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SUMMARY 

In this work, we address two scheduling problems of chemical transshipment 

activities in chemical logistics. The first one focuses on general transshipment 

operation, the second one aims to solve tanker lightering operation. 

Maritime logistics, in spite of its key role in global chemical supply chains, 

has received little attention in the literature. Transshipment or direct ship-to-ship 

transfer of bulk liquid cargos for regional distribution is a common activity in 

maritime chemical logistics. Efficient scheduling of transshipment operations is 

economically crucial because of the high costs of the participant multi-parcel carriers. 

In the first part of research, we consider a general chemical transshipment problem, in 

which multiple donor carriers transship several chemical cargos to multiple recipient 

carriers. We develop nine continuous-time mixed-integer linear programming (MILP) 

formulations of three types for determining the optimal sequences, positions, and 

timings for unloading various cargos. Two of these models using the big-M relaxation 

seem the best in solving several test problems involving up to sixteen cargos with 

reasonable speed, but their performances vary with the numbers of two-sided cargos 

and ships. For even larger problems, we present a cargo aggregation heuristic that 

tremendously speeds up the solution of our models, yet gives near-optimal solutions. 

The research finding also suggests that the slot-based sequencing approach is 

generally more efficient than the pair-wise approach in many scheduling problems. 

In the second part of research, we address a tanker lightering problem. 

Lightering vessels receive crude oil from crude tankers in order to reduce their drafts. 

Then, crude tankers can deliver crudes to shallow refinery ports where they cannot 

enter previously due to draft limitation. Good lightering schedules are of utmost 

importance to enhance the efficiency of lightering operation and reduce the total 
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operating cost. We develop a continuous-time MILP formulation using two alternate 

linearization methods to address two different objectives. One objective considers the 

time-charter cost of tankers, while the other considers the demurrage cost of tankers. 

Our formulations include many practical and important features. For example, we 

consider multi-compartments vessels, restrict the number of simultaneous transfers for 

a single tanker to two, consider the differences in crude densities, and allow the 

freedom to select lightering crudes. In contrast to the general chemical transshipment 

problem, the volumes and assignments to lightering vessels in this case are decided by 

the optimization model.  In addition, the system cost here is an indicator of the 

customer satisfaction level as well as the utilization of fleet of lightering vessels. Our 

MILP models generate optimal lightering schedule with lightering volumes, sequence, 

times, and assignments, which minimizes the operating costs of lightering vessels, the 

demurrage or time-charter costs of tankers as well as the delivery times of crude oil 

from the lightering location to refinery ports. We also develop some heuristic methods 

to simplify the models when addressing large size problems. Furthermore, the 

comparison between our slot-based model and event-based model from literature also 

shows the superiority of slot-based approach over event-based approach in lightering 

scheduling problems. 
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NOMENCLATURE 

SYMBOLS 

Chapters 3-4 

Indices 

i real transshipment cargos  

j one-sided cargos  

k time slots 

n multi-compartment short-sea carriers 

m multi-compartment deep-sea carriers 

p position slots 

Sets 

J Set of one-sided cargos derived from the original I transshipment cargos 

TSC Set of two-sided cargos 

OSC Set of one-sided cargos 

JSn Set of cargos j for small ship n  

JBm Set of cargos j on big ship m  

Jp Set of cargos j that must transfer from position p 

ISn Set of actual cargos i for short-sea carrier n  

Pm Set of positions p that belong to big ship m 

Pn Set of small ships n that receive cargos from position p 

Parameters 

ETASn Estimated time of arrival for short-sea carrier n 

ETABm Estimated time of arrival for deep-sea carrier m 

ETACj Time at which cargo j becomes available for transshipment 

τj Service time required to transfer cargo j 
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θnpp′ Travel time required by small ship n to travel from position p to p′ 

TCCBm Time-charter cost of deep-sea carrier m 

TCCSn Time-charter cost of short-sea carrier n 

MTj Minimum start time of cargo j 
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Kj Number of destination slots of cargo j 

H Some large number 

Variables 
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Tj  Time at which cargo j transfers 

TXjk = TSnkxjk = Tjxjk for F1 models and = TBpkxjk = Tjxjk for F2 and F3 models 

DTBm Departure time of deep-sea carrier m 

DTSn Departure time of short-sea carrier n 

TTCC Total time-charter cost of all ships 

TBpk Start time of slot k at position p  

djj′ j′′ 0-1 continuous dummy variable 
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δjj′ 0-1 continuous dummy variable 

 

Chapters 5-6 

Indices 

m crude tankers 

n lightering vessels 

r refineries 

p position slots 

k time slots 

c crudes  

j lightering parcels 

Sets 

CTm Set of crudes c that tanker m carries 

CVn Set of crudes c that can be lightered by lightering vessel n 

S2 Set of stage two parcels of 2-stage tankers 

JCc Set of parcel j that has crude oil c 

JBm Set of parcel j that is from tanker m 

Jp Set of parcel j that transfers from position p for m(j) ∈ LT 

JSn Set of parcel j that can be unloaded by lightering vessel n 

JJ Set of parcel pairs that can be unloaded by the same lightering vessel 

during the same voyage 

TST Set of tankers that their physical tankers are 2-stage tankers 

MM Set of tanker pairs that are offshore and anchorage tankers respectively of 

the same 2-stage physical tanker 

LT Set of large tankers that require more than two parcels for lightering 

Parameters 

PSc Volume of crude oil c (m3) 

LWm Lightering weight of tanker m (kg) 
U
nN  Number of compartments of lightering vessel n 

SCn Size of compartments of lightering vessel n (m3) 

vfn Velocity of lightering vessel n when loaded  

ven Velocity of lightering vessel n when empty 
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FINnc Volumetric pumping rate at which lightering vessel n receives crude c 

from tanker 

FOUTn Volumetric pumping rate at which lightering vessel n discharges crude to 

refinery 

ETASn Expected time of arrival of lightering vessel n 

ETABm Expected time of arrival of tanker m 

ETAj Expected time of arrival of parcel j 

ρj Density of parcel j 

drj Distance of parcel j to destination refinery 

daj Distance of parcel j from anchorage 

WDnj Maximum weight of parcel j that vessel n can carry 

VCn Fixed operating cost per voyage of vessel n (voyage cost) 

FCn Fuel cost per nm of lightering vessel n 

MDTj Mounting and dismounting time needed for parcel j 

DTRj Docking and undocking time at a refinery needed for parcel j 
U
mNS  Maximum number of parcels needed for tanker m 

L
mNS  Minimum number of parcels needed for tanker m 

U
nWT  max

nj
n
WDj= ∈JS  

U
nVT  max nj

n j

WD
j ρ

= ∈JS  

DDj Due date of parcel j 

DDPj Due date penalty of parcel j 

TCCm Time-charter cost of tanker m 

ADm Agreed duration of tanker m 

DCm Demurrage cost of tanker m 

TOAm Travel time from offshore to anchorage of tanker m 

TPPnjj' Time for vessel n to travel from parcel j to j' directly 

TPRnj Time for vessel n to take parcel j to its destination refinery 

TRAnj Time for vessel n to travel from destination refinery of parcel j to 

anchorage 

TAPnj Time for vessel n to travel from anchorage to pick up parcel j 

Kn Number of time slots on lightering vessel n 
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HT Big-M constant for time constraint 

Variables 

xnkj 1, if vessel n transfers parcel j during slot k 

yjj' 1, if parcel j' is lightered sometime after parcel j  

zenk 1, if vessel n ends its current voyage in slot k 

U nk 1, if vessel n transfers a parcel during slot k  
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Tj Time when at which parcel j transfers  
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TDn Total traveling distance of vessel n 
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CHAPTER 1 

INTRODUCTION 

1.1 Logistics in Chemical and Petrochemical Industry 

The chemical and petrochemical industry is highly global with worldwide 

procurement and distribution. In today’s business environment, companies are also 

free to locate their businesses all over the world to gain maximum benefits. For 

example, a petrochemical company produces/imports crude oil from the major oil 

fields located in Middle East; refines crude oil in Southeast Asia countries because the 

local labor and operating cost are cheap, sells products to downstream manufacturers 

and end customers all over the world. By doing this, companies can utilize their 

resources, minimize costs hence boost up profits. Therefore, large quantities of liquid 

chemicals (raw materials, intermediate products, and finished products) must move 

globally over long distances (e.g. from Middle East to Southeast Asia, from Southeast 

Asia to Europe and USA, and so on). Of course, this costs money, and logistics costs 

can be as high as 20% in chemical supply chains as highlighted by Karimi et al. (2002) 

and efficient logistics is the key to successful supply chains. 

1.2 Shipping in Chemical Logistics 

There are many ways of transporting chemical cargos including air, truck, rail, ship, 

pipeline, etc. Although pipelines are preferred, whenever possible, ocean shipping is 

the dominant transport mode, when moving large volumes of bulk liquid chemicals 

between continents. It is more economical than air, truck, and rail, and is more 

flexible than pipeline. 65 to 85 weight percent (wt%) of international trade is via sea 

transport, which clearly indicates the monopoly of ocean shipping (Christiansen et al., 

2003). In addition to the seaborne trade, shipping is also very important in domestic 

trade for countries with long shorelines, or navigable waterways and rivers, or many 
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islands, such as, Indonesia, Norway, Denmark, USA, Philippines and so on. Chemical 

logistics is no exception. 

There are three basic modes of operation of shipping, industrial, liner and 

tramp shipping (Lawrence, 1972). For industrial shipping, the companies own the 

cargos transferred and control the ships used to transport them. The companies own or 

charter the ships. The objective for the company is to minimize the total operating 

cost while attaining the delivery requirements of cargos.  For liners, they normally 

operate according to published routes or schedules. It is similar to bus service. And 

they normally travel long, intercontinental routes. The objective is to maximize the 

ships utilization hence to gain maximum profits. For tramp ships, usually they are 

engaged in small contracts, and they pick up available/profitable cargos. It is similar 

to taxicab service. The objective for the shipping company is to maximize the profit. 

Cargo delivery may require more than one mode of operation. For example, a cargo is 

transported from one major port in Europe to another major port in Southeast Asia by 

a liner. But, the ultimate destination for this cargo is a port that is not in the liner’s 

published route. As a result, further transport by a tramp (charted) ship is required. 

Transfer of cargo from one ship to another ship is required in such practice. This 

operation can be direct or indirect (delayed) depending on the type of cargos 

transferred, the availability of recipient ships and other business considerations. We 

will elaborate on this operation in detail later. 

 In chemical shipping where liquid cargos are normally shipped, there is 

another way of categorizing shipping operations. We classify chemical shipping into 

two types, deep-sea shipping and short-sea shipping. Jetlund and Karimi (2004) 

defined deep-sea shipping as the transportation between continents in deep-sea water, 

where large multi-compartment tankers transport large amounts of cargos between 
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major ports and manufacturers. Short-sea shipping focuses on regional areas. It 

normally involves smaller, multi-compartment vessels that travel relatively short 

distances between regional ports. Deep-sea shipping acts as a feeder to short-sea 

shipping. When deep-sea carriers arrive at major ports, they not only unload some 

cargos, but they also directly (ship-to-ship) transfer some cargos to short-sea carriers 

for further delivery to regional ports. This reduces transport costs, because the fuel 

and time-charter costs of deep-sea carriers are far greater than those of short-sea 

carriers. Furthermore, deep-sea carriers often cannot enter shallow destination ports 

due to draft limitations. Then, the only way to deliver cargos to the destinations is by 

transferring them to the smaller carriers that can access the ports. The operation of 

transferring cargos directly (ship-to-ship) from intercontinental deep-sea carriers 

(liners) to regional short-sea carriers (tramp ships) or in general from one vessel to 

another is called transshipment. 

1.3 Transshipment in Chemical Shipping 

1.3.1 Main feature of transshipment operation 

The main feature that distinguishes the transshipment of chemicals from that of other 

goods is that the transfer must be direct via a hose, making it necessary for both the 

donor and recipient ships to be engaged in the operation simultaneously. Unlike most 

other goods or containers that can simply be stored at a port for a period before 

another ship collects them, a donor ship cannot simply dump a non-containerized 

chemical cargo at a port and leave, and let the recipient ship collect it some time later. 

Most ports do not have facilities for such temporary storage. Such a delayed transfer 

would normally require a third party logistics (3PL) facility and would incur 

significant additional cost. Such feature makes it difficult to arrange the transshipment 
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operations in an efficient manner, whereas, a good schedule is the key to reduce 

logistics cost.  

1.3.2 Need for transshipment operations 

Transshipment operation is very common practice in the chemical shipping industry. 

Christiansen et al. (2003) showed that the seaborne trade has been increasing during 

the last decade, and is expected to grow further with the enlarging world economy. 

Furthermore, Ng and Baumgarten (1998) reported that the trade in chemical and 

petrochemical industries within regional areas is also increasing in recent years. Thus, 

there is a growing need for supplying and distributing chemicals to and from 

industries within regions that are uneconomical for the inter-continental or deep-sea 

routes to serve. As deep-sea and short-sea shipping activities increase, so do the 

transshipment activities between them.  

In addition, the myriad of mergers, acquisitions, and collaboration are also 

increasing the demand for transshipment operations. The major players in the ocean 

shipping industry normally operate a fleet of deep-sea carriers and focus their 

businesses on deep-sea trading. To capture the growing demand for regional 

transportation of liquid chemicals, more and more shipping companies are allying and 

collaborating with regional shipping players. This is to expand their operational reach, 

to gain greater flexibility in offering services to global markets as well as regional 

markets, to increase profits by reducing operating costs, and to enhance the fleet 

utilization as explained by Sheppard and Seidman (2001). This collaboration allows 

the chemical shipping companies to integrate their global services with regional 

services, to aggregate the cargos from deep-sea carriers, and to redistribute and 

deliver them to regional ports; in which transshipment operations are required.  
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1.3.3 Special case: tanker lightering 

A tanker is one of the most common and economical modes for transporting large 

quantities of liquid cargos, especially crude oil. In year 2003, 1,686 million tons of 

crude oil was shipped worldwide (UNCTAD, 2004). However, fully loaded large 

tankers cannot pass through shallow channels or dock at shallow ports due to shallow 

draft, narrow entrance, or small berth. Under such circumstances, small vessels are 

often employed to unload a part of the crude oil from the tanker to reduce its draft and 

enable its entry into a shallow channel or port. Subsequently, the tanker and the small 

vessels both travel to the refinery port to deliver the crude oil. This operation of 

transferring crude oil from large tankers to small vessels in order to lighter the tankers 

is called tanker lightering and the small vessels are called lightering vessels.  

The tanker lightering operation is a part of the petroleum supply chain. 

Though it requires additional cost, it offers several advantages to a refinery. Firstly, as 

described earlier, many refinery ports have shallow draft and large tankers are the 

only economical means to deliver crude oils to them. Secondly, tanker lightering 

helps reduce the demurrage of tankers by reducing their waiting time for unloading 

and reducing the refinery inventory holding costs by ensuring on-time delivery of 

crude oils (Chajakis, 2000). Furthermore, it adds flexibility to crude oil supplies. For 

instance, faster delivery is possible by discharging crudes to multiple storage tanks 

from multiple vessels simultaneously, and delivering a part of the crudes to refineries 

that need them urgently (Lin et al., 2003).  

1.4 Scheduling in Transshipment Operations 

Typical transshipment operations proceed as follows. The carriers (deep-sea and 

short-sea) arrive at a transshipment location at some estimated times. Since multiple 

ships may be involved in a transshipment operation and multiple transshipment 
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operations may overlap in time, queues of ships may develop and congestion may 

arise. This congestion may lead to delays and subsequent costs, if one does not 

synchronize and schedule the various requests optimally. Clearly, a careful scheduling 

is crucial and extremely important under such circumstances for the shipping 

companies, as ships are highly capital-intensive assets. The time-charter or total 

operating cost of a multi-parcel chemical tanker can be several tens of thousands of 

US dollars per day. Besides, port costs also increase with the time that a ship spends 

at a port and can be substantial. Sometimes, even demurrage cost of tankers may be 

important and this can be several thousand US dollars per day. Therefore, there is a 

tremendous need for systematic scheduling procedures that minimize the total cost of 

a transshipment operation.  

 The same applies to tanker lightering operation, too. The demurrage costs of 

tankers are extremely high. During congestion, tankers may easily spend days 

awaiting lightering service. Therefore, effective scheduling of lightering operation is 

also crucial for minimizing the system cost by reducing the waiting times of tankers 

and increasing the utilization of lightering vessels. 

1.5 Research Objectives 

This research work aims to develop several mathematical models to help chemical 

shipping companies to generate short-term optimal schedules to increase the 

efficiency and reduce the operating cost of transshipment operations; where bulk 

liquid chemical cargos are directly transferred from deep-sea, multi-parcel, bulk 

chemical carriers to short-sea, multi-parcel carriers for further regional distribution. In 

addition, the research work also addresses the special case of transshipment operation: 

tanker lightering; where mathematical models are developed to schedule tanker 

lightering operations efficiently. 
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 There are many possible mathematical models to solve the same problem. But, 

only some of them are effective and efficient. Hence, we develop several alternate 

models all using continuous-time representations and mixed integer linear 

programming (MILP) techniques; but using different modeling approaches and 

linearization methods. We will investigate the different factors affecting model 

performance by testing them over different types of examples. Then, we will suggest 

some guidelines for selecting a suitable model to use when facing different 

transshipment or tanker lightering problems. This is the second objective of our 

research work. 

 Moreover, in reality, practical problems are often very complicated and may 

involve thousands of parameters. In such case, generating optimal schedule may take 

days or even weeks, which is impractical for swift and prompt decisions. Therefore, 

our research work also includes developing heuristic methods to generate good 

transshipment schedules and tanker lightering schedules for large size problems. 

1.6 Outline of the Thesis 

In the next chapter (Chapter 2), we review the literature on general maritime shipping 

problems, including the previous work done on similar chemical transshipment 

problem and tanker lightering problem. 

 The remaining of the thesis consists of two major parts. The first part 

(Chapters 3-4) focuses on the scheduling of general transshipment operations; the 

second part (Chapters 5-6) focuses on the tanker lightering problem. 

 In Chapter 3, we propose three alternate and novel continuous-time MILP 

formulations. And each of them has three alternate formulations using different 

linearization methods. Then, Chapter 4 presents several examples to illustrate the 

application of our models, as well as to explore the factors affecting the model 
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performance. We also propose some heuristics to simplify the models for larger 

problems. 

 In Chapter 5, we develop two alternate MILP formulations to address tanker 

lightering problem. And we identify two important objectives for the problem. In 

Chapter 6, we study the application and highlight the features of the models using 

several examples. In addition, we also demonstrate the advantages of our slot-based 

models over event-based models from the literature. 

 In Chapter 7, we conclude our research findings and provide recommendations 

for model extensions. 

  

 

 



 

  9 

CHAPTER 2 

LITERATURE SURVEY 

The optimization problems of chemical shipping in maritime transportation can be 

classified into two types according to the length of planning horizon: planning and 

scheduling.  

2.1 Planning in Maritime Transportation 

The planning problem is a high level problem that considers long-term decisions, such 

as fleet size and mix, transportation system design, maritime supply chain design, and 

so on (Christiansen et al., 2003). 

 Fleet size and mix problem refers to the design of optimal fleet for a shipping 

company. This includes selecting optimal combination of types of ships, number of 

ships and sizes of ships in the fleet to maximize profit/minimize both operating and 

fixed costs. Dantzig and Fulkerson (1954) first considered a simple problem by 

assuming that all the ships in a fleet are of the same type, size and cost. The cargos are 

homogeneous with common loading/unloading port. They used integer variables in 

the model to determine the minimum number of tankers required for fulfilling the 

transportation requirement. A more practical problem considering heterogeneous fleet 

size and mix was studied by Fagerholt and Lindstad (2000). They proposed an 

algorithm to find an optimal routing policy, such as which vessels to operate, their 

weekly schedules, and so on.  

 The second decision involves the design of liner routes, frequencies of visiting 

major ports, and so on. The goal is to attract more contracts and enhance customer 

service levels while gaining maximum profit and increasing the fleet utilization. Rana 

and Vickson (1988) first addressed a liner routing problem for one ship. The same 

authors (1991) then extended the research to design liner routing for a fleet of ships. 
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The proposed model is a mixed integer nonlinear programming (MINLP) problem. 

They also proposed a solution algorithm using Lagrangean relaxation and 

decomposition method.  

 The third type of planning problem is to design maritime supply chain. 

Mehrez et al. (1995) addressed an industrial ocean-cargo shipping problem. They 

proposed a MILP model to help the company to select number and sizes of ships to 

use, and routes to follow for different phases in transporting cargos from original port 

to end customer. Cheng and Duran (2003) considered a worldwide crude oil 

transportation problem. They developed a decision support system to assist in 

deciding optimal sizes and types of tankers of a fleet as well as tanker routes in the 

worldwide crude oil supply chain. This decision support system uses both discrete 

event simulation and optimal control of the combined inventory and transportation 

system. 

2.2 Ship Routing and Scheduling 

The routing and scheduling problem involves medium-term decisions. The problem 

considerations vary from full to partial cargos, one to multiple cargos, fixed to 

variable cargo size, one to multiple products, compatible to non-compatible products 

and so on. 

 Brown et al. (1987) presented a scheduling problem of fully loaded crude oil 

for industrial shipping operations. Later, Fisher and Rosenwein (1989) discussed a 

similar problem with partial/full cargos. They considered a fleet of ships that are 

engaged in pickup and delivery of bulk cargos. The problem was solved optimally 

using interactive optimization system. Bausch et al. (1998) addressed a scheduling 

problem of multiple bulk products. The fleet of coastal tankers and barges transports 

multiple products in a load among plants, distribution centers and customers. They 
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developed an optimization-based decision support system. In the first phase, every 

feasible schedule was generated using a detailed simulation. In the second phase, 

optimal schedule for the entire fleet with minimum operating cost was selected by an 

integer linear set partitioning model.  

 Fagerholt and Christiansen (2000a) studied a bulk ship scheduling problem 

combined with cargo allocation problem. The model decides cargo pickup and 

delivery with time windows, partition of ship’s flexible holds, as well as allocation of 

multiple, compatible, fixed sized cargos. They used a set partitioning technique and 

was able to obtain optimal solutions for several case studies. The same authors (2000b) 

presented a traveling salesman problem with allocation, time window, and precedence 

constraints for ship scheduling in another work. The allocation constraints ensure the 

feasibilities of cargo allocations and ship’s cargo holds partitions throughout the 

schedule. They employed a forward dynamic programming algorithm. Fagerholt 

(2001) studied a real ship scheduling problem with soft time windows. The problem is 

a multi-ship pickup and delivery problem. The soft time windows consideration 

allows violation of time window for some customers, hence, possible better schedules. 

They developed an optimization based approach suing set partitioning formulation to 

solve the problem. 

 Recently, Hwang et al. (2002) proposed a model for the routing and 

scheduling of a heterogeneous fleet. The fleet of ships is engaged in pickup and 

delivery of multiple bulk cargos with inventory constrained time windows. The 

industrial decisions involve sizes of cargos to carry, allocation to compartments and 

which ship to carry. They developed a non-linear arc-flow mathematical model and 

proposed a linearization method to reformulate the model into MILP models. More 

recently, Jetlund and Karimi (2003) considered a maximum-profit scheduling problem 
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for a fleet of multi-compartment chemical tankers. Their MILP model with variable-

length slots is capable of selecting routes and cargos for multiple ships optimally. A 

novel heuristic algorithm was proposed for solving large size problem by repeatedly 

solving the base formulation for every ship in the fleet. 

2.3 Container Transshipment at Container Terminal 

Container transshipment is a research area that extends from maritime shipping to 

other types of transportation modes. At a container terminal, the containers shipped by 

large vessels are transshipped to barges, trucks, trains, and so on. Because of the types 

of cargos (containers) and the different transportation modes (trucks, etc.) involved, 

the operation required is very different from the chemical transshipment operation we 

considered in this research work, where direct ship to ship transfers of chemical 

cargos are required.  

 The research in this area focuses on the detailed operations at the container 

terminal. For example, Vis and Koster (2003) considered the allocation of berths to 

ships, types of material handing equipment used for unloading and loading containers, 

more often, the crane scheduling problem. In addition, inter-terminal transfers and 

stacking of containers are also investigated. 

2.4 Tanker Lightering 

As seen from the above survey of literature in chemical shipping field, there is a 

complete absence of research on chemical transshipment except one special case, 

namely the crude or tanker lightering. Tanker lightering is the transfer of some crude 

oil from a large tanker to one or more small vessels in order to lighter the large tanker. 

It enables the tanker to then enter a shallow port or pass through shallow channels to a 

refinery’s discharging docks, where it could not enter previously due to draft 

limitations. This is also a transshipment process, as cargos transfer directly from one 
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carrier to another. Daskin and Walton (1982) described a general lightering problem 

for supertankers. They proposed a linked set of queuing models comprising a cyclic 

queuing model for lightering vessel operations and an approximate queuing model for 

tanker delays. The model is approximate and limited with several simplifying 

assumptions, for example, only one lightering vessel can service a large tanker at a 

time, and so on. 

  Later, Andrews et al. (1996) addressed a real-life crude oil lightering problem 

faced by a lightering service provider company in Delaware Bay. The company 

operates a fleet of lightering vessels to provide services for different refineries 

clustered in the region. The authors built a model employing some heuristic loading 

policies to simulate the lightering operations. The lightering company uses this model 

to study the effects of various policies on service level and profit, as well as the role 

of lightering operation in customer’s crude oil supply chain.  

 Chajakis (1997) highlighted and stressed the importance and application of 

this model in crude oil transportation. He pointed out the fact that the advances of 

modeling in crude oil supply chain has helped the petrochemical companies to reduce 

significant logistics costs. The author developed a discrete-time MILP formulation 

together with some heuristics that incorporates the knowledge of an experienced fleet 

scheduler. His simulation model is also able to generate a short-term fleet lightering 

schedule within minutes even during congestion time.  In a later work, Chajakis (2000) 

again addressed the importance of tanker lightering modeling in petroleum logistics. 

At the strategic planning level, a simulation model was built to assist decision making 

of optimal fleet size and composition. At the operational level, an optimization-based 

scheduling model was developed to generate good schedules of vessel assignments, 
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service timings and lightering volumes. It is especially important during congestion 

time for the company and the anchorage.  

 In a recent work, Lin et al. (2003) studied the lightering fleet scheduling 

problem that may involve multiple voyages for small vessels to lighter the required 

amount of crude oil. They aimed to generate a short-term lightering schedule that 

minimizes the demurrage cost of tankers and the voyage cost of lightering vessels for 

the lightering service company. They proposed a continuous-time MILP formulation 

based on event points. Their model accommodated some practical lightering policies 

such as two-stage lightering (some very large tankers require lightering more than 

once) and a lightering vessel loading crude oil from multiple tankers during one 

voyage. However, their model has some serious limitations. First, they assumed 

single-compartment (single-parcel or single-crude) lightering vessels. They did not 

restrict the number of simultaneous services for a single tanker, while no more than 

two simultaneous services are possible in practice. They also did not allow a 

lightering vessel to lighter more than two tankers within one voyage. Furthermore, 

they ignored the differences in crude densities, travel times between tankers, and fuel 

consumption cost of lightering vessels, and did not allow the freedom to select the 

crudes to lighter. Often, these features are real and important in the tanker lightering 

problem.  

2.5 Scope of Research  

As seen from the above literature review, there is no previous work done in the field 

of scheduling general chemical transshipment operations. Yet, there is an increasing 

demand for transshipments in many industrial operations. A high quality schedule is 

of utmost importance as it can save substantial operating cost for the companies. In 

addition, there are several limitations of the existing optimization-based modeling for 
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the tanker lightering problem. Therefore in this work, we focus our research in these 

two main areas.  

 In the first part, we develop three types of MILP models to address the 

scheduling of general chemical transshipment operations all using both slot-based and 

sequence-based approaches. In the models, nonlinear constraints are required. We 

then propose three alternate linearization methods. The models vary in numbers of 

binary/continuous variables, CPU times, and model tightness (relaxed mixed integer 

programming (rMIP) objective value). Therefore, we conduct a thorough study by 

testing them over several examples, and to investigate the factors affecting the model 

performance. 

 The second part of the research aims to develop a more realistic and practical 

optimization model which includes all the special and realistic features of tanker 

lightering operation. Our MILP model uses a mix of slot-based and pair-wise 

sequencing methods; whereas, the existing model uses an event-based formulation 

method. Hence, we also compare the performances of the two models. In addition, we 

develop two alternate linearization methods, and address two different objectives. One 

objective considers the time-charter cost of tankers, while the other considers the 

demurrage cost of tankers. 
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CHAPTER 3 

SCHEDULING OF GENERAL CHEMICAL 

TRANSSHIPMENT OPERATIONS 

In this chapter, we address the scheduling of general chemical transshipment 

operations involving direct ship (deep-sea carrier) to ship (short-sea carrier) transfer 

of liquid chemical. The industrial decisions include the timing of each cargo 

transshipment service and the cargo transshipment sequence in each carrier. We 

develop several MILP models addressing all the above decisions such that the total 

system cost of the entire operation is minimized. In what follows, we first describe the 

research problem in detail, demonstrate the motivation for this work using an example, 

then we formulate the problem with nine alternate (of three types) MILP models, as 

well as some additional constraints that improve the model performance. 

3.1 Problem Description 

To enable the carriage of multiple chemicals, most ships that transport chemicals in 

bulk amounts possess several (5-15) compartments to keep their chemical cargos 

separate. Figure 3.1 shows a picture of such a multi-compartment carrier. Typically, it 

has two types of compartments. Some compartments are accessible from only one 

side of the carrier, while others are accessible from both sides. We call the former 

one-sided compartments, while the latter two-sided compartments. The maritime 

transport industry refers to the two sides of a carrier as larboard (left or port side) and 

starboard (right side). If one stands facing towards a carrier’s front (bow or stem vs. 

stern), then larboard is the left side and starboard is the right side. Therefore, as shown 

in Figure 3.1, we classify the cargos in a multi-compartment ship into three types: 

larboard, starboard, and two-sided. The first two types of cargos reside in one-sided 
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compartments of a multi-compartment carrier and we call them one-sided cargos, 

while the two-sided cargos reside in two-sided compartments. 

 

 
Figure 3.1: Schematic of a multi-compartment carrier 

 
We consider a transshipment scenario (Figure 3.2) in which M deep-sea (or 

big) multi-compartment carriers or ships (m = 1, 2, ..., M) carrying several liquid 

chemicals anchor at a transshipment point (a seaport or seawater) at some known 

times. N short-sea (or small) carriers (n = 1, 2, ..., N) also reach the transshipment 

point at some known times to receive I cargos (i = 1, 2, ..., I) of various chemicals 

from the big ships for further regional transport. A cargo i is a lot of a single chemical 

transferred from one or more compartments that (1) belong to the same big ship, (2) 

carry the same chemical, (3) are of the same type (larboard, starboard, or two-sided), 

and (4) deliver to the same small ship. In other words, we merge the amounts of the 

same chemical coming from one or more same-sided compartments of a big ship and 
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designated for the same small ship into one distinct transshipment cargo. The same 

chemical even though coming from different big ships also will go into different 

cargos. All transfers are direct, i.e. ship-to-ship from big to small ships. We divide the 

transshipment cargos into two sets, namely TSC = {i | cargo i is two-sided} and OSC 

= {i | cargo i is one-sided}. Furthermore, we define ETASn (ETABm) as the time at 

which small (big) ship n (m) becomes ready to receive (transfer) its first cargo. Note 

that the big ships and small ships need not be deep-sea and short-sea carriers 

respectively. This work applies easily to any general scenario in which a set of ships 

transships a set of cargos to another set of ships. 

 

 
Figure 3.2: Chemical transshipment operations at transshipment location
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Given the above, we wish to determine the sequence in, the sides (larboard or 

starboard) from, and the times at which, each small ship should receive cargos to 

minimize the total time-charter cost of all ships. The time-charter cost for a typical 

multi-parcel tanker can be in several tens of thousands of US$ per day. We compute it 

by knowing the total time that a ship spends at the transshipment point. In this 

problem, we assume the following: 

(1) Each cargo, its amount, its origin (big) ship, its destination (small) ship, and its 

transfer rate are all fixed and known a priori. 

(2) The cargo transfers can occur in any sequence. In practice, some restrictions may 

exist on the order in which a big ship may be able to transfer its cargos. 

(3) The anchoring points (berths) of all big ships at the transshipment position (port) 

are fixed and known a priori. Furthermore, their number is not limiting and other 

restrictions related to the port’s infrastructure are absent. Alternately, the 

anchoring times of the big ships are arranged a priori to avoid conflicts of berths. 

Often, a port may have limited berths and only a limited number of big ships can 

anchor at any time. 

(4) Once a big ship anchors at a berth, it must finish transferring all its transshipment 

cargos, before it can move and leave. It cannot leave in the middle and anchor 

again. In other words, it is possible to transfer all its transshipment cargos from 

that berth. Thus, the big ships do not move once they anchor at berths, while the 

small ships do not anchor, but move among the big ships collecting their 

respective cargos. A more complex situation would involve a big ship moving and 

anchoring at different berths for different cargos. 

(5) The fuel consumption of small ships during transshipment is negligible, so the 

distance that a small ship may need to move for collecting its cargos is 
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inconsequential. 

(6) A big ship can transfer two cargos from different sides at the same time, while a 

small ship can receive only one cargo at a time. 

3.2 Motivation 

Singapore is a major hub for maritime chemical logistics due to its strategic position, 

deep waters, excellent port facilities, and infrastructure. It is the largest transshipment 

hub in Asia, where a significant portion of the 17,576 tankers visited Singapore for 

transshipment services during 2004 (MPA, 2004). The motivation for this work arises 

from our interaction with a major multi-national chemical shipping company in Asia-

Pacific. This company has a large fleet of deep-sea intercontinental carriers that 

routinely visit Singapore to deliver and/or transship various cargos for regional 

distribution. By studying the real transshipment operations of this company, we 

realized that manual, heuristic, and even ad hoc methods were used in practice to 

schedule these operations, which could easily mean substantial losses in efficiency in 

such a combinatorial problem. The application of systematic, discrete optimization 

methods could increase the efficiency of transshipment operations and result in 

substantial savings. 

To get an estimate of potential savings, we select one example, namely 

Example 3a, from the examples that we use later in Chapter 4 (Example data in 

Chapter 4). This example involves two big ships (M = 2) transshipping sixteen cargos 

(I = 16) to four small ships (N = 4). We can use some common-sense policies or 

heuristics described below to derive a schedule (Figure 3.3) manually. 
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Figure 3.3: Gantt chart for the manual transshipment schedule of Example 3a based 

on common-sense policies / heuristics 
 

Because our objective is to minimize the total time-charter cost of all carriers, 

a good schedule would minimize the time that the carriers spend idling or waiting for 

transshipment service. Now, the big ships are relatively more expensive than the small 

ones, so it would make sense to minimize their waiting times first. To this end, we 

employ a mix of a first-come first-serve and a priority-based approach. We divide all 

cargos into two groups. One that is “available” for service at any time; and the other is 

not. When a big ship arrives at the transfer location, we consider as available all of its 

transshipment cargos whose recipient ships are ready to receive. The remaining 

cargos become available subsequently, as and when their recipient ships arrive at the 

transfer location or finish previous services. In general, multiple cargos will be 

available at any time, so we assign priorities to cargos based on the time-charter costs 

of ships, cargo service times, etc. Thus, the set of available cargos will vary with time 

and cargo service status. If a cargo is engaged in a transshipment service, we treat the 

other cargos at the same position as unavailable for transfer at that time. They become 

available only after the current cargo finishes its transfer. Similarly, we also treat 

other cargos for the same recipient ship as unavailable, until this recipient ship 
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finishes servicing the current cargo. Finally, as time progresses and activities 

start/finish, cargos become available at arbitrary times, so we repeatedly update our 

list of available cargos dynamically. Thus, whenever a change occurs in available 

cargos, we redo the ranking of cargos before we further develop the transshipment 

sequence. 

To rank the available cargos, we use the following thumb rules and priorities 

in the order stated below: 

1. A cargo whose big ship has the highest time-charter cost has the higher priority. 

2. A cargo whose small ship has the highest time-charter cost is the next in priority. 

3. A cargo with a shorter service time is the next in priority. 

4. Serve consecutively the cargos that have the same unloading position and small 

ship. 

5. For a two-sided cargo, select the transfer position such that the cargos on both 

sides of the big ship are evenly balanced. 

Using the above priorities and heuristics, we determine a sequence in which each 

position of each big ship will transfer its cargos.   

For this example, the estimated ready times of the big ships are 53.1 h and 

44.5 h and those for the small ships are 45.4 h, 53.1 h, 43.4 h, and 44.5 h respectively. 

The total time-charter cost of the manual schedule is $31715.50. If we were to use a 

model such as the one presented in this chapter, we can obtain an optimal schedule 

(Figure 3.4) with a time-charter cost of $29829.00. This schedule represents a savings 

of 6.32%. Thus, the savings are substantial even for this simple example. Many 

practical scenarios can be much more complex with much greater savings, as it is hard 

to manually enumerate all possible combinations to generate good schedules. Of 
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course, there would be no guarantee of an optimal schedule using any ad hoc 

procedure. 
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Figure 3.4: Gantt chart for the optimal transshipment schedule of Example 3a 

 
3.3 MILP Formulations 

A big ship can transfer a two-sided cargo (i ∈ TSC) from either larboard or starboard. 

Therefore, the optimizer must decide the side from which the transfer should occur. 

To facilitate this decision, we replace each two-sided cargo by two one-sided cargos 

of the same size, namely a larboard cargo and a starboard cargo. Then, we will allow 

only one of these two cargos to transfer. Of course, this increases the number of 

cargos in our problem from I to J = I + |TSC|, where |TSC| denotes the cardinality of 

TSC. However, dealing with only one-sided cargos makes modeling easier. We use j 

to refer to these J redefined one-sided cargos, thus we now have j = 1, 2, ..., J one-

sided transshipment cargos. Let set J = {j | one-sided cargo derived from the original I 

transshipment cargos}. 

Now, each big ship has two sides for cargo transfer, so M ships have 2M 

possible ship-side combinations or positions (p = 1, 2, ..., 2M) from which a cargo 
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may transfer. Therefore, we define Pm = {p | position p belongs to big ship m} and 

divide J into 2M mutually exclusive and exhaustive subsets defined by Jp = {j | cargo 

j must transfer from position p}, p = 1, 2, ..., 2M. Furthermore, we define JSn = {j | 

cargo j is destined for small ship n}, ISn = {i | small ship n is to receive transshipment 

cargo i}, and JBm = {j | cargo j is on big ship m}. 

As stated earlier in the problem statement, each cargo j resides in a unique big 

ship and is destined for a unique small ship. Since we know its volume and associated 

ships (both big and small), we can estimate the time τj (service time) required to 

transfer cargo j. Note that τj represents the total time required for serving cargo j 

including anticipated delays, hose-connection time, actual transfer time, hose-

disconnection time, etc. In addition to the service time, a small ship will need time to 

travel from one position to another. Since we know the anchoring positions of all big 

ships, we can estimate the time θnpp′ required by small ship n to travel from position p 

to p′. 

Lastly, we define a unique time ETACj at which cargo j becomes available for 

transshipment based on the earliest times at which its big ship can transfer and small 

ship can receive. Clearly, ETACj = max[ETASn, ETABm] with n and m such that j ∈ 

JSn ∩ JBm. 

We now present our three alternate continuous-time formulations, namely F1, 

F2, and F3. Of these, F2 and F3 are largely similar to each other. In F1 (F2, F3), we 

first model the operation of each small (big) ship, followed by that of each big (small) 

ship, and then we couple both operations appropriately. 
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3.3.1 Formulation F1 

3.3.1.1 Short-Sea Carriers  

We model time on a small ship n in terms of a series of Kn chronologically ordered 

contiguous slots (k = 1, 2, ..., Kn) of variable lengths. Then, we assign exactly one 

cargo to each slot. Figure 3.5 shows a schematic for this slot-based modeling 

approach. Since we know the cargos that small ship n is to receive, Kn = |ISn|, i.e., the 

number of slots equals the number of real transshipment cargos exactly. A new slot 

begins, whenever ship n starts servicing a new cargo. During each slot, a small ship n 

typically performs three tasks. First, it receives a cargo from a big ship. Then, it 

travels from its current position to the position of its next cargo. This may mean 

moving to another big ship and even changing sides. Lastly, it waits to begin 

receiving the next cargo. Note that a ship n may wait for some time after reaching 

near the next position, as another small ship may be at the next position. It will move 

into the receiving position, when the position is free. In what follows, we write each 

constraint for all valid values of its defining indices, unless stated otherwise. 

 

 
Figure 3.5: Slot-based/sequence-based approaches for the short-sea carriers 
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We must first assign a unique cargo to each slot of ship n. Because ship n has 

Kn slots, a cargo for ship n can go into one of Kn slots. Thus, we imagine that a cargo j 

has Kj = Kn target or destination slots with n ∋ j ∈ JSn. Now, to assign cargo j to one 

of these slots, we define a binary variable xjk as: 

1 if cargo  transfers during slot 
0 otherwisejk

j k
x

⎧
= ⎨
⎩

 1 ≤ k ≤ Kj 

To ensure exactly one cargo in each slot of ship n, we write the following for every n, 

1jk
j

x =∑  j ∈ JSn (3.1) 

Recall that we represent each cargo i ∈ TSC by two one-sided cargos, only one of 

which will transfer. As a result, a cargo j may not transfer at all. Therefore, to monitor 

the service status of a cargo j, we define a 0-1 continuous variable Uj as: 

1

1 if  cargo  transfers 
0 otherwise

jK

j jk
k

j
U x

=

⎧
= =⎨
⎩

∑  

Clearly, Uj = 1, if i(j) ∈ OSC, where i(j) is the parent, real cargo i of j. Throughout 

this problem, we replace Uj by 1 for j ∋ i(j) ∈ OSC. On the other hand, Uj1 + Uj2 = 1, 

if i(j1) = i(j2) ∈ TSC and j1 and j2 respectively are the starboard and larboard cargos 

representing a cargo i ∈ TSC. Therefore, we get, 

1

1
jK

jk
k

x
=

=∑  j ∋ i(j) ∈ OSC (3.2a) 

1

jK

jk j
k

x U
=

=∑  j ∋ i(j) ∈ TSC                                (3.2b) 

1 2 1j jU U+ =  j1 & j2 ∋ i(j1) = i(j2) ∈ TSC (3.2c) 

Let TSnk be the start time of slot k on small ship n. Because ship n can receive a cargo 

only after its earliest cargo becomes available, we have TSnk ≥ MTSn = minj(ETACj) 

with j ∈ JSn. Furthermore, eq. 3.1 ensures that each slot k will have exactly one cargo, 
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so TSnk must be after the time at which the assigned cargo becomes available. In other 

words, 

nk j jk
j

TS ETAC x≥∑  j ∈ JSn (3.3) 

From Figure 3.5, the length [TSn(k+1)–TSnk] for slot k on ship n should include the 

times for service, wait, and travel from one transfer position to another. It is easy to 

compute the service time for a slot k, but not the travel time. This is because we need 

to know the transfer positions between which a small ship moves. To this end, we first 

identify the current position of a small ship by using the following binary variable, 

which we will later eliminate from our formulation. 

1 if small ship  is at position  during slot 
0 otherwisenpk jk

j

n p k
z x

⎧
= =⎨
⎩

∑  j ∈ JSn ∩ Jp 

This variable helps us model the transitions of ship n from one position to another by 

defining another 0-1 continuous variable as follows: 

1 if small ship  moves from position  to during slot 
0 otherwisenpp k

n p p k
Z ′

′⎧
= ⎨
⎩

  

  p & p′ ∈ Pn, k < Kn 

where, Pn = {p | small ship n receives a cargo from position p}. We can express the 

variable as Znpp′k = znpkznp′(k+1), which we linearize exactly by using, 

npp k npk jk
p j

Z z x′
′

= =∑ ∑  j ∈ JSn ∩ Jp, p & p′ ∈ Pn, k < Kn (3.4a) 

( 1) ( 1)np pk np k j k
p j

Z z x′ + +
′

= =∑ ∑  j ∈ JSn ∩ Jp, p & p′ ∈ Pn, k < Kn (3.4b) 

Equations (3.4a,b) force Znpp′k to be binary automatically and we no longer need znpk in 

our formulation. In addition, if a small ship n does not receive any cargo from either p 

or p′, then Znpp′k = 0. Hence, we fix Znpp′k = 0 for p ∉ Pn or p′ ∉ Pn, and k < Kn. Also, if 
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|JSn ∩ Jp| = 0, then we do not need eqs. 4a,b. With these, we write the constraint for 

slot length as: 

( )1 nk j jk npp npp kn k
j p p

TS TS x Zτ θ ′ ′+
′

≥ + +∑ ∑∑  j ∈ JSn, p & p′ ∈ Pn, k < Kn (3.5) 

where, the second term on the right side is the service time of cargo j in slot k of ship 

n, and the third represents the travel time. 

3.3.1.2 Deep-Sea Carriers  

In contrast to the small ships, we now use a pair-wise sequencing approach (Figure 

3.6) for modeling the sequence in which a big ship transfers its cargos. This involves 

defining a slot for each cargo, whose length depends on its transfer status. If the big 

ship does not transfer that cargo, then the slot length is zero, otherwise it equals the 

transfer time. To model the cargo sequence, we define a binary variable that 

sequences two cargos relative to each other at a position: 

1 if cargo  transfes later than cargo 
0 otherwisejj

j j
y ′

′⎧
= ⎨
⎩

 p(j) = p(j′), n(j) ≠ n(j′), j < j′  

where, n(j) is n ∋ j ∈ JSn and p(j) is p ∋ j ∈ Jp. Note that we define the above only for 

those cargo pairs that transfer from the same position p, but are destined for different 

small ships. We exclude the cargo pairs that belong to the same small ship, as the 

earlier slot-based sequencing of the small ships already ensures their relative order. 

Moreover, we define the above binary variable only for the combinations of j and j′, 

and not for permutations. 
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Figure 3.6: Slot-based/sequence-based approaches for the deep-sea carriers 

  
 Because a big ship cannot transfer multiple cargos at the same time from any 

given position, we must spread their service times sufficiently to eliminate clashes. 

The slot-based sequencing ensured this for the cargos belonging to the same small 

ship, but we need additional constraints for the cargos belonging to different small 

ships. To this end, we define Tj as the time at which cargo j transfers. If another cargo 

j′ with p(j) = p(j′) and n(j) ≠ n(j′) transfers later than j, then the following must hold, 

( )1j j j j jjT T U H yτ′ ′≥ + − −  p(j) = p(j′), n(j) ≠ n(j′), j < j′ (3.6a) 

j j j j jjT T U Hyτ′ ′ ′ ′≥ + −  p(j) = p(j′), n(j) ≠ n(j′), j < j′ (3.6b) 
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where, H is a big-M constant greater than the horizon time at the position p(j) = p(j′). 

The second terms on the right sides are the service times of cargos j and j′, which are 

zero if they do not transfer. If a cargo does not transfer, then its slot length will be 

zero. Note that Uj = 1, if i(j) ∈ OSC. Equation 3.6a (3.6b) relaxes, when yjj′ = 0 (yjj′ = 

1). Both equations (3.6a,b) are necessary, because we defined yjj′ for j < j′ only and we 

must consider all permutations of cargos. 

Clearly, a cargo cannot start its transfer, until it becomes available. Therefore, 

if a cargo j transfers (Uj = 1), then the earliest time that it can transfer is ETACj. 

However, a cargo j with i(j) ∈ TSC may not transfer at all, if Uj = 0. Then, what 

should be the transfer time of such a cargo? If we let such a discarded cargo float in 

the middle of a cargo sequence, then it would lead to an erroneous travel time 

between its immediate cargo neighbors in the sequence. To avoid this error, we force 

each cargo with Uj = 0 to be before all transferred cargos and to start at the earliest 

possible start time for any cargo at its respective position, which is MTj = minj′(ETACj′) 

with j′ ∋ p(j′) = p(j). We can achieve these two requirements by using, 

( )1j j j j jT ETAC U MT U≥ + −  (3.7a) 

j j jT MT HU≤ +  (3.7b) 

Eqs. 3.7a,b force Tj = MTj, when Uj = 0 and Tj ≥ ETACj, when Uj = 1. We set the 

lower bound of Tj as ETACj for j ∋ i(j) ∈ OSC and MTj for j ∋ i(j) ∈ TSC. 

So far, we ensured the sequencing and timings on each ship (big & small) 

separately, but the key feature that differentiates chemical transshipment (ship-to-ship 

in general) from non-chemical transshipment (ship-to-ship not required in general) is 

that both big and small ships must have coupled and synchronized schedules. The 
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service intervals for each cargo on both ships must match exactly in time. Therefore, 

we need some coupling constraints. 

3.3.1.3 Coupling of Ship Operations 

To ensure that both big and small ships engage with any given cargo simultaneously, 

we must demand that the transfers begin at the same time on both ships for every 

cargo. Since Tj is the time at which a cargo j begins transfer, it must equal the time at 

which its small ship begins to receive it. In other words, 

1

jK

j nk jk
k

T TS x
=

=∑  n = n(j) 

nk j jk
j

TS T x=∑  j ∈ JSn (3.8a) 

However, the first equation implies Tj = 0, when Uj = 0. As discussed earlier, Tj 

should be at its lower bound MTj, when Uj = 0. Therefore, we modify the first 

equation as:   

( )
1

1
jK

j nk jk j j
k

T TS x MT U
=

= + −∑  n = n(j) (3.8b) 

Eqs. 3.8a,b are nonlinear constraints and we can replace them by the following two 

linear constraints with the help of eq. 3.7b. 

(1 )j nk jkT TS H x≥ − −  n = n(j) (3.9a) 

(1 )j nk jkT TS H x≤ + −  n = n(j) (3.9b) 

Alternately, we can use either eq. 3.9a or eqs. 3.7b and 3.9b along with the following 

equality that we can derive from eq. 3.8b by summing both sides over j ∈ JSn for 

every n, 

( )
1

1
nK

j nk j j
j k j

T TS MT U
=

= + −∑ ∑ ∑  j ∈ JSn (3.10) 
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Note that Kj = Kn for j ∈ JSn. If we use eq. 3.10, then one big-M constraint, namely eq. 

3.9b, and eq. 3.7b become redundant; eq. 3.9a suffices. Thus, the use of eq. 3.10 

eliminates some big-M and other constraints. Therefore, we prefer eqs. 3.10 and 3.9a 

over eqs. 3.7b, 3.9a, and 3.9b. 

One more alternative exists for linearizing eq. 3.8b. This involves defining a 

continuous variable TXjk = TSnkxjk = Tjxjk with n = n(j). Substituting this into eqs. 

3.8a,b gives us, 

nk jk
j

TS TX=∑  j ∈ JSn (3.11a) 

( )
1

1
jK

j jk j j
k

T TX MT U
=

= + −∑  (3.11b) 

Lastly, we force TXjk = 0, when xjk = 0.  

jk jkTX Hx≤  (3.11c) 

The linearization comprising eqs. 3.11a-c requires more continuous variables than the 

first two alternatives, but fewer constraints and nonzeros than the first alternative (eqs. 

3.7b and 3.9a-b). Theoretically, it may be tighter, because it has no big-M constraint. 

However, the increase in the number of continuous variables may slow it sufficiently 

to outweigh the advantage from tightness. Thus, it is not clear if F13 can be the 

fastest-solving formulation. Of the three alternative linearizations, the second one (eqs. 

3.9a and 3.10) seems the best intuitively, but hardcore computational performance is 

the only way to decide among these three alternatives. 

3.3.1.4 Scheduling Objective 

As stated earlier, the scheduler’s goal is to minimize the total time-charter cost of all 

carriers. To this end, we must determine the departure time of each ship, for which we 

have two ways. 
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Let DTBm be the time at which big ship m ends its operations. Clearly, it 

cannot leave, until it transfers all its cargos, so 

m j j jDTB T Uτ≥ +  j ∈ JBm (3.12a) 

We obtained the above by considering the time-axis of a big ship. Alternately, we can 

also consider the time-axis of a small ship. Since each operation starts simultaneously 

on both big and small ships, we can also compute DTBm from the end times of slots 

on the small ships, provided m does serve a cargo in that slot. In other words, we have, 

(1 )m nk j jk jk
j j

DTB TS x H xτ≥ + − −∑ ∑  j ∈ JBm ∩ JSn  (3.12b) 

Note that eq. 3.12b relaxes, when big ship m is not involved in slot k. It is not clear, if 

either eq. 3.12a or 3.12b is redundant, so we keep both. 

The slot-based sequencing makes it easy to obtain the departure time DTSn of 

a small ship n. It is when the ship’s last slot ends. In addition, a ship cannot depart 

earlier than its arrival time. We impose lower bounds, DTBm ≥ minj(MTj) with j ∈ JBm 

and DTSn ≥ MTSn. 

With this, the total time-charter cost of all ships (TTCC) is,  

( )
n j

n

m m m n n K j jK n
m n j

TTCC TCCB DTB ETAB TCCS TS x ETASτ
∈

⎛ ⎞
= − + + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑

JS

 (3.13) 

where, TCCBm and TCCSn are the time-charter costs of big ship m and small ship n 

respectively. 

This completes our three alternate versions (F11, F12, and F13) of F1. Eqs. 

3.1-3.7a, 3.12, and 3.13 are common to all three. The rest are eqs. 3.7b and 3.9a,b for 

F11, eqs. 3.9a and 3.10 for F12, and eqs. 3.11a-c for F13. 
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3.3.2 Formulation F2 

In F1, we used a slot-based sequencing approach for the small ships and a pair-wise 

sequencing approach for the big ships. In this section, we switch the modeling 

approaches, i.e. we use the slot-based (pair-wise) sequencing for big (small) ships. 

However, the underlying concepts in F2 are the same as those in F1, so we merely 

identify the main differences and state the modified constraints. In F2, each transfer 

position of a big ship is analogous to a small ship in F1, and each small ship is 

analogous to a position in F1. The main differences are that the positions do not move 

in F2 in contrast to the small ships in F1, so transitions are easier to model. 

Furthermore, the numbers of slots and binary variables are different, on which we 

elaborate later. 

Using the above analogies, we partition the time horizon for each position p 

into Kp = |Jp| contiguous slots (k = 1, 2, ..., Kp) as shown in Figure 3.6. Then, we set Kj 

= |Jp| with p = p(j) and define xjk as in F1 and TBpk as the time at which slot k begins at 

position p. Note that xjk now refers to slots for a position rather than a small ship. 

Then, following the logic behind eq. 3.1, we write for every p, 

1jk
j

x ≤∑  j ∈ Jp (3.14) 

And, eqs. 3.2a-c apply as is. Note that, unlike F1, if a two-sided cargo does not 

transfer from a given position, then we would have an empty slot, therefore eq. 3.14 is 

an inequality rather than an equality. Eq. 3.14 allows a slot to be without a cargo. We 

force such empty slots to start at the earliest possible start time at the given position, 

which we define as MTBp = minj(ETACj) with j ∋ Jp. 

1pk j jk p jk
j j

TB ETAC x MTB x
⎛ ⎞

≥ + −⎜ ⎟
⎝ ⎠

∑ ∑  j ∈ Jp (3.15a) 
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pk p jk
j

TB MTB H x≤ + ∑   j ∈ Jp (3.15b) 

Note that when a slot has no cargo, its start time becomes MTBp or the lower bound of 

TBpk, i.e. the slot precedes all non-empty slots. 

Because positions do not move during transitions, we do not need eqs. 3.4 in 

F2 and the slot length constraint (eq. 3.5) becomes, 

( )1 pk j jkp k
j

TB TB xτ+ ≥ +∑  j ∈ Jp, k < Kp (3.16) 

For the pair-wise sequencing on the small ships, we define: 

1 if cargo  transfers later than cargo  
0 otherwisejj

j j
y ′

′⎧
= ⎨
⎩

 n(j) = n(j′), p(j) ≠ p(j′), j < j′ 

Note that we define the above variable for cargo pairs with the same small ship, but 

different positions. 

In contrast to F1, the modeling of travel times does not need any transition 

variables, because yjj′ provides this information readily (Figure 3.5). Thus, following 

eqs. 3.6a,b, we write, 

( )' ( ) ( ') '[ ] 1j j j np j p j j jjT T U H yτ θ≥ + + − −   n = n(j) = n(j′), p(j) ≠ p(j′), j < j′ (3.17a) 

' ' ( ) ( ) ' '[ ]j j j np j p j j jjT T U Hyτ θ ′≥ + + −   n = n(j) = n(j′), p(j) ≠ p(j′), j < j′ (3.17b) 

Note that eqs. 3.17a,b do not count the transfer time from a cargo that does not 

transfer. 

Eqs. 3.7a,b remain the same as in F1 except that MTj = minj′(ETACj′) with n(j′) 

= n(j). The lower bounds of Tj remain unchanged from F1. 

The methods for coupling the big and small ship operations are the same as in 

F1. The analogs of eqs. 3.8a,b are, 

1pk j jk p jk
j j

TB T x MTB x
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

∑ ∑  j ∈ Jp (3.18a)  
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( )
( )

1
1

j pK K

j pk jk j j
k

T TB x MT U
=

= + −∑  p = p(j) (3.18b) 

Following the linearization methods in F1, we rewrite eqs. 3.9a,b, 3.10, and 3.11a as,  

( )1j pk jkT TB H x≥ − −  p = p(j) (3.19a) 

( )1j pk jkT TB H x≤ + −  p = p(j) (3.19b) 

( )
1 1

1 1
p pK K

j p jk pk j j
j k j k j

T MTB x TB MT U
= =

⎛ ⎞
+ − = + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑ ∑  j ∈ Jp (3.20) 

1pk jk p jk
j j

TB TX MTB x
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

∑ ∑  j ∈ Jp (3.21a) 

where, TXjk = TBpkxjk = Tjxjk with p = p(j). 

Then, for the departure times, the analogs of eqs. 3.12a,b are: 

n j j jDTS T Uτ≥ +  j ∈ JSn (3.22a) 

(1 )n pk j jk jk
j j

DTS TB x H xτ≥ + − −∑ ∑  j ∈ JSn ∩ Jp (3.22b) 

For a big ship, the departure time will be the start time of the last slot plus the service 

time of the cargo in that slot. However, each big ship has two transfer positions, so the 

final departure time will be the maximum of either side, or, 

p pm p K j jK
j

DTB TB xτ≥ +∑  p ∈ Pm, j ∈ Jp (3.23) 

The lower bounds of DTBm and DTSn remain unchanged from F1. 

Finally, we rewrite the objective function (eq. 3.13) as, 

( ) ( )m m m n n n
m n

TTCC TCCB DTB ETAB TCCS DTS ETAS= − + −∑ ∑  (3.24) 

This completes our second formulation. Again, we have three alternatives here. F21 

uses eqs. 3.15b, 3.7b, and 3.19a,b; F22 uses eqs. 3.15b, 3.7b, 3.19a, and 3.20; F23 
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uses eqs. 3.21a with 3.11b,c; and all three use eqs. 3.14, 3.15a, 3.16-3.17, and 3.22-

3.24 in addition to the unchanged equations from F1. 

3.3.3 Formulation F3 

In formulation F2, we used slot-based (pair-wise) sequencing for big (small) ships and 

allowed at most one cargo per slot. In this formulation, we follow the same 

sequencing methods, but instead of using slots at each position, we use slots for each 

big ship. This would allow us to have two cargos per slot (one at each position of a 

big ship) and should require a different number of binary variables than F2. In the 

following, we identify only the main differences from F2. 

We divide the time horizon for each big ship m into Km contiguous slots (k = 1, 

2, ..., Km) as shown in Figure 6. Clearly, Km = maxp |Jp| for p ∈ Pm. We set Kj = Km 

with m ∋ j ∈ JBm, Kp = Km with m ∋ p ∈ Pm, and define xjk as in F1. Though two 

cargos can reside in one slot, each position of a slot can transfer at most one cargo, so 

eq. 3.14 remains unchanged. Similarly, although we defined slots with respect to big 

ship rather than position, the variables TBpk, Tj, TXjk, DTSn, and DTBm and all the 

constraints and lower bounds remain the same as in F2. 

Again, we have three alternate formulations as in F2 except for the proper 

values of Kj and Kp, and the numbers of continuous and binary variables.  

In principle, we could formulate F3 in terms of real cargos (i) rather than 

derived cargos (j). On the face of it, that would seem to reduce the binary variables 

even further. However, a detailed analysis reveals that we still must make a choice of 

transfer position for each two-sided cargo and we would need a binary variable for 

that decision. In other words, it is just not possible to use a single binary variable for 

two-sided cargos and this makes fruitless the idea of formulating F3 in terms of real 

cargos. 
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Considering the fact that the only difference between F2 and F3 is the number 

of binary variables, it would be instructive to know which uses fewer. As we show 

later in section 6, F3 always uses more binary variables than F2 and thus we expect it 

to be inferior to F2. We confirm this conclusion later via detailed numerical 

evaluation. 

3.4 Additional Constraints 

Apart from the constraints stated above for F1, F2, and F3, we can write additional 

constraints that explicitly sequence empty cargos and slots. These constraints involve 

binary variables only and may yield tighter and more efficient formulations. 

As discussed earlier, a cargo j with i(j) ∈ TSC may not transfer at all models. 

We forced such discarded cargo (Uj = 0) to be before each transferred cargo (Uj = 1) 

and to start at the earliest possible start times of ships or positions in the models. The 

following two constraints achieve this objective for F1, 

'jj j jy U U′≥ −  p(j) = p(j′), n(j) ≠ n(j′), i(j) or i(j′) ∈ TSC, j < j′ (3.25a) 

1jj j jy U U′ ′≤ − +   p(j) = p(j′), n(j) ≠ n(j′), i(j) or i(j′) ∈ TSC, j < j′ (3.25b) 

Note that we write the above, only when at least one of j and j′ is a one-sided cargo 

that models an original two-sided cargo. When a cargo j transfers (Uj = 1) and j′ does 

not (Uj′ = 0), then eq. 3.25a relaxes and eq. 3.25b forces yjj′ = 0. Thus, each non-

transferred cargo j′ precedes every transferred cargo j. When a cargo j does not 

transfer (Uj = 0) and j′ transfers (Uj′ = 1), then eq. 3.25a forces yjj′ = 1 and eq. 3.25b 

relaxes. Thus, each transferred cargo j′ succeeds each non-transferred cargo j. If 

neither cargo j nor j′ transfers (nor both transfer), then both eqs. 3.25a and 3.25b relax 

and impose no restriction on sequencing. Interestingly, we can combine eqs. 3.25a 

and 3.25b into one single equality constraint as follows: 

1jj jj j jy U Uδ′ ′ ′+ = − +  p(j) = p(j′), n(j) ≠ n(j′), i(j) or i(j′) ∈ TSC, j < j′ (3.26)  
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where, 0 ≤ δjj′ ≤ 1 is a continuous 0-1 variable. 

The analogous constraint for F2 and F3 is the same as eq. 3.26 except for the 

conditions n(j) = n(j′), p(j) ≠ p(j′), i(j) or i(j′) ∈ TSC, and j < j′. 

In F1, each slot has exactly one real cargo. In contrast, F2 and F3 use more 

slots than the number of real cargos. Therefore, as we saw earlier, some slots may go 

empty in F2 and F3. To eliminate redundant permutations involving empty slots, we 

push such slots to the beginning of the schedule rather than leave them dispersed 

among the non-zero slots. Therefore, we force each slot preceding an empty slot to be 

empty as well by using, 

( )1 jkj k
j j

x x+ ≥∑ ∑   k < Kp, j ∈ Jp (3.27) 

For the pair-wise sequencing approach, we notice that some sequences can be 

deduced from other sequences. For example, if y12 = 1 and y23 = 1, then we know that 

y13 = 1. That is, if cargo 2 transfers after cargo 1, cargo 3 transfers after cargo 2, then 

cargo 3 must transfer after cargo 1. To this end, for F1, we have, 

'' ' ' ''1jj jj j jy y y+ ≥ +   p(j) = p(j′) = p(j″), n(j) ≠ n(j′) ≠ n(j″), j < j′ < j″ (3.28a) 

'' ' ' ''jj jj j jy y y≤ +   p(j) = p(j′) = p(j″), n(j) ≠ n(j′) ≠ n(j″), j < j′ < j″ (3.28b) 

When yjj′ = yj′j″ = 1, yjj″ = 1 by eq. 3.28a. When yjj′ = yj′j″ = 0, yjj″ = 0 by eq. 3.28b. 

When yjj′ or yj′j″ = 0, yjj″ is free. 

Alternatively, we can use the following equality, 

'' ' '' ' ' ''jj jj j jj j jy d y y+ = +  p(j) = p(j′) = p(j″), n(j) ≠ n(j′) ≠ n(j″), j < j′ < j″ (3.29) 

where, djj′j″ is a 0-1 continuous dummy variable. For F2 and F3, the above equation 

remains the same, but index ranges are n(j) = n(j′) = n(j″), p(j) ≠ p(j′) ≠ p(j″), j < j′ < j″. 

We did a preliminary evaluation of the effectiveness of these additional 

constraints on model performance and tightness. All constraints seemed generally 
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effective in reducing solution time. Clearly, explicit sequencing of empty cargos and 

slots does help. Moreover, fixing some pair-wise sequences also speeded up solutions. 

Therefore, we add all these extra constraints (eqs. 3.26, 3.27, and 3.29) to all our 

formulations. 

Having developed nine alternate MILP formulations addressing general 

chemical transshipment problems, the question now is which formulation is the best. 

To answer this, we study their performances using several examples in the following 

chapter. 
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CHAPTER 4 

GENERAL CHEMICAL TRANSSHIPMENT 

OPERATIONS – MODEL EVALUATION 

Number of binary variables is a good indicator of relative model performance. To this 

end, we first identify the factors affecting the binary variables, and develop 

formulations for calculating binary variables for different models. Then, we use three 

examples to study the application and relative performance of different models. In 

Example 1, we focus on the effect of travel time. Example 2 aims to study the effect 

of number of two-sided cargos on binary variables. Example 3 explores the effect of 

numbers of small or big ships on binary variables. Several useful trends are observed. 

In addition, an overall model ranking scheme is used to study the relative model 

performance. Based on the evaluations, we develop some guidelines for selecting a 

suitable model to use when facing different types of transshipment problems. Lastly, a 

heuristic using cargo aggregation method is developed to improve the model 

performance over large size problems.  

4.1 Estimation of Binary Variables 

Table 4.1 summarizes the constraints for each of the nine models for an easy 

reference. Clearly, it is not easy to pick one as the best model without doing a detailed 

numerical evaluation. However, we could get some idea about the relative 

performances of these models by merely comparing their numbers of binary variables. 

No indicator is the best or fool-proof, but fewer binary variables often lead to better 

performance. Of course, exceptions do exist and are often significant. Therefore, let 

us now compute the numbers of binary variables in F1, F2, and F3. 
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Table 4.1: Common, specific, and additional constraints for each model 
 

Constraints F11 F12 F13 F21(F31) F22(F32) F23(F33) 

Common 3.1-3.7a, 3.12, 3.13 3.2, 3.7, 3.14, 3.15a, 3.16-3.17, 3.22-
3.24 

Specific 3.7b, 
3.9a,b 3.9a, 3.10 3.11a-c 3.7b, 3.15b, 

3.19a,b 
3.7b, 3.15b, 
3.19a, 3.20 

3.21a, 
3.11b-c 

Additional 3.26, 3.29 3.26, 3.29 3.26, 3.29 3.26, 3.27, 
3.29 

3.26, 3.27, 
3.29 

3.26, 3.27, 
3.29 

 

F1-F3 use two types of binary variables. One type (x-variables) is for the slot-

based sequencing, while the other type (y-variables) is for the pair-wise sequencing. 

The former for models F1, F2, and F3 are: 

F1: n n
n
∑ IS JS  (4.1a) 

F2: 
2

p
p
∑ J  (4.1b) 

F3: m m
m

K∑ JB  (4.1c) 

While, the latter are: 

F1: 1 | | (| | 1) | | (| | 1)
2 p p p n p n

p n

⎡ ⎤− − ∩ ∩ −⎢ ⎥⎣ ⎦
∑ ∑J J J JS J JS  (4.2a) 

F2 & F3: 1 | | (| | 1) | | (| | 1)
2 n n p n p n

n p

⎡ ⎤
− − ∩ ∩ −⎢ ⎥

⎣ ⎦
∑ ∑JS JS J JS J JS  (4.2b) 

Because the number of binary variables should be a good indicator of the relative 

performances of F2 and F3, let us compare them first. We see from eqs. 4.1b,c and 

4.2b that F2 and F3 differ only in the numbers of x-variables. Now, consider a big 

ship m with a j-cargos on one side and b j-cargos on the other. With no loss of 

generality, let a ≥ b. Then, the number of x-variables for m in F2 is a2 + b2 and that in 

F3 is a(a+b). Thus, the number of extra binary variables in F3 is b(a–b) ≥ 0 and F3 
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always uses more binary variables than F2. Therefore, we expect F3 to perform worse 

than F2. 

Although the number of binary variables is a good indicator of model 

performance in many cases, many other factors such as the types of binary variables, 

the number of big-M constraints, etc. also affect computation time. Therefore, in the 

next section, we perform a detailed numerical comparison of various models using 

several examples. 

4.2 Examples 

For illustrating the application of our nine models and comparing their performances, 

we use three examples of varying sizes. Example 1 aims to illustrate the effect of 

(small) ship travel times. Examples 2 and 3 explore the factors that affect the numbers 

of binary variables. Specifically, Example 2 focuses on the effect of the number of 

two-sided cargos, while Example 3 investigates the effect of numbers of big/small 

ships on the model performance. 

We solved all three examples using CPLEX 9.0 with GAMS version 21.7 on a 

Pentium IV computer with 1.0 GB of RAM and Windows XP (SP2). All solutions 

have 0.0% gap, i.e. they are optimal. Note that the big-M constraints are present in all 

nine models. The value of big-M (H) can affect the model performance greatly and 

erratically. Thus, consistency in selecting the big-M values is a critical issue. We vary 

the big-M value from example to example, but we keep it identical for all models on 

the same problem to ensure a fair and consistent comparison. In Examples 1a-b, we 

use H = 120 and H = 80 respectively. In Examples 2a-c and 3a-c, we use H = 100. We 

selected these values as roughly twice the departure time of the last vessel. 

For all examples, we use Gantt charts to present transshipment schedules. We 

use three shaded rectangles to represent slots with different activities of ships. For 
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example, a white rectangle represents idling, grey represents service (transfer), and 

black represents travel from position to position. We tag each grey rectangle with an 

index for the cargo that is transferred in that slot. The numbers underneath rectangles 

denote the start/end times of activities. A carrier departs at the end of its last slot. We 

use one row of rectangles for each small ship and each position of each big ship. 

Although the two positions have common arrival/departure times, their activities are 

different and independent. 

4.2.1 Example 1 

We first consider a simple transshipment problem involving only one big ship (m1; M 

= 1) with thirteen transshipment cargos (i1 to i13; I = 13), one (i3) of which is a two-

sided cargo. Four small ships (n1 to n4; N = 4) are to receive these cargos. Tables 4.2-

4.3 list all the data for this example including expected arrival times, time-charter 

costs, cargo service times, etc. We assume that the travel time from any position to 

any other is the same (3 h) for all small ships. The arrival time of m1 is 1.2 h, while 

those of n1 to n4 are 1.2 h, 1.2 h, 0.0 h, and 6.0 h respectively. 

All nine models give the same optimal transshipment schedule (Figure 4.1) 

with a total time-charter cost of $17823.80. Figure 4.1 shows that n1 and n3 start 

transshipments first. n2 waits until n1 finishes service in position p2. This is because 

n2 has the lowest time-charter cost among the three (n1, n2, and n3) ships that arrive 

first and compete for service. 
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Table 4.2: Expected arrival times and time-charter costs of carriers for the examples 
 

Examples 1a-b 
Carrier ETA 

(h) 
Time-charter cost 

($/h) 
m1 1.2 160 

n1 1.2 85 

n2 1.2 70 

n3 0.0 105 

n4 6.0 101 

Examples 2a-c 

m1 0.0 150 

m2 0.0 180 

m3 0.0 250 

n1 0.0 90 

n2 0.0 75 

n3 0.0 105 

n4 0.0 80 

Examples 3a-c 

m1 2.0 150 

m2 2.0 210 

m3 1.5 160 

n1 0.0 90 

n2 0.0 75 

n3 2.5 105 

n4 2.0 65 

n5 4.0 80 
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Table 4.3: Deep-sea carriers, short-sea carriers, unloading positions, and service times 
of cargos for Examples 1a-b and 2a-c 

 
Examples 1a-b 

Cargo 
(i) 

Deep-sea carrier 
(m) 

Short-sea carrier 
(n) 

Unloading position 
(p) 

Service time 
(h) 

1 1 1 1 9.0 
2 1 2 2 4.5 
3 1 2 1, 2 6.5 
4 1 3 1 5.0 
5 1 3 1 3.5 
6 1 3 2 11.9 
7 1 1 2 6.2 
8 1 2 1 6.6 
9 1 3 2 8.5 
10 1 1 1 6.2 
11 1 2 1 4.6 
12 1 4 1 5.6 
13 1 4 2 3.5 

Examples 2a-c 
1 1 1 1 6.0 
2 1 1 2 4.2 
3 1 3 2 6.7 
4 1 2 1 4.7 
5 1 2 1 3.7 
6 1 1 2 11.7 
7 1 2 2 6.2 
8 1 3 1 6.5 
9 2 4 3 8.0 
10 2 4 4 6.0 
11 2 3 4 3.9 
12 2 2 3 8.7 
13 3 3 5 3.9 
14 3 1 5 3.7 
15 3 4 6 3.5 
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Figure 4.1: Gantt chart for the optimal transshipment schedule of Example 1a 

 
 
In practice, it takes some time for a small ship to move from one location to 

another. Though it may be only a few minutes or hours, this travel time affects the 

optimal schedule. Neglecting travel times results in sub-optimal schedules. To 

illustrate this point, we solved this example assuming zero travel times. We call this 

as Example 1b. Although the new transshipment schedule is obviously different, we 

use its service sequences to compute the total time-charter cost, while accounting for 

the actual travel times. The new total time-charter cost is $18877.90, which is 5.91% 

higher than $17823.80 for Example 1a. This clearly illustrates that zero travel times is 

not a good assumption in transshipment problems. 

Table 4.4 lists the results of and model statistics for Examples 1a-b. F1 models 

use 85 binary variables, F2 models use 113, and F3 models use 125. F11-F12 perform 

the best in Example 1a, which seems to correlate well with their fewer binary 

variables. However, surprisingly, F21, F22, and F31 (F23, F33 are worse than all F1 

models; F32 is worse than F11 and F12) outperform F1 in Example 1b even with 

many more binary variables. F13, F23, and F33 always give the highest rMIP 

objectives, which is consistent with our expectation of their relative tightness. 
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However, as we expected before, in spite of being tighter, they are the worst 

performers. F3 requires more binary variables (125 vs. 113), continuous variables, 

constraints, and nonzeros than F2. Therefore, as expected, it is slower than F2 and has 

the same rMIP value as F2. Furthermore, it shows no advantage over any other 

models, so we do not include F3 in our subsequent evaluation. 

Now, we address the factors that may affect the binary variables and hence 

model performance. From section 4.1, we know that the number of slots, the number 

of cargos in each carrier (deep-sea/short-sea), the numbers of carriers, the number of 

two-sided cargos, the assignment of cargos to deep-sea/short-sea carriers, etc. directly 

affect the number of binary variables. Therefore, we will now vary these factors in the 

following examples.  
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Table 4.4: Model statistics and computational results for Examples 1a-b 
 

Example 1a (M = 1, N = 4, I = 13, |TSC| = 1) 
  F11 F12 F13 F21 F22 F23 
(x+y)-variables 49+36 49+36 49+36 100+13 100+13 100+13 
Continuous variables 128 128 177 52 52 152 
Constraints 362 303 326 413 315 313 
Non zeros 1338 1204 1253 1670 1512 1470 
Nodes 644039 1251732 1203964 699285 1269667 1089744
rMIP objective ($) 12076.00 12076.60 12076.60 9696.10 11827.62 11859.63
MIP objective ($) 17823.80 17823.80 17823.80 17823.80 17823.80 17823.80
Integrality gap (%) 32.2 32.2 32.2 45.6 33.6 33.5 
CPU time (s) 458  653  991  731  1292  3226  
  F31 F32 F33    
(x+y)-variables 112+13 112+13 112+13    
Continuous variables 54 54 166    
Constraints 455 345 343    
Non zeros 1852 1672 1628    
Nodes 798526 2284452 1248252    
rMIP objective ($) 9696.10 11827.62 11859.63    
MIP objective ($) 17823.80 17823.80 17823.80    
Integrality gap (%) 45.6 33.6 33.5    
CPU time (s) 854  2269  3970     

Example 1b (M = 1, N = 4, I = 13, |TSC| = 1, θnpp′= 0) 
  F11 F12 F13 F21 F22 F23 
(x+y)-variables 49+36 49+36 49+36 100+13 100+13 100+13 
Continuous variables 128 128 177 52 52 152 
Constraints 362 303 326 413 315 313 
Non zeros 1320 1186 1235 1670 1512 1470 
Nodes 2241186 3986000 4358482 331160 1410561 856204 
rMIP objective ($) 12076.60 12076.60 12076.60 9696.10 12126.93 12170.39
MIP objective ($) 17021.40 17021.40 17021.40 17021.40 17021.40 17021.40
Integrality gap (%) 29.1 29.1 29.1 43.0 28.8 28.5 
CPU time (s) 1768  1760  2848  352  1407  3059  
  F31 F32 F33    
(x+y)-variables 112+13 112+13 112+13    
Continuous variables 54 54 166    
Constraints 455 345 343    
Non zeros 1852 1672 1628    
Nodes 609880 1530816 1285249    
rMIP objective ($) 9696.10 12126.93 12170.39    
MIP objective ($) 17021.40 17021.40 17021.40    
Integrality gap (%) 43.0 28.8 28.5    
CPU time (s) 751  1816  4607     
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4.2.2 Example 2 

In this example, we select a more complex situation involving three deep-sea carriers 

(m1 to m3; M = 3), four short-sea carriers (n1 to n4; N = 4), and fifteen transshipment 

cargos (i1 to i15, I = 15). Tables 4.2-4.3 give the required data for Examples 2a-c. The 

travel time between the two sides of any deep-sea carrier is 2 h, between m1 and m2 is 

3 h, between m2 and m3 is 3 h, and between m1 and m3 is 4 h. Example 2a has only 

one-sided cargos. Then, we gradually increase the number of two-sided cargos by 

converting some one-sided cargos. The two-sided cargos are i1, i8, and i13 in 

Example 2b, and i1, i2, i6, i7, i8, i10, and i13 in Example 2c. These examples also 

simulate congestion problems that arise because of all carriers arriving at the transfer 

port at the same time. In such a situation, it is hard even for an experienced scheduler 

to decide which cargo should start transshipment first. 

Figures 4.2 and 4.3 show the optimal transshipment schedules for examples 2a 

and 2c respectively. Example 2a with no two-sided cargos has a total time-charter cost 

of $22099.00. When there are seven two-sided cargos as in Example 2c, the total 

time-charter cost reduces to $21143.00. This is lower, because two-sided cargos give 

more flexibility in operations. Comparing the schedules of Examples 2a and 2c, we 

see that Example 2c has a more compact schedule with less waiting time for big ships 

than example 2a. In addition, the travel times of ships n2 and n3 are shorter. In 

Example 2a, n2 travels from position p2 to p1 of m1 to receive cargos i4, i5, and i7. 

However, when i7 becomes a two-sided cargo, n2 receives i4, i5, and i7 from p1 and 

saves the travel time from p2 to p1. This results in a better schedule. 
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Figure 4.2: Gantt chart for the optimal transshipment schedule of Example 2a 
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Figure 4.3: Gantt chart for the optimal transshipment schedule of Example 2c 

 

Table 4.5 shows the results of and model statistics for Examples 2a-c. As the 

number of two-sided cargo increases, so do |JSn| and |Jp|, but not Kn = |ISn|. Thus, the 

number of slots for each small ship n remains the same, but the numbers of cargo 

pairs for each ship n and position increase, and those with the same origin and 

destination ships remain the same or increase. Thus, the x-variables in both models 

increase (eqs. 4.1a-b); while the y-variables either remain constant or increase with 
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more two-sided cargos (eqs. 4.2a-b). However, because F2 has more slots, the x-

variables increase much more than in F1. Therefore, an increase in two-sided cargos 

has a greater impact on F2 than F1. The model statistics for Examples 2a-c confirm 

these conclusions. The binary variables increase by 45, when we go from 0 to 7 two-

sided cargos in F1, which increases the solution time almost a hundred fold. For F2, 

the impact is more severe. The binary variables increase by 83 and F2 fails to solve 

Example 2c even after 5000 s. 
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Table 4.5: Model statistics and computational results for Examples 2a-c 
 

Example 2a (M = 3, N = 4, I = 15, |TSC| = 0) 
  F11 F12 F13 F21 F22 F23 
(x+y)-variables 57+13 57+13 57+13 45+19 45+19 45+19 
Continuous variables 179 176 233 68 68 110 
Constraints 369 298 327 333 294 288 
Non zeros 1332 1155 1215 1030 925 877 
Nodes 3763 5572 1988 59107 48864 58848 
rMIP objective ($) 11952.50 14060.50 14083.71 12275.00 13515.15 13544.36 
MIP objective ($) 22099.00 22099.00 22099.00 22099.00 22099.00 22099.00 
Integrality gap (%) 45.9 36.4 36.3 44.5 38.8 38.7 
CPU time (s) 3.0 3.3 2.4 31.4 24.2 52.0 

Example 2b (M = 3, N = 4, I = 15, |TSC| = 3) 
(x+y)-variables 69+20 69+20 69+20 68+29 68+29 68+29 
Continuous variables 223 223 292 102 102 170 
Constraints 442 359 388 469 407 401 
Non zeros 1699 1489 1558 1590 1422 1368 
Nodes 33604 84155 23800 626513 809543 570895 
rMIP objective ($) 11902.50 13478.50 13480.80 11762.50 12567.41 12583.19 
MIP objective ($) 21998.00 21998.00 21998.00 21998.00 21998.00 21998.00 
Integrality gap (%) 45.9 38.7 38.7 46.5 42.9 42.8 
CPU time (s) 29 65 36 457 711 907 

Example 2c (M = 3, N = 4, I = 15, |TSC| = 7) 
(x+y)-variables 84+31 84+31 84+31 106+41 106+41 106+41 
Continuous variables 255 255 339 141 141 247 
Constraints 542 440 473 656 556 550 
Non zeros 2103 1844 1928 2376 2102 2036 
Nodes 298616 1177240 269554 2829184 2433350 1183737 
rMIP objective ($) 11152.50 12126.53 12134.31 10643.50 11062.86 11085.36 
MIP objective ($) 21143.00 21143.00 21143.00 21143.00 21143.00 21143.00 
Integrality gap (%) 47.3 42.6 42.6 49.7 47.7 47.6 
CPU time (s) 383  1067  441  5000  5000  5000  
Best possible    17819.98 17627.35  17661.00 
Relative gap (%)       15.72  16.63  16.47  

 

4.2.3 Example 3 

In this example, we study the effect of varying the numbers of carriers. For Example 

3a, we use two deep-sea carriers (M = 2), four short-sea carriers (N = 4), and sixteen 

one-sided transshipment cargos (I = J = 16). Then, we change the number of short-sea 
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carriers in Example 3b, and the number of deep-sea carriers in Example 3c, while 

keeping the other parameters unchanged. 

Tables 4.2 and 4.6 present the data for these examples. We assume the travel 

time between the two positions of each deep-sea carrier as 2 h, between m1 and m2 as 

2.5 h, between m2 and m3 as 2.5 h, and between m1 and m3 as 3 h. Table 4.7 gives 

the results and model statistics, while Figures 3.4, 4.4, and 4.5 display the optimal 

schedules. In Example 3b, we include a new small ship (n5) with a higher time-

charter cost than n4 (80 vs. 65). In Example 3c, we add a new big ship (m3) with a 

higher cost than m1 (160 vs. 150). It is not surprising to observe that the optimizer 

gives higher priorities to these more expensive ships and ends their operations first in 

the optimal schedules. For instance in Example 3b, p4 (ETABm2 = 2.0 h) waits for n5 

(ETASn5 = 4.0) to finish operations, even though both p4 and n4 arrive earlier (ETASn4 

= 2.0). Again, this agrees with the observation from Example 1a. 

 
Table 4.6: Deep-sea carriers, short-sea carriers, unloading positions, and service times 

of cargos for Examples 3a-c 
 

Cargo  
(i) 

Deep-sea carrier 
(m) 

Short-sea carrier 
(n) 

Unloading position 
(p) 

Service time 
(h) 

 (a & b) (c) (a & c) (b) (a & b) (c)  
1 1 1 1 1 1 1 9.0 
2 1 1 1 1 2 2 7.3 
3 1 1 3 3 2 2 9.8 
4 1 1 2 2 1 1 7.8 
5 1 1 2 2 1 1 6.8 
6 1 1 1 1 2 2 14.8 
7 1 1 2 2 2 2 9.3 
8 1 1 3 3 1 1 9.6 
9 2 2 4 4 3 3 11.0 
10 2 2 4 4 4 4 9.2 
11 2 2 3 3 4 4 7.0 
12 2 2 2 2 3 3 11.7 
13 2 2 3 3 3 3 7.0 
14 2 3 1 1 3 5 6.7 
15 2 2 4 5 4 4 6.5 
16 1 3 2 2 2 6 7.8 
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Table 4.7: Model statistics and computational results for Examples 3a-c 
 

Example 3a (M = 2, N = 4, I = 16, |TSC| = 0) 
  F11 F12 F13 F21 F22 F23 
(x+y)-variables 66+21 66+21 66+21 66+21 66+21 66+21 
Continuous variables 180 180 246 65 65 131 
Constraints 399 321 349 389 327 323 
Non zeros 1565 1383 1449 1345 1261 1213 
Nodes 44047 209221 80248 751885 857825 997473 
rMIP objective ($) 20070.01 21558.38 21566.80 19277.50 22188.95 22249.37 
MIP objective ($) 29829.00 29829.00 29829.00 29829.00 29829.00 29829.00 
Integrality gap (%) 32.7 27.7 27.7 35.4 25.6 25.4 
CPU time (s) 35  145  118  556  594  1979  

Example 3b (M = 2, N = 5, I = 16, |TSC| = 0) 
(x+y)-variables 62+22 62+22 62+22 66+20 66+20 66+20 
Continuous variables 177 177 239 66 66 132 
Constraints 389 316 343 403 341 337 
Non zeros 1515 1345 1407 1373 1289 1241 
Nodes 48508 336007 71274 317265 628011 537370 
rMIP objective ($) 18802.51 20534.63 20545.88 19797.50 23344.40 23399.16 
MIP objective ($) 30423.00 30423.00 30423.00 30423.00 30423.00 30423.00 
Integrality gap (%) 38.2 32.5 32.5 34.9 23.3 23.1 
CPU time (s) 38  230  126  221  491  1081  

Example 3c (M = 3, N = 4, I = 16, |TSC| = 0) 
(x+y)-variables 66+15 66+15 66+15 52+22 52+22 52+22 
Continuous variables 204 204 270 69 69 121 
Constraints 406 328 356 364 318 312 
Non zeros 1610 1428 1494 1189 1133 1085 
Nodes 3674 7131 8809 116092 126992 33352 
rMIP objective ($) 21285.75 23683.50 23687.71 17948.50 20740.00 20778.03 
MIP objective ($) 29972.50 29972.50 29972.50 29972.50 29972.50 29972.50 
Integrality gap (%) 29.0 21.0 21.0 40.1 30.8 30.7 
CPU time (s) 3.3 5.8 13.0 78.6 80.9 60.3 
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Figure 4.4: Gantt chart for the optimal transshipment schedule of Example 3b 
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Figure 4.5: Gantt chart for the optimal transshipment schedule of Example 3c 

 
 

The addition of n5 in Example 3b reduces three binary variables in F1 and one 

in F2. In Example 3c, the addition of m3 reduces six binary variables in F1 and 

thirteen F2. The above reductions occur, because the number of cargos is the same for 

Examples 3a-c. When N increases, Kn = |ISn| and |JSn| reduce in F1, and hence the x-

variables reduce. Although |Jp| remains unchanged, the number of cargos with the 

same origin and destination ships may decrease in F1, hence the y-variables may 
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increase. Thus, the x-variables and y-variables change in opposite directions, but the 

change in the former outweighs that in the latter. As a result, the binary variables 

reduce in F1. The reverse argument applies to F2, where the x-variables remain 

constant, but the y-variables may decrease. F3 has the same trend. In summary, the net 

effect for all models is a reduction in binary variables. Although the number of binary 

variables is not a fool-proof indicator of performance, these changes allow us to get 

some insight into the effects of different binary variables (x vs. y) on model 

performance, as we discuss next. 

4.2.4 Observations 

Based on the eight examples (1a-b, 2a-c, and 3a-c), we extract three useful 

observations. 

The first concerns the effect of the two types of binary variables, x-variables 

for the slot-based modeling approach and y-variables for the sequence-based 

modeling approach. From the model statistics and computational results of Examples 

1-3, we find that fewer binary variables generally mean faster solution. However, as 

highlighted earlier, exceptions do exist. For instance, in Examples 1a and 2b, F1 

models have roughly the same numbers (85 vs. 89) of binary variables. Yet, F1 needs 

over 400 s for Example 1a and less than 100 s for Example 2b. Similarly, F2 solves 

Example 1b much faster than F1, though F2 has many more binary variables (113 vs. 

85). Similar exceptions occur in Examples 2a and 3c. We believe that this may be 

because the two different types of binary variables affect model performance 

differently. Pitty (2004) showed that the sequence-based modeling approach is 

inferior to the slot-based approach in most sequencing problems, and this is largely 

due to the presence of big-M constraints. This observation certainly seems to hold in 

this problem, as we can see in the following instances. F1 models use more y-
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variables (36 vs. 20) in Example 1a than Example 2b. The solution time is more than 

400 s in F1, while less than 100 s in F2. In Example 1b, F1 models have 36 y-

variables and all take more than 1700 s, while F2 models have only 13 and F21 takes 

less than 400 s, F22 takes 1407 s, and F23 takes 3059 s. In Example 2a, F1 models 

have 13 y-variables and take less than 4 s, while F2 models have 19 and take more 

than 20 s. In Example 3c, F1 models have 15 y-variables, while F2 models have 22. 

F1 models take less than 13 s, while F2 models take more than 60 s. In all of these 

examples, it seems that the ill-effect of the sequence-based modeling overpowers the 

advantage of having fewer binary variables. 

Our second observation relates to the effect of formulation tightness. Of the 

three alternative formulations for each model, the third alternative (Fx3 models) 

always has the largest rMIP objective value, and hence is the tightest formulation. In 

contrast, the first alternative has the smallest rMIP objective value. We had expected 

this and the reason for this is obvious. The first alternative has two big-M constraints, 

while the third has none. However, as we expected earlier, the tighter formulations, 

namely the third alternatives, are slower than the first in all examples. The benefit of 

fewer big-M constraints is indeed offset by the increase in continuous variables. 

Furthermore, it is interesting that even the equality constraint that we used to replace 

one big-M constraint does not improve performance, even though it does not increase 

the number of continuous variables. We are not sure why this is so, although it makes 

sense intuitively. Furthermore, it is also surprising that the addition of the equality 

constraint to Fx1 models also does not improve performance, although it should make 

them tighter without increasing problem size. 

Our third observation relates to the use of the additional constraints. Earlier, 

we stated that the inclusion of the additional constraints helps reduce the solution time. 
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We base our observation on the following results on F11 and F21 for Examples 1a 

and 2b. Table 4.8 compares the model statistics for the two examples with and 

without the additional constraints. The additional constraints reduce solution times in 

most cases, especially for the larger problems. In Example 1a, this reduction is from 

924 s to 458 s for F11, and from 1095 s to 731 s for F21, which are significant 

improvements. Thus, we conclude that our proposed additional constraints in section 

5 to sequence empty slots, cargos, and cargo-cargo pairs are quite effective. 

 
Table 4.8: Model statistics and computational results for selected examples with and 

without additional constraints 
 

 Example 1a 
  F11* F11 F21* F21 
(x+y)-variables 49+36 49+36 100+13 100+13 
Continuous variables 79 128 48 52 
Constraints 313 362 397 413 
Non zeros 1142 1338 1482 1670 
Nodes 1517954 644039 1276616 699285 
rMIP objective ($) 12076.60 12076.60 9696.10  9696.10  
MIP objective ($) 17823.80 17823.80 17823.80  17823.80  
Integrality gap (%) 32.2  32.2  45.6  45.6  
CPU time (s) 924  458  1095  731  

 Example 2b 
  F11* F11 F21* F21 
(x+y)-variables 69+20 69+20 68+29 68+29 
Continuous variables 202 223 62 102 
Constraints 421 442 417 469 
Non zeros 1615 1699 1330 1590 
Nodes 27918 33604 876518 626513 
rMIP objective ($) 11902.50 11902.50 11762.50  11762.50  
MIP objective ($) 21998.00 21998.00 21998.00  21998.00  
Integrality gap (%) 45.9  45.9  46.5  46.5  
CPU time (s) 26  29  562  457 
* Base formulation: common + specific constraints 
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4.2.5 Overall Model Ranks 

It is clear that none of the six models has performed the best for all examples. To get 

an overall ranking of the models based on our limited numerical evaluation, we 

proceed as follows. 

One common way to compare models (m) is to compute their mean relative 

CPU times on several problems (p). We do this by computing a relative CPU time 

(RCPUmp) for each model m on each problem p as follows: 

min
mp

mp
mpp

CPU
RCPU

CPU
=

⎡ ⎤⎣ ⎦
 (4.3) 

Gupta and Karimi (2003) and Karimi et al. (2004) used these relative CPU times to 

compute an arithmetic mean over all problems for each model. However, it seems that 

geometric mean is a superior measure than arithmetic mean, as it gives more reliable 

ranking. Therefore, we define geometric mean rank as, 

pm pm
p

GMR RCPU= ∏  (4.4) 

The only problem with the above measure is that we still do not have a way to take 

into account the effect of different problem sizes. Generally, we would rank a model 

higher, if it performs better on larger problems. For this reason, we compute a 

weighted arithmetic mean of relative CPU times (WRCPUm) as well. 

pm pm
p

m
pm

p

BV RCPU
WRCPU

BV
=
∑

∑
 (4.5) 

However, since we have both x-variables and y-variables and they affect the 

performance differently, we compute two WRCPUms, one with x-variables as weights 

and the other with y-variables. Then take the geometric mean of these two means get 

an overall weighted mean rank WMRm. 
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Table 4.9 lists the two mean ranks (GMRm and WMRm) for the six models. F11, 

F12, and F13 rank higher than F21, F22, and F23. Therefore, a slot-based approach 

for the small ships and a sequence-based approach for the big ships seems a better 

overall approach. Among the three F1 and F2 models, F11 and F21 rank first 

respectively. Although F2 models perform poorer than F1 models in general, they 

seem to do better for fewer deep-sea carriers. As discussed earlier, this is probably 

due to the effect of y-variables. 

 
Table 4.9: Mean ranks for models 

 
  GMRm* WMRm 

F11 1.12 1.58 
F12 1.64 3.16 
F13 1.55 3.08 
F21 2.62 10.75 
F22 3.25 13.81 
F23 4.46 24.65 

*Note: Runs that did not yield optimal 
solutions within 5000 s were not included in 
computing the mean CPU times. 

 

4.3 Cargo Aggregation Heuristic 

A multi-compartment carrier may have up to 15 compartments. However, several 

cargos may come from one compartment or one ship. Therefore, a real transshipment 

operation may easily involve tens of cargos. We used up to sixteen cargos in our 

illustrative examples and the computational performance was quite good. Our 

proposed models solved even examples with hundreds of binary variables within half 

an hour. However, it is practically useful to have a model that can solve much larger 

problems efficiently, even if it may not guarantee optimality. 

We achieve this by exploiting the fact that several cargos may involve the 

same ships (small and big) in practice. In fact, most cargos involving the same ships 

transship consecutively in the optimal schedules. For instance, cargos i9 and i6 are 
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consecutive in Example 1a, i4 and i5 in Example 2a, and so on. This makes sense 

because a small ship saves travel (and other) time by serving the cargos from a ship in 

one shot. In fact, one may very well prefer this in practice, because a small ship may 

require some other resources or activities to travel from one position to another, which 

our model does not consider. Therefore, it seems reasonable to aggregate cargos with 

the same unloading position and designated short-sea carrier into one single one-sided 

cargo with a service time equal to the sum of the service times of individual cargos. In 

fact, doing this may even result in a service time that is less than the sum, because a 

small ship may not need to repeat some activities associated with the transshipment of 

each cargo. This aggregation of cargos would reduce the effective number of cargos 

and result in smaller problems. 

To test the effectiveness of this cargo aggregation heuristic, we redefine the 

cargos for all examples using the above assumption and resolve them. Note that we 

cannot aggregate two-sided cargos, since we cannot fix their unloading positions a 

priori. Tables 4.10-4.12 show the results and model statistics for the revised examples 

using the heuristic. The binary variables reduce significantly in all examples. For 

instance, they reduce from 85 to 42 in F1 and 113 to 57 in F2 for Example 1a. As 

expected, the model performance improves greatly. The aggregation heuristic allows 

us to solve most examples within seconds. Even those (Examples 1a-b and 3a-b) that 

took thousands of seconds previously gave optimal solutions within minutes. For 

instance, F11 in Example 1a took only 0.64 s compared to 458 s for the optimal 

solution. Of course, we do get suboptimal solutions for some examples, but the 

deviations from the optima are quite small. The greatest deviation of 2.23% from the 

optimal occurs in Example 3a, while we get optimal solutions for Examples 2a-c. 

Hence, we conclude that the cargo aggregation heuristic is extremely effective in 
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solving larger problems of practical interest without significantly sacrificing the 

quality of solution. However, note that this heuristic will not be very effective, when 

much cargo aggregation may not be possible due to the presence of many two-sided 

cargos. 

 
Table 4.10: Model statistics and computational results for Examples 1a-b using the 

heuristic assumption 
 

Example 1a (M = 1, N = 4, I = 13, |TSC| = 1) 
  F11 F12 F13 F21 F22 F23 
(x+y)-variables 24+18 24+18 24+18 50+7 50+7 50+7 
Continuous variables 71 71 95 39 39 89 
Constraints 199 169 184 248 200 198 
Non zeros 677 614 638 900 830 800 
Nodes 1478 2467 1046 1570 2062 1198 
rMIP objective ($) 12076.60 12076.60 12076.60 11437.60 12515.39 12597.34
MIP objective ($) 17836.90 17836.90 17836.90 17836.90 17836.90 17836.90
Integrality gap (%) 32.3 32.3 32.3 35.9 29.8 29.4 
CPU time (s) 0.64 0.97 0.59 1.02 1.28 2.03 
CPU time reduction (%)*99.86  99.85  99.94  99.86  99.90  99.94  
Sub-optimality (%)** 0.07  0.07  0.07  0.07  0.07  0.07  
  Example 1b (M = 1, N = 4, I = 13, |TSC| = 1, θnpp′= 0)   
(x+y)-variables 24+18 24+18 24+18 50+7 50+7 50+7 
Continuous variables 71 71 95 39 39 89 
Constraints 199 169 184 248 200 198 
Non zeros 677 614 638 900 830 800 
Nodes 1634 3073 1744 1036 2722 942 
rMIP objective ($) 12076.60 12076.60 12076.60 11437.60 12515.39 12597.34
MIP objective ($) 17358.30 17358.30 17358.30 17358.30 17358.30 17358.30
Integrality gap (%) 30.4 30.4 30.4 34.1 27.9 27.4 
CPU time (s) 0.55 1.00 0.80 0.73 1.55 1.67 
CPU time reduction (%) 99.97  99.94  99.97  99.79  99.89  99.95  
Sub-optimality (%) 1.98  1.98  1.98  1.98  1.98  1.98  
* CPU time reduction (%) = (optimal CPU time – heuristic CPU time) / optimal CPU 
time × 100 
**Sub-optimality (%) = (heuristic objective – optimal objective) / optimal objective × 
100 
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Table 4.11: Model statistics and computational results for Examples 2a-c using the 
heuristic assumption 

 
Example 2a (M = 3, N = 4, I = 15, |TSC| = 0) 

  F11 F12 F13 F21 F22 F23 
(x+y)-variables 43+9 43+9 43+9 31+15 31+15 31+15 
Continuous variables 153 150 193 60 60 88 
Constraints 299 244 269 269 244 238 
Non zeros 1050 915 961 776 709 667 
Nodes 421 682 338 1980 2680 2983 
rMIP objective ($) 12582.50 14674.14 14719.85 12653.00 13996.03 14009.65
MIP objective ($) 22099.00 22099.00 22099.00 22099.00 22099.00 22099.00
Integrality gap (%) 43.1 33.6 33.4 42.7 36.7 36.6 
CPU time (s) 0.42 0.55 0.52 0.83 1.28 1.91 
CPU time reduction (%) 85.82  83.60  78.72  97.36  94.70  96.34  
Sub-optimality (%) 0.00  0.00  0.00  0.00  0.00  0.00  

Example 2b (M = 3, N = 4, I = 15, |TSC| = 3) 
(x+y)-variables 54+15 54+15 54+15 50+25 50+25 50+25 
Continuous variables 193 193 247 93 93 143 
Constraints 364 298 323 396 352 346 
Non zeros 1381 1216 1270 1280 1162 1114 
Nodes 2941 3838 3199 13868 35929 36732 
rMIP objective ($) 12532.50 13783.50 13783.50 12140.50 12850.00 12854.61
MIP objective ($) 21998.00 21998.00 21998.00 21998.00 21998.00 21998.00
Integrality gap (%) 43.0 37.3 37.3 44.8 41.6 41.6 
CPU time (s) 2.45 2.48 4.20 8.83 24.23 35.42 
CPU time reduction (%) 91.63  96.15  88.29  98.07  96.59  96.10  
Sub-optimality (%) 0.00  0.00  0.00  0.00  0.00  0.00  

Example 2c (M = 3, N = 4, I = 15, |TSC| = 7) 
(x+y)-variables 76+27 76+27 76+27 93+39 93+39 93+39 
Continuous variables 236 236 312 136 136 229 
Constraints 495 402 433 611 524 518 
Non zeros 1910 1675 1751 2167 1930 1867 
Nodes 64686 140854 59148 3468295 3248943 1408500 
rMIP objective ($) 11407.50 12140.31 12155.80 10643.50 11062.43 11085.61
MIP objective ($) 21143.00 21143.00 21143.00 21143.00 21143.00 21143.00
Integrality gap (%) 46.0 42.6 42.5 49.7 47.7 47.6 
CPU time (s) 66  109  102  5000  5000  5000  
Best possible    19574.19  19735.63  19329.51 
Relative gap (%)    7.42  6.66  8.58  
CPU time reduction (%) 82.65  89.74  76.93     
Sub-optimality (%) 0.00  0.00  0.00        
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Table 4.12: Model statistics and computational results for Examples 3a-c using the 
heuristic assumption 

 
Example 3a (M = 2, N = 4, I = 16, |TSC| = 0) 

  F11 F12 F13 F21 F22 F23 
(x+y)-variables 38+13 38+13 38+13 38+13 38+13 38+13 
Continuous variables 133 133 171 49 49 87 
Constraints 265 219 239 261 227 223 
Non zeros 995 893 931 833 793 757 
Nodes 1749 3542 1222 4497 3591 2079 
rMIP objective ($) 21151.50 22334.86 22334.86 20645.00 23815.53 23834.71
MIP objective ($) 30493.00 30493.00 30493.00 30493.00 30493.00 30493.00
Integrality gap (%) 30.6 26.8 26.8 32.3 21.9 21.8 
CPU time (s) 1.06 1.84 1.19 2.03 1.84 2.58 
CPU time reduction (%)96.97  98.73  98.99  99.63  99.69  99.87  
Sub-optimality (%) 2.23  2.23  2.23  2.23  2.23  2.23  

Example 3b (M = 2, N = 5, I = 16, |TSC| = 0) 
(x+y)-variables 39+15 39+15 39+15 43+13 43+13 43+13 
Continuous variables 137 137 176 53 53 96 
Constraints 280 233 254 297 258 254 
Non zeros 1039 935 974 945 898 859 
Nodes 3017 5457 1669 8393 5441 4488 
rMIP objective ($) 19884.00 21553.62 21553.62 20859.50 24327.31 24402.21
MIP objective ($) 30767.00 30767.00 30767.00 30767.00 30767.00 30767.00
Integrality gap (%) 35.4 29.9 29.9 32.2 20.9 20.7 
CPU time (s) 1.81 2.94 1.84 4.03 3.03 5.88 
CPU time reduction (%)95.23  98.72  98.54  98.18  99.38  99.46  
Sub-optimality (%) 1.13  1.13  1.13  1.13  1.13  1.13  

Example 3c (M = 3, N = 4, I = 16, |TSC| = 0) 
(x+y)-variables 45+10 45+10 45+10 33+16 33+16 33+16 
Continuous variables 164 164 209 56 56 89 
Constraints 304 250 272 271 244 238 
Non zeros 1172 1050 1095 825 798 759 
Nodes 766 702 350 2049 2952 1924 
rMIP objective ($) 22375.13 24341.38 24341.38 19128.50 21184.28 21249.60
MIP objective ($) 29972.50 29972.50 29972.50 29972.50 29972.50 29972.50
Integrality gap (%) 25.3 18.8 18.8 36.2 29.3 29.1 
CPU time (s) 0.59 0.61 0.69 0.98 1.41 1.78 
CPU time reduction (%)82.19  89.46  94.73  98.75  98.26  97.04  
Sub-optimality (%) 0.00  0.00  0.00  0.00  0.00  0.00  
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4.4 Conclusion 

We addressed an important problem in chemical maritime transportation, where one 

set of multi-compartment carriers transships (ship-to-ship) liquid chemical cargos to 

another set of multi-compartment carriers. Using a mix of slot-based and pair-wise 

sequence-modeling approaches, we developed nine continuous-time MILP 

formulations of three basic types. A majority of the models solved moderate-size 

examples involving up to three donor carriers, five recipient carriers, and sixteen 

transshipment cargos in reasonable solution times. 

Of the three types of models, F2 and F3 are quite similar and F3 with more 

binary variables is clearly inferior to F2. On the other hand, F1 and F2 perform 

differently on different types of problems. It appears that their performances improve 

with decreasing total and pair-wise sequencing binary variables. In general, F2 (F1) 

that uses the pair-wise sequencing approach for the recipient (donor) carriers seems to 

have fewer variables of the latter type and does better than F1 (F2), when the problem 

involves many recipient (donor) carriers. For the same reasons, F1 outperforms F2 in 

problems with many two-sided cargos.  

Among the three alternate models of each type, the ones involving the big-M 

relaxation (convex hull relaxation) seem to be the fastest (slowest) in spite of their 

inferior (superior) rMIP values. Furthermore, a model ranking strategy based on 

geometric means of relative solution times indicates that F11 is the best model overall. 

Our proposed heuristic strategy of aggregating cargos involving the same 

ships into single cargos reduces problem size drastically and solution times by an 

order of magnitude, yet gives nearly optimal (within 2.23%) solutions for the 

examples in this problem. This heuristic model promises to be very effective for 

solving large problems of practical interest. Compared to the manual procedures used 
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in practice for such problems, our MILP models promise to reduce total operation cost 

by up to 6.32%. 
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CHAPTER 5 

SCHEDULING OF TANKER LIGHTERING 

OPERATIONS 

In this chapter, we address a special case of chemical transshipment operation – 

tanker lightering problem. We first describe in detail the tanker lightering problem 

faced by a lightering company that provides lightering services to multiple refineries 

within a region. Then, we present two alternate continuous-time MILP formulations 

for the short-term scheduling of tanker lightering operations addressing two different 

objectives. Our models mimic the real operations by considering many practical 

features. For example, we consider 2-stage lightering for very large tankers; we limit 

the number of simultaneous lightering to two for a tanker; we also allow the lightering 

vessels to pick up different crudes with a common destination refinery from different 

tankers in a voyage and so on.  

5.1 Problem Description 

A lightering company services several refineries with shallow drafts located in a 

region. The company operates a fleet of N non-identical, multi-compartment 

lightering vessels (n = 1, 2, ..., N). We simply call them vessels. M multi-compartment 

tankers (m = 1, 2, ..., M) with 2M unloading positions (p = 1, 2, ..., 2M) are to deliver 

C crudes (c = 1, 2, ..., C) to the client refineries (r = 1, 2, ..., R) in the upcoming 

planning horizon. These crude oils vary in their origins (tankers), target destinations 

(refineries), densities, and heating requirements. A crude in a tanker is taken as 

different from the same crude in another tanker.  

A tanker m may carry one or more crudes. Let CTm denote the set of crudes 

that it carries, i.e. CTm = {c | tanker m carries crude c}. Let PSc denote the volume (m3) 
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of crude c. Each tanker is destined for one or more, a priori known, refineries and 

faces some draft limitations. For entry into its destination refinery ports, tanker m 

must lighter a known weight LWm (lightering weight in kg) of its load, which may 

involve one or more crude oils. Each tanker has two sides (starboard or right and 

larboard or left) for crude transfer, so at most two lightering vessels can offload crude 

from the tanker at any time; one from each side. We assume that a tanker offloads any 

of its crudes from either side or position. 

Normally, the lightering occurs at an anchorage location. However, some large 

tankers require an additional lightering step in deep offshore water before they can 

even enter the anchorage. Therefore, we consider two lightering locations; the 

anchorage being closer to the refinery and the offshore being away from the refinery. 

If a tanker requires 2-stage lightering, then we model it by two separate tankers with 

different lightering locations, operations, and requirements, one lightering at the 

anchorage and the other at offshore. Thus, if we have two tankers, one of which 

requires 2-stage lightering, then we have M = 3 tankers with m = m2 and m′ = m3 

being the same physical tanker and m2 (m3) being the offshore (anchorage) tanker. 

Note that two indices (m and m′) refer to the same physical tanker at two different 

locations. To facilitate this classification, we define set TST = {m | the physical tanker 

of m is a 2-stage tanker} and set MM = {(m, m′) | tanker m and tanker m′ respectively 

are the offshore and anchorage tankers of the same 2-stage physical tanker}. Thus, for 

the previous example, both m2 ∈ TST, m3 ∈ TST, and (m2, m3) ∈ MM. 

The tankers arrive at their first lightering location (anchorage or offshore) at 

arbitrary, but known, times (ETABm) within the planning horizon. During congestion 

time, multiple tankers arrive in a short time interval at a transfer location and compete 

for lightering services. If a large tanker requires two stages of lightering, then its 
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arrival time at the anchorage will depend on its departure time from the offshore 

location, as we elaborate later on. After lightering itself at the last lightering location 

(anchorage), each tanker travels to its destination refinery port/s to deliver the 

remaining crude oil. 

A vessel n has U
nN  identical compartments of volume (m3) SCn, and it travels 

with velocity vfn when loaded and velocity ven when empty. All lightering vessels 

become available at the anchorage at arbitrary, but known, times (ETASn). The 

operation of a vessel involves a series of voyages. Because most lightering occurs at 

the anchorage, we take it as the reference lightering location where a vessel 

starts/ends its voyages. Thus, each voyage is one full anchorage-to-anchorage round 

trip of a vessel, in which it visits a single refinery. A typical voyage involves the 

following steps. The vessel starts from the anchorage. Then, it visits one or more 

tankers one by one and collects one or more crudes from each tanker. These tankers 

could be at either anchorage or offshore, so a voyage may involve traveling between 

the anchorage and offshore. We assume that all crudes in a single voyage belong to a 

single refinery port. However, this port may vary from voyage to voyage. After 

collecting all its crude parcels, the vessel travels to its designated refinery port and 

unloads them at the refinery. Finally, it returns to the anchorage. Serving multiple 

tankers in one voyage is useful during periods of congestion. By doing this, a vessel 

saves the round-trip between the lightering location and refinery. However, it results 

in a longer delivery time to the refinery for the crude oil that was loaded first on the 

lightering vessel. Therefore, a tradeoff exists between reduced time-charter or 

demurrage cost for the latter tankers and longer delivery times for some crudes. 

Lightering a tanker involves the following sequential tasks: mounting to the 

tanker or connecting to one or more compartments of the tanker one at a time via a 
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flexible hose, pumping crude oils one at a time to different compartments of the 

vessel, and then dismounting from the tanker. Some crudes require heating and a 

vessel may not have the required heating equipment, so a vessel may not be able to 

carry all crudes. Therefore, we define a set CVn = {c | vessel n can carry crude c}. 

Finally, we assume that a vessel does not change its transfer position, while 

downloading crudes during a single visit to a tanker.  

The discharging operation at a refinery involves docking at the refinery port, 

pumping crude oils one at a time from the vessel to one or more crude tanks in the 

refinery, and undocking from the refinery port. Let FINnc denote the known rate at 

which vessel n receives crude c from a tanker, and FOUTn the rate at which it 

discharges crude to the refinery. 

The objective of our lightering problem is to generate an optimal short-term 

operation schedule that minimizes the total cost for the lightering company. The 

schedule includes the assignment of vessels to tankers, the sequences and timings of 

visits to tankers, voyage details, tankers served in each voyage, the amounts and types 

of crude oils unloaded from each tanker, and the numbers of vessel compartments 

used for carrying each crude. The total cost consists of two parts: operating costs of 

the lightering vessels and costs related to the tankers. The former is the sum of fuel 

consumption and fixed operating costs. Fuel consumption is directly proportional to 

the total distance that a lightering vessel travels. Fixed cost is the lump-sum cost of 

maintenance, depreciation, and labor. We can use the cost related to the tankers as 

either time-charter cost or demurrage. Time charter cost is the cost paid by the client 

refineries to hire crude tankers on a daily basis. Within the chartered period, refineries 

still pay charter cost even if a tanker sits idle. Therefore, one important objective is to 

minimize the time tankers spend idling at some place either for lightering or for 
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waiting. On the other hand, demurrage is the cost borne by the lightering company, 

when a tanker waits more than an agreed duration for lightering services. Depending 

on the objectives, the optimal schedules may be different. We will study the impact of 

different objectives on the lightering schedules later on. In addition, the arrival times 

of crude oils to the refineries are also measures of customer satisfaction of the 

refineries. 

The availability of vessels often depends on the weather condition, as some 

vessels cannot operate during bad weather. We address this simply by removing these 

vessels from the list in our formulation. 

Let us list all the assumptions in this problem: 

(1) Effects of tides on the velocities and drafts of vessels are negligible. When a ship 

travels with the tide, it can move easier, so the fuel consumption reduces at the 

same speed. In addition, a higher tide also increases the draft of a channel/port, 

which may reduce the required lightering volume for a tanker. 

(2) All crude parcels are compatible with each other, as far as compartment allocation 

is concerned. Thus, a vessel can carry a crude in any compartment without 

worrying about its location. 

(3) The stability considerations of vessels and tankers during the lightering operations 

are ignored.  

(4) The lightering weight LWm of crude that a tanker m must lighter at each lightering 

location is fixed and known a priori. 

(5) Once a tanker arrives at a lightering location (anchorage or offshore), it does not 

move, until it lighters the prefixed amount of crude oil for that location. In 

contrast, the lightering vessels may travel among different tankers. 

(6) A tanker can feed at most two lightering vessels at the same time, one at each side.  
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(7) Any crude can be transferred from either position (side) of a tanker.  

(8) A lightering vessel can receive only one crude at a time. 

(9) A lightering vessel delivers crudes to only one refinery during each voyage. 

(10) All compartments in each lightering vessel are identical. 

(11) Anchorage is located somewhere between offshore and refineries. Therefore, 

the distance from offshore to a refinery is simply the sum of distances from 

offshore to anchorage and anchorage to the refinery. 

5.2 MILP Formulation 

We use two approaches for modeling the activities of lightering vessels and crude 

tankers over time. We use contiguous, ordered, variable-length slots for the former 

and use floating, unordered, variable-length task intervals (which we order using a 

pair-wise sequencing approach) for the latter. In the former, we assign an activity to 

each slot, while in the latter, each interval has a pre-assigned activity and we ensure 

that the activities do not clash. 

The lightering of a tanker involves the transfer of varying amounts of one or 

more crudes by one or more lightering vessels at the same or different times. Each 

tanker has two sides for crude transfer. A side can serve (i.e. offload crude to) only 

one lightering vessel at a time. Thus, at most two vessels can lighter a tanker at any 

given time. Each time a vessel comes to serve a tanker, it has several choices. First, it 

must decide which side of the tanker it must dock. Here it has two options, larboard 

and starboard. Second, it must decide which of the crudes on the tanker it must 

transfer first. Once it has decided the crude, it must decide the amount of crude to 

transfer. Of these three choices, the first two are discrete in nature, while the third is 

continuous. To model these choices, we define several distinct batches of crudes of 

unknown volumes for each tanker. We call these batches as parcels. Each time a 
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lightering vessel visits a tanker, it can select one or more of these parcels. Whenever a 

lightering vessel visits a tanker, it must dock on a side and then connect to a 

compartment of the tanker for receiving a single crude oil. We define this as the start 

of a new lightering parcel. This parcel ends, when the vessel terminates that particular 

connection. If the vessel begins another connection to receive a different crude, then 

another parcel begins. Thus, each parcel is a single continuous withdrawal of a single 

crude from one position of a tanker. It is obvious that two batches of the same crude 

withdrawn at different times or from different positions of the same tanker are 

different parcels. 

In our proposed formulation, we convert each tanker into a number of distinct 

parcels of unknown amounts, which a vessel can select from during the entire 

scheduling horizon. Each parcel has three defining attributes (1) the tanker from 

which it is withdrawn, (2) the tanker side (larboard or starboard) from which it 

transfers, (3) the crude that it contains. For each tanker m, we postulate a maximum 

number of parcels that could possibly be withdrawn from that tanker by various 

vessels at different (but unknown) times during the scheduling horizon and we define 

each of these parcels fully by prefixing a crude and a transfer position for each. 

During a single visit, a vessel can select from at least 2|CTm| parcels. Several vessels 

may visit a tanker and they may visit more than once. To allow for such a possibility, 

we replicate these 2|CTm| parcels a desired number of times. We then assign a unique 

index j to each parcel. Let J be the total number of parcels (j = 1, 2, ..., J) from all 

tankers. Let us use an example to illustrate the generation of parcels for a tanker. In 

Figure 1, a tanker m carries two crudes. Let us replicate each parcel three times, then 

we get twelve possible parcels (2 crudes times 2 positions times 3 replicates) for 

tanker m. Thus, each crude can be transferred in at most six parcels, three from the 
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larboard side and three from the starboard side. Let j1-j3 be the larboard and j4-j6 be 

the starboard parcels of crude c1. Similarly, let j7-j9 be the larboard and j10-j12 be 

the starboard parcels of crude c2. Now, a vessel cannot withdraw two parcels at the 

same time from a given position, this the parcels of any given side cannot transfer 

simultaneously. Thus, j1-j3 and j7-j9 must transfer at different times, if they indeed 

transfer in the optimal schedule. Since each set consists of three identical and 

interchangeable parcels, it does not matter which of j1-j3 (or j7-j9) transfers first. 

Therefore, we fix the order of the parcels as j3 after j2 after j1, as j6 after j5 after j4, 

as j9 after j8 after j7, as j12 after j11 after j10. By fixing these parcel orders, we 

reduce redundant alternatives for the optimizer without affecting the optimal solution. 

Note that we cannot preorder the parcels of different crudes, because their parcels are 

neither identical nor interchangeable, and we have no idea of the sequence in which 

they may transfer. For example, in Figure 5.1, at position p1 (larboard), the first 

service of crude c1 (j1) is served before the second service of crude c2 (j8) but after 

the first service of the same crude (j7). 

 

 
Figure 5.1: Parcel assignments to large tanker m ( U

mNS  = 3, |CTm| = 2) 
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The above parcel generation procedure will normally result in more parcels 

than what will actually transfer, as some parcels will not transfer. Let us say that we 

can postulate an upper limit U
mNS  on the number of distinct parcels that actually 

transfer from tanker m. In many practical situations, a tanker is so small that one or 

two parcels are sufficient to lighter it, i.e. 2U
mNS = . In this case, the question of two 

or more parcels transferring simultaneously from any given position will never arise. 

Thus, we need not assign a transfer position for each parcel, because we know that a 

tanker can indeed discharge two parcels simultaneously. In this case, each parcel has 

only two defining attributes, namely the tanker and crude. Therefore, for such small 

tankers, we define only one parcel for each crude without assigning any position to 

each parcel and without replicating any parcels. Although in some cases, we may 

need to distinguish the first service of such a parcel from its second service. This 

method reduces the number of parcels, hence the number of binary variables and the 

combinatorial complexity of the problem. To implement this distinction between 

tankers, we define the set of large tankers (as opposed to small tankers described 

above) as LT = {m | tanker m requires more than two parcels for lightering}. 

Having defined all the potential parcels fully, we now assign a unique density 

(ρj), an earliest time of arrival (ETAj), destination refinery, distance to destination 

refinery (drj), distance from anchorage (daj), parcel transfer rate to vessel n (FINnj), 

total time (MDTj) for mounting to and dismounting from its tanker, total time (DTRj) 

to dock at and undock from its destination refinery. MDTj includes the times for 

connecting and disconnecting hose, setting up transfer equipment, draining/cleaning 

hose, etc. For two crude parcels withdrawn consecutively by a vessel from the same 

tanker in a single visit, the vessel must disconnect from the first compartment and 

then connect to another compartment or keep the same hose connection but change 
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valves. All these operations require certain setup time, so we assume MDTj to be a 

parcel-dependent parameter. 

Each parcel has a unique crude and a unique tanker. In addition, each parcel of 

a large tanker (m ∈ LT) has a unique position. Therefore, we now define the 

following sets: 

JCc = {j | parcel j has crude oil c} 

JBm = {j | parcel j is from tanker m} 

Jp = {j | m(j) ∈ LT and parcel j transfers from position p}  

where m(j) denotes the tanker to which parcel j belongs. Some crudes may have 

special transport requirements such as heating. For instance, a heavy crude may be 

highly viscous and may require heating. A vessel may not be equipped to carry a 

certain crude. Therefore, we define JSn = {j | vessel n can carry parcel j}. 

Finally, we assume that vessel does not change its transfer position during a 

single visit to any tanker. This is because it would be unproductive to do so. 

Using these preliminary modeling concepts and notation, we now develop the 

constraints for our MILP formulation. We first develop the constraints for the 

operations of vessels. Then, we do the same for tankers. Since the activities on vessels 

and tankers must match each other, we then write the constraints to couple their 

operations. Lastly, we define two suitable scheduling objectives. Throughout this 

chapter, we write each constraint for all valid values of its defining indices, unless 

stated otherwise. 

5.2.1 Lightering Vessels 

We divide the time axis of vessel n into Kn contiguous, ordered slots (k = 1, 2, ..., Kn) 

of unknown, variable lengths as shown in Figure 5.2. A new slot begins, whenever the 

vessel begins receiving a new parcel. Let TSnk denote the time at which slot k begins 
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on vessel n. We assume that a vessel can receive at most one parcel in each slot. Thus, 

a vessel n during slot k has two choices. It either remains idle or serves any one of the 

parcels that it can possibly serve. To model this, we define one binary and one 0-1 

continuous variable as follows: 

1 if vessel  transfers parcel  during slot 
0 otherwisenkj

n j k
x ⎧

= ⎨
⎩

 j ∈ JSn, 1 ≤ k ≤ Kn 

1 if vessel  transfers a parcel during slot 
0 otherwisenk

n k
U ⎧

= ⎨
⎩

 1 ≤ k ≤ Kn 

 

 
Figure 5.2: Slot-based approach for lightering vessel n 

 

A vessel n can receive at most one parcel during slot k, therefore, 

nk nkj
j

U x=∑  j ∈ JSn (5.1) 

Because all parcels may not actually transfer and we do know the exact number of 

parcels that a vessel may actually receive, some empty slots may exist. It is better to 

push such empty slots to the end of the schedule than leave them in the middle to 

 k = 1 
zenk = 0  

k = 2 
zenk = 1 
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avoid possible errors in calculating the travel times between parcels. To achieve this, 

we write, 

( )1 nkn kU U+ ≤  k < Kn  (5.2) 

Using some heuristic computations, we can estimate the limits ( L
mNS  and U

mNS ) on the 

number of parcels that a tanker may actually transfer to lighter itself fully. Therefore, 

L U
m nkj m

n k j

NS x NS≤ ≤∑∑∑  j ∈ JSn ∩ JBm (5.3) 

We can estimate U
mNS  by rounding up the ratio of LWm to the smallest capacity 

(weight) of a vessel. However, if the smallest vessel is far smaller than the others, 

then this method grossly overestimates the maximum number of parcels and makes 

the model unnecessarily more difficult. Then, we may use some heuristics to reduce 

this upper limit. For example, if a single vessel with a large capacity can lighter a 

tanker, then it is unlikely that the optimal solution will use several small vessels. This 

is because additional vessels incur additional operating costs. On the other hand, it 

may also help to use two vessels, as the tanker can offload from two sides 

simultaneously and lighter itself faster. Any way, using such heuristic rules, we can 

estimate reasonable U
mNS  and L

mNS . 

5.2.1.1 Voyages 

A vessel may have multiple compartments and can carry multiple crudes, thus it is 

essential that it can pick up several crudes and serve multiple tankers during one 

voyage during congestion. Because we restricted each slot to at most one parcel, it is 

clear that a voyage may span multiple slots, if it is to serve multiple tankers and carry 

multiple crudes. To do this, we need a way to decide the start/end of a voyage. To 

model this decision, we define the following binary variable: 
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1 if vessel  ends its current voyage in slot 
0 otherwisenk

n k
ze ⎧

= ⎨
⎩

 1 ≤ k ≤ Kn  

If vessel n is not on a voyage during slot k, then it cannot end its voyage, so, 

nk nkze U≤   (5.4) 

Clearly, a vessel n can do two things at the end of slot k. It may continue its current 

voyage and move to another parcel in the next slot, or it may terminate its voyage and 

travel to its destination refinery to deliver the crudes. To distinguish between these 

two scenarios, we define a 0-1 continuous variable: 

1 if vessel transfers parcel in slot , in ( +1) during the same voyage
0 otherwisenkjj

n j k  j  k
Z ′

′⎧
= ⎨
⎩

 

 j & j′ ∈ JSn, (j, j′) ∈ JJ, k < Kn 

where, JJ = {( j, j′ ) | some vessel can carry parcels j and j′ during the same voyage}. 

Recall that each voyage has a single destination refinery, so a vessel in one voyage 

can carry only the parcels with the same destination refinery. However, we exclude 

from JJ the parcel pairs with the same crude and tanker, as we do not want a vessel to 

withdraw the same crude multiple times during any voyage. 

From the definition, Znkjj′ = xnkjxn(k+1)j′(1–zenk). If vessel n does not receive 

parcel j during slot k (i.e. xnkj = 0), then it cannot travel from parcel j to any other 

parcel in slot (k+1). Therefore, 

'
'

nkj nkjj
j

x Z≥∑  j & j′ ∈ JSn, (j, j′) ∈ JJ, k < Kn (5.5a) 

Similarly, it cannot travel to parcel j′ in slot (k+1), if it does not receive parcel j′ (i.e. 

xn(k+1)j′ = 0). Thus, 

( ) '1 ' nkjjn k j
j

x Z+ ≥∑  j & j′ ∈ JSn, (j, j′) ∈ JJ, k < Kn (5.5b) 
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If vessel n terminates a voyage at slot k (i.e. zenk = 1), then it obviously cannot go 

from any parcel to any other parcel directly, that is, 

'
'

1 nk nkjj
j j

ze Z− ≥∑∑  j & j′ ∈ JSn, (j, j′) ∈ JJ, k < Kn (5.5c) 

Lastly, Znkjj′ = 1, only when vessel n takes parcel j in slot k, j′ in (k+1), and continues 

its current voyage, therefore, 

( )' 1 ' 1nkjj nkj nkn k jZ x x ze+≥ + − −  j & j′ ∈ JSn, (j, j′) ∈ JJ, k < Kn (5.5d) 

Eqs. 5.5a-d are exact linear equivalents for the non-linear definition of Znkjj′ and 

ensure that it is binary. 

Lastly, the number of voyages (i.e. the number of last slots of voyages) for a 

lightering vessel n in the planning horizon must equal the number of slots with parcels 

minus the number of parcel-to-parcel transitions within the same voyage. In other 

words, 

'
n

nk nk nkjj
k k k K j j

ze U Z
′<

= −∑ ∑ ∑∑∑  j & j′ ∈ JSn, (j, j′) ∈ JJ (5.6) 

5.2.1.2 Parcel Transfer 

Recall that we defined unique parcels for large tankers, so such a parcel cannot 

transfer more than once:  

1nkj
n k

x ≤∑∑  j ∈ JSn, j ∋ m(j) ∈ LT (5.7) 

We do not need the above for parcels from small tankers, as we allow the same parcel 

to transfer twice as described earlier. 

As a vessel moves from parcel to parcel during a voyage, it receives parcels 

into its various compartments. Even though we prefixed the identity of each parcel, 

we still need to decide the amount of crude in it and the number of vessel 

compartments required for its storage. Let VPnkj (j ∈ JSn) be the volume of parcel j 
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that vessel n withdraws during slot k and NCnk be the number of compartments that 

store parcel received by vessel n during slot k. Clearly, the vessel cannot carry more 

than its physical capacity, cannot violate the draft limitation of its destination refinery, 

and cannot withdraw more than what the tanker has, so 

min[ , , ]njU
nkj nkj n n c

j

WD
VP x N SC PS

ρ
≤  j ∈ JSn (5.8a) 

where, c is the crude in parcel j and WDnj is the maximum weight of parcel j that 

vessel n can carry. Note that WDnj depends on the allowable draft for vessel n at the 

destination refinery of parcel j. Eq. 5.8a also ensures that parcel volume is zero, when 

the parcel does not transfer. 

When a tanker carries a crude whose amount is less than or equal to the 

lightering amount, i.e. PSc ≤ LWm/ρc, then it is possible that vessels withdraw all of 

this crude during lightering operations. Eq. 8a assures that a single parcel does not 

withdraw more crude than what the tanker has. However, multiple vessels may 

withdraw a given crude or one vessel may withdraw a given crude multiple times in 

different voyages, therefore we must make sure that the total volume of a crude 

withdrawn through all parcels does not exceed the available volume. Therefore, for 

such crudes, we enforce, 

nkj c
n k j

VP PS≤∑∑∑  j ∈ JSn ∩ JCc, c ∋ PSc ≤ LWm/ρc (5.8b) 

where, crude c belongs to tanker m. 

Recall that a vessel may have multiple compartments and it must store each 

crude in a different compartment. In addition to limiting the number of crudes that the 

vessel can carry, this will also limit the crude load, because the vessel may not use all 

compartments fully for its crudes. Furthermore, to ensure that a vessel n does not use 
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more than U
nN  compartments, we must assign vessel compartments to each crude. 

The minimum number of compartments used by vessel n during slot k is given by, 

( )1nk n nkj nk n
j

NC SC VP NC SC− ≤ ≤∑  j ∈ JSn (5.9)  

This constraint also ensures that the volume of crude in each compartment does not 

exceed the compartment size. 

Of course, the parcel sizes should be sufficient to lighter each tanker 

adequately. In other words, 

nkj j m
n k j

VP LWρ =∑∑∑   j ∈ JSn ∩ JBm  (5.10) 

Recall that we allow a vessel to carry multiple crudes during a voyage. As a vessel 

moves from one parcel to another during a voyage, it accumulates crudes. Let WTnk 

(VTnk) denote the total weight (volume) of crudes collected, and NTnk denote the total 

number of compartments used by vessel n up to and including slot k on the current 

voyage or trip. We can compute WTnk, VTnk, and NTnk respectively by using the 

following constraints, 

( ) ( )1 1(1 )nk nk jn k n k j
j

WT WT ze VPρ+ += − +∑  k < Kn, j ∈ JSn (5.11a) 

1 1n j n j
j

WT VPρ=∑  j ∈ JSn (5.11b) 

( ) ( )1 1(1 )nk nkn k n k j
j

VT VT ze VP+ += − +∑  k < Kn, j ∈ JSn (5.12a) 

1 1n n j
j

VT VP=∑  j ∈ JSn (5.12b) 

( ) ( )1 1(1 )nk nkn k n kNT NT ze NC+ += − +  k < Kn (5.13a) 

1 1n nNT NC=   (5.13b) 
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Eqs. 5.11a, 5.12a, and 5.13a are nonlinear and of similar forms. Therefore, we can use 

the same method to linearize them. Let us first linearize eqs. 5.11a. 

There are two ways of linearizing eq. 5.11a. We can either define a new 

variable WZnk = WTnk(1 – zenk) and linearize it or use the following constraints:  

( ) ( )1 1
U

nk j n nkn k n k j
j

WT WT VP WT zeρ+ +≥ + −∑  k < Kn, j ∈ JSn (5.14a) 

( ) ( )1 1nk jn k n k j
j

WT WT VPρ+ +≤ +∑  k < Kn, j ∈ JSn (5.14b) 

( ) ( )1 1 (1 )U
j n nkn k n k j

j
WT VP WT zeρ+ +≤ + −∑  k < Kn, j ∈ JSn (5.14c) 

nk j njk
j

WT VPρ≥∑  k > 1, j ∈ JSn (5.14d) 

maxU
n nj

n
WT WDj= ∈JS  

Eqs. 5.15a-b are critical for all slots of a voyage, while eq. 5.15c is critical for the first 

only. 

The alternate approach is to substitute WZnk = WTnk(1 – zenk) in eq. 5.11a and 

then linearize it to get, 

( ) ( )1 1nk jn k n k j
j

WT WZ VPρ+ += +∑  k < Kn, j ∈ JSn (5.15a) 

nk nkWZ WT≤  (5.15b) 

( )1U
nk n nkWZ WT ze≤ −  (5.15c) 

U
nk n nk nkWZ WT ze WT+ ≥  (5.15d) 

Using the above procedure, we can get the following for eq. 5.12a. 

( ) ( )1 1
U

nk n nkn k n k j
j

VT VT VP VT ze+ +≥ + −∑  k < Kn, j ∈ JSn (5.16a) 

( ) ( )1 1nkn k n k j
j

VT VT VP+ +≤ +∑  k < Kn, j ∈ JSn (5.16b) 
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( ) ( )1 1 (1 )U
n nkn k n k j

j
VT VP VT ze+ +≤ + −∑  k < Kn, j ∈ JSn (5.16c) 

nk njk
j

VT VP≥∑  k > 1, j ∈ JSn (5.16d) 

max njU
n

n j

WD
VT j ρ

= ∈ JS  

( ) ( )1 1nk jn k n k j
j

VT VZ VPρ+ += +∑  k < Kn, j ∈ JSn (5.17a) 

nk nkVZ VT≤  (5.17b) 

( )1U
nk n nkVZ VT ze≤ −  (5.17c) 

U
nk n nk nkVZ VT ze VT+ ≥  (5.17d) 

where, VZnk = VTnk (1 – zenk). 

Similarly, for eq. 5.13a, we obtain, 

( ) ( )1 1
U

nk n nkn k n kNT NT NC N ze+ +≥ + −  k < Kn (5.18a) 

( ) ( )1 1nkn k n kNT NT NC+ +≤ +  k < Kn (5.18b) 

( ) ( )1 1 (1 )U
n nkn k n kNT NC N ze+ +≤ + −  k < Kn (5.18c) 

nk nkNT NC≥  k > 1 (5.18d) 

( ) ( )1 1nkn k n kNT NZ NC+ += +  k < Kn (5.19a) 

nk nkNZ NT≤  (5.19b) 

( )1U
nk n nkNZ N ze≤ −  (5.19c) 

U
nk n nk nkNZ N ze NT+ ≥  (5.19d) 

with NZnk = NTnk (1 – zenk). 

The first linearization method involves eqs. 5.11b, 5.12b, 5.13b, 5.14, 5.16, 

and 5.18; the second involves eqs. 5.11b, 5.12b, 5.13b, 5.15, 5.17, and 5.18. At the 

first glance, the second alternative seems to have the same number of constraints, but 
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with three additional continuous variables. However, it has two equalities that define 

the cumulative variables (eqs. 5.11b and 5.14a for WTnk, eqs. 5.12b and 5.17a for VTnk, 

and eqs. 5.13b and 5.19a for NTnk), which we can eliminate. Therefore, we eliminate 

these variables and equalities completely from the formulation by substituting for 

WTnk, VTnk, and NTnk using those equalities. For the sake of brevity, we do not write 

the resulting constraints here. However, we do eliminate them, when we solve 

examples later. As a result, the second linearization method requires the same number 

of continuous variables but fewer constraints than the first. However, we cannot say 

which linearization method is better without doing a detailed numerical evaluation as 

done later. 

Having computed the cumulative crude weight, compartments, and volume 

(WTnk, NTnk, and VTnk) for a vessel n during slot k, we now impose the draft and 

compartment limits on these variables.  

First, the total weight WTnk on vessel n must not exceed the maximum weight 

that the vessel can carry to its destination refinery due to draft limitations. As stated 

earlier, the parcels transferred during a single voyage have a common destination. 

From the parcel transferred during each slot, we know the destination refinery for that 

voyage. Therefore, 

nk nj nkj
j

WT WD x≤∑  j ∈ JSn (5.20) 

Second, the total number of compartments used during any slot should not 

exceed U
nN . Therefore, we demand, 

u
nk n nkNT N U≤   (5.21) 
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Previously, eq. 5.9 ensured that the volume of crude in each compartment does not 

exceed the compartment size. Now, eqs. 5.9 and 5.21 together guarantee that the load 

in vessel n will never exceed the vessel’s physical volume of U
n nSC N . 

5.2.1.3 Operation Timings 

So far, we have allocated physical assets such as vessels, compartments, etc. to 

various operations, but have not addressed the actual timing of each operation. To this 

end, we define the various travel times required to service parcel j under different 

circumstances: 

 Time for vessel  to take parcel  to its destination refinery /nj j nTPR n j dr vf= =  

( )
 Time for vessel  to travel from destination refinery of parcel  to anchorage

          /
nj

j j n

TRA n j

dr da ve

=

= −
 

 Time for vessel  to travel from anchorge to pick up parcel /nj j nTAP n j da ve= =  

'njjTPP  = Time for vessel n to travel from parcel j to j′ directly at speed vfn 

As described earlier, a voyage begins with an empty vessel from anchorage receiving 

its first parcel and ends with the vessel returning to the next parcel via the destination 

refinery. Clearly, the operations that the vessel undergoes in a slot vary with where 

the slot is in a voyage. 

If a slot is not the last in a voyage, then the vessel travels from the current 

parcel to the next and waits for the next service to begin as shown in Figure 5.2. In 

other words, 

( ) ' '1
nkj

nk j nkj njj nkjjn k
j j jnj

VP
TS TS MDT x TPP Z

FIN+
′

⎞⎛
≥ + + +⎟⎜⎜ ⎟

⎝ ⎠
∑ ∑∑   

 j & j′ ∈ JSn, (j, j′) ∈ JJ, k < Kn  (5.22a) 

Recall that TSnk is the time at which vessel n begins receiving a parcel during slot k. 

The second term on the right involves the times for mounting/dismounting and then 
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transferring crude oil. The third term is the travel time from the current parcel to the 

next, as the voyage continues. Although meant for slots other than the last in a voyage, 

eq. 5.22a holds even for the last slot, as Znkjj′ = 0 for the last slot and the other 

operations take place in the last slot anyway. 

During the last slot of a voyage, the vessel receives a parcel, travels to the 

refinery to discharge all crudes, and returns to the anchorage again as shown in Figure 

5.2. In other words, 

( )

( )( ) ( )

1

1 1

nkj nk
nk j nkj nj nkj j nkjn k

j j jnj n

nj nkj nj nkn k j
j

VP VTTS TS MDT x TPR x DTR x
FIN FOUT

TRA x TAP x HT ze

+

+

⎛ ⎞ ⎛ ⎞
≥ + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

+ + − −

∑ ∑ ∑

∑
 

 j ∈ JSn, k < Kn (5.22b)  

where, big-M constant HT is greater than the planning horizon. The terms on the right 

includes starting time of slot k, service time of parcel j, travel time to the refinery, 

discharge time at the refinery and travel time to the next lightering location 

(anchorage/offshore) respectively. This constraint is activated only when slot k is the 

last slot in a voyage (i.e. zenk = 1).  

Now, we know the tanker can start lightering operation only after both tanker 

and vessel arrive at the lightering location (anchorage/offshore). We write the 

following two constraints for tankers and lightering vessels respectively, 

nk j nkj
j

TS ETA x≥∑  j ∈ JSn (5.23) 

1 1n n nj n j
j

TS ETAS TAP x≥ +∑  j ∈ JSn (5.24) 

The second term on the right of eq. 5.24 ensures that a vessel n receives its first parcel, 

only after it arrives at the first parcel’s transfer position, which could be either 

anchorage or offshore. 
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Also note that, for offshore tankers, they travel to the anchorage for second 

lightering service after the first lightering service completes at the offshore. Therefore, 

the start time of second lightering service of a tanker is dependent on its departure 

time from offshore. It is the sum of the departure time of offshore tanker m (DTBm) 

from the offshore location and the travel time of this tanker (TOAm) from offshore to 

anchorage location. We use the following constraint to model this, 

1nk m m nkj
j

TS DTB TOA HT x
⎛ ⎞

≥ + − −⎜ ⎟
⎝ ⎠

∑   

 (m, m′ (j)) ∈ MM, j ∈ JSn ∩ S2 ∩ JBm′ (5.25) 

where, set S2 = { j | stage two (anchorage) parcels of 2-stage tankers}. The above 

constraint activates only when vessel n serves a stage two parcel from the 

corresponding anchorage tanker m′ of the offshore tanker m in slot k, where both m 

and m′ are the same 2-stage tanker. Finally, we impose a lower bound to TSnk, which 

is ETASn.  

5.2.1.4 Arrival Times at Refineries 

The arrival time of crudes at a refinery is an important indicator of the customer 

satisfaction level. It is better to deliver the crudes to the destination refinery as 

planned without any delay. Recall that we have two types of parcels, one for small 

tankers that can transfer at most twice; while the other for large tankers that can 

transfer at most once. We define the arrival times of these two types of parcels 

differently. 

Let ATRnkj denote the arrival time of a parcel j of a small tanker at its 

destination refinery via vessel n during slot k, and ATRj denote the arrival time of a 

parcel j of a large tanker at the refinery. For the crude transferred during the last slot, 
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the arrival time equals the start time of this slot plus the transfer time and travel time 

to the refinery. Hence, we write, 

( )2nkj
nkj nk j nkj nj nkj nk nkj

nj

VP
ATR TS MDT x TPR x HT ze x

FIN
⎛ ⎞

≥ + + + − − −⎜ ⎟⎜ ⎟
⎝ ⎠

  

 j ∈ JSn, j ∋ m(j) ∉ LT (5.26a) 

( )2nkj
j nk j nkj nj nkj nk nkj

nj

VP
ATR TS MDT x TPR x HT ze x

FIN
⎛ ⎞

≥ + + + − − −⎜ ⎟⎜ ⎟
⎝ ⎠

  

 j ∈ JSn, j ∋ m(j) ∈ LT (5.26b) 

The above constraints activate, only when parcel j transfers during slot k to vessel n 

(i.e. xnkj = 1) and this slot is the last in a voyage (i.e. zenk = 1). 

If any two parcels transfer consecutively in a voyage, then the arrival time of 

the former is the same as the arrival time of the latter. We guarantee this by imposing, 

( ) ( )'1 ' 1nkj nkjjn k jATR ATR HT Z+≥ − −   

 k < Kn, j & j′ ∈ JSn, (j, j′) ∈ JJ, j ∋ m(j) ∉ LT, j′ ∋ m′ (j′) ∉ LT (5.27a) 

( )' '1nkj j nkjjATR ATR HT Z≥ − −  

 k < Kn, j & j′ ∈ JSn, (j, j′) ∈ JJ, j ∋ m(j) ∉ LT, j′ ∋ m′ (j′) ∈ LT (5.27b) 

( ) ( )'1 ' 1j nkjjn k jATR ATR HT Z+≥ − −  

 k < Kn, j & j′ ∈ JSn, (j, j′) ∈ JJ, , j ∋ m(j) ∈ LT, j′ ∋ m′ (j′) ∉ LT (5.27c) 

' '1j j nkjj
n k

ATR ATR HT Z⎛ ⎞
≥ − −⎜ ⎟

⎝ ⎠
∑∑  

 k < Kn, j & j′ ∈ JSn, (j, j′) ∈ JJ, j ∋ m(j) ∈ LT, j′ ∋ m′ (j′) ∈ LT (5.27d) 

The above four constraints include all possible combinations of parcels, whether from 

large tankers or small tankers.  
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Lastly, we impose a lower bound on ATRnkj (ATRj), which is the due date of 

parcel j (DDj) for j ∈ JSn.  

5.2.2 Tankers 

The operations in tankers are the same as the big ships in the general transshipment 

problem addresses in Chapters 3-4 except for the calculation of service time. Hence, 

we will use the same methodology, do the necessary modifications and present the 

constraints in the following section. Note that, we only concern about the operations 

on large tankers (m ∈ LT). Therefore, in this section, we write the constraints and 

define the variables only for large tankers. 

Let Tj denote the start time of unloading parcel j and define binary variable yjj′ 

as follows to model their partial sequence of parcel transfers. 

1 if parcel  transfers later than 
0 otherwisejj

j j
y ′

′⎧
= ⎨
⎩

 j & j′ ∈ Jp for some p 

As described earlier, we fix the sequence of parcels that originate from the same crude 

and unload from the same position. Therefore, yjj′ = 1 for p(j) = p(j′), c(j) = c(j′), j < j′, 

j ∋ m(j) ∈ LT. Alternatively, we can also set yjj′ to 0 without affecting the solution. 

However, consistency has to be maintained throughout the problem.  

We ensure at most one service any time for a given position by forcing one 

parcel can start transfer only after the previous parcel has completed its lightering 

from the same position. Therefore,  

( )' '1nkj
j j j nkj jj

n k nj

VP
T T MDT x HT y

FIN
⎛ ⎞

≥ + + − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑  

 p(j) = p(j′), j < j′, j ∋ m(j) ∈ LT, j ∈ JSn, c(j) ≠ c(j′) (5.28a) 

'
' ' ' '

'

nkj
j j j nkj jj

n k nj

VP
T T MDT x HTy

FIN
⎛ ⎞

≥ + + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑   
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 p(j) = p(j′), j < j′, j ∋ m(j) ∈ LT, j′ ∈ JSn, c(j) ≠ c(j′) (5.28b) 

where, p(j) is p ∋ j ∈ Jp. The above constraints only sequence parcel pairs that are 

from different crudes of a tanker. 

For parcels that are from the same crude, we have prefixed the sequence of 

them (yjj′ = 1). Therefore, eq. 5.28a is always activated and calculates the slot length, 

while eq. 5.28b is never activated. We write, 

'
nkj

j j j nkj
n k nj

VP
T T MDT x

FIN
⎛ ⎞

≥ + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑  

 p(j) = p(j′), j < j′, j ∋ m(j) ∈ LT, j ∈ JSn, c(j) = c(j′) (5.28c) 

A parcel can start offloading only when the vessel n receiving it has arrived at the 

lightering location (anchorage/offshore), so we have,   

( )j n nj nkj
n k

T ETAS TAP x≥ +∑∑  j ∈JSn, j ∋ m(j) ∈ LT (5.29a) 

Some parcels are not served. We then push them to the front of the schedule by 

forcing such parcels to start at the earliest possible time.  

j j nkj
n k

T ETA HT x≤ + ∑∑  j ∈JSn, j ∋ m(j) ∈ LT (5.29b) 

In addition, we impose lower bound, Tj ≥ ETAj for j ∋ m(j) ∈ LT. 

Lastly, the start times of a common parcel in both tanker and vessel are 

matched by using the following two coupling constraints, 

( )1j nk nkjT TS HT x≥ − −  j ∈ JSn, j ∋ m(j) ∈ LT (5.30a) 

( )1j nk nkjT TS HT x≤ + −  j ∈ JSn, j ∋ m(j) ∈ LT (5.30b) 

5.2.3 Additional constraints 

In Chapter 3, we showed that including additional constraints that fix some transfer 

sequences and sequences of unserved parcels on the large tankers improved the model 
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performance in a general transshipment problem. Therefore, we also develop 

additional constraints for our model. 

We push the empty parcels to the beginning of the schedule by using, 

' '
'

1jj jj n kj nkj
n k n k

y x xδ′ ′+ = − +∑∑ ∑∑   

 p(j) = p(j′), j ∈JSn, j′ ∈JSn′, j < j′, j ∋ m(j) ∈ LT (5.31) 

where, δjj′ is a dummy 0-1 continuous variable. 

Then, we fix those transfer sequences that are obvious from other transfer 

sequences by using, 

'' ' '' ' ' ''jj jj j jj j jy d y y+ = +  p(j) = p(j′) = p(j″), j < j′ < j″, j ∋ m(j) ∈ LT (5.32) 

Where, djj′j′′ is a dummy 0-1 continuous variable. 

5.2.4 Objective 

To calculate the system cost, we need to determine the departure times of tankers, the 

total distance and voyages traveled by vessel n during the entire planning horizon, and 

the arrival time of crude oil at the refinery port. We have calculated the last term in 

section 5.2.1.4. Now, we will develop equations to calculate the remaining variables 

in the following section. 

5.2.4.1 Tanker Departure Time 

A tanker can depart only when required amount of crude has been unloaded. That 

means, the departure time of a tanker is greater than the start time of any slot 

receiving parcel from it plus the service time of parcel in that slot, 

1nkj
m nk j nkj nkj

j jnj

VP
DTB TS MDT x HT x

FIN
⎛ ⎞ ⎛ ⎞

≥ + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑  j ∈ JSn ∩ JBm (5.33a) 
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In addition, for large tankers (m ∈ LT), the tanker’s departure time is greater than the 

start time of any parcel associated with the tanker plus the lightering operation time of 

that parcel. We write, 

nkj
m j j nkj

n k nj

VP
DTB T MDT x

FIN
⎛ ⎞

≥ + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑  j ∈JSn, j ∋ m(j) ∈ LT (5.33b) 

The lower bound of departure time is DTBm ≥ ETABm + TOAm, where TOAm is 0 for 1-

stage tanker. 

Unlike general transshipment problem, we do not need the departure time of 

vessel n. Lightering vessels travel multiple trips between refineries and lightering 

locations. Hence, we are more interested at the distances and voyages traveled by the 

lightering vessels. 

5.2.4.2 Vessel Traveling Distance 

The total traveling distance of lightering vessel (TDn) is the sum of the round trip 

distance between all the parcels received and their destination refineries, minus the 

round trip distance of parcels that are picked up in the same voyage, and plus the 

traveling distance from one parcel to another in the same voyage. In other words, 

( )' '
'

2 2
n

n j nkj j njj n nkjj
j k j j k K

TD dr x dr TPP vf Z
<

= − −∑∑ ∑∑∑   

 j & j′ ∈ JSn, (j, j′) ∈ JJ  (5.34) 

5.2.4.3 Objective Function 1 

The refineries pay time-charter cost to the tanker owners even though these tankers sit 

idle for lightering services or waiting for services. Therefore, one important objective 

is to minimize the time-charter cost of crude tankers. The total system cost (TC) is 

then the sum of due date penalty of crudes, fuel cost, fixed operating cost of lightering 

vessels and time-charter cost of tankers. It is written as follows, 
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( )
( )

( )
( )

( )

( )
( )

& 1

1

'
, '

n

n

n

K

j nkj j j j j
n j k j m j

j m j

K

n n n nk m m m
n n k m

m m m m
m m

TC DDP ATR DD DDP ATR DD

TD FC VC ze TCC DTB ETAB

TCC DTB ETAB TOA

∈ = ∋ ∈
∋ ∉

= ∉

∈

= − + −

+ + + −

+ − −

∑ ∑ ∑ ∑

∑ ∑∑ ∑

∑

JS LT
LT

TST

MM

 (5.35a) 

where, DDPj is the daily due date penalty of parcel j if it is delivered to the refinery 

by the vessel later than the agreed due date (DDj). In addition, FCn is the fuel cost of 

vessel n per mile, VCn is the fixed operating cost of vessel n per voyage, and TCCm is 

the time-charter cost of tanker m. The first two terms calculate the due date penalty of 

crudes that are delivered later than the due date, for crudes from small and large 

tankers respectively. However, if a crude is delivered on time or earlier than due date, 

ATRnkj (ATRj) takes the lower bound DDj; hence, the due date penalty is 0. The third 

term is the fuel cost of vessels. The fourth term is the fixed operating cost of vessels. 

The fifth and sixth terms are the time-charter costs of 1-stage tankers and 2-stage 

tankers respectively. Note that, for a 2-stage tanker, the traveling from offshore to 

anchorage is a continuation of its journey, which does not affect the lightering 

schedule. Thus, we do not include it in calculating the time spent for lightering service 

for 2-stage tankers. The lightering time then equals the departure time from the 

anchorage minus the arrival time at the offshore, and minus the travel time from 

offshore to anchorage. 

5.2.4.4 Objective Function 2 

Sometimes, a lightering company contracts with the refineries to finish lightering 

crude tankers within an agreed duration (ADm). If the tankers spend more time for 

lightering than the agreed duration, the lightering company has to pay the refineries 
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demurrage charges. To model this, we modify our objective function and lower bound 

slightly as follows, 

( )
( )

( )
( )

( )

( )
( )

& 1

1

'
, '

n

n

n

K

j nkj j j j j
n j k j m j

j m j

K

n n n nk m m m m
n n k m

m m m m m
m m

TC DDP ATR DD DDP ATR DD

TD FC VC ze DC DTB ETAB AD

DC DTB ETAB TOA AD

∈ = ∋ ∈
∋ ∉

= ∉

∈

= − + −

+ + + − −

+ − − −

∑ ∑ ∑ ∑

∑ ∑∑ ∑

∑

JS LT
LT

TST

MM

 (5.35b) 

where, DCm is the demurrage cost of tanker m. Demurrage is only paid for the extra 

time required in addition to the agreed duration. Hence, we subtract the agreed 

duration from the lightering time to obtain the extra time. And the rest of the terms 

remain unchanged. 

The lower bound of departure time of tanker (DTBm) is thus modified to, 

m m m mDTB ETAB TOA AD≥ + +  (5.36) 

With this lower bound, if a tanker m leaves the anchorage earlier than the agreed 

duration, the demurrage cost is forced to 0. 

Now, we complete our two alternate tanker lightering models (M1 And M2). 

Both M1 and M2 includes eqs. 5.1-5.10, 5.11b, 5.12b, 5.13b, and 5.20-5.32. In 

addition, M1 uses eqs. 5.14, 5.16 and 5.18; while M2 uses eqs. 5.15, 5.17 and 5.19. 

And we use two different objectives, one considers time-charter cost of tankers (eq. 

5.35a); the other considers demurrage cost of tankers (eq. 5.35b and lower bound Eq. 

5.36). 

In the next chapter, we evaluate these models with different objectives in 

detail using several examples.  
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CHAPTER 6 

TANKER LIGHTERING OPERATIONS – MODEL 

EVALUATION 

Having developed two alternate MILP formulations and identified two suitable 

objectives to address the tanker lightering problem, we now use several examples to 

evaluate their important features and compare the performance of proposed models. In 

this chapter, we first use three examples to investigate the impact of different 

objectives on the tanker lightering schedules, as well as to compare the performance 

of different formulations. In addition, Examples 1 and 2 aim to study the applications 

and highlight the important features of models. Example 3 focuses on the effective 

solution of a large problem by means of several heuristic methods. Lastly, we 

compare our simplified slot-based model with an event-based model (Lin et al., 2003) 

to evaluate the performances of these two types of formulations.  

6.1 Examples  

For a fair and consistent comparison, we solve all the examples in this chapter, 

including those of Lin’s models (Lin et al., 2003), using CPLEX 9.0 with GAMS 21.7 

on a PC with Intel Pentium IV 3.2 GHz CPU and 2.0 GB of RAM running Windows 

XP (SP2). The relative termination tolerance is set to 0.0%. The big-M (HT) values 

used are the same for Examples 1-3, which is 400.  

We use Gantt charts to present the tanker lightering schedules for Examples 1-

3. Four types of rectangles with different patterns are used to represent different types 

of activities. The black rectangle represents the parcel transfer (inclusive of 

setup/mounting/dismounting), the dotted rectangle represents the vessel travel (parcel-

to-parcel, parcel-to-refinery, refinery-to-anchorage, etc.), the slashed rectangle 
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represents the discharge operation at the refinery (inclusive of docking/undocking), 

and the white rectangle represents the waiting for the next parcel transfer. We use one 

line to represent one lightering vessel. We tag the tankers lightered and refineries 

visited by a lightering vessel on top of the respective slots. The first number inside 

each black rectangle denotes the weight of crude transferred during that slot 

( j nkj
j

VPρ∑ ), the number inside the bracket denotes the number of compartments used 

to store the crude received in that slot (NCnk). Similarly, inside each slashed rectangle, 

the first number represents the total weight of crudes discharged in that refinery 

(WTnk), and the number inside the bracket represents the cumulative compartments 

used in that voyage (NTnk). We also label the starting time of a lightering service (TSnk) 

beneath the corresponding slot. Lastly, we use one time line (same time axis) to 

denote the departure time of each tanker at the bottom of the chart, where tankers are 

labeled on top of the line, and its corresponding departure time (DTBm) is shown 

beneath the line.    

6.1.1 Example 1 

We first consider a simple system with M = 5 tankers carrying C = 6 crudes and N = 3 

lightering vessels. The data for this example are shown in Tables 6.1-4. The first 

tanker (m1) is a large one-crude tanker that requires at least 3 parcel transfers ( 1
L
mNS  = 

3 and 1
U
mNS  = 3). Therefore, we assign six possible parcels (j1- j6) to it, 3 at starboard, 

3 at larboard. The second tanker (m2) is a small one-crude tanker ( 2
U
mNS  ≤ 2), so we 

assign only one parcel (j7) to it. The third tanker (m3) is a two-crude tanker (c3 and 

c4). However, the lightering weight is small ( 3
U
mNS  ≤ 2), so two parcels (j8 and j9) are 

needed, one for each crude. The fourth (m4) and fifth (m5) one-crude tankers are 

actually the same 2-stage tanker where m4 is the offshore tanker, and m5 is the 
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corresponding anchorage tanker. The lightering weights at the two stages are small 

( 4
U
mNS  ≤ 2 and 5

U
mNS  ≤ 2)). Hence, we use one parcel for each tanker respectively (j10 

and j11). In addition, it takes tanker m4 6 hours to travel from offshore to anchorage. 

Among all the crudes, crude c2 from tanker m2 and crude c4 from tanker m3 have 

common destination refineries r2. Therefore, set JJ includes parcel pairs (j7, j9) and 

(j9, j7), and the travel time betweens them are 3 hours, same for all the vessels.  

 
Table 6.1: Data for tankers in Examples 1-3 

 
Examples 1-2 

Tanker 
m 

ETABm 
(h) 

LWm 
(ton) 

TCCm 
($/h) 

DCm 
($/h) 

ADm 
(h) 

1 0.0 638 1200 1300 15.0 
2 5.0 320 750 1000 30.0 
3 5.0 170 1000 1000 30.0 
4 90.0 250 900 800 100.0 
5 90.0 200 900 800 100.0 

Example 3 
1 0.0 198 700 700 100.0 
2 5.0 600 1400 1400 100.0 
3 20.0 170 1000 1000 100.0 
4 22.0 210 1300 1300 100.0 
5 23.0 177 900 900 100.0 
6 62.0 400 1000 1000 100.0 
7 62.0 200 1000 1000 100.0 

 



 

  100 

Table 6.2: Data for crudes in Examples 1-3 
 

Examples 1-2 
Crude 

c 
Tanker 

m 
Refinery 

r 
Heating PSc

(m3)
ρc 

(ton/m3) 
MDTc

(h) 
DTRc

(h) 
DDPc 
($/h) 

DDc 
(h) 

drc 
(nm)

dac 
(nm)

1 1 1 No 9000 0.85 3.0 3.0 500 30.0 88 - 
2 2 2 No 3000 0.85 3.0 3.0 500 100.0 60 - 
3 3 3 No 6000 0.85 3.0 3.0 500 100.0 70 - 
4 3 2 No 6000 0.90 3.0 3.0 500 100.0 60 - 
5 4 4 Yes 3000 0.85 3.0 3.0 500 400.0 120 40 
6 5 4 Yes 8000 0.85 3.0 3.0 500 400.0 80 - 

Example 3 
1 1 1 Yes 6800 0.85 3.0 3.0 500 30.0 88 - 
2 2 2 Yes 6000 0.85 3.0 3.0 500 50.0 60 - 
3 3 3 No 8550 0.90 3.0 3.0 500 50.0 80 - 
4 3 1 No 6000 0.85 3.0 3.0 500 50.0 88 - 
5 4 3 No 6000 0.90 3.0 3.0 500 50.0 80 - 
6 5 1 No 2000 0.85 3.0 3.0 500 50.0 88 - 
7 6 4 Yes 6000 0.85 2.5 3.0 600 40.0 110 40 
8 7 4 Yes 6500 0.85 2.5 3.0 600 40.0 70 - 

nm = nautical mile 

 
Table 6.3: Data for lightering vessels in Examples 1-3 

 
Examples 1-2 

Vessel 
n 

Heating ETASn 
(h) 

FOUTn
(m3/h)

vfn 
(nm/h)

ven 
(nm/h)

Nn
u SCn 

(m3) 
VCn 

($/voyage) 
FCn 

($/nm)
1 Yes 0.0 20 8.0 11.0 4 100 6200 20 
2 No 0.0 15 7.0 9.5 3 100 6800 20 
3 Yes 0.0 20 9.0 12.0 2 130 8200 20 

Example 3 
1 Yes 0.0 20 8.0 11.0 4 100 6200 20 
2 Yes 0.0 15 7.0 9.5 3 110 6800 20 
3 Yes 0.0 20 9.0 12.0 2 150 8200 20 
4 Yes 0.0 15 7.0 9.0 2 120 9000 20 
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Table 6.4: Data for loading capacities and pumping rates of lightering vessels in 
Examples 1-3 

 
Examples 1-2 

Vessel Loading Capacity 
WDnr (ton) 

Pumping Rate 
FINnc (m3/h) 

n r1 r2 r3 r4 c1 c2 c3 c4 c5 c6 
1 315 315 315 250 60 60 60 60 60 60 
2 190 190 190 210 38 38 38 38 38 38 
3 220 220 220 210 50 50 50 50 50 50 

Example 3 
n r1 r2 r3 r4 c1 c2 c3 c4 c5 c6 c7 c8 
1 330 330 330 280 60 60 60 60 60 60 60 60 
2 300 300 300 250 55 55 55 55 55 55 55 55 
3 250 250 250 210 50 50 50 50 50 50 50 50 
4 200 200 200 200 38 38 38 38 38 38 38 38 

 

We first implement the data using the objective that considers time-charter 

cost (TCC) of tankers (Example 1a) with both models (M1 and M2). Then, we 

implement the same set of data using the objective for demurrage cost (DC) of tankers 

(Example 1b) with both models (M1 and M2) as well. We use K = 4 slots for this 

example. Table 6.5 summarizes the computational results and model statistics. The 

problem is of medium size with 148 discrete variables (binary and integer variables). 

The optimizer requires twelve to fifty minutes to generate the solution. Both M1 and 

M2 have the same rMIP and MIP objective values in both examples. However, M2 

seems to perform better than M1. But it is rash to jump to the conclusion that M2 is 

better than M1 with only one example. Therefore, we will compare their 

performances using more examples later on. 
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Table 6.5: Model statistics and computational results for Examples 1- 3 
 

 Example 1a (TCC) Example 1b (DC) 
 M1 M2 M1 M2 
Binary Variables 148 148 148 148 
Continuous Variables 289 289 289 289 
Constraints 1036 1027 1036 1027 
Non zeros 5615 5426 5615 5426 
Nodes 561076 404043 279561 125560 
rMIP objective ($) 68131.30 68131.30 55733.80 55733.80 
MIP objective ($) 191172.84 191172.84 116378.12 116378.12 
Integrality gap (%) 64.36 64.36 52.11 52.11 
CPU time (s) 2637 1902 1245 738 
 Example 2a (TCC) Example 2b (DC) 
Binary Variables 148 148 148 148 
Continuous Variables 289 289 289 289 
Constraints 1036 1027 1036 1027 
Non zeros 5615 5426 5615 5426 
Nodes 398775 336958 280748 75707 
rMIP objective ($) 68131.30 68131.25 55733.80 55733.80 
MIP objective ($) 210537.87 210537.87 144011.27 144011.27 
Integrality gap (%) 67.64 67.64 61.30 61.30 
CPU time (s) 1945 1697 1511 437 
 Example 3a (TCC) Example 3b (DC) 
Binary Variables 131 131 131 131 
Continuous Variables 340 340 340 340 
Constraints 1090 1090 1090 1090 
Non zeros 5863 5740 5863 5740 
Nodes 1061793 1176362 86844 80296 
rMIP objective ($) 86395.29 86395.29 73960.00 73960.00 
MIP objective ($) 319019.99 319019.99 265342.61 265342.61 
Integrality gap (%) 72.92 72.92 72.13 72.13 
CPU time (s) 4848 5418 437 342 
 

Figures 6.1-2 show the Gantt charts for tanker lightering schedules with 

different objectives respectively. Let us first look at the schedule that minimizes the 

total time-charter cost of tankers (Example 1a, Figure 6.1). Tankers m1, m2, and m3 

arrive at the anchorage within a short time such that they compete for the three 

lightering vessels. The time-charter cost for m1 is higher than m2 and m3 (1200 $/h vs. 
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750 $/h vs. 1000 $/h). Thus, m1 has highest priority and it starts offloading first 

among the three.  
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Figure 6.1: Tanker lightering schedule for Example 1a (TCC) 
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Figure 6.2: Tanker lightering schedule for Example 1b (DC) 
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In addition, m1 is a large tanker that requires three services. As described in 

Chapter 5, at most two services can take place at a tanker simultaneously. The 

resultant lightering schedule shows that our model guarantees this, where n3 starts 

offloading m1 (the third service) only after n2 finishes lightering m1 at the same side.  

Tanker m3 is a two-crude tanker that carries both crude c3 and c4 with 

different densities and destinations. The optimal schedule chose to offload c4. That is 

because it is heavier (0.90 ton/m3 vs. 0.85 ton/m3), hence less volume (transfer time) 

is required for meeting the lightering requirement. Furthermore, the destination of c4 

is nearer than c3 (60 nm vs. 70 nm), so lightering vessel travels a shorter distance, 

spends less travel time, and consumes less fuel to deliver c4. Note that, in this case, 

the optimizer is free to decide which crude to offload. However, in some cases, the 

lightering weight of each crude is specified according to the client refineries’ 

requirements. We can model this simply by setting the crude size to its specific 

lightering weight though the actual crude size may be larger. 

Recall that, crude c2 (m2) and c4 (m3) have the same destination refinery r2. 

Therefore, it is possible for a lightering vessel to load them consecutively in a voyage 

to save round-trip travel time. In fact, Gantt chart (Figure 6.1) shows that n2 picks up 

c4 first, then picks up c2 at the anchorage before departing for refinery r2. By such 

practice, it reduces one voyage, travel time and fuel cost of one-round trip travel for 

lightering vessels.  

Tankers m4 and m5 are actually one physical 2-stage tanker, where m4 

represents the tanker at offshore and m5 represents the same tanker at anchorage. Our 

models included this consideration. As shown in the schedule, tanker m5 starts its 

service at 109.7 h only after m4 departs from offshore (103.7 h) and travels to the 

anchorage (6 h). 
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Among the three lightering vessels (n1, n2 and n3) that the company operates, 

n1 is the most efficient and economical one, since it has the least fixed voyage cost 

(VCn1 = 6200 $/voyage), the largest size ( 1 1
U
n nN SC  = 400 m3), fast transfer rates 

(FINn1c = 60 m3/h and FOUTn1 = 20 m3/h) and velocities (ven1 = 11.0 nm/h and vfn1 = 

8.0 nm/h) among the three. Therefore, it is not surprising to see that its utilization is 

the highest. It travels three voyages, while the rest only travel two voyages. In 

addition, its total transfer amount is the largest (765 ton). 

Now, let us investigate the impact on the lightering schedule when the 

objective is to minimize the demurrage of tankers. In this example, we deliberately set 

the agreed duration (ADm) of tankers m4 and m5 to 100 h such that both of them can 

spend a long time at the lightering location without increasing the total cost. The 

lightering schedule (Figure 6.2) shows that m5 is now lightered by the most efficient 

and economical vessel n1 instead of n3 in the previous example. However, its 

departure time from anchorage increases from 117.4 h to 150.6 h.  

The DC schedule is less compact than the TCC schedule. For minimizing 

demurrage, as long as the tanker spends less than agreed duration for lightering 

operation, the lightering company need not pay extra money. Therefore, some 

flexibility occurs since time is not limiting, if the agreed duration is longer than the 

actual operation time. Thus, a tanker now can wait at the lightering location until the 

most efficient lightering vessel becomes free to service it. On the other hand, 

minimizing time-charter cost aims to minimize the total time tanker spent idling. Thus, 

the schedule is normally very compact such that the departure time for each tanker is 

minimized. The solution shows that tradeoff exists between utilization of vessels and 

demurrage of tankers. 
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6.1.2 Example 2 

The previous example showed that receiving multiple crudes with a common 

destination from multiple tankers in a voyage is cost effective since it reduces the 

operating cost of lightering vessels and the demurrage cost of the tankers. However, it 

delays the delivery time of the first crude in a voyage. Therefore, it is not always 

economical to aggregate crudes with a common refinery. To elaborate this, in this 

example, we set the due date requirement of crudes from tanker m3 to 0 h. Other 

parameters are the same as previous example. 

 Table 6.5 also lists the model statistics and computational results for this 

example. Again, M2 requires shorter time to solve the problem than M1. Figures 6.3-

4 show the lightering schedules for TCC and DC respectively. Both schedules show 

that n2 does not lighter m3 and m2 consecutively in the same voyage anymore. Once 

n2 finishes lightering c4 from m3, it then travels directly to r2 to ensure the crude can 

reach the refinery port as early as possible.  As a result, the total number of voyages 

increases to 8; whereas, in Example 1, the total number of voyages is only 7. 

Although this increases the operating cost of vessels, it ensures a fast delivery of c4 to 

refinery r2.  

When we compare schedules 2a (TCC) and 2b (DC), schedule 2a is again 

much more compact than 2b. In addition, the utilization of n1 is very high considering 

the demurrage of tankers. It travels four voyages and lighters 296 ton of crude from 

m2. On the other hand, when we consider the time-charter cost of tankers, the 

utilization of n1 is low. It only travels three voyages and lighters 130 ton from m2. 

However, m2, m4, and m5 depart much earlier in Example 2a than Example 2b (55.3 

h vs. 58.5 h for m2; 97.9 h vs. 103.4 h for m4; 111.6 h vs. 150.3 h for m5). 
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Figure 6.3: Tanker lightering schedule for Example 2a (TCC) 
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  Figure 6.4: Tanker lightering schedule for Example 2b (DC) 

 
6.1.3 Example 3 (Heuristics) 

So far, we have presented some small examples to illustrate the application and 

features of our models. Because of the practical features we consider, our formulation 
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is complex. Hence, it requires long solution time to generate optimal solutions for real 

practical problems with hundreds to thousands of discrete variables. However, in most 

cases, a good (not necessarily optimal) solution with reasonable solution time is 

sufficient for the company to enhance the efficiency of lightering operations and save 

large sums of money. To this end, we develop some heuristic methods to simplify the 

problem based on common knowledge and practical experience in this section. 

 First, we have already used one heuristic method when postulating the 

maximum number of distinct parcels that a large tanker may transfers ( U
mNS ) as 

described in Chapter 5. 

 Second, our models decide on which crude to lighter for a tanker with multiple 

crudes. Generally, two properties of a crude affect the selection, namely, density and 

destination refinery. The density of a crude affects the actual lightering volume hence 

the crude transfer time. For a given lightering weight, a heavier crude results in less 

volume and shorter pumping time. Therefore, it is normally optimal to lighter the 

heavier crude first. Furthermore, a crude with shorter delivery distance (distance of its 

designated refinery) is normally favorable in minimizing the operating cost. That is 

because the lightering vessel then travels shorter distance and needs less time. This 

reduces its fuel consumption cost, and waiting time of the subsequent tankers for its 

service. Therefore, for a tanker carrying multiple crudes, we need not generate 

possible parcels for a light crude with long delivery distance. By this method, we can 

reduce number of parcels and hence the problem size considerably. 

 Third, previously, a lightering vessel is allowed to pick up multiple parcels of 

the same destination in a voyage. We include all those parcel pairs from different 

crudes with common designated refinery when defining set JJ. However, if a parcel 

arrives early, and another parcel with a common destination refinery arrives much 
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later, it is unlikely for a lightering vessel to pick up the early parcel first then wait for 

sometime to pick up the latter parcel. Such operation not only increases the delivery 

time of the first parcel, it also reduces the utilization of the lightering vessel since it 

spends time idling. It is unlikely optimal in this case. Therefore, we will only include 

those parcel pairs with a common destination and reasonably close arrival times for 

set JJ. Furthermore, if some crude is needed urgently by the refinery (i.e. a very high 

due date penalty or a short due date), then it is better to deliver it as soon as possible. 

Hence, such crudes are unlikely to transfer as the first crude in a voyage. But it is 

possible to be the last crude of a voyage, as this may save waiting time for suitable 

vessels. 

 Lastly, tankers arrive at irregular time intervals. Some arrive very early, while 

some arrive later. For those early tankers, lightering vessels can finish servicing them 

using the first few slots. In other words, the early tankers do not appear in the last few 

slots of a lightering vessel. However, it is still possible to serve the later tankers by 

first few slots as well as last few slots of lightering vessels. We can exclude the later 

slots for early tankers by fixing the corresponding x variables to 0. By this method, we 

reduce some unnecessary slot-tanker combinations. Therefore, we reduce the size and 

complexity of the problem. 

 With all the above heuristic methods excluding some unlikely optimal 

combinations, we now can handle more realistic and complex tanker lightering 

problems.  

 Let us use an example to illustrate the above heuristic methods. The problem 

size is large with M = 7 tankers, C = 8 crudes and N = 4 lightering vessels. Tables 6.1-

4 give the detailed information. In addition, m6 and m7 are the respective offshore and 
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anchorage tankers of the same 2-stage tanker. The travel time from offshore to 

anchorage for this tanker is 5 h. 

We first assign a reasonable number of parcels to each tanker. Except for m2, 

all the tankers are small tankers that require no more than two services. In addition, 

multi-crude tanker m3 has two types of crudes c3 and c4. c3 is heavier and has shorter 

delivery distance than c4 (0.90 ton/m3 vs. 0.85 ton/m3 and 80 nm vs. 88 nm). Its size 

is greater than the lightering weight of the tanker. Therefore, we assume only c3 

transfers. As a result, we assign one parcel to each small tanker, one parcel to c3 of 

tanker m3, and six parcels to large tanker m2. We have twelve parcels in total.  

 We use three slots (K = 3) for this problem. Tankers m1 and m2 arrive very 

early (0.0 h and 5.0 h), therefore, they are likely to finish lightering in the first two 

slots. That is, xn3j = 0 for j ∋ m(j) = m1 and m2.  

Among all the lightering crudes, both c1 and c6 deliver to r1, both c3 and c5 

deliver to r3. However, c1 and c6 arrive at the anchorage at long time intervals (0 h 

and 23 h). Thus, we only include parcel pairs for c3 and c5 in set JJ. The travel time 

between them is 3 h for all the lightering vessels. 

With such simplifying methods, the models require only 131 discrete variables 

(Table 6.5) even though the problem is large. The optimizer finds the solution within 

5500 seconds. Figures 6.5-6 show the schedules for minimal time-charter cost and 

demurrage cost of tankers respectively.  

On the other hand, without any heuristic methods (except for the postulation 

of U
mNS ), the models require 171 discrete variables. Furthermore, none of them 

converges to optimum even after 6500 s. 
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Figure 6.5: Tanker lightering schedule for Example 3a (TCC) 
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Figure 6.6: Tanker lightering schedule for Example 3b (DC) 

 
 

6.1.4 Remarks 

Having presented the results and statistics for all the examples, we now study the 

model performance in a systematic way. First, we compare the different linearization 



 

  112 

methods. In all the examples, both M1 and M2 have the same rMIP values. Thus, 

neither of them is superior to the other in terms of formulation tightness. However, 

M2 always requires fewer nonzeros and sometimes fewer constraints (5426 vs. 5615 

in Examples 1-2) than M1. This smaller size contributes to the effectiveness of M2, 

where M2 outperforms M1 in most examples (2637 s vs. 1902 s in Example 1a; 1245 

s vs. 738 s in Example 1b; 1945 s vs. 1697 s in Example 2a; 1511 s vs. 437 s in 

Example 2b; 437 s vs. 342 s in Example 2b) except for Example 3a.  

 The second observation is related to the model performance with different 

objectives. Though the model statistics are identical with different objectives, the 

results show that minimizing TCC is much harder than minimizing DC.  For example, 

in Examples 3a-b, TCC problem requires over 5000 s, while DC problem requires less 

than 500 s. TCC problem normally results in more compact schedules, and the time 

constraint is normally tighter. It is therefore harder to find out the optimal solution. In 

addition, the integrality gap for TCC problem is always greater than that for DC 

problem (64.36% vs. 52.11% in Example 1; 67.64% vs. 61.30% in Example 2; 

72.92% vs. 72.13% in Example 3), which also indicates that it is harder to solve TCC 

problem than DC problem. 

6.2 Comparison with Event-based Formulation 

Previously, Lin et al. (2003) addressed a tanker lightering problem using event-based 

formulation in a limited form without considering some practical features as described 

earlier. However, we are interested in studying the model performances of both event-

based and slot-based approaches. For a fair comparison, we first implement Cases 1-4 

from their work using their reported formulations. Then, we use the same set of 

example data and implement our slot-based formulation in a reduced form by 

assuming the following, 
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(1) All crude tankers within the time horizon are small tankers such that at most 

two transfers are sufficient to lighter fully. Therefore, no constraints are 

needed to model the operations of tankers. 

(2) The lightering vessels have only one compartment. 

(3) Only one visit to one tanker per voyage is allowed for a lightering vessel. 

(4) For a tanker carrying multiple crudes, the selection of which crude and in what 

amount to lighter is known and fixed a priori. 

(5) Densities of different crudes are uniform. 

(6) Empty slots are allowed in the middle of the schedule with zero length. 

(7) The total cost is only dependent on the time-charter cost of tanker and the 

fixed operating costs of vessels. 

(8) In Cases 1-3, all the tankers are 1-stage tankers that only lighter at anchorage. 

With these assumptions, we remove all the constraints and variables addressing the 

above features. Note that the alternate linearization methods are not included since the 

cumulative variables are not needed. The objective in minimizing the time-charter 

cost of tankers is considered. Furthermore, the removal of constraints for crude 

tankers reduces all the sequenced-based variables and constraints. As a result, we 

have two simple formulations, one for Cases 1-3, the other for Case 4; and both of 

them use only the slot-based approach for lightering vessels with variable slot-lengths. 

For convenience, we name the former O1, the latter O2. Similarly, we called Lin’s 

respective models as L1 and L2. The detailed formulations of O1 and O2 are included 

in appendices C.1 and C.2.  

 The example data are taken from Lin et al. (2003). For full details, please refer 

Lin et al. 2003. They used a heuristic method to simplify the formulations by defining 

a subset of event points for each tanker. However, these subsets are not reported in 
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their work. We select our own subsets carefully such that the objective values and 

tanker lightering schedules are the same as the reported results. Table 6.6 gives the 

subsets defined for Cases 1-4. In addition, the big-M values are 168, 520, 528 and 240 

respectively for Cases 1, 2, 3, and 4. 

 Applying the same heuristic method, our formulations are able to solve all the 

examples and obtain the same tanker lightering schedules with the same total costs as 

Lin’s models. Table 6.7 compares the model statistics and computational results for 

both models. The binary variables used in Lin’s models and our models are the same. 

However, our slot-based models have far fewer continuous variables, constraints, and 

non-zeros than Lin’s event-based models. For example, in Case 1, L1 requires 202 

continuous variables, 619 constraints and 2016 nonzeros; whereas, our model O1 

requires only 92 (half) continuous variables, 200 (one third) constraints and 864 (half) 

nonzeros. The model statistics for Cases 2-4 also show the same observations.  

 
Table 6.6: Subset data for Section 6.2 

 
Tanker Number Event Point (Slot Number) * 

 Case 1 Case 2 Case 3 Case4 
1 1, 2 1 1 1, 2 
2 1, 2 1 1 1, 2 
3 1, 2 2 1 1, 2 
4 2, 3 2 2 2, 3 
5 2, 3 2, 3 1, 2 2, 3 
5′ 2, 3 - - 2, 3 
6 2, 3 3, 4 1, 2 2, 3 
7 3 4, 5 1, 2 3 
8 - - 2, 3 - 
8a - - - 3, 4 
8b - 4, 5 - 3, 4 
9 - 4, 5 2, 3 - 
10 - 4, 5 2, 3 - 
11 - 5, 6 3 - 
12 - 6 3 - 

* L’s models use event point; O’s models use slot number 
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Table 6.7: Model statistics and computational results for Section 6.2 

 
 Case 1 Case 2 Case 3 Case 4 
 L1 O1 L1 O1 L1 O1 L2 O2 
Binary Variables 60 60 70 70 114 114 74 74 
Continuous Variables 202 92 223 131 362 169 235 116 
Constraints 619 200 892 463 1234 459 880 440 
Non zeros 2016 864 3033 1455 4157 1804 2961 1360 
Nodes 11877 8008 24153 13955 9968486 5353325 7158 1650 
rMIP objective ($) 36.64 48.50 39.28 84.94 52.88 72.79 55.85 73.78 
MIP objective ($) 190.40 190.40 173.69 173.69 159.58 159.58 310.21 310.21
Integrality gap (%) 80.76 74.53 77.39 51.10 66.86 54.38 82.00 76.22 
CPU time (s) 9.2 5.7 18.5 11.9 14161.8 6639.0 7.9 1.9 

 

 In event-based formulations, normally two time variables are defined to 

denote the start and end of an event respectively. On the other hand, our formulations 

use only one time variable to represent the start of a slot. Furthermore, event-based 

models normally require lots of big-M constraints for ordering different start/end time 

of different events (Sundaramoorthy and Karimi, 2005). However, our formulations 

generally order the slots without using big-M constraints. Because of these 

fundamental differences, our slot-based formulations generally require fewer 

variables and constraints, and thus are simpler as compared with Lin’s models. 

Therefore, we expect our models outperform Lin’s models. From the results, it 

is not surprising to observe that our models indeed are tighter with higher rMIP values 

and perform better with faster CPU times; Case 1 ($48.50 vs. $36.64 and 5.7s vs. 

9.2s), Case 2 ($84.94 vs. $39.28 and 11.9s vs. 18.5s), Case 3 ($72.79 vs. $52.88 and 

6639s vs. 14162s) and Case 4 ($73.78 vs. $55.85 and 1.9s vs. 7.9s), where the former 

value is from our models and the latter is from Lin’s models. 
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6.3 Conclusion 

In this chapter, we used several examples to show the important features of our 

formulations, such as, the selection of type of crude and the amount of crude to lighter 

per visit, the number and sequence of tankers to service per voyage, handling of 2-

stage lightering operation, and so on.  

 Generally, the schedule that considers tanker demurrage is more flexible than 

the schedule that minimizes the time-chart cost of tankers. It is thus easier to solve the 

DC problem with shorter CPU times. In addition, the utilization of lightering vessels 

in the DC problem is normally higher than that in the TCC problem, because the 

tanker cost is generally lower in the DC problem. 

 Both two alternate linearization methods (M1 and M2) are capable of finding 

optimal solutions. However, M2 is simpler with fewer constraints and nonzeros. As a 

result, M2 performs better than M1 in most cases. 

 Furthermore, we have developed some heuristic methods to reduce slot-tanker 

combinations, thus the problem size. By doing this, the model is capable of obtaining 

a good solution within a reasonable time for large size problem. We considered a 

large size problem with seven tankers, eight crudes and four lightering vessel. 

Without heuristic methods, the models require 171 discrete variables and do not 

converge after 6500 s. However, with heuristic methods, the models require only 131 

discrete variables (23.40% size reduction) and converge to optimum within 5500 s. 

Lastly, the comparison of model performances between slot-based and event-

based formulations shows that slot-based formulation is generally simpler and more 

effective. It is smaller in size and has tighter formulation, thus is faster than the event-

based formulation.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

In this research, we addressed two important scheduling problems, general chemical 

transshipment operation and tanker lightering operation.  

We developed nine alternative MILP formulations all using both slot-based 

and pair-wise sequencing approaches but with different linearization methods to solve 

general transshipment operations. The research showed that the models with pair-wise 

sequencing approach for the recipient carriers outperform the models with slot-based 

approach for the recipient carriers, when the transshipment system involves many 

recipient carriers. The reverse is true, when the problem have many donor carriers or 

two-sided cargos. Furthermore, the comparison between different linearization 

methods shows that the method involving the big-M constraints seem to be the fastest 

in spite of its inferior rMIP values. As a result, out of the nine alternate formulations, 

the one with big-M constraints and uses slot-based approach for recipient carriers 

performs best in most examples. In addition, we developed an effective heuristic 

method by aggregating cargos with common origins and destinations into one cargo. 

The results indicate that such method is promising even for practical industrial 

problems with large sizes. 

In the second part of the work, we addressed a special case of chemical 

transshipment operation – tanker lightering. We developed two alternate formulations 

considering two different objectives. Here, we showed that the objective that 

considers the time-charter cost of tankers is generally harder to solve than the 

objective that considers demurrage cost of tankers. It is because that the optimal 

schedule for minimal time-charter cost is normally very compact. The departure times 
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of tankers are early but the utilization of vessels is small. In addition, we also showed 

that the linearization method using variables that combine the cumulative quantity and 

voyage information is superior to the other one. In addition, we proposed several 

heuristic methods to simplify the problem for large size problem. Lastly, a 

comparison study of slot-based and event-based models showed that slot-based model 

is more efficient than event-based models for tanker lightering problems. 

7.2 Recommendations 

Both problems deal with direct ship-to-ship chemical transfer at a transfer port or 

seawater. However, as described earlier, our formulations neglect the port limitations. 

Hence, one can extend our formulations to consider the physical limits and practical 

operations at the transfer port, such as, the infrastructure limitations, the number of 

berths, berths assignments to the ships, and so on. 

 In addition, for general chemical transshipment problems, the models can 

incorporate many more practical features. For example, some industrial restrictions on 

cargo transfer sequence can be considered. Detailed cargo allocation in the multi-

compartment recipient carrier is another possible research area of interest. 

 For tanker lightering problem, we have considered many important practical 

features. However, one can still address more practical considerations. For example, 

in practice, it is also possible for a lightering vessel to visit multiple refineries to 

discharge same/different crude from same/different tankers in a voyage. In addition, 

the model can be extended to include the effect of tides on the lightering weight, fuel 

consumption and hence the optimal lightering schedule. Furthermore, one may 

consider non-identical compartment sizes of lightering vessels.  
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APPENDIX A: GAMS FILES FOR CHAPTER 4 

A. 1 Formulation F1 

Variables 
x(j,k)     1 if cargo j IS transshipped during slot k 
U(j)       1 if cargo j is serviced 
Z(n,p,pc,k)  1 if carrier n is at position p in slot k and pc in slot k+1 
y(j,j)     1 if cargo j is serviced later than cargo jc 
DTS(n)    departure time for carrier n 
DTB(m)    departure time for carrier m 
TS(n,k)   start time of slot k in carrier n 
T(j)       start time of serving cargo j 
tx(j,k)   multiplication variable 
delta(j,j)  dummy 0-1 variable 
d(j,j,j)    dummy 0-1 variable 
TTCC      total time cost of all ships; 
Binary variable x,y; 
Positive variable TS,Z, T, DTB, DTS, d, u, delta,tx; 
Free variable TTCC; 
x1(k,n)$kn(k,n)..                                          sum(j$(js(j,n)),X(j,k))=e=1; 
x2a(i,j)$(osc(i) and ij(i,j))..                            sum(k$kj(k,j), x(j,k))=e=1; 
x2b(i,j)$(tsc(i) and ij(i,j))..                            sum(k$kj(k,j), x(j,k))=e=u(j); 
x2c(i,j,jc)$(ij(i,j) and ij(i,jc) and tsc(i) and (ord(j) ne ord(jc)))..  u(j)+u(jc)=e=1; 
TS3(n,k)$kn(k,n)..                                       TS(n,k)=g=sum(j$js(j,n), ETAC(j)*X(j,k)); 
z4a(n,p,k)$(kn(k,n) and ord(k)<kmaxn(n) and pn(p,n))..   
sum(pc$pn(pc,n),Z(n,p,pc,k))=e=sum(j$(js(j,n) and jp(j,p)),X(j,k)); 
z4b(n,p,k)$(kn(k,n) and ord(k)<kmaxn(n) and pn(p,n))..   
sum(pc$pn(pc,n),Z(n,pc,p,k))=e=sum(j$(js(j,n) and jp(j,p)),X(j,k+1)); 
TS5(n,k)$(kn(k,n) and ord(k)<kmaxn(n))..                 
TS(n,k+1)=g=TS(n,k)+sum(j$js(j,n),tao(j)*X(j,k))+sum((p,pc)$(PN(P,N) AND 
PN(PC,N)), theta(n,p,pc)*Z(n,p,pc,k)); 
Tb6a(p,j,jc)$(ord(jc)> ord(j) and jp(j,p) and jp(jc,p) and not jj(j,jc)).. 
T(jc)=g=T(j)+tao(j)*u(j)-bigM*(1-y(j,jc)); 
Tb6b(p,j,jc)$(ord(jc)> ord(j) and jp(j,p) and jp(jc,p) and not jj(j,jc)).. 
T(j)=g=T(jc)+tao(jc)*u(jc)-bigM*y(j,jc); 
Tb7a(j)..                                T(j)=g=etac(j)*u(j)+mt(j)*(1-u(j)); 
Tb7b(j)..                                T(j)=l=mt(j)+bigM*u(j); 
L9a(j,n,k)$(kn(k,n) and js(j,n))..       T(j)=g=TS(n,k)-bigM*(1-X(j,k)); 
L9b(j,n,k)$(kn(k,n) and js(j,n))..       T(j)=l=TS(n,k)+bigM*(1-X(j,k)); 
L10(n)..                                 
sum(j$js(j,n),t(j))=e=sum(k$kn(k,n),ts(n,k))+sum(j$js(j,n), (1-u(j))*mt(j)); 
L11a(n,k)$kn(k,n)..                      TS(n,k)=e=sum(j$js(j,n),tx(j,k)); 
L11b(j)..                                T(j)=e=sum(k$kj(k,j),tx(j,k))+mt(j)*(1-u(j)); 
L11c(j,k)$kj(k,j)..                      tx(j,k)=l=bigM*x(j,k); 
dt12a(j,m)$jb(j,m)..                     DTB(m)=g=T(j)+tao(j)*u(j); 
dt12b(k,m,n)$kn(k,n) ..                  DTB(m)=g=TS(n,k)+sum(j$(js(j,n) AND 
JB(J,M)),tao(j)*X(j,k))-bigM*(1-sum(j$(jb(j,m) and js(j,n)),X(j,k))); 
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addy(i,ic,p,j,jc)$(ord(jc)>ord(j) and jp(j,p) and jp(jc,p) and ij(i,j) and ij(ic,jc) and not 
jj(j,jc) and (tsc(i) or tsc(iC)))..   y(j,jc)+delta(j,jc)=e=u(jc)-u(j)+1; 
addyy(p,j,jc,jcc)$(ord(jc) > ord(j) and ord(jcc)>ord(jc) and jp(j,p) and jp(jc,p) and 
jp(jcc,p) and not jj(j,jc) and not jj(j,jcc) and not jj(jc,jcc)).. 
Y(j,jcc)+d(j,jc,jcc)=e=Y(j,jc)+Y(jc,jcc); 
objfun.. TTCC=e=sum(m,TCCB(m)*(DTB(m)-ETAB(m)))+sum((n,k)$(kn(k,n) and 
ord(k)=kmaxn(n)),TCCS(n)*(TS(n,k)+sum(j$js(j,n), tao(j)*X(j,k))-ETAS(n))); 
u.fx(j)$(sum(i$ij(i,j),osc(i)))=1; 
TS.lo(n,k)$kn(k,n)=MTS(n); 
T.lo(j)$(sum(i$ij(i,j),Tsc(i)))=mt(j); 
T.lo(j)$(sum(i$ij(i,j),Osc(i)))=ETAC(J); 
DTS.lo(n)=mts(n); 
DTB.lo(m)=smin(j$jb(j,m),mt(j)); 
Z.fx(n,p,pc,k)$((not pn(p,n)) or (not pn(pc,n)) and kn(k,n) and ord(k)<kmaxn(n))=0; 
Z.up(n,p,pc,k)$(pn(p,n) AND pn(pc,n) and kn(k,n))=1; 
u.up(j)=1; 
d.up(j,j,j)=1; 
delta.up(j,j)=1; 
 
A. 2 Formulation F2 and F3 

Variables 
x(j,k)     1 if cargo j IS transshipped during slot k 
U(j)       1 if cargo j is serviced 
y(j,j)     1 if cargo j is serviced later than cargo jc 
DTS(n)    departure time for carrier n 
DTB(m)    departure time for carrier m 
T(j)       start time of serving cargo j 
TB(p,k)   start time of slot k in position p 
TX(j,k)   multiplication variable 
delta(j,j)  dummy 0-1 variable 
d(j,j,j)    dummy 0-1 variable 
TTCC      total time cost of all ships; 
Binary variable x,y; 
positive variable T,TB, DTB, DTS,u,d,delta,tx,tsx; 
free variable TTCC; 
x14(k,p)$kp(k,p)..                                       sum(j$jp(j,p),X(j,k))=l=1; 
x2a(i,j)$(osc(i) and ij(i,j))..                          sum(k$kj(k,j), x(j,k))=e=1; 
x2b(i,j)$(tsc(i) and ij(i,j))..                          sum(k$kj(k,j), x(j,k))=e=u(j); 
x2c(i,j,jc)$(ij(i,j) and ij(i,jc) and tsc(i) and (ord(j) ne ord(jc)))..  u(j)+u(jc)=e=1; 
TB15a(p,k)$kp(k,p)..                                     
TB(p,k)=g=sum(j$jp(j,p),etac(j)*x(j,k))+mtb(p)*(1-sum(j$jp(j,p),x(j,k))); 
tb15b(p,k)$kp(k,p)..                                     
TB(p,k)=l=mtb(p)+bigM*sum(j$jp(j,p),x(j,k)); 
tb16(p,k)$(kp(k,p) and ord(k)<kmaxp(p))..                
TB(p,k+1)=g=TB(p,k)+sum(j$jp(j,p),tao(j)*X(j,k)); 
ts17a(n,j,jc)$(ord(jc)>ord(j) and js(j,n) and js(jc,n) and not jj(j,jc)).. 
T(jc)=g=T(j)+(tao(j)+sum((p,pc)$(jp(j,p) and jp(jc,pc)),theta(n,p,pc)))*u(j)-bigM*(1-
y(j,jc)); 
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ts17b(n,j,jc)$(ord(jc)>ord(j) and js(j,n) and js(jc,n) and not jj(j,jc)).. 
T(j)=g=T(jc)+(tao(jc)+sum((p,pc)$(jp(j,p) and jp(jc,pc)),theta(n,pc,p)))*u(jc)-
bigM*y(j,jc); 
ts7a(j)..                          T(j)=g=etac(j)*u(j)+(1-u(j))*mt(j); 
ts7b(j)..                          T(j)=l=mt(j)+bigM*u(j); 
L19a(p,j,k)$(kp(k,p) and jp(j,p))..T(j)=g=TB(p,k)-bigM*(1-X(j,k)); 
L19b(p,j,k)$(kp(k,p) and jp(j,p))..T(j)=l=TB(p,k)+bigM*(1-X(j,k)); 
L20(p).. sum(j$jp(j,p),t(j))+sum(k$kp(k,p),(1-
sum(j$jp(j,p),x(j,k)))*mtb(p))=e=sum(k$kp(k,p),tb(p,k))+sum(j$jp(j,p),(1-u(j))*mt(j)); 
L21a(p,k)$kp(k,p)..              tb(p,k)=e=sum(j$jp(j,p),tx(j,k))+(1-
sum(j$jp(j,p),x(j,k)))*mtb(p); 
L11b(j)..                        T(j)=e=sum(k$kj(k,j),tx(j,k))+mt(j)*(1-u(j)); 
L11c(j,k)$kj(k,j)..              tx(j,k)=l=bigM*x(j,k); 
DT22a(j,n)$js(j,n)..                                     DTS(n)=g=T(j)+tao(j)*u(j); 
DT22b(p,k,n)$kp(k,p)..                                   DTS(n)=g=TB(p,k)+sum(j$(jp(j,p) and 
js(j,n)),tao(j)*X(j,k))-bigM*(1-sum(j$(js(j,n) and jp(j,p) ),X(j,k))); 
DT23(p,m,k)$(kp(k,p) and ord(k)=kmaxp(p) and pm(p,m))..  
DTB(m)=g=TB(p,k)+sum(j$jp(j,p), tao(j)*X(j,k)); 
addx(p,k)$(kp(k,p) and ord(k)<kmaxp(p))..                
sum(j$jp(j,p),X(j,k+1))=g=sum(j$jp(j,p),X(j,k)); 
addy(i,ic,n,j,jc)$(ord(jc)>ord(j) and js(j,n) and js(jc,n) and ij(i,j) and ij(ic,jc) and not 
jj(j,jc) and (tsc(i) or tsc(iC)))..   y(j,jc)+delta(j,jc)=e=u(jc)-u(j)+1; 
addyy(n,j,jc,jcc)$(ord(jc) > ord(j) and ord(jcc)>ord(jc) and js(j,n) and js(jc,n) and 
js(jcc,n) and not jj(j,jc) and not jj(j,jcc) and not jj(jc,jcc)).. 
Y(j,jcc)+d(j,jc,jcc)=e=Y(j,jc)+Y(jc,jcc); 
objfun..  TTCC=e=sum(m,TCCB(m)*(DTB(m)-
ETAB(m)))+sum(n,TCCS(n)*(DTS(n)-ETAS(n))); 
u.fx(j)$(sum(i$ij(i,j),osc(i)))=1; 
T.lo(j)$(sum(i$ij(i,j),Tsc(i)))=mt(j); 
T.lo(j)$(sum(i$ij(i,j),Osc(i)))=ETAC(J); 
TB.lo(p,k)$kp(k,p)=mtb(p); 
DTS.lo(n)=mts(n); 
DTB.lo(m)=smin(j$jb(j,m),mt(j)); 
u.up(j)=1; 
d.up(j,j,j)=1; 
delta.up(j,j)=1; 
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APPENDIX B: GAMS FILE FOR CHAPTER 6 

Variables 
x(n,k,j)         1 if lightering vessel n serves cargo j during slot k 
y(j,jc)          1 if cargo jc is served sometime after cargo j in position p 
ze(n,k)          1 if slot k is the last slot of a voyage 
Z(n,k,j,jc)      1 if j served in slot k and jc in slot k+1 by vessel n in the same voyage 
U(n,k)           1 if slot k of ship n is used 
VP(n,k,j)        amount of cargo j that lightering vessel n lighters during slot k 
VT(n,k)          accumulated volume of crude oil on vessel n during slot k 
TS(n,k)          time at which vessel n starts slot k 
T(j)             time when cargo j starts transfer 
DTB(m)           time at which m departs 
TD(n)            total distance traveled by vessel n 
ATR(n,k,j)       arrival time at refinery of cargo j served during slot k by vessel n 
ATRJ(j)       arrival time at refinery of cargo j served during slot k by vessel n 
NC(n,k)          number of comparments used during slot k of vessel n 
NT(n,k)         accumulated number of compartments used in slot k of vessel n 
VT(n,k)          accumulated volume at the end of slot k of small ship n 
NT(n,k)          accumulated number of compartments at the end of slot k of small ship 
n 
WT(n,k) 
VZ(n,k)          accumulated volume at the end of slot k of small ship n 
NZ(n,k)          accumulated number of compartments at the end of slot k of small ship 
n 
WZ(n,k) 
delta(j,jc)      0-1 continuous dummy variable 
d(j,jc,jcc)      0-1 continuous dummy variable 
TC               total cost of the system; 
Binary variable  x,y,ze; 
Integer variable nc; 
Positive variable z,vp,ts,t,dtb, td, tr, delta, d,u, WT, NT, VT, WZ, NZ, VZ,atr, atrj; 
Free variable    TC; 
u1(n,k)$kn(k,n)..                        u(n,k)=e=sum(j$jn(j,n),x(n,k,j)); 
u2(n,k)$(kn(k,n) and ord(k)<kmax(n))..   u(n,k+1)=l=u(n,k); 
x3a(m)..                                 sum((n,k,j)$(jn(j,n) and jm(j,m) and 
kn(k,n)),x(n,k,j))=g=nsl(m); 
x3b(m)..                                 sum((n,k,j)$(jn(j,n) and jm(j,m) and 
kn(k,n)),x(n,k,j))=l=nsu(m); 
z4(n,k)$kn(k,n)..                        ze(n,k)=l=u(n,k); 
z5a(j,n,k)$(jn(j,n) and kn(k,n)and ord(k)<kmax(n)).. 
         x(n,k,j)=g=sum(jc$(jn(jc,n) and jj(j,jc)),z(n,k,j,jc)); 
z5b(jc,n,k)$(jn(jc,n) and kn(k,n)and ord(k)<kmax(n)).. 
         x(n,k+1,jc)=g=sum(j$(jn(j,n) and jj(j,jc)),z(n,k,j,jc)); 
z5c(n,k)$(kn(k,n)and ord(k)<kmax(n)).. 
         1-ze(n,k)=g=sum((j,jc)$(jn(j,n) and jn(jc,n) and jj(j,jc)),z(n,k,j,jc)); 
z5d(j,jc,n,k)$(jn(j,n) and jn(jc,n) and jj(j,jc)  and kn(k,n)and ord(k)<kmax(n)).. 
         z(n,k,j,jc)=g=x(n,k,j)+x(n,k+1,jc)-ze(n,k)-1; 
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z6(n)..  sum(k$kn(k,n),ze(n,k))=e=sum(k$kn(k,n),u(n,k))-sum((k,j,jc)$(kn(k,n) and 
ord(k)<kmax(n) and jn(j,n) and jn(jc,n) and jj(j,jc)),z(n,k,j,jc)); 
x7(j,m)$(jm(j,m) and nsu(m)>2)..         sum((n,k)$(kn(k,n) and jn(j,n)),x(n,k,j))=l=1; 
v8a(n,j,k)$(kn(k,n) and jn(j,n))..       vp(n,k,j)=l=x(n,k,j)*min(nu(n)*sc(n), 
wd(j,n)/rho(j), sum(c$cj(c,j),ps(c))); 
v8b(c)$imc(c)..                          sum((n,j,k)$(kn(k,n) and jn(j,n) and 
cj(c,j)),vp(n,k,j))=l=ps(c); 
n9a(n,k)$kn(k,n)..       sum(j$jn(j,n),vp(n,k,j))=l=nc(n,k)*sc(n); 
n9b(n,k)$kn(k,n)..       sum(j$jn(j,n),vp(n,k,j))=g=(nc(n,k)-1)*sc(n); 
v10(m)..                 sum((n,j,k)$(jm(j,m) and jn(j,n) and 
kn(k,n)),vp(n,k,j)*rho(j))=e=lw(m); 
w11b(n,k)$(ord(k)=1)..   wt(n,k)=e=sum(j$jn(j,n), rho(j)*vp(n,k,j)); 
v12b(n,k)$(ord(k)=1)..   vt(n,k)=e=sum(j$jn(j,n), vp(n,k,j)); 
n13b(n,k)$(ord(k)=1)..   nt(n,k)=e=nc(n,k); 
w14a(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
wt(n,k+1)=g=wt(n,k)+sum(j$jn(j,n),rho(j)*vp(n,k+1,j))-wtu(n)*ze(n,k); 
w14b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
wt(n,k+1)=l=wt(n,k)+sum(j$jn(j,n),rho(j)*vp(n,k+1,j)); 
w14c(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
wt(n,k+1)=l=sum(j$jn(j,n),rho(j)*vp(n,k+1,j))+wtu(n)*(1-ze(n,k)); 
w14d(n,k)$(kn(k,n) and ord(k)>1)..       wt(n,k)=g=sum(j$jn(j,n),rho(j)*vp(n,k,j)); 
v16a(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
vt(n,k+1)=g=vt(n,k)+sum(j$(jn(j,n)),vp(n,k+1,j))-vtu(n)*ze(n,k); 
v16b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
vt(n,k+1)=l=sum(j$jn(j,n),vp(n,k+1,j))+vtu(n)*(1-ze(n,k)); 
v16c(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
vt(n,k+1)=l=vt(n,k)+sum(j$jn(j,n),vp(n,k+1,j)); 
v16d(n,k)$(kn(k,n) and ord(k)>1)..       vt(n,k)=g=sum(j$(jn(j,n)),vp(n,k,j)); 
n18a(n,k)$(kn(k,n) and ord(k)<kmax(n)).. nt(n,k+1)=g=nt(n,k)+nc(n,k+1)-
nu(n)*ze(n,k); 
n18b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. nt(n,k+1)=l=nt(n,k)+nc(n,k+1); 
n18c(n,k)$(kn(k,n) and ord(k)<kmax(n)).. nt(n,k+1)=l=nc(n,k+1)+nu(n)*(1-ze(n,k)); 
n18d(n,k)$(kn(k,n) and ord(k)>1)..       nt(n,k)=g=nc(n,k); 
w20(n,k)$kn(k,n)..       wt(n,k)=l=sum(j$jn(j,n),wd(j,n)*x(n,k,j)); 
n21(n,k)$kn(k,n)..       nt(n,k)=l=nu(n)*u(n,k); 
t22a(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
ts(n,k+1)=g=ts(n,k)+sum(j$(jn(j,n)),(mdt(j)*x(n,k,j))+vp(n,k,j)/fin(n))+sum((j,jc)$(jn(
j,n) and jn(jc,n) and jj(j,jc)),tpp(n,j,jc)*z(n,k,j,jc)); 
t22b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
ts(n,k+1)=g=ts(n,k)+sum(j$jn(j,n),(tpr(n,j)+tra(n,j)+mdt(j)+dtr(j))*x(n,k,j)+vp(n,k,j)/f
in(n))+vt(n,k)/fout(n)+sum(j$jn(j,n), tap(n,j)*x(n,k+1,j))-bigMT*(1-ze(n,k)); 
t23(n,k)$kn(k,n)..                       ts(n,k)=g=sum(j$(jn(j,n)),eta(j)*x(n,k,j)); 
t24(n,k)$(kn(k,n) and ord(k)=1)..        
ts(n,k)=g=etas(n)+sum(j$(jn(j,n)),tap(n,j)*x(n,k,j)); 
t25(mc,n,k)$kn(k,n)..                    ts(n,k)=g=sum(m$mm(m,mc), dtb(m)+toa(m))-
bigMT*(1-sum(j$(jn(j,n) and jm(j,mc) and s2(j)),x(n,k,j))); 
a26a(m,n,j,k)$(jn(j,n) and kn(k,n)and jm(j,m) and nsu(m)<3).. 
         atr(n,k,j)=g=ts(n,k)+(mdt(j)+tpr(n,j))*x(n,k,j)+vp(n,k,j)/fin(n)-bigMT*(2-
ze(n,k)-x(n,k,j)); 
a26b(m,n,j,k)$(jn(j,n) and kn(k,n)and jm(j,m) and nsu(m)>2).. 
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         atrj(j)=g=ts(n,k)+(mdt(j)+tpr(n,j))*x(n,k,j)+vp(n,k,j)/fin(n)-bigMT*(2-ze(n,k)-
x(n,k,j)); 
a27a(m,mc,n,j,jc,k)$(kn(k,n) and ord(k)<kmax(n) and jn(j,n) and jn(jc,n) and jj(j,jc) 
and jm(j,m) and jm(jc,mc) and nsu(m)<3 and nsu(mc)<3).. 
         atr(n,k,j)=g=atr(n,k+1,jc)-bigMT*(1-z(n,k,j,jc)); 
a27b(m,mc,n,j,jc,k)$(kn(k,n) and ord(k)<kmax(n) and jn(j,n) and jn(jc,n) and jj(j,jc) 
and jm(j,m) and jm(jc,mc) and nsu(m)<3 and nsu(mc)>2).. 
         atr(n,k,j)=g=atrj(jc)-bigMT*(1-z(n,k,j,jc)); 
a27c(m,mc,n,j,jc,k)$(kn(k,n) and ord(k)<kmax(n) and jn(j,n) and jn(jc,n) and jj(j,jc) 
and jm(j,m) and jm(jc,mc) and nsu(m)>2 and nsu(mc)<3).. 
         atrj(j)=g=atr(n,k+1,jc)-bigMT*(1-z(n,k,j,jc)); 
a27d(m,mc,j,jc)$(jj(j,jc) and jm(j,m) and jm(jc,mc) and nsu(m)>2 and nsu(mc)>2).. 
         atrj(j)=g=atrj(jc)-bigMT*(1-sum((n,k)$(kn(k,n) and ord(k)<kmax(n) and jn(j,n) 
and jn(jc,n)), z(n,k,j,jc))); 
t28a(m,p,j,jc)$(ord(j)<ord(jc) and jp(j,p) and jp(jc,p) and jm(j,m) and nsu(m)>2 and 
not sum(c, (cj(c,j) and cj(c,jc)))).. 
         t(jc)=g=t(j)+sum((n,k)$(kn(k,n) and jn(j,n)), vp(n,k,j)/fin(n)+mdt(j)*x(n,k,j))-
bigMT*(1-y(j,jc)); 
t28b(m,p,j,jc)$(ord(j)<ord(jc) and jp(j,p) and jp(jc,p) and jm(j,m) and nsu(m)>2 and 
not sum(c, (cj(c,j) and cj(c,jc)))).. 
         t(j)=g=t(jc)+sum((n,k)$(kn(k,n) and jn(jc,n)), 
vp(n,k,jc)/fin(n)+mdt(jc)*x(n,k,jc))-bigMT*y(j,jc); 
t28c(m,p,j,jc)$(ord(j)<ord(jc) and jp(j,p) and jp(jc,p) and jm(j,m) and nsu(m)>2 and 
sum(c, (cj(c,j) and cj(c,jc)))).. 
         t(jc)=g=t(j)+sum((n,k)$(kn(k,n) and jn(j,n)), vp(n,k,j)/fin(n)+mdt(j)*x(n,k,j)); 
t29a(m,j)$(jm(j,m) and nsu(m)>2).. 
         t(j)=g=sum((n,k)$(kn(k,n) and jn(j,n)), (etas(n)+tap(n,j))*x(n,k,j)); 
t29b(m,j)$(jm(j,m) and nsu(m)>2).. 
         t(j)=l=eta(j)+bigMT*sum((k,n)$(kn(k,n) and jn(j,n)), x(n,k,j)); 
tt30a(m,j,n,k)$(kn(k,n) and jn(j,n) and jm(j,m) and nsu(m)>2).. 
         t(j)=g=ts(n,k)-bigMT*(1-x(n,k,j)); 
tt30b(m,j,n,k)$(kn(k,n) and jn(j,n) and jm(j,m) and nsu(m)>2).. 
         t(j)=l=ts(n,k)+bigMT*(1-x(n,k,j)); 
add31(m,p,j,jc)$(ord(j)<ord(jc) and jp(j,p) and jp(jc,p) and jm(j,m) and nsu(m)>2).. 
         y(j,jc)+delta(j,jc)=e=sum((k,n)$(kn(k,n) and jn(jc,n)), x(n,k,jc))-
sum((k,n)$(kn(k,n) and jn(j,n)), x(n,k,j))+1; 
add32(m,p,j,jc,jcc)$(ord(j)<ord(jc) and ord(jc)<ord(jcc) and jp(j,p) and jp(jc,p)and 
jp(jcc,p) and jm(j,m) and nsu(m)>2).. 
         y(j,jcc)+d(j,jc,jcc)=e=y(j,jc)+y(jc,jcc); 
d33a(m,n,k)$kn(k,n).. 
         dtb(m)=g=ts(n,k)+sum(j$(jn(j,n) and jm(j,m)),mdt(j)*x(n,k,j)+vp(n,k,j)/fin(n))-
bigMT*(1-sum(j$(jn(j,n) and jm(j,m)),x(n,k,j))); 
d33b(m,j)$(jm(j,m) and nsu(m)>2).. 
         dtb(m)=g=t(j)+sum((n,k)$(kn(k,n) and jn(j,n)), mdt(j)*x(n,k,j)+vp(n,k,j)/fin(n)); 
d34(n).. td(n)=e=sum((j,k)$(jn(j,n) and kn(k,n)),2*dr(j)*x(n,k,j))-sum((j,jc,k)$(jn(j,n) 
and jn(jc,n) and jj(j,jc) and kn(k,n) and ord(k)<kmax(n)),z(n,k,j,jc)*(2*dr(j)-
tpp(n,j,jc)*vf(n))); 
wz1a(n,k)$(kn(k,n) and ord(k)=1)..       
sum(j$jn(j,n),rho(j)*vp(n,k,j))=l=sum(j$jn(j,n),wd(j,n)*x(n,k,j)); 
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wz1b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
wz(n,k)+sum(j$jn(j,n),rho(j)*vp(n,k+1,j))=l=sum(j$jn(j,n),wd(j,n)*x(n,k+1,j)); 
wz2a(n,k)$(kn(k,n) and ord(k)=1)..       wz(n,k)=l=sum(j$jn(j,n),rho(j)*vp(n,k,j)); 
wz2b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
wz(n,k+1)=l=wz(n,k)+sum(j$jn(j,n),rho(j)*vp(n,k+1,j)); 
wz3(n,k)$(kn(k,n))..                     wz(n,k)=l=wtu(n)*(1-ze(n,k)); 
wz4a(n,k)$(kn(k,n) and ord(k)=1)..       
wz(n,k)+wtu(n)*ze(n,k)=g=sum(j$jn(j,n),rho(j)*vp(n,k,j)); 
wz4b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
wz(n,k+1)+wtu(n)*ze(n,k+1)=g=wz(n,k)+sum(j$jn(j,n),rho(j)*vp(n,k+1,j)); 
nz1a(n,k)$(kn(k,n) and ord(k)=1)..       nc(n,k)=l=nu(n)*u(n,k); 
nz1b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. nz(n,k)+nc(n,k+1)=l=nu(n)*u(n,k+1); 
nz2a(n,k)$(kn(k,n) and ord(k)=1)..       nz(n,k)=l=nc(n,k); 
nz2b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. nz(n,k+1)=l=nz(n,k)+nc(n,k+1); 
nz3(n,k)$(kn(k,n))..                     nz(n,k)=l=nu(n)*(1-ze(n,k)); 
nz4a(n,k)$(kn(k,n) and ord(k)=1)..       nz(n,k)+nu(n)*ze(n,k)=g=nc(n,k); 
nz4b(n,k)$(kn(k,n) and ord(k)<kmax(n)).. 
nz(n,k+1)+nu(n)*ze(n,k+1)=g=nz(n,k)+nc(n,k+1); 
vz1a(n,k)$(kn(k,n) and ord(k)<kmax(n) and ord(k)=1)..    
ts(n,k+1)=g=ts(n,k)+sum(j$jn(j,n),(tpr(n,j)+tra(n,j)+mdt(j)+dtr(j))*x(n,k,j)+vp(n,k,j)/f
in(n))+sum(j$jn(j,n), vp(n,k,j))/fout(n)+sum(j$jn(j,n), tap(n,j)*x(n,k+1,j))-bigMT*(1-
ze(n,k)); 
vz1b(n,k)$(kn(k,n) and ord(k)<kmax(n)-1)..               
ts(n,k+2)=g=ts(n,k+1)+sum(j$jn(j,n),(tpr(n,j)+tra(n,j)+mdt(j)+dtr(j))*x(n,k+1,j)+vp(n,
k+1,j)/fin(n))+(vz(n,k)+sum(j$jn(j,n),vp(n,k+1,j)))/fout(n)+sum(j$jn(j,n), 
tap(n,j)*x(n,k+2,j))-bigMT*(1-ze(n,k+1)); 
vz2a(n,k)$(kn(k,n) and ord(k)=1)..                       vz(n,k)=l=sum(j$jn(j,n), vp(n,k,j)); 
vz2b(n,k)$(kn(k,n) and ord(k)<kmax(n))..                 
vz(n,k+1)=l=(vz(n,k)+sum(j$jn(j,n),vp(n,k+1,j))); 
vz3(n,k)$(kn(k,n))..                                     vz(n,k)=l=vtu(n)*(1-ze(n,k)); 
vz4a(n,k)$(kn(k,n) and ord(k)=1)..                       
vz(n,k)+vtu(n)*ze(n,k)=g=sum(j$jn(j,n), vp(n,k,j)); 
vz4b(n,k)$(kn(k,n) and ord(k)<kmax(n))..                 
vz(n,k+1)+vtu(n)*ze(n,k+1)=g=(vz(n,k)+sum(j$jn(j,n),vp(n,k+1,j))); 
objfun.. TC=e=sum(m$(not tst(m)),dc(m)*(dtb(m)-etab(m)-
ad(m)))+sum((m,mc)$mm(m,mc), dc(m)*(dtb(mc)-etab(m)-toa(m)-
ad(m)))+sum(n,td(n)*fc(n))+sum((k,n)$kn(k,n),vc(n)*ze(n,k))+sum((m,n,j,k)$(kn(k,n) 
and jn(j,n) and jm(j,m) and nsu(m)<3),ddp(j)*(atr(n,k,j)-dd(j)))+sum((m,j)$(jm(j,m) 
and nsu(m)>2),ddp(j)*(atrj(j)-dd(j))); 
ts.lo(n,k)$kn(k,n)=etas(n); 
t.lo(j)$sum(m$(jm(j,m) and nsu(m)>2),jm(j,m))=eta(j); 
dtb.lo(m)=etab(m)+toa(m)+ad(m); 
atr.lo(n,k,j)$(kn(k,n) and jn(j,n))=DD(j); 
atrj.lo(j)=DD(j); 
z.up(n,k,j,jc)$(jn(j,n) and jn(jc,n) and jj(j,jc)  and kn(k,n)and ord(k)<kmax(n))=1; 
u.up(n,k)=1; 
delta.up(j,jc)=1; 
d.up(j,jc,jcc)=1; 
y.fx(j,jc)$(sum(p, (jp(j,p) and jp(jc,p))) and sum(c, (cj(c,j) and cj(c,jc))) and 
ord(j)<ord(jc) and sum(m, (jm(j,m) and jm(jc,m) and nsu(m)>2)))=1; 
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APPENDIX C: REDUCED FORMULATIONS FOR 

CHAPTER 6 

C.1 Formulation O1 

nk nkj
j

U x=∑  j ∈ JSn (6.1) 

L U
m nkj m

n k j

NS x NS≤ ≤∑∑∑  j ∈ JSn ∩ JBm (6.3) 

min[ , ]nj
nkj nkj c

j

WD
VP x PS

ρ
≤  j ∈ JSn (6.8a) 

nkj c
n k j

VP PS≤∑∑∑  j ∈ JSn ∩ JCc, c ∋ PSc ≤ LWm/ρc (6.8b) 

nkj j m
n k j

VP LWρ =∑∑∑   j ∈ JSn ∩ JBm  (6.10) 
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 j ∈ JSn, k < Kn (6.22b)  
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C.2 Formulation O2 
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VP LWρ =∑∑∑   j ∈ JSn ∩ JBm  (6.10) 
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( )

( )

1
nkj

nk j nkj nj nkjn k
j jnj

nk
j nkj nj nkj

j jn

VP
TS TS MDT x TPR x

FIN

VPDTR x TRA x
FOUT

+

⎛ ⎞
≥ + + +⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + +⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
 j ∈ JSn, k < Kn (6.22b)  

nk j nkj
j

TS ETA x≥∑  j ∈ JSn (6.23) 

1 1n n nj n j
j

TS ETAS TAP x≥ +∑  j ∈ JSn (6.24) 

1nk m m nkj
j

TS DTB TOA HT x
⎛ ⎞

≥ + − −⎜ ⎟
⎝ ⎠

∑   

 (m, m′ (j)) ∈ MM, j ∈ JSn ∩ S2 ∩ JBm′ (6.25) 

1nkj
m nk j nkj nkj

j jnj

VP
DTB TS MDT x HT x

FIN
⎛ ⎞ ⎛ ⎞

≥ + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑  j ∈ JSn ∩ JBm (6.33a) 

( )
1

nK

n nk m m m
n k m

TC VC U TCC DTB ETAB
=

= + −∑∑ ∑  (6.35a) 

 
 


