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Summary

In this thesis we analyze communication channels which suffer from synchronization

errors. Although synchronization errors are omnipresent in practical communication

systems, their effect is usually negligible in the signal to noise ratio (SNR) range

of interest. However, as the ever increasing potency of error-correcting codes pushes

down the SNR limits for reliable communication, timing errors are expected to become

the main performance limiting factor. Hence, it is important to study the effect of

injecting timing errors in standard channels.

Most of the prior work in timing error channels focuses on insertion/deletion

channels. Unfortunately, these channels are poor models of practical communication

channels. In this work, we study a more realistic scenario than the insertion/deletion

channel. In our model, we assume that timing errors can be quantized fractions

of the symbol interval. To keep the problem mathematically tractable, we assume

that the timing errors are generated by a discrete Markov chain. We investigate the

information rates of baseband linear filter channels plagued by such timing errors

and additive white Gaussian noise. The direct computation of the information rate

for channels with memory is a difficult problem. Recently, practical simulation-based

methods have been proposed to calculate information rates for finite-state intersymbol

interference channels. These methods employ the entropy ergodic theorem and exploit

the Markov property of the channels. In this report, we extend this strategy to include

channels which also suffer from timing errors. Due to the very complex nature of the

problem, we could not accurately compute the information rate for such channels.

Instead, we propose Monte Carlo methods for computing upper and lower bounds on

xi



the mutual information rates. Excluding the high SNR regions, the channel capacity

is tightly contained within the obtained upper and lower bounds.

We also investigate the problem of designing codes for channels corrupted by

additive white Gaussian noise, intersymbol interference and timing errors. We propose

serially concatenated codes for such channels. Marker codes form the inner code,

which assists in providing probabilistic re-synchronization. Marker codes are decoded

using a modified Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which produces soft

estimates of timing offsets and input data. We provide simulation results to show

the efficacy of marker codes in helping the receiver regain synchronization. However,

marker codes are not powerful enough to protect against additive noise. Hence, the

need for an outer code. A high-rate regular low-density parity-check (LDPC) code

is used as the outer code. The soft-outputs of the marker decoder are fed into the

LDPC decoder, which then produces an estimate of the transmitted data. Both the

decoders recursively exchange extrinsic information about the data bits to better the

estimation process. Simulation results are provided to evaluate the performance of

the code.

xii



Chapter 1

Introduction

Since its inception in 1948, information theory has been a subject of extensive research

activity. In his seminal paper [1], Shannon provided fundamental limits on informa-

tion rates for reliable transmission over noisy channel. This limit for a particular

channel is termed as the capacity of that channel. Over the years, computing the ca-

pacity of communication channels has remained a significant challenge. Closed-form

expressions for capacities of even simplistic channel models are still not available.

Recently, Monte Carlo methods were proposed to compute the mutual information

rates of intersymbol interference (ISI) channels. In this thesis, we expand upon these

techniques to obtain bounds on the capacity of noisy channels which also suffer from

synchronization errors. We also design channel codes which are capable of correcting

amplitude as well as synchronization errors.

1.1 Motivation

At some point in a digital communication receiver, an analog waveform must be

sampled. Sampling at correct time instants is crucial to achieving good overall per-
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formance. The process of synchronizing the sampler with the pulses of the received

analog waveform is known as timing recovery.

A practical receiver must perform three major tasks - timing recovery, equaliza-

tion and/or detection and error-control decoding. Thus, in its operations, a receiver

contends not only with the uncertainty in the timing of the pulses, but also with addi-

tive noise and ISI. An optimal receiver would have to perform these operations jointly

by computing the maximum-likelihood estimates of the timing offsets and message

bits. However, the complexity of such a receiver would be prohibitively high. Due to

this, in conventional receivers these tasks are performed separately and sequentially.

The order being timing recovery, followed by equalization and decoding (Fig. 1.1). A

natural corollary of this design approach is that the timing recovery schemes ignore

any error-correction coding used; instead, assume that the transmitted symbols are

mutually independent. Also, the decoder works with the tacit assumption of perfect

synchronization.TIMING RECOVERY& SAMPLING EQUALIZATION DECODING
Fig. 1.1: Conventional timing recovery scheme.

However, virtually all timing recovery methods at the receiver produce synchro-

nization errors. Communication systems and data storage systems are some of the

real applications which suffer synchronization errors. Such synchronization errors

are negligible in most conventional receivers, where the timing recovery units oper-
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ate at very high signal-to-noise ratios (SNRs). With the advent of more powerful

iteratively decodable codes, receivers are capable of operating at unprecedented low

SNRs. Also, the future very high density storage systems will exhibit significantly

high ISI, and consequently considerably lower SNRs. However, at such low SNRs,

the conventional timing recovery schemes fail. This phenomenon can degrade the

performance of the decoder, thus potentially offsetting the advantage obtained from

using powerful error-correcting codes. For example, in magnetic recording systems,

cycle slips in tracking increase steeply with reduction in SNR [2], thus deteriorating

the system performance.

This problem can be remedied by modifying the timing recovery schemes in such

a way that they are able to harness the power of the error-correcting codes. One

method of doing this is performing timing recovery and error-correction decoding

iteratively. Several different receiver configurations have been proposed to jointly

perform timing-recovery and error-correction decoding using an iterative approach,

with complexity comparable to a conventional receiver (see [3] for a good discussion).

An obvious improvement to timing recovery schemes which work in conjunction with

the decoder would be channel codes which aid in synchronization. Thus, knowing

the capacity of channels with timing errors is not just an academic problem. The

theoretical limits of transmission rates can serve as benchmark for design of codes

which assist in timing recovery.
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1.2 Literature Survey

Channels with synchronization errors have been receiving attention for a long time

now. However, most of the previous work has concentrated on insertion/deletion

channels. In [4], Dobrushin proved Shannon’s theorem for memoryless channels with

synchronization errors. He stated that the assumption of channel being memoryless

can be relaxed; however, the proof for such channels is still unavailable.

In [5], Gallager obtained an analytical lower bound on capacity of memoryless dele-

tion channels. He showed that for binary deletion channels, capacity can be bounded

by a simple entropy function of the deletion probability. Much later, Diggavi and

Grossglauser [6] extended these results to include non-binary alphabets. They also

derived improved lower bounds by using a first order Markov chain for codeword

generation. These results were further bettered in [7] by the use of more general pro-

cesses for generating codewords. Ullman [8]used a combinatorial approach to derive

upper and lower bounds on the capacity of insertion/deletion channels . However,

the bounds are strong only in the special cases of single or multiple adjacent synchro-

nization errors.

Dobrushin [9] presented a simulation based approach for estimating the capacity

of deletion channels in. Recently, Motwani and Kavčić [10] computed lower bounds on

the information rates of insertion and deletion channels using Monte-Carlo methods.

These are the tightest lower bounds known for such channels. For deletion channels,

their lower bound is very close to the upper bound given by Ullmann [8] which suggests

that it lies very close to the channel capacity.

A large body of work exists on codes for channels with synchronization errors.
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However, most of these coding scheme are applicable only in very restrictive scenarios

and provide limited error-correction capability. Golomb et al. [11] developed “comma-

free” codes which have the property that no overlap of codewords can be confused as

a codeword. If a codeword is corrupted with an insertion or deletion, it is possible

to regain re-synchronization after the error. Stiffler [12] and Tavares and Fukada [13]

proposed adding a constant vector to binary cyclic codes to create comma-free codes

with error-correction power of cyclic codes. However, none of these codes can correct

insertion or deletion errors.

Another class of codes is based on the number-theoretic constructions employed

by Levenshtein [14]. He defined a quantity edit distance (also called Levenshtein

distance) which is the number of insertions, deletions or substitutions necessary to

get one codeword from another. He presented codes capable of correcting single

insertion and deletion and also proposed a decoding algorithm. Other codes based

on Levenshtein distance were presented in [15], [16]. In [17] and [18], the authors

proposed Viterbi decoders based on Levenshtein metric.

Sellers presented “marker codes” in [19]. In this scheme, a synchronizing marker

sequence is inserted in the bit stream to be transmitted. The decoder looks for the

markers and uses any shift in their position to deduce insertion or deletion errors. The

codes that Sellers proposed could correct single or multiple adjacent synchronization

errors and, in addition, correct a burst of substitution errors surrounding the position

of synchronization errors. Recently, Davey and Mackay [20] extended marker codes

to a more generalized “watermark code”. Instead of having localized markers, they

spread the synchronization information evenly along the data sequence. They also

provide a BCJR-like algorithm for the decoding of watermark codes. Watermark

5



codes can be used in concatenation with other codes like LDPC codes to provide pro-

tection against additive noise. As the watermark decoder can produce soft outputs,

even iterative decoding is possible. These codes are capable of correcting multiple in-

sertion and/or deletion errors. Working in similar lines, Ratzer proposed an optimum

decoding algorithm for marker codes in [21].

1.3 Objective of the thesis

In this thesis we analyze baseband linear filter channels which have timing errors

injected in them. As can be seen in the previous section, most of the earlier works

on channels with synchronization errors are restricted to the framework of inser-

tion/deletion channels. Although these channels have great academic value, they are

inadequate to model any practical channel. In this thesis, we look into a more realistic

model of timing error channels. We have two main objectives:

• Our first aim is to quantize the loss in information rate that occurs on the

introduction of timing errors in standard ISI channels. We are interested in the

achievable mutual information rates of such channels.

• Our second aim is to design codes for noisy channels with synchronization errors.

An effective code would have to be capable of combatting ISI, additive noise and

synchronization errors. As our interest lies in the magnetic storage channels,

we concentrate on high rate codes.

The main contribution of this thesis is a fundamental information theoretic result

for channels with synchronization errors. We develop a practical method for tightly
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bounding the capacity of such channels. The application in mind here is magnetic

recording, although the presented method is not restricted thereto.

1.4 Organization

This thesis is subdivided into 5 chapters. The first chapter contains the introduction

and motivation behind this work.

In the second chapter we review some theorems and algorithms which will be

used extensively in this thesis. In the first section we provide a brief introduction to

baseband linear channels, with a little detail on magnetic storage channels. Then, we

present finite-state models and their properties. In the following section, we provide a

synopsis of the recently discovered simulation based method of computing information

rates for finite state channels. In the last section we review low-density parity-check

(LDPC) codes, their design and decoding.

The third chapter is dedicated to the computation of mutual information rate for

timing error channels. We first present a Markov chain model for timing errors. We

provide two different strategies for the trellis representation of our channel model.

We present the timing error model that we use, along with its various trellis rep-

resentations. We then describe Monte-Carlo methods which take advantage of the

entropy ergodic theorem to upper bound and lower bound the information rate for

said channels.

In the fourth chapter we present concatenated codes for timing error channels.

The code is comprised of the serial concatenation of marker codes and LDPC codes.

Marker codes provide probabilistic re-synchronization and LDPC codes protect against

7



channel noise. The performance of the code is evaluated using simulation results.

The fifth chapter concludes the thesis and suggests some directions for future

work.
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Chapter 2

Technical Background

2.1 Baseband Linear Filter Channels

Most practical channels have constrained and finite bandwidth. Such channels may be

modelled as linear filters having the same passband width as the channel bandwidth

W Hz. The finite bandwidth assumption ensures that the frequency response of

the channel has an equivalent lowpass representation. Hence, without any loss of

generality, we can assume our channel to have a baseband rather than a passband

frequency response. We refer to such channes as baseband linear filter channels. And

they are characterized as a linear filter having a frequency response C(f) that is zero

for |f | > W , where W is the channel bandwidth.

Within the bandwidth of the channel, we express the frequency response C(f) as

C(f) = |C(f)|ejθ(f), (2.1)

where |C(f)| is the magnitude response characteristic and θ(f) is the phase response

characteristic. Such channels are classified in two categories. A channel is called
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ideal if |C(f)| is constant over its domain of definition and θ(f) is a linear function

of frequency over its domain of definition. For both |C(f)| and θ(f) the domain is

given by |f | ≤ W .

The channels which do not satisfy the above two conditions are called distorting

channels. A channel whose |C(f)| doesn’t remain constant over |f | ≤ W is said

to distort the transmitted signal in amplitude. And if for some channel θ(f) can’t

be expressed as a linear function of frequency, we say that the channel distorts the

transmitted signal in delay.

A sequence of pulses when transmitted through a distorting channel at rates com-

parable to the channel bandwidth W get smeared into one another, and they are no

longer distinguishable at the receiver. The pulses suffer dispersion in time domain

and thus, we have ISI. In this thesis, we study the baseband linear filter channels

which causes ISI. We shall also use the term ISI channels to refer to such channels.

Digital magnetic recording channel is a prominent group in ISI channels and now we

shall study them in detail.

2.1.1 Digital Magnetic Recording Channelswrite circuit storagemediumwrite head read headbk s(t) r(t)
Fig. 2.1: Functional schematic of the magnetic read/write processes

The functional schematic of the read/write process in a conventional magnetic

recording system is shown in Fig. 2.1. It consists of write-circuit, write-head/medium/read-

10



head and associated pre-processing circuitry. For saturation magnetic recording, a

binary data sequence bk = {−1, 1} is fed into the write-circuit at the rate of 1/T (T is

the channel bit period). The write circuit is a linear modulator and it converts the bit

sequence into a rectangular current waveform s(t), whose amplitude swings between

+1 and −1 corresponding to the input sequence bk. This current in the write head

induces a magnetic pattern on the storage medium. The direction of magnetization

is opposite for s(t) = +1 and s(t) = −1. Evidently the information about the input

bit sequence bk is stored in the magnetization direction.

In the read-back process, the read head, either an inductive head or a magne-

toresistive (MR) head, performs the flux-to-voltage conversion. It is not the medium

magnetization, rather the magnetic transitions or the “derivatives” of the medium

magnetization that are sensed by the read head. Therefore, an isolated magnetic

transition corresponding to the data transition from −1 to 1 results in a waveform

g(t) of the read-back signal, while for the inverse transition −g(t) is produced. This

read-back voltage pulse is referred to as isolated transition response. Assuming that

the linearity of channel is maintained in the course of read/write processes, the read-

back signal can be reconstructed by the superposition of all transition responses

resulting from the stored data pattern.

Formally, the recorded transition at time k is denoted by vk, where

vk =





0 no transition at time t = kT

±1 otherwise.
(2.2)

This notation corresponds directly to the sequence of magnetic transitions, and the

sign of an element vk denotes the direction of the transition (and of the polarization).

11



Note that {vk} is a correlated sequence, and is related to the sequence {bk} of write

current polarities by

vk =
1

2
(bk − bk−1), (2.3)

with initial condition b0 = −1. With these assumptions, we obtain a linear model for

the read-back channel. The noiseless read-back signal can be written as

v(t) =
∑

k

vkg(t− kT ) (2.4)

=
∑

k

bkh(t− kT ), (2.5)

where

h(t) =
1

2
(g(t)− g(t− T )). (2.6)

We note that h(t) represents the effective impulse response of the magnetic recording

channel as it corresponds to the response of head and medium to a rectangular pulse,

i.e. to exactly two subsequent transitions (called dibit). In the literature, h(t) is

commonly termed pulse response or dibit response. Noting that electronics noise is

added at the output of the read head, we can write the read-back waveform as

r(t) =
∑

k

vkg(t− kT ) + µ(t), (2.7)

where µ(t) represents the electronics noise, which is usually modelled as additive

white Guassian noise (AWGN). The linear channel model is shown in Fig. 2.2, where

D is the delay operator.

The particular shape of g(t) depends on the read head type. For MR read heads,

which are currently standard in products, g(t) can be well approximated by the
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D g(t)bk )(tµ2

1 vk v(t) r(t)
Fig. 2.2: Linear channel model

Lorentzian pulse [22]

g(t) =
1

1 +
(

2t
PW50

)2 , (2.8)

where PW50 is a parameter specifying the pulse width at half of the peak amplitude.

PW50 is determined by the transition width in the recording media a and head-to-

media distance d as follows [22]

PW50 = 2(a + d). (2.9)

The ratio Kc = PW50/T , where 1
T

is the data rate, is a measure of the normalized

linear density in a hard-disk system. It is the single most important parameter to

characterize the channel in a magnetic recording system. Denoting the duration of

user data bit by Tu, the quantity defined as Ku = PW50/Tu is called the normalized

user density, which is a measure of the linear density from user’s point of view.

Assuming Rc to be the code-rate of the channel encoder, we have T = RcTu,

and consequently Kc = Ku/R. Hence, the use of channel code will cause increase in

linear density. However, the channel pulse response g(t) as well as the noise variance
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are functions of the sampling rate 1/T . Higher recording density implies increased

sampling rate and consequently, the noise variance at the input of the read channel

detector increases because of bandwidth expansion. Moreover, the energy in the pulse

response decreases because the positive transition and negative transition cancel each

other more, leading to further decreased SNR. Since it is difficult to achieve coding

gain large enough to compensate for the rate loss, only very high rate codes are useful

in magnetic recording channels.

We now describe in detail finite-state models (FSM), which are pivotal in the

mathematical modelling of magnetic recording channels.

2.2 Finite-State Models

An FSM is a doubly stochastic random process. It has two parts - a non-observable

state process S and an observable output process Y . The state process is of finite

size, i.e. its cardinality L = |S| < ∞ and determines the structure of the finite-

state model. Whereas, the observable output process can take values from a finite

or infinite alphabet set. The output process can be a deterministic or probabilistic

function of the underlying state process and inherits its statistical properties.

When the unobservable state process of an FSM is a Markov process, the FSM

is referred to as a Hidden Markov Model (HMM) (see [23] for an excellent tutorial

introduction). It is worthwhile to note here that HMMs can be extended to infinite

state-space [24]. The observable output sequence of such a model is known as a Hidden

Markov Process (HMP). The random variables which form the output sequence are

conditionally independent, given the underlying Markov process. HMMs form a large

14



and useful class of stochastic process models and find application in a wide range

of estimation, signal processing, and information theory problems. We will use the

notion of finite-state model for HMM with finite state-space.

2.2.1 Structure

States and state-transitions

The structure of an FSM is determined by its states and the branches connecting

the states. The state-space S is a non-empty set of finite cardinality and consists of

elements called states. The cardinality L = |S| of the state-set is called the order of

the FSM. Let B be a finite set, the elements of which will be termed as branches or

state-transitions. Every branch c ∈ B has a well defined left state Lstate(c) ∈ S and

a well defined right state Rstate(c) ∈ S.

A path of length n in an FSM is a sequence cn = (c1, c2, . . . , cn) of branches

ck ∈ B, k = 1, 2, . . . , n, such that Rstate(ck)=Lstate(ck+1). Each branch sequence

has a unique state sequence sn associated with it.

Trellis Representation

An FSM can be represented by a directed graph known as the state-transition diagram.

Any two states s′ and s′′ (s′, s′′ ∈ S) are connected by a directed edge iff ∃ c ∈ B

such that Lstate(c) = s′ and Rstate(c)=s′′.

Unfolding the state-transition diagram over time results in the trellis representa-

tion of the FSM. A trellis of length n consists of n concatenated trellis sections. A

trellis section Tt at time t is characterized by St and Ct, which are the time-t state-set

and time-t branch-set respectively. Each branch in Ct has a well defined left state and

a well defined right state. More precisely, Lstate(Ct)=St and Rstate(Ct)=St+1. If the
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state process is time invariant, all trellis sections are identical and the time index t is

dropped.

Example 2.1 (DICODE Channel). Consider a discrete-time channel with fre-

quency response (1 −D)/
√

2. The input-output relation for this channel is given by

Yt = (Yt − Yt−1)/
√

2, where Yt is the time-t input. We assume that the input signal

is bipolar, i.e. Xt ∈ {+1,−1}. The time-t state is given by the time-t input in the

following way: St = (Xt + 3)/2. The state-transition diagram and the corresponding

trellis representation are showon in Fig. 2.3, with the associated input and output pair

Xt/Yt on each branch.

1 2-1/0 +1/02/1

2/1 −− SK-1 SK12 -1/0+1/02/1 −− 2/1

Fig. 2.3: State transition diagram and a trellis section of the DICODE channel.

2.2.2 Markov Property

We assume that the unobservable state process is a first order Markov process. This

implies that the probability of being in the state j at time t conditioned on all the

states up to the state i at time t− 1, depends only on the state i at time t− 1. More

formally,

P (St = j|St−1 = i, St−2 = i′, . . .) = P (St = j|St−1 = i). (2.10)
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The above relation is known as the Markov property. The probability of going from

state St−1 = i to state St = j is called the state-transition probability (STP). It is

convenient to arrange the STPs in a L × L state-transition probability matrix Q,

where the entry in row i and column j equals the corresponding STP, i.e.

Q(i, j) , P (St(j)|St−1(i)). (2.11)

In the above equation, St(j) denotes that at time t state is j. Clearly, Q is a matrix

whose entries are all nonnegative, and elements in each row add to unity, since

∑
j∈S

Q(i, j) =
∑
j∈S

P (St(j)|St−1(i)) = 1 ∀ i ∈ S. (2.12)

In general, the state-transition probabilities of a Markov source may depend on time.

Here we discount this possibility and thus, assume that the Markov process is homo-

geneous in time. Such Markov processes are known as Markov chains [25].

2.2.3 Classification of States

Any state i is said to be accessible from state j if there is a finite sequence of transitions

from j to i with positive probability. If i and j are accessible from each other, they

are said to communicate with each other. A Markov chain in which any state is

accessible from any other state is termed as irreducible (communicating chain). All

states of such a chain belong to a single class and for every pair (s, s′) of states, there

exists a finite and positive integer n such that

P (St+n = s′|St = s) > 0. (2.13)
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Persistent States

The state i is said to be persistent if starting from state i, return to state i is certain,

i.e. if

P
( ∞⋃

t=1

[St = i]|[S0 = i]
)

= 1. (2.14)

Any state that is not persistant is called transient. A Markov chain is persistent if

all its states are persistent.

Aperiodic States

Consider a Markov chain with a finite state-space. A state i is said to be periodic with

period T , if return to that state is possible only at instants T, 2T, 3T, . . . (multiples

of T ), where T is the largest integer with this property. A state with period T = 1 is

called aperiodic. A Markov chain is aperiodic if all its states are aperiodic.

Since in an irreducible Markov chain all states belong to the same class, they are

either all transient or all persistent. Similarly, all states are either aperiodic or periodic

with the same period. Moreover, if the Markov chain is finite, (2.13) guarantees that

the Markov chain is persistent. Thus, for finite Markov chains persistence follows

from the property of irreducibility.

2.2.4 Stationary State Distribution

Let the row vector π(t) of length L be the state distribution vector of a Markov chain

at time t. The ith element of π(t) is thus the probability of being in state i at time t,

i.e.

π(t)(i) , P (St = i). (2.15)
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Given the state distribution at time t − 1, the state distribution at time t can be

written as

π(t) = π(t−1)Q. (2.16)

By iteration, we obtain

π(t) = π(0)Qt, (2.17)

where π(0) is the initial state distribution vector. A Markov chain is said to be

stationary if and only if it has a stationary state distribution π such that π(t) = π ∀ t

or equivalently,

π = πQ. (2.18)

It is important to note that (2.18) may not always have a unique solution.

Convergence to the Stationary Distribution

For a finite-state irreducible Markov chain, the stationary state distribution is posi-

tive, i.e. π(s) > 0 ∀s ∈ S and unique [23]. Thus, S is a stationary process. The next

question is whether any initial state distribution converges to the stationary state

distribution.

If a finite-state Markov chain is irreducible and aperiodic, it holds that all its

states are ergodic [25], i.e.

lim
n→∞

[Qn]ij = π(j) ∀ i, j ∈ S (2.19)

and the Markov chain is said to be an ergodic process. From (2.17), it follows that

for n →∞

π = π(0)Q∞, (2.20)

19



i.e. any intial state distribution converges to the stationary distribution which is then

called steady state distribution. Note that a sufficient, but not necessary, condition

for a Markov chain to be ergodic is aperiodicity [25].

2.2.5 Ergodicity Theorem for Markov Chains

We summarize the important properties of finite-state, irreducible, and aperiodic

Markov chains in the following theorem.

Theorem 2.1. Let a finite-state Markov chain with a stochastic state-transition ma-

trix Q be irreducible and aperiodic. All its states are ergodic and the chain form an

ergodic process. The chain has a unique stationary distribution, to which it converges

from any initial state. This distribution π is called the steady state distribution and

satisfies the following properties:

1. limn→∞[Qn]ij = π(j) ∀ i, j ∈ S

2. π(j) > 0 ∀ j ∈ S

3.
∑

j∈S π(j) = 1

4. π(j) =
∑

i∈S π(i)Q(i, j) ∀ j ∈ S.

2.2.6 Output Process

The output process Y of an HMM is observable unlike the state process. Moreover,

a realization yt at time t is not restricted to being discrete. Given the realization

Sn
0 = (S0, S1, . . . , Sn) of the underlying state process, the output sequence Y n =

(Y1, Y2, . . . , Yn) is a collection of conditionally independent random variables. The

distribution of Yt is time-invariant and it depends on S only through St.
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The n-dimensional density of (Y ,S) ≡ (Y n, Sn
0 ) can thus be written as

p(yn, sn
0 ) = p(s0)

n∏

k=1

p(yk, sk|sk−1). (2.21)

We also have the following relation

P (yt, st|st−1) = P (yt|st, st−1)P (st|st−1) t = 1, 2, . . . (2.22)

Observing that

p(yn) =
∑
sn
0

p(yn, sn
0 ) (2.23)

and using (2.22), we can write the probability distribution of the output process

as

p(yn) =
∑
sn
0

p(s0)
n∏

k=1

p(yk|sk, sk−1)P (sk|sk−1) (2.24)

=
∑
sn
0

π(s0)
n∏

k=1

p(yk|sk, sk−1)Q(sk, sk−1). (2.25)

If the FSM represents a communication channel, the time-t state St is given by some

previous channel inputs or a combination of channel inputs and internal channel

states.

Theorem 2.2 (Output Ergodicity). The output process Y of a aperiodic and ir-

reducible finite-space Markov process is stationary and ergodic.

This theorem follows from the fact that given a realization of the hidden state se-

quence, the output signals are conditionally independent random variables [26].
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Markovchain outputsequenceMemorylessinvariantchannel{St} {Yt}
Fig. 2.4: A hidden Markov process

2.3 BCJR Algorithm

From Information theory point of view, an HMP is a discrete-time finite-state ho-

mogenous Markov chain observed through a discrete-time memoryless time invariant

channel as described in Fig. 2.4. The BCJR algorithm [27] is used to estimate the

a-posteriori probabilities (APPs) of the states and transitions of the hidden source,

given the observable output sequence. The algorithm can be easily modified to in-

clude channels with memory as well. The channel memory can be viewed as a Markov

source, which can be combined with the input symbol source to create a super-source.

The original channel appears to be memoryless to this super-source and hence, the

BCJR algorithm can be used to obtain the APPs.

The BCJR algorithm is a symbol-by-symbol maximum a-posteriori (MAP) algo-

rithm. We will now briefly describe the BCJR algorithm. We will skip the interme-

diate steps wherever they directly follow from the arguments presented in [27].

Let us assume that we have a finite-state Markov source transmitting symbols

over an AWGN channel of variance σ2. Let XN
1 be the input data sequence emitted

by the Markov source and SN
1 ∈ SN be the state sequence corresponding to the input

data. Y N
1 represents the observed output, when the input data sequence XN

1 is sent
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over the channel. We further assume that the data symbol Xt corresponds to the

transition from state St−1 to state St. In what follows, the variables s and s′ will be

used to index the states of the Markov source.

Central to the BCJR algorithm are the following two properties of an HMP:

{SN
t ; Y N

t }‖{St−2
1 ; Y t−1

1 }|St−1 (2.26)

and

Yt‖{S¬, Y¬}|St
t−1. (2.27)

Note that X‖Y |Z signifies that X is independent of Y given Z. Equation (2.27)

states that given an assignment to St
t−1, the distribution of Yt is independent of every

other variable (both in the past and the future) in the HMP. Equations (2.26) and

(2.27) imply an assortment of conditional independence statements, which are used

in the derivation of the BCJR algorithm.

Our aim is to compute the following two quantities for each time index:

P (St = s|yN
1 ) = P (St = s; yN

1 )|p(yN
1 ) (2.28)

and

P (St−1 = s′, St = s|yN
1 ) = P (St−1 = s′, St = s; yN

1 )|p(yN
1 ). (2.29)

However, it is easier to derive the joint probabilities

λt(s) = P (St = s; yN
1 ) (2.30)
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and

σt(s
′, s) = P (St−1 = s′; St = s; yN

1 ). (2.31)

Since p(yN
1 ) is a constant for a given yN

1 , we can readily obtain the conditional prob-

abilities of (2.28) and (2.29) once we have λt(s) and σt(s
′, s). The algorithm consists

of two independent forward and backward recursions. Before describing the recursive

relations, we define a few quantities:

• forward state-metric

αt(s) = P (St = s; yt
1) (2.32)

• backward state-metric

βt(s) = p(yN
t+1|St = s) (2.33)

• branch metric

γt(s
′, s) = p(St = s, yt|St−1 = s′) (2.34)

The above quantities can be used to calculate λt(s) and σt(s
′, s) by the following

equations

σt(s
′, s) = αt−1(s

′)γt(s
′, s)βt(s), (2.35)

λt(s) =
∑

s′
σt(s

′, s). (2.36)

The quantity γt(s
′, s) can be computed by

γt(s
′, s) = p(St = s, yt|St−1 = s′)

= P (St = s|St−1 = s′) · p(yt|St−1 = s′, St = s) (2.37)

= P (St = s|St−1 = s′) ·K · e− ‖yt−xt‖2
2σ2 ,
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where K is a scaling factor and xt is the symbol emitted by the Markov source when

a transition from state s′ to state s occurs.

The forward recursion used to compute α is given by

αt(s) =
∑

s′
αt−1(s

′)γt(s
′, s). (2.38)

The backward recursion used to compute β is given by

βt(s) =
∑

s′
βt+1(s

′)γt+1(s
′, s). (2.39)

If we impose the constraints that the Markov source must start and end at the state

0, then we have the following initializations for α and β respectively

α0(s) =





1 s = 0

0 s 6= 1
,

βN(s) =





1 s = 0

0 s 6= 1
. (2.40)

By equations (2.30) - (2.40) we have completely described the BCJR algorithm. How-

ever, before we move ahead, we will make one more observation which will prove to be

pivotal in the next section. We can estimate the probability p(yn
1 ) using the forward

recursion of the algorithm as follows:

p(yN
1 ) =

∑
s

P (SN = s; yN
1 )

=
∑

s

αN(s) (2.41)
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2.4 Information Rates and Capacity

2.4.1 Some Definitions

In this section we briefly review some of the well-known results in information theory

which are relevant to this work and follow thereby, the book of Cover and Thomas [28]

very closely.

Entropy and Mutual Information

Definition 2.1 (Entropy). The entropy H(X) of a discrete random variable X with

alphabet X and probability mass function (p.m.f.) pX(x) = P{X = x} (the subscript

will be omitted) is defined by

H(X) , −
∑

x∈X
p(x) log2 p(x). (2.42)

The logarithm is to the base 2 and entropy is expressed in bits. The entropy does

not depend on the actual values taken by X, but only on probabilities.

Definition 2.2 (Conditional Entropy). The entropy of a discrete random variable

X conditioned on a discrete random variable Y is given by

H(X|Y ) , −
∑

y∈Y
p(y)

∑

x∈X
p(x|y) log2 p(x|y). (2.43)

The differential entropies and conditional differential entropies of continuous val-

ued random variables are defined by replacing the summation with an integration.

They are denoted by the lower case “h”, i.e. h(X) and h(X|Y ).

Definition 2.3 (Mutual Information). The mutual information between two ran-

dom variables X and Y with joint p.m.f p(x, y) and marginal p.m.f p(x) and p(y)
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respectively, denoted by I(X; Y ) is the relative entropy between the joint distribution

and the product distribution p(x)p(y), i.e.

I(X; Y ) ,
∑

x∈X,y∈Y
p(x, y) log2

p(x, y)

p(x)p(y)
. (2.44)

In terms of entropies, we can write the mutual information as

I(X; Y ) = H(X)−H(X|Y ) (2.45)

= H(Y )−H(Y |X). (2.46)

In the case of continuous random variables, differential entropies are used.

Entropy Rate of Stochastic Processes

Definition 2.4 (Entropy Rate). The entropy rate of a stochastic process X is defined

by

H(X ) , lim
n→∞

1

n
H(X1, X2, . . . Xn) (2.47)

, lim
n→∞

H(Xn|Xn−1, Xn−2, . . . , X1) (2.48)

when the limit exists. In the first line, the right hand side term is the per-symbol

entropy rate. In the second line, the right hand side term is the conditional entropy

rate of the last random variable given the past. For stationary stochastic processes

both are equal.

The entropy rate is the average description length for a stationary ergodic process.

It is well defined for stationary processes.
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Example 2.2 (Entropy Rate of a Markov Chain).

H(X ) = lim
n→∞

H(Xn|Xn−1, . . . , X1) = H(Xn|Xn−1),

where the second equality follows from the Markov property.

Asymptotic Equipartition Property

The asymptotic equipartition property (AEP) in information theory is the analog of

the law of large numbers. The AEP states that the probability of occurrence of a

sequence of process X is close to 2−nH(X ) with probability 1 for n →∞. This permits

us to divide the set of all sequences in two sets, the typical set, where the sample

entropy is close to the true entropy and the set of non-typical sequences containing

all other sequences. We first present theorem for AEP of independent and identically

distributed (i.i.d) processes, and later extend it to general processes.

Theorem 2.3 (Asymptotic Equipartition Property [28]). If X1, X2, . . . are i.i.d

and distributed according to p(x), then

− 1

n
log2 p(X1, X2, . . . , Xn) → H(X) in probability. (2.49)

Proof: Function of independent random variables are also independent random vari-

ables. Since the Xi are i.i.d, we can write

− 1

n
log2 p(X1, X2, . . . , Xn) = − 1

n

∑
i

log2 p(Xi) (2.50)

→ −E[log2 p(x)] in prob. (2.51)

= H(X). (2.52)
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Definition 2.5 (Typical Set [28]). Let X1, X2, . . . , Xn be i.i.d random variables.

The typical set A
(n)
ε with respect to p(x) is the set of sequences (x1, x2, . . . , xn) ∈ Xn

with the following property:

2−n(H(X)+ε) ≤ p(x1, x2, . . . , xn) ≤ 2−n(H(X)−ε). (2.53)

As a consequence of the AEP, the typical set has probability nearly 1 and all

elements of the typical set are nearly equiprobable. The elements of the set are called

typical sequences and their number is nearly 2nH(X).

AEP for Ergodic Processes

The Shannon-McMillan-Brieman theorem [28] is the fundamental theorem for the

AEP for stationary ergodic processes with finite alphabets. It states that for long

sequences, the entropy rate is proportional to the logarithm of the probability of a

typical sequence. Similar results have been extended to differential entropy rate by

Barron [29] for processes with infinite alphabet. For the particular case where the

process is an ergodic finite-state HMP, i.e. the output process of an FSM, Leroux

provided an elegant proof in [26].

To gain insight into the practical implications of the Shannon-McMillan-Brieman

theorem, let us consider a discrete stationary and ergodic random process X . We

define the sample sequence entropy as follows

H(xn) , − log2 p(xn). (2.54)
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The ensemble entropy H(Xn) is the average of sample sequence entropy, i.e.

H(Xn) ,
∑

xn∈Xn

p(xn)H(xn) (2.55)

= −
∑

xn∈Xn

p(xn) log2 p(xn). (2.56)

For infinitely long sequences, it converges to the true entropy rate of the process X ,

i.e.

H(X ) = lim
n→∞

1

n
H(Xn). (2.57)

For large n, almost all sequences are typical and are equiprobable. Thus, H(xn)/n

converges to H(Xn)/n. But in the case of stationary process, H(Xn)/n approaches

H(X ) for large n. Therefore, we conclude that for large n, average sample sequence

entropy converges to true entropy, i.e.

− 1

n
log2 p(xn) → H(X ) (2.58)

with probability one, provided that the process X is stationary and ergodic. Thus,

the entropy of an ergodic random process can be estimated using just a single large

realization of the process.

Information Rate and Capacity of Ergodic Processes

Definition 2.6 (Information Rate). The information rate between two stationary
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processes X and Y is defined as

I(X ;Y) , lim
n→∞

1

n
I(X1, X2, . . . , Xn; Y1, Y2, . . . , Yn) (2.59)

= H(X )−H(X|Y) (2.60)

= h(Y)− h(Y|X ) (2.61)

provided the limit exits. Note that we assume that X is finite-valued and Y is

continuous-valued random process.

Referring to X as input process and Y as output process of a communication channel,

the limit in (2.59) exists if the channel preserves the stationarity and ergodicity of

the input process. Such channels are termed as egrodic channels.

Definition 2.7 (Capacity of Ergodic Channels). The capacity between a station-

ary and ergodic input process X and a stationary and ergodic output process Y is

defined as

C , lim
n→∞

max
p(xn)

1

n
I(X1, X2, . . . , Xn; Y1, Y2, . . . , Yn). (2.62)

2.4.2 Capacity of Finite-State Channels

A finite-state channel (FSC) is a discrete-time channel where the distribution of the

channel output depends on both the channel input, and the underlying channel state.

This allows the channel output to depend implicitly on previous inputs and outputs

via the channel state.

In practice, there are three types of channel variations which FSCs are typically

used to model. Firstly, flat fading channel where the channel state is independent of

the channel inputs. Secondly, ISI channels where the channel state is a deterministic

31



function of the previous channel inputs. The third type is channels which exhibit

both fading and ISI, e.g. frequency-selective fading channels. In such channels, the

channel state is a stochastic function of the previous inputs. We now give the formal

definition of a FSC.

Definition 2.8 (Finite-State Channels [30]). The output yt at time t of a finite

state channel is statistically independent of the state at time t, given the state at time

t− 1 and the channel input at time t, i.e.

P (yt, st|st−1, xt) = P (yt|st−1, xt) · P (st|st−1, xt). (2.63)

It is worth noting that the term P (st|st−1, xt) controls the evolution of states in the

channel. An important set of well-behaved FSCs is the class of indecomposable FSCs.

For an indecomposable FSC, the effect of starting state s0 dies away with time.

Definition 2.9 (Indecomposable Finite-State Channels [30]). An FSC is inde-

composable if for any arbitrarily small ε > 0, there exists a n′ such that for n > n′,

|P (sn|s0, x
n)− P (sn|s′0, xn)| ≤ ε (2.64)

for all sn, xn, s0 and s′0.

It can be easily observed that an indecomposable FSC is equivalent to an irre-

ducible and aperiodic FSM. Hence, the output process of an indecomposable FSC can

be viewed as an HMP. We define the capacity of indecomposable FSCs as follows.

Definition 2.10 (Capacity of Indecomposable Finite-State Channels). The

capacity of an indecomposable FSC starting in state s0, driven by a discrete input Xt
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is given by

C , lim
n→∞

max
Kn

max
s0

1

n
I(Xn; Y n|S0 = s0), (2.65)

where Kn = {PXn(xn) : xn ∈ Xn} denotes the allowed input p.m.f.s .MS FSCFSMXk Yk
Fig. 2.5: Finite-state model studied in Sec. 2.4.3, comprising of an FSC driven by a
Markov source (MS)

2.4.3 A Monte Carlo Method for Computing Information

Rates

This method for computing mutual information rates of Markov sources over inde-

composable FSCs was presented independently in [31], [32], [33]. It is simply an

efficient application of the Shannon-McMillan-Breiman theorem.

Problem Statement: We have an indecomposable FSC channel, driven by a finite-

state Markov source (Fig. 2.5). We have to obtain the mutual information rate be-

tween a finite-state input process X (or equivalently the state process S) and the

channel output process Y.

An FSC can be represented by an FSM. Moreover, any finite-state Markov source

(MS), representing the input process to the FSC, can be combined with the channel

FSM to form a single joint source/channel FSM. It is this FSM that we work with.
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As both the input process X and the output process Y are assumed to be stationary

and ergodic, Shannon-McMillan-Breiman theorem is applicable.

Computing the Entropy Rate h(Y)

We begin by noting that

h(Y) = lim
n→∞

1

n
h(Y n) (2.66)

= lim
n→∞

− 1

n
Ep(Y n)[log2 p(Y n)]. (2.67)

In our context, the entropy rate h(Y) is the entropy of our FSM. We generate a very

long output sequence yn by passing a random input sequence through the channel

and sampling the corresponding channel output. The probability pY n(yn) can be

computed by the forward recursion of the BCJR algorithm as shown in (2.41). Recall

from (2.41)

p(yn
1 ) =

∑
s

αn(s), (2.68)

where αn(s) is the forward state-metric of state s at time t. In practice, the forward

and backward state metrics quickly tend to zero and numerical underflow occurs. To

avoid this, at each trellis section the states-metrics are normalized. The normalizing

factor for the forward state-metric at time t is given by

µt =
∑

s

αt(s). (2.69)

The forward recursion (2.38) is now

α̃t(s) =
∑

s′∈S
αt−1(s

′)γt(s
′, s), (2.70)

34



αt(s) =
1

µt

α̃t(s). (2.71)

It can be easily observed that p(yn
1 ) is now given by

p(yn
1 ) =

n∏
t=1

µt

∑
s

αt(s)

︸ ︷︷ ︸
=1

=
n∏

t=1

µt. (2.72)

As the output process Y is ergodic, it follows that an estimate of h(Y n) = −Ep(Y n)[log2 p(Y n)]

can be obtained using a single very long sequence yn
1 . Hence, the computed value of

the entropy rate h(Y) for a finite n is then given by

ĥ(Y) = − 1

n
log2 pY n(yn) (2.73)

= − 1

n

n∑
t=1

log2 µt. (2.74)

The right hand side converges to h(Y) for n → ∞ with probability one owing to

the Shannon-McMillan-Breiman theorem. By increasing n, the entropy rate can be

obtained to any desired level of accuracy.

As the underlying FSM is indecomposable by assumption, the effect of the starting

state fades away with the progression of time. Hence, for long sequences, we can start

in any state without affecting the estimate ĥ(Y).

Computing the Conditional Entropy Rate h(Y|X )

Given the input sequence xn and the output sequence yn, the probability pY n|Xn=xn (yn|xn)

can be computed by the forward recursion of the BCJR algorithm. Contrary to the

computation of p(yn), the BCJR algorithm now operates on a reduced trellis. As
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the input sequence is known, there is only one allowed transition from any state in

the trellis (the one corresponding to the input value at that instant). The reduced

trellis is time-varying as it is induced by the input sequence xn, which is random.

However, since the reduced trellis originates from an irreducible and aperiodic trellis,

it is irreducible and aperiodic too. Once we compute pY n|Xn=xn (yn|xn), an estimate

of h(Y|X ) can be obtained using arguments similar to those presented in the previous

paragraph.

For many practical channels h(Y|X ) can be obtained analytically. For example,

for ISI channels corrupted with AWGN, the knowledge of noise variance is sufficient

to compute h(Y|X ).

2.5 Low-Density Parity-Check Codes

LDPC codes are a class of linear error-correcting codes. They were first introduced in

1962 by Gallager [34], [35]. Despite the fact that LDPC codes would have broken all

practical coding records prior to 1993, they were largely forgotten for many years. It is

likely that storage requirements of encoding, and computational demands of encoding

made their immediate adoption infeasible. However, there has been a renewed interest

in LDPC codes since their rediscovery in the last decade [36]. In this section, we review

the decoding and structured construction of LDPC codes.

Parity-check codes

A parity-check code is a binary block code which uses a generator matrix G to map

the source words u to codewords c := uG (where u and c are row vectors). An

N block length code can be equivalently described by a M ×N parity-check matrix
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H. The M rows of H specify a set of M constraints which all the codewords must

satisfy. Thus, the parity-check code is the set of of binary vectors that comply with

the constraints imposed by H, i.e.

C = {c ∈ 2N : cHT = 0}. (2.75)

Each linearly independent constraint cuts the number of valid codewords in half.

Thus, if r = rank(H) ≤ M is the number of linearly independent rows in H, then the

code rate is (N − r)/N .

LDPC Matrix

An LDPC code is described by a parity-check matrix that is sparse [35].

Definition 2.11 (Regular LDPC Codes [35]). A regular (N ,j,k) LDPC code is

a code of block length N defined by a M × N binary matrix having exactly j ones

in each column and exactly k ones in each row. Further, j < k and both are small

compared to N .

By this definition, every parity-check equation of a regular (N ,j,k) LDPC code

involves k bits, and every bit is involved in j parity check equations. It is instructive

to note that N , j and k cannot be chosen independently. The total number of ones

in the parity-check matrix H is Mk = Nj. This implies that Nj/k, which is equal

to the number of rows in H, must be an integer.

When the restriction of fixed row and column weights in the parity-check matrix

is relaxed we get irregular LDPC codes. Irregular LDPC codes have been shown to

outperform regular LDPC codes for long block lengths [37]. However, in this thesis,

we restrict our attention to regular LDPC codes only.
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Generator Matrix

The parity-check matrix H of a rate K/N LDPC code can be expressed as a full rank

(N −K)×N sparse matrix. H can be written as

H =
[
H1 H2

]
, (2.76)

where H1 is a (N − K) × K matrix and H2 is a (N − K) × (N − K) matrix. H2

is constructed to be invertible. So by row transformation through left multiplication

with H−1
2 , we obtain a systematic parity-check matrix Hsys that is range equivalent

to H. That is,

Hsys = H−1
2 H =

[
H−1

2 H1 IN−K

]
. (2.77)

A systematic generator matrix can be obtained from Hsys as

Gsys =
[
IK (H−1

2 H1)
T
]
. (2.78)

It should be noted that although the original H matrix is sparse, neither Hsys nor

Gsys is sparse in general. Gsys is used for encoding and the original sparse parity

matrix H is used for iterative decoding.

2.5.1 Decoding of LDPC Codes

Tanner Graph

Any parity-check code (including an LDPC code) can be associated with a Tanner

graph, which is essentially a visual representation of the parity-check matrix H [38],

[39]. The Tanner graph of a parity-check code consists of N “bit” nodes and M

“check” nodes, representing the N bits in the codeword and M parity-check equations
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respectively. The bit nodes are depicted using circles, while the check nodes are

depicted using squares. There is an edge connecting the m-th bit node and n-th

check node in the Tanner graph, if there is a 1 in the parity-check matrix H at the

intersection of m-th column and n-th row. Thus, in the case of an (N ,j,k) LDPC

code, the degrees of bit nodes and check nodes are j and k respectively. As there is

no edge connecting two check nodes or two bit nodes, the Tanner graph is a bipartite

graph.

It is worthwhile to understand here the notion of cycles in an LDPC code. If for

any node, there exists a path consisting of consecutive and un-repeated edges leading

back to the same node, the LDPC code is said to have cycles. The number of edges

in the smallest cycle in a code is termed as the “girth” of the code.

Example 2.3 (Tanner graph). Consider a short (8, 2, 4) LDPC code whose parity-

check matrix H is given in (2.79). The associated Tanner graph is shown in Fig. 2.6.

The check nodes are represented by M = 4 squares at the top, while the check nodes

are represented by N = 8 circles at the bottom.

H =




1 0 1 0 1 0 1 0

1 0 0 1 0 1 0 1

0 1 1 0 0 1 1 0

0 1 0 1 1 0 0 1




. (2.79)

Sum-Product Algorithm

We consider the problem of decoding an LDPC code with parity-check matrix H,

given that channel introduces additive memoryless noise. Let r = [r1, r2, . . . , rN ]

be the received noisy vector corresponding to the transmitted binary codeword c =
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Fig. 2.6: Tanner graph for the LDPC matrix of (2.79).

[c1, c2, . . . , cN ]. Thus, we can write r := c + n where n is the noise. We multiply the

received vector with H to get the syndrome vector

z := rHT

= cHT + nHT (2.80)

= nHT .

We perform syndrome decoding. The optimal decoder finds the most probable vector

x which explains the observed syndrome vector z = xHT . x is then our estimate of

the noise vector. And the estimated transmitted codeword is ĉ = r + x.

We use an iterative probabilistic algorithm known variously as sum-product algo-

rithm [39] or belief propagation algorithm [40]. At each step we estimate the posterior

probability of the transmitted codeword, given the received vector, and channel prop-

erties. The process is best viewed as a message-passing algorithm operating on the

Tanner graph associated with H (Fig. 2.7). We denote the set of bit nodes and check

nodes by {xj} and {zi} respectively. The directed edges show causal relationships;

the state of check node is determined by the state of the bit nodes to which it is
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connected. We refer to the neighbours of a bit node xj as its children and to the

neighbours of a check node as its parents. At each step of the decoding algorithm,z1 z2 zM
x1 x2 x3 xN

Check Nodes
Bit Nodes

aR11

aQ11

a
MQ2

a
MR2

Fig. 2.7: Message passing on the Tanner graph of a LDPC code.

every bit node xj sends messages Qa
ij to each of its child zi which are supposed to

approximate the node’s belief that it is in state a ∈ {0, 1}, given messages received

from all its other children. Also, each check node zi sends messages Ra
ij to each of

its parent xj approximating the probability of the check node i being satisfied if the

parent is assumed to be in state a ∈ {0, 1}, taking into account messages received

from all its other parents. An iteration of LDPC decoding consists of a round of

message passing from each bit node to all adjacent check nodes, followed by another

round of message passing from each check node to its adjacent bit nodes. After each

iteration we produce a tentative decoding. The algorithm consists of recursively up-

dating these messages until the decoded vector is found to be a codeword or some
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other stopping criteria is satisfied. We now describe the algorithm in detail.

Initialization

We initialize the algorithm by setting each message Qa
ij to fa

j , the prior probability

that the jth received symbol is a. fa
j is generated by the channel detector.

Checks to bits

The messages Ra
ij that check i sends to parent j should be the probability of check

i being satisfied if the parent was in state a. In the sense it is used here, check i is

satisfied if it agrees with the corresponding syndrome symbol zi. More formally,

P (zi|xj = a) =
∑

x:xj=a

P (zi|x)P (x|xj = a). (2.81)

Hence, we sum over all configurations of x for which the check is satisfied and the

parent j is in state a and add up the probability of the configuration. For node zi,

we update the message going to xj for each value of a as

Ra
ij =

∑
x:xj=a

P (zi|x)
∏

k∈N (i)\j
Qxk

ik , (2.82)

where N (i) denote the set of indices of the parents of node zi and N (i)\j denoted the

indices of all parents except node j. Note that the probability P (zi|x) of the check

node being satisfied is either 0 or 1 for any given configuration.

Bits to Checks

The message that the bit node j sends to check i should be the belief the parent

has that it is in state a according to all the other children nodes. Applying Bayes’
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theorem:

P (xj = a|{zi}i∈M(j)\i) =
P (xj = a)P ({zi}i∈M(j)\i|xj = a)

P ({zi}i∈M(j)\i)
. (2.83)

Treating the symbols of z as independent, we take the product of all other children’s

votes for state a, weighted by the prior. For node xj, we update the outgoing message

to zi for each value of a as

Qa
ij = αijf

a
j

∏

k∈M(ij)\i
Ra

kj, (2.84)

where M(j) denotes the set of indices of the children of node xj and fa
j is the prior

probability that xj is in state a. The normalizing factor αij ensures
∑

a Qa
ij = 1.

Check stop criterion

At the end of each iteration hard decision is made on each bit’s APP as follows:

n̂j = arg max
a

fa
j

∏

k∈M(j)

Ra
kj. (2.85)

The vector n̂ is the tentative estimate of the noise vector. If this satisfies the syndrome

equation z = n̂HT , the decoder stops. Otherwise it re-iterates for a prefixed number

of times.

It can be shown that for any cycle-free system, the sum-product algorithm con-

verges to the true posterior distribution after a number of iterations [41]. However,

there is no such guarantee for the decoding performance when the Tanner graph con-

tains cycles. Therefore, there is no natural termination of the sum-product algorithm

in decoding LDPC codes containing cycles, and the decoding only approximates the
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optimal solution. Owing to the presence of cycles, the successive iterations of the sum-

product decoding algorithm tend to get correlated very quickly; this may prevent the

iterative sum-product decoding from converging to the optimal solution.

2.5.2 Systematic Construction of LDPC Codes

The methods of constructing LDPC codes can be primarily decomposed into two

classes: random constructions and structured constructions. For long block lengths,

codes constructed from random matrices give excellent error performance. How-

ever for smaller code lengths (not more than several thousand bits) random LDPC

codes may have low weight codewords, thus deteriorating the performance. For these

lengths, systematic graph-based or algebraic constructions can outperform random

ones. Also, the structure in the LDPC matrix can be exploited when implementing

the code in hardware. These considerations have motivated the construction of high

rate structured LDPC codes for magnetic recording channels.

In this thesis we use a class of structured LDPC codes based on circulant permu-

tation matrices1. These codes were initially proposed in [35]. However, the form in

which we use them first appeared in [42].

Let p ≥ 5 be a prime, and let σ be a p× p matrix obtained from the identity matrix

1A permutation matrix is any square matrix with constant row and column weight one; a circulant
permutation matrix is a permutation matrix which is cyclic.

44



by cyclically left shifting by one position, i.e.

σ =




1

1

1
. . .

1




p×p

. (2.86)

We define a parity-check matrix H as a J ×L (L ≤ p) block matrix of p× p circulant

matrices

H =




I I I I · · · I

I σ σ2 σ3 · · · σL−1

I σ2 σ4 σ6 · · · σ2(L−1)

...
...

...
... · · · ...

I σJ−1 σ2(J−1) σ3(J−1) · · · σ(J−1)(L−1)




. (2.87)

The code described by matrix H is a regular (N, J, L) LDPC code, with block length

N = Lp. The code obtained belongs to the class of self-orthogonal quasi-cyclic codes

and therefore, can be encoded in linear time with shift registers [43]. It can be easily

observed that the girth g is atleast greater than 4, i.e. g ≥ 6. It has been recently

proved that the girth of such codes can never exceed 12 [44]. Girths of 8, 10 or 12

can be easily achieved by enforcing some additional design constraints [44].

2.6 Summary

In this chapter, we reviewed some of the concepts, theorems and algorithms which

are vital for facilitating the understanding of this work. First, we provided a brief

description of the magnetic recording channel. That was followed by a detailed anal-
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ysis of finite-state models and their application in information theory. After that we

reviewed LDPC codes.
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Chapter 3

Computation of Information Rates

This chapter is dedicated to developing techniques for estimating mutual information

rates of noisy channels which also suffer from synchronization errors. We present a

general linear filter channel model which is used throughout this thesis. Next, we

delineate a quantized Markov process based model for timing errors. The advantage

of this model is that it is mathematically tractable yet being fairly accurate. In the

following two sections, we analyze two different representations of the the overall

channel (inclusive of ISI and timing errors). First we model the channel as an FSM

and show that the output process is an ergodic HMP. Then, we give a method to

combine the ISI trellis and the timing error trellis to get a trellis representation for

the overall channel. In the following section, we present a simulation based approach

to upper and lower bound the mutual information rates of such channels. We present

the simulation results in the last section. This work was done in collaboration with

Harvard University [45].
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Fig. 3.1: Source and channel model diagram.

3.1 Source and Channel Model

The signal source and ISI channel model considered is shown in Fig. 3.1.

Markov Source

The channel input process X is a stationary ergodic discrete-time Markov chain of

finite order. Its realization xk at time k (k ∈ Z) takes on values from the antipodal

binary alphabet, B = {−1, +1}. If ν is the order of the input Markov chain, then we

have

P (Xk|Xk−1
1 ) = P (Xk|Xk−1

k−ν ). (3.1)

ISI Channel

We assume that the baseband channel response h(t) is a finite support function. We

denote the support interval of h(t) by (−qT, qT ), where T is the symbol interval.

This implies that

h(t) = 0 for |t| ≥ qT. (3.2)

The received waveform Y (t) has the following form

Y (t) =
∑

k

Xkh(t− kT ) + N(t), (3.3)
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where N(t) is the additive Gaussian noise that is independent of the input. We further

assume that the bandwidth of N(t) is limited to (− 1
2T

, 1
2T

).

3.1.1 Quantized Timing Error Model

When there is perfect synchronization between the transmitter and the receiver, the

received waveform is sampled at integral multiples of T . However, because of the

timing errors, the receiver samples the waveform at times E0, T + E1, 2T + E2, 3T +

E3, . . . , iT + Ei, where Ei is the timing offset for the i-th sample. Using (4.1) the i-th

sample Yi at the receiver can now be written as

Yi = Y (iT + Ei) =
+∞∑

k=−∞
Xk · h(iT − kT + Ei) + Ni

=

i+q+bEi
T
c∑

k=i−q+dEi
T
e

Xk · h(iT − kT + Ei) + Ni. (3.4)

For simplicity, we shall assume that Ni ∼ N (0, σ2) are independent and identically

distributed (i.i.d.) Gaussian random variables.

The timing error process {Ei} is independent of the input process X and noise N .

Obviously, an accurate model would consider Ei to be a real valued random variable.

However, without much loss in accuracy, we can assume that Ei can take one of

countably many values jT
Q

, where j is an arbitrary integer and Q is a fixed positive

integer, i.e.

Ei ∈ T =

{
· · · ,

−2T

Q
,
−T

Q
, 0,

T

Q
,
2T

Q
, · · ·

}
. (3.5)

Clearly, Q is the number of quantization levels in each symbol interval T . Choosing

a large value of Q can ensure that we do not loose much in terms of accuracy due to
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this segmentation. We further assume that the process {Ei} is slowly varying with

time, and can be represented by the following random walk process

Ei+1 = Ei + ∆i+1, (3.6)

P (∆i = ξi) =





δ if ξi = T
Q

δ if ξi = −T
Q

1− 2δ if ξi = 0

(3.7)

The timing error increments, ∆i, are assumed to be i.i.d and be independent of all

-2T/Q -T/Q 0 T/Q

δ δ δ
1 - 2δδ δ δ

1 - 2δ 1 - 2δ 1 - 2δδ δδδ
Fig. 3.2: State transition diagram for the timing error Markov chain {Ei}

previous samples Yi and previous timing errors Ej, j < i. Thus, we have modelled the

timing error process as a first order Markov chain. The choice of a Markov process

for modelling timing errors is justified by the fact that any random process can be

approximated by a Markov process of sufficiently large memory.

The states of the Markov chain are in the set T defined in (3.5). Fig. 3.2 depicts the

state transition diagram of {Ei}. The slowly time-varying assumption is satisfied if

δ ¿ 1. The initial value of this random process is E0 = 0. In practical systems, this

is generally achieved by using pre-ambles ahead of each block of data symbols. We

have chosen this simple model for the ease of exposition. More complicated higher

order Markov models can be employed without changing the nature of the problem.
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Trellis Representation

0

T/5

0

-T/5

T/5

0 0

T/5

-T/5

-T/5

2T/5

-2T/5 -2T/5

2T/5

Fig. 3.3: Trellis representation of the timing error process.

The trellis representation of the timing error process {Ei} is depicted in Fig. 3.3. Note

that the trellis has been drawn for Q = 5 quantization levels and it has been assumed

that the initial timing offset is zero. It is evident that the number of states in the

trellis keeps increasing as time progresses.

3.2 Finite-State Model for Timing Error Channel

In this section, we present an FSM for the channel described in Sec. 3.1 and show

that the output sequence Y L
1 is an HMP. We also prove that Y `

1 , as ` → ∞, is

asymptotically stationary and ergodic.
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We assume that the i-th sample is placed in the k-th symbol interval, i.e.

(k − 1)T < iT + Ei ≤ kT for some k ∈ Z+. We also assume that the i-th sampling is

done at the Mi-th quantization level of the symbol interval, i.e.

iT + Ei = (k − 1)T +
Mi + 1

Q
T, (3.8)

where Mi ∈ {0, 1, . . . , Q− 1}. It can be easily observed that the sequence {Mi} itself

is a first order Markov chain, to be denoted by M. From (3.6) and (3.7) we have

PMi|Mi−1
(mi|mi−1) =





δ if mi = (mi−1 + 1) mod Q

δ if mi = (mi−1 − 1) mod Q,

1− 2δ if mi = mi−1.

(3.9)

The timing instant iT + Ei is determined by mi, which is a realization of Mi as seen

in (3.8). As the channel response h(t) is a finite support function, we know that only

Mi and 2q binary input symbols have effect on the value that Yi takes (see (3.4)).

As the input process is a Markov chain of order ν, the channel state at any instant

can be completely defined by Mi and κ = max(ν, 2q) binary symbols. Without any

loss of generality, from now onwards we shall assume that ν < 2q. We denote the

channel state by S ∈ S = {(m, a2q
1 )}, where m ∈ {0, 1, . . . , Q− 1}, and a2q

1 is a binary

vector corresponding to the 2q adjacent input symbols that determine a particular

sample value at the receiver. It is worthwhile to note that we need not be aware of

the indices of the input symbols which correspond to a specific output sample. It is

sufficient to know the value of the binary vector a2q
1 .

It can be easily shown that the channel state sequence Si = (m, a2q
1 (i)), i ∈
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{0, 1, . . .}, also forms a first order Markov chain with a finite number of states, i.e.

P (Si|Si−1, Si−2, Si−3, . . .) = P (Si|Si−1). (3.10)

The total number of channel states is 22qQ. Given a channel state Si = (mi, a
2q
1 (i)),

we know from (3.4) that the i-th sample

yi(Si) =

2q∑

k=1

ak(i)h
(
(q − k +

mi + 1

Q
)T

)
+ Ni (3.11)

is a Gaussian random variable, i.e. Yi ∼ N (ηi, σ
2), where

µi =

2q∑

k=1

ak(i)h
(
(q − k +

mi + 1

Q
)T

)
. (3.12)

From the arguments above, we can conclude that Y is an HMP with the channel state

process S being the embedded Markov chain. Therefore, in order to prove that Y

is asymptotically stationary and ergodic, we need to examine the properties of the

hidden state process S. We have the following lemma.

Lemma 1. The state process S is an ergodic finite-state Markov chain that has a

unique stationary-state distribution to which it converges from any initial state dis-

tribution.

Proof: From Theorem 2.1 we know that to prove that a Markov chain is ergodic, it

is sufficient to show that it is irreducible and aperiodic.

To prove irreducibility, we first show that any two states, s ∈ S and s′ ∈ S

communicate. Let s = (m, a2q
1 ) and s′ = (m′, b2q

1 ), where 0 ≤ m ≤ m′ ≤ Q − 1, and

ai,bi are binary symbols. Using (3.9), we can observe that starting from state s, it is
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possible to reach a state s′′ = (m′, c2q
1 ) in m′ −m transitions for some binary vector

c2q
1 . Similarly, we can start from state s′′ and go to state s′ in at most 2q transitions

by keeping m′ unchanged and sequentially sending the binary symbols b1, b2, . . . , b2q.

Thus, state s′ is accessible from state s. On similar lines, we can show that state

s is also reachable from state s′. Therefore, we can claim that all the states in S

communicate, i.e. all states belong to the same class. Since S is a finite set and all

the states in S are in the same class, we can conclude that the Markov chain S is

irreducible.

Next, we show that each state in S is aperiodic. Let us consider a state s =

(Q − 1, a2q
1 ), where all the binary symbols ai = 1. Obviously, we can reach state

s from state s itself using a single state transition, which implies that state s is an

aperiodic state. Since, all states in S belong to the same class, all states are aperiodic.

In other words, the Markov chain S is aperiodic.

Since the Markov chain S is both irreducible and aperiodic, we can conclude that

it is ergodic. Furthermore, it will converge to a unique stationary state distribution,

irrespective of the initial state, i.e. the state sequence is asymptotically stationary.

(see Theorem 2.1)

We know that the statistical properties of an HMP are inherited from similar

properties of the underlying state process. We therefore conclude that the sampled

sequence {Yi} is ergodic and is asymptotically stationary. In other words, the output

process Y is an ergodic and asymptotically stationary process.

Using similar arguments as for Lemma 1, we can also prove the following:

Lemma 2. The process M, as defined in (3.9), is an ergodic and asymptotically
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stationary finite-state Markov chain. Furthermore, it has a unique steady-state dis-

tribution πm(k) = 1
Q
, k ∈ {0, 1, . . . , Q− 1}.source G(D) h(t) N(t) Y(t) Yi

iiTt ε+=

Xk
Fig. 3.4: The block diagram for the simulation setup used. G(D) = 1−D2.

3.3 Joint ISI-Timing Error Trellis

In this section, we give an alternative description of the timing error channel using a

joint ISI-timing error trellis. As the name suggests, the joint trellis includes the effects

of both ISI as well as timing errors. Although the method to construct the joint trellis

that we present is general, it is best explained through an example. Therefore, we

first describe our simulation setup.

3.3.1 Simulation Setup

Fig. 3.4 depicts the setup we use for our simulations. The source emits antipodal

binary symbols i.e. Xk ∈ B. These source symbols are first passed through filter

G(D) = 1 − D2 and later through the baseband channel. We model the baseband

channel response function h(t) as a truncated sinc function with the form

h(t) = sinc(t)[u(t + T )− u(t− T )], (3.13)
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Fig. 3.5: Overall channel response.

where u(t) is the unit step function. For the symbol source, the overall channel

response f(t) is the combination of the filter G(D) and the channel response function

h(t). It is easy to observe that

f(t) = h(t)− h(t− 2T ). (3.14)

The overall channel response is shown in Fig. 3.5.

3.3.2 ISI Trellis

When there is perfect synchronization between the transmitter and the receiver, the

channel described in the previous subsection is essentially equivalent to the partial-

response class-4 polynomial (PR4) channel, and has a memory length of 2. However,

with imperfect timing the channel memory length increases to 3.
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3.3.3 Construction of the Joint ISI-Timing Error Trellis

The joint ISI-timing error trellis is formed by the cross-product of the ISI trellis, and

the timing error trellis depicted in Fig. 3.3. Any state in the joint trellis has the form

S = (x, x′, x′′, ψ), where x, x′, x′′ ∈ B3 and ψ ∈ T. It is worthwhile to note some

salient points about the joint trellis here:

• Like the timing error trellis, the joint trellis has countably infinite states, and

it grows without bound as time progresses.

• We model the quantized timing errors as a first order Markov chain, where only

three types of transitions are allowed from any state. The state may remain

unchanged or there could be a transition to the immediate neighbours. Due to

this, if the i-th sample falls at the Mi-th (Mi ∈ {0, 1, . . . , Q− 1}) quantization

level, the (i+1)-th sample is constricted to fall either on the Mi-th quantization

level or the levels adjacent to it as described in (3.9). A natural corollary of

this restriction is that there can be at most two samples in a symbol interval.

Two samples may fall in the same symbol interval at the 0-th and (Q − 1)-th

quantization respectively; this is equivalent to an insertion. Or, there may be

no samples in a particular symbol interval, which signifies deletion of a symbol.

Otherwise, there is one sample in a symbol interval at any of the Q quantization

levels.

Now, each section in the joint trellis corresponds to one noiseless channel out-

put. Since our channel model permits variable number of samplings per symbol

interval, the ISI state transitions in the joint trellis are dependent on the timing

offset transitions.

57



−4T −2T   0  2T  4T  6T  8T
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time →

Y
(t

) 
→

x
−2

x
−1

x
0

x
1

x
2

x
3

x
4

x
5

Fig. 3.6: A realization of the sampling process at the receiver. The noiseless received
waveform is drawn using thick red line. The sampling instants are marked on the
time axis using diamonds.

To understand the construction of the joint trellis, let us consider a realization of

the sampling process at the receiver shown in Fig. 3.6. We assume that initially the

receiver is perfectly synchronized to the transmitter; thus, the timing offset is zero at

t = 0. We further assume that the two bits preceding the message block are −1, i.e.

x−2 = −1 and x−1 = −1. The number of quantization levels is Q = 5. The input bits

{x0, x1, x2, x3, x4, x5} are arbitrarily chosen to be {+1,−1, +1, +1, +1,−1}, respec-

tively. The sampling instants are marked on the abscissa using diamonds. As can

be seen from Fig. 3.6, the timing offsets for the first five samples are 0, T
5
, 0, −T

5
, −2T

5
,

respectively.
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We shall now observe how the ISI state transitions occur in the joint trellis for a

given realization of the timing error process Ek. The trellis state corresponding to the

first sample at t = 0 is (x−2, x−1, x0, 0). The next sampling takes place at t = 1.2T .

Note that no sample has been taken in the interval [0, T ) and thus, a deletion has

taken place. To obtain the value of the noiseless sample, we need to know x−1, x0, x1

and x2. Hence, the next ISI state must be given by (x0, x1, x2). The next sample is

taken at t = 2T . Clearly, this sample is in the same symbol interval as previous one.

This is an example of symbol insertion. As we already know all the input bits required

to compute the noiseless value, the destination ISI state remains (x0, x1, x2). Only

one sample falls in all other symbol intervals, and it can be easily observed that for all

such cases the ISI states transition is of the form (xn−2, xn−1, xn) → (xn−1, xn, xn+1),

where n ∈ Z.

It is also important to note that any branch in the joint ISI-timing error trellis

“carries” one noiseless channel output and 0,1 or 2 input bits. Absence of input

bits on a branch corresponds to symbol deletion, and 2 input bits imply insertion

of a symbol. We can generalize the observations made in the previous paragraph

Table 3.1: Rules for finding ISI state transitions give the timing offset state transi-
tions.

ith → (i + 1)th sample

Case Timing transition ISI transition Bits on the branch

Insertion kT → (
(k + 1)T + T

Q

)
(xn−2xn−1xn) → (xnxn+1xn+2) xn+1, xn+2

Deletion (kT + Q) → (k + 1)T (xn−2xn−1xn) → (xn−2xn−1xn) φ

Other all other transitions (xn−2xn−1xn) → (xn−1xnxn+1) xn+1
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into rules for assigning ISI states to the nodes in the joint trellis. These rules are

presented in Table 3.1. We represent the number of quantization levels by Q. We

assume that the i-th sample falls at iT + Ei, where Ei ∈ T is the timing offset. From

(3.8) we know that we can express iT + Ei in the form kT + q
Q
T , where k ∈ Z and

q ∈ {0, 1, . . . , Q−1}. Note that it is not necessary to know the exact relation between

i and k here. We further assume that the ISI state at the i-th section in the joint

trellis is given by (xn−2, xn−1, xn). We denote the absence of bits over any branch in

the joint trellis by φ. Using these rules we construct the joint ISI-timing error trellis

presented in a compact form in Fig. 3.7. Observe that all paths merging into any

node in the joint trellis carry the same number of input bits.

From the discussion above, we conclude that at time t, any state in the joint trellis

is given by St = {xk
k−2, ψ}, where xk

k−2 ∈ B3, ψ ∈ T, and relation between t and k is

contingent upon the realization of timing error process. It can be easily observed that

such a state evolution process precludes the possibility of communication between any

pair of states in the joint trellis. Due to this, the FSC described by the joint trellis

cannot be proved to be ergodic.

3.4 Information Rate Computation

Channels with timing errors can cause random insertions or deletions of symbols.

Due to this, for such channels the number of transmitted symbols (m) may be not

be equal to the number of received symbols (`). The mutual information rate per

received symbol for synchronization channels can be expressed as [4]

I(r)(X ;Y) = lim
`→∞

1

`
lim

m→∞
I(Xm

1 ; Y `
1 ) [bits/received symbol]. (3.15)
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For short notation, we shall use

I(X∞
1 ; Y `

1 ) = lim
m→∞

I(Xm
1 ; Y `

1 ).

We can now expand (3.15) as

I(r)(X ;Y) = lim
`→∞

1

`
I(X∞

1 ; Y `
1 ) (3.16)

= lim
`→∞

1

`
h(Y `

1 )− lim
`→∞

1

`
h(Y `

1 ; X∞
1 ) (3.17)

= h(Y)− h(Y|X ) [bits/received symbol]. (3.18)

However, the quantity of our interest is I(X ;Y), the mutual information rate per

transmitted symbol. It can be written as

I(X ;Y) = α · I(r)(X ;Y) (3.19)

= α · lim
`→∞

1

`
I(X∞

1 ; Y `
1 ), (3.20)

where α is the expected number of received symbols per transmitted symbol. If we

denote the number of samples in the first m symbol intervals by Lm, then

α = lim
m→∞

Lm

m
. (3.21)

And the channel capacity can be expressed as

C = α · sup
p(X∞

1 )

lim
`→∞

1

`
I(X∞

1 ; Y `
1 ), (3.22)

where the supremum is taken over all possible stationary and ergodic processes X∞
1 [4].
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We shall now present Monte-Carlo methods to compute upper and lower bounds

to I(X ;Y), the information rate per transmitted symbol for a given stationary, and

ergodic input process X∞
1 .

3.4.1 Computation of α

Since Lm is defined as the number of samples in the first m symbol intervals, we have

LmT + ELm ≤ mT (3.23)

(Lm + 1)T + ELm+1 > mT. (3.24)

From (3.23) and (3.24), we have

m− 1

m
−

∑Lm+1
i=1 ∆i

mT
<

Lm

m
≤ 1−

∑Lm

i=1 ∆i

mT
. (3.25)

By taking the expected values of all the terms in the inequality (3.25), and letting

m →∞, we have

1 ≤ lim
m→∞

E[Lm]

m
≤ 1. (3.26)

Therefore, from (3.21) we have α = 1.

3.4.2 Computation of h(Y)

in Sec. 3.2, we presented a finite-state model for the timing error channel in consider-

ation. We also proved that the output process Y of the channel, or equivalently the

FSM is asymptotically stationary and ergodic. Hence, it follows from the Shannon-
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McMillan-Breiman theorem [46] that the sample sequence entropy

h(y`
1) , − log2 p(y`

1)

upon a scaling factor converges to the true entropy h(Y ) with probability one (almost

surely) for large `, i.e.

lim
`→∞

−1

`
log2 p(y`

1) = h(Y). (3.27)

We now use the Monte-Carlo method described in Sec. 2.4.3 to estimate h(Y). A

very long channel output sequence y`
1 is sampled and p(y`

1) is computed using the

forward recursion of the BCJR algorithm applied over the channel FSM. For a given

realization y`
1 of the HMP Y , we have

p(y`
1) =

∑

s`
1

p(s`
1, y

`
1), (3.28)

where, s`
1 ∈ S`. We define the accumulated state-metric at the k-th sample as σk(sk).

Using the Markovian property in (3.10) and (3.11), we can write

σk(sk) =
∑

sk−1
1

p(yk
1 , s

k
1)

=
∑
sk−1

σk(sk−1)p(yk, sk|sk−1). (3.29)

σk(sk) can now be recursively computed using the BCJR algorithm. Using (3.29) in

(3.28) we get

p(y`
1) =

∑

s`∈S
σ`(s`). (3.30)
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For large k, the accumulated state-metrics σ(sk) calculated according to (3.29) quickly

tend to zero and numerical underflow occurs. To circumvent this problem, in practice

the recursive relation of (3.29) is changed to

σ̃k(sk) =
∑

sk−1∈S
σ(sk−1)p(yk, sk|sk−1), (3.31)

σk(sk) =
1

µk

σ̃k(sk) (3.32)

where µk is the normalizing factor, i.e.

µk =
∑

sk∈S
σk(sk).

Due to the normalization, the sum of the accumulated state-metrics at any time k

equals one. Therefore, p(y`
1) is given by the product of all the normalizing factors

upto time `, i.e.

p(y`
1) =

∏̀

k=1

µk

∑

s`∈S
σ`(s`)

︸ ︷︷ ︸
=1

=
∏̀

k=1

µk. (3.33)

The estimated entropy rate of the sample sequence is then obtained as

ĥ(Y) = −1

`
log2 p(y`

1) = −1

`

∑̀

k=1

log2 µk. (3.34)

The entropy rate of the sample sequence is thus the average of the logarithms of the

normalizing factors, which almost surely converges to h(Y).
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3.4.3 Upper Bounding h(Y|X )

We know that

h(Y|X ) = lim
`→∞

1

`
lim

m→∞
h(Y `

1 |Xm
1 ) (3.35)

= lim
`→∞

1

`
lim

m→∞
Ep(Xm)[h(Y `

1 |Xm
1 = xm

1 )] (3.36)

= lim
`→∞

1

`
lim

m→∞
Ep(Xm)

[
Ep(Y `|Xm=xm

1 ) log2 p(Y `
1 |Xm

1 = xm
1 )

]
, (3.37)

where ` is the number of symbols received, when m symbols are transmitted. The

input sequence xm
1 is passed through the ISI channel, which also adds Guassian noise,

to generate the receiver waveform. This waveform is subsequently sampled with

timing offsets generated by Markov chain {Ek} to obtain y`
1. Given the channel input

xm
1 and corresponding channel output y`

1, we can compute the quantity p(y`
1|xm

1 ) by

the forward recursion of the BCJR algorithm running over the joint ISI-timing error

trellis described in Sec. 3.3. As we have to compute p(y`
1|xm

1 ), we assume that the

input sequence is known to the receiver. However, the uncertainties in the sampling

timings are still present. Due to this, the BCJR algorithm now operates on a reduced

trellis induced by the sequence xm
1 . The reduced trellis is equal to the sub-trellis

associated with a given data-path in the joint ISI-timing error trellis. At the k-th

sampling instant, the set of states in the reduced trellis is S̄′k ⊆ S′, where S′ is the set

of states in the joint trellis.

Closely following the method delineated in the previous subsection, we write the
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accumulated state-metric σk(sk) at the k-th trellis section as

σk(sk) =
∑

sk−1
1

p(yk
1 , s

k
1|xm

1 ) (3.38)

=
∑
sk−1

( ∑

sk−2
1

p(yk−1
1 , sk−1

1 |xm
1 )

)
· p(yk, sk|xm

1 , sk−1) (3.39)

=
∑
sk−1

σk−1(sk−1) · p(yk, sk|xt
1, sk−1). (3.40)

Note that t in (3.40) is not equal to k in general. As before, we have

p(y`
1|xm

1 ) =
∑

s`∈S̄′`

σ`(s`), (3.41)

where σ(sk) is computed recursively using the BCJR algorithm.

Now, we need to make two modifications in the method described above to make it

practically implementable. As we know that the joint trellis grows without bound as

time progresses, it may not be possible to track all the states. Therefore, we resort to

the reduced-state trellis techniques presented in [47], [10]. When running the forward

recursion of the BCJR algorithm, we keep only a subset ¯̄S′k of the k-th section states

S̄′k and discard the rest. This leads to a lower bound (LB) on p(y`
1|xm

1 ). Various

strategies can be used in selecting the subset ¯̄S′k. Our method is to retain a fixed

number of states with the largest accumulated metric and ignoring the rest at each

trellis section. Besides this, we also normalize the accumulated state-metrics at each

trellis section to avoid numerical underflow. Recursion (3.40) is now modified to

σ̃k(sk) =
∑

sk−1∈¯̄S′
σk−1(sk−1)p(yk, sk|sk−1, x

t
1), (3.42)
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σk(sk) =
1

µk

σ̃k(sk). (3.43)

The normalizing factor µk is given by

µk =
∑

sk∈¯̄S′k

σk(sk).

The lower bound p(y`
1|xm

1 )LB is then given by

p(y`
1|xm

1 ) ≥ p(y`
1|xm

1 )LB =
∏̀

k=1

µk. (3.44)

A lower bound on p(y`
1|xm

1 ) yields an upper bound (UB) on the sample sequence

entropy, i.e.

h(y`
1|xm

1 ) ≤ h(y`
1|xm

1 )UB (3.45)

= − log2 p(y`
1|xm

1 )LB (3.46)

= −
∑̀

k=1

log2 µk. (3.47)

As the joint trellis is not ergodic, we can no longer invoke the Shannon-McMillan-

Breiman theorem. Instead, we take advantage of the law of large numbers to evaluate

h(Y|X ). We first estimate

h(Y `
1 |Xm

1 = xm
1 ) = −E[log2 p(Y `

1 |Xm
1 = xm

1 )]

using the following method. For a given input sequence xm
1 , generate N different

output sequences. For each such sequence, compute p(y`
1|xm

1 )LB as described above.

Let ĥn be equal to − log2 p(y`
1|xm

1 )LB of the n-th output sequence y`
1 corresponding to
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the input xm
1 . Then,

1

N

N∑
n=1

ĥn = h(Y `
1 |Xm

1 = xm
1 )UB,

which is an upper bound to h(Y `
1 |Xm

1 = xm
1 ). The convergence is assured by the law

of large numbers for large N . We know

h(Y `
1 |Xm

1 ) =
∑

xm
1 ∈Bm

p(xm
1 )h(Y `

1 |Xm
1 = xm

1 ). (3.48)

As the symbol source is ergodic by assumption, we know from AEP that for large

m all input sequences are equiprobable. Therefore, a single long input sequence is

sufficient to evaluate h(Y `
1 |Xm

1 ). Thus, for large m and N , the method presented

above can be used to upper bound h(Y|X ), which leads to a lower bound on the

information rate:

I(X ;Y) = h(Y)− h(Y|X )

≥ h(Y)− h(Y|X )UB. (3.49)

3.4.4 Lower Bounding h(Y|X )

We notice that given the input sequence, the uncertainty in the sample sequence

Y `
1 comes not only from the additive Gaussian noise, but also from the timing error
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sequence {Ei}. Therefore, we write h(Y `
1 |X∞

1 ) as follows:

h(Y `
1 |X∞

1 ) = h(Y `
1 |X∞

1 , E `
1) + I(Y `

1 , E `
1|X∞

1 )

= h(Y `
1 |X∞

1 , E `
1) + H(E `

1|X∞
1 )−H(E `

1|X∞
1 , Y `

1 ).

(3.50)

Now we analyze the three terms in (3.50) separately. Since the additive noise Ni are

i.i.d. Gaussian random variables from our previous assumption, we have

h(Y `
1 |X∞

1 , E `
1) =

`

2
log 2πeσ2, (3.51)

where σ2 is the variance of the noise. From the random walk assumption given by

(3.6) and (3.7), and the fact that the timing error process is independent of the inputs,

we get

H(E `
1|X∞

1 ) = H(E `
1)

= H(E1) +
∑̀

k=2

H(Ek|Ek−1
1 )

= H(E1) +
∑̀

k=2

H(Ek|Ek−1). (3.52)
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Since, Ek takes only three values given Ek−1, we have

H(Ek|Ek−1)

=
∑

ε

P (Ek−1 = ε)H(Ek|Ek−1 = ε)

=
∑

ε

P (Ek−1 = ε)

[
2p log

1

p
+ (1− 2p) log

1

1− 2p

]

= 2p log
1

p
+ (1− 2p) log

1

1− 2p
. (3.53)

If we also assume that the system starts from perfect timing, i.e E0 = 0 then (3.52)

simplifies to

H(E `
1|X`

1) = ` ·
[
2p log

1

p
+ (1− 2p) log

1

1− 2p

]
. (3.54)

We do not have a method to compute the term H(E `
1|X∞

1 , Y `
1 ) in (3.50), but we can

recursively bound it as follows

H(E `
1|X∞

1 , Y `
1 ) = H(E `−1

1 |X∞
1 , Y `

1 ) + H(E`|X∞
1 , Y `

1 , E `−1
1 )

≤ H(E `−1
1 |X∞

1 , Y `−1
1 ) + H(E`|X∞

1 , Y `
1 , E `−1

1 ). (3.55)

The above inequality uses the fact that conditioning reduces entropy. Note that the

recursion in (3.55) gives an upper bound on H(E `
1|X∞

1 , Y `
1 ), and thus leads to a lower

bound to the conditional entropy rate h(Y|X ).

Next, we use the random-walk assumption in (3.6) and (3.7) as well as the Bayes

rule to prove the following relation

H(E`|X∞
1 , Y `

1 , E `−1
1 ) = H(E`|X∞

1 , Y`, E`−1). (3.56)
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From the Bayes rule we have

P (En|X∞
1 , Y n

1 , En−1
1 )

=
P (X∞

1 , Y n
1 , En

1 )

P (X∞
1 , Y n

1 , En−1
1 )

=
P (X∞

1 , Yn, En
n−1) · P (Y n−1

1 , En−2
1 |X∞

1 , Yn, En
n−1)

P (X∞
1 , Yn, En−1) · P (Y n−1

1 , En−2
1 |X∞

1 , Yn, En−1)

= P (En|X∞
1 , Yn, En−1) ·

P (En−2
1 |X∞

1 , Yn, En
n−1)

P (En−2
1 |X∞

1 , Yn, En−1)
· P (Y n−1

1 |X∞
1 , Yn, En

1 )

P (Y n−1
1 |X∞

1 , Yn, En−1
1 )

= P (En|X∞
1 , Yn, En−1) ·

P (En−2
1 |X∞

1 , Yn, En
n−1)

P (En−2
1 |X∞

1 , Yn, En−1)
. (3.57)

By using the Bayes rule again,

P (En−2
1 |X∞

1 , Yn, En
n−1) =

P (En−2
1 , En|X∞

1 , Yn, En−1)

P (En|X∞
1 , Yn, En−1)

= P (En−2
1 |X∞

1 , Yn, En−1) · P (En|X∞
1 , Yn, En−1

1 )

P (En|X∞
1 , Yn, En−1)

= P (En−2
1 |X∞

1 , Yn, En−1). (3.58)

The last equality is based on the fact that Ek is a first order Markov chain as given

by (3.6) and (3.7). Substituting (3.58) into (3.57), we obtain

P (En−2
1 |X∞

1 , Yn, En
n−1) = P (En−2

1 |X∞
1 , Yn, En−1) (3.59)

Hence, we can conclude that H(En|X∞
1 , Y n

1 , En−1
1 ) = H(En|X∞

1 , Yn, En−1).

Using (3.56), we can now write (3.55) as

H(E `
1|X∞

1 , Y `
1 ) ≤ H(E `−1

1 |X∞
1 , Y `−1

1 ) + H(El|X∞
1 , Y`, E`−1). (3.60)

The above inequality implies that H(E `
1|X∞

1 , Y `
1 ) can be recursively bounded if we
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can compute H(E`|X∞
1 , Y`, E`−1). We next prove the following lemma.

Lemma 3. Given a stationary input sequence {Xk}, and the timing error process {Ek}

as defined by (3.6) and (3.7), with channel outputs specified by (3.4), the conditional

entropy H(Ei|X∞
1 , Yi, Ei−1), as i →∞, does not depend on the index i. Furthermore,

H(Ei|X∞
1 , Yi, Ei−1) = H(M |X2q

1 , Y, M ′), (3.61)

where

PM ′(j) =
1

Q
, j ∈ {0, 1, . . . , Q− 1}

PM |M ′(m|m′) =





p if m = (m′ ± 1) mod Q

1− 2p if m = m′
,

Y =

2q∑

k=1

Xk · h(qT − kT +
M + 1

Q
T ) + N,

and N ∼ N (0, σ2) is additive Gaussian noise.

Proof: First, by using the finite-support assumption in (3.2) and (3.4), we have

H(Ei|X∞
1 , Yi, Ei−1) = H(Ei|X i+q+bEi

T
c

i−q+dEi
T
e , Yi, Ei−1). (3.62)

Next, we notice that the i-th output is only determined by the 2q binary symbols and

the value of Mi as shown in (3.11). Thus, we can write

H(Ei|X∞
1 , Yi, Ei−1) = H(Mi|X i+q+bEi

T
c

i−q+dEi
T
e , Yi,Mi−1).
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Finally, since the input is stationary and the process M is also asymptotically sta-

tionary with a unique steady state distribution as shown in Lemma 2, we can ignore

the index i when i →∞. This proves Lemma 3.

We notice that H(M |X2q
1 , Y, M ′) can be computed numerically using the law of

large numbers and averaging over large number of simulations. By substituting (3.51),

(3.54), (3.60) and (3.61) into (3.50), we have

1

`
h(Y `

1 |X∞
1 ) ≥ hLB(Y|X )

, 1

2
log 2πeσ2 +

[
2p log

1

p
+ (1− 2p) log

1

1− 2p

]
−H(M |X2q

1 , Y, M ′).

(3.63)

This lower bound on the conditional entropy rate will lead to an upper bound on the

mutual information rate.

3.5 Simulation Results

To assess the proposed information rate bounds, we simulate the algorithms in Sec. 3.4

using the simulation setup described in Sec. 3.3.1. The number of quantization levels

in a symbol period, Q is set to 10. The lower bounds are obtained by keeping 40

“surviving” states at each section of the joint trellis. The results obtained are depicted

in Fig. 3.8 and Fig. 3.9. The upper and lower bounds on the i.u.d (independent and

uniformly distributed) information rate are computed for δ = 0.008, 0.01, 0.02, 0.03

and 0.05. δ is the timing error transition probability defined in (3.7). We notice that

the upper bounds exceed 1 (bits/channel use) in high SNR regions. This is due to

the fact that any sample Yi is almost “noiseless” at high SNRs and hence contains
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more information about the previous timing offset Ei−1 than compared to samples at

low SNRs. In the derivation of (3.55), we drop the conditioning on Y`, which leads

to a looser bound in high SNR regions. Similar arguments can be made to explain

the fact that the upper bound for a bigger value of δ surpasses that of smaller value

at high SNRs.
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Fig. 3.8: I.U.D. information rate bounds for several values of δ
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Fig. 3.9: The upper and lower bounds on the i.u.d. information rate.

3.6 Summary

In this chapter, we presented a novel mathematical model for channels which are

plagued with ISI, additive noise and timing errors. We modelled the quantized timing
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errors as a first order Markov process. That was followed by development of a finite-

state model for the channel. Afterwards, a Monte Carlo method for upper and lower

bounding the information rates for the timing error channel was described. Simulation

results were presented in the following section.
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Chapter 4

Codes for Timing Error Channel

In this chapter, we present error-control codes which help not only in combatting

noise, but also aid in regaining synchronization. First off, we give an alternative

trellis description of the timing error process presented in the previous chapter. This

is followed by the description of a soft-output detection algorithm [48] for linear

filter channels, where synchronization errors are quantized and modelled as a Markov

process. The algorithm is similar to the BCJR algorithm and generates APPs of the

input data symbols and the timing offsets. In the following sections, we delineate our

channels codes which consist of a serial concatenation of Marker codes and LDPC

codes. Marker codes are the inner codes and they assist in re-synchronization at the

receiver. LDPC codes are the outer codes; they provide protection against the channel

ISI and the additive noise. The code performance is evaluated using simulations.

Several plots of the BER performance of the codes are provided along with the code

descriptions.
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4.1 Alternative Timing Error Trellis

Recall from Sec. 3.1.1 that the Markov model of quantized timing offsets is described

by the following two equations:

Ei+1 = Ei + ∆i+1, (4.1)

P (∆i = ξi) =





δ if ξi = T
Q

δ if ξi = −T
Q

1− 2δ if ξi = 0.

(4.2)

The process {Ei} take values from a countably infinite set

T =

{
· · · ,

−2T

Q
,
−T

Q
, 0,

T

Q
,
2T

Q
, · · ·

}
, (4.3)

where Q is the number of quantization levels. We define the k-th input symbol

interval as the semi-open segment
(
(k − 1)T, kT

]
on the time axis. A sample in the

k-th interval could fall at any of the Q sub-levels. Our particular model for timing

errors stipulates that there might be 0, 1 or 2 samples in one symbol interval. Thus,

there are three different types of sampling possibilities for each symbol interval as

shown in Fig. 4.1.

This gives us an intuition as to an alternative, but equivalent description of the

timing error process. We know that due to synchronization mismatch, the number

of transmitted symbols may not be equal to the number of received symbols. In

the trellis of Fig. 3.3, each section corresponds to one received symbol and variable

number of transmitted symbols. This trellis has countably infinite states and thus, is

not very useful for practical purposes. However, we notice that the timing error trellis
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Tk )1( − kT1 2 3 Q-1 Q
(a) One Sample.

Tk )1( − kT1 2 3 Q-1 Q
(b) Two samples.

Tk )1( − kT1 2 3 Q-1 Q
(c) No samples.

Fig. 4.1: Three different sampling scenarios for the k-th symbol interval
(
(k−1)T, kT

]
.

The sampling instants are marked by bullets on the time axis.

may also be drawn such that each trellis section corresponds to one input symbol (and

variable number of output symbols). This description has a distinct advantage that

the number of states in the trellis is finite and small.

We now explain the formation of this new trellis representation. We define a new

finite-state timing error process as follows. Let the state associated with the symbol

interval
(
(k − 1)T, kT

]
be ρk, which takes values from the set

T′ =
{
0, 11, 12, . . . , 1Q, 2

}
. (4.4)

The cardinality of the set T′ is Q + 2. The interpretation of the states in T′ is as

follows:

• State ρk = 0 ∈ T′ denotes that the k-th interval
(
(k − 1)T, kT

]
is not sampled

at all.

• State ρk = 1i ∈ T′, for 1 ≤ i ≤ Q denotes that the k-th symbol interval is

sampled only once at the i-th sub-level from the beginning of the interval. An

example of this is depicted in Fig. 4.1(a).

• State ρk = 2 ∈ T′ denotes that the k-th symbol interval is sampled twice, at the
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1-st and the Q-th sub-level in the interval, as shown in Fig. 4.1(b). Constraints

of the Markov process rule out any other way of two samples falling in the same

symbol interval.

)1( −kρ kρ011121314152

011121314152
Fig. 4.2: A section of the alternative timing error trellis; drawn for Q = 5.

This new timing error process can be represented by a trellis as shown in Fig. 4.2.

The trellis is drawn for Q = 5 and captures all valid timing state transitions. We

associate a transition probability P (ρk|ρk−1) with each branch in the trellis. These

probabilities are determined by the Markov process of (4.1) and (4.2). For most

branches the state transition probabilities are δ or 1− 2δ and are easily determined.

But, for some of the branches, the state transition probabilities are not immediately
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obvious. We shall now provide one such example. Let us consider the transitions

where the starting state is 11. We shall assume Q = 5.

1
1 1

1
1

1

(a) Possibility 1.11 11 12
(b) Possibility 2.

Fig. 4.3: Sampling sequences to be considered when computing P (11|11).

• P (11|11)

For computing this state transition probability, we need to consider 3 not 2 symbol

intervals as shown in Fig. 4.3. This is required to ensure that the timing offset for the

third sample is not −T
5

, as that would amount to sampling the second interval twice.

Using (4.2),

probability of sampling = (1− 2δ)(1− 2δ) + (1− 2δ)δ

= (1− 2δ)(1− δ). (4.5)
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11 12
Fig. 4.4: Sampling sequence to be considered for computing P (12|11).11 2
Fig. 4.5: Sampling sequence to be considered for computing P (2|11).

• P (12|11)

The sampling sequence to be considered for this case is depicted in Fig. 4.4.

Probability of sampling = δ. (4.6)

• P (2|11)

The sampling sequence to be considered for this case is shown in Fig. 4.5.

Probability of sampling = (1− 2δ)δ. (4.7)

Using

P (11|11) + P (12|11) + P (2|11) = 1, (4.8)
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we can now compute the state transition probabilities as follows:

P (11|11) =
(1− 2δ)(1− δ)

(1− 2δ)(1− δ) + δ + (1− 2δ)δ

= 1− 2δ, (4.9)

P (12|11) =
δ

(1− 2δ)(1− δ) + δ + (1− 2δ)δ

=
δ

1− δ
, (4.10)

P (2|11) =
(1− 2δ)δ

(1− 2δ)(1− δ) + δ + (1− 2δ)δ

=
(1− 2δ)δ

1− δ
. (4.11)

All other state transition probabilities can be obtained in a similar fashion. A com-

plete list of the timing state transition probabilities is provided in Table 4.1.

Table 4.1: State transition probabilities for the timing error trellis of Fig. 4.2.

P (0|15) = δ P (0|2) = δ

P (11|0) = 1− δ P (11|11) = 1− 2δ P (11|12) = δ(1− δ)

P (12|11) = δ
1−δ

P (12|11) = 1− 2δ P (12|13) = δ

P (13|12) = δ P (13|13) = 1− 2δ P (13|14) = δ

P (14|13) = δ P (14|14) = 1− 2δ P (14|15) = δ P (14|2) = δ

P (15|14) = δ P (15|15) = 1− 2δ P (15|2) = 1− 2δ

P (2|0) = δ P (2|11) = (1−2δ)δ
1−δ

P (2|12) = δ
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4.1.1 Joint ISI-Timing Error Trellis

For channels which exhibit both ISI and synchronization errors, we can setup a joint

trellis, which captures the effect of both ISI and timing errors. We have already seen

that for such channels, the nature of the ISI is dependent on the timing offsets. If the

channel memory, in presence of timing errors is P , then any state in the ISI trellis is

given by (xk−P+1, xk−P+2, . . . , xk) ∈ BP .

We now define the joint trellis by merging the ISI trellis with the timing error

trellis of Fig. 4.2. Any state Sk ∈ S′ at time k of the joint ISI-timing error trellis is

determined by a pair of states; the first state is from the ISI trellis BP and the second

state is from the timing error trellis T′:

Sk = (xk−P+1, xk−P+2, . . . , xk, ρk) ∈ S′ = BP × T′ (4.12)

Evidently, a branch in the joint trellis exists if and only if there are corresponding

branches in both the ISI and timing error trellises. Since the ISI trellis has 2P states

and the timing error trellis has Q + 2 states, the joint trellis has 2P(Q + 2) states. A

representative example is provided in Fig 4.6.

We now consider the channel described in Sec. 3.3.1. Its trellis representation,

depicted in Fig. 3.8 has countably infinite states. As the channel ISI length is 3 and

the number of quantization levels is assumed to be 5, the alternative joint trellis for

the same channel will have only 56 states. Thus, now we have two different trellis

representations of the same channel, each with its own pros and cons. Trellis of Fig 3.8

has countably infinite states, but standard signal processing algorithms like Viterbi

algorithm or BCJR algorithm can be run over it with minimal modifications. On the
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),,( 112 −−− kkk xx ρ ),,( 1 kkk xx ρ−(-1,-1,0) (-1,-1,0)(-1,-1,11)(-1,-1,12)(-1,-1,2) (-1,-1,11)(-1,-1,12)(-1,-1,2)(-1,1,0) (-1,1,0)(-1,1,11) (-1,1,11)(-1,1,12) (-1,1,12)(-1,1,2) (-1,1,2)(1,-1,0) (1,-1,0)(1,-1,11) (1,-1,11)(1,-1,12) (1,-1,12)(1,-1,2) (1,-1,2)(1,1,0) (1,1,0)(1,1,11) (1,1,11)(1,1,12) (1,1,12)(1,1,2) (1,1,2)
Fig. 4.6: Joint ISI-timing error trellis. We assume that channel ISI length P = 2 and
quantization levels Q = 2. Any state in the trellis has the form Sk = (xk−1, xk, ρk) .

other hand, the joint trellis described above has a finite number of states, but none of

the standard signal processing algorithms can be applied on it. We shall now present
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a MAP algorithm which can run over the joint trellis described in this section.

4.2 A MAP Algorithm

We now describe a MAP algorithm [48] which can be be applied to the joint ISI-

timing error trellis presented in the previous section. The algorithm closely follows

the BCJR algorithm, although is appropriately modified to handle timing errors. We

assume that number of quantization levels is Q. The states in the joint trellis belong

to the set S′ = BP ×T′. We further assume that y`
1 is received when the sequence xm

1

is transmitted through the channel, where ` need not be equal to m. The algorithm

aims to compute the following two probabilities:

λt(s) = P (St = s; y`
1). (4.13)

σi(ψ) = P (φi = ψ; y`
1), (4.14)

where φi is the sampling offset of the i-th sample relative to iT , with s ∈ S′ and

ψ ∈ T. Let Zt represent the vector of output samples corresponding to the input

symbol Xt. Thus, Zt may consist of one sample, two samples or no sample, depending

on how many samples fall in the interval
(
(t− 1)T, tT

]
. The sequence Zm

t represents

the output samples corresponding to the input sequence Xm
t . We now define some

variables which are required in the forward and backward recursions of the algorithm.

Definitions

• Forward state metric

α(t, s, i) = P (St = s, Zt
1 = yi

1) (4.15)
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is the probability that the time t state is s ∈ S′ and there are i samples in the

first t bit periods.

• Backward state metric

β(t, s, i) = P (Zm
t+1 = y`

i+1|St = s) (4.16)

is the probability that there are `− i samples in the last m− t symbol intervals,

given that the time t state equals s ∈ S′.

• Branch metric

γ(t, s, s′, i) =





P (St = s′; Zt = yi|St−1 = s) if s′ ∈ BP × {11, . . . , 1Q}
P (St = s′; Zt = yi

i−1|St−1 = s) if s′ ∈ BP × {2}
P (St = s′; Zt = ø|St−1 = s) if s′ ∈ BP × {0}.

(4.17)

The branch metrics can be computed easily given the a priori statistics of the

symbol source and timing errors.

Using these definitions, we may rewrite (4.13) and (4.14) as

λt(s) =
∑̀
i=1

P (St = s; Zt
1 = yi

1)P (Zm
t+1 = y`

i+1|St = s)

=
∑̀
i=1

α(t, s, i)β(t, s, i), (4.18)
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σi(ψ) =
∑

{
t,s∈BP×{11,...,1Q},

(t−i)T+qT/Q=ψ
}

α(t, s, i)β(t, s, i)

+
∑

{
t,s∈BP×{2},

(t−i)T+T=ψ
}

α(t, s, i)β(t, s, i)

+
∑

{
t,s∈BP×{2},

(t−i)T+T/Q=ψ
}

α(t, s, i)β(t, s, i).

(4.19)

Recursive Relations

Using the Markov properties of the joint ISI-timing error process, we can compute

the forward and backward state metrics recursively as follows:

α(t, s, i) =





∑
s′∈ S′ α(t− 1, s′, i− 1)γ(t, s′, s, i) if s ∈ BP × {11, . . . , 1Q}

∑
s′∈ S′ α(t− 1, s′, i)γ(t, s′, s, i) if s ∈ BP × {0}

∑
s′∈ S′ α(t− 1, s′, i− 2)γ(t, s′, s, i− 1) if s ∈ BP × {2},

(4.20)

β(t, s, i) =
∑

s′∈BP×{11,...,1Q}
β(t + 1, s′, i + 1)γ(t + 1, s, s′, i + 1)

+
∑

s′∈BP×{0}
β(t + 1, s′, i)γ(t + 1, s, s′, i) (4.21)

+
∑

s′∈BP×{2}
β(t + 1, s′, i + 2)γ(t + 1, s, s′, i + 2).

89



Initialization

The forward and backward recursions need to be initialized with a set of coefficients

α(0, s, i) and β(m, s, i). These initializing conditions are derived from some prior

knowledge about the timing error and input symbols at the beginning and the end

of a transmitted block. If we assume that when the transmission starts, the ISI state

is {−1}P and timing offset E0 = 0, we have the following initial condition for the

forward recursion:

α(0, s, i) =





1 if i = 0 and s ∈ {−1}P × 1Q

0 otherwise.
(4.22)

If we assume that the receiver is aware of the block boundaries, in other words it

knows the value of `, then the backward recursion can be initialized as follows:

β(m, s, i) =





1 if i = `

0 otherwise.
(4.23)

A Posteriori Probabilities

The a-posteriori estimates of the input symbols and the timing errors may now be

obtained as follows:

P (xt = 1|y`
1)

P (xt = −1|y`
1)

=

∑
s:xt=1 λt(s)∑

s:xt=−1 λt(s)
, (4.24)

P (φi = ψ|y`
1) = σi(ψ)/P (y`

1). (4.25)

Some Practical Alterations

The modified BCJR algorithm requires a memory size proportional to m2, where

m is the transmitted block length. But, since the timing transition probability δ is

small in practical systems, for a particular value of t, α(t, s, i) and β(t, s, i) are very
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likely to be zero as the value of i moves away from t. Thus, in practical systems,

it is not essential to compute the α and β values at any instant for all values of i.

Instead, we can restrict the search in a window of size “w” about t. This means that

at each time t, we compute α(t, s, i) and β(t, s, i) for t− w ≤ i ≤ t + w, and assume

α(t, s, i) = β(t, s, i) = 0 for all other values of i. This modification can drastically

reduce the storage requirements of the algorithm.

Like before, we need to normalize the forward and backward state metrics at each

section of the joint trellis to circumvent numerical underflow. The normalization will

not affect the APP estimates of the input symbols, as at any time t all the α (as well

as β) values are scaled by the same factor. However, APP estimate of the timing

offsets φi will require the proper accounting of the normalizing factors.Source data Encode with LDPC code Insert markersMAPDetectorLDPCDecoder Timing Error ChannelEstimated data x d r
yP(d)xי

Fig. 4.7: Overview of the encoding-decoding process.

4.3 A Concatenated Error-Control Code

The code is comprised of a serial concatenation of marker code and LDPC code.

A block schematic of the coding-decoding process is outlined in Fig 4.7. An input

symbol vector x of length a is encoded using an LDPC code of rate Rout. Markers

are then inserted in the resulting vector d of length n, to obtain a binary vector r.
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The length m of r is contingent upon the marker code rate Rin. The overall code rate

is given by R = Rout × Rin. The real valued vector received on transmitting r over

the channel is denoted by y. Note that the length ` of vector y may not be equal to

m. The MAP decoder generates the APP estimate of the vector d. This information

is used to initialize the LDPC decoding algorithm. The LDPC algorithm produces

soft-estimates of the input vector m.

For all simulations in this chapter, we will use the setup described in Sec. 3.3.1.

The symbol source is assumed to be i.u.d. The block length of data symbols is taken

to be 4157. The vector y is obtained by sampling the received waveform with timing

offsets generated by the process {Ei}. The number of quantization levels in one symbol

interval is Q = 5. We define the SNR as

SNR =
R · Eb

N0

where Eb is the bit-energy and N0 is the spectral density of the AWGN.

4.3.1 Marker Codes

Marker codes were initially proposed by Sellers in [19] for insertion or deletion chan-

nels. The idea is to insert “markers” at regular intervals in the bit stream to be

transmitted. We refer to a set of consecutive markers as a header. For example,

adding the header 011 with a spacing of 5 transforms the bit stream as follows:

01001110100110101 ⇒ 01001011110100110110101101
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The position and bit values of the markers is known to the receiver. Hence, the

decoder searches for inserted headers, and uses any shift in their position to deduce

insertions or deletions. The algorithm for decoding of marker codes presented in [19],

provides very limited synchronizing capability and fails if the number of insertions

(or deletions) exceeds 1. Here we will use marker codes for our channel to help the

receiver recover from synchronization loss. However, we will use a different, optimal

algorithm for decoding. A marker code is characterized by two parameters, header

length (HL), which is the number of markers in a header and, header spacing (HS),

which is the number of data bits separating any two headers. The true code rate for

marker codes may depend on the length of the input data block. However, it can be

approximated as

Rin =
HS

HL + HS
. (4.26)

Choice of Markers: We may have fixed markers, in which case the same header is

repeated through out the transmitted sequence. Or, we may have random headers, in

which the marker bits in each header are drawn from a pseudo random sequence. From

our simulations we found that both fixed markers and random markers give roughly

the same average performance. However, in high SNR regions, random marker codes

outperform fixed marked codes by a very small margin. All the subsequent simulation

results have been obtained using random headers. The marker bits are produced using

a uniform random bit generator.

Decoding of marker codes

We use the MAP algorithm presented in Sec. 4.2 for the decoding of marker codes.

The marker bits serve as a source of extra information to the decoder. The decoder
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has no a-priori information about the data bits. However, it has complete knowledge

of all the marker bits. During the operation of the algorithm, in trellis sections cor-

responding to marker bits, the number of possible transitions are halved (as we only

need consider transitions induced either by a +1 or a -1). Thus, in these sections,

the decoder is better equipped to guess the timing offset. As the timing error process

has memory, a better estimate of the timing offset for marker bits leads to a better

assessment of the timing offsets in the neighbouring samples. Obviously, this trans-

lates into more accurate estimates of the data bits.

For our simulations, we assume that the decoder is aware of the block boundaries.
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Fig. 4.8: Comparison of bit error probabilities with and without marker codes. For all
non-zero values of δ, the broken curve is for uncoded performance. The solid curve
(with + signs) with the same colour depicts the corresponding BER when marker
codes are employed. The marker codes used in all the simulations have HS = 44 and
HL = 2 (Rin = 0.9565). No outer code is employed.
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For magnetic recording systems this is not an unrealistic assumption. The data bits

in each sector of a hard disk are preceded by pre-ambles, which can be used in block

boundary identification. The pre-ambles also assist in regaining synchronization at

the beginning of each block. So, we further assume that E0 = 0 for each block. To

expedite the simulations we use the windowed version of the algorithm, with w = 50.

The bit error rate (BER) performance curves for the codes are presented in Fig. 4.8

and Fig. 4.9. From Fig. 4.9, it is evident that marker codes provide only limited
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Fig. 4.9: Bit error probabilities for δ = 0.008 for several different marker code rates.
HL = 2 is all cases, only HS is varied.

error-control capability as high rate marker codes outperform lower rate ones. This

is because at low rates, the coding gain provided by marker codes is not sufficient to

make up for the reduction in SNR due to coding.
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From Fig. 4.8 notice that the performance improvement brought by marker codes

is higher for larger values of δ. Also note that the gap between any two broken curves

is much more than the solid curves in the same colours. This implies that marker

codes reduce the dependence of decoder performance on δ value.

In Fig. 4.10, Fig. 4.11, and Fig. 4.12 we present typical curves to demonstrate the
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Fig. 4.10: Timing error tracking by the MAP detector when δ = 0.004.

efficacy of the MAP algorithm in estimating the timing offsets. We notice that when

either the timing error transition probability δ is low, or SNR is high (or both), the
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detector performs satisfactorily. Although, the detector is unable to follow some of the

narrow peaks in the true timing offsets, there are no cycle slips. For all such cases, the

improvement brought by the use of marker codes is not easily discernible. However,

we notice that the detector performance deteriorates sharply when we increase the

values of δ and noise variance. As can be seen from Fig. 4.11(a) and Fig. 4.12(c),

cycle slips are rampant in the middle of the block. Once a cycle slip occurs, the

detector is not able to recover from it till the end of the block. Now, if we see the

corresponding tracking curves when marker codes are employed, we notice that all

the cycle slips have been eliminated and the detector performs a good assessment of

the timing offsets.

4.3.2 LDPC Code

As is evident from the simulation results presented in the previous section, marker

codes are very effective in helping the receiver regain synchronization. Although

there is also a fairly good reduction in the BER; but overall, the error performance

is not completely satisfactory. This is because marker codes have no error-correcting

capability. Therefore, we need an outer code to protect our data against ISI and

additive Gaussian noise. We use an LDPC code as the outer code. The reasons for

this choice will become apparent soon.

Parity-Check Matrix: In our simulations, we use regular LDPC codes based upon

circulant permutation matrices. Recalling (2.85) and (2.86), the parity-check matrix
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Fig. 4.11: Timing error tracking by the MAP detector when δ = 0.008.
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Fig. 4.12: Timing error tracking by the MAP detector when δ = 0.01.

is given by

H =




I I I I · · · I

I σ σ2 σ3 · · · σL−1

I σ2 σ4 σ6 · · · σ2(L−1)

...
...

...
... · · · ...

I σJ−1 σ2(J−1) σ3(J−1) · · · σ(J−1)(L−1)




, (4.27)
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where σ is a p× p (p ≥ 5 is prime)matrix and is given by

σ =




1

1

1
. . .

1




p×p

. (4.28)

Equations (4.27) and (4.28) completely describe a (n, J, L) code, where the block

length n = Lp.

Decoding: Decoding of the LDPC code is done by running the sum-product algo-

rithm over the Tanner graph of the LDPC code as delineated in Sec. 2.5.1.

Overall decoding of the serially concatenated codes: Fig. 4.13 depicts the

MAP detector

LDPC decoder

Insert markers Puncture markers

L(rt|y)

Lext(rt|y)

Lext(dt|y)
L(dt|H)

Lext(dt|H)

Lext(rt|H)
+

-

+
-

APPs

APPsy

Fig. 4.13: Iterative decoding of the serially concatenated code.

iterative decoding of the serial concatenation of marker codes and LDPC codes. The

two decoders exchange extrinsic information alternately in the form of likelihood ra-

tios or their logarithms. We define the conditional log-likelihood ratio (LLR) of a
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binary random variable rt given y as

L(rt|y) = ln
P (rt = 1|y)

P (rt = 0|y)
. (4.29)

The conditional LLR L(rt|y) splits into two components, the extrinsic LLR Lext(rt|y)

and intrinsic/a-priori LLR L(rt), i.e.

L(rt|y) = Lext(rt|y) + L(rt). (4.30)

The extrinsic information about any bit is obtained from the constraints imposed

by the channel or code and the a-priori information about all the other bits in the

sequence. Notice that in Fig. 4.13 only the extrinsic information is being fed forward

and backward. The LDPC decoder uses the extrinsic information about the bits as

a-priori information and vice versa. The sequence of operation is as follows: The

MAP detector generates conditional LLRs L(rt|y) for r using the received sequence

y and extrinsic information Lext(rt|H) provided by the LDPC decoder. Its output is

used to obtain Lext(dt|y). These LLRs are used by the forward-backward algorithm

in the LDPC decoder. The decoder generates the extrinsic information to be fed

back to the marker decoder, and also the estimate x′ of the data vector x. The above

series of operations constitutes one iteration of the decoding process. Note that in

the 0-th iteration, the marker decoder doesn’t have any extrinsic information from

the LDPC decoder. Also, the markers are known to the receiver and so are their

likelihood ratios.

Simulation Results

Fig. 4.14 shows the performance of the serially concatenated code. These simulations
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were conducted by setting these values to the following parameters: the outer code is

a (4422,4,66) LDPC code; the value of p = 67. The outer code rate is Rout = 0.9401.

A marker code of rate Rin = 0.987 (HS = 149, HL = 2) is used as the inner code.

Thus, the overall code rate is 0.928.

As is seen in Fig. 4.14, the error performance of the receiver is enhanced with

each iteration of extrinsic information exchange between the marker decoder and the

LDPC decoder. Also notice that the improvement brought by iterative decoding keeps

decreasing as the number of iteration grows. This is due to the presence of cycles in

the Tanner graph of the code. The results presented in this chapter are indicative

of the promise held by marker codes and their concatenation with LDPC codes.

The complex nature of the timing error channel makes the theoretical modelling of

marker code functioning very difficult. Due to this, we could not perform a more

comprehensive analysis of these codes.

4.4 Summary

In this chapter, we presented a novel channel code design methodology for the timing

error channel described in Chapter 3. We first showed an alternative trellis represen-

tation for the timing error channel. Then, we delineated a MAP algorithm for the

timing error channel. That was followed by the description of a serially concatenated

code, which is capable of timing recovery as well as error correction. Simulation

results were presented in the following section.
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Chapter 5

Conclusions and Future Work

In this work, we investigated noisy channels which are also corrupted by timing errors.

We studied a more practical and general case than the insertion/deletion channel. In

our model, the timing errors can be a quantized fraction of the symbol interval. We

employ a very general baseband linear filter channel model and, inject timing errors

in it. This is the setup we used for all investigations here.

The two main contributions of this thesis are contained in Chapters 3 and 4. In

the former, we have obtained some new fundamental information theoretic results.

We present two different ways of representing our timing error channel. The first

representation is as an FSM and, in the other we model the channel as a trellis with

countably infinite states. We exploit the structure and the Markovian properties

of our channel model to compute the mutual information rates. The Monte-Carlo

methods that we introduced provide tight upper and lower bounds to information

rates for channels with timing errors. This implies that the capacity of such channels

is sandwiched between the upper and the lower bound, and is known within a fraction

of dB.
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In Chapter 4, we presented serially concatenated codes for channels with timing

errors. Marker codes are the inner code; they provide probabilistic re-synchronization.

Our simulations show that even very high rate marker codes bring significant improve-

ment in the receiver’s performance in tracking the timing offsets. A regular LDPC

code forms the outer code. The LDPC codes help in controlling errors due to ISI

and AWGN. The marker decoder and LDPC decoder exchange extrinsic information

alternately to produce better and better estimates of the transmitted data.

Directions For Future Work

We believe that the following problems hold promise and may be very interesting to

investigate:

• The mutual information rate for a channel may also be written as

I(X ;Y) = H(X )− h(X|Y). (5.1)

Analytical expressions are available for H(X ) for most of the commonly used

symbol sources. In [49], a Monte-Carlo method was presented to estimate

h(X|Y) for the case of linear filter channels. In [49], the author also intro-

duced an expectation maximization algorithm to compute the capacity of such

channels. One may attempt to extend the algorithm in [49] to include channels

with timing errors. The advantage of this approach is that not only we can

estimate the capacity, but also obtain the capacity-achieving source.

• There is a need for a theoretical framework for analyzing marker codes. Such a

model could be used to design optimum marker codes given the channel param-

105



eters. It would also be interesting to compare this model to the performance

shown by experimental decoding.

• In [48], it was shown that the symbol error probability is minimum at the block

boundaries and reaches it’s maximum in the middle of the block. As the error

probabilities are different at different positions in a block, it would be beneficial

to probe the performance of codes which provide unequal error protection.

• It would be instructive to compare the performance of watermark codes [20]

with marker codes in our channel model. Although, the decoding complexity

of watermark codes will be considerably higher than that of marker codes, they

might outperform marker codes.
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