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Summary 

Companies have always been interested in optimizing product designs towards 

quality and reliability. Also maintenance is a major concern for manufacturers 

producing products where the economical lifetime exceeds the technical lifetime. 

Maintenance narrows the gap between the economical lifetime and technical lifetime. 

Especially preventive maintenance can be very attractive for companies. And 

recently, due to new environmental laws and legislations, which are known under the 

name “Waste Electrical and Electronic Equipment (WEEE)”, companies have to 

reduce the environmental waste by recycling at least 75% of their complete product 

materials. A better way to comply with the environmental laws and legislations is by 

re-using products, systems, or sub-systems instead of recycling and reproducing 

products, systems, or sub-systems.  

The main focus of this thesis is the development of one single method that 

provides the possibility to tackle the three requirements on product design process 

(optimization of design towards robust reliability, provide information for preventive 

maintenance and for re-use decisions) in an effective way without loss of quality of 

the solution. 

In order to be able to develop such a method few steps have been taken. The 

first important step was to set boundaries for the research area. In summary the most 

important research boundaries are: 
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→ This research emphasized on gradual, or degraded, complete and partial 

extended failures of phase 2 and phase 4 of the roller-coaster curve. 

→ This research took into account three causes of variability (unit-to-unit 

variability, variability due to operating and environmental conditions, and 

variability due to product degradation) 

The next important step was to analyze existing methods that can provide a 

solution for the three design requirements. The review demonstrated that very useful 

concepts and ideas are presented in literature, but that not one single available method 

is able to provide a solution for the three design requirements simultaneously. 

This lead to the urge to develop a new theoretical framework called ROMDA. 

This framework provides in twelve steps an approach for the method targeted in this 

research. A conceptually new contribution included in this framework is the time-

dependent design of experiments. 

 Based on computer-based simulation experiments it was demonstrated that 

conceptually it is possible to provide a solution for the three design requirements 

using one single method. However, a critical analysis of the theoretical approach 

showed that the results of the theoretical framework could not be directly translated to 

a practically applicable method.  

For this reason a step-by-step practical protocol is developed for ROMDA. 

This practical protocol takes into account the theoretical framework and all practical 

limitations of the theoretical approach.  

The practical protocol of ROMDA is tested by means of three case studies 

performed at two different companies. In the first two case studies the purpose was to 

prove the applicability of the ROMDA practical protocol. The first case study was 

successful in this. However, the second case study was unsuccessful due to the fact 
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that a wrong failure mechanism was identified as dominant. The consequences of 

focusing on less dominant failure mechanisms are a waste of money and time in terms 

of testing equipment and testing time. The third case study focused more on 

examining the possibility to reduce the risk of concentrating on wrong identification 

of the dominant failure mechanism. Suggestions have been given and initially tested. 

The suggested approach could indeed lead to less uncertainty, and therefore less risk, 

in focusing on non-dominant failure mechanisms. 

The results of the computer-based simulation experiments combined with the 

results of the case studies lead to the conclusion that it is indeed possible to develop 

an effective single method (ROMDA) that can provide a solution for the three design 

requirements without loss of quality of the solution. ROMDA is described in both a 

theoretical framework and in a practical protocol in this thesis. Although the given 

protocol is already useful, further research is recommended to optimize the ROMDA 

method itself. Topics to be investigated include: 

→ the influence of using other statistical distributions for the design 

parameters and the performance; 

→ the need for and potential use of different reliability characteristics than 

those used in this research; 

→ the potential of using more efficient and more accurate regression 

modeling techniques; 

→ the use of Accelerated Degradation Testing (ADT) strategies instead of 

compressed-time testing strategies; 

→ investigate possibilities to reduce the risk of focusing on non-dominant 

failure mechanisms. 
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Samenvatting 

Bedrijven zijn van oudsher al geïnteresseerd in het optimaliseren van 

productontwerpen in termen van kwaliteit en betrouwbaarheid. Daarnaast gaat ook 

veel aandacht uit naar onderhoud bij producten waar de economische levensduur veel 

langer is dan de technische levensduur. Vooral preventief onderhoud van deze 

categorie producten kan voor bedrijven aantrekkelijk zijn. Ten derde is sinds kort 

grote druk op bedrijven komen te staan door nieuwe milieuwetten en regels. Deze 

milieuwetten en regels zijn bekend onder de naam “Waste Electrical and Electronic 

Equipment (WEEE)” and schrijven de betreffende bedrijven voor dat zij ten minste 

75% van het complete product materiaal moeten recyclen. Hergebruik van systemen, 

sub-systemen of modules zou het aanzienlijk makkelijker maken aan de nieuwe 

milieuwetten en regels te kunnen voldoen. 

In deze dissertatie wordt onderzocht of het mogelijk is een methode te 

ontwikkelen die voor alle drie de eisen aan het productontwerpproces (optimalisatie 

van het productontwerp in termen van kwaliteit en betrouwbaarheid, preventief 

onderhoud en hergebruik van delen van een product) een effectieve/efficiënte manier 

oplossing biedt zonder verlies van kwaliteit van de uitkomsten van de analyses. 

Om deze onderzoeksvraag te beantwoorden zijn een aantal stappen genomen. 

Hierbij was de eerste stap het afbakenen van het onderzoeksgebied. De belangrijkste 

randvoorwaarden zijn: 

→ Dit onderzoek richt zich op graduele, of degraderende, complete en 

partiële faalmechanismen uit de fase 2 en 4 van de badkuipcurve. 
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→ Dit onderzoek neemt drie oorzaken van variabiliteit mee, namelijk de 

product-tot-product variabiliteit, variabiliteit ten gevolge van gebruik en 

omgevingscondities, en variabiliteit ten gevolge van product degradatie. 

De volgende belangrijke stap in dit onderzoek was een uitgebreide analyse te 

doen van bestaande methoden op (gedeeltelijke) bruikbaarheid voor de drie 

oplossingsmogelijkheden. Deze analyse leidt tot de conclusie dat er veel bruikbare 

concepten en ideeën beschreven staan in de literatuur, maar dat niet één enkele 

methode volledig geschikt is voor de beantwoording van de onderzoeksvraag.  

De volgende stap in dit onderzoek was dan ook een nieuw theoretisch concept 

te ontwikkelen die de naam ROMDA heeft gekregen. Dit concept biedt in twaalf 

stappen een aanpak dat leidt tot een oplossing voor de drie eisen aan het 

ontwerpproces. Een conceptueel nieuwe bijdrage in het framewerk is het gebruik van 

tijdsafhankelijke 'design of experiments'.  

Door middel van simulatie experimenten is aangetoond dat het theoretische 

concept achter ROMDA een oplossing kan bieden voor de drie eisen aan het 

ontwerpproces. Echter, een kritische analyse laat zien dat het theoretische concept niet 

direct praktisch toepasbaar is. Samengevat zijn de volgende belemmeringen voor 

praktische implementatie geïdentificeerd: 

Om de verschillen tussen de theorie en de praktijk te overbruggen is een 

praktisch protocol voor ROMDA ontwikkeld. Dit praktisch protocol is gebaseerd op 

het theoretische concept van ROMDA, maar biedt stap-voor-stap oplossingen voor de 

praktische beperkingen van het theoretische concept. 
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Het praktische protocol van ROMDA is geverifieerd door middel van drie 

case studies die uitgevoerd zijn bij twee verschillende bedrijven. De eerste twee case 

studies hadden als doel aan te tonen dat het praktisch protocol van ROMDA werkt in 

de praktijk. Bij de eerste case studie bleek het practische protocol te werken, maar 

tijdens de tweede case studie is in de eerste fase van het protocol een verkeerde 

dominante faalmechanisme geïdentificeerd. De consequentie hiervan is dat alle andere 

stappen in het protocol op een minder dominante faalmechnisme gericht zijn, wat als 

inefficiënt en ineffectief in termen van geld en tijd beschouwd kan worden. Het doel 

van de derde case studie was te onderzoeken hoe het risico van een verkeerde 

geïdentificeerd dominant faalmechanisme gereduceerd kan worden in toekomstige 

cases. Suggesties zijn voorgesteld en initieel getest. De voorgestelde suggesties leiden 

inderdaad tot een afname van het risico om het onderzoek op verkeerde 

faalmechanisme te richten. 

De resultaten van zowel de simulatie experimenten en de case studies leiden 

tot de conclusie dat het inderdaad mogelijk is een enkelvoudige methode (ROMDA) 

te ontwikkelen die op een efficiënte en effectieve manier voor alle drie gestelde eisen 

aan het ontwerpproces een oplossing kan bieden. Bovendien hebben deze oplossingen 

in ieder geval vergelijkbare oplossingskwaliteit.. Desalniettemin is vervolgonderzoek 

nodig om de ROMDA methode zelf te optimaliseren. ROMDA is in dit proefschrift 

beschreven zowel als theoretisch concept en als praktisch protocol. Hoewel het 

protocol al buikbaar is, is toch verder onderzoek nodig voor de optimalisatie van 

ROMDA. Onderzoeksonderwerpen daarbij zijn: 

→ de invloed op de uitkomsten wanneer andere statistische verdelingen voor 

ontwerp parameters en prestatie karakteristiek gebruikt worden; 
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→ de behoefte aan en mogelijkheden van andere betrouwbaarheids-

karakteristieken dan de in dit onderzoek gebruikte; 

→ de mogelijkheden van accuratere en meer efficiënte 

modeleringsmethoden; 

→ consequenties van het gebruik van Accelerated Degradation Testing ADT 

test strategieën in plaats van de Compressed-Time test methoden; 

→ de mogelijkheden voor het voorkomen van verkeerde conclusies in met 

name de eerste fase van het ROMDA protocol waar de dominante 

faalmechanismen worden bepaald. 
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1 Introduction 

1.1 Introduction 

Companies have always been interested in optimizing product designs towards 

quality and reliability, as literature clearly shows in numerous books (Blischke and 

Murthy (2000) [BLI00], Phadke (1989) [PHA89], Nelson (1982) [NEL82]) and many 

conferences (Annual Reliability and Maintainability Symposium (RAMS)) and 

scientific journals (Quality and Reliability Engineering International (QREI), 

Reliability Engineering and System Safety (RESS), IEEE Transactions on 

Reliability).  

Also maintenance is a major concern for manufacturers producing products 

where the economical lifetime1 exceeds the technical lifetime2. Maintenance narrows 

the gap between the economical lifetime and technical lifetime. A wealth of literature 

on maintenance related topics can be found (Ebeling (1997) [EBE97], Pecht (1995) 

[PEC95], Knezevic (1997) [KNE97], Osaki (2002) [OSA02])). Especially preventive 

maintenance can be very attractive for companies, as explained in the following 

literature (Gertsbakh (2000) [GER00], Canfield (1986) [CAN86], Legat (1996) 

[LEG96]).  

                                                 

1 Economic lifetime is defined in this thesis as the average time where it is justified to replace a product 

for economic reasons [BRO04] 

2 Technical lifetime is defined in this thesis as the average time that a product requires to reach end-of-

life due to technical failures [BRO04] 
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And recently, due to new environmental laws and legislations, which are 

known under the name “Waste Electrical and Electronic Equipment (WEEE)” enacted 

by the directive of the European Parliament and of the council on waste electrical and 

electronic equipment, companies have to reduce the environmental waste by recycling 

at least 75%3 of their complete product materials. A better way to comply with the 

environmental laws and legislations is by re-using products, systems, or sub-systems 

instead of recycling and reproducing products, systems, or sub-systems (Hulsken, et 

al. (2003) [HUL03], Lambert (1999) [LAM99]).  

Optimization of product designs towards reliability, providing information 

necessary for optimal preventive maintenance decisions, and providing information 

enabling optimal re-use decisions are three design requirements for companies that 

are currently tackled separately. However, the three design requirements are closely 

related in terms of information needed to provide a solution for them separately. For 

all three design requirements the designer is required to know the time-dependent 

functional behavior of the products in relation to its specification limits, as will be 

explained in more detail in chapter two. And in order to optimize a design with 

respect to reliability, it is necessary for the designer to know how the behavior, or 

performance, over time with respect to the specification limits of the products can be 

influenced by design changes. The main goal of this thesis is to investigate the 

possibility to tackle the three above-mentioned design requirements within one 

method. 

In order to put the contents of this thesis in perspective, section 1.2. first 

provides a short description of the research framework. The next section elaborates on 
                                                 

3 Article 7a of the Official Journal of the European Union enacted by the directive of the European 

Parliament and of the council on waste electrical and electronic equipment (WEEE), 2003 
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the problem definition, the research objective of this thesis and the research questions 

that need to be answered in order to reach the research objective. Section 1.4 gives a 

brief overview of the research methodologies that have been used with the intention to 

answer the research questions. Finally, section 1.5 provides an overview of the 

structure of the rest of the thesis. 

1.2 Research framework 

The research of this thesis focuses on the possibility to tackle the next three 

design requirements: 

→ Optimization of product design towards robust reliability  

→ Provide information enabling decisions on re-use of systems or sub-

systems 

→ Provide information necessary for optimal preventive maintenance 

decisions 

The combination of optimization of a product design towards reliability on 

one hand, and provide information for optimal preventive maintenance decisions and 

provide information enabling optimal re-use decisions on the other hand, leads to the 

necessity to consider after sales activities in the design phase. Optimization of a 

product design can be done in many ways. Chapter two provides the definition of 

optimization towards reliability in this research. 

Three areas of interest in the field of quality and reliability are currently being 

tackled separately, in different stages of the product lifecycle. It could be beneficial to 

investigate if these three areas of interest have something in common that could lead 

to a more efficient and effective new approach leading to useful solutions. The main 
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goal of the research described in this thesis is defined as to investigate the possibility 

to tackle the three design requirements using one method. A natural question would 

be why to tackle the three design requirements using one method. Intuitively, one can 

imagine that providing a solution for multiple goals at once might just be more 

efficient than solving them separately. As an example, imagine the following: 

→ Currently to optimize a product design towards reliability method A is 

used. 

→ Currently to make preventive maintenance decisions method B is used. 

→ Currently to make re-use decisions method C is used. 

Imagine a new method, method D, provides the possibility to solve for the 

three design requirements using only method D. Then the following pre-conditions 

illustrated by the next equations need to be satisfied in order to make method D 

beneficial compared to performing method A, B, and C separately. These equations 

are illustrative examples, but will not be treated as mathematical quantities. 

 EFFORT (D) < EFFORT (A + B + C) 

And 

 QUALITY SOLUTION (D) ≥  QUALITY SOLUTION (A) +  

              QUALITY SOLUTION (B) + QUALITY SOLUTION (C) 

Effort in this context means the effort it takes to perform a method in terms of 

time and costs. So, in other words, performing method D should be less time-

consuming and more cost-effective than performing methods A, B, and C separately. 

And this should be done in such a way that at least the same quality of solution can be 

guaranteed using method D in comparison to using method A, B, and C separately.  

“Quality Solution” means the quality of the solution for the specific goals. Method A 
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refers to optimization of a product design and, therefore, method A provides an 

optimum performance of the product in terms of reliability. Method D should at least 

provide the same optimum with respect to reliability behavior of the design as method 

A does. The same line of reasoning can be followed for methods B and C compared to 

method D. 

The relevance for both the industry and science of the research described in 

this thesis is clearly illustrated by big research projects like the “Signature Analysis” 

project that is partly funded by the Ecology, Economy, and Technology (EET) 

programme of the Dutch Ministry of Economic Affairs (EET Grant EETK 20037) and 

partly funded by Flextronics. In this project the possibilities of finding signals, or 

signatures, of products that could be used for estimating the functional behavior of 

products over time is being researched. With these signals, or signatures, it would 

become possible to gather enough information to make preventive maintenance and/or 

re-use decisions. And ideally, this information should already be obtained in the 

design phase making optimization of product designs towards reliability possible. The 

Signature Analysis project is a joint project between industry, Flextronics and OCE 

BV, and scientific research institutions, like TU/e, Eurandom, and Design Technology 

Institute (DTI). 

The next section focuses on the problem definition that is researched in this 

thesis. The problem definition is then translated to a research objective that can be 

achieved by answering the presented research questions. 

1.3 Problem definition, research question, and research objectives 
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Problem definition 

Currently, companies tackle the three design requirements separately in 

different stages of the product lifecycle. In other words, they optimize the product 

designs in the design phase. And later in the product lifecycle, they concentrate on 

methods and tools to make preventive maintenance and re-use decisions of systems, 

or modules, possible. Intuitively, one could say this approach is ineffective and 

inefficient in terms of time and costs, as discussed section 1.2. Therefore, the problem 

definition for this thesis is: 

 

The three design requirements (optimization of product design towards 

robust reliability, provide information enabling re-use of systems or 

sub-systems, and provide information necessary for optimal preventive 

maintenance decisions) need to be tackled more effectively and 

efficiently. 

 

Research objective 

An intuitively more effective and efficient approach to solve for the three 

design requirements is to tackle the three design requirements using one method. At 

the cost of some extra time and money in the initial phases this method is expected to 

provide enough information to optimize the product design and simultaneously 

provide enough information to make preventive maintenance and re-use decisions.    

The problem definition stated above leads to the following research objective: 
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Develop a method that is applicable by designers that offers the 

possibility to tackle the three design requirements using one method 

such that it is more effective than tackling the three design 

requirements separately, without loss of quality of the solutions.  

Research questions 

The research objective defined above describes a challenging objective 

including many facets that need to be considered. The research objective can be 

translated into a main research question: 

 

Is it possible to develop a method that provides the possibility to tackle 

the three design requirements in an effective way without loss of 

quality of the solution? 

 

In order to make it possible to answer this main research question sub-research 

questions are defined to structure the research to smaller objectives. The first sub-

research question that needs to be answered in order to answer the main research 

question is: 

 

Is it possible to specify the link between the information required to 

solve for the design requirements separately? 

 

In order to be more effective using one method than using separate methods to 

solve for the three design requirements it is necessary that some link exists between 

the design requirements. Obviously, as already insinuated in section 1.1 and 1.2, it can 

be expected that a link exists in terms of information that is needed to solve for the 
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design requirements. The purpose of this sub-research question is to define the exact 

link between the required information. With the answer to this question it becomes 

possible to examine methods in literature that could be useful in developing a new 

method.  

When the necessary information is known and this information can somehow 

be linked, the next essential thing to know in order to answer the main research 

question is whether any methods in literature provide a way of linking this 

information and, therefore, provide a method to tackle all three design requirements in 

one effort. This leads to the following sub-question: 

 

Are methods available in literature that take into account the required 

information for the three design requirements? 

 

If the answer to this sub-research question is yes, then the main research 

question can be answered positively, because it would mean that a useful method 

already exists in literature. If the answer is no, the next question is which methods, 

concepts, or ideas of available methods in literature can provide a basis for a new 

method that can take the necessary information for the three design requirements into 

account. And what adjustments to these methods, concepts, or ideas are necessary for 

such a new method to fulfill the requirements? This leads to the following sub-

question: 

 

Which methods, concepts, or ideas available in literature could serve 

as a basis for a new method and what adjustments are necessary 
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taking into account the required information for the three design 

requirements? 

 

Literature provides a wealth of methods and tools in the area of quality and 

reliability. All these methods have their own strengths and weaknesses. Therefore, it 

is considered logical and important to first survey these available methods and 

analyze their strengths and weaknesses. The next thing would be to combine all 

strengths of useful methods and therefore reduce the weaknesses of a new method that 

enables the designers to tackle the three design requirements. It is highly likely that 

combining methods is not enough to meet the research objective. It is more likely that 

adjustments are necessary. When a new method is developed, the question arises if 

the newly developed method really works as desired. This then has to be proven by 

scientific research. So, the next sub-question is: 

 

Can it be proven that the newly developed method can indeed tackle all 

three design requirements using just one method in a more effective 

and efficient way? 

 

When this question can also be answered positively, then the main research 

question can also be answered positively. 

With the purpose of providing answers to all the above-presented research 

questions, a certain sequence of steps is taken and certain research methodologies 

have been used. The next section provides a description of a research design of the 

complete research project and the research methodologies that have been used for this 

research. 
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1.4 Research methodology 

This section gives an overview of the research methodology that is used. The 

overview starts by defining the form of the research. The next part presents the 

research design. This part also discusses the research methods that have been used in 

the research in order to provide answers for the research questions. 

Primitive forms of research 

De Leeuw (1996) [LEE96] describes two primitive forms of research, the 

empirical cycle (De Groot, 1994 [GRO94]; De Leeuw, 1996 [LEE96]) and the 

regulative cycle (Van Strien, 1986 [STR86]).  

In the empirical cycle the researcher starts collecting facts from a knowledge 

reservoir to create a theoretical framework for his research. With this knowledge the 

researcher constructs hypotheses and derives predictions from these hypotheses. The 

predictions are then tested in an empirical environment by conducting a case study or 

an experiment. Finally the researcher evaluates the new empirical material and reports 

his findings that can be added to the knowledge reservoir. 

The regulative cycle uses a different approach when it comes to practice and 

the knowledge reservoir. First the researcher starts with exploring the problem in an 

organization. When the problem is known the knowledge reservoir is consulted to 

define a solution for the problems of the organization. The regulative cycle results in a 

solution, based on scientific knowledge, which is implemented in the organization.  

A regulative cycle results in a solution for one single company. The main 

objective of this research is to develop a theory that can be applied in a broad domain, 

and therefore this research follows the empirical cycle.  
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The next section sketches the outline of the research design and describes the 

consequences for the research methodology of this choice. 

Research design 

The main determinant for the research domain is the result, which is the end of 

the empirical cycle. The result of this research is a theory that is tested by empirical 

observations. There are several methodological approaches to test a theory, such as an 

experiment, a survey or a case study [VER99]. In this research two research 

methodologies have been selected. Firstly, a computer simulation experiment has 

been selected. The reasons behind this choice are: 

→ The most important advantage of computer simulation is that various 

alterations to the model (the intervention) can be made relatively easily 

and cheaply. 

→ The effects to occur due to intervention using computer simulation take a 

very limited time-span. 

→ Intermediate results that are unavailable in case studies can be observed in 

computer simulation experiments. 

So, basically computer simulation experiments can give a good insight in a 

model in a very short time-span. 
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Figure 1.1: Outline of research. 

 

The second research methodology that has been used in this research is the 

case study. The reasons for this choice are: 

→ The case study offers the possibility to gain an overall picture of the 

research object.  

→ The degree of pre-structuring is far less than using a survey or an 

experiment. As a result, the case study is far more flexible in comparison 

with the other strategies.  

→ It is not only of interest to know if the newly developed method really 

works, but also the conditions in which the method works are of interest. 

Hence, more in-depth research is required. 
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→ In this research the case study is used to test, or validate, the theory or 

method that has been developed. 

An outline of the research design is presented in figure 1.1.  

The research design consists of 5 steps. The goal of the first step is to define 

the research direction and the boundaries of the research area. Chapter one and 

chapter two present the results of this step. Chapter one defines the research 

objectives and chapter two basically defines the direction of the research and the 

boundaries of the research area. The next step in the research design is a literature 

research. The literature research has two purposes. First of all, it is researched if 

literature provides methods that solve, or partly solve, the research questions that have 

been defined in chapter one. The second purpose of the literature research is to 

examine possible useful ideas or concepts that could be used in the theory 

development step, which is step three in the research design. The fourth step concerns 

the collection of empirical data. For collecting the empirical data the computer 

simulation experiment and the case study approach is used, as mentioned in the 

introduction of this section. The last step in the research design is the evaluation of the 

findings and finally the drawing of conclusions. The conclusions are formulated by 

reviewing all the facts that follow from the research methods. Generalization of the 

results to other domains is discussed. This discussion leads to recommendations for 

further research. 
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1.5 Structure of thesis 

The remainder of this dissertation consists of 7 chapters that can roughly be 

divided in three parts, as was shown in figure 1.1. In part one (covered by chapter 2, 

3, 4, and 6) the theoretical framework is built. In part two (covered by chapter 5 and 

7) simulation experiments and the collection of empirical data using case studies is 

described; it describes the results of the simulations experiments and the three case 

studies. In part three (covered by chapter 8) the data from the case studies is analyzed 

resulting in conclusions of this research. 

 14 



 

2 Research topic 

Chapter one stressed that quality and reliability related topics in the form of 

the three design requirements are relevant topics for research. This chapter focuses on 

the type of products and failure mechanisms that are taken into account in the theory 

development in chapter 4. In order to develop quality and reliability related methods 

meeting the earlier stated requirements, it is considered essential to start by giving the 

most important definitions used in the area of quality and reliability. The next section 

translates the research objective and research questions to a more technical 

perspective within the quality and reliability area. For this purpose a well-known book 

written by Spence and Soin [SPE88] will be used. This section implicitly explains 

some of the boundaries that apply for this research. The next section presents more 

boundaries of research in terms of a classification of failure mechanisms using two 

classification systems, namely one developed by Blache and Shrivastava (1996) 

[BLA94] and the roller-coaster curve developed by Wong (1988) [WON88]. The rest 

of this chapter is more focussed on solution directions. First the focus will be on the 

connection of necessary information between the three design requirements. The 

connection between these information needs is then discussed. The necessary 

information and the connection between the necessary information lead to a solution 

direction. Finally, this theoretical solution direction is discussed in the last section. 
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2.1 Definitions 

When a system, product or component ceases to perform its intended function 

we speak of a failure. Kumar and Crocker (2000) [KUM00] use the following 

definition of the failure of a system: 

 

Any event or collection of events that causes the system to lose its 

functionability 

 

where functionability is defined as [KUM00]: 

 

The inherent characteristic of a product related to its ability to 

perform a specified function according to the specified requirements 

under the specified operating conditions 

 

The definition of failure in combination with the definition of functionability 

is closely related to the definition of quality. A commonly used definition of quality 

is [GAR88]: 

 

Quality [means] conformance to requirements 

 

According to Lewis [LEW96] the definition of quality leads to two related 

considerations: 

 

 16 



 

1. Quality is associated with the ability to design products that incorporate 

characteristics and features that are highly optimized to meet customer’s needs 

and desires. 

2. Quality is associated with the reduction of variability in these performance 

characteristics and features. 

The first consideration speaks for itself. Products generally are designed to 

meet customer’s needs and desires in an optimal way considering all constraints that 

are applicable for designing products. 

The second consideration underlines the influence of variability on the 

performance characteristics. Two possible causes for variability are: 

→ Unit-to-unit variability 

→ Variability due to operating and environmental conditions 

Generally, the product variabilities arising from lack of precision or 

deficiencies in manufacturing processes may lead to failures or infant mortality 

[LEW96]. But also variability due to operating and environmental conditions may 

lead to failures. A product is designed for a certain task, but customers could use the 

product for different, and often unexpected, purposes. An example of variability in 

operating conditions could be the differences between heavy users and light users. 

Heavy users could be car drivers driving 60.000 kilometers a year, while light users 

drive 5.000 kilometers a year. It is easy to imagine the influence of variability due to 

environmental conditions on the performance characteristics of products. Copier 

machines are used in offices, but also on the manufacturing floor in the Netherlands, 

but also in Ethiopia, where the weather is clearly less humid and dustier compared to 

the weather in the Netherlands.  
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Quality is often confused with reliability. Although these terms are strongly 

related, they both describe a different concept. In this thesis, reliability will be 

defined as [LEW96]: 

 

Reliability is the probability that a system will perform its intended 

function for a specified period of time under a given set of conditions. 

 

Improving product reliability is an important part of the larger overall picture 

of improving product quality, which leads to the idea that “reliability is quality over 

time,” as Condra [CON01] emphasized. 

Reliability can quantitatively be defined in terms of the Probability Density 

Function (PDF) and the Cumulative Density Function (CDF) for the time-to-failure.  

The CDF, F(t), is defined as the probability that an item operating at time t=0 

under stated conditions fails at or before time t. The following must hold true for the 

probability of survival, reliability R(t) and the probability of failure F(t): 

1)()( =+ tFtR  (2.1) 

The PDF for the time-to-failure, f(t), describes the probability that an item, 

functioning at time t=0, will fail in an interval dt at some point in time. 

Mathematically this is the first derivative of F(t), so: 

dt
tdFtf )()( =       or, (2.2) 

)()( tR
dt
dtf −=  (2.3) 
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Using this last equation 2.3 another frequently used reliability parameter, the 

failure rate, can be defined as: 

)(
)(

1
)(
)()( tR

dt
d

tRtR
tft −==λ  (2.4) 

The failure rate λ(t) goes under a variety of other names like [JEN82]: 

→ Hazard rate 

→ Instantaneous hazard rate 

→ Instantaneous failure rate 

→ Age-specific failure rate 

→ Mortality rate 

In this thesis only the terms failure rate and hazard rate will be used. 

Another commonly used term in this thesis and in the field of quality and 

reliability is robust design. A robust design may be defined as one for which the 

performance characteristics are very insensitive to variations in the manufacturing 

process, variability in environmental operating conditions, and deterioration with age 

[LEW96]. A more detailed description of robust design methods and approaches will 

be discussed in chapter 3. 

This section gives the definitions of the most basic and often used definitions 

in the field of quality and reliability. Other terms or definitions will be given when the 

text requires these definitions. 
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2.2 Translation of research objective to theoretical framework 

Chapter one describes the research objective of this research. The research 

objective is translated into research questions. This section provides a more in-depth 

discussion on the technical meaning of the research objective. For the purpose of 

explaining the technical meaning of the research objective some concepts of the book 

“Tolerance Design of Electronic Circuits” by Spence and Soin 1997 [SPE97] are 

used. 

The authors explain that as a consequence of the tolerances associated with all 

manufacturing components sometimes the specifications laid down by the customer 

will be violated. As a result the manufacturing yield4 is less than 100%, which is 

undesirable, or even unacceptable.  

In order to understand the theory presented by Spence and Soin, some 

definitions are provided next. 

The first definition that is important for the discussion of the theory is the term 

tolerance region. Tolerance region (RT) is defined as [SPE97]: 

 

A rectangular region defined by the nominal values and tolerances of 

the parameters in the parameter space. 

 

When really considering the probability density distributions of the parameters 

in the parameter space a rectangle is not the best representation. Better would be an 

elliptical shape, but for explanation purposes a rectangle is used in the figures. 

                                                 

4 Manufacturing yield can be defined as the fraction of manufactured systems that satisfies the 

specifications [SPE97]. 
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The parameter space has as many dimensions as there are parameters in the 

system and in which, as a consequence, a single point represents a single system. 

p2

p1p1
0

p2
0

∆p1

∆p2

RT

p2

p1p1
0

p2
0

∆p1

∆p2

RT

Figure 2.1: Tolerance region (RT) in parameter space [SPE97]. 

 

Most systems contain more than just two parameters, so that parameter space 

has many dimensions. Visualization then becomes very difficult, or maybe even 

impossible. Because of this in the illustrations only 2 parameter systems will be used. 

However, the line of reasoning is identical for the multi-parameter situation. 

 p2

p1

RA

p2

p1

RA

Figure 2.2: Region of acceptability in parameter space. 
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Customers, although usually implicitly, provide specifications on system 

performance by means of upper and/or lower bounds of acceptability on system 

performance. However, the performance space (sometimes called ‘output space’) is 

not the same as the parameter space (sometimes called the ‘input space’) within 

which we have, readily available, a simple description (RT) of the bounds within 

which the manufactured systems lie. The specifications in the performance space have 

to be projected into the parameter space for the purpose of comparing the tolerance 

region (RT), in which all manufactured products are located, and the region of 

acceptability (RA), in which all acceptable products are located.  

When both the tolerance region RT and the region of acceptability RA are 

displayed in the parameter space, useful insight can be gained into the unwanted 

effects of component tolerances. This is illustrated by figure 2.3. The dots in figure 

2.3 represent the manufactured systems.  

 p2

p1

RA

RT

p2

p1

RA

RT

p2

p1

RA

RT

Figure 2.3: Some manufactured systems fail the specifications. 

 

Figure 2.3 clearly shows that the manufacturing yield is less than 100%.  

The purpose of tolerance design is to improve the design in terms of the 

manufacturing yield. A simple means of increasing the manufacturing yield is to 
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adjust the nominal values of the parameters, while leaving their tolerances fixed, so 

that RT is more centrally located within RA. Such an adjustment of the parameter 

values to increase the manufacturing yield is called design centring, as Spence and 

Soin [SPE97] explain.  

Having centred the design, and achieved a greater yield, it is appropriate to 

direct attention to parameter tolerances. However, it should be noted that tightening 

the tolerances will lead to 100% yield, but the costs to the customer will be higher 

since the cost of a component is typically an inverse function of its tolerance [SPE97]. 

In very introductory words tolerance design is explained in this section. 

Generally speaking, tolerance design is very appealing for optimization purposes of 

the product design once a design concept has been chosen. A clear link between the 

parameters and their tolerances and the performance of the systems make design 

optimization possible. But note that tolerance design is only directed to time-

independent performance of the systems. The purpose of the optimization in tolerance 

design is to optimize the performance of the system at time t=0 (manufacturing yield). 

And, when looking at the objective of this research project, time is a very important 

factor.  

Translating the objective of this research using the concepts of tolerance 

design would mean that the tolerance region would move over time as a result of 

degradation of the manufactured systems over time. And therefore, the optimization 

objective is not to optimize the design in terms of yield at time t=0 only, but also in 

terms of performance over time. Figure 2.4 gives an example of how the time-

dependent performance of the systems could influence the tolerance region of the 

systems.  
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 p2

p1
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Figure 2.4: Systems degrading over time in the parameter space. 

 

In figure 2.4 the value of parameter p1 increases over time and the value of 

parameter p2 decreases over time. Using the tolerance design optimization 

methodology, where the nominal values of the parameters are adjusted, the tolerance 

region would be centered giving the highest manufacturing yield. However, as can be 

seen in example figure 2.5a, many systems start failing after some time, where time 

could either be calendar time or in terms of usage (e.g. number of cycles). In this 

figure the more realistic elliptical curves have been used.  
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Figure 2.5:  

a) Optimized design using design centering. 

b) Optimized design taking into account degradation over time. 

 
24 



 

When the direction of the degradation of the systems in terms of the 

parameters is known, it would be better to optimize the design in such a way that not 

only the yield is maximum at time t = 0, but stays maximum over time. Therefore, the 

design shown in figure 2.5b would perform better over time than the design shown in 

figure 2.5a.  

In conclusion, the first design requirement of the research objective is not 

directly satisfied by tolerance design, because tolerance design does not take into 

account the effects of degradation over time. However, the ideas behind tolerance 

design are still very appealing due to the fact that the effects of parameters and their 

tolerances are included in the optimization of the performance of a population of 

systems or products. 

The above stated conclusion is clear in relation with the description of 

tolerance design. However, it should be emphasized that the interesting part of the 

explanation lies in the fact that it focuses on degradation of design parameters instead 

of degradation of only the performance characteristic. This approach can provide 

major advantages in finding a solution for the research objective of this thesis. In 

order to explain this, a line of reasoning will be given focusing on the separate design 

requirements. 

Optimization of product design towards robust reliability 

Design optimization towards robust reliability can be done in many ways. 

Chapter 3 provides an extensive description on the many possible methods that could 

be used. A very appealing method for design optimization toward robust reliability 

was presented by Tseng et al [TSE94]. They link design to reliability using Design of 

Experiments in combination with degradation tests. The authors optimize the design 

in terms of initial design parameter value settings. This will be explained in more 
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detail in chapter 3. But one of the disadvantages of the method is that they do not take 

the degradation of the design parameters into account, and only focus on the 

degradation profiles of the performance characteristic. But, as explained previously in 

this section, it would be very beneficial to combine the ideas behind tolerance design 

with degradation analysis giving better optimization opportunities. But to do so, the 

degradation profiles of the design parameters have to be taken into account.  

One of the requirements for a new method to meet the objective stated in 

chapter one is that the solution quality of the new method should at least be equal to 

currently used methods. Without the use of the time-dependence of the physical 

design parameters, which is suggested here, but just the initial values in relation with 

reliability characteristics, at least equal solution quality can be guaranteed using the 

new method compared to methods like the ones introduced by Tseng et al [TSE94]. 

Although the main focus of this research is not to develop a better 

optimization method, but to combine three design requirements, it is clear that this 

might be possible with an approach using the extra information of the degrading 

design parameters.  

Provide information necessary for optimal preventive maintenance decisions 

When decisions on preventive maintenance have to be made on a complete 

population of a product, it suffices for a service engineer to know when the products 

start to fail. Statistical failure data would be enough detail. This is cost effective when 

the products, parts or modules are cheap or easy (and therefore cheap) to replace. 

However, in complex, or expensive product, parts or modules, it is highly possible 

that a technically well-functioning product is discarded when only statistical failure 

data is used. Then it could be beneficial to use degradation data on individual product 

level that is being monitored during operations. In other words, the service engineers 
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need to know the status, or condition, of the product at all time to be able to make 

optimal preventive maintenance decisions. A large variety of literature on condition 

monitoring related methods is available. This will be discussed in chapter 3. A 

problem that often makes condition monitoring on the performance of a product 

difficult is the fact that performance characteristics are often very hard to measure, or 

to monitor online.  

Consider for example of the braking system of a car. The real performance 

characteristic of a brake is the braking power. However, measuring braking power is 

very difficult and can only be done in a service garage with special, and expensive 

equipment. It would be much easier if certain physical properties, or parameters, 

could be monitored that offer the possibility to say something about the condition of 

the braking system. Examples of easier measurable physical parameters could be the 

brake disk thickness, the margin between the piston and the brake, and so on. When 

the relationship between these physical parameters and the performance characteristic 

of the brake system is known, then it would be possible, by measuring the physical 

parameters, to say something about the status of performance of the system. But to do 

so, information is needed on the time-dependent behaviour of these physical 

parameters. This links back to the description, and advantages, of tolerance design in 

relation with the time-dependent parameter behaviour as presented in this section. 

Provide information enabling decisions on re-use of systems or sub-systems 

A similar line of reasoning as given for the design requirement on preventive 

maintenance can be used for the third design requirement. Statistical failure data only 

provides the possibility to make re-use decisions on complete product population 

level. As explained before, this might be a big disadvantage for expensive, or 

measurably difficult products.  
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Therefore, having information on the condition of a product makes re-use 

decisions on individual product level possible. Also here it might be very difficult to 

measure the performance characteristic of a product. When the relationship between 

the performance of the product and its physical parameters is known over time, it 

would suffice to just measure the physical parameters to judge the condition of the 

product and, therefore, enabling service engineers to make a good decision on re-use 

possibilities. These are most often easier to measure than the performance 

characteristic of the product, which eventually results in faster and cheaper tests.   

The brief discussion on the three design requirements in relation with the 

description of tolerance design shows the advantages that could be gained by also 

using the time-dependent parameter information. For this reason these arguments will 

be taken into account in chapter four, where the newly developed method is 

presented. 

2.3 Failure Classification 

2.3.1 Failure classification from Blache and Shrivastava, 1994 

A product is considered to be reliable, according to the definition, when it 

performs its intended function under operating conditions for a specified period of 

time. When this is not the case, the product fails. This section provides an explanation 

of classes of failures that this research focuses on by using two well-known failure 

classification systems from literature, respectively the classification system of Blache 

and Shrivastava [BLA94] and the Roller-coaster curve developed by Wong 

[WON88]. The next section explains the link between the classes of failures and the 

three design requirements considered in this research. Then a translation to necessary 
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information for the three design requirements is made keeping in mind the failure 

classes. 

Blache and Shrivastava [BLA94] classified different failure modes by 

studying the performance function of the item. Figure 2.6 shows the suggested 

classification scheme for failure modes. A brief description of the different failure 

modes is as follows [BLA94]: 

1. Intermittent failures: Failures that last only for a short time. A good 

example of this is software failure that occurs only under certain 

conditions that occur intermittently. 

2. Extended failures: Failures that continue until some corrective action 

rectifies the failure. They can be divided into the following two categories: 

a. Complete failures, which result in total loss of function 

i. Sudden failures: Failures that occur without any warning 

ii. Gradual failures: Failures that occur with signals to warn 

for the occurrence of a failure 

b. Partial failures, which result in partial loss of function 

i. Sudden failures: Failures that occur without any warning 

ii. Degraded failures: Failures that occur with signals to warn 

of the occurrence of a failure 

A complete and sudden failure is called a catastrophic failure and a gradual 

and partial failure is designated a degraded failure.  
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Figure 2.6: Failure classification (from Blache and Shrivastava, 1994 

[BLA94]). 

 

The classification of failures given by Blache and Shrivastava [BLA94] 

provides a good classification of possible failure modes. But their failure modes 

classification does not really relate failures to time. For this reason also the roller-

coaster curve classification system is used and presented next. 

2.3.2 Rollercoaster curve 

A traditionally classification of failure modes over time is represented by the 

bathtub curve. The bathtub curve is used to describe the failure rate for many 

engineering components. Not only the failure rates of electrical components, but also 

mechanical and electromechanical components can use the bathtub curve as failure 

classification model. The bathtub curve may be divided into three phases [LEW96]:  

1. Infant mortality (infancy) period  

2. Useful life period  

3. Wear-out period. 

A general shape of the bathtub curve is shown in figure 2.7.  
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Figure 2.7: Bathtub curve with a time-dependent failure rate [LEW96]. 

 

During the early life of a component, the infant mortality period, there are 

early failures caused by initial weakness or defects in material, poor quality control, 

inadequate manufacturing methods, poor processes, human error, substandard 

materials and workmanship and inadequate debugging. Early failures show up early in 

the life of a component and are characterised by a high failure rate in the beginning, 

which keeps decreasing as time elapses. Other terms for this decreasing failure rate 

period are burn-in period, break-in period, early failure period, wear-in period and 

debugging period. Burn-in tests or some other screening processes usually detect the 

failures occurring during this period [JEN82]. 

During the second part of the bathtub curve the failure rate is approximately 

constant. This period of life is known as the useful life during which only random 

failures occur. There are various reasons for the occurrence of failures in this period: 

power surges, temperature fluctuations, human errors, overloading, earthquakes etc. 

Screening techniques or maintenance practices cannot eliminate these failures. But by 

making the product designs more robust with respect to the environments, the effects 

could be reduced.  
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After the useful life the wear-out period starts, when the failure rate increases. 

The causes for these ‘wear-out’ failures include wear due to aging, fatigue cracking, 

corrosion and creep, short designed-in life of the component under consideration, 

poor maintenance, wear due to friction and incorrect overhaul practices.  

The onset of rapidly increasing failure rates normally forms the basis for 

determining when components should be replaced and for specifying the system’s 

design life. Design with more durable components and materials, inspection and 

preventive maintenance are a few of the approaches to produce products with a longer 

useful life.  

 

λ(t) 

Figure 2.8: Bathtub curve with latent failures [JEN82]. 

 

The phases of the bathtub curve were observed in many components and 

products. This is why the bathtub curve is considered typical for many products. 

Several years ago, researchers in the electronic industry have identified another 

typical failure pattern called latent failures (also known as freak failures). When the 

stresses, which are acting on the components, exceed the design strength, there is 

often a “jump” in the failure rate curve as illustrated in figure 2.8.  
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No one can predict when latent failures will occur and they are basically 

unavoidable [JEN82]. They can be reduced by redesigning for extreme conditions, i.e. 

over designing, built in redundancy, or by using the Environmental Stress Screening 

(ESS) test [WON90] before the product is delivered to the customer. During these 

tests the component is exposed to excessive stress environments, such as vibration 

and thermal cycling over a certain period of time. 

Researchers have shown that in several branches of electronics industry the 

bathtub characteristic for failure rate is an exception rather than a rule [BRO00]; 

especially the constant failure rate bottom of the bathtub curve, which has been used 

for many years for predicting systems reliability. In situations where product 

reliability is primarily determined by the reliability of components, this constant 

component failure rate model or the exponential law dominated the field. But usually 

this is not adequate and therefore a roller-coaster failure rate curve has been proposed 

by Wong in his paper Off The Bathtub onto The Roller-Coaster Curve [WON88] to 

replace the constant failure rate to describe product reliability in the field. Wong 

shows, based on screening data and operational data, that indeed one can expect 

“electronic” systems to have generally decreasing hazard rate curves with failure 

humps on them. The recognition of a hump of failures on the hazard rate curve dates 

at least back to 1968 when Peck [PEC68] called the hump on the hazard rate curve as 

freak failures that should be eliminated via stress screening. Also data from the 1961 

paper by Milligan [MIL61] shows a hump in the failure rate curve, after 

superimposing the pertinent data points.  Many other reports ([JEN82], [EDG79], 

[BRA79], [KZA79], [GEN87], [MEY87]) show this hump or a few humps in the 

hazard rate curve.  
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The data presented in a paper entitled Reliability Assessment of Spacecraft 

Electronics written by Hecht and Fiorentio [HEC87] shows, for both the overall 

system hazard rate and the parts quality failures hazard rate curves, strong roller-

coaster characteristics as was pointed out by Wong [WON88] 

A representation of a roller-coaster curve is illustrated in figure 2.9.  

 

Figure 2.9: Rollercoaster curve [WON88]. 

 

Early failures or Hidden 0-hour failures: 

Failures that occur at or shortly after t=0. These products arrive out of 

specification at the customer. They have either slipped through final tests, have been 

damaged during transport or are used in an unanticipated manner. Although these 

failures should all be observed at t=0, complex functionality or delay in customer 

reporting can cause delay in reporting these failures. One of the major reasons for this 

kind of failures is not a technically defective product, but a mismatch between 

technical product specification and the customer specification. Failures in this phase 

are by definition time-independent. 
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Early wear-out: 

Only sub-populations of products show these kind of early wear-out failures. 

The reason for this different reliability behaviour in comparison to the main 

population is the difference between either the strength of products, especially, or 

between how customers will use the same products. Examples are products that are 

produced with internal flaws. When stresses are acting on these products, these flaws 

can cause a far faster wear-out than the main population. These sub-populations can 

appear as one or more “humps” on the roller coaster curve. These early wear-out 

failures are difficult to detect during production because on the product level these 

sub-populations initially show no different behavior with respect to the main 

population. Failures in this phase of the Roller-coaster curve are time-dependent and 

are dynamical of nature.  

 

Figure 2.10: Translation from failed products to the four-phase 

rollercoaster curve [BRO92]. 
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Stable system with only random failures: 

Entering this phase of the Roller-coaster curve all sub-populations, containing 

early wear-out failures, have been removed. At this point in time there will be a rather 

homogenous population. Only external events with a strong “random” character, such 

as lightning, power shocks and mechanical shocks, can cause a product to fail at this 

time. Although many of these events occur with a low probability, these rare events 

can always happen. If the likelihood of occurrence for these events is constant in time 

and the product population is homogenous, this will result in a constant failure rate, as 

can be seen in figure 2.9. 

Systematic wear out: 

Basically this phase of the curve shows much similarity with the second phase 

(early wear-out) of the failure rate curve. Only this phase considers all of the  

remaining population. As the population of remaining products is arrived at this 

interval in time most products, especially mechanical products, but also electronic 

products, begin to show some form of degradation. Well-known degradation effects 

are corrosion of metals and increased brittleness of plastics. Although the level of 

degradation will be different for every product in a large population, at one moment in 

time all products have failed. At the moment in time where these failures start to 

dominate the failure rate curve, it will lead to an increasing failure rate and the 

systematic wear-out has begun. 

It is important to recognize that there is a difference between failures that 

occur in phases 3 and 4 and failures that occur in phases 1 and 2. The phase 1 and 

phase 2 failures only occur in distinct sub-populations of products or product users, 

while phases 3 and 4 are relevant for the entire remaining population of products. 
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2.3.3 Variability in relation to failure 

As mentioned before, variability, or component tolerances, are important 

factors influencing the performance of products. This section goes more into detail 

about the link between variability and product failure. 

In section 2.1 two causes of variability were summed that lead to unreliable or 

lower quality products. These two causes are [LEW96]: 

→ Unit-to-unit variability 

→ Variability due to operating and environmental conditions 

 

One cause of variability can be added [LEW96]: 

→ Variability due to product deterioration/degradation 

Figure 2.11 shows three possible effects of component tolerances on the 

performance of products and their relation to the roller-coaster curve for all phases. 

The two vertical lines per distribution indicate the specification limits in the 

performance space. 
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Figure 2.11: Possible effects of variability in relation with the Roller-

coaster. 

 

In phase 1 some of the products are out of specification and they fail directly. 

In phase 2 it is possible that the curve becomes wider. A cause might be degradation. 

Another possibility is that the curve shifts and this might be caused by drift of the 

mean of the performance characteristic. A third possibility might be that customer use 

is different then expected that translates itself in a shift of limits. Same effects as 

described for phase 2 count for phase 4, but then for the complete population, while 

phase 2 failures count for sub-populations.  

2.3.4 Failure modes considered in this thesis 

The classification of failure modes given by Blache and Shrivastava [BLA94] 

and the failure classification represented by the roller-coaster curve provide a good 

insight on the classes of failures this thesis will focus on. The emphasis of this thesis 

will be on gradual, or degraded, complete and partial extended failures of phase 2 and 

phase 4 of the roller-coaster curve. Phase 1 failures are very relevant for quality 
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related failures, as Lu [LU02] explains in her thesis. Also phase 3 failures are 

important for reliability analysis, but these types of failures are impossible to predict 

on single product level due to the random character of their causes. Intermittent 

failures are more software related and different approaches are necessary to improve 

the reliability of products in relation to intermittent failures. The same accounts for 

sudden extended failures. Sudden failures are impossible to predict by laws of physics 

combined with statistical analysis. 

2.4 Necessary information for the three design requirements 

The research objective that was defined in chapter one is to develop a method 

that can tackle the three design requirements in one method. 

The previous section provided two failure classification systems that were 

used to explain on what failure classes this research focuses. These failure classes can 

be directly linked to the three design requirements. The emphasis of this thesis will be 

on gradual, or degraded, complete and partial extended failures of phase 2 and phase 4 

failures of the roller-coaster curve. So, basically, the emphasis is on degradation 

related failures of products. In order to optimize a product design towards reliability it 

is necessary that the behaviour of the product can be predicted over time. Predicting 

the reliability of a product over time is possible with degradation related failures. This 

has already been explained in section 2.2. And for both the second and third design 

requirement, it is necessary to know the status of the products at all times during their 

life and predict the remaining life of the products. This is possible with degradation 

related failures.  
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It is clear that degradation information is very useful in order to meet the three 

design requirements. But more information is necessary for the purpose of developing 

a new method that can tackle the three design requirements. Table 2.1 gives an 

overview of the information that is needed in order to tackle the three design 

requirements separately. 

Information is needed about the performance of the complete population of 

products. In other words, the statistical properties of the products, or the variations in 

the properties of the products, are needed in order to meet all three design 

requirements. Also the time-dependent performance, or degradation behavior, should 

be known for all three design requirements. The time-dependent behavior of the 

products should somehow be measured or indicated. Therefore, time-dependent 

indicators are necessary. To make a design of a product more reliable, information 

about the dominant time-dependent design parameters is needed together with the 

performance characteristic that is an indicator for the performance, or quality, of the 

product over life. This was already explained in section 2.2. For re-use, a time-

dependent indicator is sufficient. This could be the time-dependent performance 

characteristic, or all dominant time-dependent design parameters. Sometimes it is hard 

to directly monitor the time-dependent performance characteristic, but if the 

functional relationship between the Performance Characteristic (PC) and the Design 

Parameters (DP’s) is known, only one of these two has to be monitored to know the 

behavior of the product over time. It could be very useful for both re-use and 

preventive maintenance to have information about the functional relationship between 

the dominant time-dependent DP’s and the time-dependent PC, but it is not necessary 

for the above-mentioned reason. However, for optimizing the reliability of a product 

design over life, this information is essential. And, in order to know when a product is 
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at the end of its technical life, information about the failure limits in the performance 

space is necessary. This accounts for all three design requirements.  

Table 2.1: Overview of information needed for simultaneously solve for the 

 

three design requirements. 

bviously, all three design requirements need almost similar information in 

order t

 it possible to specify the link between the information required to 

 1. Design 2. Re-use 3. Prev. Maint. 
Statistical properties 
products 

Statistical properties 
products 

Statistical properties 
products 

Time-dependent behavior Time-dependent behavior Time-dependent behavior 

Time-dependent Design 
Parameters (DP) 
Time-dependent 
Performance 
Characteristics (PC) 

Time-dependent 
indicators 

Time-dependent 
indicators 

Functional relationship 
between PC and DP’s 

  

Needed 
information 

Failure limits (FL) / 
Specification limits 

Failure limits (FL) / 
Specification limits 

Failure limits (FL) / 
Specification limits 

 

O

o tackle them. Optimizing a product design towards reliability requires some 

more information, because the link of the performance characteristic to the design 

parameters is needed, although this information might also be very valuable for 

making re-use and preventive maintenance decisions, as explained in section 2.2. But 

in general, the needed information is almost similar and could be combined in one 

method. In essence, just a bit more than necessary has to be done for the second and 

third design requirement, but then all three design requirements can be tackled using 

only one method. In chapter one the first sub-research question was: 

 

Is

solve for the design requirements separately? 
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This question can now be answered positively. A clear link exists between the 

necessa

his section discusses the importance of degradation information for the 

develo

2.5 Direction of research: Degradation and Variation 

Failure of products is often the result of the effect of deterioration. The 

degrada

1. overstress failures 

ry information for the separate design requirements and can be specified (table 

2.1). And therefore, it is possible to consider the three design requirements within one 

method. 

T

pment of a new method. Also the importance of variability, or component 

tolerances, was explained. The next section provides a more in-depth discussion on 

degradation information and information about the statistical properties of products in 

relation to quality and reliability. This information is a necessity in order to 

understand the information and judge if literature already provides methods that link 

the needed information. 

tion process leading to a failure is a complicated process. Figure 2.12 shows 

examples of three general shapes for degradation curves in arbitrary units of 

degradation and time: linear, convex, concave [MEE98a]. Dasgupta and Pecht (1991) 

[DAS91] divided failure mechanisms into two broad categories: 

 

2. wear-out failures 
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Concave
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Figure 2.12: Possible shapes for univariate degradation curves (from 

Meeker and Escobar [MEE98a]). 

 

Overstress failures are those due to brittle fracture, ductile fracture, yield, 

buckling, large elastic deformation, and interfacial de-adhesion. Wear-out failures are 

those due to wear, corrosion, dendritic growth, inter-diffusion, fatigue crack 

propagation, diffusion, radiation, fatigue crack initiation, and creep.  

The rate at which the deterioration occurs is a function of time and/or usage 

intensity. If all manufactured units were identical, operated under exactly the same 

conditions and in exactly the same environment, and if every unit failed as it reached 

a particular “critical” level of degradation, then, all units would fail at exactly the 

same time. The usage intensity, or operating conditions, can vary from user to user, 

and is called variation of degradation due to operating conditions. The variation in the 

degradation process not only depends on variation of degradation due to operating 

conditions, but also on variability in environmental conditions, manufacturing 

variability, and material variability. These factors combine to cause variability in the 

degradation curves and in the failure times. Meeker and Escobar (1998) [MEE98a] 

categorize all these types of variability as follows: 
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1. Unit-to-Unit Variability 

a. Initial conditions. Individual units will vary with respect to the 

amount of material available to wear, initial level of 

degradation, amount of harmful degradation-causing material, 

and so on. 

b. Material properties. Variability due to variations in quality of 

material used. 

c. Component geometry or dimensions. Unit-to-unit variability in 

component geometry or dimensions can cause additional unit-

to-unit variability. 

d. Within-unit variability. Often there will be spatial variability in 

material properties within a unit (e.g. defects). 

2. Variability due to Operating and Environmental Conditions 

User profiles, or stress functions, are generally complicated 

functions over time. Driving a car illustrates both causes of variability. 

The degradation processes in a car differ for both a gentle driver in a 

nice environment and a rough driver in a harsh environment like 

Alaska.  

Figure 2.13, taken from a book by Bogdanoff and Kozin (1985) 

[BOG85], gives an impression of a possible degradation curve, by the 

example of growth of fatigue cracks, taking into account all sources of 

variation. The degradation curves are based on the Paris-rule model 

(e.g. Dowling, 1993)  [DOW93]. 

This example shows that failure of products can often be traced back to an 

underlying degradation process, taking into account all sources of variability 
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influencing the degradation process. Therefore, to design high-reliability products, it 

is necessary to consider all sources of variability influencing the deterioration, and 

therefore the failure, of products. Design parameters need to be chosen in such a way 

that they are insensitive for, or robust against, all sources of variability that are 

considered uncontrollable factors influencing the reliability of products.  
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Figure 2.13: Plot of Paris model for growth of fatigue cracks with unit-

to-unit variability in the initial crack size and material parameters C and 

m, and with a stochastic process model for the changes in stress over the 

life of the unit [BOG85]. 
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2.6 Motivation for direction of research 

Traditional statistical approaches to reliability analysis of physical and other 

electro-mechanical products are based on life tests that record only time-to-failure of a 

sample. Such analyses have been extensively studied and developed over the past few 

decades, and countless number of articles have been published in addition to the many 

books authored in the area, e.g., [LAW82], [NEL82], [KAP77], [LEW87], [ELS96]. 

However, to remain profitable in today’s intense global competition, some life tests 

result in few or no failures in a short life testing time. In such cases, it is difficult to 

assess reliability with traditional reliability studies that record only failure time. To 

study this type of reliability problems, accelerated life tests that record failure and 

censoring times subjected to elevated stress are widely used. However, for products 

that are already highly reliable, the fact that few or even no failures are likely to occur 

during a reasonable testing period makes it difficult with traditional failure-time data 

to identify the important factors that in fact affect reliability out of potentially, 

important ones [CHI01]. If a product has characteristics such that degradation over 

time can be related to its failure time, then collecting degradation data can provide 

important information about a product reliability. 

A recent approach is to observe degradation measurements of product 

performance during the experiment. Product performance is usually measured in 

terms of physical properties. These physical properties are called ‘degradation 

indicators’ that depend on degradation mechanisms. In a degradation test, one has to 

pre-specify a level of degradation, obtain measurements of degradation at different 

times, and define that failure occurs when the amount of degradation for a test unit 

exceeds the threshold level. Thus, these degradation measurements may provide some 
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useful information to assess reliability. In most reliability tests, degradation data have 

some important practical advantages. Wu and Tsai [WU00a] summarize the following 

from literature (e.g. [NEL90] and [MEE93]) as important practical advantages: 

→ Degradation data can be analyzed earlier, before a failure actually occurs. 

For highly reliable products, it is possible that the traditional life test will 

provide few or no failures. On the other hand, a degradation test can 

provide some information about unfailed units. 

→ Degradation data may yield more accurate life estimates than the 

accelerated life test with few or no failures. A degradation test can get 

information at lower levels of stress, which reduces the extrapolation error 

of estimating product life under normal conditions. 

→ Degradation data can provide better information of degradation processes, 

which help us to find the appropriate mechanistic model for degradation 

and accelerated stresses. 

In the paper “Statistical Tools for the Rapid Development & Evaluation of 

High-Reliability Products” Meeker and Hamada [MEE95a] add some important 

limitations in the amount of available information using time-to-failure data: 

→ Standard deviations of important reliability characteristics, like estimates 

of percentiles of the life distribution, are larger than they would be with 

degradation data [LU95]. 

→ Verification of acceleration-model assumptions is much more difficult. 

→ It is difficult or impossible to estimate important reliability characteristics 

like degradation rate. 
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All the reasons summed above give a strong motivation for the recent shift in 

reliability research direction from failure-data oriented to degradation-data oriented.  

The reliability modelling, prediction, and improvement method that is 

presented in this thesis not only follows the recent trend regarding degradation 

analysis, but the method also follows another recent trend, which is the area of robust 

reliability. Robust design is an experimental strategy to make a quality characteristic 

insensitive (robust) to various noise factors. Taguchi classifies noise factors into: 

→ Manufacturing variation 

→ Various environmental and use conditions 

Product-design factors affect the elements of the degradation-caused failure 

model. In this thesis, improving reliability in a robust manner is defined as to find 

combinations of product-design factors that decrease the standard deviation of the 

failure distribution and that: 

1. Decrease the mean of the degradation rate distribution. 

2. Increase the mean of the failure distribution. This does not apply if the 

critical failure limit is user-defined (soft failures). 

3. Decrease the mean of the initial degradation-level distributions. 

Figure 2.14 graphically shows the above mentioned improvement properties. 

The overall objective of the optimization step is to decrease the standard 

deviations of both distribution 2 and distribution 3, and of the degradation rate 

distribution. Then, the first optimization objective is to decrease the rate of the 

degradation. This is not shown in figure 2.14. The second optimization objective is to 

increase the mean of the failure distribution represented by distribution 2. And the 

third optimization objective is to minimize the mean of the initial degradation 

distribution at t = 0, which is indicated with distribution 3 in figure 2.14.  
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Figure 2.14: Graphical representation of reliability optimization. 

 

The next chapter discusses the existence of methods in literature that provide a 

way of tackling all three design requirements simultaneously. The information 

provided in this chapter will be used to come to criteria that make the literature 

evaluation possible. 
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3 Literature review 

3.1 Introduction 

Extensive literature is available on quality and reliability related topics. This 

chapter analyses the available literature in relation with the problem definition that 

was presented in chapter one. The problem definition has been analysed in more detail 

in chapter two and it could be concluded that a large similarity exists between the 

necessary information to solve for the three design requirements. This chapter judges 

the strengths and weaknesses of available methods and tools in literature by judging 

how good the available methods and tools meet the requirements of handling the 

necessary information that is presented in chapter two. To do so, a translation is made 

from information necessary (table 2.1) to solve for the three design requirements to 

criteria that a method has to meet in order to be able to solve for the three design 

requirements.  

The next section of this chapter classifies the available literature for the 

purpose of clarity. Many methods and tools in literature are closely related to each 

other. It would be impossible to give a description of all methods and tools and 

consequently analyse the strengths and weaknesses of all these methods and tools. In 

order to make an analysis of methods in literature possible, a classification of 

available methods is made. This classification is arbitrary, but covers the main classes 

of quality and reliability related methods in literature.  

This chapter continues with a short description of all the classes of quality and 

reliability related methods and tools. After the description of all classes an analysis is 
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presented on the strengths and weaknesses of the classes of methods in relation with 

the criteria that a method has to meet in order to solve for the three design 

requirements. Even within a certain class of methods it is hard to judge the strengths 

and weaknesses due to the great variety of methods within a certain class. In order to 

make this analysis still possible, a list of literature references of books and papers that 

fall in that particular class of methods is firstly given. Then one well-known book for 

that particular class of methods will be used to analyse the strengths and weaknesses.  

Finally, this chapter finishes with a summary of the conclusions for all classes 

of methods and tools in literature. The results of this chapter make it possible to 

answer the second and third research questions. These questions are: 

 

Are methods available in literature that connect, or take into account, 

the necessary information for the three design requirements? 

 

And: 

 

Which methods, concepts, or ideas available in literature could serve 

as a basis for a new method and what adjustments are necessary to 

these methods in literature to connect, or take into account, the 

necessary information for the three design requirements? 

 

The answers to these questions serve as a starting point for chapter four. 
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3.2 Criteria for Reliability Prediction and Improvement 

Already for centuries reliability plays an important role in industry and 

scientific research. In all these years many books and papers have been published with 

many different approaches to reliability related issues. However, not all methods and 

tools are relevant for all classes of reliability related problems. In order to distinguish 

and judge the usability of all reliability related methods and tools available in 

literature, this section presents a set of criteria that help to classify the usability of 

methods and tools. 

Figure 2.11 of section 2.4.3 shows the roller-coaster curve and the possible 

causes that explain the roller-coaster curve. Figure 2.13 of section 2.6, which is 

similar to figure 3.1 below, gives an example of how products could behave over time 

in the performance space and how this translates to failures over time. With the use of 

this figure the criteria for reliability prediction and improvement purposes will be 

defined and explained.  

One of the first things that obviously influence the quality, and therefore the 

reliability, of a product is the unit-to-unit variation. Weak products are already closer 

to the failure level and they might even degrade faster than very good products (figure 

3.1). Unit-to-unit variation should therefore be taken into account when judging the 

suitability of certain quality and reliability related methods and tools to meet the three 

design requirements as presented in chapter one. This, therefore, is criterion 1. 

Another obvious criterion that enables an engineer to judge if preventive 

maintenance of a product or module is necessary, or if re-use of that particular 

product or module is possible, is that at least the performance of the product 

population over time should be known. A suitable method should be able to model 
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and analyze the performance of the product population over time. Also for the 

purpose of optimizing the design towards reliability information about the 

performance over time is very useful, as section 2.4 and 2.6 of chapter two explained. 

So, the second criterion is the ability to model and analyze the product time-

dependent performance. 

The second criterion is, however, quite stringent for preventive maintenance 

and re-use purposes. In chapter two it was explained that for preventive maintenance 

and re-use only time-dependent indicators are necessary to know. Only for optimizing 

the design of a product is it necessary to have more detailed knowledge on how 

design parameters in relation with the performance characteristic of that product 

influence the reliability of the product. Therefore, an extra criterion is formulated for 

the purpose of preventive maintenance and re-use, namely the ability of a method to 

analyze the status of the product. Two types of data could be used for this purpose, 

namely statistical failure data and degradation data.   
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Figure 3.1: Plot of Paris model for growth of fatigue cracks with unit-

to-unit variability [BOG85]. 

 

The product time-dependent performance information should be gathered 

through testing or maybe even from the field5. It is easy to imagine that it is not 

always possible to get all the data that is needed about the performance of the product 

population over time. Data could be missing. Therefore, it might be necessary that the 

performance of the products over the remaining lifetime (not captured in the gathered 

data) has to be predicted. For example, imagine that data is only available until 60.000 

cycles in figure 3.1. In order to know how failures over time of the complete 

population looks like, a suitable method should be able to predict how the unfailed 

product population performs until failure. Therefore, predictability of product 

performance over time is considered as the fourth criterion. 

                                                 

5 In this context with field is meant the use of the products by the users. 
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The next step in judging the reliability of a product population is to translate 

the time-dependent performance of the product population into failure times. This step 

is necessary for improving the design of the products. One of the objectives of 

improving the reliability of a product population is increasing the mean of the time-to-

failure and decreasing the variance of the time-to-failure of the product population, as 

explained in chapter two. The fifth criterion will consequently be the ability of a 

method or tool to translate and analyze the product population performance over time 

to statistical failure data.  

And finally, as one of the three design requirements is optimizing the design 

of the products, this should therefore be included in the criteria judging the suitability 

of reliability related methods and tools. Optimization of a product design can be done 

in many ways, but in this thesis the definition of optimization described in chapter 

two is used, and will be used throughout this thesis. In summary the following six 

criteria are defined: 

1. Ability to address unit-to-unit variability 

2. Ability to model and analyze product time-dependent behavior 

3. Ability to analyze the product status 

4. Ability to predict product behavior over time 

5. Ability to analyze statistical failure data 

6. Ability to optimize the product design in terms of reliability 

The next section presents a classification of available quality and reliability 

related methods and tools in literature. 
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3.3 Classification of quality and reliability related methods and 

tools 

A rich variety of methods and tools on quality and reliability related issues are 

available in literature. It is almost impossible to judge all available methods 

separately. For this reason a classification of quality and reliability related methods 

and tools is proposed. The proposed classification is not complete such that many 

methods cannot always be classified in one class of methods, but overlap a few 

classes. However, it provides a good overview of what strengths and weaknesses 

certain classes of methods have in relation to the criteria that are proposed in the 

previous section. 

The next classes of quality and reliability related methods and tools are 

recognized from literature: 

1. Statistical Failure Analysis related methods 

2. Stress-Strength related reliability methods 

3. Reliability by DOE related methods 

4. Reliability by Accelerated Testing related methods 

5. Reliability by Degradation Analysis related methods 

6. Robust Design related methods 

7. Preventive Maintenance/Condition Monitoring related methods 

Although the selection of classes of methods is arbitrary, these methods all 

have clear distinctive goals or approaches. This is explained in section 3.4. 

In order to explain how these classes of methods are analyzed in relation with 

the criteria given in section 3.2, the next section provides a description of all classes 
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of methods and tools and their weaknesses and strengths. An overview of the 

conclusions will be presented in a table. Table 3.1 will be used for this purpose. 

Table 3.1: Overview table of reliability related methods and criteria for 

reliability prediction and improvement.  

deterministic robust

1. Statistical Failure
    Analysis
2. Stress-Strength
    Reliability Analysis
3. Reliability by DOE
4. Reliability by
    Accelerated
    Testing
5. Reliability by
    Degradation
    Analysis
6. Robust Design
7. Maintenance/-
    Condition Monito-
    ring

Criteria for Reliability Prediction and Improvement

Ability tom

Reliability 
Related 
Methods

design reliability 
optimisation

addres unit-
to-unit 

variability

model and 
analyse product 
time-dependent 

behaviour to 
degradation data

predict product 
behaviour over 

time

analyse 
statistical 

failure data

analyse 
product 
status

 

Judging all the classes of methods to the criteria is not a “good or bad” 

process. Some classes of methods are better on certain criteria than others and some 

methods completely ignore a certain criterion. For this reason the “goodness”, or 

suitability to take into account a certain criterion, will be valued by either a “o”, a “+” 

or a “++”, where “o” means the class of methods does not take that criterion into 

account at all, where “+” means the methods in that class take a certain criterion into 

account, but not in an optimal way, and where “++” means that methods in that class 

take a certain criterion very good into account. 
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3.4 Detailed description of all classes of quality and reliability 

related methods and tools 

This section provides a description of the different classes of quality and 

reliability related methods and tools. This section follows the same sequence of 

classes as presented in section 3.3. In the description of the different classes of 

methods all criteria for goodness-of-use will be included in relation with the methods. 

Also the shortcomings will be discussed in relation with the contents of the methods. 

It is assumed that the reader is familiar with basic knowledge of quality and reliability 

related material that is presented in e.g. the book Introduction to Reliability 

Engineering written by Lewis [LEW96]. However, appendix 1 presents some 

important preliminaries crucial to the treatment of lifetime and reliability related data. 

3.4.1 Statistical Failure Analysis related methods 

This class of reliability methods restricts the reliability analysis and prediction 

more or less to the analysis of lifetime data, or failure data. The book ‘Mathematical 

Theory of Reliability’ written by Barlow and Proschan [BAR65] is generally 

considered as one of the first more quantitative (or mathematical) and formal 

approach to this class of reliability methods. Since the appearance of this classic book, 

as Blischke and Murthy state in their book ‘Reliability – Modelling, Prediction, and 

Optimization’ [BLI00], the theory of statistical failure analysis has grown at a very 

rapid rate, as can been seen by the large number of books and journal articles that 

have appeared on the subject.  

Literature related to statistical methods used in the analysis of lifetime data 

lies scattered in a large number of books (e.g. Mann, Schafer, and Singpurwalla 

[MAN74], Kapur, and Lamberson [KAP77], Lawless [LAW82], Nelson [NEL82], 
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and many more) and a large number of professional journals: IEEE Transactions on 

Reliability, Biometrika, Annals of Mathematical Statistics, Journal of the American 

Statistical Association, Technometrics, among others. For the analysis of this class of 

reliability methods the book ‘Methods for Statistical Analysis of Reliability and Life 

Data’ of Mann, Schafer, and Singpurwalla [MAN74] is used as a reference book. 

Although this is an old book, it is still complete and focuses solely on statistical 

failure analysis related methods. 

Statistical failure analysis related methods are concentrated on the analysis of 

lifetime data. In other words, these methods model failure data of products over time 

by using distribution functions, like Exponential distributions, Weibull distributions, 

Normal distributions, and other statistical distributions.  

A failure time distribution, therefore, represents an attempt to describe 

mathematically the length of life of a component, system, or a product. There are 

many physical causes that individually or collectively may be responsible for the 

failure of a product at any particular instant. This class of reliability methods assumes 

that it is not possible to isolate these physical causes. This is why all possible modes 

of failure are included in a failure time distribution. The modes of possible failure will 

affect the analytic form of the failure distribution. The art in this type of methods is 

the choice of the failure distribution representing the lifetime data. The basic 

problems addressed in statistical failure analysis related methods are those of 

specifying models to represent distributions of lifetimes and to making statistical 

inferences on the basis of these models. In some situations specific parametric models 

can be employed to represent lifetime distributions, and inferences based on these. In 

others, use of a parametric family of models may not be feasible, and nonparametric 

methods can be used.  
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Numerous parametric models are used in the analysis of lifetime data in 

problems related to the modeling of aging or failure processes. Among these models, 

a few particular distributions occupy a central role because of their demonstrated 

usefulness in a wide range of situations. In this category are the exponential, weibull, 

gamma, and lognormal distributions. To cover all the distributions currently in 

existence would require an entire book. For a detailed description of these and other 

statistical models the reader is referred to extensive literature that is available 

(Wolstenholme (1999) [WOL99], Crowder, Komber, Smith, and Sweeting (1991) 

[CRO91], Leemis (1995) [LEE95], Rao (1992) [RAO92]).  

Extensive motivation for the various statistical models will not be provided in 

this thesis. The extensive literature on lifetime models provides the theoretical 

motivation for the choice of particular models. Some theoretical motivation for 

particular models can be found in the series by Johnson and Kotz (1970) [JOH70], 

which extensively catalogs mathematical and statistical properties of most of the 

distributions and provides additional references concerning their areas of application. 

Some other references among numerous others are: Meeker and Escobar (1998) 

[MEE98a], Chick and Mendel (1996) [CHI96], Wu and Tsai (2000) [WU00a], and 

many more.  

The second class consists of nonparametric procedures that do not depend on 

the assumption of a specific family of distributions.  

In the case of a parametric approach, once a model is specified with its 

parameters and data have been collected, one is in the position to evaluate the model’s 

goodness-of-fit, that is, how well the model fits the observed pattern of data. A 

procedure called Parameter Estimation assesses the goodness-of-fit by finding 

parameter values of a model that best fits the data.  
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There are two generally used methods for parameter estimation. They are 

least-squares estimation (LSE) and maximum likelihood estimation (MLE). A short 

elaboration on these two estimation methods is given in this section, because in the 

rest of the thesis these two estimation methods are used. 

The principle of maximum likelihood estimation, originally developed by 

Fisher [FIS12], states that the desired probability distribution be the one that makes 

the observed data most likely, which is obtained by seeking the value of the parameter 

vector that maximizes the likelihood function. A likelihood function would look like 

( ) ( wyfywL =; )

)

)

 (3.1) 

( ywL ;  represents the likelihood of the parameter w given the observed data 

y, and as such is a function of w. The MLE estimate is obtained by maximizing the 

likelihood function. In practice, the maximum likelihood estimate is obtained by 

maximizing the log-likelihood function ln L(w), instead of the likelihood function. 

This is because L(w) is usually a product of terms, while lnL(w) is a summation of 

terms. In general, it is easier to maximize a summation than a product of terms.  

In MLE the parameter values that are “most likely” to have produced the data 

are sought. In LSE, on the other hand, parameter values are sought that provide the 

“most accurate” description of the data, measured in terms of how closely the model 

fits the data under the square-loss function. Formally, in LSE, the sum of squares 

error (SSE) between observations and predictions is minimized: 
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where prdi(w) denotes the model prediction for the i-th observation. Note that 

SSE(w) is a function of the parameter vector w = (w1,...,wk). 

 61 



 

It should however be noted that, although least squares methods provide 

simple and fairly effective ways of obtaining estimates, they are not a substitute for 

efficient methods of estimation, such as maximum likelihood, when precision is 

important [LAW82]. Therefore, MLE should be preferred to LSE. There is a situation, 

however, in which the two methods intersect. This is when observations are 

independent of one another and are normally distributed with a constant variance. In 

this case, maximization of the log-likelihood is equivalent to minimization of SSE, 

and therefore, the same parameter values are obtained under either MLE or LSE 

[MYU03]. Ogasawara [OGA03] shows in his paper ‘Correlations among Maximum 

Likelihood and Weighted/Unweighted Least Squares Estimators in Factor Analysis’ a 

comparison of the performance of MLE methods with LSE based methods.  

For in-depth, technically more rigorous treatment of the topic, extensive 

literature is available (e.g., Bickel & Doksum (1977) [BIC77], Casella & Berger 

(2002) [CAS02], Spanos (1999) [SPA99]). 

Conformance with criteria 

This section gives a short elaboration on how all criteria have been judged. 

Naturally, the process of judging is arbitrary. For this reason one book has been used 

as the reference book. Other closely related methods described in other books could 

give a somewhat different outcome. 

The first criterion is the ability of a method to address unit-to-unit variability. 

Statistical failure analysis methods do not explicitly take unit-to-unit variation into 

account. Implicitly, unit-to-unit variation can be observed as a result in the failure 

data, but the causes of variation are not known. For this reason, this method scores a 

“o/+”.  
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Criterion 2 addresses the fact that a method should be able to model and 

analyze time-dependent degradation data. This method does not take time-dependent 

degradation data into account, and therefore is given the score “o”. 

The third criterion is less stringent than the second criterion. It is possible to 

make preventive maintenance decisions on the basis of statistical failure data, by 

knowing when the majority of the products starts to fail. A service department can 

decide with information about percentage of failed products when, in time of usage, 

preventive maintenance has to be carried out. However, this decision always concerns 

the complete population of that particular product, and can never be taken on 

individual products. This can be a big disadvantage when the repairable, or 

replaceable, parts or actions are very expensive. When the product was a strong 

product, it could function for another year. But this part of the technical lifetime is 

then thrown away. Therefore, this class of methods is honored with the score “+”.  

The fourth criterion is about predicting the rest of the life of a product when 

data is not available until failure of all products. A lot of attention has been given to 

this problem in statistical failure analysis related methods. A data set missing parts of 

the data is called censored data and many methods are proposed to solve for this 

problem. However, as Meeker, Escobar, and Lu (1998) [MEE98b] explain, there is 

more justification and credibility for extrapolation using degradation data. Therefore, 

the score for this criterion is “+/++”. 

The fifth criterion is about analyzing statistical failure data, which is exactly 

the purpose of this class of methods. So, the score is “++”. 

And finally, one of the criteria for the judgment of the usability of reliability 

prediction and improvement methods that was proposed in this chapter was the ability 

of a method to optimize a product design. In the book of Mann, Schafer, and 
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Singpurwalla (1974) [MAN74] there is nothing about optimization of a product’s 

design by using statistical failure data. So, the score for this criterion is “o”. Note that 

some other books provide a discussion on this topic. However, optimization purely on 

statistical failure data always remains a weak point, since no knowledge is available 

on design parameter level. 

3.4.2 Stress-Strength related reliability methods 

Many authors have extensively described Stress-Strength related reliability 

methods (Jensen (1995) [JEN95], Bhattacharyya and Johnson (1974) [BHA74], Lewis 

(1994) [LEW94], Brombacher (1992) [BRO92b]). For the description of stress-

strength related reliability methods this section uses the book ‘Electronic Component 

Reliability: Fundamentals, Modelling, Evaluation, and Assurance’ written by Jensen 

[JEN95]. Jensen calls this class of methods load-strength methods. Closely related 

methods use more or less the same fundamentals and ideas, but for clarity reasons this 

book is used as reference for this class of methods. 

The load-strength concept is based on the energy storage in a component to 

explain failures in a component. The concept divides components into “perfect” and 

“practical” objects. A “perfect” component is defined as a component that is finite and 

everywhere homogeneous. Perfect components store energy when a load (e.g. 

mechanical, thermal or power load) is applied. The nature of the stored energy can be 

for example electrical, heat or mechanical energy, but may be transformed during the 

storage. The energy storage process is basically linear, but there are limits to the 

amount of energy that can be stored. When this limit is reached, the component will 

fail. The strength of a component is thus defined as the value of the applied external 

load that causes the component to fail. When the energy stored in a component 

remains below this value, then a load may be applied to a component for a infinite 
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time or number of cycles without changes in the component. In principle perfect 

components can have infinite lives.  

In practical situations however, components are not perfect. A “practical” 

component can now be defined as a component where local departures from 

perfection are present. These local departures, called flaws or defects, reduce the 

strength of components below the theoretical value obtainable in “perfect” 

components. The terms flaw or defects not only describe situations, such as cracked 

or pitted material, but also for example contamination of foreign material or the 

existence of dislocations in the crystal structure. These flaws can arise due to 

imperfect material handling, processing or component manufacturing.  

Practical components contain a variety of flaws and the strength will be 

distributed around a mean value. Not only the strength of practical components must 

be expected to show a distribution around a mean value, but also loads often have a 

range of values and can thus be describe by a statistical distribution. By combining 

these two distributions it becomes possible to determine the failure probability. An 

example of a distribution of load and strength is given in figure 3.2. 

Figure 3.2: Distribution of Load and Strength [LEW96]. 
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This set of distributions will evidently cause some failures. One can imagine 

that there will be situations where the load on a particular component will be greater 

than the strength of that component and failure will occur. 

The reliability of a batch of components with strength distribution S(s) that are 

subjected to a load with distribution L(s) can mathematically be described by: 
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=

0 0
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Also failures that arise from the creation of weak sub-populations of 

components through errors in processing or poor workmanship can be modeled in the 

strength distribution of components. A distribution of this weak sub-population with a 

smaller strength will appear in front of the distribution of the main population. An 

example of such a bimodal distribution is given in figure 3.3.  

Figure 3.3: A weak sub-population of component strengths [LEW96]. 

 

Using this load-strength concept makes it possible to develop models for 

component reliability.  

The description given in this section covers the basic ideas behind stress-

strength methods. For a more detailed description the reader is referred to the book of 

Jensen [JEN95]. 
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Conformance with criteria 

Stress-strength related methods take unit-to-unit variation on performance 

level into account. But a translation back to the parameter space, or production 

process, causing this unit-to-unit variation is less evident. The score, however, is 

“+/++” for the reason that this method does take this property into account from time t 

= 0. 

This class of methods also analyses time-dependent behavior, but then from a 

different perspective than all other methods. It analyses and predicts the decrease of 

the strength of the population of products. Again, this is not done to the level of 

design parameters. This is why the score is “+”. 

The third criterion is about analyzing the status of a product. Jensen [JEN95] 

does not really go into this topic. Strength is somewhat hard to always define for 

every product. But when this is possible, one could imagine that the status could 

somehow be analyzed. If it would serve the purpose of preventive maintenance or re-

use of parts of a product it might be hard to estimate. Therefore, this method is given 

the score “+” on this criterion.  

Also the fourth criterion is less explicitly explained. It is more explained as a 

concept of thought, than as a real proof. However, when using the same assumption as 

with the third criterion, one could imagine that it would be possible to predict missing 

failure data. However, since this is not really explicitly described or proven, it is 

rewarded with a score “+”. 

The fifth criterion is about analyzing statistical failure data. Again, since the 

stress-strength method is more or less a concept of thought, although case studies 

definitely exist (especially in the field of structural reliability (Christensen and 

Murotsu [CHR96])), it is difficult to really judge the strength of the method on this 
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criterion. It is possible to calculate the probability of failure when the strength and 

stress distributions are known. But working backwards, by analyzing failure data and 

translating this back to stress and strength distributions seems difficult. The score 

given for this criterion is “0/+”. 

In the stress-strength related methods the load is explicitly taken into account. 

In principle, this information could be very valuable for making a design robust 

against the load that is applied on the products. The information is valuable, but how 

to really optimize a design is not explicitly explained in the book of Jensen. This is 

why the score is “o/+”. 

3.4.3 Reliability by DOE related methods 

A wealth of literature exists on Design Of Experiments (DOE) related 

methods. Well-known authors on this topic are: Montgomery and Runger (1999) 

[MON99], Cox and Reid (2000) [COX00], Bhote and Bhote (2000) [BHO00], Condra 

(2001) [CON01]. This section does not only use the book of one author as reference 

book, because DOE related methods are all more or less similar in the description of 

the method. 

Statistically designed experiments have been used extensively for the purpose 

of estimating or demonstrating existing reliability. Until a few years ago, designed 

experiments appear to seldomly used to improve reliability of products by identifying 

the important parameters (factors) affecting reliability out of many potentially 

important ones. These important factors can be identified empirically through 

experimentation, which involves making deliberate changes in the factor values 

(levels) and observing the resulting reliability. Besides identifying the important 

factors, levels for these factors that yield reliability gains can be recommended. 

Statistically designed experiments, like Design of Experiments (DOE), provide a 
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systematic and efficient plan of experimentation to achieve the goal of studying 

several factors simultaneously. Designed experiments, which have successfully been 

used to improve quality characteristics, can also be used to improve reliability, 

according to Condra [CON01]. 

DOE can be described as a group of techniques for organizing and evaluating 

tests so that it provides the most valuable data and makes efficient use of assets 

[FRI97]. DOE’s must be designed effectively and efficiently. An effectively designed 

experiment is, according to Frigon and Mathews [FRI97], an experiment that is 

feasible and enables to draw inferences to the population of interest. An efficient 

experiment is, according to Frigon and Mathews [FRI97], one that provides the most 

information at a given cost or the required information at minimum cost. In order to 

accomplish this, some important issues must be addressed before conducting the 

experiment. According to [BLI00], these issues are: 

→ Population(s) to which inferences are to be drawn; 

→ Variables to be measured and units of measurement; 

→ Factors to be varied in the experiment (e.g., temperature, humidity, light-

intensity); 

→ Choice of levels of these factors; 

→ Conditions under which the experiment is to be run; 

→ Preparation of a complete list of other factors that could affect the results; 

→ Preparation of a list of factors that cannot be controlled; 

→ Limitations of the experiment; 

→ Feasibility, cost issues, facilities, and so forth. 
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Design of experiments can take many forms, but its major distinguishing 

elements are [CON01]: 

→ Simultaneous variation and evaluation of several factors, and 

→ Systematic elimination of some of the possible test combinations to reduce 

experimental time and cost. 

The procedure provides a means of determining which factors have the largest 

effect on performance. It also allows the optimum settings for the various factors to be 

determined. 

 

Three types of experiments that could be designed are defined: 

1. A one-factor-at-a-time experiment implies that with each run one factor 

is changed while the others remain the same [CON01]. 

2. All possible combinations of factors in one experiment. This is called a 

full factorial experiment [LEW96]. 

3. The fractional factorial, allows the experimenter to obtain information 

about all main effects and interactions while keeping the size of the 

experiment manageable, and also conducting it in a single, systematic 

effort. In a fractional factorial experiment only a fraction of all possible 

combinations are evaluated [CON01]. Taguchi has packaged techniques 

for performing fractional factorial experiments in a particular useful 

form called orthogonal arrays [LEW96]. These orthogonal arrays 

describe which level combinations of factors are used in each run. 

After carrying out the experiments, the results of the experiments need to be 

analyzed. A quantitative method for determining whether the changes in factor levels 

are significant or are just the result of random effects or measurement errors is 
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analysis of variance, ANOVA [MON99]. This statistical tool is especially valuable in 

the early stages of designed experiments, where many design factors must be screened 

to determine which have a significant impact on performance, and which can safely 

be ignored in optimization studies [LEW96].  

The purpose of ANOVA is to determine whether individual factors of an 

experiment are significant by comparing their variation with the overall variation of 

the data. Many (statistical) software packages contain a certain ANOVA function.  

Conformance with criteria 

One of the strengths of reliability by DOE related methods is the fact that 

these methods take into account unit-to-unit variation and the influence of the unit-to-

unit variation to the performance of the product. This is actually one of the main 

purposes of this testing strategy, to gather information about the influence of the 

variation, even from design parameter level, to the performance. So the score for the 

first criterion is “++”. 

In principle, DOE techniques are time-independent testing strategies. 

Therefore, the score would be “o” for the second criterion. However, Condra 

[CON01] describes an experiment performed by Tseng et al [TSE94] about 

combining DOE testing strategies with reliability goals through degradation testing. 

For this particular example, where a combination is made between DOE testing 

strategies and degradation testing strategies, the score would be “++”. However, since 

in the example a combination of methods is used, in the reliability by DOE related 

class of methods only DOE methods will be judged. So, a score of “o” is justified, 

keeping in mind the remark of the example described by Condra [CON01]. 
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For the same reasons as discussed previously, the third, foyrth and fifth 

criterion will be given a score “o”. Again, keep in mind the example worked out by 

Tseng et al [TSE94]. 

Finally, the last criterion is a strong point for DOE methods. A design can be 

made robust against noise factors and also the performance at time t = 0 can be 

optimized. However, it is not a guarantee that an optimized product for time t = 0 is 

also the optimal solution for reliability purposes. In chapter five a simulation 

experiment will be presented to prove this remark. But still, optimization is one of the 

strengths of this method and the score “+/++” is given. 

3.4.4 Reliability by Accelerated Testing related methods 

Lifetime data to model component or product reliability can be obtained from 

information out of the field or through testing. Estimating the time-to-failure 

distribution of highly reliable products that are designed to operate without failures 

for many years, is particularly difficult. Hence, few units will fail in the field or in a 

test of particular length at normal use conditions. Therefore, accelerated life tests 

(ALT) are used to obtain information on product-life in an acceptable time. Exactly 

for the reason of preventing long testing times, reliability by accelerated testing 

related methods is considered as one of the important classes in literature. And 

therefore many authors have put a lot of effort in researching possibilities of 

accelerating tests, as the amount of literature clearly shows (Nelson (1990) [NEL90], 

Viertl (1988) [VIE88], Kececioglu (1993, 1994) [KEC93] [KEC94], McSorley, Lu, 

and Li (2002) [MCS02], Meeker and LuValle (1995) [MEE95b]).  

Generally, accelerated tests focus on one or a few degradation processes or 

well-understood failure modes. Then the results are extrapolated using an appropriate 

physics-of-failure based statistical model (e.g. Arrhenius model relating the lifetime 
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distributions to temperature [KEC93]), to obtain the required lifetime data or to make 

predictions about reliability at normal use-conditions. 

Accelerated tests are traditionally used to find flaws or weaknesses in the 

product design. But they can also be employed to assess and predict reliability. Lewis 

[LEW96] makes a distinction between two kinds of acceleration methods, namely: 

1. Compressed-time tests; 

2. Advanced-stress tests. 

Compressed-time testing 

Compressed-time testing is a way of testing in which the product is used more 

steadily or frequently during the test than in normal use, but the loads and 

environmental stresses are maintained at the level expected in normal use [LEW94]. 

An example could be a television set that is turned on and off very frequently and 

where channels are changed more often than during normal operating life. Precaution 

should be taken. If the cycle is accelerated too much, a situation can be established in 

which the conditions of operation change and no longer reflect the actual product life. 

A television set in real life is turned off; then it has time to cool down. When it is 

turned on again it makes a cool start. If an accelerated cycle is run too fast, capacitors 

within the television set may still be charged. This leads to different operating 

conditions and possibly earlier failure. 

Advanced-stress testing 

Some systems are in continuous operation during their life cycles. Other 

systems are constantly exposed to deterioration whether they are active or not. For 

these types of systems, compressed-time testing does not accelerate the failure 

mechanism. In these cases advanced-stress testing may be applied. The test uses an 
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increase in load or a harsher environment to accelerate the failure mechanism. This 

only works if a decrease in reliability can be quantitatively related to an increase in 

stress level.  

It has been made clear that accelerated tests are used to obtain information 

within an acceptable time on product-life or performance degradation over time. An 

appropriate physics-of-failure based statistical model is then fitted to the obtained test 

data to make extrapolative predictions about the product-life or performance at the 

normal use conditions. This way of testing immediately leads to questions. For 

example, is it possible to extrapolate the results to normal use conditions? Another 

question that immediately arises is: are the results unique for the test conditions? This 

pitfall and other serious concerns are described in Meeker and Escobar [MEE98c] and 

Nailen [NAI02]. They describe some of the dangerous pitfalls of accelerated testing 

and warn users of accelerated life tests to avoid these pitfalls. Next, some of these 

pitfalls are described in order to give insight into some of the shortcomings of 

accelerated testing. 

→ Unrecognized Failure Modes 

Generally, in an advanced-stress test (AST) only one variable is accelerated in 

order to determine the higher level of stress that this accelerated variable 

causes on a specific component or product. Because of this higher level of 

stress, an increased failure rate may be observed. However, higher levels of 

stress may induce other failure modes that would normally not be observed. In 

less extreme cases, the failure mode might not be recognized and thus may 

also not be recognized in the data analysis, which might lead to incorrect 

conclusions. 

→ Inadequate Use Of Statistical Models 
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During an AST, valuable data is obtained that needs to be processed further in 

order to draw conclusions about the failure time under normal conditions. 

Therefore, an appropriate statistical model must first be fitted to the data. An 

estimate of F(t), the cumulative distribution function, a set of approximate s-

confidence intervals for F(t), and a regression model are determined. The 

Weibull and lognormal distributions are consequently frequently used for the 

analysis of AST. These standard accelerated life test models are adequate for 

modeling e.g. simple chemical processes that lead to failure, but are not 

appropriate for more complex chemical processes, as described in [MEE95a]. 

One of the pitfalls of AST is therefore the fitting of a standard model to test 

data, when actually a customized model is needed which will fit the data better 

and will consequently provide more consistent extrapolations. 

→ Multiple Factors Affecting Degradation 

In most AST, only one variable is accelerated, e.g. temperature, voltage or 

humidity. By testing only one variable, the results will show only the effect of 

this one factor and other factors that may influence failure time are not taken 

into account.  

→ Faulty Comparison 

It is sometimes claimed that accelerated tests are useful for comparing 

alternative designs or vendors. However, one cannot, in general, use an ALT 

to compare products that have different kinds of failure modes. It is important 

to understand the life-limiting failure modes at use conditions before any 

comparison can take place. Otherwise, incorrect conclusions could be drawn. 

→ Accelerating Variables Can Cause Deceleration 
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An accelerating variable might cause another variable to ‘slow down’, causing 

misleading results and more failures in practice than was predicted. For 

example, increased temperature will often lead to lower humidity, so an AST 

where the temperature is accelerated will lead to more positive failure times if 

the primary failure mode in practice is corrosion due to humidity.  

→ Few or No Failures Might Occur 

Even with acceleration, few or no failures might occur during a test. In that 

case, the obtained data will not be very reliable and there will be an enormous 

level of uncertainty, resulting in large confidence intervals and unreliable 

failure times. In this situation, it is difficult to assess reliability with traditional 

life tests that record only failure time.  

Meeker and Escobar [MEE98b] address the problem of few or no failures. 

Since not much data can be collected about real failures in this case, degradation 

measures are used to describe a degradation model, which is used to make predictions 

about a failure time distribution. Since this degradation reliability model corresponds 

to physics-of-failure mechanisms instead of a commonly accepted test standard or 

generic list, Accelerated Degradation Test (ADT) also addresses the problem of 

inadequate use of statistical models.  

For some products or devices it is difficult to obtain failure time data fast, 

because their time-to-failure is quite long. For these kinds of devices it may be 

possible to obtain degradation measurements over time. These measurements may 

contain useful information about product reliability [LU93]. Sometimes it is possible 

to measure physical degradation as a function of time. In other applications actual 

physical degradation cannot be observed directly, but measures of product 

performance degradation may be available.  
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In literature, various accelerated degradation tests are described, modelled and 

analyzed ([LU93], [MEE98a], [MEE98b], [CHI01], [HAM95], [TSE94], [YAN02]). 

They describe how degradation data can be used to estimate parameters of a 

degradation model and use this for the prediction of time-to-failure. This topic will be 

further discussed in section 3.4.5. 

Conformance with criteria 

In this class of methods a division is made between two types of accelerated 

testing methods. One of these is focused on finding failure times in a relatively short 

time, while accelerated degradation tests actually follow the real degradation path and 

extrapolate these results to failure times. ADT methods are very closely related to the 

next class of methods (section 3.4.5). However, this class of methods limits itself to 

the testing methods themselves. The scores of this class of methods are split up. The 

first score per criterion is for the accelerated failure tests (AFT). The second score is 

for ADT tests. 

The first criterion is taken into account. With ADT tests unit-to-unit variation 

is even taken into account more than with accelerated failure tests. For AFT the same 

accounts as for the statistical failure analysis methods (class 1 methods). Unit-to-unit 

variation is not explicitly taken into account, but can be found in the results of the 

failure data. With ADT tests all units are separately followed until failure, or at least 

until a certain pre-specified period of time. Therefore, the scores are “+” and “++”. 

As previously mentioned, AFT tests do not provide information about the 

time-dependent behavior of products. This gives a score of “o” to the AFT tests. ADT 

tests, however, do provide information about the behavior of the products individually 

over time. So, the score for criterion two is “++”. 
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For the same reason as given for criterion two, the scores for criterion three 

are “o” and “++” respectively. 

Both testing methods can deal with censored data. However, as Meeker et al 

[MEE98b] explain, ADT tests provide more justification and credibility for 

extrapolating data to failure times. This has the following scores as a result: “+” and 

“++”. 

The objective of both testing methods is to gather and analyze statistical 

failure data. This leads to a score of “++” for both testing methods. 

The last criterion is about optimization of the design of a product. AFT tests 

do not take optimization into account. So the score is “o”. ADT tests however, can 

actually take this into account, when considering the example provided by Tseng et al 

[TSE94]. But then again, that was a combination of two classes of methods. Solely 

taken, ADT tests do not explicitly include information of the design parameters, 

which makes optimization impossible. The score therefore becomes “o” too. 

3.4.5 Reliability by Degradation Analysis related methods 

For highly reliable products, it is difficult to assess the lifetime of the products 

by using traditional life tests that record only time-to-failure. Even using the 

technique of censoring [LEW96] or accelerated life testing (see section 3.4.4) 

provides little help, because no failures are likely to occur in a reasonable amount of 

time. If characteristics exist whose degradation over time can be related to reliability, 

then collecting degradation data can provide information about product reliability. An 

example of such a characteristic is given in figure 3.4, where the length of a crack is 

linked to the number of cycles.  
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Figure 3.4: Fatigue crack growth data plot [MEE98a]. 

 

This figure also makes clear that failure needs to be defined in terms of a 

specified level of degradation. Then after modeling the degradation profile of a 

product, reliability characteristics as Mean Time To Failure (MTTF) could be 

predicted. 

Many researchers think that degradation analysis can provide better reliability 

prediction methods, because degradation is a natural response and because of its ease 

to extrapolate. Hence, several degradation-modeling methods have been developed. 

Four typical examples are described in Lu and Meeker (1993) [LU93], Meeker and 

Escobar (1998) [MEE98a], Chiao and Hamada (2001) [CHI01], and Chinnam (2002) 

[CHI02]. 

These methods basically make use of the same kind of degradation model. The 

actual degradation path of a particular unit over time is denoted by D(t), t>0. Values 

of D(t) are in application sampled at discrete points in time t1, t2,.... ‘Time’ t could be 

real time or some other measure like miles for automobile tires or cycles in fatigue 

tests. The observed degradation yij of unit i at time tj is [MEE98b]: 
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where Dij is the actual path of the unit i at time tij and εij is a residual deviation 

for unit i at time tj. The total number of inspections on unit i is denoted by mi. For the 

ith unit, β1i,...,βki is a vector of k unknown parameters.   

Meeker et al give some advantages for the use of degradation analysis in 

[MEE98b], [CHI02]: 

1. Degradation data can, particularly in applications in which few or no 

failures are expected, provide considerably more reliability information 

than would be available from traditional censored failure-time data. 

2. Accelerated tests are commonly used to obtain reliability-test 

information more quickly. Direct observation of the degradation process 

may allow direct modeling of the failure-causing mechanism, providing 

more credible and precise reliability estimates and a firmer basis for 

often-needed extrapolation.  

3. Degradation is a natural response for some tests. And degradation data 

can provide better information of degradation processes, which in turn 

can help find the appropriate functional relationship. 

4. Degradation data may yield more accurate life estimates than accelerated 

life tests with few or no failures. 

5. Degradation data can be analyzed earlier, before a failure actually occurs 

and can be invaluable in studying highly reliable products that may 

exhibit few or no failures during traditional life-tests. 
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6. There is more justification and credibility for extrapolation, because the 

modeling is closer to physics-of-failure, compared to time-to-failure 

data. 

Next to these advantages Meeker et al also list some limitations of degradation 

analysis [MEE98b]: 

1. Modeling degradation of performance output of a component or 

subsystem may be useful, but modeling could be more complicated 

because the output may be affected, unknowingly, by more than one 

physical/chemical failure-causing process. 

2. Degradation data may be difficult or impossible to obtain. 

3. Obtaining degradation data may have an effect on future product 

degradation. 

4. Substantial measurement error can diminish the information in 

degradation data. 

5. The degradation level may not correlate well with failure. 

6. The analysis can be more complicated: it requires statistical methods 

that are not yet widely available. 

However, currently a lot of research is done on the possibilities of using 

degradation analysis for the purpose of reliability prediction and improvement, as the 

numerous references showed ([CHI02], [CHI01], [DIB04]). 

Conformance with criteria 

The model presented in the previous section shows that design parameters are 

taken into account. The degradation models also take the unit-to-unit variation into 

account. However, this class of methods is more a modeling class of methods, and not 

specifically test related. This is why the score “+/++” is given, and not the full score.  
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Since the method completely concentrates on modeling and analyzing time-

dependent behavior of products, the score for the second criterion is “++”. 

As mentioned before, this class of methods is more model oriented, and less 

test oriented. However, the information of the models provides a good basis for 

analyzing the status of a product over time. This justifies the score “+”. 

Also criterion four is one of the strengths of this class of methods. The 

methods are based on degradation data and physical degradation models. When a 

failure limit is known, the rest of the lifetime of the products can be predicted (score 

is “++”). 

Although this class of methods does not initially concentrate on failure data; it 

could be more or less included by taking a failure limit. Therefore, the score is “+”. 

And finally, this class of methods takes the influence of the design parameters 

into account. Information about design parameters over time makes optimization 

towards reliability characteristics possible. So the score is “++”. 

3.4.6 Robust Design related methods 

In the industry, statistical techniques for improving quality have progressed in 

three broad stages. A first attempt to improve quality was product inspection. It is 

aimed at inspection of already manufactured products. This is done in an attempt to 

detect products not conforming to requirements [GOH93].  

Subsequently, methods like process capability studies, process control charts 

and Statistical Process Control (SPC) were developed. These techniques can be 

situated more “upstream” of the Product Creation Process (PCP). Their intention is to 

avoid manufacturing of unsatisfactory products by monitoring the production itself 

[GOH93]. Like product inspection, there is no attempt made to improve quality of the 
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product but only to master it. Both methods are known as on-line quality control 

techniques. 

In an attempt to improve quality of a product it is necessary to stress efforts on 

the design phase of a product and production process. This means, designing quality 

into the product. Although it is difficult to predict future product behavior in the early 

design stage, much research has been done in order to accomplish this goal. 

Among the many approaches for improving the quality of products and 

processes, a particularly cost-effective approach is that of robust design, introduced 

by Taguchi [PHA89]. The goal of robust design is to design a system or product so 

that its performance is insensitive to the effects of noise. The performance of a 

product as measured by the quality characteristic varies in the field due to a variety of 

causes. These causes are called noise factors [PHA89], and they are classified as 

follows: 

1. External; The environment in which a product works and the load to 

which it is subjected are the two main external sources of variation of a 

product’s function. 

2. Unit-to-unit variation; The variation that is inevitable in a 

manufacturing process leads to variation in the product parameters from 

unit to unit. 

3. Deterioration; When a product is sold, all its functional characteristics 

may be on target. As time passes, however, the values of individual 

components may change leading to deterioration in product 

performance. 

Robust design is one of the three stages of overall product improvement as 

introduced by Taguchi [PHA89]: 
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1. Concept design. During this first step, the basic architecture and 

techniques are investigated for achieving the desired function of the 

product. The most suitable ones are selected for the product. 

2. Parameter Design (or robust design). In this second step, the setting of 

parameters that affect the response, which minimizes the quality loss 

without affecting manufacturing cost, is chosen. Such a parameter 

setting yields a situation where the response output is on the desired 

target value and product-to-product variability in the response is 

minimal. For further improvement of the product, one can proceed to the 

third step. 

3. Tolerance Design. For further reduction of the response’s variability, the 

tolerances of parameters are reduced selectively but this also increases 

manufacturing cost. In chapter 2 the description of Spence and Soin 

[SPE97] was used for the explanation of tolerance design. Phadke 

[PHA89] splits tolerance design up into parameter design and tolerance 

design, where Spence and Soin [SPE97] combine them.  

Many books and publications can be found in literature on Robust Design and 

Tolerance Design (Wu and Wu (2000) [WU00b], Park (1996) [PAR96], Creveling 

(1997) [CRE97], Spence (1988) [SPE88]). In this section mainly the work of Phadke 

[PHA89] and Spence and Singh Soin [SPE88] will be used as reference books. 

Phadke, in [PHA89], defines robust design as a methodology for finding the optimum 

settings of the control factors to minimise the product or process sensitivity to noise 

factors. The methodology focuses on choosing mean values for design parameters 

such that the product performance characteristic is made less sensitive to parameter 
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variance. After this the performance sensitivity to process variability will be reduced. 

The robust design methodology is illustrated in figure 3.5, from [LEW96].  

 

Figure 3.5: Steps in robust design method [LEW96]. 

 

In a formal approach Robust Design can be divided into two steps: 

1. Optimization of the value of one or more design parameters to minimize 

the performance sensitivity to the value of that parameter, regardless of 

the effect on the performance means. 

2. Identification of an adjustment parameter to bring the mean back on 

target without increasing the variance. 

These two steps are illustrated in figure 3.5. At first, the mean of the 

performance characteristic is on target but the variance is too high (a). In the first step 

this variance is reduced (b) and subsequently, in the second step, the mean is brought 

back on target (c). In practice, these two steps are often performed simultaneously 

during a process called stochastic optimization.  
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Figure 3.6: 

a) nonlinear effect [LEW96]. 

b) linear effect [LEW96]. 

 

For the first step, design parameters are selected whose value influences the 

variance of the performance characteristic. This is illustrated in figure 3.6a, where 

increasing the value of the design parameter A, increases the mean value of the 

performance characteristic x, but decreases the variance in x. 

For the second step, design parameters are selected whose values influence the 

mean of the performance characteristic but do not influence the variance of this 

performance characteristic. Assuming that after step 1 the variance of the performance 

characteristic is low, step 2 aims to get the mean on target. This is illustrated in figure 

3.6b. The design parameter must have a linear effect on the performance 

characteristic. Increasing parameter B will increase the mean value of the 

performance characteristic x, while leaving the variance unaffected. However, the 

selection of such design parameters for step 1 and 2 is only possible in ideal 

situations. In practice, design parameters will be selected that mainly influence the 

variance of the performance characteristic and only partly influence the mean of the 

performance characteristic (or the other way around).  
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The explanation of Robust Design in this section concernes the quality 

characteristic of a product or product population. Similarly we may have a description 

of a performance characteristic over time, which may be seen as a characteristic that 

describes the degradation of a product or product population. In order to achieve 

robust reliability, design parameter settings need to be identified that minimize the 

variance of the performance characteristic over time while maintaining the mean 

value over time (degradation path) the same or better as before. This implies that 

these parameter settings reduce unit-to-unit variability over time to a minimum.  

Literature describes various ways of improving reliability and to make it 

robust. Condra (2001) [CON01] describes how one can design for robust reliability. 

He describes a degradation experiment for a fluorescent lamp by Tseng, Hamada and 

Chiao [TSE94] and Hamada [HAM95]. In this experiment the effect of three factors 

or design parameters on the performance characteristic Light Intensity is evaluated. 

Design Of Experiments [CON01] is used for this purpose. The experimenters use four 

runs with different combinations of level settings at each run. For each run (or 

combination of level setting) five lamps are used in order to compensate for lamp 

production variability. Each of the twenty lamps is subjected to the same degradation 

test. The results of the degradation tests indicated that only two out of three factors 

were of influence on the Time-to-Failure (TTF) and they were set at the level that 

maximized their life span. The other factor was set at the level as it was before the 

experiment.  

In another experiment using LEDs, Chiao and Hamada [CHI01] also take into 

account a noise factor. They estimate the parameters of a degradation model and the 

probability density function per run. Based on the PDF they calculate the reliability 

during the warranty period per run. The factor settings for the run that lead to the 
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highest warranty reliability are selected. This way of design also takes into account 

the variance in TTF.  

Although this parameter design approach can generate major operating cost 

reductions, it will not always lead to sufficiently high quality. After optimization 

through parameter design, further improvements could be obtained by controlling the 

causes of the variation. This can for example be done by using more expensive 

equipment and materials, improving the processes, and regulating the environment. 

This approach is called tolerance design.  

Tolerance Design makes use of the relationship between the performance 

characteristic and its design parameters. Chapter two provides an extensive 

description of tolerance design. That description is included in the analysis of 

suitability. 

Conformance with criteria 

Robust design related methods are very appealing at first sight. However, 

these methods are in general focused on time-independent optimization of a design. 

As indicated at the beginning of the description of robust design, the book of Phadke 

[PHA89] is used as a reference book, because this is a very clearly written and well-

known book. For judging the goodness-of-use for a method that fulfils all three design 

requirements, the method described in Phadke will be used. But remarks will be made 

about the other examples, to give some insight in how these methods would be 

judged. 

The first criterion is clear. Unit-to-unit variation and variation effects of design 

parameters on the performance of the product are taken into account. This leads to the 

full score, namely “++”. 
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The second, third, fourth and fifth criteria are all about time-dependent 

features related to reliability. Using the method Phadke described, the scores are all 

“o”. Time-dependent behaviour is not modeled, the status of products is not analyzed 

during its lifetime, and neither does the method predict the missing, or censored, 

failure data. However, when considering the other examples mentioned, they actually 

do take the factor time into account. The examples are a combination of many 

methods, like degradation testing, DOE testing and, more or less, robust design. Then 

the scores would definitely be higher for these four criteria.  

The last criterion is optimization of a product’s design. This is one of the main 

goals of robust design, optimizing a design in such a way that it is insensitive to noise 

factors and variations on the design due to all kinds of different causes. A remark that 

has to be made here, is that robust design is a time-independent method, and focuses 

on optimizing the design for time t = 0. It is likely that this will also lead to a better 

performance over time, but it is not a guarantee, as an example in chapter 5 will show. 

So, for the last criterion the score is “+/++”. 

3.4.7 Maintenance/Condition Monitoring related methods 

The title of this section refers to both maintenance and condition monitoring. 

These two topics are closely related through maintenance theory and therefore taken 

as one class of methods related to reliability. As reference book for this class of 

methods the book of Blischke and Murthy (2003) [BLI03] is used. 

The performance of a product does not only depend on its design and 

operations, but also on the maintenance of the product during its operational lifetime. 

Thus, it could be stated that functioning over an extended time period requires proper 

servicing on a regular basis, adequate repair or replacement of failed parts or 
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components and so on. These actions are part of maintenance and maintainability. 

Maintenance can be defined, according to Blischke and Murthy (2003) [BLI03], as: 

 

“Maintenance compromises any actions (other than routine servicing 

during operation such as fueling or minor adjustments) that alter a 

product or system in such a way as to keep it in an operational 

condition or to return it to an operational condition if it is in a failed 

condition.” 

 

Blischke and Murthy recognize two primary types of maintenance actions: 

→ Preventive maintenance (PM), where the intention is to increase the 

length of its lifetime and/or its reliability and generally requires shutdown 

of an operational system. 

→ Corrective maintenance (CM), where failed products or systems are 

restored to an operational state by repair or replacement actions of all 

failed parts and components necessary for successful operation of the 

product. 

The emphasis of this thesis is more on preventive maintenance than on 

corrective maintenance. For this reason the rest of the discussion of this class of 

reliability related methods is on preventive maintenance. For more in-depth 

discussions on corrective maintenance, the author refers to books by Blischke and 

Murthy (2003) [BLI003], Hoang Pham (2003) [HOA03], Osaki (2002) [OSA02], and 

many others. 

Preventive maintenance can be classified into the following categories 

[BLI03]: 
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→ Clock-based maintenance: PM actions are carried out at set times. 

→ Age-based maintenance: PM actions are based on the age of the 

components. 

→ Usage-based maintenance: PM actions are based on usage of the product. 

→ Condition-based maintenance: PM actions are based on the condition of 

the component being maintained. This involves monitoring of one or more 

variables characterizing the wear process. This could thus be seen as 

condition monitoring. 

→ Opportunity-based maintenance: When a maintenance action (CM or 

PM) is carried out it provides the opportunity to carry out PM actions on 

one or more of the remaining components of the system. 

→ Design-out maintenance: This involves carrying out modifications 

through redesigning the component. As a result, the new component has 

better reliability characteristics. 

In general, as Blischke and Murthy [BLI03] emphasize, preventive 

maintenance is carried out at discrete time instants. Many different types of model 

formulations have been proposed to study the effects of preventive maintenance on 

the degradation and failure occurrence of items to derive optimal preventive 

maintenance strategies. Pecht (1995) [PEC95] discusses concepts, modeling, and 

analysis of maintenance and reliability and related areas in detail.  

One of the obvious conclusions that can be drawn from most of the literature 

on preventive maintenance related topics is that decisions are usually made on 

statistical failure data. This fits the first three classes of preventive maintenance, as 

suggested by Blischke and Murthy [BLI03]. One special class in the classification is 
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the condition-based maintenance, which is often called condition monitoring in 

literature. In this class of PM the actual condition of the product needs to be 

monitored using variables that are directly linked to the performance of the product or 

system. However, this class of PM is only common in very big industrial systems 

(Hunt (1996) [HUN96], Rao (1996) [RAO96], Williams, Davies and Drake (1994) 

[WIL94]).  

Conformance with criteria 

Methods focused on maintenance usually do not include unit-to-unit 

variations. Preventive maintenance methods most often use statistical failure data and 

make maintenance decisions on those data. But in general, unit-to-unit variation, 

especially at the level of design parameters, is not included, leading to a score of “o” 

for criterion 1. 

Criteria two and three are both about time-dependent behavior of products. 

Corrective maintenance does not model, or analyze time-dependent behavior. 

Preventive maintenance only takes this minorly into account in the case of condition-

based maintenance. Therefore, the scores for criteria two and three are “o/+” and 

“o/+” respectively.  

None of the maintenance methods predicts product behavior over time. Even 

condition-based maintenance methods are not meant to do this. In these methods the 

status of the products are monitored and when the levels come close to a pre-

determined failure level, PM is applied. Thus, the score is “o”. 

Also the fifth criterion is not a point of strength of maintenance related 

methods in relation to the criteria that have been formulated in the beginning of this 

chapter. With corrective maintenance, no attention is given to the analysis of 
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statistical failure analysis. With preventive maintenance, statistical failure data is 

analyzed on population level. Therefore, a score of “o/+” is given for this criterion.  

And finally, the last criterion is optimization of the design. Maintenance is 

completely not focused on optimizing a product, but just to keep it in an operational 

condition, or to return to an operational condition if the product has failed. So, the 

score is “o”. 

3.5 Summary of literature analysis results 

In the previous section a brief description is given of all classes of reliability 

related methods and tools. Then, with the brief description in mind, all classes of 

methods were judged on their goodness-of-use by judging how good the methods 

meet the criteria that were formulated and discussed in section 3.2. Table 3.2 gives an 

overview of the results of all the discussions about the goodness-of-use of all the 

different classes of methods related to reliability. 

Table 3.2: Overview results of analysis of reliability related methods to criteria 

for reliability prediction and improvement.  
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1. Statistical Failure
    Analysis o/+ o + +/++ ++ o
2. Stress-Strength
    Reliability Analysis +/++ + + + o/+ o/+
3. Reliability by DOE ++ o/+ o o/+ o/+ +/++
4. Reliability by
    Accelerated
    Testing (ALT|ADT)  +|++ o|++ o|++  +|++  ++|++  o|o 
5. Reliability by
    Degradation
    Analysis

+/++ ++ + ++ + ++
6. Robust Design ++ o o o o +/++
7. Maintenance/-
    Condition Monito-
    ring

o o/+ o/+ o o/+ o

design 
reliability 

optimisation

Criteria for Reliability Prediction and Improvement

              Ability to     

Reliability 
Related 
Methods

addres unit-
to-unit 

variability

model and 
analyse product 
time-dependent 

behaviour to 
degradation data

predict product 
behaviour over 

time

analyse 
statistical 

failure data

analyse 
product 
status



 

 

When studying the table, it can easily be concluded that all classes of methods 

have their own strengths and weaknesses in relation with the criteria that have to be 

fulfilled in order to solve for the three design requirements. Again note that all 

methods have been judged using one book (when necessary) as reference for the 

particular classes of methods. In the text references were already made to methods 

that overlap a few classes of methods and, therefore, could perform better with respect 

to the criteria. However, the analysis on methods and tools available in literature 

shows that certain ideas, concepts, or approaches could be very useful for the 

development of a method that does meet all criteria to solve for the design 

requirements. 

After this analysis it is possible to answer the two research questions that were 

given in section 3.1. The research questions are: 

Are methods available in literature that connect, or take into account, 

the necessary information for the three design requirements? 

 

And: 

 

Which methods, concepts, or ideas available in literature could serve 

as a basis for a new method and what adjustments are necessary to 

these methods in literature to connect, or take into account, the 

necessary information for the three design requirements? 

 

Table 3.2 clearly shows that all methods have their strengths and weaknesses 

in relation with the criteria that were examined in this chapter. But none of the 
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methods is able to fulfil all criteria in an optimal manner. This is why the answer to 

the first research question is negative, meaning that literature does not provide one 

method solving the three design requirements at once. However, all methods have 

very useful ideas and concepts that could definitely serve as a starting point for the 

development of a new method. The strengths of all classes of methods are indicated 

with a ‘++’ in table 3.2. In chapter four a new theoretical approach is presented that 

meets all criteria as presented in this chapter. The approach incorporates many ideas, 

concepts and approaches of the methods that have been described in this chapter. 
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4 Reliability Optimization Method using 

Degradation Analysis (ROMDA) 

4.1 Introduction 

The ultimate objective of this research is to develop a method that is 

applicable by designers that can tackle the three design requirements. Chapter 3 

presented the results of a literature study that has been carried out to research if 

methods are available in literature that could be used to reach the research objectives. 

This has been done by judging how good the available methods and tools in literature 

meet a set of criteria that a method has to meet in order to solve for the three design 

requirements. The summary of the results presented in section 3.5 shows that not one 

method is capable of providing a good solution for all criteria. However, all methods 

definitely have their strengths, as was indicated in table 3.2.  

This chapter presents a theoretical framework taking into account all criteria 

that have to be complied with, to come to a solution method that can be used to solve 

for the three design requirements. For the development of the theoretical framework 

the knowledge of all classes of reliability related methods and tools is used. This 

chapter limits itself to a theoretical framework. Chapter 5 presents computer 

simulation experiments verifying the theoretical validity and value of the theoretical 

method that is presented in this chapter. Next, a critical analysis on the practical 

validity and value of ROMDA is presented. 
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4.2 Theoretical framework 

The theoretical framework of the Reliability Optimization Method Using 

Degradation Analysis (ROMDA) method will be explained using figure 4.1. Figure 

4.1 is divided in three stages. The first stage is the ‘Product Design’ stage where 

products are designed or designs can still be changed or adjusted. The second stage in 

figure 4.1 is the ‘Quality’ stage. In this stage products are already manufactured and 

sold to the customers. This stage represents the time-independent quality of products 

taking into account all causes of variation influencing the performance of products. 

Basically, since in this thesis quality is defined as reliability at time t = 0, this stage 

can be considered as how good products or systems fulfill their intended purpose 

considering all causes of variability, except variability due to degradation effects. And 

the third stage is the ‘Reliability’ stage. Reliability is quality over time and takes all 

causes of variability and all failure mechanisms into account. The first stage is where 

the products are designed and where the values for the design parameters (DP’s) and 

the performance characteristic of the product design concept are decided. In the 

second stage the results of the choices made for the values of the DP’s and the output 

parameters can be seen and measured. And the third stage makes the translation to 

failures over time of the complete product population. 

Chapter 3 presented a set of criteria for reliability prediction and optimization 

that should be incorporated in a reliability prediction and optimization method in 

order to provide a way of solving for the three design requirements. 

The six criteria are: 

1. Ability to address unit-to-unit variation 

2. Ability to model and analyze product time-dependent behavior 

 97 



 

3. Ability to analyze the product status 

4. Ability to predict product behavior over time 

5. Ability to analyze statistical failure data 

6. Ability to optimize the product design in terms of reliability 

All these six criteria are indicated in figure 4.1 according to the criterion 

number. Criterion 1 deals with the ability to address unit-to-unit variation due to 

manufacturing causes, and environmental causes. In figure 4.1 at the ‘Quality’ stage 

the variation of products at time t = 0 is clearly shown by a statistical distribution. The 

statistical distribution represents the unit-to-unit variation of the performance 

characteristic in the performance space, which is taken in consideration in this 

theoretical framework. It is possible to take more performance characteristics into 

account, but for the purpose of explaining the theoretical line of reasoning, the 

method will be explained by using only one performance characteristic.  

Criteria 2 to 4 can all be placed on the link between ‘Quality’ and 

‘Reliability’. Criteria 2 to 4 deal with the time-dependent performance of the 

complete product population. Criterion 5 deals with the ability to analyze statistical 

failure data. One way of representing statistical failure data is by means of a failure 

rate curve. And finally criterion 6 is placed in the complete loop of figure 4.1. 

Products are designed and manufactured. This results in a certain unit-to-unit 

variation of the performance characteristic. And due to the time-dependent behavior 

(degradation) the performance of the products will degrade over time. When the 

performance degradation exceeds the failure limits the products will eventually fail. 

The next section presents a theoretical framework taking into account all 

criteria necessary for a stochastic reliability prediction and optimization method. The 

theoretical line of reasoning finally leads to a step-by-step protocol for ROMDA. 
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Figure 4.1: Overview of the theoretical framework of ROMDA. 

4.2.1 Line of arguments for theoretical framework 

The typical failure rate curve, as described in chapters 2 and shown in figure 

4.1 at the ‘Reliability’ stage, contains compounded information of a variety of modes 

of failure at a given time. In other words, the failure rate curve represents all products 

failing to perform their intended functions considering all performance characteristics 

due to all possible failure mechanisms at a given time. Therefore, the failure rate 

curve consists of all failure mechanisms of all performance characteristics. However, 

typically variability information is only available pertaining to a single performance 

characteristic. Figure 4.1 shows variability information of a single performance 

characteristic (see statistical distribution at ‘Quality’ stage).  

The contradictory link between variability per performance characteristic at 

the time-independent ‘Quality’ stage and the time-dependent ‘Reliability’ stage for all 
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failure mechanisms for all performance characteristics provides a first problem that 

has to be solved.  

Hence, as a first step in the exploration to the existence of the link between 

variability of the studied performance characteristic at time t = 0 and reliability at time 

t, the dominant failure modes have to be studied separately in conjunction with 

variance of the associated performance characteristics. This information provides the 

possibility to come to a failure rate curve consisting of one performance characteristic 

for one dominant failure mode. The failure rate curve then becomes a failure rate 

curve representing a single failure mode. When such a dominant failure mechanism 

has been identified, the contradictory link is solved. Since the failure rate curve is now 

only dependent on the dominant performance characteristic representing the most 

dominant failure mechanism, it becomes possible to formulate a causal relationship 

between product variability and reliability with respect to that performance 

characteristic. Essentially two types of data are necessary to overcome the 

contradictory link problem: 

→ Performance characteristics data at zeroth hour (‘Quality’ stage) 

→ Time-dependent data with respect to the performance characteristic that is 

being studied. This will yield information on change of the performance 

characteristic over time and hence will be crucial in mapping the failure 

rate information. 

Chapter 2 already shows that from an initial set of products, product failure 

may be conceptualized as being due to a change in the variance over time, a drift in 

the mean over time, or a combination of both over time of the dominant performance 

characteristic. These three degradation mechanisms in combination with the failure 

 100 



 

limits (when the failure limits would be constant values) lead to failure and can be 

used to explain the failure rate curve, as figure 4.2 shows.  

 

 

 

 

LSL USLLSL USL LSL USL
Possibility 1 Possibility 2 Possibility 3

Phase 1

Phase 2

Phase 3

Phase 4

Figure 4.2: Possible effects of variability. 

 

Now that the time-dependent behavior of the performance characteristic in 

combination with the variation effects is known, the next step is to identify design 

parameters that influence the behavior of the performance characteristic. The purpose 

for this step has been explained in section 2.3 (Tolerance Design). So, if the change in 

variance and a drift in the mean value of the performance characteristic could be 

modeled in terms of the dominant time-dependent design parameters influencing the 

performance characteristic under study, and a ‘Physics of Failure’ based degradation 

mechanism (like e.g. the Arrhenius model) could be ‘superimposed’ on these design 

parameters in the model, then the mean drift and variance change of the performance 

characteristic could be modeled in terms of design parameter values and time. Figure 

4.3 schematically shows this line of arguments. 

The challenge then would be to use the variance degradation and the mean 

drift model of the performance characteristic as a causal reason to explain the failure 
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rate curve for the performance function. First the dominant design parameters are 

defined. Then “Physics of Failure” degradation mechanisms are superimposed on 

these dominant design parameters. With this the change in variance and the mean drift 

of the performance characteristic under study can be mathematically modeled by the 

degradation models of the design parameters, which makes it eventually possible to 

describe the failure rate curve of the performance characteristic in terms of the 

dominant design parameters and time. Note that the link between the design 

parameters and the performance characteristic describes the link between the 

parameter space and the performance space.  
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Figure 4.3: Overview ROMDA with degradation of performance 

characteristic. 
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The theoretical approach attempts to establish a relationship between product 

reliability and product design, and investigates failure of products with respect to a 

dominant performance characteristic, where performance characteristic is defined as a 

measure expressing how good a product fulfils its function. The crux of the method is 

that the performance characteristic characterizes the reliability of the product as a 

function of the dominant design parameters (= physical product parameter that can be 

influenced by the designers) and the degradation behavior of these dominant design 

parameters over time. The degradation profiles of the design parameters are 

superimposed on the performance characteristic in a model describing the functional 

relationship between the degradation of the performance characteristic and the design 

parameters. This relationship is then used to derive reliability characteristics (e.g. 

mean time to failure (MTTF), variance time to failure (VTTF)) of the stipulated 

performance characteristic. In essence, this approach can be used to establish the 

behavior of the statistical properties of the ‘time to failure’ of the performance 

characteristic given the statistical properties (like the mean and the variance) of the 

design parameters at time t = 0 and their degradation models. A graphical 

representation of this concept is illustrated in figure 4.4. 

In figure 4.4 the three figures on the left represent the statistical properties of 

the dominant design parameters and the degradation of these design parameters over 

time, where the z-axis represents time. These three figures are in the parameter space. 

The figure in the middle represents the performance characteristic in the 

performance space. The performance characteristic is also of statistical nature and 

degrades over time due to the effects of degradation of the dominant design 

parameters. The performance characteristic is linked to the dominant design 

parameters by a mathematical functional relationship. Therefore, the functional 
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relationship describes the link between the parameter space and the performance 

space. When specification limits for the performance characteristic are known (in 

figure LSL = Lower Specification Limit and USL = Upper Specification Limit), a 

translation can be made to a reliability characteristic like the failure rate curve, which 

is shown on the right of figure 4.4 (e.g. the roller-coaster failure rate curve of K.L. 

Wong [WON88]).  
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Figure 4.4: Overview of the theoretical line of reasoning behind 

ROMDA. 

4.3 Link to three design requirements 

The theoretical framework of ROMDA has been explained in section 4.1 and 

4.2. This section explains the link between the theoretical framework and the three 

design requirements. The objective of this research is to develop a method that 

provides a solution for the three design requirements. 
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In order to explain how the line of argument provides the possibility to solve 

for the three design requirements, consider figure 4.5. 

In order to optimize a product towards reliability and robustness, the link 

between the design parameter values and the performance of a product is obvious. 

Chapter 3 extensively explains that adjusting the initial design parameter values can 

improve the reliability performance using the functional relationship between the PC 

en the DP’s. Therefore, design parameter information in relation with the performance 

characteristic is crucial. This has been explained in chapter 2. 
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Figure 4.5: Link between theoretical framework and the three design 

requirements. 

 

In chapter 2 it is argued that having time-dependent design parameter 

information can improve applicability of preventive maintenance and re-use 

decisions. Consider figure 4.6 as an example. 
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Imagine, for example, that an engineer has to make a preventive maintenance 

decision. It is very hard to measure the performance characteristic online, because this 

factor is not a physical parameter. Consider the simple example of a car braking 

system. Imagine the brake power is the important performance characteristic. Brake 

power is not easy to measure directly. Now, the engineer knows the important design 

parameters (e.g. brake disk thickness, piston margin, etc.) and the link between the 

design parameters and the performance characteristic. Now, by simply measuring the 

design parameters and using the functional relationship between DP’s and the PC, he 

is able to make a good preventive maintenance decision. When studying figure 4.6 it 

is easy to understand that when having measured the two values of the design 

parameters (the x-s in the two left graphs) and knowing the functional relationship, 

the value of the performance characteristic has to be somewhere within the ∆t time 

span.  
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Figure 4.6: Example for preventive maintenance decisions. 
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A same line of reasoning can be used for re-use decisions. 
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Figure 4.7: Example for re-use decisions. 

 

Figure 4.7 shows an example of measurements that make re-use decisions 

possible. Consider a photocopier. A photocopier consists of 24 modules. The 

innovation of the copier is generally limited to the copying process itself (from 

analogue to digital). But the paper transport system is not changing in a new copier. 

Then it would be highly cost efficient and environmentally conscious if the modules 

that have not changed in the new design could be re-used. In the case of a copier 

machine this is an actual question (and it will be used as one of the case studies in 

chapter 7). The copiers are designed for an average technical operation time of 16 

years. However, most customers exchange their copier for a newer model after 

approximately 1,5 years. This means that the copier still has a considerable technical, 

and thus, economical value. However, a manufacturer cannot take the risk to just re-

use modules with the risk of not surviving another lifetime in a new copier. Imagine 

that the values shown in figure 4.7 are measured and that the second life should 
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approximately end at the second vertical line in the graph on the right. Then, with 

high certainty, the manufacturer can re-use the module for a next lifetime, since the 

PC is not expected to become below LSL during the 2nd life. 

The above-described examples in combination with the discussion in section 

2.3 illustrate how the theoretical framework works for the three design requirements. 

Next, a general step-by-step protocol that makes the theoretical framework applicable 

will be explained. 

4.4 General step-by-step protocol 

ROMDA aims to optimize the product design by establishing a relationship 

between the reliability of products by means of a performance characteristic and the 

design parameters. This way also an understanding of the link between the robustness 

of the initial product design and the reliability of the product is established. In this 

method, the reliability of a population of products is only expressed by one 

performance characteristic. More performance characteristics are possible. In the next 

sections, ROMDA will be discussed according to three steps, namely: 

1. Determination and modeling of the Performance Characteristic and the 

Design Parameters; 

2. Determination of the functional relationship between the Performance 

Characteristic and the Design Parameters; 

3. Reliability prediction and optimization of the complete product 

population. 
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4.4.1 Determination and modeling of the Performance Characteristic and the 

 Design Parameters 

The first step is to identify the performance characteristic (PC) and the 

dominant design parameters (DP’s). In theoretical problems the DP’s and the PC are 

usually known from literature.  

After the identification of the PC and the dominant DP’s, a degradation 

function needs to be developed that describes the degradation of these DP’s over time. 

These functions are stochastic in nature due to the natural unit-to-unit variation. For 

explanation purpose only normal distributions will be considered. The same line of 

arguments applies for other distributions. Only the mathematical treatment becomes 

increasingly difficult. The initial statistical distribution due to the unit-to-unit 

variation can, respectively for the DP’s and the PC, be expressed as: 

niftDP ii
DPDPii ,...,2,1),()0( 00

2 =≅= σµ  (4.1) 

mjktPC jj
PCPCjj ,...,2,1),()0( 00

2 =≅= σµ  

with n being the number of dominant design parameters (DPi) and 
0iDPµ and 

0iDPσ being the mean and the variance of design parameter i at time t = 0, and with m 

being the number of performance characteristics and 
0jPCµ and  being the mean 

and variance of these performance characteristics at time t = 0. 

2
0jPCσ

This is a description of the nominal values of the design parameters and the 

variance of the design parameters around these nominal values. As a result of 

degradation (wear) of the products, the properties of the statistical distribution will 

change over time. This can be expressed as: 
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nittDPgtDP iii ,...2,1)),0(()( ===  (4.2) 

DPi(t=0) represents the initial value of the design parameter i. So, the design 

parameter over time is a function of the initial value of the design parameter and time. 

As a result, the design parameters’ mean and variance are functions of the 

value of that design parameter at t = 0 and time. This can be expressed as: 

),,()( 00

2
1 tgt iii

DPDPiDP σµµ =  

),,()( 00

2
2

2 tgt iii
DPDPiDP σµσ =        ni ,...,2,1=  (4.3) 

4.4.2 Determination of the Functional Relationship between the Performance 

 Characteristic and the Design Parameters 

In the next step, a functional relationship needs to be established between the 

design parameters and the performance characteristic. The functional relationship 

between the design parameters and the performance characteristic will be of the 

following form: 

mjtDPtDPtDPFtPC njj ,...,2,1))(),...,(),(()( 21 ==  (4.4) 

with m being the number of performance characteristics (m = 1 in this thesis).  

The functional relationship between the performance characteristic and the 

design parameters (4.4) can be combined with the degradation profiles of the critical 

design parameter (4.2) to form a function that describes the degradation function of 

the performance characteristic over time. This change over time is again divided in a 

shift in mean and a change in variance. The following functions describe the behavior 

of the performance characteristics over time: 
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 (4.5) 

Appendix 2 shows a validation of the form of these functions by means of 

Taylor series expansions. With the form of the function in this case is meant that the 

mean of PC over time is a function of both the mean and the variance of the DP’s over 

time. The same applies for the variance function of PC over time. This function is also 

dependent on the mean and the variance of the DP’s over time. 

At any moment in time, the value of the performance characteristic can be 

found by using this function (4.5). Linking these values to the specification limits of 

the performance characteristic gives insight into reliability characteristics of this 

performance characteristic. An example of such a reliability characteristic is the mean 

time-to-failure (MTTF). According to Lewis [LEW96] the MTTF can be expressed 

as: 

∫
∞

=
0

)( dttRMTTF
 (4.6) 

with R(t) being the reliability at time t (see equation (2.4). 

4.4.3 Reliability Prediction and Optimization 

The last step in ROMDA is the step of reliability prediction and optimization 

by using the functions and reliability characteristics of the previous two steps. The 

initial design parameter values (at time t = 0) can be set at various levels in the design 

stage. This means that, in case of parameter design, 
iDPµ  at t = 0 can be changed. This 

will result in different performance of the performance characteristic over time. 

Similarly, tolerance design could be applied.  
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Figure 4.8: Schematic overview of optimization in terms of reliability. 

 

For each setting of the design parameter values, the model of the performance 

characteristic can be obtained and the related relevant reliability characteristics, like 

MTTF and VTTF, can be determined. Subsequently, these reliability characteristics 

can be optimized using an optimization method like Robust Design (§ 3.4.6). The goal 

of this optimization method is to maximize the nominal value and minimize the 

variance values of the reliability characteristics. This can give better results than using 

traditional reliability or quality related optimization methods. Figure 4.8 illustrates 

this. In figure 4.8 the region of acceptance (RA), as Spence and Soin [SPE97] use it, 

is shown. Assuming that the tolerance region of a product with two parameters looks 

like the rectangular block with (X1,in, X2,in) as the initial design values (before 

optimization), it is obvious that the complete product population is outside the region 

of acceptance. In that case all products would fail. When using robust design 

optimization techniques, an optimal design would be exactly in the middle of the 
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region of acceptance. Optimizing in terms of reliability means that the products 

remain as long as possible within the region of acceptance. So, when knowledge is 

available on the direction of the degradation of the dominant design parameters over 

time, a better optimal solution in terms of reliability could be obtained. This approach 

is already explained in chapter 2. Figure 4.8 shows that the parameters degrade to the 

right of the region of acceptance. And because the optimal solution is now on the 

upper left corner, most products will not fail for a maximum, or optimal, period of 

time. 

4.5 Summary of step-by-step protocol 

A general systematic approach of ROMDA to predict and improve (optimize) 

reliability in a robust way is: 

1. Identify the dominant failure mechanism and relate this dominant failure 

mechanism to a performance characteristic. 

2. Identify the time-dependent dominant design parameters influencing the 

performance characteristic under study dominantly.  

3. Obtain time-dependent stochastic models that describe the degradation 

of the performance characteristic through the physical degradation of the 

dominant design parameters, as graphically shown in figure 4.3 and 4.4.  

4. Introduce the stochastic properties of the design parameters into the 

performance characteristic/design parameter functional relationship to 

obtain a stochastic time and design parameter dependent model for the 

performance characteristic under study. 
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5. Use this functional relationship with respect to certain chosen 

specification limits to obtain reliability characteristics, like the mean 

time-to-failure (MTTF) and variance of time-to-failure (VTTF). 

6. Use an optimization method, like Robust Design, to improve or optimize 

these reliability characteristics by setting the nominal value of the design 

parameters at certain values (parameter design). The goal of this 

optimization method could be to optimize the nominal values and to 

minimize the variance values of these reliability characteristics. 

This chapter provides a theoretical description of the ROMDA method. The 

next chapter presents simulation experiments that show how ROMDA works. The 

simulation experiments also provide a good insight and understanding in the method 

and the usefulness for optimizing a product design towards robust reliability.
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5 Simulation experiments 

5.1 Introduction 

Very little literature is available on prediction and optimization of reliability 

through degradation analysis of the design parameters themselves in relation with a 

performance characteristic. In this chapter two simulation experiments are presented. 

The purpose of these simulation experiments is to obtain a general idea of how 

ROMDA works in theory. In these experiments the functional relationship between 

the performance characteristic and the design parameters is known in an analytical 

form. Furthermore, standard design-parameter degradation models, available in 

literature, are used for the degradation of the design parameters. Also design 

parameter variations around their nominal values, due to manufacturing tolerances 

and environmental variation, are described through parametric statistical distributions. 

Hence, through simulation, the performance characteristic values over time of a batch 

of products can be established. Given certain specification limits, a reliability 

characteristic, like the time-to-failure (TTF) of each simulated product, is obtained, 

which results in the estimation of the mean time-to-failure (MTTF) and the standard 

deviation of the time-to-failure (SDTFF) of a batch of products.  

These simulation experiments show a first attempt to predict product 

reliability at the design stage. The results of the predictions are used to improve 

product reliability through parameter design [PHA89], which means setting the initial 

nominal design parameter values at certain levels that optimize product reliability, 

taking the degradation profiles of these design parameters into account. 
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The first simulation experiment is the first attempt to predict and improve 

product reliability. In this simulation experiment for the optimization, robust design 

technology is used. The second simulation experiment is a more extensive, and 

complex product. Also the optimization step is more reliability oriented. This 

simulation experiment is followed by a discussion on the practical applicability of the 

results of the simulation experiments. 

5.2 Simulation Experiment 1: Simple electrical circuit 

This simulation experiment makes use of a simple electrical circuit [SPE88], 

which contains two resistors, an input voltage and a voltmeter to measure the output 

voltage. A diagram of this model is shown in figure 5.1a. This model is chosen 

because of two main reasons. First of all this model is relatively simple and can easily 

be described in a mathematical form. 

 

R1 

R2 

Vout

Vin=10V 

R1 

R2

Vout=4.5V 

Vout=5.5V 

Figure 5.1: 

a) Electrical circuit. 

b) Specification limits. 

 

Secondly, and most importantly, this model can easily be used to understand 

the failure process linked to variability and degradation in the design parameters. This 
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second reason makes this model extremely useful for the purpose of this simulation 

experiment. 

The structure of the rest of this section follows the steps of the protocol 

presented in chapter 4. 

 

Step 1: Identification of the Performance Characteristic and the Design 

Parameters 

The output voltage is the measured performance characteristic, while the 

resistors, R1 and R2, and the input voltage Vin are the controllable design parameters. 

The following equation describes the link between the performance characteristic and 

the design parameters [SPE88]: 

inout V
RR

RV ⋅
+

=
)( 21

1  (5.1) 

Figure 5.1b shows the specification limits of the performance characteristic, 

the output voltage in the parameter plane for a fixed value of Vin. An output voltage of 

4.5 Volts is chosen as the lower specification limit while 5.5 Volts is chosen as the 

upper specification limit. Taking these specification limits into account, the yield (at 

time t=0) and the failure rate λ at a given time t may be estimated.  

In this experiment the input voltage Vin is set on a constant value of 10 V. Of 

course, in practice there will be some variations in this voltage, but initially these 

variations will not be taken into account. This is primarily done to get a better insight 

on the effects of variability and degradation in the resistance of the resistors (DP’s).  

To introduce variability in the design parameters of products, due to the effect 

of manufacturing tolerances, the values of the resistors R1 and R2 are assumed to be 
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non-constant, but to inhabit a statistical distribution. The values of these design 

parameters at time t=0, R0, are assumed to be uniformly distributed with a certain 

mean and variance. Due to temperature effects the resistor values slightly degrade 

over time. These small changes are often referred to as resistance drift (∆R/R). The 

change in resistance, due to this thermal degradation, depends upon ageing time and 

temperature and is caused by several different mechanisms. This dependency is 

generally fitted to an equation of the type [BEL00]: 

kT
Ea

et
R
R −

⋅⋅=
∆ α  (5.2) 

where T is the temperature in Kelvin, k is Boltzmann’s constant, t is the time, 

Ea is the activation energy, and α is a proportionality constant characteristic of a 

particular degradation mechanism.  

Since R=R(t=0)=R0 and ∆R=R(t)-R0, equation (5.2) can be rewritten as: 

)1()( 0
kT
Ea

etRtR
−

⋅⋅+⋅= α  (5.3) 

Table 5.1 summarizes the values of the constants and variables for the 

degradation model. Also the value of the input voltage, which is set at a constant 

value in this simulation experiment, is shown. 
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Table 5.1: Values of variables and constants used in the first simulation 

experiments.  

Variable or constant Value 
Input voltage Vin 10 Volts 
Temperature T 293 K 
Boltzmann’s constant k 8.6*10-5 eV/K  

Activation energy Ea 0.9 eV 
Constant α 3.25*105 Ω/time unit 

 

The values of table 5.1 combined with equation (5.3) provide the following 

degradation model of the design parameters: 

)1051()( 3
0 tRtR ii ⋅⋅+⋅= −  (5.4) 

with Ri0 the value of the nominal designed resistor value at time t=0.  

The simulation experiments use the Monte Carlo Principle to randomly 

generate a number of values for products of a nominal design, used in this experiment. 

Matlab is used to run these simulation experiments. From the experiments time-

dependent distributions of the design parameters and the performance characteristic 

can be obtained, while failure rates can be estimated taking the specification limits 

into account.  

In the next subsection, a screening simulation experiment will be discussed 

where both design parameter (resistor R1, and R2) are subjected to variability and 

degradation. 
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Step 2: Determination of the Functional Relationship between the Performance 

Characteristic and the Design Parameters 

The screening simulation experiments are performed for several combinations 

of resistor values R10 and R20. The Monte Carlo method is used to simulate thousand 

products of a nominal design. Hence, the performance characteristic shows a certain 

statistical distribution around its value of the nominal design, due to the variability in 

the design parameters. In some runs of the experiments the two design parameters 

(resistors R1 and R2) both have the same value and the performance characteristic is 

on the so-called “target-line”, which means that the output voltage should be 5 Volt. 

While in other runs of the experiments these design parameters each has a different 

value and the value of the performance characteristic is near one of the two 

specification limits (LSL = 4.5 V and USL = 5.5 V).  

Next step in the simulation experiments is to introduce uniform distributions at 

time t=0 and a degradation profile for both design parameters, resistors R1 and R2. The 

uniform distributions of R10 (t=0) and R20 (t=0) have various mean values with a 

constant value of the standard deviation of 0.3 Ω (σ=0.3 Ω) for each run of the 

experiment. The combinations of the mean values are shown in figure 5.2.  

The degradation models used for design parameters R1 and R2 are: 

)1051()( 3
101 tRtR ⋅⋅+⋅= −  (5.5) 

)1051()( 4
202 tRtR ⋅⋅+⋅= −  (5.6) 
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Figure 5.2: Mean values of design parameters R1 and R2 (at t=0). 

 

The degradation models for the design parameters are not equal, otherwise, 

almost no failures would occur due to the shape of the functional relationship, eqn. 

(5.1), between the performance characteristic and the design parameters. It is also 

more realistic that products consist of different components, instead of only two equal 

components. 

Figure 5.3: Results of Simulation Experiment with R1 and R2  uniformly 

distributed (m=6 Ω and σ=0.3 Ω). 

a) Time-dependent distribution.            

b) Failure rate curve of performance characteristic. 
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Figure 5.3 shows the results of run 2 where design parameters R1 and R2 are 

both set at a mean value of 6 Ω.  

Results of all the runs of this experiment are shown in appendix 3. These 

results lead to the following conclusions: 

→ An increase of values of design parameters R1 and R2, for which R1=R2 and 

the performance characteristic should be on the “target-line”, results in a 

failure rate that increases faster over time. The reason for this behavior is 

due to the faster degradation (increasing value) of design parameters R1 

and R2 as levels of R1 and R2 increase. As a result the value of the 

performance characteristic moves faster to the USL and failures occur 

earlier in time.  

→ Combinations of values of design parameters R1 and R2, which result in a 

performance characteristic (PC) value closer to the USL, fail faster than 

combinations of design parameters R1 and R2, which result in a PC value 

closer to the LSL. This is caused by the fact that design parameter R1 

degrades and thus increases faster than design parameter R2 (compare eqn. 

(5.5) and (5.6)). This causes the value of the performance characteristic to 

move towards the USL, which results in failures occurring earlier in time.  

→ The distribution of “passed” products will change over time. This is due to 

the fact that the sample size in the experiments is relatively small 

(n=1000). As a result, only a few products are left after a certain time and 

the shape of this distribution will not necessarily be the same over time. 

Hence, conclusions based on the final part of the failure rate curve have to 

be considered carefully. 
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Step 3: Robust Optimization 

The screening experiments are conducted with a design, which was not 

optimized at time t=0. Therefore, the design parameters of each run were selected 

arbitrarily and no attention was given to the quality of the products. In the original 

design both design parameters R1 and R2 were set at a value of 5 Ω, while the other 

non-designable input parameter (Vin) was set at 10 V, which resulted in a nominal 

output voltage (Vout) of 5 V. This section discusses the quality optimization of this 

product with the use of parameter design to see if this optimization also leads to 

reliability improvement. Hence, a failure rate plot is estimated from the optimized 

design to observe if reliability improvement is obtained. 

The results of these new experiments, expressed in a failure rate curve, are 

compared with the results of a non-optimized run to see if the failure rate curve 

improves. The optimization is performed using a full factorial experiment with 3 

different levels of design parameters R1 and R2. The values of these levels are given in 

table 5.2. 

Table 5.2: Level settings of design parameters R1 and R2.  

Levels Variables 
1 2 3 

R1(Ω) 2 6 10 
R2(Ω) 2 6 10 

 

The full factorial experiment is chosen because only two design parameters 

are considered, thus such an experiment only contains 32=9 runs. The target value of 

the performance characteristic, the output voltage, is set on 5 Volts. The goal is to 

minimize the variation of the performance characteristic value around this target value 
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(at time t=0), by making the design robust against the variability in the design 

parameters using parameter design. 

The values of the two design parameters (again at time t=0) must remain in the 

region between 0 Ohm and 10 Ohm. Using the Signal-to-Noise (S/N) ratio, η 

[PHA89], for a nominal-the-best problem, it is possible to determine the optimum 

levels of the design parameters R1 and R2 to obtain an “optimal” robust design.  

The used Signal-to-Noise (S/N) ratio, η, is defined as [PHA89]: 









⋅= 2

2

10log10
σ
µη  (5.7) 

where µ and σ are the mean and standard deviation of the performance 

characteristic. The S/N ratio must be maximized to obtain an optimized robust design 

[PHA89].  

In this case it is obvious that this occurs when both design parameters are set 

on 10 Ω, since the standard deviation of the design parameters are constant and, at 

this level, relatively small compared to the mean value. Figure 5.4 shows the failure 

rate curves of the non-optimized design (R1=R2= 5 Ω) and the optimized design 

(R1=R2=10 Ω). However, the results clearly show that the optimization does not lead 

to an improvement in the failure rate. This leads to the conclusion that optimizing for 

quality purposes, in this case robust optimization, does not always lead to a better 

performance in terms of reliability (here represented by a failure rate curve). Note that 

the failure rate curve is only used for illustrative purposes and cannot be used solely 

as a reliability characteristic. In this thesis the choice has been made to use the Mean 

Time To Failure and the Variance Time To Failure as reliability characteristics. 
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Figure 5.4: Failure rate curves of 1000 products with the design 

parameters R1 and R2 uniformly distributed. 

 

a) b)

a) Non-optimized design: R1=R2= 5 Ω (s=0.3). 

b) Optimized design: R1=R2= 10 Ω (s=0.3). 

 

Quality  

Quality, as defined in chapter 2, is the ability of a product or system to fulfill 

its intended purpose. A possible way of measuring quality is one introduced by 

Phadke (1989) [PHA89]: 

( ) 22 στµ +−=Q  (5.8) 

where the first part represents the bias, which is the difference between the 

target mean value (τ) and the measured mean value (µ) of the performance 

characteristic. The second part represents the variance of the performance 

characteristic. By minimizing both the bias and the variance the quality (at time t=0) 

can be optimized. Here, the definition is more precise than the definition given in 

chapter 2, because here a distinction is made between “within specifications” and 

“closer to the target values with a small variance is better then close to the 
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specification limits with a large variance”.  Another characteristic to measure the 

quality is the S/N ratio as defined above. 

Yield 

The yield of a product is the percentage of products in a batch meeting 

specification at time t=0. Improving the yield does not automatically mean that the 

quality of a product is improved, only that more products meet specification. An 

improvement in the yield can result in an increase as well as a decrease in quality. 

This totally depends on the design of a specific product. For example, assume that 

more products meet specification, thus the yield is improved. However, the quality 

characteristic of these products is very close to the lower specification limits. Hence, 

if this quality characteristic should be as large as possible, the quality of these 

products is decreased.  

Failure rate (reliability) 

The failure rate is a frequently used reliability measure. The commonly used 

definition of failure rate is given in section 2.1. This definition can be translated to 

these experiments as the number of products failing during a certain time period 

divided by the total number of not failed products at that time period. As mentioned 

before, different levels of design parameters can optimize a product with respect to 

quality and/or reliability (expressed in failure rate). So, by optimizing the quality of a 

product it is possible that the failure rate of a product increases or decreases.  

A same line of reasoning can link the yield to the failure rate. For example, if 

the yield decreases, fewer products meet specification. But maybe those products that 

meet specification are more reliable and thus the failure rate decreases. However, it is 
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also possible that these products are close to the specification limits and will fail 

shortly after time t=0 and thus the failure rate increases. Both situations could occur. 

 

The above discussion shows that it is most of the time impossible to optimize 

a design with respect to all three aspects. Therefore, normally a compromise between 

the three aspects has to be made to optimize a product at time t=0.  

When focusing on both the quality and the reliability this leads to the 

following conclusions: 

→ Either different design parameters have to be used to optimize a product 

with respect to quality and reliability. 

→ Or different settings of these design parameters should be used to optimize 

a product with respect to quality and reliability. 

→ It can be expected that a trade off has to be made in order to optimize a 

product with respect to reliability and quality simultaneously.  

Since the main focus of this research is to predict and optimize the reliability 

of a product, with the use of degradation models of the design parameters, further 

experiments are conducted to improve product reliability. 

5.3 Simulation experiments 2: Temperature Control System 

In order to extend the simulation experiments, a second example will be used 

to examine the influence of interactions between more than two design parameters. 

This example, a temperature control system, is shown in figure 5.5 and is discussed in 

chapter 9 of “Quality Engineering using Robust Design” by Phadke [PHA89]. To 

make this simulation experiment more realistic customer use is introduced in the 
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simulations. This is done by introducing a little different usage behavior of the 

customer at the beginning of operating the temperature control system. A detailed 

explanation is given in the simulation experiment. 

The function of a temperature control system is to maintain the temperature of 

a room, a bath, or some object at a target value. A temperature control system can be 

divided into three main modules (see figure 5.5a): a temperature sensor (thermistor), a 

temperature control circuit and a heating element. The temperature, for example of a 

bath, is sensed by a thermistor, which is assumed to have a negative temperature 

coefficient. This means that the thermistor resistance, RT, decreases with an increase 

in the temperature of the bath. When the bath temperature rises above a certain value, 

the resistance RT drops below a threshold value so that the difference in the voltage 

between terminals 1 and 2 of the amplifier becomes negative. This actuates the relay 

and turns the heater off. Likewise, when the temperature falls below a certain value, 

the difference in voltages between the terminals 1 and 2 becomes positive so that the 

relay is actuated and the heater is turned on. 

Figure 5.5: 

a) Block diagram of a temperature. 

b) Temperature control circuit control system. 
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Step 1: Identification of the Performance Characteristic and the Design 

Parameters 

The temperature control circuit (see figure 5.5b) provides a way of setting the 

threshold value of the resistance RT and thus setting a target temperature. During the 

simulation experiments, only attention is given to the setting of the threshold value of 

RT when the heater turns on. So, this resistance value of RT will be used as 

performance characteristic. The required resistance value of RT can change due to 

variability and degradation in the values of the various circuit components (design 

parameters).  

Through standard techniques of circuit analysis, one can express the value of 

the required resistance value of Rt as the following mathematical function of all circuit 

design parameters: 

( )
( )20421

10423

RERERER
RERERRR

zz

z
T −+

+
=

 (5.9) 

where R1, R2, R3 , and R4 are the resistance values of the four resistors, E0 is 

the power supply voltage (input voltage), and Ez the nominal voltage of the Zener 

diode. The purpose of the Zener diode in the circuit is to regulate the voltage across 

the terminals a and b (see fig. 5.5b). Thus, the Zener diode is used to take care of 

fluctuations and drifts in the power supply voltage. 

For proper operation of the circuit Ez must have a smaller value than E0. Also 

R4 has to be higher than R1, R2 or R3. The nominal values of the circuit design 

parameters under the starting conditions are shown in table 5.3. This table also shows 

the standard deviation of these parameters, which is assumed to be one-third of the 

tolerances. This time the tolerance is taken as 5% of the mean nominal values. 
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Table 5.3: Nominal values of circuit parameters.  

Parameter Nominal mean value (µ) Standard deviation (σ) 
R1 4.0 kΩ 0.067 kΩ 
R2 8.0 kΩ 0.133 kΩ 
R3 1.0 kΩ 0.017 kΩ 
R4 40.0 kΩ 0.667 kΩ 
E0 10.0 V 0.167 V 
Ez 6.0 V 0.100 V 

 

Step 2: Determination of the Functional Relationship between the Performance 

Characteristic and the Design Parameters 

Similar as to the first simulation experiments (§ 5.2), the values of the resistors 

R1 till R4 at time t=0 are assumed to be uniformly distributed with a mean and 

standard deviation as shown in table 5.3. These design parameters also show 

degradation over time. Again the same equations for the degradation model, see 

equation (5.3), as in the first simulation experiment are used in these experiments. The 

degradation models for these four design parameters are: 
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 , R1 till R4 in kΩ (5.10) 

Besides the resistors R1 till R4 the other two non-designable input parameters, 

E0 and Ez, have to be discussed. The Zener Diode (Ez) regulates the input voltage (E0). 

This is why the Zener Diode will be used to introduce customer use in these 

experiments. The following two points describe the way customer use is introduced in 

these simulation experiments: 

→ Introduce a normally distributed input voltage, E0, and Zener Diode 

voltage, Ez, to describe customer use. Then by shifting the mean value of 
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this normally distributed Zener Diode voltage from 6 V to 5.5 V, the input 

voltage is not properly regulated, which leads to an increase of this input 

voltage and “overstress” due to “wrong use” of the customer, is being 

modeled. After a few time steps the mean value of the Zener Diode 

voltage returns slowly to the nominal value of 6 V. Mathematically this 

can be described as: 

0.621
)11(05.05.52011
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z

z

z

Et
tEt

Et
 , Ez in Volts (5.11) 

→ Model different “starting points” at which products or functions of 

products are being used for the first time. This is done to explain the fact 

that certain failures are detected and reported only after a while, although 

these failures may have already existed at time t=0. This is in line with the 

explanation given on the roller coaster curve. 

The variability, degradation, and customer use introduced in these design 

parameters influence the performance characteristic, RT, according to the stated 

mathematical equation (5.9). Taking into account the lower and upper specification 

limits the failure rate can be estimated. In these experiments, the following 

specification limits are chosen: 

• LSL= 2.5 kΩ 

• USL= 2.9 kΩ 

These limits were chosen arbitrary, but such that reasonable lifetimes of 

products could be obtained with the design parameters set on the nominal mean 

values (see table 5.3).  

 131 



 

Results of a failure rate curve obtained with these specification limits can be 

seen in figure 5.6. All design parameters in this experimental run were set at the 

values shown in table 5.3. Also customer use is included in this model, which results 

in the fact that 500 products were started being used at time t=0 and every next time 

step 50 products were started being used, until all 1000 products were in use. 

 

  (kΩ)

Figure 5.6: Time-dependent distribution of the performance 

characteristic and the failure rate curve of the “Extended Model”. 

Step3: Reliability Prediction and Optimization 

Since the first simulation experiments have improved the understanding of the 

influence of variability and degradation in design parameters on product reliability, 

the next step will be to make an attempt to predict and improve product reliability by 

controlling these dominant design parameters at the design stage. Before this is 

possible, product reliability has to be quantified first.  

Two characteristics will be used to quantify product reliability, namely: 

1. Mean time-to-failure (MTTF), µ 

2. Standard deviation of the time-to-failure (SDTTF), σ 

The purpose of these experiments is to determine the possibility to use 

parameter design to maximize the MTTF of a product and, simultaneously, make a 
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product insensitive to variability in the design parameters, to improve product 

reliability (minimize SDTTF). 

The first step to achieve this purpose is to predict product reliability. This can 

be done using the presented approach of chapter 4. 

 

  (kΩ) 

a) b)

  (kΩ) 

Figure 5.7: 

a) Time-dependent distribution of design parameter R1(t). 

b) Time-dependent distribution of performance characteristic: RT(t). 

 

The degradation models of the dominant design parameters are known. Such a 

time-dependent distribution of design parameter R1 is shown in figure 5.7a. As can be 

seen the mean of this design parameter shifts over time and the variance is also 

slightly increasing over time due to the degradation model applied on this design 

parameter.  

The time-dependent distributions of the design parameters combined with the 

analytic functional relationship (eqn. (5.9)) between the performance characteristic 

and the design parameters, provide time-dependent distributions of the performance 

characteristic, RT. An example of such a distribution is shown in figure 5.7b. 

Figure 5.7b shows, besides the time-dependent distribution of the performance 

characteristic, also the specification limits (two planes) of this performance 
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characteristic. These specification limits can be used to estimate the time-to-failure 

(TTF) of all the simulated products. Hence, estimations of the MTTF and SDTTF 

may be established.  

Thus by conducting simulation experiments, it is possible to collect 

degradation data of the performance characteristic, which can be used to optimize the 

lifetime of these products. Now a distinction has to be made between the optimization 

of the first part of the performance characteristic, in which customer use plays an 

important role, and the second part, which is dominated by the degradation of the 

design parameters. The optimization focuses on the degradation part in order to 

improve the product reliability, because the main purpose of these experiments is to 

make the product insensitive to variabilities in design parameters, like degradation. 

Including customer use in the optimization process would also greatly complicate the 

optimization. 

The following approach is provided in order to improve the product reliability: 

1. Use Design of Experiments (DOE) to identify the influence of different 

settings of the design parameters on the product reliability. Results of 

these experiments are then used to link the reliability characteristics 

(like MTTF and SDTTF) to the design parameters (see also step 6). 

2. Obtain degradation data of the performance characteristic for each DOE 

run using simulation experiments of the temperature control system 

model. 

3. Determine Least Square Estimation (LSE) fits to calculate the 

degradation paths of all products from each DOE run. These LSE fits 

are determined, since only degradation data of the first 100 time steps 

are obtained from the simulation experiments. 
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4. Use these fits together with the specification limits to estimate the TTF 

of all products. 

5. Calculate the MTTF and the SDTTF of each DOE run.  

6. Link the MTTF ( µ̂ ) and the SDTTF (σ̂ ) to the nominal (mean) values 

of design parameters R1 till R4 using a 2nd order regression model, which 

makes it possible to include non-linear effects of the design parameter 

values on the ( µ̂ ) and (σ̂ ): 
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  (5.12) 

where xi and xj are the mean values of the design parameters. In this 

experiment the x’s are the four resistors R1 till R4. 

Conduct a Combined Multiple Response Optimization using the Desirability 

Approach [DER80] to optimize these functional relationships. This means maximize 

the MTTF and simultaneously minimize the SDTTF. 

This approach will be discussed next. 

 

Design of Experiments (step 1) 

This Design of Experiments (DOE) makes use of the four design parameters, 

namely R1, R2, R3, and R4. Similar as in the simulation experiments, these design 

parameters exhibit a certain variability at time t=0 and experience degradation over 

time. Only in the previous simulation experiments the values of Rt=0 were uniformly 

distributed, while in this DOE a normal distribution is used. This is done in order to 
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obtain better regression models that link these design parameters to the MTTF and 

SDTTF.  

The DOE is designed using a Central Composite Design (CCD). Such a CCD 

contains an imbedded factorial design with centre points, which is augmented with a 

group of “star points” that allow estimation of curvature. A CCD always contains 

twice as many “star points” as there are parameters in the design. Different CCD’s 

exist, each with different locations of these “star points”. In this design the “star 

points” are at the middle between the centre point and the +1 level and –1 level. The 

imbedded two-level full factorial design contains 24=16 runs with the four design 

parameters either at the +1 level or -1 level. The +1 level and the –1 level values for 

the four design parameters are given in table 5.4. The values of the design parameters 

for the centre point run are given in the last column of this table. 

Table 5.4: Values of DOE levels for each design.  

Design parameter +1 level -1 level Center point 
R1 (kΩ) 4.25 3.75 4.0 
R2 (kΩ) 8.5 7.5 8.0 
R3 (kΩ) 1.05 0.95 1.0 
R4 (kΩ) 42.5 37.5 40.0 

 
The Central Composite Design is used to capture the non-linear effects 

between the design parameters and the MTTF and SDTTF. The group of "star points" 

consists of 2*4=8 runs. Thus, in total this DOE contains 24+4*2+1=25 number of 

runs. For each run, 30 products are randomly simulated and degradation data of the 

performance characteristic of each product is obtained. Appendix 4 contains the 

design matrix used for these 25 runs. 
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Degradation data and Least Square Error (LSE) fits (step 2 and 3) 

The degradation data of the performance characteristic of the products, 

obtained from the 25 runs of the DOE, only contain values from time t=20 till t=100. 

Although not all products have failed at time t=100, the simulation experiments are 

stopped at this point of time. This is done since normally these data are obtained by 

testing, which is very time consuming and expensive and, therefore, it is impossible to 

continue testing until all products have failed. Also the data of the performance 

characteristic from time t=0 till t=20 are not used, because in this time period 

customer use influences the value of RT, while this optimization focuses on the 

degradation part. 

The next step in this approach is to fit a Least Square Estimation (LSE) line 

through the obtained degradation data in order to capture the degradation path of each 

product. The LSE lines are of the form: 

tbaRT ⋅+=  (5.13) 

These LSE fits are chosen linear since the linear degradation models of the 

design parameters, eqn. (5.10), and the form of the analytical expression of the 

functional model, eqn. (5.9), results in linear behaviour of the performance 

characteristic. These LSE lines can be extrapolated after time t=100 and used to 

estimate values of RT. These fitted values of RT combined with the specification limits 

provide all the necessary information to predict the TTF of all 30 products for each 

DOE run.  

 

Estimation of MTTF and SDTTF (step 4 and 5) 

Once the fitted values of the performance characteristic are available, the 

specification limits are used to estimate the time-to-failure (TTF). The specification 
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limits chosen in section 5.3.2 are not suitable for these experiments, since these limits 

were chosen to obtain failures when the design parameters were set on the mean 

nominal values. In these experiments the settings of the design parameters will change 

within a certain range (see table 5.4) and the chosen limits would be too narrow, 

which would result in many early failures due to the simulated customer use. 

Therefore, the specification limits are set on different levels, namely: 

• LSL=1.9 kΩ 

• USL=4.0 kΩ 

Thus, for each DOE run 30 time-to-failure values (TTF) are predicted. These 

predictions are used to estimate the MTTF and SDTTF for each DOE run with certain 

settings of the design parameters. The MTTF and SDTTF for each DOE run are 

shown in the design matrix in appendix 5. 

 

Regression Models of MTTF and SDTTF (step 6) 

In order to improve product reliability by controlling the design parameters 

(parameter design), the MTTF and SDTTF must be linked to the nominal (mean) 

values of the design parameters R1, R2, R3, and R4. This is done using a Multiple 

Linear Regression Model.  

Before this, the results of the experiments are analyzed using ANOVA 

(Analysis of Variance) to determine the statistical significance of effects from the 

main factors, two-way interactions, and second-order terms of these design 

parameters on the MTTF and SDTTF. Once the dominance of the various terms is 

determined it is possible to build a regression model, which describes the functional 

relationship between these dominant terms of the design parameters and respectively 

the MTTF and the SDTTF, like eqn. (5.12). 
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The Coefficient of Determination (R2) can be used to determine the amount of 

variability in the data explained, or accounted by the effects of the design parameters. 

The R2 value can vary between 0 and 1. The various terms of the design parameters 

explain the variation in the MTTF well (R2= 0.99). However, these terms only 

account for 57% (R2=0.57) of the variation in the SDTTF. This indicates that the 

design parameters are not strongly influencing the SDTTF. Nevertheless, a model will 

be obtained, which links the SDTTF to these design parameters, in order to follow the 

proposed approach and to see if reliability improvement through parameter design is 

possible.
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Figure 5.8: Residuals plots of MTTF and SDTTF. 

 

As stated before, models for the MTTF and the SDTTF are of the form of eqn 

(5.12). The parameter coefficients αi and φi of the dominant terms of the design 

parameters are determined by conducting the Least Square Estimation (LSE) 

regression method. The LSE regression method minimizes the sum of the squares of 

the deviations between observed data (in the simulation experiments) and the 

estimated or fitted data (of the model). This method results in the following models 

for the estimated MTTF ( µ̂ ) and estimated SDTTF (σ̂ ): 

4321 72.1695.5128.7144.5223.327ˆ RRRR ⋅+⋅−⋅−⋅+=µ  
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2 77.386.400.2468.24 RRRRRR ⋅−⋅−⋅+⋅−

       3242 43.498.1 RRRR ⋅+⋅−  

 

4321 02.006.005.003.046.3exp(ˆ RRRR ⋅−⋅−⋅−⋅+=σ  (5.15) 

        )05.046.044.0 41
2

4
2

2 RRRR ⋅−⋅+⋅−

where R1 till R4 represent respectively design parameters R1 till R4.  

Note that the exponential term in the equation (5.15) is introduced since the 

regression model is obtained linking the ln(σ̂ ) to the design parameters in order to 

establish a more accurate fit of the SDTTF with respect to the design parameters. 

Next, residual plots provide information whether additional terms have to be 

added to the chosen model. The residuals should be random variables with mean zero 

and a constant variance. Figure 5.8 shows the residual plots of both the MTTF and the 

SDTTF. These plots indicate that the residual terms are random variables. Also no 

patterns can be observed in the residuals, which means that no additional terms have 

to be inserted in both the models that could possibly improve them. 

 

Validation of regression models 

The models obtained using the LSE method are validated to check if they 

predict the MTTF and the SDTTF without any systematic errors. The error in the 

prediction is defined as the difference between the value of the simulation 

experiments (observed value) and the predicted value of the models. The error should 

be a random variable with mean zero. The validation test consists of 20 runs with 30 

products, each with randomly selected settings of the design parameters. These tests 
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are conducted and both the MTTF and the SDTTF are determined with use of the 

simulation experiment. Also the models of eqn. (5.14) and (5.15) are used to predict 

the MTTF and the SDTTF. The results of this validation test and the settings of the 

design parameters for each run are tabulated in Appendix 6.  
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Figure 5.9: Error in MTTF and ln(SDTTF). 

 

Figure 5.9 shows both the error in the prediction of the MTTF and the error in 

the prediction of the SDTTF for each run of the validation test. Both plots show that 

the mean value of the error terms is approximately zero and that these error terms are 

randomly distributed around this mean value. Hence, it can be concluded that the 

predictions of the MTTF and the SDTTF contain no systematic errors.  

Next, the two models linking the MTTF and the SDTTF to the four design 

parameters are optimized to improve product reliability. 

 

Combined Multiple Response Optimization (step 7) 

In this multiple response case, two reliability characteristics have to be 

optimized simultaneously, namely: 

→ Maximize the estimated MTTF ( µ̂ ) 
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→ Minimize the estimated SDTTF (σ̂ ) 

Optimizing these two characteristics simultaneously is quite difficult and 

probably impossible; so a trade-off has to be made in order to find design parameter 

levels, which are satisfactory for both the characteristics. An effective manner to 

make this trade-off is to use the Desirability Approach [DER80]. Appendix 7 gives a 

short elaboration on the Desirability Approach. 

The approach that is explained in appendix 7 to improve product reliability 

through parameter design is applied to the temperature control system model 

presented in this simulation experiment to see if it is feasible to obtain reliability 

improvement.  

Simulation experiments have been run to gather the degradation data of the 

performance characteristic. These data are transformed into MTTF and SDTTF, to 

optimize these two reliability characteristics the desirability approach and a sequential 

optimization scheme have been used.  

The “starting values” of the design parameters in the optimization scheme, 

which are the nominal design values, are given in second column of table 5.5. This 

column also contains the MTTF and the SDTTF corresponding with these settings of 

the design parameters. The third column of table 5.5 shows the design parameter 

settings that realize the maximum Overall Desirability and thus the “optimal” trade-

off in maximizing the MTTF and simultaneously minimizing the SDTTF. 
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Table 5.5: Results of Reliability Improvement.  

DP “Starting values” “Optimal values” 
R1 (kΩ) 4.0 4.25 
R2 (kΩ) 8.0 7.5 
R3 (kΩ) 1.0 0.95 
R4 (kΩ) 40.0 40.6 
MTTF 331 519 
SDTTF 31.9 28.7 

 

The results show that it is possible to achieve an improvement of 57% in the 

MTTF. However, only a slight improvement of the SDTTF is obtained.  

This small improvement of the SDTTF is mainly caused by the choice of the 

degradation models of the design parameters. The variance in the design parameters is 

independent of the level of the mean values of the design parameters. Hence, the 

variance of the performance characteristic, which is dependent of the variance in the 

design parameters, is not affected by changes in the mean values of the design 

parameters. Therefore, the SDTTF, which is dependent of the variance in the 

performance characteristic, cannot be improved by parameter design. Thus, in these 

simulation experiments parameter design can only be used to improve the MTTF.  

The SDTTF is almost not improved using this approach of Robust Design. 

Hence, tolerance design may be a next step in improving the SDTTF. This would 

mean linking the SDTTF to the variation of the design parameters over time and 

optimize the SDTTF by reducing the variation of those design parameters that 

influence the SDTTF most.  
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Figure 5.10: 

a) Failure rate curve: Before Reliability optimization. 

b) Failure rate curve: After Reliability optimization. 

 

This reliability improvement can be translated back to the failure rate curves. 

Figure 5.10a shows the failure rate curve of the design before the reliability 

optimization. A thousand products are randomly created with the nominal settings of 

the design parameters as given in the second column of table 5.5. Figure 5.10b 

represents the failure rate curve of products (also a thousand) with the design 

parameters set on the “optimal” values determined in the reliability optimization. 

These plots clearly show the reliability improvement due to the change of settings of 

the design parameters. Note that the specification limits have been chosen such that 

customer use causes no early failures and, thus the first two phases of the Roller-

coaster curve are not present in these failure rate curves. 

5.4 Discussion of simulation results 

Chapter 4 presented a method to predict and optimize product reliability 

through degradation analysis of the dominant design parameters. In this chapter 
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simulation experiments are discussed, which are conducted to obtain some general 

sense of this method. First, a model of an electrical circuit is discussed and used as an 

example to run simulation experiments. Mechanical components or products could 

also be used, but in these simulation experiments electrical circuits were chosen, since 

more literature is available on degradation in electronics.  

This simulation experiment improved the understanding of the influence from 

variability and degradation of the design parameters on product reliability. The 

simulation experiment also showed that the proposed concept enables the possibility 

to predict reliability (TTF) early at the design stage. The simulation experiments 

included early reliability behaviour (1st and 2nd phase of the Roller-coaster curve) by 

the introduction of “customer use”. However, besides “customer use” also weak sub-

populations are causing these early wear-out failures. Therefore, bi-modal 

distributions could be used to describe the early reliability, which would give a more 

complete description of the reliability behaviour of products.  

Subsequently, reliability could be optimized through parameter design. This 

optimization results in a substantial improvement of the MTTF and hence in the 

reliability of the used example in these simulation experiments. The SDTTF is almost 

not improved, which is caused by the chosen degradation models of the design 

parameters. Different degradation models or tolerance design could be used in future 

research to see if the SDTTF can be improved. However, as the first simulation 

experiment showed, it is not a guarantee that the reliability is also optimized, when a 

quality oriented optimization method, like robust design, is used. For this reason a 

different optimization strategy was used in the second simulation experiment. This 

lead indeed to a substantial improvement of the MTTF, which is a reliability 

characteristic.  
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The reliability improvement is concentrated on the wear-out part (fourth 

phase) of the Roller-coaster curve. It is assumed that in this part the population of 

products is homogenous (no weak sub-populations) and that customer use is not 

important anymore. Hence, the early part of the performance characteristic is not 

taken into account. However, to include this early reliability, the same approach could 

be used to model these early wear-out failures and to link the TTF’s to the design 

parameters.  

In the simulation experiments the functional relationship between the 

performance characteristic and the design parameters is known in the form of an 

analytic equation. Further, standard linear degradation models, available in literature, 

are used for the degradation of the design parameters. 

5.5 Discussion on practical value of assumptions and preconditions 

 of the simulation experiments 

This section follows the protocol of the theoretical approach for reliability 

prediction and optimization.  

The first step in the protocol is to identify the critical design parameters and 

performance characteristic. In a theoretical problem these dominant design parameters 

and the performance characteristic are known. Also the nominal values of the 

parameters under the initial conditions in the simulation experiments were known. 

This leads to the first precondition: 

 

Precondition 1: The performance characteristic and the dominant 

design parameters are known. 
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In practice it is highly unlikely to know the dominant design parameters and 

the performance characteristic. Products or systems are becoming increasingly 

complex resulting in complex gradual degradation behavior of a product or system. 

This fact results almost in the impossibility of knowing the parameters and 

performance characteristic. Qualitative methods, i.e. Failure Modes and Effects 

Analysis (FMEA) or Fault Tree Analysis (FTA), and quantitative methods, i.e. Design 

Of Experiments (DOE), could provide a practical approach for determining the 

performance characteristic and the dominant design parameters. 

Next, in the simulation experiments distributional assumptions are made for 

the unit-to-unit variance. 

 

Assumption 1: The parameters are assumed to be normally distributed 

and the standard deviations of the design parameters are taken to be 

one-third of their tolerances. The tolerance is taken as 5% of the mean 

nominal values of the design parameters. 

 

Distributional assumptions can definitely have a big influence on the rest of 

the analysis. Especially when models or curves need to be estimated, the estimation 

error is much bigger if the distribution function is not known and different estimation 

methods may be needed. 

The resistor values slightly degrade over time due to temperature effects 

(degradation process). These small changes are often referred to as resistance drift 

(∆R/R). The change in resistance, due to this thermal degradation, depends upon 

ageing time and temperature and is caused by several different mechanisms with 
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different time dependencies. This dependency is generally fitted to an equation of the 

type [BEL00]: 
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where T is the temperature in Kelvin, k is Boltzmann’s constant, t is the time, 

ni is the time dependence, Ei is the activation energy, and αi is a proportionality 

constant characteristic of a particular degradation mechanism.  

 

Assumption 2:  The degradation profiles of the dominant design 

parameters are known and follow a pre-specified degradation 

relationship (parameter degradation). 

 

In practice the resistance change is dependent on the sum of all degradation 

mechanisms. The degradation profile used in the simulation experiment only uses one 

degradation mechanism, which is not likely to happen in real product use. In practice 

the degradation profiles probably need to be measured. Many test methods and 

estimation methods could provide practically valid degradation profiles of the design 

parameters. Literature provides a wealth of test methods, like compressed time testing 

methods [LEW96], degradation-testing methods [TSE94], accelerated testing methods 

[KEC93]. 

The variability and degradation introduced in these design parameters will 

influence the performance characteristic RT according to equation 5.9 (functional 

relationship). Given the functional relationship and time t, the RT(t) value may be 

calculated at any time t.  
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Assumption 3:  A functional relationship (equation 5.9) between the 

performance characteristic and the dominant design parameters exists 

and is known. 

 

Assumption 3 is a central assumption in the theoretical approach. However, 

this relationship will never be available in practice. Maybe on component level a 

physical model might be available, but for complex electro-mechanical products this 

relationship will not be found in literature. The functional relationship between the 

performance characteristic and the dominant design parameters has to be established 

by testing. Test methods that provide a way of doing this are DOE [CON01] or 

Taguchi [PHA89] testing methods. And even with these well-accepted testing 

strategies care has to be taken. One of the main problems that possibly arise is the fact 

that the established functional relationship is only valid for values that have been 

included in the tests. However, the products degrade over time, so the validity of the 

models over the complete lifetime of the products is even then questionable and 

alternative test strategies might be necessary. 

Taking lower and upper specification limits of the performance characteristic 

into account the Time-To-Failure (TTF) of a random product realization can be 

estimated.  

 

Assumption 4:  The specification limits for the performance 

characteristic are known. 

 

In practice the specification limits have to be determined. And well-known 

methods in literature, like stress-strength reliability methods ([JEN95], [KAP77]), 
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even warn for the fact that the specification limits might be statistical in nature. But 

most reliability optimization methods use deterministic specification limits. 

5.5.1 Conclusions on practical value of assumptions and preconditions of the 

 simulation experiments 

From a theoretical point of view the approach is very appealing. However, as 

the previous discussion shows, the practical applicability of the method is in its 

current form not optimal. The preconditions and assumptions are not always 

practically feasible. Adjustments are suggested that could make the theoretical 

approach for predicting and optimizing reliability of products more suitable for real 

industrial products. The practical value and implementation possibilities of these 

suggestions have to be further investigated.  
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Figure 5.11: overview of steps in simulation experiment. 

Next, a new computer-based simulation experiment will be presented where 

the assumptions are more relaxed. For this simulation experiment the same circuit 

design example as in simulation experiment 2 is used for this purpose. The emphasis 

of the simulation experiments will be on the unavailability of the functional 
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relationship between the performance characteristic under study and the dominant 

design parameters. In theory, and in the simulation experiments, the functional 

relationship is a known analytical expression. However, since this is highly unlikely 

in practice, in the computer-based simulations presented in the next section it is 

assumed that this relationship is not available and has to be estimated for the rest of 

the analysis. Using the same circuit design provides the possibility to compare the 

optimization results of the simulations with functional relationship in analytical form 

with the simulations without the functional relationship in analytical form. The rest of 

the assumptions will be kept similar to simulation experiment 2. This means that 

standard design parameter degradation models for the design parameters in this 

problem, available in literature, are used for the tests. Design parameter variations are 

described through statistical distributions. Using standard design parameter 

degradation models, the degradation of the performance characteristics for any 

simulated circuit can be obtained. Given the specification limits, the time-to-failure of 

all the simulated circuits are traced. Hence, estimations of the MTTF and VTTF are 

established. Figure 5.11 gives an overview of the steps that are carried out in this 

simulation experiment and the assumptions that have been made for these 

experiments. 

A designed experiment is then carried out to establish the effect of each design 

parameter on the MTTF and variance of the time to failure (VTTF). This information 

is then used in the optimization phase to select the design parameter values that 

maximize the MTTF and minimize the VTTF simultaneously. Finally, the results of 

this approach are compared to the results of the theoretical method. Details of the 

simulation are given in the next section. 
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5.6 Simulation experiment 3: Temperature Control System 

 without functional relationship 

In order to be able to compare the results of this simulation approach with the 

results of simulation experiment 2, the same simple temperature control system has 

been used in this computer-based simulation experiment. In the theoretical situation 

the functional relationship is available [PHA89]: 
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However, in this experiment this functional relationship in analytic form is not 

used. Instead, we will estimate it using simulated measurement data. Therefore, we 

generate data using the analytical functional relationship (eqn. 5.17). The generated 

data is considered as being the measured data from test experiments. The data is 

generated in such a way that the data could have been gathered by using a test strategy 

like the one proposed by Chiao and Hamada [CHI01]. For the purpose of comparison 

of the results of the two simulation experiments also the user-profile is included in the 

data generation process. 

5.6.1 Details of simulation experiment 3 

In this study two characteristics, as mentioned earlier, are used to quantify 

product reliability, namely: 

→ Mean time to failure (MTTF), say µ; 

→ Variance of time to failure (VTTF), say σ2. 

The goal is to identify the design parameter values that maximize the MTTF 

and simultaneously minimize the VTTF.  
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In order to meet these goals the necessary steps of the protocol of ROMDA 

have been followed and the results are stepwise presented below: 

1. The first step is to identify the dominant time-dependent design 

parameters and the dominant performance characteristic describing products’ 

behaviors over time. These have already been identified as being the four resistors R1 

to R4, and RT respectively. 

 2. Model the degradation of these dominant design parameters as a 

function of time and their initial values. For the problem used in this work, this 

information is also available. Similar degradation profiles as in the theoretical case are 

used to generate degradation data of the design parameters (see eqn. 5.18 for Ri(t)).  

)1051()( 3
0 tRtR ii ⋅⋅+⋅= −  (5.18) 

3. The time-dependent functional relationship between the design 

parameters and the performance characteristic is established by a regression fit using 

least-squares estimation to the longitudinal degradation data generated by the 

analytical functional relationship (eqn. 5.17). For the regression model a linear model 

with interaction terms is used. Data was generated for only 40 sample paths for the 

purpose that in practical problems it is also not possible to get thousands of samples 

measured. This resulted in the following time-independent regression model: 
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Note that equation 5.19 is used as an empirical model that describes the 

behavior of the product population, while equation 5.17 describes the real behavior of 

the products.  
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The Coefficient of Determination (R2) can be used to determine the amount of 

variability in the data explained, or accounted for by the effects of the design 

parameters. The design parameters reasonably explain the variation of the 

performance characteristics function (R2=0.89). 

4. The fourth step is to impose the stochastic time-dependent models of 

the design parameters into the functional relationship to obtain a time- and design 

parameter-dependent model for the performance characteristic. Since the regression 

model is fitted over the complete time domain, taking into account the degradation 

paths of the design parameters, the regression model is already time and parameter 

dependent. Therefore, the regression fit can be rewritten as: 
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5. For every sampled product, the time to failure is evaluated from the 

above equation. The time-to-failure is the time at which this product violates at least 

one of the specifications of RT. Similar specification limits as in simulation 

experiment 2 are used in these simulation experiments. In order to evaluate the MTTF 

and VTTF values of the design, ‘n’ values of R1, R2, R3 and R4 are randomly sampled 

at t=0, and thus each of these design parameter combinations constitutes a single 

product with a specific RT value. Hence, all the ‘n’ products will give rise to ‘n’ 

different RT values. The degradation of each of these values through time may thus be 

tracked through the expression given above. Hence, at any time, given the 

specification limits, quantities like the number of failures, time to failure, MTTF and 

VTTF may be evaluated or estimated. 
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6. A DOE test is designed. The test setup and the corresponding results 

for the MTTF and SDTTF are presented in table 5.6. 

Table 5.6: DOE setup and results. 

run pattern R1 R2 R3 R4 n 
products 

MTTF SDTTF 

1 ---- 3.75 7.5 0.95 37.5 1000 276.06 2.7397 
2 +--- 4.25 7.5 0.95 37.5 1000 306.16 2.6720 
3 -+-- 3.75 8.5 0.95 37.5 1000 213.48 3.0534 
4 ++-- 4.25 8.5 0.95 37.5 1000 281.74 3.0331 
5 --+- 3.75 7.5 1.05 37.5 1000 209.33 2.8717 
6 +-+- 4.25 7.5 1.05 37.5 1000 244.06 2.6282 
7 -++- 3.75 8.5 1.05 37.5 1000 119.13 3.1033 
8 +++- 4.25 8.5 1.05 37.5 1000 190.82 2.8943 
9 ---+ 3.75 7.5 0.95 42.5 1000 273.01 2.4197 

10 +--+ 4.25 7.5 0.95 42.5 1000 262.64 2.1805 
11 -+-+ 3.75 8.5 0.95 42.5 1000 218.15 2.6590 
12 ++-+ 4.25 8.5 0.95 42.5 1000 243.01 2.5976 
13 --++ 3.75 7.5 1.05 42.5 1000 234.05 2.6035 
14 +-++ 4.25 7.5 1.05 42.5 1000 227.45 2.2086 
15 -+++ 3.75 8.5 1.05 42.5 1000 153.43 2.7680 
16 ++++ 4.25 8.5 1.05 42.5 1000 179.79 2.4923 
17 a000 3.875 8.0 1.00 40.0 1000 217.37 2.6817 
18 A000 4.125 8.0 1.00 40.0 1000 232.68 2.5422 
19 0b00 4.0 7.75 1.00 40.0 1000 239.39 2.5536 
20 0B00 4.0 8.25 1.00 40.0 1000 212.13 2.7311 
21 00c0 4.0 8.0 0.975 40.0 1000 241.72 2.6101 
22 00C0 4.0 8.0 1.025 40.0 1000 209.56 2.6432 
23 000d 4.0 8.0 1.0 38.75 1000 227.71 2.7040 
24 000D 4.0 8.0 1.0 41.25 1000 223.81 2.4928 
25 0000 4.0 8.0 1.0 40.0 1000 225.96 2.6135 

 
 

The regression models linking the MTTF and SDTTF to the design parameters 

are fitted in a similar manner as presented in step 3 in section 5.3.3. The models are: 
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The various terms of the design parameters explain the variation in the MTTF 

very good (R2= 0.99). Also the variation of the SDTTF is well accounted for by the 
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design parameters (R2=0.99). With these models simultaneously maximizing the 

MTTF and minimizing the SDTTF becomes possible. 

The “starting values” of the design parameters in the optimization scheme, 

which are the nominal design values, are given in the second column of table 5.7. This 

column also contains the MTTF and the SDTTF corresponding with these settings of 

the design parameters. The third column of table 5.7 shows the design parameter 

settings that realize the maximum Overall Desirability and thus the “optimal” trade-

off in maximizing the MTTF and simultaneously minimizing the SDTTF for the 

practical approach. 

Table 5.7: Results of Reliability Improvement (practical approach). 

DP “Starting values” “Optimal values” 
R1 (kΩ) 4.0 4.25 
R2 (kΩ) 8.0 7.5 
R3 (kΩ) 1.0 0.95 
R4 (kΩ) 40.0 37.5 
MTTF 225 307 
SDTTF 13.2 14.4 

 

The results show that it is possible to achieve an improvement of 36% in the 

MTTF. However, the SDTTF slightly decreases in performance.  

This small decrease in the performance of the SDTTF is mainly caused by the 

choice of the degradation models of the design parameters. The variance of the 

performance characteristic is independent of the level of the mean values of the 

design parameters and independent of the variances of the design parameters. Hence, 

the variance of the performance characteristic is not affected by changes in the mean 

values of the design parameters. Therefore, the SDTTF, which is dependent of the 

variance of the performance characteristic, can, in this case, not be improved by 
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parameter design. Thus, in these simulation experiments parameter design can only 

be used to improve the MTTF.  

The performance of SDTTF slightly decreased using this approach of Robust 

Design. Hence, tolerance design may be a next step in improving the SDTTF. This 

would mean linking the SDTTF to the variation of the design parameters over time 

and optimize the SDTTF by reducing the variation of those design parameters that 

Figure 5.12: 

influence the SDTTF most. 

a)  curve: Before Reliability optimization. 

 

he results of the reliability improvement can be translated back to the failure 

rate cu

 

 Failure rate

b) Failure rate curve: After Reliability optimization. 

T

rves. Figure 5.12a shows the failure rate curve of the design before the 

reliability optimization. A thousand products are randomly created with the nominal 

settings of the design parameters as given in the second column of table 5.7. Figure 

5.12b represents the failure rate curve of products (also a thousand simulated 

products) with the design parameters set on the “optimal” values determined in the 

reliability optimization.  
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These plots clearly show the reliability improvement due to the change of 

settings of the design parameters. Note that the specification limits have been chosen 

such that customer use causes no early failures. 

5.6.2 Comparison theoretical approach with practical approach 

In the previous section the results for all steps of the practical protocol were 

presented. A clear conclusion is that the MTTF of the design is significantly 

improved. This was also the case in the theoretical approach. However, notice the 

difference in absolute values of the MTTF of both the theoretical and the practical 

case (see table 5.7). The absolute values in the practical approach are structurally 

lower. This can be explained by looking at the customer use profile that was 

introduced in the simulations. Figure 5.13 shows how the customer use profile 

influences the performance characteristic RT. When fitting a regression model through 

such a user profile one can expect some problems in accuracy of the absolute values.  
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Figure 5.13: Degradation profile of the performance characteristic over 

time. 

 

Another observation in the comparison of the results is that the optimal value 

settings differ for resistor R4. In the theoretical approach the optimal value of R4 is 

40.6, while in the practical approach the optimal value of R4 is 37.5. A natural 

question then would be how good the optimized results of the practical approach 

really are. In order to answer this question, the optimal values that were calculated 

using the practical approach, in which an approximation for the functional 

relationship is used, are used in the analytical functional relationship (eqn. 5.17) to see 

how the design would really perform. Table 5.8 shows the results of both the optimal 

values in terms of reliability characteristics using the theoretical approach and using 

the practical approach. 
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Table 5.8: results computer-based simulations. 

Design 
Parameters 

Starting 
values 

Theoretical 
optimal 
values 

Practical 
optimal 
values 

R1 (Ω) 4.0 4.25 4.25 
R2 (Ω) 8.0 7.5 7.5 
R3 (Ω) 1.0 0.95 0.95 
R4 (Ω) 40.0 40.6 37.5 
MTTF 331 519 496 
VTTF 31.9 28.7 35.5 

With the settings that were the result of the practical approach, where the 

functional relationship has been estimated by a regression model, a significant 

improvement of the performance of the design is established. In the theoretical 

approach the improvement was 57%, but using the optimal settings estimated using 

the practical approach still gives an improvement of 50%. Notice that the performance 

of the VTTF increases slightly. 

5.6.3 Additional analysis 

Since the absolute values of the MTTF and the VTTF differ significantly 

between the theoretical and the practical approach, similar analyses as described 

above are performed, but then without the customer user profile incorporated in the 

analyses for both the theoretical and practical approach. The results are shown in table 

5.9. 
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Table 5.9: results computer-based simulations without user profile. 

Design 
Parameters 

Starting 
values 
theoretical 
approach 

Theoretical 
optimal 
values 

Practical 
optimal 
values 

R1 (Ω) 4.0 4.25 4.25 
R2 (Ω) 8.0 7.5 7.5 
R3 (Ω) 1.0 0.95 0.95 
R4 (Ω) 40.0 42.5 42.5 
MTTF 327 540 540 
VTTF 29.7 37.8 37.8 

The absolute values of the results using the estimated regression models are 

similar to the results of the simulations using the mechanistic relationship. Also the 

improvements are significant and are for both approaches 65%. Here the VTTF in 

both cases increases slightly. 

5.6.4 Conclusion simulation experiment 3 

The presented simulation experiments in this section clearly show the validity 

to use the ROMDA method when a functional relationship in analytical form is not 

available in literature. However, to make ROMDA useful for real industrial products 

all the assumptions and preconditions that are highly unlikely in practice have to be 

overcome. 

5.7 Overall conclusions simulation experiments 

This chapter starts with a simulation experiment using a simple electrical 

circuit design. Basically the purpose of that simulation experiment is to prove that 

using standard robust design optimization methods focused on time-independent 
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performance of products does not always lead to an optimized design towards 

reliability characteristics.  

The second simulation experiment follows the complete protocol of ROMDA 

introduced in chapter 4. The results of this simulation experiment are very promising. 

The mean time to failure (MTTF) increases with 57% and also the standard deviation 

of the time to failure (SDTTF) decreases slightly. However, as the analysis shows in 

section 5.5.1, the assumptions and preconditions used in the second simulation 

experiment are highly unlikely to be valid in a real industrial environment on real 

products. 

A third simulation experiment is performed to research on the influence of 

these assumptions. This simulation experiment concentrates on the assumption that 

the functional relationship exists in an analytical form. The functional relationship is 

never, or at least, almost never known. The other assumptions, like the degradation 

profiles, are more straightforward measurements and the optimization phase is 

intuitively less influenced by these assumptions. 

The results of the third simulation experiment also shows some very 

promising results; even taking into account the difficulties of modelling data with 

some steps in it due to the customer use profile.  

However, the main conclusion that can be drawn from these experiments is 

that ROMDA is promising, but not yet practically applicable. In section 5.5.1 some 

suggestions are made on how to make ROMDA practically applicable. Chapter 6 

describes ROMDA in a practically applicable protocol. This practical protocol is then 

tested on real industrial products to validate the value and applicability of ROMDA 

on real products. 
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6 Practical protocol ROMDA 

6.1 Introduction 

Chapter 4 presented the general cocepts behind ROMDA. These are 

demonstrated on a theoretical problem in chapter 5. The first simulation experiment 

shows that using robust design optimization methods based on time-independent 

performance does not automatically optimize a design in terms of reliability. The 

results of the second simulation experiment shows a substantial increase in the 

reliability characteristics of the simulated products. However, in these experiments 

some assumptions and preconditions are not realistic for real industrial products. This 

is pointed out in section 5.5. These assumptions and preconditions are extensively 

discussed in section 5.5 and an analysis of the possible consequences of these 

assumptions is provided. In order to research on the consequences for the simulation 

experiment, a new simulation experiment was conducted to quantitatively investigate 

the consequences for the temperature control system that was used for the second 

simulation experiment. The results of that simulation experiment were still very 

promising. However, to make ROMDA applicable for real industrial products a few 

adjustments need to be made in the protocol. This chapter presents these necessary 

adjustments to the protocol to make ROMDA practically applicable. Section 6.2 first 

presents the adjusted protocol in terms of goals that have to be reached after every 

step. The next section, section 6.3, provides a detailed discussion on all methods that 

have to be used to gather the necessary information per step in the protocol. In some 

phases in the protocol standard testing methods can be used, but in some other phases 
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in the protocol adjustments to existing testing methods are necessary to gather the 

necessary information. Section 6.3 indicates methods that can be used in the protocol. 

When adjustments to methods are necessary, a more profound description will be 

provided. 

6.2 Practical Protocol ROMDA 

In chapter 5 a protocol for ROMDA was presented. In summary the phases in 

the protocol are: 

1. Identify the performance characteristic representing the dominant failure 

mechanism and the design parameters dominantly influencing the 

behavior of the performance characteristic. 

2. Obtain stochastic models of the degradation data of these design 

parameters. 

3. Establish a functional relationship between the performance 

characteristic and the design parameters. 

4. Introduce the stochastic models of the design parameters into the 

performance characteristic/design parameter relationship to obtain a 

time and design parameter dependent model for the performance 

characteristic under study. 

5. Use this model of the performance characteristic with respect to certain 

chosen specification limits to obtain reliability characteristics like mean 

time-to-failure (MTTF) and standard deviation of the time-to-failure 

(SDTTF). 
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6. Use an optimization method, like parametric robust design, to improve 

or optimize these reliability characteristics simultaneously by setting the 

nominal values of the design parameters at suitable levels.  

These phases are all very general in nature. In order to make ROMDA more 

practical and valid for real industrial products in their real user environment, a more 

detailed protocol is provided next: 

 

Phase 1. Define objectives of the experiment/system 

The objectives of the experiment should be described in detail. The following 

issues should be addressed: 

→ Description of product/module/part function 

→ Objectives in relation to reliability characteristics and performance 

→ Robustness requirements (in particular with respect to user environments) 

→ Environmental objectives 

→ Management responsibilities 

→ Financial objectives 

→ List of Key Performance Indicators: KPI + translation of objectives into 

terms of KPI’s 

→ Resources needed to conduct experiment 

→ Resources available to conduct experiment 

→ Scheduling of experiment 

 

Phase 2. Search/research available information 
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In the project maximum use should be made of all available information. 

Typical items to be included are: 

→ Results from related previous experiments and reports 

→ Measurement System Analysis (MSA) (in case this is not available, it 

must be performed prior to further actions) 

→ Failure Mode and Effect Analysis (FMEA)  

→ Design specifications of the product/module/part  

→ Other formal methods (e.g. Quality Function Deployment, conceptual 

design etc.) 

→ Warranty and field data  

→ Unit-to-unit tolerance information 

 

Phase 3. Define input factors 

The input factors should have a clear connection with the dominant failure 

mechanisms researched in phase 2. A brainstorm should yield an initial input to 

output table for factors and interactions between them. For each input factor, a proper 

description should be made that must at least address the following issues. 

→ Noise factors or design parameters 

→ Type of factor (continuous, discrete, functional, time-dependent) 

→ Location and variability 

→ Type of control (manual or automatic) 

→ Difficulty of change 
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→ Blocking factors, sources of trend, etc 

→ Flow of inputs to outputs in measurement hierarchy 

→ Link with monitoring scheme 

 

Phase 4. Obtain performance characteristic and output measurement 

The output measurements should have a clear connection with the FMEA of 

phase 2 and the KPI’s and the experiment objectives: 

→ Classification of output factors: continuous, discrete, functional, time-

dependent 

→ Measurement: sensor specification, instrumentation, on-line/off-line, 

laboratory, post-processing, sampling and sample rate, units of 

measurement 

→ Full list of all variables, with all characteristics 

→ Link with monitoring scheme 

→ Relation of output factor to functioning product/module/part: measurement 

hierarchy 

 

Phase 5. Describe output analysis 

The experiment proposal should include a description of the analysis methods 

that are likely to be used. Typical methods include: 

→ Regression analysis 

→ ANOVA 

→ Kernel methods 
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→ Wavelet  

→ Other function data analysis methods 

 

Phase 6. Perform initial and screening experiment 

→ Confirm choice of input factors, noise factors, and output factors 

→ Initial experiments to check measurement, and control 

→ Screening experiment to detect: statistically and practically significant 

factors, interactions, noise factors (confirm results of FMEA) 

→ Possible use of sequential screening experiment 

→ Analysis: statistical and practical significance of factors, influence of noise 

factors, initial modeling input factors against output factor 

 

Phase 7. Perform limit settings experiment and design tolerance input factor 

level determination 

→ Determine failure limits of input factors and output factor 

→ Determine achievable changes in input factor levels for optimization 

purposes 

 

Phase 8. Perform accelerated degradation life tests (ADT) 

→ Choice of key input factors and output factor 

→ Choice acceleration testing type (compressed-time testing, accelerated 

stress testing, etc.) 

→ Choice of acceleration factors 
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→ Initial experiment to check measurement, and control 

→ ADT to identify: degradation profiles input factors, degradation profiles 

output factor, shape degradation curves (convex, concave, linear) 

→ Analysis: model degradation curves using regression analysis, ANOVA, 

time-series analysis, etc. 

 

Phase 9. Perform complex experiments 

→ Detailed multilevel/multi-stage experiment for key input factors/output 

factor 

→ Experimental design: response surface design, design for non-linear 

models, etc. 

→ Experiments over “time” to link degradation characteristics input factors 

to output factor 

→ Influence unit-to-unit variability on output factor and degradation profiles 

→ Analysis: regression, kernel methods, time series, wavelet, etc  

 

Phase 10. Analyse data and translation to reliability characteristics 

→ Translate degradation models to reliability characteristics using failure 

specification limits 

→ Model reliability characteristics in terms of input factors 

→ Analysis: regression analysis, ANOVA, etc. 
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Phase 11. Perform stochastic optimization of reliability characteristics of 

product/-module/part design 

→ Stochastically optimize product/module/part towards reliability and 

robustness 

 

Phase 12. Confirmatory phase 

→ KPI for success of confirmation 

→ Test of full product/module/part for interactions: success rates, false 

negatives, false positives etc. 

 

The next section provides an extensive description of all phases in the 

protocol. When standard testing methods, analysis methods or tools are used, only a 

brief description is given. In cases where adjustments, or new methods, need to be 

used, a more in-depth description will be provided. 

 

6.3 Extensive description of phases in protocol 

Phase 1:  Define objectives of the experiment 

Phase 1 is the phase where the objectives of the experiment are extensively 

described. Firstly, decisions have to be made on more general objectives, like 

financial objectives, technical objectives, environmental objectives. Then issues about 

which products, modules, or parts provide the best opportunities for reaching the 

objectives have to be addressed.  Next, decisions have to be made on responsibility, 

resources needed to conduct the experiments and resources that are available for the 
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experiments. Also a time schedule/plan for the complete experimental plan has to be 

made. And finally, objectives in relation to reliability characteristics, robustness 

requirements, and performance requirements have to be formulated. This phase serves 

as a formalization of the complete experiments. 

Phase 2:  Search/research available information 

When the experiment is formalized the next step is to gather all relevant 

information. But to do so, an extensive description of the product, module, or part is 

necessary. This way a good overview of all parts and functions is available for 

searching relevant information. But this information can also help with certain 

methods, like a FMEA, where all parts could serve as point of analysis. 

When measurements have to be conducted, it is important to be sure that the 

measurements are correct (predictable and stable). To accomplish this, a Measurement 

System Analysis (MSA) in the form of a Gage R&R [MON97] has to be performed. 

For more details about the Gage R&R method the reader is referred to literature (e.g. 

Montgomery (1997) [MON97]). 

Besides these calculations of the Gage R&R, X- and R-control charts are often 

used to check whether the measurements are stable and predictable. The R-chart of 

the measurements should be in control in order to guarantee predictable and stable 

measurements. Next to that, variations due to changes in settings between runs should 

be larger than the variation between the successive tests at the same level settings. In 

other words, variation between different settings (setting variation) should be larger 

than variation between replications of the same setting (test variation).  

This phase is also used to perform a qualitative failure analysis by performing 

a FMEA. These methods can give good qualitative information about expected weak 

spots in the design. 

 172 



 

Within the framework of ROMDA, the design parameters have to meet three 

criteria: 

1. These variables must have a dominant influence on the performance 

characteristic. 

2. The design parameters have to degrade over time, since in this research 

the focus is on failure behavior due to degradation effects of the 

dominant design parameters.  

3. The measurability of the design parameters must be high enough to be 

able to measure the degradation paths of these design parameters 

reckoning with the available means (time, money, tools).  

As a result of complying with the first two criteria, the performance 

characteristic deteriorates with respect to the specification limits under study. The last 

criterion assures that only measurable design parameters are selected. Selecting 

design parameters that are (too) difficult to measure can cause the following 

problems: 

→ The measurement process takes long and the results are unreliable and/or 

inconsistent; 

→ The development of a measurement tool is too challenging and this causes 

serious delays in the overall project progress; 

→ The research results developed cannot be employed in practice because the 

process requires highly sophisticated measurement tools. 

When important parameters cannot be measured, derivative parameters could 

be used to describe the behavior of the important ones. 

The classical FMEA method can be quite helpful in this situation, because of 

its structured way of analyzing qualitative failure data. Based on this failure data, 

 173 



 

design parameters can be identified that have a dominant influence on the 

performance of the product/module/system (criterion 1). Although the main concept 

of the FMEA method is applicable in this context, some adjustments are necessary in 

order to comply with criteria 2 and 3.  

The first adjustment to the classical FMEA [MIL87] method is the addition of 

the factor “time-dependence”. Since the focus of ROMDA is on failure behavior due 

to degradation effects of the dominant design parameters, the design parameters must 

change over time (criterion 2). To discriminate between degradation failure modes 

and time-independent, or instantaneous, failure modes, the factor time-dependence is 

introduced. The scale of this factor is defined as follows: 

Table 6.1: Factor scale time dependence. 

 Time dependence
values describing
1 a time independent failure mode
2 a time dependent failure mode

Time-independent factors are included in the FMEA table for the reason that 

the results of the FMEA analysis may be used for other purposes within a company 

that require information about time-independent failure modes.  

The second adjustment to the classical FMEA table is the replacement of the 

original factor detection by the factor measurability. The classical FMEA method has 

been developed for safety analysis purposes. In safety analysis, failures that are easy 

to detect are less harmful than failures that are difficult to detect. For the purpose of 

this research, detection is less critical since the main goal is the prediction and 

optimization of the degradation processes. Therefore, detection is replaced by a more 

suitable factor: measurability. This factor describes the ease of measurement of the 

failure modes. In case of a low measurability, it will be quite difficult to measure the 
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related design parameters and this may cause problems later in the project. This new 

factor measurability complies with design parameter criterion 3. An example scale of 

this factor is defined is shown in table 6.2: 

Table 6.2: Factor scale Measurability.  

Measurability 
values 

 
describing a failure mode that 

1 is (almost) impossible to measure 
2 can only be measured indirectly 
3 is difficult to measure directly 
4 is moderately difficult to measure directly 
5 is easy to measure directly 
 

 

In conformance with the classical FMEA for the new factor a 5-value scale is 

used. Value 1 means that the parameter cannot be measured. Measurability value 2 

means that the parameter cannot be measured directly, but the parameter can be 

measured using a derivative parameter. An example could be magnetic induction. 

This factor is difficult to measure, but it could be done using related parameters late 

electrical current. The rest of the measurability values follow a same line of 

reasoning. 

It is also important to notice that measurability is not included in the 

multiplication of the factors that result in the RPN (the priority number). The 

measurability has no influence on the priority of the failure modes. A failure mode 

that is difficult to measure is not more critical than a failure mode that is easy to 

measure. Therefore, the measurability factor is particularly used for stressing possible 

difficulties with failure modes that are difficult to measure. This factor can be used as 

a criterion in the process of design parameter identification for the practical feasibility 
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of ROMDA, the selected design parameters may not be too difficult/impossible to 

measure (criterion 3). 

The factor Criticality describes the seriousness of a certain failure mode 

similarly as the factor Severity does in a classical FMEA table. The scale of the 

Criticality factor is as follows: 

Table 6.3: Factor scale Criticality. 

 Criticality
values describing
1 a Failure Mode with a very low impact
2 a Failure Mode with a low impact
3 a Failure Mode with an average impact
4 a Failure Mode with a high impact
5 a Failure Mode with a very high impact

The factor Occurrence is maintained in the multiplication that results in the 

RPN. The scale of this factor is as follows: 

Table 6.4: Factor scale Occurrence. 

 Occurrence
values describing 
1 a Failure Mode with a very low failure frequency
2 a Failure Mode with a low failure frequency
3 a Failure Mode with an average failure frequency
4 a Failure Mode with a high failure frequency
5 a Failure Mode with a very high failure frequency

 

These adjustments together with the classical FMEA table lead to the 

following format of the “adjusted FMEA table” (the data in this table is fictional). 
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Table 6.5: Example adjusted FMEA table. 

Component name Failure mode Cause  of Failure Possible Effects T O C M RPM

* 

Hoover motor 

 

Over-heating Timeclock defect 

Paper jam 

Bimetal defect 

Short circuit 

Fire 

 

Resistance break-down 

20 

20 

12 

15 

 Discolored surface Wrong paint 

Light explosion 

Customer rejection 8 

40 

[* ] COTRPN ××=

Next to FMEA information about failure behavior of a type of products, also 

design specifications of a product, modules or parts have to be collected. This 

information could prove very useful in later phases where tests have to be designed. 

Also warranty and field data of previous generation products could serve as 

information source. Most products are derivative products of previous generation 

products and the failure behavior of those products could give a good insight in the 

weak parts of the product. 

Phase 3:  Define input factors 

The third phase is called input factors. Input factors can be divided into design 

parameters and noise factors. In this phase a more in-depth study has to be performed 

on the design parameters and the noise factors. These design parameters and noise 

factors should be determined using the results of the FMEA and other information 

that is gathered in phase 2.  

Before setting up the experiments the experimenter needs to know the 

properties of the factors (e.g. continuous, discrete, functional, time-dependent). In this 

phase also information about the nominal values and typical range of the factors 

should be examined. For experimental purpose it is important to know how these 
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factors can be changed during an experiment. The type of control could be automatic 

or manual. 

In relation with measurability that is taken into account in the FMEA, in this 

phase an analysis has to be made on the difficulty of changing the values of the 

factors that will be included in the experiment.  

And for the purpose of preventive maintenance, which is one of the main 

objectives, measurability information can be very important. Products need to be 

monitored in the field to make maintenance decisions. And measurability information 

can help in deciding what properties have to be monitored in order to make a correct 

preventive maintenance decision. 

Phase 4: Obtain performance characteristic and output measurement 

The fourth phase in the protocol focuses on determining the performance 

characteristic and output measurements. The performance characteristic is the 

characteristic that has to be optimized to improve the time-dependent behavior of the 

products. Therefore, the performance characteristic has to represent the dominant 

failure mechanism. This makes the translation of dominant failure mechanisms to 

measurable physical properties (performance characteristic) essential for the success 

of the execution of the rest of the protocol. The dominant failure mechanisms are 

determined in phase 2 using methods like FMEA and will be confirmed in phase 6.  

Some important issues that have to be taken into account for selecting a 

performance characteristic are the properties of the characteristic. Are the 

characteristics continuous or discrete factors, are the characteristics time-dependent 

degrading factors or controlled factors. These properties are closely related to the 

measurability of the characteristics.  
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One of the main objectives in the research objective is preventive 

maintenance. It would be ideal if it would be possible to monitor only the 

performance characteristic in order to judge the status of the product. However, many 

examples can be found where the performance characteristic can only be measured 

using special measurement equipment in laboratory environment. In that case the 

dominant design parameters can be used for monitoring purposes in order to make 

preventive maintenance decisions possible. 

Phase 5: Describe output analysis 

Phase 5 is added in the protocol for completeness. It is obvious that the results 

of the experiments need to be analyzed to come to conclusions. In cases where the 

experimenters are familiar with all the analysis methods, this step is unnecessary. 

However, when methods have to be used that are not yet well-understood, it might be 

necessary to gain knowledge of these methods before an experimenter can even setup 

a test (since you don’t exactly know what you need to measure, how many times etc.). 

Or even worse, when the experimenters have no idea of what analysis methods have 

to be used. To give an example of data that most often needs different analysis 

method is sound or vibration data. This kind of information is very hard, or even 

impossible, to analyze using standard ANOVA or regression techniques. More 

sophisticated methods like wavelet analysis might be necessary for the analysis.  

For this reason phase 5 has been included as a separate phase in the protocol. 

Phase 6: Perform initial and screening experiments 

The initial and screening experiments have a few goals. The initial 

experiments focus on the possibility to measure design parameters. This also includes 
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performing a gage R&R, or a Measurement System Analysis (MSA) to check if the 

measurement setup is in control and the results can be reproduced.  

The purpose of the screening experiment is to gather information about the 

significance and interactions of the design parameters and the performance 

characteristic that are determined in phases 1 to 4. Also the influence of the noise 

factors is researched in the screening experiments. Basically, the screening 

experiments verify the results of the phases 1 to 4 in a quantitative manner.  

The initial experiments and the screening experiments can be performed using 

standard methods and procedures. Gage R&R can be used for the initial experiments 

and for the screening experiments methods like Design of Experiments (DOE) or 

Taguchi based experimental setup schemes can be used. 

Phase 7: Perform limit settings experiment and design tolerance input 

factor level determination 

In phase 7 the failure limits of the performance characteristic and the design 

parameters are determined. Both limits are determined in order to know the limits 

both in the parameter space and in the performance space. It is necessary to know 

these limits for all three main goals of this research (optimization of design towards 

reliability, re-use and preventive maintenance).  

The second goal of phase 7 is to determine the practically possible changes of 

the design parameters for the purpose of optimizing the product performance towards 

reliability. To illustrate this point consider a car tire. The main goal of a car tire is to 

give grip to a car. So, one way to give more grip is by increasing the width of the car 

tire. However, there is a practical limit to the width of the car tire. This could be costs, 

fuel consumption, etc. For this reason it is important to know the practical limits of 

the design parameters for optimization purposes. 
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A method that can be used for the determination of the failure limits is to 

increase (or decrease) the values of the parameters until the product does not function 

properly anymore. When interaction could be important, a simple DOE experiment 

could be performed. 

Phase 8: Perform accelerated Degradation life Tests (ADT) 

The goal of the Accelerated Degradation life Tests (ADT) is to gather 

information about the time-dependent behavior of the products. To do so, the 

degradation behavior of both the performance characteristic and the design parameters 

is examined. The results of the ADT give information about how these factors 

degrade and the shape of the degradation profiles (convex, concave, linear). This 

information is necessary for setting up the experiments of the next phase (complex 

experiments).  

A first step that has to be taken is to check whether the measurement system is 

in control. A Gage R&R can be used for this purpose. 

A large amount of literature is available on ADT methods (see chapter 3). So, 

the next step is to make a decision on what acceleration testing type will be used. 

Examples are: compressed-time testing, accelerated stress testing, etc. 

When a choice about the ADT method has been made, the acceleration factors 

have to be determined. Basically this is closely connected to the choice of ADT 

method that will be used. When a compressed-time testing method will be used, then 

a factor should be chosen that increases the intensity of usage of the product. For 

example, when testing a car tire, one could decide to let the car tire continuously run 

on rollers and therewith intensify the usage intensity.  

Also a decision has to be made on the stopping criteria of the tests. With 

current highly reliable products it would be very time-consuming and costly to test 
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products to their end-of-life. So, it is desirable to stop the tests when enough 

information is available to make good predictions for the rest of the life of the 

products. 

The results of the ADT can be analyzed using methods like ANOVA, 

regression analysis methods, time series methods, etc. 

Phase 9: Perform complex experiments 

The complex experiments are conducted to establish the link between the 

performance characteristic and the dominant design parameters, or in other words, 

establish the functional relationship between the DP’s and the PC.  

For the complex experiments a special form of Design of Experiments 

(DOE’s) will be introduced. Normally, a DOE is time-independent and conducted at 

time t = 0. The purpose of such an experiment is to optimize a process or the quality 

of a product. However, in this concept not the quality of the product, but the reliability 

is of main interest and the factor “time” is added. This gives rise to a problem, 

because DOE’s are time-independent, while time-dependent data is necessary. C.H. 

Chiao and M. Hamada [CHI01] present a testing method in their paper “Analyzing 

Experiments with Degradation Data for Improving Reliability and for Achieving 

Robust Reliability” that would provide the necessary data. They propose a DOE 

settings strategy at time t = 0 and let the products degrade over time for all the 

different settings. This way of experimenting proved to be very versatile, but very 

time-consuming. Their experiments on 20 LED’s took more then 12,000 hours per 

LED, which is 500 days of continuous testing. This becomes an even bigger problem 

when testing very expensive and reliable products. DOE is a very good testing method 

to get statistical data for the purpose of determining a functional relationship between 

input factors and output factors. However, DOE’s are time-independent. This results 
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in the necessity of performing various DOE’s “at certain moments representing points 

in time”. The DOE’s are considered time-independent at every moment representing a 

point in time. This approach is fundamentally different from other lifetime tests or 

degradation tests. Figure 6.1 gives a systematical overview of the test setup.  
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Figure 6.1: Schematic overview of time-dependent DOE’s. 

 

In figure 6.1 two design parameters can be recognized. The left figure is 

design parameter DP1 and the right figure shows design parameter DP2. The 

horizontal axes show the moment of testing that could be translated to real time. The 

vertical axes represent the values of respectively DP1 and DP2. M0 in both figures 

represents the initial design values DP1,0 and DP2,0 of the design parameters. A 

complete DOE is designed around these initial values and the performance 

characteristic is measured. The DOE is performed in a normal way. But over time the 

values of the dominant design parameters degrade. The values of these design 

parameters change systematically over time. The information gathered in phase 8 

provides information about the degradation of the DP’s and their shapes. And phase 7 

provides information about the maximum values of the DP’s where the products still 

perform as intended. These values are just above the values DP1,2 and DP2,2.  
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Degradation can be either linear, as in the figure, or convex or concave. To 

take these possibilities into account, the complete range of possible values of the 

design parameters has to be divided in at least three parts. At a certain moment M1 in 

time, DP1 will reach level DP1,1. The same is true for DP2. In order to get statistical 

information of DP1 and DP2 on the performance characteristic, a complete DOE is 

performed with the nominal value settings DP1,1 and DP2,1. And again a complete 

DOE is done for the settings DP1,2 and DP2,2. When these DOE-tests are performed 

the following example results represented in figure 6.2 could be observed.  

Figure 6.2: Example results of time-dependent DOE’s. 
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At the initial settings of DP1 and DP2, the statistical influence on PC can be 

observed. In the example figure 6.2, this is a normal distribution. Such a statistical 

representation of PC for every setting for the DOE of DP1 and DP2 could be made. 

DOE0 represents the initial settings and product performance of the product. DOE1 

shows how the PC would degrade over time when DP1 and DP2 would have degraded 

as figure 6.1 shows. The same accounts for DOE2. This results in the knowledge of 

how the products degrade over time and its relation over the complete time span of 
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the performance characteristic in relation to the design parameters. In equation form 

the model could look like: 
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 (6.1) 

The levels of the three DOE’s are designed in such a way that the various 

levels of each design parameter cover the entire range (=from initial design values to 

failure levels) of this parameter, where the product is still able to function properly. 

The values of design parameters DP1 and DP2 will be changed to simulate the 

degradation of these dominant design parameters in order to substitute time-

consuming life tests. This is possible due to the fact that the chosen design parameters 

are time-dependent. So, by changing the value of a parameter, a certain time step is 

introduced. Therefore, all experiments can be performed at the same time, but the 

results represent the behavior of the design parameters over time. 

The left-hand plot of figure 6.1 shows the degradation profile of design 

parameter DP1. As shown in figure 6.1 below, this degradation model assumes that 

only the mean value of this distribution changes over time, while the variance remains 

constant. This does not have to be the case. However, real information about the 

degradation of the parameters should be available or should be gained by screening 

tests. When performing this test strategy the real degradation profiles should be used 

and scaled back the moment settings of the DOE’s to eventually come to a valid 

functional relationship over time. 

The measurements on times M0, M1 and M2 of the three DOE’s are performed 

at time t=0, but these measurements can be scaled back to a real time axis. Therefore, 
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this is only possible when real degradation information is used to setup the test 

strategy. The values of DP1,0 till DP1,2 of parameter DP1 and of DP2,0 till DP2,2 of 

parameter DP2 represent the mean value of the distributions of both design parameters 

at respectively time t0, t1 and t2. By varying the values of the design parameters 

around these mean values it is possible to determine the influence of both design 

parameters on the performance characteristic at each point in time. Besides, this also 

provides information about how variations in the design parameters, which can be 

seen as product-to-product variation, influence the variation in the performance 

characteristic over time. 

The experiments presented so far do not take product-to-product variation into 

account. Although the variation in design parameters, introduced through the various 

levels of these design parameters in the DOE’s, could be seen as a kind of product-to-

product variation, this variation is not the real variation within a batch of products. In 

a DOE setup the chosen variations in the values of the parameters should be bigger 

than the random product-to-product variation in order to see the systematic effects, 

and not the random effects. But it is assumed that the functional relationship will not 

change due to the real product-to-product variation. It will however increase the 

bounds representing the variance of the performance characteristic over time. The real 

product-to-product variation could be measured at time t = 0. An estimate would 

result in a good approximation of the behavior of the performance characteristic over 

time. 

When the complex experiments have been performed a time-dependent 

functional relationship can be formulated using standard statistical analysis methods 

like ANOVA and regression analysis. This model represents the dominant failure 

mechanisms in the form of performance characteristics and design parameters 
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dominantly influencing the performance characteristics that were determined in phase 

1 to 4. This model takes into account the noise factors that have been researched in 

the screening experiments in phase 6. The model is valid to the technical end-of-life 

of the products due to the fact that in the experiments the limits of the DP’s and the 

PC have been determined at phase 7 and have been included in the complex 

experiments in phase 9. The factor time in the model is the result of the degradation 

tests that have been performed in phase 8. And by using the variation measurements 

that are included in phases 6 and 9 the statistical behavior of the product population 

can also be included in the model.  

When this phase is finished and the models are available, it is possible to 

judge the status of the products at all times. And therefore, it can be concluded that 

with this information all necessary information for preventive maintenance decisions 

and re-use decisions is available. For the third main goal, which is robust reliability 

optimization, some more information is necessary and, therefore, the next 2 phases 

are a necessity for optimization purposes.  

The next phase focuses on the translation of the time- and design parameter-

dependent model that is available at this moment to reliability characteristics. 

Phase 10: Data analysis and translation to reliability characteristics 

The objective of phase 10 is to translate the time-dependent degradation 

models that have been developed in phase 9 to reliability characteristics. As 

mentioned in chapter 4, this thesis will only focus on the Mean Time To Failure 

(MTTF) and the Variance of Time To Failure (VTTF). When other reliability 

characteristics are required, this is possible with the available data. However, then it is 

highly possible that standard stochastic optimization methods are not sufficient and 
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new optimization methods need to be developed. This is not the objective of this 

research.  

For optimization purposes the models of the MTTF and the VTTF should be a 

function of the design parameters.  

( )
( )i

i

DPgVTTF
DPfMTTF

=
=

 (6.2) 

In chapter 5 a brief description of a step-by-step approach for gathering data to 

formulate the MTTF and VTTF model is given. Basically, with the use of the models 

of phase 9 and the failure limits of phase 7 a simulation experiment can be designed in 

the form of a DOE. When different design parameter settings are filled in the model 

and a time to failure of that particular setting is registered, and this is repeated many 

times, quantities like MTTF and VTTF in relation with DP settings may be evaluated 

or estimated using data analysis methods. Section 5.6.1 gives an example of this 

procedure in the simulation experiments. 

When these reliability models have been formulated optimization of the 

product design towards reliability characteristics becomes possible. This is phase 11. 

Phase 11: Stochastic optimization of reliability characteristics of 

product/module/part design 

The objective of phase 11 is the optimization of the product design towards 

reliability and robustness itself. Many optimization methods are available in literature. 

Only a brief discussion of available optimization methods was given in the literature 

overview in chapter 3. It is not a goal of this research to develop a new optimization 

method. Instead, in this thesis only a standard method, the Desirability Approach, is 

used for the reason that it works for this type of problems. However, when more 
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precise optimization methods are preferred, the author refers to literature (e.g. 

Ermoliev and Wets (1988) [ERM88], Blischke and Murthy (2000) [BLI00], Heyman 

and Sobel (1984) [HEY84]). 

Phase 12:  Confirmatory phase 

Phase 12 is the last phase and deals with the confirmation of the results to the 

objectives that are described in phase 1. In phase 1 an extensive description is given 

with all the objectives of the complete experiments in terms of reliability and 

robustness objectives, but also in terms of environmental and financial objectives.  

The success of the project depends on the success of the experiments. 
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7 Case studies 

7.1 Introduction 

Chapter 6 provides a practical protocol of ROMDA that enables engineers to 

gather information for preventive maintenance decisions and re-use decisions and 

optimization of a product design towards reliability and robustness. The protocol 

consists of 12 phases. This chapter presents a case study where the 12 phases have 

been executed. In the case study a finisher module of a copier machine has been used 

as the product of research. The tests have all been executed at and in collaboration 

with Flextronics, the Netherlands. 

This chapter also briefly presents two other case studies. The second case 

study deals with a paper input system of a copier machine. The tests for this case 

study have also been performed at Flextronics, the Netherlands. This case study 

shows that the most difficult, and risky, phases of the ROMDA protocol are the first 

four phases. If wrong decisions are taken in these phases, the rest of the tests will lead 

to wrong conclusions. In order to reduce these risks, a third case study has been 

performed at OCE, the Netherlands. This case study had the goal to reduce the risk of 

making wrong decisions in the phases 1 to 4. 
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7.2 Case Study: The Finisher Module (Flextronics) 

The objective of this case study is to test the practical applicability of 

ROMDA to a real product. The case study is organized in such a way that it follows 

the phases that were presented in chapter 6. 

Phase 1 

The first case study deals with a finisher module. The finisher module is part 

of a photocopier machine or a printer (fig 7.1). Figure 7.1 shows an example of the 

finisher module that has been used for this case study.  

FinisherFinisher FinisherFinisher 

Figure 7.1: Copier machine with finisher module. 

 

The finisher module basically has four functions. The first function is to 

transport the paper out of the photocopier. The second function is to select whether 

the paper should be collected at the top tray, where stapling is not possible, or at the 

main tray, where a stack of paper can be stapled. When the main tray is chosen, a 

tamper makes sure that the paper is accumulated in neatly piled stacks. The third 

function of the finisher module is to distinguish between sets of copied piles of paper. 

To do so, the main tray (in figure 7.1 this is called stacker tray) also has the possibility 

to move up and down in order to neatly collect the next sheet of paper. The fourth 
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function of the finisher is the possibility to staple a pile of sheets. This can be done at 

the top corner of the paper stack or at various other places along the length of the 

sheets by a moving stapler. During the measurements of the tests, a so-called High 

Capacity Feeder (HCF) was fixated to the finisher in order to feed the finisher with 

sheets of 80 grams A4 paper.  

The case study is performed in an on-going project subsidized by the Dutch 

government. The first phase is partly based on results that were already available in 

the project. Based on results of initial analysis of experiments conducted in an earlier 

stage of the project (‘Main Tray Experiments’ conducted on 29th and 30th May 2002 

[FLE02a]) the choice was made to focus more on the nip motor. The nip motor drives 

the rolls mechanism to transport the paper through the finisher module. This choice to 

focus on the nip motor is made because that the nip motor performs one of the main 

functions of the finisher module. Also the results of the initial experiments [BOG02] 

indicated that a few design parameters, from which degradation can be explained 

physically, influence the performance of this stepper motor significantly. Results of 

these ‘Main Tray Experiments’ with respect to this nip motor are shown in appendix 

8. Since a FMEA and screening experiments were already conducted, the dominant 

design parameters will be determined based on these results.  

The weakest components were determined using the results of the ‘Main Tray 

experiments. The components are respectively the stepper motor, the rolls mechanism 

and the Printed Wire Board Assembly (PWBA). These components and their 

parameters will be described in the next section and they will consequently be taken 

into account in the rest of the phases of the protocol. 
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Stepper Motor with Rolls Mechanism and PWBA 

The system, which is responsible for the paper transport function through the 

finisher, can be divided in three parts, namely a Printing Wiring Board Assembly  

(PWBA), a nip motor, and the rolls mechanism.  

The nip motor, a hybrid stepper motor, is powered and controlled by the 

PWBA. This hybrid stepper motor is an electro-mechanical rotary actuator that 

converts electrical energy (pulses) into shaft rotations (steps). The motor consists of 

multiple electrical windings wrapped in pairs (phases) around the outer stationary part 

of the motor (stator). Each winding is center tapped into two coils (see figure 7.2b and 

c).  

  a) b) c)
Winding A

Winding B

Coil 1

Coil 2

Coil 4Coil 3

Figure 7.2: hybrid unipolar stepper motor 

a) Cross-section of a hybrid unipolar stepper motor. 

b) Winding diagram of a unipolar stepper motor. 

c) Schematic view of stepper motor. 

 

The inner part (rotor) consists of a magnetic disk mounted on a shaft and 

suspended on bearings, as can be seen in figure 7.2a. The rotor has projecting teeth, 

which align with the magnetic fields of the windings. When the coils are energized in 

sequence by direct current, the teeth follow the sequence and rotate a discrete distance 

necessary to re-align with the magnetic field. The number of coil combinations 
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(phases) and the number of teeth determine the number of steps per round of the 

motor.  

The performance of a stepper motor is highly dependent on the mechanical 

parameters of the load. The load is defined as what the motor drives, in this case the 

rolls mechanism. It is typically frictional, inertial or a combination of the two. Friction 

is linear to velocity. A minimum torque level is required throughout a step in order to 

overcome this friction (at least equal to the static friction). Increasing a frictional load 

lowers the top speed, lowers the acceleration and increases the positional error. A 

high inertial load requires a high inertial starting torque and the same would apply for 

braking. Increasing an inertial load will increase speed stability and increase the 

amount of time it takes to reach a desired speed. 

The reliability of the stepper motor depends on the bearing inside the motor. 

The wear of this bearing will determine the deterioration of the stepper motor. Since 

the stepper motor in the finisher is “over-designed” and no failures in the field are 

known, the wear in this bearing will be small. Therefore, it is assumed that the 

degradation of the stepper motor itself can be neglected and under normal condition 

the stepper motor will not fail. However, it is possible that the motor is unable to 

make the next step, due to, for example, an increase in the frictional load, which 

results in the motor to stop. The rolls mechanism in the finisher could cause this 

increase of frictional load.  
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Bearing       Bearing              Rubber drive rolls               

Shafts       

Pressure rolls              
Belt       

Belt                               

Nip   motor       
                        

Shaft   4      
                            

Shaft   2       
                                

Shaft   3       
                        

Bel t       
            

Shaft  1   
               1     

Figure 7.3: Rolls mechanism driven by stepper motor 

 

The rolls mechanism is shown in figure 7.3. The stepper motor (nip motor) 

drives a belt, which is connected to four shafts. These four shafts are suspended on 

bronze sleeve bearings and drive the rubber nip rolls. Shaft 1 and shaft 2 transport the 

sheets of paper through the main tray while shaft 3 and shaft 4 do this for the top tray.  

The pressure rolls make sure that no slip exists between the sheets of paper 

and the rubber nip rolls. Friction between the shafts and the bearings cause load. This 

load increases in time due to wear of the sleeve bearings. Also contamination of these 

parts could contribute to an increase of the load. In the next section the performance 

characteristic and the dominant design parameters, used in the experiments, will be 

defined. 

Phase 2 

Very few failures of the finisher module have been observed in the field. This 

makes the identification of the failure modes for this module very difficult and mainly 

based on engineering knowledge. Based on a FMEA and on past experiments 

conducted at Flextronics [FLE02a] the paper transport within the finisher module was 

selected as the function of the system that will cause most failures. Paper transport, 
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which is provided for by the nip motor, is one of the main functions of the finisher 

module. In the following section the physics of failure of this paper transport system 

shall be discussed in more detail. 

Previous experiments and research [EUR02] has shown that certain 

components within this transport system do not or hardly deteriorate with time. A 

conducted degradation test on the deterioration of the rubber rolls showed no 

significant deterioration. Likewise, degradation tests subjected to the stepper motor 

did not result in degradation. Also in the field there were no known failures regarding 

this stepper motor. These two components are therefore assumed to behave constantly 

over time, and therefore, not show any degradation.  

The factor that was presumed to lead to failure of the system was increasing 

friction between shafts and bearings, leading to a higher mechanical load. This 

friction is caused by contamination and deterioration of the bearings. 

 

Phase 3 and 4 

Performance Characteristic 

When the load on the stepper motor is increased, a change occurs in the 

current profile of the nip motor. The so-called current rise time (T_pr) (figure 7.4) 

decreases when the load on the stepper motor increases. In the test the current has 

been chosen because an electronic controller controls the direct PC, which is the paper 

speed. This is why the current profile in the control loop is used as PC. 

The physics behind this phenomenon is as follows. The nip motor is driven 

with a constant pulse frequency. When the load on the motor increases the speed of 

the steps of the motor from pole to pole decreases. However, this reduction in speed 
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leads to less self-inductance and, therefore, leads to lesser electromagnetic force. 

Hence there is less force that opposes the current and this will therefore reach the 

current limit setting on the PWBA in a shorter time. The reduction in current rise time 

compensates for the slower steps of the motor, which will altogether lead to the 

preservation of the nominal speed of paper through the transport system.  

T_pr
b)a)

T_pr
b)

T_prT_pr
b)a)a)

Figure 7.4: Signal of the nip motor current (a) and current rise time (b). 

 

When the value of the load on the motor becomes too high, the stepper motor 

is unable to make the next step, resulting in a stagnation of the motor and hence the 

stagnation of the paper transport. In the degradation experiment that will be discussed 

in phase 8, the T_pr of only one of the four coils is measured. This is done because it 

reduces the variance of the measurements. The current rise time will be used as the 

performance characteristic. The next section will identify the dominant design 

parameters that influence the value of the performance characteristic. 

Dominant Design Parameters 

The design parameters used in these experiments have to meet two criteria. 

Firstly, these parameters must have dominant influence on the performance 

characteristic (T_pr). Secondly, these design parameters must change over time, since 

gradual failure or disfunction occurs as a result of degradation effects of the dominant 

design parameters. This again leads to changes of the performance characteristic 

(T_pr) with respect to the specification limits under study.  
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Mechanical Load (X1)
Current Rise Time (Y)

PWBA Resistance (X2) NIP motor

Figure 7.5: Schematic overview of relationship between PC and DP’s. 

 

Analyzing both the FMEA and experiments conducted earlier at Flextronics 

and taking the above criteria in consideration, the following two factors are identified 

as dominant design parameters: 

→ The load of the rolls mechanism, Tload (X1). 

→ The resistance of PWBA, Rs (X2).  

The relation between the performance characteristic and the two dominant 

design parameters is shown schematically in figure 7.5. 

A dominant failure mechanism of design parameter X1 is the friction between 

the shafts and the bearings, as described in the previous section. However, no 

dominant failure mechanisms of design parameter X2 have been discussed yet. An 

important failure mechanism of mechanically highly stressed electrical contacts is 

fretting corrosion, which increases contact resistance in connectors [OHR98] 

[HOR95].  

This resistance increase results in a decrease of voltage out of the PWBA and, 

therefore, influences the current pulses to the nip motor. Fretting corrosion occurs in 

separable contacts, when the contacting surfaces are submitted to small movements 

relative to each other. External mechanical vibration, shock, differential thermal 

expansion and electrodynamics forces can induce these movements, with amplitudes 

at the micro- to millimeter level. The tendency of a connector to degrade by fretting 

depends on the contact design, on the materials used and on the environmental and 
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electrical conditions during use. The connectors on the PWBA are indeed submitted 

to mechanical vibrations of the finisher module. 

Phase 6 and 7 

iments conducted on the finisher module are performed using a 

special

entioned 

before,

The exper

 software tool. This software tool controls the finisher module and the paper 

feeder to which the finisher module is connected. 

The results of the ‘Main Tray Experiments’ [FLE02a] show, as m

 that both the load (Tload) of the rolls mechanism and the resistance of the 

PWBA (Rs) have a dominant influence on the current rise time (T_pr) of the nip 

motor. This is the first criterion that the design parameters have to meet. The second 

criterion is that the design parameters must show degradation. In order to test if 

degraded values of the design parameters would indeed influence the values of the 

performance characteristic, a screening experiment is performed. It is impossible to 

wait until the design parameters reach a degraded value (approximately 6 months) 

and, therefore, values for the DP’s are set for the experiments.  
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Figure 7.6: Overview experimental setup: 

a) Finisher coupled on paper feeder. 

b) Mechanical brake subjecting the load on the nip motor. 

c) Resistance “switch” to increase resistance of PWBA (X2). 

 

The load of the rolls mechanism is set on degraded values using a mechanical 

brake that is connected to one of the shafts of the rolls mechanism, as can be seen in 

figure 7.6b. The brake will increase the torque of the rolls mechanism that is driven 

by the nip motor. This represents a degraded load (load becomes higher due to 

contamination, wear of bearings and so on). 

Adding resistors in series to the electrical circuit increases the resistance of the 

PWBA. This is shown in figure 7.6c. By making use of several 0.2 Ω resistors, the 

resistance can be increased stepwise. 

Screening Experiments 

The screening experiments are conducted to answer the following questions: 

→ What is the range of the design parameters where the finisher will not fail 

or disfunction? 

 200 



 

→ Are the measurements of the experiments predictable and stable?  

Is it feasible to → set the design parameters at the specified levels and are 

The first question can be answered by performing an experiment, in which the 

design e is unable to function 

properl

ured 

me t = 0. These values are used to determine the range of 

the des

these settings stable?  

→ Is run-to-run variation > test-to-retest variation?  

parameters are increased until the finisher modul

y (e.g. nip motor stops). This test is called the limit settings experiment. In the 

case of the load and the resistance this test will both result in upper limits of the range 

of these parameters. The lower limits are the starting values of the initial design. 

These ranges make it possible to determine the difference between the values of the 

levels of the design parameters for the various runs in the Design of Experiments 

(DOE). If the differences between these levels are known, a Measurement System 

Analysis (MSA), or a gage R&R, is conducted to answer the last three questions. 

Range Design Parameters 

The initial values of the design parameters in the finisher module are meas

under normal conditions at ti

ign parameters. These values will not be used in further analysis. For all 

experiments where new finisher modules are analyzed, these values will be 

determined separately. Next to the range of the design parameters also the maximum 

values, or limits, of both design parameters are determined in this screening 

experiment.  

 201 



 

  

The current rise time decreases 
slowly with the first few added 
Ncm’s of load. Then the decrease 
occurs more rapidly when a 
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implies that the rise time 
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when the load increases. 
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Figure 7.7: The influence of DP load (X1) on the PC current rise time 

(Y). 

 

First two experiments are conducted to determine the nominal value of design 

parameter X1 and the maximum value of this parameter for which the finisher module 

is still able to function properly. In the first experiment the load on the nip motor is 

increased using a mechanical brake. The drive belt, which connects the nip motor 

with the shafts of the rolls mechanism is removed, therefore, the mechanical brake is 

the only load the nip motor experiences. This load is increased stepwise and at each 

step the current rise time (T_pr) is measured. The load is increased until the nip motor 

stops.  Figure 7.7 shows the current rise time versus the load (Tload). 

The maximum added value of design parameter X1 is given in table 7.1. Next, 

the drive belt is reconnected and again the load of the brake is increased stepwise until 

the nip motor stops. However, the load now consists of the load applied by the 

mechanical brake and the load due to the friction in the rolls mechanism. The 

measured load applied by the mechanical brake is less than the load measured when 

the belt was disconnected. The difference between these two measurements is the 

nominal value (see table 7.1) of load (design parameter X1) caused by the friction in 

the rolls mechanism. 
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Table 7.1: Limit values of design parameters X1 and X2. 

limits  
factors minimum maximum 

X1 (Tload) 5.5 Ncm 
(nominal) 

15.0 Ncm 

X2 (Rs) 0.79 Ω 
(nominal) 

1.9 Ω 

 
 

The nominal value of the resistance of the PWBA is determined using a 

current of 1A and measuring the voltage. The maximum value is determined by 

adding extra resistors in series with the PWBA until the finisher module is not able to 

function properly anymore. Both these values are given in table 7.1. The initial values 

and the limit values of the design parameters are used to design the complex 

experiments of phase 9. 

Measurement System Analysis (MSA) 

When the limits of the design parameters X1 and X2 are determined, it is 

possible to conduct the MSA experiment. The maximum extra load (X1) that can be 

applied to the nip motor is 9.5 Ncm. But for the MSA a maximum extra load of 9 

Ncm is used. In order to conduct the necessary experiments over the entire range of 

this design parameter the difference between the +1 level and –1 level is set at 2 Ncm.  

The design parameter X2 will be set at a maximum level of 1.6 Ω, because at 

this level of factor X2 the finisher module still functions properly. Since resistors with 

a value of 0.2 Ω are readily available at Flextronics, it is chosen to set the difference 

of the +1 level and –1 level on 0.4 Ω. This makes it possible to include center points 

in the design of the main experiment. 
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Table 7.2 gives an example of a screening (MSA) experiment that makes it 

possible to answer the last three questions shown at the start of the screening 

experiment section. It is important that the difference between the +1 and –1 level of 

both design parameters is equal to the difference of the levels in the DOE of the main 

experiments. This way extra data is available for later analyses. In order to investigate 

the predictability and stability of the measurements all four runs are replicated once. 

Table 7.2: Example screening experiment.  

Run-to-run 
variation 

Test-to-retest variation

Run-to-run variation > test-to-retest variation 

Factor 
Response variable 

 
Run 

X1 (Tload) X2 (Rs) Y1,Y2,…,Yn* 
1 +1 -1 y11,y12,…y1n 
2 +1 +1 y21,y22,…y2n 
3 -1 +1 y31,y32,…y3n 
4 -1 -1 y41,y42,…y4n 

 

Therefore, the screening experiment contains eight runs. This is shown in table 

7.3.  

Table 7.3: Design matrix Screening Experiment.  

 Run Pattern X1 (Tload) X2 (Rs) Y (T_pr) 
1 -- 2.0 Ncm 0.4 Ω y11, y12, y13 
2 +- 4.0 Ncm 0.4 Ω y21, y22, y23 
3 -+ 2.0 Ncm 0.8 Ω y31, y32, y33 
4 ++ 4.0 Ncm 0.8 Ω y41, y42, y43 
5 +- 4.0 Ncm 0.4 Ω y51, y52, y53 
6 -- 2.0 Ncm 0.4 Ω y61, y62, y63 
7 -+ 2.0 Ncm 0.8 Ω y71, y72, y73 
8 ++ 4.0 Ncm 0.8 Ω y81, y82, y83 
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The R control chart for the current rise should be in control to conclude that 

the measurements are predictable and stable. This R control chart is shown in the 

right-hand side of figure 7.8. The R control chart shows that the measurements are in 

control. 
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 Figure 7.8: The X and R control charts for the current rise time (by 

run). 

 

Although these measurements are predictable and stable, the changes in the 

current rise time due to the various levels of the design parameters between runs 

should be larger than the variation between the successive tests of each run. In terms 

of a X control chart this means that this chart should be out of control, otherwise the 

variation between tests and runs is of the same order and run-to-run variation cannot 

be measured. The X chart in figure 7.8 shows that the X control chart is indeed out of 

control. Hence it is possible to measure the run-to-run variation and thus to measure 

the influence of both design parameters on the performance characteristic.  

 205 



 

1170

1180

1190

1200

1210

1220

M
ea

n 
of

 T
_p

r1
_t

1

0 1

Replicate

Avg=1192.13

LCL=1174.45

UCL=1209.80

0

25

50

75

100

125

R
an

ge
 o

f T
_p

r1
_t

1

0 1

Replicate

Avg=66.50

LCL=18.84

UCL=114.16

X Chart R Chart

1170

1180

1190

1200

1210

1220

M
ea

n 
of

 T
_p

r1
_t

1

0 1

Replicate

Avg=1192.13

LCL=1174.45

UCL=1209.80

0

25

50

75

100

125

R
an

ge
 o

f T
_p

r1
_t

1

0 1

Replicate

Avg=66.50

LCL=18.84

UCL=114.16

X Chart R Chart

Figure 7.9: The X and R Control Charts for the current rise time (by 

replication). 

 

Since the runs are replicated once, it is possible to see if it is feasible to repeat 

the settings of the design parameters at a specified level and to judge the stability of 

the measurements. The control charts, shown in figure 7.9, indicate that the settings 

are repeatable and stable over time.  

The X chart shows that the mean of the current rise time increases slightly 

over time. The reason for this phenomenon is that the nip motor warms up during the 

first few runs. For this reason it is chosen to keep the nip motor running constantly 

during the experiment of phase 9. Therefore, the motor will be turned on well in 

advance of the main experiments.  

It is also chosen to measure the current rise time (T_pr) of the first three pulses 

of one coil for each test in order to reduce the variability between tests. The average 

of these three values will be used as the performance characteristic in the main 

experiments. This will minimize the negative influence of accidental outliers of the 

current rise time on the results of the experiments. 

Phase 8 

The reasons for carrying out the degradation tests are as follows:  

1. Check for degradation 
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2. Determination of the shape of the curves (linear, convex, concave) 

3. Description of the degradation paths (mathematically) 

4. Input for further experiments 

During the test only one module was used. Naturally, it would have been 

better from a statistical point of view to use more than one module. Unfortunately the 

capacity of the research laboratory was not large enough to cope with the 

simultaneous execution of more than one of such a diverse module for a degradation 

test. In comparison to the simple systems that are usually subjected to degradation 

tests in literature, such as certain light sources, small components or metal parts, the 

finisher module is an extensive and complex system that consists of conflicting and 

interacting parts.  

Later phases in the protocol provide the possibility to obviate the lack of 

statistical degradation data, the possible increase of the unit-to-unit variation cannot 

be compensated in later phases.  

The module that has been used for the degradation test was not randomly 

selected, but was selected with average initial values for the PC and the DP’s. 

 

Parameters and expectations 

First, a description and explanation of the factors that are measured will be 

given. Expectations of the time-dependent behavior of these factors is given based on 

models known in literature.  
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Paper transport 

The factors that were measured for the paper transport function are the ones 

that are described in phases 3 and 4. These are the performance characteristic current 

rise time (T_pr) and its design parameters, PWBA resistance and mechanical load. 

The load on the system is expected to increase with time as a consequence of 

contamination and the friction between the sleeve bearings and the shafts (see phases 

3 and 4). The resistance of the PWBA is expected to increase due to fretting corrosion 

of its connectors (see phases 3 and 4). Malucci [MAL03] shows in his article 

“Fretting corrosion degradation, threshold behavior and contact instability” a graph 

of the increase of corrosion of connectors as a result of the number of deformation 

cycles. This graph shows a convex increase of corrosion and, hence, of connector 

resistance. In other words, resistance should increase slowly in the first part of its life 

and then increase faster and faster due to fretting. However, in this experiment not the 

resistance of one connector is measured, but the total resistance of many connectors 

on the PWBA is measured.  

 

Experimental set-up 

The objective of the degradation test is to obtain degradation data that 

represents actual customer use. In other words, the results of the degradation test 

should provide enough information to model the degradation curves of the PC and the 

DP’s as a function of real time, or number of device activations. In the case of the 

finisher module, the number of device activations represents the factor time. In total 

three decisions were made regarding the following features: 

 

→ Cool down time of the bearing in the motor 
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→ Use of paper during acceleration 

→ Times of measurements 

In order to simulate normal use by customers of the finisher module, a 

computer program controlled the four basic functions of the finisher simulating 

normal customer use. During actual customer use, the module would be used off and 

on, but not constantly. For this reason two types of intermissions were included in the 

test cycle. The first was a very short intermission after every nineteen copies. This 

was done to make the motor start from standstill. The startup procedure of the finisher 

module can have negative influence on performance of the mechanical parts of the 

system. A second type of intermission was programmed to make the module, and 

especially the nip motor and the paper transport shafts cool down to room 

temperature. In normal use a copier is not constantly used and will therefore cool 

down. The bearings of the motor were cooled down using a fan. Figure 7.10 shows 

the cool down profile, where the x-axis is the time-axis. Based on figure 7.10 it was 

decided to set the cool down time in the test at 30 minutes.  

Figure 7.10: Cool down profile at motor bearing. 
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Due to practical limitations a second decision has been made. Due to the very 

large amount of paper (11.000.000 copies) that would be required to perform the 

degradation test, it was decided to accelerate the test without the use of paper. Initial 

tests [DAM04] show that the weight of paper has negligible influence on the sleeve 

bearings in comparison to the shafts themselves.  

Figure 7.11 shows the measurement routine that has been used in the 

degradation test taking into account the three decisions that have been made. In 

practice, the measurements M were conducted every two days. When the actual 

measurement was performed, the finisher was loaded with A4 paper (80 grams). The 

produced paper sets were stapled with the normal stapler. At each measurement time 

the finisher was measured five times for all the factors.  

    number of copies made   
humidity   
temperature ext   
temperature int   
5V  
24V   

8.30   9.00   13.00   13.30   15.00   19.00 19.30 23.30 24.00 4.00   4.30   8.30 
PW BA resistance   
Load M1   
Tcusp @t5   
Tstp 1   
Tstp 2   
Ipeak a @t2/3   
Ipeak b @t2/3   
Ipeak c @t2/3   
Tpr @t1   

paper   
M   

acceleration cycle 
no paper   no paper no paper no paper no paper   

acceleration cycle   acceleration cycle acceleration cycle acceleration cycle  

Figure 7.11: Measurement routine [DAM04]. 

 

Test results 

The previous section showed that the finisher was measured approximately 

every two days. Five measurements were then conducted in order to deal with 

measurement variability. This section presents the results of the test. During the 
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degradation test on 33 time steps measurements were performed on all selected 

factors. The passed lifetimes for the factors are as follows: 

Measurement 33: 

Number of copies made by the nip motor M1:  3.475.089 number of 

copies. 

 

The following sub-sections each discuss the results of the measured factors for 

one of the finisher’s functions. The next part of this section presents the fitted 

degradation functions for the different factors. 

 

Paper transport function 

The measured factors that are critical to the paper transport function were 

measured on a time scale of “number of copies processed” by the nip motor. Each 

factor will now be discussed separately. 

 

Mechanical Load on the nip motor 

The load on the nip motor caused by the increase of friction and contamination 

between de shafts and bearings of the paper transport system turned out to 

significantly degrade over time. Fluctuations in the results of the measurement can 

either be the result of movement of the system itself or be influenced by the test 

operator. This sometimes led to unexpected increases or drops of the load on the 

motor. Nevertheless the load turned out to have quite a significant increase. Figure 

7.12 shows the X-bar and Range chart for this factor.  

 211 



 

 X-bar Chart for Load

number of copies

X
-b

ar

CTR = 7.31

UCL = 7.57

LCL = 7.05

0 1 2 3 4
(X 1.E6)

4.3

5.3

6.3

7.3

8.3

9.3

10.3

Range Chart for Load

number of copies

R
an

ge

CTR = 0.45

UCL = 0.95

LCL = 0.00

0 1 2 3 4
(X 1.E6)

0

0.2

0.4

0.6

0.8

1

1.2

Figure 7.12: X-bar chart and Range chart for the Load. 

 

The X-bar chart is significantly out of control. This implies that we have 

observed degradation. The range chart is out of control once. This out-of-control 

situation was due to a shaft that experienced a lot of friction with the startup of the 

five measurements. This friction automatically resolved during the five measurements 

and, therefore, led to higher differences between the obtained values. This 

measurement was not taken out of the dataset because its mean value corresponded to 

expectations. As a result of these two charts it may be concluded that it is permitted to 

model the change of the mechanical load on the nip motor as a function of number of 

copies processed.  

  

Electric resistance of the PWBA 

Measurement of the resistance of the PWBA suffered from many 

complications during the ADT. Therefore, first the actual observations are presented. 

Subsequently, the out-of-control situations are explained and removed from the data 

set. The control charts that are shown in the next figure (figure 7.13) are obtained with 

two measurement systems. The range chart clearly shows from which point 

(measurement day 26) the second measurement system is used. The two systems 
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unfortunately lead to other measurement values as a result of a difference in 

equipment. In the figure below this difference is not yet compensated.  
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Figure 7.13: X-bar chart and Range chart for the PWBA resistance. 

 

The reason why the measurement system was changed during the ADT was 

the increase of the range. Although at first hand it was expected that this increase was 

a result of the product’s ageing, it was later found out that two of the connectors on 

the measurement tool (not PWBA) had aged and become unstable. The measurements 

that were out-of-control due to ageing of these connectors were removed from the 

data.  

Other important observations are: 

→ At measurement day 11 the orange wire on the PWBA was soldered 

before the fifth measurement, which led to an out-of-control range. This 

fifth measurement was removed. 

→ A fuse change on the PWBA between measurements 11 and 12. This leads 

to a drop of 33 milli Ohms between measurement 11 and 12. In the 

following measurements 33 milli Ohms will be added to all the data after 

measurement 11. Therefore it is assumed that the PWBA did not degrade 

between measurements 11 and 12. When looking at the trend until 

measurement 11 this seems to be a good assumption that leads to a 
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negligible error especially when taking into account the higher increases 

later on. 

→ At measurement day 17 the operator altered one of the measurements in 

the set on purpose to see how this would affect the measurement. This 

measurement was removed. 

→ Removing the most influential measurement in the set reduced the high 

variation at measurement day 20 to an in-control situation. 

→ The module connector (also called interlock connector) was unplugged 

twice before the measurement took place. This may explain the extreme 

drop in resistance of the PWBA. Therefore the last measurement was 

removed entirely. 

→ The variation in sets that was observed with the new measurement system 

was so small that a relatively high range (4 milli Ohms) is devoted to the 

way of observing by the operator. This range is almost equal to the range 

at the start of using measurement system one. 

After applying these changes the results for the PWBA resistance over time 

follow the degradation path shown in figure 7.14.  
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Figure 7.14: New X-bar chart and Range chart for the PWBA 

resistance. 

Note that the range chart is still out of control for a number of measurements, 

but that the upper control limit for the range is lower. Given the degradation that is 

observed for the measurements that are in control, the ones that are out-of-control do 

not lead to strange values in the x-bar chart. Therefore, it is decided to model the 

resistance of the PWBA as a function of time. 

 

Current rise time of the nip motor 

The current rise time of the nip motor represents the performance 

characteristic. The ‘Maintray experiments’ [FLEX02a], ‘Screening experiments’ 

[FLE02b] and Van Hoorn’s thesis [HOO03] substantiate these expectations. The 

following X-bar chart and Range chart demonstrate the behavior of the current rise 

time.  
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Figure 7.15: X-bar chart and Range chart for the Current rise time. 

 

The figure clearly demonstrates that the range chart is in control. The range 

seems to be slowly increasing with time. This was also observed in the main 

experiment in 2002 [HOO03]. The out–of-control x-bar chart shows that the current 

rise time (T_pr) decreases with time.  

The observations that are circled in figure 7.15 are unexpected high values that 

disturb the decreasing trend. After the first circled measurement it was found that the 

5V power supply was badly regulated. Therefore, an experiment based on [BOT00] 

was conducted to reproduce this high value. However, this power source experiment 

did not fully explain the unexpected values. 

The second circle involves four observations. These measurements coincide 

with an out-of-control situation of the solenoid. A cover of the solenoid was not 

correctly mounted. This led to very high values for the solenoid time and an out-of-

control for its range chart.  

In conclusion it may be said that the current rise time of the nip motor changes 

with time. According to the screening experiment its behavior is the result of the 

increase of the load on the motor and the increase of the resistance of the PWBA, 

which drives and controls the motor. 
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As a consequence of the analysis of the factors in this section it may be 

concluded, that only three factors significantly show degradation, where time may be 

expressed in number of times of usage of a function. These are the following factors: 

Paper transport function: 

→ Mechanical Load on the nip motor 

→ Electric resistance of the PWBA 

→ Current rise time of the nip motor 

 

Degradation models DP’s 

In this section the degradation models for the design parameters are 

established. For each factor the degradation models are separately described. The first 

factor to be modeled is the load of the system on the nip motor.  

 

Mechanical Load 

Literature [LAN93] states that for the increase of the mechanical load on a 

system two phases can be distinguished. The first phase is a phase of rapid increase 

until a point after which the mechanical load will increase linearly. This pattern can 

also be distinguished in the experimental data.  
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Figure 7.16: Load: reality vs theory. 

 

In order to find the point of time where the gradient changes, the 

measurements 5 to 13 have been evaluated using the performance indicators standard 

deviation from estimate and R2 adjusted for degrees of freedom. The first part of 

the curve was also assumed to be linear. Table 7.4 below shows the results of the 

evaluation. The first three columns focus on the first part of the curve, while the 

fourth, fifth and sixth column focus on the rest of the curve. 

Table 7.4: Evaluation of the point for linear increase[DAM04]. 

Part 1 

 

Stdev R2 d.f. Part 2 Stdev R2 d.f. 
1-4 0,350 57,49 5-rest 0,487 60,00 
1-5 0,369 74,06 6-rest 0,490 56,48 
1-6 0,384 71,18 7-rest 0,480 53,76 
1-7 0,517 77,53 8-rest 0,433 63,32 
1-8 0,487 82,38 9-rest 0,418 67,22 
1-9 0,560 73,43 10-rest 0,423 63,31 
1-10 0,600 67,10 11-rest 0,430 59,65 
1-11 0,620 62,36 12-rest 0,437 55,72 
1-12 0,609 64,37 13-rest 0,444 55,70 

 

Based on this table it is chosen to model the load from measurement 9 as a 

linear function for the rest of its life. This leads to the lowest standard deviation for 
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the estimate of curve part two and to the highest R2 d.f for both parts. Hence, the 

model for the second part of the curve becomes: 

ttLoad ⋅⋅+= −
∞−

7
9 1014,790,6)(  (7.1) 

where t is number of copies. 

At this point the nip motor had already processed 745.541 copies. Therefore, 

the entire model will be: 

)5,541.745(1014,790,6)( 7 −⋅⋅+= − ttLoad   (7.2) 

for t  copies. 541.745≥

We are however interested in the load increase, because this can be used for 

every system. The initial load on the motor was 4,85 Ncm. This leads to the following 

expected growth model for the load: 

)5,541.745(1014,705,2)( 7 −⋅⋅+= − ttincreaseLoad   (7.3) 

where t is the number of copies processed by the nip motor. 

 

Electric resistance PWBA 

The electric resistance of the PWBA was expected to degrade as a result of 

fretting and corrosion of the connectors on the PWBA and the main finisher connector 

(also called interlock switch). Literature was found on resistance increase of single 

connectors. Malucci [MAL03] states that the increase rate of resistance at a certain 

point in time is a linear function. Therefore, the actual increase is a second order 

function of time with no first order term. However, it cannot be simply assumed that 

this implies that the increase of resistance on a PWBA with multiple connectors also 
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takes place according to this model. In order to ensure the correctness of the second 

order model this model was tested using Statgraphics. Statgraphics accepted the 

second order term in the model and rejected the first order term with a statistical fit of 

R2 adjusted for degrees of freedom of 93 %. 

2111030,1339)( ttR ⋅⋅+= −  (7.4) 

and  

2111030,1)( ttincreaseR ⋅⋅= −  (7.5) 

where t is the number of copies processed by the nip motor and the resistance 

is in milli Ohm. 

For the current rise time no degradation model will be made. This parameter is 

dependent on the degradation of its two design parameters.  

 

Conclusion and discussion of phase 8 

The accelerated degradation test was performed in order to capture the 

degradation of the design parameters and to prove that the performance characteristic 

changes as a result of this degradation.  

Analyses resulted in the conclusion that only 3 factors show degradation. 

These are the mechanical load on the nip motor (DP1), the electric resistance of the 

PWBA (DP2), and the current rise time of the nip motor (PC). Literature provided 

information about typical degradation behavior for the two design parameters. The 

experimental data of the degradation test was compared with the models that literature 

suggested, and the results of these analyses supported the models proposed in 

literature.  
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The degradation test was conducted during a considerable period of time 

(approximately 3,5 months) during which the paper transport function processed 

almost 3,5 million copies. In this time the finisher module was subjected to several 

issues. This complicated the measurements and affected testing speed.   

The size and complexity of the finisher also made it difficult to perform 

measurements. The module has several functions that interact and consequently 

influence these measurements. This experiment profited from the presence of past 

data, which made it possible to determine these measurement interactions before the 

test started. 

The degradation of the design parameters load and PWBA resistance in 

combination with the observed decrease of the performance characteristic underpins 

the expectations of the ROMDA concept and the involved engineers. This allows for 

the continuation with the next experiment, which is an experiment to predict the 

finisher’s degradation over its technical life. Here the degradation models that resulted 

from this chapter will be used to superimpose the degradation of the paper transport 

function over life on its performance characteristic.  

The size and complexity of the system made it time consuming to perform a 

set of measurements. This in combination with the restricted number of man-hours 

(due to other activities) led to the decision to test only one Finisher unit. This made it 

impossible to incorporate the variance in degradation speeds of multiple units in the 

models. Therefore, it is assumed that all finisher units degrade according the 

degradation profile of the tested unit.  
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Phase 9 and 10 

 

Main experiment 

The main experiment is conducted to construct a mathematical model of the 

performance characteristic for the entire product population of finishers as a function 

of the increase of its design parameters. As the first line already states, the model 

should represent the entire product population. This implies that at every point in time 

the performance characteristic has a probability density function with a mean value 

and a variance. Design Of Experiments [CON01] is used in order to generate this 

probability density function (pdf) at a specific point in time. In this research the 

objective is to predict reliability, which is quality over time. Since DOE only uses 

experiments that are static in time the factor time needed to be added to the 

experiments. In order to do this three DOE’s are performed at different ‘points in 

time’. These points in time are created by artificially adding degradation to the two 

design-parameters load (X1) and PWBA resistance (X2). Load is added by means of 

the mechanical break and resistance is added by putting resistance in series with the 

PWBA and the main connector.  

 

Experimental design 

The design that was used for the experiments is Central Composite Design.  

 

Time points 

In this section the ‘times’ and settings of the center points are determined for 

each of the three DOE’s. The objective was to predict performance over life with 
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three DOE’s. Therefore, a DOE needed to be performed at t=0 (DOE0), in order to 

know the nominal values of the performance characteristic and at its expected end of 

life (DOE2) to be able to make good predictions of the TTF. The other DOE, DOE1, 

was consequently chosen at halfway the ‘age’ of the finisher to make the predictions 

over life as good as possible with a limited amount of testing time using only three 

DOE’s. At each of these times the corresponding settings for the center points of the 

design parameters are determined [DAM04]. In the following section the + and – 

levels for the DOE’s are determined.  

 

DOE0 

The center point settings for the first DOE, which will be called DOE0, are set 

around the nominal values of the design parameters resulting in the nominal value of 

the performance characteristic.  

 

DOE1 

For DOE1 the design parameters are set at the levels that they are expected to 

have halfway the ‘time’ of DOE2. This is done to make the best possible predictions 

over life with three DOE’s. Hence the expected added load and added resistance at 

453971122
1

1 =⋅= DOEDOE timetime  copies are calculated. 

Hence using equation 7.3 the added load will be: 

NcmtimetimeLoad DOEDOE 76,4)5,745541(1014,785,490,6)( 1
7

1 =−⋅⋅+−= −

And using equation 5.5 the added resistance will be: 
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Ω=⋅⋅= − mtimetimeR DOEDOE 47,266)(1030,1)( 2
1

11
1  

Concluding, the level settings for DOE1 are around the 4,76 Ncm and 

 for the nominal added load and the nominal added resistance respectively.  Ωm47,266

 

DOE2 

For practical reasons it was chosen to use an added break force of 8 Ncm as 

the highest center point for the load (X1). According to the degradation model for the 

load (eq. 7.3) this amount of load increase would be observed at: 

423.079.9
1014,7

)85,490,6(85,541.745 72 =
⋅

−−
+= −DOEtime  copies. 

The amount of 745.541 copies is the number of copies made at the beginning 

of the second part of the degradation function for the load. 6,90 Ncm is the expected 

load at this same point. During these 745.541 copies the load is expected to increase 

with the amount of .  Ncm05,285,490,6 =−

The settings for the resistance need to be calculated at the same number of 

copies as that that was expected for the load. Using equation 7.5 leads to the 

following added resistance: 

Ω=⋅⋅= − mtimetimeR DOEDOE 9,065.1)(1030,1)( 2
2

11
2  

So the level settings for DOE2 are around 9 Ncm and 1  for the 

nominal added load (X

Ωm9,065.

1) and the nominal added resistance (X2) respectively. Based 

on the calculated number of copies the levels for DOE1 can now be set. 

Now that the nominal levels for the DP’s of DOE0, DOE1 and DOE2 are 

known, the + and – settings will be determined. 
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Level settings 

In this section the + and – level settings are determined for the DOE’s. Each 

DOE should generate a probability distribution that represents the actual product 

population at that specific moment in time. Therefore a + or a – setting for a design 

parameter should represent the value of this design parameter for a randomly chosen 

other product. This is the expected deviance from the mean value, or standard 

deviation.  

The ‘Part-to-Part Experiments’ that were conducted at Flextronics on the 4  

and 6  of December 2002 [FLE02c] resulted in unit-to-unit data on new, refurbished 

and field returned Finishers. This data was obtained from five new, five field-returned 

and five refurbished Finishers. The data on the refurbished finishers were not used 

because it was not documented what types of repairs or alterations were made to these 

products. The standard deviations of the design parameters of the population of new 

finishers were calculated to be 0,39 Ncm for the load (X ) and 12,9  for the 

resistance of the PWBA.  

th

th

1 Ωm

For the PWBA resistance this standard deviation is larger than the highest 

standard deviation of variation within sets that was observed during the measurements 

in the degradation test. This is a minimum requirement in order to be able to measure 

unit-to-unit variation and draw conclusions from the DOE’s.  

The values 12,9  and 0,39 Ncm are practically difficult values to use. 

Therefore the values of 20  and 0,40 Ncm are used in the experiments for DOE

Ωm

Ωm 0.  

Field data was necessary in order to use realistic settings for the second and 

third DOE (DOE1 and DOE2). Although there was unit-to-unit data on field returned 

finishers, this data did not contain the age of the measured units. Hence it is not 

possible to make a good statement about the unit-to-unit variation at a specific point 
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in time (age). Because neither Flextronics nor its customer keeps track of the number 

of copies that a finisher produces in the field, it can be said with certainty that there 

will not be any usable unit-to-unit data of field returned finishers available in the short 

run regarding this dilemma. 

For this reason the assumption is made to assume that unit-to-unit variation 

does not change with time. This assumption is disputable, but it is the best possible 

assumption to be made. However, the dilemma of changing unit-to-unit variation over 

time is one that always exists in case of newly designed products, because field data 

will not be available for these products. This problem could naturally be resolved by 

degradation testing several units instead of the one unit that was used in this research.  

Consequently the standard deviations between units are also used for the level 

settings of DOE1 and DOE2. This leads to the following design grid (table 7.5). 

Table 7.5: Experimental design Main experiment. 

 

 

X1 (load in Ncm) X2 (resistance in Ω) 
 - 0 + - 0 + 
DOE 0 0 0,4 0,8 0 0,02 0,04 
DOE 1 4,4 4,8 5,2 0,25 0,27 0,29 
DOE 2 7,6 8 8,4 1,05 1,07 1,09 
 

Figure 7.17 presents a graphical representation of this experimental design. All 

three DOE’s represent the expected degradation of the design parameters at a certain 

time. 

The level settings per run are presented in appendix 9. For each combination 

of level settings five sets are produced. This is the same number of sets that was used 

in the degradation test. Note that the combinations of runs are randomized in the 
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experiments in order to prevent that conditions in a previous situation influence the 

results in the next situation.  

 

Unit-to-unit variation 
210 −−− == DOEDOEDOE σσσ  

Unit-to-unit variation 
210 −−− == DOEDOEDOE σσσ  

X1 

X2 

Nominal value 

Nominal value 

DOE 0 DOE 1 DOE 2 

DOE 0 DOE 1 DOE 2 

Figure 7.17: Graphical representation experimental design. 

 

Results of Main experiment 

The data that was generated in the experiment first needs to be analyzed and 

checked on normality. This is done by means of Shewart control charts.  

 

 

Analysis of the results 

This sub-section analyses the results for each DOE separately. In order for the 

results to be used they need to be stable and predictable. This check is performed by 

 227 



 

means of control charts (figures 7.18, 7.20 and 7.22). The reason why each DOE is 

considered separately is because of the expected increase in range as the design 

parameters increase [BOG02]. This contribution of the range of the performance 

characteristic in DOE 2 could then cover up a possible out-of-control situation in 

DOE 0 or DOE 1.  
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Figure 7.18: Control charts for DOE 0. 

 

The range chart for DOE 0 shows a clear out-of-control situation at run 6. This 

run has combination settings Load + and Resistance -. Therefore, it is expected that 

this combination would lead to a mean value that is lower or equal to the mean value 

of DOE 0. The x-bar chart shows however a conspicuously high value for the mean 

value of this run. Appendix 9 shows that this high mean value and high range are 

caused by two of the five measurements in the set. Figure 7.19 presents two 

histograms with probability density plots that represent the data of DOE 0. One with 

the extremes of run six and one without. Removal of the two extreme values (547,63 

and 548,11) brings the range back in control and leaves the observations of 535,64, 

536,85 and 539,92 microseconds.  

Removing these two values hardly influences the mean of the population. The 

mean decreases only 0,38 microseconds. The standard deviation however is affected 

stronger by this change and decreases from 2,68 to 1,97. This in combination with the 
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expectation that the values would be lower or equal to average has led to the decision 

to leave out these two values of run six in further calculations.  
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Figure 7.19: Histograms DOE 0: 

a) with extremes of run 6. 

b) without extremes of run 6. 

 

The other out-of-control situation, for the x-bar chart, is the result of the level 

settings in the DOE. For this the standard deviations of the design parameters are 

used. Certain combinations of these settings may result in an observation that 

distinguishes itself from the rest of the measurements. This does however not imply 

that this observation is wrong, but that it represents a product that is significantly 

different from the mass.  
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Figure 7.20: Control charts for DOE 1. 
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The range chart for DOE 1 shows no out-of-control situations. The 

explanation for the out-of-control x-bar chart can be found above. This results in the 

following product population (figure 7.21). 
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Figure 7.21: Histogram DOE 1. 

 

Note the lower average rise time and the higher variance of the current rise 

time. This shows that the performance characteristic also decreases with time in this 

experiment. 

The control charts for the last DOE, DOE 2, are as follows.  
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Figure 7.22: Control charts for DOE 2. 

 

The resulting distribution of the measured values for the current rise time is 

presented by the histogram in figure 7.23.  
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Figure 7.23: Histogram DOE 2. 

 

Also the means and ranges between the three DOE’s are checked for out-of-

control situations (figure 7.24). If there is no statistical significance between the mean 

values of the three DOE’s, the current rise time may not be modeled as a function of 

time and can, therefore, not be used as a performance characteristic.  

The x-bar chart confirms the expectation that the means of the three DOE’s 

are out-of-control [BOG02]. Hence it is allowed to model the ‘current rise time’ as a 

function of time and, thus, it may be used as a performance characteristic. The x-bar 

chart also implies that the performance characteristic changes significantly as a 

function of its design parameters. Although the range chart shows to be in control it 

can be concluded that the mean range per DOE definitely increases over time. Next it 

needs to be determined how the design parameters affect the performance 

characteristic. For this purpose Analysis Of Variance (ANOVA) is used.  
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Figure 7.24: Control charts between DOE’s. 

 

Regression model 

Performing the ANOVA was not a straightforward process. The three DOE’s 

generated three datasets that were not joined by time and thus did not have 

consecutive values for their settings. These separate points in time made it impossible 

to perform ANOVA directly on the results. Therefore, the degradation functions were 

used to generate a large dataset for every factor over time as in [BOG02]. Next, an 

ANOVA is performed to relate the design parameters to the performance 

characteristic. 

First the degradation function of the performance characteristic needed to be 

identified. A regression analysis was performed on the data for the current rise time 

that was obtained in the DOE’s. This resulted in the following function of the current 

rise time and its variance over time: 

2146 1029,81094,302,538)( tttY ⋅⋅+⋅⋅−= −−µ  (7.6) 

21372 1025,21093,388,3)( tttY ⋅⋅+⋅⋅+= −−σ  (7.7) 
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This degradation function and the degradation functions of the design 

parameters were used to generate large datasets for these parameters over time. The 

generated datasets were analyzed using ANOVA in order to determine how the design 

parameters influence the performance characteristic. The ANOVA table indicated that 

all terms that were tested were significant.  

The following second-order regression model was fitted.  

2
11210

2

2
11210

121

121

XXXY

XXXY

µβµβµββσ

µαµαµααµ

+++=

+++=
 (7.8) 

Here Yµ , 
1Xµ and 

2Xµ represent respectively the mean value of the 

performance characteristic and the mean values of the dominant design parameters, 

while , and represent respectively the variance of the performance 

characteristic, and the variance of design parameters X

2
Yσ 2

1Xσ 2
2Xσ

1 and X2 .The coefficients α0, 

α1, α2, α11, and β0, β1, β11 and β2 will have to be determined by means of regression.  

First the regression model for the mean is determined. This is done by means 

of linear regression with least squares estimation (LSE). The estimation is made based 

on the data from the Main experiment (appendix 9). For this not the added values are 

used, but the real values of the design parameters. This gives a real representation of 

the factors that influence the nip motor. And secondly, a model with the real values is 

more useful in the optimization step. The regression model is as follows. 

2
121

69,079,2429,696,504 XXXY µµµµ −++=  (7.9) 

The resulting R2 for this model is 94,75 percent.  

This model represents the influence that the actual resistance and load have on 

the current rise time of the motor. Note that the design parameter factors are both 
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functions of time that can be substituted into this model, making it time-dependent. 

Figure 7.25 represents the influences of both design parameters on the performance 

characteristic separately. Note that these influences are as expected.  
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Figure 7.25: Influence of the actual DP values on the PC. 

 

The second regression model that is determined concerns the expected 

variance of the performance characteristic as a function of the variances of the design 

parameters. This is however impossible due to a lack of information on time 

dependent unit-to-unit variation of the design parameters load and PWBA resistance.  

Specification limits 

A product will only function properly as long as it satisfies its specifications. 

In order to determine the product’s expected lifetime a specification limit needs to be 

set beyond which the product does no longer function properly. The performance 

characteristic decreases over time and, therefore, only the Lower Specification Limit 

(LSL) is important. For the finisher module the LSL is: 

sLSLPC µ28.504=   

Figure 7.26 shows the expected degradation of the performance characteristic 

over time with the lower specification level at which the paper transport function is 

expected to fail.  
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Figure 7.26: Performance characteristic as a function of time (number 

of copies). 

 

The figure shows the decrease of the performance characteristic over time. 

Note that using the calculated specification limit would lead to the rejection of a part 

of the population.  

 

Discussion 

The degradation models that were constructed in the previous chapter were 

used in this chapter to set up an experiment to predict the behavior of the performance 

characteristic over life. Therefore the expected values of the design parameters were 

calculated at three points in time: when the product is new, halfway its life and as a 

close as possible near its expected end of life. These expectations of degradation were 

set in the system in order to model the change of the performance characteristic over 

time.  
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The experiment attempted to generate a probability distribution of the 

performance characteristic as a consequence of the variation in the design parameters 

between Finishers. Therefore unit-to-unit data on the design parameters of new 

Finishers were used for level setting in a design of experiments at the first time point. 

Unfortunately the lack of information on variation in degradation speeds between 

Finishers made it impossible to incorporate such variation in the other DOE’s. Hence 

for these design parameter settings the same variation has been used. 

The final point of discussion applies to the unit-to-unit variation. It is very 

well possible that a different Finisher module would have degraded slower or faster 

than the unit that was used in the ADT. This would lead to a different behavior of the 

performance characteristic over time and also to a change in variation. This makes it 

difficult to say if this function of the performance characteristic is representative for 

the entire Finisher population. The experiment that is described in this chapter 

however uses the initial unit-to-unit variation of new Finishers to model the 

performance characteristic for the Finisher population. Therefore the only variation 

that the model over time does not take into account is possible difference in 

degradation speeds between units. For the time being there is no data that indicates 

that the two design parameters deteriorate significantly faster or slower for other 

finisher units.  

 

Phase 11 

Design optimization 

The last phase of ROMDA is the optimization step. First the performance of 

the present situation is determined. Next, an optimization method is applied to find 
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the settings for the design parameters that optimize the Mean Time To Failure and 

minimize the variance of the Mean Time To Failure of the PC.  

 

Present situation performance 

Before calculating the optimal design parameter settings, the performance in 

the present situation should first be determined. In order to do this a simulation is run 

based on the obtained models with their variances. The degradation paths are 

presented in figure 7.27 and 7.28. The figures represent the simulation of a sample of 

1000 Finisher modules.  

 

Figure 7.27: Simulated degradation path of the load. 

 

The simulations are started at 745.541 copies. This is the lifetime from where 

on the load increases linear with time. These degradation paths are again 

superimposed on the rise time by means of equation 7.9. The resulting current rise 

time of the nip motor is presented in figure 7.29a. For clarity this degradation function 
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is presented in 2D. Application of the lower specification limit of 504,28 sµ  leads to 

the failure rate curve in figure 7.29b.  

 

Figure 7.28: Simulated degradation path of the PWBA resistance. 

The resulting current rise time also shows the increasing variance as a result of 

the degradation of the design parameters. This was also observed in the data of the 

Main experiment.  

 

a) b)

Figure 7.29:  

a) The resulting current rise time. 

b) Failure rate curve for the finisher population. 
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The results of the simulations show an expected MTTF of 11.215.541 copies 

and the log of the Standard Deviation of the TTF, log(SDTTF), is 14,48, or 1.943.498 

copies. The next section will attempt to optimize the design of the Finisher module. 

The performance indicators that are used to compare the new with the present 

situation are the MTTF and the SDTTF. 

 

Optimization of the Finisher module 

In this section the Finisher module is optimized based on the performance 

indicators MTTF and SDTTF. The Desirability Technique by Derringer and Suich 

[DER80] is applied to determine the design parameter settings that lead to an optimal 

balance between MTTF and SDTTF. Before this method can be applied first the 

functions for the MTTF and SDTTF need to be established. This is done by means of 

a Design Of Experiments on the simulation data.  

First the function for the load is interpolated to time t=0 in order to be able to 

optimize the initial value of the load. Therefore, the load is interpolated to time t=0 as 

if it were linear. The calculation is presented below. Figure 7.30 shows a graphical 

representation of this calculation. 

NcmincreaseLoad 53,0541.7451014,7 7 =⋅⋅= −  

This leads to an initial load setting of 2,05 – 0,53 = 1,52 Ncm higher. With 

this setting it is possible to use the linear part of this degradation model from t=0 for 

the optimization step.  
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Figure 7.30: Interpolation of the degradation model. 

 

Next, the models for the MTTF and SDTTF are constructed based on a 

simulated DOE. The nominal values of the design parameters are used as center 

points and the standard deviations that were applied in the Main experiment (0,4 Ncm 

and 0,02 Ω ) are used as + and – settings. The DOE is constructed in order to make a 

model of the MTTF and SDTTF as a function of the DP’s.  

With this model the nominal design parameter settings can be optimized near 

the current settings. The DOE results are presented in table 7.6: 

Table 7.6: DOE on the TTF.  

 

The following functions are established: 

run pattern DP1 DP2 MTTF Log(SDTTF) 
1 -- 6,688 0,689 12.105.541 14,60 
2 -+ 6,688 0,889 13.615.541 14,58 
3 00 7,088 0,789 11.215.541 14,48 
4 0- 7,088 0,689 10.165.541 14,31 
5 +- 7,488 0,689 8.354.541 14,21 
6 ++ 7,488 0,889 9.905.541 14,30 
7 0+ 7,088 0,889 11.815.541 14,49 
8 +0 7,488 0,789 9.245.541 14,16 
9 -0 6,688 0,789 12.505.541 14,58 

 

21

2

*041,0*182,0201.5)log(
*67

DPDPSDTTF
DP

+−=
1 ,78*55,17871.1025 DPMTTF +−=

 (7.10) 
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The model of the PC as function of its DP’s is only valid for the settings 

interval of the Main experiment and somewhat beyond. This puts limitations to the 

optimiz

DP1=[6.29; 7.88] and DP2=[0.63; 0.99] 

Subsequently, the optimal design parameter settings are calculated using the 

Desirability F is set to be twenty million and 

the targ

ation range of the design parameters. In order to optimize the design of the 

finisher within the practical limits of the design parameters, first the optimization 

intervals need to be determined. Hence the following optimization intervals were 

defined (input from designers): 

 Technique. The target value for the MTT

et value for the log(SDTTF) is set near zero. The coefficient r is set to be 1. 

This results in the following optimal values: 

DP1 = 6.29 Ncm, which corresponds to a real setting of DP1 = 6.29– 

1.52 = 4.78 Ncm and DP2 = 0.99 m Ω  

This leads to a MTTF of 12.575.541 copies, which is 12,1 % longer th

5.541 copies for the system that was se

an the 

expected 11.21 u d in the Main experiment. The 

log(SD

Discussion 

In conclusion it can be said that the simulated optimization step resulted in a 

 increase of the Mean Time To Failure of the Finisher module. This was 

accomp

TTF) is somewhat higher however. It has increased from 14,48 to 14,56, which 

is an actual increase from 1.943.498 copies to 2.105.366 copies.  

considerable

anied by a loss in robustness of the reliability of the system’s TTF. 

 

Phase 12 
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The purpose of this phase is to verify the results of the experiments and 

analyse

ring the writing of this thesis. 

The fin

7.3 Case study: Paper-Feed Module (Flextronics) 

For the second case study a paper-feed module of Flextronics BV has been 

used. T

Phase 1, 2, 3, and 4

s with products in the field. The second purpose of phase 12 is to confirm if 

the results of all analyses indeed optimized product performance over time, and make 

preventive maintenance and re-use decisions possible.  

Unfortunately, this phase is not yet completed du

isher modules have been introduced to the market for just a short period of 

time. The performance of the finisher modules is monitored for verification purposes. 

But the results over time are not sufficient in order to verify all models. The expected 

time for the first results are within 1,5 years. 

he paper-feed module can be considered as a completely different product 

compared to the finisher module that was used in the first case study. Also in this case 

study the protocol described in chapter 6 has been followed. For this reason only a 

summary of all phases of this case study will be presented in this section. For detailed 

information about all phases of the protocol the reader is referred to literature 

[VIS04]. This section finishes with a discussion on the results of this case study.  

 

 

odule stores the blank paper sheets in paper trays and 

deliver

 in figure 7.31; 

the paper path inside the paper-feed module is schematically displayed in figure 7.32. 

The paper-feed m

s these sheets on request to the first stage of the copy process.  

The paper-feed module as part of the total copier is displayed
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Figure 

 during 

the HC

Figure 7.32: Schematic overview of paper-feed module. 

 

7.31 shows that the paper-feed module can be divided into three module units: 

the High Capacity Feeder (HCF), the paper trays, and the Manual Sheet Input (MSI). 

The experiments presented in this chapter are all concerned with the High Capacity 

Feeder module units.  

Figu e. 
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(
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Paper-Feed 
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re 7.31: Copier with paper-feed modul

HCF)HCF)HCF)

As m  can be dealt with

this research project. Although the paper elevation-, grip-, and transport functions of 

entioned before, not all module functionalities

F module unit have been included in the FMEA this case study will only focus 

on the elevation function of the HCF. 

Paper trays 1 + 2

HCF

MSI

Paper trays 1 + 2

HCF

MSI
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The paper lift’s task is to elevate the paper up to the right level at the righ

moment. The elevation level is determined by a paper level sensor. The paper 

mechanically presses this sensor when it reaches the right level. The right mome

implies that the paper lift should reach the right paper level in time. If the paper lift 

reaches this right paper level too late, the copier will come to a standstill and an erro

 

According to the FMEA, the degradation of the elevation motor (1a) causes a 

decrease in motor speed (lowering of the number of revolutions). The more difficult 

rotation of the axle in the gear shaft (1k), the wear in the cable system (1b) and the 

resistance rise in the slide bearings of the elevator brake system (1f) contribute to a 

torque increase in the elevation mechanism. In other words, these failure modes make 

it mechanically more difficult to lift an elevator plat ed with a certain amount of 

paper. Based on these results, the design parameters of the elevation function are 

determined. These design parameters are: 

→ motor speed (number of revolutions); 

Table 7.7: Failure mechanisms of the elevation function.  

The E

t 

nt 

r 

e load

→ torque in elevation mechanism. 

1a Motor 1. decline in motor power 2 4 5 5 40

2. pully wear
1i 1. widening 

in the shaft

Tray closing 
mechanism*

Number Component name Failure Modes T O C M RPN

1k Gear shaft 2 2 3 2 12

1b Cable system 1. cable breakage 2 1 5 1 10

of the closure clamps 2 2 2 2 8

1f 2 1 2 1 4e slide bearings

1. more difficult rotation of the axle 

* (low cost item: replaced during remanufacturing)

1. resistance rise in thElevator brake system

levation Function 



 

message will be displayed. The elevation speed is the relevant parameter that defines 

whethe

Identification of the Design Parameters 

In order to define the dominant design parameters for the elevation function 

and the paper grip and transport function, a FMEA was executed for the HCF module 

unit. 

 

Elevation Function Design Parameters 

The performance characteristic of the elevation function was defined as the 

elevation time (tE). The time dependent failure mechanisms from the FMEA 

concerning this elevation function are summarized in table 7.7.  

The elevation function of the HCF is summarized in figure 7.33.  

r the paper lift will reach the right paper level in time. Since the elevation 

distance is constant, this elevation speed can be replaced by elevation time (tE). 

Elevation time can be defined as the time required to lift a certain amount of paper 

over a fixed distance. This elevation time may be considered as a good indicator of 

the elevation performance and will therefore be used as a performance characteristic 

for this function. 
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Figure 7.33: The HCF elevation function. 

 

Phase 5, 6, and 7 

Experimental Set Up 

The elevation time (tE) is measured by using the encoder wheel at the end of 

the motor axle. The number of revolutions of this encoder wheel corresponds with the 

number of revolutions of the motor (exit) axles. The encoder wheel contains 20 

spokes that successively pass a sensor, see figure 7.34. As a result this sensor 

generates 20 electrical pulses per rotation.  
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Figure 7.34: The encoder wheel. 

 

By adding up the time between these electrical pulses, the rotation time of the 

axle can be calculated. Since the elevation distance is constant and one axle rotation 

corresponds to a fixed elevated distance, (a multiplication of) this rotation time can be 

used as a measure for elevation time.  

 

rising side rising side rising side rising side rising side
pulse 1 pulse 2 pulse 3 pulse 4 pulse 21

t = 1 t = 2 t = 3 t = 4 t = 21

 
one rotation 

encoder wheel

Figure 7.35: Pulses encoder wheel. 

 

To be able to test the influence of the design parameters motor speed (vm) and 

torque in elevation mechanism (TE) on the elevation time (tE), the values of these 
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design parameters need to be varied. The motor speed can be varied by placing 

different voltages on the lift motor. A higher voltage corresponds to a higher motor 

speed. The torque in the elevation mechanism can be varied by placing different 

weights on the lift plate. A higher weight corresponds to a higher torque in the 

elevation mechanism. As a result, it is expected that when motor speed decreases and 

torque in elevation mechanism increases, elevation time will increase.  

The ranges of the design parameter settings are described in the specifications 

of the HCF and the lift motor. The nominal weight on the lift plate corresponds to two 

packs of paper, that is 5 Kg. The minimal weight placed on the lift plate is no weight 

in case of an empty paper tray. The maximal weight on the lift plate corresponds to 

four packs of paper, that is 10 Kg. It is physically impossible to store more paper on 

the lift plate.  

The nominal voltage placed on the lift motor is according to specification 24,5 

Volt. The minimal and maximum voltage placed on this motor are consecutively 21,6 

Volt and 26,2 Volt. Beyond these specification limits, the HCF is not able to function 

properly anymore. An overview of these ranges is given in table 7.8. 

Table 7.8: Ranges of design parameters.  

24,5 V 26,2V

0 KG 5,0 Kg 10,0 Kg

21,6 VMotor speed 
(Tension)
Torque in 
elevation 

mechanism 
(Load)

minimal nominal maximal
limits
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The design factor levels in the screening experiment are determined to be the 

minimal, nominal and maximal levels of the design parameter (see table 7.8). This 

results in the following screening design: 

Table 7.9: Screening Design.  

 Pattern V oltage Load
-- 21,6 V 0 K g
-0 21,6 V 5 K g
-+ 21,6 V 10 K g
0- 24,5 V 0 K g
00 24,5 V 5 K g
0+ 24,5 V 10 K g
+- 26,2 V 0 K g
+0 26,2 V 5 K g
++ 26,2 V 10 K g

 

This screening design is replicated three times, resulting in 27 runs. In order to 

prevent systematic measurement failures in the design, the runs are completely 

randomized. The 27 runs could not be performed in one day. As a result, the blocking 

factor “day” was introduced in order to investigate the influence of the factor day on 

the elevation time measurements. These results are analyzed using X- and R- control 

charts and ANOVA to determine whether motor speed (tension) and torque in 

elevation mechanism (load) have a significant influence on the performance 

characteristic elevation time.  
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R Chart X Chart

Figure 7.36: Control charts of the elevation time for the screening 

experiment; L=low, M=middle and H=high (Voltage or Load). 

 

The R control chart of the screening experiment shows that the measurements 

are in control. In order to measure the change in performance characteristic due to the 

various settings of the design parameters, the X control chart should be out of control, 

which indicates the possibility of measuring this setting variation. As can be seen in 

the X chart of figure 7.36, also this criterion is met. 

Figure 7.37 shows that the effect of the design parameters motor speed 

(voltage) and torque in elevation mechanism (load) have a P-value equal to zero. It is 

important to remark that the P-value of the interaction effect between voltage and load 

is rather low indicating a significant interaction effect. 

Based on the results from this screening experiment, it can be concluded that 

motor speed and torque in the elevation mechanism do have a significant influence on 

the elevation time of the paper lift in the HCF module unit. 

 

 

 

 

 

 250 



 

*** Analysis of Variance Model*** 
Short Output: 
Call: 
 formula = Elevation time ~ Block + Tension + Load + (Block + Tension + Load)^2 
Terms: 
   Block  Tension  Load  Block: Tension 
Sum of Squares  353  37201063 10662962 0  
Deg. of Freedom  1  1  1  1 
   Block: Load Tension: Load Residuals 
Sum of Squares  4356  389520  1911129 
Deg, of Freedom  1  1  20 
Residual standard error: 309,122 
   Df Sum of Sq. Mean Sq. F Value  Pr(F) 
Block   1 353  353  0,0037  0,9521606 
Tension   1 37201063 37201063 389,3098 0,0000000 
Load   1 10662962 10662962 111,5881 0,0000000 
Block: Tension  1 0  0  0,0000  0,9991593 
Block: Load  1 4356  4356  0,0456  0,8330923 
Tension: Load  1 389520  389520  4,0763  0,0570952 
Residuals  20 1911129  95556 

Figure 7.37: The ANOVA table of the screening experiment. 

 

Based on the FMEA results, the motor speed is expected to decrease over 

time. On the other hand, the torque in the elevation mechanism is expected to increase 

over time. As a result of these changes in design parameters, the performance 

characteristic elevation time is expected to increase over time. 

 

Phase 8 

For the execution of this degradation test, two new modules (consisting of 

trays and motors) are used. During the degradation test, all measurements (elevation 

time, motor speed and torque) are replicated three times to be able to measure the 

measurement variability.  

For the execution of the degradation test on the elevation function, a so-called 

compressed-time test was selected. 

At the start of the degradation test, it was uncertain how fast the module would 

degrade over time. Therefore, the first four days the degradation test cycle was only 3 
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to 4 hours long. Between these test cycles, measurements were performed. Since the 

execution one measurement cycle takes about three hours, two measurements per day 

are performed with this 3- or 4-hour cycle. After these four days, a 6-hour test cycle 

was started in order to unburden the people performing the measurements, as the 6-

hour test interval only requires one measurement cycle per day. After eight days, a 16-

hour test cycle was started followed by a 21-hour test cycle two days later. This 

gradual transition to longer test periods was executed in order to speed up the 

degradation process. Table 7.10 gives an overview of the cycles run and the 

(cumulative) time run during the degradation test. 

Table 7.10: Degradation test cycles run.  

 

Table 7.10 indicates that the degradation test has run 200 hours, corresponding 

with 2,38 times a module design life. During the fifth 21-hour cycle, both modules 

broke down. The modules were unable to lift the required weights during the motor 

speed measurements and produced strong cracking sounds under normal operating 

conditions. At this point, it was decided to end the degradation test and to analyze the 

modules together with the acquired data. 

Figure 7.38 gives the R and X chart of the performance characteristic 

elevation time versus the degradation test hours. The left-hand sides of the graphs 

describe the behavior of module 1, the right hand sides of the graphs describe the 

behavior of module 2. The R chart of the elevation time indicates that the elevation 

Cycles
3/4 hour cycles
6 hour cycles
16 hour cycles
21 hour cycles 105 hours

4
8
2
5

63 hours
95 hours

200 hours

Cycles Run Time Run Cumulative Time Run
15 hours15 hours

48 hours
32 hours
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time measurements are stable and predictable. Only the measurement results at 200 

hour are out of control for both modules. These out of control points are the result of 

the break down of both modules. However, the results presented in the X chart 

indicate that no well-defined degradation pattern can be recognized for the elevation 

time of both modules. No significant rise in elevation time can be established and 

both modules show different elevation time behaviors. These results make it 

impossible to model the degradation behavior of the performance characteristic 

elevation time. Based on this parameter behavior, the breakdown of the two modules 

cannot be predicted. These results suggest that the performance characteristic 

elevation time should be replaced by another performance characteristic that does 

predict the module failure behavior.  

R 

Figure 7.38: R- and X-Chart of the elevation time versus degradation 
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igure 7.39 gives two X charts of the design parameter motor speed at 0 Nm 

load an

 X 

F

d at 0,8 Nm load versus degradation test hours. The first X chart shows a clear 

decrease in motor revolution time for both modules; this corresponds to an increase in 

motor speed. This conflicts with the expectancy of declining motor speed over time. 
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With hindsight, the process of carbon brush wear can explain this increase in motor 

speed. As a result of carbon brush wear, the contact surface of the carbon brushes 

increases resulting in a longer current supply to the motor. This longer current supply 

to the motor causes this decrease in revolution time. The second X chart shows an 

approximately constant motor speed over time for both modules. Only after 200 

hours, as an immediate result of the module break down, motor speed drops to zero. 

Based on this parameter behavior, the breakdown of the two modules cannot be 

predicted.  

Figure 7.39: R- and X-Charts of the revolution time (at load 0 Nm and 
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igure 7.40 gives two X charts of the design parameter torque in the elevation 

mechan

 R Chart X Chart 
8,5 12

F

ism expressed by load and period time of the HCF. Based on the FMEA 

results, the HCF load was expected to increase over time, and as a result, the period 

time of the HCF was expected to decrease over time. The first graph shows a rather 

constant load level for both HCF modules. With the exception of two peaks in HCF 

load, which could not be technically explained afterwards. The second graph shows 

an erratic period time pattern over time for both modules. Although the period time 
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strongly fluctuates over time, these results make it impossible to model the 

degradation behavior of the design parameter torque in the elevation mechanism.  

Figure 7.40: R- and X-Charts of the HCF Load and HCF period time 
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ince the breakdown of the modules could not be explained by the degradation 

of the

at were produced by the modules under normal 

operati

1. The wear down of gearwheels; as a result the constant friction between 

S

 design parameters and the behavior of the performance characteristic 

demonstrated no clear degradation path, further investigation was required to reveal 

the root cause of the module failures. 

The strong cracking sounds th

ng conditions came from the gearbox of the lift motor. On that account, it was 

decided to disassemble these lift motors and to investigate the several components. 

This investigation resulted in the detection of three defects inside the lift motor 

gearbox: 

the various gearwheels, the length of the gearwheel spokes decreased. 

See figure 7.41a. 
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2. The wear down of the gearwheel axles; as a result of the rotation of the 

gearwheel axles in the fixation shafts, the diameter of these gearwheel 

axles decreased. 

The wear down of the fixation shafts; as a result of the rotation of the 

gearwheel axles in the fixation shafts, the diameter of these fixation shafts increased. 

See figure 7.41b.  

 

Original diameter of 
fixation shaft 

(a (b

Degraded diameter of 
fixation shaft 

Degraded gearwheel 
spoke 

Figure 7.41: Degradation of the motor gearbox [VIS04]: 

a) decrease in spoke length. 

b) increase in fixation shaft diameter. 

 

This degradation process of the lift motor’s gearbox results in a continuous 

increase of the play between the various gearwheels. At a certain play-level between 

the gearwheels, the gearwheel transmission becomes irregular due to the difference in 

friction at different positions of the gearwheels. Ultimately, the gearwheel 

transmission fails due to lack of connection between the various gearwheels. In this 

degradation test, this gearwheel transmission failing expressed itself as a instant 

failure mechanism since motor speed and elevation time does not change due to an 

increase in gearwheel play.  
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Based on these degradation test results, it can be concluded that the dominant 

failure mechanism was not identified in the FMEA process. The dominant failure 

mechanism does not find expression in the degradation behavior of the performance 

characteristic elevation time and the design parameter motor speed. As a result, these 

performance characteristic and design parameters cannot be used to describe the 

degradation behavior of the complete paper feed module. Using all these results from 

this degradation test, a new FMEA should be performed. This FMEA should identify 

design parameters that describe the degradation of the gearbox. Furthermore, there 

should be searched for a performance characteristic that describes the degradation of 

the paper feed module due to increases in gearwheel play. Subsequently, the screening 

experiments and degradation tests should be executed once more. 

7.4 Case Study: Paper Input Module (OCÉ) 

The purpose of the third case study differs from the first and the second case 

study. In the first two case studies the purpose was to prove the applicability of the 

protocol of ROMDA that was provided in chapter 6. The first case study was 

successful in this. However, the second case study was unsuccessful due to the fact 

that a wrong failure mechanism was identified as dominant. The consequences of 

focusing on less dominant failure mechanisms are a waste of money and time in terms 

of testing equipment and testing time. This case study focuses more on examining the 

possibility to reduce the risk of concentrating on wrong failure mechanisms.  

7.4.1 Literature 

The problem that is sketched above is not unique. It is a commonly discussed 

problem in literature in relation with quality and reliability studies ([LU02], [PET03]). 
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Literature also suggests a solution by using service and engineering data to 

substantiate conclusions that could be drawn from a FMEA. But for the information to 

be useful it should meet certain criteria. These criteria are ([BRO04], [LU02]): 

1. Define the goal of the information exchange; 

2. Determine the type of information required for the goal; 

3. Evaluate the quality of the available information: 

a. Level of detail 

b. Deployment of information in an organization 

c. Timeliness 

4. Determine the uncertainty of information. 

The first and second criteria are used to determine the service information 

demand for ROMDA. The third criterion deals with the quality of the available 

information. And the fourth criteria focuses on the difference between the information 

need and the available information, which is defined as the uncertainty of information 

[LU02] 

After evaluating the first and second criteria for ROMDA it can be said that: 

1. The goal of the information can be defined as: the determination of the 

dominant failure mechanism and the root-causes of this failure.  

2. The type of information can be split in the need for statistical 

information, which is defined as: ‘The quantitative information about 

the frequency of product failures, meant for statements about (sub-) 

populations of products’ [PET03] and the need for engineering 

information: ‘the information that is necessary in order to be able to 

detect the root-cause of a product failure’ [PET03]. Statistical 

information for ROMDA is necessary since statements about the 
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dominance of failures and about the dominance of causes are required. 

Also engineering information is required for ROMDA this information 

could help to identify the root-causes of the dominant failure. 

3. The third criterion focuses on the quality of information. Three criteria 

define the quality of information.  

a) The level of detail the information provides.  

Several requirements are given by [BRO00] to estimate the level of detail. The 

first requirement is that the data should provide sufficient information to prioritize 

further actions. This requirement is covered in the process of Océ since information is 

collected that identifies the frequency of errors, the data dumps, and the customer 

complaints are registered. The combination of these should be able to prioritize 

further improvement actions. The second requirement is coped with in the field 

feedback system of Océ by making the service product specialist part of the project 

team and responsible for this requirement. The third requirement of the level of detail 

of information is that the data should enable to identify the root-cause of a problem. 

This is solved in the service information process of Océ by making use of the 

Technical Service Manual (TSM) software. However the root-causes of errors or 

complaints from customers are only identified with this software. Hence, the service-

technician uses the software to solve the problem but the information remains 

qualitative. The TSM could be described as a database of the fault trees of all the 

errors described for a product. And each error has several root-causes. Each root-

cause of an error is identified by selecting the fault tree that corresponds to the error, 

followed by several questions that lead to the root of the fault tree. These solutions to 

the errors are unfortunately not made quantitative. Hence, the TSM is able to narrow 
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the focus to a few root-causes for a particular error, however it is not able to give a 

quantitative estimation of the root-causes of a failure. 

b) The deployment of the information to the relevant people in the organization. 

One of the purposes of the SPM department is providing field feedback to the 

R&D department. At the R&D department both types of actors as defined in [BRO00] 

are informed about the situation in the field. Hence, corrective actions as well as pro-

active actions will be started if necessary. 

c) The time it requires to obtain and deploy the information. 

It was already noticed that this criterion was of less importance given the 

purpose of this thesis. However, it should be clear that by including the service 

product specialist in a project team a direct information flow of field feedback is 

created. Furthermore there is made use of Internet and email tooling and therefore a 

direct update of the field performances of products can be taken. 

The last criterion deals with the uncertainty of the information that is gathered 

about a product.  

4. The uncertainty of the information. 

The uncertainty of the information required for ROMDA can be defined as the 

difference between the information needed and the information provided [LU02]. The 

information should provide enough information to determine the dominant failure 

mechanism and the root-causes of this failure mechanism. In other words, this 

information should be able to provide a quantitative estimation of the dominant failure 

mechanism. For the root-causes of the dominant failure mechanism a qualitative 

estimation can be given of a few potential root-causes. For this purpose a fault tree 
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relating failure mechanisms to root-causes can help to determine the level of 

uncertainty of the information. 

7.4.2 Setup case study 

For the purpose of testing the possibility of using service data to reduce the 

uncertainty of focusing on non-dominant failure mechanisms the approach is used to 

independently perform a FMEA and in parallel analyze service data. A few designers 

have independently performed a FMEA on the module under study. Next to that 

service engineers analyzed the service data for the module under study. Figure 7.42 

shows a schematically overview of the setup of this case study.  

 
FMECA 

Time-dep. 
FMECA 

Time-dep. 
causes 

Time-dep. 
FMEA 

Root-causes

Time-dep. 
causes 

Fault tree 

Pareto of 
errors 

Errors in field

Figure 7.42: Process to root-cause identification. 

 

At the end of both independent paths of analyses, the results are compared 

[LAM04]. The results of both paths of analyses show similar results and, therefore, it 

can be concluded that the uncertainty of focusing on the wrong failure mechanism is 

reduced. For details of the analysis the reader is referred to Lamers [LAM04]. 

Literature study together with the results of the case study lead to the 

following conclusions: 
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→ Service information can give a quantitative estimation of the dominant 

failure, if sufficient statistical information is available. Furthermore, when 

the engineering information is also able to provide quantitative 

information, estimations can be made about the dominance of the root-

causes of failures. Therefore, by using service information a quantitative 

motivation can be made for the determination of the performance 

characteristic and the critical design parameters. 

→ Furthermore, the service information can validate the screening 

experiment. Hence, by using this information the first phases of the 

protocol can be done more decisively and the probability of repeating 

these phases will be decreased. Therefore the use of this information can 

contribute to a faster execution of ROMDA. 

→ A restriction for using service data is that it can only be used for a 

derivative product development processes as defined in  [LU02]. These 

development processes should be able to provide relevant service 

information from predecessors. 

7.5 Overall conclusions case studies 

Three case studies have been presented in this chapter. The first case study 

followed the complete ROMDA protocol. This case study demonstrated that the 

protocol is practically applicable.  

The intention of the second case study was to follow the complete protocol 

again and see if it could work for different problems. This case study resulted in the 

conclusion that the first phases of ROMDA are crucial for the success of the end 
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result. For this purpose a third case study was initiated to research the possibilities of 

reducing the high risks of focusing on non-dominant failure mechanisms. Suggestions 

have been presented in the third case study. 

With the results of the three case studies together, it can be concluded that 

ROMDA has a potential to become a method that can be used to meet the objectives 

of the three design requirements. More research is necessary to prove the real value of 

ROMDA and to research to area of application with corresponding boundaries. 
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8 Conclusions and recommendations for further 

research 

8.1 Introduction 

The goal of the research presented in this thesis was to develop one method 

that can provide a solution for multiple objectives. For this purpose many steps have 

been taken leading to ROMDA. These steps include literature research, analysis and 

testing of available methods in literature, combining and adjusting available methods, 

and develop completely new testing strategies. This chapter is organized as follows. 

Section 8.2 provides a short overview of the contents of chapters 1 to 7. In Section 8.3 

the major research findings with respect to the research problem defined in chapter 1 

are summarized. Recommendations for further research are given in section 8.4. 

8.2 Overview of the research 

Chapter one starts by discussing the fact that companies put a lot of effort in 

satisfying the following three design requirements: 

→ Optimization of product design towards robust reliability 

→ Providing information enabling decisions on re-use of systems or sub-

systems 

→ Providing information necessary for optimal preventive maintenance 

decisions 
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This leads to the following research question of this thesis: 

 

Is it possible to develop a method that provides the possibility to tackle 

the three design requirements in an effective way without loss of 

quality of the solution? 

 

In order to be able to answer this research question a few steps have been 

taken. The first important step was to set boundaries for the research area. In summary 

the most important research boundaries are: 

→ This research emphasizes on gradual, or degraded, complete and partial 

extended failures of phase 2 and phase 4 of the roller-coaster curve. 

→ This research took into account three causes of variability (unit-to-unit 

variability, variability due to operating conditions and environmental 

variations, and variability due to product degradation) 

The next important step was to analyze methods existing in literature. Chapter 

3 presents an extensive overview of available methods in literature and discusses the 

suitability of these methods in answering the research question. The discussions 

demonstrate that very useful concepts and ideas are presented in literature, but that not 

one single available method is able to provide a solution for the three design 

requirements simultaneously. Table 3.2 summarizes the results of the literature 

analysis. 

Chapter 4 presents the theoretical framework for the developed method called 

ROMDA. Based on computer-based simulation experiments it was demonstrated 

(chapter 5) that it is possible to provide a solution for the three design requirements 

using one method. However, a critical analysis of the theoretical approach showed 
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that the results of the theoretical framework could not be directly translated to a 

practically applicable method. For this reason chapter 6 presents a practical protocol 

of ROMDA. For this practical protocol all suggestions of the discussions of chapter 5 

are taken into account.  

The practical protocol of ROMDA is tested by means of three case studies 

performed at two different companies. The purpose of the third case study differs 

from the first and the second case study. In the first two case studies the purpose was 

to prove the applicability of the protocol of ROMDA that was provided in chapter 6. 

The first case study was successful in this. However, the second case study was 

unsuccessful due to the fact that a wrong failure mechanism was identified as 

dominant. The consequences of focusing on less dominant failure mechanisms are a 

waste of money and time in terms of testing equipment and testing time. The third 

case study focused more on examining the possibility to reduce the risk of 

concentrating on wrong failure mechanisms. Suggestions have been given and 

initially tested. The suggested approach could indeed lead to less uncertainty, and 

therefore less risk, in focusing on non-dominant failure mechanisms. 

8.3 Contributions of research 

The first contribution that can be identified in this research is the introduction 

of ROMDA that offers the possibility to provide a solution for the three design 

requirements that have been discussed in this thesis. It has been researched as to what 

the commonalities are between the three design requirements and if it was possible to 

use that information for the development of a single method fulfilling the research 
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objective. Literature research (chapter 4) showed that not one single method in 

literature could be found that suited the objective.  

In terms of literature, one important observation is that quality (or time-

independent) related methods focus on the influence of design parameters on the 

performance of a class of products. In these methods the factor time is not considered. 

In maintenance related methods, however, almost no attention has been given to 

design parameters. Those methods focus more on statistical failure data or they focus 

more on monitoring output parameters that indicate the status of a product in terms of 

performance. Reliability related methods can be categorized in a few types of 

approaches. Some focus on statistical failure data, some focus on stress-strength 

characteristics, and some focus on degradation profiles of the performance 

characteristics of a group of products. However, none of them consider the 

combination of degradation of a product in terms of design parameters and 

degradation of the performance characteristic. When doing so, it can result in major 

advantages. This is thouroughly explained in section 2.2 and 4.3. In section 2.2 it is 

explained that using time-dependent design parameters can provide a better 

optimization in terms of yield, but then over time. This was explained with the use of 

the book of Spence and Soin [SPE88]. Section 4.3 discusses the advantages of having 

the extra information on the degradation profiles of the design parameters. One of the 

advantages is the fact that design parameters are physical parameters and usually 

easier to measure than a performance characteristic. In terms of preventive 

maintenance and re-use, it is most often easier, faster and cheaper to measure (or 

monitor) physical parameters online in a product than to measure a performance 

characteristic. 
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The above-two mention contributions are more concept-based. The first 

contribution is the development of one single method that provides a solution for 

three design requirements. The second conceptual contribution is to use time-

dependent design parameter information leading to some major advantages. Next to 

these more conceptual contributions, some more method-based contributions are 

discussed in the thesis. These are: 

→ the adjusted FMEA approach, including the suggestion to use service and 

engineering data parallel to the FMEA analysis 

→ the time-dependent design of experiments 

→ the presentation of a practical step-by-step protocol that can serve as a tool 

for engineers to find a solution for the three design requirements. 

The first point helps to identify the important time-dependent failure 

mechanisms. And including the extra service and engineering data can reduce the risk 

of focusing on non-dominant failure mechanisms. 

The time-dependent DOE can provide a method to reduce costly and time-

inefficient degradation tests, while still collecting statistical degradation information 

that can be used for modeling and predicting the behaviour of a class of products over 

time.  

And finally, the last point serves as a tool for engineers to collect all 

information that is necessary to solve for the three design requirements using only one 

method. 
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8.4 Conclusions 

The research question can be divided in three parts. The first part of the 

research question deals with the possibility to tackle the three design requirements 

using one method. This part of the research question can be answered positively. 

Chapters 4 to 7 demonstrate the fact that the gathered information of all phases of 

ROMDA provide enough information to tackle the three design requirements. 

However, the answers to the second and third part of the research question are less 

evident. The second and third part of the research question describe two conditions 

that a new method has to satisfy. These two conditions are respectively the 

effectiveness of the method, and the quality of the solution of the method.  

 

Quality of solution 

With respect to the quality of the solution it is important to understand that it 

is very difficult to compare ROMDA with other methods. ROMDA is a very complete 

method in terms of practicality. ROMDA starts with the identification of dominant 

failure mechanisms and collects degradation data that can be translated to failure 

behaviour of a group of products. Most methods in literature focus on a specific phase 

or objective. These methods make assumptions on earlier phases, or use input data of 

other methods. An example is that most other methods assume to know the dominant 

failure mechanisms and start at that point. These methods are also many times tested 

on small, simple, and cheap products. With these products it is cheap to test many 

samples in a thorough manner and still fully understand what physically happens. 

Therefore, it is not impossible that those methods run into major problems when 

testing on big, complex, and expensive products, where only a few products are 
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available for testing and life tests take a very considerable time. For these reasons it is 

very difficult to compare the quality of solution of other methods with ROMDA. 

The analyses of the simulation experiments together with the analyses of the 

results of the case studies lead to the conclusion that the quality of the solution of 

ROMDA can be assumed to be similar, or maybe even better than the quality of other 

methods available in literature. Although it is difficult to prove this, it is obvious that 

ROMDA uses the strengths of many methods and combines these into one method. 

By combining the strengths of many different methods, the weaknesses of those 

individual methods are most often solved, or at least reduced. Consider, for example, 

robust design related methods. These methods obviously have their strengths. 

However, these methods are time-independent and only focus on the quality of a 

product design, and not on the reliability. Another example could be the statistical 

failure analysis related methods. These methods consider failure times of a complete 

population of products. However, these methods do not incorporate information of 

how, and why, products fail. Degradation related methods do take this extra 

information into account. ROMDA takes all these strengths into account. This was 

demonstrated in chapter 4. Therefore, it is argued that the quality of the solution of 

ROMDA is similar, or even better than the quality of the solution of other methods 

available in literature.  

Another advantage of ROMDA is the fact that the practical protocol has a 

generic structure. When new methods become available in literature dealing with 

specific problems, like regression modeling, determination of the dominant failure 

mechanisms (like FMEA), optimized test strategies, etc., these could be incorporated 

in the protocol guaranteeing good quality of the solution.  

Effectiveness solution method 
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Also the effectiveness of ROMDA is difficult to test and, therefore, to 

compare with other available methods. At a first glance, it may seem that ROMDA 

takes much more time and effort to be executed. However, when considering a similar 

argument as in the discussion on the quality of the solution, most methods in literature 

focus on certain aspects of the protocol and, therefore, have to make many 

assumptions to execute their methods, like the dominant failure mechanisms. But to 

compare the effectiveness of other methods with ROMDA, this assumption obviously 

has big consequences for the outcome.  

Assume that methods in literature also need to establish a well-motivated 

starting point for the test procedures. And take into account that currently the three 

design requirements are tackled at different phases in the product lifecycle using 

different methods. This may already lead to a faster execution time of ROMDA than 

executing three different methods in different product lifecycle phases. Even though 

initially ROMDA needs to put some extra effort due to the fact that it also has to 

collect data for design requirement that becomes important later in the product 

lifecycle, it is still more efficient than performing three methods with overlapping 

areas of interest. 

Also note that ROMDA has not been executed optimally in the case studies. 

For the case studies the choice was made to take the least risk in the degradation 

testing phase. This resulted in choosing compressed time testing strategies instead of 

the generally faster accelerated degradation testing strategy. This point of attention 

already suggests that the protocol of ROMDA should be optimized itself. 

In summary it could be concluded that it is possible to develop a method that 

can be used to tackle the three design requirements using just one method in an 

effective way without loss of quality of the solution. It is important to mention that in 
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the current state of the ROMDA method it would only be wise to use it in professional 

products where all three design requirements play an important role (e.g. the copier 

machine, a car, etc.). Although ROMDA is developed in such a way that some phases 

could be left out to make the process a lot faster, this has not been investigated. In 

order to explain this point, consider a consumer product like a mobile phone. For such 

a product re-use and preventive maintenance are totally unnecessary, because almost 

nobody uses a mobile phone longer than 3 years. However, it is still a challenge to 

design the product in the cheapest possible way. When this is the only goal, many 

phases can be left out of the protocol, making it much faster. Basically the protocol 

almost reduces to well-known methods from literature. This makes the generalization 

potential of ROMDA very high. But it has not been investigated how ROMDA could 

be used in different types of products.  

This then leads to the recommendations for further research. 

8.5 Recommendations for further research 

The recommendations for further research are divided into two parts. One part 

discusses opportunities for further research from a theoretical point of view, while the 

other part discusses the practical opportunities for further research. 

Recommendation from a theoretical point of view  

The goal of this research was to investigate the possibility to develop one 

method that can tackle all three design requirements simultaneously. For the purpose 

of testing ROMDA some assumptions have been made. The consequences of these 

assumptions should be researched. Three of these assumptions were: 
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→ Throughout this research in the statistical analysis normal distributions 

have been used. The normal distribution might not always be the best 

choice to represent certain data. Using other statistical distribution in the 

analyses can result in more complex statistical modeling and optimization 

problems. This should therefore be investigated in more detail. 

→ Reliability of a population of products can be expressed in many different 

reliability characteristics. In this research only the Mean Time To Failure 

(MTTF) and the Variance of the Time To Failure (VTTF) (or Standard 

Deviation of the Time To Failure (SDTTF)) have been used. Although 

these characteristics can be considered as reliability characteristics, it does 

not always suffice in reliability analyses to only use these simple 

characteristics. The characterization of reliability is therefore a point of 

interest for further research. 

→ Modeling of statistical data and longitudinal data has been done using 

simple regression modeling techniques. For the purpose of testing if 

ROMDA could work, this sufficed. However, to make the analyses more 

rigid and reliable, other modeling methods, and the consequences of these 

modeling techniques, have to be researched. This could eventually lead to 

more precise and more reliable models. This can consequently improve the 

quality of the solution of ROMDA. 

One phase slows down the execution time of ROMDA is the degradation 

testing phase. This phase could be seen as the bottleneck in terms of effectiveness of 

the method. Literature suggests using accelerated degradation testing strategies 

instead of compressed time testing strategies. To improve the effectiveness of 
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ROMDA it has to be researched if, and how, accelerated degradation testing strategies 

could be implemented. 

And finally, more research effort should be put in researching possibilities of 

reducing the risk of focusing on non-dominant failure mechanisms. Most methods in 

literature leave out this issue. However, the second case study showed that the risk of 

focusing on non-dominant failure mechanisms is not negligible. In the third case 

study it is suggested to use service data to reduce the uncertainty of the results of the 

first few phases. But if this approach is the only possible approach, or if other possible 

approaches could be used, this should be further investigated. This could improve 

ROMDA substantially. 

Recommendation from a practical point of view 

To start with the last remark of the conclusions, it should be researched for 

what type of products ROMDA could be used and could be beneficial. This would 

lead to more insight in the boundaries of application of the ROMDA method. In 

theory the protocol could be used for many different product groups and categories, 

but it would not always be beneficial to use it. 

In this research the case studies have performed on products that were 

available for other project purposes. But in order to make implementation of the 

ROMDA method possible in a product development process (PDP), it is crucial to 

understand when in the PDP the ROMDA method should be performed. This has not 

been studied in this thesis. For practical implementation possibilities this point need to 

be researched. 
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Appendix 1 Preliminaries to reliability analysis 

Let a single lifetime variable T be a nonnegative random variable representing 

the lifetimes of individuals in some population. Usually T is assumed to be 

continuous, which is what will be assumed in this part.  

All functions, unless stated otherwise, are defined over the interval . Let 

f(t) denote the probability density function (PDF) of T and let the distribution function 

be 

[ )∞,0

( ) ( ) ( )∫=≤=
t

dftTtF
0

Pr ττ  (A1.1) 

The probability of an individual surviving till time t is given by the reliability 

function 

( ) ( ) ( )∫
∞

=≥=
t

dftTtR ττPr  (A1.2) 

When lifetimes of manufactured items are involved, R(t) is referred to as the 

reliability function. Without interference, e.g. maintenance, R(t) is a monotone 

decreasing continuous function with ( ) 10 =R  and ( ) ( ) 0lim ==∞ ∞→ tRR t .  

Another useful concept having to do with lifetime distributions is the hazard 

function, or failure rate, h(t), defined as 
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The hazard function specifies the instantaneous rate of death or failure at time 

, given that the individual survives up till t. And tt ∆+ ( ) tth ∆ is the approximate 

probability of death in [ , given survival up till t.  )ttt ∆+,

The hazard function h(t) for a continuous lifetime distribution possesses the 

properties 

( ) ( )∫
∞

∞=≥
0

,0 dtthth  (A1.4) 

The functions f(t), F(t), R(t), and h(t) give mathematically equivalent 

specifications of the distribution of T.  

For some purposes it is also useful to define the cumulative hazard function 

( ) ( )∫=
t

dhtH
0

ττ ,   (A1.5) 0≥t

H(t) has the following characteristics 

( ) ( ) ∞==
∞→

tHH
t
lim,00 ,    H(t) is nondecreasing. (A1.6) 

The matrix in table A1.1 from Leemis [LEE95] shows that any of the other 

lifetime distribution representations (given by the columns) can be found if one of the 

representations (given by the rows) is known. 
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Table A1.1: Lifetime distribution representation relationships. 
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Appendix 2 Form validation 

Approximate Solution: Response as a general function of multiple random 

variables. 

),,,( 21 nDPDPDPgPC L=  (A2.1) 

This function could be non-linear. If the mean and variance of each  are 

known, but the distribution is unknown, the approximate mean and variance of  

can be estimated. 

iDP
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Expanding the function  in a Taylor series about the 

mean values 
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where the derivatives are evaluated at the mean values of the DPi’s. 

Truncating the series at the linear terms, the first-order approximation mean of 

PC, denoted as , can be obtained as: )( |PCE

),,,()(
21

|
nDPDPDPgPCE µµµ L≈  (A2.3) 

which indicates that the first-order mean of PC is approximated by the value 

of the function evaluated at the mean values of the DPi’s. The first-order variance of 

PC, denoted as VAR , can be shown as: )( |PC
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where Ei and Ej are constants and are the values of the partial derivatives 

iDP
g

∂

∂
 and 

jDP
g

∂
∂ , respectively, evaluated at the mean values of the DPi’s. 

If the DPi’s are not correlated, then equation (A.6) reduces to 
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i
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The coefficients Ei can be interpreted as amplification factors for the 

uncertainties in each of the corresponding random variables DPi’s. In general, these 

amplification factors will show the importance of the variables involved in the 

formulation. This type of probabilistic approach will also help to identify primary and 

secondary variables in problems where a large number of variables are involved. 

This approximation of the mean and variance of PC can be improved by 

including the higher-order terms in the Taylor series expansion of 

 . If DP),,,( 21 nDPDPDPg L

(PCE

i and DPj are not correlated, the second-order mean of 

PC, denoted as , can be shown to be: )||
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Again, the partial derivatives are evaluated at the mean values of all DPi’s. To 

estimate the second-order variance of PC, the information on the third and fourth 

moments of the DPi’s must be available. However, in most cases this information will 

not be available. The use of the second-order mean and the first-order variance is 

considered adequate for most practical engineering applications. 
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Appendix 3 Simulation experiments: “simple model” 

This appendix shows the results of the simulation experiments of the “Simple 

Model”, as discussed in section 4.2.3. In these simulation experiments the Monte 

Carlo method is used to simulate 1000 products of a certain nominal design. The 

design parameters R1 and R2 can be set at various levels between 0 Ω and 10 Ω. Both 

design parameters R1 and R2 are subjected to variability and degradation. The input 

voltage Vin is constant and 10 Volts during each run of the screening simulation 

experiments. The degradation models of R1 and R2 are: 

)1051()(

)1051()(
4

202

3
101

tRtR

tRtR

⋅⋅+=

⋅⋅+=
−

−

 (A3.1) 

Figure B.1 shows failure rate curves where R1=R2.  
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Figure A3.1: Failure rate curves for various levels of R1=R2 

R1 is uniformly distributed (σ=0.3 Ω). 

R2 is uniformly distributed (σ=0.3 Ω).
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Figure A3.2: Failure rate curves for various levels of R1≠R2 

R1 is uniformly distributed (σ=0.3 Ω). 

R2 is uniformly distributed (σ=0.33 Ω) 
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Appendix 4 Design matrix “simulation 
 experiments” 

This Appendix contains the design matrix and the results of the MTTF and the 

natural logarithm of the SDTTF of the approach to predict and improve Reliability 

through parameter design. The design matrix and the results of both reliability 

characteristics are used to obtain the regression models of equation (5.17) and (5.18). 

Table A4.1: Design matrix and results MTTF and SDTTF.  

run pattern R1 R2 R3 R4 n 
products 

MTTF ln of 
SDTTF 

1 ---- 3.75 7.5 0.95 37.5 30 375.04 3.485 
2 +--- 4.25 7.5 0.95 37.5 30 495.30 3.648 
3 -+-- 3.75 8.5 0.95 37.5 30 240.34 3.504 
4 ++-- 4.25 8.5 0.95 37.5 30 337.90 3.611 
5 --+- 3.75 7.5 1.05 37.5 30 270.69 3.434 
6 +-+- 4.25 7.5 1.05 37.5 30 376.42 3.559 
7 -++- 3.75 8.5 1.05 37.5 30 149.75 3.164 
8 +++- 4.25 8.5 1.05 37.5 30 234.87 3.572 
9 ---+ 3.75 7.5 0.95 42.5 30 410.74 3.462 
10 +--+ 4.25 7.5 0.95 42.5 30 535.55 3.651 
11 -+-+ 3.75 8.5 0.95 42.5 30 261.69 3.452 
12 ++-+ 4.25 8.5 0.95 42.5 30 370.86 3.416 
13 --++ 3.75 7.5 1.05 42.5 30 304.80 3.418 
14 +-++ 4.25 7.5 1.05 42.5 30 414.54 3.446 
15 -+++ 3.75 8.5 1.05 42.5 30 177.98 3.477 
16 ++++ 4.25 8.5 1.05 42.5 30 268.83 3.229 
17 a000 3.875 8.0 1.00 40.0 30 303.92 3.582 
18 A000 4.125 8.0 1.00 40.0 30 348.02 3.258 
19 0b00 4.0 7.75 1.00 40.0 30 355.51 3.463 
20 0B00 4.0 8.25 1.00 40.0 30 285.02 3.222 
21 00c0 4.0 8.0 0.975 40.0 30 355.39 3.531 
22 00C0 4.0 8.0 1.025 40.0 30 300.30 3.462 
23 000d 4.0 8.0 1.0 38.75 30 321.24 3.497 
24 000D 4.0 8.0 1.0 41.25 30 343.63 3.639 
25 0000 4.0 8.0 1.0 40.0 30 331.35 3.462 
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Appendix 5 Results validation test 

This appendix contains the results of the validation test of the regression 

models for the MTTF and the SDTTF of equations (5.17) and (5.18). Tables A5.1 and 

A5.2 show the levels of the design parameters for each run and the results for the 

MTTF and the ln(SDTTF) of respectively the computer simulation experiments and 

the regression models. In the last column the error is tabulated. 

Table A5.1: Results validation test for MTTF.  

run R1 R2 R3 R4 MTTF 
simulation 

MTTF 
regression 

MTTF 
error 

1 3.87 7.51 0.98 39.40 386.00 362.27 23.73 
2 4.05 8.39 1.03 41.42 262.37 253.17 9.20 
3 3.99 7.70 1.01 40.90 349.03 357.57 -8.54 
4 4.20 7.80 0.99 39.81 402.43 405.45 -3.02 
5 4.13 8.16 1.02 40.34 312.43 309.99 2.44 
6 3.98 7.78 1.00 41.47 362.53 368.09 -5.56 
7 3.76 7.97 0.99 37.80 269.77 294.28 -24.49 
8 4.16 7.56 1.02 40.51 413.10 388.61 24.49 
9 3.97 8.49 1.01 37.75 227.10 224.66 2.44 

10 4.06 8.08 1.03 39.58 293.70 294.23 -0.53 
11 4.15 7.92 1.05 39.03 326.93 312.03 14.90 
12 4.21 8.02 1.00 41.87 384.73 394.10 -9.37 
13 4.12 7.83 1.04 37.58 316.77 336.02 -19.25 
14 3.84 7.93 0.97 41.34 342.47 348.82 -6.35 
15 3.95 7.73 1.04 42.35 335.90 342.58 -6.68 
16 4.22 8.08 0.98 42.45 407.23 421.60 -14.37 
17 4.21 8.26 0.98 41.44 355.97 363.54 -7.57 
18 3.96 8.03 1.04 39.69 266.77 271.97 -5.20 
19 4.20 8.14 1.02 39.99 343.50 324.65 18.85 
20 3.78 7.71 0.96 38.57 354.77 350.23 4.54 
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Table A5.2: Results validation test for SDTTF. 

run R1 R2 R3 R4 ln(SDTTF)  
simulation 

ln(SDTTF) 
regression 

ln(SDTTF) 
error 

1 3.87 7.51 0.98 39.40 3.53 3.11 0.42 
2 4.05 8.39 1.03 41.42 3.33 3.25 0.08 
3 3.99 7.70 1.01 40.90 3.14 3.37 -0.23 
4 4.20 7.80 0.99 39.81 3.45 3.45 0.00 
5 4.13 8.16 1.02 40.34 3.28 3.39 -0.11 
6 3.98 7.78 1.00 41.47 3.41 3.54 -0.13 
7 3.76 7.97 0.99 37.80 3.22 3.76 -0.54 
8 4.16 7.56 1.02 40.51 3.76 3.16 0.60 
9 3.97 8.49 1.01 37.75 3.21 3.35 -0.14 

10 4.06 8.08 1.03 39.58 3.41 3.43 -0.02 
11 4.15 7.92 1.05 39.03 3.58 3.51 0.07 
12 4.21 8.02 1.00 41.87 3.31 3.69 -0.38 
13 4.12 7.83 1.04 37.58 3.50 3.87 -0.37 
14 3.84 7.93 0.97 41.34 3.50 3.61 -0.11 
15 3.95 7.73 1.04 42.35 3.13 3.69 -0.56 
16 4.22 8.08 0.98 42.45 3.71 3.86 -0.15 
17 4.21 8.26 0.98 41.44 3.41 3.48 -0.07 
18 3.96 8.03 1.04 39.69 3.24 3.41 -0.17 
19 4.20 8.14 1.02 39.99 3.86 3.41 0.45 
20 3.78 7.71 0.96 38.57 3.42 3.49 -0.07 
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Appendix 6 Validation models simulation 
 experiment 3 

The models expressed in eqn 5.14 and 5.15 are validated to check if they 

predict the MTTF and the SDTTF without any systematic errors. The error of the 

prediction is defined as the difference between the value of the simulation 

experiments (observed value) and the predicted value of the models according to eqn 

5.14 and 5.15. The error should be a random variable with mean zero. The validation 

test consists of 20 runs each with 30 products, with randomly selected settings of the 

design parameters. These tests are conducted and both the MTTF and the SDTTF are 

determined with use of the simulation experiment. Also the models of eqn 5.14 and 

5.15 are used to predict the MTTF and the SDTTF.  
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Figure A6.5: Error in MTTF and SDTTF. 

 

Figure A6.5 shows both the error in the prediction of the MTTF and the error 

in the prediction of the SDTTF for each run of the validation test. Both plots show 

that the mean value of the error terms is approximately zero and that these error terms 

are randomly distributed around this mean value. Hence, it can be concluded that the 

predictions of the MTTF and the SDTTF contain no systematic errors. 
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Appendix 7 The desirability approach 

The Desirability Approach is a method that assigns a “score” to a set of 

responses and chooses parameter settings that maximize this score. For each response 

Yi(x), a desirability function di(Yi) assigns numbers between 0 and 1 to possible values 

of Yi, with di(Yi)=0 representing a completely undesirable value of Yi and di(Yi)=1 

representing a completely desirable or ideal response value.  

The two individual desirabilities are then combined using the geometric mean, 

which gives the Overall Desirability D [DER80]: 

2
1

2211 ))()(( YdYdD ×=   (A7.1) 

with d1(Y1) the desirability function of the MTTF and d2(Y2) the desirability 

function of the SDTTF. This Overall Desirability has to be maximized with respect to 

the controllable design parameters. 

Depending on whether a particular response is to be maximized or minimized, 

different desirability functions can be used. The desirability functions used here, are 

proposed by Derringer and Suich [DER80]. The desirability function for maximizing 

a response, in this case the MTTF (Y1), is defined as: 
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with L1 the lower value and T1 the target value that are desired for the MTTF.  
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Figure A7.1: Desirability function for MTTF. 

 

The desirability function provided for minimizing a response, the SDTTF (Y2), 

is of the form: 
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with U2 the upper value and T2 the target value which are intended for the 

standard deviation of the time-to-failure.  

d2(Y2) 
    
1 

T2 
0 Y2 U2 

Figure A7.2: Desirability function for SDTTF. 

 

In order to maximize the Overall Desirability, levels for the upper, lower and 

target values have to be chosen. The levels of these values are given in table A7.1. 
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Table A7.1: Values of the desirability functions. 

 Lower value 
MTTF: L1 

Target value 
MTTF: T1 

Target value 
SDTTF: T2 

Upper value 
SDTTF: U2 

Levels 20 600 0 40 
 

 

The lower value L1 of the MTTF is chosen to be 20 because this approach only 

makes use of data starting from time t20 while the target value T1 is set on 600. This 

level is chosen after studying the results of the simulation experiments, which show 

that the MTTF will not exceed this value. The target value T2 of the SDTTF is 

obviously zero in order to minimize this characteristic. Again the upper value U2 is 

chosen after studying the simulation experiments and is set on the level of 40 as 

shown above in table A7.1.  

The two desirability functions and the upper, lower, and target values are used 

to determine the Overall Desirability for every combination of the MTTF and the 

SDTTF obtained by setting the design parameters on different levels. Next, a 

sequential optimization is used to find design parameter settings that result in the 

maximum Overall Desirability. Figure A7.3 shows an example of a sequential 

optimization for two design parameters.  
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Figure A7.3: Sequential optimization approach [BIS01]. 

 

In every optimization step, a random sample of 100 products within a local 

area of interest (see figure 5.10) is used to determine the “optimal” setting of the 

design parameters for that particular optimization step. The entire design region in 

which the optimization takes place is equal to the region used in the Design of 

Experiments (table 5.4). The “optimal” setting of the design parameters in each 

subsequent local area of interest is used to center a new region for sampling in the 

next sequential optimization step, until no further improvement of the Overall 

Desirability is observed. This will ultimately lead to the optimal setting of the design 

parameters, which provides the maximum Overall Desirability. 
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Appendix 8 ”Main tray experiments” 

This appendix contains the results of the ‘Main Tray Experiments’ conducted 

on the 29th and the 30th of May 2002 at Flextronics. 

The results (below) show that three factors have dominant influence on the 

current rise time, namely the voltage of the PWBA (U24), load of the rolls mechanism 

(Motor load) and the resistance of the PWBA (PwbaRs). Since the voltage of the 

PWBA (U24) is rather constant and dependent of the resistance on the PWBA, it is 

chosen to exclude this factor in these experiments. 

The influence of load on the current rise time is shown in the current profiles 

on the left-hand side. An increase in the load will result in a decrease of the current 

rise time. 

The parameter estimates are not correlated.
The parameter estimates have equal variances.

t-Test Scale
Coded Scale

 
  0.06375

0.0159375

Lenth PSE

Intercept
U24v(22,26)
SetSize(5,50)
MotorLoad(0,6.5)
PwbaRs(0,0.75)
PwbaTemp(28,60)
BeltTension(1.08,2.16)
U5v(4.5,5.5)
Day[1]
U24v(22,26)*SetSize(5,50)
U24v(22,26)*MotorLoad(0,6.5)
U24v(22,26)*PwbaRs(0,0.75)
U24v(22,26)*PwbaTemp(28,60)
U24v(22,26)*BeltTension(1.08,2.16)
U24v(22,26)*U5v(4.5,5.5)
U24v(22,26)*Day[1]

Term
  5.03625
 -0.55500
 -0.01250
 -0.21375
 -0.07375
  0.00250
 -0.01250
 -0.01625
  0.00875
 -0.00125
  0.03750
  0.02250
 -0.00125
  0.00375
  0.01500
-0.00750

Original
  5.03625
 -0.55500
 -0.01250
 -0.21375
 -0.07375
  0.00250
 -0.01250
 -0.01625
  0.00875
 -0.00125
  0.03750
  0.02250
 -0.00125
  0.00375
  0.01500
 -0.00750

Orthog Coded
316.0000
-34.8235
 -0.7843
-13.4118
 -4.6275
  0.1569
 -0.7843
 -1.0196
  0.5490
 -0.0784
  2.3529
  1.4118
 -0.0784
  0.2353
  0.9412
-0.4706

Orthog t-Test
<.0001
<.0001
0.4451
<.0001
0.0003
0.8774
0.4451
0.3241
0.5911
0.9385
0.0327
0.1784
0.9385
0.8172
0.3615
0.6447

Prob>|t|

Parameter Estimate Population

Effect Screening
p p

U24v(22,26)
MotorLoad(0,6.5)
PwbaRs(0,0.75)
U24v(22,26)*MotorLoad(0,6.5)
U24v(22,26)*PwbaRs(0,0.75)
U5v(4.5,5.5)
U24v(22,26)*U5v(4.5,5.5)
BeltTension(1.08,2.16)
SetSize(5,50)
Day[1]
U24v(22,26)*Day[1]
U24v(22,26)*BeltTension(1.08,2.16)
PwbaTemp(28,60)
U24v(22,26)*SetSize(5,50)
U24v(22,26)*PwbaTemp(28,60)

Term
-0.5550000
-0.2137500
-0.0737500
 0.0375000
 0.0225000
-0.0162500
 0.0150000
-0.0125000
-0.0125000
 0.0087500
-0.0075000
 0.0037500
 0.0025000
-0.0012500
-0.0012500

Orthog Estimate

Pareto Plot of Transformed EstimatesT_pr1_t1  
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Full 

Nominal 

No 

Current rise time = f(load): 
No load: Current rise time=337µs 
 
Nominal Load: Current rise time 
=308µs 
 
Full Load: Current rise time =266µs 
 
Total ∆ current rise time at no/full 
load=71µs. 

Full 

Nominal 

No 

Current rise time = f(load): 
No load: Current rise time=337µs 
 
Nominal Load: Current rise time 
=308µs 
 
Full Load: Current rise time =266µs 
 
Total ∆ current rise time at no/full 
load=71µs. 

 

 304 



 

Appendix 9 Main experiments 
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