namely: the usage of dynamic tabu lists,

the implementation of a restart mechanism and the incorporation of probabilistic

7 See http://www.win.tue.nl/whizzkids/1997/

A Hybridized Approach for Solving Group Shop Problems

48

rules for neighborhood moves selection. Subsequently, using the same

neighborhood definition from Sampel et al., Blum (2003) effectively applied the

ACO meta-heuristics on GSP despite less successful earlier attempts by other

researchers, including Colorni et al. (1993), on other classes of shop scheduling

problems. Particularly, Blum made tactical improvements to the pheromone

model for moves selection. As for the Liu et al.’s TS Approach, it incorporates the

use of a variety of neighborhood definitions that are an extension to those of

Liaw’s. (Liaw, 1999a and Liaw, 1999b). Unlike most other TS Approaches for

Shop Scheduling Problems, two different types of tabu lists are implemented to

store the entire machine routing for the job and entire job routing for the machine

corresponding to the selected move. Based on the comparative study of Liu et al.

(2005), the TS Approach by Liu outperforms the other two algorithms by obtaining

good solutions for most of the GSP benchmark instances.

2.11 Common Neighborhood Definition

The quality of solutions obtained through local search heuristics strongly depends

on the search neighborhood of the algorithm as the neighborhood definition

determines how the algorithm traverses within the search space. Most of the

modern scheduling neighborhood definitions are based on moves generation on

critical paths as they are more likely to lead to improving moves. In fact, for every

feasible schedule, there is at least one critical path which can be conceived as a

series of either machine blocks i.e. consecutive operations belonging to the same

A Hybridized Approach for Solving Group Shop Problems

49

machine on a critical path or group blocks i.e. consecutive operations belonging to

the same group on a critical path.

In order to understand how to formulate good neighborhood definitions, it is

worthwhile to note that they often exhibit the following desirable features:

a. Correlativity. As far as possible, a neighboring solution should be

highly correlated to its originator to facilitate a thorough exploration of

search space.

b. Feasibility. Perturbations that always lead to feasible solutions

avoid the computational effort needed to perform repair on generated

infeasible solutions.

c. Improvability. If additional problem specific knowledge can be

incorporated into the neighborhood definition, a move would have a better

chance to obtain an improved solution value.

d. Size. The average size of neighborhood moves should be within

reasonable bounds so as to prevent either premature termination of

algorithm or excessive computational demand to be placed on the

algorithm.

A Hybridized Approach for Solving Group Shop Problems

50

e. Connectivity. Promising areas of the search space may be excluded

from the search process if there is no finite sequence of moves leading

from an arbitrary solution to a global optimal solution.

JSP, being one of the most widely researched Shop Scheduling Problem, offers

an array of different neighborhood structures. A quick survey of the existing JSP

neighborhoods will provide insights for the design of GSP neighborhoods, which

are in turn crucial ingredient of any GSP scheduler. For the explanation of the

different neighborhood structures, the following definition is needed:

Definition 2.22.

An internal operation is defined as an operation of a machine or group block that is

neither the first nor the last operation in that block.

V. Laarhoven et al. (1992) outlined a neighborhood which is based on the reversal

of the processing orders of two swappable operations in any machine block of a

schedule’s critical path. The design of this neighborhood was based on two basic

observations, namely:

a. The reversal of two swappable operations on a schedule’s critical

path will never lead to an infeasible schedule.

A Hybridized Approach for Solving Group Shop Problems

51

b. The reversal of two swappable operations that are not on a

schedule’s critical path will lead to either an infeasible schedule or a non-

improving schedule.

The advantage of this neighborhood is that it is connected. However, as

highlighted by Matsuo et al. (1988), many of the candidate moves under this

neighborhood are non-improving in nature since the reversal of two swappable

internal operations on a schedule’s critical path can never improve a schedule.

Therefore, the neighborhood of Matsuo et al. (1988) is defined as that of V.

Laarhoven et al. (1989) but with the exclusion of swappable internal operations.

Subsequently, Nowicki and Smutnicki (1996a) extended the idea of Matsuo et al.

(1988) by excluding from their neighborhood definition the reversal of the first two

operations of the first machine block on a schedule’s critical path and the reversal

of the last two operations of the last machine block on a schedule’s critical path.

Other noteworthy neighborhood definitions are outlined by D. Amico and Trubian

(1993):

a. Permute the processing order of any two swappable operations at

the beginning of a machine block on a schedule’s critical path with a

preceding operation processed on the same machine or permute the

processing order of any two swappable operations at the end of a machine

block on a schedule’s critical path with a succeeding operation processed

on the same machine.

A Hybridized Approach for Solving Group Shop Problems

52

b. Move any one operation from machine blocks, of size at least 2, in

front of the first operation of the machine block or after the last operation of

the machine block.

Against this backdrop, a generalization of the result derived for JSP in Brucker

(1994) is provided in Blum (2003), as follows:

Theorem 2.1.

Let *p be a feasible solution to a GSP instance. If there is a solution *'p with

() ()**' maxmax pp CC < , then there is a machine block or group block

ii
k

i oo
i 1

'' . . . ffff=χ , where ik denotes the number of operations in iχ , in the critical

path cη such that io χ∈∃ , ioo 1≠ with ooi *'
1 ff or io χ∈∃ , i

ki
oo ≠ with i

ki
oo *'ff .

With this theorem, it is reasonable to define the neighborhood of a feasible

solution *p as follows: A feasible solution *'p is a neighbor of *p ()()*pN∈ if

there is exactly one machine block or exactly one group block

iii
k

i
k

i oooo
ii 1

*
2

**
1

* . . . ffffffff
−

=χ in a critical path cη of *p such that the order

of io1 and io2 or the order of i
ki

o
1−
 and i

ki
o is being swapped in *'p . See Appendix

for the proof of this theorem.

A Hybridized Approach for Solving Group Shop Problems

53

2.12 Concluding Remarks

Thus far, this chapter has provided the basic schema for understanding the

notations, definitions and general solving approaches for shop scheduling

problems. From this literature survey, it appears that meta-heuristics are more

effective than most other approaches. While these meta-heuristics have been

applied extensively on different classes of scheduling problems, it is difficult to

determine the relative merits of each of these meta-heuristics methods as the

overall design principle of these methods are often based on tactical

improvements of certain aspects of the algorithm, such as neighborhood

structures and memory structure, and comparative analysis of algorithm

performance are often based on experimental results.

Finally, another interesting trend that was uncovered in this literature survey is

that there are increasingly more studies being conducted to establish the

underlying nature of shop scheduling problems. In particular, the use of a fitness

landscape provides a novel way of analyzing the characteristics of combinatorial

optimization problems. Although it is necessary to take note of the different meta-

heuristic techniques as well as the various local search neighborhood definitions

applied to enhance the algorithm performance, insights on the nature of the shop

scheduling search space are more important as they will enable better search

strategies to be devised and the appropriate techniques to be incorporated into

the design of the scheduling algorithms.

A Hybridized Approach for Solving Group Shop Problems

54

Chapter 3 GSP Scheduling Methodology

3.1 Overview

With the conceptual framework of the present study laid out in the preceding

chapter, the current chapter sets out to elucidate the design of a GSP Scheduler.

Apart from providing a sketch of the algorithm design, this chapter also provides

the specific implementation details required to develop the algorithm, including but

not limited to memory structures, neighborhood definitions and critical path

computation methods. Other than addressing the key design considerations

highlighted in the preceding chapters, this chapter will also cover all the relevant

design rationales taken for the design of this algorithm.

3.2 Algorithmic Outline

A typical shop scheduling algorithm can generally be perceived to consist of two

stages, namely, the schedule construction stage and the schedule improvement

stage. Similarly, the proposed GSP Scheduler utilizes a simple list scheduling

algorithm similar to the one proposed in Giffler and Thompson (1960) to randomly

generate different initial solutions. Although any randomly generated solution may

serve as the starting point for local search algorithms, constructive algorithms are

typically used to generate good initial solutions before subsequent applications of

local search algorithms. This often leads to the discovery of better quality local

A Hybridized Approach for Solving Group Shop Problems

55

minima in fewer number of steps compared to the direct use of local search

algorithms without initial application of construction heuristics.

As outlined in Figure 3.1, the proposed algorithm starts off by first generating an

initial schedule based on random selection of schedule type and priority rule with

the ConstructSchedule Procedure. Due to the myopic nature of schedule

construction phase, the constructed solutions need not be locally optimal with

respect to some simple neighborhood. Therefore, this initial solution will be

improved upon through the OptimizeSchedule Procedure.

Procedure GSP Scheduler

 Select ScheduleType randomly;

 Select PriorityRule randomly;

 InitialSchedule = ConstructSchedule(ScheduleType, PriorityRule);

 Optimal_Schedule = OptimizeSchedule(InitialSchedule);

End GSP Scheduler

Figure 3.1: Algorithmic Skeleton of GSP Scheduler

The potential of constructing such a hybrid scheduling system that is capable of

integrating dispatching rules and search procedures has been substantiated by

the computational results of the scheduling algorithms by Amico and Trubian

(1993), Sun et al. (1995) as well as that by Liaw C. F. (1999a), which have been

covered in the literature survey. In particular, such hybrid systems can be

designed so that search procedures are implemented whenever for effectiveness

is needed and dispatching rules are carried out when quick responses are

A Hybridized Approach for Solving Group Shop Problems

56

necessary. Since the objective of this research is to develop an algorithm for

industrial applications, this approach has been incorporated as part of the

algorithm to provide the necessary scalability and speed for real-life situations.

3.3 Schedule Construction

Other than being used to generate the initial solution for the GSP Scheduler

Algorithm, the ConstructSchedule Procedure is also used iteratively within the

OptimizeSchedule Procedure to provide further random starting points to increase

the probability of finding better schedules within the solution space by the

algorithm. In the current implementation, the ConstructSchedule Procedure is

designed to generate both active schedule and non-delay Schedule using

different priority rules. The following figure outlines the ConstructSchedule

Procedure:

Procedure ConstructSchedule(SSP ∈)

 Initialize partial solution PS ;

 Initialize list of unscheduled operations i.e. OO =+ *;

 for(1=t to Ot =) do

 Put operations, with predecessor in PS , into tO ;

 '
tO = Restrict(PS , tO);

 *o = Choose('
tO);

 Extend PS by appending operation *o ;

 { }*\ oOO ++ = ;

 end

A Hybridized Approach for Solving Group Shop Problems

57

 return PS ;

End ConstructSchedule

* O denotes the list of all operations to be scheduled.

Figure 3.2: Algorithmic Skeleton of ConstructSchedule Procedure

Using the Restrict Procedure, a candidate list strategy is applied to further restrict

the set tO . Depending on the type of schedule desired, there are two major ways

of implementing this function. For the generation of active schedules, the

following version of Restrict Procedure should be used:

Procedure Restrict(SSP ∈ , tO)

 Calculate the earliest possible completion time ect for all tOo∈ ;

 Select machine *M with the minimal completion time *t ;

 Define '
tO as operations on *M with earliest start time *ttes ≤ ;

End Restrict

Figure 3.3: Algorithmic Skeleton of Restrict Procedure for Active Schedule

However, if non-delay schedules are needed, the algorithm skeleton of the

Restrict Procedure depicted in Figure 3.4 should be implemented.

Procedure Restrict(SSP ∈ , tO)

 Determine the earliest possible starting time *t for all tOo∈ ;

 Define '
tO as operations that can start at time *t ;

End Restrict

Figure 3.4: Algorithmic Skeleton of Restrict Procedure for Non-Delay Schedule

A Hybridized Approach for Solving Group Shop Problems

58

As for the Choose Procedure, it implements a policy for determining among the

operations of '
tO , the one to be scheduled next. The policy typically involves

choosing operations with the highest weight, where weights are given by priority

rules. Table 3.1 shows a selection of them.

Table 3.1: List of Priority Rules
Priority Rule Description
Random An operation is randomly chosen
EST An operation with earliest starting time
EFT An operation with earliest finishing time
SPT An operation with shortest processing time
LPT An operation with longest processing time
LWR An operation with least work remaining in the

job
MWR An operation with most work remaining in the

job
LTW An operation with least total work in job
MTW An operation with most total work in job

The rationale for the choice of only generating both active schedules and non-

delay is clear as it allows the algorithm to focus its attention on a limited set of

schedules of desirable quality, which in turn reduces the amount of time the

algorithm needs for local search improvements. While the set of non-delay

schedules is smaller than the set of active schedules, the GSP Scheduler

randomly selects between both types for schedule generation since there is no

guarantee that the set of non-delay schedules will contain an optimum as

opposed to active schedules. Coupled with the use of different priority rules and

the implementation of a schedule regeneration process within the

A Hybridized Approach for Solving Group Shop Problems

59

OptimizeSchedule Procedure, the dependency of the algorithm’s performance on

the initial seed will be reduced.

3.4 Search Strategy

While the smoothness of a search landscape, according to prevailing opinion in

Gu and Huang (1994), Schneider et al. (1997), and Coy et al. (1998), is the

central pre-requisite of successful search, Mattfeld et al (1999) has demonstrated

that smoothness alone is not sufficient in order to explain the intractability of the

hard JSP instances. In general, problems with local optima dispersed over the

entire search space do not work well with local search methods while problems

with smooth overall landscape tend to make adaptive search methods, such as

GA, less effective. It is reasonable to further generalize the results of this study

for GSP instances since JSP tends to be more difficult to solve compared to other

shop scheduling problems.

Other than relying on the findings of Mattfeld et al (1999) as the primary basis for

determining the choice between population based search approach and single-

point based search approach for the implementation of the GSP Scheduler, the

relative merits and shortcomings of both approaches have also been considered.

While population based approaches, such as GA, tend to be highly efficient

methods for intensification, they are often outperformed by purpose-built methods.

See Reeves (1994) for further elaboration on a comparative analysis of the

various meta-heuristics approaches. Furthermore, based on the results of the

A Hybridized Approach for Solving Group Shop Problems

60

literature survey in the preceding chapters on known scheduling approaches,

most of the better scheduling algorithms are based on single-point based search

approaches, such as Tabu Search. As such, the GSP Scheduler adopts the

framework of single-point based search, which is in this case the Tabu Search

method.

Among other findings, the same study by Mattfeld et al (1999) also revealed that

local optima tend to be dispersed over the entire JSP search space and that

harder JSP instances tend to possess smoother fitness landscape than easy

instances. The authors further conjectured that these results may explain the

success of hybrid methods, which combine sophisticated control with limited tabu

walks. In other words, an algorithm, with a restart mechanism, will tend to

perform better as it will be able to explore different parts of the search space so

that it may be able to uncover better solutions elsewhere.

Therefore, to be inline with these findings, the proposed GSP Scheduler attempts

to strike a balance between exploration and exploitation, in relation to the search

within the entire solution space, at the strategic tier by delineating the

OptimizeSchedule Procedure into two distinct phases:

a. Diversification Phase. In this phase, a move is selected to be

applied on the current schedule. If there are no local moves possible for

any step or if there is no improvement to the local search after MaxRestart

iterations, a ‘restart’ will be initiated to generate a random schedule. At

A Hybridized Approach for Solving Group Shop Problems

61

each step, the schedule is compared to both the local best solution and

global best solution. Promising solution and its associated tabu memory

are stored in the ‘backtrack’ memory for use in the intensification phase.

The basis for moves selection has been implemented as the

SelectRModelmoves Procedure, depicted in Figure 3.5, provides a two-

stage moves selection mechanism. In the first stage, the best-

improvement rule is applied to determine the best possible move on the

basis of lowest makespan value in the current iteration. Although this rule

yields better quality solution for each iteration, it requires greater

computational time than the first improvement rule, which does not require

all the neighborhoods of the current solution to be generated at one time

but generate them one at a time until the first lower cost neighborhood

solution. As such, for computational efficiency, the makespan

corresponding to each of the possible local moves are estimated prior to

the selection of moves in the SelectRModelmoves Procedure. As for stage

two, a probabilistic acceptance criterion, which has been adapted from the

Simulated Annealing Algorithm, is applied to determine if the current

selected non-tabu move should be accepted so that the schedule can be

adjusted.

A Hybridized Approach for Solving Group Shop Problems

62

Procedure SelectRModelmoves(SSC ∈ , ()vu,)

 Estimate makespan for all local search moves of CS ;

 Select local move ()vu, with best estimated makespan, '
maxC ;

 if(()vu, is non-tabu)

 Compute max
'
max CC −=δ where maxC is the makespan of CS ;

 if 0≤δ

 return ()vu, ;

 else

 Generate uniform random number ()1,0∈x ;

 if ()Tx δ−< exp

 return ()vu, ;

 end

 return NULL;

 end

 else if(*
max

'
max CC < where *

maxC is the global best makespan)

 Compute max
'
max CC −=δ where maxC is the makespan of CS ;

 if 0≤δ

 return ()vu, ;

 else

 Generate uniform random number ()1,0∈x ;

 if ()Tx δ−< exp

 return ()vu, ;

 else

 return NULL;

 end

 end

 else

 return NULL;

 end

End SelectRModelmoves

Figure 3.5: Algorithmic Skeleton of SelectRModelmoves Procedure

A Hybridized Approach for Solving Group Shop Problems

63

The rationale behind this approach is twofold: (1) to ensure that the final

solution is independent of the starting solution and (2) to prevent the

algorithm from being trapped in a local minimum. Moreover, a geometric

cooling function is implemented to allow moves to be more readily

accepted at the start of the algorithm and more frequently rejected towards

the end of the diversification phase. The relationship between the cooling

function, denoted by ()Tα , and the current temperature value, denoted by

T , is defined as follows:

 () aTT =α (3.1)

According to Reeves (1994), most reported successes in the literature use

values of a that are between 0.8 and 0.99. Similarly, the GSP Scheduler

has adopted the use of these values.

b. Intensification Phase. The solutions, which are stored in the back-

track memory, are restored for more refined search using a deterministic

acceptance criterion for local moves. A maximum of MaxBacktrackPoints

solutions will be stored in the backtrack memory for further search during

the intensification phase. In this phase, the makespans corresponding to

each of the possible local moves are estimated for the selection of moves

using the SelectDModelmoves Procedure. Similar to SelectRModelmoves

A Hybridized Approach for Solving Group Shop Problems

64

Procedure, the best-improvement rule is applied as well. Figure 3.6

outlines the SelectDModelmoves Procedure below:

Procedure SelectDModelmoves(SSC ∈ , ()vu,)

 Estimate makespan for all local search moves of CS ;

 if(number of tabu moves = number of possible moves)

 Select oldest tabu move ()vu, from list;

 Update TList until selected move becomes non-tabu;

 return ()vu, ;

 else

 Select local move ()vu, with best estimated makespan, '
maxC ;

 if(()vu, is non-tabu)

 return ()vu, ;

 else if(*
max

'
max CC < where *

maxC is the global best makespan)

 return ()vu, ;

 else

 Select next best non-tabu local move ()vu, ;

 return ()vu, ;

 end

 end

End SelectDModelmoves

Figure 3.6: Algorithmic Skeleton of SelectDModelmoves Procedure

During the diversification phase, it is possible that more than

MaxBacktrackPoints number of promising solutions may be generated for

storage. However, in such cases, only the best MaxBacktrackPoints

number of promising solutions with the best makespan will be stored.

A Hybridized Approach for Solving Group Shop Problems

65

The basic idea behind this search strategy is to identify as many promising

solutions as possible from different parts of the search space at the onset during

diversification phase so that better ones among these promising solutions can be

selected for further improvement search in the intensification phase. Figure 3.7

provides the pseudo-code for OptimizeSchedule Procedure.

Procedure OptimizeSchedule(SSi ∈)

 Initialize current schedule iC SS = ;

 Initialize local best schedule iLB SS = ;

 Initialize global best schedule iGB SS = ;

 Initialize Temperature T for Simulated Annealing;

 Initialize Tabu List TList ;
 while(TerminationCondition1 != true)

 Generate local moves from CS + based on current neigbourhood;

 if(SelectedMove = SelectRModelMoves(CS ,MoveList,T ,TList)

 AdjustSchedule(CS , SelectedMove);

 UpdateTabuList(TList);

 ComputeMakespan(CS);

 if(LBC SS ≤)

 CLB SS = ;

 if(GBC SS ≤)

 CGB SS = ;

 end

 end

 end

 if(RestartCondition = true)

 Save CS and its TList onto backtracking memory;

A Hybridized Approach for Solving Group Shop Problems

66

 CS = RegenerateSchedule();

 end

 Update T based on geometric cooling function;

 end

 while(TerminationCondition2 != true)

 Load schedule from backtrack memory into CS and TList ;

 while(TerminationCondition3 != true)

 Generate local moves from CS ;

 if(SelectedMove = SelectDModelMoves(CS ,MoveList,T ,TList)

 AdjustSchedule(CS , SelectedMove);

 UpdateTabuList(TList);

 ComputeMakespan(CS);

 if(LBC SS ≤)

 CLB SS = ;

 if(GBC SS ≤)

 CGB SS = ;

 end

 end

 end

 end

 end

 return(GBS);

End OptimizeSchedule

+ In the diversification phase, local moves may be generated based on any of the

three different neighbor structures.

Figure 3.7: Algorithmic Skeleton of OptimizeSchedule Procedure

In this algorithm, the best solution found is always compared with the lower bound

of the problem instance, which is in turn computed using the formula outlined in

Taillard (1994):

A Hybridized Approach for Solving Group Shop Problems

67

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

= ∑∑
==

m

j
iji

n

i
ijj

ppLB
11

max,maxmax
(3.2)

However, the drawback of using any form of lower bound formulation is that the

best known makespan of a problem instance may be way higher than the lower

bound makespan value. Therefore, it is important to define good termination

conditions to mitigate the effects of unnecessary iterations taken by the algorithm

that may arise from the above-mentioned situation.

Furthermore, three different termination conditions have been defined for two

distinct phases of the algorithm. In the diversification phase,

TerminationCondition1 is satisfied whenever the total number of iterations has

reached a pre-specified number of iterations, i.e. MaxDivIterations or the best

solution obtained so far is less than MinPercentDev of the lower bound of the

problem instance. Once this condition is met, the algorithm will proceed with the

next phase of the algorithm. At each iteration step of the intensification phase, the

algorithm will check if there is any schedule left in the backtrack memory for

further schedule improvement and it will also determine if the current solution is

equal to the lower bound of the problem instance. In particular,

TerminationCondition2 will be set to ‘true’ if there is no schedule left in the

backtrack memory or if the current solution value is equal to the lower bound of

the problem instance or if the optimum solution is found. When this happens, the

algorithm will come to a halt. For each of the backtracked solution, local search

will be performed up to a maximum of MaxIntIterations iterations. Whenever the

A Hybridized Approach for Solving Group Shop Problems

68

number of counts of local search performed on the current backtracked solution

equals to MaxIntIterations or when the current solution value is equal to the lower

bound of the problem instance or when the optimum solution is found,

TerminationCondition3 will be set to ‘true’. This will trigger GSP Scheduler to

terminate local search on the current backtracked solution so that it can retrieve

the next schedule in the backtrack memory for further refinement.

3.5 Memory Structures

Two forms of memory have been implemented in this algorithm to achieve the two

broad objectives of intensifying the search in “good” regions of the search space

and diversifying the search towards unexplored regions:

a. Short Term Memory. A variable length tabu list memory structure

has been designed to prevent the algorithm from revisiting recently

generated solutions. A solution 's is considered forbidden if the current

solution s can be transformed into 's by applying one of the moves in the

tabu list. This list works in a First-In-First-Out (FIFO) manner. Each time a

move ()vu, , is made, its inverse ()uv, will be added to the tabu list. If the

tenure, or length, of the tabu list is too short, its role of cycle prevention will

not be effective. Conversely, if the tenure of a tabu list is too long, there

will be too many restrictions imposed on the search. In the current

implementation, the tenure of tabu List, i.e. TBListLen, is equal to the

square root of the total number of critical operations in the current best

A Hybridized Approach for Solving Group Shop Problems

69

local schedule. However, it should also be noted that it is possible to

override the tabu-status of moves when they lead to new solutions which

are better than the best found so far. This is performed by means of

aspiration level conditions. Moreover, in the event when all possible moves

in a particular iteration are all tabu, the algorithm will pick the oldest

possible move from the list and populate the list with replications of the

“youngest” move until the selected move becomes non-tabu.

b. Long Term Memory. At the same time, to allow promising solutions

uncovered during the diversification phase to be examined later, a back-

track memory has been implemented as a form of long term memory to

allow storage of the promising schedules and their associated tabu lists.

The storing of the associated tabu list prevents the repetition of the same

search history in the intensification phase of the algorithm. Since the local

optima of shop scheduling problems tend to be dispersed within the search

space, a long term memory of sufficient memory length will increase the

chances of the optimum solution being located during the search.

3.6 Neighborhood Definitions

In an interesting study by Jain et al (2000), it was shown that the restrictive nature

of the Nowicki and Smutnicki (NS) neighborhood (Nowicki and Smutnicki, 1996a)

causes the initialization procedure of the scheduling algorithm to have substantial

influence over the quality of the best solution found by the algorithm. Particularly,

A Hybridized Approach for Solving Group Shop Problems

70

Jain et al (2000) pointed out that one of the promising areas to explore for the

design of scheduling algorithm is the application of multiple neighborhoods as the

most restrictive neighborhood may not necessarily be the best. As such, it was

proposed that multi-neighborhood system would apply NS neighborhood as the

core, because it can be searched quickly and efficiently, and then some of the

other neighborhoods at other levels in order to provide the necessary

diversification. Other similar research works, such as Mladenovic and Hansen

(1997), and Mladenovic and Hansen (2001), on the concept of Variable

Neighborhood Search also examined how systematic change of neighborhoods

within a possibly randomized local search algorithm can improve the performance

of the algorithm. In view of these works, the proposed GSP Scheduler utilizes a

total of four different neighborhood definitions to varying degrees. To describe the

various neighborhoods, the notations in Table 3.2 are needed:

Table 3.2: Neighborhood Definition Notations
Symbol Description

][iM The machine that processes operation i .

][iPM The operation processed on][iM just before operation
i , if it exists.

][iSM The operation processed after][iM just after operation
i , if it exists.

][iJ The job to which operation i belongs to.

][iPJ The operation belonging to job][iJ that precedes
operation i , if it exists.

][iSJ The operation belonging to job][iJ that follows operation
i , if it exists.

A Hybridized Approach for Solving Group Shop Problems

71

][iG The group to which operation i belongs to.

][iPG The operation belonging to group][iG that precedes
operation i , if it exists.

][iSG The operation belonging to group][iG that follows
operation i , if it exists.

Using these notations, the definitions of the neighborhood used in the proposed

GSP Scheduler are as follows:

Table 3.3: GSP Scheduler Neighborhood Definitions
NEIGHBORHOOD

TYPE
NEIGHBORHOOD DEFINITION

0N Swap i and j if both operations are either the first two

operations of a machine / group block or the last two

operations of a machine / group block, as follows:

A Hybridized Approach for Solving Group Shop Problems

72

1N With the exception of the first machine / group block and

the last machine / group block, swap i and j if both

operations are either the first two operations of a machine /

group block or the last two operations of a machine / group

block. For the first machine / group block, only the last two

operations are swappable, while, only the first two

operations are swappable for the last machine / group

block.

2N Assume that i is the first operation on a machine or group

block.

- Swap (][iPM , i) if i is on a machine block.

- Swap (][iPG , i) if i is on a group block.

3N Assume that j is the last operation on a machine or group

block.

- Swap (j ,][jSM) if j is on a machine block.

- Swap (j ,][jSG) if j is on a group block.

The deployment of these neighborhood structures within the algorithm is as

follows:

a. 0N , 2N and 3N will be used during the diversification phase with

0N as the core. For every NCIterations iteration, one of the three

neighborhood structures will be selected and applied once. Thereafter, the

algorithm will revert back to the use of 0N for local search.

A Hybridized Approach for Solving Group Shop Problems

73

b. As for the intensification phase, the algorithm will make use of 1N ,

which is a more restrictive version of 0N , for local search. However, in the

event that no further moves are possible in the current iteration for a

particular backtracked solution, the algorithm will make a random selection

among 1N , 2N and 3N for generation of other feasible moves. Likewise,

the algorithm will revert back to the use of 1N after a move has been

applied on the given schedule.

In comparison with the neighborhood structures implemented in Liu et al.’s

Algorithm (2005), the proposed neighborhood structures are much simpler in

nature as they do not allow the exchange of the positions of more than two

operations simultaneously. Nevertheless, it is still possible for the GSP Scheduler

to achieve the same local search move sequence as in Liu et al.’s Algorithm

(2005) when the different neighborhoods structures outlined above are applied

sequentially. Unlike the Liu et al.’s Algorithm (2005), the use of such simple

neighborhood definitions in the proposed algorithm does not impose the need for

complex memory structures to store tabu moves. In particularly, for the Liu et al.’s

Algorithm (2005), complete machine routings and job routings needs to be stored

and to be compared whenever a local move is applied. This can be

computationally intensive. Evidently, this approach avoids the pitfalls of having a

single restrictive neighborhood definition as well as the complexities of

implementing elaborate neighborhood structures.

A Hybridized Approach for Solving Group Shop Problems

74

3.7 Critical Path Determination

Another important aspect of the scheduling algorithm is the method used for the

determination of the critical path. As mentioned in the preceding chapter, a critical

path is an ordered sequence of critical operations whose length is equal to the

makespan of the schedule. Since local searches are often performed on critical

paths, the efficiency of the critical path determination approach will have a direct

impact on the performance of the scheduling algorithm. This thesis adopts the

topological-sequence method presented in Liu and Ong (2002). Typically, for any

feasible schedule, every one of its operation i satisfies the following equations:

Definition 3.1.

}{][][][][,max iPJiPJiPMiPMi pepee ++=

where ie and ip = 0 for all undefined indices i .

Definition 3.2.

}{][][][][,max iSJiSJiSMiSMi pepel ++=

where ie , ip and il = 0 for all undefined indices i .

Most methods proposed in the literature, including Taillard (1994) and Bellman

(1958), rely on the computation of ie (where ie denotes the length of a longest

A Hybridized Approach for Solving Group Shop Problems

75

path from node 0 to node i , excluding processing time of operation i , ip) and il

(where il denotes the length of a longest path from node i to node 1+N ,

excluding processing time of operation i , ip) so as to determine critical paths of

schedules. However, in this study, the following approach is used:

Step 1. Compute the in-count value (the number of predecessors) of each node.

Step 2. Find the topological sequence of the N operations as follows:

a. Select node 0 as the first node on the topological order list.

b. Decrement the in-count value for each of the immediate successor

nodes of the selected node by 1.

c. Select any of the unselected nodes which have a zero in-count

value. Put this node as the next node on the topological order list.

d. Repeat Steps b and c until all nodes are selected.

Step 3. Starting from the setting 00 =e , calculate the ie values of all nodes in the

topological sequence according to Definition 3.1.

A Hybridized Approach for Solving Group Shop Problems

76

Step 4. Starting from the setting 01 =+Nl , calculate the il values of all nodes in

the reversed topological sequence according to Definition 3.2.

Step 5. Determine the critical path by selecting operations satisfying the condition

of maxClpe iii =++ .

3.8 Makespan Estimation Method

It is clear that the processing order of operations on critical paths needs to be

modified in order to improve a current schedule. However, to do this effectively,

the algorithm needs to be able to estimate the effects of all possible moves for a

particular schedule based on the selected neighborhood definition so as to

determine the most promising move for that particular iteration. In addition to that,

the algorithm also needs to be able to determine the feasibility of the adjusted

schedule as a move may produce infeasible schedules.

Although exact makespan computation methods as outlined in Section 3.7, and

exact feasibility tests, including the labeling algorithm outlined in Adam et al.

(1988), are available, the GSP Scheduler adopts an approach similar to that in

Amico and Trubian (1993), and Liaw (1999a) to improve its computational

efficiency. Particularly, the makespan estimation technique for the various

neighborhood definitions has been incorporated into the design of

SelectRModelmoves Procedure and SelectDModelmoves Procedure. Table 3.4

A Hybridized Approach for Solving Group Shop Problems

77

provides the details on how the estimated makespan values can be computed for

the respective neighborhood definitions used in the GSP Scheduler.

Table 3.4: Estimated Makespan Values for GSP Scheduler
NEIGHBORHOOD

TYPE

ESTIMATED MAKESPAN VALUE

0N

1N

{ }][][][][
' ,max iPMiPMjPJjPJj pepee ++=

{ }jjiPJiPJi pepee ++= '
][][

' ,max

{ }][][][][
' ,max jSMjSMiSJiSJi plpll ++=

{ }iijSJjSJj plpll ++= '
][][

' ,max

{ }'''' ,max'
max jjjiii lpelpeC ++++=

2N Swap (][iPM , i) if i is on a machine block and][iSMj =

{ }]][[]][[][][
' ,max iPMPMiPMPMiPJiPJi pepee ++=

{ }'',max]][[]][[
'

][ii pepee iPMPJiPMPJiPM ++=

{ }''
][][][][

' ,max iPMiPMjPJjPJj pepee ++=

{ }][][][][
' ,max jSMjSMjSJjSJj plpll ++=

{ }jiPMSJiPMSJiPM plpll j ++= ',max]][[]][[
'

][

{ }][][][][
' ',max iPMiPMiSJiSJi plpll ++=

{ }'''
][][

'
][

'' ,,max'
max jjjiPMiPMiPMiii lpelpelpeC ++++++=

Swap (][iPG , i) if i is on a group block and][iSGj =

{ }]][[]][[][][
' ,max iPGPGiPGPGiPMiPMi pepee ++=

{ }'',max]][[]][[
'

][ii pepee iPGPMiPGPMiPG ++=

{ }''
][][][][

' ,max iPGiPGjPMjPMj pepee ++=

A Hybridized Approach for Solving Group Shop Problems

78

{ }][][][][
' ,max jSGjSGjSMjSMj plpll ++=

{ }jiPGSMiPGSMiPG plpll j ++= ',max]][[]][[
'

][

{ }][][][][
' ',max iPGiPGiSMiSMi plpll ++=

{ }'''
][][

'
][

'' ,,max'
max jjjiPGiPGiPGiii lpelpelpeC ++++++=

3N Swap (j ,][jSM) if j is on a machine block and][jPMi =

{ }][][][][
' ,max iPMiPMiPGiPGi pepee ++=

{ }'',max]][[]][[
'

][ii pepee jSMPGjSMPGjSM ++=

{ }''
][][][][

' ,max iSMiSMjPGjPGj pepee ++=

{ }]][[]][[][][
' ,max jSMSMjSMSMjSGjSGj plpll ++=

{ }jiSMSGiSMSGiSM plpll j ++= ',max]][[]][[
'

][

{ }][][][][
' ',max iSMiSMiSGiSGi plpll ++=

{ }'''
][][

'
][

'' ,,max'
max jjjjSMjSMjSMiii lpelpelpeC ++++++=

Swap (j ,][jSG) if j is on a group block and][jPGi =

{ }][][][][
' ,max iPGiPGiPMiPMi pepee ++=

{ }'',max]][[]][[
'

][ii pepee jSGPMjSGPMjSJ ++=

{ }''
][][][][

' ,max iSGiSGjPMjPMj pepee ++=

{ }]][[]][[][][
' ,max jSGSGjSGSGjSMjSMj plpll ++=

{ }jiSGSMiSGSMiSG plpll j ++= ',max]][[]][[
'

][

{ }][][][][
' ',max iSGiSGiSMiSMi plpll ++=

{ }'''
][][

'
][

'' ,,max'
max jjjjSGjSGjSGiii lpelpelpeC ++++++=

In this algorithm, these estimation techniques are used primarily for the purpose of

moves selection. Once a selected move is applied on the current schedule, the

A Hybridized Approach for Solving Group Shop Problems

79

exact makespan will be computed using the method outlined in the previous

section. This is to ensure that errors arising from such estimations are always

kept within a reasonable margin while computational requirements for moves

selection are minimized.

3.9 Schedule Regeneration

In line with the overall strategy to initiate search in different parts of the search

space, the restart mechanism, which consists of (1) saving the current schedule

and its associated tabu list into backtracking memory and (2) regenerating

another schedule as the next starting point for local search, has been

implemented as part of the GSP Scheduler. Essentially, the RegenerateSchedule

Procedure, outlined in Figure 3.7, offers two modes of schedule regeneration,

namely: ‘Full Restart’ and ‘Partial Restart’, and it alternates randomly between the

two modes during the algorithm runtime. In the ‘Full Restart’ mode, the algorithm

selects randomly the type of schedule and the priority rule before it constructs a

schedule from scratch. This is similar to the ConstructSchedule Procedure. As

for the ‘Partial Restart’ mode, the algorithm will select randomly operation blocks

on the critical path for reshuffling based on ‘shortest processing time first’ rule,

‘longest processing time first’ rule or ‘random’ rule.

Depending on the nature of the GSP problem, the ratio of group blocks to

machine blocks on the critical path of the schedule may be different. Hence, the

probabilistic rule for selecting operations’ blocks on the critical path for reshuffling

A Hybridized Approach for Solving Group Shop Problems

80

in the ‘Partial Restart’ mode needs to be biased to the nature of the GSP instance.

To do this, this thesis defines and proposes the following characteristic for

differentiating between different GSP instances:

Definition 3.3.

A group factor of a GSP instance is defined as the ratio between the number of groups to

the average group length where group length is equal to the number of operations

belonging to the same group.

Based on this definition, a JSP instance will have its group factor equal to the total

number of operations in the instance (i.e. ‘MaxGroupFactor’) while a similar OSP

instance with the same number of tasks and same corresponding processing

times will have its group factor equal to the number of operations in the instance

divided by the number of tasks per job (i.e. ‘MinGroupFactor’). Accordingly, the

probabilistic rule is defined as follows:

Definition 3.4.

Probability of Selecting Group Blocks is defined as:

a. 0, if group factor is equal to MaxGroupFactor.

b. 0.5, if group factor is equal to MinGroupFactor.

c.
ctorMinGroupFactorMaxGroupFa
rGroupFactoctorMaxGroupFa

−
−

×5.0 , otherwise

A Hybridized Approach for Solving Group Shop Problems

81

By incorporating this probabilistic rule into the process of selecting operations

blocks on the critical path for reshuffling in the ‘Partial Restart’ mode, the

algorithm will be able to adapt better to the differing nature of GSP instances.

3.10 Concluding Remarks

It is clear that the design of the GSP Scheduler is based on a search strategy

derived from the generalization of the findings of JSP search space analysis for

GSP instances. The clear articulation of the search strategy enables all the

relevant tactical considerations, such as those on memory structures and

neighborhood definitions, to be applied in the implementation of this algorithm.

Other than incorporating known features from other scheduling algorithms, such

as simulated annealing approach for move selection, critical path determination

method and makespan estimation techniques, the GSP Scheduler also

improvises a probabilistic schedule regeneration mechanism that is unique to this

algorithm. This will not only ensure that the search techniques are consistent with

the overall search strategy but should also improve the overall performance of the

algorithm in terms of its effectiveness and efficiency.

A Hybridized Approach for Solving Group Shop Problems

82

Chapter 4 Computational Experiments

4.1 Overview

With the conceptual framework of the present study laid out in the preceding

chapters, computational experiments were carried out with the GSP Scheduler on

a series of benchmark problems to gauge the performance of the algorithm in

relation to other known GSP scheduling algorithms. This chapter sets out to

discuss experimental inputs, the settings, and the results obtained.

4.2 Experimental Inputs

To evaluate the performance of the GSP Scheduler in this study, the algorithm is

applied on several established benchmark instances taken from the literature. As

benchmark problems provide a common platform on which algorithms can be

tested and gauged, problem instances of different dimensions and grades of

difficulty should be selected so that the capabilities as well as the limitations of an

algorithm will be revealed when it is applied on such problems. It should be noted

that most benchmark problems have only integer processing times with a rather

small range. While such instances may seem to have very little practical

usefulness, Amar and Gupta (1986) have indicated that real life scheduling

problems are easier to solve than simulated ones regardless of the type of

algorithm used.

A Hybridized Approach for Solving Group Shop Problems

83

A total of 41 problem instances have been selected for use in the computational

experiments. This is the same set of benchmark problems that has been used for

computational experiments by Liu et al. (2005), Blum (2003) and Sampel et al.

(2002). By adopting this set of benchmark problems, it will be possible to

benchmark the performance of the GSP Scheduler against other GSP scheduling

algorithms. Moreover, this set of benchmark problems offers a good mix of

‘square’ instances, which refers to problem instances where the ratio of the

number of jobs to the number of machines is equal to one, and ‘rectangular’

instances, which refers to problem instances where the ratio of the number of jobs

to the number of machines is greater than one. Numerous studies, including but

not limited to Ramudhin and Marier (1996), and Watson et al. (2003), have shown

that ‘square’ instances are generally harder to solve than ‘rectangular’ instances.

Among these problem instances, WHIZZKID is the only established GSP instance

as it was subjected to a mathematics competition in the Netherlands in 1997. It

consists of 20 jobs comprising 197 operations on 15 machines and these

operations can be sub-partitioned into 124 groups. As for the rest of the GSP

benchmark instances, they can be generated from prominent JSP problems, such

as Fisher and Thompson’s FT10 (10 machines and 10 jobs; see Fisher and

Thompson, 1963), Lawrence’s LA38 (15 machines and 15 jobs; see Lawrence,

1984) and Adam et al.’s ABZ7 (15 machines and 20 jobs; see Adam et al., 1988),

by introducing groups of various lengths into the jobs. In particular, FT10 is a

prominent JSP instance, whose optimality was not determined for more than

A Hybridized Approach for Solving Group Shop Problems

84

twenty years before the optimality of one solution was proved by Carlier and

Pinson (1989).

The GSP instances derived from FT10, LA38 and ABZ7 are denoted by

FT10_XX, LA38_XX and ABX7_XX respectively, where XX is the group length.

For example, the GSP instance generated from LA38 with group length of 5 is

denoted by LA38_05. When the group length is 1, these GSP instances

(FT10_01, LA38_01 and ABBZ7_01) are the original JSS instances. As the group

length increases, these instances get closer the OSP instances. However, these

GSP instances become the original OSP instances when the group length is

equal to the number of machines in the respective problem instance.

Another important aspect of experimental inputs is the choice of parameter

values. Typically, the values of these parameters tend to have a significant effect

on the algorithm performance. In the absence of a more rigorous approach for

the determination of these values, the algorithm parameters are empirically

selected based on the application of the GSP Scheduler on other randomly

selected problem instance to ensure a reasonable trade-off between running time

and solution quality. The various parameter values for the GSP Scheduler to be

used in the various computational experiments are found in Table 4.1.

A Hybridized Approach for Solving Group Shop Problems

85

Table 4.1: Selected Algorithm Parameter Values
Parameter Values

MaxRestart 5% of ‘MaxDivIterations’

MaxBacktrackPoints 5 to 10

MaxDivIterations 50000 to 80000

MinPercentDev 1% to 5%

MaxIntIterations 10000 to 20000

TBListLen Square root of critical path length of the current

best local best schedule

NCIterations 10% of ‘MaxDivIterations’

Generally, the parameters are varied across different classes of GSP problems,

such as FT10 Class, LA38 Class, ABZ7 Class and WHIZZKID Class, since the

characteristics of these problems are substantially different from each other i.e.

different number of machines, different number of jobs and different number of

total operations. However, the settings are maintained for GSP instances of the

same class as the proposed algorithm is able to adjust its search mechanism in

accordance to the differing nature of GSP instances of the same class.

4.3 Empirical Results

The GSP Scheduler was coded in Visual C++ 6.0 environment and was tested on

an ACER Laptop with Pentium IV Processor 1.5 GHz CPU, with 256 MB RAM

running on Microsoft Windows XP Operating System. Using the specified

A Hybridized Approach for Solving Group Shop Problems

86

parameter values, the algorithm was applied on all the 41 GSP instances. For

each GSP instance, there were a total of 20 runs so that the following can be

computed:

a. Best Solution. Out of the 20 runs on the same problem instance, the

best solution, BSTS , will be recorded.

b. Average Solution. Corresponding to each problem instance, the

mean value of 20 final solutions obtained will be registered as AVGS .

c. Average Computational Time. Similarly, AVGT is captured for each

problem instance so that the average case performance of the algorithm

can be ascertained.

d. Coefficient of Variation. To measure the dispersion of solutions

obtained from the 20 runs of each problem instance, a dimensionless

metric is computed. The formula is as follows:

100×=

σ
µ

vc
(4.1)

where µ is the mean of all the final solutions obtained in the 20 runs while σ is

the standard deviation of all the solutions obtained in the 20 runs.

A Hybridized Approach for Solving Group Shop Problems

87

As the experiments for the other algorithms were performed on different

processors, the computational times reported in these algorithms cannot be used

for direct comparison. In particular, the experiments for Sampel et al.’s TS

Algorithm and Blum’s ACO Algorithm were performed on a 1.1 GHz AMD Athlon

CPU under Linux while the experiments for Liu et al.’s TS Algorithm were

performed on a 1.8 GHz Pentium IV CPU with 256 MB RAM under Microsoft

Windows XP. Therefore, by assuming the inverse relationship between

processing speed of the CPU and its computational time, the adjusted

computational times are recomputed based on the following formula:

T

S
ST ×= '

'
(4.2)

where T denotes the reported computational time while S and 'S refer to the

CPU speed used in the original experiment and the CPU speed used in this

current computational experiment respectively.

Overall, the GSP Scheduler achieved relatively good results as it was able to

obtain the best known makespan values for 22 out of 41 problem instances. As

for the problem instances whose best known makespan values were not obtained

by the GSP Scheduler, both the their best solution values and their average

solution values found by the GSP Scheduler were well within 2% deviation from

the best known makespan value as shown in Table 4.2. The value of the best

A Hybridized Approach for Solving Group Shop Problems

88

known makespan for each instance is also included in the table. However, those

problem instances whose optimality are unknown are enclosed in brackets.

In line with the observation that ‘square’ instances are generally harder to solve

than ‘rectangular’ instances in studies, such as Ramudhin and Marier (1996), and

Watson et al. (2003), the GSP Scheduler yielded better on ABZ7 Class and

WHIZZKID Class than on FT10 Class and LA38 Class. Particularly, 45% of the

best known solution obtained by the GSP Scheduler was from the ABZ7 Class.

By denoting the GSP Scheduler as Algorithm I, Liu et al.’s TS Algorithm as

Algorithm II, Blum’s ACO Algorithm as Algorithm III and Sampel et al.’s TS

Algorithm as Algorithm IV, two different tables, namely Table 4.3 and Table 4.4,

were tabulated for the comparison of best case performance and average case

performance respectively.

Hybridized Approach for Solving Group Shop Problems

89

Table 4.2: Solution Quality for GSP Scheduler
ACTUAL SOLUTION VALUE DEVIATION FROM BEST

KNOWN (%)
INSTANCE BEST

KNOWN
MAKESPAN SBST SAVG SBST SAVG

FT10_01 930 930 938.4 0.0 0.9
FT10_02 (872) 875 894.8 0.3 2.6
FT10_03 (827) 830 838.9 0.4 1.4
FT10_04 (782) 790 798.8 1.0 2.1
FT10_05 (745) 747 750.7 0.1 0.4
FT10_06 (725) 725 738.6 0.0 1.9
FT10_07 (686) 690 700.4 0.6 2.1
FT10_08 (655) 655 660.1 0.0 0.8
FT10_09 (655) 655 656.2 0.0 0.2
FT10_10 (655) 655 655.8 0.0 0.1

LA38_01 1196 1212 1218.0 1.3 1.8
LA38_02 (1106) 1118 1122.5 1.1 1.5
LA38_03 (1049) 1049 1060.1 0.0 1.1
LA38_04 (993) 1000 1003.4 0.7 1.0
LA38_05 (990) 1000 1003.2 1.0 1.3
LA38_06 (961) 970 979.8 0.9 2.0
LA38_07 (956) 965 976.9 0.9 2.2
LA38_08 (943) 951 960.5 0.8 1.9
LA38_09 (962) 962 975.9 0.0 1.4
LA38_10 (979) 979 1004.8 0.0 2.6
LA38_11 (979) 980 1008.0 0.1 3.0
LA38_12 (943) 960 961.7 1.8 2.0
LA38_13 (943) 943 955.6 0.0 1.3
LA38_14 (943) 943 950.8 0.0 0.8
LA38_15 (943) 943 953.3 0.0 1.1

ABZ7_01 656 670 678.6 2.1 3.4
ABZ7_02 (641) 642 650.1 0.2 1.4
ABZ7_03 (611) 611 616.3 0.0 0.9
ABZ7_04 (609) 610 611.5 0.2 0.4
ABZ7_05 (638) 638 638.5 0.0 0.1
ABZ7_06 (600) 600 602.7 0.0 0.4
ABZ7_07 (567) 579 583.2 2.1 2.9
ABZ7_08 (564) 564 574.6 2.3 0.4
ABZ7_09 (577) 577 582.6 0.0 1.0
ABZ7_10 (612) 612 613.0 0.0 0.2
ABZ7_11 (610) 610 614.7 0.0 0.8
ABZ7_12 (592) 592 596.0 0.0 0.7
ABZ7_13 (581) 581 586.5 0.0 0.9
ABZ7_14 (562) 562 563.2 0.0 0.2
ABZ7_15 (556) 556 556.0 0.0 0.0

WHIZZKID 469 469 476.9 0.0 1.7

Hybridized Approach for Solving Group Shop Problems

90

Table 4.3: Comparison of the Algorithms’ Best Case Performance
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST

KNOWN
MAKESPAN

SBST TAVG SBST TAVG SBST TAVG SBST TAVG

FT10_01 930 930 67.5 930 74.8 930 94.9 930 50.8
FT10_02 (872) 875 54.9 872 78.6 872 74.6 875 48.5
FT10_03 (827) 830 63.4 827 75.8 834 93.8 827 84.5
FT10_04 (782) 790 69.9 784 81.0 791 83.7 782 69.6
FT10_05 (745) 747 56.8 745 73.6 754 62.8 748 57.9
FT10_06 (725) 725 54.0 725 75.6 725 84.8 729 61.5
FT10_07 (686) 690 54.8 686 54.8 694 67.8 696 57.4
FT10_08 (655) 655 27.8 655 15.1 655 42.5 657 58.1
FT10_09 (655) 655 29.8 655 1.0 655 0.8 655 5.9
FT10_10 (655) 655 2.4 655 0.6 655 0.6 655 1.2

LA38_01 1196 1212 209.5 1202 235.4 1228 934.4 1196 605.4
LA38_02 (1106) 1118 186.5 1106 225.5 1126 838.1 1106 594.1
LA38_03 (1049) 1049 240.2 1049 218.4 1061 798.0 1049 690.4
LA38_04 (993) 1000 223.9 993 239.9 1019 707.8 1002 651.6
LA38_05 (990) 1000 226.4 990 249.2 1003 817.6 990 630.4
LA38_06 (961) 970 228.9 961 256.7 977 931.6 974 949.8
LA38_07 (956) 965 232.9 956 253.2 970 821.2 961 623.6
LA38_08 (943) 951 220.1 943 202.8 955 952.2 954 777.4
LA38_09 (962) 962 213.7 962 254.8 962 624.4 966 430.5
LA38_10 (979) 979 216.6 990 231.2 979 904.1 982 96.7
LA38_11 (979) 980 216.1 991 242.6 979 803.5 985 292.7
LA38_12 (943) 960 217.3 943 142.9 947 811.3 960 789.7
LA38_13 (943) 943 180.9 943 11.8 943 55.0 943 792.4
LA38_14 (943) 943 157.1 943 9.0 943 29.1 943 595.9
LA38_15 (943) 943 90.7 943 8.8 943 12.5 943 141.8

Hybridized Approach for Solving Group Shop Problems

91

Table 4.3 (Cont.): Comparison of the Algorithms’ Best Case Performance
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST

KNOWN
MAKESPAN

SBST TAVG SBST TAVG SBST TAVG SBST TAVG

ABZ7_01 656 670 209.5 667 331.3 676 757.0 661 556.4
ABZ7_02 (641) 642 186.5 641 324.4 641 930.1 641 151.2
ABZ7_03 (612) 611 240.2 612 331.1 612 848.2 612 120.8
ABZ7_04 (609) 610 223.9 609 321.6 609 91.4 609 34.6
ABZ7_05 (638) 638 226.4 638 324.6 638 10.6 638 11.4
ABZ7_06 (600) 600 228.9 600 293.5 600 31.7 600 43.0
ABZ7_07 (567) 579 232.9 567 391.2 567 648.3 567 524.5
ABZ7_08 (564) 564 220.1 577 329.5 577 59.0 577 25.9
ABZ7_09 (577) 577 213.7 577 342.1 577 44.9 577 21.6
ABZ7_10 (612) 612 216.6 612 323.9 612 41.9 612 11.3
ABZ7_11 (610) 610 216.1 610 310.2 610 13.0 610 9.8
ABZ7_12 (592) 592 217.3 592 315.6 592 26.5 592 19.1
ABZ7_13 (581) 581 180.9 581 302.2 581 13.2 581 37.3
ABZ7_14 (562) 562 157.1 562 305.8 562 18.5 562 54.9
ABZ7_15 (556) 556 90.7 556 18.1 556 4.0 556 58.1

WHIZZKID 469 469 746.8 469 821.4 486 924.4 474 727.6

Hybridized Approach for Solving Group Shop Problems

92

Table 4.4: Comparison of the Algorithms’ Average Case Performance
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST

KNOWN
MAKESPAN

SAVG cv SAVG cv SAVG cv SAVG cv

FT10_01 930 938.4 0.44 933.2 0.28 939.5 0.71 930.6 0.20
FT10_02 (872) 894.8 0.76 873.4 0.22 887.5 0.96 880.1 0.30
FT10_03 (827) 838.9 0.48 831.8 0.42 853.1 1.25 838.3 0.32
FT10_04 (782) 798.8 0.38 791.1 0.73 805.6 0.86 796.0 0.39
FT10_05 (748) 750.7 0.34 748.5 0.85 764.1 0.90 758.1 4.74
FT10_06 (725) 738.6 0.64 727.4 0.40 736.6 0.65 745.3 0.49
FT10_07 (686) 700.4 0.79 692.9 0.56 702.5 0.87 709.7 0.55
FT10_08 (655) 660.1 0.32 655.0 0.00 655.1 0.05 660.5 0.42
FT10_09 (655) 656.2 0.34 655.0 0.00 655.0 0.00 655.0 3.44
FT10_10 (655) 655.8 0.29 655.0 0.00 655.0 0.00 655.6 3.88

LA38_01 1196 1218.0 0.66 1206.3 0.38 1235.5 0.34 1200.0 6.16
LA38_02 (1106) 1122.5 0.47 1107.6 0.14 1148.8 0.89 1112.3 0.33
LA38_03 (1049) 1060.1 0.29 1049.0 0.09 1068.4 0.37 1054.9 0.31
LA38_04 (1002) 1003.4 0.85 996.8 0.27 1028.7 0.60 1011.3 0.07
LA38_05 (990) 1003.2 0.75 996.0 0.43 1019.3 0.83 1011.4 0.15
LA38_06 (961) 979.8 0.34 970.7 0.91 985.6 0.50 981.2 0.41
LA38_07 (956) 976.9 0.42 962.5 0.56 980.5 0.61 971.0 0.00
LA38_08 (943) 960.5 0.40 948.1 0.44 970.5 0.77 962.8 0.18
LA38_09 (962) 975.9 0.43 963.7 0.31 981.3 0.80 987.0 2.86
LA38_10 (979) 1004.8 0.73 999.4 0.95 987.8 0.48 1012.1 0.64
LA38_11 (979) 1008.0 0.67 996.3 0.32 985.5 0.52 1015.6 0.87
LA38_12 (943) 961.7 0.27 945.9 0.52 951.9 0.33 965.5 0.59
LA38_13 (943) 955.6 0.74 943.0 0.00 943.0 0.00 946.6 2.70
LA38_14 (943) 950.8 0.31 943.0 0.00 943.0 0.00 943.6 2.71
LA38_15 (943) 953.3 0.79 943.0 0.00 943.0 0.00 943.6 2.36

Hybridized Approach for Solving Group Shop Problems

93

Table 4.4 (Cont.): Comparison of the Algorithms’ Average Case Performance
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST

KNOWN
MAKESPAN

SAVG cv SAVG cv SAVG cv SAVG cv

ABZ7_01 656 678.6 0.72 671.0 0.46 683.3 0.47 668.4 1.59
ABZ7_02 (641) 650.1 0.48 641.0 0.00 645.0 0.47 641.0 1.96
ABZ7_03 (612) 616.3 0.71 612.0 0.00 612.8 0.47 612.3 0.48
ABZ7_04 (609) 611.5 0.10 609.0 0.00 609.0 0.00 616.0 0.77
ABZ7_05 (638) 638.5 0.15 638.0 0.00 638.0 0.00 640.7 0.21
ABZ7_06 (600) 602.7 0.60 600.0 0.00 600.0 0.00 601.5 0.61
ABZ7_07 (567) 583.2 0.44 567.0 0.14 569.9 0.00 571.0 0.20
ABZ7_08 (577) 574.6 0.69 577.0 0.40 577.0 0.00 596.3 0.30
ABZ7_09 (577) 582.6 0.66 577.0 0.70 577.0 0.00 599.0 0.32
ABZ7_10 (612) 613.0 0.29 612.0 0.00 612.0 0.00 631.5 0.39
ABZ7_11 (610) 614.7 0.73 610.0 0.00 610.0 0.00 631.6 4.74
ABZ7_12 (592) 596.0 0.69 593.1 0.64 592.0 0.00 606.0 0.49
ABZ7_13 (581) 586.5 0.29 583.7 0.95 581.0 0.00 584.0 0.55
ABZ7_14 (562) 563.2 0.32 562.0 0.00 562.0 0.00 566.4 0.42
ABZ7_15 (556) 556.0 0.00 556.0 0.00 556.0 0.00 556.4 3.44

WHIZZKID 469 476.9 1.34 478.2 1.63 494.6 0.84 479.8 3.88

A Hybridized Approach for Solving Group Shop Problems

94

By comparing the results obtained by the GSP Scheduler with that of Blum’s ACO

Algorithm and Sampel et al.’s TS Algorithm, the GSP Scheduler outperforms them

in most problem instances in three aspects: the best solution found, the coefficient

of variation and the average computational time. Particularly, the solutions

obtained via the GSP Scheduler were of comparable quality with respect to those

obtained via the Liu et al.’s TS Algorithm. However, in most cases, the GSP

Scheduler requires less computational time than other known GSP algorithms.

Although the coefficients of variation for a number of the solutions obtained by the

GSP Scheduler tend to be higher that that of the Liu et al.’s TS Algorithm, they are

still within the acceptable margin of less than 1.0% for most cases.

Another interesting observation that was made in this computational experiment,

which is in line with the observation made in Sampel et al. (2002), is that as the

structure of the problem instance approaches that of OSP, it tends to be easier to

solve. This is evident from the lower computational times and lower coefficients of

variations associated with those problem instances with higher group lengths.

Since the structure of the WHIZZKID problem is quite similar to that of a JSP, it is

considered one of the toughest problems in the set of benchmarks. Therefore, it

is not surprising that the optimal solution is only obtained by the GSP Scheduler

and the Liu et al.’s TS Algorithm.

In essence, the computational experiments demonstrated that the GSP Scheduler

is not only efficient but also robust as it can be applied to the MSP, OSP and JSP

successfully.

A Hybridized Approach for Solving Group Shop Problems

95

4.4 Effect of Fitness Function on Algorithm Performance

Most algorithms, especially simple iterative search methods, face the problem of

being unable to navigate their search out of either ‘plateaus’ or local optima as the

choice of their next algorithm step is often based on the fitness of their current

point as well as the corresponding fitness of the neighboring points. To

circumvent such problems, Duvivier et al. (1991) advocated the use of enriched

fitness function so as to improve solution quality. In particular, Duvivier et al.

(1991) proposed that the enriched fitness function should consist of a main

criterion and a secondary criterion. This will allow any algorithm to differentiate

solution points that have the same value for the main criterion.

As a separate trial on the GSP Scheduler, the fitness function, as recommended

by Duvivier et al. (1991), was incorporated into the SelectDModelmoves

Procedure within the intensification phase of the GSP Scheduler leaving the rest

of the algorithm intact. The assumption for this is that the GSP Scheduler is likely

to be navigating either on ‘plateaus’ or on local optima during this phase.

Therefore, the use of the enriched fitness function within this phase of the GSP

Scheduler may help to improve the overall algorithm performance. The fitness

function used is outlined as follows:

 ())()()(22max12 xCxHKxCKKxf op+×+××= (4.3)

A Hybridized Approach for Solving Group Shop Problems

96

where x denotes a schedule, DMK ×=1 denotes the product of the

number of machines and the sum of all durations of all the operations of

the instance, MJK ×=2 denotes the product of the number of machines

and the number of jobs,)(max xC denotes the makespan value of the

schedule,)(2 xH denotes the summation of the square of the completion

time of the last operation performed on each machine and)(xCop denotes

the number of critical operations found in the schedule.

Using the same experimental settings, the GSP Scheduler was applied on all the

41 GSP instances. Table 4.5 summarizes the results of this trial by computing the

average percentage improvements achieved in terms of SBST, SAVG, TAV and cv for

the different families of problem instances by the GSP Scheduler using the fitness

function against the results obtained by the original algorithm without fitness

function in Section 4.3.

Table 4.5: Effect of Fitness Function on GSP Scheduler’s Performance
AVERAGE IMPROVEMENT PERCENTAGE (%) PROBLEM INSTANCE FAMILY

SBST SAVG TAVG cv
FT10 0.29 0.11 18.7 -5.2
LA38 -0.10 -0.06 35.1 18.6
ABZ7 0.01 0.02 20.2 4.5
WHIZZKID 0.00 -0.07 19.0 -2.7

The results did not provide substantial evidence to indicate that there are

significant improvements in terms of overall solution quality. Moreover, since the

computation of the fitness value requires that other information of the amended

schedule to be known, makespan estimation techniques cannot be used in

A Hybridized Approach for Solving Group Shop Problems

97

conjunction with fitness function in the intensification phase. Consequently, the

average computational times required by the GSP Scheduler, which uses the

fitness function, increased rather significantly.

4.5 Concluding Remarks

In this chapter, extensive experiments were carried out to gauge the performance

of the GSP Scheduler on a set of benchmark problems. As other known GSP

scheduling algorithms for GSP have used this set of problems for similar

computational experiments, these results can be compared to determine the

relative strengths / weaknesses of the respective scheduling algorithms for GSP.

Overall, the GSP Scheduler outperforms Sampel et al.’s TS Algorithm and Blum’s

ACO Algorithm in terms of solution quality and computational time. At the same

time, the performance of the GSP Scheduler is also comparable to that of Liu et

al.’s TS Algorithm as it is able to produce solutions of similar quality but with a

shorter processing time. Notwithstanding that, unlike the Liu et al.’s TS Algorithm,

the GSP Scheduler does not utilize elaborate neighborhood definitions, which in

turn requires extensive tabu list structures for machine routing / job routing.

Therefore, the GSP Scheduler is easier to implement for real life application

compared to the Liu et al.’s TS Algorithm.

A Hybridized Approach for Solving Group Shop Problems

98

Chapter 5 Conclusions

5.1 Overview

In this present study, a methodology has been proposed to solve the GSP.

Through the generalization of known findings about the distribution of local optima

within the search space of JSP, a hybridized algorithm for solving GSP has been

devised by incorporating known features of other popular meta-heuristics

approach. The algorithm has been subsequently subjected to various

computational experiments and the comparisons of empirical results have also

been made with other known GSP algorithms to determine their relative strengths

/ weaknesses. This chapter concludes the thesis, by providing a brief review of

the present study, demarcating its contributions, outlining the research issues

addressed and finally proposing suggestions for future research directions.

5.2 Group Shop Scheduling: A Review

A typical shop scheduling algorithm can generally be perceived to consist of two

stages, namely, the schedule construction stage and the schedule improvement

stage. Most schedulers utilize a variety of techniques, which can range from

simple dispatching functions to complex meta-heuristics, for both stages. In the

case of the GSP scheduler, the schedule improvement can be further divided into

the diversification phase and intensification phase. Likewise, many useful

A Hybridized Approach for Solving Group Shop Problems

99

features of other well-known meta-heuristics have been incorporated as part of

the GSP Scheduler.

In the implementation of shop scheduling algorithms, most state-of-the-art

methods perform local search on the schedule. Particularly, in the cases where

the objective is to minimize schedule makespan, neighborhood moves for local

search are often selected from either machine blocks or group blocks on the

critical paths of schedules. While a more restrictive neighborhood definition will

reduce the number of non-improving moves for the scheduling algorithm, it also

has the effect of increasing the dependency of the final solution quality on the

starting solution. Thus, the choice of neighborhood structures to use for local

search and the selection mechanism for local moves are both crucial steps in the

design of good GSP scheduling algorithms.

With the exception of Blum’s ACO and Sampels et al.’s TS, neighborhood move

estimation techniques were utilized during local search for selecting feasible

moves on a critical path as opposed to the exact computation of schedule

makespan corresponding to each of the possible moves prior to move selection.

As such techniques have shown to be more computationally efficient, they have

been incorporated as part of the GSP Scheduler.

A Hybridized Approach for Solving Group Shop Problems

100

5.3 Main Contribution Of The Present Study

The main contribution of the present study is the revelation of the potential and

possibility of developing an algorithm that is both scalable in its applications,

robust in its performance on a wide range of GSP instances and relatively easy to

implement. In comparison with computational results of other known approaches

for solving GSP problems, the proposed algorithm is able to produce solutions of

comparable quality but with shorter processing times. Notwithstanding that, the

proposed algorithm is easier to implement as it requires less elaborate

neighborhood definitions and less complex memory structures as opposed to the

Liu et al.’s algorithm (2005).

This study also demonstrates how known results about the search space of JSP

can be utilized for the implementation of GSP scheduling algorithm. Moreover, it

highlights the importance of devising the search strategy of the algorithm to suit

the underlying characteristics of the search space so that maximum effectiveness

can be achieved. Apart from implementing an array of techniques from existing

meta-heuristics, new features, such as the probabilistic rule for selecting the

blocks for reshuffling, have also been developed.

A Hybridized Approach for Solving Group Shop Problems

101

5.4 Future Work

Although research efforts should continue to be directed towards the improvement

of the tactical aspects of GSP scheduling algorithms, such as the development of

more efficient lower bound estimates of GSP as well as the development of more

powerful neighborhood structures, two potential areas remains to be explored,

namely: (1) the hybridization of GA technique with the GSP Scheduler and (2) the

re-deployment of the fitness functions within the GSP Scheduler. Since GAs are

generally known to be good intensification methods, the incorporation of GA

technique into the intensification phase of the GSP Scheduler may improve the

algorithm performance in terms of solution quality. As for the re-deployment of

the fitness function, it may be worthwhile to consider the use of fitness functions in

conjunction with the hybridization of GA technique with the GSP Scheduler as

fitness functions may be more suitable for population-based meta-heuristics, such

as GA.

From a broader perspective, two key research directions may become more

dominant in future. Firstly, more search space analysis should be performed on

shop scheduling problems, particularly GSP, to unveil further properties of the

GSP landscape so as to improve scheduling algorithm design. Particularly,

further research studies may wish to consider investigating the relationship

between the properties of GSP landscape, such as the distribution of local optima,

and the parameters of GSP instances, such as the group length. Notwithstanding

A Hybridized Approach for Solving Group Shop Problems

102

that, the development of methodologies for scheduling dynamic and stochastic

GSP remains an area of immense potential as these methodologies will provide

practitioners with more relevant tools for industrial applications.

A Hybridized Approach for Solving Group Shop Problems

103

References

[1] Aarts E. and Lenstra J.K., editors, (1997), Local Search in Combinatorial

Optimization, Wiley-Interscience.

[2] Adam J., Balas E. and Zawack D. (1988), The Shifting Bottleneck Procedure

for Job Shop Scheduling, Management Science, Vol. 34, pp. 391 – 401.

[3] Amar A. D. and Gupta J. N. D. (1986), Simulated versus Real Life Data

Testing the Efficiency of Scheduling Algorithms, IIE Transactions Vol. 18, pp.

16 – 25.

[4] Amico D. and Trubian M. (1993), Applying Tabu Search to the Job Shop

Scheduling Problem, Annals of Operations Research, Vol. 41, pp. 231 –

252.

[5] Applegate D. and Cook W. (1991), A Computational Study of the Job-Shop

Scheduling Problem, ORSA Journal on Computing, Vol. 3, pp. 149 – 156.

[6] Ashby J. R. and Uzsoy R. (1995), Scheduling and Order Release in a

Single-stage Production System, Journal of Manufacturing, Vol. 14, pp. 290

– 306.

A Hybridized Approach for Solving Group Shop Problems

104

[7] Bar-Yam Y. (1997), Dynamics of Complex Systems, Studies in Nonlinearity.

Addison-Wesley.

[8] Bellman R. E. (1958), On A Routing Problem, Quarterly Applied

Mathematics, Vol. 16, pp. 87 – 90.

[9] Blum C. (2003), An ACO Algorithm to tackle Shop Scheduling Problems,

Submitted to European Journal of Operational Research.

[10] Boese K. D., Kahng A. B. and Muddu S. (1994), A New Adaptive Multi-Start

Technique for Combinatorial Global Optimization, Operations Research

Letters, Vol. 16, pp. 101 – 113.

[11] Brucker P., Jurisch B. and Sievers B. (1994), A Branch and Bound Algorithm

for Job Shop Scheduling Problem, Discrete Applied Mathematics, Vol. 49,

pp. 107 – 129.

[12] Brucker P. (1998), Scheduling Algorithms (2nd Edition), Springer Verlag,

Berlin.

[13] Carlier J. and Pinson E. (1989), An Algorithm for Solving the Job Shop

Problem, Management Science, Vol. 35, pp. 164 – 176.

A Hybridized Approach for Solving Group Shop Problems

105

[14] Colletti B. W. and Barnes J. (2000), Linearity in the Traveling Salesman

Problem, Applied Mathematics Letters, Vol. 13, pp. 27 - 32.

[15] Colorni A., Dorigo M., Maffioli F., Maniezzo V., Righini G. and Trubian M.

(1996), Heuristics from Nature for Hard Combinatorial Optimization

Problems, International Transactions in Operational Research, Vol. 3, pp. 1

– 21.

[16] Colorni A., Dorigo M., Maffioli F., Maniezzo V. and Trubian M. (1993), Ant

Systems for Job-shop Scheduling, Belgian Journal of Operations Research,

Statistics and Computer Science, Vol. 34 (1), pp. 39 – 54.

[17] Coy S. P., Golden B. L., Runger G. C. and Wasil E. A. (1998), See The

Forest Before The Trees: Fine-Tuned Learning And Its Applications To The

Traveling Salesman Problem, IEEE Transactions on Systems, Man and

Cybernetics, Part A, Vol. 28 (4), pp. 454 – 464.

[18] Croes G. A. (1958), A Method for Solving Traveling Salesman Problem,

Operations Research, Vol. 6, pp. 791 – 812.

[19] Devaney R. L. (1989), An Introduction to Chaotic Dynamical Systems,

Addison-Wesley, Second Edition.

[20] Dorigo M. and Stützle T. (2004), Ant Colony Optimization, The MIT Press.

A Hybridized Approach for Solving Group Shop Problems

106

[21] Duvivier D., Preux Ph., Fonlupt C. and Robilliard D. (1991), The Fitness

Function And Its Impact On Local Search Methods, IEEE International

Conference on Systems, Man and Cybernetics, Vol. 3, pp 2478 – 2483.

[22] Fisher H. and Thompson G. L. (1963), Probabilistic Learning Combinations

of Local Job Scheduling Rules, Industrial Scheduling, Prentice Hall,

Englewood Cliffs, NJ, pp. 225 – 251.

[23] Floudas C. A. and Pardalos P. M. (2001), Stochastic Scheduling,

Encyclopedia of Optimization, Vol. 5, pp. 367 – 372.

[24] Giffler B. and Thompson G. L. (1960), Algorithms for Solving Production

Scheduling Problems, Operations Research, Vol. 8, pp. 487 – 503.

[25] Glover F. (1986), Future Paths for Integer Programming and Links to

Artificial Intelligence, Computer and Operations Research, Vol. 13, pp. 533 –

549.

[26] Glover F. (1989), Tabu Search – Part I, ORSA Journal on Computing, Vol. 1,

pp. 190 – 206.

[27] Glover F. (1990), Tabu Search – Part II, ORSA Journal on Computing, Vol.

2, pp. 4 – 32.

A Hybridized Approach for Solving Group Shop Problems

107

[28] Graham R. L., Lawler E. L., Lenstra J. K. and Rinnooy Kan A. H. G. (1979),

Optimization and Approximation in Deterministic Scheduling and

Sequencing: A Survey, Annals of Discrete Mathematics, pp. 287 – 326.

[29] Grover L. K. (1992), Local Search and the Local Structure of NP -complete

Problems, Operations Research Letters, Vol. 12, pp. 235 – 243.

[30] Gu J. and Huang X. (1994), Efficient Local Search with Search Space

Smoothing: A Case Study Of The Traveling Salesman Problem (TSP), IEEE

Transactions on Systems, Man and Cybernetics, Vol. 24 (5), pp. 728 – 735.

[31] Gutin G. and Yeo A. (2001), TSP Tour Domination and Hamilton Cycle

Decompositions of Regular Digraphs, Operations Research Letters, Vol. 28,

pp. 107 – 111.

[32] Handfield R. B. and Nichols E. L. (2002), Supply Chain Redesign –

Transforming Supply Chains into Integrated Value Systems, Prentice Hall.

[33] Jain A. S. and Meeran S. (1999), Deterministic Job-Shop Scheduling: Past,

Present and Future, European Journal of Operational Research, Vol. 13, pp.

390 – 434.

A Hybridized Approach for Solving Group Shop Problems

108

[34] Jain A. S., Rangaswamy B. and Meeran S. (2000), New and ‘Stronger’ Job-

Shop Neighborhoods: A Focus on the Method of Nowicki and Smutnicki

(1996), Journal of Heuristics, Vol. 6, pp. 457 – 480.

[35] Johnson S. M. (1954), Optimal two- and three-stage production schedules

with setup times included, Naval Research Logistics Quarterly, Vol. 1, pp. 61

- 68.

[36] Johnson D. S., Papadimitriou C. H. and Yannakakis M. (1988), How Easy is

Local Search?, Journal of Computer System Science, Vol. 37, pp. 79 – 100.

[37] Karp R. M. (1972), Reducibility among Combinatorial Problems, Miller R. E.

and Thatcher J. W., editors, Numerical Solution of Markov Chains, Plenum

Press, New York.

[38] Kirkpatrick S., Gelatt C. D. and Vecchi M. P. (1983), Optimization by

Simulated Annealing, Science, Vol. 220, pp. 671 – 680.

[39] Laporte G. (1991). The Vehicle Routing Problem: An Overview of Exact and

Approximate Algorithms, Montréal : Centre for Research on Transportation.

[40] Laarhoven Van P. J. M. and Aarts E. H. L. (1989), Simulated Annealing:

Theory and Applications, Mathematics and its Applications Series, Kluwer

Academic Publishers, Dordrecht, The Netherlands.

A Hybridized Approach for Solving Group Shop Problems

109

[41] Laarhoven Van P. J. M, Aarts E. H. L and Lestra J. K. (1992), Job Shop

Scheduling By Simulated Annealing, Operations Research, Vol. 22, pp. 629

– 638.

[42] Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., and Shmoys D. B.,

editors, (1985), The Traveling Salesman Problem: A Guided Tour of

Combinatorial Optimization, John Wiley & Sons.

[43] Lawrence S. (1984), Resource Constrained Project Scheduling: An

Experimental Investigation of Heuristic Scheduling Technique, GSIA,

Carnegie Mellon University.

[44] Lenstra J. K., Rinnooy Kan A. H. G. and Brucker P. (1977), Complexity

Machine Scheduling Problems, Annals of Discrete Mathematics, Vol. 1, pp.

343 – 362.

[45] Lenstra J. K. and Rinnooy Kan A. H. G. (1979), Computational Complexity of

Discrete Optimization Problems, Annals of Discrete Mathematics, Vol. 4, pp.

121 – 140.

[46] Liaw C. F. (1999a), A Tabu Search Algorithm for the Open Shop Scheduling

Problem, Computers & Operations Research, Vol. 26, pp. 109 – 126.

A Hybridized Approach for Solving Group Shop Problems

110

[47] Liaw C. F. (1999b), Applying Simulated Annealing to the Open Shop

Scheduling Problem, IIE Transactions, Vol. 31, pp. 457 – 465.

[48] Liaw C. F. (2000), A Hybrid Genetic Algorithm for the Open Shop Scheduling

Problem, European Journal of Operational Research, Vol. 124, pp. 28 – 42.

[49] Liu S. Q. and Ong H. L. (2002), A Comparative Study of Algorithms for the

Flow Shop Problem, Asia Pacific Journal of Operational Research, Vol. 19,

pp. 205 – 222.

[50] Liu S. Q., Ong H. L. and Ng K. M. (2005), A Fast Tabu Search Algorithm for

Group Shop Scheduling Problem, Advances in Engineering Software, Vol.

36, pp. 533 – 539.

[51] Martin O., Otto S. W. and Felten E. W. (1992), Large-step Markov Chains for

TSP incorporating Local Search Heuristics, Operations Research Letters,

Vol. 11, pp. 219 – 224.

[52] Masuda T., Ishii H. and Nishida T. (1985), The Mixed Shop Scheduling

Problem, Discrete Applied Mathematics, Vol. 11, pp. 175 – 186.

[53] Matsuo H., Shu C. J., Sullivan R. S. (1988), A Controlled Search Simulated

Annealing Method for the General Jobshop Scheduling Problem, Working

A Hybridized Approach for Solving Group Shop Problems

111

paper 03-04-88, Dept. of Management, Graduate School of Business,

University of Austin, Texas.

[54] Mattfeld D. C., Bierwirth C. and Kopfer H. (1999), A Search Space Analysis

of the Job Shop Scheduling Problem, Annals of Operations Research, Vol.

86, pp. 441 – 453.

[55] Mladenovic N. and Hansen P. (1997), Variable Neighborhood Search,

Computers Operations Research, Vol. 24, pp. 1097 – 1100.

[56] Mladenovic N. and Hansen P. (2001), Variable Neighborhood Search:

Principles and Applications, European Journal of Operations Research, Vol.

130, pp. 449 – 467.

[57] Nakano R. and Yamada T. (1991), Conventional Genetic Algorithm for Job

Shop Scheduling Problems, Proceedings of the 4th International Conference

on Genetic Algorithms and their Applications, pp. 474 – 479.

[58] Nowicki E. and Smutnicki C. (1996a), A Fast Taboo Search Algorithm for the

Job Shop Problem, Management Science, Vol. 42, pp. 797 – 813.

[59] Nowicki E. and Smutnicki C. (1996b), A Fast Taboo Search Algorithm for the

Permutation Flowshop Problem, European Journal of Operational Research,

Vol. 91, pp. 160 – 175.

A Hybridized Approach for Solving Group Shop Problems

112

[60] Ogbu F. A. and Smith D. K. (1990), Simulated Annealing for the Permutation

Flowshop Problem, OMEGA, Vol 19, pp. 64 – 67.

[61] Osman I. H. and Potts C. N. (1989), Simulated Annealing for Permutation

Flowshop Scheduling, OMEGA, Vol. 17, pp. 551 – 557.

[62] Panwalkar S. S. and Iskander W. (1977), A Survey of Scheduling Rules,

Operations Research, Vol. 25, pp. 45 – 65.

[63] Papadimitriou C. H. and Steiglitz K. (1982), Combinatorial Optimization -

Algorithms and Complexity, Dover Publications, Inc., New York.

[64] Papadimitriou C. H. (1993), Computational Complexity, Addison Wesley.

[65] Pinedo M. (2002), Scheduling: Theory, Algorithms and Systems, Prentice

Hall, pp. 21 to 25.

[66] Porter D. B. (1968), The Gantt Chart as applied to Production Scheduling

and Control, Naval Research Logistics Quarterly, Vol. 15, pp. 311 – 317.

A Hybridized Approach for Solving Group Shop Problems

113

[67] Prins C. (2000), Competitive Genetic Algorithm for the Open Shop

Scheduling Problem, Mathematical Methods of Operations Research, Vol.

52, pp. 389 – 411.

[68] Ramudhin A. and Marier P. (1996), The Generalized Shifting Bottleneck

Proecdure, European Journal of Operational Research, Vol. 93, pp. 34 – 48.

[69] Reeves C. R., editor, (1994), Modern Heuristics Techniques for

Combinatorial Problems, Advanced Topics in Computer Science Series,

Blackwell Scientific Publications.

[70] Reeves C. R. (1995), A Genetic Algorithm for Flowshop Sequencing,

Computers & Operations Research, Vol. 22, pp. 5 – 13.

[71] Reeves C. R. (1999), Landscapes, Operators and Heuristics Search, Annals

of Operations Research, Vol. 86, pp. 473 – 490.

[72] Righter R. (1994), Stochastic Scheduling, Academic Press, San Diego.

[73] Rock H. and Schmidt G. (1983), Machine Aggregation Heuristics in Shop-

Scheduling, Methods of Operations Research, Vol. 45, pp. 303 – 314.

[74] Roy B. and Sussmann B. (1964), Les Problèmes D`ordonnancement Avec

Contraintes Disjonctives, SEMA, Note D.S. No. 9, Paris.

A Hybridized Approach for Solving Group Shop Problems

114

[75] Sampels M., Blum C., Mastrolilli and Rossi-Doria O. (2002), Metaheuristics

for Group Shop Scheduling, Proceedings from Parallel Problem Solving from

Nature - PPSN VII: 7th International Conference, Granada, Spain, Vol.

2439/2002, pp. 631 – 640.

[76] Schneider J., Dankesreiter M., Fettes W., Morganstern I., Schmid M. and

Singer J.M. (1997), Search Space Smoothing for Combinatorial Optimization

Problem, Physica A, Vol. 243, pp. 77 – 112.

[77] Shakhlevich N. V., Sotsko Y. N. and Werner F. (1999), Shop Scheduling

Problems with Fixed and Non-Fixed Machine Orders of the Jobs, Annals of

Operations Research, Vol. 92, pp. 281 – 304.

[78] Shakhlevich N. V., Sotsko Y. N. and Werner F. (2000), Complexity of Mixed

Shop Scheduling Problems: A Survey, European Journal of Operational

Research, Vol. 120, pp. 343 – 351.

[79] Shmoys D. B., Stein C. and Wein J. (1994), Improved Approximation

Algorithms for Shop Scheduling Problems, SIAM Journal on Computing, Vol.

23, pp. 617 – 632.

[80] Stadler P. F. (1995), Towards A Theory Of Landscapes, Technical Report

SFI-95-03-030, Santa Fe Institute.

A Hybridized Approach for Solving Group Shop Problems

115

[81] Strusevich V. A. (1991), Two Machine Super Shop Scheduling Problem,

Journal of Operational Research Society, Vol. 42, 479 – 492.

[82] Sun D., Batta R. and Lin L. (1995), Effective Job Shop Scheduling Through

Active Chain Manipulation, Computers Operations Research, Vol. 22, pp.

159 - 172.

[83] Taillard E. (1990), Some Efficient Heuristic Methods for the Flowshop

Sequencing Problem, European Journal of Operational Research, Vol. 47,

pp. 65 – 74.

[84] Taillard E. (1994), Parallel Taboo Search Techniques for the Job Shop

Scheduling Problem, Operations Research Society of America Journal on

Computing, Vol. 6, No. 2, pp. 108 – 117.

[85] Vaessens R. J. M., Aarts E. H. L. and Lenstra J.K. (1996), Job Shop

Scheduling By Local Search, INFORMS Journal on Computing, Vol. 8, pp.

302 – 317.

[86] Voudouris C. and Tsang E. (1995), Guided Local Search, Technical Report

CSM-247, Department of Computer Science, University of Essex.

A Hybridized Approach for Solving Group Shop Problems

116

[87] Watson J. P., Beck J. C., Howe A. E. and Whitley L. D. (2003), Problem

Difficulty for Tabu Search in Job-Shop Scheduling, Journal of Artificial

Intelligence, Vol. 143, pp. 189 – 217.

[88] Weinberger E. (1990), Correlated And Uncorrelated Fitness Landscapes

And How To Tell The Difference, Biological Cybernetics, Vol. 63, pp. 325 –

336.

[89] Winter G., Periaux J. and Galan M., editors, (1995), Genetic Algorithms in

Engineering and Computer Science, John Wiley & Son Ltd.

A Hybridized Approach for Solving Group Shop Problems

117

Appendix

Proof of Theorem 2.1.

Let *p be a feasible solution to a GSP instance. If there is a solution *'p with

() ()*max*'max pp CC < , then there is a machine block or group block

ii
k

i oo
i 1

'' . . . ffff=χ , where ik denotes the number of operations in iχ , in the

critical path cη such that io χ∈∃ , ioo 1≠ with ooi *'
1 ff or io χ∈∃ , i

ki
oo ≠ with

i
ki

oo *'ff .

Proof:

Let cη be a critical path in *p such that ii
m

i
M oo

i 1
'' . . . ffff=χ denote the i -th

machine block on cη while jj
g

j
G oo

j 1
'' . . . ffff=χ denote the j -th group block on

cη . Moreover, let Mk and Gk represent the total number of machine blocks and group

blocks respectively.

A Hybridized Approach for Solving Group Shop Problems

118

Assume that if there is a feasible solution *'p with () ()*max*max ' pp CC < and no

operation of any machine block or group block of cη is in *'p processed before the first

operation of the corresponding block or after the last operation of the corresponding

block, then the relation *'p must contain:

{ }Mki , . . . ,1∈∀

i
l

i oo *'1p { }iml , . . . ,1∈∀ and i
m

i
l i

oo *'p { }iml , . . . ,1∈∀

{ }Gkj , . . . ,1∈∀

j
l

j oo *'1 p { }igl , . . . ,1∈∀ and
j
g

j
l i

oo *'p { }igl , . . . ,1∈∀

Thus, *'p contains an active chain

11
2. . .1

1
1. . .12 . . . *'*'

1
*'

1
''*'*'*' imm

kkk
m ouuoouo MMM

kM

ffffffffffffffff −

where i
m

i
i

uu 12 , . . . , − is a permutation of i
m

i
i

oo 12 , . . . , − , and an active chain

11
2. . .

1
1

1
. . .12 . . . *'*'*'

1
*'

1
''*'*'*' igg

kkk
g ouuoouo GGG

kG
ffffffffffffffffff −

where
j
g

j
j

uu 12 , . . . , − is a permutation of
j
g

j
j

oo 12 , . . . , − .

By identifying ii ou 11 = , i
m

i
m ii

ou = ,
jj ou 11 = and

j
g

j
g jj

ou = ,

it leads to

A Hybridized Approach for Solving Group Shop Problems

119

() () () ()*
1 11 1

*' maxmax pp CuoC
M iM i k

i

m

l

k

i

m

l

i
l

i
l ∑∑∑∑

= == =

=== λλ

and

() ()*
1 11 1

*' maxmax pp CuoC
G jG j k

j

g

l

k

j

g

l

j
l

j
l ∑∑∑∑

= == =

=⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛= λλ

which is a contradiction to the assumption.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

