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Abstract

This thesis introduces a novel approach to the analysis and control of

a portfolio of credit card accounts, based on a two dimensional Markov

Decision Process (MDP). The state variables consist of the due status

of the account and its unused credit limit. The reward function is thor-

oughly detailed to feature the specificities of the card industry. The

objective is to find a collection policy that optimizes the profit of the

card issuer. Sample MDPs are derived by approximating the transition

probabilities via a dynamic program. In this approximation, the tran-

sitions are governed by the current states of the account, the monthly

card usages and the stochastic repayments made by the cardholder. A

characterization of the cardholders’ rationality is proposed. Various ra-

tional profiles are then defined to generate reasonable repayments. The

ensuing simulation results re-affirm the rationality of some of the current

industrial practices. Two extensions are finally investigated. Firstly, a

variance-penalized MDP is formulated to account for risk sensitivity in

decision making. The need for a trade-off between the expected reward

and the variability of the process is illustrated on a sample problem.

Secondly, the MDP is transformed to embody the attrition phenomenon

and the bankruptcy filings. The subsequent simulation studies tally with

two industrial recommendations to retain cardholders and minimize bad

debt losses.
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Chapter 1

Introduction

1.1 Background

Since the introduction of the credit card in the 1960s, the banking industry in the

field has been booming. Credit card banking has proven to be one of the most

profitable consumer lending industries, which has been actively developing over the

years. As in any lending activity, profit is yielded by running the risk of default

or bankruptcy from the debtor side. Issuers, in order to handle the exploding de-

mand, have no alternative but to rationalize and to automate their decision-making

processes instead of using the classic judgemental analysis. Today, credit card in-

stitutions deal with substantial portfolios of accounts and a fierce competition is

taking place to conquer new market shares. Credit card groups, eager to acquire

new accounts, are thus led to take more risks and consequently suffer considerable

overall debts and substantial write-offs due to bad debts. To remedy this situation,

card issuers have been making intensive use of financial forecasting tools. With

intensive data warehousing becoming a common place and steadily improving in-

formation systems, the sharpening competition has exacerbated growing needs for

accurate predictive models of risk and for techniques to efficiently manage accounts.

The credit granting decision has attracted considerable attention over the last four
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1.2 Impact of Delinquency and Default

decades and has turned out to be one of the most lucrative applications of Manage-

ment Science. Likewise behaviourial scoring, serving the purpose of assessing the risk

of existing cardholders, has been the focus of intense research both in the academia

and in the industry. On the other hand, relatively scant attention has been dedicated

to the dynamic management of the approved applicants. The present study aims

to develop an effective operational strategy to manage customers and, in particular,

risky customers.

1.2 Impact of Delinquency and Default

Broadly speaking, the economic growth has, in recent years, generated a rise in

per capita income that was accompanied by a rising consumption. These joint

phenomenon together with an ever more widespread use of credit cards have resulted

in an increasing consumer debt and in particular credit card debt. This growth

in the credit card debt has been overall accompanied by raising charge-offs and

delinquency. The following plot, reproduced from Ausubel [4], depicts such a trend

for the American market.

Figure 1.1: Credit Card Delinquencies and Charge-Offs from 1971 to 1996 (Repro-

duced from Ausubel [4])
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1.3 Characteristics of Credit Card Banking and Related Problems

The delinquency rates and charge-offs are substantial and thus prove the ne-

cessity of an appropriate management of the existing cardholders and in particular

the need for an accurate collection policy. One such policy is crucial to the good

evolution of the portfolio from month to month as well as the minimization of the

amount of bad losses.

1.3 Characteristics of Credit Card Banking and

Related Problems

Credit card banking is a consumer lending activity characterized by monthly periods

of credit. It can be regarded as an open end loan featuring high interest rates and

flexible monthly payments. The lifetime of a credit card account is bounded by its

expiration date, after which the card will usually be reissued. Credit card banking

is by nature a risky activity which leads the issuers to face two different types of

problems: the credit granting problem and the cardholders management problem.

1.3.1 The Credit Granting Problem

Formally stated, the credit granting problem is to decide on whether to grant credit

to an applicant and, in the case of approval, to accurately determine the credit

lines. The credit lines should be set so as to fulfill the cardholder’s needs of credit,

be at low default risk and yield a maximum profit derived from the card usage. The

problem consists then of optimizing the discriminative analysis amongst a population

of applicants with respect to these objectives.
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1.4 Thesis Overview

1.3.2 The Cardholders Management Problem

The second category of problems has a much wider scope as it is concerned with the

management of a portfolio of existing accounts. The related objectives cover a wide

variety of situations and the approaches to these problems may be very diverse. The

card issuer may, for instance, aim to reduce attrition or seek to determine credit line

changes that will increase the profitabilities of a qualified population of cardholders,

with substantial usages and low risk profile. The minimization of default rate and

charge-offs is yet another key problem. There are two different types of approaches

to one such problem;

1. Statistical approaches using scorecards and behavioural scoring to estimate the

risks of the applicants or the future profitabilities of the current customers.

2. Dynamic models of the customers’ behaviours.

The literature review would be developed along these lines of distinctions between

statistical and dynamic approaches. The statistical approaches would first be in-

troduced in order to familiarize with the types of problems encountered and to

understand their stakes. Emphasis shall then be put on the dynamic modeling as it

constitutes the main focus of the present study.

1.4 Thesis Overview

1.4.1 Objectives

The objective of this research is to develop a general framework for the optimization

and analysis of a portfolio of credit card accounts. The main focus is to work out

4



1.4 Thesis Overview

collection policies which optimize the profitabilities of the accounts, minimize the

credit losses and charge-offs, reduce the operating costs incurred by the undertaken

collection strategies. A Markov decision process is so developed to capture the

dynamic characteristics of the problem with consideration to the stochastic nature

of the cardholders’ repayments first and secondly to the attrition of accounts and

to the possible bankruptcy filings. Finally an approach unifying the risk sensitivity

and the expectation of profitability is formalized and computationally solved.

1.4.2 Research Scopes

A two dimensional Markov decision process with an absorbing state, accounting

for the written-off accounts, is first defined. It is solved for both the finite horizon

to derive value forecasts and for the infinite horizon to derive stationary collection

policies.

A variance penalized Markov decision process is then proposed to model the risk

variability.

As for the bankruptcy filings and the attrition phenomenon, the initial Markov

decision process is modified so as to embody either of these stochastic components.

1.4.3 Methodology

The Markov decision process is first thoroughly specified. The rules defining the re-

lation of the cardholder to the card issuer are precisely looked into and subsequently

formalized. The different cash flows and the specificities of the credit card industry

are thus accounted for in an implementable Markov decision process.

Owing to the difficulty of obtaining confidential data, a simulation approach is fa-

vored. To that end, an approximate dynamic programming approach is proposed to

5



1.4 Thesis Overview

model the cardholders’ behaviors. A criterion defining the rationality of the card-

holders in their repayments is proposed and used to generate reasonable transition

probabilities. Based on the credit card agreement of a major issuer in Singapore, a

simulation study is conducted and the results are interpreted in the light of some

industrial recommendations.

The variance penalized Markov decision process is adapted from Filar and Kallen-

berg [14]. Developing on their theoretical work, a scheme is proposed to computa-

tionally solve the related problem. A case sample shows that the different Pareto

optimums for the expected total reward and the associated variability are worked

out by increasing the penalization factor.

The novel approach to include either the attrition phenomenon or the bankruptcy

filings is based on the embodiment of either of these stochastic variables in the orig-

inal Markov decision process. Making use of the structural property of the initial

Markov decision process featuring an absorbing state, additional transitions and

their corresponding rewards are defined to account for the attrition of the accounts

or the bankruptcy filings. Assuming these two phenomena to be one-step Markovian

processes, the resulting problem is proven to be a proper Markov decision process.

6



Chapter 2

Literature Survey

2.1 Introduction

Credit scoring, behavioural scoring, models of repayment and usage behaviour are

techniques used by financial institutions to make decisions in the risky environment

of consumer and credit card lending. The objective of credit scoring is to decide

on whether to grant credit to a new applicant, to determine the amount and the

limits (lines) of the credit [see 1.3.1]. It aims to distinguish potentially “good” card-

holders from “bad” 1 ones among the population of credit card applicants where

limited information is available. On the other hand, behavioural scoring and be-

havioural models of usage provide a help in managing existing clients [see 1.3.2].

They allow financial institutions to forecast probability of default, expected profit

and subsequently to manage their risky clients. These tools can be used to reduce

the risk of cardholders defaulting, to minimize credit losses as well as costs, involved

in debt collection. Scoring has been the focus of extensive commercial research and

1The definition of“good”and“bad”cardholders is somewhat arbitrary since it requires choosing
some criteria to assess the quality of an account. However, a large consensus prevails in the industry
[see 40]: “bad” cardholders are customers who, within the time window of consideration, either
default or miss at least three consecutive payments (often referred to as “Ever 3 down”). The
“good” cardholders are the complementary part of the population qualifying for the separation.

7



2.2 Predictive Models of Risk

is widely used in the banking industry. Surveys can be found in [26, 35, 40]. Scoring

techniques do not consider the stochastic and dynamic aspects of managing existing

clients. They are, nevertheless, the most widespread decision systems in the indus-

try for their efficient predictive powers and their abilities to handle and aggregate

numerous characteristics of each cardholder. The literature review would first pro-

vide an overview of scoring. Secondly, the focus would be put on the behavioural

modeling and particularly on stochastic modeling using Markov Chains. There has

been a considerable amount of work done in the area, however some publications

may suffer from a lack of clarity for confidentiality of data is a highly sensitive issue

in the banking industry.

2.2 Predictive Models of Risk

2.2.1 Credit Scoring

2.2.1.1 Introduction

Durand [13] was a precursor in applying statistical methods to problems in corporate

finance. In 1941, his study for the US National Bureau of Economic Research paved

the way of using objective and rational techniques to discriminate good and bad

loans. Henry Wells of Spiegel Inc. further pursued investigations in the field in or-

der to build a predictive model. It is generally recognised that Wells elaborated the

first credit model in the late 1940s. Predictive models, however, were sparsely used

until Bill Fair and Earl Isaac completed their first works in the early 1950s. Later

on, the successful introduction of credit cards and the consecutive high demand of

credits resulted in numerous developments of credit scoring techniques. Thomas

[40] and Baesens, Gestel, Viaene, Stepanova, Suykens, and Vanthienen [5] provided

extensive academic insights of the different scoring techniques and algorithms in use

8



2.2 Predictive Models of Risk

today, while Mester [30] and Lucas [26] offer interesting approaches from a business

perspective.

Credit scoring comprises methods of evaluating the risk of credit card applications.

In particular, credit scoring aims to discriminate applicants that are likely to be

“good” and profitable cardholders from applicants that are likely to be “bad” card-

holders over a finite period of time. For accuracy reasons, the time horizon consid-

ered is usually limited to twelve months.

Originally, credit scoring produces a score for each applicant that measures how

likely the applicant is to default or to miss three consecutive payments. Its compu-

tation makes use of inputs such as credit information reported through application

form and Credit Bureau data concerning the cardholder credit history. The char-

acteristics that have a predictive power are detected after thorough analysis of the

historical data. Most scoring systems have a threshold score called the cutoff score

above (below) which the applicant is believed to become a “good” (“bad”) card-

holder.

The definition of credit scoring has progressively been broadened. Nowadays, it

refers to the class of problem of discriminating “good” from “bad” applicants when

the only information available comprises answers provided on the application form

and a possible check of the applicant’s credit history with some external credit

bureaus. Application scoring is mainly based on statistical techniques, neural net-

works and other operational research methods. Saunders [36] presented a discussion

of these different methods.

2.2.1.2 Statistical Techniques

Statistical techniques can be divided into two categories, namely parametric and

nonparametric approaches. Parametric approaches were the first to be developed.

9



2.2 Predictive Models of Risk

The most commonly used techniques of this kind comprise linear regression, logis-

tic regression, probit model and discriminant analysis. Later on, investigations of

nonparametric approaches have led to the elaboration of techniques such as classi-

fication trees or k-nearest neighbors. The present review would first introduce the

different parametric approaches and further give an overview of the nonparamet-

ric ones. The description of the parametric approaches is restricted to logistic and

probit regressions for the linear one actually falls in the same vein.

2.2.1.3 Parametric Approaches

Logistic regression is currently the most widespread credit scoring technique. This

approach assumes the logarithm of the ratio, between the probability of a cardholder

being“good”given his application characteristics and the probability of a cardholder

being “bad” given his application characteristics, to be a linear combination of the

characteristic variables. Let x = (x1, x2, ..., xn) be the vector of application char-

acteristics comprising, for each applicant, of information from application form and

possible data from external credit bureau [5]. Let w = (w1, w2, ..., wn) be the weight

or importance granted to each characteristic of the vector x. Let p(good|x), p(bad|x)

be the probability that the applicant turns out to be a good (bad) cardholder given

its application characteristics x, respectively.

ln(
p(good|x)

p(bad|x)
) = ln(

p(good|x)

1− p(good|x)
) = w0 + wTx (2.1)

The parameters w0,w are derived by applying maximum likelihood estimators

to the samples reported from the historical data. The logistic regression can be

connected to the scoring technique. Let s(x) be the score of the applicant calculated

as follows s(x) = w0 + wTx. Equation 2.1 is hence equivalent to,

p(good|x) =
1

1 + exp(−s(x))
(2.2)

10



2.2 Predictive Models of Risk

The probability of an applicant being “good” given his characteristic is an in-

creasing function of his score. This consideration is naturally consistent with the

definition of a cutoff score above (below) which the application is approved (re-

jected).

Likewise, probit models aim to fit, as accurately as possible, a linear score of the ap-

plication characteristics to the reported data. Whereas logistic regression postulates

the logarithm of the odds of conditional probabilities of being “good” against being

“bad” to be a linear combination of the application characteristics, probit models

assume the probability p(good|x) to be distributed according to a cumulative normal

distribution of the score of the applicant N(s(x)).

s(x) = w0 + wTx (2.3)

p(good|x) = N(s(x)) =
1√
2Π

s(x)∫
−∞

exp(
−s2

2
)ds (2.4)

The probit model objective is, given the reported data, to find w0,w for which

the latter normality condition best holds.

Discriminant analysis differs from the above for it aims to divide applicants into

high and low default-risk rather than estimating probability of default. To that

effect, a classification rule is defined: an applicant is considered to be “good” if

his probability of being “good” given his application characteristics is greater than

his probability of being “bad”. One should postulate a prior class of distributions

for the conditional probabilities p(x|good), p(x|bad) of a cardholder having appli-

cation characteristics x given that he is “good”, “bad” respectively. It is commonly

assumed that the latter probabilities belong to the class of multivariate Gaussian

distributions. The decision rule is then a quadratic expression of x, called quadratic

discriminant analysis (QDA). The outputs of the discriminant analysis are the es-

timations of the parameters of the two normal multivariate distributions that best

11



2.2 Predictive Models of Risk

match the reported data.

In the special case, where the covariance matrices for p(x|good), p(x|bad) are equal,

the rule simplifies to a linear rule. Such discriminant analysis, known as linear

discriminant analysis (LDA), features two standard results;

• Fisher [17] elaborated a method called Fisher’s Linear Classification Function

(LCF) that, in this special case, can be used to find the parameters w defining

a score that best separates the two groups.

• Beranek and Taylor [6] suggested a profit oriented decision rule in this par-

ticular case. The classes of “good” and “bad” cardholders are defined so as to

minimize the expected losses due to the misclassification of “bad” cardholders

into the “good” category and due to the misclassification of “good” cardholders

into the “bad” category. The latter misclassification is actually a lost oppor-

tunity of making profit since applicants that would have turned out to be

profitable are in this case rejected. In the present special case, this decision

rule simplifies as well to a linear combination of the application characteristics

weighted by their w.

The previous parametric statistical techniques have two major flaws. Firstly, some

difficulties arise when dealing with categorical information. Many questions in the

application forms, such as “does the applicant own his residence?”, typically gener-

ate yes/no answers that are called categorical answers. One way to overcome this

difficulty [see 40] is to consider the answer to the question as binary variables. How-

ever, it often leads to a large number of variables even with a few questions of the

kind. Another way to solve the problem is first to do prior grouping according to

the answers of such questions, and then in each yes (no) category to compute the

ratio between the probability of being “good” and the probability of being “bad”.

Such ratio is then the value of the variable associated to the categorical answer.

12



2.2 Predictive Models of Risk

Secondly, the preceding parametric statistical approaches have strong hypotheses

concerning the score and its linearity. They are subsequently sensitive to correla-

tions of variables that are bound to happen in real cases.

2.2.1.4 Nonparametric Approaches

One of the most common nonparametric statistical approaches is the k-nearest neigh-

bor classifier. This technique will divide the new applicants into two categories or

labels; “goods” and “bads”. Any existing or past individual is beforehand assigned

to any of these labels depending on his reported results. In order to perform the

classification of the new applicants, a metric defined on the space of application data

and a decision rule are needed. The metric measures how similar new applicants

and existing (or past) cardholders are. The Euclidian distance is commonly used.

The decision rule should be defined so as to assign as accurately as possible new

applicants to one of the two class labels. For instance, a rule frequently applied is

that a new applicant belongs to the class that contains the majority of his k-nearest

neighbors (in terms of the metric defined). Such a system can easily be updated.

The choice of the metric together with the decision rule is a highly sensitive issue in

this kind of model.

Classification trees were first developed in the 1960s. This type of classifiers

aims to segment cardholders into groups of rather similar or homogeneous credit

risk. Different algorithms exist to build such trees and to decide how to split the

nodes. Nevertheless, they all split iteratively the sample of reported data into two

subsamples. At each step, the criterion used in node splitting is to maximize the

discrimination of the risk of default between the two resulting subsamples. Such a

criterion allows one to point out which variable of the application characteristics best

splits the subsamples and also allows one to decide when to stop. A terminal node

13



2.2 Predictive Models of Risk

is then assigned to the category of “goods” (“bads”) if the majority of its applicants

is “goods” (“bads”). To predict the outcome of a new applicant, one just needs to

scan down the tree according to his application characteristics. The new applicant

will be considered “good” (“bad”) if his terminal node is “good” (“bad”).

2.2.1.5 Neural Networks

In the 1990s, neural networks started to be applied to discriminate“good”from“bad”

applicants. They are artificial intelligence algorithms that are able to learn through

experience and to discern the relationships existing between application characteris-

tics and probability of the applicant to default. West [43] proposes a benchmarking

approach that compares neural networks of increasing level of complexity to the

traditional statistical approaches. The main feature of neural networks is their abil-

ity to model non-linear relationships between application characteristics and default

risk. The type of networks commonly used for credit scoring is the multilayer per-

ceptron which comprises of an input layer, some hidden layers and one output layer.

The present description, solely aiming at the understanding of the concepts of neu-

ral networks, restricts to the introduction of a multilayer perceptron comprising of

only one input layer of n entries, a single one hidden layer of m neurons and a

unique output neuron. The input layer consists of the application characteristics(
xi

)
, i = 1, . . . , n. The output is a single neuron which eventually estimates the

conditional probability of the applicant being “good” given his characteristics. Let

(λi, j), i = 1, . . . , n, j = 1, . . . ,m be the weight to connect input i to hidden neuron

j. The sum of the weighted inputs and of a bias term bj is used to compute the out-

put of each neuron j of the single hidden layer via a first transfer function ϕ1. This

function is identical for each neuron of the hidden layer. The transfer function is not

necessarily linear and therefore allows modeling of non-linearity. The outputs of all

14



2.2 Predictive Models of Risk

the neurons j of the hidden layer are then used, in an identical manner. Let µj be

the weight to connect the hidden neuron j to the unique output neuron. The sum of

their weighted outputs and of a bias term c is used as the input of the final transfer

function ϕ2 to compute the output of the unique output neuron. This output is the

conditional probability of default. The logistic transfer function is frequently used

as the final transfer function for it takes values in [0, 1].
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Figure 2.1: Multilayer Perceptron

The neural network is trained with the reported set of data. The training mainly

consists of estimating as accurately as possible the weight parameters (λi, j), µj.

After that, the neural network can be used as an updatable predictive model.

The features of the neural networks are obviously attractive. Nevertheless, they have

not clearly proven, so far, to be superior to other approaches in the field. Rather,
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they are used for fraud detection for instance.

2.2.1.6 Operational Research Techniques

Some operational research techniques are frequently used in the industry. They

mainly consist of linear programming (LP) and support vector machines.

LP is based on the assumption that an accurate score can be obtained as the sum of

the weighted characteristic variables. A cutoff score c is a priori set. The latter de-

fines a hyperplane that separates the categories of the “goods” from the “bads”. The

constraints of this LP are then defined as follows: the “goods” (“bads”) are supposed

to have a score higher (lower) than the cutoff score c. One should account however

for possible misclassifications by introducing slack variables in the constraints. A

“good” (“bad”) account, for instance, may have a score slightly lower (higher) than

the cutoff. The slack variables allows the constraint of the cutoff to be respected

without misclassification. Solving this LP, according to the reported data, eventu-

ally builds a linear scorecard assigning the weights to the application characteristics

that minimizes the misclassification errors. Joachimsthaler and Stam [23] provided

an excellent review of this class of problems. Following their general presentation,

an LP formulation is introduced to model the application scoring.

Let i be the index of the past applications. The range of i covers the whole training

set of applications derived from past data. Applicant i can either belong to the class

of “goods” or to the class of “bads”. Let xi = (x1, i, x2, i, ..., xn, i) be the vector of

application characteristics of applicant i and w = (w1, w2, ..., wn) be the vector of

weights associated to each of these characteristics. w = (w1, w2, ..., wn) is common

to all the applicants in the training set. Introduce di, G, di, B to be positive slack

variables to model the misclassification errors in each category. The decision vari-

ables of the present LP are then w, di, G, di, B. The l1 - norm is used to measure the
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misclassification.

min
w, di, G, di, G

∑
i∈goods

di, G +
∑

i∈bads

di, B (2.5)

subject to, 

wTxi + di,G ≥ c if i ∈ “goods”

wTxi + di,B ≤ c if i ∈ “bads”

di,G ≥ 0

di,B ≥ 0

w unrestricted

(2.6)

Solving this LP will provide the decision variables that minimize misclassification

errors. In particular, the optimal w will define the scorecard to be applied to future

applicants.

Other similar approaches to solve this kind of problem exist. They include mixed-

integer programming formulation and hybrid model. The latter, for instance, does

not require setting a prior cutoff score c. This task is a sensitive issue which is

usually handled by experienced analysts. The hybrid model instead considers c as

a decision variable of the optimization problem associated.

Recently support vector machines models have been developed to solve the pre-

ceding classification problem. The approach is similar to the LP formulation. The

constraints are still linear but now include a featuring space, and the objective

function differs by introducing a quadratic term wTw representing the margin that

separates the two classes of “good” and “bad” applicants. This constraint optimiza-

tion problem belongs to the class of convex programming models that can be solved

using Lagrangian multipliers.
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2.2.2 Behavioural Scoring

Behavioural scoring aims to improve the management of cardholders so as to increase

their profitabilities to the bank. The behavioural scorecards incorporate credit scores

from external bureaus, data from application forms and data related to repayment

histories and usages. The latter are extra information that is not available when

performing the credit scoring. Thus, the building of the related scorecards requires

a sample history of each existing cardholder that is referred to as performance pe-

riod. The performance period can range from 12 to 18 months before the actual

date of consideration. Likewise, the scorecards require a time horizon that sets an

outcome date for the current account; 12 months after the end of the performance

period is commonly used. Many characteristics related to usages made by card-

holders are continuously reported and recorded in data warehouses. Behavioural

scoring techniques thus include many variables describing cardholders’ behaviour

such as payment history, various installment balances, and outstanding balance to-

gether with the application characteristics. Behavioural scoring also makes use of

delinquency history. The latter reports the history of overdue periods as well as the

corresponding outstanding balance. Again, different techniques such as linear, mul-

tiple, or logistic regressions, and discriminant analysis have been applied to pinpoint

the most sensitive variables and to forecast the likelihood of a cardholder defaulting

according to his individual credit score and credit card usage.

The classification-based behavioural scoring systems may divide the population into

different clusters and apply to them different scorecards and forecasts. Moreover,

cardholders can be split into two categories; new cardholders and established card-

holders. A reduced weight is then granted to the performance period for the new

cardholders category. The performance period of the latter category can be reduced

to 6 months after which the definition of ’bad account’ is updated according to the

cardholder’s usage. This definition is then applied for the future credit management
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of the cardholder.

The probability of a cardholder defaulting his future payment, his delinquency his-

tory as well as the probability of his switching account to a competitor are the main

elements of the scorecards. They provide essential information in order to build a

value model for the portfolio and to decide optimal credit control. For instance,

based on these data, the financial institution can decide whether or not to take re-

minding or warning actions and can set the timing and scheduling of these actions.

2.3 Behavioural Models

One of the shortcomings of the scoring techniques is that by nature the dynamic

evolution of the cardholder is not considered in the model. However, they have

proven to be sufficiently accurate to become the dominant tools of screening as of

today. The review will present firstly a chronological approach to the development

of behavioural models and secondly the latest developments.

2.3.1 Genesis of the Behavioural Models

Cyert, Davidson, and Thompson [12] introduced the first dynamic model to describe

the evolution of accounts receivables. Their article is considered as the classic basis

and the initial reference in the field. Their model, hereafter referred to as CDT ,

makes use of Markov chains to estimate the amount of dollars of receivables in a

retail establishment that will turn out to be uncollectible. The idea underlying this

Markov chain approach is to define a state space together with its related transition

probabilities to estimate the moves of the dollars of receivables of the whole portfolio

between the different due status. The CDT model deals with accounts of a retail

establishment and other businesses but not necessarily with credit card accounts.
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However the scope of the article and the techniques developed are of interest.

Consider the dollars of receivables of a balance of a retail account at time t. Define

the following age category as follows:

B0[t] dollars of receivables that are 0 month past due

B1[t] dollars of receivables that are 1 month past due

...

Bi[t] dollars of receivables that are i months past due

...

Bn[t] dollars of receivables that are n months or more past due

Hence, i is the state variable. Bn corresponds to the bad ‘debt category’ for which the

account balance can be repaid eventually or charged off i.e. the account is written-off

as uncollectible. The acceptable period of delinquency in the credit card industry is

usually limited to 90 consecutive days overdue from the contractual due date after

which the account is usually classified as substandard. A substandard account is

subject to more severe collection reminders and strategies since the cardholder who

kept falling into arrears with repayments is less likely to pay back. Cardholders who

eventually miss 8 consecutive payments will have their accounts charged off and

their debts is a loss due to default.

Consider now the evolution of the dollars of receivables from month t to month t+1.

Let Bi, k[t] be equal to the amount of dollars in age category i as of month t that

moves to age category k as of month t + 1. It is necessary to add one age category

denoted Bθ to those categories previously defined in order to account for the dollar

of receivables that are fully paid as of month t. A (n + 2)× (n + 2) square matrix,

whose entries are Bi, k[t], can be used to describe the transitions of dollars between
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the different age categories. The model has some structural properties; the two age

categories, θ fully paid and n bad debt, are absorbing. Any dollar entering either

Bθ or Bn as of month t cannot transit any more. From this month, it will therefore

stay trapped therein.

A matrix of transition probabilities
(
Pi, k[t]

)
can be defined, with Pi, k[t] being the

probability that dollars in age category i in month t will move to age category k

next month. It is assumed in the CDT model that the transition probabilities are

constant.

Pi,k =
Bi,k

n∑
p=θ

Bk,p

, (i, k = θ, 0, 1, ..., n) (2.7)

Figure 2.2: CDT State Transitions flowchart

The process previously defined consists of a Markov Chain process, having n+2

states, two of which are absorbing and a constant one step transition probabilities

matrix denoted by (Pi, k). The latter is assumed to be independent of the initial
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age distribution of the accounts balances. The CDT model provides answers to the

following three questions:

• Assuming the process has an infinite horizon, what proportion of the involved

dollars will end up in the paid state and what proportion will end up as a bad

debt Bn?

• Assuming c new dollars are distributed into the various age categories each

month and assuming the way of distributing the c dollars to be constant, what

is the steady state distribution of receivables by age category?

• Assuming ci new dollars are received each month, the manner in which the

dollars are distributed each month varies cyclically, and new charges grow

geometrically over a period of length T with a factor α, what is the distribution

of receivables by age category at the end of any period?

The answer to the first question provides an estimate of the loss due to credit loss.

CDT defines the allowance for doubtful accounts at the point in time i as the dollar

amount of accounts’ receivables which will be uncollectible and thus bad debts in the

future. Using the preceding estimation of default rate, CDT derives the allowance

for doubtful accounts and its corresponding variance.

CDT is a useful tool in forecasting the evolution of a retail establishment portfolio

and constitutes the very first step in building a net present value embodying a pre-

dictive model of risk that can be updated according to the cardholders’ behaviour.

The authors discussed the assumption to the model of constant transition proba-

bilities matrices for it is a restriction that does not allow changes of the economic

conjuncture or seasonality in economic cycle to be taken into consideration.

Corcoran [10] developed a more refined model using exponentially-smoothed tran-

sition probabilities matrices to improve the stability of the model and the accuracy
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of the cash flow forecasts. Corcoran pinpointed a major issue of CDT. CDT as-

sumes constant transition probabilities matrices to estimate the default rate and the

steady state distribution of receivables. Corcoran made use of a simple exponen-

tial smoothing of the transition probabilities matrix applied to the same Markov

chain as in CDT with the same state-space. The simple exponential smoothing

provides reliable transient estimates that are useful in portfolio management. The

existence of considerable variations in aging and monthly balance justifies the use

of simple exponential moving rather than constant transition probabilities matri-

ces. Simple exponential smoothing is appropriate to model variation around a mean

value. Corcoran used Winter’s triple exponential smoothing to model seasonality

and found that introducing a seasonal factor clearly improves the forecast. The

seasonal smoothing allows one to take into consideration the most recent behaviours

and to reflect them as well as the seasonal effects in the transition probabilities ma-

trices.

Besides, Cyert et al. [12] briefly suggested in their article that a possible exten-

sion of their model would be to consider the bank accounts themselves and their

behaviours instead of the dollars. Therefore, Cyert and Thompson [11] developed

a model called Credit Control Model, that in the remainder of the review will be

referred to as CCM. Its scope is to study credit card accounts according to the

risk profiles of the cardholders. Considering some risk categories, the model divides

cardholders and applicants into k different risk categories. For each risk category,

the model assesses the likelihood that a dollar of receivables from this certain cat-

egory becomes uncollectible. Moreover, CCM allows credit managers to estimate

potential expected net revenue of a credit application. For this purpose, each risk

category has its own transition probabilities matrix. Similar to CDT, the transition

probabilities matrix for each risk category gives the probabilities of dollars moving

from state i to state j. Assumptions about the payment behaviours of the k-risk

categories are embodied in the k different transition probabilities matrices. CCM
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requires first the k-risk categories to be populated. Cyert and Thompson suggested

that a multiple regression of independent variables be used to develop a scoring

function. The score can then be partitioned into k line segments dividing the whole

sample of credit scores. The overall union of the k line segments naturally covers

the whole credit score space and allows classification of each account into one of the

k discrete risk categories. The model provides an estimate of the net present value

which naturally can be used as a measure by credit managers to decide on whether

to grant credit to a new applicant. CCM also provides a clear and easily computable

present value including cases of bad debt losses. The present value is comprehensive

for cases of bad debts, bookkeeping charges and the production costs of the loan

themselves are taken into account. The variance of the present value can also be

computed. An interesting feature of CCM is the introduction of a decision rule for

application approval. From a fixed sample of applicants distributed into the k-risk

categories, the decision rule consists of iteratively populating the portfolio starting

from the less risky categories and aiming at the most risky ones until the coefficient

of variation (ratio of the square root of the variance over the expected revenue) ex-

ceeds an arbitrary limit fixed by the financial institution according to its risk profile.

CCM is very innovative since it offers a predictive model of risk taking into account

heterogeneities of behaviours and risks among cardholders. These heterogeneities

are embodied in the transition probabilities matrices themselves. The estimates of

the net present value and its variance for each risk category are key indicators for

managers to make a decision of acceptance.

2.3.2 Recent Developments

Similar approaches were adopted in most of the articles posterior to CDT and CCM

from the 1980s through present. Kallberg and Saunders [24] introduced a Markov

chain model with an account-focused perspective. Unlike the previous models, Kall-
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berg and Saunders considered the due states of the accounts themselves to define

different state spaces. The main difference between these two kinds of approaches

lies in the nature of the data. CDT -like models rely on aggregated data derived

from the aging methods that are applied to dollars of receivables. The transition

probabilities in such models measure the likelihood of a dollar moving from one age

category to another. Kallberg and Saunders instead focused on the age category of

the account. The relevant probabilities measure the likelihood of an account moving

from one age category to another. Their model subsequently makes the payment

obligations become more influential for they govern the aging process of each ac-

count.

The main idea of their article is to introduce Markov chain models with three dif-

ferent types of state space; a first basic Markov model and then two refinements

making use of relevant behaviour variables. The basic model defines N + 2 states

according to the number of payment(s) overdue. ‘P ’ denotes ”fully paid-up” state

corresponding to an account without any outstanding balance in period t. ‘0’ de-

notes current account state, that is to say the account has no payment overdue; at

least the minimum required payment was paid in period t− 1. Likewise, ‘1’ denotes

one-month overdue state; the repayment in period t− 1 was less than the minimum

required payment but the repayment in period t− 2 was at least the corresponding

minimum required payment1. The states are then defined iteratively with increasing

overdue payment periods until ‘N ’ which denotes bad debt state, that is account

overdue for at least N consecutive periods. Another interesting variant of the CDT

is to consider mover-stayer models. Frydman, Kallberg, and Kao [18] were the first

to introduce such a model to credit behaviour. Prior to them, Blumen, Kogan, and

McCarthy [9] initially developed a similar model to assess the mobility of labor. The

mover-stayer model incorporates a simple form of heterogeneity. People who always

1Kallberg and Saunders noted that decreases in the age of an account in state i, i = 1, . . . , N−1
are, with this definition, restricted to transition from i to either ‘0’ or ‘P ’ when the minimum
required payment is met.
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follow the same payment pattern and therefore who always stay in the same state

are considered as stayers, while the others are considered as movers. The movers

follow the prior Markov model. The mover-stayer model is thus the combination of

the prior Markov model for movers and of the steady state behaviour for stayers.

Algebraic manipulations and estimations of parameters show interesting results, par-

ticularly, that incorporating heterogeneity may be more important than modeling

nonstationarity. Till and Hand [41] made an extensive review of behavioural models

of credit card usage and were still using stationary Markov chain with straightfor-

ward estimations of the transition probabilities. The article presented a comparison

of stationary, non stationary models together with the mover-stayer model. The au-

thors concluded that the results are quite similar and the main trends are the same.

Sojourn times are also derived from the one-step stationary transition probabilities

matrix.

2.3.3 Managing Credit Card Delinquency

Liebman [25] pioneered the use of Markov decision model for selecting optimal credit

control policies. His formal model defines a discrete three dimensional state space

comprising the “age class” of the account (or due status), its charge volume and its

previous credit experience. As for the reward function, it consists of the discounted

total credit costs defined as the sum of the costs incurred by the undertaken actions,

the interest carrying costs and an estimated bad loss per unit per account. The

latter represents an approximation to the write-offs occurring each period. The

formal Markov decision process, as defined, is transformed into an equivalent linear

program in order to solve the infinite horizon problem.

One may argue that the model, as formulated, is too restrictive. The reward function

solely includes costs. Therefore, neither the interest revenues nor the lines of income

specific to the credit card banking (e.g. interchange revenue) are accounted for in
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the decision process. Moreover, the definition of the state space, though attractive,

does not seem practical. For instance, the explanations of how to estimate the

probabilities of transitions from a certain charge volume (or from a certain past

credit experience) to another, are omitted. These two variables, being dynamic

characteristics of an account, are however likely to change during the process all the

more as an infinite horizon is considered in the model formulation. In the sample

problem, the transitions are incidentally restricted to flows from one age class to

another. The dimensions of the charge volume and credit experience should rather

serve the purpose of prior partitioning of the portfolio of credit cards accounts.

Liebman finally recommended further research in two areas,

1. Explicit consideration of the new account acceptance decision in the

model

2. Extension of the formulation to include marketing policies within

the model’s framework

The present study would develop a model featuring a detailed value analysis of a

credit card account under credit control. Such an approach would account for the

different incomes derived from the credit card usages and repayments. It would con-

sequently offer a tradeoff between the risk of bad debts and the expected revenues.

Unlike Liebman [25], there would be explicit consideration of the bad debts and of

the charge-off losses by defining an absorbing bad debt state.

Makuch, Dodge, Ecker, Granfors, and Hahn [27] created an automated system

to manage GE Capital delinquent consumer credit. They developed a probabilistic

account flow model of the stochastic delinquency processes of the accounts in the

portfolio. The problem consists of finding the collection resource allocations that will
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optimize, for the whole portfolio, the sum of expected net collections over a specified

number of monthly periods, under a limited availability of collection means. The

optimal allocation is worked out as the solution of a linear program. An important

assumption in the definition of the state space of the model is to consider that the

accounts do not change their balance range within the period of consideration for

the optimization. The assumption is justified by considering a time horizon limited

to three months and large balance range categories.

One should notice three key points in the formulation of the model. Firstly, it

requires a prior partition of the accounts according to the estimated risk profiles of

the accounts. Such a partition is done by defining categories of performance scores,

which segment the portfolio of opened accounts.

Secondly, the assumption that the balance ranges do not change over a three-month

horizon, should be questioned. Although the model developed by Makuch et al. [27]

aims to manage delinquent accounts, its definition excludes the possibility of having

a delinquent cardholder making an important repayment so as to preserve his credit

record and set his indebtedness. This situation does occur, as one may find in the

delinquency state aggregated transition matrix reported in [41].

Thirdly, the study of the variance of the portfolio revenue is limited to the posterior

checking that the implemented strategy has an admissible variability. The variance

is a key factor to the card issuer. Its reduction would provide the issuer with

more stable revenues and would increase the card issuer’s protection against charge-

offs. The reduction of the variance might moreover decrease the number of charge-

offs and subsequently result in an increase of the volume of the portfolio as well

as an improvement of the goodwills of the cardholders. The present study would

investigate the study of the variance on a per account basis. To that end, a variance

penalized Markov decision process would be formulated so as to work out a policy

optimal in terms of trade-off between profitability and variability.
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Chapter 3

Model Formulation

3.1 Background and Problem Introduction

The objective of the present research is to develop a general framework for the

optimization and analysis of a portfolio of credit card accounts. In the present

section, a novel Markov decision process is introduced so as to model credit card

usages and repayments made by the cardholder depending on the collection actions

initiated by the credit card issuer. The specific features of the credit card lending

in terms of usage rules and profitabilities shall be quantified and embodied in the

model. Its formulation requires the following issues to be addressed:

• How can the situation of an account be accurately described?

• What decisions and actions can be taken?

• What is the next course of actions?

• What are the criteria to be considered in making decisions?

• What are the immediate impacts of any decision?
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• What resources are available to take actions?

These are necessary questions, one should answer to, in order to propose an

appropriate dynamic programming model for the present problem. Indeed, their

answers provide the definitions of the basic features of the dynamic programming

model; the state space of the credit card accounts S, the control (or decision) set U ,

the set of decision epochs T , the objective (or reward) function g. The state space

of the accounts S is such that, it is relevant to assume the Markov property to hold

therein. The process of evolution of the accounts is then a Markov process. p refers

to the probability distribution of the transitions of the account from one state to

another. The collection of objects {T, S, U, p, g} defines a Markov decision process,

denoted MDP in the remainder of this thesis.

3.2 Preliminary Notions

3.2.1 Description of the delinquency process

Credit card banking is an open end loan based on monthly cycles of credit. It can

be considered as a short term revolving loan with high interest rates and flexible

repayments. These two features naturally raise the questions of:

• How is the interest calculated?

• What are the consequences of a cardholder defaulting on payments?

Particular time windows are defined in order to calculate the interest accruing on

the outstanding balance. The common practice is to grant cardholders paying in

full their bills a “grace period” (also called “free period” or “free-ride period”) which
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only applies to retail purchase transactions. On condition that a cardholder pays in

full his current balance, he may benefit from a grace period (usually ranging from

20 to 30 days after issuance of the bill) which is the interest-free period granted by

the lender between the date of purchase and the payment due date. There are two

methods used in the industry to allot grace period:

Method 1: The cardholder has to pay in full his current balance by the due date

so as to be eligible for a new grace period.

Method 2: The cardholder has to pay his current balance in full as well as to

have fully paid the balances generated during the previous months by the due

date; i.e. to benefit from a new grace period, the cardholder should not carry

forward any balance from the previous and current months.

Each of the method features dynamic characteristics. The evolution of a credit

card account depends on the cardholder’s repayments and needs subsequently to be

detailed. Consider first an account allotted a grace period which is the case for any

new account or any paid up account. At the end of the billing period, one of the

three following cases will occur:

Case 1: The cardholder pays in full, within the grace period, the outstanding bal-

ance reported on the bill. The cardholder is exempt from interest accruing on

retail purchases and is allotted anew a grace period for the next billing cycle.

Case 2: The cardholder pays at least the minimum required payment by the due

date which is a percentage of the outstanding balance (commonly ranging

from 2% to 5%) or a minimum fixed amount (e.g. S$50), whichever is greater.

The cardholder is now revolving credit lines. His account is current and the

balance roll-over in the next billing cycle is now charged with interest. The
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cardholder does not benefit from a grace period any more. Finance charges

on new purchases will accrue the moment purchase transactions are made.

The daily rate used to calculate the retail interest accruing on the purchases

is derived from the annual percentage rate (APR) which commonly ranges

between 15% to 25% a year. An average daily balance of the billing cycle is

computed and is used as the basis to accrue interest. The cardholder may at

any time pay in full his balance and therefore be allotted a new grace period.

Case 3: The cardholder either pays nothing or pays less than the minimum required

payment. The cardholder is now delinquent (also called late payer). He is

charged with delinquency (late payment) fee and is sometimes subject to higher

APR. A delinquent cardholder may yet regularize his situation by paying at

least the minimum required payment or may even be allotted a new grace

period by paying his outstanding balance in full.
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Figure 3.1: Delinquency cycle

The same process is then recursively applied month after month. Different fees

and charges accrue according to the usage and repayments made by the cardholder.

They will be detailed later in the value model of 3.4.3 on p58. The evolution of an

account is an iterative process subject to the following constraints:

• The card is usually blocked to prevent further loss, if the payments are more

than one month overdue.

• The delinquency should not exceed a threshold usually fixed to three months

overdue after which the account becomes severely delinquent and faces more

severe collection actions.
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• If the cardholder becomes severely delinquent on a debt (usually at the point

of six to seven months without payment), the creditor may declare the debt

to be a charge-off.

• The outstanding balance is not to exceed either the credit limit or the credit

limit augmented by a certain “fluff” (commonly 10% of the credit limit) de-

pending on the card issuer’s policy.

A charged-off account is considered to be “written-off as uncollectible”. The

charging-off practice, though usual, is questionable. One could argue that the cred-

itor would rather keep a bad debt in the book, in hope of a later recovery. There

are yet two major reasons motivating the charge-off. First, the severely delinquent

accounts have demonstrated through experience high chances to turn out to be un-

collectible. The second reason involves taxes; every year, each corporation files a

Profit And Loss Statement. All of the year’s bad debts (individual charged-off ac-

counts) are added together as an item in the Loss section. The sum is then deducted

from the corporation’s tax return. Bad debts can then be considered as operating

costs related to the risky activity of lending money.

3.2.2 Prior Segmentation of the Portfolio of Credit Card

Accounts

A prior segmentation of the portfolio into homogenous risk groups should be made

[see 10, 27]. In the present model, the partition should ideally be a trade-off be-

tween the accuracy of the classification and the homogeneity of default risk and

card usage within each segment. Cardholders of the same segment should feature

approximately same card usages, same credit limits and same credit risks. In the

sequel, a probabilistic account flow model would be defined for each segment.
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Till and Hand [41] investigated ways of segmenting1 the behaviour profiles. They

came out with the conclusion that, based on the application form variables, a reason-

ably accurate segmentation can be worked out. It is assumed in the present model

that one such segmentation was beforehand performed. The model is then developed

within each segment, ensuring the related characteristics to be constant for all the

accounts of the same segment. The segmentation according to application variables

has the advantage of defining steady segments which thus restricts the number of

estimations necessary to build the model and hence eases its implementation.

One may argue that the segmentation should additionally include some selected

behavioural variables. On the one hand, such additions are expected to yield a seg-

mentation which better embodies the dynamic aspect of the process. On the other

hand, any behavioural variable included in the segmentation would require watching

the evolution of the accounts with respect to such a variable and thus account for

the possibility of having some accounts moving from one segment to another. In

the framework of Markov decision process, the implementation of such an approach

greatly increases the number of possible transitions and is thus impractical for the

low accuracy of the estimated transition probabilities. Makuch et al. [27] used a seg-

mentation based on the score performance and on the balance range of the accounts.

To remedy the afore mentioned problems, they had to define sufficiently large seg-

ments that can be considered as steady for up to 3 months. The distributions of

accounts among the segments needs then to be updated.

Different data mining techniques are available to conduct such segmentations. Clus-

ter analysis, neural networks [see 22, for application to credit card customers], logistic

regression, classification trees, to name a few, can be used.

1Till and Hand adopted here the denomination used in Hand, Mannila, and Smyth [19]. A
differentiation was instituted between the partitioning into “natural” components called cluster
analysis and the partitioning into categories according to some predefined goals which is referred
to as segmentation analysis.
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3.2.3 State Space and State Information

The state space S of an account is defined as a two dimensional space that com-

prises the due status of the account together with its percentage of unused credit

in relation to the credit limit. The due status of the account corresponds to the

time elapsed since the last payment, greater or equal to the minimum payment, was

made. For convenience, a cardholder may prefer to make several repayments in a

month. He will not be a late payer so long as his payments are received before

the due date. These two characteristics, due status and percentage of unused credit,

provide a description of the account in terms of due status as well as in terms of level

of debt. They will be used together with the repayments to forecast the profitability

and the risk of the cardholder to the credit card issuer. The balance payments made

by the cardholder are assumed to be conditioned by the state of the account at the

beginning of one month and by the collection strategy undertaken by the issuer.

The relevancy of the payment to the due status was established in the literature [see

24, 41]. The positive correlation1 of the credit card debt with the delinquency con-

firms the relevancy of the delinquency to the credit card debt. Finally, the proven

efficiencies of the different collection strategies in use today justify a posteriori the

repayments to be relevant to the collection actions the cardholder is subject to. The

set of monthly states is appropriate to describe the evolution of the accounts.

With regards to the state information, it is reasonably assumed that, whenever a

decision is made, perfect information concerning the state of the account is avail-

able. Indeed, the delinquency state of the account and its unused credit limit are

necessarily known information to the card issuer.

1The correlation coefficient between the credit card debt and the delinquency was found to
be 0.4 in [39] based on the data from [3]. It is the biggest value compared with the correlations
between other measures or ratios of debt (credit and total debt) and the delinquency.
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3.2.4 Decisions

The collection practices are subject to legal restrictions, especially concerning the

confidentiality of the communication between the collector and the debtor, who are

respectively the card issuer and the cardholder in the present study. The Fair Debt

Collection Practices Act [1], for instance, regulates the use of collection practices

in the U.S.A. Let U be the set of front-end collection strategies currently used to

recover debt from delinquent accounts. U is restricted to the practices available

to the bank collection department in charge of managing delinquency. U does not

account for the actions taken by external collection agencies to recover bad debt

from written-off accounts. It is assumed that whenever the account is delinquent or

over-limit, all of the collection strategies are available to the issuer. On the other

hand, when the account is either paid up or current with a balance that is not

over-limit, no collection strategy other than simple bill issuance is allowed. In other

words, no pre-emptive strategy can be taken. In accordance with the legislation

effective in the country under consideration, U may comprise:

1. simple bill issuance

2. mail reminder, sms, e-mail, fax

3. interactive and automated taped phone message with low level of severity; e.g.

courteous reminder

4. interactive and automated taped phone message with mild level of severity

5. interactive and automated taped phone message with moderate level of severity

6. interactive and automated taped phone message with high level of severity;

e.g. aggressive reminder urging the delinquent cardholder to pay
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7. collection agent contacting the delinquent cardholder over the phone at a low

frequency

8. collection agent intensively contacting the delinquent cardholder and urging

him to pay or to at least make a clear promise of payment

9. charging off the delinquent account and reporting to the credit bureau

The collection strategies may as well comprise any combination of the basic strate-

gies cited above, so as to reinforce the promises of repayments.

Additionally, the creditor reports to the credit bureau any delinquent cardholder.

His credit score is then decreased in accordance to his state of delinquency. Any

delinquent account falling behind thirty days overdue is blocked from further usage,

until sufficient repayments (if any) are made. The delinquent cardholders, who fall

even further behind in their payments, may either exceed the acceptable threshold

of delinquency and thus be charged-off or file in for bankruptcy. The corresponding

accounts are subsequently considered as losses by the bank and their debts are

eventually either:

• worked on by a back-end collection department specialized in recovering bad

debt

• sold to a collection agency for a price that depends on the amount of unrecov-

ered debt

• simply discarded

Default accounts are listed as such on the debtor’s credit bureau reports. The dates

of defaults and the amount of the bad debts are also tracked.
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3.2.5 Temporal Aspect

Four statements arise from the temporal analysis of the problem:

1. The collection strategy decision is to be taken monthly. At the end of each

billing cycle, any account evolves to its next state and the proper collection

strategy should then be initiated.

2. Most accounts have a finite lifetime usually ranging from one to five years.

3. Financial forecasts and results are expected after each semester. Annual fore-

casts are commonly used as a meaningful projection tool.

4. Discounted forecasts with infinite time horizon, though less accurate, will pro-

vide the lifetime value of an account and the corresponding stationary collec-

tion strategy.

Consequently, the decision epochs corresponding to the timing of the decisions

for the collection strategies are formed by the beginning of each monthly billing

cycle. The short term study will be illustrated by considering annual projection.

The infinite horizon analysis, which provides the expected lifetime value of an ac-

count and the related stationary collection strategy, are needed in view of automatic

collection implementation.

3.2.6 Costs and Expected Reward

The collection strategies and the corresponding policies will be assessed in terms of

risk and profitability. To that end, a reward function will be defined to assess the

profitability of the account at each stage. The expected cumulative cash flows per

account per month are instituted as a comparative criterion defining a total order
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relation amid the different policies. It has been assumed in the present model that

the costs are deterministic and constant over the whole time period. A monthly

discount factor has been included in the model.

3.3 Definitions

3.3.1 Time Horizon and Decision Epochs

3.3.1.1 Definitions of the Finite Time Horizon and Decision Epochs

Definition 3.1. Let N be the number of monthly billing cycles in consideration.

Decisions are made monthly at points n in time, referred to as decision epochs.

Definition 3.2. Let T be the set of decision epochs. T is the finite discrete set:

T = {0, 1, . . . , N}

3.3.1.2 Decomposition of Stages

Each monthly billing cycle can be divided into two different sub stages. Collection

strategies are assumed to be adopted at the beginning of each month. Given the

state of the account and the collection practice opted for, the cardholder has a certain

transaction activity and e.g. a certain volume of purchases and cash advances. The

time window that consists either of the grace period or of the period extending from

statement issuance date until due date, is defined in the present model as sub stage

1 of decision epoch n. The balance payments are to be made within sub stage 1

in order for the cardholder not to become a late payer or delinquent. The period

that extends from the end of sub stage 1 to the issuance of the monthly credit card
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statement corresponds to sub stage 2. Cardholders making sufficient payment during

sub stage 2 will not fall further behind in their payments, but they may be liable

to late fees. At the end of sub stage 2, the process evolves to a next state and a

new decision is made at decision epoch n+1. Discrete time modeling imposes the

assumption that potential balance payments are made at the end of the grace period

(usually around 22 days after bill issuance) in case the latter applies, on the due

date otherwise.

Figure 3.2: Timeline of an account eligible for a grace period

Figure 3.3: Timeline of an account non-eligible for a grace period

One should notice that the evolution of the account from its status in billing
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cycle n to its status in billing cycle n + 1 is actually conditioned by the repayment

of the balance generated up to the start of billing cycle n.

3.3.2 State Variables

As introduced in the preliminary notions, the two dimensional state space consists

of the due status of the account and of the unused credit limit at the start of the

billing cycle.

3.3.2.1 Due State

Definition 3.3. Let i be the due status of the account at the beginning of the billing

cycle.

i ∈ {0, 1, 2, . . . , L− 1, L}
⋃
{NA}

So long as an account is not written-off, its due status i is an element of the

constant discrete set I = {0, 1, 2, . . . , L− 1, L}, where L is the worst state of delin-

quency acceptable to the credit card issuer. The due status takes either value 0

when in paid up state or value i ∈ {1, 2, . . . , L − 1, L} when the account is i − 1

month(s) overdue. The account is current when i = 1, delinquent when i = 2, . . . , L.

If the due status of an account is such that i = L and if the cardholder falls further

behind, his account is then charged off. NA is used to denote the due status of an

account has been written-off. In this case, the unused credit limit is not any more

relevant and the pair of the due status and the unused credit limit is simply noted

as (NA,NA).
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3.3.2.2 Unused Credit Limit

With regards to the unused credit limit, it is necessary to use discretization since the

unused credit limit is actually a real value, with infinite optional values. The credit

lines are partitioned into a discrete number of line segments. J = {0, 1, 2, . . . ,M −

1, M} is the discrete set of indices of the line segments that partition the credit limit.

Depending on the type of account and cardholder’s agreement, the balance either:

• should not exceed the credit limit; any transaction that may have the balance

the credit limit is then rejected.

• may exceed the credit limit up to a certain threshold (commonly 10% of the

credit limit), after which further transactions are rejected. Any cardholder,

who exceeds the credit limit is usually liable to extra fees.

In the present model, the cardholder may exceed his credit limit and then be liable

to over-limit fee. The amount due over the credit limit is limited and the overall

balance is not to exceed a threshold defined as UBM .

Definition 3.4. Let Ξ be the discrete partition of the admissible balance range. Let

LBm, UBm be the lower and upper bounds of each interval partitioning the whole

admissible balance range

Ξ ≡
M−1⋃
m=0

[LBm, UBm)
⋃ [

LBM , UBM
]

From the definition, the following equation holds:

UBm−1 = LBm, m = 1, . . . ,M

It can also be seen that two distinct cases occur, the case j ≤ M − 1 where the

balance is less than the credit limit and the case j = M where the account is over-

limit.
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For each segment of the partition comprising the credit limit i.e m = 0, . . . ,M−1, a

discrete value Bm is chosen as a discrete approximation of the balances falling within

this segment. For the over-limit segment, the approximation of the balance is chosen

to be the upper limit UBM corresponding to the worst state of indebtedness.∀B ∈ [LBm, UBm) ,⇒ B ≈ Bm, m = 0, . . . ,M − 1

∀B ∈
[
LBM , UBM

]
,⇒ B ≈ UBM

Definition 3.5. Denote by B the outstanding balance of the account at the beginning

of the billing cycle. The index j of the discrete unused credit limit is defined by:

j =

{m ∈ {0, . . . ,M − 1}|LBm ≤ B < UBm}, if B < LBM

M, otherwise

Definition 3.6. The corresponding unused credit limit UCLj is defined by:

UCLj = CL−Bj

3.3.2.3 State Space

Definition 3.7. Let S be the set of all possible states of the account at the beginning

of each billing period.

S = (I × J)
⋃
{(NA,NA)}, I ≡ {0, 1, . . . , L}, J ≡ {0, 1, . . . ,M}

S is assumed not to vary over the entire finite time horizon. S is a two dimen-

sional discrete state space comprising the union of the singleton {(NA,NA)} and

the Cartesian product of the two discrete subsets I, J .

Definition 3.8. Let Strans be the set of all transient states

Strans = S −
{
(NA,NA)

}
= {0, 1, . . . , L} × {0, 1, . . . ,M}
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3.3.3 Decision Variables and Decision Constraint

Definition 3.9. Let the control space U be the set of controls ordered by increasing

level of severity. The control space consists of the following finite discrete set of

collection strategies.

U = {0, 1, . . . , K}

U does not vary over the entire finite time horizon. un is the generic notation

which denotes the collection strategy adopted during billing cycle n. The ordering

may appear somewhat subjective. However, considering the controls described in

section 3.2.4, a clear classification emerges by increasing level of severity.

3.3.3.1 Constrained Control

The constraint Cdec imposes that pre-emptive collection actions are not to be un-

dertaken against accounts that are not delinquent or over-limit. As a result, the set

of available actions varies according to the state the system is in1.

Definition 3.10. For each state x ∈ S, let U(x) be the set of available actions.

U(x) ≡

{0}, if x = (i, j), i = 0, 1 j = 0, . . . ,M − 1

U, otherwise

Definition 3.11. Let κ be the set of state-actions pairs as follows:

κ =
{
(x, u) : x ∈ S, u ∈ U(x)

}
In the sequel, given any state x ∈ S the control in consideration u will be an

admissible control i.e. u ∈ U(x).

1When the account is not delinquent the control, as defined, is restricted to the simple issuance
of the bank statement. A further step to embody marketing strategies in such states is to include
controls consisting of both the issuance of the bank statement and the use of incentives to promote
card usage e.g. promotional offers, discounts, loyalty reward programs etc.
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3.3.4 Stochastic Process

3.3.4.1 Probability Space

Definition 3.12. Let X be the collection of the random states at the beginning of

all billing periods in consideration:

X = {Xn, n = 0, . . . , N − 1}

For each n of the finite discrete set T , Xn is the discrete random variable as-

sociated to the state of the credit card account at the beginning of billing cycle n.

The sample state S is assumed not to vary over the entire finite time horizon. If

Xn = (in, jn), the process is said to be in state (in, jn) in billing cycle n. xn denotes

the realization of Xn.

3.3.4.2 Causes of Evolution

In the present model, two causes of evolution of the account are to be distinguished:

1. Ωn(xn, un) stochastic repayment given the current state xn and the admissible

collection strategy applied un. Ωn is a random “disturbance” of the system

that takes values in the set D. Its realization is denoted ωn. D is a priori

defined as the real interval ranging from zero to the balance due.

2. rn(xn, un, xn+1) estimated aggregate activity of the account during billing cycle

n whose value depends on the present and next states xn, xn+1 and on the ad-

missible present collection strategy un applied to the account. rn(xn, un, xn+1)

comprises all the different expenses made by the cardholder together with the

finance charges and operational costs accruing to the account and is subject

to credit limit constraint.
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State beginning of month n
Xn

State beginning of month n+1
Xn+1

Opt for collection strategy un
to be applied during month n

 Month n payment 
Ωn

New Activity  
rn

3/28/2005 - 4/4/2005
Interval Description

Billing period month n

Figure 3.4: State transition

The equations that describe the evolution of the state of the credit card account,

make natural use of Ωn(xn, un) and of rn(xn, un, xn+1). They will be further specified

in Section 3.5 p62.

Moreover, it is interesting to give here a first insight of a possible extension of

the present model so as to embody the attrition phenomenon and the bankruptcy

filings. The attrition, as stated before, corresponds to the “loss” of a cardholder

by an issuer. This “loss” can be of three kinds; a substantial decrease in the credit

usage, a definitive interruption of usage and finally a cancelation of the account. The

reasons motivating such a loss are multiple. For instance, a cardholder can either

be willing to replace his current account by a new one featuring an introductory

offer, or simply be dissatisfied with the provided service. One may assume that

the substantial decrease of usage and the definitive interruption produce the same

effect, namely they have the account become completely inactive. The attrition

can now be embodied in the present model. To that end, the extended model

will keep the structure of the state space unchanged albeit some transitions will be
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added to model the process of repayment that accompanies the attrition. A random

disturbance will naturally be added to the previous two elements that govern the

evolution of the account. This random disturbance will represent the conditional

risk of a cardholder having an account in state xn and subject to the admissible

collection strategy un to either close his/her credit card account next month or to

start the process of voluntary writing-off. The bankruptcy filing risk can also be

modeled as a disturbance representing the risk that a cardholder whose account is

in state xn and subject to collection strategy un files in for bankruptcy and have his

outstanding debt fully uncollected.

3.3.4.3 Transition Probabilities

Property 3.1. Markov Property: It is conjectured in the model that the condi-

tional distribution of any future state of the account Xn+1 given the past states

X0, X1, . . . , Xn−1, the past admissible collection actions u0, u1, . . . , un−1, the present

state Xn and the present admissible collection action un is independent of the past

states and actions and depends only on the present state Xn and on the present

admissible collection action un.

Given that at decision epoch n, n = 0, 1, . . . , N−1 the process is in state Xn = xn

e.g. xn = (i, j) and the present admissible collection strategy is un = u, whatever

the previous history may be, it follows from the Markov property that there is a

fixed probability that the account will be in state Xn+1 = xn+1 e.g. xn+1 = (k, l)

next.

∀xn+1 ∈ S, ∀un ∈ U(xn), n = 0, 1 . . . , N − 2

P{Xn+1 = xn+1|Xn = xn, un, . . . , X0 = x0, u0} = P{Xn+1 = xn+1|Xn = xn, un}

The following notation is used in the further development;

pn

(
xn+1|xn, un

)
= P{Xn+1 = xn+1|Xn = xn, un}, xn, xn+1 ∈ S, un ∈ U(x)
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so that,

∑
xn+1∈S

pn

(
xn+1|xn, un

)
= 1, n = 0, 1, . . . , N − 1, xn ∈ S, un ∈ U(x)

The MDP is characterized by its one step transition matrices Pun .

Pun =



pn

(
(0, 0)|(0, 0), un

)
pn

(
(NA,NA)|(0, 0), un

)
. . .

pn

(
(k, l)|(i, j), un

)
. . .

pn

(
(0, 0)|(NA,NA), un

)
pn

(
(NA,NA)|(NA,NA), un

)


(3.1)

3.3.5 Motivations for the Markov Property Assumption

The assumption of Markov property for the process [see Property 3.1] is a clear

simplification of the complexity of the credit card business. In particular, the state

transitions are expected to be correlated to the whole history of the account and not

only to its present state. The present study does not claim the process to a perfect

Markov process. However, there are good reasons which motivate the use of such

an assumption. They are twofold:

• The state variables carry, by essence, part of the history of the account. The

due status clearly reflects the number of missed or incomplete repayments

since the last minimum required payment was made. The novel inclusion

of the unused credit limit in the definition of the state variables contributes

to a better account of the history of usage and repayments. Moreover, the

soundness of the approximation is further confirmed by a certain monotony of
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the delinquency process that has been empirically observed. Such a monotony

thus confines most of the predictive power in the current month. Section 4.2.1

p73 looks more in details into this question.

• The one step Markov chain approach, although it is a simplification, has been

widely used in the literature [see 10, 11, 12, 18, 24, 25, 27, 18, 42]. Such

models have proven to be good approximations that are commonly used in

the industry. Till and Hand [41] have pointed out that most of the predictive

power lies in the last billing cycle variables.

These reasons justify the assumption of the Markov property which is being made in

the present study. One could suggest to increase the dimensionality of the state space

so as to mimic more accurately the process and its history. For instance, the due

status could include both the current due state and the due state during the previous

billing cycle. In the first place, such a modification looks very appealing. However,

it is not viable for practical reasons. One of the difficulty of the present problem

is to arrive with accurate transition matrices. Increasing the dimensionality of the

state space will not only square the number of estimations necessary to obtained

the desired transition probabilities but also worsen the accuracy of the estimates by

reducing the sample size available to estimate the probability of each such transition.

3.3.6 Discrete Time Dynamic System

One feature of the present model is that the repayments and activities can be consid-

ered as disturbances of the system. Processes influenced by stochastic perturbations,

which are independent of the state and control, are usually described in terms of

trajectories. The control theory approach [33] describes the evolution of the sys-

tem in terms of sample paths and system equation rather than in terms of transition

probabilities. To that end, such an approach defines a “law of motion”, which relates
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the next state of the system to the present state, present control and disturbance.

The present problem differs from the orthodox control theory in that the perturba-

tions are indeed dependent on the present state and control. The “law of motion”

can be written as;

Xn+1 ≈ hn

(
Xn, un, Ωn(Xn, un)

)
, n = 0, 1, . . . , N − 1

The equivalence with the transition probabilities is made as follows:

pn(xn+1|xn, un) = P

[
Ω(xn, un) ∈

{
ω ∈ D : hn(xn, un, ω) = xn+1

}]
=

∑
{ω∈D: xn+1=h(xn,un,ω)}

P
(
Ω(xn, un) = ω|xn, un

)

A one step control theory approach will be formulated in Chapter 4. It actu-

ally models the cardholder’s perspective and serves the purpose of understanding

his obligations of repayments. This approximate model would be introduced and

discussed in Chapter 4. It shall then be used to generate and simulate reasonable

processes.

3.3.7 Policy

Definition 3.13. A deterministic admissible decision rule µ is a mapping of the

state space S into the control space U for which the constraint Cdec holds.

µ : S −→ U

∀x ∈ S,
(
x, µ(x)

)
∈ κ

Definition 3.14. A deterministic admissible policy π is a sequence of admissible

decision rules as follows:

π = {µ0, µ1, . . . , µN−1}

µn : S −→ U, µ(xn) ∈ U(xn), n = 0, 1, . . . , N − 1, xn ∈ S
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π associates to each xn, a unique collection strategy that is feasible. Π will

denote the set of all deterministic admissible policies in the remainder of this thesis.

3.3.8 Objective Function

3.3.8.1 Cost and Income Components

Recall rn(xn, un, xn+1) is the activity of the account during billing cycle n, n ≤ N−1.

Suppose the bank account at the beginning of decision stage n is in state xn ∈ S and

subject to the admissible collection strategy un = µn(xn) ∈ U(xn). The cardholder

will have a certain activity during billing cycle n that depends on the state xn of

the account at the beginning of the cycle and naturally on the collection strategy un

that is adopted. The latter is measured in terms of percentage of the credit limit CL.

In the present model, the cash flows of the credit card account that are considered

comprise the two following components:

1. positive cash flows: interchange revenue on new retail purchases, finance charges;

retail purchases interest, cash advances interest, delinquency fees, withdrawal

fees, partial (or full) debt recovery as a result of legal proceedings

2. negative cash flows: operating costs, cost of the collection strategy adopted,

cost of lending money to the cardholder, credit loss in the case of writing off.

Definition 3.15. Let In(xn, un, xn+1), n = 0, 1, . . . , N − 1 be the consolidated

income collected during stage n, when;

• the account, starting billing cycle n in state Xn = xn, is subject to collection

strategy un

• the repayment made by the cardholder Ωn = ωn is such that the account will be in

state Xn+1 = xn+1 at the beginning of the next billing cycle.
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Let IN(xN) be the final (salvage) aggregate income of the forecasting period when the

final state of the account is XN = xN .

With regards to IN(xN), it consists of the income collected during the final stage

N . Further decisions and states are not considered in the analysis. Hence, IN(·) is

a function on the last state XN solely.

Definition 3.16. Let Cn(xn, un, xn+1), n = 0, 1, . . . , N−1 be the consolidated cost

incurred during stage n, when;

• the account, starting billing cycle n in state Xn = xn, is subject to collection

strategy un

• the repayment made by the cardholder Ωn = ωn is such that the account will be in

state Xn+1 = xn+1 at the beginning of next billing cycle.

Let CN(xN) be the final (salvage) cost incurred, when the final state of the account

is xN .

3.3.8.2 Reward Functions

Let β be the discount factor per month, 0 < β ≤ 1. The special case β = 1

corresponds to the non-discounted case.

Definition 3.17. Let g be the sequence of reward functions associated to the process

and to the admissible policy π = {µ0, µ1, . . . , µN−1}

gn =

In(xn, µn(xn), xn+1)− Cn(xn, µn(xn), xn+1), n = 0, . . . , N − 1

IN(xN)− CN(xN), n = N

Each gn, n = 0, . . . , N − 1 measures the profit (positive or negative) derived

from a credit card account transiting from state xn to xn+1 and subject to the
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3.4 Value Analysis of the Credit Card Account

collection strategy µn(xn). gN = IN(xN)−CN(xN), the salvage (or terminal) reward,

represents the estimated worthiness of an account terminating the forecasting period

in state xN .

Definition 3.18. Let Jπ, g, N(X0) be the expected total discounted reward associated

to the set of reward functions gn, n = 0, . . . , N when the process starts in state

X0 = x0 and when the admissible policy π = {µ0, µ1, . . . , µN−1} is applied

Jπ, g, N : Π× S −→ R

Jπ, g, N(X0) = E
Xn

n=1,...,N−1

{
βNgN

(
XN

)
+

N−1∑
n=0

βngn

(
Xn, µn(Xn), Xn+1

)}

The objective of the card issuer is naturally to maximize the expected reward

derived from the stochastic evolution of an account during the whole forecasting

period.

Definition 3.19. Given a finite time horizon N , the policy π∗ associated to the set

of reward functions gn is optimal if and only if,

Jπ∗, g, N(X0) = sup
π∈ Π

Jπ, g, N(X0)

or equivalently

π∗ = arg max
π∈ Π

Jπ, g, N(X0)

3.4 Value Analysis of the Credit Card Account

The present section shall introduce a value model of the credit card account. For

clarity of exposition, notations are first introduced. The subscript n is used to

refer to the realization during the billing cycle n. xn or (in, jn) as well as xn+1

or (in+1, jn+1) are equivalently used to describe the current and next state of the

account respectively.
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3.4 Value Analysis of the Credit Card Account

3.4.1 Notations

3.4.1.1 General Characteristics

CL credit limit

APR annual percentage rate

mrp minimum required payment rate

minpay minimum monthly payment amount

LBj lower bound of the jth segment of the partition of CL

UBj upper bound of the jth segment of the partition of CL

Bj discrete outstanding balance associated to accounts whose

balances fall into the jth segment of the partition of CL

UCLj discrete unused credit limit associated to accounts whose

balances fall into the jth segment of the partition of CL

rn(xn, un, xn+1) overall receivable activity of the account

Buse
n (xn, un, xn+1) sum of revolved balance and of card usage

Table 3.1: General Characteristics of a credit card account

3.4.1.2 Retail Purchases

icr interchange rate

PVn(xn, un, xn+1) average retail purchases volume

PV OL(xn, un, xn+1) retail purchases volume subject to credit limit constraint

V OLn(xn, un, xn+1) overall volume of retail purchases and cash advances

Table 3.2: Retail Purchase/Order activity
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3.4 Value Analysis of the Credit Card Account

3.4.1.3 Cash Advances

CVn(xn, un, xn+1) average volume of cash advances

CV OL(xn, un, xn+1) cash advances’ volume subject to credit limit constraint

nbca(xn, un, xn+1) average number of cash advances

ca financial charge rate on cash advances

Cthr maximum amount of a transaction such that any advance

less than Cthr is charged at the minimum rate (ca1) only

ca1 fee rate on the first S$ Cthr of any cash advance

ca2 fee rate on the remaining (if any) balance the advance

mincf minimum fee for cash advances

Table 3.3: Cash Activity

3.4.1.4 Delinquency and Over-limit

ovr allowable percentage of credit over-limit

OL over-limit fee

LF (UCLj) tiered late payment fee when unused credit limit is UCLj

Table 3.4: Delinquency and Over-limit

3.4.1.5 Operating Costs

fcr cost of funding per dollar per billing cycle

PC writing off penalty cost

OCn(xn, un, xn+1) aggregate operating cost under collection strategy un

DR(UCLj) debt recovery when selling default account, with final

unused credit limit UCLj, to collection institution

Table 3.5: Operating Costs
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3.4 Value Analysis of the Credit Card Account

3.4.1.6 Cash Flows

Incomes

CFn(xn, un, xn+1) fee charged on new cash advances

AFn(xn, un, xn+1) aggregate fees (cash advances, delinquency and over-limit)

IFn(xn, un, xn+1) gross fee income

CIn(xn, un, xn+1) interest accruing on cash advances

PIn(xn, un, xn+1) interest accruing on retail purchases

BIn(xn, un) interest accruing on the balance revolved

IRn(xn, un, xn+1) gross interest income

ACn(xn, un, xn+1) aggregate financial charges

ICn(xn, un, xn+1) interchange revenue

DRn(xn, un, xn+1) debt recovery

In(xn, un, xn+1) consolidated income

Costs and Losses

FCn(xn, un, xn+1) cost of lending money

OCn(xn, un, xn+1) aggregate operating cost

DLn(xn, un, xn+1) debt loss

Cn(xn, un, xn+1) consolidated costs and losses

Table 3.6: Cash Flows

3.4.2 Cash Flows

The following flow chart in Figure 3.5 p58 illustrates the different cash flows gener-

ated by the card usage and the profitability (possibly loss) of the credit card account

to the card issuer. These flows are conditioned by the account state, the cardholder

repayments and the collection strategy adopted by the card issuer. The assumptions

related to the computation of the different values are further detailed in 3.5 p62.

One should notice that there are two types of incomes:

• an “internal” one derived directly from the cardholder paying interests, charges

and fees

• an “external” one comprising interchange revenue derived from the card usage and
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3.4 Value Analysis of the Credit Card Account

comprising also partial bad debt recovery when selling the default account to an

external collection agency. Interchange revenue is of essential importance since it is

recognized as the card issuers’ second largest income line item [see 2].

Figure 3.5: Credit Card Account Cash Flows

3.4.3 Delinquency Process

The minimum required payment is defined as a minimum amount minpay (e.g. S$50)

or a fixed percentage mrp (e.g. 3%) of the balance newly reported on the statement,

whichever is greater, plus any overdue amounts. For accounts that are over-limit,

the minimum monthly repayment is mrp of the newly reported balance plus the

excess over the credit limit, plus any overdue amounts. Overdue amounts are here

defined as the sum of all the minimum monthly payments missed (or partially paid)
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3.4 Value Analysis of the Credit Card Account

until the last sufficient payment was made.

A cardholder paying at least the minimum payment every month remains current.

Delinquency occurs whenever the cardholder during a billing cycle repays less than

the minimum monthly payment.

Definition 3.20. Given an account which is more than k months delinquent in cycle

n, its k month delinquent balance is defined as the maximum between minpay and

the product of mrp and the balance reported on the statement issued at the end of

billing cycle n− k− 1. The k month delinquent balance is exclusive of the previous

overdue amounts.

Accordingly, card issuers classify their customers into delinquency buckets. The

kth delinquency bucket comprises all the accounts k months overdue. For instance,

such an account will:

• move to the next delinquency bucket (i.e. be k+1 months overdue or charged-

off if k = L) if the cardholder repayments during the cycle are strictly less

than the k month delinquent balance.

• stay in the same delinquency bucket if the cardholder repayments are sufficient

to settle the k month delinquent balance only.

• move to the previous delinquency bucket if the repayments made are sufficient

to settle the k month delinquent balance and the k−1 month delinquent balance

but not k − 2 month delinquent balance.

• move to the k − m delinquency bucket with m ≤ k − 1 if the repayments

made are sufficient to settle the overdue balances starting from the k month

delinquent balance up to the k −m month delinquent balance.
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3.4 Value Analysis of the Credit Card Account

• move to current or paid up if the repayments are sufficient to repay the mini-

mum monthly payment or the whole balance, respectively.

Flow chart 3.6 depicts the conditional evolution of an account k months delinquent

within the different delinquency buckets conditional to the repayment requirements.
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Figure 3.6: State of delinquency flow chart for an account k months delinquent

The exact forecast of the delinquency process requires keeping the history of the

previous overdue amounts for each billing cycle included in the whole continuous

delinquency period. In other words, the states of the account should be traced to

when the account was last current (in = 0, 1). The trajectory of delinquency cannot

be explicitly and exactly defined by a one step dynamic equation given the present
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3.4 Value Analysis of the Credit Card Account

state space. It would require otherwise redefining the state space so as to concatenate

the previous delinquency states until the account was last current. The formidable

enlargement of the state space would result firstly in an increase of the complexity

and of the computational effort needed to solve the problem, and secondly and

more importantly, in poor estimations of the transition probabilities. A one step

Markov chain approach is preferred here since it has been widely demonstrated in

the literature that such models are good approximations and that, by far, most of

the predictive power lies in the last billing cycle variables [see 41].

3.4.4 Assumptions

An approximate value model would be presented in the present section. The value

model is defined to follow the cardmembers’ Agreement of a major credit card issuer

in Singapore. It relies on estimated characteristics of usage and on the following as-

sumptions:

• Annual fee, insurance fee and lost/stolen fee are omitted without loss of generality.

• “Method 2” (3.2.1 p31) is applied to allot grace period.

• Installment plans are not accounted for in the present value model

• Any account more than one month delinquent is blocked from further usage. By

repaying the minimum monthly payment, any delinquent cardholder can unblock

his lines and use his card again. PVn, CVn are functions of the inputs (xn, un, xn+1)

so as to embody these two constraints.

• A payment hierarchy has been instituted. The payment ωn is first used to refund

any finance charges and fees, including the charges incurred during the cycle of pay-

ment. The remaining amount of ωn (if any) is then used to settle the outstanding

balance.

• The repayments ωn are all supposed to be made on the due state. ωn are assumed

not to exceed the outstanding balance and hence, are bounded. For an account k
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months delinquent, any repayment ωn strictly lower than the k month delinquent

balance is considered as a missed payment.

• The Markovian structure of the model requires some approximations concerning

the evolution of the due state of the account when using the payment control de-

scription. The minimum repayment is approximated using solely the current activity

(if any) and the balance outstanding at the start of the billing cycle.

• The value model does not include the possibility of having a cardholder trans-

ferring balance from the credit card account in consideration to another one. The

assumption is relevant since the focus is put on delinquent cardholders that are less

likely to use their account in due state of delinquency to pay up the balance on

another account.

3.5 Equations

3.5.1 General Characteristics

V OLn(xn, un, xn+1) Overall volume spent during billing cycle n subject to the two

following constraints;

• credit limit constraint: the balance is not to exceed an arbitrarily fixed maximum

amount UBM equal to the credit limit increased by 10%. The volume spent during

billing cycle n must therefore be less or equal to UBM − Bjn , which according to

definition 3.4 is equal to UCLjn − UCLM .

• Any over-limit account is charged with over-limit fee OL.

• any account more than 1 month delinquent (i.e. in > 2) is blocked from further

usage until sufficient repayment is made (i.e. in+1 ≤ 1).
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V OLn is then defined by:

V OLn(xn, un, xn+1) =



0, if (in > 2, in+1 > 1)

min
{(

PVn + CVn

)
(xn, un, xn+1),

UCLjn − UCLM
}

, otherwise

(3.2)

CV OLn (xn, un, xn+1), PV OLn (xn, un, xn+1) Volumes of cash advances and re-

tail purchases during cycle n subject to credit limit constraint, respectively. In case

of over-limit account, CV OLn and PV OLn are assumed to be proportionally dis-

tributed within the admissible credit lines in accordance to their respective average

volumes CVn, PVn when there is no over-limit.

CV OLn(xn, un, xn+1) =


0, if (in > 2, in+1 > 1)

CVn

PVn+CVn
V OLn(xn, un, xn+1), otherwise

(3.3)

PV OLn(xn, un, xn+1) =


0, if (in > 2, in+1 > 1)

PVn

PVn+CVn
V OLn(xn, un, xn+1), otherwise

(3.4)

rn(xn, un, xn+1) Overall receivable activity during month n inclusive of the dif-

ferent financial charges accruing.

rn (xn, un, xn+1) =
(
V OLn + ACn

)
(xn, un, xn+1) , (3.5)

where ACn (xn, un, xn+1) is the aggregate financial charges. ACn (xn, un, xn+1) is

further defined in 3.5.2.

Buse
n (xn, un, xn+1) balance usage. It is the sum of the balance revolved in billing

cycle n and of the card usage made during this cycle. Buse
n (xn, un, xn+1) features the

credit funding effort made by the card issuer to satisfy the cardholder’s demand.

Buse
n (xn, un, xn+1) = Bjn + rn (xn, un, xn+1) (3.6)
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3.5.2 Incomes

PIn (xn, un, xn+1) Interest accruing on new retail purchases. If the cardholder does

enjoy a grace period, his retail purchases are subject to a finance charge calculated

at the rate of APR (e.g. APR = 24%) per annum or equivalently at the rate of APR
365

(e.g. 0.067% resp.) per day. The activity is assumed to be uniformly distributed

within billing cycle n. That is, all cash advances are approximately assumed to

be of the same amount. Using the discrete Heaviside function H as defined in the

Nomenclature pvi, PIn can be obtained as follows:

PIn (xn, un, xn+1) =
1

2
× APR

12
×H(in − 1)× PV OLn (xn, un, xn+1) (3.7)

CIn (xn, un, xn+1) Interest accruing on new cash advances. Cash advances are

always subject to a finance charge calculated at the rate of ca. The cash advance

activity is also assumed to be uniformly distributed within billing cycle n.

CIn(xn, un, xn+1) =
1

2
× ca

12
× CV OLn (xn, un, xn+1) (3.8)

CFn(xn, un, xn+1) Fee charged on new cash advances. The fee per transaction

is charged as follows: at the rate of ca1 for the first S$ Cthr of the cash advance

and at the rate of ca2 on the remaining (if any) amount of the cash advance. The

cash advance fee per transaction is then the maximum between the previous fee

and a minimum fee of S$mincf . In order to simplify the calculation of the fee

CFn, the amount of each cash advance is set equal to the average cash advance

per transaction. Each transaction is then assumed to be charged with the same fee

and CFn(xn, un, xn+1) is consolidated as the sum of all the fees charged for cash

transactions done during billing cycle n.

CFn(xn, un, xn+1) =

(
max

{
ca1 ×min

{CV OLn (xn, un, xn+1)

nbca (xn, un, xn+1)
, Cthr

}
, mincf

}
+ ca2 ×max

{CV OLn (xn, un, xn+1)

nbca (xn, un, xn+1)
− Cthr, 0

})
×nbca (xn, un, xn+1)

(3.9)
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BIn(xn, un) Interest accruing on the balance revolved in cycle n. It is assumed

that the revolved balance is charged with the same finance charge rate APR without

distinction between the cash advance and retail purchase indebtedness.

BIn(xn, un) =
APR

12
×H(in − 1)×Bjn (3.10)

AFn (xn, un, xn+1) Aggregate fees comprising the cash advances fee

CFn(xn, un, xn+1) the late payment fee LF (UCLj) and the over-limit fee OL. Tiered

late payment fees are charged whenever the minimum payment is not received by

the due date. Over-limit fee OL is charged if during billing cycle n there occurs a

transaction resulting in the balance being over the limit; Bjn + V OLn > CL.

AFn (xn, un, xn+1) =H
(
V OLn (xn, un, xn+1)− UCLjn

)
×OL

+ CFn (xn, un, xn+1) + H (in − 2)× LF (UCLjn)
(3.11)

ACn (xn, un, xn+1) Aggregate financial charges comprising cash advances inter-

est, retail purchases interest, interest on revolving balance and aggregate fees.

ACn (xn, un, xn+1) =
(
CIn + PIn + AFn

)
(xn, un, xn+1) + BIn (xn, un) (3.12)

ICn (xn, un, xn+1) Interchange revenue during billing cycle n is derived from a

fixed percentage accruing on any card transaction. The percentage is paid by the

merchant acquirer accepting the merchant’s sales draft to the card issuer so as to

cover handling costs and credit risk in a credit card transaction. It is assumed that

retail purchases only generate interchange revenue and that the charges flowing in the

opposite direction (e.g. point of sales transactions POS / electronic funds transfers

EFT ) are paid by the cardholder for being directly impacted on his balance. Hence,

there are not considered thereafter.

ICn (xn, un, xn+1) = icr × PV OLn (xn, un, xn+1) (3.13)

65



3.5 Equations

IFn (xn, un, xn+1) Gross fee income accounts for fees accruing during billing cycle

n increased by a cumulative late payment fee and a cumulative over-limit fee. In ac-

cordance to the repayment hierarchy 3.4.4 p61, fee income is fully collected whenever

the cardholder makes a repayment allowing him not to increase his delinquency.

IFn(xn, un, xn+1) =
(
δ(in)H(1−in+1)+

(
1−δ(in)

)
H(in−in+1)

)
×AFn (xn, un, xn+1)

+ max
{
in − in+1, 0

}
×H(in − 3)×

(
LF (UCLjn) + δ(jn −M)OL

)
(3.14)

IRn (xn, un, xn+1) Gross interest income collected during month n comprising

the cash advances interest CIn, the retail purchases interest PIn and the revolv-

ing balance interest BIn. The interest income for billing cycle n is fully collected

whenever the repayment allows the cardholder not to increase his delinquency. The

previous unpaid interest are approximately calculated using the revolving balance.

The approximation is reasonable since any account more than 30 days overdue is

blocked from further usage.

IRn (xn, un, xn+1) =
(
δ(in)H(1−in+1)+

(
1−δ(in)

)
H(in−in+1)

)
×

(
CIn (xn, un, xn+1)

+ PIn (xn, un, xn+1)
)

+ max
{
in − in+1 + 1, 0

}
×BIn (xn, un) (3.15)

DRn (xn, un, xn+1) Debt Recovery after writing off in cycle n + 1. The debt

recovery of a default account is assumed to depend on the amount of bad debt.

The card issuer can either work the bad debt internally with a back end collection

department, sell the default account to external collection agencies for tiered amount

according to the total debt outstanding, or simply write off the account with no

further collection effort. In the present model, the default account is assumed to be

sold to an external collection agency.

DRn (xn, un, xn+1) = δ (in+1 −NA)
(
1− δ (in −NA)

)
×DR

(
UCLjn+1

)
(3.16)
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In (xn, un, xn+1) consolidated income collected during billing cycle n comprising

the sum of all the conditional positive cash flows from the cardholder IFn, IRn, DRn

to the card issuer and from the merchants ICn to the card issuer.

In (xn, un, xn+1) =
(
IRn + ICn + IFn + DRn

)
(xn, un, xn+1) (3.17)

3.5.3 Costs and Losses

FCn (xn, un, xn+1) Cost of lending money to the cardholder is assumed to be pro-

portional to Buse
n with a rate fcr.

FCn (xn, un, xn+1) = fcr ×Buse
n (xn, un, xn+1) (3.18)

DLn (xn, un, xn+1) Debt loss occurs when the account first reached the absorbing

state (NA,NA) and is equal to the final indebtedness increased by a penalty cost

for writing off.

DLn (xn, un, xn+1) = δ (in+1 −NA)
(
1− δ (NA− in)

)
×(

Buse
n

(
xn, un, xn+1

)
+ PCn

)
(3.19)

Cn (xn, un, xn+1) Consolidate operating cost comprises FCn, DLn, and the ag-

gregate operating cost OCn incurred by the collection strategy adopted during billing

cycle n.

Cn (xn, un, xn+1) =
(
OCn + DLn + FCn

)
(xn, un, xn+1) (3.20)

3.5.4 Expected Rewards and Optimal Policies

Any value function, say d(xn, un, xn+1) introduced in the previous section defines a

random value received or incurred in period n as Dn ≡ d(Xn, un, Xn+1).
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Definition 3.21. The random reward function associated to the reward function gn

previously defined in Definition 3.17 can then be consolidated as follows:

Gn =


(
IRn + ICn + IFn + DRn

−OCn −DLn − FCn

)
(Xn, un, Xn+1) , n = 0, . . . , N − 1

IN(XN)− CN(XN), n = N

(3.21)

The expected total discounted reward associated to the set of reward functions

gn, n = 0, . . . , N when the process starts in state x0 and when policy π is applied,

can be obtained as follows:

Jπ, g, N(x0) = E
Gn

n=0,...,N

{ ∑
n=0,...,N

βnGn

}
= E

Xn
n=0,...,N−1

{
βN

(
IN(XN)− CN(XN)

)
+

N−1∑
n=0

βn
(
IRn + ICn + IFn + DRn

)
(Xn, µn(Xn), Xn+1)

−
N−1∑
n=0

βn
(
OCn + DLn + FCn

)
(Xn, µn(Xn), Xn+1)

}
(3.22)

3.5.4.1 Optimal Policies for the Finite Horizon Problem

Puterman [33] showed that the set of deterministic policies are optimal under the

expected total reward criteria. There will be therefore no necessity for randomized

policies in the calculation of an/the optimal policy, all the more as randomized col-

lection strategies are meaningless to the card issuer. Chapter 4 will present two

resolutions: a finite horizon problem solved with the finite-horizon policy evaluation

algorithm also known as the backward induction algorithm and an infinite horizon

problem which will be solved by the policy iteration algorithm.

One should note that the expected reward can be consolidated as a dynamic equa-

tion. The backward induction algorithm intrinsically presents the proof of existence

of an optimal policy which is independent from the starting state X0.

68



3.5 Equations

3.5.4.2 Optimal Policies for the Infinite Horizon Problem when β = 1

As for the infinite horizon MDP, the present model features one absorbing state

(NA,NA) which is assumed to communicate with all the transient state. This

absorbing state is actually a cost-free termination state. Once the system reaches

that state, it remains there at no further cost, that is,

∀xn+1 ∈ S, un ∈ U
(
(NA,NA)

)
pn

(
xn+1|(NA,NA), un

)
= 1, gn

(
(NA,NA), un, xn+1

)
= 0

Under the latter assumption, reaching the termination state (NA,NA) is inevitable.

The problem of interest is then clearly equivalent to the stochastic shortest path

problem.

Definition 3.22. A stationary policy π is said to be proper if, under this policy,

there is strictly positive probability that the absorbing state (NA,NA) will be reached

after at most nπ stages, regardless of the initial state x0.

∃nπ ∈ N∗, max
x0∈S

P
(
Xnπ 6= (NA,NA)|x0, π

)
< 1

The assumptions guarantees that all the deterministic policies are proper poli-

cies. Bertsekas [7] demonstrated that given the existence of proper policies on a

discrete set, there exists a deterministic policy optimizing the expected reward over

an infinite horizon.

3.5.4.3 Optimal Policies for the Infinite Horizon Problem when 0 < β < 1

More generally, it is common practice in finance to discount cash flows

(with 0 < β < 1) so to calculate the net present value reflecting the time value
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of money. In this case, it is not necessary to assume that all the transient states

communicate with the absorbing state (NA,NA). Using stationary discounted cash

flows, the present model falls in the category of finite state space, control space

MDP for which it is well know that there exist optimal deterministic policies that

are stationary.

3.6 Summary

The features of the credit card control problem were identified under clearly defined

assumptions. The model was developed based on the following characterizations:

• due status of the account at the beginning of each monthly billing cycle

• outstanding balance so as to account accurately for the indebtedness and the

different cash flows of the credit card account

• available estimated transition probabilities

• no resource constraints for the bank undertaking collection strategies

The model, as introduced here, is easily implementable given that accurate esti-

mates of transition probabilities are available. The prior data mining requires much

work, as Trench, Pederson, Lau, Ma, Wang, and Nair [42] underlined. Partitioning

and clustering of the historical data followed by estimations of the transition proba-

bilities1 are difficult tasks to achieve. Chapter 4 will introduce a simulation study of

the present model so as to generate reasonable and sensible transition probabilities

based on the assumption that the cardholder has a rational attitude towards his

1This is usually done with maximum likelihood estimations on the reported sample of tran-
sitions. Some models though embody heterogeneity by using mover-stayer estimation procedures
[see 18]
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debt and required payments. The generated MDP will then be used to investigate

different risk aspects involved e.g. infinite horizon forecasts, explicit consideration

of variance in the choice of the optimizing policy.
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Chapter 4

Approximate Dynamic

Programming and Simulation

Study

4.1 Introduction

The methodology used to generate and simulate MDPs related to the model dis-

cussed in Chapter 3 would be specified in this chapter. A one step dynamic system,

which approximates the state transitions of the accounts, would first be introduced.

Different cardholder profiles governing the conditional distribution of repayments

would then be defined. The generated models would be solved for finite time hori-

zon using finite-horizon policy evaluation algorithm and for infinite time horizon

using policy iteration algorithm. Some common industrial situations would be found

again via the simulation study and the rationality of some practices re-affirmed. A

discussion of the adequacy of the approximation concludes the chapter.
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4.2 Approximate Dynamic Programming

4.2 Approximate Dynamic Programming

The approximate dynamic program ADP, introduced in Chapter 3, 3.3.6 p50, would

be presented here so as to mimic the stochastic process and therefore to generate

sensible transition probabilities. There are two natural factors determining the tran-

sitions of the account:

• Ωn(xn, un) discrete stochastic repayment, given the current state xn and the ap-

plied admissible collection strategy un. Its realization ωn(xn, un) takes values in D

• rn(xn, un, xn+1) estimated aggregate activity of the account during billing cycle n

Figure 3.6 p60 shows the limitation of a one step approach since the exact

computation of the minimum payment requires keeping the full history of the account

transitions. Nevertheless, the fact that an account is blocked from further usage after

30 days past due allows one to approximate the evolution based on the sole current

state Xn.

4.2.1 Approximate Minimum Repayments

In this section, the payment requirements according to the current state of the

account would first be approximated. The continuous random variable of payment

Ω would subsequently be discretized given the present state of the bank account.

Definition 4.1. Given the due state of an account xn ∈ Strans, let rp(xn, k) be the

approximate minimum repayment to be made by the due date of billing cycle n to

decrease delinquency state by k months.

In the previous definition, k is always positive except when xn = (0, jn) and

the cardholder repays the minimum payment to have a current account next period.

This situation is noted by k = −1.
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4.2 Approximate Dynamic Programming

These approximate repayments rp consist thus of a Markovian approximation of the

different delinquent balances introduced in 3.4.3 which govern the evolution of any

account within the different due status buckets.

•xn = (0, jn) the cardholder benefits from a grace period. He may repay 90% of

the statement balance to enjoy anew a grace period (case k = 0), repay the minimum

required payment to have a current account during next billing cycle (case k = 1),

or repay nothing and become one month delinquent (case k = 2).

rp(xn, k) =

max
{
minpay; mrp× (Bjn)

}
+ max{Bjn − CL, 0}, k = −1

max{minpay;
90
100

Bjn}, k = 0
(4.1)

•xn = (in, jn), in = 1 the account is current. The cardholder may repay 90% of

the statement balance to enjoy anew a grace period (case k = 1), repay the minimum

required payment to have a current account accrued with interest in the next billing

cycle (case k = 0) or make no repayment and become one month delinquent (case

k = 2).

rp(xn, k) =

max{minpay; mrp×Bjn}+ max{Bjn − CL, 0}, k = 0

max{minpay;
90
100

Bjn}, k = 1
(4.2)

•xn = (in, jn), 2 ≤ in ≤ L the account is delinquent. The card is blocked to

prevent further risk when in ≥ 3. One needs a way, based on the current state

to approximate the previous balances. For instance, the first missed payment is

based on the balance of the account at the opening of the billing cycle during which

the cardholder ceased paying. Let rpra be the ratio between the number of days

separating the statement issuance from the due state and the number of days in the

billing cycle. Let V OL be the mean on all the unblocked states of the overall volume

spent. The two oldest delinquent balances are supposed to be the difference between

the present balance Bjn and a possibly prorated mean volume depending on whether

the account was blocked i.e. in ≥ 3 during the delinquency process. If in ≥ 3,
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4.2 Approximate Dynamic Programming

the remaining delinquent balances are related to the billing cycles during which the

account was blocked. The latter are approximatively equal to Bjn since during these

periods only fees and interests will accrue. Therefore, Bjn ≈ Bjn−k , k ≤ in− 3. The

approximate balances B̃jn−k are therefore calculated as follows:

B̃jn−k ≈

Bjn − (H(in − 3)rpra + δ(k − 1))V OL, k = in − 2, in − 1

Bjn , k = 0, . . . , in − 3
(4.3)

rp(xn, k) is thus defined by:

rp(xn, k) =


∑

q=0,...,k

max{minpay; mrpB̃jn−q}+ max{B̃jn−q − CL, 0}, 0 ≤ k ≤ in − 1

max{minpay;
90
100

Bjn}, k = in

(4.4)

The numerical error due to the approximation of the required payments rp(xn, k)

is bounded by mrp×
( ∑

q=0,...,k

|B̃jn−q−Bjn|
)
, with mrp� 1 (usually set to 3%) which

justifies the preceding approximation. The calculation of B̃jn−k further assumes that

the delinquency mainly follows a strictly worsening process until sufficient repayment

is made. The latter assumption is empirically justified by the examination of the

data reported in [41]. More specifically, delinquent accounts mainly revert to paid

up states and current states i.e. in+1 = 0, 1 respectively, or transit to the next worse

states of delinquency i.e. in+1 = in + 11.

Definition 4.2. Given the due state of an account xn = (in, jn) ∈ Strans, the mini-

mum required payment MRP (xn) is defined as the minimum repayment to be made

by the cardholder so as to remain or become non-delinquent. MRP (xn) is calculated

as follows:

MRP (xn) =

rp(xn,−1), xn = (0, jn), jn = 0, . . . ,M

rp(xn, in − 1), xn = (in, jn), in = 1, . . . , L, jn = 0, . . . ,M
(4.5)

1Such transitions were found, in the data reported in [41], to account for 79% of all the possible
moves when in such states. The transitions originating from delinquent states represent 12% of the
total number of transactions. The approximation concerning the monotonicity of the transitions
should therefore be correct in 98% of the cases.
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Without loss of generality, it is assumed in the present model that MRP (x) < Bj

2

which otherwise would mean that Bj ≤ 2minpay. Such an account is considered

inactive and thus excluded from the present analysis.

4.2.2 Discrete Partition of the Payments

The preceding conditions define a necessary partition of the payments to accurately

reflect the evolution of the due state of an account.

Definition 4.3. Let Φ(xn) be the discrete partition of the payments Ωn given the

account is in state xn ∈ Strans.

•xn = (0, jn), jn = 0, . . . ,M + 1

Φ(0, jn) =
[
0, rp(xn,−1)

) ⋃
Ψ

([
rp(xn,−1), rp(xn, 0)

)) ⋃[
rp(xn, 0), Bjn

]
•xn = (in, jn), in = 1, . . . , L, jn = 0, . . . ,M

Φ(in, jn) =
[
0, rp(xn, 0)

) in−2⋃
k=0

[
rp(xn, k), rp(xn, k + 1)

)
⋃

Ψ
([

rp(xn, in − 1), rp(xn, in)
)) ⋃[

rp(xn, in), Bjn
]
,

•xn = (NA,NA)

Φ
(
(NA,NA)

)
= {0}

where Ψ
(
[a, b)

)
represents any arbitrary discrete partition1 of the line segment

[a, b).

For any other line segment above, the repayments are assumed to be equal to

the lower bound of the line segment that they belong to. In what follows, Ψ
(
[a, b)

)
1It is preferable for the discrete partition Ψ to be fine enough so as to exhaustively scan the

possible transitions from the present due status to next state where the account is current.
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is chosen so as to partition [a, b) into line segments that are smaller than the line

segments partitioning the balance Bj+1 −Bj. To that end, the ratio Ψratio is intro-

duced and set so as to divide the balance into line segments that are Ψratio times

smaller than the ones defining the discrete unused balance status j.

D, previously introduced as the set of payments [see 3.3.4.2], is therefore the finite

discrete set comprising all the discrete values defining Φ
(
x = (i, j)

)
, x ∈ S.

4.2.3 Dynamic Programming System

The partition of the repayments enables, given xn and ωn, the derivation of the

evolution of the due status of an account in the next period i.e. in+1. The explicit

relations between
(
xn, ωn

)
and in+1 are detailed in Tables 4.1, 4.2, 4.3 p80. To com-

plete the definition of the dynamic system, the evolution of the unused credit limit

has to be specified.

4.2.3.1 Evolution of the Unused Credit Limit jn

The present section details the evolution of the jn from one billing cycle to another.

Let Bbill denote the outstanding balance reported on the statement from which jn+1

will be derived. The evolution of the balance is determined by the repayments Ωn and

by the use of the card during the current billing cycle Buse
n = Bjn + rn(xn, un, xn+1).

Except for the volumes CV OLn(xn, un, xn+1) and PV OLn(xn, un, xn+1), all the

other values needed to compute rn do not depend on xn+1. The sequel would estab-

lish an approximate equivalence between CV OLn(xn, un, xn+1),

PV OLn(xn, un, xn+1) and CV OLn(xn, un, ωn), PV OLn(xn, un, ωn), respectively. The

evolution of the unused credit limit jn would therefore be derived from the triplet
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(xn, un, ωn).

•xn = (in, jn) ∈ Strans, 0 ≤ in ≤ 1. The account is either paid up or current.

It is reasonable to assume that CV OLn, PV OLn depend only on the present state

and collection strategy. Hence Bbill can be written as:

Bbill = Bjn + rn(xn, un)− ωn(xn, un) (4.6)

•xn = (in, jn) ∈ Strans, in = 2. The payments are one month overdue. One

should distinguish two cases depending on whether (a) the account was previously

in an equal or better due status or (b) the account was previously in a strictly worse

due state. These two situations are formally defined as follows:

a) ∃k,

in−k ∈ {0, 1}

in−k+q = 2, q = 1, . . . , k

b) in−1 = 3, . . . , L

Situation (a) implies the cardholder, despite his overdue payments, can still make

transactions whereas in situation (b) the card is blocked. Based on [41], one finds

that situation (b) accounts for 4% of all the transitions to due state in = 2. Such

transitions are thus neglected in the sequel and an account one month overdue is

not yet blocked. From there, two situations can occur:

1. rp(xn, 0) ≤ ωn The cardholder’s repayment allows the due status of the account

not to worsen. The account will, at worst, be one month overdue in the next

billing cycle i.e. in+1 ≤ 2. The cardholder thus continues to enjoy the usage

of his card. Similar to Equation (4.6), CV OLn and PV OLn are assumed to

depend only on the present state and collection strategy which leads to the

same calculation of Bbill as in (4.6).
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2. ωn < rp(xn, 0) The cardholder does not make any payment. His repayments

fall further behind and will be two months overdue. The card is blocked from

the due date onwards. CV OLn(xn, un, ωn), PV OLn(xn, un, ωn) are there-

fore assumed to be the prorated amounts with factor rpra of the volumes

CV OLn(xn, un), PV OLn(xn, un) introduced in the previous case when the

account is one month overdue and when the repayments are sufficient for

the cardholder to keep usage of his card during the whole billing cycle i.e.

(in = 2, in+1 ≤ 2). rpra
n (xn, un) is the corresponding activity when the vol-

umes are rpraCV OLn(xn, un) and rpraPV OLn(xn, un). Bbill is then calculated

as:

Bbill = Bjn + rpra
n (xn, un)− ωn(xn, un), in = 2, rp(xn, 0) ≤ ωn (4.7)

•xn = (in, jn) ∈ Strans, 3 ≤ in, ωn < MRP (xn). The account is more than one

month overdue and hence blocked. Since the repayment is lower than the minimum

required payment, the usage of the card is not recovered. Hence,

PV OLn = CV OLn = 0

Bbill = Bjn + ACn(xn, un)− ωn(xn, un) (4.8)

•xn = (in, jn) ∈ Strans, 3 ≤ in, MRP (xn) ≤ ωn. The account is more than

one month overdue and hence blocked until sufficient repayment is made so as to

decrease the due status to either current or paid up state. It assumes that the

cardholder recovers the usage of his card on his payment date i.e on the due date.

The volumes CV OLn, PV OLn are therefore assumed to be prorated amounts with

factor (1 − rpra) of the quantities introduced in Equation (4.6) when 0 ≤ in ≤ 1.

Given that MRP (xn) ≤ ωn, these two quantities are calculated as follows:

CV OLn(xn, un, ωn) =

(1− rpra)CV OLn((1, jn), un), if ωn < rp(xn, in)

(1− rpra)CV OLn((0, jn), un), if rp(xn, in) ≤ ωn

(4.9)
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PV OLn(xn, un, ωn) =

(1− rpra)PV OLn((1, jn), un), if ωn < rp(xn, in)

(1− rpra)PV OLn((0, jn), un), if rp(xn, in) ≤ ωn

(4.10)

rpra
n (xn, un) is the activity derived from the preceding volumes. Bbill can then be

calculated as a function of xn, un and ωn only.

Bbill = Bjn + rpra
n (xn, un)− ωn(xn, un) (4.11)

The collection of the previous cases describes exhaustively the evolution of the

balance for any payment and in any given state different from the written-off state

(NA,NA). It hence follows that jn+1 is the unique solution of the following system

φ defined by:

φ(xn, un, ωn) =


NA, if xn = (NA,NA)

NA, if xn = (L, jn), ω(xn, un) < rp(xn, 0)

k| k ∈ J ′, LBk < Bbill
n − ωn ≤ UBk, otherwise

(4.12)

The existence and uniqueness of k, in the third case, is ensured by the consistent

partition of the unused credit limit into disjoint discrete line segments.

4.2.3.2 Detailed Dynamic Evolution of (in, jn)

Let h(·) be the discrete-time dynamic system, that governs the conditional

state transitions as follows xn+1 = h(xn, un, ωn). h(·) is defined by:

ωn in+1 jn+1

0 2 φ
(
(in, jn), un, 0

)
Ψ

([
rp(xn,−1), rp(xn, 0)

))
1 φ

(
(in, jn), un, ωn

)
rp (xn, 0) 0 φ

(
(in, jn), un, B

jn
)

Table 4.1: One step transitions. Case: xn = (in, jn), in = 0, jn = 0, . . . ,M
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ωn in+1 jn+1

0 in + 1 φ(xn, un, 0)

rp(xn, k) in − k φ
(
xn, un, rp(xn, k)

)
Ψ

(
[rp (xn, in − 1), rp (xn, in)

))
1 φ(xn, un, ωn)

rp (xn, in) 0 φ(xn, un, B
jn)

Table 4.2: One step transitions. Case: xn = (in, jn), in = 1, . . . , L, jn = 0, . . . ,M

ωn in+1 jn+1

0 NA NA

Table 4.3: One step transitions. Case: xn = (NA,NA)

The present MDP has been approximated as a discrete-time dynamic system

for which the random disturbance Ω(xn, un) takes values in the finite discrete set D.

The next section would characterize the distribution of the random repayments.

4.3 Cardholder’s Profiles

This section would introduce different profiles of cardholder’s behaviours. The pro-

files would ideally model the ability of the cardholder to repay his debt together

with his willingness to do so, given a present due state and a collection strategy

undertaken by the card issuer. Based on varied conjectures about the cardholder’s

repayments, two categories of rational profiles would be defined so as to model a

wide variety of situations. The probability distributions would be derived from each

profile.

For each of these two categories of rational profiles, the rationality assumption would

then be relaxed in two different ways and the subsequent irrational and random pro-

files would be obtained.
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The notations used in the sequel for the discrete probabilities and excess probability

distributions of repayment are first introduced.

Definition 4.4. Let pΩ(ω|x, u) be the discrete probability that the cardholder makes

a repayment equal to ω ∈ Φ(x) when the account is in state x and subject to collection

action u.

Definition 4.5. The excess probability distribution function GΩ(ω) of the repay-

ments Ω given a due state x ∈ Strans and a control u ∈ U(x), is the probability that

the repayment Ω would be strictly greater than ω;

GΩ(ω) = p(Ω > ω|x, u), x ∈ Strans, u ∈ U(x)

4.3.1 Rational profiles

4.3.1.1 Severity of Collection Actions

Recall the discrete control set U comprises all the collection strategies ordered by

increasing level of severity.

4.3.1.2 Rational Repayment

Definition 4.6. A rational payment behaviour is such that the excess distributions

of repayments GΩ are increasing functions of the collection strategy u.

∂GΩ

∂u
(ω|x, u) ≥ 0, 0 < ω, x ∈ Strans, u ∈ U(x)

In other words, for any two controls u, v ∈ U(x) such that u is more severe than

v, the excess probability distribution function of repayments GΩ(ω|x, u) stochasti-

cally dominates first order the excess probability distribution function of repayments

GΩ(ω|x, v).
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4.3.2 Trimodal Profile with Separable Willingness and Abil-

ity to repay

Recall that a prior segmentation of the cardholders into rather homogenous risk

segments is required. The payment distributions of the cardholders belonging to the

same segment are supposed to be independently and identically distributed and to

depend on two characteristics:

• An ability to repay ϕ which measures the extent to which a cardholder, given

a due payment, is able to repay.

• A willingness to repay ν which measures, the determination of a cardholder to

repay.

This approach was adopted in papers related to credit risk and repayments such

as Rhind et al. [34]. Let define a category of rational profiles, namely the Trimodal

profile, to depict the approach. Each payment distribution would consist of a discrete

distribution with three modes corresponding to the three following situations: no

payment is made, the minimum required payment is repaid and the outstanding

balance reported on the statement is fully settled. It is postulated in the Trimodal

profile that the resulting probabilities of payment are calculated as the product of

the willingness to repay ν and of the ability to pay ϕ. The rationale of this approach

is to separate the causal factors of a phenomenon by assuming their resulting joint

influence is a product of functions. The ability to repay is assumed to depend only

on the due state of the account whereas the willingness is assumed to depend on

both the collection strategy and the due state.

Following conventional financial analysis e.g. Scherr [37], the ability to repay is

illustrated using the logistic function. The latter is relevant for its decreasing trend

between an initial probability P0 and 0.

83



4.3 Cardholder’s Profiles

Definition 4.7. The ability to repay ϕ(ω) is defined as the probability that the

cardholder is financially able, but not necessarily willing, to repay more than ω. It

is chosen in the Trimodal profile to be calculated as follows:

ϕ(ω) =

(
1− 1

1 + exp
(
aϕ + bϕω

))
P0, 0 ≤ ω,

where aϕ, bϕ, P0 are set arbitrarily to run simulations with the following conditions

holding; bϕ ≤ 0, 0 ≤ exp(aϕ)

1+exp(aϕ)
P0 ≤ 1

The probability that the cardholder is able to make any strictly positive pay-

ment (no payment) is chosen to be equal to exp(aϕ)

1+exp(aϕ)
P0 ,

(
1

1+exp(aϕ)
P0

)
and is a

priori supposed not to be equal to one, (zero) respectively.

Definition 4.8. Given a due state x ∈ S−
{
(NA,NA)

}
and a control u ∈ U(x), the

willingness to repay ν(x, u) measures the determination of a cardholder to make pay-

ment. ν(·) is arbitrarily chosen in the Trimodal profile with the following properties

holding:

• 0 ≤ ν(x, u) ≤ 1, 0 ≤ ∂ν
∂u

(x, u), x ∈ Strans, u ∈ U(x)

The bounds of ν(·) are set to ensure a proper definition of probabilities. The

dependence of ν(·) in x accounts for the possibility of having a willingness to repay

that differs from one due status to another. Finally, the increasing trend of ν(·) with

respect to the control u accounts for the rationality of the behaviour i.e. the more

severe collection strategy u, the more determined the cardholder is to pay .

It is assumed in the Trimodal profile that the repayments made by the cardholder

are of three types only: null repayment, minimum required payment and full balance

payment. The three modes are subsequently defined by:
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Definition 4.9. FullPay mode corresponds to the repayment made by the cardholder

to enjoy anew a grace period at the beginning of the next billing cycle. This mode

is hence located at Ω = rp(x, i) and, given a due state x = (i, j) ∈ Strans and a

collection strategy u ∈ U(x), is such that:

pΩ

(
rp(x, i)|x, u

)
= ϕ

(
rp(x, i)

)
ν(x, u)

Definition 4.10. MRP mode corresponds to the repayment of the minimum re-

quired amount. This mode is hence located at Ω = MRP (x) and, given a due state

x = (i, j) ∈ Strans and a collection strategy u ∈ U(x), is such that:

pΩ

(
MRP (x)|x, u

)
= ϕ

(
MRP (x)

)
ν(x, u)− pΩ

(
rp(x, i)|x, u

)

The decreasing trend of the logistic function together with the properties of the

chosen willingness ensure the MRP mode to have a probability between 0 and 1 and

hence to be properly defined.

Definition 4.11. NullPay mode corresponds to no repayment made. This mode of

the distribution is hence located at Ω = 0 and given a due state x and a collection

strategy u ∈ U(x), is such that;pΩ

(
0|x, u

)
= 1, if x = {(NA,NA)

}
pΩ

(
0|x, u

)
= 1− pΩ

(
MRP (x)|x, u

)
− pΩ

(
rp(x, i)|x, u

)
, otherwise

Definition 4.12. The set ΥTri =
{
pΩ(·|x, u), (x, u) ∈ κ

}
of payment distributions

is then derived as:

ΥTri =



•x = (i, j) ∈ Strans, u ∈ U(x)

pΩ

(
0|x, u

)
= 1− pΩ

(
MRP (x)|x, u

)
− pΩ

(
rp(x, i)|x, u

)
pΩ

(
MRP (x)|x, u

)
= ϕ

(
MRP (x)

)
ν(x, u)− pΩ

(
rp(x, i)|x, u

)
pΩ

(
rp(x, i)|x, u

)
= ϕ

(
rp(x, i)

)
ν(x, u)

•x = (NA,NA), u ∈ U(x)

pΩ

(
0|(NA,NA), u

)
= 1

85



4.3 Cardholder’s Profiles

A Trimodal profile is exhaustively defined by its related ability to repay ϕ(·)

and cardholder willingness to repay ν(·).

Property 4.1. The Trimodal profile, defined by the previous choice of ϕ(·) and

ν(·), is a rational profile.

Proof. The repayments when the account is in state
{
(NA,NA)

}
are all null. Hence,

it is necessary and sufficient to show that for x ∈ Strans the excess probabilities at

the modes FullPay and MRP are increasing functions of the control u ∈ U . To

that effect, the partial derivatives of these probabilities with respect to the control

u ∈ U(x) are calculated. From the separation of ϕ and ν and from the increasing

(decreasing) trend of ν (ϕ) in u (ω) respectively, it follows:

∂pΩ

∂u

(
rp(x, i)|x, u

)
= ϕ

(
rp(x, i)

)∂ν

∂u
(x, u) ≥ 0,

∂pΩ

∂u

(
MRP (x)|x, u

)
=

(
ϕ
(
MRP (x)

)
− ϕ

(
rp(x, i)

))∂ν

∂u
(x, u) ≥ 0,

Some irrational Trimodal profiles can also be defined. They would comprise the

same modes and would also be calculated as the product of the ability to repay

ϕ(·) and of the cardholder willingness to repay ν(·). The latter would be chosen

so that the rationality property would not hold. This approach will be used in the

simulation study to illustrate the impact of the collection strategies on a rational

cardholder.

The Trimodal profile can be extended to include more than three types of repay-

ments. To that end, additional probabilities should be introduced so as to account

for the probability of making other repayments. For instance, the cardholder may
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either repay partially the minimum required payment or repay more than the mini-

mum required payment yet without settling the debt. Nevertheless, considering the

nature of the debt and the repayment rules, it is reasonable to let the two modes

FullPay and MRP dominate the other repayments and to consider these probabili-

ties to be comparatively small.

4.3.3 Unimodal Profile with Beta Distributions of Repay-

ments

This section introduces a rational profile based on Beta distributions of repayments.

Two parameters are necessary and sufficient to define each Beta distribution. The

first moment and the mode (if any exists) or the shape of each Beta distribution

would be characterized so as to derive the two relevant parameters.

Definition 4.13. The Beta probability density function B(z, c, d) for the normalized

random variable z, 0 ≤ z ≤ 1 is defined by:

B(z, c, d) =
zc−1(1− z)d−1

B(c, d)
, 0 < c, 0 < d,

where B(c, d) is the beta function of (c, d).

The two parameters c and d are necessary and sufficient to define a Beta dis-

tribution. Given a due state x = (i, j) ∈ Strans and a control u ∈ U(x), their

determination is based on the following points:

• The definition of a normalized variable of repayment Z as the ratio between

the payments Ω and the outstanding balance Bj when the account is in state

x ∈ Strans:

Z =
Ω

Bj
, 0 ≤ Ω ≤ Bj
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• The calculation of the corresponding normalized expected repayment. The

cardholder is assumed to have a prior conditional distribution of repayments

Gprior
Ω (ω|x, u) defined by a logistic function. This distribution, for which the

rational property will be proven to hold [see 4.3.3.1], is so chosen to embody

both the cardholder’s willingness and financial ability to repay given x and u.

An ad’hoc expected utility will be defined and assumed to be equal to the first

moment of the related Beta distribution.

• The following conjecture concerning the probability density function of the

related Beta distribution; depending on the minimum due, the cardholder is

reasonably assumed, in decreasing order of capability to repay, to:

1. preferably settle his debt, if he is “capable” of doing so.

2. be most likely to repay the minimum due, if he is “capable” of paying the

minimum due.

3. be most likely to repay nothing, if the minimum due is beyond his capacity

of repayment.

This conjecture, which illustrates both the rules of repayments and the rationality of

the cardholder, will be detailed in 4.3.3.2 and in particular the meaning of “capable”

will be specified.

The present procedure should be regarded as a two-step approach. The first step

consists of the definition of a prior conditional distribution of repayments, for which

the rational property holds. This distribution illustrates the overall payment made

by a cardholder in a given state and under a given collection strategy. Its normalized

expected utility is therefore solely retained. The second step aims to populate the

range of the conjectured Beta distribution, the first moment of which is equal to the

previous expected utility. To that end, the assumption concerning its probability
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density function is proposed. It enables one to complete the definition of the Beta

distribution by deriving the two parameters c and d.

4.3.3.1 Characterization of the Normalized Expected Payments

This section shall detail the approach used to define the first moment of each Beta

distribution.

Let first define the prior distribution of repayments Gprior
Ω (ω|x, u).

Definition 4.14. Given a due state x ∈ Strans and a control u ∈ U , the prior logistic

excess probability distribution of repayments Gprior
Ω (ω|x, u) is defined by:

Gprior
Ω (ω|x, u) =

(
1− 1

1 + exp
(
aG(x, u) + bG(x, u)ω

))
P0(x, u), 0 ≤ ω

where aG(x, u), bG(x, u), P0(x, u) are chosen arbitrarily to run simulations with the

following conditions holding:

• aG(x, u) ≤ 0, 0 ≤ ∂aG

∂u
(x, u)

• bG(x, u) ≤ 0, 0 ≤ ∂bG

∂u
(x, u)

• 0 ≤ exp
(

aG(x,u)
)

1+exp
(

aG(x,u)
)P0(x, u) ≤ 1, 0 ≤ ∂P0

∂u
(x, u)

The sign of bG(x, u) is imposed to ensure the decreasing trend of the excess

probability. The signs of the partial derivatives of bG(x, u) and P0(x, u) with respect

to u are chosen to be positive for the rationality property to hold.

Similar to the Trimodal profile, the probability that the cardholder is able to make

any strictly positive repayment (no repayment) is chosen to be equal to

exp
(

aG(x,u)
)

1+exp
(

aG(x,u)
)P0(x, u) ,

(
1

1+exp (aG(x,u))
P0(x, u)

)
and is a priori supposed not to be

equal to one , (zero) respectively. Nevertheless, the influences of the due state x and

of the control u are now, in a more general manner, assumed not to be separable.
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Property 4.2. The excess probability distribution Gprior
Ω (·) defines a rational repay-

ment behaviour.

Proof. The repayments when in state x =
{
(NA,NA)

}
are null. Hence, it is nec-

essary and sufficient to show that for x ∈ Strans, u ∈ U(x), ω > 0, Gprior
Ω (ω|x, u)

are increasing functions of u. Similarly, let calculate their partial derivatives with

respect to the control u.

∂Gprior
Ω

∂u
(ω|x, u) =

exp
(
aG(x, u) + bG(x, u)ω

)
1 + exp

(
aG(x, u) + bG(x, u)ω

)(
∂P0

∂u
(x, u)

+
P0(x, u)

1 + exp
(
aG(x, u) + bG(x, u)ω

)(
ω

∂bG

∂u
(x, u) +

∂aG

∂u
(x, u)

))

From the conditions on aG(x, u), bG(x, u) and P0(x, u) [see Definition 4.14], it

follows that:

∂Gprior
Ω

∂u
(ω|x, u) ≥ 0, x ∈ Strans, u ∈ U

The calculation of the normalized expected repayment should now be detailed.

The prior distribution of repayments has R+ for support whereas the realizations

of the payments range between zero and the outstanding balance Bj. The pos-

sibility of a cardholder settling his indebtedness Bj is accounted for by consider-

ing that the cardholder repays the outstanding balance with the excess probability

Gprior
Ω (Bj|x, u). A related payment utility function utnorm, embodying this trunca-

tion of the repayments at Bj shall consequently be defined. The normalized expected

repayment would then be equal to the expected value of utnorm.
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Definition 4.15. Given a due state x = (i, j) ∈ Strans, the utility function utnorm

associated to the cardholder repayments is defined as follows:

utnorm

(
ω|x

)
=

 ω
Bj 0 ≤ ω ≤ Bj

1 Bj < ω

Definition 4.16. Given a due state x = (i, j) ∈ Strans, the normalized expected

repayment E(x, u){Z} is defined as follows:

E(x, u){Z} = E
Ω

{
utnorm(Ω|x)|u

}
=

∞∫
0

utnorm(ω|x)

(
−∂Gprior

Ω

∂ω

)
(ω|x, u)dω

=

Bj∫
0

ω

Bj

(
−∂Gprior

Ω

∂ω

)
(ω|x, u)dω + Gprior

Ω (Bj|x, u)

Property 4.3. The normalized expected repayment is an increasing function of the

severity of the control u, and hence consistent with the concept of rational repayment.

Proof. Given a due state x = (i, j) ∈ Strans, let u, v ∈ U(x) be two controls such

that u is more severe than v, i.e. with respect to the ordered control set U(x), u > v.

The repayment Ωu associated to alternative u stochastically dominates, first order,

the repayments Ωv of alternative v since the set of excess distributions associated

Gprior
Ω (·) defines a rational behaviour. The utility function utnorm(Ω|x) is clearly

increasing in Ω. The following result [see 31] will conclude the proof:

Given two random variables X1, X2 such that X1 first-order dominates X2 and given

an increasing function ς

E
X1

{
ς(X1)

}
≥ E

X2

{
ς(X2)

}
Hence,

E
Ωu

{
utnorm(Ωu|x)|u

}
≥ E

Ωv

{
utnorm(Ωv|x)|u

}
E(x, u){Z} ≥ E(x,v){Z}
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4.3.3.2 Characterization of the Probability Density Function of the Beta

Distribution

Consider now the assumption concerning the distribution of the repayments. It

has been assumed that if the cardholder has a sufficient capability to repay, he will

preferably repay as much as he can in the range of the balance due. Otherwise, if

his capacity is sufficient to repay the minimum due, he will concentrate his payment

effort on such an amount and thereby define a mode for the probability density

function at MRP (x). Finally, if his capacity to repay is small compared to the

minimum, he will most likely repay nothing.

This section shall firstly introduce a formal distinction of these three different cases

and secondly complete the definition of the set of Beta distributions.

Let first state classic results of the Beta distribution that will be used in the sequel.

• The sufficient and necessary condition of existence of a mode in [0,1] is 1 ≤ c,

1 ≤ d

• In such a case, the mode is located at z0 = c−1
c+d−2

• A “width” parameter N is be defined by N = c + d

Several cases should be distinguished depending on the values of the normalized

expected payment E(x, u){Z} and of the normalized minimum required payment

MRP (x)
Bj :

a) E(x, u){Z} > MRP (x)
Bj , E(x, u){Z} > 1

2

b) E(x, u){Z} > MRP (x)
Bj , E(x, u){Z} ≤ 1

2

c) E(x, u){Z} ≤ MRP (x)
Bj
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4.3.3.3 Cases (a) and (b): E(x, u){Z} > MRP (x)
Bj

The normalized expected repayment is strictly greater than the value of the mode

MRP (x)
Bj , if any exists.

Theorem 4.1. Given a due state x = (i, j) ∈ Strans a control u ∈ U(x) and an

expected payment E(x, u){Z} such that E(x, u){Z} > MRP (x)
Bj , there exists a mode to

the corresponding beta distribution if and only if E(x, u){Z} ≤ 1
2

(i.e. case (b)).

Proof. The necessary condition shall be first proven by contradiction. The sufficient

condition would be demonstrated by direct proof.

• Suppose that a mode exists and that E(x, u)(z) > 1
2

.

Given the conjecture concerning the location of the mode, the following equations

should hold:

E(x, u){Z} =
c

N
, z0 =

c− 1

N − 2
=

MRP (x)

Bj

Hence,

N =
Bj − 2MRP (x)

Bj E(x, u){Z} −MRP (x)

Definition 4.2 and the assumption that E(x, u){Z} > 1
2

lead to:

N < 2⇒ Contradiction with the existence of a mode.

• Now suppose E(x, u){Z} ≤ 1
2
,

N =
Bj − 2MRP (x)

Bj E(x, u){Z} −MRP (x)
, c = (N − 2)

MRP (x)

Bj
+ 1

N and c are such that,

N ≥ 2, c ≥ 1,
N

2
≥ c and thus, d ≥ 1

Hence, (c, d) uniquely define a beta distribution having a mode in z0 = MRP (x)
Bj .
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In case (a) E(x, u){Z} > MRP (x)
Bj and E(x, u){Z} > 1

2
, Theorem 4.1 implies that

no mode exists. The cardholder has a substantial capability to repay more than

the minimum required payment and is indeed expected to repay more than half of

the outstanding balance. Thus, it is naturally assumed that the cardholder is likely

to pay as much as he can and that the probability density function is an increas-

ing function on the normalized range [0, 1]. The corresponding Beta distribution

has no infinite branch in zero. A maximum weight is given to its tail (i.e z → 1).

Hence, the cardholder will preferably settle his debt. The parameters are defined by:

c = 1, d =
1− E(x, u){Z}

E(x, u){Z}

In case (b) E(x, u){Z} > MRP (x)
Bj and E(x, u){Z} ≤ 1

2
, Theorem 4.1 implies that a

mode exists. The cardholder has no sufficient capability to be most likely to settle

the whole debt but still his capability is sufficient to expect his payment to be most

likely equal to the minimum required payment. The parameters are thus derived

from Theorem 4.1.

4.3.3.4 Case (c): E(x, u){Z} < MRP (x)
Bj

In such a case, the expected repayment is considerably small compared to the min-

imum due. Despite the rational behaviour of the cardholder, one should not expect

a mode at MRP (x)
Bj since the cardholder is most likely to be unable to pay such an

amount. Similarly, it is naturally assumed that the probability density function is a

decreasing function on the normalized range [0, 1]. The corresponding Beta distri-

bution has no infinite branch in one. A maximum weight is given to its branch in

zero. The parameters are hence:
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c =
E(x, u){Z}

1− E(x, u){Z}
, d = 1

Definition 4.17. The set ΥUni =
{
pΩ(·|x, u), (x, u) ∈ κ

}
of payment distributions

for the Unimodal profile is then derived from the following algorithm:

Algorithm 1 Generation of ΥUni set of beta distributions of repayment for the

Unimodal profile

Data: prior distribution of repayments Gprior
Ω and partition of repayments φ

Output: Set ΥUni of beta distributions of repayments.

for all x = (i, j) ∈ Strans, u ∈ U(x) do

E(x,u){Z} ← Computeexpectpayment(x, u, Gprior
Ω ) /* According to Defini-

tion 4.16 */

(c, d)← Betaparameters(E(x,u){Z}) /* According to Theorem 4.1 */

for all ωk, ωk+1 ∈ φ(x) do

pΩ(ωk|x, u) = Fβ(ωk+1

Bj , c, d)− Fβ( ωk

Bj , c, d) /* Fβ: Cdf Beta distribution */

end for

pΩ(rp(x, i)|x, u) = 1−
∑

ω∈φ(x)

pΩ(ω|x, u)

end for

x = (NA,NA), u ∈ U(x)

pΩ(0|(NA,NA), u) = 1

where Computeexpectpayment(x, u, Gprior
Ω ) and Betaparameters(E(x,u){Z})

are the subroutines which compute the expected repayment E(x,u){Z} and the pair

of parameters of the beta distribution (c, d) according to Definition 4.16 and to

Theorem 4.1, respectively.

4.3.4 Irrational Profiles: Relaxing the Sensitivity to the

Collection Strategies

The category of irrational profiles comprises, in its broad generality, any profile for

which the rationality criterion does not hold.
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Consider the type of irrational profiles derived simply by relaxing the assumption

that a rational cardholder is increasingly sensitive to firmer reminders. Two cate-

gories of irrational profiles are then defined by assuming the repayments distribu-

tions to be equivalent to the corresponding rational Trimodal and rational Unimodal

profiles when the least strict strategy u = 0 is undertaken. In the perspective of

the following computational study, these two categories of irrational Trimodal and

Unimodal are of interest, for they would be used to measure the impact of the

conjectured sensitivity to the collection reminders.

4.3.5 Random Profiles: Relaxing the Rational Distribution

of Repayments

The profiles defined in this section comprise cardholders, who have a given ability to

repay derived from either the Trimodal or the Unimodal profile and who distribute

identically their payments within the range of their outstanding balances. These

profiles would be used as a benchmark. Indeed, they consist of a relaxation of the

rational way the cardholders distribute their repayments in the Trimodal or the

Unimodal profile.

4.3.5.1 Random Profile Associated to a Rational Trimodal Profile

Starting from any Trimodal profile with a given ability to repay, the equivalent

Random profile is derived by assuming the Random cardholder, when in state

x = (i, j) ∈ Strans to:

• settle his outstanding balance Bj with a probability ϕ(Bj)ν(0)

• repay nothing with a probability 1− ϕ(MRP (x))ν(0)
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• otherwise make repayments following a uniform distribution on the range[
0, rp(x, i)

)
.

The rationale for the second assumption is that a cardholder who is not able to repay

MRP (x), would thus repay nothing. The third point illustrates the randomness of

the cardholder. Given a certain repayment ability, his distribution of payment is

uniform in the range
[
0, rp(x, i)

)
and hence independent of the repayment obliga-

tions. The Random cardholder is furthermore insensitive to the collection strategy

he is undergoing, in terms of repayments.

Property 4.4. In this Random profile, the repayments uniformly distributed on[
0; rp(xn, 0)

)
are independent of the undertaken collection strategy un.

Proof.

∂ϕ(ω)ν(0)

∂u
= 0⇒ ∂pΩ

∂u
(ω|x, u) = 0, x ∈ Strans, u ∈ U(x)

∂(2)pΩ

∂ω2
(ω|x, u) = 0

Definition 4.18. The set ΥRd =
{
pΩ(·|x, u), (x, u) ∈ κ

}
of payment distributions

for the Random profile associated to the rational Trimodal profile, with ability to

repay (ϕ, ν), is defined by:

ΥRd =



•x = (i, j) ∈ Strans, u ∈ U(x)

pΩ(0|x) = 1− ϕ
(
MRP (x)

)
ν(0)

pΩ

(
rp(x, i)|x

)
= ϕ(rp(x, i))ν(0)

fRd

(
w|x

)
=

1−pΩ

(
0|x

)
−pΩ

(
rp(x, i)|x

)
rp(x, i)

ω, 0 ≤ ω < rp(x, i)

•x = (NA,NA), u ∈ U(x)

pΩ

(
0|(NA,NA)

)
= 1
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where f(·|x, u) is the probability density function of the payments on the range

[0, rp(x, i)) when the account is in state x = (i, j) ∈ S − {(NA,NA)} .

The uniform distribution f(·|x, u) should afterwards be discretized according to

the repayment partitions φ.

4.3.5.2 Random Profile Associated to a Rational Unimodal Profile

Starting from any Unimodal profile with a given ability to repay, the equivalent

Random profile is derived by assuming that the associated Random cardholder,

when in state x = (i, j) ∈ Strans will:

• identically distribute his repayments within the range of the outstanding bal-

ance Bj such that the expected repayment will be equal to Bj

2
if E(x,u){Z} > 1

2

for the associated rational Unimodal profile.

• repay nothing with a probability of 1 − E(x,u){Z} and identically distribute

within the range of Bj if E(x,u){Z} ≤ 1
2

The first assumption simply states that a random cardholder with a high ability

of repayment identically distributes his payment within the range of the indebt-

edness regardless of the issuer’s requirements. The second point corresponds to a

cardholder with a lower ability to repay. He is assumed to identically distribute his

payments such that his expected repayment is the same as the expected repayment

of the associated rational Unimodal profile when u = 0. In that case, his proba-

bility of repaying nothing is simply the complement of one of the previous uniform

distributions.

Property 4.5. In this Random profile, the repayments uniformly distributed on[
0, Bj

)
are independent of the undertaken collection strategy un.
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The proof, in the same vein as the previous one, is omitted here.

Definition 4.19. The set ΥRd =
{
pΩ(·|x, u), (x, u) ∈ κ

}
of payment distributions

for the Random profile associated to the rational Unimodal profile with prior ability

to repay Gprior
Ω is defined by:

Algorithm 2 Generation of ΥRd set of random distributions of repayment of a

Random profile obtained by relaxing the rational distribution of repayments in the

Unimodal profile

Data: prior distribution of repayments Gprior
Ω and partition of repayments φ

Output: Set ΥRd of random distributions of repayments.

for all x = (i, j) ∈ Strans, u ∈ U(x) do

E(x,u){Z} ← Computeexpectpayment(x, u, Gprior
Ω )

if E(x,u){Z} > 1
2

then

fRd(ω|x) = 1
Bj /* Uniform repayments when high ability to repay */

else

pΩ(0|x) = 1− E(x,u){Z}
Bj

fRd(ω|x) =
E(x,u){Z}

Bj /* Uniform repayments otherwise */

end if

end for

x = (NA,NA), u ∈ U(x)

pΩ(0|(NA,NA), u) = 1

where Computeexpectpayment(x, u, Gprior
Ω ) is the subroutine which com-

putes the expected repayment E(x,u){Z} according to Definition 4.16.

fRd should also be discretized according to the partition of repayments φ.

4.4 Computational Study

Owing to the confidentiality of real-life data, the approximate dynamic program-

ming approach is adopted. The simulation study examines first the impact of the
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rationality assumption by comparing any rational profile to its equivalent irrational

and random profiles which are derived by relaxing the rationality assumption in two

different manners.

From there, the simulation work restricted to the two categories of rational profiles

focuses on giving industrial insights and corroborating some of the current practices.

The trends of the expected total discounted rewards are discussed and two profitable

segments of cardholders are subsequently pointed out. A sensitivity analysis to the

variations in the minimum required payment rate mrp and in the annual percentage

rate APR is also conducted.

Finally, a posterior discussion of the approximate dynamic programming approach

concludes the section. The accuracy of the approximation is assessed via Monte

Carlo simulation on the selection of rational and profitable cardholders.

The procedure to solve a single problem is first detailed to show how the different

inputs, necessary to conduct the following simulations, are generated.

4.4.1 Generation of the Simulation Inputs

4.4.2 Single problem solving

The following procedure is used to solve a single problem.

1. Define a value model consisting of the values defined by the cardholder’s agree-

ment together with the different estimated volumes defined in Tables 3.1, 3.3,

3.2, 3.4 and 3.5 of Chapter 3.

2. In accordance with the value model, generate the following outputs:

• R: 3 dimensional matrix, the components (x, y, u) of which are the con-

solidated cash flows when the account transits from state x to state y
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under control u. The constraint Cdec [see Definition 3.10], prohibiting

the use of preemptive collection actions, is embodied in R by assigning

dummy operating costs MOC , MOC � 1 to the related infeasible actions.

• A: Nested matrix. Its components link each state x and collection action

u to firstly the related partition Φ(x) of discrete repayments and secondly

for each repayment of the given partition Φ(x) to the subsequent next

state xn+1 derived from the resolution of the ADP which is detailed in

Tables 4.1, 4.2, 4.3.

• RN : vector of terminal reward. Its components (k) are assessments of

the worthiness of an account in state k at the end of the finite horizon

i.e. after N billing cycles.

3. Define a cardholder payment profile. Given A and the chosen profile, gener-

ate accordingly the set Υprof of repayment distributions. Derive P: 3 dimen-

sional matrix, the components (x, y, u) of which are the transition probabilities

p(y|x, u)

4. Solve the properly defined β-discounted finite horizon MDP :
(
P,R,RN , β

)
using finite-horizon policy evaluation algorithm

5. Solve otherwise the β-discounted infinite horizon MDP
(
P,R, β

)
by the policy

iteration algorithm.

Steps 1 and 2 are carried out using the further detailed Value Model Module.

Steps 3, 4 and 5 form the core of the optimization. They are executed via the

Optimization Module detailed in 4.4.4.
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4.4.3 Value Model Module

A Spreadsheet that gathers all the business rules introduced in Chapter 3 was defined

under Microsoft ExcelTM . The value model is therefore easy to use and provides

a clear visualization. The general value characteristics defined by the credit card

agreement as well as the different parameters structuring the model can be directly

changed onto the spreadsheet. For instance, the minimum required payment rate

mrp, the number of admissible states of delinquency as well as the number of seg-

ments partitioning the balance are in this way easily modifiable. Different functions

and macros were coded in VBA and gathered into an Add-In. The Spreadsheet

featuring this Add-In is then directly used to generate the desirable outputs R, A

and Rn. The inputs comprise the value characteristics, the structural parameters of

the model and the estimated values of cash advance and retail purchase. In what

follows, this main module, for clarity of exposition and understanding, is broken

down into two distinct algorithms generating R and A, respectively. Rn is directly

exported from the spreadsheet data to the Optimization Module under a text-file

format.

Algorithm 3 Generate consolidated Cash Flows Matrix R
Data: Estimated usage values of the corresponding segment of accounts

Output: Cash Flows R matrix embodying constraints

for all x, y ∈ S, u ∈ U do

if (x, u) ∈ κ then

R(x, y, u) ← Computecashflow(x, u, y) /* compute consolidated cash

flow */

else

R(x, y, u)← −MOC /* Infeasible collection strategy u when in state x */

end if

end for

where Computecashflow(x, u, y) is the subroutine which computes the con-
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solidated cash flow associated to a transition from state x to y under the feasible

action u in accordance with the value model defined in Chapter 3 [see Equations

(3.2) to (3.21)].

Otherwise, setting MOC much greater than the bounded set of feasible reward func-

tions ensures the infeasible collection strategies never to be chosen during either the

optimization of the finite horizon MDP or the optimization of the infinite horizon

discounted MDP.

Algorithm 4 Generate A
Data: Estimated usage values of the corresponding segment of accounts, Φ par-

tition of repayments

Output: A matrix embodying repayments and the corresponding conditional

transitions to next state according to the ADP

for all x ∈ S, u ∈ U do

Φ(x)← Computepaymentpartition(x, Ψratio)

A(x, u) ← Φ(x) /* A nested matrix linking first the state-action pair (x, u)

to the related partition of payment Φ(x) */

for all ω ∈ Φ(x) do

Compute h(x, u, ω) /* Solve ADP, Equations (4.6) to (4.12) */

A(x, u, ω) ← h(x, u, ω) /* Store next state reached from state x under

action u when ω is repaid */

end for

end for

where Computepaymentpartition(x, Ψratio) is the subroutine which com-

putes the partition of payments associated to state x and action u and to the

partitioning ratio Ψration in accordance with definition 4.3 p76.

4.4.4 Optimization Module

This module implemented under MatlabTM can also be broken down into two al-

gorithms. The first submodule transforms the data: R, A and Rn generated via
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the Value Model Module into the standard form of discrete MDPs. The second sub-

module optimizes the previously formed MDPs for both finite and infinite horizon

processes.

Algorithm 5 Prepare MDP
Data: Cardholder payment profile distribution Υprof , A

Output: Transition probabilities P

Initialize P = (0)

for all x ∈ S, u ∈ U do

for all ω ∈ A(x, u) do

Compute pΩ(ω|x, u, Υprof ) /* Conditional probability, Definition 4.17 to

4.18 */

y ← A(x, u, ω) /* Given x, u, ω, get next state y */

P (x, y, u)← P (x, y, u) + pΩ(ω|x, u, Υprof ) /* Update the probability */

end for

end for

One should remember here that in the nested matrix A, A(x, u) is the vector

containing the discrete partition of payments associated to the state-action pair

(x, u).

The MDP is now in a standard form (β,P,R,RN) and ready for optimization

which is carried out via the following submodule.

Algorithm 6 Optimize MDP

Data: (β,P,R,RN)

Output: Optimal policy π∗, π∗
∞ and expected total discounted reward Jπ∗, g, N ,

Jπ∗∞, g for the N billing cycles and infinite horizon, resp.

(π∗,Jπ∗, g, N) ← BackwardInduction(β,P,R,RN) /* Apply the backward

induction algorithm to solve the N period problem */

(π∗
∞,Jπ∗∞, g) ← PolicyIteration(β,P,R) /* Apply the policy iteration algo-

rithm to solve the infinite horizon problem */

where BackwardInduction(β,P,R,RN) and PolicyIteration(β,P,R) are

the subroutines which solve the N -period and infinite horizon MDP s by applying
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the backward induction algorithm and the policy iteration algorithm, respectively.

These two algorithms are detailed in Appendix A.

The optimization for the two types of horizons provides short and long term

forecasts. A steady collection policy is also worked out when optimizing the infinite

horizon problem.

4.4.5 Sample Problem

A case example is now presented. The complete value model can be found in Ap-

pendix A. The cardholders’ agreement of a major credit card issuer in Singapore

was used to set the values of the model defined therein. The main features of the

accounts, except for CL arbitrarily set, are in this way directly derived from a real

case of the industry in Singapore. They are as follows:

State space S = I × J
⋃
{(NA,NA)} Control space U

I J K

7 20 8

Main Characteristics

CL APR mrp minpay ca Cthr

S$10, 000 24.455% 3% S$50 24.455% S$1, 000

ca1 ca2 mincf ovr OL LF

3% 5% S$15 10% S$15, 00 S$35, 00

The grace period is set to 22 days from the billing date. The decision u = 8

corresponds to the intentional and premature writing off of the account by the issuer.

The case example is solved with and without such a decision.

The present case example model features a state space comprising overall (7 + 1)×

(20 + 1) + 1 = 169 states, the last one being the absorbing state {(NA,NA)} when

the account has been written-off.
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4.4.6 Preliminary analysis of the results: bounding the pa-

rameters

The problem was first analyzed to point out reasonable values for the different types

of profiles. The set of problems was constructed by varying a and b for each profile.

Broadly speaking, the changes in a generate a translation along the abscissa axis of

the related logit function whereas the changes in b affect its speed of decrease.

The parameters relevant to the simulation work were chosen as follows:

rational Trimodal profile

P0 aϕ bϕ ν(x, u)

min max step min max step

1 1.5 4.5 1 −0.01 0 5e− 4 min
{

1 + 0.2
(
exp

(
u−7

7

)
− 1

)
, 1

}
Table 4.4: Parameters for the category of rational Trimodal profiles

The willingness to repay is chosen to increase exponentially with the severity of

the collection action u. A complete willingness to repay is reached when u = 71. The

irrational Trimodal profile was constructed using the same parameters for P0, aϕ,

bϕ. The willingness to repay was set to a constant equal to the minimum willingness

to repay in the rational Trimodal profile i.e. when u = 0. For such a profile, it is

obvious that the rationality property does not hold.

rational Unimodal profile

x = P0 aG b0
G bG(x, u)

(i, j) min max step min max step

i < 3 1 1.5 4.5 1 −0.01 0 5e− 4 min
{
−b0

G + 0.0005u+1
8

, 0
}

i ≥ 3 0.9 1.5 4.5 1 −0.01 0 5e− 4 min
{
−b0

G + 0.001u+1
8

, 0
}

Table 4.5: Parameters for the category of rational Unimodal profile

1Recall here that u = 8 corresponds to the premature write-off of a delinquent account.
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In the Unimodal profile, the sensitivity to the collection action is illustrated by

choosing the coefficient bG of the prior distribution of repayments Gprior
Ω (ω|x, u) [see

4.14] to decrease linearly with respect to the undertaken collection strategy. The

increase is supposed to be more substantial when the cardholder is severely delin-

quent i.e. i ≥ 3. The rationale for such a choice is that a cardholder in arrears of

at least two months would be more sensitive to the collection strategies so as not to

fall further behind.

The irrational Unimodal profile was constructed using the same parameters for P0,

aG, b0
G and bG(x, u) was set to be equal to bG(x, 0) as defined for the rational Uni-

modal. Such a bG(x, u) is independent of u and the corresponding profile is obviously

irrational.

4.4.7 Scenarios

Here, different scenarios are simulated. Each of them consists of a particular repay-

ment profile associated to the value model of the corresponding segment of card-

holders. For instance, such a scenario would be high risk cardholders having low

monthly purchase and cash volumes.

Any pair of a value model and a repayment profile defines uniquely an MDP that

is later solved for a finite horizon of 12 billing cycles and for the infinite horizon.

Twelve value models were defined with increasing monthly purchase and cash vol-

umes ranging from S$0.3K to S$5K and from S$0K to S$1.5K, respectively. For

each of the six category of profiles, 84 repayment profiles were generated by tuning

the ability to repay and/or the sensitivity to the collection actions. Therefore a total

of 6, 048 MDPs were generated and solved according to the simulation flowchart of

Figure 4.1.
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Figure 4.1: Flowchart for the simulation of a set of scenarios (use, Υ)

4.4.8 Relaxation of the Rationality Assumption

The numerical impact of the rationality assumptions is specified in the present sec-

tion. To that effect, the rationality conjecture is relaxed for both the Unimodal

and Trimodal profiles in two different ways via their comparisons with the irrational

Unimodal and Trimodal [see 4.3.4] as well as with the two corresponding Random

profiles [see 4.3.5].

Pairwise comparisons are made between the different profiles according to the fol-
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lowing chart:

Figure 4.2: Comparison chart for the rationality conjecture

The comparisons are made between cardholders sharing the same value model

and the same prior ability to repay. The sensitivities to the collections strategies

and the impacts of the ways cardholders distribute their repayments are therefore

measured.

The comparisons between any rational profile and its corresponding random profile

aim to re-affirm the rationality in imposing repayment obligations. Likewise, the

comparisons between a rational profile and a corresponding irrational profile aim to

re-affirm and measure the efficiencies of the collection strategies that are used by

the card issuer.

Given a scenario i.e. given aϕ (aG), bϕ (bG) and given a particular usage, the signed

relative difference between the expected total discounted reward of each profile is cal-

culated in each state (i, j). The arithmetic mean of the previous relative differences

is then computed over the whole state space and used as the matching criterion.

The comparisons between the rational Unimodal profile and irrational Unimodal as

well as the comparisons between the rational Unimodal profile and its corresponding

random profile are presented hereafter in the infinite horizon case.
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4.4.8.1 Comparisons of Rational/Random profiles: Relaxing the Ratio-

nal Distribution of Repayments

The comparisons between any rational profile and its corresponding random profile

are first presented. Figure 4.3 plots the relative differences in the arithmetic average,

over the entire state space, of the maximal expected total discounted reward between

the rational profiles and their associated random profiles when the mean monthly

purchase and cash volumes are S$1.5K and S$0.5K, respectively.

Consider a pair which comprises a rational profile (either rational Unimodal or

rational Trimodal) governed by the payment distributions Υrt (either ΥUni or ΥTri)

and its associated random profile governed by payment distributions ΥRd. Any such

pair, in accordance to the previous definitions and to Figure 4.2, is uniquely defined

by the pair (aG, bG) for the rational Unimodal/Random pair and by (aϕ, bϕ) for the

rational Trimodal /Random pair.

Definition 4.20. Denote by Jπ∗∞,g(usek, Υ) the arithmetic average, over the entire

state space, of the maximal expected total discounted reward for the infinite horizon

problem when the monthly usage is defined by the kth value model and the cardholder

profile is governed by the payment distributions Υ. Jπ∗∞,g(usek, Υ) is calculated as

follows:

Jπ∗∞,g(usek, Υ) =
1

#(S)

∑
x∈S

Jπ∗∞,g(x),

where Jπ∗∞,g(x) is calculated with a monthly use equal to usek.

Definition 4.21. The relative difference ∆rt−Rd in Jπ∗∞,g(usek, Υ) between the ra-

tional profile governed by Υrt and its associated random profile governed by ΥRd is

defined by:

∆rt−Rd =
Jπ∗∞,g(usek, Υrt)− Jπ∗∞,g(usek, ΥRd)

min
{
|Jπ∗∞,g(usek, Υrt)|, |Jπ∗∞,g(usek, ΥRd)|

}
Figure 4.3 plots ∆rt−Rd for the pairs of Unimodal/Random profiles and for the

pairs of Trimodal/Random profiles within the selected range of values for the pairs
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(aG, bG) and (aϕ, bϕ), respectively. The mean monthly purchase and cash volumes

are set to S$1.5K and S$0.5K, respectively.

Figure 4.3: Relative difference in expected total discounted between the rational

and random profiles for mean monthly purchase of S$1.5K and mean monthly cash

advances of S$0.5K

The analysis of the computed data provided the following conclusions. There

is no absolute domination of the rational profile over the random profile when the

ability to repay varies. However given any usage and any aϕ(aG), the following

common pattern of domination is observed when bϕ(bG) decreases from 0 to its

minimal value −0.01:

1. a first domination of the random profile over the rational profile when the

111



4.4 Computational Study

ability to repay is very high

2. a substantial domination of the rational profile over the random profile when

the ability to repay is in the neighborhood of the maximum expected total

reward of the rational profile

3. a relative difference converging to zero when the ability to repay worsens fur-

ther

The first domination is relevant to the irrationality of a cardholder, who has

a sufficient ability to repay his debt in full. According to the present definition of

a random profile, such a cardholder distributes identically his payment within the

balance range without prioritizing the repayment of the whole indebtedness. He is

therefore more likely to revolve balance over the next billing cycle than a rational

cardholder who has the same ability to repay. The surplus of balance interest gen-

erated thus explains the first point.

The second point corresponds to the most realistic situations where cardholders

have a sufficient ability to support their card usage without necessarily settling their

debts in full at the end of each billing cycle. They are expected to generate substan-

tial revenues. In these situations, the rationality of the cardholders conditioned by

the industry practices results in fewer charge-offs and higher revenues. When the

ability of the cardholder worsens further, the rationality of the cardholder allows in

the first place the limitation of the bad losses compared and therefore reaffirms the

necessity of collection actions.

The third point corresponds to“bad”cardholders with high defaulting rates. The

subsequent bad debt losses are not expected to be compensated by the revenues in
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both the random and rational profiles. The relative difference tends to zero when

the ability worsens further. In any of the two cases, such accounts will rapidly be

charged-off and the expected total reward therefore does not differ much.

To conclude one should notice that, despite the rather restrictive assumptions

defining the rationality, there is no absolute domination. This is actually explainable

by the very structure of the problem. The rationality in the repayments solely govern

the way a cardholder will distribute his repayments. It therefore only impacts on

the transition probabilities whereas the related reward functions do not feature any

monotonic properties. For instance, a cardholder who is occasionally a late payer

will repay late fees and generate extra profit that a cardholder with an account

current and the same outstanding balance will not pay.

4.4.8.2 Comparisons of Rational/Irrational profiles: Relaxing the Sen-

sitivity to the Collection Strategies

The comparisons between any rational profile and its corresponding irrational profile

are now presented. Similar to 4.4.8.1, Figure 4.4 plots the relative differences in

Jπ∗∞,g(usek, Υ) [see Definition 4.20] between the rational profiles and their associated

irrational profiles when the mean monthly purchase and cash volumes are S$1.5K

and S$0.5K, respectively. Consider a pair which comprises a rational profile (either

Unimodal or Trimodal) governed by the payment distributions Υrt (either ΥUni or

ΥTri) and its associated irrational profile governed by the payment distribution Υirt.

Any such pair, in accordance to the previous definitions and to Figure 4.2, is uniquely

defined by the pair (aG, bG) for the rational Unimodal/irrational Unimodal pair and

by (aϕ, bϕ) for the rational Trimodal - irrational Unimodal pair.

Definition 4.22. The relative difference ∆rt−irt between the reward functions of the

rational profile governed by Υrt and its associated irrational profile governed by Υirt
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is defined by:

∆rt−irt =
Jπ∗∞,g(usek, Υrt)− Jπ∗∞,g(usek, Υirt)

min
{
|Jπ∗∞,g(usek, Υrt)|, |Jπ∗∞,g(usek, Υirt)|

}
Figure 4.4 plots ∆rt−irt for the pairs of rational Unimodal - irrational Unimodal

profiles and for the pairs of rational Trimodal/irrational Trimodal profiles within the

selected range of values for the pairs (aG, bG) and (aϕ, bϕ), respectively. The mean

monthly purchase and cash volumes are set to S$1.5K and S$0.5K, respectively.

Figure 4.4: Relative difference in the reward functions between the rational and

irrational profiles for mean monthly purchase of S$1.5K and mean monthly cash

advances of S$0.5K

The analysis of the computed data brought to light the following conclusions.

There is an absolute domination of the rational profile over the random profile when
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the ability to repay varies. The conjectured sensitivity to collection actions showed

that substantial improvements in collection can be achieved with a sound collection

policy. For instance, the relative difference can easily be greater than 50% [see

Trimodal profile aϕ = 2.5, 3.5, 4.5] when it is simply assumed that the willingness

to repay varies exponentially from 0.8 to 1 within the set of possible collection

actions.

The domination of rational/irrational reaches its maximum in the neighborhood of

the maximum of the expected total reward Jπ∗, g, N (Jπ∗∞, g) associated to the rational

profile. Similar to the comparisons of Rational/Random, the rationality continues

to ensure a substantial domination when the ability to repay worsens a bit beyond

the reward. The domination over this range is particularly relevant since it puts in

evidence the sensitivity of the delinquent cardholders to the collection actions. It

re-affirms therefore that an issuer can better protect itself against reasonably risky

cardholders by an appropriate use of collection strategies.

4.4.9 Trends of the expected total discounted rewards: Jπ∗, g, N

and Jπ∗∞, g

The trends of Jπ∗, g, N and Jπ∗∞, g were investigated over the ranges of aϕ, (aG) and

bϕ, (bG) for the rational Trimodal (Unimodal) profile. Given a fixed aϕ (aG), Jπ∗, g, N

and Jπ∗∞, g were found to vary in the same way when the repayment ability of the

cardholder deteriorates, namely when bϕ (bG) decreases from 0 to its minimum value.

The values defining the changes of trends were found to be the same for Jπ∗, g, N and

Jπ∗∞, g.

Figure 4.5 depicts the variations of the expected total discounted reward over 12

billing cycles when the mean monthly purchase and cash volumes are S$1.5K and

S$0.5K, respectively.
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Figure 4.5: Jπ∗, g, 12 for mean monthly purchase of S$1.5K and mean monthly cash

advances of S$0.5K

More specifically, the following common variations of the maximal expected total

discounted reward are observed:

1. an increasing trend until a maximum revenue is reached

2. a substantial decreasing trend turning rapidly the expected total discounted

reward into a loss for both the infinite and finite horizon problems.

3. a stabilization to a steady negative value. This value can be strictly superior

to −CL when the early write-off decision u = 8 was included in the set of

controls.
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These observations are, in what follows, analyzed in the light of common con-

cepts of the industry.

Firstly one should notice that the cardholders, who have the highest ability to

repay (i.e. bϕ (bG) in the neighborhood of 0), are not the most profitable to the

issuer. Such cardholders, known in the industry as “transactors”, are most likely to

repay in full their balances by the due date of each billing cycle. Interest charges (ex-

cept for cash advances) are waived and the transactors fully benefit from the use of

their credit cards as a form of revolving credit. The transactors still generate profit

via the interchange revenue and the cash advances fees. They are the least risky

cardholders and represent therefore a source of “secured” revenue that is yet limited

by the fact that they do not revolve balance from one billing cycle to another. The

issuer may attempt to have a transactor increase his usage and eventually revolve

credit. Lowering the APR, sending usage incentives and promotional offers or simply

raising the credit limit are means to achieve the subsequent increase. These means

should yet be used with care and consideration of the additional risk of charge-off

involved.

Secondly, an increasing trend of the expected total discounted reward is ob-

served. This increasing trend until a maximum is reached, clearly brings to light a

profitable segment of cardholders. Such a segment comprises those whose abilities

to repay fall within the range of the increase. It is actually a subset of the set of

cardholders known in the industry as “revolvers”. Revolvers typically do not pay

in full the outstanding balance and therefore pay interests. The subset defined by

the increasing trend corresponds to low risk revolvers who are thus the most prof-

itable holders. The issuer should naturally be willing to increase the number of such

low-risk revolvers in its portfolio. This is part of the daunting challenge the credit
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scoring has to take up by selecting the appropriate applicants. The selected appli-

cants would ideally be granted adapted credit limits that would make them revolve

balance with an acceptable risk of default to the issuer.

It is interesting to notice that for the Unimodal profile, the increasing trend is then

followed by a plateau. The existence of such a plateau is directly related to the

conjecture of a Unimodal profile for no such steady trend was observed for the Tri-

modal profile. Within the range of this plateau, revolvers who have sufficient but

yet different abilities to repay, are generating approximately the same revenue. This

steady revenue stems from the rationality of the cardholder and his subsequent prior-

itization of the minimum repayment. Such cardholders can be considered as “good”

revolvers who carry balance from one cycle to another and repay enough not to fall

arrear into payments. The trade-off between their expected risk of charge-off and

the profit they generate is exceedingly profitable to the issuer.

Thirdly, a clear threshold emerges in the range of variations of bϕ and bG for

the Trimodal and Unimodal profiles, respectively. The former corresponds to the

maximum expected total discounted reward whereas the latter is the right limit of

the aforementioned plateau. In both cases, the decrease that follows the threshold is

substantial. These limiting points actually define a maximal risk the issuer is willing

to take when lending money to the cardholders. Beyond such thresholds, cardholders

with worse abilities to repay will not generate sufficient revenue to compensate the

bad debt losses due to the charged-off accounts. The observation of such risk limits

reaffirms the need of an accurate application scoring and a proper allowance of credit

limits.
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4.4.10 Sensitivity Analysis

Following the analysis developed from 4.4.6 to 4.4.8, the rational profiles generating

positive expected total discounted rewards are considered as being the most realistic

ones. Indeed they are rational cardholders “good”enough to be expected to generate

overall profit. They should therefore be the cardholders populating the portfolio of

the issuer.

The sensitivity of the expected total reward to changes in the minimum required

payment rate mrp as well as in the annual percentage rate APR are investigated in

the following two subsections.

4.4.10.1 Sensitivity to the minimum required payment rate mrp

One should recall mrp governs the cardholder’s obligation of repayment according to

his outstanding balance. It has to be a trade-off between the flexibility of payment

granted to the cardholders and a minimum obligation of repayment protecting the

debtor against default and excessive bad debt losses. The study of its sensitivity can

therefore provide useful forecasts and indications as to how to modify the mrp. An

issuer may for instance lower its mrp so as to attract new customers interested in a

less restrictive repayment scheme. Conversely, one may assume that an increase in

the mrp would have the cardholders repay higher amounts and therefore reduce the

amount of charged-off receivables.

For each of the twelve previously defined value models, which feature increasing

monthly usages, the relevant A and R [see 4.4.3] were computed for mrp = 2.0%,

2.5%, 3.5%, 4%, 4.5% (the previously used mrp being 3.0%). Therefore 60 new

value models were generated. Each of them was then associated with each of the 84

rational Unimodal profiles and each of the 84 rational Trimodal profiles. A total of

10, 080 MDPs were thus solved so as to assess the sensitivity to mrp.
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The simulation flowchart is therefore the same as in Figure 4.1 except for an addi-

tional higher loop on the different values of mrp is being performed.

In Table 4.6, the results are presented for 2 different usages:

1. use1: mean monthly purchase of S$1.5K and mean monthly cash advances of

S$0.5K

2. use2: mean monthly purchase of S$3.0K and mean monthly cash advances of

S$1.0K

The following table provides, for each value of the mrp, the mean value of the signed

relative differences between the corresponding expected total discounted reward and

the reference expected total discounted reward when mrp = 3%. The rewards

considered here are derived from the infinite horizon problem. For each of the 2

usages, two sets of profiles are defined by selecting among the 84 rational Trimodal

and among the 84 rational Unimodal, those which generate positive expected total

discounted reward when the mrp is set to its base value of 3%. The mean value is

then calculated for each of the two sets of profiles.

Definition 4.23. For k = 1, 2 denote by Jπ∗∞,g(usek, Υ, mrp) the maximal expected

total discounted reward for the infinite horizon problem when the minimum required

payment rate is set to mrp, the cardholder profile is Υ and the monthly usage is usek.

Let ΓUni
usek

(
ΓUni

usek

)
be the set of payment distributions governing the rational Unimodal

(rational Trimodal) profiles which generate positive expected total discounted reward

when mrp is set to 3% and the monthly usage is usek:

ΓUni
usek

=
{
ΥUni|Jπ∗∞,g(usek, ΥUni, 3%) > 0

}
, k = 1, 2

ΓTri
usek

=
{
ΥTri|Jπ∗∞,g(usek, ΥTri, 3%) > 0

}
, k = 1, 2

Definition 4.24. The mean value ∆mrp of the signed relative differences in

Jπ∗∞,g(usek, Υ, mrp) between the two problems, whose minimum required payment
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rates are respectively set to mrp and to 3% is defined by:

∆mrp =
1

#(Γ)

∑
Υ∈Γ

Jπ∗∞,g(usek, Υ, mrp)− Jπ∗∞,g(usek, Υ, 3%)

Jπ∗∞,g(usek, Υ, 3%)
, Γ = ΓUni

usek
, ΓTri

usek
, k = 1, 2

rational Trimodal rational Unimodal

∆mrp% use use

1 2 1 2

2.00 % 101.96 % 49.97 % 0.20 % 0.91 %

2.50 % 50.96 % 26.05 % 0.57 % 0.76 %

mrp 3.50 % -38.92 % -21.38 % -10.76 % -12.68 %

4.00 % -68.53 % -38.67 % -14.04 % -19.09 %

4.50 % -90.61 % -52.31 % -16.98 % -30.32 %

Table 4.6: Signed Relative Differences between Jπ∗∞, g when mrp = 2.00%, . . . , 4.50%

and the the reference reward when mrp = 3%

The selection of profitable profiles is consistent with the prior process of selec-

tion of “good” applicants. The profiles considered in Table 4.6 are those of “good”

cardholders.

For the Trimodal profiles, the lower the mrp the higher the profit. The substantial

differences are due to the schematic nature of the profile. Whenever a repayment

is made, the corresponding cardholder either repays the full balance or repays the

minimum if he does not have sufficient ability to pay the balance in full. Such a

cardholder is therefore a revolver who brings forward substantial balances and there-

fore generates high revenue. A decrease in the mrp leads these low risk cardholders

to revolve bigger balances and hence, pay more interest. The differences of usages

and particularly of cash advances, which generate high revenue independent of the

mrp, explain the decrease in the relative differences between usages 1 and 2.

As for the rational Unimodal profile, a small domination of the revenue is observed

when mrp = 2.00%, 2.50%. The domination of the total reward when mrp = 3.00%

compared to when mrp = 3.50%, 4.00%, 4.50% is noticeable. For the selection of
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profitable rational Unimodal profiles, mrp = 3.00%, as fixed by the cardholders’

agreement , appears to be a good trade-off between the protection against default

and the interest revenue generated by revolvers. This conclusion is naturally re-

stricted to the present assumptions governing the rational repayment behaviors of

the cardholders. Within this framework however, the industrial practice is con-

firmed.

The relative differences were also analyzed for “bad” cardholders’ profiles that

do not belong to the previous two sets. When the ability to repay worsens and the

cardholders are expected to be unprofitable and to be most likely to default, it was

observed that the highest mrp = 4.5% ultimately dominates the other mrp values

by forcing the “bad” cardholders to make higher repayments before they default.

The basic intuition is then confirmed. Yet for a portfolio populated by “good”

cardholders, a higher mrp is not more profitable nor protective overall.

4.4.10.2 Sensitivity to the Annual Percentage Rate APR

The APR value governs the interest revenue. On the one hand, a higher APR

will generate higher revenues through cardholders’ revolving balances. On the other

hand, such an APR may deter potential cardholders to open an account.

For the twelve previously defined value models, which feature increasing monthly

usages, the relevant A and R [see 4.4.3] were computed for APR ranging from

10.455%, to 30.455% by steps of 2% (the reference APR being 24.455%). Therefore

120 new value models were generated. Each of them was then associated with each

of the 84 rational Unimodal profiles and each of the 84 rational Trimodal profiles. A

total of 20, 160 MDPs were therefore solved so as to assess the sensitivity to APR.

The simulation flowchart is therefore the same as in Figure 4.1 except for an addi-

tional higher loop on the different values of APR is being performed.
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4.5 Discussion of the Approximation

The analysis is also restricted to the selection of profitable profiles. It is observed

that for each such profile, the sensitivity to the APR follows an increasing linear

trend.

For the non selected profiles, the total expected reward, though negative, is still

an increasing function of the APR until a certain threshold in the ability to re-

pay. Beyond this threshold, cardholders with a worse ability to repay generate very

negative total expected rewards which are decreasing functions of the APR. These

cardholders are most likely to default in the short term with a substantial outstand-

ing balance. The worst cardholders barely repay anything and are charged with

increasing revolving interests since, in accordance with the sensitivity analysis, the

APR increases. The decrease in the expected total reward thus accounts for the

increasing shortfall in interest revenue collection.

As a conclusion, one can see that the APR may prove to be a good means to se-

cure a portfolio of reasonably “good” cardholders by increasing the interest revenue

line and the subsequent overall revenue. Many issuers make use of this solution by

offering a low introductory APR that is usually increased after 6 months. Likewise,

delinquent cardholders may see their APR substantially increased. The setting of

the APR should be soundly decided since it can be used at the same time as a

marketing point to attract new customers.

4.5 Discussion of the Approximation

The approximation, presented in 4.2.1 and concerned with the computations of the

repayments, is further discussed in this section. Other than the numerical argument

of a small mrp and a card blocked after 30 days past due, a comparative simulation

study would be detailed so as to justify the previous calculations. The simulated

trajectories of an account, subject to either its exact payment requirements or its

approximate ones, will therefore be matched.
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4.5 Discussion of the Approximation

4.5.1 Simulated Trajectories

A chosen repayment profile, an initial state and a chosen policy are necessary inputs

to simulate trajectories of an account over a finite horizon. They define a basic input

problem in this section.

Given this basic input problem, a properly defined MDP
(
P,R,RN , β

)
is derived.

The latter is solved over a finite horizon of monthly billing cycles and the resulting

optimal policy π∗ is used as the policy undertaken when running the simulations.

4.5.1.1 Exact Trajectories

While describing any trajectory, an account will be assigned, at each new billing

cycle, a minimum required repayment that directly depends on its opening balance.

In order to compute exactly the repayments, a vector RPvect, used to store the over-

due payments, is updated along the process according to the repayments made. A

conditional repayment is then generated according to the payment due, the balance

outstanding and the due state of the account. Subsequently, the next state is derived

and the vector RPvect of overdue payment updated. The algorithm to generate a

sample exact trajectory is detailed as follows:
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4.5 Discussion of the Approximation

Algorithm 7 Generate exact sample path SPexact = generateexact(x0, T, π, Υ)

Data: initial state x0, policy π = {µ0, . . . , µT−1}, repayment profile Υ, time

horizon T

Output: sample path vector traj containing the generated exact sample paths

(x0, . . . , xT )

for t = 0 to T do

if xt = (0, ·) then

RPvect(t) ← rp(xt,−1) /* Compute the minimum repayment when the

grace period applies */

else

RPvect(t)← rp(xt, 0) /* Compute the exact minimum repayment incurred

by the balance outstanding as of t */

end if

Generate Ωt(xt, µt(xt), Υ) /* Conditional random payment */

Update RPvect(RPvect, Ωt) /* Update the debt according to Ωt and overdue

repayments as of t */

Compute xt+1(xt, µt(xt), Ωt,RPvect) /* Move to next state */

if xt+1 = (NA,NA) then

xt+2, . . . , xT ← (NA,NA)

break

end if

end for

traj← (x0, . . . , xT ) /* generated exact sample Path */

For any set of basic input problems, the Monte Carlo simulations for the exact

trajectories are then conducted according to the flowchart 4.6.
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4.5 Discussion of the Approximation

Figure 4.6: Flow Chart for the Monte Carlo simulation of the exact trajectories

4.5.1.2 Approximate Trajectories

For each basic input problem, the simulated approximate trajectories derive simply

from the simulation of a Markov chain, the transition probabilities of which are de-

fined by the undertaken collection policy π = {µ0, . . . , µT−1}. For each stage t, the

one step transition probabilities matrix Pµt is derived as Pµt =
(
p
(
xt+1|xt, µt(xt)

))
.
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4.5 Discussion of the Approximation

The next state for any given xt is then simply obtained by a random number gen-

eration and comparison with the distribution defined by the xth
t row vector of Pµt .

This generation will be referred to as generateapprox

(
xt , P

k, µk
t

)
in the sequel.

The Markov chain of interest was derived from the ADP according to Step 2 of the

simulation process i.e. “prepareMDP”[see Figure 4.7]. It thus features the transition

probabilities that embody the approximation of the required repayments [see 4.2.1].

Starting from an initial state x0, the account is moved from state to state using

simple random number generation. At each stage t, the generated random number

provides, according to the transition probabilities p(y|xt, µt(xt)), the next state xt+1.

For any set of basic input problems, the Monte Carlo simulations for the approximate

trajectories are conducted according to the flowchart in Figure 4.7.
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Figure 4.7: Flow Chart for the Monte Carlo simulation of the approximate trajec-

tories
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4.5.1.3 Results

The simulations were run for 100,000 sample paths i.e. l = 1, . . . , 100, 000 [see

Figures 4.6 and 4.7]. The initial states are set such that x0 = (0, ·), which would

otherwise require the definition of an initial non-null vector of required payments

RPvect(t). The rationale is to consider that the other feasible due states will be

visited during the process if the number of iterations is sufficient.

Two sets of 30 problems were defined i.e. k = 1, . . . , 30 [see Figures 4.6 and 4.7].

One set embodies the rational Unimodal profile only, likewise with the other set and

the rational Trimodal profile. Each problem was constructed by choosing an arbi-

trary value model (characteristics and usage) and a particular repayment profile of

either rational Unimodal or rational Trimodal for which the expected total reward

Jπ∗, g, 12 is in the neighborhood of its maximal value.

The number of possible trajectories is considerable. Therefore, the resulting trajec-

tories were compared by matching for each problem the two resulting distributions

of the final state as well as the two resulting distributions of the total discounted

reward. The comparisons were made by computing the average over the whole set

of problems of the empirical mean, variance and skewness of each distribution.

Definition 4.25. Denote by traj-exactk
l (12),

(
traj-approxk

l (12)
)

the final state

generated at the lth iteration of the exact (approximate) trajectories of the kth prob-

lem. Likewise denote by j-exactk
l (12)

(
j-approxk

l (12)
)

the total discounted reward

associated to the lth iteration of the exact (approximate) trajectories of the kth prob-

lem.

Definition 4.26. For each problem i.e. k = 1, ..., 30 and each type of profile either

rational Unimodal or rational Trimodal, the empirical mean µk(traj12) and variance
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σ2
k(traj12) of the final state distribution are computed as follows:

µk(traj12) =
1

100, 000

∑
l=1,...,100,000

trajkl (12)

σ2
k(traj12) =

1

100, 000− 1

∑
l=1,...,100,000

(
trajkl (12)− µk(traj12)

)2
,

where traj12 = traj-exact12, traj-approx12.

Definition 4.27. The relative difference in the empirical mean ∆µ,k(traj12) and

variance ∆σ2,k(traj12) of the final state distribution are then defined by:

∆µ,k(traj12) =
µk(traj-exact12)− µk(traj-approx12)

min
{
µk(traj-exact12), µk(traj-approx12)

}
∆σ2,k(traj12) =

σ2
k(traj-exact12)− σ2

k(traj-approx12)

min
{
σ2

k(traj-exact12), σ
2
k(traj-approx12)

}
The empirical mean µk(j12) and variance σ2

k(j12) of the distribution of the to-

tal discounted reward as well as their respective relative differences ∆µ,k(Jπ∗, g, 12)

and ∆σ2,k(Jπ∗, g, 12) are calculated in a similar fashion by using j-exactk
l (12) and

j-approxk
l (12) instead of traj-exactk

l (12) and traj-approxk
l (12), respectively. The

empirical skewness allows one to measure the degree of asymmetry of a distribution.

A distribution with a longer tail less (greater) than its mode has a negative (posi-

tive) skewness. The signs of the skewness of each distribution are compared so as to

check the similarity in the asymmetry (if any) between the two resulting distribu-

tions of the final state and between the two resulting distributions of the expected

total reward.

Definition 4.28. For each problem i.e. k = 1, ..., 30 and each type of profile either

rational Unimodal or rational Trimodal, the empirical skewness of the final state

distribution γk(traj12) and the skewness of the total discounted reward distribution
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γk(Jπ∗, g, 12) for the exact (approximate) trajectories are computed as follows:

γk(traj12) =
1

100, 000− 1

∑
l=1,...,100,000

(
trajkl (12)− µk(traj12)

)3

(
σ2

k(traj12)
) 3

2

γk(Jπ∗, g, 12) =
1

100, 000− 1

∑
l=1,...,100,000

(
jkl (12)− µk(j12)

)3

(
σ2

k(j12)
) 3

2

,

where trajkl (12) = traj-exactk
l (12), traj-approxk

l (12) and

jkl (12) = j-exactk
l (12), j-approxk

l (12).

The averages of ∆µ,k(traj12)
(
∆µ,k(Jπ∗, g, 12)

)
and ∆σ2,k(traj12)

(
∆σ2,k(Jπ∗, g, 12)

)
over the whole whole set of problems were computed for both the rational Unimodal

and rational Trimodal profile. They are denoted by ∆µ(traj12)
(
∆µ(Jπ∗, g, 12)

)
and

∆σ2(traj12)
(
∆σ2(Jπ∗, g, 12)

)
, respectively. For each problem i.e. k = 1, . . . , 30, the

signs of the skewness were compared. Table 4.5.1.3 summarizes the findings.

rational Unimodal rational Trimodal

∆µ(traj12) 0.05 0.02

∆σ2(traj12) 0.35 0.20

Skewness of same sign? YES YES

∆µ(Jπ∗, g, 12) 0.05 0.03

∆σ2(Jπ∗, g, 12) 0.38 0.25

Skewness of same sign? YES YES

Table 4.7: Comparisons between the exact and the approximate trajectories

The approximation is found to be reasonably accurate for the prescribed profiles.

Nevertheless profiles with rather poor repayment potentials will have the accuracy

of the approximation decrease dramatically. They clearly set a limit to the present

method. This situation should not occur in the portfolio of an issuer practicing an

efficient application scoring.
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4.6 Summary

4.6 Summary

An approximate dynamic programming approach was developed so as to simulate,

with reasonable transition probabilities, the problem introduced in Chapter 3. To

that effect, a criterion of rationality was specified and used to define different card-

holder profiles.

The subsequent simulation study allowed one to recognize common problems of the

industry. The rationale for the use of collection actions was also illustrated.

Finally, the accuracy of the approximate dynamic program was assessed.
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Chapter 5

Extensions: Risk Analysis,

Bankruptcy and Attrition

Phenomenon

The present section would develop on two natural extensions of the previous lifetime

value model. The first one is concerned with the reduction of the variance and the

second one provides a simple way to include either the attrition phenomenon or the

bankruptcy filings in the value analysis of the credit card account. Both extensions

are of key importance to the issuer. Indeed, the former would stabilize the revenues

and to a certain extent reduce the charge-offs while the latter could improve the

retention and the satisfaction of the cardholders.

5.1 Variance Analysis

5.1.1 Introduction

In the literature concerning credit card control, the orthodox approach consists

of maximizing the expected profit first and of ensuring a posteriori that for such
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5.1 Variance Analysis

an optimal solution the induced variance remains below an acceptable threshold

[see 42]. The present section would introduce a novel approach to the problem for

the influence of the variance would be directly embodied in the optimization. To

this end, an infinite horizon variance-penalized MDP would be formulated. As a

measure of risk, the latter would incorporate the weighted variance lifetime values

of an account induced by a given stationary collection policy. It would allow the

decision makers to consider a tradeoff between risk and return when deciding an

optimal collection policy. For instance, the management could be willing to forego

an optimal level of expected lifetime values so as to reduce risk and variability.

In each segment of cardholders [see 3.2.2], the variance of the lifetime value of a

single account is therefore instituted as a measure of risk induced by the undertaken

collection policy. This criteria is all the more relevant as it accounts for the expected

amount of bad debts involved in the process.

A brief introduction of the literature about the variance-penalized MDPs would be

first discussed. The choice of a type of variance relevant to the credit card control

would follow. An intuitive insight of the necessity of considering a mean-variance

tradeoff would then be given on a sample problem. The formal model and its related

optimization shall follow.

5.1.2 Variance-Penalized MDP

The vast majority of the work in the area of MDP [see 20, 33] defines the objective

function to be the expected value of the reward. Such approaches are risk-neutral

and hence, objective. They may however be too restrictive and overlook the vari-

ability of the process.

Following this, two categories of MDPs were formulated so as to embody variabil-

ity. The first one, pioneered by Howard and Matheson [21], consists of defining and

solving MDPs, the objectives of which are risk-sensitive utility functions. Marcus,
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5.1 Variance Analysis

Fernandez-Gaucherand, and Hernandez-Hernandez [29] provides a complete survey

of this category of MDPs. The second category [see 38, 15, 14] features an em-

bodiment of risk-sensitive constraints. This is achieved either by including in the

objective function a certain type of variance or by constraining the sample path

and the costs. This second category features a more general way of modeling the

risk-sensitivity. For instance, one is not required to define nor assume a certain

risk utility of the credit card issuer. The decision makers would instead be able to

work out the desired tradeoff between the expected revenue and their variability by

assigning a proper weight to the variance. Such a weight would ideally measure the

relative risk the issuer is willing to bear in order to ensure high revenue. Therefore,

the objective is to minimize the difference between the expected total discounted

reward and its variance.

5.1.3 Variance of the Discounted Total Reward

The most natural way of considering the variability induced by a policy would be

to consider the variance of the discounted total reward. However, the calculation

of this variance is difficult and results in the non-tractability of any optimization

criteria associated to it. This non-tractability is first detailed for the problem of

interest. The definition of an alternative long run criterion and its related optimiza-

tion procedure shall follow.

Definition 5.1. Let CG
(
X0, µ0, . . . , Xn−1, µn−1, Xn

)
be the stochastic total dis-

counted reward received by the card issuer when using collection policy

π = {µ0, . . . , µn−1}. In short, it is noted as CGn and is calculated as follows:

CGn =
n−1∑
t=0

βtGt(Xt, µt(Xt), Xt+1) (5.1)
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5.1 Variance Analysis

The following stochastic dynamic relation can be derived from the above:

CGn+1 = CGn + βngn(Xn, µn(Xn), Xn+1) (5.2)

Definition 5.2. Let Vn

(
π
)

be the variance of the total discounted reward over n

periods induced by the application of the policy π when the initial distribution is X0.

Vn

(
X0, π

)
= V

X1,...,Xn

{CGn(X0)} (5.3)

The relation (5.2) can be used to compute the variance. Apply the following

relation on conditional variances V {Y } = E
{
V {Y |X}

}
+ V

{
E{Y |X}

}
to the cal-

culation of Vn

(
X0, π

)
. Conditioning on Y =

(
X0, . . . , Xn

)
leads to:

Vn+1

(
X0, π

)
= E

{
V

{
CGn(X0) + βngn(Xn, µn(Xn), Xn+1)|X0, · · · , Xn

}}
+ V

{
E

{
CGn(X0) + βngn(Xn, µn(Xn))

}}
(5.4)

When X0, . . . , Xn are known, CGn(X0) is constant. The previous equation,

using matrix notations, is hence simplified to:

Vn+1

(
X0, π

)
= E

{
V

{
βnXT

n RµnXn+1 |
(
X0, . . . ,Xn

)}}
+ V

{
CGn(X0) +

(
XT

n Rµn

)(
PµnXn

)}
, (5.5)

where for each stage t, Xt is the random vector of states, Pµt ,Rµt are the tran-

sition probabilities and costs associated to collection policy π, respectively.

This relation does not feature the key property of iterative optimization that

is applied to solve the MDP with total discounted reward criterion. Any attempt

to minimize such variance would result in formidable mathematical complexity and
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non-tractability.

One may show [see A.3] that given a discount factor 0 ≤ β < 1, the previous

variance defines a Cauchy sequence which is hence convergent in the long run. This

naturally suggests looking into the infinite horizon MDPs with discounted total

reward criterion and proposing an alternative variance criterion, which is tractable.

MDP.

5.1.4 Discount Normalized Variance

The problem considered now is that of optimizing an infinite horizon MDP, whose

state space and control space are both discrete and finite and whose objective is

risk-sensitive. The reward functions Gt are assumed to be stationary and are noted

as G.

The most natural and expressive measure of variance would be the limit of the

variance defined in Chapter 5.2 when the time horizon tends to infinity. However,

Sobel [38] showed that such a variance lacks the monotonicity property of dynamic

programming. Likewise, the problem of the maximization of the difference between

the expected reward and a weighted“stagewise-variance”introduced by Filar and Lee

[16] cannot be formulated as a dynamic program. These two approaches would result

in formidable mathematical difficulties and non tractable optimization problems.

Following this, the approach developed in Filar and Kallenberg [14] is known for its

tractable formulation and its generality featuring a unified approach for both MDPs

with average reward criterion and MDPs with total discounted reward. It is the

approach that is adopted in the sequel.

The state space S and the control space U are finite. The reward functions are

unchanged. However, any policy can now be considered. Therefore, an admissible

decision rule is a mapping of the state space S into the state of control U which
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assigns a probability1 to the event that action u is chosen at time t. The class

of admissible decision rules defined in 3.13 is indeed a special case of the present

admission rules for which the probability of choosing u is either 0 or 1.

Definition 5.3. Let Jπ∗, g(ξ) be the expected discounted reward, for any policy π and

initial distribution ξ = {ξ(0,0), . . . , ξ(L,M), ξ(NA,NA)}, over the infinite horizon.

Jπ∗, g(ξ) =
∞∑

t=0

βt
∑

(i,j)∈S

ξ(i,j)

∑
y∈ S

∑
u∈ U

pπ

(
Xt = y, Wt = u|X0 = (i, j)

)
g(y, u), (5.6)

where pπ

(
Xt = y, Wt = u|X0

)
is the conditional probability that at time t the

state is y and the action taken is u, given the policy π and the initial state X0.

g(y, u) is the expected one step reward received for such a decision and state:

g(y, u) =
∑
z∈S

p(z|y, u)g(y, u, x) (5.7)

Definition 5.4. Let V nor
(
ξ, π

)
be the “discount normalized variance” induced by a

policy π when the initial distribution is ξ. It is calculated as follows:

V nor
(
ξ, π

)
=

∞∑
t=0

βt
E

{(
G− (1− β)Jπ∗, g(ξ)

)2
}

(5.8)

The weightings of the variability in V nor are geometrically decreasing with the

ages of the stages. This is consistent with the concept of discounted cash flows used

in the evaluation of the present worthiness of an account.

5.1.5 Expected Total Reward-“Discount Normalized Vari-

ance” Example

This section would introduce a sample set of pairs formed by the expected total

discounted reward and the corresponding “discount normalized variance” so as to

1For complete generality, the policies are not assumed to have any particular properties. They
are a priori neither stationary nor Markovian.
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illustrate the necessity of embodying a variance criterion.

The rational Unimodal profile with aG = 2.5 and bG = −0.0025 is chosen. The

monthly purchase volume is set to S$3.5K and the monthly cash volume to S$1.5K.

The space of policies is restricted to the stationary deterministic policies. This

restriction together with the calculation of V nor are detailed in the next section.

100, 000 feasible deterministic stationary policies are then generated. For each of

them, the expected total discounted reward and the corresponding “discount nor-

malized variance” are calculated. Figure 5.1 plots this variance against the expected

reward in the neighborhood of the maximum expected total reward. It shows that a

trade-off can be found between the expected total reward and the “discount normal-

ized variance”. For instance, a reduction of 8.3% of the maximum expected reward

(from S$3.96K to S$3.63K) can allow the variance to be reduced by 27.1% (from

S$2.36 106 to S$1.72 106).

Figure 5.1: Sample set of the pairs Expected Total Reward-“Discount Normalized

Variance”
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5.1.6 Discount Normalized λ variance-penalized MDP

Definition 5.5. The discount normalized λ variance-penalized MDP is the opti-

mization problem defined by:

max
π

{
Jπ∗, g(ξ)− λ V nor

(
ξ, π

)}
, 0 ≤ λ (5.9)

Definition 5.6. For any policy π and initial distribution ξ, let x(i,j), u(π) be the

“discounted, expected, state action frequencies”.

x(i,j), u(π) =
∑

(k, l)∈S

ξ(k, l)

∞∑
t=0

βtpπ

(
Xt = (i, j), Wt = u|X0 = (k, l)

)
(5.10)

Filar and Kallenberg applied the state action frequency approach to transform

the λ variance-penalized MDP into the following equivalent quadratic programming

problem.

max
x(i,j),u

∑
(i,j)

∑
u

g
(
(i, j), u

)
x(i,j)u−λ

∑
(i,j)

g
(
(i, j), u

)2
x(i,j)u+λ(1−β)

(∑
(i,j)

g
(
(i, j), u

)
x(i,j)u

)2

(5.11)

subject to
∑

(k, l)∈S

∑
u∈U(k, l)

(
δ(k − l)δ(i− j)− βp

(
(k, l)|(i, j), u

))
x(k, l)u = ξ(i, j), (i, j) ∈ S

x(k, l)u ≥ 0,
(
(k, l), u

)
∈ κ

An optimal stationary policy is then derived from the optimal solution x∗ as

follows:

π(i,j)u(x
∗) =


x∗
(i,j)u

x∗
(i,j)

, x∗(i,j) =
∑

u∈U(i,j)

x∗(i,j)u > 0

arbitrary, x∗(i,j) = 0

(5.12)

The feasible region is a bounded polyhedron of R|κ|, the extreme points of

which correspond to stationary policies that are furthermore deterministic. Filar
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and Kallenberg moreover proved that, if the penalization factor λ is strictly posi-

tive, there exists a deterministic optimal policy which is Pareto optimal for the two

objectives Jπ∗, g(ξ) and V nor
(
ξ, π

)
.

Using matrix notations, the previous quadratic programming problem can be

rewritten as follows:

max
Xfreq

XT
freq(PRT)diag − λXT

freq( PR
T
)diag + λ(1− β)(XT

freq(PRT)diag)
2

subject to, (5.13)

I− βPXfreq = ξ,

where Xfreq, ξ are the vector of components x(i,j)u, ξ(i,j)u, respectively. P and R

are respectively the matrices of transition probabilities and cash flows previously

defined.The latter are reduced to two dimensional matrices in accordance with the

order imposed by the x(i,j)u. For any square matrix M, (M)diag is the vector con-

sisting of the diagonal terms of M. R is the matrix of which the components are

r(i, j)u = r2
(i, j)u.

5.1.7 Convexity of the Objective Function

The objective function can also be rewritten as:

max
Xfreq

1

2
× 2λ(1− β)XT

freq

(
(PRT)diag

(
(PRT)diag

)T
)
Xfreq+

XT
freq

(
(PRT)diag − λ( PR

T
)diag

)
(5.14)

The problem is that of optimizing under constraints a function which has the fol-

lowing hessian matrix H = 2λ(1 − β)
(
(PRT)diag

(
(PRT)diag

)T
)
. H is positive

semidefinite and its kernel consists of the orthogonal of the vector (PRT)diag. If

(PRT)diag 6= 0, H is of rank 1. The objective is otherwise simplified to a linear

function.
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In the former case, the optimization is difficult for it consists of maximizing a convex

function on a bounded polyhedron. Given the convexity, there is necessarily at least

one maximum in the set of extreme feasible points. Based on this property, Filar

and Kallenberg demonstrated the existence of a deterministic optimal policy. They

did not however detail on how to find such a solution.

5.1.8 Construction of a Stationary Deterministic Policy

This section presents an approach to systematically work out an optimal determin-

istic policy given that any solution has been found. For clarity, the convex quadratic

objective function defined in (5.1.6) is denoted as fobj.

Property 5.1. If a feasible non extreme point XM maximizes the convex objec-

tive function fobj, then there exists an extreme point that also maximizes fobj, the

associated policy of which is stationary and deterministic.

Proof. Recall that the convex set of feasible solutions is a bounded polyhedron of

R#(κ) over which the continuous convex function fobj reaches a maximum.

Suppose first that a maximum is found in XM , an interior point of the feasible set. It

can easily be shown, using the convexity of fobj and the consequent increasing trend

of its slopes, that fobj is constant over the whole convex set of feasible solutions. Any

stationary deterministic and admissible policy is then a solution of this “degenerate”

problem.

The search of the solutions otherwise is, similar to that of the simplex method,

restricted to the extreme feasible points defining the deterministic policies and to

the line segments joining any two adjacent extreme points. Now suppose that a

maximum XM is found to lie strictly inside the line segment joining the pair of
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adjacent extreme points (X1,X2).

∃!α, 0 < α < 1,XM = αX1 + (1− α)X2

From the convexity of fobj it follows that,

fobj(XM) = fobj(αX1 + (1− α)X2) ≤ αfobj(X
1) + (1− α)fobj(X

2)

Given the maximality of fobj in XM , this leads to:

fobj(XM) ≤ αfobj(X
1) + (1− α)fobj(X

2) ≤ (α + (1− α))fobj(XM) = fobj(XM)

Hence,

fobj(X
1) = fobj(X

2) = fobj(XM)

The two extreme points X1 and X2 also maximize fobj. Their associated stationary

deterministic policies are then relevant solutions to the problem of interest.

A constructive method is given hereafter so as to derive the corresponding policy.

Recall X1 and X2 are adjacent extreme points, and so their bases only differ by one

component. Following the derivation of the stationary policy detailed in (5.12), the

previously found XM then defines a stationary policy which is randomized between

two policies u1 and u2 for only one state (i0, j0). In this state, forcing the policy to

be deterministic by either setting π(i0,j0),u1 = 1 or π(i0,j0),u2 = 1 defines a policy that

is equal to the policy derived from X1 or X2, respectively and which therefore is an

optimal stationary deterministic policy to the variance penalized MDP.

5.1.9 Numerical Experiments

The optimization problem of interest is, by its nature, difficult. The maximization of

a convex function confines the search to the border. Classic optimization algorithms

making use of the smoothness and of the derivability of the objective function are de

facto excluded. The Matlab optimization toolbox was unable to solve the problem
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although it offers a dedicated function to find a maximum of a linearly constrained

nonlinear multivariable function. Smaller problems were tried and eventually solved

with Matlab. Different optimization packages were experimented on the full scale

problem and Tomlab Optimization EnvironmentTM has been singled out. It pro-

vides a Matlab interface with the SOL/UCSD Optimization Software developed by

Systems Optimization Laboratory (SOL) of Stanford University. It proved to be

successful in optimizing the objective of the full-scale problem. The quadratic pro-

gramming problem comprises 1521 variables and 1690 constraints.

The same rational Unimodal profile with aG = 2.5 and bG = 0.0025 as in 5.1.5 is

used to give an illustration. The initial distribution is chosen to be equally dis-

tributed between all the non delinquent states. In order to explore the different

Pareto optimal solutions, the variance penalization coefficient λ is increased from 0

to 10 by steps of increasing magnitude. λ was assigned a total of 200 different values.

The Pareto optimal pair was found to be constant beyond a threshold value for λ

which means that the minimum variance was actually found. Figure 5.2 depicts the

efficient frontier together with the previously generated pairs [see 5.1.5].
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Figure 5.2: Pareto Efficient Frontier between J and V nor

The corresponding policies were found to use firmer reminders as λ increases.

The present example illustrates the fact that the issuer may reduce the variability,

given it is willing to undertake more efficient and hence more costly collection strate-

gies. The proper trade-off has to be found according to the objectives of the issuer

and according to the availability of the collection resources.

5.2 Embodiment of the Attrition Phenomenon and

of the Bankruptcy Filings

This section will introduce two structural modifications of the general MDP defined

in Chapter 3, so as to account for the attrition phenomenon and the possibility for
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delinquent cardholders to file for bankruptcy.

5.2.1 The Attrition Phenomenon

The attrition corresponds to the “loss” of an active cardholder by the issuer. This

“loss” can factually consist of a substantial decrease in the card usage, of a definitive

interruption of usage or of a cancelation of the credit card account by the cardholder.

Definition 5.7. In the present model, the attrition phenomenon is defined by the

transition, initiated by the cardholder, of an account from a due status x ∈ Strans to

the absorbing state (NA,NA) accompanied by the full repayment of the indebtedness.

This definition accounts obviously for the cancelation of the account or the

definitive interruption of usage as types of attrition. It furthermore assumes that

the substantial decrease in usage can be approximated by a definitive interruption

of usage.

Property 5.2. Markov Property: It is conjectured in the model that the attrition

phenomenon is a Markov process, the conditional distribution of which depends only

on the present state of the account and on the present admissible collection action.

One may argue that the Markov property is too restrictive to account properly

for the attrition phenomenon. Indeed, attrition is mainly caused by cardholders’

dissatisfactions or by cancelations of accounts by cardholders who decide to use

competitors’ products instead.

The attrition due to cardholders’ dissatisfactions questions by its nature the rel-

evancy of the one step Markov conjecture. However, one should agree that the

principal source of dissatisfaction lies within the current billing cycle. This is espe-

cially true for delinquent cardholders undergoing a collection strategy which makes
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them highly discontented. Provided such delinquent cardholders have the ability to

settle their indebtedness at once, they might fully repay and afterwards either close

their accounts or simply stop using their cards.

As for the source of attrition due to the competitive business environment, it ap-

pears to be a stochastic process governed by the evolution of the industry and by

factors exterior to the account into consideration. The Markov conjecture does not

restrict the generality of such a process.

Definition 5.8. Let Θ be the collection of random attrition events occurring during

the set of billing periods in consideration

Θ = {Θn, n = 0, . . . , N − 1}

For each n, Θn is a discrete random variable with two possible outcomes: 1 if an

attrition event occurs, 0 otherwise. Following the Markovian conjecture, the proba-

bilities are defined by:

pΘ(xn, un) = P (Θn = 1|Xn = xn, un), xn ∈ Strans, un ∈ U(xn)

and pΘ(xn, un) = P (Θn = 0|Xn = xn, un) = 1− pΘ(xn, un)

Definition 5.9. Define patt for the model embodying the attrition phenomenon by:

•xn ∈ Strans, un ∈ U(xn)

patt(xn+1|xn, un) = pΘ(xn, un)p(xn+1|xn, un), xn+1 ∈ Strans

and patt
(
(NA,NA)|xn, un

)
= pΘ(xn, un) + pΘ(xn, un)p

(
(NA,NA)|xn, un

)
•xn = (NA,NA), un ∈ U(xn)

patt
(
xn+1|(NA,NA), un

)
= 0, xn+1 ∈ Strans

and patt
(
(NA,NA)|(NA,NA), un

)
= 1

Property 5.3. patt defines a proper one step Markov chain
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Proof. The Markov property directly derives from the Markovian property of the

original chain together with the Markovian conjecture made for the attrition phe-

nomenon.

The demonstration of the stochasticity of the matrix defined by patt will conclude

the proof.

∀n,∀xn, xn+1 ∈ S,∀un ∈ U(xn), 0 ≤ patt(xn+1|xn, un) ≤ 1

• ∀xn ∈ Strans,∀un ∈ U(xn)

∑
y∈S

patt(y|xn, un) = pΘ(xn, un)
∑

y∈Strans

p(y|xn, un) + patt
(
(NA,NA)|xn, un

)

From the stochasticity of the original Markov chain, it follows:

∑
y∈S

patt(y|xn, un) = pΘ(xn, un)(1− p
(
(NA,NA)|xn, un

)
+ patt

(
(NA,NA)|xn, un

)
= 1

• xn = (NA,NA),∀un ∈ U

∑
y∈S

patt(y|(NA,NA), un) = patt
(
(NA,NA)|(NA,NA), un

)
= 1

Figure 5.3 depicts the additional possible transitions due to the attrition.
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Figure 5.3: Equivalent transitions for the attrition phenomenon

The one step reward gatt
n should also be defined in order to embody the attrition

possibility.

It is clear that the reward function is identical to the previously defined gn so long

as the transitions are made from and to transient states.

As for the transitions from a transient state to the absorbing state (NA,NA), they

are either due to the attrition or to the writing off of the account initiated by the

card issuer. The one step reward from any transient state to the absorbing state

is then the expected value of the rewards generated along these two possible paths.

In the event of attrition, the one step reward derives from the full repayment of

the indebtedness followed by the closing or the full inactivity of the account. The

case of account cancelation is solely considered in what follows so as to simplify the

exposition.

Definition 5.10. The aggregate one step reward gatt
n is defined by:

• xn, xn+1 ∈ Strans, un ∈ U(xn)

gatt
n (xn, un, xn+1) = gn(xn, un, xn+1)
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• ∀xn ∈ Strans,∀un ∈ U(xn)

gatt
n =


0, if patt

(
(NA,NA)|xn, un

)
= 0

1
patt((NA,NA)|xn,un)

(
pΘ(xn, un)g

(
xn, un, (0, 0)

)
+

p
(
(NA,NA)|xn, un

)
g
(
xn, un, (NA,NA)

)
pΘ(xn, un)

)
, otherwise

• xn = (NA,NA), xn+1 ∈ S, un ∈ U(xn)

gatt
n (xn, un, xn+1) = 0

5.2.1.1 Simulation Results

Similar to the methodology used in Chapter 4, scenarios featuring different attrition

rates were run. To that end, a matrix of probabilities of attrition
(
pΘ(x, u)

)
was first

generated. Given each of the twelve previous value models, the MDPs embodying

attrition were solved for each of the 84 rational Unimodal profiles and for each of

the 84 rational Trimodal profiles.

The generation of each attrition probability pΘ(x, u) assumes this probability to be

equal to the product of a constant rate and of the probability of a cardholder in state

x undergoing strategy u to repay in full his balance. The rationale for the weighting

by the probability of repayment is that a cardholder willing to cancel his account or

interrupt his usage must first repay his debt. This weighting moreover accounts for

the differences existing between the collection strategies. Indeed, the more severe

the reminder, the more likely the cardholder is to repay. Stricter strategies then

generate higher probabilities of attrition. As for the constant rate, it is therefore the

monthly rate at which accounts, whose balances are fully repaid, are subsequently

attrited.

The simulation run consists of 41 different values of attrition equally distributed

within [0, 0.1] by steps of 0.0025. The maximum of 0.1 corresponds to a monthly

attrition of 10% among the accounts that are paid up. It is sufficiently high to
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include most of the real situations since the attrition is frequently found, in the

industry, to lie within a monthly rate of 0.5% to 1.5% (i.e. 5.8% to 16.6% annually).

A total of 82, 656 MDPs embodying increasing attrition phenomena were therefore

generated and solved.

The corresponding simulation flowchart is therefore the same as in Figure 4.1 p108

except for an additional higher loop on the 41 increasing values of attrition rate is

being performed.

For each MDP, the arithmetic mean of the expected total reward over the state

space was used as a criterion of comparison.

Figure 5.4 illustrates the decreasing trends of the expected total rewards for the

infinite horizon when the attrition increases.

Figure 5.4: Ratio Attrited J/ Non-attrited J for some “good” repayers with rational

Unimodal profiles, monthly purchase of S$1.5K and mean monthly cash advances

of S$0.5K

Two natural conclusions were derived from the data. For the profitable card-

holders, the attrition can have a high impact on their lifetime values. For the “bad”
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cardholders, their expected lifetime values are actually increased by the attrition.

For these“bad”accounts, the related account cancelations and interruptions of usage

reduce the overall rate of default.

More interestingly, one can observe that the influence of the attrition on the lifetime

value of the transactors (the most profitable holders; they are not too risky holders

who carry forward balances and pay interests) is much more significant than for the

transactors (the least risky holders who fully settle their debts every cycle). This is

explainable by the present assumption that the probabilities of attrition are related

to the abilities of the cardholders to repay in full their debts. Large outstanding

balances are then a means to retain “good” cardholders. This situation is known to

some issuers and they therefore increase, in a very selective manner, the credit lines

of the revolvers who have the suitable low default risk profiles. These issuers put

forward that, in this way, they respond to the increasing cardholders’ needs of credit

and improve hence their satisfactions [see 32]. At the same time, such issuers would

eventually reduce the attrition since the cardholders, who are willing to cancel their

accounts or to interrupt their usages, are forced to make an extra effort to repay in

full their larger outstanding balances.

Figure 5.5 illustrates this recommendation to reduce the attrition for a “good” ra-

tional Unimodal profile with aG = 3.5 bG = −0.002 and increasing monthly usages.
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Figure 5.5: Ratio Attrited J/ Non-attrited J repayers for the rational Unimodal

profile aG = 3.5 bG = −0.002 with increasing monthly usages

5.2.2 Bankruptcy Filings

The present section shall specify how the original MDP should be modified so as to

account for the possible bankruptcy filings. The bankruptcy filings are regulated by

the legislation of the country in consideration and the modes of the filings may thus

differ. The analysis is subsequently restricted to the following definition.

Definition 5.11. A bankruptcy filing is defined by the transition, initiated by the

cardholder, of an account from a due status x ∈ Strans to the absorbing state

(NA,NA). The card issuer neither collects any repayment nor recovers debt during

such a transition.

This definition is actually the worst case for the card issuer since the whole

cardholder’s indebtedness is then a loss that is not challenged by the issuer.
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Property 5.4. Markov Property: It is conjectured in the model that the stochastic

bankruptcy filing events is a Markov process, the conditional distribution of which

depends only on the present state of the account and on the present admissible col-

lection action.

One may also question this conjecture since the causes of bankruptcy filings

may date back to several months. However, it is reasonable to assume that most of

the predictive power lies in the current billing period. Similar to the attrition case,

there are a lot of external factors influencing the probability of filing for bankruptcy.

For instance, the other contracted debts and obligations of repayment influence the

likelihood of a cardholder going bankrupt. The prior segmentation of the cardholders

[see 3.2.2] allows the differentiation of the likelihood of cardholders going bankrupt

according to their respective segments. Within each segment, the Markov conjecture

then considers the relevancy of the random bankruptcy filing event to the current

state of the account and the collection action the cardholder is subject to.

Similar to 5.2.1, the stochastic bankruptcy filing variable will first be defined.

The transition probabilities and reward functions are consequently derived. The

proof of the proper definition of the one step Markov chain, similar to the attrition

case, is not repeated here.

Definition 5.12. Let Λ be the collection of random bankruptcy filing events occur-

ring during the set of billing periods in consideration

Λ = {Λn, n = 0, . . . , N − 1}

For each n, Λ is a discrete random variable with two possible outcomes: 1 if the

bankruptcy filing event occurs, 0 otherwise. Following the Markovian conjecture, the

probabilities are defined by:

pΛ(xn, un) = P (Λn = 1|Xn = xn, un), xn ∈ Strans, un ∈ U(xn)

and pΛ(xn, un) = P (Λn = 0|Xn = xn, un) = 1− pΛ(xn, un)
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Definition 5.13. The transition probabilities pbky for the model embodying the

bankruptcy filing event are defined by:

•xn ∈ Strans, un ∈ U(xn)

pbky(xn+1|xn, un) = pΛ(xn, un)p(xn+1|xn, un), xn+1 ∈ Strans

and pbky
(
(NA,NA)|xn, un

)
= pΛ(xn, un) + pΛ(xn, un)p

(
(NA,NA)|xn, un

)
•xn = (NA,NA), un ∈ U(xn)

pbky
(
xn+1|(NA,NA), un

)
= 0, xn+1 ∈ Strans

and pbky
(
(NA,NA)|(NA,NA), un

)
= 1

The one step reward gbky
n should be defined so as to embody the possible bankruptcy

filings. Similar to the attrition case, the reward function is equal to the previously

defined gn so long as the transitions are made from and to transient states.

As for the transitions from a transient state to the absorbing state (NA,NA), they

are due either to the cardholder filing for bankruptcy or to the writing off of the

account initiated by the card issuer. The one step reward from any transient state to

the absorbing state is then the expected value of the immediate rewards generated

along these two possible paths. In the event of bankruptcy filing, the debt is not

challenged by the issuer and the final indebtedness is fully lost.

Let lbky(xn, un) be the aggregate loss associated to the event of bankruptcy when

the account is in state xn and subject to collection strategy un. lbky is the sum of

this final indebtedness and of the different cash flows accruing during billing cycle

n [see Chapter 3 3.5] given that no repayment is made.

Definition 5.14. The aggregate one step reward gatt
n is defined by:

• xn, xn+1 ∈ Strans, un ∈ U(xn)

gbky
n (xn, un, xn+1) = gn(xn, un, xn+1)
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• ∀xn ∈ Strans,∀un ∈ U(xn)

gbky
n =


0, if pbky

(
(NA,NA)|xn, un

)
= 0

1
pbky((NA,NA)|xn,un)

(
pΛ(xn, un)lbky(xn, un)+

p
(
(NA,NA)|xn, un

)
g
(
xn, un, (NA,NA)

)
pΛ(xn, un)

)
, otherwise

• xn = (NA,NA), xn+1 ∈ S, un ∈ U(xn)

gbky
n (xn, un, xn+1) = 0

5.2.2.1 Simulation Results

The approach used to simulate is identical to 5.2.1.1. Scenarios featuring different

bankruptcy rates were run.

The matrix of probabilities of bankruptcy filings
(
pbky(x, u)

)
was generated by as-

suming the probability of a cardholder filing for bankruptcy to be equal to the

product between a constant rate and the probability that this cardholder in state x

undergoing strategy u makes no repayment at all. The rationale for the weighting

by this probability is that any cardholder would not file for bankruptcy if he is able

and willing to make a repayment even as a partial one. This weighting moreover

accounts for the increasing severity of the collection strategies. Indeed, the more

severe the reminder, the more likely the cardholder is to repay. Stricter strategies

then generate lower probabilities of bankruptcy. It is additionally assumed that

cardholders, whose states of delinquency are less than 3 months overdue, are not to

file for bankruptcy. As for the constant rate, it is then the monthly rate at which

cardholders, whose payments are at least two months overdue, fall further into ar-

rears and subsequently file for bankruptcy.

The scenario comprises 41 different values of attrition equally distributed within

[0, 0.1] by steps of 0.0025. The maximum of 0.1 corresponds to a monthly bankruptcy

filing of 10% among the delinquent cardholders that do not repay anything during
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this period.

A total of 82, 656 MDPs embodying increasing bankruptcy rates were generated and

for each of them the arithmetic mean of the expected total reward over the state

space was derived.

The corresponding simulation flowchart is therefore the same as in Figure 4.1 p108

except for an additional higher loop on the 41 increasing values of bankruptcy rate

is being performed.

The total expected discounted total rewards are found to be almost linearly decreas-

ing when the bankruptcy rate is increasing. For the set of profitable cardholders

investigated in 5.2.1.1, the decrease can be as high as 27% of the initial value when

the bankruptcy filings are not accounted for.

The influence of the bankruptcy filings is measured by comparing the expected

discounted total rewards derived with and without the possibility of prematurely

writing-off (u = 8). An issuer might be willing to write-off a delinquent account

earlier and to proceed to further back-office collections. In this way, the risk of

bankruptcy filing is reduced and the issuer still has a chance to challenge the debt.

The relative differences between the two situations were found to be almost linear.

Three situations have to be distinguished according to the cardholders’ abilities to

repay.

1. For the “good” cardholders, the relative difference is almost null. An issuer

would be better off keeping such accounts even as delinquent ones since repay-

ments can be expected in the short run.

2. For the cardholders with insufficient abilities to repay, the need of proceeding

to write-off prematurely (u = 8) is clearly brought to light since the relative

differences between the two strategies can be as high as 35%.

3. For the cardholders with very low abilities to repay, the relative differences

between the two strategies are slightly lower than case 2 above. The issuer’s
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expected collection is very low for these cardholders, whenever they enter

delinquency. The difference between prematurely writing-off or keeping the

account is then reduced. Such cardholders should be found in limited numbers

in the portfolio if the issuer practices a good application scoring.

5.3 Summary

Three extensions of the problem introduced in Chapter 3 were proposed.

The issue of the variability of the reward was addressed and computationally solved

using a variance penalized Markov process.

Two novel approaches to embody the attrition phenomenon and the bankruptcy

filings were specified. A classic recommendation to improve “good” cardholders’

retention was reaffirmed by the simulation study. It consists of allowing for some

selected “good” cardholders to increase their credit lines. Premature write-offs can

be used as a preemptive measure against unchallenged bad debt due to bankruptcy.

Their efficiency was lastly discussed.
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Chapter 6

Conclusion

6.1 Summary of Results

This thesis deals with a Markovian approach to the analysis and optimization of a

portfolio of credit card accounts. A general framework is presented and some of the

industrial practices are reaffirmed via simulations.

A review of the literature concerning the credit scoring and the behavioural models

is presented in Chapter 2. From the literature survey, it is observed that the scor-

ing techniques, despite their proven efficiencies, conceptually overlook the dynamic

aspects involved in the life of a credit card account. One step Markov approaches

have been developed to model such dynamic aspects. No model unifying a detailed

value analysis of the account and the possibility of accounting for monthly changes

in the outstanding balance has been proposed.

This present work develops such a refinement. Chapter 3 formalizes the approach

and designs a model implementable, as such, by the credit card issuer so as to con-

trol and optimize the profit derived from a portfolio of credit card accounts.

On account of the difficulty of obtaining real-life data, a simulation study, based on

the credit card agreement of a major issuer in Singapore, is singled out in Chapter

4. To that effect, an approximate dynamic program is formulated so as to relate
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the cardholder’s repayments and the evolution of his account from one due status

to another. Subsequently, the notion of rationality in the repayments is also for-

malized to generate reasonable repayment distributions. From there, two categories

of rational profiles as well as their random and irrational counterparts are defined

and used within the approximate dynamic program to generate meaningful Markov

decision processes.

Computational results re-affirm the rationale of some of the industrial practices. The

necessity to differentiate between three essential segments of cardholders, namely

transactors, revolvers and “bad” cardholders, is found again. The potential substan-

tial revenue that can be derived from “good” revolvers are brought to light. The

sensitivities to the minimum required payment rate mrp and to the annual per-

centage rate APR are discussed. The simulations confirm to a lesser extent the

soundness of the values set by the major issuer of interest. The adequacy of the dy-

namic program approximation is a posteriori validated by Monte Carlo simulations.

Finally, a theoretical framework that comprises two extensions of the model, is pro-

posed in Chapter 5. The first extension aims to account for the risk sensitivity in

decision making. The second extension aims to embody in the model defined in

Chapter 3, either the impacts of the attrition phenomenon or of the bankruptcy

filings.

As for the risk sensitivity, a variance penalized Markov decision process is first

adapted from Filar and Kallenberg [14]. A scheme to computationally derive sta-

tionary deterministic policies is proposed and applied to computationally solve some

of the examples developed in Chapter 3. This approach is a first step towards the

direct embodiment of the variability of the process in the decision making which

differs from the usual approach consisting of checking a posteriori the variability.

The extended model provides the optimal trade-off between profitability and risk

according to the weight the management is willing to grant to the risk factor.

As for the attrition and the bankruptcy filings, a structural modification of the
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Markov decision process defined in Chapter 3, provides a way to account for the

attrition phenomenon or the possibility for the cardholders to file in for bankruptcy.

The related simulation study, based on sensible assumptions concerning the trends

of the attrition and of the bankruptcy filings, justifies quantitatively some industrial

practices. The increase in the credit lines for selected cardholders as a means to

retain profitable cardholders is re-affirmed. The use of premature write-offs and fur-

ther challenge of the debt is found to protect the issuer against larger losses occurring

when the cardholders file in for bankruptcy.

6.1.1 Future Work

The quality of the prior segmentation of the cardholders and the accurate estimations

of the transition probabilities are crucial to obtain reliable forecasts. The techniques

to segment as well as to estimate the transition probabilities are not discussed here.

The basic approach to estimate the transition probabilities under different collection

strategies consists of applying the champion/challenger approach [see 27, 42] and to

make use of greedy heuristics to extrapolate the transition probabilities to strategies

that are unlikely to be undertaken by the issuer. A possible extension of the present

work is to account for the errors when estimating such transition probabilities. The

interested reader may refer to the work of Mannor, Simester, Sun, and Tsitsiklis [28]

for a treatment of this question. It is believed though that their approach is not

suitable to the present problem for their assumption of multinomial distributions

would not reflect the reality of the transitions of the present problem. The latter

are usually skewed with a most likely reversion to a current due state.

Another possible extension is to improve cardholders’ retention by including mar-

keting strategies in the set of controls. It is believed that this would be particularly

relevant with the extension modeling the attrition phenomenon. This approach,

developed in [42], was limited to the improvement of retention and conversely to
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6.1 Summary of Results

the present study, does not deal with delinquency management. Such an extension

would then unify the two approaches and could provide interesting management in-

sights.

Finally the inclusion of constraints or limitation in the availability of the collec-

tion resources seems to be a natural extension. The present lifetime value analysis

actually represents the best scenario when the resources are not limited. Given

this lifetime value, the problem could be formulated as a constrained dynamic pro-

gram over the whole portfolio and, in particular, among the different segments of

cardholders for which the transition probabilities were estimated. It would be in-

teresting to develop a heuristic in the vein of the work of Bitran and Mondschein

[8]. An adapted constrained dynamic programming approach could then account

for both the dynamics of the problem by including this ideal lifetime value in its

formulation and the limitation of the collection resources.
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Appendix A

The material for the backward induction algorithm and the policy iteration algorithm

are derived from Puterman [33].

A.1 The Backward Induction Algorithm

1. Set t = N and

J∗
N(xN) = gN(xN), for all xN ∈ S,

2. Substitute t− 1 for t and compute J∗
t (xt) for each xt ∈ S by

J∗
t (xt) = max

u∈U(xt)

{∑
j∈S

pt(j|xt, u)
(
gt(xt, u, j) + J∗

t+1(j)
)}

(A.1)

Set

U∗
xt,t = argmax

u∈U(xt)

{∑
j∈S

pt(j|xt, u)
(
gt(xt, u, j) + J∗

t+1(j)
)}

(A.2)

3. If t = 0, stop. Otherwise return to step 2.

Theorem A.1. Suppose J∗
t , t = 1, . . . , N and U∗

xt,t, t = 1, . . . , N − 1 satisfy (A.1),

(A.2); then,

• for t = 1, . . . , N and µt = (µt−1, ut−1, xt)

J∗
t (xt) = sup

π∈ΠHR

Jt(µt), xt ∈ S,

where ΠHR is the general set of history dependent and randomized policies
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A.2 The Policy Iteration Algorithm

• Let µ∗
t (xt) ∈ U∗

xt,t for all xt ∈ S, t = 0, . . . , N−1, and let π∗ = (µ∗
0, . . . , µ

∗
N−1).

Then π∗ ∈ Π, the set of Markovian deterministic policies. π∗ is optimal and

satisfies:

J∗
Π,g,N(x) = sup

π∈ΠHR

Jt(µt) = sup
π∈ΠHR

J∗
Π,g,N(x), x ∈ S,

and

J∗
Π,g,N(xt) = J∗

t (xt), xt ∈ S for t = 0, . . . , N

The backward induction algorithm provides a Markovian deterministic policy

over the general set of history dependent and randomized policies. It computes

iteratively the optimal expected total reward.

A.2 The Policy Iteration Algorithm

The Policy Iteration Algorithm detailed here is efficient for the discounted MDPs

with a factor β < 1. The policies belong to ΠD, the set of stationary deterministic

policies.

1. Set k = 0 and select an arbitrary decision rule π0 ∈ Π

2. Policy Evaluation: Obtain Jk by solving

(
I− βPπk

)
J = gπk

3. Policy Improvement: Choose πk+1 to satisfy

µk+1 ∈ argmax
π∈ΠD

{gπ + βPπJk},

setting πk+1 = πk if possible.

169



A.3 Convergence of the Variance of the Discounted Total Reward

4. if πk+1 = πk, stop and set π∗ = πk. Otherwise increment k by 1 and return to

step 2.

The Policy Evaluation step provides the expected total discounted reward for

the infinite horizon problem.

The Policy Improvement step consists of a componentwise maximization. The opti-

mal decisions are found for each state independently. The computing effort needed

to realize this step is thus substantially reduced.

Theorem A.2. For finite state space and control space MDPs, the policy iteration

algorithm terminates in a finite number of iterations. It provides a solution to the

optimality equation as well as the related optimal policy.

The interested reader is referred to [33] for a complete proof. It mainly relies

on the contracting properties (with the discounted factor 0 ≤ β < 1) of an operator

defined as the upper bound on all the decisions of the expected total discounted

reward. In a Banach space, such an operator has a fixed point which by construction

is the optimum of the problem of interest.

A.3 Convergence of the Variance of the Discounted

Total Reward

The variance of the total discounted reward is governed by the following recursive

equation:

CGn+1 = CGn + βngn(Xn, µn(Xn), Xn+1)

Property A.1. (CGn)n∈N is a Cauchy sequence.
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A.3 Convergence of the Variance of the Discounted Total Reward

Proof. Taking the expectation of the squared values leads to:

E{CG2
n+1} = E{CG2

n}+ β2n
E

{
gn(Xn, µn(Xn), Xn+1)

2
}
+

2 E
{ ∑

Xk∈S,k<n

βk+ngn(Xn, µn(Xn), Xn+1)gk(Xk, µk(Xk), Xk+1)
}

In the proof that the sequence of variances is Cauchy, the square of the expected value

E
{
CGn

}2
is omitted for the expected values and thus its squares are convergent and

hence Cauchy. Since the sum of two Cauchy sequences is also Cauchy, it suffices

to prove that the previous sequence is Cauchy to conclude that the sequence of

variances is Cauchy.

By definition |CG| is bounded, say by MUB. From there, it follows that:

|E{CG2
n+1} − E{CG2

n}| ≤ 2βn 1

1− β
M2

UB

The absolute value of the difference majorized by a convergent geometric sequence

is clearly Cauchy.
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Appendix B

B.1 Parameter Interactions

B.1.1 Regression Analysis

The interactions between the parameters aG (aϕ), bG (bϕ), (i, j), PV OL, CV OL

and the expected total discounted reward for both long run and short run were

investigated. These parameters are chosen for they respectively define a profile of

repayment, a state of the account and a mean usage.

The following table summarizes the results of the linear regression analysis conducted

over all the defined rational Unimodal profiles. The response to the regression was

chosen to be the expected total discounted reward over an infinite time horizon

(the decision of premature write-off is not included here in the set of controls) and

the predictors were chosen to be the previously mentioned parameters, the range of

which were defined in 4.4.6 and 4.4.7. The regression is then conducted on 170352

sextuple of predictors.
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B.1 Parameter Interactions

Predictors Coef SE Coef T P

Constant 7301.0 141.2 51.72 0.000

aG 2085.81 29.23 71.36 0.000

bG 3480597 10793 -322.47 0.000

i 114.49 14.15 8.09 0.000

j -60.177 5.371 -11.20 0.000

PV OL 371.56 56.29 6.60 0.000

CV OL 8348.4 163.2 51.17 0.000

Table B.1: Regression analysis for the category of rational Unimodal profile

The S and R values are as follows S = 13487.7 R− Sq = 43.5% R− Sq(adj) =

43.5%.

The sign of the coefficients for aG and bG confirms the intuition that overall the

higher the ability to repay, the bigger the profit. This trend is not yet monotonous

as was pointed out in the previous section with the difference between revolvers and

transactors.

The values of the T statistics reveal the high relevance of the parameters to the

expected total discounted reward. However, the quality of the linear fitting is poor,

which leads one to think that the relationship between the parameters and the ex-

pected total discounted reward is not linear.
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B.2 Value Model Spreadsheet

B.2 Value Model Spreadsheet

Figure B.1: Sample Value Model Spreadsheet

174


	1 Introduction
	1.1 Background
	1.2 Impact of Delinquency and Default
	1.3 Characteristics of Credit Card Banking and Related Problems
	1.4 Thesis Overview

	2 Literature Survey
	2.1 Introduction
	2.2 Predictive Models of Risk
	2.3  Behavioural Models 

	3 Model Formulation
	3.1 Background and Problem Introduction
	3.2 Preliminary Notions
	3.3 Definitions
	3.4 Value Analysis of the Credit Card Account
	3.5 Equations
	3.6 Summary

	4 Approximate Dynamic Programming and Simulation Study
	4.1 Introduction
	4.2 Approximate Dynamic Programming
	4.3 Cardholder's Profiles
	4.4 Computational Study
	4.5 Discussion of the Approximation
	4.6 Summary

	5 Extensions: Risk Analysis, Bankruptcy and Attrition Phenomenon
	5.1 Variance Analysis
	5.2 Embodiment of the Attrition Phenomenon and of the Bankruptcy Filings
	5.3 Summary

	6 Conclusion
	6.1 Summary of Results

	A 
	A.1 The Backward Induction Algorithm
	A.2 The Policy Iteration Algorithm
	A.3 Convergence of the Variance of the Discounted Total Reward

	B 
	B.1 Parameter Interactions
	B.2 Value Model Spreadsheet




