
ASSOCIATION PATTERN MINING IN SPATIO-TEMPORAL

DATABASES

WANG JUNMEI

(M.Eng. XI’AN JIAOTONG UNIVERSITY, CHINA)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I wish to express my deep gratitude to my supervisors Dr. Wynne Hsu and Dr. Lee

Mong Li. I thank them for their continuous encouragement, confidence and support,

for sharing with me their knowledge and experience, and for their insightful comments

and advice.

I wish to thank Dr. Tay Seng Chuan for his support and providing the dataset for

our experiments. My gratitude and appreciation also go to Dr. Tan Chew Lim and Dr.

Huang Zhiyong for serving as examiners of my thesis. I also wish to thank Ms Alexia

Leong for proofreading of my thesis.

I want to thank my parents and my husband, Wang Jianjun for their continuous

moral support and encouragement. I am also very grateful to my brothers and sisters

for their continuous encouragement and concern. I hope I will make them proud of my

achievements as I am proud of them. Their love accompanies me wherever I go.

Last but not least, I would also like to thank many people in our faculty for always

being helpful over the years. I thank my friends at the National University of Singapore

for their help.

i

Contents

Acknowledgements i

Contents ii

Abstract vi

List of Tables viii

List of Figures ix

List of Publications xiv

1 Introduction 1

1.1 Motivation and Contribution . 2

1.2 Organization of the Thesis . 8

2 Related Work 9

2.1 Mining Association Patterns in Spatial Databases 10

2.1.1 Mining of Spatial Association Rules 11

ii

CONTENTS iii

2.1.2 Mining of Spatial Collocation Patterns 13

2.2 Mining Sequence Patterns . 14

2.3 Mining Spatio-temporal Databases . 17

2.3.1 Mining Evolution Patterns . 18

2.3.2 Mining Frequent Movements of Objects 19

3 Mining Topological Patterns 21

3.1 Problem Statement . 23

3.1.1 Topological Patterns . 24

3.1.2 Geographical Features . 27

3.2 Pattern Growth Approach . 29

3.3 Algorithm TopologyMiner . 31

3.3.1 Summary structure . 31

3.3.2 Mining Topological Patterns 35

3.3.3 Mining Geographical Features 41

3.4 TopologyMiner Algorithm . 42

3.5 Experimental Study . 46

3.5.1 Synthetic Data Generation . 46

3.5.2 Effect of Prevalence Threshold 50

3.5.3 Effect of Database Size . 50

3.5.4 Effect of Distance Thresholds 52

3.5.5 Effect of Number of Features 52

3.5.6 Comparative Study on Finding Interesting Geographical Features 55

CONTENTS iv

3.5.7 Comparative Study on Finding Clique Patterns 57

3.6 Summary . 60

4 Mining Spatial Sequence Patterns 61

4.1 Framework of Spatio-temporal Databases 62

4.1.1 Interesting Patterns in Spatio-temporal Databases 65

4.2 FlowMiner: Finding Flow Patterns in Spatio-temporal Databases 66

4.2.1 Problem Statement . 66

4.2.2 Candidates Generation . 68

4.2.3 Support Counting . 78

4.2.4 Pruning Techniques . 80

4.2.5 FlowMiner Algorithm . 82

4.2.6 Performance Study . 85

4.3 GenSTMiner: Mining Generalized Spatio-temporal Patterns 98

4.3.1 Problem Statement . 99

4.3.2 Projection-based Sequential Pattern Mining 102

4.3.3 GenSTMiner Algorithm . 103

4.3.4 Performance Evaluation . 113

4.4 Summary . 120

5 Mining Arbitrary Spatio-temporal Patterns 122

5.1 Preliminary Concepts . 126

5.2 Partition-based Graph Mining . 128

CONTENTS v

5.2.1 Dividing Graph Database into Units 129

5.2.2 Mining Frequent Subgraphs in Units 135

5.2.3 Combining Frequent Subgraphs 137

5.2.4 Framework of PartMiner . 143

5.2.5 Handle Updates Using PartMiner 146

5.3 Experimental Study . 151

5.3.1 Performance Study on Static Datasets 152

5.3.2 Performance Study on Dynamic Datasets 159

5.4 Experiments on Real-life Dataset . 164

5.5 Summary . 165

6 Conclusions and Future Work 167

6.1 Future Research Directions . 169

Bibliography 180

Abstract

With the explosive growth of spatio-temporal applications and spatio-temporal databases,

there is increasing need for spatio-temporal data mining. Spatio-temporal data mining

has the ability to uncover insightful knowledge in spatio-temporal data that is of in-

creasing relevance in a variety of applications such as homeland security, surveillance,

epidemiological and environmental protection. With the knowledge of spatio-temporal

data, decision makers can understand the underlying process that controls changes to

perform accurate prediction. To date, a limited number of works have been proposed

for mining patterns in spatio-temporal databases. Moreover, most of them are simply

adaptations of existing techniques for either spatial or temporal data mining. Yet, in

spatio-temporal databases, each object is related to other objects in complex interac-

tions, which cannot be discovered by looking at spatial information or temporal infor-

mation independently. Methods for the extraction of complex relationships in spatio-

temporal data are clearly required.

This thesis studies the techniques for discovering association patterns in spatio-

temporal databases by combining spatial and temporal information together. Specifi-

cally, we first investigate the problem of mining topological patterns by imposing tem-

vi

ABSTRACT vii

poral constraints into spatial collocation pattern mining. We design and develop an

efficient algorithm to find topological patterns. Next, we study the problem of min-

ing spatial sequence patterns by incorporating spatial information into sequence min-

ing. We introduce two new classes of spatial sequence patterns, called flow patterns

and generalized spatio-temporal patterns, and develop two algorithms to find them. A

comprehensive performance study shows that the proposed algorithms are efficient and

scalable in finding spatial sequence patterns. Finally, we study the problem of min-

ing arbitrary spatio-temporal patterns by modeling spatio-temporal data as graphs. We

introduce a partition-based approach to graph mining. Our extensive experimental re-

sults indicate that the proposed algorithm is effective and scalable in finding frequent

subgraphs in the databases, and outperforms existing algorithms in the presence of up-

dates.

List of Tables

3.1 Data generation parameters . 48

3.2 Observed common habits . 56

3.3 Interesting patterns found . 57

4.1 Parameters . 85

4.2 Real-life dataset characteristics . 86

4.3 Comparison of candidates generated 97

5.1 Meaning of symbols . 146

5.2 Parameters of synthetic data generator 151

viii

List of Figures

1.1 Example of a spatio-temporal database 3

1.2 Graph representation of spatio-temporal patterns 7

2.1 Summary of techniques for mining spatial association patterns 11

2.2 Summary of techniques for mining sequence patterns 15

2.3 Summary of the techniques for mining patterns in spatio-temporal databases 18

3.1 Example of two topological patterns 25

3.2 Relationship of distance to geographical feature 28

3.3 Projection sequential pattern mining 30

3.4 Example of a spatio-temporal database 33

3.5 Example of a summary-structure . 34

3.6 The projected database of f1 . 37

3.7 The projected databases of 〈f1, f2〉 . 38

3.8 Outline of the TopologyMiner algorithm 43

3.9 Procedure MiningPDB . 44

3.10 Runtime vs. prevalence threshold . 49

ix

LIST OF FIGURES x

3.11 Runtime vs. number of points N . 51

3.12 Runtime vs. distance thresholds . 53

3.13 Runtime vs. number of features . 54

3.14 Runtime vs. the distance relation (clique patterns) 58

3.15 Runtime vs. number of points (clique patterns) 59

4.1 Example of a spatio-temporal database 63

4.2 Example of flow patterns . 67

4.3 Candidates validation with length-2 sequences and neighborhood con-

straints . 69

4.4 Summary tree for the dataset in Figure 4.1 71

4.5 Temporal relationships of length-2 sequences 74

4.6 Example of insert positions . 75

4.7 Procedure of candidate generation . 77

4.8 Hash tree for varying flow patterns length 79

4.9 Framework of the FlowMiner algorithm 83

4.10 Optimized algorithm . 84

4.11 Varying parameter C (synthetic dataset) 87

4.12 Varying parameter T (synthetic dataset) 87

4.13 Varying parameter R (synthetic dataset) 88

4.14 Varying parameter D (synthetic dataset) 88

4.15 Runtime vs. parameter minsup (real-life dataset) 90

4.16 Runtime vs. spatial neighbor relation R (real-life dataset) 91

LIST OF FIGURES xi

4.17 Scalability (real-life dataset) . 91

4.18 Flow patterns [Trend 1: from West to East in March and April] 93

4.19 Flow patterns [Trend 2: from South to Northwest in April and May] . . 94

4.20 Effect of optimizations . 95

4.21 Comparative study (sequence patterns) 96

4.22 Example spatio-temporal database (W = 15days, R = 1) 99

4.23 Projected database of event a . 105

4.24 Generalized projected database of event a 106

4.25 The GenSTMiner algorithm . 109

4.26 a-conditional projected database . 111

4.27 Example of pseudo-projection . 113

4.28 Runtime vs. parameter R . 115

4.29 Runtime vs. parameter t-minsup . 116

4.30 Runtime vs. parameter s-minsup . 117

4.31 Scalability . 117

4.32 Comparison of flow patterns and generalized spatio-temporal patterns . 119

5.1 Framework for mining arbitrary spatio-temporal patterns 123

5.2 Example of the DFS tree and DFS code 128

5.3 Overview of partition-based graph mining 129

5.4 Example of graph bi-partitioning . 130

5.5 Example of partitioning criteria . 131

5.6 Algorithm to partition a graph . 133

LIST OF FIGURES xii

5.7 Dividing a graph database into units 134

5.8 Partitioning the graph database into k units 135

5.9 Outline of ADIMINE algorithm . 136

5.10 Example of recovering the original database from the units 137

5.11 Example of the merge-join operation 140

5.12 Base case . 141

5.13 Induction step . 141

5.14 Outline of the PartMiner algorithm . 144

5.15 Outline of the MergeJoin procedure 145

5.16 Outline of the IncPartMiner algorithm 149

5.17 Outline of the IncMergeJoin procedure 150

5.18 Example of transformed graphs . 152

5.19 Effect of partitioning criteria . 154

5.20 Runtime vs. parameter minsup . 154

5.21 Runtime vs. parameter k . 155

5.22 Varying parameter T . 157

5.23 Varying parameter I . 157

5.24 Varying parameter D . 158

5.25 Effect of partitioning criteria . 160

5.26 Runtime vs. parameter minsup . 160

5.27 Runtime vs. parameter k . 162

5.28 Updating the node/edge labels . 163

LIST OF FIGURES xiii

5.29 Adding new edges between two vertices 163

5.30 Adding new vertex with an edge to existing vertices 164

5.31 Interesting patterns found in real-life dataset 165

List of Publications

1. Junmei Wang, Wynne Hsu, and Mong Li Lee. Discovering Geographical Fea-

tures for Location-Based Services, in 9th International Conference on Database

Systems for Advanced Applications (DASFAA), Korea, March 2004.

2. Junmei Wang, Wynne Hsu, Mong Li Lee, and Jason Wang. FlowMiner: Finding

Flow Patterns in Spatio-temporal Databases, in 16th IEEE International Confer-

ence on Tools with Artificial Intelligence (ICTAI), Florida, November, 2004

3. Junmei Wang , Wynne Hsu, and Mong Li Lee. Mining in Spatio-Temporal

Databases, Book Chapter in Spatial Databases: Technologies, Techniques and

Trends, Yannis Manalopoulos, Apostolos N. Papadopoulos, Michael Gr. Vassi-

lakopoulos (Eds.), ISBN: 159140388-X, Idea Group Publishing, 2005

4. Junmei Wang, Wynne Hsu, and Mong Li Lee. Mining Generalized Spatio-Temporal

Patterns, in 10th International Conference on Database Systems for Advanced

Applications (DASFAA), Beijing China, April 18-20, 2005.

5. Junmei Wang, Wynne Hsu, and Mong Li Lee. A framework for mining topo-

logical patterns in spatio-temporal databases, in 2005 ACM CIKM International

xiv

LIST OF PUBLICATIONS xv

Conference on Information and Knowledge Management, Bremen, Germany, Oc-

tober 31 - November 5, 2005. ACM 2005.

6. Junmei Wang, Wynne Hsu, and Mong Li Lee. A Partition-Based Approach to

Graph Mining, accepted in the 22nd International Conference on Data Engineer-

ing April 3-7, Atlanta, GA, 2006 .

Chapter 1

Introduction

Spatio-temporal databases have been an active area of research since the early 1990s.

This surge in interest has resulted in recent advances such as modeling, indexing,

and querying of moving objects and spatio-temporal data [GBE+00, SJLL00, TPS02,

TTPL04, CN04, SPTL04]. These advances suggest that database technologies will play

a central role in the development and deployment of spatio-temporal applications. Ac-

cordingly, advanced data mining capabilities should become increasingly important to

spatio-temporal databases. Spatio-temporal data mining has the ability to disclose in-

sightful knowledge embedded in spatio-temporal phenomena and enable decision mak-

ers to understand the underlying process that controls changes and patterns of changes.

Compared to the conventional data mining areas, e.g., spatial data mining and temporal

data mining, spatio-temporal data mining is more complicated and presents a number

of challenges due to the complexity of geographical domains, the mapping of data in

spatial and temporal frameworks, and spatial and temporal autocorrelation [MH01]. In

1

CHAPTER 1. INTRODUCTION 2

spatio-temporal databases, each object is related to other objects in complex interac-

tions which are captured in the form of past, present and future states in the modeled

environment. Data mining in spatio-temporal databases must consider the multi-states

of spatio-temporal data. It must integrate spatial information and temporal information

together to find meaningful spatio-temporal patterns.

1.1 Motivation and Contribution

In the last decade, we have witnessed increased attention on spatial data mining and

temporal data mining. Many algorithms have been proposed to find either spatial pat-

terns [HKS97, SH01, Mor01, ZMCS04] or time varying patterns [AS96, PHMAP01,

WH04, Zak98]. Both spatial patterns and time varying patterns can reveal interesting

information from data, but they either focus on the spatial dimension or on the temporal

dimension. Very few of them handle both.

As spatio-temporal data becomes more prevalent, researchers [SNMM95, MSM95,

TSK01, STK+01, TG01, PC03, MCK+04] have re-focused their attention to the dis-

covery of interesting patterns in spatio-temporal databases. Initially, most of the work

in spatio-temporal data mining is simply adaptations of techniques from the spatial or

temporal data mining field for use on spatio-temporal data. However, spatio-temporal

data contains complex relationships that cannot be discovered simply by looking at the

spatial dimension or the temporal dimension independently. We illustrate this with a

simple example.

CHAPTER 1. INTRODUCTION 3

R
1

R
2

R
3 R

4

A

B

(a) Space-view

ID Time Location Event

101 July 26, 1965 R2 forest fire

102 July 28, 1965 R1 haze

103 July 30, 1965 R3 atmospheric pressure ↓

104 August 2, 1965 R4 rainfall

· · · · · · · · · · · ·

19998 February 26, 2005 A earthquake

19999 February 26, 2005 A tsunami

20000 March 28, 2005 B earthquake
(b) Database

Figure 1.1: Example of a spatio-temporal database

CHAPTER 1. INTRODUCTION 4

Assume that we have a spatio-temporal database of the weather system in Southeast

Asia. The information stored in the database includes events, such as atmospheric

pressure, forest fire, haze, rainfall, earthquake, tsunami, etc., locations of the

events, and time of the events. With the spatio-temporal databases, we want to study the

interaction relationships of these events in different areas in Southeast Asia. Figure 1.1

shows an example of the spatio-temporal database.

Using the spatial data mining techniques, we discover the following spatial associ-

ation patterns:

S1: If an earthquake occurs in the place close to sea, there is high probability of the

occurrence of tsunami.

S2: There is a higher confidence of earthquakes in a region if there is high atmospheric

pressure in the nearby regions.

S3: There is high probability of haze in region R1 if there is forest fire occurring in

the nearby region R2.

S4: If there is a drop in atmospheric pressure in region R3, rainfall will always

occur in the nearby region R4.

S5: There is high probability of a drop in atmospheric pressure in region R3 if there

is haze in the nearby region R2.

However, these spatial rules do not tell us us any information about the temporal rela-

tionships of the events.

CHAPTER 1. INTRODUCTION 5

To discover the temporal relationships among these events, we have to use temporal

data mining techniques. Examples of temporal rules we have found are listed below:

T1: Earthquakes always happen during or soon after periods of high atmospheric

pressure.

T2: If there is a forest fire, soon after there will be haze, then a drop in atmospheric

pressure, then rainfall.

Once again, these temporal rules seem to have some information missing. Ideally,

we should link the location and precedence relationships together in our spatio-temporal

rules. For example:

ST1: There is a higher incidence of earthquakes in a region during or soon after high

atmospheric pressure in the nearby region.

ST2: Forest fire always occurs at region R1 prior to the occurrence of haze in the

nearby region R2, then a drop in atmospheric pressure at region R3, and then

rainfall at region R4.

ST3: From March to April, if there is a forest fire in a region in South Asia, haze

and rainfall will subsequently occur in its Southeastern neighbors.

Clearly, patterns ST1-ST3 are much more informative than spatial patterns and tem-

poral patterns. Moreover, these spatio-temporal patterns not only link events in different

locations, but also establish the sequence of changes of events in these locations. Hence,

CHAPTER 1. INTRODUCTION 6

they are more useful and helpful for decision makers in understanding the evolving pro-

cess and making accurate predictions.

We investigate the discovery of interesting spatio-temporal patterns from two as-

pects:

• First, we impose temporal constraints on the mining of spatial collocation patterns

to discover topological patterns such as: “There is higher incidence of earth-

quakes in a region during or soon after periods of high atmospheric pressure in

the nearby regions.” Topological patterns aim to discover the intra-relationships

of events in a time period. We design an efficient algorithm to find topological

patterns in a depth-first manner.

• Second, we search for spatial sequence patterns, such as: “Forest fire always

occurs at region R1 prior to the occurrence of haze in the nearby region R2.”

and “A drop in atmospheric pressure at a region always precedes rainfall in the

nearby regions.” by incorporating spatial information into the process for mining

sequence patterns. Spatial sequence patterns aim to find the inter-relationships

of events in different time windows. In the thesis, we introduce two new classes

of spatial sequence patterns, called flow patterns and generalized spatio-temporal

patterns. These two classes of spatial sequence patterns are useful to the under-

standing of many real-life applications. Algorithms designed to discover these

two classes of spatial sequence patterns have shown to be efficient and scalable.

Some complex relationships among spatio-temporal data cannot be captured with

CHAPTER 1. INTRODUCTION 7

these two simple approaches. To further discover complex relationships in spatio-

temporal data, we model data as graphs. Each vertex in a graph represents a variable

labeled by an attribute or event, and each edge represents the spatial relationship, the

temporal relationship, or both. With this, we transform the problem of mining arbitrary

spatio-temporal patterns into the problem of finding frequent subgraphs. Figure 1.2

shows the possible graph structures representing the spatio-temporal patterns ST1, ST2,

and ST3.

ST1

ST2

ST3

forest fire

haze

drop of atmospheric pressure

high atmospheric pressure

tsunami

earthquake

rainfall

after

space neighborhood

near in time

Figure 1.2: Graph representation of spatio-temporal patterns

Unfortunately, extending existing algorithms to find these spatio-temporal patterns

is not feasible due to the large search space of both the spatial and temporal dimensions.

To find these patterns, we instead design and develop a partition-based graph min-

ing algorithm. These algorithms work by discovering frequent subgraphs in the graph

database. The proposed algorithm is effective and scalable in finding frequent sub-

graphs, and outperforms existing algorithms in the presence of updates.

CHAPTER 1. INTRODUCTION 8

1.2 Organization of the Thesis

This thesis is organized as follows. Chapter 2 reviews the related work on mining in-

teresting association patterns in spatial, temporal and spatio-temporal databases. In

Chapter 3, we study the problem of finding topological patterns in spatio-temporal

databases and illustrate the algorithm in detail. Next, we introduce two new classes

of spatial sequence patterns and illustrate the algorithms designed for mining these two

classes of spatial sequence patterns in detail in Chapter 4. The work for mining arbi-

trary spatio-temporal association patterns is described in Chapter 5. We conclude the

thesis in Chapter 6.

Chapter 2

Related Work

Spatial data mining is the process of discovering relationships between spatial data and

nonspatial data by using spatial proximity relationships. Spatial data is self-autocorrelated

and exhibits a unique property known as Tobler’s first law of geography [Tob79]: “Ev-

erything is related to everything else but nearby things are more related than distant

things.” Mining patterns from spatial datasets is more difficult than extracting the cor-

responding patterns from traditional numeric and categorical data due to the complexity

of spatial data. Spatial data mining covers a wide spectrum, including spatial cluster-

ing [GRS98, NH94, SEKX98], spatial characterization and trend detection [EFKS98],

spatial classification [KHS98], etc. Among them, the problem of mining interesting

association patterns in spatial databases is most related to our work.

Similar to spatial data mining, temporal data mining has also received much at-

tention [RS02]. Two types of temporal data are dominant in the development of tem-

poral data mining. They are time-series data and sequence data. Time-series data

9

CHAPTER 2. RELATED WORK 10

is a sequence of real numbers that vary with time, e.g., stock prices, exchange rates,

biomedical measurements data, etc. Sequence data is a list of transactions, and a trans-

action time is associated with each transaction, e.g., web page traversal sequences.

Mining patterns from temporal databases is complex due to the existence of time.

Time implies an ordering, and this ordering affects the statistical properties of the

data and the semantics of the rules being extracted from them. Temporal data mining

also covers a wide spectrum, including time series similarity [Keo01], sequence min-

ing [AS96, Zak98, PHMAP01, AGYF02], temporal classification [AC01], clustering

[OSC00, WWYY02] etc., where the problem of mining sequence patterns is consid-

ered to be more related to our work.

In this chapter, we review the work for mining spatial association patterns in Sec-

tion 2.1 and the techniques for mining sequence patterns in Section 2.2. Finally, we

describe the early attempts on spatio-temporal data mining in Section 2.3.

2.1 Mining Association Patterns in Spatial Databases

In the context of spatial data mining, spatial association patterns reflect the relationships

of spatial/spatial data or spatial/nonspatial data. To date, two formats of association

rules in spatial databases have been introduced:

1. Spatial association rules are the natural extension of classic association rules in

spatial databases. They incorporate spatial predicates into either the antecedent

or the consequent. For example, a spatial association rule “80% of schools are

CHAPTER 2. RELATED WORK 11

YearSpatialassociation rules
Spatialcollocation patterns

KH95 SH01 ZMCS04Mor01Apriori-like/support
Apriori-like/prevalentApriori-like/support HashJoin/support

HashJoin/prevalentAlgorithm
Figure 2.1: Summary of techniques for mining spatial association patterns

close to parks”;

2. Spatial collocation patterns seek to find the set of spatial features with instances

that are located in the same neighborhood. For example, a collocation rule can be

described as “76% of the occurrences of smoke aerosols implies the occurrence

of rainfall in a nearby region”.

Here, we briefly review the techniques to extract these spatial association patterns in

spatial databases. Figure 2.1 summarizes the techniques for mining association patterns

in spatial databases.

2.1.1 Mining of Spatial Association Rules

The problem of mining spatial association rules based on spatial relationships (e.g.,

adjacency, proximity) of events or objects is first discussed in [KH95], where spa-

CHAPTER 2. RELATED WORK 12

tial data are converted to transactions according to a centric reference feature model.

Consider a spatial database D, which consists of n number of spatial sub-datasets

D = {R1, R2, . . . , Rn}, such that each Ri contains all objects that have a particular

nonspatial feature fi. Given a feature fi, we define a transactional database as fol-

lows. For each object oi in Ri, a spatial query is issued to derive a set of features

I = {fj : fj 6= fi∧ ∃oj ∈ Rj, dist(oi, oj) ≤ ε}. The collection of all feature sets I for

each object in Ri defines a transactional table Ti. Ti is then mined using some itemsets

mining method [AS94, HP00]. The frequent feature sets I in this table, according to a

minimum support value, can be used to define rules of the form:

o.label = fi ⇒ o close to some oj ∈ Rj,∀fj ∈ I

The support of a feature set I defines the confidence of the corresponding rule.

The major limitation of the spatial association rule is that it depends on the concept

of explicit transactions in databases. However, due to the continuity of the underlying

space, this may not be possible or appropriate in spatial databases. Moreover, many du-

plicate counts of association rules may result if we define transactions around locations

of instances of features.

Further, it is difficult to extend the algorithm for mining spatial association rules to

find association rules in spatio-temporal databases. In spatio-temporal databases, asso-

ciation rules should satisfy both spatial proximity relationships and temporal proximity

relationships. Since spatio-temporal databases are 3D, instead of 2D, the computational

cost of processing candidate patterns and computing the interestingness of these pat-

terns is much higher than that of spatial databases. As a result, existing techniques are

CHAPTER 2. RELATED WORK 13

difficult and not scalable for use to find association rules in spatio-temporal databases.

2.1.2 Mining of Spatial Collocation Patterns

Recently, research on spatial association pattern mining has shifted towards mining

collocation patterns that are the set of spatial features with instances located in the

same neighborhood.

[SH01] first defines the problem for mining spatial collocation patterns using neigh-

borhoods in place of transactions. The work defines a new spatial measure of con-

ditional probability as well as a monotonic measure of prevalence to allow iterative

pruning. Based on these concepts, an Apriori-like approach called Co-location Miner is

developed to find all the frequent collocation patterns. Co-location Miner initially per-

forms a spatial join to retrieve object pairs which are close to each other, and then it uses

the Apriori-based candidate generation algorithm to generate the candidates of length

(k + 1)-pattern from k-patterns and validate the candidates by joining the instances

of the k-patterns which share the first k − 1 feature instances. They further study the

problem of mining confident co-location rules without a support threshold in their con-

tinuous work [HXSP03]. Similarly, [Mor01] studies the same problem to find sets of

services located close to each other. This work also presents an Apriori-like algorithm.

Different from Co-location Miner, it uses a Voronoi diagram and a quaternary tree to

improve running time. However, the method can only be used to do approximation.

[ZMCS04] introduces a method to discover maximal collocation patterns by com-

bining the discovery of spatial neighborhoods with the mining process. Specifically, it

CHAPTER 2. RELATED WORK 14

extends a hash-based spatial join algorithm to operate on multiple feature sets in order

to identify such neighborhoods. The algorithm divides the map and partitions the fea-

ture sets using a regular grid. While identifying object neighborhoods in each partition,

at the same time, the algorithm attempts to discover prevalent and confident patterns by

counting their occurrences at production time. However, the approach has to enumerate

all combinations of the spatial features, and the performance decreases dramatically as

the number of spatial features increases.

From the above, we note that most of the methods [KH95, SH01, Mor01] pro-

posed in spatial databases follow the candidates-maintenance-and-test methodology.

Their performances suffer from maintaining many candidates and the need for multiple

database scans. Hence, it is difficult to extend them to the discovery of spatio-temporal

patterns due to the high computational cost of candidate patterns in higher dimension

space.

2.2 Mining Sequence Patterns

The problem of discovering sequence patterns is to discover and infer relationships

of contextual and temporal proximity in the data. Since it was first introduced in

[AS95], sequence mining has become an essential data mining task with broad ap-

plications, such as in market and customer analysis, etc. Efficient mining methods have

been studied extensively, including general sequence pattern mining [AS96, Zak98,

PHMAP01, AGYF02], constraint-based sequence pattern mining [GRS99, PHW02],

CHAPTER 2. RELATED WORK 15

YearCompletesequence mining
Closed sequencemining

AS96 PHMAP01 AGYF02Zak98BFS/Disk DFS/Mem
Algorithm

YWYH02
Constraintsequence mining

GRS99MTV95 PHW02 YHA03 WH04
Keeping historicalfrequent patterns

Frequentepisode Regularexpressions SystematicstudyDFS/Mem DFS/Mem Presenceof noise
Figure 2.2: Summary of techniques for mining sequence patterns

frequent episode mining [MTV95], long sequence pattern mining in noisy environment

[YWYH02], and closed sequence pattern mining [WH04]. Figure 2.2 shows the tech-

niques for mining sequence patterns.

First, we review the methods proposed for mining the complete set of frequent se-

quences. [AS96] introduces a breadth-first disk-based algorithm, which follows the

candidate-maintenance-and-test paradigm to find frequent sequence patterns. Subse-

quently, [Zak98], [PHMAP01] and [AGYF02] investigate depth-first memory-based

methods to mine sequence patterns. The depth-first approaches generally perform better

than the breadth-first approaches if the data resides in memory. Recently, [YWYH02]

has studied the problem for mining frequent sequences in the presence of noise with

the help of the compatibility matrix, which provides a probabilistic connection from the

observation to the underlying true value. However, the limitation of these methods is

CHAPTER 2. RELATED WORK 16

that their performances degrade dramatically when the length of the sequences is long

and the minimum support threshold is low. This is not surprising since a long sequence

contains a combinatorial number of frequent subsequences. Such mining generates an

explosive number of subsequences for long sequences.

Currently, an interesting solution, called mining closed sequence patterns, is pro-

posed to overcome this difficulty. The problem of mining closed sequences is to find

the set of sequences such that there is no sequence which has a super-sequence with the

same support. [YHA03] is the first to present an algorithm CloSpan to mine closed se-

quence patterns. It introduces the concept of equivalence of projected databases, which

unifies two pruning optimizations: Backward Sub-pattern and Backward Super-pattern

in a single step. However, CloSpan still follows the candidate-maintenance-and-test

paradigm and has to maintain the set of already mined closed sequence candidates.

To overcome this problem, [WH04] introduces the BI-directional extension checking

scheme, a new closure checking and ScanSkip optimization technique. Based on the

technique, the authors present a solution BIDE, which can find the set of closed se-

quences without keeping track of any single historical frequent closed sequences for a

new pattern’s closure checking.

At the same time, many researchers [MTV95, GRS99, PHW02] have shifted their

attention towards mining sequences by incorporating constraints to reduce search space.

[MTV95] studies the problem of finding a frequent episode in a sequence of events by

posing constraints on the event in the form of acyclic graphs. [GRS99] proposes regular

expressions as constraints for sequence pattern mining and develops a family of SPIRIT

CHAPTER 2. RELATED WORK 17

algorithms while members in the family achieve various degrees of constraint enforce-

ment. Following that, [PHW02] conducts a systematic study on constraint sequence

pattern mining and classifies various kinds of constraints into two categories according

to their application semantics and roles in sequence pattern mining.

2.3 Mining Spatio-temporal Databases

As a significant subset of data mining, spatio-temporal data mining is an emerging re-

search area dedicated to the development and application of novel computational tech-

niques for the analysis of very large spatio-temporal databases. Knowledge of spatio-

temporal data is of increasing relevance in a variety of applications, such as home-

land security, global environment change, etc. However, mining in spatio-temporal

databases is still in its infancy. In this section, we introduce the early attempts at spatio-

temporal data mining and review the techniques presented to find various interesting

spatio-temporal patterns. Figure 2.3 shows the techniques for mining patterns in spatio-

temporal databases.

In short, the previous work on spatio-temporal data mining has mainly focused on

two types of patterns:

• Evolution patterns of natural phenomena, such as forest coverage, and

• Frequent movements of objects over time.

CHAPTER 2. RELATED WORK 18

YearEvolutionpatterns
Movements ofobjects

SNMM95 TG01TSKSTK01CONQUEST
Mining sequence frommovement log dataApply existingmethods

Mine periodic frommovement log sequenceAlgorithm
Locationsequence PC03 MCK04

Figure 2.3: Summary of the techniques for mining patterns in spatio-temporal databases

2.3.1 Mining Evolution Patterns

In finding the evolution patterns of natural phenomena, a system called CONQUEST

[SNMM95, MSM95] has first been developed to allow some means of accessing and

interpreting spatio-temporal data. It provides an environment that enables geophysical

scientists to easily formulate queries of spatio-temporal patterns on massive data, such

as cyclones, hurricanes and fronts.

Following that, many researchers [TSK01, STK+01] have attempted to mine inter-

esting spatio-temporal patterns in earth science data. They apply existing data mining

techniques to find clusters, predictive models and trends, and they state that existing

data mining algorithms cannot discover all the interesting patterns in spatio-temporal

data [TSK01].

Recently, [TG01] has presented an algorithm to discover frequent sequences in a

CHAPTER 2. RELATED WORK 19

depth-first manner over all locations in spatio-temporal databases. This is essentially

a sequence mining algorithm whereby each location is treated as a transaction. The

algorithm is able to find the common temporal relationships of events in some locations,

but not the relationships of events among these locations.

2.3.2 Mining Frequent Movements of Objects

With the development of the global positioning system, moving object databases have

received considerable attention. Many research efforts have been focused on finding

efficient indexing and querying methods in such databases. However, data mining in

moving object databases is still in its infancy.

[PC03] has first proposed a method to optimize mobile systems by finding the fre-

quent motion patterns of objects. It first converts the movement log data into multiple

subsequences, each of which represents a maximal moving sequence. With this, finding

frequent moving patterns means finding frequently occurring consecutive subsequences

among maximal moving sequences. With the mining results of user moving patterns,

the authors further develop data allocation schemes that can utilize the knowledge of

user moving patterns for proper allocation of both personal and shared data.

[MCK+04] studies the problem of optimizing spatio-temporal queries through the

discovery of spatio-temporal periodic patterns, which are the sequence of object loca-

tions that reappear in the movement history periodically. This work uses the concept of

dense cluster to identify a valid region instead of a district in the map from the object

trajectory. To find spatio-temporal periodic patterns, the study develops a two-phase

CHAPTER 2. RELATED WORK 20

top-down method. First, it uses a hash-based method to retrieve all frequent 1-patterns

(i.e., a set of valid clusters), and replaces the trajectories in the database using cluster-

ids. Next, it uses the same methodology of maxsubpattern-tree algorithm to discover all

the frequent patterns. After getting all the frequent spatio-temporal periodic patterns, it

introduces an index structure, called Period Index, to manage the trajectories of objects

by exploiting the discovered periodic patterns.

From the above, we note there is a limited number of works on spatio-temporal data

mining. Most of them have been regarded as the generalization of pattern mining in tem-

poral databases. In other words, they map data (i.e., locations of objects or the changes

of natural phenomena over time) to sequences of values. Then, the algorithms that dis-

cover frequent sequences or find frequent subsequences in a long sequence are applied.

Although these techniques can discover some interesting patterns in spatio-temporal

databases, they cannot be used to discover patterns that disclose the interactions of the

events or objects in different locations.

Chapter 3

Mining Topological Patterns in

Spatio-temporal Databases

Spatial data mining is an interesting area and has received a lot of attention [NH94,

SEKX98, GRS98, KHS98]. Recently, some researchers have shifted their attention

towards mining topological patterns, also called collocation patterns. Mining topologi-

cal patterns is an interesting research problem with broad applications, such as mining

topological patterns in an E-commerce company, a location-based service, an ecology

dataset and so forth. However, most existing work typically ignores the temporal aspect

and focuses on mining spatial patterns, such as: “There is high probability of the oc-

currence of earthquakes in a region if there is high atmospheric pressure in the nearby

region.” With the prevalence of spatio-temporal databases, mining of topological pat-

terns with temporal information, such as: “There is a higher incidence of earthquakes

in a region during or soon after a high atmospheric pressure occurs in the nearby re-

21

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 22

gion.” will be much more useful and helpful for data analysts and decision makers in

understanding the underlying process that controls the changes.

Existing techniques for finding topological patterns [KH95, Mor01, SH01, HXSP03,

ZMCS04] do not scale in spatio-temporal databases since they follow the candidate-

generation-and-test [AS94] methodology; these methods have to generate and store

a potentially large number of candidate patterns. Further, the computational cost of

processing candidate patterns and testing the interestingness of the patterns is high.

In spatio-temporal databases, topological patterns should satisfy not only spatial prox-

imity relationships but also temporal proximity relationships. Since spatio-temporal

databases are three-dimensional, unlike spatial databases which are two-dimensional,

the computational cost of processing candidate patterns and computing the interesting-

ness of these patterns are higher than that in spatial databases. We therefore need to

explore new methods to solve the problem.

In addition, we note that the spatial features in topological patterns are always

prompted by the surrounding geographical objects. If we can identify a set of spatial

features that always happen together when certain geographical features are present,

then decision makers or area developers can have the means to issue a warning ahead

of a disaster or consider the available alternatives..

In this chapter, we study the problem of mining topological patterns by imposing

temporal constraints into the process of mining collocation patterns. We first introduce a

summary-structure that summarizes the database with the instances’ count information

of a feature in a region within a time window. Next, based on the summary structure, we

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 23

design an algorithm, called TopologyMiner, to find interesting topological patterns in a

depth-first manner, and following the pattern growth methodology. Finally, we extend

TopologyMiner to find the geographical features of topological patterns. Our exten-

sive experimental study indicates that our proposed algorithm can discover topological

patterns efficiently and scalably.

The rest of this chapter is organized as follows. We define preliminary concepts in

Section 3.1. Section 3.2 explains the pattern growth method. We illustrate the main

steps of the algorithm TopologyMiner in Section 3.3, and give its framework in Section

3.4. The experimental results are reported in Section 3.5. Finally, we summarize the

chapter in Section 3.6.

3.1 Problem Statement

Given a spatio-temporal database D, let F = {f1, ..., fn} be a set of spatial features

and a lexicographic order ¹f be among the spatial features. Let I = {i1, i2, . . . , im}

be a set of m instances in the spatio-temporal database D, where each instance is a

vector 〈 instance-id, spatial feature, position, time-stamp 〉. The spatial feature f , the

position (x, y) and the time-stamp ts of an instance i are denoted as i.f , i.x, i.y and i.ts

respectively.

Let R be a neighborhood relation over the positions of the instances in the spatio-

temporal database D. Here, we define R as a distance threshold. The distance between

two instances i1 and i2 is computed as sdist =
√

(i1.x− i2.x)2 + (i1.y − i2.y)2. We

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 24

say i1 and i2 are located close to each other if and only if sdist ≤ R. Similarly, let

W be a closeness relation over the time-stamps of instances in D. We define W as

a time window threshold. The distance between the time-stamps of two instances is

computed as tdist = |i1.ts − i2.ts|. Two instances are said to be near in time if and

only if tdist ≤ W .

To capture the concept of “nearby”, a neighbor set N is defined as a set of instances

such that not only all pairwise positions of the instances in N are neighbors, but they

are also near in time.

3.1.1 Topological Patterns

A topological pattern S of length k or k-pattern for short, is a set of spatial features,

denoted as S = {f1, f2, . . . , fk}. All the features in S are ordered according to ¹f . A

valid instance of S is a set of instances {i1, i2, . . . , ik} such that the spatial feature of

the instance ij is fj , i.e., ij.f = fj . Note that all the features’ instances in S must be

near in time. A topological pattern P is called a sub-pattern of Q if ∀fj ∈ P , fj ∈ Q;

and Q is a super-pattern of P , denoted as P ¹ Q.

[KH95, ZMCS04] define the concept of star-like and clique patterns. We extend

these concepts by imposing temporal constraints in them. Based on the star-like patterns

and clique patterns, we further introduce another interesting topological patterns, called

star-clique patterns.

A topological pattern S is a star-like pattern if in a valid instance of S, the instance

ij of the feature fj is located close to other instances while the instances of other features

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 25

(a) Star-likea(x1, y1, t1)b(x2, y1, t1)c(x1, y2, t2)g(x1, y1, t2) (b) Cliqued(x2, y2, t2)g(x1, y1, t2)c(x1, y2, t2)b(x2, y1, t1) (c) Star-cliqueb(x2, y1, t1) g(x1, y1, t2)a(x1, y1, t1)c(x1, y2, t2) d(x2, y2, t2)
Figure 3.1: Example of two topological patterns

are not required to be located close to each other. We represent a star-like pattern with

〈fj : {f1, ..., fk}〉. Figure 3.1(a) shows an example of a star-like pattern 〈g : {a, b, c}〉.

A topological pattern S is said to be a clique pattern if and only if in a valid instance

of S, all pairs of the features’ instances are located close to each other (i.e., they are

located close both in positions and time). In other words, the closeness relationships of

the instances form a clique graph. A clique pattern is denoted as 〈f1, f2, . . . , fk〉. For

example, Figure 3.1(b) shows a clique pattern where the instances of the features in the

set 〈b(x2, y1, t1), c(x1, y2, t2), d(x2, y2, t2), g(x1, y1, t2)〉 are close to each other.

A topological pattern S is a star-clique pattern if S contains a sub-clique pattern

S ′ (i.e. S ′ ⊂ S), and there is a feature fj ∈ S ′ such that the instance of fj is close to

the instances of the features in S\S ′ and the instances of the features in S\S ′ are not

required to be close to each other. A star-clique pattern is denoted as 〈S ′|fi : S\S ′〉.

In essence, star-clique patterns can be generated by combining the star-like patterns

with the clique patterns on a common feature. Figure 3.1(c) shows a star-clique pattern

〈〈b, c, d, g〉|g : {a}〉 .

Two measurements, support [KH95] and participation ratio [SH01], have been in-

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 26

troduced to measure the implication strength of a spatial feature in a topological pattern.

The support of a pattern S is defined as the number of instances of S found in the

database. The support of a pattern S also defines the confidence of the corresponding

rule in the form of fi ⇒ {f1, . . . , fs}. For example, Figure 3.1(a) defines a rule g ⇒

{a, b, c}, which means that if there is an instance of g, there is high confidence that it is

close to the instances of features a, b and c while the instances of features a, b and c do

not need to be close to each other.

Different from support, participation ratio is used to capture the probability that

whenever an instance feature fi ∈ S appears on the map, it will participate in an in-

stance of S. The participation ratio of a feature fi in a pattern S, denoted as pr(fi, S),

is defined by the following equation:

pr(fi, S) =
] instances of fi in any instance of S

] instances of fi

(3.1)

In order to characterize the strength of a topological pattern in implying the co-

occurrence of features, the prevalence [ZMCS04] of a pattern S , denoted as prevalence(S),

is further defined as the minimum probability among all the features of S, that is prevalence(S)

= min{pr(fi, S), fi ∈ S}. The prevalence is monotonic; if S ¹ S ′, then prevalence(S) ≥

prevalence(S ′). Additionally, with the prevalence of S, we can define the topology rule

with the form A ⇒ B, where A and B are subsets of spatial features. For example, a

rule g ⇒ {b, c, d, g} can be obtained in Figure 3.1(b), which means that if there is an

instance of the feature g, there is a high probability that it participates in the instances

of the clique pattern 〈b, c, d, g〉. In this chapter, we use the prevalence threshold as our

interestingness measure.

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 27

3.1.2 Geographical Features

With the concept of topological patterns, we now define the geographical features of

topological patterns.

Geographical features of topological patterns are entities in the physical world, such

as park, school, zoo, etc. These geographical features can be extracted from maps

in geographical information systems and are kept in geographical feature databases

with the format 〈geographical feature identifer, geographical feature type, minimum

bounding rectangles〉.

A geographical feature, denoted as g, is indicated by a polygon or a minimum

bounding rectangle (MBR) that describes its boundary. A geographical feature is said

to be interesting with respect to a topological pattern S if it is always close to the spa-

tial features in an instance of S. We define the distance between an instance ijk of a

spatial feature in S and the MBR of g as the minimum Euclidean distance from ijk to g,

denoted as mindist(ijk, g). A geographical feature g is frequent if the number of valid

instances exceeds a user specified minimum support value.

Let Rg be the distance threshold for measuring the closeness of a geographical fea-

ture and the spatial features in a topological pattern. Here, we assume that Rg À R.

This is to ensure that the instances’ centroid of a length-k topological pattern S can

be used to represent the positions of the spatial features’ instances in S such that the

interesting geographical features of S are also the interesting geographical features of

spatial features in S.

Figure 3.2 shows the distance relation between the centroid and the instances of

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 28

g g
o

),(jkiodist

),(jkg iodistR −

),(),(),(jkgjkjkg iodistRgidistiodistR +≤≤−

g

),(gidist jk

),(jkg iodistR +

jki

nki

ki1

...

...

R

Figure 3.2: Relationship of distance to geographical feature

spatial features in a length-k topological pattern. Let dist(o, ijk) be the distance from

the centroid o to the instance ijk, dist(o, ijk) = µR where µ ≤ 1. Let dist(o, g) be

the distance from the centroid o to the geographical feature g and dist(o, g) = Rg =

σR, σ À 1.

Based on the triangle inequality, we have (Rg − µR) ≤ dist(ijk, g) ≤ (Rg + µR).

If we regard dist(o, g) as dist(ijk, g), then the error ε obtained is:

ε =
|dist(o, g)− dist(ijk, g)|

dist(ijk, g)
≈ |dist(o, g)− dist(ijk, g)|

dist(o, g)

≤ dist(o, ijk)

dist(o, g)
=

µR

σR
=

µ

σ

≤ 1

σ
(3.2)

From the above equation, we observe that the error is only related to σ = Rg

R
. When

σ is big, the distance from the spatial features in an instance of a topological pattern to

the geographical feature approximates the distance from the centroid of the instance to

the geographical feature, that is dist(ijk, g) ≈ dist(o, g).

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 29

Note that finding the geographical features of topological patterns involves mining

patterns across two types of databases, that is, spatio-temporal databases (e.g., mobile

service databases) and geographical feature databases.

With the above definition, we can now define the problem to find topological patterns

as follows: Given a spatio-temporal database D and a geographical feature database

Dg, the distance thresholds R and Rg, a time window threshold W , and the minimum

prevalence threshold minprev, we aim to find all frequent topological patterns, i.e.,

star-like, clique and star-clique patterns, and their geographical features.

3.2 Pattern Growth Approach

Before we illustrate the algorithm in detail, we first explain the framework of the pattern

growth method.

The pattern growth method has been shown to be one of the most effective methods

for frequent pattern mining and is superior to the candidate-maintenance-test approach,

especially on a dense database or with low minimum support threshold [HP00]. As

a divide-and-conquer method, the pattern growth method partitions the database into

subsets recursively, but does not generate candidate sets. It also makes use of the Apriori

property to prune search space and counts frequent patterns in order to decide whether

it can assemble longer patterns.

The sequential pattern mining algorithm PrefixSpan [PHMAP01] provides a general

framework of the pattern growth method. The basic idea is to use a set of locally

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 30

Seq ID. Sequence

s1 〈a, c, f〉 → 〈a, c, d, f, g〉 → 〈d, g〉
s2 〈a, f, g〉
s3 〈a, c, d, f〉 → 〈a, c, d, f, g〉 → 〈a, c, d, g〉

(a) Sample sequence database

Seq ID. Sequence

s1a 〈‡, c, f〉 → 〈a, c, d, f, g〉 → 〈d, g〉
s2a 〈‡, f, g〉
s3a 〈‡, c, d, f〉 → 〈a, c, d, f, g〉 → 〈a, c, d, g〉

(b) a-projected database

Figure 3.3: Projection sequential pattern mining

frequent items to grow patterns.

For example, Figure 3.3(a) shows a sample sequence database. The set of frequent

items F1 = {a, c, d, f, g} when minsup = 2. Let us find the sequential patterns with

prefix a. Figure 3.3(b) shows the a-projected database, where only the subsequence

prefixed with the first occurrence of a is considered. Note that 〈‡, c, f〉 in s1a means

that the last element in the prefix which is a, together with c and f form one element.

By scanning the a-projected database once, we get the locally frequent items of the

item a, that is LFa = {〈‡c〉, 〈‡f〉, a, c, d, f, g}. We can generate the corresponding 2-

sequences with prefix a, i.e., 〈a, c〉, 〈a, f〉, a → a, a → c, a → d, a → f and a → g.

Then, we can further partition the set of frequent patterns prefixed with a into |LFa|

= 7 subsets (i.e., the subset prefixed with 〈a, c〉, the subset prefixed with 〈a, f〉, etc.),

construct their corresponding projected databases, and mine them recursively.

Unfortunately, spatio-temporal databases, like spatial databases, are very different

from conventional databases (e.g., sequence databases). There is no explicit transaction

concept in a spatio-temporal database. It is difficult to extend existing algorithms such

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 31

as [HP00] to find topological patterns in spatio-temporal databases. We need to design

new algorithms that follow the pattern growth methodology to find topological patterns

in spatio-temporal databases.

3.3 Algorithm TopologyMiner

In this section, we present the algorithm TopologyMiner for finding topological pat-

terns. TopologyMiner finds frequent patterns in a depth-first manner. It divides search

space into a set of partitions. In each partition, it uses a set of locally frequent features

to grow patterns. It consists of two phases:

• In the first phase, it divides the space-time dimensions into a set of smaller disjoint

cubes. Then, it scans the database once to build a summary-structure that records

the instances’ count information of the features in a cube. It further constructs two

indices on the summary-structure to facilitate the mining of topological patterns.

• The second phase utilizes the count information stored in the summary-structure

to discover frequent topological patterns in a depth-first manner.

3.3.1 Summary structure

First, we introduce the summary-structure. Let D be the spatio-temporal database,

R be the distance threshold, and W be the time window threshold. We divide the

database D into a set of disjoint cubes {〈cx1,y1 , w1〉, . . . , 〈cx1,y1 , wq〉, . . ., 〈cxp,yp , w1〉,

. . ., 〈cxp,yp , wq〉}where {cx1,y1 , . . . , cxp,yp} are 2D cells with width R√
2
, and {w1, w2, ..., wq}

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 32

are 1D time periods with width W
2

.

For the instances in a cube 〈cxk,yk
, wt〉, we can easily determine their close neigh-

bors, which must be the instances in one of the cubes 〈cxi,yi
, ws〉 in the set Ncxk,yk

,wt =

{〈cxi,yi
, ws〉| |yk−yi| ≤ 2∧|t−s| ≤ 2∧|xk−xi| ≤ 2 and if |xk−xi| = 2, |yk−yi| 6= 2)}.

We call Ncxk,yk
,wt the neighbor-set of the cube 〈cxk,yk

, wt〉. Note that two instances are

near in position if and only if their cubes are neighbors.

Let L = {〈cx1,y1 , w1〉, . . . , 〈cxi,yi
, ws〉} be a list of cubes. The neighbor-set of L,

denoted as NL, is the join of the neighbor-set of each cube in L, i.e., NL = Ncx1,y1 ,w1 ∩

. . . ∩Ncxi,yi ,ws .

Figure 3.4 shows an example of the spatio-temporal database with R = 45 and W =

90 mins. The space is divided into 48 cells and the time is divided into 8 time periods.

The neighbor-set of the cell c3,3, i.e., Nc3,3 , is marked in grey. The neighbor-set of the

time period w4 consists of the time periods w2, w3, w4, w5 and w6. Hence, the neighbor-

set of the cube 〈c3,3, w4〉 is the join of the neighbor-set Nc3,3 with {w2, w3, w4, w5, w6}.

After dividing time and space into a set of cubes, we scan the database once,

and hash the instances of the features into the corresponding cubes. For each cube

〈cxi,yi
, ws〉, we keep the instances’ count of a feature fj in the main memory. Note

that only those cubes that contain at least one feature instance will be stored in the

summary-structure. Compared to the original database of N instances, the size of the

summary-structure is O(N
k
), assuming each cube contains k(k ≥ 1) instances.

To facilitate information retrieval operations in the summary-structure, we con-

struct two hash-based indices, called Cube-Feature Index (CFI) and Feature-Cube Index

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 33

tid fid position

1

2

3

f
1

f
1

f
2

f
2

f
2

f
2

f
3

f
3

f
4

f
4

4

5

6

7

8

9

10

(68,185)

(200,180)

(70,202)

(57, 59)

(130, 120)

(235, 200)

(240, 180)

(263, 15)

(31, 62)

(268, 28)

11
12

13

f
4 (275, 12)
f
2

f
2

(128, 125)

(135, 115)

time

15:32:01

15:45:01

9:05:31

9:25:31

11:19:07

19:25:31

19:05:45

11:55:14

11:29:54

12:29:54

13:03:33

10:21:43

14:05:26

(a) spatio-temporal db

x

y

time

0 1 2 3 4 5 6 7
0
1
2

3
4

5

9:00

10:30

12:00

13:30

15:00

16:30

17:00

18:30

20:00

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

f
1

f
2

f
1

f
4

f
2

f
2

f
3

f
3

f
4

f
2

f
2

f
2

31 63 95 127 159 191 223 265 297
12

44

76

108

140

172

204

<c
1,5
,w
5
>

<c
5,5
,w
1
>

f
4

<c
7,0
,w
2
>

<c
7,0
,w
3
>

<c
6,5
,w
1
>

<c
6,5
,w
2
>

<c
3,3
,w
3
>

<c
3,3
,w
4
>

<c
3,3
,w
1
>

<c
0,1
,w
8
>

(b) space-time view

Figure 3.4: Example of a spatio-temporal database

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 34

CFI

FCI

f
3

f
2

f
1

f
4

<c
7,0
,w
3
> <c

6,5
,w
2
><c

7,0
,w
2
> <c

0,1
,w
8
> <c

6,5
,w
1
> <c

3,3
,w
1
> <c

3,3
,w
3
> <c3,3,w4> <c1,5,w5><c0,1,w8> <c

5,5
,w
1
> <c

1,5
,w
5
>

f
4

f
1

f
3

f
2

f
3

f
2

f
2
f
4

f
2
f
1

f
2

f
2

<c
7,0
,w
2
> <c

7,0
,w
3
> <c

6,5
,w
1
> <c

6,5
,w
2
> <c

5,5
,w
1
> <c

3,3
,w
1
> <c

3,3
,w
3
> <c3,3,w4> <c1,5,w5> <c0,1,w8>

2 1 1 1 1 1 1 1 1 1 1 1

Figure 3.5: Example of a summary-structure

(FCI). Both indices are two-level structures. Specifically, CFI is built with the compos-

ite key (〈cxi,yi
, ws〉, f id), and its first level is used to index the cube with the identifier

〈cxi,yi
, ws〉, and its second level is utilized to index features with the identifier fid.

With CFI, we can obtain features that occur in a cube 〈cxi,yi
, ws〉, and retrieve their

correspondingly instances’ count in the cube in constant time.

FCI is built using the composite key (fid, 〈cxi,yi
, ws〉). The first level of FCI is

used to index features with the identifier fid, and the second level indexes cubes with

the identifier 〈cxi,yi
, ws〉 respectively. FCI helps to determine corresponding cubes in

which a feature fid occurs and obtain its instances’ count in constant time.

Figure 3.5 gives an example of the summary-structure with the two indices, CFI and

FCI, for the database in Figure 3.4.

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 35

With these two indices, we can approximate the number of instances of a topological

pattern. Recall we consider two instances are near in the position if and only if their

cubes are neighbors. This means that the instances of a feature fi in a cube 〈cx1,y1 , w1〉

and the instances of a feature fj in the neighboring cube 〈cx2,y2 , w2〉 form the valid

instances of a topological pattern 〈fi, fj〉. In other words, the instances’ count of a

feature in a topological pattern can be obtained from the summary-structure directly.

With this in mind, we now proceed to explain the process of finding frequent topological

patterns.

3.3.2 Mining Topological Patterns

Now, we discuss the steps to find topological patterns. We first define the projected

database of a length-k topological pattern S, and then explain how to construct the

projected database of S from the summary-structure. Finally, we illustrate the process

of mining frequent topological patterns in the projected database of S.

Concept of Projected Database

We define the projected database of a topological pattern as a collection of sets of cubes

in which instances of the features in a topological pattern occur, and a set of related

features.

Let S = {f1, ..., fk} be a length-k topological pattern. The projected database of S,

denoted as PS , is the collection of entries 〈L,Rp〉, where L is a list of cubes and Rp is a

pointer pointing to a list of features that are related to the pattern S. These features are

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 36

found either in L or the neighboring cubes of L. For brevity, we use PS.L and PS.Rp to

represent the cube-list and the feature-list respectively.

The cube-list PS.L, denoted as (〈cx1,y1 , w1〉, ..., 〈cxk,yk
, wk〉), is used to store the

cubes in which the instances of the features in S occur, and all the cubes in the cube-list

must be neighbors. In other words, the ith cube 〈cxi,yi
, wi〉 contains the instances of the

ith feature fi ∈ S, 1 ≤ i ≤ k. With the cube-list, we could obtain the instances’ count

of a feature participating in pattern S, and approximate the number of instances of S.

The feature-list PS.Rp stores the features that are related to the pattern S and the

cubes where the features’ instances occur. Each element in the feature-list has the

format (fr : 〈cxm,ym , wm〉), where fr ≥ fk, fk ∈ S, and the cube 〈cxm,ym , wm〉 that

contains the instances of the feature fr, is a neighboring cube of the cube-list PS.L. The

feature-list stores the potential features that can be used to combine with S to generate

longer patterns. Figure 3.6(a) shows an example of the projected database of f1.

Construction of Projected Database

The projected database of a topological pattern can be obtained from the summary-

structure directly. Consider the construction of the projected database of pattern fi.

First, we obtain the cube-lists of fi by scanning FCI. For example in Figure 3.6(a), we

get two cube-lists of f1 by scanning FCI in Figure 3.5, that is L1 = (〈c1,5, w5〉) and

L2 = (〈c5,5, w1).

For each cube-list L in Pfi
, we obtain its neighbor-set NL. Then, for each cube in

the neighbor-set NL, we get the set of related features (i.e., RF) from CFI. With the

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 37

Star-like pattern : S
1
 = <f

1
: {f

2
, f

3
}>

(a) f
1
- projected database

<c
1,5
, w

5
><c

5,5
, w

1
> (f

2
:<c

6,5
, w

1
>)

(f
3
:<c

6,5
, w

2
>)(f

2
:<c

1,5
, w

5
>)

(b) mining in f
1
-projected database

pr(f
2
, <f

1
,f
2
>) = 2/6 = 0.33

pr(f
1
, <f

1
,f
2
>) = 2/2 = 1; f

2
 is frequent w.r.t. f

1

pr(f
1
, <f

1
,f
3
>) = 1/2 = 0.5;pr(f

3
, <f

1
,f
3
>) = 1/2 = 0.5 f

3
 is frequent w.r.t. f

1

Figure 3.6: The projected database of f1

related features and the neighboring cubes, we generate new entries for the feature-list

RP in Pfi
. Figure 3.6(a) shows sample feature-lists in Pf1 . Initially, for the cube-list

L1 = (〈c1,5, w5〉), there is only one valid neighboring cube, i.e., neighbor-set NL1 =

{〈c1,5, w5〉}. From c1,5, we obtain the set of related features of f1 i.e., RF = {f2}.

Finally, we add the entry (f2 : 〈c1,5, w5〉) into the feature-list Rp1. Similarly, for the

cube-list L2, we obtain two entries for the feature-list Rp2, that is (f2 : 〈c6,5, w1〉) and

(f3 : 〈c6,5, w2〉).

The projected database of a length-k pattern Sk = {f1, f2, . . . , fk−1, fk} (k ≥

2) can be derived from the projected database of its prefix (k-1)-subpattern Sk−1 =

{f1, f2, . . . , fk−1}. Note that the feature fk is a related feature of the pattern Sk−1

and fk ≥ fk−1. We construct PSk
from PSk−1

as follows: For each entry 〈L,Rp〉

of PSk−1
where the feature-list PSk−1

.Rp contains an element of the feature fk, e.g.,

(fk : 〈cxm,ym , wm〉), we yield a new entry 〈L,Rp〉 for PSk
, where PSk

.L = PSk−1
.L ∪

{〈cxm,ym , wm〉} and the feature-list PSk
.Rp is a subset of the feature-list PSk−1

.Rp, that is

each element (fr, 〈cxs,ys , ws〉) in the feature-list PSk
.Rp, where fr ≥ fk and 〈cxs,ys , ws〉

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 38

(a) <f
1
,f

2
>-projected database

(<c
1,5

, w
5
>, <c

1,5
, w

5
>)

(<c
5,5

, w
1
>, <c

6,5
, w

1
>)

null

(f
3
:<c

6,5
, w

2
>)

(b) mining in <f
1
,f

2
>-projected database

pr(f
2
, <f

1
,f

2
,f

3
>) = 1/6 = 0.17 < 0.3

pr(f
3
, <f

1
,f

2
,f

3
>) = 1/2 = 0.5

pr(f
1
, <f

1
,f

2
,f

3
>) = 1/2 = 1 Stop

Star-clique pattern: G
2
 = <<f

1
, f

2
>|f

2
:{f

3
}>pr(f

3
, <f

2
, f

3
>) = 1/2 = 0.5

pr(f
3
, <f

1
, f

3
>) = 1/2 = 0.5

Star-clique pattern: G
1
 = <<f

1
, f

2
>|f

1
:{f

3
}>

Figure 3.7: The projected databases of 〈f1, f2〉

is a neighbor of the cube 〈cxm,ym , wm〉.

Figure 3.7(a) shows the projected database of the pattern 〈f1, f2〉, which is derived

from Pf1 . In Figure 3.6(a), we know that the feature f2 is contained in both entries

of Pf1 . Hence, we generate two entries for P〈f1,f2〉, that is L1 = (〈c1,5, w5〉, 〈c1,5, w5〉)

and L2 = (〈c5,5, w1〉, 〈c6,5, w2〉). Since the feature f3 is only contained in Pf1 .Rp2 and

〈c6,5, w2〉 is a neighbor of 〈c6,5, w1〉, we add the entry (f3 : 〈c6,5, w2〉) into the feature-

list P〈f1,f2〉.Rp2.

Mining Projected Databases

Let Sk be a frequent length-k topological pattern and PSk
be constructed already. Now,

we see the process to mine topological patterns from the projected database of Sk.

Mining Star-like Patterns. To get star-like patterns, we directly mine the projected

database of the features (i.e., 1-topological patterns). For a feature fi, the feature fj is

said to be a frequent related feature of fi if and only if pr(fj, 〈fi, fj〉) ≥ minprev. All

the frequent related features of fi form a star-like pattern S = {fi : 〈fr1, . . . , frm〉}.

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 39

For example in Figure 3.6(a), since pr(f2, 〈f1, f2〉) and pr(f3, 〈f1, f3〉) are greater than

0.3, we can generate a star-like pattern S1 = 〈f1 : {f2, f3}〉.

Mining Clique Patterns. The process to discover clique patterns is a little compli-

cated. Our main idea is to check whether a related feature fr of Sk can be combined

with Sk to generate a longer clique pattern Sk+1 = Sk ∪ {fr} (fr ≥ fk). To achieve

this, we need to determine whether the prevalence of Sk+1, which is the minimum par-

ticipation ratio among all features in Sk+1, is equivalent to or greater than minprev. In

other words, we not only need to compute the participation ratio of related feature fr

w.r.t. Sk+1, but also the participation ratio of the features in Sk w.r.t. Sk+1. This is due

to the incorporation of the feature fr in Sk, pr(fi, Sk+1) 6= pr(fi, Sk) for each fi ∈ Sk.

Suppose the set RF contains all the related features of Sk, The features in RF are

ordered according to ≺f . For each feature fr in RF , we first compute the participation

ratio pr(fr, Sk+1) in the projected database Sk. The main step is to obtain the instances’

count of fr through the FCI. Specifically, for each feature-list Rp in PSk
, which has an

element containing the feature fr, e.g., (fr : 〈cxm,ym , wm〉), we obtain the instance’s

count of fr in the cube by indexing FCI with the key (fr, 〈cxm,ym , wm〉). Note that for

each key, we only query FCI once. After obtaining all the instances’ count of fr in PSk
,

we compute pr(fr, Sk+1) according to Equation 3.1. If pr(fr, Sk+1) ≥ minprev, we

continue to compute pr(fi, Sk+1) for each fi ∈ S. Otherwise, we remove fr from RF ,

since it cannot be combined with the pattern Sk to generate any frequent topological

pattern.

The process to compute the participation ratio pr(fi, Sk+1) for each feature fi ∈ Sk

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 40

proceeds as follows. For each entry 〈L,Rp〉 in PSk
such that the feature-list PSk

.Rp

contains the feature fr, we get the cube 〈cxi,yi
, wi〉 in L because it contains the in-

stances of feature fi ∈ Sk. We obtain the instances’ count of fi through FCI with the

key (fi, 〈cxi,yi
, wi〉). After scanning all entries in PSk

, we compute pr(fi, Sk+1) using

Equation 3.1. Once there is a feature in Sk whose participation ratio with respect to

Sk+1 is less than minprev, we stop the process because the prevalence of Sk+1 cannot

be greater than minprev. Only when prevalence(Sk+1) ≥ minprev, we output the

pattern Sk+1, construct the projected database of Sk+1, and mine it recursively.

Figure 3.6(b) shows the process of finding topological patterns with minprev = 0.3

in Figure 3.6(a). In Pf1 , the features f2 and f3 are related features of f1. To determine

whether f2 is a frequent related feature of f1, we need to compute prevalence(〈f1, f2〉).

In other words, we need to compute the participation ratios pr(f2, 〈f1, f2〉) and pr(f1, 〈f1, f2〉).

As we know, there are in total six instances of f2 in the spatio-temporal database, and

only two instances of f2 participate in the instances of 〈f1, f2〉, i.e., one instance in cube

〈c1,5, w5〉 and one in cube 〈c6,5, w1〉. Hence, pr(f2, 〈f1, f2〉) = 2
6

= 0.33. Since all in-

stances of f1 participate in the instances of the pattern 〈f1, f2〉, we have pr(f1, 〈f1, f2〉)

= 2
2

= 1. Finally, prevalence(〈f1, f2〉) = min{0.33, 1} = 0.33 > 0.3. Hence, f2 is a

frequent related feature of f1 and can be combined with f1 to generate a longer frequent

pattern 〈f1, f2〉. Similarly, we have the prevalence(〈f1, f3〉) = 0.5 > 0.33, and hence,

f3 is also a frequent related feature of f1. After mining the f1-projected database, we

construct the 〈f1, f2〉-projected database and mine it recursively. Figure 3.7(b) shows

the corresponding mining process.

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 41

Mining Star-clique Patterns. Finally, we examine the process to get star-clique

patterns. The mining of star-clique patterns is invoked after a clique pattern Sk is

yielded. A star-clique pattern is generated by combining the clique pattern Sk with

the star-like pattern of the features fi, fi ∈ Sk. Specifically, for each feature fi ∈ Sk,

denoted as Sk|fi, we first obtain the set of cubes in which fi occurs. In other words, we

do the projection of PSk
on the feature fi, denote it as PSk

|fi. Next, with the cubes in

PSk
|fi, we recompute the participation ratio pr′(fr, 〈fi, fr〉) for each related feature fr

in the star-like pattern of the feature fi. If pr′(fr, 〈Sk|fi, fr〉) ≥ minprev, fr is said to

be a frequent related feature of Sk|fi. All the frequent related features of Sk|fi form a

star-clique pattern with respect to Sk|fi. For example in Figure 3.7(b), we can generate

two star-clique patterns, i.e., G1 = 〈〈f1, f2〉|f1 : {f3}〉 and G2 = 〈〈f1, f2〉|f2 : {f3}〉.

3.3.3 Mining Geographical Features

After mining the frequent topological patterns, we can find the geographical features of

these patterns. The process to find the interesting geographical features of topological

patterns is very simple. Here, we assume that the R-tree [Gut84] index structure is built

on the geographical feature databases.

To find interesting geographical features of a topological pattern S, we first compute

the centroid for each instance of S. Next, we retrieve all the geographical features in the

geographical feature database that lie within the user specified distance of Rg from the

centroid. This is achieved by constructing a query window whose center is the centroid

and whose radius is equal to Rg. Finally, we update the frequencies of the retrieved

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 42

geographical features of S. Note that a geographical feature is only counted once for

S in its one instance search, no matter how many instances of this geographical feature

are close to the S instance.

3.4 TopologyMiner Algorithm

Figure 3.8 shows the framework of TopologyMiner. It takes as input the spatio-temporal

database D, the distance threshold R, the time window threshold W and the prevalence

threshold minprev, and outputs the set of frequent topological patterns. Line 1 scans

the database once and constructs the summary-structure. We then discover the topolog-

ical patterns at lines 4-25. Line 5 constructs the projected database for each feature fi

inD with CFI. Lines 7-17 discovers the star-like patterns with respect to fi by scanning

Pfi
. For each feature fi in D, lines 19-25 calls the procedure MiningPDB to find the

longer frequent topological patterns.

The procedure MiningPDB (see Figure 3.9) works as follows: For each related

feature fr of S, line 2 computes the participation ratio pr(fr, S ∪ {fr}) using FCI.

If it is equivalent to or greater than minprev, lines 5-11 are executed to compute the

participation ratio pr(fi, S ∪ {fr}) for each feature fi ∈ S. If there is a feature fp such

that pr(fp, S ∪{fr}) is less than minprev, the procedure terminates with the extension

fr (lines 8-10). If the participation ratios of all the features in S are greater than or

equivalent to minprev, a new clique pattern S ′ = S∪{fr} is generated. This is followed

by a search for its geographical features, the construction of the projected database S ′

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 43

Algorithm TopologyMiner

Input: D, Dg: the spatio-temporal database and geographical feature database;

R, W : the distance and time window threshold;

minprev: prevalence threshold.

Output: S, C,G: the set of frequent star-like, clique and star-clique patterns

1: Scan D and construct CFI and FCI with R and W ;

2: RF = {all the features in D};

3: ∀fi ∈ D, Fsi = ∅;

4: for each feature fi in RF {
5: constructing the projected database of fi;

6: RFi = {related features in Pfi};

7: for each related feature fj ∈ RFi {
8: prj = pr(fj , 〈fi, fj〉) and pri = pr(fi, 〈fi, fj〉)
9: compute prj and pri through CFI and FCI;

10: if(prj < minprev||pri < minprev)

11: RFi = RFi\{fj};

12: if(prj ≥ minprev) Fsi = Fsi ∪ {fj};

13: if(pri ≥ minprev) Fsj = Fsj ∪ {fi};

14: }
15: S = 〈fi : Fsi〉;
16: S = S ∪ {S};

17: }
18: for each feature fi in RF {
19: for each feature fj ∈ RFi {
20: S′ = 〈fi, fj〉
21: C = C ∪ {S′};

22: construct PS′ based on Pfi ;

23: RFS′ = {related features in PS′};

24: call MiningPDB(PS′ ,RFS′ ,minprev);

25: }
26: }

Figure 3.8: Outline of the TopologyMiner algorithm

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 44

Procedure MiningPDB(PS , RF , minprev)

1: for each feature fr in RF {
2: compute pr(fr, S ∪ {fr});
3: if pr(fr, S ∪ {fr}) < minprev continue

4: else{
5: flag = 1;

6: for each fi ∈ S {
7: compute pr(fi, S ∪ {fr});
8: if(pr(fi, S ∪ {fr}) < minprev)

9: flag = 0;

10: break;

11: }
12: if(flag) {
13: S′ = S ∪ {fr};

14: finding geographical features of S′;

15: C = C ∪ {S′};

16: construct PS′ based on PS ;

17: RFS′ = {related features in PS′};

18: call GenGenericPtns(S′, minprev);

19: MiningPDB(PS′ , RFS′ , minprev)

20: }
21: }
22: }
Procedure GenGenericPtn(C, minprev)

1: Fs = ∅;

2: for each feature fi ∈ C {
3: get S ∈ S s.t. S.fi = fi

4: for each frequent related feature fr ∈ S.Fs

5: if (pr(fr, 〈C|fi, fr〉) ≥ minprev) Fs = Fs ∪ {fr};

6: G = {C|fi : Fs};

7: G = G ∪ {G};

8: }

Figure 3.9: Procedure MiningPDB

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 45

using CFI, invoking the procedure GenGenricPtn to find star-clique patterns, and then

mining the projected database S ′ recursively (lines 13-19). The process continues until

there are no more frequent topological patterns.

We now show that Algorithm TopologyMiner is correct and complete.

Theorem 1 TopologyMiner is correct and complete.

Proof: At the beginning, TopologyMiner initializes the length-1 topological patterns to

all spatial features in the database and obtains the corresponding projected databases.

This is correct and complete as the features’ participation ratios are equivalent to 1.

Next, we assume that TopologyMiner can correctly discover all the length-k topo-

logical patterns. Let α be a length-k topological pattern and {β1, β2, . . . , βm} be the set

of all length-(k+1) topological patterns having prefix α. The complete set of topo-

logical patterns having prefix α is divided into m disjoint subsets. The jth subset

(1 ≤ j ≤ m) is the set of topological patterns having prefix βj . Each subset of topolog-

ical patterns can be further divided when necessary. To mine the subsets of topological

patterns, TopologyMiner constructs the corresponding projected databases. In other

words, TopologyMiner can correctly discover all the frequent length-(k+1) topological

patterns.

The completeness of the mining in the projected database of a topological pattern

can be argued as follows. The projected database of a topological pattern Sk consists

of cube-lists and feature-lists. With the cube-lists, we can obtain the instances of the

features participating in Sk. With the feature-lists, we can get all the related features

and the cubes containing the instances of the related features. This means we can deter-

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 46

mine the complete set of the frequent related features of the pattern using the projected

database. In other words, we can find all frequent topological patterns.¥

3.5 Experimental Study

In this section, we evaluate the effectiveness and efficiency of TopologyMiner in find-

ing all frequent topological patterns in spatio-temporal databases. As described in

Section 2.1, there are two Apriori-like algorithms [KH95, SH01] proposed for find-

ing all the frequent star-like or clique patterns in spatial databases. To compare them

with TopologyMiner, we extend the algorithm in [SH01] to find topological patterns

in spatio-temporal databases by incorporating the temporal aspect into the mining pro-

cess. We use spatial join using neighbor relationship to generate the patterns of size 2.

For the patterns of size 3 and more, we use the neighbor-based pruning to generate the

instances of the candidates.

The algorithms are implemented in C++, and run on a Pentium 4, 3GHZ, 1G main

memory PC.

3.5.1 Synthetic Data Generation

Recently, the author in [ZMCS04] presented a data generator for generating spatial

datasets. While the algorithm TopologyMiner is to find topological patterns with in-

stances near both in position and time in spatio-temporal databases. We cannot use it

directly.

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 47

In order to generate spatio-temporal datasets, we modify the synthetic data generator

described in [ZMCS04] for generating spatio-temporal data. Table 3.1 summarizes the

parameters used in the data generator. First, we set L features, which we call non-noise

features and which can appear in the longest collocation pattern generated. We also set

n noise features. The number of points for noise features is r × N . We assign these

points to the noise features uniformly. The remaining points are assigned to non-noise

features uniformly. The participation ratio of a feature in the longest pattern which has

a participation ratio larger than the confidence threshold is δmax + θ. The number of

points Ni, which must appear in the instances of the longest pattern of a feature fi is

(δmax + θ) × N×(1−r)
L

. For other features, the participation ratios are δmin + θ and the

number of points in instances of the longest pattern is (δmin + θ)× N×(1−r)
L

.

We generate instances of the longest pattern as follows. We divide the space into

regular cells by dividing the map using a regular grid of cell-side length R and dividing

the time using a regular window of length λ. At first, we generate a point randomly.

We use the point as the center and generate points for a feature in the longest pattern

around a cube, where rs is the radius of a circle in space and rt is the radius in time. The

coordinates for the i-th point of the feature fj is (xc + rs× sin2πi
nj

, yc + rs× sin2πi
nj

, tc +

rt× i
nj

), nj = Ni

d
. Because rs is in (0, R

2
) and rt is in (0, λ

2
), we can assign rs and rt the

values σ(R
2L

) and σ(λ
2L

), (1 ≤ σ ≤ L). In this way, any point in the cube can participate

in an instance of the longest pattern. After selecting the first center point, we mark the

cubes that intersect the cube centered at it such that no other longest pattern instances

can be generated in them. Next, we continue to generate pattern instances from random

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 48

Table 3.1: Data generation parameters
Parameter Meaning Default

N] points on the map (× 1000) 200k

L] features in the longest pattern 10

m] prevalent features in the longest pattern 8

n] noise features 2

r percentage of points with noise features 0.1

d] generated longest pattern instances 1500

θ minimum prevalence threshold 0.05

δmin minimum difference between prevalence of

longest pattern and θ

-0.023

δmax maximum difference between prevalence of

longest pattern and θ

0.08

R distance threshold 200

λ time window threshold 20

map x - and y- extent of the map 8000× 8000

T extent of the time dimension 1000

points whose extended cube does not intersect the used cubes. After generating pattern

instances d times, the process ends. The remaining points of the features which appear

in the longest pattern are generated randomly on the map. Finally, we generate the

points of noise features randomly on the map.

The generator described above generates instances of a long pattern with length

L. The number of features which have participation ratios larger than the prevalence

threshold is set to m.

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 49

0 0.005 0.01 0.015 0.02 0.025
100

150

200

250

300

350

400

450

500

(a) Minimum prevalence

R
u

n
ti
m

e
 (

s
)

N200kL10W20R200

Apriori−like
TopologyMiner

0.002 0.005 0.008 0.01 0.015 0.02 0.025
0

50

100

150

200

250

(b) Minimum prevalence

S
iz

e
 o

f
m

e
m

o
ry

 (
M

)

N200kL10W20R200

Apriori−like
TopologyMiner

Figure 3.10: Runtime vs. prevalence threshold

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 50

3.5.2 Effect of Prevalence Threshold

We first evaluate TopologyMiner by varying the prevalence threshold. The results are

shown in Figure 3.10. Compared to the Apriori-like algorithm, TopologyMiner needs

less time and space to find the topological patterns. This is expected because when

the prevalence threshold decreases, more topological patterns become frequent and the

length of the frequent patterns tend to be longer. As a result, the Apriori-like algo-

rithm needs more time to compute the instances of topological patterns and count their

frequency. In contrast, TopologyMiner uses the summary-structure to approximate in-

stances’ count of a topological pattern and eliminate the generation and computation of

the instances, which is very costly.

3.5.3 Effect of Database Size

Next, we study the effect of number of points N in a dataset. Figure 3.11 shows the

results by varying N from 100k to 1000k. Figure 3.11(a) indicates that TopologyMiner

scales linearly with number of points. Compared to the Apriori-like algorithm, Topol-

ogyMiner requires less time to find frequent topological patterns with the increase of

N . Note that the Apriori-like algorithm runs out of memory when N is greater than

600k. This is because Apriori-like algorithm needs more time to test the interestingness

of the candidates’ instances. As N increases, the number of the instances of the fre-

quent patterns become larger. As a result, the Apriori-like algorithm needs more time

to compute the instances of the patterns and more memory to maintain these instances

(see Figure 3.11(b)). Unlike the Apriori-like algorithm, TopologyMiner finds frequent

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 51

100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
10

100

1000

10000

Number of points (N)

R
u

n
tim

e
 (

s)

L10W20R100

Apriori−like
TopologyMiner

100k 200k 300k 400k 500k 600k 800k 1000k
0

100

200

300

400

500

600

700

800

(b) Number of points N(minprev = 0.05)

S
iz

e
 o

f
m

e
m

o
ry

 (
M

)

L10W20R100

Apriori−like
TopologyMiner

Figure 3.11: Runtime vs. number of points N

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 52

topological patterns in a depth-first manner. For each frequent pattern, it just needs

to maintain the corresponding projected database which reduces with the length of the

patterns.

3.5.4 Effect of Distance Thresholds

We test the performance of TopologyMiner of varying the distance threshold R and the

time window threshold W . Figure 3.12 (a) shows the results by varying the distance

threshold R. A peak is reached when R = 100. This is because the performance of

TopologyMiner is dependent on number of cubes, size of frequent patterns and length

of frequent patterns. As the distance threshold R increases, the number of cubes de-

creases while the size of frequent patterns becomes larger and the length of frequent

patterns increases. There is a tradeoff among the three factors with the maximum run-

time recorded when R = 100. The figure also shows that TopologyMiner has an advan-

tage over the Apriori-like algorithm. Note that in Figure 3.12(a), when R is larger than

200, the Apriori-like algorithm runs out of memory.

A similar trend is also observed when we vary the time window threshold W (see

Figure 3.12(b)). Here, the longest runtime is recorded when W = 20. The same expla-

nation applies here.

3.5.5 Effect of Number of Features

Finally, we study the performance of the algorithms by varying the parameters L (i.e.,

number of features in the longest pattern) and m (i.e., the prevalent features in the

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 53

0 100 200 300 400 500
0

200

400

600

800

1000

1200

1400

(a) Size of distance threshold R (minprev = 0.05)

R
u

n
ti
m

e
 (

s
)

N200kL10W20

Apriori−like
TopologyMiner

5 10 15 20 25 30
50

100

150

200

250

300

350

400

450

500

550

(b) Size of time window W (minprev = 0.05)

R
u

n
ti
m

e
 (

s
)

N200kL10R100

Apriori−like
TopologyMiner

Figure 3.12: Runtime vs. distance thresholds

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 54

10 15 20 25 30 35 40
100

150

200

250

300

350

400

(a) Number of features L (minprev = 0.05)

R
u

n
ti
m

e
 (

s
)

N200kW20R50

Apriori−like
TopologyMiner

6 8 10 12 14 16 18
160

180

200

220

240

260

280

300

320

(b) Number of prevalent features m (minprev = 0.05)

R
u

n
ti
m

e
 (

s
)

N200kL20W20R50

Apriori−like
TopologyMiner

Figure 3.13: Runtime vs. number of features

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 55

longest pattern). Both parameters have an effect on the length of frequent patterns.

Figure 3.13(a) shows the results of varying the parameter L with values ranging from

10 to 40. We observe that TopologyMiner scales linearly with number of features in the

longest pattern and outperforms the Apriori-like algorithm by 50%.

Similarly, figure 3.13(b) shows the results of the algorithm when the parameter m is

varied with values ranging from 5 to 18. As expected, the parameter m has little effect

on TopologyMiner.

This is because the advantage of TopologyMiner is lies in the use of the summary-

structure that not only enables TopologyMiner to count the frequency of a pattern effi-

ciently but also allows it to find the pattern in a depth-first manner, thus eliminating the

generation of a huge number of candidates.

3.5.6 Comparative Study on Finding Interesting Geographical Fea-

tures

This set of experiments aims to show the usefulness of geographical based topological

patterns compared to the topological patterns. Here, we use the neighboring requested

service sets (i.e., service request sets that are located close to each other) as correspond-

ing topological patterns.

We generate service requests according to some common habits we observe in real

life. Table 3.2 lists the 10 top habits that we have observed. It includes geographical

features, service requests that are close by, and their respective correlation coefficients.

The correlation coefficients determine the probability that a service request is close to a

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 56

geographical feature.

Table 3.2: Observed common habits
Geo-Feature Service Requests Corr-Coefficients

Shopping Complex Fun Place, Restaurant, Hairdressing Sa-
lon, ATM

0.2

Nearest Friend, Taxi 0.1

Hotel Restaurant, Taxi, Fun Place 0.25

Clinic ATM, Pharmacy 0.3

Freeway Petrol Kiosk, Direction Guide 0.3
Restaurant, McDonald’s 0.1

Airport Taxi, Hotel 0.3

Residential Area Taxi, Restaurant, Nearest Friend, Fun
Place, Technicians

0.1

Mass Rapid Transit (MRT) Nearest Friend, McDonald’s 0.1

Office Building Restaurant, MRT, Taxi, Client’s Office,
Technicians

0.1

The data generation proceeds as follows. We use 100 service request types, each

of which occurs with a probability ranging from 0.1 to 0.7. We use a correlation co-

efficient to indicate the percentage of service requests of a given type that are close to

a geographical feature. This coefficient E varies from 0 to 70. For each service re-

quest type, E% of its requests are generated close to a geographical feature based on

Gaussian distribution. The locations of these requests are varied according to a devia-

tion parameter V = 50 from the centroid of the geographical feature. The remaining

1− E% requests are generated using uniform distribution. A total of 100,000 requests

is generated.

We use the Singapore map as our geographical feature database which contains 50

types of geographical features. Table 3.3 shows some of the interesting patterns we find

with the support counts. When we show both sets of patterns to decision makers, they

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 57

Table 3.3: Interesting patterns found
Topological Patterns

{ATM, Pharmacy, Fun Place, 2761}
{Restaurant, Petrol Kiosk, Direction Guide, 1734}

{Taxi, ATM, Shopping Mall, Hairdressing Salon, 1845}
{Client’s Office, Direction Guide, Restaurant, 3421}
{ATM, Taxi, Restaurant, Client’s Office, 2142}
{Restaurant, Fun Place, Taxi, Hotel, 1421}
Geographical-based Topological Patterns
{{Clinic}::{ATM, Pharmacy}, 1323}

{{Shopping Complex, Hotel}::{Restaurant, Fun Place}, 1123}
{{Freeway Exit}::{Petrol Kiosk, Direction Guide}, 2312}

{{Airport}::{Taxi, Hotel}, 889}

unanimously prefer the geographical-based topological patterns.

3.5.7 Comparative Study on Finding Clique Patterns

In this experiment, we compare the TopologyMiner algorithm with the FastMining al-

gorithm on mining clique patterns. We extend the algorithm FastMining [ZMCS04]

to find the clique patterns in three dimensions and realize it according to [ZMCS04].

We implement the FastMining as a memory-based algorithm by dividing the space and

feature sets using a regular grid. To identify the frequent clique patterns, we maintain

the maximal clique patterns in the memory and mark the corresponding patterns and

all their subpatterns, such that each distinct patterns where oi takes part is marked only

once.

Figure 3.14 shows the results for the synthetic dataset by varying the distance re-

lation R. Compare to the FastMining algorithm, TopologyMiner needs less time and

space to find the frequent topological patterns. This is expected because the set of fre-

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 58

20 40 60 80 100 120 140 160 180 200
1

10

100

1000

Size of distance threshold (R)

R
u

n
tim

e
 (

s)

L10W20

TopologyMiner(N = 200k)
FastMining(N = 200k)
TopologyMiner(N = 50k)
FastMining(N = 50k)

10 30 50 80 100 150
0

100

200

300

400

500

600

Size of distance threshold (R)

S
iz

e
 o

f
m

e
m

o
ry

 (
M

)

L10W20

TopologyMiner (N=200k)
FastMining(N=200k)
TopologyMiner (N=50k)
FastMining(N=50k)

Figure 3.14: Runtime vs. the distance relation (clique patterns)

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 59

quent topological patterns becomes larger and the length of the frequent patterns tends

to be longer as the distance threshold increases. As a result, FastMining algorithm

needs more time to enumerate and computer the instances of topological patterns and

more space to maintain the candidates and the instances of the topological patterns. In

contrast, TopologyMiner uses the summary structure to approximate instances’ count

of a topological pattern so as to eliminate the generation and computation of the in-

stances. Note that in the Figure 3.14(b), FastMining algorithm is out of memory when

R is greater than 50.

100k 200k 300k 400k 500k 600k 700k 800k
1

10

100

1000

10000

Number of points (N)

R
u

n
tim

e
 (

s)

L10W20

TopologyMiner (R = 200
FastMining (R = 200)
TopologyMiner (R = 10
FastMining (R = 10)

Figure 3.15: Runtime vs. number of points (clique patterns)

Figure 3.15 shows the results by varying the number of points in the database. From

the figure, we observe that TopologyMiner needs less time to find the frequent topolog-

ical patterns, compared to the FastMining algorithm. Since FastMining attempts to

CHAPTER 3. MINING TOPOLOGICAL PATTERNS 60

count at one scan the instances of the powerset of all possible patterns, the computation

cost tends to be much higher as the number of points increases, especially when the

total number of features is large.

3.6 Summary

In the chapter, we have introduced an algorithm, TopologyMiner, for finding topological

patterns in spatio-temporal databases. We have presented a summary-structure that

summarizes spatio-temporal databases by recording instances’ count information of a

feature in a cube. Based on the summary-structure, TopologyMiner finds topological

patterns in a depth-first manner and eliminates the generation of too many candidates

and frequency tests. We have also studied the problem of finding the geographical

features of topological patterns. The experimental studies indicate that TopologyMiner

is effective and scalable in finding topological patterns and outperforms Apriori-like

algorithms by a few orders of magnitude. Moreover, compared to topological patterns,

geographical-based topological patterns are more informative.

Chapter 4

Mining Spatial Sequence Patterns

Besides topological patterns, another class of useful spatio-temporal patterns is spatial

sequence patterns. Unlike topological patterns which aim to find the intra-relationships

of events in a time window, spatial sequence patterns aim to disclose the inter-relationships

of events in different time windows. For example: “Forest fire always occurs at region

R1 prior to the occurrence of haze in nearby region R2.” or “Forest fire always occurs

at a region prior to the occurrence of haze in its Northeastern nearby regions.” In the

above example, clearly the spatial sequence patterns are more informative and useful

as they disclose both the spatial and temporal relationships of the events fire and haze.

Moreover, they also link the event fire at R1 to the event haze in R2, which cannot be

obtained by spatial patterns, temporal patterns or topological patterns. However, dis-

covering such spatial sequence patterns is challenging because of the potentially large

search space and the large number of candidates. This calls for new data mining algo-

rithms.

61

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 62

In this chapter, we study the problem of finding spatial sequence patterns by incor-

porating spatial information into the process for mining sequence patterns. We intro-

duce two new classes of spatial sequence patterns: flow patterns and generalized spatio-

temporal patterns, which link the changes of events in one location to another location

in order to reveal insights that cannot be obtained otherwise. We design an algorithm

called FlowMiner to find flow patterns. FlowMiner incorporates a new candidate gener-

ation algorithm and employs various optimization techniques for better efficiency. We

also propose an algorithm called GenSTMiner to discover generalized spatio-temporal

patterns by exploring the pattern growth approach. We also present two optimization

techniques to enhance the efficiency of GenSTMiner.

The chapter is organized as follows. We first present the framework of spatio-

temporal databases and the preliminary concepts in Section 4.1. Section 4.2 illustrates

the concept of flow patterns and the algorithm FlowMiner. Section 4.3 introduces the

concept of generalized spatio-temporal patterns and illustrates the algorithm GenST-

Miner. We summarize the chapter in Section 4.4.

4.1 Framework of Spatio-temporal Databases

Spatio-temporal databases capture both the time and space dimensions. First, we divide

time into disjoint time windows of length W . Each time window denotes a time period.

Time t1 and t2 are said to be near if they are in the same time period.

Next, we divide the space into a set of disjoint grid cells, S = {l1, l2, . . . , lq}, where

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 63

each grid cell represents a location, denoted as li = (x, y). Let R be a neighbor relation

over the locations in S . Location l1 and l2 are said to be neighbors if (l1, l2) ∈ R. The

neighborhood of a location l is defined as a set of locations N(l) = {l1, . . . , lk} such

that each lj in N(l) is a neighbor of l.

l
1
l
2
l
3

l
5
l
6

l
7
l
8
l
9

l
4

space

x

y0

1

2

0 1 2

c

d

a

b f

a

b f b f

a

g

time

(day)

15 30 45

b f

a

d

c

e

0

gd

a

1t 2t 3t 4t 5t 6t 7t 8t 9t 10t

b

h

(a) Space-time view

window id (wid) time eventsets

t1 d(l1), c(l7)
1 t2 b(l4), f(l5)

t3 d(l2), a(l8)
t4 e(l6), c(l7)

2
t5

t6

b(l4), f(l5), a(l9)
h(l2), b(l6)

3 t7 b(l4), f(l5), a(l9)

t8 d(l1), g(l3), a(l8)
4 t9 b(l4), f(l5)

t10 g(l2), a(l8)
(b) Dataset sorted by window id and time

wid sequences

1 〈d(l1), c(l7)〉 → 〈b(l4), f(l5)〉 → 〈d(l2), a(l8)〉 → 〈e(l6), c(l7)〉
2 〈b(l4), f(l5), a(l9)〉 → 〈h(l2), b(l6)〉
3 〈b(l4), f(l5), a(l9)〉
4 〈d(l1), g(l3), a(l8)〉 → 〈b(l4), f(l5)〉 → 〈g(l2), a(l8)〉

(c) Sequences for time windows

Figure 4.1: Example of a spatio-temporal database

A location-based event, or event for short, denoted as e(l, t), is a spatial feature

e (such as drought, rain) occurring in location l at time t. Two events e1(l1, t1) and

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 64

e2(l2, t2), t1 ≤ t2, are said to be related or CloseNeighbors if and only if (l1, l2) ∈ R

and t1 is near t2. For convenience, we simply write the location-based event as e(l)

when the sequential context is clear.

A set of location-based events that occur at the same time is called an eventset, de-

noted as E = 〈e1(l1), . . . , em(lm)〉. Two eventsets E1 and E2 are said to be CloseNeigh-

bors if and only if every event in E1 is related to every event in E2. An eventset Ep at

time t1 is said to flow to an eventset Eq at time t2, t1 ≤ t2, if and only if Ep and Eq are

CloseNeighbors. We denote it as Ep → Eq. In addition, an eventset Et is said to be

reflexive if and only if Et flows to itself.

Figure 4.1 shows an example of a spatio-temporal database, where time is divided

into four time windows (i.e., W = 15 days), and space is divided into nine locations,

and the literals {a, b, ..., h} represent some spatial features.

Suppose R is the unit length of a square and R = 1, then we could see that the two

events d(l1, t1) and b(l4, t2) are CloseNeighbors, that is d(l1, t1) and b(l4, t2) are related.

The eventset E1 = 〈b(l4), f(l5)〉 at time t2 and the eventset E2 = 〈d(l2), a(l8)〉 at time t3

are CloseNeighbors. Moreover, E1 flows to E2. In particular, the eventset 〈b(l4), f(l5)〉

at time t2 is a reflexive eventset, but the eventset 〈d(l2), a(l8)〉 is not since (l2, l8) /∈ R.

A sequence is a list of eventsets sorted by time within a time window. Figure 4.1(c)

shows an example.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 65

4.1.1 Interesting Patterns in Spatio-temporal Databases

In this section, we present various sequence patterns that can be found in spatio-temporal

databases using existing data mining techniques. Suppose we are given a spatio-temporal

database as in Figure 4.1, we can observe at least three types of sequence patterns:

1. Global sequence patterns

A global sequence, s = {(s1 → . . . → st) :: (L)}, where si (1 ≤ i ≤ t) is a set

of spatial features and L is a set of locations and L ⊆ S , is a frequently occurring

pattern if there are at least sup different locations containing s.

2. Local sequence patterns

A local sequence is a sequence s = {(s1 → · · · → st) :: (lk)}, where si (1 ≤

i ≤ t) is a set of spatial features and lk ∈ S . Given a time window with width W ,

we say that s is frequent if there are at least sup different windows at location lk

containing s.

3. Location-sensitive sequence patterns

A location-sensitive sequence pattern is a list of events sorted by time, denoted

as s = (E1 → · · · → Et), where Ei (1 ≤ i ≤ t) is an eventset. Given a time

window with width W , s is said to be frequent if there are at least sup different

windows containing s.

We can discover these three types of sequence patterns with existing association rule

mining techniques or sequence mining techniques.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 66

4.2 FlowMiner: Finding Flow Patterns in Spatio-temporal

Databases

We have presented three types of sequence patterns that can be discovered in spatio-

temporal databases. Although these three types of sequence patterns can reveal some

interesting information of the events, that is the spatial relationships or the temporal

relationships of the events, none of them can be used to link the changes in one location

to the changes in a nearby location. In this section, we introduce the concept of flow

patterns that are intended to describe the changes of events over space and time. We de-

sign an algorithm, called FlowMiner, which utilizes temporal relationships and spatial

relationships amid events to generate flow patterns.

4.2.1 Problem Statement

The concept of the flow pattern is defined as follows:

Definition 1 (Flow Pattern)

A flow pattern is a sequence of reflexive eventsets sorted by time such that for any two

consecutive eventsets, Ep at time ti and Eq at time ti+1, Ep flows to Eq.

Consider Figure 4.1. To simplify discussion, we define R as the unit length of a

square. Let R = 1, then d(l1) → 〈b(l4), f(l5)〉 → a(l8) at time window 1 is a flow

pattern, but 〈b(l4), f(l5), a(l9)〉 at time window 3 is not since (l4, l9) /∈ R.

We limit flow patterns to reflexive eventsets to provide a more meaningful interpre-

tation of the patterns discovered. This is because a reflexive eventset guarantees that all

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 67

the events within the set are related to each other. For example, in Figure 4.2, d(l2) and

a(l8) are not related in the pattern d(l1) →〈b(l4), f(l5)〉 → 〈d(l2), a(l8)〉 → e(l6). Thus,

we will consider d(l1) →〈b(l4), f(l5)〉 → a(l8) → e(l6), and d(l1) →〈b(l4), f(l5)〉 →

d(l2)→ e(l6) as two independent patterns since they indicate two opposite trends.

d
b f e

a

dl
1
l
2
l
3

l
5
l
6

l
7
l
8
l
9

l
4

space time1t 2t 3t 4t

Figure 4.2: Example of flow patterns

A flow pattern with k events is called k-flow. A k-flow pattern is frequent if there

are at least minsup different occurrences of the pattern over time, where minsup is a

user-specified threshold. Let P = EP1 → · · · → EPs and Q = EQ1 → · · · → EQt

be two flow patterns. P is called a sub-flow of Q, and Q a super-flow of P , denoted as

P v Q, if there exist integers 1 ≤ j1 < j2 < · · · < jn ≤ t such that EP1 ⊆ EQj1
,

EP2 ⊆ EQj2
, . . . , EPs ⊆ EQjn

. A flow pattern, P , is maximal if there does not exist any

flow pattern Q such that P v Q.

Lemma 1 Flow patterns satisfy Apriori property: Any sub-flow of a frequent flow pat-

tern must be frequent.

Proof: The set of flow patterns is a subset of sequences that satisfy the additional

neighborhood constraint. We know that if a sequence is frequent, all its subsequences

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 68

must be frequent. Since the set of flow patterns is a subset of sequences, we conclude

that flow patterns also satisfy the Apriori property.

With the above definitions, we can now define the problem to find flow patterns

as follows: Given a spatio-temporal database D, a temporal window of length W ,

a neighbor relation R, and a user specified threshold minsup, the problem of mining

flow patterns in spatio-temporal databases is equivalent to finding the set of all frequent

flow patterns.

In the following parts, we will discuss the process of discovering flow patterns. The

first step in the mining process is to scan the database to find all frequent events (i.e.,

1-flows). These events are sorted according to their support in descending order. Next,

based on the sorted event order, we proceed from left-to-right to find all frequent length-

2 sequences. Following that, we mine the frequent k-flows (k > 2) in a depth-first

manner. This involves two main sub-tasks: candidate generation and support counting.

The pruning techniques are presented in Section 4.2.4

4.2.2 Candidates Generation

A key observation in mining flow patterns is that a length-2 sequence specifies a tem-

poral relationship that must be maintained in the higher-order sequences.

Let {d(l1) → b(l4)}, {d(l1) → f(l5)} and {d(l1) → a(l8)} be three frequent length-

2 sequences. Suppose we want to extend 〈b(l4), f(l5)〉 → a(l8) by inserting event

d(l1). An enumeration-based candidate generation method will generate five length-4

sequences as shown in Figure 4.3 (column 1). Note that an eventset corresponds to only

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 69

enumerated candidates
length-2 sequences

{d(l1) → b(l4)} {d(l1) → f(l5)} {d(l1) → a(l8)}
neighborhood

constraints
d(l1) → 〈b(l4), f(l5)〉 → a(l8)

√ √ √ √

〈b(l4), d(l1), f(l5)〉 → a(l8) × × √ ×
〈b(l4), f(l5)〉 → d(l1) → a(l8) × × √ ×
〈b(l4), f(l5)〉 → 〈a(l8), d(l1)〉 × × × ×
〈b(l4), f(l5)〉 → a(l8) → d(l1) × × × ×

Figure 4.3: Candidates validation with length-2 sequences and neighborhood con-
straints

one insert position because adding an event in different positions of an eventset only

indicates the same fact that all the events occur at the same time. We assume that the

events in an eventset are sorted alphabetically.

However, if we take into consideration the temporal constraints implied by the fre-

quent length-2 sequences, then it is clear that d(l1) can only be inserted into 〈b(l4), f(l5)〉 →

a(l8) at the position before 〈b(l4), f(l5)〉 in order to generate valid sequence candidates,

i.e., d(l1) → 〈b(l4), f(l5)〉 → a(l8). Moreover, with the neighborhood constraints of

flow patterns, we can further remove sequence candidates which are not flow patterns.

The above example indicates that it is possible to avoid generating infrequent and

invalid candidate flow patterns by taking into consideration the temporal relationships

specified by length-2 sequences and the spatial constraints specified by flow patterns.

Summary Tree

We introduce a summary tree to keep track of all frequent flow patterns that have been

generated and to capture the temporal relationships of length-2 sequences.

The structure of a summary tree is defined as follows:

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 70

1. A root node, at level 0 of the tree, is denoted as null. This node has no incoming

edge, and corresponds to the initial state.

2. Each node n at level k, consists of a set of frequent k-flows, and is associated with

an extension set, denoted as Ext(n), which stores events that can be combined

with k-flows to form the children of node n.

Figure 4.4 shows the summary tree that has been constructed from the dataset in

Figure 4.1(b) with sup = 50%, W = 15days and R denoting a square of unit length

1. Node 0 is the root node and its extension set consists of all the frequent events, i.e.,

{b(l4), f(l5), a(l8), a(l9), d(l1)}. The nodes at level 1 in the tree are the frequent events

that are 1-flows. A frequent event is included in the extension set of node n if this event

occurs on the right of node n in the tree.

The children of a level k node n, (k ≥ 1), are generated by combining all frequent

flow patterns in node n with the events in Ext(n). For example, the children of node 1,

i.e., node 6, node 7, node 8, node 9 and node 10, are generated by combining 1-flow

b(l4) with its extension set elements b(l4), f(l5), a(l8), a(l9) and d(l1) respectively.

Algorithm

When we have found all the frequent events and length-2 sequences (i.e., level 1 and

2 nodes), we move on to the next step. Based on the level 1 and level 2 nodes in the

summary tree, we can now construct the level k nodes, k > 2, by extending the level

k − 1 nodes with extension elements. This consists of four main steps which we will

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 71

b(
l 4)

a(
l 8)

Ex
t(a
(l 8
))

8
9 <a(l 9),b(l 4)> Ex

t(a
(l 9
))

Ex
t(d
(l 1
))

d(
l 1)

b(
l 4)

10

Ex
t(f
(l 5
))

11

f(l
5)

a(
l 8)

Ex
t(a
(l 8
))

12

<a(l 9),f(l 5)> Ex
t(a
(l 9
))

13

d(
l 1)

f(l
5)

Ex
t(d
(l 1
))

14

22
23

24

1

Ex
t :
 {
f(l
5),
 a
(l 8
),
a(
l 9)
, d
(l 1
)}

f(l
5)

2

nu
ll

Ex
t:
 {
b(
l 4)
, f
(l 5
),
a(
l 8)
, a
(l 9
),
d(
l 1)
}

0

Ex
t(a
(l 8
))

15

Ex
t(a
(l 9
))

16

d(
l 1)

a(
l 8)

Ex
t(d
(l 1
))

17

Ex
t(a
(l 9
))

18

Ex
t(d
(l 1
))

19

Ex
t(d
(l 1
))

20

a(
l 8)

Ex
t :
 {
a(
l 8)
, a
(l 9
),
d(
l 1)
}

3

a(
l 9)

Ex
t :
 {
a(
l 9)
, d
(l 1
)}

4

d(
l 1)

Ex
t:
 {
d(
l 1)
}

5

<b(l 4),f(l 5)> Ex
t(f
(l 5
))

7

Ex
t(b
(l 4
))

6

b(
l 4)

Ex
t:
 {
b(
l 4)
, f
(l 5
),
a(
l 8)
, a
(l 9
),
d(
l 1)
}

Ex
t(a
(l 8
))<b(l 4),f(l 5)> a(l 8)21 Ex

t(d
(l 1
))

d(
l 1)

<b(l 4),f(l 5)>a(l 8)Ex
t(d
(l 1
))

d(
l 1)

b(
l 4)

a(
l 8)

Ex
t(d
(l 1
))

d(
l 1)

f(l
5)

a(
l 8)

Figure 4.4: Summary tree for the dataset in Figure 4.1

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 72

illustrate using node 24 in Figure 4.4.

Step 1. Determine Relevant Temporal Constraints

When extending a node n at level k − 1 with the extension element β, we need to

limit the number of sequences generated by eliminating infeasible sequences through

the use of relevant temporal constraints. These temporal constraints are in the form of

length-2 sequences that involve events in node n and the extension element β.

In Figure 4.4, node 24 is generated by extending node 21 with d(l1). The events

in node 21 are {b(l4), f(l5), a(l8)}. Hence, the relevant temporal constraints are those

length-2 sequences involving an event in {b(l4), f(l5), a(l8)} with d(l1). They are con-

tained in nodes 10, 14 and 17.

Step 2. Find Feasible Insert Positions Based on Temporal Constraints

Given a (k-1)-flow consisting of t eventsets α1 → · · · → αt where αi = 〈ei1 , ei2 , ...eim〉

(1 ≤ i ≤ t) (eij , 1 ≤ j ≤ m, is an event) and an extension element β, there is a total

of 2t + 1 insert positions in which the extension element β can be inserted as an ex-

plicit eventset or as an element of the eventset αi (1 ≤ i ≤ t) to form a k-flow (see

Figure 4.5).

Not all the 2t + 1 insert positions are feasible. To determine the feasible insert

positions, we use the relevant length-2 sequences to determine the set of insert positions

that do not violate the corresponding temporal constraints. Let us examine how the

temporal relationships of length-2 sequences can be used to obtain the feasible insert

positions.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 73

A careful study reveals that there are seven ways in which a temporal constraint can

affect the insert positions. Figure 4.5 summarizes the seven cases. Note that the position

of β relative to eij is the position of β relative to eventset αi where eij ∈ αi. Since an

eventset corresponds to an insert position, we say that the temporal relationship between

the events eij and β is also the temporal relationship between the eventset αi and β.

Case 1: β occurs at the same time as eij .

In this case, we only have one possible insert position. That is, β must be inserted

at the same position as eij .

Case 2: β occurs before eij .

Here, all the insert positions before eij are feasible. In other words, we have 2i−1

insert positions.

Case 3: β occurs after eij .

This is similar to Case 2 except in this case, all the insert positions after eij are

feasible. In total, there are 2(t− i) + 1 insert positions.

Case 4: β occurs before or at the same time as eij .

This is a combination of Cases 1 and 2. In this case, there are 2i possible insert

positions for β to be inserted into α.

Case 5: β occurs at the same time as or after eij .

This is a combination of Cases 1 and 3. In this case, we have a total of 2(t− i)+2

insert positions.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 74

(k − 1)− flow : α1 → · · · → αi → · · · → αt with β
insert positions: 1 2 3 2i-1 2i 2i+1 2t-1 2t 2t+1

Cases Node[eij
+β] k-flows

1 {〈eij
, β〉} α1 → α2 → . . . → αiβ → . . . → αt

2 {β → eij} 2i− 1

β → α1 → α2 → . . . → αi → . . . → αt

α1β → α2 → . . . → αi → . . . → αt

...
α1 → α2 → . . . → β → αi → . . . → αt

3 {eij
→ β} 2(t− i) + 1

α1 → α2 → . . . → αi → β → . . . → αt

...
α1 → α2 → . . . → αi → . . . → β → αt

α1 → α2 → . . . → αi → . . . → αtβ
α1 → α2 → . . . → αi → · · · → αt → β

4
{ 〈eij

, β〉
β → eij

2i

β → α1 → α2 → → αi → ... → αt

α1β → α2 → ... → αi → ... → αt

...
α1 → α2 → ... → β → αi → ... → αt

α1 → α2 → ... → αiβ → ... → αt

5
{ 〈eij , β〉

eij → β
2(t− i) + 2

α1 → α2 → . . . → αiβ → . . . → αt

α1 → α2 → . . . → αi → β → . . . → αt

...
α1 → α2 → . . . → αi → . . . → β → αt

α1 → α2 → . . . → αi → . . . → αtβ
α1 → α2 → . . . → αi → . . . → αt → β

6
{

β → eij

eij → β
2t

β → α1 → α2 → . . . → αi → . . . → αt

α1β → α2 → . . . → αi → . . . → αt

...
α1 → α2 → . . . → β → αi → . . . → αt

α1 → α2 → . . . → αi → β → . . . → αt

...
α1 → α2 → . . . → αi → . . . → β → αt

α1 → α2 → . . . → αi → . . . → αtβ
α1 → α2 → . . . → αi → . . . → αt → β

7

〈eij , β〉
β → eij

eij → β
2t + 1

β → α1 → α2 → ... → αi → ... → αt

α1β → α2 → ... → αi → ... → αt

...
α1 → α2 → ... → β → αi → ... → αt

α1 → α2 → ... → αiβ → ... → αt

...
α1 → α2 → ... → αi → ... → β → αt

α1 → α2 → ... → αi → ... → αtβ
α1 → α2 → ... → αi → ... → αt → β

Figure 4.5: Temporal relationships of length-2 sequences

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 75

Case 6: β occurs before or after eij .

This is a combination of Cases 2 and 3. It has 2t insert positions.

Case 7: Combination of Cases 1, 2 and 3.

In this case, none of the insert positions can be eliminated, and we have to gener-

ate all 2t + 1 sequences (see Figure 4.5).

After Step 1, nodes 10, 14 and 17 will store the relevant length-2 sequences for node

24. The summary tree will capture the corresponding temporal constraints. Since these

constraints fall under Case 2, we can determine the feasible insert positions of event

d(l1) in node 21 (see column 2 in Figure 4.6).

3-flow 〈b(l4), f(l5)〉 → a(l8) with ext d(l1)

Length 2-sequences
insert position by

temporal constraints

insert position by

spatial constraints

Node 10 = {d(l1) → b(l4)} 1 1

Node 14 = {d(l1) → f(l5)} 1 1

Node 17 = {d(l1) → a(l8)} 1, 2, 3 1

Figure 4.6: Example of insert positions

Step 3. Reduce Feasible Insert Positions Based on Spatial Constraints

Having decided on the insert positions based on temporal constraints, we can fur-

ther optimize the set of insert positions based on the spatial constraint specified by flow

patterns. This is realized by considering the neighborhood constraints between the ex-

tension element and the corresponding eventsets.

Let p be the position in α where event β may be inserted, 1 ≤ p ≤ 2t + 1. The

position p is said to be a valid insert position if:

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 76

1. β is inserted into α as an explicit eventset such that (β, αb p
2
c) ∈ R and (β, αd p

2
e) ∈

R hold, or;

2. β is inserted into α as an element of the eventset αb p
2
c where (β, αb p

2
c) ∈ R,

(β, αb p
2
c−1) ∈ R and (β, αb p

2
c+1) ∈ R hold.

Insert positions that do not satisfy the above two conditions can be removed. Fig-

ure 4.6 (column 3) shows the final insert positions obtained for node 24.

Step 4. Generate New Flow Patterns

Step 3 yields a list of possible insert positions in which an extension element β can

be inserted into an existing (k-1)-flow to form a new k-flow. If a (k-1)-flow includes

m unique events, then there are m level 2 nodes that can be used to decide m sets of

feasible insert positions in α. The actual insert positions are determined by finding the

intersection of these m sets of feasible insert positions. This process is repeated for a

node until all the (k-1)-flows in the node have been examined.

In our running example, we have obtained the insert positions based on three nodes:

nodes 10, 14 and 17. The intersection of these insert positions results in only one final

insert position {1}, i.e., a new 4-flow d(l1) → 〈b(l4), f(l5)〉 → a(l8) being generated as

node 24. Since all the 3-flows in node 21 have been checked, the candidate generation

process for node 24 terminates.

Figure 4.7 shows the candidate generation algorithm. Its input includes node N at

level k−1, a upper triangle Tbl, where we store the case number of length-2 sequences,

and the extension element β. The child of the node N , N ′ (i.e. Node[N + ext]) at level

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 77

Procedure FlowCandGen

Input: N : the node at level k-1 in the Summary tree;

β: extension element;

Tbl: the cases table of two events

Output: N ′: the child of the node N at level k

1: Ck = ∅;

2: Cases = {Tbl[eij][β]|eij ∈ N};

3: for each (k-1)-flow α ∈ N {
4: for each ci ∈ Cases {
5: posi is the set of insert positions imposed by ci;

6: finalposi = ∅;

7: for each p ∈ posi {
8: if (((β is an explicit eventset) && (β, αb p

2
c) ∈ R && (β, αd p

2
e) ∈ R)

|| ((β is an element of αb p
2
c) && (β, αb p

2
c) ∈ R&& (ext, αb p

2
c−1) ∈ R

&& (ext, αb p
2
c+1) ∈ R)) {

9: finalposi = finalposi ∪ {p};

10: }
11: }
12: FinalPos =

⋂
i finalposi;

13: }
14: Ck=Ck

⋃{k-flows generated using FinalPos};

15: }
16: return Ck

Figure 4.7: Procedure of candidate generation

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 78

k + 1, is the output. Initially, the Cases of the relevant length-2 sequences are obtained

from the Tbl (line 2). Then, we find the initial insert positions using the Cases for each

(k-1)-flow in node N (lines 4-5), and further optimize the insert positions using the

neighborhood constraints at lines 6-9. The final positions are decided at line 12. The

process is continued until all (k-1)-flows in node N are examined. Finally, the k-flows

in node N ′ are generated.

4.2.3 Support Counting

Having generated the candidate patterns, we need to determine the frequencies of these

candidates. Our algorithm makes use of a hash tree. Each node in the hash tree is

associated with a hash table, where items of a candidate are hashed via some standard

hash function. Each entry of the hash table is a list of (item, pointer), where item

denotes the item that has been hashed to this entry, and pointer points to the node

containing the next item in the candidate.

When we add a candidate, we start from the root and descend the hash tree. At each

depth p of the interior node, we apply the hash function to the pth item of the candidate

and insert the corresponding (item, pointer) to the hash entry. The depth of the root

node is 1 and the node at depth p points to the node at depth p + 1. Figure 4.8 shows an

example of the construction of a hash tree for flow patterns.

In conventional algorithms [AS96], the hash tree is built for the candidates of each

level k, i.e., the leaf nodes are of the same depth. In our case, flow patterns of different

lengths are found simultaneously. To allow for this difference in lengths, we augment

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 79

interior

node

leaf node d(l
1
)g<b(l

4
),f(l

5
)>ga(l

8
)

d(l
1
)gb(l

4
)ga(l

8
)

d(l
1
)gf(l

5
)ga(l

8
)

root

augmented

interior node

(b(l
4
)

(f(l
5
)

...

(a(l
8
)

(f(l
5
)

a(l
8
) ...

...

d(l
1
) ... 1

2

3

4

5

depth

...
. . .

...

...

...

. . .

Figure 4.8: Hash tree for varying flow patterns length

some interior nodes of the hash tree with a list to store flow patterns. Figure 4.8 shows

a sample hash tree with two different flow pattern lengths.

After constructing the hash tree for all the candidate flow patterns, we scan the

database to count the number of occurrences of these candidate flow patterns. For each

sequence found in the database, we check whether the sequence S is a superflow of any

of the candidate flow patterns as follows:

For each event in S, we start at the root node, and recursively apply the hash function

to determine the corresponding hash table entry with a pointer to the child node. Once

we reach a leaf node or an augmented node, we check if S is a superflow of one of the

flow patterns stored in the leaf node/augmented node. If it is, we increment the support

count of the corresponding flow pattern.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 80

4.2.4 Pruning Techniques

In this section, we discuss various optimization techniques that are used to improve the

efficiency of FlowMiner.

Prune Infrequent Candidates

The summary tree is constructed in a depth-first manner. As we expand a node to

generate its children, some of the children may turn out to be unpromising as none of

their flow patterns are frequent. Thus, we can immediately prune off their descendants.

For example, if node 10 in Figure 4.4 is infrequent, that is to say the combination

of events b(l4) and d(l1) is infrequent. Hence, all the nodes in the summary tree that

contain the two events b(l4) and d(l1) can be pruned, e.g., node 22 and node 24. This is

achieved by removing d(l1) from the extension set of node 1.

To realize this pruning strategy efficiently, we associate a vertical bitmap with each

node n in the summary tree, denoted as bitmap(n). Each bit in the vertical bitmap

indicates the occurrence of flow patterns in node n in each time window in the database,

that is, if a flow pattern α appears in time window j, then bit j of bitmap(n) is set to

one; otherwise, it is set to zero.

With the vertical bitmap, we can quickly eliminate the unpromising nodes from

being generated by updating the appropriate extension set. When generating a new

node by extending node n with the extension item β, we only need to check whether

there is minsup ones in the result bitmap of bitmap(n) ∩ bitmap(β). If the sum of

ones is less than minsup, then we can conclude that the combination of events in node

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 81

n with β is infrequent. Hence, we can eliminate β from subsequent extensions of node

n.

Eliminate Hashing Non-promising Events

Another optimization lies in the support counting process. We observe that certain

events do not need to be hashed in the hash tree because they cannot be flow patterns,

and will not be able to contribute to the support counts of any of the flow patterns in the

hash tree. Suppose we have S = 〈d(l1), g(l3), a(l8)〉 → 〈b(l4), f(l5)〉 → 〈g(l2), a(l8)〉

in Figure 4.1. It is clear that g(l3), a(l8) are not related to d(l1), i.e., their locations are

not neighbors of each other. Thus, we do not need to search the corresponding hash

tree entries for them since there is no flow pattern involving these events. Based on

this observation, we introduce a check prior to an event being hashed to ensure that this

event satisfies both the reflexive and flow conditions in the flow pattern definition.

Delay Database Scans

A database scan is typically needed to determine whether a flow pattern α is frequent.

However, if we know that a superset of α is frequent, then we can immediately conclude

that α is frequent. This allows us to delay database scan, which ultimately minimizes

the number of database scans needed.

To achieve this, we store a list of the maximal frequent flow patterns, called Max-

Filter in the main memory. When a new node n is generated, we first check whether a

flow pattern in n is a sub-flow of some of the flow patterns in MaxFilter. If it is, then it

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 82

is frequent and we keep it in node n; otherwise, instead of scanning the database imme-

diately to decide its frequency, we keep its pointer in a list. A database scan is carried

out only when the number of flow patterns in the list exceeds the memory threshold, or

all descendants of node n have been generated.

In real-life applications, we may have thousands of maximal frequent flow patterns

which makes the sub-flow check expensive. In order to reduce the cost, instead of

storing all the maximal flows in MaxFilter, we only store the maximal sets that can

potentially be supersets of candidates generated from node N . We call this list the

local maximal frequent flow patterns, LMFSN . In this way, we can eliminate many

comparisons with the maximal sets that are not super- or sub- flows of node N .

4.2.5 FlowMiner Algorithm

Figure 4.9 shows the framework of FlowMiner. The database D is sorted first by time,

then by location. Lines 2-3 find all the frequent 1-flows and extend them to 2-flows in

a left-to-right order. Lines 6-11 call the procedure DFS-PathScan to generate k-flows

(k > 2).

DFS-PathScan (see Figure 4.10) generates nodes in a depth-first manner: Lines 2-3

generate node N ’s child N ′ and prune it using LMFNN . We delay the counting of

flow patterns and minimize the number of database scans needed at Lines 5-14. Line

15 updates LMFSN ′ with those maximal sets in LMFNN who contains all the events

in node N ′. Then we prune those unpromising extension events in Ext(N ′) at line

16 accordingly. Finally, we call DFS PathScan recursively to generate N ′ descendants

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 83

Algorithm FlowMiner

Input: D, Database;

R, spatial relation;

W , temporal relation;

minsup, minimum support;

Output: M , set of frequent flow patterns

1: M = ∅;

2: F1={all frequent location-based events (i.e. 1-flows)};

3: F2={all frequent 2-flows};

4: Filling the Tbl with frequent length-2 sequences;

5: i = 1;

6: for each level 2 node N and N 6= ∅ {
7: LMFNN = ∅;

8: Fi = DFS-PathScan(N ,LMFNN ,Tbl,minsup);

9: M = M ∪ Fi;

10: i + +;

11: }
12: Answer = M

Figure 4.9: Framework of the FlowMiner algorithm

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 84

Procedure DFS-PathScan(N , LMFSN , Tbl, minsup)

0: Pre-condition: F = ∅
1: for each exti ∈ Ext(N) {
2: N ′ = FlowCandGen(N , exti, Tbl);

3: Prune N ′ using LMFSN ;

4: LMFSN ′ = ∅;
5: if (k-flows in N ′ need to count)then

6: Add these k-flows to path;

7: if (k-flows in path ≥ memory threshold)then

8: Scan database for path;

9: for each α ∈ path {
10: if (sup(α) ≥ minsup) then

11: F = F ∪ {α};

12: if (∃β ∈ N, β ¹ α) then

13: Update LMFSN s.t. {γ ∈ LMFSN |γ � α, α � γ};

14: }
15: LMFSN ′ = LMFSN ′ ∪ {α ∈ LMFSN |exti ∈ α};

16: Ext(N ′) = Ext-combine(N ′, exti, N , minsup);

17: if there are frequent/uncertain flows in N ′ then

18: DFS-PathScan(N ′, LMFSN ′ , Tbl, minsup);

19: }
20: return F ;

Procedure Ext-combine(N ′,exti, N , minsup)

1: C = ∅
2: for each extj ∈ Ext(exti) {
3: if ((extj ∈ Ext(N))

&& (bitmap(extj) ∩ bitmap(N ′) ≥ minsup)) then

4: C = C ∪ extj ;

5: }
6: return C

Figure 4.10: Optimized algorithm

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 85

at lines 17-18. This process is continued until all the nodes in the summary tree are

generated or no additional frequent flow patterns are found.

4.2.6 Performance Study

In this section, we present the results of experiments to evaluate the effectiveness and

efficiency of FlowMiner on both synthetic and real-life datasets. The experiments are

carried out on a Pentium 4, 1.6 GHZ processor with 256MB memory running Windows

XP. The algorithm is implemented in C++.

Table 4.1: Parameters
Par.s Meaning Range

|D|] of time windows(× 10,000) 1,2,4,6,8,10
|C| Avg.] of eventsets per time window (W) 5,10,15,20
|T | Avg.] of events per Eventsets 2,4,6,8

• Synthetic Dataset. We augment the Quest synthetic dataset generator in [AS95]

to include spatial information by generating N item using F spatial features and

L locations. Our synthetic datasets are generated by setting N=10,000, F=1000

and L=100. Other parameters used are listed in Table 4.1.

• Real-life Datasets.

1. Meteorological dataset. We retrieve two years’ worth of standard meteo-

rological data for eight closely located stations from the Nation Data Buoy

Center1. The data consists of 10 continuous features being recorded at an

1http://www.ndbc.noaa.gov/rmd.shtml

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 86

hourly interval. We first discretize the features and then divide the space

into grids for the locations to distribute uniformly.

2. Forest Fire dataset. Two years of forest fire satellite images, which include

2,495,097 forest fire occurrences, are obtained from a remote imaging cen-

ter. We divide the region into 49 grids whereby each region is 10 degrees in

the longitudinal direction and 10 degrees in the latitudinal direction.

The characteristics of the datasets are shown in Table 4.2.

Table 4.2: Real-life dataset characteristics
Dataset] loc.] features. avg.len.of eventsets] eventsets

Meteorological 8 30 20 17520

Forest Fire 49 10 13 16650

Experiments on Synthetic Dataset

We first examine how the various parameters listed in Table 4.1 affect the performance

of FlowMiner. Figure 4.11, Figure 4.12, Figure 4.13 and Figure 4.14 show the results

for the synthetic dataset. In general, we observe that the runtime of FlowMiner increases

when the minimum support is small. This is because many flow patterns become fre-

quent and the length of the frequent flow patterns tends to be long when minimum

support is small.

Figure 4.11 shows the effect when the parameter C (i.e., time window length W)

varies from 5 to 20. The runtime of FlowMiner grows as C increases. This is expected

as an increase in time window length implies a longer data sequence, which in turn

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 87

1 2 3 4 5
5

10

15

20

25

30

35

40

45

50

minimum support (%)

ti
m

e
 (

s
)

T2D10K

C = 5
C = 10
C = 15
C = 20

Figure 4.11: Varying parameter C (synthetic dataset)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1000

1200

minimum support (%)

ti
m

e
 (

s
)

C10D10k

T = 2
T = 4
T = 6
T = 8

Figure 4.12: Varying parameter T (synthetic dataset)

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 88

1 1.5 2 2.5 3 3.5 4 4.5 5
10

12

14

16

18

20

22

24

26

28

30

minimum support (%)

tim
e
 (

s)

C10T2D10k

R = 1
R = 3
R = 5
R = 7

Figure 4.13: Varying parameter R (synthetic dataset)

20 30 40 50 60 70 80 90 100
280

290

300

310

320

330

340

350

360
C10T2

number of time windows (D)

ti
m

e
 (

s
)

sup = 0.1
sup = 0.25
sup = 0.5

Figure 4.14: Varying parameter D (synthetic dataset)

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 89

implies longer flow patterns.

Figure 4.12 shows the runtime of FlowMiner for varying values of T . We observe

that the runtime of FlowMiner grows as T increases because the size of an eventset and

the length of the sequences in the databases become large. Hence, many flow patterns

tend to be frequent and longer.

Figure 4.13 shows the performance of FlowMiner when the size of neighborhood

relation R (i.e., length of a unit square) varies from 1 to 7. We observe that the runtime

of FlowMiner remains almost constant, and grows slightly when R is 7. The expla-

nation is: As the size of R increases, more events qualify as belonging to the spatial

neighborhood of an event. As a result, the length of frequent flow patterns tends to

increase, and the number and size of candidates grow rapidly.

Finally, we evaluate the performance of FlowMiner by varying the parameter D that

is the number of time windows from 20,000 to 100,000. Figure 4.14 shows that the time

taken by FlowMiner scales well with the increase in number of time windows.

Experiments on Real-life Datasets

Next, we examine the performance of FlowMiner on real-life datasets. Figure 4.15

shows the results on the meteorological dataset for time window length of 6, 9 and

12 time units respectively, Figure 4.16 shows the results when the spatial neighbor

relation R is varied, and Figure 4.17 shows the results when the size of the database

is varied. The results are consistent with those obtained on the synthetic dataset. Note

that in Figure 4.17, the replication factor is a value to inflate the database size to test the

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 90

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

1600

1800

minimum support (%)

ti
m

e
 (

s
)

meteorological dataset

W = 6
W = 9
W = 12

Figure 4.15: Runtime vs. parameter minsup (real-life dataset)

scalability of our algorithms.

We also discovered meaningful flow patterns in the real-life datasets. Figure 4.19

shows a sample of the flow patterns found in the forest fire dataset by setting the min-

imum support with the value 0.17%. There are in total 2908 frequent flow patterns

found in the dataset. To identify the interesting frequent flow patterns, we cross-match

the flow patterns with the corresponding weather maps. The corresponding interesting

flow patterns are shown below the graphs. The events related to the fire in the patterns

are indicated as the rectangle floated in the space according to time, and the correspond-

ing locations are indicated using the white color in the space. The fire spots depict two

distinct spread patterns: the first is from West to East as shown in Figure 4.19(a), which

occurs mostly in March and the beginning of April; and the second is from South to

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 91

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

length of square unit (R) (sup = 0.5)

ti
m

e
 (

s
)

meteorological dataset

W = 6
W = 9
W = 12

Figure 4.16: Runtime vs. spatial neighbor relation R (real-life dataset)

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

replication factor

ti
m

e
 (

s
)

meteorological data (W = 6, sup = 0.3)
meteorological data (W = 6, sup = 0.2)
forest fire data (W = 7, sup = 0.02)
forest fire data (W = 7, sup = 0.05)

Figure 4.17: Scalability (real-life dataset)

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 92

Northwest as shown in Figure 4.19(b), which happens mostly in April and May.

Evaluation of Optimization Techniques

Finally, we investigate how the three optimization techniques, namely, prune infre-

quent candidates (Opt1), eliminate hashing non-promising events (Opt2), and delay

database scan (Opt3) enhance the efficiency of FlowMiner. We use the synthetic dataset

C10T2D10K, and set R to be a square of unit length 3 for this experiment.

Figure 4.20 shows that the greatest gain is obtained by delaying database scans.

This is to be expected because the number of database scan plays an important role in

the performance of FlowMiner.

Comparative Study

We observe that FlowMiner reduces to a sequence mining algorithm when the spatial

relation R is the whole space. This allows us to compare FlowMiner with existing se-

quence mining algorithms. We compare it with GSP and PrefixSpan. We implement

GSP and PrefixSpan according to [AS96, PHMAP01]. In this set of experiments, we

compare FlowMiner algorithm with others for mining the complete set of sequences.

Figure 4.21 shows the results for the synthetic dataset C10T2D10k. Figure 4.21(a)

gives the runtime when the minimum support is varied, and Figure 4.21(b) records the

amount of memory used by the three algorithms. We observe that FlowMiner outper-

forms GSP. PrefixSpan outperforms FlowMiner when minimum support is large; but

when minimum support is low, FlowMiner outperforms PrefixSpan. The amounts of

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 93

〈F (l29), F (l30)〉 → 〈F (l30), F (l32)〉 → F (l38) → 〈F (l37), F (l38)〉
(a)

〈F (l32), F (l38)〉 → F (l32) → F (l34)

(b)

Figure 4.18: Flow patterns [Trend 1: from West to East in March and April]

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 94

〈F (l31), F (l32)〉 → F (l38) → 〈F (l37), F (l38)〉 → F (l37) → F (l29)

F (l6) → 〈F (l26), F (l27)〉 → F (l32) → F (l38)

(b)

Figure 4.19: Flow patterns [Trend 2: from South to Northwest in April and May]

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 95

1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120
C10T2D10k−R3

ti
m

e
 (

s
)

minimum support (%)

No−Opt
Opt 1
Opt 2
Opt 3
Opt−All

1 1.5 2 2.5 3 3.5 4
0

5

10

15
C10T2D10k−R3

#
 o

f
d

a
ta

b
a

se
 s

ca
n

s
(s

)

minimum support (%)

No−Opt
Opt 3

Figure 4.20: Effect of optimizations

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 96

1 1.5 2 2.5 3 3.5 4 4.5 5
0

200

400

600

800

1000

1200

1400

1600

1800

minimum support (%)

ti
m

e
 (

s
)

C10T2D10k

FlowMiner
PrefixSpan
GSP

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

minimum support (%)

m
e

m
o

ry
 (

k
)

C10T2D10k

FlowMiner
PrefixSpan
GSP

Figure 4.21: Comparative study (sequence patterns)

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 97

Table 4.3: Comparison of candidates generated
Number of Candidates Generated

Algorithm Support threshold
1 2 3 4 5 6

FlowMiner 15679 7573 3731 1832 891 428

FlowMiner (counted support) 515 62 35 33 31 29
GSP 15648 7543 3719 1820 879 416

enumeration (-based) 60926 30251 14962 7347 3582 1699

memory used by both FlowMiner and GSP are much smaller than that used by PrefixS-

pan.

The results confirm that FlowMiner is more scalable as compared to PrefixSpan.

When minimum support is large, the set of frequent sequences is small. Hence, Pre-

fixSpan runs slightly faster than FlowMiner. However, when minimum support is low,

the set of frequent sequences becomes larger and the length of the frequent sequences

tends to be longer. As a result, PrefixSpan needs more time and memory to obtain and

store the large number of projection databases. In contrast, FlowMiner, with its small

set of candidates generated and its optimization techniques, is able to save much time

and memory. Hence, FlowMiner excels at finding frequent sequences when minimum

support is small.

We also compare the candidate generation of FlowMiner with the Apriori-like can-

didate generation for BFS algorithms such as GSP[AS96], and the enumeration-based

candidate generation for DFS algorithms such as DFS Mine[TG01], SPADE[Zak98].

Table 4.3 shows the results based on the synthetic dataset C10T2D10k. We observe

that the total number of candidates generated by FlowMiner is comparable to that by

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 98

GSP algorithm, but much fewer than that by the enumeration-based process. Moreover,

we see that the size of candidates really needed for counting support in FlowMiner is

much smaller. This is due to FlowMiner’s adoption of a depth-first search strategy,

which could find long frequent patterns quickly. Another reason is the further improve-

ment realized through using the filter LMFN , which helps decide the frequency of

candidates quickly.

4.3 GenSTMiner: Mining Generalized Spatio-temporal

Patterns

In Section 4.2, we introduced the flow patterns, which aim to capture the evolution of

events in neighboring regions over time. While flow patterns can clearly capture the

flow of events to some degree, they rely heavily on the assumption that these events

will repeat themselves in exactly the same locations. However, in some applications,

the absolute locations in which an event e has occurred are not important. Rather, it is

the relative locations of events with respect to event e that are interesting.

In this section, we introduce a new class of spatio-temporal patterns called gen-

eralized spatio-temporal patterns to summarize the sequential relationships between

events that are prevalent in sharing the same topological structures. We adopt the pattern

growth approach and develop an algorithm called GenSTMiner to discover generalized

spatio-temporal patterns. To increase efficiency of the mining process, we also present

two optimization techniques. The first is the use of conditional projected databases to

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 99

Time

(day)t
1

15 4530

c g

c g

t
2

t
3

g
a
f

d

c
c

a g c

t
4

t
5

t
6

t
7

g

c

c

a

f da

f ddf

a

df

a x

y

Space
0 2 4

2

4

(a) Space-time view

Window ID Time Eventsets

t1 a(0, 0), c(3, 2), f(0, 1)
1 t2 a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)

t3 d(2, 3), g(3, 4)

2 t4 a(1, 1), f(1, 2), g(0, 0)

t5 a(1, 1), c(4, 3), d(3, 0), f(1, 2)
3 t6 a(0, 2), c(2, 1), c(3, 4), d(2, 2), f(0, 3), g(3, 3)

t7 a(0, 4), c(2, 2), c(4, 4), d(1, 3), g(2, 4)
(b) Datasets of Events

Figure 4.22: Example spatio-temporal database (W = 15days, R = 1)

prune infeasible events and sequences, and the second is pseudo projection to reduce

memory requirement.

4.3.1 Problem Statement

We introduced the framework of spatio-temporal databases in Section 4.1. Here, we

assume that a location is denoted as l = (x, y), and a location-based event as e(x, y, t).

For example, Figure 4.22 shows an example of a spatio-temporal database which

records the various locations where cyclones and storm occur over time. The space

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 100

(shown in Figure 4.22(b)) is partitioned into 25 disjoint locations, and the time is divided

into three disjoint time windows. Figure 4.22(a) shows the events {a, b, c, d, etc} that

are observed at various locations over time.

Some sequences in Figure 4.22(a) that satisfy the flow pattern definition are as fol-

lows:

〈a(0, 0), f(0, 1)〉 → d(1, 1)

〈a(1, 2), f(1, 3)〉 → d(2, 3)

〈a(1, 1), f(1, 2)〉 → d(2, 2)

〈a(0, 2), f(0, 3)〉 → d(1, 3)

Each of the above flow patterns occurs only once and will be discarded by most

mining algorithms. However, a closer examination reveals that these patterns actually

convey some interesting behavior of the cyclones, i.e., “Event a in an area that has

been hit by the storm always leads to event f in its Northern neighbors and event d

in its Northeastern neighbors.” In other words, the absolute locations in which event a

has occurred are not important. Rather, it is the relative locations of event d or f with

respect to event a that are interesting.

We have noted that relative addresses play an important role in capturing the invari-

ant topological relationships of a pattern. In order to incorporate the concept of relative

addresses, we first select a reference location denoted as lref = (xref , yref). We map

each occurring event e1(x1, y1), e2(x2, y2), . . . , em(xm, ym) to its corresponding relative

occurring location as e1(x1 − xref , y1 − yref), e2(x2 − xref , y2 − yref), . . . , em(xm −

xref , ym − yref).

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 101

A RelativeEventset is a set of mapped events that occur at the same time t, denoted

as
−→
E = E〈e1(x1 − xref , y1 − yref), e2(x2 − xref , y2 − yref), . . . , em(xm − xref , ym −

yref)〉. We assume that all events in a RelativeEventset are listed alphabetically. A

RelativeEventset
−→
E p is a CloseNeighbor of a RelativeEventset

−→
E q if every event in

−→
E p

is a CloseNeighbor of every event in
−→
E q, denoted as (

−→
E p,

−→
E q) ∈ (R, W).

Definition 2 (Generalized spatio-temporal pattern)

A generalized spatio-temporal pattern is a sequence of RelativeEventsets, and all the

RelativeEventsets are CloseNeighbors of each other, denoted as,
−→
E 1 → −→

E 2 → · · · →
−→
E m, s.t. ∀i, j ∈ (1..m), (

−→
E i,

−→
E j) ∈ (R, W).

Note that generalized spatio-temporal patterns can be specialized to spatial patterns

and sequential patterns. When the space is reduced to a single location (i.e., S → 0),

the spatio-temporal pattern is simply the sequential pattern. On the other hand, if we

limit the time window to a snapshot (i.e., t → 0), we will have the co-located events

among the spatial neighborhoods [SH01].

A generalized spatio-temporal pattern is said to be frequent if there are at least t-

minsup (i.e., temporal support) different occurrences of the pattern over time, and in

each time window, there are at least s-minsup (i.e., spatial support) patterns occurring

in the space. A generalized spatio-temporal pattern involving k different events is called

a k-generalized spatio-temporal pattern.

Given two generalized spatio-temporal patterns, P =
−→
E 1 → . . . → −→

E m and Q =

−→
E ′

1 → . . . → −→
E ′

m. Let P ′ be generated by concatenating P with Q, denoted as P ′ =

P ·Q. P is called the prefix of P ′, and Q the suffix of P ′. Q can be concatenated with P

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 102

in two ways, namely Q is an eventset extension, i.e.
−→
E 1 → . . . → (

−→
E m ∪−→

E ′
1) →

−→
E ′

m

or Q is a sequence extension, that is
−→
E 1 → . . . → (

−→
E m → −→

E ′
1) → . . . → −→

E ′
m.

Suppose there is a lexicographic ordering ≤ among the set of events in the spatio-

temporal database. For example, given two events e1(x1, y1) and e2(x2, y2), e1(x1, y1) ≤

e2(x2, y2) if and only if (i) e1 ≤ e2, or (ii) e1 = e2, x1 ≤ x2, or (iii) e1 = e2, x1 =

x2, y1 ≤ y2.

In this section, we focus on finding frequent generalized spatio-temporal patterns

by exploiting their similarity to sequence patterns. Among many sequence mining al-

gorithms, we focus on the pattern growth method because it has been shown to be

one of the most effective methods for frequent pattern mining and is superior to the

candidate-maintenance-test approach, especially on a dense database or where there is

low minimum support threshold [HP00]. As a divide-and-conquer method, the pattern

growth method partitions the database into subsets recursively, but does not generate

candidate sets. It also makes use of the Apriori property to prune the search space and

count the frequent patterns in order to decide whether it can assemble longer patterns.

4.3.2 Projection-based Sequential Pattern Mining

We explain the pattern growth approach and illustrate the algorithm PrefixSpan[PHMAP01],

which provides a general framework for the pattern growth method in Section 3.2. The

basic idea of PrefixSpan is to use a set of locally frequent items to grow patterns.

We examine how PrefixSpan can be used to discover generalized spatio-temporal

patterns. It first needs to find all frequent sequential patterns that satisfy t-minsup.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 103

Next, it scans each time window and checks if there are s-minsup spatial-sequences

which are instances of frequent sequential patterns and all eventsets in a spatial-sequence

are CloseNeighbors, and adds them into the candidate sets. Finally, all frequent gen-

eralized spatio-temporal patterns are obtained by mapping the spatial-sequences in the

candidate sets into their relative addresses, where their support is larger than or equal to

s-minsup.

Although PrefixSpan could find all the frequent generalized spatio-temporal pat-

terns, it is neither efficient nor scalable as it needs to maintain a lot of sequence or

spatial-sequence patterns in memory before it finds the final set of generalized spatio-

temporal patterns. Further, it needs to scan the database more than twice.

4.3.3 GenSTMiner Algorithm

In this section, we describe an efficient algorithm called GenSTMiner that follows the

framework of pattern growth methods and finds the complete set of generalized spatio-

temporal patterns directly without maintaining a large number of candidates. We also

devise optimization techniques that eliminate redundant candidates, and reduce the size

of the projected database so that it fits into the memory. The GenSTMiner algorithm

consists of the following three steps:

1. First, find the set of frequent events F1 (1-general spatial-sequences) by scanning

the database once, and sort them according to their lexicographic order.

2. Next, divide the set of frequent patterns into |F1| partitions and retrieve the pro-

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 104

jected database PDBe of each event e ∈ F1 from the database D. Then, for each

sequence in PDBe, choose its reference location and map events in it into their

relative locations. The transformed PDBe is called the generalized projected

database, denoted as GDBe.

3. Finally, based on GDBe, find all frequent k-generalized spatio-temporal patterns

prefixed with e by constructing and mining the projected databases of the length-k

generalized spatio-temporal patterns recursively.

The spatial support of an event in a time window can be determined by the number

of different locations where it occurs, that is, an event is frequent in a time window if

it occurs in at least s-minsup locations. The temporal support of an event is decided

by the number of different time windows where it is spatially frequent. Only when the

temporal support of an event is larger than t-minsup, it is considered frequent.

Note that in the second step, we use all the instances of an event e regardless of their

locations in an input sequence in the database to retrieve the projection database of the

event e. For the same instances of the event e (same location), we only consider the first

occurrence of it. This differs from PrefixSpan which considers only the first occurrence

of the event e in an input sequence.

Consider Figure 4.22(c). Suppose R = 1, W = 15days, and the input sequence

s1 = 〈a(0,0), c(3, 2), f(0, 1)〉 → 〈a(1,2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3),

g(3, 4)〉. Suppose we want to retrieve the projection of s1a. Since there are two instances

of a in s1, namely a(0, 0) and a(1, 2), the projection of s1a consists of two subsequences:

〈‡, c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉 and

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 105

Wid Sid Sequences Prefix

1 1 〈‡, c(3, 2), f(0, 1)〉 → 〈a(1, 2), c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 →
〈d(2, 3), g(3, 4)〉

a(0, 0)

2 〈‡, c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉 a(1, 2)

2 1 〈‡, f(1, 2), g(0, 0)〉 a(1, 1)

1 〈‡, c(4, 3), d(3, 0), f(1, 2)〉 → 〈a(0, 2), c(2, 1), c(3, 4), d(2, 2),

f(0, 3), g(3, 3)〉 → 〈a(0, 4), c(2, 2), c(4, 4), d(1, 3), g(2, 4)〉
a(1, 1)

3 2 〈‡, c(2, 1), c(3, 4), d(2, 2), f(0, 3), g(3, 3)〉 → 〈a(0, 4), c(2, 2), a(0, 2)

c(4, 4), d(1, 3), g(2, 4)〉
3 〈‡, c(2, 2), c(4, 4), d(1, 3), g(2, 4)〉 a(0, 4)

Figure 4.23: Projected database of event a

〈‡, c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉→ 〈d(2, 3), g(3, 4)〉. Figure 4.23 shows the a-projected

database obtained from Figure 4.22(c).

Having obtained the projected database of the frequent events, we need to choose

the reference locations of the sequences, and then map events in a sequence into their

relative locations. Here, the problem is how to choose the reference location.

Choice of Reference Location

We can either use the location of the event e or the base location of a sequence as

the reference location. The base location of a sequence s is given by {(x, y)|∀xij ∈

s, yij ∈ s, x = min(xij), y = min(yij)}. If we use the base location of a sequence

as the reference location, then we may change the center of the topological structure to

another event since the base locations of the sequences in the projected database may

not be the locations of the event e.

For example, the a-projected database consists of two sequence s1 = d(0, 1) →

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 106

WidSid Sequences LF

1 1 〈‡, c(3,2), f(0,1)〉 → 〈a(1, 2), c(4, 4),d(1,1), f(1, 3),g(2,2)〉 →
〈d(2, 3), g(3, 4)〉

〈‡, c(3, 2)〉,

2 〈‡, c(3,2), d(0,−1), f(0,1), g(1, 0)〉 → 〈d(1,1),g(2,2)〉 〈‡, f(0, 1)〉,
2 1 〈‡, f(0, 1), g(−1,−1)〉 d(1, 1),

1 〈‡, c(3,2), d(2,−1), f(0,1)〉 → 〈a(−1, 1), c(1, 0), c(2, 3),d(1,1),

f(−1, 2),g(2,2)〉 → 〈a(−1, 3), c(1, 1), c(3, 3), d(0, 2), g(1, 3)〉
g(2, 2)

3 2 〈‡, c(2,−1), c(3,2), d(2, 0), f(0,1), g(3, 1)〉 → 〈a(0, 2), c(2, 0),

c(4, 2),d(1,1),g(2,2)〉
3 〈‡, c(2,−2), c(4, 0), d(1,−1), g(2, 0)〉

Figure 4.24: Generalized projected database of event a

〈a(1, 2), g(2, 2)〉 and s2 = a(1, 2) → 〈f(1, 3), g(2, 2)〉, and base(s1) = (0, 1), base(s2) =

(1, 2). If we choose the base locations of the sequences as the reference locations, then

the center of the topological structure of s1 is changed to the event d, instead of a.

Hence, to keep all the events in the generalized spatio-temporal patterns consistent

in their topological structure, we use the location of the event e as the reference location.

Figure 4.24 shows the generalized projected database of the event a.

Mining k-Generalized Spatio-Temporal Patterns

Having obtained the generalized projected database of an event e, we proceed to dis-

cover the frequent k-generalized spatio-temporal patterns (k ≥ 2) that are prefixed

with it. We first find the set of the locally frequent events LFe. Then, for each valid

event in LFe, we generate the (k + 1)-generalized spatio-temporal patterns, construct

its projected database, and mine it recursively. Note that in the projected database of a

length-k generalized spatio-temporal pattern, the spatial support of a local event at time

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 107

window i is decided by the number of sequences in the projected databases that contain

it, and the temporal support is up to the number of time windows where it is spatially

frequent.

For example, let R = 1, W = 15days, s-minsup = 2 and t-minsup = 2. We want

to retrieve all the frequent generalized spatio-temporal patterns prefixed with a in Fig-

ure 4.24. First, by mining GDBa, we can obtain the set of its locally frequent events,

i.e., LFa = {〈‡, c(3, 2)〉, 〈‡, f(0, 1)〉, d(1, 1), g(2, 2)}. Note that 〈‡, c(3, 2)〉 means

c(3, 2) is an eventset extension, and d(1, 1) a sequence extension. With LFa, we can

generate four frequent patterns: 〈a(0, 0), c(3, 2)〉, 〈a(0, 0), f(0, 1)〉, a(0, 0) → d(1, 1)

and a(0, 0) → g(2, 2). However, since 〈a(0, 0), c(3, 2)〉 /∈ R and 〈a(0, 0), g(2, 2)〉 /∈ R,

only P21 = 〈a(0, 0), f(0, 1)〉 and P22 = a(0, 0) → d(1, 1) are frequent 2-generalized

spatio-temporal patterns.

Next, the frequent generalized spatio-temporal patterns prefixed with a can be fur-

ther partitioned into two subsets: one prefixed with P21, and the other prefixed with P22.

We can construct their projected database respectively and mine them recursively. The

process continues until there are no more valid locally frequent events found.

In a similar way, we can find the k-generalized spatio-temporal patterns prefixed

with the events c, d, f and g respectively. The final set of frequent generalized spatio-

temporal patterns is the collection of patterns found in the above recursive mining pro-

cess.

Figure 4.25 shows the GenSTMiner algorithm. It first scans the database once to find

the frequent 1-generalized spatio-temporal patterns F1 (line 2), treats each ek ∈ F1 as a

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 108

prefix, builds its projected database PDBek
, and then transforms PDBek

into GDBek

(lines 3-5). Next, it calls the subroutine Ptn-growth method (line 6). The subroutine

Pattern-growth method recursively calls itself and works as follows: For prefix e, it

scans its projected database once to find its locally frequent events (line 9), it grows

e with each valid locally frequent event to get a new prefix e′, it builds the projected

database for the new prefix, and it calls itself recursively (lines 12-16).

Compared to PrefixSpan, GenSTMiner can find the complete set of generalized

spatio-temporal patterns by generating a much smaller set of candidates. The following

section describes optimization techniques to reduce further the number of candidates

generated and further reduce memory requirement.

Conditional Projected Database

We observe that not every event or eventset in the sequence in the database partici-

pates in generalized spatio-temporal patterns. In order to eliminate those non-promising

events or eventsets in the projected database of an event, we introduce the concept of

the conditional database with respect to an event e.

Given an input sequence s in the databaseD, the conditional spatial-sequences w.r.t.

an event e of s is the set of subsequences of s prefixed with e, and each of them is a

spatial-sequence and all the eventsets in these subsequence are CloseNeighbors of the

event e.

For example, given the input sequence s = 〈a(0,0), c(3, 2), f(0, 1)〉 → 〈a(1,2),

c(4, 4), d(1, 1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉, and R = 1, W = 15days. We

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 109

Algorithm GenSTMiner

Input: D, the spatio-temporal database;

R, size of spatial neighbor relation;

W , size of time window;

s-minsup, minimum spatial support;

t-minsup, minimum temporal support.

Output: M : set of generalized spatio-temporal patterns

1. M = ∅;

2: F1 = {all the frequent events};

3: for each ek ∈ F1 do

4: PDBek
= projected database(D, ek);

5. Convert PDBek
into GDBek

;

6: Call Ptn-growth(ek,GDBek
,s-minsup,t-minsup);

7: return M

Procedure Ptn-growth(α, PDBα,s-minsup,t-minsup)

8: M = M ∪ α;

9: Scan PDBα once and get all frequent LF ;

10: if LF is empty then

11: return;

12: for each ej ∈ LF do

13: if ∀ei ∈ α, (ei, ej) ∈ (R, W) then

14: α′ = α · ej ;

15: PDBα′ = projected database (PDBα, α′);

16: Call Ptn-growth(α′,PDBα′ ,s-minsup,t-minsup);

17: return

Figure 4.25: The GenSTMiner algorithm

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 110

want to retrieve the conditional spatial sequence of the event a. Notice that there are

only two instances of a in s, i.e., a(0, 0) and a(1, 2). First, for the instance a(0, 0), there

are only two events f(0, 1) and d(1, 1) in s that can form a conditional spatial sequence

together with a(0, 0); for the instance a(1, 2), the events d(1, 1), f(1, 3), g(2, 2) and

d(2, 3) are valid. Hence, the final sa consists of two sequences 〈a(0, 0), f(0, 1)〉 →

d(1, 1) and 〈a(1, 2), d(1, 1), f(1, 3), g(2, 2)〉 → d(2, 3).

The collection of all the conditional spatial-sequences w.r.t. an event e in the database

D forms the conditional database w.r.t. an event e. All the conditional spatial-sequences

are ordered according to their time.

GenSTMiner obtains the projected database of an event e from its conditional database,

instead of database D. This effectively removes unpromising events from the projected

databases of the event e. For simplicity, we call the projected databases of an event e

retrieved from the conditional database as the conditional projected databases w.r.t the

event e or e-conditional projected databases.

For example, Figure 4.26 shows the a-conditional projected database retrieved from

Figure 4.22(c) by setting R = 1. Clearly, the a-conditional projected database is much

more compact than the a-projected database (see Figure 4.23).

While the conditional database can be used to remove unpromising events from the

event e-projected database, there are still unpromising events when we further construct

the projected database of length-k (k > 2) generalized spatio-temporal patterns. We use

the Apriori checking as in [PHMAP01] to prune events during the construction of the

projected databases of length-k generalized spatio-temporal patterns.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 111

Wid Sid Conditional spatial-sequences Prefix

1 〈‡, f(0, 1)〉 → 〈d(1, 1)〉 a(0, 0)

1 2 〈‡, d(1, 1), f(1, 3), g(2, 2)〉 → d(2, 3) a(1, 2)

2 1 〈‡, f(1, 2), g(0, 0)〉 a(1, 1)

1 〈‡, f(1, 2)〉 → 〈a(0, 2), c(2, 1), d(2, 2)〉 → c(2, 2) a(1, 1)

3 2 〈‡, f(0, 3)〉 → d(1, 3) a(0, 2)

3 〈‡, d(1, 3)〉 a(0, 4)

Figure 4.26: a-conditional projected database

To construct the P -conditional projected database, where P is a length-l generalized

spatio-temporal pattern, let E be the last element of P and P ′ be the prefix of P such

that P = P ′ · E.

If P ′ ·x is not frequent, then event x can be excluded from projection. For example,

if we know that a(0, 0) → g(0, 1) is not frequent, then event g(0, 1) can be excluded

from the construction of a(0, 0) → d(1, 1)-conditional projected databases.

However, if P ′ · x is frequent, but there ∃e ∈ P, s.t.〈e, x〉 /∈ R, then event x can

be excluded from the projection. For example, let R = 1 and 〈a(0, 0), g(−1,−1)〉 is

frequent, but since 〈f(0, 1), g(−1,−1)〉 /∈ R, we can remove g(-1,-1) from the con-

struction of 〈a(0, 0), f(0, 1)〉-conditional projected database.

Moreover, let E ′ be formed by substituting any item in E by x. If P ′ ·E ′ is not fre-

quent, then event x can be excluded from the first element of the suffix of the element

that is a superset of e. For example, suppose a(0, 0) → 〈b(0, 1), f(1, 1)〉 is not fre-

quent. To construct a(0, 0) → 〈b(0, 1), c(0, 1)〉-projected database, conditional spatial-

sequence a(0, 0) → 〈(b(0, 1), c(0, 1), f(1, 1), g(1, 1)〉 → d(0, 1) should be projected to

〈‡, g(1, 1)〉 → d(0, 1).

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 112

Pseudo-projection

In general, we obtain projected databases by scanning the sequences at each time win-

dow in the databases. However, after scanning the projected databases, we have known

the time windows in which the locally frequent event e is not spatially frequent. Hence,

there is no need to scan such time windows to get the projection sequences of the event

e. For example in Figure 4.22(c), we know that event a is not spatially frequent at time

window 2. Hence, we can stop retrieving projection of sequences prefixed with a at

time window 2. To realize this, for each locally frequent event e, we use a bitmap to

record the time windows in which it is frequent. We only retrieve the projection of the

sequences from the time windows where its corresponding value in the bitmap is set to

1. Moreover, we could get the frequent period of a generalized spatio-temporal pattern

by scanning the bitmap once.

Additionally, when we retrieve the conditional projected database w.r.t. an event e,

we observe that an event ek in the sequence in the database may appear many times in

the e-conditional projected database. The cost of the projection (constructing the con-

ditional projected database recursively) becomes a major cost in GenSTMiner. We can

use the pseudo-projection technique in PrefixSpan to reduce the cost of the projection.

In PrefixSpan, pseudo-projection is used to avoid physically copying suffixes. When

the database can be held in main memory, instead of constructing a physical projection

by collecting all suffixes, pseudo-projection uses pointers referring to the sequences

in the database. Every projection consists of two pieces of information 〈pointer, off-

set〉, where pointer points to the sequence in the database and offset indicates the start

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 113

s = 〈a(0, 0), c(3, 2), f(0,1)〉 → 〈a(1, 2), c(4, 4),d(1,1), f(1, 3), g(2, 2)〉 → 〈d(2, 3), g(3, 4)〉
prefix physical projection pseudo projection

sa a(0, 0) 〈‡, f(0, 1)〉 → d(1, 1) 〈pointer to s, 3, 10010000, (0,0)〉
a(1, 2) 〈‡, d(1, 1), f(1, 3), g(2, 2)〉 → d(2, 3) 〈pointer to s, 6, 11110, (1,2)〉

Figure 4.27: Example of pseudo-projection

position of the suffix in the sequences.

Unlike in PrefixSpan where only the first occurrence of an item is considered, Gen-

STMiner needs to consider the suffixes in an input sequence prefixed with different

instances of the event e. Hence, the problem of pseudo-projection becomes more com-

plicated.

In GenSTMiner, every projection consists of four pieces of information: 〈pointer,

offset, bitmap, refloc〉, where pointer points to the sequence in the database, offset indi-

cates the start position of the suffixes in the sequence, bitmap indicates the appearance

of the events in the suffixes of the sequence in the conditional spatial sequence w.r.t.

the event e, size of bitmap is equivalent to the number of events in the suffixes of the

sequence, and refloc stores the reference location of the conditional spatial sequence.

Figure 4.27 shows an example of the pseudo-projection of a sequence in the database.

4.3.4 Performance Evaluation

We implement the algorithms in C++ and evaluate their performance on both synthetic

and real-life datasets. The experiments are carried out on a Pentium 4, 1.6 GHZ pro-

cessor with 256MB memory running Windows XP.

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 114

Experiments on Synthetic Dataset

We augment the IBM Quest synthetic data generator 2 to include spatial information

by generating N items using F spatial features and L locations. We generate datasets

by setting N = 10, 000, F = 1, 000, L = 100. The other parameters are D, number

of sliding windows (= size of Database); C, average number of eventsets in a sliding

window; and T , average number of events in an eventset. We evaluate the performance

of GenSTMiner on the synthetic dataset C10T10D10k by varying the parameters R,

t-minsup, and s-minsup. We test the performance of GenSTMiner with and with-

out optimization techniques and compare it with PrefixSpan. The results are shown

in Figures 4.28, 4.29 and 4.30. The results indicate that GenSTMiner outperforms

PrefixSpan, especially when it uses optimization techniques. This is expected as the

pruning techniques we use in GenSTMiner not only reduce the size of the projected

databases, but also eliminate infeasible events and sequences.

Figure 4.28 shows the efficiency of the algorithms when the size of the spatial neigh-

bor relation R is varied. Figure 4.28(a) shows that the runtime of GenSTMiner grows

linearly as spatial neighbor relation R increases. When R is large, the number of spa-

tial neighborhoods of an event tends to be large, and the length of frequent patterns

increases (see Figure 4.28(b).

Figure 4.29 shows that GenSTMiner requires more time to find frequent patterns

when t-minsup is small. This is due to more local frequent patterns becoming globally

frequent when t-minsup is small. As a result, the size of frequent patterns become

2http://www.almaden. ibm.com/software/quest

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 115

1 2 3 4 5 6 7 8 9

200

300

400

500

600

700

800

spatial neighbor relation R (tsup = 0.1, ssup = 2)

ti
m

e
 (

s
)

C10T10D10k

GenSTMiner with Opt
GenSTMiner
PrefixSpan

(a)

1 2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

10
5

10
6

spatial neighbor relation R (tsup = 0.1, ssup = 2)

#
 o

f
fr

e
q
u
e
n
t
p
a
tt
e
rn

s

C10T10D10k
GenSTMiner with Opt
GenSTMiner
PrefixSpan

(b)

Figure 4.28: Runtime vs. parameter R

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 116

10 20 30 40 50 60
50

100

150

200

250

300

350

400

450

500

550

minimum temporal support (%) (ssup = 2, R = 5)

ti
m

e
 (

s
)

C10S10I10D10k

GenSTMiner with Opt
GenSTMiner
PrefixSpan

(a)

10 20 30 40 50 60
10

1

10
2

10
3

10
4

10
5

minimum temporal support (%) (ssup = 2, R = 5)

#
 o

f
fr

e
q

u
e

n
t

p
a

tt
e

rn
s

C10T10D10k
GenSTMiner with Opt
GenSTMiner
PrefixSpan

(b)

Figure 4.29: Runtime vs. parameter t-minsup

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 117

2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

tim
e

 (
s)

C10T10D10k

GenSTMiner with Opt
GenSTMiner
PrefixSpan

minimum spatial support (tsup = 0.1, R = 5)

Figure 4.30: Runtime vs. parameter s-minsup

10 20 30 40 50 60 70 80

500

1000

1500

2000

2500

3000

of sliding windows

ti
m

e
 (

s
)

C10T10
tsup = 0.5, ssup = 2, R =5

Figure 4.31: Scalability

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 118

larger. This is also verified by Figure 4.29(b). Similarly, Figure 4.30 indicates that

GenSTMiner requires more time to find frequent patterns when s-minsup is small.

We also investigate the scalability of GenSTMiner in terms of database size. Fig-

ure 4.31 shows the runtime of GenSTMiner when the parameter D (i.e. number of

sliding windows) is varied from 20k to 100k. Figure 4.31 indicates that GenSTMiner

grows linearly with database size. In other words, GenSTMiner is able to scale well for

large datasets.

Comparative Study

This set of experiments aims to show the usefulness of generalized spatio-temporal

patterns as compared to flow patterns using a real-life dataset. We obtain three years of

standard meteorological data from five stations that are closely located in space from the

Nation Data Buoy Center. The dataset has 10 features that are recorded hourly. After

discretization, the final dataset contains 30 features. With these 30 features, we define

a set of meteorological events. A sample of the events defined are as follows. A ↑ (la)

(or A ↓ (la)): denotes the event that the air temperature at location la has increased (or

decreased); S ↑ (la) (or S ↓ (la)): denotes the event that the wind speed at location la

has increased (or decreased); and G ↑ (la) (or G ↓ (la)): denotes the event that the gust

speed at location la has increased (or decreased).

We divide the whole space into 4× 4 grids so that the five locations are distributed

uniformly. Figure 4.32(a) shows the geographical positions of the five locations, namely

l2, l7, l10, l12 and l15. FlowMiner and GenSTMiner are applied on this dataset with t-

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 119

0 1 2 3

0

1

2

3

l
5

l
2

l
7

l
12

l
15

l
10

(a) Neighbor relations

Flow Patterns

A ↑ (l2) → G ↑ (l7), S ↑ (l7)〈→ 〈G ↓ (l10), S ↓ (l10), G ↓ (l12), S ↓ (l12)〉
〈A ↑ (l10), A ↑ (l12)〉 → 〈G ↑ (l15), S ↑ (l15)〉

〈G ↑ (l10), S ↑ (l10)〉 → A ↑ (l15)

〈G ↑ (l7), S ↑ (l7)〉 → 〈A ↑ (l10), A ↑ (l12)〉
〈G ↑ (l10), S ↑ (l10)〉 → 〈G ↓ (l15), S ↓ (l15)〉

Generalized Spatio-Temporal Patterns

A ↑ (0, 0) → 〈G ↑ (1, 1), S ↑ (1, 1)〉
〈G ↑ (0, 0), S ↑ (0, 0)〉 → A ↑ (1, 1)

〈G ↑ (0, 0), S ↑ (0, 0)〉 → 〈G ↓ (1, 1), S ↓ (1, 1)〉
(b) Interesting frequent patterns

Figure 4.32: Comparison of flow patterns and generalized spatio-temporal patterns

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 120

minsup = 10, s-minsup = 2, W = 6days and R = 2. Figure 4.32(b) summarizes some

of the interesting patterns we find.

We observe that flow patterns are able to capture the flow of events such as: an

increase in air temperature at location l2 leads to an increase in wind speed and gust

speed at location l7; and an increase in air temperature at location l10 leads to an increase

in wind speed and gust speed at location l15. However, the usefulness of these flow

patterns is rather limited as they are unable to provide a general trend. On the other

hand, the generalized spatio-temporal pattern reveals the trend that whenever there is

an increase in air temperature at a specific location, we can expect an increase in wind

speed and gust speed at the Northeastern neighbor of the location. By knowing the

general trend, the meteorologist can perform more accurate forecast of the weather.

4.4 Summary

In the chapter, we have studied the problem of mining spatial sequence patterns. We

have presented two new classes of spatial sequence patterns, flow patterns and general-

ized spatio-temporal patterns, to describe the changes of events over space and time.

We have developed a depth-first algorithm FlowMiner to find flow patterns. We

have also designed a new candidate generation algorithm that could quickly remove

infeasible candidates by using both temporal and spatial relationships among events. In

addition, we have proposed some optimization techniques to enhance the efficiency of

FlowMiner. A comprehensive performance study shows that FlowMiner can find the

CHAPTER 4. MINING SPATIAL SEQUENCE PATTERNS 121

complete set of flow patterns efficiently, and it possesses linear scalability.

Further, we have presented a framework GenSTMiner based on the methodology of

pattern growth approach to discover generalized spatio-temporal patterns. Some opti-

mization techniques are proposed to boost the efficiency of GenSTMiner. The experi-

mental study indicates that with the optimization techniques, GenSTMiner is effective

and scalable in mining frequent generalized spatio-temporal patterns.

Chapter 5

A Partition-based Approach for

Mining Arbitrary Spatio-temporal

Patterns in the Presence of Updates

In Chapter 3 and Chapter 4, we find spatio-temporal patterns such that objects in valid

instances of a pattern satisfy specific types of spatial and temporal relationships. For

patterns with arbitrary relationships, we represent the relationships with a graph, where

each vertex in a graph represents a variable labeled by an attribute or event, and each

edge represents a spatial relationship, temporal relationship, or both. As a result, the

spatio-temporal database is correspondingly transformed into a graph database, and the

problem of mining frequent spatio-temporal patterns becomes the problem of finding

frequent subgraphs in the graph database. Figure 5.1 shows the framework for mining

arbitrary spatio-temporal patterns.

122

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 123Datapreprocessing Spatial-temporal Arbitrary Pattern MiningDataMiningGraphdatabase Frequentgraphpatterns DatapostprocessingSpatio-temporaldatabase Userconstraints
Expertsinformation

Userconstraints
Expertsinformation

Figure 5.1: Framework for mining arbitrary spatio-temporal patterns

Data mining in graph databases has received much attention. We have witnessed

many algorithms proposed for mining frequent graphs. [IWNM01, KK01] introduce

the apriori-like algorithms, AGM and FSG, to mine the complete set of frequent graphs.

However, both algorithms are not scalable as they require multiple scans of databases

and tend to generate many candidates during the mining process. Subsequently, [YH03,

NK04] propose the depth-first graph mining approaches, gSpan and Gaston. These

approaches are essentially memory-based and their efficiencies decrease dramatically if

the graph database is too large to fit into the main memory. Recognizing this problem,

[WWP+04] present an effective index structure ADI to represent the graph databases

and to facilitate the major graph mining operations. Based on the ADI structure, they

present an algorithm ADIMINE, which has the advantageous to mine various graphs

over large databases that cannot be held into main memory. However, this solution

does not work well when the graph database is still evolving. This is because the ADI

structure has to be rebuilt each time the graph database is updated.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 124

In short, while previous studies have made excellent progress in mining graph

databases, many of them assume that the graphs in the databases are relatively static

and simple. They do not scale well for mining graphs in a dynamic environment. For

example, a spatio-temporal database can contain millions of different structures and the

number of different labels in the graphs is easily in the range of hundreds. Changes to

spatio-temporal databases cause changes to the graph structures that model the relation-

ships in the spatio-temporal data. Re-execution of the mining algorithm each time the

graphs are updated is costly, and may result in an explosion in the demand for compu-

tational and I/O resources. Consequently, there is an urgent need to find an algorithm

that is scalable and can incrementally mine from only those parts of the graph databases

that have been changed.

We propose a partition-based approach to graph mining. Our idea is to isolate update

changes to a small set of subgraphs and re-execute the graph mining algorithm only on

the isolated subgraphs. Instead of finding frequent graph patterns on complex graphs,

we recursively partition complex graphs into smaller, more manageable subgraphs until

these subgraphs can fit into the main memory. With this, existing memory-based graph

mining algorithms can be utilized to discover frequent patterns in the subgraphs. The

discovered patterns are then joined via a merge-join operation to recover the final set of

frequent patterns that exist in the original complex graphs.

Mining frequent patterns in databases using the partition-based approach is not new.

As early as the 1990s, [SON95] has introduced a partition-based method to find associ-

ation rules. Since then, many partition-based algorithms have been developed to solve

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 125

the various problems in data mining, such as classification[HCB98, SAM96], cluster-

ing [BFR98, NH02] and incremental mining [LLC01], etc. The data partitioning ap-

proach involves splitting a dataset into subsets, learning/mining from one or more of

the subsets, and possibly combining the results. The advantage of the data partitioning

approach is the ability to avoid thrashing by memory management systems which fre-

quently occurs when algorithms try to process huge datasets in the main memory. To

date, there has been no work on mining frequent subgraphs using the partition-based

method.

In this chapter, we design a partition-based algorithm to divide graphs into k smaller

subgraphs (k is determined by the size of the main memory) with the goal of reducing

connectivity among subgraphs while localizing most, if not all, the updated nodes to a

minimal number of subgraphs. Once divided, we can utilize existing efficient memory-

based graph mining algorithms to discover frequent patterns in these subgraphs. We

develop a merge-join operation to losslessly recover the complete set of frequent sub-

graphs in the database from the set of subgraphs found in the partitions. We also give

a theoretical proof to ensure that mining of frequent subgraphs in the partitions will

be equivalent to mining in the original graph database. In the following, we present

the details of our partition-based graph mining algorithm, called PartMiner. Here, we

make use of the cumulative information obtained during the mining of previous sub-

graphs to effectively reduce the number of candidate graphs. PartMiner is inherently

parallel in nature and can be parallelized with minimal communication and synchro-

nization among processing nodes. Finally, we extend PartMiner to handle updates in

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 126

the graph database. The IncPartMiner, an extended version of PartMiner, makes use of

the pruned results of the pre-updated database to eliminate the generation of unchanged

candidate graphs, thus leading to tremendous savings.

This chapter is organized as follows. Section 5.1 discusses some preliminary con-

cepts. Section 5.2 presents the partition-based graph mining approach. Section 5.3

reports the experimental results. We conclude the chapter with Section 5.5.

5.1 Preliminary Concepts

We represent a labeled graph by G = (V,E, LV , LE) where V is the set of vertices, E

is the set of edges denoted as pair of vertices, LV is a set of labels associated with the

vertices, and LE is a set of labels for the edges. A graph G is connected if a path exists

between any two vertices in V . The size of a graph is the number of edges in it, and a

graph G with k edges is called a k-edge graph or a graph of size k.

A graph G1 is isomorphic to a graph G2 if there exists a bijective function f :

V1 → V2 such that for any vertex u ∈ V1, f(u) ∈ V2 ∧ Lu = Lf(u), and for any edge

(u, v) ∈ E1, (f(u), f(v)) ∈ E2 ∧ L(u,v) = L(f(u),f(v)). An automorphism of a graph

G is an isomorphism from G to G. A subgraph isomorphism from G1 to G2 is an

isomorphism from G1 to a subgraph G2, and G1 is called a supergraph of G2, denoted

as G2 ⊆ G1.

A graph database is a set of tuples (gid,G), where gid is a graph identifier and G is

an undirected labeled graph. Given a graph database D, the support of a graph G is the

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 127

number of graphs in D that are supergraphs of G.

To find all frequent subgraphs in a database, we need to encode the structure of a

graph such that if two graphs have identical encoding, they are isomorphic. We use

the method proposed in [YH02] to encode a graph. The method in [YH02] performs

a depth-first search on a graph G to order the vertices and construct the DFS-tree T of

G. An edge (vi, vj) is called a forward edge if i < j; otherwise, it is called a backward

edge.

A linear order ≺ on the edges in G is defined as follows: Given two edges e =

(vi, vj) and e′ = (vi′ , vj′), e ≺ e′ if either one of the following conditions is true:

1. both e and e′ are forward edges, j < j′ or (i > i′ ∧ j = j′);

2. both e and e′ are backward edges, i < i′ or (i = i′ ∧ j < j′);

3. e is a forward edge and e′ is a backward edge, j ≤ i′;

4. e is a backward edge and e′ is a forward edge, i < j′.

By ordering the edges in a graph G, the structure of G can be encoded using the

DFS code. Given a graph G, and a DFS-tree T , the DFS code of G w.r.t T , denoted by

code(G, T), is a list of all edges E in the order of ≺, where an edge (vi, vj) is written

as (vi, vj, lvi
, l(vi,vj), lvj

).

Since a graph can have many different DFS-trees, [YH02] defines the notion of the

minimum DFS code, which is the minimum of all the DFS codes of a graph G, to encode

the graph.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 128

0

0

2 1

a

ac

b

0

0

2 1

a

ac

b

0

0

2 1

a

ac

b

v
0

v
1

v
2

v
3

v
0

v
1

v
2

v
3

(a) graph G (b) DFS-tree T
1

(c) DFS-tree T
2

0

0

2 1

a

ac

b

v
0

v
1

v
2

v
3

(d) DFS-tree T
3

DFS

Code

(v
0
, v
1
, 0, a, 0)

(v
1
, v
2
, 0, a, 1)

(v
1
, v
3
, 0, c, 2)

(v
3
, v
0
, 2, b, 0)

(v
0
, v
1
, 0, a, 0)

(v
1
, v
2
, 0, b, 2)

(v
2
, v
0
, 2, c, 0)

(v
0
, v
3
, 0, a, 1)

(v
0
, v
1
, 0, a, 0)

(v
1
, v
2
, 0, c, 2)

(v
2
, v
0
, 2, b, 0)

(v
0
, v
3
, 0, a, 1)

Figure 5.2: Example of the DFS tree and DFS code

Figure 5.2 shows a graph G, and three DFS trees of G, together with their corre-

sponding DFS codes. The code(G, T1) in Figure 5.2(b) is the minimum DFS code.

5.2 Partition-based Graph Mining

Figure 5.3 shows the framework of the proposed partition-based graph mining ap-

proach. It consists of two phases. In the first phase, we iteratively call a graph par-

titioning algorithm to partition each of the graphs in the graph database into smaller

subgraphs. Then we group the subgraphs into units.

The second phase applies any existing memory-based graph mining algorithm to

discover the frequent subgraphs in each unit. The set of frequent subgraphs in each unit

are then merged via a merge-join operation to recover the complete set of frequent sub-

graphs. The proposed framework can be easily extended to handle incremental mining

when updates occur in the graph database (see Section 5.2.5).

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 129

… ...

… ...

merge-join

Phase 1

Phase 2

Graph database D

G
1
G
2
G
3

G
n

G
11
G
12

G
1k

G
21
G
22

G
2k... ... G

n1
G
n2

G
nk

...

... ...

... ...

U
1

U
2

U
k

... ...G
11
G
21

G
n1

... G
12
G
22

G
n2... G

1k
G
2k

G
nk

...

P(U
k
)

Grouping subgraphs into units

Mining frequent subgraphs in the units

Bi-partitioning graphs into subgraphs

… ...

P(U
1
) P(U

2
)

P(D)

Figure 5.3: Overview of partition-based graph mining

5.2.1 Dividing Graph Database into Units

The motivation for the proposed partition-based graph mining approach is to effectively

deal with graphs in the presence of frequent updates. By partitioning the graphs, we can

reduce graph complexity as well as size so that existing memory-based graph mining al-

gorithms can be applied. However, the frequent subgraphs obtained from each unit need

to be combined using a merge-join operation which is costly. To minimize the number

of units involved in the merge-join operation, it is important to minimize connectiv-

ity (i.e., the number of connective edges) among subgraphs in the units. Moreover,

in the presence of updates, it is also important to isolate those vertices and edges that

are changed frequently, and localize them in a minimal number of units to reduce the

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 130

1

9

10

12 13

1

2 3

7 89

10

2

1
9

10 11
12

13

1

2

3

4

5

6
7 8

9

10

11

12

13

1

2'

1

2

3

4
5

6
7 8

9

10

1

910

11

12 3

4 5

6G (D)

G
11
 (U

1
) G

12
(U

2
)

G
21
(U

3
) G

22
(U

4
)

G
1
(U

12
)

G
2
(U

34
)

Figure 5.4: Example of graph bi-partitioning

number of units that need to participate in the incremental mining process.

To achieve this goal of minimizing connectivity among units, each graph in the

database must be carefully partitioned and organized into units. If we randomly parti-

tion the graphs and group them into units, then the connectivity among the subgraphs

in the units will not be clear, and a merge-join operation will be needed on each pair of

units. Therefore, we adopt an approach that repeatedly bi-partitions each of the graphs

in the database.

Figure 5.4 shows a graph G which is first divided into two subgraphs G1 and G2.

G1 (G2) is again further divided into two subgraphs G11 and G12 (G21 and G22). This

bi-partitioning process yields a total of four subgraphs for G. By applying this bi-

partitioning procedure on each of the graphs Gi in the database, we have four subgraphs

Gi1, Gi2, Gi3, and Gi4 for each Gi. Each of the subgraphs Gij , 1 ≤ j ≤ 4, is grouped

into one unit Uj .

The bi-partitioning approach facilitates the recovery of the complete set of graphs in

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 131

1

2

3

0

2

0

4

0

1

2

3

0

2
0

4

0
1

2

0

4

0

1

2

3

0

2
0

4

1

2

3

0

2
0

4

0
1

3

2
0

G
1

G
2

(a) partition to minimize connectivity

(b) partition to isolate all updated vertices

updated vertices

v
0

v
1

v
2

v
4

v
5

v
3

G
2

v
6

v
7

v
0

v
1

v
2

v
5

v
3

v
4

v
6

v
7

G
1

Figure 5.5: Example of partitioning criteria

a database from the subgraphs in the units. In our example, we just need to combine the

set of subgraphs in U1 and U2 to get the set of subgraphs in U12, and the set of subgraphs

in U3 and U4 to get the set of subgraphs in U34. The set of subgraphs in U12 and U34 are

subsequently combined to obtain the original graph database. This also indicates the

sequence of combining the frequent subgraphs mined in each unit to obtain the final set

of frequent subgraphs for the database.

We use two criteria to carry out bi-partitioning. The first criteria is to minimize

connectivity between subgraphs, and the second criteria is to isolate frequently updated

vertices to a subgraph. Figure 5.5 illustrates how a graph G can be partitioned using

these two criteria. Note that subgraphs should include the connective edges between

them so that we can recover the original graph later. For example, edges (v1, v2) and

(v3, v4) in Figure 5.5(a), and edges (v3, v4), (v4, v6) and (v6, v7) in Figure 5.5(b) are

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 132

connective edges.

We associate each vertex v in a graph G with a value ufreq to indicate its update

frequency, denoted as v.ufreq. The vertices of G are sorted in descending order ac-

cording to their update frequencies. Suppose that the vertex set V of the graph G is

divided into two subsets V1 and V2, we define a weight function w(V1) to reflect the

average update frequencies of the vertices in the vertex set V1 and its connectivity to the

vertex set V2 (see Equation (1)).

w(V1) = λ1

∑
vi∈V1

vi.ufreq

|V1| − λ2|EV1,V2| (5.1)

where EV1,V2 is the set of connective edges e(vi, vj) between vertex sets V1 and V2,

i.e., vi ∈ V1, vj ∈ V2 or vi ∈ V2, vj ∈ V1. The first term in w(V1) computes the

average update frequencies of the vertices in the subset V1, and the second term counts

the number of connective edges. We use two parameters λ1 and λ2 to set the weight

between these two terms.

Figure 5.6 shows the graph partitioning algorithm, called GraphPart. Line 1 sorts

the vertex set V of the graph G according to their update frequency. Let vc be the

centroid of V . Then vc divides V into two subsets V1 and V2, where V1 contains the

vertices vi ∈ V ∧ vi.ufreq ≥ vc.ufreq, and V2 contains vertices vj ∈ V ∧ vj.ufreq <

vc.ufreq. For each vertex vi ∈ V1, we traverse the graph G in depth-first manner to

construct the vertex subset Vi, and compute the weight function w(Vi) (lines 4-12).

The vertex set with the largest weight function is the final subset V ∗. Note that when

scanning unvisited neighbors of a vertex, the vertex with the highest frequency should

be the next visited node (line 21). Finally, we obtain two subgraphs G1 and G2. G1

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 133

Algorithm GraphPart

Input: G, the graph

Output: G1, G2, the two subgraphs of G

1: V = {vertices sorted according to their update frequency};

2: V ∗ = ∅;

3: w(V ∗) = −∞
4: for(i = 0; i < |V |/2; i++) {
5: Vi = ∅;

6: call DFSScan(V, i, Vi);

7: Compute w(Vi);

8: if (w(Vi) > w(V ∗)) {
9: w(V ∗) = w(Vi);

10: V ∗ = Vi;

11: }
12: }
13: G1 = {eij = (vi, vj)|vi ∈ V ∗, vj ∈ V ∗} ∪{eij = (vi, vj)|vi ∈ V ∗, vj /∈ V ∗}
14: G2 = {eij = (vi, vj)|vi /∈ V ∗, vj /∈ V ∗} ∪{eij = (vi, vj)|vi ∈ V ∗, vj /∈ V ∗}

Procedure DFSScan(V, i, Vi)

15: stack = ∅, m = 0;

16: stack.push(vi);

17: while(stack 6= ∅ ∧m ≤ |V |/2){
18: v = stack.pop();

19: Vi = Vi ∪ {v};

20: m ++;

21: choose the neighbor vertex vh, s.t. vh.visited = 0, and ∀vs,vs.visited =

0 ∧ (v, vs) ∈ E, vs.ufreq < vh.ufreq;

22: stack.push(vh);

23: }

Figure 5.6: Algorithm to partition a graph

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 134

Procedure DBPartition(D, k)

D, graph database;

k: number of units

1: D0,0 = D;

2: i = 1;

3: l = blog2kc;
4: while (i ≤ l) {
5: for (j = 0; j < 2i−1; j++)

6: DivideDBPart(Di−1,j , Di,2j , Di,2j+1);

7: i++;

8: }
9: for(j = 0; j < k − 2l; j + +)

10: DivideDBPart(Di−1,j , U2j , U2j+1);

Function DivideDBPart(Ds, D1,0, D1,1)

1: D1,0 = ∅;

2: D1,1 = ∅;

3: for each graph G ∈ Ds {
4: G1, G2 = calling GraphPart(G);

5: D1,0 = D1,0 ∪ {G1};

6: D1,1 = D1,1 ∪ {G2};

7: }

Figure 5.7: Dividing a graph database into units

contains all vertices in V ∗, and G2 contains all vertices in V/V ∗. Both G1 and G2 also

include the connective edges (lines 13-14).

After partitioning each graph in the database into a set of subgraphs, the next step

is to group the subgraphs into units such that each unit can fit into the main memory.

Figure 5.7 shows the algorithm to divide the database into units. We use a parameter

k to indicate the number of units that the database will be divided into. The value of

k is determined by the availability of the main memory and the size of the database.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 135…… … … …… … … … … … …
D00=DD10 D11D20 D21 D22 D23 012divide dividedividedivide divide kl 2log=Dl0 Dl1 Dl2 Dl3 UkUk-1……)12(-- lklD …U0 U1)12(2 -- lkU 1)2(2 -- lkU

Figure 5.8: Partitioning the graph database into k units

For each graph in the database, we repeatedly call Algorithm GraphPart to partition it.

The subgraphs generated during the partitioning process are kept in the database Di,j ,

1 ≤ i ≤ blog2kc, 0 ≤ j ≤ 2i−1. Finally, the resulting k subgraphs are then distributed

to the k units, i.e., U1, U2, . . . , Uk. Figure 5.8 shows the structure by dividing the graph

databases into k units.

5.2.2 Mining Frequent Subgraphs in Units

After dividing the graph database into k units such that each unit can fit into the main

memory, we can now use any existing memory-based algorithms to find frequent sub-

graphs in the units.

Many memory-based algorithms have been proposed to discover frequent graphs.

In this work, we use the ADIMINE algorithm [WWP+04] to find the set of frequent

subgraphs in the units. ADIMINE uses an effective index structure ADI to index the

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 136

Algorithm ADIMINE

Input: U , one of the units of the database

sup, minimum support.

Output: P(U), the set of frequent subgraphs in U

1: construct the ADI structure if it is not available

2: F1 = {frequent edges in edge table};

3: for each e ∈ F1 {
4: Fe = {set of frequent adjacent edges for e};

5: call subgraph-mine(e, Fe)

6: }
Procedure subgraph-mine (G, Fe

7: for each e ∈ Fe {
8: let G′ be the graph by adding e into G

9: if DFS code of G’ is not minimum

10: return;

11: update Fe of adjacent edges;

12: call subgraph-mine(G′, Fe)

13: }

Figure 5.9: Outline of ADIMINE algorithm

graph databases. Further, with the ADI structure, the major operations in graph mining

can be facilitated efficiently.

Figure 5.9 gives an outline of the ADIMINE algorithm. Line 1 constructs the ADI

structure if it is unavailable. Line 2 obtains all frequent edges from the ADI structure.

For each frequent edge, the algorithm retrieves the set of frequent adjacent edges from

the ADI structure and uses them to growth the patterns by calling the pattern growth

procedure subgraph-mine. The procedure subgraph-mine tries every frequent adjacent

edge e and check whether e can be added into the current frequent graph pattern G to

form a larger pattern G′. Once a larger pattern G′ is found, the set of frequent adjacent

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 137P(Dl0) ………… … kl 2log=0
P(Dl1) P(Dl2) P(Dl3) P(Dk-1) P(Dk)P(U0) P(U1) …… 1…P(D20) P(D22)P(D21) P(D23)P(D10) P(D11)P(D)

… 2)(1)2(2 lkUP)(1)2(l lkDP)(1)2(2 lkUP
Figure 5.10: Example of recovering the original database from the units

edges is updated and will be considered in the future growth from G′.

5.2.3 Combining Frequent Subgraphs

When we have computed the set of frequent subgraphs in the units, we need to recover

the complete set of frequent subgraphs in the original database. We design a merge-

join operation to accomplish this. We first illustrate the idea behind the merge-join

operation before presenting the algorithm. We also give theoretical proof to show the

complete set of frequent subgraphs in the database can be losslessly recovered by the

merge-join operation on the set of frequent subgraphs found in the units. Figure 5.10

shows the example to recover the original database from the units.

Suppose unit U is partitioned into two units U1 and U2. Let P(U1) and P(U2) be

the set of frequent subgraphs found in the units U1 and U2. We want to recover the set

of frequent subgraphs in the unit U , that is, P(U). We first sort the frequent subgraphs

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 138

in each unit according to their number of edges. We shall use Pk(Ui) to denote the set

of subgraphs of size k.

First, frequent 1-edge subgraphs in the units U1 and U2 are simply merged since

they do not share any common connective edges. We denote the resulting set of 1-edge

subgraphs by P1(U) = P1(U1) ∪ P1(U2).

Next, we merge frequent 2-edge subgraphs, that is P2(U) = P2(U1) ∪ P2(U2), and

join the 2-edge subgraphs based on the common connective edges to produce a set of

candidate 3-edge subgraphs C3. A subgraph isomorphism check is then carried out to

remove the infrequent 3-edge subgraphs in C3, resulting in the set of frequent 3-edge

subgraphs, i.e., F 3.

For frequent k-edge subgraphs, k > 2, we obtain the set of k-edge subgraphs by

merge Pk(U1), Pk(U2) and F k, that is, Pk(U) = Pk(U1) ∪ Pk(U2) ∪ F k. Then, the

merge-join operation is applied to find the set of candidate (k+1)-edge subgraphs Ck+1.

We obtain Ck+1 in three steps:

Step 1. Join the subgraphs in the set Pk(U1) with the subgraphs in the set F k to obtain

the candidate set C1
k+1;

Step 2. Join the subgraphs in the set Pk(U2) with those in the set F k to obtain the

candidate set C2
k+1;

Step 3. Join the subgraphs in the set F k with themselves to get the candidate set C3
k+1.

The set of candidate subgraphs Ck+1 is the union of the set C1
k+1, C2

k+1 and C3
k+1,

that is, Ck+1 = C1
k+1∪C2

k+1∪C3
k+1. We remove the infrequent (k+1)-edge subgraphs

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 139

from Ck+1, resulting in F k+1.

This process continues until all frequent subgraphs in the original database are dis-

covered.

Figure 5.11 shows an example of the merge-join operation. Figure 5.11(a) shows

the unit U with one graph G and its two subgraphs G1 in U1 and G2 in U2. The process

of recovering P(G) from P(G1) and P(G2) is illustrated in Figure 5.11(b), where the

left light grey region marks the set of subgraphs of G1, i.e., P(G1), and the dark grey

region marks the set of subgraphs of G2, P(G2).

Proof of Completeness

In this section, we prove that the complete set of frequent graphs in the database D

can be recovered when the merge-join operation is performed on the set of frequent

subgraphs found in all the units. We first prove that it is possible to recover all subgraphs

of a graph G from its partitioned subgraphs. Then we introduce the Apriori property

of subgraphs, and proceed to show that the complete set of frequent subgraphs in the

original database can be losslessly recovered even when the mining is performed on the

individual smaller units.

Theorem 2 The set of subgraphs of a graph G (i.e. P(G)) with size of n, n ≥ 2,

can be losslessly recovered when the merge-join operation is recursively applied on its

bi-partitioned subgraphs G1 and G2.

Proof: We prove this by induction. Let Hn denote the hypothesis that the set of

subgraphs of a graph G of size n can be losslessly recovered from its partitions G1 and

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 140

(a)

0

2

0

1

3

0

2

0

1

3

0

0

2

0

1

3

0

1

0

20

3

0

0

1

3

2

0

2

0

0 3

10

2

0

0

3

1

0

02 0 1 30

2

0

0

3

1

0

1

0

2

0

0

1

0

2

3

0

0

1

3

2

2

0

0

3

0

2

0

3

1

0

2

0

3

1

0

(b) set of subgraphs of G

0

1

0

2

0

0

1

3

2

0

0

3

2

0

3

1

2

0

0

0

1

0

3

1

0

0

2

0

0

1

1

0

3

3

2

2

0

3

1

2

0

0

2

0

3

3

1

2

C3

0

0

2

0

0

0

2

3

1

0

3

2

0

2

0

F3

G
1 G

2

G

1

2

3

00

0
0

1 3

2

0

0

1

2

3

0

v
0

v
1

v
2

v
3

v
4

v
5

set of subgraphs of G
1

set of subgraphs of G
2

vertices of shared edges

Figure 5.11: Example of the merge-join operation

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 1412 13G1G23 2 1 divide 2 132 1 2 123G 2 1P(G1) P(G2)(a) division of G (b) process to recover P(G)
Figure 5.12: Base case … ...… ...… ...… ... ……vjvn vn-1 viv3 v2

G’ G1G2… ...… ...… ...… ... …… v1v2v3vivn vn-1vj … v2v3vi v1Vertices of shared edges
Figure 5.13: Induction step

G2, n ≥ 2

Base Case: n = 2. This is trivially true as shown in Figure 5.12. Figure 5.12(a)

shows the division of the graph G into two subgraphs G1 and G2. The process to recover

P(G) from P(G1) and P(G2) is shown in Figure 5.12(b).

Induction Step: Suppose Hn is true, we want to show that Hn+1 is also true. If Hn

is true, we know that we are able to recover all subgraphs of a graph G of size n. Now

we have a graph G′ of size n + 1. We partition graph G′ into two subgraphs. Let G1

denote the partition of size n, and let G2 denote the partition of size i-2, 3 < i < n

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 142

(see Figure 5.13). By our assumption, we know we can recover all subgraphs from G1

(because G1 is of size n). Hence, the only missing subgraphs are those involving the

edge (v1, v2) in G2. These subgraphs are formed by the joining of the subgraphs of G1

and G2, which share one of the common edges (v2, v3), ..., (v2, vi) marked as grey in

Figure 5.13. This step is in fact included in the merge-join operation. In other words,

if Hn is true, then Hn+1 must be true.¥

Theorem 3 (Apriori Property) If a graph G is frequent, all of its subgraphs are fre-

quent.

Proof: A graph G is frequent implies the number of occurrences of G exceeds some

minimum support threshold. A subgraph of G must, by definition, occur in G. Hence,

the number of occurrences of the subgraph must be equal to or exceed G’s occurrences.

In other words, the subgraph is frequent.¥

Theorem 4 Let D be a graph database that has been divided into k smaller units Ui,

k ≥ 2, 1 ≤ i ≤ k. If we know the complete set of frequent subgraphs P(Ui) in each

unit Ui, 1 ≤ i ≤ k, we can determine the complete set of frequent subgraphs P(D) in

D.

Proof: Let Hk−1 denote the hypothesis that the complete set of frequent subgraphs

of the unit U can be losslessly recovered from the set of frequent subgraphs in its k-1

subunits Ui (1 ≤ i ≤ k − 1).

Base case: k = 2, that is D is divided into two units U1 and U2. Given P(U1) and

P(U2), according to the Theorem 1 and Theorem 2, we can losslessly recover the set

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 143

of frequent subgraphs inD, that is we can get the complete set of frequent graphs P(D).

Induction step: k > 2. Suppose Hk−1 is true, we want to show that Hk is also true.

Given the unit U is divided into k subunits Ui (0 ≤ 0 ≤ k). If Hk−1 is true, we know

that we are able to recover the complete set of frequent subgraphs of the unit U ′ from

the set of frequent subgraphs in its k−1 subunits Uj (0 ≤≤ k−1). Now we have the set

P(U ′) and P(Uk). According to the base case, we know that we can losslessly recover

P(U) from P(U ′) and P(Uk). In other words, if Hk−1 is true, then Hk must be true.¥

From Theorem 3, we note that the completeness of the frequent graphs in the

database D depends on the completeness of the frequent subgraphs in the units. Hence,

we can reduce the support threshold used to discover frequent subgraphs in units to get

the complete set of frequent graphs in the units.

5.2.4 Framework of PartMiner

Figure 5.14 shows the outline of PartMiner. It takes as input the database D, the mini-

mum support sup, and the number of units k, and outputs the set of frequent subgraphs

in D. Algorithm PartMiner works in two phases. In the first phase, it divides the

database D into set of units of proper and manageable size(line 1). In the second phase

(lines 2-17), PartMiner first calls the algorithm ADIMINE to find the set of frequent

subgraphs in the k units with the support threshold sup/k (lines 2-17). The reason that

we use the lower support threshold for mining the units is to guarantee that the sub-

graphs that are frequent in the original database are also frequent in the units. After

mining the units, line 14 recursively calls the procedure MergeJoin (see Figure 5.15)

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 144

Algorithm PartMiner

Input: D, graph database;

sup: minimum support;

k: number of units

Output: P(D): set of frequent subgraphs in D.

/*Phase1: dividing the database into k units*/

1: DBPartition(D, k);

/*Phase2: combining the results of k units*/

2: l = blog2kc;
3: i = l + 1;

4: for(j = 0; j < k − 2l; j + +) {
5: Mining U2j and U2j+1 using Gastion;

6: P(Di−1,j) = MergeJoin(Di−1,j ,P(U2j),P(U2j+1), sup
k)

7: }
8: i−−;

9: while (i > 0) {
10: for(j = 0; j < 2i; j = j + 2) {
11: if(i == log2k ∧ j > k − 2l − 1)

12: Mining Dij and Di,j+1 using ADIMINE;

13: S = Di−1, j
2
;

14: P(S) = MergeJoin(S,P(Di,j),P(Di,j+1), sup
2i)

15: }
16: i−−;

17: }

Figure 5.14: Outline of the PartMiner algorithm

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 145

Procedure MergeJoin

Input: S, the graph dataset; P(S0), set of frequent subgraphs in S0;

P(S1), set of frequent subgraphs in S1; sup, minimum support.

Output: P(S), the set of frequent subgraphs in the dataset S.

1: P1(S) = {frequent 1-edge subgraphs in S};

2: P = P(S0) ∪ P(S1)\P1(S);

3: Pruning graphs in P(S0) and P(S1) with P ;

4: P2(S) = P2(S0) ∪ P2(S1);

5: C3 = Join(P2(S0),P2(S1));

6: F 3 = CheckFrequency(C3, sup);

7: for (k = 3;F k 6= ∅; k + +){
8: Pk(S) = Pk(S0) ∪ Pk(S1) ∪ F k;

9: Ck+1
1 = Join(Pk(S0), F k);

10: Ck+1
2 = Join(Pk(S1), F k);

11: Ck+1
3 = Join(F k, F k);

12: Ck+1 = Ck+1
1 ∪ Ck+1

2 ∪ Ck+1
3 ;

13: F k+1 = CheckFrequency(Ck+1, sup);

14: }
15: P(S) =

⋃Pk(S)

Figure 5.15: Outline of the MergeJoin procedure

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 146

Table 5.1: Meaning of symbols
Symbol Meaning

Ui original unit

U ′
i updated unit

Di,j set of intermediate subgraphs generated during the graph partitioning process

P(Ui) set of frequent subgraphs in the unit Ui

Pk(Ui) set of frequent k-edge subgraphs in the unit Ui

Ck+1 set of candidate (k+1)-edge subgraphs

F k+1 set of frequent (k+1)-edge subgraphs

P difference between P(Ui) and P(U ′
i)

P prune set

to combine the results of Di,j and Di,j+1 (0 ≤ i ≤ log2k, 0 ≤ j ≤ k) together. The

process continues until the set of frequent subgraphs of D (i.e., P(D)) is found. The

symbols and their meaning used in the algorithm are listed in Table 5.1.

5.2.5 Handle Updates Using PartMiner

The motivation for the proposed approach is to effectively deal with graphs in the pres-

ence of updates. It is important to isolate those vertices and edges that are changed

frequently into a small set of subgraphs so that the number of subgraphs that need to

participate in the incremental mining process is minimized.

Recall that PartMiner finds the set of frequent subgraphs by first partitioning the

database into several units, then mining the set of frequent subgraphs in each of these

units, and finally merging the results of the units with the merge-join operation. If

we are able to isolate the updated vertices and/or edges of a graph to a small set of

subgraphs, we will be able to focus only on this set of subgraphs instead of mining on

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 147

the entire database each time an update occurs.

Patterns that are affected by updates can be classified into three categories:

1. UF (unchange frequencies): the set of patterns whose frequencies remain un-

changed;

2. FI (frequent to infrequent): the set of previously frequent patterns that have be-

come infrequent; and

3. IF (infrequent to frequent): the set of previously infrequent patterns that have

become frequent.

Algorithm PartMiner can be easily extended to discover UF and IF .

The extension idea is as follows: When the database D is updated, for each updated

unit U ′
i (Ui is the original unit before the updates), we re-execute the main memory

algorithm to find the new set of frequent subgraphs P(U ′
i). We then compare the set

P(U ′
i) against the set P(Ui). If they are different, we do the following:

1. We keep the subgraphs that appear in the set P(Ui) but not in the set P(U ′
i) in

the prune set P . For each subgraph in the prune set P , we check to see if it exists

in any other P(U ′
j) (0 ≤ j ≤ k ∧ j 6= i). If it exists, we remove it from P .

Otherwise, we do nothing. Note that P keeps track of all subgraphs that may

potentially change from frequent to infrequent.

2. Next, we check the set of subgraphs in the pre-updated database D, i.e., P(D)

against the prune set P . We remove those subgraphs in P(D) that are the super-

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 148

graphs of some graphs in P , and add them to the set FI . The pruned P(D) is

denoted as P(D)′.

When all of the updated units are checked, we perform a final merge-join operation

to obtain the updated results. However, since there are some graphs whose frequencies

are not changed during the updates, we do not need to check them. This can result in

further optimization.

The IncPartMiner algorithm for handling updates is shown in Figure 5.16. Line 1

scans the updated database D′ to get the set of frequent edges, i.e., P1(D′). Line 2

compares the set of frequent edges in the original database D, i.e., P1(D) with the set

P1(D′), and add the subgraphs that exist in P1(D) but not in P1(D′) into the prune set

P .

Next, for each unit U ′
i that consists of the updated vertices, we re-execute the

ADIMINE algorithm to mine the set of frequent subgraphs (i.e., P(U ′
i)), and com-

pare it with the set of subgraphs in the unit Ui, i.e., P(Ui). Those potentially infrequent

subgraphs are added to the prune set P (lines 3-9). Line 10 then prunes the subgraphs

in the set P(D) with the prune set P , which results in the pruned set P(D)′. Then, lines

11-12 further use the pruned set P(D)′ to prune the candidate graphs when carrying out

the merge-join operation on the updated results of the units (see Figure 5.17). Finally,

the three sets of the subgraphs, i.e., UF , FI and IF , are output (lines 13-15), where

IF consists of the graphs in P(D′) but not in P(D), UF is the set of graphs in P(D′)

but not in IF , and FI contains all the graphs G in P(D) such that there is a graph G′

in P that is a subgraph of G.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 149

Algorithm IncPartMiner

Input: D′, the updated database

P(Ui), the set of frequent subgraphs in the unit Ui (0 ≤ i ≤ k)

P(D), old set of the frequent subgraphs in D
sup, minimum support;

set, a setword to indicate the reexamined units

Output: UF, IF, FI: 3 sets of patterns;

1: P1(D′) = {frequent 1-edge subgraphs in D′};

2: P = P1(D)\P1(D′);
3: for (i = 0; i < k; i++) {
4: if (set(i) 6= 1) continue;

5: P(U ′
i) = mining the unit Ui using ADIMINE;

6: if (P(U ′
i)\P(Ui) 6= ∅) recombine = 1

7: P = P(Ui)\P(U ′
i);

8: P = P ∪ {G ∈ P|∀j = 0..k ∧ j 6= i, G /∈ P(Uj)};
9: }
10: P(D)′ = {G ∈ P(D)|∀G′ ∈ P, G′ ⊀ G};

11: if (recombine)

12: P(D′) = calling IncMergeJoin to join the units’ results ;

13: IF = P(D′)\P(D);

14: UF = P(D′)\IF

15: FI = {G ∈ P(D)|∃G′ ∈ P, G′ ≺ G};

Figure 5.16: Outline of the IncPartMiner algorithm

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 150

Procedure IncMergeJoin (D′,P(S0),P(S1),P(D))

1: P2(D′) = P2(S0) ∪ P2(S1);

2: C3 = Join(P2(S0),P2(S1));

3: for each G ∈ C3 ∧G ∈ P(D)′ {
4: C3 = C3 − {G};

5: F 3 = F 3 ∪ {G};

6: }
7: F 3 = F 3 ∪ {G ∈ C3|G.sup ≥ sup)};

8: for (k = 3;F k 6= ∅; k + +){
9: Pk(D′) = Pk(S0) ∪ Pk(S1) ∪ F k;

10: Ck+1
1 = Join(Pk(S0), F k);

11: Ck+1
2 = Join(Pk(S1), F k);

12: Ck+1
3 = Join(F k, F k);

13: Ck+1 = Ck+1
1 ∪ Ck+1

2 ∪ Ck+1
3 ;

14: for each G ∈ Ck+1 ∧G ∈ P(D)′ {
15: Ck+1 = Ck+1 − {G};

16: F k+1 = F k+1 ∪ {G};

17: }
18: F k+1 = F k+1 ∪ {G ∈ Ck+1|G.sup ≥ sup)};

19: }
20: return

⋃Pk(D′)

Figure 5.17: Outline of the IncMergeJoin procedure

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 151

5.3 Experimental Study

In this section, we report the performance study of the proposed algorithms. The algo-

rithms are implemented in C++. All the experiments are conducted on a P4 2.8GHZ

CPU, 2.5GB RAM and 73GB hard disk. The operating system is Redhat Linux 9.0.

• Synthetic Dataset: We use the synthetic data generator described in [WWP+04].

The data generator takes as input five parameters D, N , T , I and L, whose mean-

ings are shown in Table 5.2. For example, the dataset D50kT20 N20L200I5

indicates that the dataset is made up of 50k graphs, the average number of edges

in each graph is 20, and there are 20 possible labels and 200 potentially frequent

kernels. The average number of edges in the frequent kernels is 5.

Table 5.2: Parameters of synthetic data generator
Parameter Meaning Range

D total number of graphs in the data set 100k - 1000k

N number of possible labels 20, 30, 40, 50

T average number of edges in graphs 10, 15, 20, 25

I average number of edges in potentially frequent graph pat-

terns

2, 3, 4, 5, 6, 7, 9

L number of potentially frequent kernels 200

• Real-life Dataset: We transformed the forest fire dataset in Chapter 4 into graphs.

Each node corresponds to a forest fire event occurring in a location. Two nodes

are connected via an edge if and only if the event F (li) is related to event F (lj),

that is the event F (li) and the event F (lj) are close in time and location. We define

R = 1 and W = 20 days. The spatio-temporal database have been transformed into

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 152

F(l32) F(l32)F(l38) F(l39)(a) Spatio-temporal DB (b) Transformed graph0 1 1111wid F(l32), F(l38)F(l32)F(l39)t1t2t31 time items
Figure 5.18: Example of transformed graphs

a graph database with 40 graphs. The graphs represents non-overlapping region.

Figure 5.18 shows an example of the transformed graphs from the spatio-temporal

database.

5.3.1 Performance Study on Static Datasets

In this section, we study the performance of PartMiner in a static environment. We

compare it with the ADIMINE algorithm [WWP+04]1. In the following sets of exper-

iments, the parameter L is fixed at 200, and the parameter k is set to 2. The size of the

memory is set to unlimited.

Effect of Partitioning Criteria

We first study the effect of using different partitioning criteria. There are three ways to

partition graphs: (1) Isolate the updated vertices into the same subgraphs, i.e., λ1 = 1,

λ2 = 0 (Partition1); (2) Minimize connectivity between subgraphs, i.e., λ1 = 0, λ2 = 1

1We obtain the executable ADIMINE from the authors

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 153

(Partition2); and (3) Isolate the updated vertices AND minimize the connectivity, i.e.,

λ1 = 1, λ2 = 1 (Partition3). We also use METIS [KK98] to partition the graphs before

mining the graphs in the database. The algorithms in METIS are based on multilevel

graph partitioning. They reduce the size of the graph by collapsing vertices and edges,

partition the smaller graphs, and then uncoarsen it to construct a partition for the original

graph.

Figure 5.19 shows the results. The proposed graph partitioning algorithms perform

better than METIS. Specifically, Partition2 gives the best performance. This is because

Partition2 minimizes the number of connective edges between subgraphs, which in turn

reduces the number of joining graphs in the merge-join operations. This means that in

the static dataset, the criteria to partition graphs based on frequency of updated vertices

has minimal effect on the performance of PartMiner.

Varying Minimum Support

Next, we study the performance of PartMiner by varying minimum support from 1% to

6%. The results are shown in Figure 5.20. Compared to ADIMINE, we observe that

PartMiner needs less time to find the complete set of frequent subgraphs when minimum

support is greater than 1.5%. When minimum support is less than 1.5%, we find that

PartMiner needs more time than ADIMINE does to find the complete set of frequent

graphs. This is because when minimum support decreases, more subgraphs become

frequent, and the subgraphs also become more complex. As a result, PartMiner needs

more time to count the frequency of the subgraphs. In contrast, the index structure of

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 154

0.02 0.03 0.04 0.05 0.06
0

20

40

60

80

100

120

140

R
u
n
ti
m

e
 (

s
)

Minimum support

D50kT20N20L200I5

ADIMINE
METIS
Partition1
Partition2
Partition3

Figure 5.19: Effect of partitioning criteria

0.01 0.015 0.02 0.025 0.03 0.04 0.05 0.06
0

50

100

150

200

250

minimum support

R
u
n
ti
m

e
 (

s
)

D50kT20N20L200I5

ADIMINE
coverage = 100%
coverage = 84%
coverage = 55%

Figure 5.20: Runtime vs. parameter minsup

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 155

1 2 3 4 5 6
0

200

400

600

800

1000

1200

R
u
n
ti
m

e
 (

s
)

Number of units (k)

D100kT20N20L200I9

ADIMINE
Aggregate time
Parallel time

Figure 5.21: Runtime vs. parameter k

the ADIMINE is advantageous at this time. However, if we only want to retrieve an

approximate result of the frequent subgraphs, e.g., coverage = 84% or 55% (coverage

indicates the percentage of the frequent subgraphs found in the complete set), then

PartMiner outperforms ADIMINE.

Effect of Number of Units k

We test the performance of the PartMiner by varying the number of units from 2 to 6.

Recall that we have divided the database into units and these units can be processed in

parallel. This implies that our PartMiner can be executed either in the serial mode or

the parallel mode. In the serial mode, we measure aggregate time which is computed

by adding the time spent in all the units together. In the parallel mode (with 1 CPU),

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 156

the units are executed concurrently and we simply take the maximum of the time spent

in the units.

From the results in Figure 5.21, we see that the parallel running PartMiner is faster

than ADIMINE in finding the complete set of frequent subgraphs. In other words, we

could achieve better performance to mine the frequent subgraphs by partitioning the

databases into the subunits than that in the original databases.

We also observe that more time is needed to find the complete set of subgraphs in

the database as the parameter k increases. The reason is that with the increasing of

the number of units, we need more merge-join operations to recover the complete set

of frequent subgraphs. For example in Figure 5.10, we can see that we only need one

merge-join operation to recover the complete set of frequent subgraphs for 2 units. If

we divide the database into 6 units, we need four merge-join operations to recover the

complete set of the frequent subgraphs. Hence, we need more time to get the final set

of frequent subgraphs when we divide the original database into more units.

Scalability

In this set of the experiments, we evaluate the performance of PartMiner by varying the

parameters T , I and D of the synthetic data generator, which will affect the size of the

graphs. Figure 5.22, Figure 5.23 and Figure 5.24 show that PartMiner scales linearly

with the parameters T , I and D, and is faster in finding the complete set (or approximate

results) of the frequent subgraphs compared to ADIMINE.

Figure 5.22 shows the results when the parameter T varies from 10 to 25. We

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 157

10 15 20 25
0

20

40

60

80

100

120

140

Size of transaction (T) (minsup = 4%)

R
u
n
ti
m

e
 (

s
)

D100kN20I5L200

ADIMINE
PartMiner (coverage = 100%)
PartMiner (coverage = 85%)
PartMiner (coverage = 55%)

Figure 5.22: Varying parameter T

2 3 4 5 6 7 8
0

50

100

150

200

250

Size of parameter I (minsup = 4%)

R
u
n
ti
m

e
 (

s
)

D100kT20N20L200

ADIMINE
PartMiner (coverage = 100%)
PartMiner (coverage = 85%)
PartMiner (coverage = 55%)

Figure 5.23: Varying parameter I

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 158

50 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Size of database (D) (minsup = 4%)

R
u
n
ti
m

e
 (

s
)

T20N20I5L200

ADIMINE
PartMiner (coverage = 100%)
PartMiner (coverage = 85%)
PartMiner (coverage = 55%)

Figure 5.24: Varying parameter D

observe that PartMiner needs more time to find the set of frequent graphs as T increases.

This is to be expected since the frequent subgraphs in the final results tend to be more

complex with the growth of T .

Figure 5.23 shows the performance of PartMiner when the parameter I varies from

2 to 8. The results indicate that to find the set of frequent graphs, PartMiner is slower

when I increases to more than 7. This is because the size of the potentially frequent

graphs in the dataset becomes larger. As a result, the size of the frequent subgraphs

in the database tends to be larger, and PartMiner needs more time to find the larger

frequent subgraphs.

The effect of varying the size of the database from 50,000 to 1000,000 is shown in

Figure 5.24. We observe that PartMiner scales linearly with the size of the database.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 159

5.3.2 Performance Study on Dynamic Datasets

In this section, we study the performance of IncPartMiner When updates occur. We

implement a data generator which updates the database in three different ways:

• Updating the vertex/edge labels with existing or new labels. For example, updat-

ing the vertices/edges with label l in the graphs to the label l′;

• Adding a new edge with an existing or a new label between two vertices vi and vj

in the graph G. For example, adding an edge with the label l′ between the vertices

v0 and v1 if there is no edge between them.;

• Adding a new vertex v, and a new edge e(v, vi) with the existing or new labels on

the vertex vi in the graph G.

We update the dataset D50kT20N20L200I5 using the three different ways, and evaluate

IncPartMiner by varying the percentage of the graphs updated in the database from 20%

to 80% with the number of units in the database fixed at 2.

Effect of Partitioning Criteria

We first test the performance of IncPartMiner by varying the partitioning criteria. Fig-

ure 5.25 shows the results. We observe Partition3, that is isolating the updated vertices

AND minimizing the connective edges, yields the best performance in the dynamic

dataset. This is because Partition3 not only reduces connectivity among units, but also

tries to isolate updated vertices into a minimum number of units, and minimizes the

number of units needed to be re-mined and re-examined in the merge-join operation.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 160

0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

R
u
n
ti
m

e
 (

s
)

Minimum support

D50kT20N20L200I5

ADIMINE
METIS
Partition1
Partition2
Partition3

Figure 5.25: Effect of partitioning criteria

0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

R
u
n
ti
m

e
 (

s
)

minimum support (incremental mining)

D50kT20N20L200I5

ADIMINE
PartMiner
IncPartMiner

Figure 5.26: Runtime vs. parameter minsup

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 161

Compared to Figure 5.19 about the static datasets, we note that the criteria to parti-

tion graphs based on frequency of updated vertices takes its advantages on the perfor-

mance of IncPartMiner in the dynamic dataset.

Varying Minimum Support

We evaluate the IncPartMiner algorithm by varying minimum support from 1% to 6%.

Figure 5.26 shows the results of finding the complete set of graphs in the database.

We note that IncPartMiner is more efficient in finding the new set of frequent graphs

compared to ADIMINE and PartMiner.

This is because IncPartMiner makes use of the pruning results of the pre-updated

database to prune those candidate graphs that remain unchanged. It also uses the dif-

ferences between the pre-updated results and the updated results of the units to prune

those subgraphs that have become infrequent. This results in much savings. In contrast,

ADIMINE and PartMiner have to re-mine the database to find the subgraphs that have

been changed, and need to re-examine both the changed and unchanged subgraphs.

Effect of Number of Units k

Next, we test IncPartMiner with different number of units. We vary the parameter k

from 2 to 6. Figure 5.27 indicates that IncPartMiner runs faster than ADIMINE when

mining dynamic datasets both in serial mode and in parallel mode. We believe this is

due to the fact that IncPartMiner uses the pruned results of the pre-updated database

to avoid generating candidate graphs that remain unchanged. This enables the IncPart-

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 162

1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

R
u
n
ti
m

e
 (

s
)

Number of units (k)

D100kT20N20L200I9

ADIMINE
Aggregate time
Parallel time

Figure 5.27: Runtime vs. parameter k

Miner to check only those subgraphs that were infrequent but have become frequent in

the updated database. In contrast, ADIMINE has to rebuild the ADI index structure and

re-mine the subgraphs, including changed subgraphs and unchanged subgraphs.

Effect of Various Types of Updates

In this set of the experiments, we evaluate the performance of IncPartMiner by varying

the updating coverage in the database from 20% to 80%. Figure 5.28 shows the results

of updating the labels of the vertices (or edges) to existing and new labels. Figure 5.29

and Figure 5.30 show the results of adding new edges/vertices to the existing/new la-

bels. The results confirm that IncPartMiner outperforms ADIMINE in mining frequent

graphs in dynamic datasets.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 163

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

Percentage of the updated transactions (minsup = 4%)

R
u

n
ti
m

e
 (

s
)

D50kT20N20I5L200

ADIMINE
Coverage = 100%
Coverage = 85%
Coverage = 55%

Figure 5.28: Updating the node/edge labels

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

Percentage of the updated transactions (minsup = 4%)

R
u
n
ti
m

e
 (

s
)

D50kT20N20I5L200

ADIMINE
Coverage = 100%
Coverage = 85%
Coverage = 55%

Figure 5.29: Adding new edges between two vertices

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 164

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

Percentage of the updated transactions (minsup = 4%)

R
u

n
ti
m

e
 (

s
)

D50kT20N20I5L200

ADIMINE
Coverage = 100%
Coverage = 85%
Coverage = 55%

Figure 5.30: Adding new vertex with an edge to existing vertices

We observe that the updating coverage of the database has little effect on the per-

formance of IncPartMiner. In other words, IncPartMiner scales linearly with the size of

the graph and the number of labels in the database. These advantages of IncPartMiner

are due to the pruning techniques we employ. IncPartMiner focuses on patterns in the

set IF , that is, patterns which were infrequent but now tend to be frequent. The par-

titioning process handles the patterns in UF while patterns in FI can be determined

from the results of the pre-updated databases.

5.4 Experiments on Real-life Dataset

We also discovered meaningful frequent subgraphs in the real-life forest fire dataset.

Figure 5.31 shows a sample of the frequent subgraphs found in the real-life dataset.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 165

F(l32)
F(l31) F(l38) F(l32) F(l38)

F(l31), F(l32)F(l31) F(l38) F(l38) F(l31)F(l38) F(l38) F(l31) F(l38)
F(l31) F(l38) F(l32) F(l38)F(l31) F(l38) F(l32) F(l38) F(l31)F(l38) F(l32) F(l38) F(l38)
F(l38) F(l32) F(l38) F(l32)F(l38) F(l32) F(l32)

F(l32) F(l38) F(l38) F(l32)F(l32) F(l38) F(l31) F(l38) F(l32)F(l38) F(l32) F(l38) F(l31) F(l38)F(l32), F(l38)F(l32)F(l38)F(l31) F(l38)F(l38) F(l32)F(l38)
F(l38)F(l31) F(l38)F(l32)

Figure 5.31: Interesting patterns found in real-life dataset

From the frequent subgraphs, we also mapped them back into flow patterns. The corre-

sponding flow patterns are shown in the right column of Figure 5.31.

5.5 Summary

In this chapter, we have presented a partition-based algorithm PartMiner for discovering

the set of frequent subgraphs. Each graph in the database is partitioned into smaller

subgraphs. This enables PartMiner to avoid the thrashing of memory-based algorithms.

CHAPTER 5. MINING ARBITRARY SPATIO-TEMPORAL PATTERNS 166

Moreover, by exploring the cumulative information of units, PartMiner can effectively

reduce the number of candidate graphs. Experimental results verify that PartMiner can

find frequent subgraphs efficiently and scalably.

We also present IncPartMiner, an extended version of PartMiner that handles up-

dates in graph databases. The IncPartMiner uses pruning results of pre-updated databases

to avoid generating candidate graphs that remain unchanged. It only checks those sub-

graphs that were infrequent but tend to be frequent in updated databases, instead of

re-examining both changed and unchanged subgraphs as existing algorithms do. This

leads to tremendous cost savings. The experimental results also verify that IncPart-

Miner performs much better than ADIMINE and PartMiner in finding graphs when

updates occur.

Chapter 6

Conclusions and Future Work

Association rule mining in spatial databases and temporal databases have been studied

extensively in data mining research. Most previous studies have found interesting pat-

terns in either spatial information or temporal information; few studies have handled

both efficiently. Meanwhile, developments in spatio-temporal databases and spatio-

temporal applications have prompted data analysts to turn their focus to spatio-temporal

patterns that explore both spatial and temporal information. In this thesis, we have in-

troduced new classes of spatio-temporal patterns by incorporating spatial information or

temporal information into existing work, and we have developed efficient and effective

algorithms for mining these spatio-temporal patterns. We summarize our contributions

as follows:

• First, we have devised a method to discover topological patterns by imposing

temporal constraints into the process for mining collocation patterns. We have

designed an algorithm called TopologyMiner to find topological patterns, and

167

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 168

presented a summary structure to summarize a database by recording instances’

count information in a cube. With the summary structure, TopologyMiner finds

topological patterns in a depth-first manner and follows the pattern-growth method-

ology. We have also studied the problem of mining the geographical features of

topological patterns. Experimental studies indicate that TopologyMiner could

find topological patterns efficiently and scalably, outperforming existing Apriori-

like algorithms by a few orders of magnitude.

• Second, we have studied the problem of discovering spatial sequence patterns.

We have presented two new classes of spatial sequence patterns, called flow pat-

terns and generalized spatio-temporal patterns to describe the change of events

over space and time, which are useful to the understanding of many real-life ap-

plications. We have designed two algorithms, FlowMiner and GenSTMiner, to

find these two classes of spatial sequence patterns. FlowMiner utilizes tempo-

ral relationships and spatial relationships amid events to generate flow patterns.

GenSTMiner is based on the idea of the pattern growth approach and finds gener-

alized spatio-temporal patterns in a depth-first manner. Our performance studies

show that the proposed algorithms are both scalable and efficient. Experiments

on real-life datasets also reveal some interesting flow patterns and generalized

spatio-temporal patterns.

• Finally, we have studied the problem of mining arbitrary spatio-temporal patterns

by modeling spatio-temporal data as graphs. We have designed a partition-based

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 169

approach called PartMiner for graph mining. PartMiner utilizes the cumulative

information of partitions to effectively reduce the number of candidate graphs.

We have also extended PartMiner to handle frequent updates in the database.

The extended version called IncPartMiner uses the pruning results of pre-updated

databases to avoid generating unchanged candidate graphs. IncPartMiner only

checks those subgraphs that were infrequent but tend to be frequent in updated

databases, instead of re-examining both changed and unchanged subgraphs as ex-

isting algorithms do. This leads to tremendous cost savings. The experimental

results indicate that PartMiner is effective and scalable in finding frequent sub-

graphs, outperforming existing algorithms in updated databases.

6.1 Future Research Directions

While this thesis has shown association rule mining to be a promising tool for spatio-

temporal data analysis, there are a number of issues that need to be further investigated:

• Data integration and data classification. Real world spatio-temporal data tends

to be large and is obtained from heterogeneous data sources. How to integrate

data from different data sources at different levels is an increasing problem that

extends beyond spatio-temporal association rule mining and into many types of

spatio-temporal statistical analysis. Hence, discovering knowledge from real-

world spatio-temporal applications calls for data integration and data classifica-

tion.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 170

• Representation and calculation of spatial relationships. In this thesis, we have

focused on relationships of spatial coincidence and distance. However, there are

other types of spatial relationships that may be used in spatio-temporal associa-

tion rule mining, such as direction, topological relationships, etc. A structured

experiment comparing different spatial relationship types in association rule min-

ing would illustrate the impact of choice of spatial relationship type on mining

results.

• Representation of spatio-temporal data. Developing spatio-temporal mining meth-

ods should go hand in hand with efficient and effective spatio-temporal data min-

ing. Each spatio-temporal representation approach and the corresponding data

structures may impose some unique challenges on data mining algorithms/methods.

• Application in special types of spatio-temporal database. We consider to extend

our algorithms to special types of spatio-temporal databases, such as those col-

lected from sensor networks (for environmental monitoring) etc.

Bibliography

[AC01] J. Aach and G.M. Church. Aligning gene expression time series with time

warping algorithms. Bioinformatics, pages 495–508, 2001.

[AGYF02] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential pattern mining

using a bitmap representation. Proceedings of the ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, 2002.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.

Proceedings of the International Conference on Very Large Databases,

pages 487–499, 1994.

[AS95] R. Agrawal and R. Srikant. Mining sequential patterns. Proceedings of

the International Conference on Data Engineering, 1995.

[AS96] R. Agrawal and R. Srikant. Mining sequential patterns: Generalizations

and performance improvements. Proceedings of the International Con-

ference on Extending Database Technology, pages 3–17, 1996.

171

BIBLIOGRAPHY 172

[BFR98] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to

large databases. Proceedings of the ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 9–15, 1998.

[CN04] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with chebyshev

polynomials. Proceedings of the 2004 ACM SIGMOD International Con-

ference on Management of Data, pages 599 – 610, 2004.

[EFKS98] M. Ester, A. Frommelt, H.P. Kriegel, and J. Sander. Algorithms for char-

acterization and trend detection in spatial databases. Proceedings of In-

ternational Conference on Knowledge Discovery and Data Mining, pages

44–50, 1998.

[GBE+00] R. H. Gting, M.H. Bhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos,

M.Schneider, and M. Vazirgiannis. A foundation for representing and

querying moving objects. The Transactions on Database Systems, vol-

ume 25(1), pages 1–42, 2000.

[GRS98] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algo-

rithm for large databases. Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 73–84, 1998.

[GRS99] M. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern min-

ing with regular expression constraints. Proceedings of the International

Conference on Very Large Data Bases, pages 223–234, 1999.

BIBLIOGRAPHY 173

[Gut84] A. Guttman. R-trees: A dynamic index structure for spatial searching.

Proceedings of Annual Meeting, Boston, Massachusetts, SIGMOD’84,

pages 47–57, 1984.

[HCB98] L. Hall, N. Chawla, and K.W. Bowyer. Combining decision trees learned

in parallel. ACM SIGKDD workshop on distributed data mining, 1998.

[HKS97] J. Han, K. Koperski, and N. Stefanovic. Geominer: A system prototype

for spatial data mining. Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 553 – 556, 1997.

[HP00] J. Han and J. Pei. Mining frequent patterns by pattern-growth: Method-

ology and implications. ACM SIGKDD Explorations (Special Issue on

Scaleble Data Mining Algorithms), 2(2), 2000.

[HXSP03] Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining confident co-location

rules without a support threshold. Proceedings of the ACM Symposium

on Applied Computing, pages 497–501, 2003.

[IWNM01] Akihiro Inokuchi, Takashi Washio, Kunio Nishimura, and Hiroshi Mo-

toda. A fast algorithm for mining frequent connected subgraphs. IEEE

Transactions on Knowledge and Data Engineering, 2001.

[Keo01] E. Keogh. Mining time series data. IEEE International Conference on

Data Mining, 2001.

BIBLIOGRAPHY 174

[KH95] K. Koperski and J. Han. Discovery of spatial association rules in geo-

graphic information databases. Proceedings of the International Sympo-

sium on Large Spatial Databases, pages 47–66, 1995.

[KHS98] K. Koperski, J. Han, and N. Stefanovic. An efficient two-step method for

classification of spatial data. Proceedings of The International Sympo-

sium on Spatial Data Handling SDH’98, 1998.

[KK98] G. Karpis and V. Kumar. Multilevel algorithms for multi-constraint graph

partitioning. Proceedings of ACM/IEEE International Conference on Su-

percomputing, pages 1–13, 1998.

[KK01] Michihiro Kuramochi and George Karypis. An efficient algorithm for

discovering frequent subgraphs. IEEE Transactions on Knowledge and

Data Engineering, pages 1038 – 1051, 2001.

[LLC01] Chang-Huang Lee, Cheng-Ru Lin, and Ming-Syan Chen. Sliding win-

dow filtering: an efficient algorithm for incremental mining. Proceedings

of the International Conference on Information and Knowledge Manage-

ment, pages 263–270, 2001.

[MCK+04] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W.

Cheung. Mining, indexing, and querying historical spatiotemporal data.

Proceedings of the ACM SIGKDD International Conference on Knowl-

edge discovery and data mining, 2004.

BIBLIOGRAPHY 175

[MH01] S. Ma and J.L. Hellerstein. Mining partially periodic event patterns with

unknown periods. Proceedings of International Conference on Data En-

gineering, page 205C214, 2001.

[Mor01] Y. Morimoto. Mining frequent neighboring class sets in spatial databases.

Proceedings of the ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 353 – 358, 2001.

[MSM95] E. Mesrobian R. Muntz, E. C. Shek, and C. R. Mechoso. Exploratory data

mining and analysis using conquest. IEEE Pacific Conference on Commu-

nications, Computers, Visualization, and Signal Processing, pages 281–

286, 1995.

[MTV95] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent

episodes in sequences. Proceedings of the International Conference on

Knowledge Discovery and Data Mining, pages 210–215, 1995.

[NH94] R.T. Ng and J. Han. Efficient and effective clustering methods for spatial

data mining. Proceedings of the International Conference on Very Large

Databases, pages 144–155, 1994.

[NH02] Raymond T. Ng and Jiawei Han. CLARANS: A method for clustering

objects for spatial data mining. IEEE Transactions on Knowledge and

Data Engineering, pages 1003–1016, 2002.

BIBLIOGRAPHY 176

[NK04] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure

mining can make a difference. Proceedings of the ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages

647–652, 2004.

[OSC00] T. Oates, M.D. Schmill, and P.R. Cohen. A method for clustering the

experiences of a mobile robot that accords with human judgments. Amer-

ican Association for Artificial Intelligence, 2000.

[PC03] W.C. Peng and M.S. Chen. Developing data allocation schemes by in-

cremental mining of user moving patterns in a mobile computing system.

IEEE Transactions on Knowledge and Data Engineering, 2003.

[PHMAP01] J. Pei, J. Han, B. Mortazavi-Asl, and Helen Pinto. Prefixspan: Mining

sequential patterns efficiently by prefix-projected pattern growth. Pro-

ceedings of the International Conference on Data Engineering, pages

215–224, 2001.

[PHW02] J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints

in large databases. Proceedings of the ACM CIKM International Confer-

ence on Information and Knowledge Management, pages 18–25, 2002.

[RS02] J. Roddick and M. Spiliopoulou. A survey of temporal knowledge dis-

covery paradigms and methods. IEEE Transactions on Knowledge and

Data Engineering, Volume 14, pages 750–767, 2002.

BIBLIOGRAPHY 177

[SAM96] Johs Shafer, Rakesh Agrawal, and Manish Mehta. Sprint: A scalable

parallel classifier for data mining. Proceedings of the International Con-

ference on Very Large Data Bases, pages 544–555, 1996.

[SEKX98] J. Sander, M. Ester, H.P. Kriegel, and X. Xu. Density-based clustering

in spatial databases: A new algorithm and its applications. Data Mining

and Knowledge Discovery, pages 2(2):169–194, 1998.

[SH01] S. Shekhar and Y. Huang. Discovery of spatial co-location patterns. Pro-

ceedings of the International Symposium on Advances in Spatial and

Temporal Databases, pages 236–256, 2001.

[SJLL00] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez. Indexingthe posi-

tions of continuously moving objects. Proceedings of the 2000 ACMSIG-

MOD Conference on Management of Data, pages 331–342, 2000.

[SNMM95] P. Stolorz, H. Nakamura, E. Mesrobian R. R. Muntz, and C. R. Mechoso.

Fast spatio-temporal data mining of large geophysical datasets. Proceed-

ings of the International Conference on Knowledge Discovery and Data

Mining, pages 300–305, 1995.

[SON95] Ashok Savasere, Edward Omiecinski, and Shamkant Navathe. An effi-

cient algorithm for mining association rules in large databases. Proceed-

ings of the International Conference on Very Large Data Bases, pages

432–444, 1995.

BIBLIOGRAPHY 178

[SPTL04] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the past, the

present and the future in spatio-temporal databases. Proceedings of the

20th IEEE International Conference on Data Engineering, pages 202–

213, 2004.

[STK+01] M. Steinbach, P. N. Tan, V. Kumar, S. Klooster, C. Potter, and A. Tor-

regrosa. Clustering earth science data: Goals, issues and results. KDD

2001 Workshop on Mining Scientific Dataset, 2001.

[TG01] I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal pat-

terns. Proceedings of the International Symposium on Advances in Spa-

tial and Temporal Databases, pages 425–443, 2001.

[Tob79] W.R. Tobler. Cellular Geography, Philosophy in Geography. Gale and

Olsson (Eds), 1979.

[TPS02] Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search.

Proceedings of the Very Large Data Bases Conference, pages 287–298,

2002.

[TSK01] P. N. Tan, M. Steinbach, and V. Kumar. Finding spatio-temporal patterns

in earth science data. KDD 2001 Workshop on Temporal Data Mining,

2001.

[TTPL04] Y. Tao, C. Taloutsos, D. Papadias, and B. Liu. Prediction and indexing of

moving objects with unknown motion patterns. Proceedings of the 2004

BIBLIOGRAPHY 179

ACM SIGMOD International Conference on Management of Data, pages

611 – 622, 2004.

[WH04] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences.

Proceedings of the International Conference on Data Engineering, 2004.

[WWP+04] Chen Wang, Wei Wang, Jian Pei, Yongtai Zhu, and Baile Shi. Scalable

mining of large disk-based graph databases. Proceedings of the ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 316–325, 2004.

[WWYY02] H. Wang, W. Wang, J. Yang, and P.S. Yu. Clustering by pattern similarity

in large data sets. Proceedings of ACM SIGMOD International Confer-

ence on Management of Data, pages 394–405, 2002.

[YH02] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern

mining. IEEE Transactions on Knowledge and Data Engineering, page

721, 2002.

[YH03] Xifeng Yan and Jiawei Han. Closegraph: Mining closed frequent graph

patterns. Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 286–295, 2003.

[YHA03] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential pat-

terns in large datasets. Proceedings of the SIAM International Conference

On Data Mining, 2003.

BIBLIOGRAPHY 180

[YWYH02] J. Yang, W. Wang, P. S. Yu, and J. Han. Mining long sequential patterns

in a noisy environment. Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 406 – 417, 2002.

[Zak98] M. Zaki. Efficient enumeration of frequent sequences. Proceedings of the

International Conference on Information and Knowledge Management,

pages 68 – 75, 1998.

[ZMCS04] X. Zhang, N. Mamoulis, D.W. Cheung, and Y. Shou. Fast mining of spa-

tial collocations. Proceedings of ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2004.

