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Abstract 

 
 

The objective of shop scheduling problems is to determine the optimal allocation 

of machines to jobs with respect to some specified criteria.  As these problems 

have been commonly acknowledged as being difficult to solve, previous research 

efforts has focused mainly only on developing customized approaches for each of 

these classes of problems.  However, in recognition of the prevalence of machine 

scheduling problems as well as industries’ need for a single and robust algorithm 

for the differing scheduling scenarios, this thesis addresses the application of 

meta-heuristics approaches to tackle a generalized formulation of shop 

scheduling problems known as the Group Shop Problem (GSP) by developing a 

hybridized approach. 

 

The proposed scheduling approach consists of two main phases, namely: the 

diversification phase and the intensification phase.  In the diversification phase, 

the proposed algorithm incorporates features of simulated annealing and variable 

neighborhood search to diversify its search.  Additionally, the algorithm adopts the 

use of tabu-lists from Tabu Search throughout to prevent cyclical search from 

arising.  Backtrack memories are also implemented to store promising solutions 

that are found during the initial phase so that the search during the intensification 

phase will be limited to only these promising regions of the search space.   

 



 

XIV 

To evaluate its performance, the algorithm has been subjected to extensive 

computational experiments using a set of benchmark problems for comparison 

with other known approaches for solving GSP.  Among many benchmark 

problems used, the famous WHIZZIKD97 group shop problem has also been 

included for the experiment.  The empirical results show that the proposed 

algorithm produces solutions of comparable quality but with shorter processing 

time. 
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Chapter 1 Introduction 

 
 

 
1.1 Overview 
 
 
Scheduling is the science and art of allocating finite and scarce resources over 

time to perform a collection of tasks in a variety of situations, with differing 

resource capacities and technological constraints, so as to optimize one or more 

pre-defined objectives.  While there was considerable research interest in this 

field at the beginning of the twentieth century with the works of prominent 

manufacturing pioneers such as Henry Gantt, it took many years for the first 

scheduling publications to appear in the industrial engineering and operations 

research literature.  Since problems arising from manufacturing were the main 

source of motivation for the early development in the field of scheduling, the 

vocabulary of manufacturing was employed when describing scheduling 

problems.  Thus, resources were usually denoted as machines and basic task 

modules were termed as jobs.  In scenarios where jobs may consist of several 

elementary tasks that are interrelated by precedence constraints, such elementary 

tasks are referred to as operations. 

 

The voluminous amount of related research results since 1950s, including 

Johnson (1954), have culminated in a more definitive scheduling theory, which 

embodies numerous mathematical models to characterize the various classes of 
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scheduling problems that range from those that involve single-stage models1 to 

those that involve multi-stage models2, from those of a deterministic nature to 

those of a stochastic nature and from those that are concerned with single 

objective optimization to those that are concerned with multiple objective 

optimization. 

 

In the broader context, scheduling problems belong to a larger problem class, 

known as Combinatorial Optimization Problems (COPs), which are concerned 

with determining the "best" configuration from a set of parameters to achieve 

some pre-defined goals.  Usually, the objective of COPs is to locate an entity, 

which can be an integer, a subset, a permutation or a graph structure, from a finite 

or possibly countable infinite set.  (See Papadimitriou and Steiglitz, 1982).   An 

important aspect of COPs is to determine its solvability.  In particular, the 

landmark study by Karp (1972), on Computational Complexity Theory, 

demonstrated that many of the most commonly studied optimization problems can 

be reduced to a single underlying problem of known computational complexity. 

 

Central to the theory of Computational Complexity, NP -completeness provides 

the required formalization to differentiate the easy problems from the difficult 

problems.  In essence, there are two basic classes of problems namely: class P  

of tractable problems and class NP  of polynomial-time verifiable problems.  The 

class P  is the class of decision problems that can be solved by a polynomial-time 
                                                 
1 Single-stage model refers to model with either a single machine or a number of parallel machines. 
2 Multi-stage model is synonymous with shop scheduling models.  Like single-stage model, every stage in the multi-stage 
model may consist of either a single machine or a number of parallel machines.  However, the number of machines in each 
stage should be the same. 



A Hybridized Approach for Solving Group Shop Problems 
 

3 

algorithm while the latter consists of those problems that can be solved by a non-

deterministic polynomial-time algorithm.  Within the Class NP , NP -Complete 

problems are the most difficult problems.  At present, all known algorithms for 

NP -complete problems require time that is not bounded by a polynomial function 

of the problem’s input size.  See Papadimitriou (1993).   Moreover, most COPs, in 

general, are difficult to solve in nature.   

 

As research works on scheduling in 1970s were strongly influenced by the work of 

Karp (1972), the difficulty of scheduling problems can be gleaned from the 

complexity status of such problems as reported in works such as Applegate and 

Cook (1991), and Brucker (1998).  Earlier notable works include Lenstra et al. 

(1977), and Lenstra and Rinnooy (1979), which focus mainly on the complexity 

hierarchy of scheduling problems.  Through these works, it is becoming 

increasingly clear that except for rare cases where polynomial time algorithms are 

available to solve the specific problems to optimality, most scheduling problems 

are NP -hard in the ordinary sense or strongly NP -hard.  Despite the substantial 

amount of research directed to complexity study, there remains scheduling 

problems whose computational complexities have yet to be ascertained. 

 

Earlier scheduling techniques focused on finding exact solutions via the 

application of enumerative algorithms with elaborate and sophisticated 

mathematical constructs.  Particularly, the Branch and Bound technique, which 

searches a dynamically constructed tree representing the solution space of all 

feasible schedule, is the main enumerative technique.  However, the general 
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limitations of these enumeration techniques coupled with the results of complexity 

studies on scheduling problems prompted the search for better scheduling 

algorithms.  By the end of 1980s, the use of approximation methods emerged as 

the next viable alternative.  Such methods typically forego guarantees of an 

optimal solution for gains in speed.  The earliest approximation algorithms made 

use of priority rules to assign priorities to all the operations which are available to 

be sequenced and then choose the operation with the highest priority for the 

schedule construction.  (See Panwalkar and Iskander, 1977).  Despite its ease of 

implementation and its low computational demand, these algorithms were not 

effective in generating quality solutions especially for problems of high 

dimensionality. 

 

The need for better approximation algorithms fueled the development of many 

innovative techniques, including but not limited to Large Step Optimization (Martin 

et al., 1992), Tabu Search (TS) (Glover, 1989 and Glover, 1990) and Simulated 

Annealing (SA) (Van Laarhoven et al., 1989), to bridge the basic gaps found in 

those algorithms based on priority dispatch rules.  These innovative algorithms, 

which combine basic heuristic methods in higher level frameworks aimed at 

exploring search space, are also known as meta-heuristics.  Today, meta-

heuristics are almost a de facto method for solving scheduling problems. 

 

Research efforts in the field of scheduling will continue to remain relevant, if not 

more important, given the recent trends in both the manufacturing and services 

industries.  See Ashby and Uzsoy (1995), and Pinedo (2002).  In particular, shop 
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scheduling formulations represent theoretical efforts to simplify models of 

scheduling problems often arising in industrial settings.  The popularity of such 

models has led to the rapid growth of the shop scheduling research literature.  

Typically, a shop scheduling problem will consist of n  jobs with operations to be 

scheduled on m  machines.  Depending on the nature of the problem, there may 

or may not be precedence relationship between the operations on each job. 

 

Though the previous decades of research have availed a compendium of both 

exact and approximate scheduling methods attuned to solving specific problems, 

the differing characteristics of the various shop scheduling problems and 

specialized nature of most methods do not facilitate easy adaptation for more 

generic applications.  For example, a successful approach to tackle a particular 

class of job scheduling problem may not work very well when modified to tackle 

another class.  Considering the prevailing industrial trends, an algorithm that is 

robust and works well on a wide range of shop scheduling problems will be most 

desired.  This study focuses on the general shop scheduling problem called 

Group Shop Problem (GSP) first coined in Sampels et al. (2002). 

 

1.2 Motivation Factors 
 
 
The motivating factors for the present research proposal can be discerned from 

the following perspectives: 
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a.    Firstly, it has been spurred by the increasing importance of 

scheduling functions in both manufacturing and service sectors.  

Contextual changes in these arenas have been evidently marked by both 

paradigm shifts in Supply Chain Management (SCM) models and 

technological improvements such as Flexible Manufacturing System (FMS) 

and Enterprise Resource Planning (ERP) systems.  (See Handfield and 

Nichols, 2002).  Along with these changes, business planners today face 

greater challenges in deciphering information and making decisions.  

Specifically, manufacturing planning and transportation scheduling, which 

are two key areas in SCM, will benefit from advances in scheduling 

methodology.  The emergence of the various shop scheduling models and 

the continual development of associated solving strategies represent 

significant efforts undertaken by researchers not only to relieve business 

planners of the burden of performing the traditional secondary role of 

scheduling but also to give them additional leverage in operations 

management. 

 

b.    Secondly, from an academic perspective, scheduling is one of the 

fundamental areas of combinatorial optimization, and shop scheduling 

problems has been commonly acknowledged for being hard to solve 

optimally.  Traditionally, research efforts in shop scheduling have been 

delineated into Flow Shop Problems (FSP) (Johnson, 1954), Job Shop 

Problems (JSP) (Fisher and Thompson, 1963), Mixed Shop Problems 

(MSP) (Masuda et al., 1985) and Open Shop Problems (OSP) (Rock and 
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Schmidt, 1983).  This division of research efforts has resulted in a myriad 

set of customized techniques that will perform well on a particular shop 

scheduling problem but will show unsatisfactory results when applied to 

other shop scheduling problems.  Since Group Shop Problem (GSP) is a 

generalization of the classical JSP, MSP and OSP, investigation into its 

properties will likely lead to a generalized approach to solving the various 

classes of shop scheduling problems and thus meeting the industries’ need 

for single and robust algorithm for the differing scheduling scenarios.  

 

Advances in the design of scheduling algorithm design will also shed new insights 

into how solving strategies for other COPs, such as Traveling Salesman Problem 

(TSP) (Lawler et al., 1985) and Vehicle Routing Problem (VRP) (Laporte, 1991), 

can be enhanced.  With better understanding of these approximate methods, 

better meta-heuristics can be developed. 

 

1.3 Objectives and Scope 
 
 
Given the generality of the GSP formulation, it is unlikely that the new algorithm 

will reach the performance of the state-of-the-art meta-heuristics approaches for 

more specific shop scheduling problems, which tend to be more restricted in 

problem definition.  Therefore, the primary aim of this research is to develop an 

algorithm that is both scalable in its applications and robust in its performance 

over a wide range of GSP instances.  To facilitate the design of a new GSP 
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scheduling algorithm, a comparative study of existing meta-heuristics will be 

essential.  

 

The collection of benchmark problem instances for comparative analysis will also 

be an important task in this study to circumvent situations where good 

performance results are achieved due to coincidence.  Presently, there are 

already many benchmark problem instances available for JSP and OSP to allow 

JSP and OSP instantiations of the GSP formulation to be tested out by the various 

approaches.  Since GSP is a relatively new scheduling problem, the consolidation 

of “true” and “good” GSP benchmark instances will be challenging.    

 

While dynamic3 and stochastic versions of shop scheduling formulations show 

higher degree of industrial relevance (Righter, 1994, and Floudas and Pardalos, 

2001), current research will only focus on deterministic GSP formulation since 

research in GSP is still in its infancy stage of development.  Likewise, parallel 

computing implementation, multiple objectives optimization and parallel machines 

environments formulations will not be explored in this thesis.  Rather, the focus 

will be on non-parallel implementation of a GSP scheduling algorithm for 

makespan optimization in single machine environment. 

                                                 
3 Dynamic Scheduling is sometimes known as Reactive Scheduling. 
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1.4 Thesis Outline 
 
 
Having dealt with the introduction of this research, which forms the first chapter, 

the organization of the subsequent chapters is as follows: Chapter 2 covers the 

theoretical background on COPs, meta-heuristics as well as the various 

deterministic models of shop scheduling problems and the prevalent methods for 

solving them.  Following that, the approach and rationale for the design of the 

scheduling algorithm for GSP will be outlined in Chapter 3.  The computational 

results and analysis will be addressed in Chapter 4.  Finally, Chapter 5 concludes 

this thesis by summarizing the specific research issues that have been dealt with 

and also highlighting possible directions for future research. 

 

1.5 Research Contribution 
 
 
This study demonstrates the feasibility of devising an algorithm that is both 

scalable in its applications and robust in its performance on a wide range of GSP 

instances.  Moreover, this study has shown that it is possible to devise a good 

scheduling algorithm that is easy to implement and yields solutions of good quality 

in a reasonable amount of time.  This is illustrated through comparison with the 

computational results of other known approaches for solving GSP problems.  

 

In the literature, most researchers tend to focus on making tactical improvements 

to existing meta-heuristics for solving specific shop scheduling problems.  While 
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the implementation of good neighborhood definitions and extensive memory 

structures in search algorithms are important, it is imperative that researchers do 

not lose sight of the underlying features of the problem that they are solving.  

Therefore, this study attempts to construct an algorithm that aligns its search 

strategy based on known results about the search space of GSP and to 

incorporate an array of existing techniques from known meta-heuristics into the 

algorithm so as to achieve maximum effectiveness.  The result of this is a 

hybridized approach for solving GSP. 
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Chapter 2 Literature Survey on Shop Scheduling 

 
 

 
2.1 Overview 
 
 
The significant amount of research efforts in the field of deterministic scheduling 

over the past four decades have led to the growth of scheduling models and 

related solving strategies.  Given the astounding number and variety of scheduling 

models, a quick exposition of the entire scheduling landscape is not an easy task.  

However, this chapter attempts to create clarity for understanding the pertinent 

issues related to deterministic scheduling by elucidating the necessary theoretical 

foundations as well as key findings from existing research literature on shop 

scheduling.  In particular, the basic scheduling framework and its related notation 

will also be briefly discussed.  This will be followed by a general introduction to the 

various shop scheduling models, the disjunctive graph representation and the 

different types of schedules.  An overview of local search techniques, meta-

heuristics as well as the concept of fitness landscape will also be provided herein 

to establish the relevant context for an outline on the known approaches for shop 

scheduling.  Finally, the topic on common neighborhood definition will serve as 

the concluding section.  
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2.2 Basic Framework and Notation 
 
 
Common scheduling terminology makes a distinction between a sequence and a 

schedule.  While a sequence is a permutation of a set of jobs on a given machine, 

a schedule consists of both the sequencing of jobs in time and the allocation of 

finite resources to the appropriate jobs within a machine setting, allowing for 

possible preemptions of jobs by other jobs that are released at later points in time.  

Similarly, the term scheduler is also differentiated from the term scheduling policy.  

Usually, a scheduler corresponds to an algorithm performing the function of 

generating schedules.  On the other hand, a scheduling policy is a rule or a set of 

operating principles that prescribes the actions for a scheduler that is best suited 

to the current state of a typically stochastic system.   

 

In all scheduling problems, the number of jobs and machines are assumed to be 

finite.  Typically, m  machines ( )mjM j ,...,1=  have to process n  jobs ( )niJi ,...,1= .  

A job iJ  consists of a number in  of operations 
iini OO ,...,1  with each operation ijO  

being assigned a processing requirement ijp .  If job iJ  has only one operation 

( )1=in , iJ  can be identified as 1iO  with processing requirement of ip .  

Sometimes, a release date ir , on which the first operation of job iJ  becomes 

available for processing, may be specified. 
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Furthermore, each operation ijO  is associated to a set of machines 

{ }mij MM ,...,1⊆µ .  In a dedicated machine environment, all ijµ  are one element 

sets.  On the contrary, all ijµ  are sets equal to the set of all machines in a parallel 

machine environment and this allows problems in flexible manufacturing, where 

machines are equipped with different tools, to be formulated.  Problems of this 

type are termed as scheduling problems in multi-purpose machine environments, 

where an operation can be processed on any machine equipped with the 

appropriate tool.  As for multi-processor task scheduling problems, all machines in 

the set ijµ  are used simultaneously by ijO  during the entire processing period. 

 

A cost function ( )tfi  is commonly included in the problem formulation to 

determine the cost of completing job iJ  at time t .  In many cases, a due date id , 

which represents the committed completion time of job iJ , and a weight iw , 

which is a priority factor denoting the importance of job iJ  relative to other jobs in 

the system, are used in defining ( )tfi . 

 

Given the wide span of problem formulations subsumed under the general theory 

of scheduling, a comprehensive classification scheme will be essential.  The three 

field γβα  classification system, which was introduced by Graham et al. (1979), is 

one such scheme that provides the basic notations required to characterize most 

scheduling problems in terms of machine environment α , job characteristics β  
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and optimality criterion γ .  Brucker (1998) provides a systematic and detailed 

classification of scheduling problems. 

 

The machine environment is characterized by a string 21ααα =  of two parameters 

such that { }XOFJGQMPMPMPMRQP ,,,,,,,,,,1 o∈α  is used to specify machine-

operation models with o  denoting the empty symbol and +Ζ∈2α  is used to 

indicate the number of machines in this system.  An overview of the possible 

parameter values of 1α  for specifying the various Machine-Operation models is as 

follows: 

  

Table 2.1:  Parameters for Specifying Machine-Operation Models 
Parameters Characteristics 

o=1α  • Each job must be processed on a dedicated machine. 

{ }RQP ,,1 ∈α  
• Each job can be processed on each of the machine.  

• P=1α  for identical parallel machine environment where processing 

time ijp  of job iJ  on jM  is equal to the processing time ip  of job iJ  

for all machines jM .   

• Q=1α  for uniform parallel machines environment where processing 

time  ijp  of job iJ  on jM  is equal to ji sp /  with js  specifying the 

speed of machine jM  for all machines jM .   

• R=1α  for unrelated parallel machines environment where 

processing time ijp  of job iJ  on jM  is equal to iji sp /  given job-

dependent speeds ijs  of jM .  

{ }QMPMPMPM ,1 ∈α
 

• PMPM=1α  and QMPM=1α  denote multi-purpose machines with 
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identical speeds and multi-purpose machines with uniform speeds 

respectively. 

{ }XOFJG ,,,,1 ∈α  • System is made up of a set of dedicated machines i.e. all ijµ  are 

one-element sets and a collection of jobs with each job iJ  consisting of 

a set of operations 
iini OO ,...,1 .   

• G=1α  denotes the Group Shop Model where there are precedence 

relations between arbitrary operations. 

• J=1α  denotes the Job Shop Model where precedence relations is 

of the form 
iinii OOO →→→ ...21  for ni ,...,1=  such that )1( +≠ jiij µµ  

for 1,...,1 −= ni .  When )1( += jiij µµ , the model will be labeled as Job 

Shop with Machine Repetition. 

• F=1α  denotes the Flow Shop Model, which is a special case of 

Job Shop Model, where mni =  for ni ,...,1=  and { }jMij =µ  for 

ni ,...,1=  and mj ,...,1= .  If jobs in a Flow Shop model are processed in 

the same order on each machine, then it is known as a Permutation 

Flow Shop model. 

• O=1α  denotes the Open Shop Model, which is basically a Job 

Shop Model with the exception that there is no precedence relations 

between operations. 

• X=1α  denotes the Mixed Shop Model, which is a combination of a 

Job Shop Model and an Open Shop Model. 

 

 

On the other hand, the job characteristics are specified by a set β  containing at 

most six elements 54321 ,,,, βββββ  and 6β .  The tabulation below provides a brief 

summary of these parameters: 

 



A Hybridized Approach for Solving Group Shop Problems 
 

16 

Table 2.2:  Parameters for Specifying Job Characteristics 
Parameters Characteristics 

1β  • pmtn=1β  indicates that preemption (or job splitting) is allowed.  

2β  • This parameter is used to describe precedence relations between jobs. 

• prec=2β  corresponds to scheduling problems with precedence relations 

between jobs defined by an arbitrary cyclic directed graph. 

• Other values, include chains, intree, outtree, tree or series-parallel directed 

graph, are used to describe more restricted precedence structures. 

3β  • If ir=3β , then release dates may be specified for each job. 

4β  • This parameter is used to specify any restrictions on the processing times or 

on the number of operations. 

5β  • If id=5β , then a deadline id  is specified for each job iJ . 

6β  • This parameter is used to specify sets of jobs that must be grouped into 

batches for joint processing on machines.  E.g. batchp − and batchs − . 

 

 

Like all other combinatorial optimization problems, the goal of a scheduling 

problem is often stated in the form of an objective function or performance 

measure.  Very often, the optimization of a scheduling problem entails the search 

for a feasible solution which minimizes the performance measure.  In this context, 

the performance measure is also known as a total cost function and this is 

indicated as γ  in Graham’s three field classification system.  Thus, denoting the 

completion time of job iJ  by iC  and its associated cost by ( )ii Cf , the two types of 
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total cost functions, bottleneck objectives and sum objectives, are defined 

respectively as follows: 

 

 ( ) ( ) }{ ,...,1  max:max niCfCf ii ==  
(2.1)

 

 ( ) ( )∑=∑
=

n

i iii CfCf
1

:  
(2.2)

 

While makespan { }niCi ,...,1max ==γ , total flow time ∑=
=

n

i iC
1

γ  and weighted 

(total) flow time ∑=
=

n

i iiCw
1

γ  are often defined as objective functions, other 

functions are also possible.  However, only some of the quantities belong to an 

important class of performance measures that are known as regular measures of 

performance, stated formally as follows: 

 

Definition 2.1. 

 

A performance measure Z  is regular if: 

a.    The scheduling objective is to minimize Z . 

b.    The value of Z  can increase only if at least one of the completion times in 

the schedule increases. 

 

This definition is significant because it is usually desirable to restrict attention to a 

limited set of schedules called a dominant set.  In this case, makespan is regular. 
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Definition 2.2. 

 

A set R  is a dominant set of regular measures of performance if there exists a schedule 

RS ∈  with completion time jC  and regular measure Z  and RS ∉'  with completion time 

'
jC  and regular measure 'Z  such that: 

a.    '
jj CC ≤  for all j . 

b.    'ZZ ≤  for any regular measure. 

 

From the above definition, it is clear that a dominant set of schedules must also 

contain the optimal schedule. 

 

2.3 Disjunctive Graph Representation 
 
 
Graphical methods such as Gantt charts, see Porter (1968), are often employed 

to represent schedules.  A Gantt chart is essentially a horizontal bar chart 

developed as a production control tool in 1917 by Henry L. Gantt, an American 

engineer and social scientist, which may be either machine-orientated or job-

orientated in the context of machine scheduling.  While these graphical tools are 

useful for visualization purposes, they lack the conciseness offered by 

mathematical constructs. 
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In particular, the disjunctive graph model of Roy and Sussmann (1964) provides a 

convenient means to represent feasible schedules for shop scheduling problems.  

It has replaced the solution representations by Gantt charts, which is useful in 

user interfaces to graphically depict a solution to a problem.  When the objective 

function of the shop scheduling problem is regular, the set of feasible schedules 

represented in this way always contains an optimal solution to the problem.  For 

any given instance of a shop scheduling problem, its definition is given below: 

 

Definition 2.3. 

 

A disjunctive graph representation ( )DCVG ,,=  consists of a node set V , conjunctive 

arc set C  and disjunctive arc set D  such that: 

 

a.    }{ ,,...,...,,...,,, 1111 , snkiiniinsce OOOOOOV =  is the set of nodes representing 

the operations of all jobs, where ijO  is the j -th operation on ( )niJi ,...,1= , with 

two additional dummy nodes sceO  (source) and snkO  (sink), to denote the start and 

end of a schedule. 

 

b.    C  is the set of directed conjunctive arcs which reflect the precedence 

relations between the operations with the numbers on the arcs reflecting the 

processing times.  If u  and v  are two operations with up  and vp  as their 

respective processing requirement, there exists a conjunctive arc ( )vu,  with length 
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up  for every Vu∈ , Vv∈  pair where u  has to be processed before v .  

Moreover, there are conjunctive arcs, denoted by subset O , between the source 

and all operations without a predecessor and between all operations without a 

successor and the sink.  Therefore, { }OBAC ∪∪=  where ( )JiAA i ∈= :U  for 

precedence relations iA  between operations of the same job iJ  and  

( )MjBB j ∈= :U  for precedence relations jB  between operations on the same 

machine jM . 

 

c.    D  contains disjunctive arcs which are used to present disjunctive 

constraints that arise naturally in machine scheduling.  Mathematically, this set 

can be represented as FED ∪=  consisting of two distinct subsets of disjunctive 

arcs E  and F  where ( )JiEE i ∈= :U  and ( )MjFF j ∈= :U .  Furthermore, 

there is a pair of disjunctive arcs ( )vu,  and ( )uv, , with lengths up  and vp  

respectively, in either iE  for each pair of operations belonging to the same job iJ  

which are not connected by a conjunctive arc or jF  for each pair of operations 

processed on the same machine jM  which are not connected by a conjunctive arc. 

 

Evidently, the sets E  and F  are very similar:  E  decomposes into iE  subgraphs, 

one for each job iJ  and F  decomposes into jF  subgraphs, one for each machine 

jM .  Let MJK ∪= , where each element k  of the set K  is either a job or a 

machine.  Hence, ( )KkDD k ∈= :U  where kk ED =  if JKk ∩∈  and kk FD =  if 
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MKk ∩∈ .  Figure 2.1 provides an illustration of a disjunctive graph 

representation for a schedule with n  jobs on m  machines. 

 

 

Figure 2.1:  Pictorial of Disjunctive Graph Representation 

 

Since the basic scheduling decision is to define an ordering between the 

operations connected through disjunctive arcs by turning these undirected 

disjunctive arcs into directed ones, the concept of selection kΩ  is therefore 

important.  

 

Definition 2.4. 

 

kΩ  is a set of directed disjunctive arcs, called fixed arcs, chosen from the kD ’s such that 

it contains exactly one member of each disjunctive pair of kD . 

 

A feasible schedule can only be obtained from G  when the selection is a 

complete selection.  
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Definition 2.5. 

 

A selection ( )Kkk ∈Ω=Ω :U  is a complete selection if: 

a.    Each disjunctive arc has been fixed. 

b.    The resulting graph ( ) ( )Ω∪=Ω CVG ,  is acyclic. 

 

Given a complete selection Ω , a corresponding schedule S , which defines an 

order of operations for each job and each machine, may be constructed.  For 

each path γ  from vertex i  to vertex j  in ( )ΩG , define the length of γ  to be the 

sum of lengths of arcs in that path. 

 

2.4 Classification of Schedules 
 
 
Since the taxonomy of schedules (Pinedo, 2002) is pivotal to the analysis of shop 

scheduling problems, a short discourse on the various classes of schedules will 

be essential in establishing the basic shop scheduling concepts.  

 

Definition 2.6. 

 

A schedule is called feasible if the precedence relations are maintained and the resource 

constraints are met. 
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In principle, there are an infinite number of feasible schedules for a shop 

scheduling problem since an arbitrary amount of idle time can be inserted at any 

machine between adjacent pairs of operations.  Accordingly, there are various 

possible moves on a schedule, with respect to its representation on Gantt chart, 

which can be made to improve its viability in terms of any specific regular 

performance measure.  Nevertheless, schedules are classified as semi-active, 

active, non-delay.  The ensuing text outlines their respective definitions: 

 

Definition 2.7. 

 

A feasible schedule is called semi-active if no operation can be completed earlier without 

changing the order of processing on any one of the machines. 

 

The start times of operations on each machine of a semi-active schedule are 

adjusted so that that there are no idle times between each operation on the same 

machine whenever possible.  This form of adjustment, known as a local left-shift, 

is equivalent to moving an operation block to the left on the Gantt chart while 

preserving the operation sequence on the machine. 

 

Definition 2.8. 

 

A feasible schedule is called active if it is not possible to construct another schedule by 

changing the order of processing on the machines and having at least one operation 

finishing earlier and no operation finishing later. 
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Global left-shift refers to an adjustment in which some operation is begun earlier 

without delaying any other operation.  An active schedule is a schedule in which 

no global left shift can be made.  However, many semi-active schedules can often 

be compacted into the same active schedule through a series of global left-shifts.  

Clearly, the set of active schedules dominates the set of semi-active schedules.  

Therefore, it is sufficient to consider only active schedules when optimizing any 

regular measure of performance. 

 

Definition 2.9. 

 

A feasible schedule is called non-delay if no machine is kept idle while an operation is 

waiting for processing. 

 

Since the number of active schedules still tends to be prohibitive, it is often 

convenient to focus on an even smaller subset of schedules known as non-delay 

schedules.  All non-delay schedules are active schedules as no global left-shifting 

is possible for these schedules.  However, many active schedules may not be 

non-delay schedules since requiring a schedule to be non-delay is equivalent to 

prohibiting unforced idleness.  This implies that the number of non-delay 

schedules may be significantly less than the number of active schedules.  The 

dilemma is that there is no guarantee that the set of non-delay schedules will 

contain an optimum.  
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2.5 Active Chain Concepts 
 
 
Given that the set of active schedules is the smallest dominant set of schedules, it 

is sufficient to consider only active schedules for scheduling problems with regular 

performance measures.  Therefore, it will make sense for some algorithms to 

search only in the active schedule space.  To facilitate subsequent description of 

the active chain, the notion of the next-follow will be introduced here: 

 

Definition 2.10. 

 

A next-follow relation ff  is a relation between two operations o  and 'o  in a schedule 

such that oo ff'  if and only if: 

a.    The starting time of 'o  is equal to the finishing time of o . 

b.    o  is either the preceding operation of 'o  of the same job or the operation 

of a different job processed on the same machine as 'o . 

 

Given that an operation can at most next-follow two other operations, the formal 

definition of an active chain is as follows: 

 

Definition 2.11. 

 

An active chain of an operation o  is a set of operations including o  and an operation 

without a predecessor, such that: 
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a.    Except for the operation without a predecessor, each operation in the set 

next-follows exactly one operation in the set. 

b.    Except for operation o , there is exactly one operation in the set that next-

follows the operation for every operation in the set. 

 

An example of an active chain is included in Figure 2.2.  It is clear from the 

definition that the length of an active chain of operation o  is the sum of the 

processing times of all operations in the chain.  Therefore, if the earliest starting 

times of all jobs are all zero, the finishing time of o  will be simply the length of its 

active chain.  In this case, the makespan of the schedule is equivalent to the 

length of the longest active chain in the schedule.   

 

 

Figure 2.2: Pictorial of Active Chain 

 

Based on this concept of active chain manipulation, Sun et al. (1995) proposed a 

scheduling algorithm for JSP and further proved that the necessary condition for 
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the makespan of an active schedule to be shortened is that at least one 

precedence relation between operations in one of the longest active chains of an 

active schedule is changed.  

 

2.6 Group Shop Problem 
 
 
The prevalence of many simplified models of scheduling problems often occurring 

in manufacturing and production settings signifies not only the growing needs for 

efficient scheduling tools but also marks the imperative to narrow the gap between 

academic research and industrial practice.  However, as these simplified models 

are purely abstraction of real life problems, it is often difficult to fit real life 

problems into these very specialized formulations.  Furthermore, stemming from 

the differing characteristics of the various Shop Scheduling problems, the 

repeated applications of a successful scheduling approach tailored for a particular 

problem type to another problem type often do not yield satisfactory results. 

 

To bridge this gap, Sampels et al. (2002) advocated the use of a broad Shop 

Scheduling definition, which is known as Group Shop Problem (GSP), for the 

design and implementation of single and robust algorithm for the differing 

scheduling scenarios.  Indeed, the GSP formulation generalizes several disparate 

formulations including Flow Shop Problem (FSP), Job Shop Problem (JSP), Open 

Shop Problem (OSP) and Mixed Shop Problem (MSP) succinctly into a simple 

canonical form outlined as follows: 
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Definition 2.12. 

 

A group shop problem, as depicted in Figure 2.3, consists of a finite set of operations O , 

which can be partitioned into m  subsets { }mψψψ ,...,1=  such that Oj
m
j == ψ1U  and n  

subsets { }nξξξ ,...,1=  such that Oi
n
i == ξ1U , together with a partial order4 OO×⊆p  

where φξξ =×∩ jip  for ji ≠  and a function ℵ→O:λ  that assigns processing times to 

operations. 

 

jψ  is the set of operations which has to be processed on machine jM  whereas 

iξ  is the set of operations which belong to job iJ .   

 

 

Figure 2.3:  Pictorial of GSP Instance 

 

With respect to the partial order defined above, ( ) p∈',oo  (also denoted by 'oop ) 

means that the processing of operation o  has to be completed before the 
                                                 
4 A relation R  is a partial ordering if it is a pre-order (i.e. it is reflexive ( xRx ),  transitive ( xRzxRyRz ⇒ ) and anti-

symmetric ( yxxRyRx =⇒ ) with elements x  and y  for which neither xRy  nor yRx .  Comparing the partial order 

denoted by ' oop  and the next-follow relation oo ff' , it is clear that only the former is transitive in nature whereas the 
latter imposes a more stringent requirement on the starting time of 'o  to be equal to the finishing time of o . 
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processing of operation 'o  can begin.  Moreover, ( ) p∈',oo  and ( ) p∈",' oo  implies 

that ( ) p∈",oo .  Therefore, the partial order defines the technological sequences 

with the set ( ) ( ){ }pp ∈= oooopred ,''  and the set ( ) ( ){ }pp ∈= ',' oooosucc  known as 

the set of predecessors of an operation o  and the set of successors of an 

operation o  respectively. 

 

Definition 2.13. 

 

A feasible solution is a refined partial order pp ⊇*  for which the restrictions 

jj ψψ ×∩*p  and ii ξξ ×∩*p  are total  ji,∀  

 

Denoting the machine on which an operation o  has to be processed on as ( )om  

and the job on which an operation o  belongs to as ( )oj , a feasible solution 

defines a sequential ordering of the operations in a job and on a machine such 

that either ( ) *', p∈oo  or ( ) *,' p∈oo  for every pair of operations o , 'o  with 

( ) ( )'ojoj =  or ( ) ( )'omom = .  Furthermore, each machine can process at most one 

operation at a time, operations must be processed without preemption and 

operations belonging to the same job must be processed sequentially. 
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Definition 2.14. 

 

The cost of a feasible solution is defined by: 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

= ∑
∈η

ηλ
o

O oC ** ,in chain  activean  ismaxmax pp  

where  maxC  is called the makespan of a solution such that the goal is to find a feasible 

solution that minimizes maxC . 

 

Given a feasible schedule, the corresponding acyclic graph can be easily 

constructed.  If the redundant arcs are removed, every operation, except node 0  

and node 1+N , has at most two immediate predecessors and at most two 

immediate successors.  Moreover, there are also operations that can be 

postponed without increasing the makespan as well as those that cannot be 

postponed.  The former is labeled as slack operations whereas the latter is known 

as critical operations.  Accordingly, a critical path is an ordered sequence of 

critical operations, which can be further decomposed into subsequences of 

operations, called blocks. 
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Definition 2.15. 

 

A block is a maximal subsequence of operations processed on the same machine or 

belonging to the same group, where the set of groups Γ  is defined as the basic unit of 

segregation for the partition ξ  such that }{ ,...,1 gΓΓ=Γ .   

 

It should be noted that the restriction ii ξξ ×∩p  is total (i.e. means that there are 

precedence relations defined between operations for all operations belonging to 

the same job) in JSP and FSP, trivial (i.e. means that there are no precedence 

relations defined between operations for all operations belonging to the same job) 

in OSP, and either total or trivial for each i  in MSP.  For GSP, the segregation of 

partition ξ  into groups Γ , with ( )og  denoting the group which an operation o  

belongs to, imposes a weaker restriction on p  such that ii Γ×Γ∩p  has to be 

trivial.  Moreover, for o , 'o  from the same job with io Γ∈  and jo Γ∈'  such that 

ji ≠ , either 'oop  or 'oof  holds.  Note also that the coarsest refinement ξ=Γ  

(group sizes equal to job sizes) is equivalent to OSP and the finest refinement 

{ }{ }Ooo ∈=Γ  (group sizes of 1) is equivalent to JSP.  In short, for group shop 

scheduling, operations of each job can be partition into many groups, which may 

be of different sizes with precedence constraints applying only between groups of 

operations when these operations are scheduled. 
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2.7 Local Search 
 
 
As most scheduling problems are NP -hard in nature, the use of approximate 

methods has been a popular approach for solving scheduling problems.  In 

particular, local search algorithms have been widely used for attacking NP -hard 

problems.  Similarly, these algorithms have also been employed and adapted 

extensively for scheduling problems.  Therefore, it is important that a basic 

appreciation of local search algorithms is developed since these search 

techniques are often the basis of more complex scheduling algorithms. 

 

While the use of local search algorithms has been reported as early as in Croes 

(1958), initial interest in local search algorithms decreased over time due to the 

lack of new conceptual development.  Despite its practical usefulness then, the 

computational resources required for higher quality solutions and larger size 

problems were beyond the reach of the early years of computer science.  The 

recent decade of renewed interest in local search algorithms is attributed to 

several factors as reported in Aarts and Lenstra (1997), of which, the 

understandability, flexibility and ease of implementation of local search algorithms, 

in comparison with exact algorithms, justify practical application of these 

algorithms in solving large problem instances.  Together with parallel development 

in data structures to facilitate more efficient neighborhood solution search and 

exponential improvement in computer speed and memory availability, these have 

given much thrust to research in the design of local search algorithms.   
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Since the crux of local search algorithm design rests primarily on the definition of 

its neighborhood structure, the following formalization necessarily follows: 

 

Definition 2.16. 

 

A neighborhood structure is a function SSN 2: a  that assigns to every Ss∈  a set of 

neighbors ( ) SsN ⊆ .  ( )sN  is also called the neighborhood of s . 

 

The choice of an appropriate neighborhood structure is often done in a problem 

specific manner as it critically determines the performance of the local search 

algorithm.  Indeed, local search algorithms present an interesting trade-off 

between the size of neighborhood ( )sN  and the efficiency of the search.  Small 

neighborhoods are faster to evaluate but do not result in good moves consistently, 

which can retard the progress of search.  Large neighborhoods may guarantee 

good moves only at high computational cost.  Despite the large variety of 

neighborhood structures reported in the literature, there are few general principles 

to rely on for the structural design of neighborhoods. 

 

While neighborhood structure stipulates the set of solutions that can be reached 

from s  in a single step of a local search algorithm, it may be defined by either 

explicit enumeration of the set of possible neighbors or implicit definition of the set 

of possible local changes that may be applied to a solution.  The former is termed 

as an explicit neighborhood while the latter is called an implicit neighborhood.  
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Very often, an implicit neighborhood requires some auxiliary structure, such as 

memory list, other than simply the variables and values for its characterization.  

Other neighborhood structures depend on either problem instance or 

randomization.  Certainly, local search algorithms may have several different 

neighborhood structures to select from, in which case, the choice of the 

neighborhood to use at each state may be made on the basis of a fixed schedule, 

dynamic selection or a combination of both mechanisms.  

 

As it is not always necessary to generate all possible elements of a neighborhood, 

the solution found by a local search algorithm may not be a globally optimal 

solution.  It may only be optimal with respect to local changes. 

 

Definition 2.17. 

 

A local minimum is a solution s  such that ( ) ( ) ( )':' sfsfsNs ≤∈∀ .  A local minimum is 

termed as a strict local minimum if ( ) ( ) ( )':' sfsfsNs <∈∀ . 

 

Since neighboring solutions are generated by a move-generation mechanism that 

selects and accepts from a pool of solutions according to some pre-defined 

criteria, the following definitions are essential. 
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Definition 2.18. 

 

A move-generation mechanism generates the set of neighbors by changing one attribute or 

a combination of attributes of a given instance s .  A move-generation is a transition from 

a solution s  to another ( )sNs ∈'  in one step (or iteration). 

 

Definition 2.19. 

 

A candidate list of solutions ( )sN  is a set of solutions ( )sNs ∈'  that satisfies some pre-

defined acceptance and admission criteria such that ( )sNsN ⊆)( . 

 

Moreover, to design a local search algorithm, the following choices need to be 

specified clearly: 

 

a.    Generation Mechanism.  Rules that determine how (feasible) 

neighbors 's  from ( )sN  can be obtained. 

 

b.    Acceptance and Selection Strategy.  This is sometimes termed as 

the pivoting rule, which determines which neighborhood solution 's  from 

( )sN  replaces the current one. 
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c.    Stopping Test.  These functions determine when the algorithm 

terminates a particular line of search.  If a local search algorithm finds a 

satisfying assignment, then it can terminate.  However, if the algorithm gets 

trapped in local minima or other parts of the search space from which 

escape is likely to be costly, there should be criteria for when to abandon 

search and restart from a different initial point. 

 

Given the myriad of choices that a designer needs to specify when designing local 

search algorithms, it is not surprising that there exist many variants of local search 

algorithms.  The most basic form for generation mechanism is the iterative 

improvement, commonly employed in hill-climbing techniques or steepest descent 

techniques5.   Within this basic framework, design variation hinges on the pivoting 

rule with the first-improvement rule and the best-improvement rule being the most 

commonly used ones.  While the first improvement rule repeatedly generates 

neighboring solutions of s  but only returns the first lower cost solution, the best-

improvement rule examines the whole neighborhood and returns the best solution 

at each step.  The time needed to check the entire neighborhood at each step is 

known as the check-out time.  Papadimitriou and Steiglitz (1982) provide more 

elaborate discussion. 

 

Another interesting aspect of local search is complexity analysis.  Conventional 

computational complexity classes offer easy means of classifying problems 

                                                 
5 The term “hill-climbing” pertains to a maximization problem, but the equivalent descent method refers to minimization 
problems.  
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according to their difficulty, which are then solved by any known algorithm.  Yet, 

these classes cannot capture the local search problems associated with usual 

local search algorithms.  To address the question of worst-case complexity of 

local search algorithms, the class PLS  of polynomial-time local search problems 

is introduced in Johnson et al. (1988).  In general, local search algorithms in this 

class require polynomial time for each local search step.   

 

2.8 Meta-Heuristics 
 
 
It is easy to observe that one of the major drawbacks of iterative improvement 

local search is that it may stop at a poor quality local minimum.  While one 

possibility is to restart the local search whenever some criterion is met so as to 

avoid being trapped in local minima, the increasing dimensionality of the search 

space with respect to problem size will inevitably make this approach less 

attractive.  Moreover, the possible search space structures are not exploited with 

restarts from random initial solutions.   

 

Procedure TabuSearch(s∈S) 

     Determine initial candidate solution s; 

     while (termination condition not satisfied) 

          Determine set N of non-tabu neighbors of s; 

          Choose a best improving solution s’ in N; 

          Update tabu attributes based on s’; 

          s=s’; 

     end 

     return s; 

End TabuSearch 

Figure 2.4:  Algorithmic Framework of Tabu Search 
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The inadequacies found in the iterative improvement local search have paved the 

way for the design and development of general heuristic methods, which are 

applicable to a wide range of COPs.  The term meta-heuristics, which was first 

coined in Glover (1986) together with the introduction of Tabu Search, as outlined 

in Figure 2.8.1, to describe another kind of approximate algorithm that attempts to 

combine basic heuristic methods in higher level frameworks aimed at exploring 

search space is defined as follows: 

 

Definition 2.20. 

 

A meta-heuristic is a master strategy that governs the behavior of other subordinate 

heuristics through intelligent combination of concepts for exploring and exploiting the 

search spaces, including the possible use of learning strategies to structure information, 

so as to produce solutions beyond those that are normally generated through iterative 

improvement local search efficiently. 

 

The generality of the definition encompasses numerous forms of approximate 

methods based on various interpretations of what constitutes “intelligent search”.  

Notably, the dichotomy between meta-heuristic orientation and heuristic 

orientation is distinct so as to accentuate the significance of the departure from 

classical heuristic design.  Moreover, the emphasis on governance differentiates a 

meta-heuristic from a simple random restart procedure or a random perturbation 

procedure albeit the fact that these naive restarting and perturbation procedures 
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are sometimes classed as low-level meta-heuristics.  These interpretations 

present design choices which in turn can be used for classification purposes.  

Depending on the features selected to differentiate between various meta-

heuristics, several classifications are possible: 

 

a.    Nature Inspired vs. Non-nature Inspired.  The origins of the 

algorithm provide one intuitive means of classifying meta-heuristics.  

Colorni et al. (1996) offers some insights to the importance and promise of 

utilizing natural and social analogies to derive meta-heuristics.  Notably, 

nature inspired meta-heuristics tend to loosely model a phenomenon 

existing in nature.  Not only are they non-deterministic and adaptive, they 

present implicitly a parallel structure (multiple agents).  Genetic Algorithm 

(Winter et al., 1995) is an example of nature inspired algorithms.  

 

b.    Population Based vs. Single Point Search.  The manner in which the 

search is being conducted by the algorithm is another distinguishing 

characteristic.  Tabu Search and Variable Neighborhood Search (VNS) 

(Mladenovic and Hansen, 1997) are examples of meta-heuristics based on 

single-point search, in which a single solution is manipulated at each step 

(or iteration) of the algorithm.  On the contrary, the search process in 

population based meta-heuristics has the property of describing the 

evolution of a set of points in the search space.  More importantly, the 

population in search space is brought about through conscious and 
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iterative treatment on sets of points.  An example of a population based 

method is Ant Colony Optimization (ACO) (Dorigo and Stützle, 2004).  

 

d.    Trajectory vs. Discontinuous Methods.  An essential difference 

between various meta-heuristics is whether there exists only one single 

search trajectory corresponding to a closed walk on the neighborhood 

graph or whether there are larger jumps in the neighborhood graph.  

Interestingly, trajectory methods, such as Simulated Annealing (Kirkpatrick 

et al., 1983), as depicted in Figure 2.5, and Tabu Search, share the 

property of describing a trajectory in the search space during the search 

process.  In fact, the search process of these methods can be seen as the 

evolution in (discrete) time of a discrete dynamical system as reported in 

Devaney (1989) and Bar-Yam (1997).   

 

Procedure SimulatedAnnealing(s∈S) 

     Determine initial candidate solution s; 

     Set initial temperature T; 

     while (termination condition not satisfied) 

          Choose a neighbor s’ of s probabilistically; 

          If (s’ satisfies probabilistic acceptance criterion) 

               s=s’; 

          end 

          Update T according to annealing schedule; 

     end 

     return s; 

End SimulatedAnnealing 

Figure 2.5:  Algorithmic Framework of Simulated Annealing 
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d.    Dynamic vs. Static Objective Function.  Another form of 

differentiation is based on the manner in which the objective function is 

used in the algorithm.  While most algorithms keep the objective function 

given in the problem formulation i.e. “as it is”, some others like Guided 

Local Search (GLS) (Voudouris and Tsang, 1995), adjust6 their objective 

functions during the search in order to escape local optima via search 

landscape transformation. 

 

e.    Single vs. Multiple Neighborhood Structures.  Most meta-heuristics 

operate on single neighborhood structure whereas other meta-heuristics 

such as VNS uses a set of neighborhood structures to diversify the search 

process. 

 

f.    Memorizing vs. Memory-less Algorithms.  The use of search history 

has also dichotomized the entire family of meta-heuristics into memorizing 

algorithms and memory-less algorithms.  Typically, memory-less algorithms 

are Markovian in nature as the information they need is only the current 

state of the search process.  Considering the use of memory as one of the 

fundamental elements of a powerful meta-heuristic, the design of 

appropriate memory structures has become an important consideration in 

meta-heuristic design.  Consequently, there are a variety of ways in which 

memory can be exploited in meta-heuristics.  Short term and long term 

                                                 
6 Very often, these algorithms also incorporate information during the search process into the modification of the objective 
functions. 
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memory structures are predominantly used in many meta-heuristics.  The 

former usually keeps track of recently performed moves, visited solutions 

or, in general, decisions taken.  The latter forms an accumulation of 

synthetic parameters and indices about the search. 

 

Other than the taxonomy for meta-heuristics, an important dimension to think 

about is the interplay between the degree of exploitation and the degree of 

exploration during the conducting of the search.  The degree of exploitation, or 

sometimes known as degree of intensification, refers to the amount of effort 

directed to local search in the present region of the search space.  In contrast, the 

degree of exploration, commonly referred to as degree of diversification, refers to 

the amount spent to search in distant regions of space, including the selection of 

solutions in a far region and the acceptance of a worsening solution, relative to 

the current solution, so as to gain the possibility of discovering new and better 

solutions.  Since these two requirements are conflicting in nature, a reasonable 

tradeoff between them is imperative and they must be carefully tuned in each 

meta-heuristic depending on the problem.  Additionally, trade-off between effort, in 

terms of computational time, and efficacy, in terms of quality of final solution, will 

also need to be considered. 

 

2.9 Fitness Landscape 
 
 
In the broadest sense, optimization can be conceived to occur in three interrelated 

number spaces.  The search space contains the legal values of all elements that 
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can be entered into the objective function(s).  On the other hand, an objective 

function is a set of operations on parameters while the function space contains the 

results of those operations.  The last type of number space is one-dimensional 

and is termed as the fitness space.  It contains the degrees of success with which 

patterns of parameters optimize the values in the function space, measured as 

goodness or error.  Generally, each point in the parameter space maps to a point 

in the function space, which further corresponds to a point in the fitness space.  

Interestingly, direct mapping of search space to fitness space is possible in many 

cases. 

 

Despite the limitations of conventional theoretical analysis, there is no doubt that 

the performance of meta-heuristics depends strongly on the configuration of these 

underlying spaces.  This has led to the dominance of empirical methods for 

evaluation of approximate methods in many research works.  Works such as 

Colletti and Barnes (2000), Grover (1992), and Gutin and Yeo (2001), which 

emphasize theoretical analysis of COPs and the approximate methods for solving 

them, are generally rare. 

 

In the recent years, several research papers, such as Boese et al. (1994), Reeves 

(1999), and Mattfeld et al. (1999), have attempted statistical investigations on 

search spaces to either account for the performance of meta-heuristics or devise 

specific algorithmic variants to better exploit the known characteristics of the 

COPs.  Works such as Weinberger (1990) and Stadler (1995) have demonstrated 

the apparent similarities between COPs search spaces and genotype space.   
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Despite its origin in theoretical biology, the notion of fitness landscape is central to 

COP’s search space analysis.  The metaphorical view of a genotype space of a 

species as a landscape, where related genotypes occupy nearby locations, states 

a model of genotype space as a mountainous region consisting of peaks, valleys, 

ridges and plateaus.  The same model is applicable in the description of the 

evolutionary process of a species adapting to regions of higher fitness through 

natural selection.  In the domain of optimization, fitness landscape is the topology 

of the fitness surface over the entire search space with the objective function 

playing the role of an artificial fitness function.  This topology, which describes the 

shape of the search space as encountered by search algorithms, is defined as: 

 

Definition 2.21. 

 

A fitness landscape is a topology on S  which defines for each solution Ss∈  a set of 

neighborhood solutions ( ) SsN ∈  and assigns to every Ss∈  a fitness value ( )sf  

governed by the mapping ( )sfsSf a ,: ℜ→  with respect to N .  If arbitrary elements 

of S  can be transformed into each other by a finite sequence of neighborhood moves, N  

is called a connected neighborhood.  

 

Though the present research in search space analysis seems rudimentary, the 

need for characterizing search space properties of COPs will continue to drive 

research efforts in this area.  With better understanding of the underlying features 

of COPs, approximate methods will in turn be attuned to deliver better results.   
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2.10 Known Shop Scheduling Approaches 
 
 
So far, most works on deterministic shop scheduling have centered on JSP, FSP, 

OSP and MSP.  Among them, JSP has attracted the most research interest with 

the famous 10 jobs 10 machines instance formulated for the first time by Fisher 

and Thompson (1963) and subsequently solved by Carlier and Pinson (1989) 

using a Branch and Bound algorithm.  Following this, other Branch and Bound 

algorithms have been proposed, including Applegate and Cook (1991), and 

Brucker et al. (1994), to improve computational performance.  In addition, many 

simple heuristics, including the use of priority rules, were employed in the early 

stage.  Among these, the Shifting Bottleneck Procedure (SBP), which was 

proposed by Adam et al. (1988), is known to be a simple and effective heuristic 

method as the algorithm builds up and improves a schedule via iterative 

construction of a single bottleneck machine problem.  Nevertheless, the 

fundamental problems with SBP are its difficulties in performing re-optimization of 

schedules as well as the algorithm’s tendencies in generating infeasible 

schedules. 

 

Many of the search algorithms developed for maxCJ  between the late 1980s and 

early 1990s can be considered to be innovative.  Examples include the SA 

approach by Larrhooven et al. (1992), TS Approach by Taillard (1994), TS 

Approach by Amico and Trubian (1993), as well as GA by Nakano and Yamada 

(1991).  To date, the best known algorithm for maxCJ  is the TS Algorithm of 
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Nowicki and Smutnicki (1996a).  Apparently, TS algorithms generally exhibit 

better empirical performance in comparison with those based on SA and those 

based on variants of SBP.  Reviews by Vaessens et al. (1996) as well as Jain et 

al. (1999) provide good overview of the research development in this area.  

 

As a special case of JSP, FSP also enjoyed considerable attention from 

researchers.  However, most works focused on the Permutation Flow Shop 

Problem (PFSP), which refers to a FSP whose processing order of the jobs on 

machines is the same for every machine.  Several methods have been proposed 

for PFSP in the literature.  These include SA Algorithms of Osman and Potts 

(1989), and Ogbu and Smith (1990), TS Algorithms of Taillard (1990), and 

Nowicki and Smutnicki (1996b) as well as GA of Reeves (1995).  In contrast, very 

few papers address the General Flow Shop Problem (GFSP). 

 

Comparatively, there are lesser papers that deal with maxCO .  Among the few 

earlier heuristic methods published, the more notable ones are Rock and Schmidt 

(1983), Shimoys et al. (1994) as well as the generalized SBP approach by 

Ramudhin and Marier (1996).  However, in recent times, local search based meta-

heuristics have been developed that solve OSP more effectively.  These include 

TS Approach by Liaw (1999a), Hybrid GA by Prins (2000), and Liaw (2000) as 

well as SA Approach by Liaw (1999b).  As Liaw’s algorithms for maxCO  are based 

on makespan estimation, they perform extremely well on both benchmarks and 

randomly generated problems.  



A Hybridized Approach for Solving Group Shop Problems 
 

47 

 

Recognizing that a multi-stage system may be a mixture of “pure” shops in 

practice, Masuda et al. (1985) introduced the concept of MSP and initiated the 

theoretical investigation of MSP.  This was followed by an algorithm by Strusevich 

(1991), which improved upon the results of Masuda et al..  Thereafter, works of 

Shakhlevich et al. (1999) and Shakhlevich et al. (2000), presented some 

polynomial / pseudo-polynomial algorithms for solving some special cases and 

provided a survey for the recent results about the complexity of MSP respectively. 

 

GSP was first introduced in the context of a mathematical competition organized 

by TU Eindhoven, Netherlands7.  Although GSP shares many characteristics of 

MSP, it is generally considered a further extension of the MSP framework.  Similar 

to MSP, there are little known works on GSP.  Furthermore, GSP is an NP -hard 

problem since it is well known that its special cases, the JSP and the OSP, are 

both NP -hard.  So far, there are only three working GSP algorithms: one based 

on ACO Approach (Blum, 2003) and two based on TS Approach (Sampel et al., 

2002 and Liu et al., 2005).   

 

The key contribution from Sampel et al.’s (2002) is the formulation of the first GSP 

neighborhood definition, which is an extension of the neighborhood definition by 

Nowicki and Smutnicki (1996a).  Moreover, in the Sampel et al.’s TS Approach, 

there are three characterizing features, namely: the usage of dynamic tabu lists, 

the implementation of a restart mechanism and the incorporation of probabilistic 
                                                 
7 See http://www.win.tue.nl/whizzkids/1997/ 
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rules for neighborhood moves selection.  Subsequently, using the same 

neighborhood definition from Sampel et al., Blum (2003) effectively applied the 

ACO meta-heuristics on GSP despite less successful earlier attempts by other 

researchers, including Colorni et al. (1993), on other classes of shop scheduling 

problems.  Particularly, Blum made tactical improvements to the pheromone 

model for moves selection.  As for the Liu et al.’s TS Approach, it incorporates the 

use of a variety of neighborhood definitions that are an extension to those of 

Liaw’s. (Liaw, 1999a and Liaw, 1999b).  Unlike most other TS Approaches for 

Shop Scheduling Problems, two different types of tabu lists are implemented to 

store the entire machine routing for the job and entire job routing for the machine 

corresponding to the selected move.  Based on the comparative study of Liu et al. 

(2005), the TS Approach by Liu outperforms the other two algorithms by obtaining 

good solutions for most of the GSP benchmark instances. 

 

2.11 Common Neighborhood Definition 
 
 
The quality of solutions obtained through local search heuristics strongly depends 

on the search neighborhood of the algorithm as the neighborhood definition 

determines how the algorithm traverses within the search space.  Most of the 

modern scheduling neighborhood definitions are based on moves generation on 

critical paths as they are more likely to lead to improving moves.  In fact, for every 

feasible schedule, there is at least one critical path which can be conceived as a 

series of either machine blocks i.e. consecutive operations belonging to the same 
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machine on a critical path or group blocks i.e. consecutive operations belonging to 

the same group on a critical path. 

 

In order to understand how to formulate good neighborhood definitions, it is 

worthwhile to note that they often exhibit the following desirable features: 

 

a.    Correlativity.  As far as possible, a neighboring solution should be 

highly correlated to its originator to facilitate a thorough exploration of 

search space. 

 

b.    Feasibility.  Perturbations that always lead to feasible solutions 

avoid the computational effort needed to perform repair on generated 

infeasible solutions. 

 

c.    Improvability.  If additional problem specific knowledge can be 

incorporated into the neighborhood definition, a move would have a better 

chance to obtain an improved solution value. 

 

d.    Size.  The average size of neighborhood moves should be within 

reasonable bounds so as to prevent either premature termination of 

algorithm or excessive computational demand to be placed on the 

algorithm. 
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e.    Connectivity.  Promising areas of the search space may be excluded 

from the search process if there is no finite sequence of moves leading 

from an arbitrary solution to a global optimal solution. 

 

JSP, being one of the most widely researched Shop Scheduling Problem, offers 

an array of different neighborhood structures.  A quick survey of the existing JSP 

neighborhoods will provide insights for the design of GSP neighborhoods, which 

are in turn crucial ingredient of any GSP scheduler.  For the explanation of the 

different neighborhood structures, the following definition is needed: 

 

Definition 2.22. 

 

An internal operation is defined as an operation of a machine or group block that is 

neither the first nor the last operation in that block. 

 

V. Laarhoven et al. (1992) outlined a neighborhood which is based on the reversal 

of the processing orders of two swappable operations in any machine block of a 

schedule’s critical path.  The design of this neighborhood was based on two basic 

observations, namely:  

 

a.    The reversal of two swappable operations on a schedule’s critical 

path will never lead to an infeasible schedule. 
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b.    The reversal of two swappable operations that are not on a 

schedule’s critical path will lead to either an infeasible schedule or a non-

improving schedule. 

 

The advantage of this neighborhood is that it is connected.  However, as 

highlighted by Matsuo et al. (1988), many of the candidate moves under this 

neighborhood are non-improving in nature since the reversal of two swappable 

internal operations on a schedule’s critical path can never improve a schedule.  

Therefore, the neighborhood of Matsuo et al. (1988) is defined as that of V. 

Laarhoven et al. (1989) but with the exclusion of swappable internal operations.  

Subsequently, Nowicki and Smutnicki (1996a) extended the idea of Matsuo et al. 

(1988) by excluding from their neighborhood definition the reversal of the first two 

operations of the first machine block on a schedule’s critical path and the reversal 

of the last two operations of the last machine block on a schedule’s critical path.  

Other noteworthy neighborhood definitions are outlined by D. Amico and Trubian 

(1993): 

 

a.    Permute the processing order of any two swappable operations at 

the beginning of a machine block on a schedule’s critical path with a 

preceding operation processed on the same machine or permute the 

processing order of any two swappable operations at the end of a machine 

block on a schedule’s critical path with a succeeding operation processed 

on the same machine. 
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b.    Move any one operation from machine blocks, of size at least 2, in 

front of the first operation of the machine block or after the last operation of 

the machine block. 

 

Against this backdrop, a generalization of the result derived for JSP in Brucker 

(1994) is provided in Blum (2003), as follows: 

 

Theorem 2.1. 

 

Let *p  be a feasible solution to a GSP instance.  If there is a solution *'p  with 

( ) ( )**' maxmax pp CC < , then there is a machine block or group block 
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With this theorem, it is reasonable to define the neighborhood of a feasible 

solution *p  as follows:  A feasible solution *'p  is a neighbor of *p  ( )( )*pN∈  if 
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2.12 Concluding Remarks 
 
 
Thus far, this chapter has provided the basic schema for understanding the 

notations, definitions and general solving approaches for shop scheduling 

problems.  From this literature survey, it appears that meta-heuristics are more 

effective than most other approaches.  While these meta-heuristics have been 

applied extensively on different classes of scheduling problems, it is difficult to 

determine the relative merits of each of these meta-heuristics methods as the 

overall design principle of these methods are often based on tactical 

improvements of certain aspects of the algorithm, such as neighborhood 

structures and memory structure, and comparative analysis of algorithm 

performance are often based on experimental results.   

 

Finally, another interesting trend that was uncovered in this literature survey is 

that there are increasingly more studies being conducted to establish the 

underlying nature of shop scheduling problems.  In particular, the use of a fitness 

landscape provides a novel way of analyzing the characteristics of combinatorial 

optimization problems. Although it is necessary to take note of the different meta-

heuristic techniques as well as the various local search neighborhood definitions 

applied to enhance the algorithm performance, insights on the nature of the shop 

scheduling search space are more important as they will enable better search 

strategies to be devised and the appropriate techniques to be incorporated into 

the design of the scheduling algorithms.    
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Chapter 3 GSP Scheduling Methodology 

 
 

 
3.1 Overview 
 
 
With the conceptual framework of the present study laid out in the preceding 

chapter, the current chapter sets out to elucidate the design of a GSP Scheduler.  

Apart from providing a sketch of the algorithm design, this chapter also provides 

the specific implementation details required to develop the algorithm, including but 

not limited to memory structures, neighborhood definitions and critical path 

computation methods.   Other than addressing the key design considerations 

highlighted in the preceding chapters, this chapter will also cover all the relevant 

design rationales taken for the design of this algorithm. 

 

3.2 Algorithmic Outline 
 
 
A typical shop scheduling algorithm can generally be perceived to consist of two 

stages, namely, the schedule construction stage and the schedule improvement 

stage.  Similarly, the proposed GSP Scheduler utilizes a simple list scheduling 

algorithm similar to the one proposed in Giffler and Thompson (1960) to randomly 

generate different initial solutions.  Although any randomly generated solution may 

serve as the starting point for local search algorithms, constructive algorithms are 

typically used to generate good initial solutions before subsequent applications of 

local search algorithms.  This often leads to the discovery of better quality local 
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minima in fewer number of steps compared to the direct use of local search 

algorithms without initial application of construction heuristics. 

 

As outlined in Figure 3.1, the proposed algorithm starts off by first generating an 

initial schedule based on random selection of schedule type and priority rule with 

the ConstructSchedule Procedure.  Due to the myopic nature of schedule 

construction phase, the constructed solutions need not be locally optimal with 

respect to some simple neighborhood.  Therefore, this initial solution will be 

improved upon through the OptimizeSchedule Procedure.   

 

Procedure GSP Scheduler 

   Select ScheduleType randomly; 

   Select PriorityRule randomly; 

 

   InitialSchedule = ConstructSchedule(ScheduleType, PriorityRule); 

   Optimal_Schedule = OptimizeSchedule(InitialSchedule); 

End GSP Scheduler 

Figure 3.1:  Algorithmic Skeleton of GSP Scheduler 

 

The potential of constructing such a hybrid scheduling system that is capable of 

integrating dispatching rules and search procedures has been substantiated by 

the computational results of the scheduling algorithms by Amico and Trubian 

(1993), Sun et al. (1995) as well as that by Liaw C. F. (1999a), which have been 

covered in the literature survey.  In particular, such hybrid systems can be 

designed so that search procedures are implemented whenever for effectiveness 

is needed and dispatching rules are carried out when quick responses are 
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necessary.  Since the objective of this research is to develop an algorithm for 

industrial applications, this approach has been incorporated as part of the 

algorithm to provide the necessary scalability and speed for real-life situations. 

 

3.3 Schedule Construction 
 
 
Other than being used to generate the initial solution for the GSP Scheduler 

Algorithm, the ConstructSchedule Procedure is also used iteratively within the 

OptimizeSchedule Procedure to provide further random starting points to increase 

the probability of finding better schedules within the solution space by the 

algorithm.  In the current implementation, the ConstructSchedule Procedure is 

designed to generate both active schedule and non-delay Schedule using 

different priority rules.  The following figure outlines the ConstructSchedule 

Procedure: 

 

Procedure ConstructSchedule( SSP ∈ ) 

   Initialize partial solution PS ; 

   Initialize list of unscheduled operations i.e. OO =+ *; 

   for( 1=t  to Ot = ) do 

       Put operations, with predecessor in PS , into tO ; 

       '
tO  = Restrict( PS , tO ); 

       *o  = Choose( '
tO ); 

       Extend PS  by appending operation *o ; 

       { }*\ oOO ++ = ; 

   end 
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   return PS ; 

End ConstructSchedule 

 

* O denotes the list of all operations to be scheduled. 

Figure 3.2:  Algorithmic Skeleton of ConstructSchedule Procedure 

 

Using the Restrict Procedure, a candidate list strategy is applied to further restrict 

the set tO .  Depending on the type of schedule desired, there are two major ways 

of implementing this function.  For the generation of active schedules, the 

following version of Restrict Procedure should be used: 

 

Procedure Restrict( SSP ∈ , tO ) 

   Calculate the earliest possible completion time ect  for all tOo∈ ;

   Select machine *M  with the minimal completion time *t ; 

   Define '
tO  as operations on *M  with earliest start time *ttes ≤ ; 

End Restrict 

Figure 3.3:  Algorithmic Skeleton of Restrict Procedure for Active Schedule 

 

However, if non-delay schedules are needed, the algorithm skeleton of the 

Restrict Procedure depicted in Figure 3.4 should be implemented. 

 

Procedure Restrict( SSP ∈ , tO ) 

   Determine the earliest possible starting time *t  for all tOo∈ ; 

   Define '
tO  as operations that can start at time *t ; 

End Restrict 

Figure 3.4:  Algorithmic Skeleton of Restrict Procedure for Non-Delay Schedule 
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As for the Choose Procedure, it implements a policy for determining among the 

operations of '
tO , the one to be scheduled next.  The policy typically involves 

choosing operations with the highest weight, where weights are given by priority 

rules.  Table 3.1 shows a selection of them. 

 

Table 3.1:  List of Priority Rules 
Priority Rule Description 
Random An operation is randomly chosen 
EST An operation with earliest starting time 
EFT An operation with earliest finishing time 
SPT An operation with shortest processing time 
LPT An operation with longest processing time 
LWR An operation with least work remaining in the 

job 
MWR An operation with most work remaining in the 

job 
LTW An operation with least total work in job 
MTW An operation with most total work in job 

 

 

The rationale for the choice of only generating both active schedules and non-

delay is clear as it allows the algorithm to focus its attention on a limited set of 

schedules of desirable quality, which in turn reduces the amount of time the 

algorithm needs for local search improvements.  While the set of non-delay 

schedules is smaller than the set of active schedules, the GSP Scheduler 

randomly selects between both types for schedule generation since there is no 

guarantee that the set of non-delay schedules will contain an optimum as 

opposed to active schedules.  Coupled with the use of different priority rules and 

the implementation of a schedule regeneration process within the 
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OptimizeSchedule Procedure, the dependency of the algorithm’s performance on 

the initial seed will be reduced. 

 

3.4 Search Strategy 
 
 
While the smoothness of a search landscape, according to prevailing opinion in 

Gu and Huang (1994), Schneider et al. (1997), and Coy et al. (1998), is the 

central pre-requisite of successful search, Mattfeld et al (1999) has demonstrated 

that smoothness alone is not sufficient in order to explain the intractability of the 

hard JSP instances.  In general, problems with local optima dispersed over the 

entire search space do not work well with local search methods while problems 

with smooth overall landscape tend to make adaptive search methods, such as 

GA, less effective.  It is reasonable to further generalize the results of this study 

for GSP instances since JSP tends to be more difficult to solve compared to other 

shop scheduling problems.   

 

Other than relying on the findings of Mattfeld et al (1999) as the primary basis for 

determining the choice between population based search approach and single-

point based search approach for the implementation of the GSP Scheduler, the 

relative merits and shortcomings of both approaches have also been considered.  

While population based approaches, such as GA, tend to be highly efficient 

methods for intensification, they are often outperformed by purpose-built methods.  

See Reeves (1994) for further elaboration on a comparative analysis of the 

various meta-heuristics approaches.  Furthermore, based on the results of the 
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literature survey in the preceding chapters on known scheduling approaches, 

most of the better scheduling algorithms are based on single-point based search 

approaches, such as Tabu Search.  As such, the GSP Scheduler adopts the 

framework of single-point based search, which is in this case the Tabu Search 

method. 

 

Among other findings, the same study by Mattfeld et al (1999) also revealed that 

local optima tend to be dispersed over the entire JSP search space and that 

harder JSP instances tend to possess smoother fitness landscape than easy 

instances.  The authors further conjectured that these results may explain the 

success of hybrid methods, which combine sophisticated control with limited tabu 

walks.  In other words, an algorithm, with a restart mechanism, will tend to 

perform better as it will be able to explore different parts of the search space so 

that it may be able to uncover better solutions elsewhere.  

 

Therefore, to be inline with these findings, the proposed GSP Scheduler attempts 

to strike a balance between exploration and exploitation, in relation to the search 

within the entire solution space, at the strategic tier by delineating the 

OptimizeSchedule Procedure into two distinct phases: 

 

a.    Diversification Phase.  In this phase, a move is selected to be 

applied on the current schedule.  If there are no local moves possible for 

any step or if there is no improvement to the local search after MaxRestart 

iterations, a ‘restart’ will be initiated to generate a random schedule.  At 
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each step, the schedule is compared to both the local best solution and 

global best solution.  Promising solution and its associated tabu memory 

are stored in the ‘backtrack’ memory for use in the intensification phase.   

 

The basis for moves selection has been implemented as the 

SelectRModelmoves Procedure, depicted in Figure 3.5, provides a two-

stage moves selection mechanism.  In the first stage, the best-

improvement rule is applied to determine the best possible move on the 

basis of lowest makespan value in the current iteration.  Although this rule 

yields better quality solution for each iteration, it requires greater 

computational time than the first improvement rule, which does not require 

all the neighborhoods of the current solution to be generated at one time 

but generate them one at a time until the first lower cost neighborhood 

solution.  As such, for computational efficiency, the makespan 

corresponding to each of the possible local moves are estimated prior to 

the selection of moves in the SelectRModelmoves Procedure.  As for stage 

two, a probabilistic acceptance criterion, which has been adapted from the 

Simulated Annealing Algorithm, is applied to determine if the current 

selected non-tabu move should be accepted so that the schedule can be 

adjusted.   
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Procedure SelectRModelmoves( SSC ∈ , ( )vu, ) 

   Estimate makespan for all local search moves of CS ; 

   Select local move ( )vu,  with best estimated makespan, '
maxC ; 

   if( ( )vu,  is non-tabu) 

      Compute max
'
max CC −=δ  where maxC  is the makespan of CS ; 

      if  0≤δ  

         return ( )vu, ; 

      else 

         Generate uniform random number ( )1,0∈x ; 

         if ( )Tx δ−< exp  

            return ( )vu, ; 

         end 

         return NULL; 

      end 

   else if( *
max

'
max CC <  where *

maxC  is the global best makespan) 

      Compute max
'
max CC −=δ  where maxC  is the makespan of CS ; 

      if  0≤δ  

         return ( )vu, ; 

      else 

         Generate uniform random number ( )1,0∈x ; 

         if ( )Tx δ−< exp  

            return ( )vu, ; 

         else 

            return NULL; 

         end 

      end 

   else  

      return NULL; 

   end 

End SelectRModelmoves 

Figure 3.5:  Algorithmic Skeleton of SelectRModelmoves Procedure 
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The rationale behind this approach is twofold: (1) to ensure that the final 

solution is independent of the starting solution and (2) to prevent the 

algorithm from being trapped in a local minimum.  Moreover, a geometric 

cooling function is implemented to allow moves to be more readily 

accepted at the start of the algorithm and more frequently rejected towards 

the end of the diversification phase.  The relationship between the cooling 

function, denoted by ( )Tα , and the current temperature value, denoted by 

T , is defined as follows: 

 

 ( ) aTT =α  (3.1)

 

According to Reeves (1994), most reported successes in the literature use 

values of a  that are between 0.8 and 0.99.  Similarly, the GSP Scheduler 

has adopted the use of these values.    

 

b.    Intensification Phase.  The solutions, which are stored in the back-

track memory, are restored for more refined search using a deterministic 

acceptance criterion for local moves.  A maximum of MaxBacktrackPoints 

solutions will be stored in the backtrack memory for further search during 

the intensification phase.  In this phase, the makespans corresponding to 

each of the possible local moves are estimated for the selection of moves 

using the SelectDModelmoves Procedure.  Similar to SelectRModelmoves 



A Hybridized Approach for Solving Group Shop Problems 
 

64 

Procedure, the best-improvement rule is applied as well.  Figure 3.6 

outlines the SelectDModelmoves Procedure below: 

 

Procedure SelectDModelmoves( SSC ∈ , ( )vu, ) 

   Estimate makespan for all local search moves of CS ;   

   if(number of tabu moves = number of possible moves)      

      Select oldest tabu move ( )vu,  from list; 

      Update TList  until selected move becomes non-tabu; 

      return ( )vu, ; 

   else  

      Select local move ( )vu,  with best estimated makespan, '
maxC ;    

      if( ( )vu,  is non-tabu) 

         return ( )vu, ; 

      else if( *
max

'
max CC <  where *

maxC  is the global best makespan) 

         return ( )vu, ; 

      else 

         Select next best non-tabu local move ( )vu, ; 

         return ( )vu, ; 

      end 

   end 

End SelectDModelmoves 

Figure 3.6:  Algorithmic Skeleton of SelectDModelmoves Procedure 

 

During the diversification phase, it is possible that more than 

MaxBacktrackPoints number of promising solutions may be generated for 

storage.  However, in such cases, only the best MaxBacktrackPoints 

number of promising solutions with the best makespan will be stored.  

 



A Hybridized Approach for Solving Group Shop Problems 
 

65 

The basic idea behind this search strategy is to identify as many promising 

solutions as possible from different parts of the search space at the onset during 

diversification phase so that better ones among these promising solutions can be 

selected for further improvement search in the intensification phase.  Figure 3.7 

provides the pseudo-code for OptimizeSchedule Procedure. 

 

Procedure OptimizeSchedule( SSi ∈ ) 

   Initialize current schedule iC SS = ; 

   Initialize local best schedule iLB SS = ; 

   Initialize global best schedule iGB SS = ; 

   Initialize Temperature T  for Simulated Annealing; 

   Initialize Tabu List TList ; 
   while(TerminationCondition1 != true) 

      Generate local moves from CS + based on current neigbourhood; 

      if(SelectedMove = SelectRModelMoves( CS ,MoveList,T ,TList ) 

         AdjustSchedule( CS , SelectedMove); 

         UpdateTabuList(TList ); 

         ComputeMakespan( CS ); 

         if( LBC SS ≤ ) 

            CLB SS = ; 

            if( GBC SS ≤ ) 

               CGB SS = ; 

            end 

         end 

      end 

      if(RestartCondition = true) 

         Save CS  and its TList  onto backtracking memory; 
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         CS  = RegenerateSchedule(); 

      end 

      Update T  based on geometric cooling function; 

   end 

   while(TerminationCondition2 != true) 

      Load schedule from backtrack memory into CS  and TList ; 

      while(TerminationCondition3 != true) 

         Generate local moves from CS ; 

         if(SelectedMove = SelectDModelMoves( CS ,MoveList,T ,TList ) 

            AdjustSchedule( CS , SelectedMove); 

            UpdateTabuList(TList ); 

            ComputeMakespan( CS ); 

            if( LBC SS ≤ ) 

               CLB SS = ; 

               if( GBC SS ≤ ) 

                  CGB SS = ; 

               end 

            end 

         end 

      end 

   end 

   return( GBS ); 

End OptimizeSchedule 

+ In the diversification phase, local moves may be generated based on any of the 

three different neighbor structures. 

Figure 3.7:  Algorithmic Skeleton of OptimizeSchedule Procedure 

 

In this algorithm, the best solution found is always compared with the lower bound 

of the problem instance, which is in turn computed using the formula outlined in 

Taillard (1994): 
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However, the drawback of using any form of lower bound formulation is that the 

best known makespan of a problem instance may be way higher than the lower 

bound makespan value.  Therefore, it is important to define good termination 

conditions to mitigate the effects of unnecessary iterations taken by the algorithm 

that may arise from the above-mentioned situation. 

 

Furthermore, three different termination conditions have been defined for two 

distinct phases of the algorithm.  In the diversification phase, 

TerminationCondition1 is satisfied whenever the total number of iterations has 

reached a pre-specified number of iterations, i.e. MaxDivIterations or the best 

solution obtained so far is less than MinPercentDev of the lower bound of the 

problem instance.  Once this condition is met, the algorithm will proceed with the 

next phase of the algorithm.  At each iteration step of the intensification phase, the 

algorithm will check if there is any schedule left in the backtrack memory for 

further schedule improvement and it will also determine if the current solution is 

equal to the lower bound of the problem instance.  In particular, 

TerminationCondition2 will be set to ‘true’ if there is no schedule left in the 

backtrack memory or if the current solution value is equal to the lower bound of 

the problem instance or if the optimum solution is found.  When this happens, the 

algorithm will come to a halt.  For each of the backtracked solution, local search 

will be performed up to a maximum of MaxIntIterations iterations.  Whenever the 
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number of counts of local search performed on the current backtracked solution 

equals to MaxIntIterations or when the current solution value is equal to the lower 

bound of the problem instance or when the optimum solution is found, 

TerminationCondition3 will be set to ‘true’.  This will trigger GSP Scheduler to 

terminate local search on the current backtracked solution so that it can retrieve 

the next schedule in the backtrack memory for further refinement. 

 

3.5 Memory Structures 
 
 
Two forms of memory have been implemented in this algorithm to achieve the two 

broad objectives of intensifying the search in “good” regions of the search space 

and diversifying the search towards unexplored regions: 

 

a.    Short Term Memory.  A variable length tabu list memory structure 

has been designed to prevent the algorithm from revisiting recently 

generated solutions.  A solution 's  is considered forbidden if the current 

solution s  can be transformed into 's  by applying one of the moves in the 

tabu list.  This list works in a First-In-First-Out (FIFO) manner.  Each time a 

move ( )vu, , is made, its inverse ( )uv,  will be added to the tabu list.  If the 

tenure, or length, of the tabu list is too short, its role of cycle prevention will 

not be effective.  Conversely, if the tenure of a tabu list is too long, there 

will be too many restrictions imposed on the search.  In the current 

implementation, the tenure of tabu List, i.e. TBListLen, is equal to the 

square root of the total number of critical operations in the current best 
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local schedule.  However, it should also be noted that it is possible to 

override the tabu-status of moves when they lead to new solutions which 

are better than the best found so far.  This is performed by means of 

aspiration level conditions.  Moreover, in the event when all possible moves 

in a particular iteration are all tabu, the algorithm will pick the oldest 

possible move from the list and populate the list with replications of the 

“youngest” move until the selected move becomes non-tabu. 

 

b.    Long Term Memory.  At the same time, to allow promising solutions 

uncovered during the diversification phase to be examined later, a back-

track memory has been implemented as a form of long term memory to 

allow storage of the promising schedules and their associated tabu lists.  

The storing of the associated tabu list prevents the repetition of the same 

search history in the intensification phase of the algorithm.  Since the local 

optima of shop scheduling problems tend to be dispersed within the search 

space, a long term memory of sufficient memory length will increase the 

chances of the optimum solution being located during the search. 

 

3.6 Neighborhood Definitions 
 
 
In an interesting study by Jain et al (2000), it was shown that the restrictive nature 

of the Nowicki and Smutnicki (NS) neighborhood (Nowicki and Smutnicki, 1996a) 

causes the initialization procedure of the scheduling algorithm to have substantial 

influence over the quality of the best solution found by the algorithm.  Particularly, 
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Jain et al (2000) pointed out that one of the promising areas to explore for the 

design of scheduling algorithm is the application of multiple neighborhoods as the 

most restrictive neighborhood may not necessarily be the best.  As such, it was 

proposed that multi-neighborhood system would apply NS neighborhood as the 

core, because it can be searched quickly and efficiently, and then some of the 

other neighborhoods at other levels in order to provide the necessary 

diversification.  Other similar research works, such as Mladenovic and Hansen 

(1997), and Mladenovic and Hansen (2001), on the concept of Variable 

Neighborhood Search also examined how systematic change of neighborhoods 

within a possibly randomized local search algorithm can improve the performance 

of the algorithm.  In view of these works, the proposed GSP Scheduler utilizes a 

total of four different neighborhood definitions to varying degrees.  To describe the 

various neighborhoods, the notations in Table 3.2 are needed: 

 

Table 3.2:  Neighborhood Definition Notations 
Symbol Description 

][iM  The machine that processes operation i . 

][iPM  The operation processed on ][iM  just before operation 
i , if it exists. 

][iSM  The operation processed after ][iM  just after operation 
i , if it exists. 

][iJ  The job to which operation i  belongs to. 

][iPJ  The operation belonging to job ][iJ  that precedes 
operation i , if it exists. 

][iSJ  The operation belonging to job ][iJ  that follows operation 
i , if it exists. 



A Hybridized Approach for Solving Group Shop Problems 
 

71 

][iG  The group to which operation i  belongs to. 

][iPG  The operation belonging to group ][iG  that precedes 
operation i , if it exists. 

][iSG  The operation belonging to group ][iG  that follows 
operation i , if it exists. 

 

Using these notations, the definitions of the neighborhood used in the proposed 

GSP Scheduler are as follows: 

 

Table 3.3:  GSP Scheduler Neighborhood Definitions 
NEIGHBORHOOD 

TYPE 
NEIGHBORHOOD DEFINITION 

0N  Swap i  and j  if both operations are either the first two 

operations of a machine / group block or the last two 

operations of a machine / group block, as follows: 
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1N  With the exception of the first machine / group block and 

the last machine / group block, swap i  and j  if both 

operations are either the first two operations of a machine / 

group block or the last two operations of a machine / group 

block.  For the first machine / group block, only the last two 

operations are swappable, while, only the first two 

operations are swappable for the last machine / group 

block.  

2N  Assume that i  is the first operation on a machine or group 

block. 

 

- Swap ( ][iPM , i ) if i  is on a machine block. 

- Swap ( ][iPG , i ) if i  is on a group block. 

3N  Assume that j  is the last operation on a machine or group 

block. 

 

- Swap ( j , ][ jSM ) if j is on a machine block. 

- Swap ( j , ][ jSG ) if j is on a group block. 

 

The deployment of these neighborhood structures within the algorithm is as 

follows: 

 

a.    0N , 2N  and 3N  will be used during the diversification phase with 

0N  as the core.  For every NCIterations iteration, one of the three 

neighborhood structures will be selected and applied once.  Thereafter, the 

algorithm will revert back to the use of 0N  for local search. 
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b.    As for the intensification phase, the algorithm will make use of 1N , 

which is a more restrictive version of 0N , for local search.  However, in the 

event that no further moves are possible in the current iteration for a 

particular backtracked solution, the algorithm will make a random selection 

among 1N , 2N  and 3N  for generation of other feasible moves.  Likewise, 

the algorithm will revert back to the use of 1N  after a move has been 

applied on the given schedule. 

 

In comparison with the neighborhood structures implemented in Liu et al.’s 

Algorithm (2005), the proposed neighborhood structures are much simpler in 

nature as they do not allow the exchange of the positions of more than two 

operations simultaneously.  Nevertheless, it is still possible for the GSP Scheduler 

to achieve the same local search move sequence as in Liu et al.’s Algorithm 

(2005) when the different neighborhoods structures outlined above are applied 

sequentially.  Unlike the Liu et al.’s Algorithm (2005), the use of such simple 

neighborhood definitions in the proposed algorithm does not impose the need for 

complex memory structures to store tabu moves.  In particularly, for the Liu et al.’s 

Algorithm (2005), complete machine routings and job routings needs to be stored 

and to be compared whenever a local move is applied.  This can be 

computationally intensive.  Evidently, this approach avoids the pitfalls of having a 

single restrictive neighborhood definition as well as the complexities of 

implementing elaborate neighborhood structures.   
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3.7 Critical Path Determination 
 
 
Another important aspect of the scheduling algorithm is the method used for the 

determination of the critical path.  As mentioned in the preceding chapter, a critical 

path is an ordered sequence of critical operations whose length is equal to the 

makespan of the schedule.  Since local searches are often performed on critical 

paths, the efficiency of the critical path determination approach will have a direct 

impact on the performance of the scheduling algorithm.  This thesis adopts the 

topological-sequence method presented in Liu and Ong (2002).  Typically, for any 

feasible schedule, every one of its operation i  satisfies the following equations: 

 

Definition 3.1. 

 

}{ ][][][][ ,max iPJiPJiPMiPMi pepee ++=  

where ie  and ip = 0 for all undefined indices i . 

 

Definition 3.2. 

 

}{ ][][][][ ,max iSJiSJiSMiSMi pepel ++=  

where ie , ip  and il = 0 for all undefined indices i . 

 

Most methods proposed in the literature, including Taillard (1994) and Bellman 

(1958), rely on the computation of ie  (where ie  denotes the length of a longest 
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path from node 0  to node i , excluding processing time of operation i , ip ) and il  

(where il  denotes the length of a longest path from node i  to node 1+N , 

excluding processing time of operation i , ip ) so as to determine critical paths of 

schedules.  However, in this study, the following approach is used: 

 

Step 1.  Compute the in-count value (the number of predecessors) of each node. 

 

Step 2.  Find the topological sequence of the N  operations as follows: 

 

a.    Select node 0  as the first node on the topological order list. 

 

b.    Decrement the in-count value for each of the immediate successor 

nodes of the selected node by 1. 

 

c.    Select any of the unselected nodes which have a zero in-count 

value.  Put this node as the next node on the topological order list. 

 

d.    Repeat Steps b and c until all nodes are selected. 

 

Step 3.  Starting from the setting 00 =e , calculate the ie  values of all nodes in the 

topological sequence according to Definition 3.1. 
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Step 4.  Starting from the setting 01 =+Nl , calculate the il  values of all nodes in 

the reversed topological sequence according to Definition 3.2. 

 

Step 5.  Determine the critical path by selecting operations satisfying the condition 

of maxClpe iii =++ . 

 

3.8 Makespan Estimation Method 
 
 
It is clear that the processing order of operations on critical paths needs to be 

modified in order to improve a current schedule.  However, to do this effectively, 

the algorithm needs to be able to estimate the effects of all possible moves for a 

particular schedule based on the selected neighborhood definition so as to 

determine the most promising move for that particular iteration.  In addition to that, 

the algorithm also needs to be able to determine the feasibility of the adjusted 

schedule as a move may produce infeasible schedules.   

 

Although exact makespan computation methods as outlined in Section 3.7, and 

exact feasibility tests, including the labeling algorithm outlined in Adam et al. 

(1988), are available, the GSP Scheduler adopts an approach similar to that in 

Amico and Trubian (1993), and Liaw (1999a) to improve its computational 

efficiency.  Particularly, the makespan estimation technique for the various 

neighborhood definitions has been incorporated into the design of 

SelectRModelmoves Procedure and SelectDModelmoves Procedure.  Table 3.4 
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provides the details on how the estimated makespan values can be computed for 

the respective neighborhood definitions used in the GSP Scheduler. 

 

Table 3.4: Estimated Makespan Values for GSP Scheduler 
NEIGHBORHOOD 

TYPE 

ESTIMATED MAKESPAN VALUE 

0N  

1N  

{ }][][][][
' ,max iPMiPMjPJjPJj pepee ++=  

{ }jjiPJiPJi pepee ++= '
][][

' ,max  

{ }][][][][
' ,max jSMjSMiSJiSJi plpll ++=  

{ }iijSJjSJj plpll ++= '
][][

' ,max  

{ }'''' ,max'
max jjjiii lpelpeC ++++=  

2N  Swap ( ][iPM , i ) if i  is on a machine block and ][iSMj =  

{ }]][[]][[][][
' ,max iPMPMiPMPMiPJiPJi pepee ++=  

{ }'',max ]][[]][[
'

][ ii pepee iPMPJiPMPJiPM ++=  

{ }''
][][][][

' ,max iPMiPMjPJjPJj pepee ++=  

{ }][][][][
' ,max jSMjSMjSJjSJj plpll ++=  

{ }jiPMSJiPMSJiPM plpll j ++= ',max ]][[]][[
'

][  

{ }][][][][
' ',max iPMiPMiSJiSJi plpll ++=  

{ }'''
][][

'
][

'' ,,max'
max jjjiPMiPMiPMiii lpelpelpeC ++++++=  

Swap ( ][iPG , i ) if i  is on a group block and ][iSGj =  

{ }]][[]][[][][
' ,max iPGPGiPGPGiPMiPMi pepee ++=  

{ }'',max ]][[]][[
'

][ ii pepee iPGPMiPGPMiPG ++=  

{ }''
][][][][

' ,max iPGiPGjPMjPMj pepee ++=  
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{ }][][][][
' ,max jSGjSGjSMjSMj plpll ++=  

{ }jiPGSMiPGSMiPG plpll j ++= ',max ]][[]][[
'

][  

{ }][][][][
' ',max iPGiPGiSMiSMi plpll ++=  

{ }'''
][][

'
][

'' ,,max'
max jjjiPGiPGiPGiii lpelpelpeC ++++++=  

3N  Swap ( j , ][ jSM ) if j is on a machine block and ][ jPMi =  

{ }][][][][
' ,max iPMiPMiPGiPGi pepee ++=  

{ }'',max ]][[]][[
'

][ ii pepee jSMPGjSMPGjSM ++=  

{ }''
][][][][

' ,max iSMiSMjPGjPGj pepee ++=  

{ }]][[]][[][][
' ,max jSMSMjSMSMjSGjSGj plpll ++=  

{ }jiSMSGiSMSGiSM plpll j ++= ',max ]][[]][[
'

][  

{ }][][][][
' ',max iSMiSMiSGiSGi plpll ++=  

{ }'''
][][

'
][

'' ,,max'
max jjjjSMjSMjSMiii lpelpelpeC ++++++=  

Swap ( j , ][ jSG ) if j is on a group block and ][ jPGi =  

{ }][][][][
' ,max iPGiPGiPMiPMi pepee ++=  

{ }'',max ]][[]][[
'

][ ii pepee jSGPMjSGPMjSJ ++=  

{ }''
][][][][

' ,max iSGiSGjPMjPMj pepee ++=  

{ }]][[]][[][][
' ,max jSGSGjSGSGjSMjSMj plpll ++=  

{ }jiSGSMiSGSMiSG plpll j ++= ',max ]][[]][[
'

][  

{ }][][][][
' ',max iSGiSGiSMiSMi plpll ++=  

{ }'''
][][

'
][

'' ,,max'
max jjjjSGjSGjSGiii lpelpelpeC ++++++=  

 

In this algorithm, these estimation techniques are used primarily for the purpose of 

moves selection.  Once a selected move is applied on the current schedule, the 
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exact makespan will be computed using the method outlined in the previous 

section.  This is to ensure that errors arising from such estimations are always 

kept within a reasonable margin while computational requirements for moves 

selection are minimized. 

 

3.9 Schedule Regeneration 
 
 
In line with the overall strategy to initiate search in different parts of the search 

space, the restart mechanism, which consists of (1) saving the current schedule 

and its associated tabu list into backtracking memory and (2) regenerating 

another schedule as the next starting point for local search, has been 

implemented as part of the GSP Scheduler.  Essentially, the RegenerateSchedule 

Procedure, outlined in Figure 3.7, offers two modes of schedule regeneration, 

namely: ‘Full Restart’ and ‘Partial Restart’, and it alternates randomly between the 

two modes during the algorithm runtime.  In the ‘Full Restart’ mode, the algorithm 

selects randomly the type of schedule and the priority rule before it constructs a 

schedule from scratch.  This is similar to the ConstructSchedule Procedure.  As 

for the ‘Partial Restart’ mode, the algorithm will select randomly operation blocks 

on the critical path for reshuffling based on ‘shortest processing time first’ rule, 

‘longest processing time first’ rule or ‘random’ rule. 

 

Depending on the nature of the GSP problem, the ratio of group blocks to 

machine blocks on the critical path of the schedule may be different.  Hence, the 

probabilistic rule for selecting operations’ blocks on the critical path for reshuffling 
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in the ‘Partial Restart’ mode needs to be biased to the nature of the GSP instance.  

To do this, this thesis defines and proposes the following characteristic for 

differentiating between different GSP instances: 

 

Definition 3.3. 

 

A group factor of a GSP instance is defined as the ratio between the number of groups to 

the average group length where group length is equal to the number of operations 

belonging to the same group. 

 

Based on this definition, a JSP instance will have its group factor equal to the total 

number of operations in the instance (i.e. ‘MaxGroupFactor’) while a similar OSP 

instance with the same number of tasks and same corresponding processing 

times will have its group factor equal to the number of operations in the instance 

divided by the number of tasks per job (i.e. ‘MinGroupFactor’).  Accordingly, the 

probabilistic rule is defined as follows: 

 

Definition 3.4. 

 

Probability of Selecting Group Blocks is defined as: 

a.    0, if group factor is equal to MaxGroupFactor. 

b.    0.5, if group factor is equal to MinGroupFactor. 

c.    
ctorMinGroupFactorMaxGroupFa
rGroupFactoctorMaxGroupFa

−
−

×5.0 ,  otherwise 
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By incorporating this probabilistic rule into the process of selecting operations 

blocks on the critical path for reshuffling in the ‘Partial Restart’ mode, the 

algorithm will be able to adapt better to the differing nature of GSP instances. 

 

3.10 Concluding Remarks 
 
 
It is clear that the design of the GSP Scheduler is based on a search strategy 

derived from the generalization of the findings of JSP search space analysis for 

GSP instances.  The clear articulation of the search strategy enables all the 

relevant tactical considerations, such as those on memory structures and 

neighborhood definitions, to be applied in the implementation of this algorithm.  

Other than incorporating known features from other scheduling algorithms, such 

as simulated annealing approach for move selection, critical path determination 

method and makespan estimation techniques, the GSP Scheduler also 

improvises a probabilistic schedule regeneration mechanism that is unique to this 

algorithm.  This will not only ensure that the search techniques are consistent with 

the overall search strategy but should also improve the overall performance of the 

algorithm in terms of its effectiveness and efficiency.  
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Chapter 4 Computational Experiments 

 
 

 
4.1 Overview 
 
 
With the conceptual framework of the present study laid out in the preceding 

chapters, computational experiments were carried out with the GSP Scheduler on 

a series of benchmark problems to gauge the performance of the algorithm in 

relation to other known GSP scheduling algorithms.  This chapter sets out to 

discuss experimental inputs, the settings, and the results obtained. 

 

4.2 Experimental Inputs 
 
 
To evaluate the performance of the GSP Scheduler in this study, the algorithm is 

applied on several established benchmark instances taken from the literature.  As 

benchmark problems provide a common platform on which algorithms can be 

tested and gauged, problem instances of different dimensions and grades of 

difficulty should be selected so that the capabilities as well as the limitations of an 

algorithm will be revealed when it is applied on such problems.  It should be noted 

that most benchmark problems have only integer processing times with a rather 

small range.  While such instances may seem to have very little practical 

usefulness, Amar and Gupta (1986) have indicated that real life scheduling 

problems are easier to solve than simulated ones regardless of the type of 

algorithm used. 
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A total of 41 problem instances have been selected for use in the computational 

experiments.  This is the same set of benchmark problems that has been used for 

computational experiments by Liu et al. (2005), Blum (2003) and Sampel et al. 

(2002).  By adopting this set of benchmark problems, it will be possible to 

benchmark the performance of the GSP Scheduler against other GSP scheduling 

algorithms.  Moreover, this set of benchmark problems offers a good mix of 

‘square’ instances, which refers to problem instances where the ratio of the 

number of jobs to the number of machines is equal to one, and ‘rectangular’ 

instances, which refers to problem instances where the ratio of the number of jobs 

to the number of machines is greater than one.  Numerous studies, including but 

not limited to Ramudhin and Marier (1996), and Watson et al. (2003), have shown 

that ‘square’ instances are generally harder to solve than ‘rectangular’ instances.  

 

Among these problem instances, WHIZZKID is the only established GSP instance 

as it was subjected to a mathematics competition in the Netherlands in 1997.  It 

consists of 20 jobs comprising 197 operations on 15 machines and these 

operations can be sub-partitioned into 124 groups.  As for the rest of the GSP 

benchmark instances, they can be generated from prominent JSP problems, such 

as Fisher and Thompson’s FT10 (10 machines and 10 jobs; see Fisher and 

Thompson, 1963), Lawrence’s LA38 (15 machines and 15 jobs; see Lawrence, 

1984) and Adam et al.’s ABZ7 (15 machines and 20 jobs; see Adam et al., 1988), 

by introducing groups of various lengths into the jobs.  In particular, FT10 is a 

prominent JSP instance, whose optimality was not determined for more than 
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twenty years before the optimality of one solution was proved by Carlier and 

Pinson (1989). 

 

The GSP instances derived from FT10, LA38 and ABZ7 are denoted by 

FT10_XX, LA38_XX and ABX7_XX respectively, where XX is the group length.  

For example, the GSP instance generated from LA38 with group length of 5 is 

denoted by LA38_05.  When the group length is 1, these GSP instances 

(FT10_01, LA38_01 and ABBZ7_01) are the original JSS instances.  As the group 

length increases, these instances get closer the OSP instances.  However, these 

GSP instances become the original OSP instances when the group length is 

equal to the number of machines in the respective problem instance. 

 

Another important aspect of experimental inputs is the choice of parameter 

values.  Typically, the values of these parameters tend to have a significant effect 

on the algorithm performance.  In the absence of a more rigorous approach for 

the determination of these values, the algorithm parameters are empirically 

selected based on the application of the GSP Scheduler on other randomly 

selected problem instance to ensure a reasonable trade-off between running time 

and solution quality.  The various parameter values for the GSP Scheduler to be 

used in the various computational experiments are found in Table 4.1.   
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Table 4.1:  Selected Algorithm Parameter Values 
Parameter Values 

MaxRestart 5% of ‘MaxDivIterations’ 

MaxBacktrackPoints 5 to 10 

MaxDivIterations 50000 to 80000 

MinPercentDev 1% to 5% 

MaxIntIterations 10000 to 20000 

TBListLen Square root of critical path length of the current 

best local best schedule 

NCIterations 10% of ‘MaxDivIterations’ 

 

Generally, the parameters are varied across different classes of GSP problems, 

such as FT10 Class, LA38 Class, ABZ7 Class and WHIZZKID Class, since the 

characteristics of these problems are substantially different from each other i.e. 

different number of machines, different number of jobs and different number of 

total operations.  However, the settings are maintained for GSP instances of the 

same class as the proposed algorithm is able to adjust its search mechanism in 

accordance to the differing nature of GSP instances of the same class.   

 

4.3 Empirical Results 
 
 
The GSP Scheduler was coded in Visual C++ 6.0 environment and was tested on 

an ACER Laptop with Pentium IV Processor 1.5 GHz CPU, with 256 MB RAM 

running on Microsoft Windows XP Operating System.  Using the specified 
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parameter values, the algorithm was applied on all the 41 GSP instances.  For 

each GSP instance, there were a total of 20 runs so that the following can be 

computed: 

 

a.    Best Solution.  Out of the 20 runs on the same problem instance, the 

best solution, BSTS , will be recorded. 

 

b.    Average Solution.  Corresponding to each problem instance, the 

mean value of 20 final solutions obtained will be registered as AVGS . 

 

c.    Average Computational Time.  Similarly, AVGT  is captured for each 

problem instance so that the average case performance of the algorithm 

can be ascertained. 

 

d.    Coefficient of Variation.  To measure the dispersion of solutions 

obtained from the 20 runs of each problem instance, a dimensionless 

metric is computed.  The formula is as follows:  

 

 
100×=

σ
µ

vc  
(4.1)

 

where µ  is the mean of all the final solutions obtained in the 20 runs while σ  is 

the standard deviation of all the solutions obtained in the 20 runs. 
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As the experiments for the other algorithms were performed on different 

processors, the computational times reported in these algorithms cannot be used 

for direct comparison.  In particular, the experiments for Sampel et al.’s TS 

Algorithm and Blum’s ACO Algorithm were performed on a 1.1 GHz AMD Athlon 

CPU under Linux while the experiments for Liu et al.’s TS Algorithm were 

performed on a 1.8 GHz Pentium IV CPU with 256 MB RAM under Microsoft 

Windows XP.   Therefore, by assuming the inverse relationship between 

processing speed of the CPU and its computational time, the adjusted 

computational times are recomputed based on the following formula: 

 

 
T

S
ST ×= '

'  
(4.2)

 

where T  denotes the reported computational time while S  and 'S  refer to the 

CPU speed used in the original experiment and the CPU speed used in this 

current computational experiment respectively. 

 

Overall, the GSP Scheduler achieved relatively good results as it was able to 

obtain the best known makespan values for 22 out of 41 problem instances.  As 

for the problem instances whose best known makespan values were not obtained 

by the GSP Scheduler, both the their best solution values and their average 

solution values found by the GSP Scheduler were well within 2% deviation from 

the best known makespan value as shown in Table 4.2.  The value of the best 
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known makespan for each instance is also included in the table.  However, those 

problem instances whose optimality are unknown are enclosed in brackets. 

 

In line with the observation that ‘square’ instances are generally harder to solve 

than ‘rectangular’ instances in studies, such as Ramudhin and Marier (1996), and 

Watson et al. (2003), the GSP Scheduler yielded better on ABZ7 Class and 

WHIZZKID Class than on FT10 Class and LA38 Class.  Particularly, 45% of the 

best known solution obtained by the GSP Scheduler was from the ABZ7 Class. 

 

By denoting the GSP Scheduler as Algorithm I, Liu et al.’s TS Algorithm as 

Algorithm II, Blum’s ACO Algorithm as Algorithm III and Sampel et al.’s TS 

Algorithm as Algorithm IV, two different tables, namely Table 4.3 and Table 4.4, 

were tabulated for the comparison of best case performance and average case 

performance respectively. 
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Table 4.2: Solution Quality for GSP Scheduler 
ACTUAL SOLUTION VALUE DEVIATION FROM BEST 

KNOWN (%) 
INSTANCE BEST 

KNOWN 
MAKESPAN SBST SAVG SBST SAVG 

FT10_01 930 930 938.4 0.0 0.9 
FT10_02 (872) 875 894.8 0.3 2.6 
FT10_03 (827) 830 838.9 0.4 1.4 
FT10_04 (782) 790 798.8 1.0 2.1 
FT10_05 (745) 747 750.7 0.1 0.4 
FT10_06 (725) 725 738.6 0.0 1.9 
FT10_07 (686) 690 700.4 0.6 2.1 
FT10_08 (655) 655 660.1 0.0 0.8 
FT10_09 (655) 655 656.2 0.0 0.2 
FT10_10 (655) 655 655.8 0.0 0.1 

      
LA38_01 1196 1212 1218.0 1.3 1.8 
LA38_02 (1106) 1118 1122.5 1.1 1.5 
LA38_03 (1049) 1049 1060.1 0.0 1.1 
LA38_04 (993) 1000 1003.4 0.7 1.0 
LA38_05 (990) 1000 1003.2 1.0 1.3 
LA38_06 (961) 970 979.8 0.9 2.0 
LA38_07 (956) 965 976.9 0.9 2.2 
LA38_08 (943) 951 960.5 0.8 1.9 
LA38_09 (962) 962 975.9 0.0 1.4 
LA38_10 (979) 979 1004.8 0.0 2.6 
LA38_11 (979) 980 1008.0 0.1 3.0 
LA38_12 (943) 960 961.7 1.8 2.0 
LA38_13 (943) 943 955.6 0.0 1.3 
LA38_14 (943) 943 950.8 0.0 0.8 
LA38_15 (943) 943 953.3 0.0 1.1 

      
ABZ7_01 656 670 678.6 2.1 3.4 
ABZ7_02 (641) 642 650.1 0.2 1.4 
ABZ7_03 (611) 611 616.3 0.0 0.9 
ABZ7_04 (609) 610 611.5 0.2 0.4 
ABZ7_05 (638) 638 638.5 0.0 0.1 
ABZ7_06 (600) 600 602.7 0.0 0.4 
ABZ7_07 (567) 579 583.2 2.1 2.9 
ABZ7_08 (564) 564 574.6 2.3 0.4 
ABZ7_09 (577) 577 582.6 0.0 1.0 
ABZ7_10 (612) 612 613.0 0.0 0.2 
ABZ7_11 (610) 610 614.7 0.0 0.8 
ABZ7_12 (592) 592 596.0 0.0 0.7 
ABZ7_13 (581) 581 586.5 0.0 0.9 
ABZ7_14 (562) 562 563.2 0.0 0.2 
ABZ7_15 (556) 556 556.0 0.0 0.0 

      
WHIZZKID 469 469 476.9 0.0 1.7 
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Table 4.3: Comparison of the Algorithms’ Best Case Performance 
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST 

KNOWN 
MAKESPAN 

SBST TAVG SBST TAVG SBST TAVG SBST TAVG 

FT10_01 930 930 67.5 930 74.8 930 94.9 930 50.8 
FT10_02 (872) 875 54.9 872 78.6 872 74.6 875 48.5 
FT10_03 (827) 830 63.4 827 75.8 834 93.8 827 84.5 
FT10_04 (782) 790 69.9 784 81.0 791 83.7 782 69.6 
FT10_05 (745) 747 56.8 745 73.6 754 62.8 748 57.9 
FT10_06 (725) 725 54.0 725 75.6 725 84.8 729 61.5 
FT10_07 (686) 690 54.8 686 54.8 694 67.8 696 57.4 
FT10_08 (655) 655 27.8 655 15.1 655 42.5 657 58.1 
FT10_09 (655) 655 29.8 655 1.0 655 0.8 655 5.9 
FT10_10 (655) 655 2.4 655 0.6 655 0.6 655 1.2 

            
LA38_01 1196 1212 209.5 1202 235.4 1228 934.4 1196 605.4 
LA38_02 (1106) 1118 186.5 1106 225.5 1126 838.1 1106 594.1 
LA38_03 (1049) 1049 240.2 1049 218.4 1061 798.0 1049 690.4 
LA38_04 (993) 1000 223.9 993 239.9 1019 707.8 1002 651.6 
LA38_05 (990) 1000 226.4 990 249.2 1003 817.6 990 630.4 
LA38_06 (961) 970 228.9 961 256.7 977 931.6 974 949.8 
LA38_07 (956) 965 232.9 956 253.2 970 821.2 961 623.6 
LA38_08 (943) 951 220.1 943 202.8 955 952.2 954 777.4 
LA38_09 (962) 962 213.7 962 254.8 962 624.4 966 430.5 
LA38_10 (979) 979 216.6 990 231.2 979 904.1 982 96.7 
LA38_11 (979) 980 216.1 991 242.6 979 803.5 985 292.7 
LA38_12 (943) 960 217.3 943 142.9 947 811.3 960 789.7 
LA38_13 (943) 943 180.9 943 11.8 943 55.0 943 792.4 
LA38_14 (943) 943 157.1 943 9.0 943 29.1 943 595.9 
LA38_15 (943) 943 90.7 943 8.8 943 12.5 943 141.8 
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Table 4.3 (Cont.): Comparison of the Algorithms’ Best Case Performance 
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST 

KNOWN 
MAKESPAN 

SBST TAVG SBST TAVG SBST TAVG SBST TAVG 

ABZ7_01 656 670 209.5 667 331.3 676 757.0 661 556.4 
ABZ7_02 (641) 642 186.5 641 324.4 641 930.1 641 151.2 
ABZ7_03 (612) 611 240.2 612 331.1 612 848.2 612 120.8 
ABZ7_04 (609) 610 223.9 609 321.6 609 91.4 609 34.6 
ABZ7_05 (638) 638 226.4 638 324.6 638 10.6 638 11.4 
ABZ7_06 (600) 600 228.9 600 293.5 600 31.7 600 43.0 
ABZ7_07 (567) 579 232.9 567 391.2 567 648.3 567 524.5 
ABZ7_08 (564) 564 220.1 577 329.5 577 59.0 577 25.9 
ABZ7_09 (577) 577 213.7 577 342.1 577 44.9 577 21.6 
ABZ7_10 (612) 612 216.6 612 323.9 612 41.9 612 11.3 
ABZ7_11 (610) 610 216.1 610 310.2 610 13.0 610 9.8 
ABZ7_12 (592) 592 217.3 592 315.6 592 26.5 592 19.1 
ABZ7_13 (581) 581 180.9 581 302.2 581 13.2 581 37.3 
ABZ7_14 (562) 562 157.1 562 305.8 562 18.5 562 54.9 
ABZ7_15 (556) 556 90.7 556 18.1 556 4.0 556 58.1 

            
WHIZZKID 469 469 746.8 469 821.4 486 924.4 474 727.6 
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Table 4.4: Comparison of the Algorithms’ Average Case Performance 
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST 

KNOWN 
MAKESPAN 

SAVG cv SAVG cv SAVG cv SAVG cv 

FT10_01 930 938.4 0.44 933.2 0.28 939.5 0.71 930.6 0.20 
FT10_02 (872) 894.8 0.76 873.4 0.22 887.5 0.96 880.1 0.30 
FT10_03 (827) 838.9 0.48 831.8 0.42 853.1 1.25 838.3 0.32 
FT10_04 (782) 798.8 0.38 791.1 0.73 805.6 0.86 796.0 0.39 
FT10_05 (748) 750.7 0.34 748.5 0.85 764.1 0.90 758.1 4.74 
FT10_06 (725) 738.6 0.64 727.4 0.40 736.6 0.65 745.3 0.49 
FT10_07 (686) 700.4 0.79 692.9 0.56 702.5 0.87 709.7 0.55 
FT10_08 (655) 660.1 0.32 655.0 0.00 655.1 0.05 660.5 0.42 
FT10_09 (655) 656.2 0.34 655.0 0.00 655.0 0.00 655.0 3.44 
FT10_10 (655) 655.8 0.29 655.0 0.00 655.0 0.00 655.6 3.88 

            
LA38_01 1196 1218.0 0.66 1206.3 0.38 1235.5 0.34 1200.0 6.16 
LA38_02 (1106) 1122.5 0.47 1107.6 0.14 1148.8 0.89 1112.3 0.33 
LA38_03 (1049) 1060.1 0.29 1049.0 0.09 1068.4 0.37 1054.9 0.31 
LA38_04 (1002) 1003.4 0.85 996.8 0.27 1028.7 0.60 1011.3 0.07 
LA38_05 (990) 1003.2 0.75 996.0 0.43 1019.3 0.83 1011.4 0.15 
LA38_06 (961) 979.8 0.34 970.7 0.91 985.6 0.50 981.2 0.41 
LA38_07 (956) 976.9 0.42 962.5 0.56 980.5 0.61 971.0 0.00 
LA38_08 (943) 960.5 0.40 948.1 0.44 970.5 0.77 962.8 0.18 
LA38_09 (962) 975.9 0.43 963.7 0.31 981.3 0.80 987.0 2.86 
LA38_10 (979) 1004.8 0.73 999.4 0.95 987.8 0.48 1012.1 0.64 
LA38_11 (979) 1008.0 0.67 996.3 0.32 985.5 0.52 1015.6 0.87 
LA38_12 (943) 961.7 0.27 945.9 0.52 951.9 0.33 965.5 0.59 
LA38_13 (943) 955.6 0.74 943.0 0.00 943.0 0.00 946.6 2.70 
LA38_14 (943) 950.8 0.31 943.0 0.00 943.0 0.00 943.6 2.71 
LA38_15 (943) 953.3 0.79 943.0 0.00 943.0 0.00 943.6 2.36 
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Table 4.4 (Cont.): Comparison of the Algorithms’ Average Case Performance 
ALGORITHM I ALGORITHM II ALGORITHM III ALGORITHM IV INSTANCE BEST 

KNOWN 
MAKESPAN 

SAVG cv SAVG cv SAVG cv SAVG cv 

ABZ7_01 656 678.6 0.72 671.0 0.46 683.3 0.47 668.4 1.59 
ABZ7_02 (641) 650.1 0.48 641.0 0.00 645.0 0.47 641.0 1.96 
ABZ7_03 (612) 616.3 0.71 612.0 0.00 612.8 0.47 612.3 0.48 
ABZ7_04 (609) 611.5 0.10 609.0 0.00 609.0 0.00 616.0 0.77 
ABZ7_05 (638) 638.5 0.15 638.0 0.00 638.0 0.00 640.7 0.21 
ABZ7_06 (600) 602.7 0.60 600.0 0.00 600.0 0.00 601.5 0.61 
ABZ7_07 (567) 583.2 0.44 567.0 0.14 569.9 0.00 571.0 0.20 
ABZ7_08 (577) 574.6 0.69 577.0 0.40 577.0 0.00 596.3 0.30 
ABZ7_09 (577) 582.6 0.66 577.0 0.70 577.0 0.00 599.0 0.32 
ABZ7_10 (612) 613.0 0.29 612.0 0.00 612.0 0.00 631.5 0.39 
ABZ7_11 (610) 614.7 0.73 610.0 0.00 610.0 0.00 631.6 4.74 
ABZ7_12 (592) 596.0 0.69 593.1 0.64 592.0 0.00 606.0 0.49 
ABZ7_13 (581) 586.5 0.29 583.7 0.95 581.0 0.00 584.0 0.55 
ABZ7_14 (562) 563.2 0.32 562.0 0.00 562.0 0.00 566.4 0.42 
ABZ7_15 (556) 556.0 0.00 556.0 0.00 556.0 0.00 556.4 3.44 

            
WHIZZKID 469 476.9 1.34 478.2 1.63 494.6 0.84 479.8 3.88 
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By comparing the results obtained by the GSP Scheduler with that of Blum’s ACO 

Algorithm and Sampel et al.’s TS Algorithm, the GSP Scheduler outperforms them 

in most problem instances in three aspects: the best solution found, the coefficient 

of variation and the average computational time.  Particularly, the solutions 

obtained via the GSP Scheduler were of comparable quality with respect to those 

obtained via the Liu et al.’s TS Algorithm.  However, in most cases, the GSP 

Scheduler requires less computational time than other known GSP algorithms.  

Although the coefficients of variation for a number of the solutions obtained by the 

GSP Scheduler tend to be higher that that of the Liu et al.’s TS Algorithm, they are 

still within the acceptable margin of less than 1.0% for most cases. 

 

Another interesting observation that was made in this computational experiment, 

which is in line with the observation made in Sampel et al. (2002), is that as the 

structure of the problem instance approaches that of OSP, it tends to be easier to 

solve.  This is evident from the lower computational times and lower coefficients of 

variations associated with those problem instances with higher group lengths.  

Since the structure of the WHIZZKID problem is quite similar to that of a JSP, it is 

considered one of the toughest problems in the set of benchmarks.  Therefore, it 

is not surprising that the optimal solution is only obtained by the GSP Scheduler 

and the Liu et al.’s TS Algorithm. 

 

In essence, the computational experiments demonstrated that the GSP Scheduler 

is not only efficient but also robust as it can be applied to the MSP, OSP and JSP 

successfully.  
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4.4 Effect of Fitness Function on Algorithm Performance 
 
 
Most algorithms, especially simple iterative search methods, face the problem of 

being unable to navigate their search out of either ‘plateaus’ or local optima as the 

choice of their next algorithm step is often based on the fitness of their current 

point as well as the corresponding fitness of the neighboring points.  To 

circumvent such problems, Duvivier et al. (1991) advocated the use of enriched 

fitness function so as to improve solution quality.  In particular, Duvivier et al. 

(1991) proposed that the enriched fitness function should consist of a main 

criterion and a secondary criterion.  This will allow any algorithm to differentiate 

solution points that have the same value for the main criterion.   

 

As a separate trial on the GSP Scheduler, the fitness function, as recommended 

by Duvivier et al. (1991), was incorporated into the SelectDModelmoves 

Procedure within the intensification phase of the GSP Scheduler leaving the rest 

of the algorithm intact.  The assumption for this is that the GSP Scheduler is likely 

to be navigating either on ‘plateaus’ or on local optima during this phase.  

Therefore, the use of the enriched fitness function within this phase of the GSP 

Scheduler may help to improve the overall algorithm performance.   The fitness 

function used is outlined as follows: 

 

 ( ) )()()( 22max12 xCxHKxCKKxf op+×+××=  (4.3)
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where x  denotes a schedule, DMK ×=1  denotes the product of the 

number of machines and the sum of all durations of all the operations of 

the instance, MJK ×=2  denotes the product of the number of machines 

and the number of jobs, )(max xC  denotes the makespan value of the 

schedule, )(2 xH  denotes the summation of the square of the completion 

time of the last operation performed on each machine and )(xCop  denotes 

the number of critical operations found in the schedule. 

 
 
Using the same experimental settings, the GSP Scheduler was applied on all the 

41 GSP instances.  Table 4.5 summarizes the results of this trial by computing the 

average percentage improvements achieved in terms of SBST, SAVG, TAV and cv for 

the different families of problem instances by the GSP Scheduler using the fitness 

function against the results obtained by the original algorithm without fitness 

function in Section 4.3. 

 

Table 4.5: Effect of Fitness Function on GSP Scheduler’s Performance 
AVERAGE IMPROVEMENT PERCENTAGE (%) PROBLEM INSTANCE FAMILY 

SBST SAVG TAVG cv 
FT10  0.29  0.11 18.7 -5.2 
LA38 -0.10 -0.06 35.1 18.6 
ABZ7  0.01  0.02 20.2 4.5 
WHIZZKID  0.00 -0.07 19.0 -2.7 

 

The results did not provide substantial evidence to indicate that there are 

significant improvements in terms of overall solution quality.  Moreover, since the 

computation of the fitness value requires that other information of the amended 

schedule to be known, makespan estimation techniques cannot be used in 
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conjunction with fitness function in the intensification phase.  Consequently, the 

average computational times required by the GSP Scheduler, which uses the 

fitness function, increased rather significantly. 

 

4.5 Concluding Remarks 
 
 
In this chapter, extensive experiments were carried out to gauge the performance 

of the GSP Scheduler on a set of benchmark problems.  As other known GSP 

scheduling algorithms for GSP have used this set of problems for similar 

computational experiments, these results can be compared to determine the 

relative strengths / weaknesses of the respective scheduling algorithms for GSP.  

Overall, the GSP Scheduler outperforms Sampel et al.’s TS Algorithm and Blum’s 

ACO Algorithm in terms of solution quality and computational time.  At the same 

time, the performance of the GSP Scheduler is also comparable to that of Liu et 

al.’s TS Algorithm as it is able to produce solutions of similar quality but with a 

shorter processing time.  Notwithstanding that, unlike the Liu et al.’s TS Algorithm, 

the GSP Scheduler does not utilize elaborate neighborhood definitions, which in 

turn requires extensive tabu list structures for machine routing / job routing.  

Therefore, the GSP Scheduler is easier to implement for real life application 

compared to the Liu et al.’s TS Algorithm. 
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Chapter 5 Conclusions 

 
 

 
5.1 Overview 
 
 
In this present study, a methodology has been proposed to solve the GSP.  

Through the generalization of known findings about the distribution of local optima 

within the search space of JSP, a hybridized algorithm for solving GSP has been 

devised by incorporating known features of other popular meta-heuristics 

approach.  The algorithm has been subsequently subjected to various 

computational experiments and the comparisons of empirical results have also 

been made with other known GSP algorithms to determine their relative strengths 

/ weaknesses.  This chapter concludes the thesis, by providing a brief review of 

the present study, demarcating its contributions, outlining the research issues 

addressed and finally proposing suggestions for future research directions. 

 

5.2 Group Shop Scheduling: A Review 
 
 
A typical shop scheduling algorithm can generally be perceived to consist of two 

stages, namely, the schedule construction stage and the schedule improvement 

stage.  Most schedulers utilize a variety of techniques, which can range from 

simple dispatching functions to complex meta-heuristics, for both stages.  In the 

case of the GSP scheduler, the schedule improvement can be further divided into 

the diversification phase and intensification phase.  Likewise, many useful 
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features of other well-known meta-heuristics have been incorporated as part of 

the GSP Scheduler. 

 

In the implementation of shop scheduling algorithms, most state-of-the-art 

methods perform local search on the schedule.  Particularly, in the cases where 

the objective is to minimize schedule makespan, neighborhood moves for local 

search are often selected from either machine blocks or group blocks on the 

critical paths of schedules.  While a more restrictive neighborhood definition will 

reduce the number of non-improving moves for the scheduling algorithm, it also 

has the effect of increasing the dependency of the final solution quality on the 

starting solution.  Thus, the choice of neighborhood structures to use for local 

search and the selection mechanism for local moves are both crucial steps in the 

design of good GSP scheduling algorithms. 

 

With the exception of Blum’s ACO and Sampels et al.’s TS, neighborhood move 

estimation techniques were utilized during local search for selecting feasible 

moves on a critical path as opposed to the exact computation of schedule 

makespan corresponding to each of the possible moves prior to move selection.  

As such techniques have shown to be more computationally efficient, they have 

been incorporated as part of the GSP Scheduler. 
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5.3 Main Contribution Of The Present Study 
 
 
The main contribution of the present study is the revelation of the potential and 

possibility of developing an algorithm that is both scalable in its applications, 

robust in its performance on a wide range of GSP instances and relatively easy to 

implement.  In comparison with computational results of other known approaches 

for solving GSP problems, the proposed algorithm is able to produce solutions of 

comparable quality but with shorter processing times.  Notwithstanding that, the 

proposed algorithm is easier to implement as it requires less elaborate 

neighborhood definitions and less complex memory structures as opposed to the 

Liu et al.’s algorithm (2005). 

 

This study also demonstrates how known results about the search space of JSP 

can be utilized for the implementation of GSP scheduling algorithm. Moreover, it 

highlights the importance of devising the search strategy of the algorithm to suit 

the underlying characteristics of the search space so that maximum effectiveness 

can be achieved.  Apart from implementing an array of techniques from existing 

meta-heuristics, new features, such as the probabilistic rule for selecting the 

blocks for reshuffling, have also been developed.   
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5.4 Future Work 
 
 
Although research efforts should continue to be directed towards the improvement 

of the tactical aspects of GSP scheduling algorithms, such as the development of 

more efficient lower bound estimates of GSP as well as the development of more 

powerful neighborhood structures, two potential areas remains to be explored, 

namely: (1) the hybridization of GA technique with the GSP Scheduler and (2) the 

re-deployment of the fitness functions within the GSP Scheduler.  Since GAs are 

generally known to be good intensification methods, the incorporation of GA 

technique into the intensification phase of the GSP Scheduler may improve the 

algorithm performance in terms of solution quality.  As for the re-deployment of 

the fitness function, it may be worthwhile to consider the use of fitness functions in 

conjunction with the hybridization of GA technique with the GSP Scheduler as 

fitness functions may be more suitable for population-based meta-heuristics, such 

as GA. 

 

From a broader perspective, two key research directions may become more 

dominant in future.  Firstly, more search space analysis should be performed on 

shop scheduling problems, particularly GSP, to unveil further properties of the 

GSP landscape so as to improve scheduling algorithm design.  Particularly, 

further research studies may wish to consider investigating the relationship 

between the properties of GSP landscape, such as the distribution of local optima, 

and the parameters of GSP instances, such as the group length.  Notwithstanding 
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that, the development of methodologies for scheduling dynamic and stochastic 

GSP remains an area of immense potential as these methodologies will provide 

practitioners with more relevant tools for industrial applications. 
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Appendix 

 
 

Proof of Theorem 2.1. 

 

Let *p  be a feasible solution to a GSP instance.  If there is a solution *'p  with 

( ) ( )*max*'max pp CC < , then there is a machine block or group block 

ii
k

i oo
i 1

*'*'   . . . ffff=χ , where ik  denotes the number of operations in iχ , in the 

critical path cη  such that io χ∈∃ , ioo 1≠  with ooi *'
1 ff  or io χ∈∃ , i

ki
oo ≠  with 

i
ki

oo *'ff . 

 

Proof: 

 

Let cη  be a critical path in *p  such that ii
m

i
M oo

i 1
*'*'   . . . ffff=χ  denote the i -th 

machine block on cη  while jj
g

j
G oo

j 1
*'*'   . . . ffff=χ  denote the j -th group block on 

cη .  Moreover, let Mk  and Gk  represent the total number of machine blocks and group 

blocks respectively. 
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Assume that if there is a feasible solution *'p  with ( ) ( )*max*max ' pp CC <  and no 

operation of any machine block or group block of cη  is in *'p  processed before the first 

operation of the corresponding block or after the last operation of the corresponding 

block, then the relation *'p  must contain: 

 

{ }Mki  , . . . ,1∈∀  

i
l

i oo *'1p  { }iml  , . . . ,1∈∀  and i
m

i
l i

oo *'p  { }iml  , . . . ,1∈∀  

{ }Gkj  , . . . ,1∈∀  

j
l

j oo *'1 p  { }igl  , . . . ,1∈∀  and 
j
g

j
l i

oo *'p  { }igl  , . . . ,1∈∀  

 

Thus, *'p  contains an active chain 
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it leads to  
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which is a contradiction to the assumption. 
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