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Summary

Existing distributions for modeling fetal response data in developmental toxicology

have a tendency of understating the risk of having at least one malformed fetus

within a litter. As opposed to a shared probability extra-binomial model, we ad-

vocate a shared response model that allows a random number of fetuses within the

same litter to share a common response. An explicit formula is given for the proba-

bility function and graphical plots suggest that it does not suffer from the problem

of assigning too much probability to the event of observing no malformed fetuses.

The EM algorithm can be used to estimate the model parameters. Results of a

simulation show that the EM estimates are nearly unbiased and the associated con-

fidence intervals based on the usual standard error estimates have coverage close to

the nominal level. Simulation results also suggest that the shared response model

estimates of the marginal malformation probabilities are robust to misspecification

of the distributional form, but not so for the estimates of intralitter correlation

and the litter-level probability of having at least one malformed fetus. The pro-

posed model is fitted to a set of dose-response data. For the same dose-response



x

relationship, the fit based on the shared response distribution is superior to that

based on the beta-binomial, and comparable to the q-power distribution (Kuk,

2004, Applied Statistics 53, 369-386). An advantage of the shared response model

over the q-power distribution is that it is more interpretable and can be extended

more easily to the multivariate case. To illustrate this, a bivariate shared response

model is fitted to fetal response data involving visceral and skeletal malformation.

While the parametric distributions in the literature can be matched to have the

same marginal probability and intra-cluster correlation, they can be quite different

in terms of shape and higher order quantities. A sensible alternative is to fit

a saturated model (Bowman and George, 1995, Journal of American Statistical

Association 90, 871-879) using the EM algorithm proposed by Stefanescu and

Turnbull (2003, Biometrics 59, 18-24). The assumption of marginal compatibility

is often made to link up the distributions for different cluster sizes so that estimation

can be based on the combined data. Stefanescu and Turnbull proposed a modified

trend test to test this assumption. Their test, however, fails to take into account

the variability of an estimated null expectation and as a result leads to much

inflated p-values. This drawback is rectified in the thesis. When the data are

sparse, the probability function estimated using a saturated model can be very

jagged and some kind of smoothing is needed. We extend the penalized likelihood

method (Simonoff, 1983, Annals of Statistics 11, 208-218) to the present case of

unequal cluster sizes and implement the method using an EM type algorithm. In

the presence of covariates, we propose a penalized kernel method that performs



xi

smoothing in both the covariate and response space. The proposed methods are

illustrated using several data sets and the sampling and robustness properties of

the resulting estimators are evaluated by simulations.
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Chapter 1

Introduction

In this chapter, we first introduce clustered binary data and some of its applications.

More details are given to their application to the developmental toxicity studies.

Some special features of these data are then discussed. We finally give a review of

the different approaches proposed in the literature.

1.1 Clustered Binary Data and Its Applications

Clustered binary data are very common in many scientific and social studies. This

generally occurs in the situation where binary data are collected in clusters. For

example, clinical trials are often carried out in centers or groups of individuals. The

binary responses are then collected in clusters naturally. The clustering of binary

responses can also be easily found in economics, psychology, ophthalmological,
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otolaryngological and periodontal studies, genetic studies, complex surveys and

developmental toxicity studies. Depending on the application, a cluster could mean

a litter of animals, a household of individuals, or measurements of the same type

taken from different locations of the same individual. Among these applications,

developmental toxicity studies have received relatively more attention. The reason

may be attributed to the fact that they deal with the reproductive ability of human

beings. In this thesis, our emphasis is also on this application. Therefore, we will

give a detailed introduction to developmental toxicity studies.

In modern society, we are exposed to many harmful chemical compounds and

other environmental hazards, all of which can cause problems related to fertility

and pregnancy, birth defects, and developmental abnormalities. Therefore, regu-

latory agencies such as the U.S. Environmental Protection Agency (EPA) and the

Food and Drug Administration (FDA) are charged with the responsibility of pro-

tecting the public from drugs, chemical and other environmental exposures that

may contribute to these risks.

For ethical reasons, we cannot deliberately expose human beings to some spe-

cific chemical compounds to measure the risk. Moreover, these chemical compounds

in nature sometimes cannot be measured precisely. These difficulties make it nec-

essary to find an alternative source of evidence essential for identifying potential

developmental toxicants. Laboratory experiments in small mammalian species can

be controlled strictly and the results can be extrapolated to humans. Therefore, a
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series of developmental toxicity experiments developed quickly in the last several

decades.

In a typical developmental toxicity study, pregnant laboratory animals are ran-

domly assigned to receive a toxin at varying dose levels during the period of major

organogenesis. These animals are then sacrificed prior to term and the uterus is

removed and examined for resorptions, fetal deaths and fetal malformations, re-

sulting in clustered binary or multinomial data. The aim of such a study is to

assess the relationship between exposure to the toxic substance and the incidence

of developmental problems. Another important task is risk assessment and the

determination of an acceptable low-risk or safe dose level (Crump, 1984; Chen and

Kodell, 1989; Ryan, 1992).

1.2 Special Features of Clustered Binary Data

One of the classical hypotheses of the modelling of the binary data is the inde-

pendence between observations. However, this hypothesis is generally not valid

for clustered binary data. The objects in the same cluster generally share some

common characteristics. For example, in developmental toxicity studies, due to

the genetic similarity and the same treatment conditions, fetuses within the same

litter tend to behave more similarly than those from different litters. This has

been termed litter effect. As a consequence, littermates are likely to be dependent.
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Therefore, one distinguishing feature of clustered binary data is that responses in

the same cluster are correlated. This introduces one more source of variation be-

sides the variation assuming independence. This extra-binomial variation is often

called over-dispersion. Failure to account for litter effect and the over-dispersion it

induces will lead to estimates with overstated precision in the analysis of clustered

binary data.

Another natural assumption of clustered binary data is exchangeability. This

implies that each objective within a cluster has the same marginal probability

and the associations of any order are also constant within the same cluster. We

have known that for independent binomial modelling, the distribution is totally

determined by the marginal probability. For many parametric models accounting

for over-dispersion, the distributions are determined by marginal probability and

intra-litter association parameter. The nonparametric procedure by George and

Bowman (1995) models all orders of associations.

Exchangeability assumption makes it sufficient to report only the cluster sums

rather than the individual binary responses within clusters. For example, in de-

velopmental toxicity studies, what is recorded is the number of malformed fetuses

within a litter.
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1.3 Different Approaches

The analysis of correlated binary data is less well developed than the case of cor-

related continuous data because a truly satisfactory multivariate discrete distribu-

tion with as many nice properties as the multivariate normal distribution is yet to

be found. The different approaches proposed in the literature include the quasi-

likelihood method, GEE, a whole host of parametric models and the nonparametric

model. We will give a brief introduction to these approaches in this section. More

details can be found in subsequent chapters.

1.3.1 Quasi-likelihood and GEE

The main idea behind quasi-likelihood method (Wedderburn, 1974) is to avoid a

fully specified distribution for the response variable when one is uncertain about the

random mechanism by which the data were generated. Liang and Hanfelt (1994)

recommended quasi-likelihood with a common intra-litter correlation parameter be

used in the analysis of clustered binary data when the number of litters is small or

modest.

The generalized estimating equations (GEE) method is related to the quasi-

likelihood method in that no parametric assumptions need be made. It was first

proposed by Zeger and Liang (1986) and Liang and Zeger (1986). They only

made the first order assumption and the approach is often referred to as GEE1.
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It was then extended by incorporating second order assumptions (Liang, Zeger,

and Qaqish, 1992). This resulted in the GEE2 method. Bowman, Chen and

George (1995) used GEE to model jointly the mean parameters and the intra-litter

correlation coefficients as functions of dose levels.

A limitation of quasi-likelihood and GEE is that they cannot be used in a litter-

based approach to quantitative risk assessment. As pointed out by Faustman et al.

(1994) and Geys, Molenberghs, and Ryan (1999), it is important from a biological

perspective to take into account the health of the entire litter. Under the so-called

litter-based approach to quantitative risk assessment, a litter is said to be affected

if at least one fetus is adversely affected within a litter. Since quasi-likelihood and

GEE typically model only up to the first two moments, they cannot estimate the

risk that at least one litter-mate is affected.

As we are interested in assessing litter-based risk and these two methods can not

do this for us, we will emphasize models that can fully determine the distribution

of the fetal response data in this thesis. Some important parametric distributions

will be introduced in the following section.

1.3.2 Parametric Models

A popular distribution in the analysis of clustered binary data is the beta-binomial

distribution (Williams, 1975; Haseman and Kupper, 1979), under which the bino-

mial parameter p follows a beta distribution. Another model proposed by Conaway
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(1990) assumes that ln(− ln(p)) follows a log gamma distribution. Other distri-

butions that have been proposed include the correlated binomial distribution with

additive or multiplicative interactions (Kupper and Haseman, 1978; Altham, 1978),

the folded-logistic model (George and Bowman, 1995), and the extended folded-

logistic model (Kuk, 2004). Kuk (2004) also advocated a q-power distribution

which is particularly well suited for a litter-based approach to quantitative risk

assessment.

1.3.3 Nonparametric Model

Bowman and George (1995) proposed a saturated model for clustered binary data.

We also call this saturated model the nonparametric model (even though the num-

ber of parameters in the saturated model is still finite). Xu and Prorok (2003)

pointed out that in the case of varying cluster sizes, the maximum likelihood esti-

mators (MLE) derived by Bowman and George (1995) are actually not the MLEs

as claimed. Xu and Prorok then worked out what the MLEs should be and gave

a detailed analysis when the maximum cluster size is two. However, even for this

simple situation, there are five different scenarios and one of them still requires so-

lution of a nonlinear equation. They recommended using “uniroot” in S+ to solve

it numerically. For the general case, they recommend using the Newton-Raphson

method. Taking advantage of the statistical structure of this problem, Stefanescu

and Turnbull (2003) derived an EM algorithm for fitting the saturated model to
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exchangeable binary data by augmenting the data to make the cluster sizes equal.

This EM algorithm appears to be stable.

1.4 Aim and Organization of the Thesis

In this thesis, we propose a shared response model to analyze clustered binary data

parametrically. A generalization to the bivariate case is then studied. The marginal

compatibility assumption is very important for exchangeable binary data, we rectify

the modified trend test by Stefanescu and Turnbull (2003). Due to the sparseness

of the data, the saturated model by Bowman and George (1995) can exhibit a lot of

roughness, we extend the penalized likelihood method (Simonoff, 1983, Annals of

Statistics 11, 208-218) to the present case of unequal cluster sizes and implement

the method using an EM type algorithm. In the presence of covariates, we propose

a penalized kernel method that performs smoothing in both the covariate and

response space.

In chapter 2, we advocate a distribution first suggested by Lunn and Davies

(1998) and interpret the resulting model as a shared response model. The empha-

sis of Lunn and Davies was to propose a method for generating exchangeable binary

random variables. We work out explicitly the probability function for the number

of affected fetuses within a litter as well as explore the shape of this probability

function. The shared response model provides a very good fit to a real data set
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and the results of a simulation study conducted to look into the bias of the maxi-

mum likelihood estimators of the shared response model, the bias of the standard

error estimates and the coverage of the resulting confidence intervals are also pro-

vided. The effect of model misspecification is investigated too. We then consider

dose-response modelling for both the marginal fetal response probability and the

intra-litter association parameter. We derive an EM algorithm to be used to ob-

tain maximum likelihood estimates of the model parameters. The shared response

model was used to analyze a set of 2,4,5-trichlorophenoxiacetic acid data and to

estimate the safe dose. Comparison is made with alternative analyses based on the

beta-binomial and q-power distributions. In this chapter, we also generalize the

beta-binomial and shared response model to the bivariate case. It should be noted

that the method is not confined to the bivariate case. Both of these two models can

be generalized to higher dimensions in similar manner. Some properties of these

two bivariate models are proved. The methods are illustrated by fitting a real data

set.

In chapter 3, we first give a detailed introduction of the saturated model by

Bowman and George (1995) and the EM algorithm by Stefanescu and Turnbull

(2003). We give a new proof of the formula that links up litters with different

litter size via hypergeometric thinning. Not only is the new proof simpler and

more intuitive than the existing one based on induction, hypergeometric sampling

also provides us with a simple way to generate litter data with unequal litter sizes.

By fitting the saturated model, we can test the goodness of fit of any parametric
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model via the likelihood ratio test. This is illustrated by 6 real datasets. We con-

duct a simulation to illustrate the robustness of the distribution free property of

the saturated model estimates and in contrast show the lack of robustness of the

parametric estimates. Another simulation designed to study the behaviour of the

estimates when the marginal compatibility assumption is violated suggests that

the saturated model maximum likelihood estimates are somewhat robust to mod-

erate departure from the marginal compatibility assumption. We also give a new

nonparametric estimator of the intra-cluster parameter ρ based on the saturated

model. A simulation study shows that this new nonparametric estimator is on par

with the best estimators in the literature. Finally, we rectify the modified trend

test by Stefanescu and Turnbull (2003). The p-value of our new test statistic is

quite close to the bootstrap results.

In chapter 4, we find that the MLE of the saturated model can display a lot of

jaggedness when the data are sparse. We extend the penalized likelihood method

by Simonoff (1983) to the present case of unequal cluster sizes and implement the

method using an EM type algorithm. The sampling properties of estimators are

evaluated by a simulation study. The results show that penalized likelihood can

reduce the variability considerably.

In chapter 5, we first use the kernel weighted saturated model to analyze the

dose-response data from developmental toxicity studies. Data from different dose

groups are linked by the kernel weight. In this way, we smooth our data in the
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covariate space. A fit to the real data sets shows that the estimates of the marginal

fetal response probability and intra-litter correlation obtained using the kernel

method are fairly smooth functions of the dose level. However, the same fit re-

veals that the estimated probability functions are all very erratic and are in need

of smoothing. Thus we finally smooth our estimates in the response space as well

as across covariates by combining kernel smoothing with the penalty approach.

In chapter 6, we give the summary and conclusion of the thesis. Some possible

directions of further research are also discussed.
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Chapter 2

Shared Response Model

In this chapter, we first give a detailed literature review of the existing parametric

models. Based on Lunn and Davies’ (1998) method to generate exchangeable bi-

nary random variables, we derive the explicit form of the probability function and

interpret the resulting model as a shared response model. Some basic properties of

the model are then studied. We derive an EM algorithm to get the maximum like-

lihood estimates and apply the model to the risk assessment of the developmental

toxicity studies. At the end of this chapter, we generalize the beta-binomial and

shared response model to the bivariate case and prove some properties of these two

bivariate models.
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2.1 Introduction to Existing Models

A common way to account for the litter effect and extra-binomial variation in

clustered binary data is to assume that the intra-litter correlation is induced by

a random effect shared by all the fetuses within the same litter. Given this litter

specific random effect, the outcomes of the litter-mates are assumed to be condi-

tionally independent. The use of a beta distribution to model this random effect

results in the famous beta-binomial distribution (Williams, 1975; Haseman and

Kupper, 1979). Chen and Kodell (1989) used the beta-binomial distribution to

model data from teratology studies.

Another model proposed by Conaway (1990) assumes that ln(− ln(p)) follows

a log gamma distribution. This is essentially a random effect model with a log-

gamma latent distribution and a log-log link function instead of the commonly used

logistic function.

The above two models induced the positive intra-litter correlation indirectly

via a shared random effect. Kupper and Haseman (1978) and Altham (1978) de-

veloped correlated binomial distribution by directly assuming that the interactions

are additive. Altham (1978) also proposed a multiplicative generalization of the

binomial distribution by assuming that the interactions are multiplicative. This

gives rise to a two-parameter exponential family.

George and Bowman (1995) proposed a folded-logistic model. However, the
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folded-logistic model does not have additional parameters to model the correlation

structure. Kuk (2004) gave an extended folded-logistic model that allows more

flexibility in the value of the intra-litter correlation.

The beta-binomial distribution has dominated much of the statistical literature

of clustered binary data for many years. However, it has its limitations. As pointed

out by George and Bowman (1995) and Kuk (2004), the shape of a beta-binomial

probability function is often U-shaped, J-shaped or reverse J-shaped rather than

unimodal with mode near the expected value µ = np . Therefore, it could happen

that most of the probability mass is assigned to the two ends 0 and n, whereas

the supposedly “expected” value µ = np does not have much of the probability

mass and become highly improbable. When this is applied to the litter-based

quantitative risk assessment (Faustman et al., 1994 and Geys, Molenberghs, and

Ryan, 1999), the probability that no fetus within a litter is affected will tend to

be over-estimated. As a consequence, the risk that at least one fetus is affected

within a litter is often under-estimated under the beta-binomial model. Kuk (2004)

demonstrated that U-shaped probability function is a common occurrence for other

distributions as well and proposed a q-power distribution that is not prone to under-

estimating the risk that at least one fetus is affected within a litter. The q-power

distribution is particularly well suited for a litter-based approach to quantitative

risk assessment. Specifically, the risk of observing at least one adverse response

within a litter takes on a simple form under this distribution and can be reduced

further to a generalized linear model if a complementary log-log link function is
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used. However, the q-power distribution with parameters q = 1− p and γ for the

number of affected fetuses S within a litter of size n, given by

P(S = s) =

(
n

s

) s∑
i=0

(−1)i

(
s

i

)
q(n−s+i)γ

is just a mathematical construction based on the theory of completely monotone

functions and is not readily interpretable. Furthermore, it is not clear how the

q-power distribution can be extended to model multiple types of malformation.

In the next section, we will propose a distribution for exchangeable binary data

that has the same desirable property as the q-power distribution of not exaggerating

the probability that no fetus is affected, but yet is more interpretable and can be

extended more easily to the multivariate case. We advocate a distribution first

suggested by Lunn and Davies (1998). The emphasis of Lunn and Davies was

to propose a method for generating exchangeable binary random variables. As a

result, they did not work out the probability function explicitly, nor have they

considered dose-response modelling, estimation of parameters, or risk assessment;

problems that we will deal with in this chapter.

2.2 Shared Response Model

In this section, we will first introduce Lunn and Davies’s method and interpret the

resulting model as a shared response model. We also work out explicitly the prob-

ability function for the number of affected fetuses within a litter as well as explore
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the shape of this probability function. It is demonstrated that the shared response

model provides a very good fit to a real data set and the results of a simulation

study conducted to look into the bias of the maximum likelihood estimators of the

shared response model, the bias of the standard error estimates and the coverage

of the resulting confidence intervals are also provided. The effect of model misspec-

ification is also investigated. Finally, we consider dose-response modelling for both

the marginal fetal response probability and the intra-litter association parameter.

We show how the EM algorithm can be used to obtain maximum likelihood esti-

mates of the model parameters. The shared response model was used to analyze a

set of 2,4,5-trichlorophenoxiacetic acid data and to estimate the safe dose. Com-

parison is made with alternative analyses based on the beta-binomial and q-power

distributions.

2.2.1 Derivation of the Shared Response Distribution

Lunn and Davies (1998) proposed the following simple method to generate ex-

changeable binary random variables X1, X2, . . . , Xn. Let Y1, Y2, . . . , Yn be indepen-

dently distributed as Bernoulli(p). Additionally, Z is also a Bernoulli(p) random

variable independent of the Y ’s. Each Xj independently equals to Yj with proba-

bility 1− π and to Z with probability π. In other words,

Xj = (1− Uj) Yj + Uj Z (2.1)
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where U1, U2, . . . , Un are distributed as Bernoulli(π) independently of one another

and from Y1, Y2, . . . , Yn and Z.

We call this a shared response model for the following reason. Unlike the

standard beta-binomial or other extra-binomial models where fetuses within the

same litter share the same random probability p, it is the response Z that is shared

by a random subset of the fetuses. This model is more interpretable than the q-

power distribution because we can attribute the shared response to the combined

effect of all factors, both genetic and environmental, shared by the litter-mates.

Obviously, the fact that some of the X’s may actually share the same Z with certain

probability induces a positive correlation between them. It is straightforward to

show that P(Xj = 1) = p , Var(Xj) = p (1−p) and the pairwise correlation between

X1, X2, . . . , Xn is given by ρ = π2 .

Let S = X1 + X2 + · · ·+ Xn be the number of affected fetuses within a litter of

size n, and T = U1 + U2 + · · · + Un ∼ Bin(n, π) the number of fetuses sharing Z,

the probability function of S is given by

P(S = s) = P(Z = 0)P(S = s | Z = 0) + P(Z = 1)P(S = s | Z = 1)

= (1− p)
n−s∑
t=0

P(T = t)P(S = s | T = t, Z = 0)

+ p

s∑
t=0

P(T = t)P(S = s | T = t, Z = 1)

= (1− p)
n−s∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

s

)
ps(1− p)n−t−s

+ p

s∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

s− t

)
ps−t(1− p)n−s (2.2)
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In particular,

P(S = 0) = (1− p)
n∑

t=0

(
n

t

)
πt(1− π)n−t(1− p)n−t + p(1− π)n(1− p)n (2.3)

and P(S ≥ 1) = 1−P(S = 0) is the risk that at least one fetus is adversely affected

within a litter.

2.2.2 Comparison with Other Distributions

The probability function of S under the shared response model is plotted for

p = .1, .2 and ρ = .1, .15, .2 in Figure 2.1. These are typical values in toxi-

cological experiments. Also shown are the probability functions under the beta-

binomial, Conaway’s log gamma random effects and the q-power models with the

same marginal probability and pairwise correlation. It can be seen that the proba-

bility functions for Conaway’s and beta-binomial models are almost identical. The

probability of observing no adversely affected fetuses is much larger under these two

distributions than the other two distributions. The probabilities of zero response

are comparable under the shared response model and the q-power distribution.

Between the two, the shared response model has the advantage of being more

interpretable as the q-power distribution is just a mathematical construction.

We compare next the fits provided by the four distributions to a real data set,

the E1 data (Brooks et al., 1997) for the numbers of dead fetuses in litters of mice

from untreated experimental animals. The maximum likelihood estimates of the
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Figure 2.1: A comparison of the probability function for litter size 15 under the

shared response, q-power, beta-binomial and Conaway’s model
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Table 2.1: Comparing the fits of four distributions to the E1 data

affected fetuses affected litters

Model p̂ ρ̂ Log-lik Obs. Exp. Obs. Exp.

beta-binomial .0896 .0666 -282.65 211 211.12 115 111.29

Conaway .0893 .0688 -282.04 211 210.25 115 111.26

q-power .0935 .1449 -282.59 211 220.11 115 116.30

Shared response .0898 .0820 -278.53 211 211.57 115 116.22

marginal response probability p and intra-litter correlation ρ under the four models

are given in Table 2.1, together with the maximized log-likelihood, as well as the

observed and expected numbers of affected fetuses and litters. Recall that a litter

is said to be affected if at least one of the fetuses in the litter is affected and so the

expected number of affected litters is

17∑
n=1

mnP(S ≥ 1 | n; p̂, ρ̂) =
17∑

n=1

mn{1− P(S = 0 | n; p̂, ρ̂)} ,

where mn is the number of litters of size n in the E1 data set, and P(S = 0 |

n; p̂, ρ̂) is the probability of observing no dead fetuses in a litter of size n under the

respective model evaluated at the maximum likelihood estimates of p and ρ . The

maximum likelihood estimates for the shared response model are obtained by the

EM algorithm, which will be described in detail later in the more general setting

of dose-response modelling. It can be seen from Table 2.1 that the shared response

model provides the best fit to the E1 data in terms of the likelihood value as well

as matching the expected numbers of affected fetuses and litters to that actually

observed. As expected, the beta-binomial distribution and Conaway’s model give

similar fits and both under-estimate the number of affected litters because they
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assign too much probability to zero. The q-power distribution fits the number of

affected litters well, but at the expense of over-estimating the number of affected

fetuses. The shared response model does well in both.

2.2.3 Simulation Results

To look into the bias of the maximum likelihood estimators of the shared response

model, the bias of the standard error estimates and the coverage of the resulting

confidence intervals, a simulation study is conducted. We consider the cases of

L=50, 100 and 200 litters, with litter sizes generated according to the distribution

given in Table 6.5 of Aerts et al. (2002). For each combination of p = .1, .15, .2

and ρ = .1, .2 . L litters of data are generated according to the shared response

model. For each set of data, the maximum likelihood estimates p̂ and ρ̂ of p and

ρ are computed together with the estimated standard errors ŜEp and ŜEρ , which

are obtained by inverting the observed information matrix (Louis, 1982). This is

replicated 200 times. Table 2.2 reports the bias of p̂ and ρ̂ , the averages of ŜEp

and ŜEρ , as well as the coverage of the confidence intervals p̂ ± 1.96 ŜEp and

ρ̂ ± 1.96 ŜEρ . Assuming asymptotic normality, the nominal coverage should be

0.95. From Table 2.2, we can see that the estimated bias of p̂ and ρ̂ are quite small

relative to their standard errors ŜEp/
√

200 and ŜEρ/
√

200 . We can also see that

the bias tends to decrease as the number of litters increases, particularly for ρ̂ .

The estimated standard errors of p̂ and ρ̂ obtained from Louis’s formula appear to
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Table 2.2: Bias of maximum likelihood estimators under shared response model and

coverage of confidence intervals

L=50 L=100 L=200

p̂ ρ̂ p̂ ρ̂ p̂ ρ̂

True values .10 .10 .10 .10 .10 .10

Bias -.00022 -.00247 .00078 -.00262 -.00032 -.00018

SE .01607 .05000 .01331 .03261 .00795 .02292

Ave(ŜE) .01686 .04420 .01189 .03114 .00855 .02319

Coverage .945 .895 .915 .920 .945 .930

True values .10 .20 .10 .20 .10 .20

Bias -.00086 -.00339 .00086 -.00301 -.00036 .00047

SE .01852 .06742 .01489 .04700 .00917 .03196

Ave(ŜE) .01912 .06131 .01345 .04295 .00961 .03136

Coverage .930 .930 .935 .930 .945 .955

True values .15 .10 .15 .10 .15 .10

Bias -.00083 -.00416 .00039 -.00085 -.00018 .00031

SE .02070 .03890 .01463 .02758 .01012 .01964

Ave(ŜE) .02021 .03793 .01431 .02675 .01028 .01970

Coverage .925 .910 .940 .910 .970 .945

True values .15 .20 .15 .20 .15 .20

Bias -.00159 -.00498 .00056 -.00162 -.00050 .00048

SE .02351 .05704 .01691 .03800 .01127 .02768

Ave(ŜE) .02284 .05098 .01617 .03571 .01154 .02595

Coverage .950 .900 .955 .925 .955 .905

True values .20 .10 .20 .10 .20 .10

Bias -.00076 -.00384 .00037 -.00134 -.00006 .00091

SE .02286 .03359 .01620 .02484 .01147 .01662

Ave(ŜE) .02277 .03409 .01612 .02407 .01159 .01761

Coverage .950 .925 .960 .940 .965 .955

True values .20 .20 .20 .20 .20 .20

Bias -.00140 -.00348 .00124 -.00012 -.00012 .00146

SE .02526 .04328 .01938 .03426 .01301 .02255

Ave(ŜE) .02598 .04540 .01835 .03166 .01306 .02279

Coverage .965 .945 .950 .935 .960 .945
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do well and the resulting confidence intervals for p have reasonable coverage. The

confidence interval for ρ slightly undercovers for the case of L=50 litters but the

coverage improves as L increases.

It is also interesting to look at the performance of the maximum likelihood esti-

mates obtained under the assumption of a shared response model when in fact the

data are generated from another distribution. To facilitate this, we simulate data

from the beta-binomial and q-power distribution using the same six configurations

for p and ρ as in Table 2.2 and L=100 . In addition to p and ρ , we also estimate

the probability that at least one fetus is affected, P(S ≥ 1) , for a litter of size 15.

Regardless of which model we used to generate the data, the estimates are obtained

by assuming a shared response model. In particular, P(S ≥ 1) = 1 − P(S = 0) is

estimated by substituting the maximum likelihood estimates of p and ρ into (2.3).

The results based on 200 replications are shown in Table 2.3. It can be seen that

the bias in estimating p is quite small even though the data are generated from the

beta-binomial and q-power distribution rather than the assumed shared response

model. The bias in estimating p is typically no more than 5% of the true value

when ρ = .1 , and around 10% when ρ = .2 . As for the estimation of ρ , Table 2.3

shows that there is a negative estimation bias, and the bias is more severe when the

true distribution is beta-binomial. This is consistent with Figure 2.1, which shows

that for the same values of p and ρ , the shared response model is closer to the

q-power than the beta-binomial distribution. We consider finally the estimation

of P(S ≥ 1) . Generally speaking, P(S ≥ 1) increases with p just as we expected.
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Table 2.3: Bias of maximum likelihood estimators for shared response model under

model misspecification

True model q-power beta-binomial

p̂ ρ̂ P̂(S ≥ 1) p̂ ρ̂ P̂(S ≥ 1)

True values .10 .10 .7221 .10 .10 .6120

Bias .00503 -.01457 -.0031 -.00622 -.02725 .0726

SE .01910 .06658 .0371 .01214 .02298 .0477

True values .10 .20 .6422 .10 .20 .4954

Bias .00971 -.02074 .0184 -.01423 -.06295 .1033

SE .02370 .09177 .0443 .01423 .03474 .0577

True values .15 .10 .8597 .15 .10 .7645

Bias .00633 -.01407 -.0059 -.00406 -.01932 .0703

SE .02135 .05193 .0252 .01368 .02100 .0314

True values .15 .20 .7917 .15 .20 .6471

Bias .01533 -.01689 .0162 -.01602 -.05238 .1106

SE .02871 .07548 .0318 .01898 .03595 .0490

True values .20 .10 .9314 .20 .10 .8597

Bias .00783 -.01365 -.0053 -.00300 -.01681 .0552

SE .02350 .04333 .0147 .01691 .02152 .0195

True values .20 .20 .8811 .20 .20 .7560

Bias .02077 -.01364 .0118 -.01231 -.04184 .1065

SE .03270 .06436 .0206 .02116 .03239 .0328
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It decreases with ρ as a result of P(S = 0) increasing with ρ when the responses

of litter-mates become more and more similar. Since P(S ≥ 1) is a higher order

probability that depends on the distributional form in addition to p and ρ , the

estimation of P(S ≥ 1) is expected to be model-sensitive. A clue is given in Fig-

ure 2.1, which shows that when p and ρ are matched, the shared response and the

q-power probability functions pretty much start at the same P(S = 0) , whereas

the corresponding beta-binomial distribution typically has a much larger P(S = 0) ,

and hence smaller P(S ≥ 1) . This explains why the shared response model tends

to over-estimate P(S ≥ 1) when the true model is actually the beta-binomial dis-

tribution, but there is not much bias if the data are generated from the q-power

distribution.

2.2.4 Dose Response Modelling and EM Algorithm

In a developmental toxicity study, there are typically a control group and 3 or 4 dose

groups, with 20 to 30 litters in each. The observed data are ni , si , di (i = 1, . . . , m) ,

where ni is the number of fetuses in litter i, si the number of affected fetuses in

litter i, di the dose level, and m the total number of litters. A typical dose response

model specifies how the marginal fetal response probability p and the intra-litter

association parameter ψ , which could be the pairwise correlation or odds ratio,

depend on the dose level d. A popular choice is the generalized linear relationships

g(p) = β0 +β1d and h(ψ) = α0 +α1d , where g(.) and h(.) are appropriately chosen
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link functions. As far as estimation via the EM algorithm is concerned, we do not

need to confine ourselves to generalized linear relationships. We can assume more

generally that

p = p(d; β) (2.4)

and ψ = ψ(d; α) are arbitrary parametric functions of dose. To fit the shared

response model (2.1), which is parameterized in terms of p and π , we also need to

express π as a function of dose. Since ρ = π2 under the shared response model, we

have π =
√

ψ(d; α) if ψ = ρ is the pairwise correlation. If ψ(d; α) is the pairwise

odds ratio, then

π = π(d; α, β) (2.5)

will depend on β as well as α , because the pairwise correlation ρ , and hence also

π , is a function of both the marginal response probability and the odds ratio. In

what follows, we will assume the more general functional form (2.5).

We now describe how the EM algorithm can be used to obtain the maximum

likelihood estimates of the shared response model given by (2.2), (2.4) and (2.5),

based on the observed data ni , si , di (i = 1, . . . , m) . To apply the EM, which is

an algorithm for obtaining maximum likelihood estimates based on the observed

“incomplete” data, we define the “complete” data as ni , si , di , zi , ti (i = 1, . . . , m) ,

where zi is the value of the unobserved Z in (2.1) for litter i, and ti = Ui1+· · ·+Uini

is the number of fetuses in litter i that share the response zi . The fact that ti

fetuses share the same response zi means that there must be si− tizi 1’s among the
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remaining ni − ti fetuses that do not share zi . It follows that the “complete data”

likelihood is simply a product of binomial likelihoods and hence the “complete

data” log-likelihood is

`c =
m∑

i=1

{ti log(πi) + (ni − ti) log(1− πi) + zi log(pi) + (1− zi) log(1− pi)

+(si − tizi) log(pi) + (ni − ti − si + tizi) log(1− pi)}

where pi = p(di; β) and πi = π(di; α, β) .

The E-step of the EM algorithm involves taking conditional expectation of the

“complete data” log-likelihood given the observed data D = {ni , si , di (i = 1, . . . , m)}

to get

E(`c | D) =
m∑

i=1

[
E(ti | D) log(πi) + {(ni − E(ti | D)} log(1− πi)

+{E(zi | D) + si − E(tizi | D)} log(pi) + {1− E(zi | D)} log(1− pi)

+{ni − E(ti | D)− si + E(tizi | D)} log(1− pi)
]

All the conditional expectations E(ti | D) , E(zi | D) and E(tizi | D) that appear

in E(`c | D) are evaluated at the current parameter estimates α̂, β̂ and can be

computed using the conditional probabilities

P(Zi = zi, Ti = ti | D) = P(Zi = zi, Ti = ti | Si = si)

=
pzi

i (1− pi)
(1−zi)

(
ni

ti

)
πti(1− πi)

(ni−ti)
(

ni−ti
si−tizi

)
p

(si−tizi)
i (1− pi)

(ni−ti−si+tizi)

P(Si = si)

if 0 ≤ si − tizi ≤ ni − ti and zero otherwise. These conditional probabilities are

evaluated at the current estimates pi = pi(di; β̂) and πi = πi(di; α̂, β̂) . Note that
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the denominator of the above expression is just P(Si = si) given by (2.2) and the

constraint 0 ≤ si − tizi ≤ ni − ti has already been incorporated.

At the M-step of the EM algorithm, the imputed log-likelihood E(`c | D) is

maximized to update the values of α̂ and β̂ . This can be implemented using

the Newton-Raphson algorithm. Beginning with a set of initial estimates, the EM

algorithm is iterated until convergence is reached. Standard errors can be computed

by inverting the observed information matrix which is obtained by subtracting the

“missing information” from the “complete information” (Louis, 1982).

We now consider quantitative risk assessment. Let r(d) be a suitably chosen

function that relates the risk of observing an adverse effect, such as death, resorp-

tion or malformation, to the exposure level of a toxic substance. In a litter-based

approach, interest is focused on P(S ≥ 1) = 1 − P(S = 0) , the probability that

at least one fetus is affected, where P(S = 0) for a litter of size n is given by

(2.3) under the shared response model with parameters p and π . Since p and

π are parametric functions of the dose level d according to (2.4) and (2.5), so is

P(S ≥ 1) = P(S ≥ 1 | d, n; α, β). Because P(S ≥ 1) depends on the litter size n

in addition to the exposure level d, it is customary to weight P(S ≥ 1 | d, n; α, β)

according to the empirical relative frequency f(n) of the litter sizes across all dose

groups. Thus a suitable risk function is

r(d; α, β) =
∞∑

n=1

f(n)P(S ≥ 1 | d, n; α, β).
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Consider the excess risk over background,

r∗(d; α, β) = r(d; α, β)− r(0; α, β)

=
∞∑

n=1

f(n){P(S ≥ 1 | d, n; α, β)− P(S ≥ 1 | 0, n; α, β)}. (2.6)

Crump (1984) defined the benchmark dose, BMDε as the dose level that produces

an excess risk of ε . Typical choices of ε are .0001, .001, .01, and .05, depending

on how big an excess risk is regarded as tolerable. In this chapter, we use ε =

.01. A point estimate B̂MDε of the benchmark dose is obtained by solving the

equation r̂∗(d) = ε , where r̂∗(d) = r∗(d; α̂, β̂) is the estimated excess risk function

that results from replacing the parameters α and β in r∗(d; α, β) by the estimates α̂

and β̂ . In the presence of sampling uncertainty, it is more meaningful to construct

a 95% lower confidence limit for BMDε than to calculate just a point estimate.

The conventional lower confidence limit based on asymptotic normality is given

by B̂MDε − 1.645
{

V̂ar(B̂MDε)
}1/2

, where V̂ar(B̂MDε) is the estimated variance

of B̂MDε. A drawback of this approach is that it might yield unstable (Catalano,

Ryan, and Scharfstein, 1994) as well as negative estimates. Kimmel and Gaylor

(1988) proposed an alternative way to obtain a lower confidence limit for BMDε via

test inversion. To be specific, the confidence interval consists of all those dose levels

d such that the hypothesis H : r∗(d) = ε is not rejected in favour of the one-sided

alternative Ha : r∗(d) < ε at level 0.05. A little algebra shows that the resulting

95% confidence interval for the benchmark dose BMDε consists of all those d such

that

r̂U(d) = r∗(d; α̂, β̂) + 1.645
[
V̂ar{r∗(d; α̂, β̂)}

]1/2

≥ ε (2.7)
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where V̂ar{r∗(d; α̂, β̂)} can be obtained from the variance-covariance matrix of α

and β using delta method. Solving r̂U(d) = ε for d leads to the so-called lower

effective dose LEDε . Since r̂U(d) is the 95% upper confidence limit for the excess

risk r∗(d), (2.7) tells us that a 95% confidence interval for the benchmark dose

BMDε can be obtained by taking all those dose levels d such that the 95% upper

confidence limit for r∗(d) covers ε. A graphical illustration of this is given in Kuk

(2003).

2.2.5 Analysis of the 2,4,5-T Data

In a study conducted at the U.S. National Center for Toxicological Research, preg-

nant mice from several strains were given daily doses of the herbicide 2,4,5-T from

day 6 to day 14 of gestation. For each female mouse, the number of implantation

sites, fetal deaths, resorptions and cleft palate malformations were recorded. Fur-

ther details of this study can be found in Holson et al. (1991). In keeping with

most published analyzes of the data set, we consider only data obtained from the

out-bred strain CD-1 and use a combined endpoint of death, resorption or malfor-

mation. For this strain, there were six dose groups corresponding to exposure levels

of 0, 30, 45, 60, 75 and 90 mg/kg of 2,4,5-T. A listing of the data can be found

in George and Bowman (1995). As noted by Dominici and Parmigiani (2001), this

data set is quite hard to model due to the presence of zero inflation, n-inflation,

over-dispersion and large kurtosis. Furthermore, the extent of departure from the
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binomial model varies significantly with dose.

Kuk (2004) gave a new analysis of the 2,4,5-T data based on the q-power dis-

tribution which resulted in superior fit when compared with other distributions

such as the beta-binomial, fold-logistic (George and Bowman, 1995), as well as the

generalized estimating equations approach (Bowman et al., 1995) used previously

to analyze this set of data. It was shown (Kuk, 2004, Figure. 3) that a reasonable

dose-response relationship is

log{− log(1− p)} =





β00 if d = 0

β0 + β1d if d ≥ 30

(2.8)

so that p is linear on the complementary log-log scale for all dose groups used in

the study except for the control group. One might notice that the complementary

log-log link is also the natural link function for Conaway’s model with log-gamma

random effects and claim that the latter model is simpler and analytically more

tractable. Note, however, that in Conaway’s model, it is the conditional probabil-

ities given the random effects that are linear on the log-log scale rather than the

marginal probabilities. Furthermore, we have seen from Figure 2.1 and Table 2.1

that Conaway’s model behaves very much like the beta-binomial model. For these

reasons, we will not fit Conaway’s model to the 2,4,5-T data. As for the dose-

response modelling of the association parameter, we refer again to Figure 3 of Kuk

(2004) which indicates that the log odds ratio is approximately linear in the dose

level, hence

log(ψ) = α0 + α1d. (2.9)
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Table 2.4: Generalized estimating equations estimates of the response probabilities

and intra-litter correlations under dose-response relationships (2.8) and (2.9) for

the 2,4,5-T data.

number of affected fetuses

Dose group p̂ ρ̂ Observed Expected

Control .0731 .0137 59 58.65

30 mg/kg .1374 .2279 124 130.84

45 mg/kg .2696 .4346 338 303.57

60 mg/kg .4870 .5870 383 392.55

75 mg/kg .7579 .6385 372 365.32

90 mg/kg .9509 .5277 242 241.53

In order to compare the beta-binomial, the q-power, and the shared response model

on equal footing, we obtain parameter estimates assuming only the dose-response

relationships (2.8) and (2.9) without making further distributional assumptions.

This is done using the method of generalized estimating equations proposed by Lip-

sitz, Laird, and Harrington (1991) specifically for the case where odds ratio is used

as the measure of association. The estimates obtained in this way do not favor any

particular distribution. The estimates are β̂00 = −2.578 (.127) , β̂0 = −3.419 (.206),

β̂1 = 0.0502 (.00364), α̂0 = 0.189 (.641) and α̂1 = 0.0417 (.0151). Table 2.4 displays

the estimates of the fetal response probability p, the intra-litter correlation ρ , as

well as the expected number of affected fetuses for various dose groups. Since the

same estimates of p are used for all distributions, the expected numbers of affected

fetuses remain the same. When it comes to estimating the number of affected

litters, however, the difference in distributional assumptions begins to show be-

cause the probability that a litter is affected is a “union” probability that cannot
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Table 2.5: Estimated number of affected litters for the 2,4,5-T data.

Dose group Observed beta-binomial q-power shared response

Control 40 38.80 39.94 39.21

30 mg/kg 56 45.42 55.10 52.93

45 mg/kg 80 61.58 72.44 73.17

60 mg/kg 69 57.69 62.54 64.31

75 mg/kg 42 40.30 41.41 42.13

90 mg/kg 24 24.80 24.87 24.90

be determined from the first two moments alone. Table 2.5 displays the expected

number of affected litters for each dose group under the various models. Just like

the case of the E1 data, the beta-binomial distribution underestimates the numbers

of affected litters because it assigns too much probability to zero. The q-power and

shared response models give better and comparable estimates of the number of

affected litters.

We now turn to the determination of safe dose. A complication is that (2.8)

does not really give the dose-response relationship in the range 0 ≤ d < 30. While

the data seem to indicate that p is linear on the complementary log-log scale for

d ≥ 30, we have no data to tell us how far we can extend the linear relationship to

the range between 0 and 30. A plausible solution is to assume that log{− log(1−p)}

is piecewise linear with a changepoint somewhere between 0 and 30. Figure 2.2

demonstrates the effect of altering the changepoint from 30 (solid line) to points

less than 30 (broken lines). By comparing the slope of the solid line with that

of the broken lines, it can be seen that p increases most rapidly with dose in the
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Figure 2.2: Group-specific GEE estimates in filled circles and piecewise linear GEE

fits of the fetal response probabilities on the complementary log-log scale with dif-

ferent changepoints for the 2,4,5-T data
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Table 2.6: Litter-based determination of benchmark and lower effective dose in

mg/kg from the 2,4,5-T data

q-power shared response beta-binomial

BMD.01 1.86 2.82 N.A.

LED.01 1.25 1.34 N.A.

neighborhood of zero when the changepoint is set at d = 30, and this should lead

to conservative estimate of the safe dose. Hence we will set the changepoint at 30

to result in the following piecewise linear relationship

log{− log(1− p)} =





β00 + β01d if d < 30

β0 + β1d if d ≥ 30

(2.10)

where

β01 =
β0 + 30β1 − β00

30

is the slope of the line connecting the point (0, β00) to (30, β0 + 30β1) in the first

segment. Note that β01 is a function of β = (β00, β0, β1) rather than a free pa-

rameter to ensure continuity of the two line segments. With (2.10) in place of

(2.4), and (2.9) in place of (2.5), the procedure for finding benchmark and lower

effective dose described at the end of last section can be applied. The procedure

remains applicable if we assume another distribution other than the shared re-

sponse model. The only difference is that the form of P(S ≥ 1) is changed and

hence r̂∗(d) = r∗(d; α̂, β̂) given by (2.6) is another function of α̂ and β̂. Table 2.6

shows the litter-based benchmark dose and lower effective dose for ε = .01 esti-

mated from the 2,4,5-T data using the q-power and shared response models when
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the dose-response relationships (2.9) and (2.10) are assumed. The LED estimates

given by the two distributions are quite comparable. It is interesting to note that

estimates of BMD.01 and LED.01 are not available under the beta-binomial model,

as can be seen from Figure 2.3, where the estimated excess risk is seen to increase

to a maximum of around .008 at d = 10 without ever reaching .01 and then begin

to decrease. In fact, the litter-based risk at d = 23 onwards is even lower than the

baseline risk. This counter intuitive result can be explained by the following. As

the dose level increases, the fetus response probability increases, but so is the intra-

litter correlation, see Table 2.4. As noted before, the beta-binomial distribution

has the tendency of inflating the probability of zero, given by

P (Sn = 0) =

n−1∏
r=0

(1− p + rθ)

n−1∏
r=0

(1 + rθ)

when the intra-litter correlation ρ = θ/(1 + θ) is large. Thus the effect of the

increase in p in reducing P(S = 0) under the beta-binomial model is offset by the

increase in ρ so that eventually P(S = 0|d) > P(s = 0|0) and hence the litter-based

excess risk

r∗(d) =
∞∑

n=1

f(n){P(S ≥ 1 | d, n)− P(S ≥ 1 | 0, n)}

=
∞∑

n=1

f(n){P(S = 0 | 0, n)− P(S = 0 | d, n)}.

becomes negative as shown in Fig 2.3.
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Figure 2.3: Estimated litter-based excess risk under the beta-binomial model for the

2,4,5-T data
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2.3 Bivariate Models

Until now, we have proposed methods to model the univariate clustered binary

data. However, as we have mentioned, clustered multinomial data are also very

common in developmental toxicity studies. In this section, we will generalize the

Beta-binomial and shared response models to model the bivariate clustered binary

data. It should be noted that the the methods proposed here are not confined to

the bivariate case. The bivariate beta-binomial model is just a special case of the

Dirichlet-multinomial distribution and the shared response distribution can also be

easily generalized to higher dimensions in similar manner.

2.3.1 Bivariate Beta-binomial Model

Recall that beta-binomial distribution assumes that marginal probability follows

a beta distribution. A natural idea is to find a multivariate analogue of the beta

distribution to generalize the beta-binomial distribution to the multivariate case.

Mosimann (1962) did this generalization.

In the multinomial distribution, given by

m(v1, . . . , vk−1; n, π1, . . . , πk−1)

=

(
n

v1, . . . , vk−1, n−
k−1∑
i=1

vi

)
πv1

1 · · ·πvk−1

k−1 (1−
k−1∑
i=1

πi)
n−

k−1∑
i=1

vi
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Mosimann assumed that the probabilities π1, . . . , πk−1 are now positive random

variables and the distribution function is given by

b(π1, . . . , πk−1; l1, . . . , lk) =

Γ(
k∑

i=1

li)

k∏
i=1

Γ(li)

πl1−1
1 · · ·πlk−1−1

k−1 (1−
k−1∑
i=1

πi)
lk−1

where all l ’s are constants greater than 0. Mosimann called this distribution the

multivariate β-distribution, which is also known as the Dirichlet distribution. The

Dirichlet-Multinomial distribution is then given by

f(v1, . . . , vk−1; n, l1, . . . , lk)

=

∫
· · ·

∫
m(v1, . . . , vk−1; n, π1, . . . , πk−1)b(π1, . . . , πk−1; l1, . . . , lk)dπ1 · · · dπk−1

=

(
n

v1, . . . , vk−1, n−
k−1∑
i=1

vi

)
{

Γ(
k∑

i=1

li)

}{
k−1∏
i=1

Γ(vi + li)

}{
Γ(n−

k−1∑
i=1

vi + lk)

}

{
k∏

i=1

Γ(li)

}{
Γ(n +

k∑
i=1

li)

}

An alternative parametrization is to let

pi =
li

k∑
j=1

lj

, i = 1, . . . , k − 1 and θ =
1

k∑
j=1

lj

.

The Dirichlet-Multinomial distribution can be written as

f(v1, . . . , vk−1; n, p1, . . . , pk−1, θ)

=

( n

v1, . . . , vk−1, n−
k−1∑
i=1

vi

)

[
k−1∏
i=1

{
vi−1∏
r=0

(pi + rθ)

}]




n−
k−1∑
i=1

vi−1∏
r=0

(1−
k−1∑
i=1

pi + rθ)





n−1∏
r=0

(1 + rθ)
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Let ρ = θ
θ+1

. It is easy to see that





E(Vi) = npi

Var(Vi) = npi(1− pi) {1 + (n− 1)ρ}

Cov(Vi, Vj) = −npipj {1 + (n− 1)ρ}

It is easy to show that the marginal distribution of a Dirichlet-Multinomial

distribution is a beta-binomial distribution. An even more general result is that

Wm =
m∑

i=1

Vi, for any m = 1, . . . , k, follows a beta-binomial distribution too. This

is because
m∑

i=1

πi follows a beta distribution and the conditional distribution of

m∑
i=1

Vi given
m∑

i=1

πi follows a binomial distribution.

Now let’s focus on the bivariate case. Let n00, n01, n10, n11 be the number of

fetuses within a litter of size n that are non-affected, type II malformed only,

type I malformed only and affected by both, and π00, π01, π10, π11 be their re-

spective probabilities. If (π00, π01, π10, π11)
T follows a Dirichlet distribution, then

(n00, n01, n10, n11)
T follows a Dirichlet-Multinomial distribution. Let S1 = n10 + n11

be the number of fetuses that are affected by type I malformation. Assuming

E(πij) = pij for i, j = 0, 1, p1 = p10 + p11 is the probability that a fetus is affected

by type I malformation and S1 follows a beta-binomial distribution with parameter

p1. Similarly, S2 = n01 + n11 follows a beta-binomial distribution with parameter

p2 = p01 + p11 and so we have a bivariate beta-binomial model. To take into ac-

count the bivariate nature of the problem, a more meaningful set of parameters

are (p1, p2, ψ, ρ), where ψ =
p11p00

p01p10

is the odds ratio, which is preferred to the cor-
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Table 2.7: Estimated number of affected litters for the DEHP data by malformation

type based on bivariate beta-binomial model.

Visceral Skeletal Either

Dose group Observed Expected Observed Expected Observed Expected

Control 4 N.A. 2 N.A. 6 N.A.

44 mg/kg 1 N.A. 1 N.A. 2 N.A.

91 mg/kg 11 10.45 6 5.90 15 13.58

191 mg/kg 11 10.66 13 11.76 15 13.99

292 mg/kg 9 8.27 7 8.18 9 8.91

relation because it is not constrained by the values of the marginal probability p1

and p2. In the presence of a covariate x, one may consider, for example, a logistic

regression model 



logit(p1) = α1 + β1x

logit(p2) = α2 + β2x

log(ψ) = α3 + β3x

log(1+ρ
1−ρ

) = α4 + β4x

for the dose-response data.

Finally, we use a real data set to illustrate the bivariate beta-binomial model.

We use the DEHP data set listed in Table 3 of Lefkopoulou and Ryan (1993). At

each dose level of di(2-ethylhexyl)-phthalate (DEHP), the table presents the num-

bers of fetuses that were found to have various combinations of three malformation

types. Here we consider two malformation types: visceral and skeletal. At each

dose level, we fit a bivariate beta-binomial model using the vglm command in the

VGAM package, which is described in Yee and Wild (1996). Table 2.7 reports the
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observed and expected numbers of litters affected with at least one viscerally mal-

formed fetus, at least one skeletally affected fetus, and at least one malformed fetus

of either types. It can be seen that the bivariate beta-binomial model provides a

satisfactory fit to the observed number of affected litters for the high dose group.

As for the control group and the first dose group, no estimation can be obtained.

In fact, no fetus is affected by both the skeletal and visceral malformation in any

of these two groups and the VGAM package can not fit the Dirichlet-Multinomial

distribution when there are cells with zero counts. We can not figure out how to

modify the VGAM package to cope with zero counts. However, in the next section,

when we fit the same data set using the bivariate shared response model, we write

our own code and get estimations for all the groups.

2.3.2 Bivariate Shared Response Model

Let Xj1, Xj2 indicate whether the jth fetus in a litter suffers from, say, visceral and

skeletal malformation. Let Xj = (Xj1, Xj2)
T , the bivariate analogue of (2.1) is

evidently

Xj = (1− Uj) Yj + Uj Z

where Yj = (Yj1, Yj2)
T , Z = (Z1, Z2)

T , Uj are mutually independent random

variables and U1, U2, . . . , Un are identically distributed as Bernoulli(π) . Thus

π is the probability that a fetus within the litter will take on the shared re-

sponse Z = (Z1, Z2)
T . Assuming that the vectors Y1, Y2, . . . , Yn and Z are
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independent and identically distributed with common mean p = (p1, p2)
T and

correlation corr(Yj1, Yj2) = corr(Z1, Z2) = φ , it is straightforward to show that

P(Xj1) = p1 , P(Xj2) = p2 and the correlation structure induced on the observed

X1, X2, . . . , Xn are





corr(Xj1, Xj2) = φ

corr(Xj1, Xk1) = corr(Xj2, Xk2) = π2 for j 6= k

corr(Xj1, Xk2) = φπ2

Let n00, n01, n10, n11 be the number of fetuses within a litter of size n that

are non-affected, type II malformed only, type I malformed only and affected by

both, and p00, p01, p10, p11 be their respective probabilities. It is easy to see that

n00 + n01 + n10 + n11 = n and p00 + p01 + p10 + p11 = 1 . We also define T =

U1 + U2 + · · · + Un ∼ Bin(n, π) as the number of fetuses sharing Z. Then the
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probability function of n00, n01, n10, n11 is given by

P(n00, n01, n10, n11)=P(Z = (0, 0)T )P(n00, n01, n10, n11 | Z = (0, 0)T )

+P(Z = (0, 1)T )P(n00, n01, n10, n11 | Z = (0, 1)T )

+P(Z = (1, 0)T )P(n00, n01, n10, n11 | Z = (1, 0)T )

+P(Z = (1, 1)T )P(n00, n01, n10, n11 | Z = (1, 1)T )

=P(Z = (0, 0)T )

n00∑
t=0

P(T = t)P(n00, n01, n10, n11 | T = t, Z = (0, 0)T )

+P(Z = (0, 1)T )

n01∑
t=0

P(T = t)P(n00, n01, n10, n11 | T = t, Z = (0, 1)T )

+P(Z = (1, 0)T )

n10∑
t=0

P(T = t)P(n00, n01, n10, n11 | T = t, Z = (1, 0)T )

+P(Z = (1, 1)T )

n11∑
t=0

P(T = t)P(n00, n01, n10, n11 | T = t, Z = (1, 1)T )

=p00

n00∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

n00 − t, n01, n10, n11

)
pn00−t

00 pn01
01 pn10

10 pn11
11

+p01

n01∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

n00, n01 − t, n10, n11

)
pn00

00 pn01−t
01 pn10

10 pn11
11

+p10

n10∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

n00, n01, n10 − t, n11

)
pn00

00 pn01
01 pn10−t

10 pn11
11

+p11

n11∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

n00, n01, n10, n11 − t

)
pn00

00 pn01
01 pn10

10 pn11−t
11

(2.11)

In particular,

P(n, 0, 0, 0) = p00

n∑
t=0

(
n

t

)
πt(1− π)n−tpn−t

00 + (1− p00)(1− π)npn
00

and 1 − P(n, 0, 0, 0) is the risk that at least one fetus is adversely affected by at

least one type of malformation.
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It is easy to show that the marginal distribution of a bivariate shared response

distribution is a univariate shared response distribution. Let S = n10 + n11 be the

number of fetus that is affected by type I malformation and p = p10 + p11 be the

probability that a fetus is affected by type I malformation. S follows a univariate

shared response distribution too. This can be shown by

P(S = s) = P(n10 + n11 = s)

= P(Z = (1, 0)T or (1, 1)T )P(n10 + n11 = s | Z = (1, 0)T or (1, 1)T )

+ P(Z = (0, 0)T or (0, 1)T )P(n10 + n11 = s | Z = (0, 0)T or (0, 1)T )

= (p10 + p11)
s∑

t=0

P(T = t)P(n10 + n11 = s | T = t, Z = (1, 0)T or (1, 1)T )

+ (p00 + p01)
n−s∑
t=0

P(T = t)P(n10 + n11 = s | T = t, Z = (0, 0)T or (0, 1)T )

= (p10 + p11)
s∑

t=0

(
n

t

)
πt(1− π)n−t

(
n− t

s− t

)
(p10 + p11)

s−t(p00 + p01)
n−s

+ (p00 + p01)
n−s∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

s

)
(p10 + p11)

s(p00 + p01)
n−t−s

= p
s∑

t=0

(
n

t

)
πt(1− π)n−t

(
n− t

s− t

)
ps−t(1− p)n−s

+ (1− p)
n−s∑
t=0

(
n

t

)
πt(1− π)n−t

(
n− t

s

)
ps(1− p)n−t−s

By treating Z = (Z1, Z2)
T and the number T =

n∑
j=1

Uj of fetuses that share

Z within each litter as the missing data, the EM algorithm can again be used to

estimate the parameters of the bivariate shared response model in much the same

way as in the univariate case. Let

(Z00, Z01, Z10, Z11) =
(
I{Z = (0, 0)T}, I{Z = (0, 1)T}, I{Z = (1, 0)T}, I{Z = (1, 1)T})
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we have (Z00, Z01, Z10, Z11) ∼ m(x1, x2, x3; 1, p00, p01, p10). The “Complete data”

log-likelihood for one litter is

`c = t log(π) + (n− t) log(1− π) + z00 log(p00) + z01 log(p01) + z10 log(p10)

+(1− z00 − z01 − z10) log(1− p00 − p01 − p10) + (n00 − tz00) log(p00)

+(n01 − tz01) log(p01) + (n10 − tz10) log(p10)

+(n− t + tz00 + tz01 + tz10) log(1− p00 − p01 − p10)

The E-step of the EM algorithm is done by, given the observed data D =

{n, n00, n01, n10}, evaluating the conditional expectation of E(t | D) , E(z00 | D) ,

E(z01 | D) , E(z10 | D) , E(tz00 | D) , E(tz01 | D) and E(tz10 | D) at the current

parameter estimates and conditional probabilities

P(Z00 = z00, Z01 = z01, Z10 = z10, T = t | D)

=
P(Z00 = z00, Z01 = z01, Z10 = z10, T = t, D)

P(n00, n01, n10, n11)

where the numerator is

pz00
00 pz01

01 pz10
10 (1− p00 − p01 − p10)

(1−z00−z01−z10)

(
n

t

)
πt(1− π)(n−t)

·
(

n− t

n00 − tz00, n01 − tz01, n10 − tz10, n− n00 − n01 − n10 − t + tz00 + tz01 + tz10

)

· pn00−tz00
00 pn01−tz01

01 pn10−tz10
10 (1− p00 − p01 − p10)

n−n00−n01−n10−t+tz00+tz01+tz10

and the denominator is given by (2.11).

At the M-step of the EM algorithm, the imputed log-likelihood E(`c | D) is

maximized to update the values of current estimates. Beginning with a set of

initial estimates, the EM algorithm is iterated until convergence is reached.
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Table 2.8: Estimated number of affected litters for the DEHP data by malformation

type based on bivariate shared response model.

Visceral Skeletal Either

Dose group Observed Expected Observed Expected Observed Expected

Control 4 4.37 2 2.07 6 6.14

44 mg/kg 1 0.98 1 0.98 2 1.93

91 mg/kg 11 11.84 6 6.53 15 14.89

191 mg/kg 11 10.73 13 12.19 15 14.13

292 mg/kg 9 8.21 7 8.30 9 8.91

Again, we use the same data set as last section to illustrate the bivariate shared

response model. It is the DEHP data set listed in Table 3 of Lefkopoulou and

Ryan (1993). At each dose level of di(2-ethylhexyl)-phthalate (DEHP), the table

presents the numbers of fetuses that were found to have various combinations of

three malformation types. Here we consider two malformation types: visceral and

skeletal. At each dose level, we fit a bivariate shared response model using the EM

algorithm. Table 2.8 reports the observed and expected numbers of litters affected

with at least one viscerally malformed fetus, at least one skeletally affected fetus,

and at least one malformed fetus of either types. It can be seen that the bivariate

shared response model can estimate all groups of data and provides a good fit

to the observed number of affected litters. As compared with the bivariate beta-

binomial model, it gives comparable estimates to the single type of malformation

and performs much better for the malformation of either types.
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Chapter 3

Saturated model

In this chapter, we first introduce the saturated model by Bowman and George

(1995) and the EM algorithm by Stefanescu and Turnbull (2003). We give a new

proof of the formula in the E-step of the EM algorithm and our idea behind the

proof provides a way for simulating data with unequal litter sizes. By fitting the

saturated model, we test the goodness of fit of some commonly used parametric

models via the likelihood ratio test and propose a new nonparametric estimator of

the intra-litter correlation parameter ρ. Finally, we rectify the modified trend test

by Stefanescu and Turnbull and show that the p-value of our new test statitic is

quite close to the bootstrap results.
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3.1 Introduction to Existing Work

As we have discussed in the last chapter, a whole host of distributions accounting

for the litter effect and extra-binomial variation have been proposed to model

exchangeable binary data in the literature. These distributions, even when they

are matched to have the same marginal probability and intra-cluster correlation,

can have very different shapes (George and Bowman, 1995; Kuk, 2004) and higher

order joint probabilities for the underlying binary variables that could be of interest

in certain applications. For example, in teratology risk assessment, the probability

of having at least one malformed fetus within a litter of size n, denoted by P (Sn >

1) = 1−P (Sn = 0), is a measure of risk at the litter level. Interest in higher order

joint probabilities such as P (Sn = 0) necessitates the use of a fully parametric

approach instead of approaches like quasi-likelihood (Liang and Hanfelt, 1994) or

generalized estimating equations (Bowman, Chen, and George, 1995) that typically

model only the first two moments. However, P (Sn = 0) takes on different functional

forms under different parametric distributions. For example,

P (Sn = 0) =

n−1∏
r=0

(1− p + rθ)

n−1∏
r=0

(1 + rθ)

under the beta-binomial model, where p is the marginal fetal response probability,

θ = ρ/(1 − ρ), and ρ is the intra-litter correlation. Under the correlated binomial

distribution with additive interactions (Kupper and Haseman, 1978; Altham, 1978),

P (Sn = 0) = (1− p)n

{
1 +

ρn(n− 1)p

2(1− p)

}
.
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Under the shared response model (Pang and Kuk, 2005),

P (Sn = 0) = (1− p)
n∑

t=0

(
n

t

)
πt(1− π)n−t(1− p)n−t + p(1− π)n(1− p)n,

where π is the probability of sharing a response and is related to the intra-litter

correlation ρ by ρ = π2. The simplest functional form for P (Sn = 0) is

P (Sn = 0) = qnγ

for the q-power distribution, where q = 1 − p and γ is a parameter that can be

expressed in terms of p and the intra-litter correlation ρ (Kuk, 2004).

With so many distributions to choose from, model selection becomes an im-

portant issue. An alternative approach is to fit a saturated model as proposed

by Bowman and George (1995). Xu and Prorok (2003) pointed out that in the

case of varying cluster sizes, the maximum likelihood estimators (MLE) derived

by Bowman and George (1995) are actually not the MLEs as claimed. Xu and

Prorok then worked out what the MLEs should be and gave a detailed analysis

when the maximum cluster size is two. However, even for this simple situation,

there are five different scenarios and one of them still requires the solution of a

nonlinear equation. They recommended using “uniroot” in S+ to solve it numer-

ically. For the general case of cluster size greater than two, they recommend the

Newton-Raphson method. Unfortunately, the algorithm fails to converge when ap-

plied to the six data sets reported in Brooks et al. (1997). Taking advantage of the

statistical structure of the problem, Stefanescu and Turnbull (2003) derive an EM
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algorithm for fitting the saturated model to exchangeable binary data by augment-

ing the data to make the cluster sizes equal. The algorithm appears to be stable

and we encounter no convergence problem in using it to fit the saturated model to

all six data sets. In deriving the EM algorithm, the assumption of compatibility of

marginal distributions is made to link up the distributions for different cluster sizes

so that estimation can be based on the combined data. Stefanescu and Turnbull

(2003) proposed a modified trend test to test this assumption. Their test, however,

fails to take into account the variability of an estimated null expectation and as a

result leads to much inflated p-values. This drawback is rectified in this chapter.

In the next section, we give a detailed introduction to the saturated model

and suggest a new proof of the formula that links up litters with different litter

size via hypergeometric thinning. Not only is the new proof simpler and more

intuitive than the existing one based on induction (Stefanescu and Turnbull, 2003),

hypergeometric sampling also provides us with a simple way to generate litter data

with unequal litter sizes.

3.2 The Saturated Model

As pointed out by Bowman and George (1995), if X1, ..., Xn are exchangeable

binary variables, then the distribution of their sum Sn = X1 + ... + Xn can be
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parameterized in terms of

λk = P (X1 = · · · = Xk = 1) = E(X1 · · ·Xk), 1 6 k 6 n.

This is because for 0 6 s 6 n,

P (Sn = s) = pn(s) =

(
n

s

)
P (X1 = · · · = Xs = 1, Xs+1 = · · · = Xn = 0)

=

(
n

s

)
E {X1 · · ·Xs(1−Xs+1) · · · (1−Xn)}

=

(
n

s

) n−s∑

k=0

(−1)k

(
n− s

k

)
λs+k (3.1)

by expanding the product inside the expectation sign and making use of exchange-

ability to group terms together. There is also an inversion formula

λk =
n−k∑
j=0

(
n− k

k

)
P (Sn = n− j)(

n

n− j

) (3.2)

that expresses λk, 1 6 k 6 n, in terms of P (Sn = s), 0 6 s 6 n. When the cluster

sizes are all equal to n, the MLE P̂ (Sn = s) of P (Sn = s) is obviously just the

observed proportion of clusters with Sn = s. Bowman and George (1995) then

substituted P̂ (Sn = s) into the inversion formula (3.2) to obtain the MLE of λk.

When the clusters sizes are unequal, Bowman and George basically repeated the

above procedure for each cluster size and weight the size-specific estimates of λk

according to the empirical frequencies of the cluster sizes. As pointed out by Xu

and Prorok (2003), the resulting estimates of λk are not the MLEs. Introducing

double subscript notation for the present discussion, if Xn,1, ..., Xn,n denote the
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n exchangeable binary variables in a cluster of size n, Bowman and George were

proceeding as if there is a new set of parameters

λn,k = P (Xn,1 = · · · = Xn,k = 1), 1 6 k 6 n

for every cluster size n , resulting in a large triangular array of parameters. Through-

out this chapter, we make the common assumption of marginal compatibility, mean-

ing that the marginal distribution of Xm,1, . . . , Xm,n in a cluster of size m > n

should be the same as that of Xn,1, . . . , Xn,n. As a result, λn,k no longer depends

on n and can be written simply as λk, leading to a more parsimonious sequence

rather than a triangular array of parameters. This assumption links up the distri-

butions for different cluster sizes so that estimation can be based on the combined

data across all cluster sizes. Other authors have called this the reproducibility

assumption (Prentice, 1988), or the interpretability assumption (Stefanescu and

Turnbull, 2003), but we find marginal compatibility to be a self-explanatory name.

The observed data D consists of (ni, si), 1 6 i 6 C, where ni is the size of

cluster i, si the sum of the exchangeable binary variables in cluster i, and C the

total number of clusters. The log-likelihood function can be written down as

` =
C∑

i=1

log P (Sni
= si) =

C∑
i=1

log pni
(si),

where P (Sni
= si) is given by equation (3.1). It is obvious that the likelihood

is a function of the parameters λ1, . . . , λm, where m is the maximum cluster size.

However, λ1, . . . , λm are not good parameters to work with because they have to

form a completely monotone sequence, satisfying (−1)k∆kλj > 0 for integers k > 1,
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where ∆k is the kth forward difference, in order for (3.1) to define a bona fide

probability function (Feller, 1971, p.224). These conditions of alternating signs for

the finite differences are difficult to enforce during the iterations of any numerical

maximization procedure. A more convenient parameterization is given by

pm(0) = P (Sm = 0), pm(1) = P (Sm = 1), . . . , pm(m) = P (Sm = m),

where Sm is the sum of the exchangeable binary variables in a cluster of maximum

size m. Even though 0 6 pm(s) 6 1 for every s and they have to sum up to one,

these constraints are automatically satisfied if all the clusters are of the same size

m.

Note that once we know pm(s) for 0 6 s 6 m, we can determine the probabilities

pn(s) in the smaller clusters as well by using the inversion formula (3.2) to obtain

λ1, . . . , λm, which can be substituted back into (3.1) for n < m . By induction on

m − n, Stefanescu and Turnbull (2003) gave a representation of pn(s) in terms of

pm(s) for 0 6 s 6 m and derived an EM algorithm for obtaining the maximum

likelihood estimates of pm(0), · · · , pm(m) via data augmentation.

A convenient way to embed the observed data within the conceptual “complete”

data is to assume that all the clusters are of the same size m but for cluster i, we

only observe the sum si of the first ni binary variables whereas the sum ui of the

last m − ni variables is unobserved. Thus the “complete” data are ri = si + ui,

1 6 i 6 C, and only the si are observed. In other words, we are augmenting the

data to make the cluster sizes equal. The log-likelihood based on the complete data
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is evidently

`c =
C∑

i=1

log P (Sm = ri) =
C∑

i=1

log pm(ri) =
m∑

s=0

f(s) log pm(s), (3.3)

where

f(s) =
C∑

i=1

zi,s =
C∑

i=1

I{ri = s} (3.4)

is the observed frequency of s in the complete data. The E-step of the EM algorithm

is to reconstruct the complete data likelihood from the observed data by taking

conditional expectation to get

Q(θ ; θ̂(t)) = E
{

`c(θ)
∣∣∣D; θ̂(t)

}
,

where θ is a generic symbol for the vector of all the model parameters, and the

conditional expectation is evaluated at the current parameter estimate θ̂(t). At the

M step of the EM algorithm, Q(θ ; θ̂(t)) = E
{

`c(θ)
∣∣∣D; θ̂(t)

}
is maximized with

respect to θ to obtain the updated estimate θ̂(t+1). The procedure is iterated until

convergence. A standard result is that

`′(θ) = E {`′c(θ) |D; θ} ,

where `′(θ) and `′c(θ) denote the derivative of the observed and complete data

log-likelihood with respect to the parameters. Thus at convergence of the EM al-

gorithm, θ̂ = lim
t→∞

θ̂(t) satisfies E
{

`′c(θ̂)
∣∣∣D; θ̂

}
= `′(θ̂) = 0, which is the likelihood

equation for finding the observed data MLE. The multinomial form (3.3) of the

complete data log-likelihood leads to some simplifications of the EM algorithm.
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Firstly, since the clusters are all of equal size m under the complete data setup,

the complete data MLEs of pm(s), 0 6 s 6 m, are simply the multinomial propor-

tions f(s)/C. Secondly, it is straightforward to show that the updated estimates

obtained from the M step are simply conditional expectations of the complete data

MLE evaluated at the current parameter estimates. Specifically,

p̂(t+1)
m (s) =

E
{

f(s)
∣∣∣D; θ̂(t)

}

C
=

C∑
i=1

E(zi,s|si)

C
=

C∑
i=1

P (si + ui = s|si)

C
, (3.5)

where

P (si + ui = s|si) =
P (si, ui = s− si)

P (si)
.

Now, there are

(
ni

si

)(
m− ni

s− si

)
strings of s 1’s and m − s 0’s with si 1’s in

the first ni positions, and by exchangeability, the probability of any such string is

pm(s)
/(

m

s

)
. Thus

P (si + ui = s|si) =

(
ni

si

)(
m− ni

s− si

)

(
m

s

) pm(s)

pni
(si)

(3.6)

if si 6 s 6 si + m − ni, and zero otherwise. This result has also been proven

independently by Stefanescu and Turnbull (2003),

To evaluate (3.6) and hence (3.5) at the current estimates p̂
(t)
m (0), · · · , p̂

(t)
m (m),

we need a formula that relates the probabilities pn(s) for smaller cluster sizes n to

the probabilities pm(s) for the maximum cluster size m. The naive way to do this

is to use the inversion formula (3.2) to obtain λ1, ..., λm, which can be substituted
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back into (3.1) for n < m . This approach leads to a double summation and

is not the simplest formula relating pn(s), for n < m, to pm(s). We are able

to derive a simpler formula by arguing as follows. In order to get s malformed

fetuses in the observed litter, there must be t = s, s + 1, . . . , s + (m − n)

malformed fetuses in the “completed” litter of size m, with precisely s malformed

ones among the first n fetuses. Assuming marginal compatibility, the probability

of t malformations in the “completed” litter is given by pm(t), and the probability

that there are s malformations among the first n fetuses of a litter of size m > n

with t malformations follows a hypergeometric distribution. Thus,

pn(s) = P (Sn = s) = P (Sn = s, Sm > s) =

s+(m−n)∑
t=s

P (Sm = t)P (Sn = s|Sm = t)

=

s+(m−n)∑
t=s

pm(t)

(
t
s

)(
m−t
n−s

)
(

m
n

) (3.7)

Note that (
t
s

)(
m−t
n−s

)
(

m
n

) =

(
n
s

)(
m−n
t−s

)
(

m
t

)

and hence (3.7) is the same as the formula proven by Stefanescu and Turnbull

(2003) using induction on m − n. Not only is our proof of (3.7) more intuitive, it

also provides us with a way of simulating data with unequal litter sizes, namely, by

simulating data from the probability distribution pm(0), . . . , pm(m) first which

is appropriate for litters of size m, followed by trimming to the observed litter size

n by means of hypergeometric thinning.

The EM algorithm for obtaining MLE based on the observed incomplete data
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is stable in our experience. If there is a maximum cluster size in the population,

which seems reasonable for litter data in developmental toxicity studies, the usual

asymptotic theory for the MLE should hold as the number of clusters increases.

In particular, the likelihood ratio test of comparing the fit of the saturated model

with a parametric model is asymptotically chi-square.

3.3 Goodness of Fit Test of Parametric Models

In this section, the saturated model is fitted to the six data sets used by Brooks

et al. (1997) where the observed outcomes are the number of dead fetuses or

implants in each litter. As commented previously, one way to assess the goodness

of fit of a parametric model is to compare the parametric fit versus the saturated

fit via the likelihood ratio test, which follows a chi-square distribution under the

null hypothesis. We tested the goodness of fit of two parametric models here: the

beta-binomial distribution which is perhaps the most widely used distribution for

modelling litter data and the q-power distribution which possesses a lot of nice

properties (Kuk, 2004). The results are shown in Table 3.1. It can be seen that the

beta-binomial distributed is rejected at level 0.05 for the two data sets HS2 and

HS3, whereas the likelihood ratio test of the q-power distribution is not significant

for all six data sets.
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Table 3.1: Minus log-likelihood of saturated, beta-binomial and q-power distributions

for six data sets.

Data sets

E1 E2 HS1 HS2 HS3 AVSS

Saturated 276.95 338.01 764.21 1628.13 681.54 166.84

Beta-binomial 282.65 344.88 777.79 1657.30 701.33 168.93

Likelihood ratio 11.39 13.72 27.15 58.33* 39.58* 4.17

(d.f.) (15) (17) (18) (11) (16) (18)

q-power 282.59 345.85 776.40 1636.40 685.18 172.90

Likelihood ratio 11.30 15.67 24.38 16.54 7.28 12.13

(d.f.) (15) (17) (18) (11) (16) (18)

* Significant at level 0.05

3.4 Simulation Results for the Saturated Model

To illustrate and contrast the lack of robustness of the parametric estimates with

the distribution free property of the saturated model estimates, we simulate data

for 200 litters 200 times using either a beta-binomial or the q-power distribution

with marginal probability p = 0.2 and intra-litter correlation ρ = 0.2. The litter

sizes are generated according to the distribution given in Table 6.5 of Aerts et al.

(2002). The true probability function for a litter of size 16 is shown in Figure 3.1,

together with the average estimates based on the saturated as well as a misspecified

model (beta-binomial instead of q-power, or vice versa). It can be seen clearly that

the parametric fit is biased when the model is misspecified whereas the fit based

on the saturated model is generally valid.

To study the behaviour of the estimates when the marginal compatibility as-
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Figure 3.1: Averages of maximum likelihood estimates under the saturated model

and a misspecified parametric model.
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sumption is violated, we conduct the following simulation study. As before, we

simulate data for 200 litters from both the beta-binomial and q−power distribu-

tions, with litter sizes generated according to Table 6.5 of Aerts et al. (2002).

Unlike the previous simulations where the marginal response probability p ≡ .2 for

litters of all sizes, here we let the marginal probability depends linearly on the log

litter size n in the logit scale

logit(p) = logit(.15) +

{
logit(.25)− logit(.15)

log(19)

}
log(n),

so that p increases from .15 to .25 as the litter size increases from 1 to the maximum

size of 19. The pairwise odds ratio within litters is kept constant at the value 2.953

chosen to make the pairwise correlation equal to .2 when p = .2. Note that the

intra-litter correlation is also changing with litter size as it depends on the marginal

probability. Since p is actually litter size dependent, we conjecture that the MLE

p̂ of p obtained by assuming marginal compatibility is actually estimating

p∗ =
19∑

n=1

fnpn,

where fn is the relative frequency of litter size n from Table 6.5 of Aerts et al.

(2002), and pn is the marginal response probability given by the logistic regression

above. We can interpret p∗ as the probability that a randomly selected fetus from a

randomly selected litter is malformed. Based on 1000 simulations, Table 3.2 gives

the bias of p̂ as an estimator of p∗, the empirical standard error of p̂, as well as

the average of the estimated standard error
∧

SE(p̂) obtained using the informa-

tion matrix of the misspecified saturated model. Also shown in Table 3.2 are the
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Table 3.2: Bias of estimator and coverage of confidence interval when the marginal

compatibility assumption is violated.

Distribution p∗ Bias SE Ave(ŜE) p∗ < p̂− 1.96ŜE p∗ > p̂ + 1.96ŜE

Beta-binomial .2301 .0014 .0157 .0151 .027 .039

q-power .2301 .0016 .0163 .0161 .024 .031

proportions of times p∗ < p̂ − 1.96
∧

SE(p̂) and p∗ > p̂ + 1.96
∧

SE(p̂). Ideally, they

should both be close to the nominal value of .025. It can be seen from Table 3.2

that even though p is now ranging from .15 to .25 rather than constant, the MLE p̂

that assumes marginal compatibility is an almost unbiased estimator of p∗, and the

conventional 95% confidence interval for p turns out to cover p∗ almost 95% of the

times. These results suggest that the saturated model maximum likelihood esti-

mates are somewhat robust to moderate departure from the marginal compatibility

assumption.

3.5 Estimation of Intra-litter Correlation Param-

eter

There is considerable interest in estimating the intraclass correlation from clustered

binary data (Ridout, Dométrio and Firth, 1999; Zou and Donner, 2004). Twenty

estimators are compared in the study by Ridout et al. (1999). They conclude

that the asymptotically equivalent estimators ρ̂AOV , ρ̂∗AOV , ρ̂FC , ρ̂∗KPR, ρ̂∗W and ρ̂UB
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all performed well in their simulations, and none of them appeared to have any

consistent small-sample advantage. Note that the equation defining ρ̂UB in Ridout

et al. (1999) contains one typographical error.

Let λ̂1 and λ̂2 be the MLE of λ1 and λ2 under the saturated model, another

nonparametric estimator of ρ is

ρ̂NP =
λ̂2 − λ̂2

1

λ̂1(1− λ̂1)
.

We investigate the performance of ρ̂NP using the same study design as Ridout et

al. (1999) together with the MLE based on beta-binomial distribution, alternating

logistic regression (ALR) estimator and six estimators recommended by Ridout

et al. The plot resembling figure 1 of Ridout et al is given in Figure 3.2, which

gives a summary of the performance of the 9 estimators over 180 simulations. In

Figure 3.2, the plotted point is the median. Lower and upper end-points of the

vertical lines indicate the 5th, 25th, 75th and 95th percentiles of the distribution. We

can see from Figure 3.2 that ρ̂NP is almost an unbiased estimator and the standard

deviation is comparable to the six estimators recommended by Ridout et al. This

shows that the performance of ρ̂NP is on par with the six estimators recommended

by Ridout et al. However, it is also clear that the improvement is not substantial.

Figure 3.2 also shows that the ALR estimator is another good estimator that can

be used to estimate the intraclass correlation from clustered binary data.
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3.6 Testing the Marginal Compatibility Assump-

tion

The assumption of marginal compatibility links up the fetal response distributions

for different litter sizes so that estimation can be based on the combined data across

all litter sizes. Note that, in the FDA stipulation of the Segment II design of rodent

teratology experiments, treatments to dams are applied after the fetuses have been

implanted and so the number of implantation should not be affected by treatment.

It follows that if the toxicity endpoint is combined resorption, death, or malforma-

tion, then the “litter size” may be taken as the number of implanted fetuses which

is not dose-related and marginal compatibility is a reasonable assumption to make.

If the toxicity endpoint of interest is malformation, then the litter size is usually

taken as the number of live fetuses which may be dose related, and the marginal

compatibility assumption may not be appropriate. Stefanescu and Turnbull (2003)

mentioned competition or cooperation between litter-mates as potential sources

of violations from the marginal compatibility assumption, but remarked that the

assumption may be reasonable in situations such as familial aggregation studies of

disease, or grouped randomized trials. The bottom line is that the assumption has

to be checked against the observed data. Stefanescu and Turnbull (2003) general-

ized Armitage’s trend test (Armitage, 1955) for independent data to the present

case of clustered data by taking intracluster correlation into account in the variance

calculation. For 1 6 n 6 m, let tn be the total number of malformed fetuses in all
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Cn clusters of size n. An estimate of the marginal fetal response probability pn for

clusters of size n is evidently p̂n = tn/nCn, the sample proportion of malformed

fetuses in the Cn clusters of size n. To verify marginal compatibility, one would

obviously start by checking whether the marginal response probabilities are equal

or not by testing the hypothesis H0 : p1 = . . . = pm = p. Armitage’s test is a

test of H0 against a possible trend in p1, . . . , pm. In deriving this test, a score wn

is assigned to the total tn over clusters of size n to yield T =
m∑

n=1

wntn =
m∑

n=1

anp̂n,

where an = nCnwn. We follow Stefanescu and Turnbull (2003) in using the scores

w1 = −(m − 1)/2, w2 = −(m − 3)/2, . . ., wm = (m − 1)/2 . Under H0, the

expected value of T is E0(T ) =
m∑

n=1

anp and the null variance of T is

var0(T ) = p(1− p)
m∑

n=1

w2
nCnn {1 + (n− 1)ρ}, (3.8)

where ρ is the common intra-cluster correlation. A plausible test statistic of H0 is

the standardized difference

Z0 =
T − E0(T )√

vâr0(T )
,

where vâr0(T ) is an estimate of var0(T ) obtained by replacing the parameters p and

ρ in (3.8) by their maximum likelihood estimates p̂ and ρ̂. It follows from standard

theory that the null distribution of Z0 is asymptotically standard normal. However,

Z0 is not a usable test statistic because the unknown parameter p is involved in

E0(T ). Stefanescu and Turnbull (2003) proposed to overcome this problem by

replacing p with p̂ to yield Ê0(T ) =
m∑

n=1

anp̂,

Ẑ0 =
T − Ê0(T )√

vâr0(T )
,
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Table 3.3: Nominal and bootstrap p-values for two versions of Armitage’s trend test

for seven data sets

Data sets

COPD E1 E2 HS1 HS2 HS3 AVSS

Ẑ0 1.744 .206 .583 .322 1.859 1.745 1.117

Nominal p-value .081 .837 .560 .747 .063 .081 .264

Bootstrap p-value .068 .722 .325 .596 .013 .009 .066

Z 1.842 .342 .940 .588 2.386 2.641 2.040

Nominal p-value .065 .733 .347 .556 .017 .008 .041

Bootstrap p-value .070 .705 .332 .544 .016 .009 .043

and it is claimed that Ẑ0 is asymptotically standard normal just like Z0. What

has been overlooked is the fact that the null variance of T − Ê0(T ) is not asymp-

totically the same as that of T and so vâr0(T ) is not a consistent estimator of

var0

{
T − Ê0(T )

}
. Therefore, the use of standard normal distribution as refer-

ence should lead to misleading p−values. This is confirmed when we compare

the nominal p−values of Ẑ0 based on the claimed standard normal distribution

with the bootstrap p−values obtained by simulating litter data 1000 times from

the estimated probability distribution p̂m(0), · · · , p̂m(m) using the hypergeometric

method described in the comments that follow equation (3.7). We do this for the

COPD data that Stefanescu and Turnbull (2003) used to illustrate their method,

as well as the six data sets used by Brooks et al. (1997). As can be seen from

Table 3.3, the nominal p−values based on standard normal approximation are all

greater than the bootstrap p−values, and substantially so except for the COPD

data. We conjecture that var0

{
T − Ê0(T )

}
is less than vâr0(T ) due to positive
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correlation between T and Ê0(T ). As a result, the denominator of Ẑ0 overestimates

the standard deviation of T − Ê0(T ).

For a standard normal approximation to be valid, we need to divide T − Ê0(T )

by the correct standard deviation estimate. Now,

var0

{
T − Ê0(T )

}
= var0(T ) + var0

{
Ê0(T )

}
− 2cov0

(
T, Ê0(T )

)
. (3.9)

To simplify the calculation of the covariance term, we propose to estimate p by the

overall sample proportion of malformed fetuses p̂ =
m∑

n=1

tn/N , where N =
m∑

n=1

nCn

is the total number of fetuses over all clusters. Now, Ê0(T ) = p̂
m∑

n=1

an =
m∑

n=1

bntn,

where bn ≡ A/N , with A =
m∑

n=1

an. The important thing to note is that T =

m∑
n=1

wntn and Ê0(T ) =
m∑

n=1

bntn are just two linear combinations of the tn and

hence the variance and covariance terms can be written down easily using the fact

var0(tn) = Cnnp(1− p) {1 + (n− 1)ρ} and the fact that tn and tk are independent

for n 6= k because they are totals over non-overlapping litters. Hence,

var0

{
Ê0(T )

}
=

m∑
n=1

b2
nvar0(tn) = p(1− p)

m∑
n=1

b2
nCnn {1 + (n− 1)ρ} (3.10)

and

cov0

(
T, Ê0(T )

)
=

m∑
n=1

wnbnvar0(tn) = p(1− p)
m∑

n=1

wnbnCnn {1 + (n− 1)ρ}.

(3.11)

Substituting (3.8), (3.10) and (3.11) into (3.9) and replacing the unknown p and ρ

by consistent estimators p̂ and ρ̂ will lead to a consistent estimator vâr0

{
T − Ê0(T )

}

of var0

{
T − Ê0(T )

}
. Recall that we are using p̂ =

m∑
n=1

tn/N rather than the max-

imum likelihood estimator to obtain closed form variance and covariance formulae.
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By the same token, we suggest to take ρ̂ as the Fleiss-Cuzick estimator (Fleiss and

Cuzick, 1979), which is found to perform well in the studies by Ridout, Dométrio

and Firth (1999) and Zou and Donner (2004), since the maximum likelihood esti-

mator of ρ has no closed form. The test statistic that we propose is

Z =
T − Ê0(T )√

vâr0

{
T − Ê0(T )

}

which should be asymptotically standard normal under the hypothesis. The results

based on this test are also shown in Table 3.3. It can be seen that the nominal

p−values are now much closer to the bootstrap p−values which lends support to

the validity of the standard normal approximation. We can conclude from Table 3.3

that the marginal compatibility assumption is not satisfied for data sets HS2, HS3

and AVSS.
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Chapter 4

Smoothing the Nonparametric

Estimates

Due to the sparseness of data, the MLE of the probability function under the

saturated model, which we also call the nonparametric MLE (even though the

number of parameters in the saturated model is still finite), can exhibit a lot of

roughness. We extend the penalized likelihood approach proposed by Simonoff

(1983) for smoothing the nonparametric MLE to the case of unequal cluster sizes

and again use an EM type algorithm for its implementation.
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4.1 Penalized Saturated Model

Considering the data sets E1, E2 and HS1 with insignificant p−values in Table 3.3,

the nonparametric probability function estimates displayed in Figure 4.1 are quite

jagged for some data sets and are in need of smoothing. For the case of equal

cluster size ni ≡ m, so that ri = si (no missing data) in the notation that we used

in chapter 3, Simonoff (1983) proposed the following penalized log-likelihood

`c,β =
C∑

i=1

log pm(ri)− β
m−1∑
s=0

{log pm(s + 1)− log pm(s)}2

=
m∑

s=0

f(s) log pm(s)− β
m−1∑
s=0

{log pm(s + 1)− log pm(s)}2,

(4.1)

where f(s) given by (3.4) is the frequency or number of clusters with ri = s. In

the general case, we observe si positive responses from cluster i which is of size

ni, where the ni are unequal and m is the maximum litter size. We extend the

penalized log-likelihood to the general case by using the same penalty term as in

(4.1) and subtract it from the log-likelihood ` =
C∑

i=1

log pni
(si) of the observed data

to get

`β =
C∑

i=1

log pni
(si)− β

m−1∑
s=0

{log pm(s + 1)− log pm(s)}2. (4.2)

Note again that pn(s) for n < m can be determined from pm(0), · · · , pm(m) via (3.7)

and hence the penalized log-likelihood `β is a complex function of the parameters

θ = {pm(0), · · · , pm(m)}. To maximize `β with respect to θ for a fixed β, we can

again augment every cluster to size m to get the “complete” data ri = si + ui and

use an EM type algorithm.
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Figure 4.1: Maximum likelihood and penalized likelihood estimates for three data

sets under the saturated model
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At the E step, we take conditional expectation of (4.1), the complete data

version of the penalized log-likelihood to get

E
{

`c,β(θ)
∣∣∣ D; θ̂(t)

}
=

m∑
s=0

E
{

f(s)
∣∣∣ D; θ̂(t)

}
log pm(s)

−β
m−1∑
s=0

{log pm(s + 1)− log pm(s)}2 ,

where E
{

f(s)
∣∣∣ D; θ̂(t)

}
can be obtained as before using (3.5) and (3.6).

At the M step, we maximize E
{

`c,β(θ)
∣∣∣ D; θ̂(t)

}
with respect to

θ = {pm(0), · · · , pm(m)} subject to the constraint
m∑

s=0

pm(s) = 1. This can be done

using the method of Lagrange multiplers by defining

L = E
{

`c,β(θ)
∣∣∣ D; θ̂(t)

}
− λ

(
m∑

s=0

pm(s)− 1

)

=
m∑

s=0

E
{

f(s)
∣∣∣ D; θ̂(t)

}
log pm(s)− β

m−1∑
s=0

{log pm(s + 1)− log pm(s)}2

−λ

(
m∑

s=0

pm(s)− 1

)

and setting the derivatives of L with respect to pm(0), · · · , pm(m) and λ equal

to zero. Writing E
{

f(s)
∣∣∣ D; θ̂(t)

}
as E {f(s) | D} to save space, the resulting

equations are

E {f(0) | D}+ 2β {log pm(1)− log pm(0)} = λ pm(0),

E {f(s) |D}−2β {log pm(s)− log pm(s− 1)}+2β {log pm(s + 1)− log pm(s)} = λpm(s)
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for 1 6 s 6 m− 1, and

E {f(m) | D} − 2β {log pm(m)− log pm(m− 1)} = λ pm(m).

Summing these equations, all the terms involving β add up to zero and we are

left with
m∑

s=0

E {f(s) | D} = λ
m∑

s=0

pm(s), or in other words, λ = C, the total

number of clusters. Solving the above set of equations with λ = C leads to the

updated estimates p̂
(t+1)
m (0), · · · , p̂

(t+1)
m (m) . To solve these equations, we can use

the Newton-Raphson method or we can just carry out one Newton-Raphson itera-

tion in the spirit of the gradient EM algorithm proposed by Lange (1995) to save

computation.

To choose β which controls the amount of smoothing, we can use likelihood

cross validation. Specifically, we choose β to maximize

`cv(β) =
C∑

i=1

log pni

(
si; θ = θ̂(−i)(β)

)
,

where for a fixed β, θ̂(−i)(β) is the penalized likelihood estimate of θ obtained after

deleting cluster i. In other words, θ̂(−i)(β) is the maximizer of

l
(−i)
β =

∑

j 6=i

log pnj
(sj)− β

m−1∑
s=0

{log pm(s + 1)− log pm(s)}2.

4.2 Numerical and Simulation Results

The penalized likelihood estimates with β chosen by cross validation for the three

data sets used by Brooks et al. (1997) are included in Figure 4.1. It can be seen
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from Figure 4.1 that the penalized likelihood estimates succeed in smoothing out

the jaggedness and irregularity that are apparent in the nonparametric maximum

likelihood estimates.

To compare the sampling distributions of the smoothed and unsmoothed esti-

mates, a simulation study was conducted using the same design as the one reported

in chapter 3, i.e., data were simulated for 200 litters 200 times using either a beta-

binomial or q-power distribution with marginal probability p = 0.2 and intra-litter

correlation ρ = 0.2. The lower and upper curves in Figure 4.2 depict the lower and

upper 5th percentile of the 200 sample estimates of P (S16 = s), s = 0, . . . , 16, for

a litter of size 16. It is clear that the band for the smoothed estimates is much

narrower which is a manifestation of how smoothing can reduce variability. It is

also clear that without smoothing, the estimates are too rough.
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Figure 4.2: Empirical upper and lower 5-percentiles of the saturated model maxi-

mum likelihood and maximum penalized likelihood estimates.
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Chapter 5

Combining Kernel Smoothing

with Penalized Likelihood

In chapter 3, we applied the saturated model to the analysis of clustered binary

data. It is illustrated by six no dose data sets. However, typical data sets from

developmental toxicity studies are composed of one control group and several dose

groups. If a covariate such as dose level is present, one would be interested in mod-

elling how the response depends on the covariate. One means to analyze these dose

response data is to use the local likelihood estimation. The concept of local likeli-

hood estimation was first introduced by Tibshirani and Hastie (1987). Staniswalis

(1989) used a kernel weighted likelihood to get the estimators. For the choosing

of underlying likelihood function, one can either use the beta-binomial, q-power,

shared response, or other parametric distributions. However, from Table 3.1, we
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can see that although the beta-binomial distribution was rejected two times out

of the six data sets, the log-likelihood of the q-power distribution is not always

bigger than that of the beta-binomial distribution. This suggests that no paramet-

ric models can perform uniformly well over other parametric models. Therefore,

we shall adopt the saturated model, the most general probability function assum-

ing marginal compatibility, as the underlying distribution in this chapter. The

robustness of the saturated model has been shown in Figure 4.2.

In the next section, we shall introduce the kernel weighted saturated model,

which smooths the saturated model in the covariate space.

5.1 Kernel Weighted Saturated Model

Denote the observed data D by (ni, si, xi), 1 6 i 6 C, where ni is the size of cluster

i, si the sum of the exchangeable binary variables in cluster i, xi the covariate value

associated with cluster i, and C the total number of clusters. The aim here is to

obtain the distribution of the response as a smooth function of the covariate without

making parametric assumptions. We will fit a saturated model, for a given x value,

on the basis of the observed data, by maximizing the following kernel-weighted

local log-likelihood

`h =
C∑

i=1

K

(
x− xi

h

)
log pni

(si; θ), (5.1)
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where K(.) is a kernel function, which is taken to be standard normal in this thesis.

The maximization is with respect to the parameters θ = {pm(0), . . . , pm(m)}

which we have argued in Chapter 3 to be the appropriate parameterization for

the saturated model. Note also that we have adopted the notation pni
(si; θ) to

emphasize that pni
(si) is a function of pm(0), . . . , pm(m) via (3.7). Again, an

EM type algorithm can be used to maximize (5.1) by augmenting the data from

si to ri = (si, ui), with ui unobserved, so that all the litters are of size m after

augmentation. Using (3.6), we can evaluate P (ri = s|si; θ̂(t)), the conditional

probability that ri = s given the observed si, evaluated at the current estimate

θ̂(t). The updated estimates are given by

p̂(t+1)
m (s) =

C∑
i=1

K
(

x−xi

h

)
P (ri = s|si; θ̂(t))

C∑
i=1

K
(

x−xi

h

) ,

for s = 0, . . . ,m.

To choose the smoothing parameter h, we again use cross-validation by maxi-

mizing

`cv(h) =
C∑

i=1

log pni

(
si; θ = θ̂(−i)(xi, h)

)
, (5.2)

where, for a given h, θ̂(−i)(xi, h) is the maximizer of the kernel likelihood

`
(−i)
h =

∑

j 6=i

K

(
xi − xj

h

)
log pnj

(sj; θ)

evaluated at x = xi after deleting cluster i.
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Note that the above kernel smoothing method is applicable to data with unequal

cluster sizes. As an illustration, we consider the 2,4,5-T data analyzed previously

by George and Bowman (1995), Dominici and Parmigiani (2001), Kuk (2004) and

Pang and Kuk (2005), among others. For this data set, there are six dose groups

corresponding to exposure levels of 0, 30, 45, 60, 75 and 90 mg/kg of the herbicide

2,4,5-T that was given to pregnant mice during day 6 to day 14 of gestation. In

our analysis, the litter size is the number of implantation sites, and the toxicity

endpoint is the number of fetal deaths, resorptions and cleft palate malformations.

A listing of the data can be found in George and Bowman (1995). It can be seen

from Figure 5.1 that the estimates of the marginal fetal response probability and

intra-litter correlation obtained using the kernel method are fairly smooth functions

of the dose level.

5.2 Penalized Kernel Method

In Chapter 4, we have already seen that the saturated model can exhibit a lot of

roughness due to the sparseness of the data sets. This suggests that the kernel

weighted saturated model may need some smoothing too. Figure 5.2 shows the

estimated probability functions (for the number of response in a litter of size 21)

at the 6 dose groups, we can see that they are all very erratic and are in need

of smoothing. Thus we need to smooth in the response space as well as across

covariates. This can be done by combining kernel smoothing (5.1) with the penalty
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Figure 5.1: Kernel likelihood and penalized kernel estimates of the marginal proba-

bility and intra-litter correlation for the 2,4,5-T data
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Figure 5.2: Kernel likelihood, penalized kernel and group-specific penalized likelihood

estimates of the probability function constructed from the 2,4,5-T data for a litter

of size 21 at 6 different dose levels
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approach introduced in Chapter 4. The resulting penalized kernel method can be

described as follows.

Begin by choosing the smoothing parameter h for kernel smoothing by cross-

validation as in (5.2). With h fixed at the selected value, the probability function

θ = {pm(0), . . . , pm(m)} at a given x value can be estimated by maximizing the

following penalized kernel-weighted log-likelihood

`β =
C∑

i=1

K

(
x− xi

h

)
log pni

(si; θ)− β
m−1∑
s=0

{log pm(s + 1)− log pm(s)}2,

where β controls the amount of smoothing along the response space. The maxi-

mization can again be done using an EM type algorithm similar to Chapter 4. The

only difference is that the original frequencies become kernel weighted.

As illustrated by the 2,4,5-T example, the degree of sparseness of data can

vary considerably between different dose groups and so β has to be chosen locally.

Our suggestion is to choose β for a given x value by maximizing the following

kernel-weighted cross validation criterion

`cv(β) =
C∑

i=1

K

(
x− xi

h

)
log pni

(
si; θ = θ̂(−i)(xi, β)

)
,

where, for a given β, θ̂(−i)(xi, β) maximizes

`
(−i)
β =

∑

j 6=i

K

(
xi − xj

h

)
log pnj

(sj; θ)− β
m−1∑
s=0

{log pm(s + 1)− log pm(s)}2.

The results of applying the above penalized kernel method to the 2,4,5-T data

are also shown in Figures 5.1 and 5.2. From Figure 5.1, we can see that as far as
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the marginal probability and intra-litter correlation are concerned, the penalized

kernel method leads to estimates that are as smooth in the dose level as the kernel

method. However, when we look at the probability functions at the 6 dose groups,

we can see in Figure 5.2 that the penalized kernel method manages to smooth away

the jaggedness of the estimates produced by the kernel method alone and are in fact

very close to the group-specific penalized likelihood estimates. Thus the penalized

kernel method seems to enjoy the best of both worlds.
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Chapter 6

Summary, Conclusion and Further

Work

6.1 Summary and Conclusion

In this thesis, we have proposed a shared response model that, like the q-power dis-

tribution, is not prone to inflating the probability of observing no affected fetuses

within a litter. Results of our simulation study show that the EM estimates are

nearly unbiased and the associated confidence intervals based on the usual standard

error estimates have coverage close to the nominal level. Simulation results also

suggest that the shared response model estimates of the marginal malformation

probabilities are robust to misspecification of the distributional form, but not so

for the estimates of intralitter correlation and the litter-level probability of having
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at least one malformed fetus. This is an inherent problem of the method of max-

imum likelihood and is not peculiar to the shared response model. When applied

to the 2,4,5-T data, the shared response model gives results similar to the q-power

model and both out-perform other models proposed in the literature. An advan-

tage of the shared response model over the q-power distribution is that it is more

interpretable. It can also be extended to the multivariate case more easily. We

generalized the beta-binomial and shared response models to the bivariate case. A

nice property of these two bivariate models is that the marginal distributions are

just their respective univariate counterparts with corresponding parameters. These

two models can also be easily generalized to higher dimensions in similar manner.

The marginal compatibility assumption is very crucial for exchangeable binary

data, we give a rectified trend test statistic in this thesis. The p-value of our

statistic is very close to the bootstrap results.

The shared response model adds one more option in the analysis of exchangeable

binary data. Meanwhile, model selection becomes more urgent. By fitting the

saturated model, we can assess the goodness of fit of these parametric models. A

new nonparametric estimator of the intralitter correlation is also proposed based

on the saturated model. Simulation studies show that this new estimator performs

on par with the best estimators proposed in the literature. We also extend the

penalized likelihood method to the case of varying cluster sizes and implement it

using an EM type algorithm. Simulation shows that smoothing has reduced the
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variation significantly.

In the presence of covariates, a kernel method is often adopted to smooth the

data in the covariate space, and we finally combine the kernel smoothing with

penalized likelihood to perform smoothing in both the covariate and response space.

This penalized kernel method seems to do well in achieving smoothness in the

response space as well as across covariates.

6.2 Further Work

There is much work to be done in the analysis of exchangeable binary data. An

alternative parametric model not considered in this thesis is to use the exponential

family model (Molenberghs and Ryan, 1999; Geys et al., 1999). The advantages of

this class of models are the unconstrained parameter space, the modelling flexibil-

ity, and the ease in estimation if one is willing to use pseudolikelihood to avoid the

computation of normalizing constants. The exponential family model, however, is

conditional in nature with no closed form formulae for the marginal response prob-

ability or the unconditional odds ratio. Moreover, the model is not “reproductive”

(Prentice, 1988), in the sense that if Y1, Y2, . . . , Yn follow the exponential family

model, then the marginal distribution of a proper subset of Y1, Y2, . . . , Yn will not

be of the same form. The shared response model and other parametric models in

this thesis focus on models that can be parameterized in terms of the marginal
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response probability and unconditional odds ratio.

For the smoothing of the saturated model, we used penalized likelihood. Other

methods for smoothing discrete data will also be investigated. A key assumption

commonly made which allows us to link up the distributions for different cluster

sizes so that estimation can be based on the combined data across all cluster sizes

is the assumption of reproducibility or compatibility of marginal distributions. We

have proposed a modified trend test in this thesis. That test is only a test that the

marginal fetal response probability does not depend on cluster size. More generally,

one may want to test whether the second and higher order marginal distributions

depend on cluster size or not. Another ad hoc way to test the marginal compati-

bility assumption in general is to stratify the clusters into small and large clusters

to see if there are significant differences between the stratum specific estimates.

Further work is needed to develop a more systematic and optimal approach for

testing the marginal compatibility assumption.
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