

QUERYING AND UPDATING XML DATA
BASED ON NODE LABELING SCHEMES

LI CHANGQING
(Master of Engineering, Peking University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48629007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Acknowledgements

First of all, I gratefully acknowledge the persistent support and encouragement from

my supervisor, Professor Ling Tok Wang. Prof Ling patiently guided and advised me

throughout the various phases of my research. His meticulosity greatly impressed me

which makes me think thoroughly and do carefully. Not only has Prof Ling provided

constant academic guidance to my research, he also gave me suggestions on how to

overcome the difficulties that I met in my life. There is a famous Chinese saying “One

day's teacher is your father for your whole life”. To me, Prof Ling is a great

supervisor and my second father in my life.

I wish to express my deep gratitude to Dr Ang Chuan Heng and Dr Chan Chee

Yong for serving on my thesis evaluation committees. Thank them for going through

such a long document and giving me valuable feedbacks. Their comments on my

thesis are precious. Great thanks to all the reviewers who have read or will read this

thesis.

It is also my pleasure to express my thanks to Dr Lee Mong Li and Dr Wynne

Hsu who gave me a chance to do research work together with them. Their guidance

and suggestions are important to my future research.

 iii

Dr Gary Tan Soon Huat, who gave me valuable suggestions on my research.

The several months that I worked together with him gave me an unforgettable

research experience.

I also want to thank all the academic and administrative staffs in School of

Computing, Register Office, and Office of Student Affairs of National University of

Singapore for their help in different areas of my life in the these years.

In my lab, I have to acknowledge the support and friendship I received from

so many friends: Wu Xiaodong, Lu Jiaheng, Chen Ting, Ni Wei, He Qi, Chen Zhuo,

Chen Yabing, Yang Xia, Jiao Enhua, Yu Tian, Zhang Wei, Xia Chenyi, Xiang Shili,

Li Yingguang, Ni Yuan, Cheng Weiwei, Hu Jing and many others not appearing here.

On a personal note, it is important for me to thank my wife, Hu, for her love

and support during my Ph.D. study and for her braveness to give the birth to our baby,

in July, 2005, which makes our life happy. I am also grateful to my parents for their

efforts to bring me up and provide me with the best possible education, to my parents-

in-law for their help in taking care of my wife.

 iv

Summary

The method of assigning labels to the nodes of an XML tree is called a node labeling

(or numbering) scheme. Based on the labels only, both ordered and un-ordered

queries can be processed without accessing the original XML file. The core issue for

XML query is to efficiently determine the following four basic relationships:

ancestor-descendant (A-D), parent-child (P-C), sibling and ordering relationships.

The existing node labeling schemes, i.e. containment, prefix and prime

number schemes, are not efficient to determine all the four basic relationships. For

instance, the containment scheme is very inefficient to determine the sibling

relationship; it needs to search the parent of a node, then decide whether another node

is a child of this parent; the search of the parent needs a lot of parent-child

relationship determinations which is very expensive. The prefix scheme is efficient to

determine all the four basic relationships if the XML tree is shallow, however when

the XML tree becomes deeper, the prefix scheme becomes not efficient because the

labels of the prefix scheme become longer and the comparisons of node labels

become expensive. The prime number scheme has very large label size and it employs

the modular and division operations to determine the relationships which is expensive.

Thus in this thesis, we firstly propose the P-Containment scheme which can determine

 v

all the four basic relationships efficiently no matter what XML structure is. In

addition, P-Containment is used to efficiently process the internal node updates and to

completely avoid re-labeling.

One more important point for the labeling scheme is to process updates when

nodes are inserted into or deleted from the XML tree. All the existing node labeling

schemes, i.e. containment, prefix and prime number schemes, have high update cost,

therefore in this thesis we propose a novel Compact Dynamic Binary String (CDBS)

encoding to encode the labels of different labeling schemes and based on CDBS

encoding, updates can be efficiently processed. CDBS encoding has two important

properties which form the foundations of this thesis: (1) CDBS compares codes based

on the lexicographical order, and it supports that codes can be inserted between any

two consecutive CDBS codes with the orders kept and without re-encoding the

existing numbers; (2) CDBS is orthogonal to specific labeling schemes, e.g.

containment, prefix and prime number schemes, thus it can be applied broadly to

different labeling schemes or other applications to efficiently process the updates.

Moreover, because the fixed size length field of CDBS will encounter the overflow

problem, we improve CDBS to Compact Dynamic Quaternary String (CDQS)

encoding. Though the label size of CDQS is larger and its update cost is larger, it can

completely avoid re-labeling in XML updates no matter what labeling schemes XML

data employs.

We report the experimental results to show that CDBS and CDQS encodings

are superior to previous approaches to process updates in terms of the number of

nodes to re-label (none for CDQS) and the time for updating. When P-Containment

 vi

scheme is combined with CDBS (for intermittent updates and uniformly frequent

updates) or CDQS (completely avoid re-labeling) encoding, both queries and updates

can be efficiently processed.

 vii

Table of Contents

Acknowledgements.. ii

Summary ... iv

1 Introduction ...1

1.1 Background ..1

1.1.1 XML..2

1.1.2 XML Technologies ...3

1.1.3 XML Query...4

1.1.4 XML Update ...6

1.2 Problem Statement and Motivation..7

1.3 Overview of Contributions...8

1.4 Organization of Thesis ...10

2 Background and Related Works..12

2.1 Node Labeling Schemes...13

2.1.1 Containment Labeling Scheme ...13

2.1.2 Prefix Labeling Scheme ..18

2.1.3 Prime Labeling Scheme ..24

 viii

2.2 Encoding Approaches to Store the Labels of Labeling Schemes.....................29

2.2.1 Binary Number Encodings ..29

2.2.2 UTF8 Encoding ...30

2.2.3 OrdPath Encodings..31

2.2.4 Binary String and Quaternary String Encodings.......................................33

2.3 Summary ..34

3 P-Containment Scheme ..38

3.1 A Node Labeling Scheme: P-Containment Scheme ..39

3.2 Summary ..42

4 CDBS Encoding of Node Labels to Efficiently Process XML Updates44

4.1 Lexicographical Order for Binary Strings..45

4.2 The Compact Dynamic Binary String Encoding (CDBS)49

4.2.1 CDBS Encoding Algorithm ..54

4.2.2 Size Analysis ...56

4.3 Applying CDBS to Different Labeling Schemes ...58

4.4 Processing of XML Updates Based on Different Labeling Schemes Encoded

with CDBS ...62

4.4.1 Leaf Node Updates..63

4.4.2 Internal Node Updates...66

4.4.3 Subtree Updates...71

4.4.4 Uniformly and Skewed Frequent Updates ..73

4.5 Experimental Evaluation and Comparisons ...74

 ix

4.5.1 Experimental Setup ...74

4.5.2 Performance Study on Static XML Data...76

4.5.3 Performance Study on Intermittent Updates in Dynamic XML Data.......82

4.5.4 Summary of Experimental Results..88

4.6 Summary ..89

5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling91

5.1 The Compact Dynamic Quaternary String Encoding (CDQS) for Node Labels

..92

5.1.1 CDQS Encoding Algorithm ..95

5.1.2 Size Analysis ...97

5.2 Applying CDQS to Different Labeling Schemes...98

5.3 Completely Avoiding Re-labeling in XML Updates102

5.4 Extensions of CDQS ..105

5.5 Experimental Evaluation and Comparisons ...105

5.5.1 Performance Study on Static XML Data...105

5.5.2 Performance Study on Frequent Updates in Dynamic XML Data..........108

5.5.3 Performance Study on CDOS and CDHS...113

5.6 Summary ..114

6 Controlling the Increase in Label Size ..116

6.1 Finding the Codes with the Smallest Size between Two Codes117

6.2 Handling Insertion Skew..123

6.3 Experimental Evaluation ..124

 x

6.3.1 Comparisons of Algorithm 4.1 and Algorithm 6.1125

6.3.2 Processing the Skewed Insertion...126

6.4 Summary ..127

7 Conclusion..129

7.1 Summary of Contributions ...129

7.2 Future Works..132

Appendices ..133

Appendix A: Meanings of Abbreviations ..133

Appendix B: Calculation of the SC Value for Prime Scheme134

Appendix C: Size Calculations for V-CDBS and CDQS.......................................136

C1: Calculation of the Total Code Size for V-CDBS ..136

C2: Calculation of the Total Code Size for CDQS ..136

Appendix D: Calculation of the Positions Based on V-CDBS138

Appendix E: Publications During Ph.D. Period...139

Bibliography ...142

 xi

List of Tables

Table 2.1: UTF8 encoding ...30

Table 2.2: OrdPath1 encoding..32

Table 2.3: OrdPath2 encoding..32

Table 2.4: Comparisons on queries ..36

Table 2.5: Comparisons on updates ...37

Table 4.1: Binary and CDBS encodings ..50

Table 4.2: Test datasets ..75

Table 4.3: Test queries on the scaled D1 ...79

Table 4.4: Number of nodes to re-label in leaf node updates83

Table 4.5: Number of nodes to re-label for internal node updates...............................86

Table 5.1: CDQS encoding ..93

Table 6.1: V-CDBS encoding ..117

 xii

List of Figures

Figure 1.1: An XML document example ...3

Figure 1.2: An ordered XML tree ..5

Figure 2.1: Dietz’s containment scheme using preorder and postorder15

Figure 2.2: Li’s containment scheme with order and interval size15

Figure 2.3: Zhang’s containment scheme ..15

Figure 2.4: DeweyID prefix scheme ..19

Figure 2.5: BinaryString prefix scheme ...21

Figure 2.6: OrdPath prefix scheme ..22

Figure 2.7: Prime scheme...26

Figure 3.1: The existing containment scheme and P-Containment scheme.................40

Figure 4.1: V-CDBS-Containment scheme..60

Figure 4.2: V-CDBS-Prefix scheme (for Figure 2.4)...60

Figure 4.3: Leaf node insertions based on V-CDBS-Prefix scheme............................63

Figure 4.4: Leaf node insertions based on V-CDBS-Containment scheme.................64

Figure 4.5: Leaf node insertions based on the existing prefix scheme65

 xiii

Figure 4.6: Leaf node insertions based on the existing containment scheme65

Figure 4.7: V-CDBS-P-Containment scheme ..67

Figure 4.8: Internal node insertions based on V-CDBS-P-Containment scheme69

Figure 4.9: Internal node insertions based on the prime number scheme70

Figure 4.10: Subtree insertion based on V-CDBS-Prefix scheme72

Figure 4.11: Subtree insertion based on V-CDBS-P-Containment scheme.................73

Figure 4.12: Label sizes of different labeling schemes..78

Figure 4.13: Query performance of different labeling schemes...................................80

Figure 4.14: Log2 of total time (CPU time + I/O time) for leaf node updates83

Figure 4.15: Log2 of total time (CPU time + I/O time) for internal node updates86

Figure 4.16: Label size increasing speed when inserting subtrees...............................88

Figure 5.1: CDQS-P-Containment scheme ..99

Figure 5.2: CDQS-Prefix scheme...100

Figure 5.3: Insertions based on CDQS-P-Containment scheme102

Figure 5.4: Insertions based on CDQS-Prefix scheme...104

Figure 5.5: Label sizes of different labeling schemes..106

Figure 5.6: Response time of different queries based on different labeling schemes107

Figure 5.7: Uniformly frequent updates...110

Figure 5.8: Skewed frequent updates ...112

Figure 5.9: Label sizes of different labeling schemes..114

Figure 6.1: Comparison of Algorithm 4.1 and Algorithm 6.1 for CDBS in the update

environment with both insertions and deletions...126

 xiv

Figure 6.2: Processing of skewed insertions ..127

Chapter 1

Introduction

Since the eXtensible Markup Language (XML) [10] emerged as a new standard for

information representation and exchange on the Web, the problems of storing,

indexing, querying and updating XML documents have been among the major issues

of database research. In this thesis, we mainly research on how to improve the query

efficiency of the existing labeling schemes for XML data, and more important we

propose novel techniques to efficiently update XML data.

In this chapter, we firstly introduce the background of XML related

technologies in Section 1.1. Next in Section 1.2 we outline the objective of this thesis.

The main contributions of this thesis are summarized in Section 1.3, and Section 1.4

describes the whole organization of this thesis.

1.1 Background

In this section, we present XML related technologies.

Chapter 1 Introduction 2

1.1.1 XML

The eXtensible Markup Language (XML) [10] is a representation language as well as

an exchange language. As a representation language, XML was originally designed as

a new document format for large-scale electronic publishing, which is derived from

the Standard Generalized Markup Language (SGML). As an exchange language,

XML has played and is now still playing an increasingly important role in the

exchange of a wide variety of data on the Web. This is because XML can describe

both structured and semi-structured data. In addition, XML is extensible, platform-

independent, and fully Unicode compliant.

We use an example to illustrate what is an XML.

Example 1.1 Figure 1.1 depicts a simple XML document. XML identifies data using

tags, which are identifiers enclosed in angle brackets. Collectively, the tags are

known as “markup”. XML document in Figure 1.1 starts with a prolog markup that

identifies the document as an XML document that conforms to version 1.0 of XML

specification and uses the 8-bit Unicode character encoding scheme. Next, there is

one line of comments, which will be ignored by XML parsers. After that,

“<doc>…</doc>” is an element, and it is the root of the document. Generally, each

XML document has a single root element. In Figure 1.1, “<student__employee

ID="HD1234567">…</student__employee>” is also an element. The “ID” in this

element is an attribute and the “HD1234567” is the value of the attribute “ID”.

Similarly “<name>John</name>” etc. are also elements, however they are nested in

the “student_employee” element. “John” is the value or content of the element

“name”.

Chapter 1 Introduction 3

Figure 1.1: An XML document example

As the relationships between elements in an XML document are defined by

nested structures, XML documents are often modeled as trees.

1.1.2 XML Technologies

XML support is being added to existing database management systems (DBMSs) and

native XML systems are being developed both in industry and in academia. XBench

[77] is a family of XML benchmarks which can capture diverse application domains

in different XML DBMSs very well. To efficiently manipulate, structure, and

transform XML, some XML related technologies are developed. They are:

• XML schema languages. An XML schema language is used to describe the

structure and content of an XML document. There are several schema

languages existing for XML. Currently, XML DTD and XML Schema

Definition Language [38] (XSD) from W3C are widely accepted.

<?xml version=“1.0” encoding=“UTF-8” ?>
<!-- An XML document about student_employee, courses and part_time -->

<doc>
 <student_employee ID="HD1234567">
 <name>John</name>
 <contact_no>9876543</contact_no>
 <course ID="CS4321">
 <name>database</name>
 </course>
 <part_time>
 <position>programmer</position>
 </part_time>
 </student_employee>
</doc>

Chapter 1 Introduction 4

• Tree model-based APIs. An XML document is represented as a tree of nodes

with a tree model API. Typically, it loads an XML document in memory all at

once. The dominant tree model API is the W3C Document Object Model

(DOM) [37]. Developers can use the DOM for programmatic reading,

manipulation and modification of an XML document.

• Event-driven APIs. An event-driven API processes an XML document

without storing much more than the context of the current node being

processed in memory. The most popular event-driven API is the Simple API

for XML (SAX) [36].

This thesis focuses on how to efficiently query and update XML data no

matter XML data are schema oblivious or schema-conscious. SAX will be used in the

implementation to parse XML file in XML query and update processing.

1.1.3 XML Query

In the definition of XML, one element is allowed to refer to another, therefore

theoretically an XML is a graph. However for simplicity, most of the researches [1,

23, 56, 64, 74, 80, 83] process queries over XML data that conform to an ordered

tree-structured data model. With the tree model, data objects, e.g. elements, attributes,

text data, etc., are modeled as the nodes of a tree, and relationships are modeled as the

edges to connect the nodes of the tree. Without loss of generality, in this thesis, we

also omit the references in XML, and all queries are based on the ordered tree-

structured representation of XML data. Figure 1.3 shows an ordered XML tree.

Chapter 1 Introduction 5

Figure 1.2: An ordered XML tree

The growing number of XML documents on the Web has motivated the

development of languages and index techniques to query XML data efficiently.

Several query languages, such as XML-QL [25], XML-GL [14], Quilt [15], XPath [8],

XQuery [9], and XTree [19], have been proposed to query XML and semi-structured

data. These query languages express the structure of XML documents as linear paths

or twig patterns. For example, the XPath query:

/book[/title]//section[2]/preceding-sibling::section

finds all the section nodes that are siblings of section[2] (section[2] means the second

section) and these section sibling nodes should be before section[2] (“preceding-

sibling”). Meanwhile, section[2] should be a descendant of book (“//”). In addition,

book should satisfy the restriction that it has a child title (“/”).

No matter the query is a linear path or a twig pattern, the core operation for an

XML query is to efficiently determine the ancestor-descendant (A-D), parent-child

(P-C), sibling and ordering relationships.

title

book

chapter preface author

last_name first_name section section

Chapter 1 Introduction 6

To facilitate the determination of these relationships, two main index

techniques are proposed, namely structural index and labeling (numbering) scheme.

The structural index approaches, such as Dataguides [31, 59, 60], 1-index [61],

2-index [61], A(k)-index [44], D(k)-index [65], M(k)-index [35], Index Fabric[24],

F&B index[42], APEX [22] and Representative Objects [62], can help to traverse the

hierarchy of XML, but this traversal is costly and the overhead of the traversal can be

substantial if the path lengths are very long or unknown. As a result, such approaches

can be fairly inefficient.

On the other hand, the labeling scheme approaches, such as containment

scheme [3, 26, 56, 80, 83], prefix scheme [23, 41, 50, 64, 70] and prime number

scheme [74], require smaller storage space, yet they can efficiently determine the

ancestor-descendant (A-D) etc. relationships between any two elements based on the

labels only. Both the ordered and un-ordered queries can be processed without

accessing the original XML file. In addition, the labeling schemes can be used to

query XML no matter XML is schema oblivious or schema-conscious. In this thesis,

we focus on the labeling schemes.

1.1.4 XML Update

In this section, we discuss XML updates based on the structural index technique and

the labeling scheme technique.

Structural index of XML data is not a schema predefined but only a structure

summary from the original data. While the data could be changed gradually, the index

should be updated accordingly to keep the consistence. [34, 43, 65, 79] are techniques

Chapter 1 Introduction 7

to update the structural index which iteratively split the nodes to make the index

correct and merge all the nearby nodes to make the index size to be minimum without

violation. The splitting and merging of nodes are costly, therefore the update of

structural index is inefficient.

As for the labeling schemes, if XML is dynamic, how to efficiently update the

labels of the labeling schemes is now becoming an important research topic. [13, 23,

28, 69, 70, 75] can process the updates (inserts or deletes nodes) efficiently if the

order of XML elements is not taken into consideration. However as we know, the

elements in XML are intrinsically ordered, which is referred to as the document order

(the element sequence in XML), i.e. the preorder traversal of an XML tree. The

relative order of two paragraphs in XML is important because the order may influence

the semantics of XML, therefore the standard XML query languages (e.g., XPath[8]

and XQuery [9]) require the output of queries to be in document order by default. In

addition, XPath and XQuery include both ordered and un-ordered queries. The

ordered query needs to determine the ordering relationship between two elements.

Thus it is very important to maintain the document order when XML is updated;

otherwise some semantics of XML will be lost and the ordered queries can not be

answered. Hence it is very important to maintain the document order when XML is

updated.

1.2 Problem Statement and Motivation

Though labeling schemes are more efficient than structural index in determining the

four basic relationships in XML query, each labeling scheme is not efficient to

Chapter 1 Introduction 8

determine all the four basic relationships. For instance, the containment scheme is

very inefficient to determine the sibling relationship; it needs to search the parent of a

node, then decides whether another node is a child of this parent. The prefix scheme is

very inefficient in determining all the four relationships if the XML tree is deep. The

prime number scheme has large label size and it employs the modular and division

operations to determine the relationships which is very expensive. Thus the first

objective of this thesis is to propose a labeling scheme that can efficiently determine

all the four basic relationships no matter what XML structure is.

It is important to efficiently update the labels of the labeling schemes when

XML is updated, and it is especially important to maintain the document order in

XML updating. Some research [6, 23, 50, 52, 64, 68, 70, 74] has been done to

maintain the document order in XML updating. However the update costs of these

approaches are still high. Therefore the second and the most important objective of

this thesis is to dramatically reduce the order-sensitive update cost; while completely

avoid re-labeling in XML updates.

Furthermore, none of the existing labeling schemes can process the internal

node update efficiently. Therefore we also propose techniques to process the internal

node update efficiently.

1.3 Overview of Contributions

To accomplish the above objectives, we propose techniques to improve the query

efficiency as well as dramatically decrease the update cost. The main contributions of

this thesis are summarized as follows:

Chapter 1 Introduction 9

• Firstly, we propose the P-Containment (P represents the “Parent_Start” value

of a node) scheme. The P-Containment scheme can efficiently determine all

the four basic relationships in XML queries, more important it can be used to

efficiently process internal node updates and to completely avoid re-labeling.

• Secondly, the most important contribution of this thesis is that we propose

novel encoding approaches for encoding node labels which can process XML

updates much more efficiently. The most important feature of Compact

Dynamic Binary String (CDBS) encoding and Compact Dynamic Quaternary

String (CDQS) encoding is that we compare the CDBS and CDQS codes

based on the lexicographical order. We can always find a binary (or

quaternary) string between any two consecutive CDBS (or CDQS) codes with

the orders kept and without re-encoding or re-labeling the existing numbers or

nodes. Meanwhile, CDBS and CDQS encodings are very compact. In addition

the CDBS (or CDQS) encoding is orthogonal to specific labeling schemes,

thus it can be applied broadly to different labeling schemes.

• When P-Containment labeling scheme is combined together with our CDBS

(or CDQS) encoding, both the queries and updates can be efficiently processed.

• We conduct comprehensive experiments to demonstrate the benefits of our

approaches over the previous approaches in processing both queries and

updates.

Chapter 1 Introduction 10

1.4 Organization of Thesis

To the end, we outline the organization of this thesis. The rest of this thesis is

organized in 6 chapters.

Chapter 2 reviews the research work that is closely related to this thesis. Three

main labeling schemes, i.e. containment, prefix and prime labeling schemes, are

presented in this chapter. Also we introduce different encodings to store the labels.

Meanwhile the deficiencies of these labeling schemes and encoding approaches are

analyzed.

In Chapter 3, we propose the P-Containment (P represents the “Parent_Start”

value of a node, and the “Parent_Start” value of a node is the “Start” value of its

parent) scheme which makes the determination of sibling relationships much faster

than the existing containment labeling scheme. Also P-Containment is faster than the

existing containment scheme in determining the parent-child relationship. The P-

Containment scheme is also helpful to process the internal node updates (see Section

4.4.2 of Chapter 4) and to completely avoid re-labeling (see Section 5.3 of Chapter 5).

Chapter 4 to Chapter 6 are all about how to efficiently process XML updates.

They are the most important contributions of this thesis.

In Chapter 4, we illustrate that the most important feature of our approach is

that we compare labels based on the lexicographical order; an algorithm that can

insert a binary string between two binary strings with the orders kept is also proposed

in this chapter which is the first foundation of this thesis. In this chapter, we also

propose Compact Dynamic Binary String (CDBS) encoding and indicate that CDBS

encoding can be applied broadly (the second foundation of this thesis) to different

Chapter 1 Introduction 11

labeling schemes. Based on the CDBS encoding, we also discuss how to process the

leaf node updates, internal node updates, subtree updates, and uniformly and skewed

updates for XML in this chapter.

Chapter 5 thoroughly discusses that CDBS will encounter the overflow

problem, therefore we further improve CDBS to CDQS. Though the label size of

CDQS is larger than the label size of CDBS and the update cost of CDQS is a little

higher, CDQS completely avoids re-labeling in order-sensitive updates.

In Chapter 6, we describe how to control the increase in label size. Two

techniques are discussed. The first one is that we designed an algorithm which can

find the label with the smallest size between two labels in the update environment

with both insertions and deletions, thus the label size will increase slow; meanwhile

the orders can be maintained. The second one is that we discuss how to process the

skewed insertion problem to control the increase of label size.

Finally, Chapter 7 summarizes the contributions of this thesis and discusses

the future works.

All the works in this thesis have been published in international conferences

and journals. The work in Chapter 3 has been published in [51]. The work in Chapter

4 has been published in [48]. The work in Chapter 5 has been published in [50]1. The

work in Section 6.1 of Chapter 6 has been published in [49], and the work in Section

6.2 of Chapter 6 has been published in [52]. Also we summarize the update works in

Chapters 4, 5 and 6 into [55] which has been accepted by VLDB Journal.

1 Note that in [50] we use the “QED” to represent the quaternary encoding. In this thesis, in order to

make the name consistent with the CDBS in [48], we change the title “QED” to “CDQS”, but the
contents of “QED” and “CDQS” are exactly the same.

Chapter 2

Background and Related Works

Some labeling (numbering) schemes have been proposed for network routing [30],

object programming [4, 26, 27, 73], knowledge representation systems [1], and

recently XML search engines [3, 20, 23, 24, 41, 56, 64, 70, 74, 80, 83]. [21] further

applies the labeling schemes to search the semantic web (see [11, 33, 47, 53, 54] for

more details about the semantic web).

In this thesis, we focus on XML queries based on labeling schemes. XML

query can be expressed as linear paths [2, 29, 40, 82] or twig patterns [12, 17, 18, 57,

58, 66, 81]. The next-of-kin (NoK) pattern matching in [82] can speed up the node-

selection step and reduce the join size significantly. Jiao et al. [40] evaluate the path

queries with “not” predicates. Bruno et al. [9] propose a holistic approach which uses

stacks to match twig patterns. Zhang et al. [81] propose the Blossom Tree to evaluate

correlated paths in a FLWOR expression that can generate highly efficient query

plans in different environments.

The difference between path query and twig pattern query is not an emphasis

of this thesis. Instead, we focus on improving the efficiency of labeling schemes

which can facilitate both the path query and twig pattern query because both the path

query and twig pattern query are based on labeling schemes. Also we focused on

Chapter 2 Background and Related Works 13

updates based on labeling schemes. After updating, the labeling schemes still can

efficiently support both the path query and twig pattern query. Also different

encoding approaches are proposed to store the labels of the labeling schemes.

The rest of this chapter is organized as follows. In Section 2.1, we introduce

different labeling schemes to process XML queries. In Section 2.2, we introduce the

encoding approaches which are used to encode the labels of labeling schemes in

storing. We summarize this chapter in Section 2.3.

2.1 Node Labeling Schemes

The labeling scheme is used to label the nodes of an XML tree, and based on

the labeling scheme, XML queries can be processed without accessing the original

XML document.

In this section, we survey three families of labeling (numbering) schemes, viz.

containment [3, 26, 45, 46, 56, 80, 83], prefix [23, 41, 50, 64, 70], and prime [74].

2.1.1 Containment Labeling Scheme

The containment labeling scheme was first suggested by Santoro and Khatib [67].

Yoshikawa and Amagasa [80] also proposed a variant of containment labeling

scheme. To label an XML tree based on the containment scheme, different tree

traversal methods (e.g. pre-and-postorder[26], extended preorder[56]) are used.

(1) Dietz’s containment labeling scheme [26] uses tree traversal order to

determine the ancestor-descendant relationship between any two nodes of an XML

Chapter 2 Background and Related Works 14

tree. Figure 2.1 shows Dietz’s containment scheme. Each node is labeled with a pair

of preorder and postorder numbers. For any two nodes u and v of an XML tree, u is an

ancestor of v if and only if u occurs before v in the preorder traversal of the XML tree

and after v in the postorder traversal.

In the tree shown in Figure 2.1, node [1, 9] is an ancestor of node [4, 2],

because node [1, 9] comes before node [4, 2] in the preorder (i.e., 1 < 4) and after

node [4, 2] in the postorder (i.e., 9 > 2). An obvious benefit from this approach is that

the ancestor-descendant relationship can be determined in constant time by examining

the preorder and postorder numbers of tree nodes.

(2) Li et al. [56] uses an extended preorder and a range of descendants. Every

node is assigned two variables: “order” and “size”. These two variables represent an

interval [order, order + size]. Figure 2.2 shows Li’s labeling scheme. For any two

nodes u and v, u is an ancestor of v iff order(u) < order(v) < order(u) + size(u).

In the tree shown in Figure 2.2, node [1, 150] is an ancestor of node [52, 10],

because the order of node [1, 150] is 1 which is smaller than the order 52 of node [52,

10], and 52 is smaller than order([1, 150]) + size([1, 150]) = 1 + 150 = 151.

(3) Zhang et al. [83] use a labeling scheme in which every node is assigned

three values: “start”, “end” and “level”. For any two nodes u and v, u is an ancestor of

v iff u.start < v.start and v.end < u.end. Node u is a parent of node v iff u is an

ancestor of v and v.level – u.level = 1. Node u is a sibling of node v iff the parent of

node u is also a parent of node v. Node u is a preceding (following) node of node v iff

u.start < (>) v.start. Example 2.1 is a concrete example to show how Zhang’s

containment scheme works on determining the four basic relationships.

Chapter 2 Background and Related Works 15

Figure 2.1: Dietz’s containment scheme using preorder and postorder

Figure 2.2: Li’s containment scheme with order and interval size

Figure 2.3: Zhang’s containment scheme

Example 2.1 Figure 2.3 shows Zhang’s containment labeling scheme [83] based on

the XML tree shown in Figure 1.2. The values near each node are the “start”, “end”

and “level” values.

2,3,2

1,18,1

12,17,2 10,11,2 4,9,2

7,8,3 5,6,3 15,16,3 13,14,3

30,20

1,150

103,30 82,20 51,30

63,10 52,10 106,10 105,10

2,1

1,9

7,8 6,5 3,4

5,3 4,2 9,7 8,6

Chapter 2 Background and Related Works 16

Ancestor-Descendant determination: “5,6,3” is a descendant of “1,18,1”

because interval [5, 6] is contained in interval [1, 18].

Parent-Child determination: “5,6,3” is a child of “4,9,2” because interval [5,

6] is contained in interval [4, 9], and the level of “5,6,3” minus the level of “4,9,2” is

3 – 2 = 1.

Sibling determination: To determine whether “7,8,3” is a sibling of “5,6,3”,

the containment scheme needs to search the parent of “5,6,3” firstly, then decide

whether “7,8,3” is a child of this parent. The search of the parent needs a lot of

parent-child determinations which is very expensive.

Ordering determination: “7,8,3” is before (a preceding node of) “13,14,3” in

document order because the “start” of “7,8,3” is smaller than the “start” of

“13,14,3” i.e. 7 < 13.

[83] carries out a depth-first traversal of an XML tree (see Figure 2.3). It

utilizes a counter which has an initialized value 1. The “start” of the interval for the

root is 1, then from the root to leaves, the “start” of the interval for each node is the

counter plus 1. When reaching a leaf node, the “end” of the interval is the current

counter value plus 1. Based on the depth-first traversal, the “end” and “start” of the

rest intervals can be determined.

The labeling schemes shown in Figure 2.1, Figure 2.2 and Figure 2.3 all have

the same property to determine the ancestor-descendant etc. relationships, that is, if

the interval of node v is contained in the interval of node u, node u is an ancestor of

node v, therefore they are all called containment schemes. There are some other

Chapter 2 Background and Related Works 17

containment labeling schemes, and they all have the same property to determine the

ancestor-descendant etc. relationships. Here we do not show them further.

Dietz’s containment scheme is the early work which has not discussed how to

process the parent-child and sibling relationships yet. Li’s containment scheme

supports updates to some extent with the unused values; on the other hand, the unused

values are a waste of numbers. Zhang’s containment scheme can determine different

relationships. In the later parts of this thesis, we mainly focus on Zhang’s containment

scheme (Figure 2.3) to represent the containment scheme if Dietz’s and Li’s

containment schemes are not explicitly mentioned, and in fact our encoding

approaches can be applied to all the other containment labeling schemes also.

2.1.1.1 Deficiencies of the Containment Schemes on Queries
In this section, we show what are the deficiencies of the containment schemes in

determining the relationships in XML queries.

It can be seen from Example 2.1 that it is very inefficient for the containment

scheme to determine the sibling relationship; it needs to search the parent of one node

and determine whether another node is the child of this parent, which needs a lot of

parent-child determinations and is very costly.

2.1.1.2 Deficiencies of the Containment Schemes on Updates
Although the ancestor-descendant relationship can be determined in constant time by

the containment scheme, the insertion of a node will lead to a re-labeling of all the

ancestor nodes of this inserted node and all the nodes after this inserted node in

document order (see Figures 2.1 and 2.3; more details can be found in Example 4.12

of Chapter 4). This problem may be alleviated if the interval size is increased with

Chapter 2 Background and Related Works 18

some values unused [56] (see Figure 2.2). However, large interval size wastes a lot of

numbers which causes the increase of storage, while small interval size is easy to lead

to re-labeling.

To solve the re-labeling problem, in [6] Float-point values are used for the

“start” and “end” of the intervals. It seems that Float-point solves the re-labeling

problem [70]. But in practice, the Float-point values are represented in a computer

with a fixed number of bits [6, 70]. As a result, at most 18 nodes can be inserted at a

fixed place [6] since [6] uses the consecutive integer values at the initial labeling.

Even if [6] uses values with large gaps, it still can not avoid re-labeling due to the

float-point precision. No one has ever proposed using variable length encoding of real

values to maintain orders since it is not convenient for variable length codes to

execute the addition, division etc. operations. Therefore, using real values instead of

integers only provides limited benefits for the label updating [70, 74]. In fact, the

Float-point [6] is equivalent to the approach that leaves some values unused [56].

It should be noted that the re-labeling in the containment scheme is not only

for maintaining the document order. If the XML tree is not re-labeled after a node is

inserted, the containment scheme can not work correctly to determine the ancestor-

descendant, parent-child etc, relationships. Therefore it is very important to efficiently

process the updates of labels in the containment labeling schemes.

2.1.2 Prefix Labeling Scheme

In the prefix labeling scheme, the label of a node is that its parent’s label (prefix)

concatenates its own (self) label. Label(u) represents the label of node u,

Chapter 2 Background and Related Works 19

prefix_label(u) represents the prefix label of node u (the label of the parent of node u),

and self_label(u) represents the self_label of node u. The following discussions show

how the prefix labeling scheme determines the four basic relationships, i.e. ancestor-

descendant, parent-child, sibling and ordering relationship, and Example 2.2 for the

DeweyID prefix scheme [70] is a concrete example to show how the prefix schemes

work on determining the four basic relationships. For any two nodes u and v, u is an

ancestor of v iff label(u) is a substring of label(v), i.e. suppose the length of label(u) is

L, then the first L number of symbols of label(v) are exactly the same as label(u).

Node u is a parent of node v iff prefix_label(v) is equal to label(u). Node u is a sibling

of node v if prefix_label(u) = prefix_label(v). Node u is a preceding (following) node

of node v iff label(u) is smaller (larger) than label(v) when comparing label(u) and

label(v) component by component from left to right (the component is separated by

the delimiters; see Example 2.2 for what is a component).

We will discuss three prefix labeling schemes, i.e. DeweyID, BinaryString and

OrdPath, and outline their weak points.

Figure 2.4: DeweyID prefix scheme

1

4 3 2

2.2 2.1 4.2 4.1

Chapter 2 Background and Related Works 20

(1) DeweyID

DeweyID [70] labels the nth child of a node with an integer n, and this n

should be concatenated to the prefix (its parent’s label) and delimiter (e.g. “.”) to form

the complete label of this child node. It should be noted that the label of the root of

the XML tree is an empty string (for all the prefix labeling schemes). Figure 2.4

shows DeweyID.

Example 2.2 Based on DeweyID (see Figure 2.4), we show how the prefix schemes

work on determining the four relationships in XML queries.

Ancestor-Descendant determination: “2.1” is a descendant of the root

because the empty string is a prefix substring of “2.1”.

Parent-Child determination: “2.1” is a child of “2” because the prefix_label

of “2.1” is “2” which is equal to label “2”.

Sibling determination: “2.2” is a sibling of “2.1” because they have the same

prefix_label “2”.

Ordering determination: “2.1” is before “4.1” in document order because the

“2” in “2.1” is smaller than the “4” in “4.1” i.e. we compare “2.1” and “4.1” from

left to right to see the component in which labels is smaller.

(2) Binary String

Cohen et al. [23] use Binary Strings to label the nodes, called BinaryString in

this thesis. Figure 2.5 shows the BinaryString prefix scheme. The root of the tree is

labeled with an empty string. The first child of the root is labeled with “0”, the second

child with “10”, the third with “110”, and the fourth with “1110” etc. Similarly for

Chapter 2 Background and Related Works 21

any node u, the first child of u is labeled with label(u).“0”, the second child of u is

labeled with label(u).“10”, and the ith child with label(u).“1i-10”. The determinations

of the four basic relationships based on the BinaryString prefix scheme is similar to

the determinations based on DeweyID prefix scheme (see Example 2.2). The

deficiency of BinaryString is that its label size is too large.

Figure 2.5: BinaryString prefix scheme

 (3) OrdPath

OrdPath [64] is similar to DeweyID, but it only uses the odd numbers at the

initial labeling (see Figure 2.6). When an XML tree is updated, it uses the even

number between two odd numbers to concatenate another odd number (see Example

2.3 for details). OrdPath wastes half of the total numbers. The query performance of

OrdPath is worse since it needs more time to decide the prefix levels based on the

even and odd numbers. We use the following example to illustrate OrdPath.

Example 2.3 Given three DeweyID labels “1”, “2” and “3”, we can easily know that

they are siblings. In addition, given two DeweyID labels “2” and “2.1”, we can

easily know that “2” is a parent of “2.1”. But for OrdPath (see Figure 2.6), its labels

0

1110 110 10

10.10 10.0 1110.10 1110.0

Chapter 2 Background and Related Works 22

are “1”, “3”, “5” etc.; when inserting a label between “1” and “3”, it uses the even

number between “1” and “3” i.e. “2” to concatenate another odd number e.g. “1”

(“1” has smaller size in OrdPath encodings; see Tables 2.2 and 2.3) as the label of

this inserted node, i.e. the inserted label is “2.1”. In OrdPath, “2.1” is at the same

level as “1”, 3” etc., i.e. “2.1” is a sibling of “1” and “3”. Furthermore, when

inserting one more node between “1” and “2.1”, OrdPath uses “2.-1” as the inserted

label. Moreover, when inserting one more node between “2.-1” and “2.1”, the

inserted label will be “2.0.1”. The OrdPath labels “1”, “2.-1”, “2.0.1”, “2.1” and

“3” are all siblings, but from these labels, they look at different levels. OrdPath needs

more time to determine the sibling, parent-child etc. relationships in XML query

processing. Thus OrdPath gets better update performance by decreasing the query

performance. That is not what we expected.

Figure 2.6: OrdPath prefix scheme

2.1.2.1 Deficiencies of the Prefix Schemes on Queries
In this section, we show the deficiency of the prefix scheme in XML queries.

1

7 5 3

3.3 3.1 7.3 7.1

Chapter 2 Background and Related Works 23

From Example 2.2, we can see that the Prefix scheme can determine all the

four basic relationships fast if the XML tree is shallow. However, it is very inefficient

for the prefix scheme to determine all the four basic relationships if the XML tree is

deep. For instance, to determine that “1.2.1.1.3.3.4.5” is a parent of

“1.2.1.1.3.3.4.5.2”, the prefix scheme needs to compare 8 pairs of numbers.

OrdPath also has the problem that the query performance will be decreased if

the XML tree is deep. Besides this, OrdPath also has the following drawbacks in

XML queries:

(1) It wastes half of the total numbers compared to DeweyID (wastes the even

numbers; even after insertion, it still wastes the even number, e.g. “2.0” between “2.-

1” and “2.1” will never be used after insertion), which will cause the storage

increasing and accordingly the query performance decreasing.

(2) It can be seen from Example 2.3 that “1”, “2.-1”, “2.0.1”, “2.1” and “3” are

at the same level, i.e. they are siblings. OrdPath needs more time to determine this

based on the even and odd numbers (the even number is not a level) which will

decrease its query performance.

2.1.2.2 Deficiencies of the Prefix Schemes on Updates
Compared with the containment scheme, the prefix scheme (DeweyID and

BinaryString) is dynamic to some extent. When a node is inserted into an XML tree,

the prefix scheme can always put this node as the last sibling, then the existing nodes

need not be re-labeled and we can determine the ancestor-descendant, parent-child

and sibling relationships. However, the ordering relationship is not kept which may

Chapter 2 Background and Related Works 24

break down the semantics of XML and make the order-sensitive queries

unanswerable, i.e. some of the queries in XPath and XQuery can not be answered.

To keep the document order, the DeweyID and BinaryString prefix schemes

need to re-label the sibling nodes after the inserted node and the descendants of these

siblings (more details can be found in Example 4.11 of Chapter 4).

OrdPath can avoid re-labeling to some extent, but it greatly reduces the query

performance (see Section 2.2.1) and its update cost is expensive.

(1) To some extent, OrdPath [64] can keep the document order without re-

labeling the existing nodes. But because OrdPath stores the sizes of the labels to

separate different labels, all the nodes should be re-labeled when the sizes of the

labels overflow. We will further discuss the overflow problem in Example 5.1 of

Chapter 5.

(2) OrdPath needs the addition and division operations to calculate the even

number between two odd numbers which is expensive in updating. It is also possible

that OrdPath only uses the addition operation to get the even number, but if there are

many deletions, the calculation of the even number based only on the addition

operation is bias and the label size will increase fast. Even if there is only the addition

operation, the addition operation is also expensive.

2.1.3 Prime Labeling Scheme

Wu et al. [74] proposed an approach to label XML trees with prime numbers (we use

Prime to refer to this scheme). Figure 2.7 shows Prime, in which the number above

each node is the document order, the label is at the right side of each node, and the

Chapter 2 Background and Related Works 25

two numbers below each label are its parent_label and self_label. The root node is

labeled with “1” (integer). Then based on a top-down approach, each node is given a

unique prime number (self_label) and the label of each node is the product of its

parent node’s label (parent_label) and its own self_label.

Example 2.4 Prime uses a top-down approach to label the nodes (see Figure 2.7), i.e.

label the root firstly, then all the child nodes of the root, then all the grandchild nodes,

etc. The 0th node (the root node; 0th is the document order above the root node in

Figure 2.7) is labeled with “1” (the right number). Then the 1st (the number above the

node) node is labeled with “2” (the right number) which is the product of its

parent_label “1” and its self_label, i.e. the prime number “2”. The 2nd node is

labeled with “3” which is the product of its parent_label “1” and the next available

prime number (self_label) 3. Similarly the rest child nodes of the root are labeled with

“5” and “7”. Next Prime labels the grandchild nodes of the root. The 3rd (3rd is the

document order above the node) node is labeled with “33” which is the product of its

parent label “3” and the next available prime number (self_label) “11” (the prime

number “7” has been used by the last child node of the root). Similarly the 4th , 7th

and 8th nodes can be labeled.

Although the document order of each node is explicitly shown in Figure 2.7,

Prime does not store the document order. It uses the SC (Simultaneous Congruence)

value in Chinese Remainder Theorem [7, 74] to decide the node order (see Appendix

B for the calculation details of the SC value).

Chapter 2 Background and Related Works 26

Figure 2.7: Prime scheme

Example 2.5 The SC value for the 8 nodes (except the root) in Figure 2.7 is 8965025

(see Appendix B for the SC calculation steps). That is to say, 8965025 mod 2 = 1

(here 2 is the self_label and 1 is the document order), 8965025 mod 3 = 2, ···,

8965025 mod 17 = 7, and 8965025 mod 19 = 8. Prime only needs to store this SC

value and the self_labels rather than store the document order.

Next we show how the prime labeling scheme determine the four basic

relationship in XML query processing. For any two nodes u and v, u is an ancestor of

v iff label(v) mod label(u) = 0. Node u is a parent of node v iff label(v)/self_label(v) =

label(u). Node u is a sibling of node v iff label(u)/self_label(u) =

label(v)/self_label(v). Prime uses the SC (Simultaneous Congruence) values to decide

the document order, i.e. SC mod self_label = document order, then it compares the

document orders of two nodes. Example 2.6 is a concrete example to show how Prime

determines the four basic relationships in XML queries.

2

3 4

1 2 5 6

0
1

7 5 3

39 33

(1×2) (1×3)

(1×7)

(3×13)

(3×11)

7 8
133 119
(7×19)

(7×17)

(1×5)

Chapter 2 Background and Related Works 27

Example 2.6 See Figure 2.7 for the prime labeling scheme.

Ancestor-Descendant determination: “33” is a descendant of the root because

33 mod 1 = 0.

Parent-Child determination: “33” (label(v)) is a child of “3” (label(u))

because label(v)/self_label(v) = 33/11 = 3 = label(u).

Sibling determination: “33” (label(v)) is a sibling of “39” (label(u)) because

label(u)/self_label(u) = 39/13 = 3 = 33/11 = label(v)/self_label(v).

Ordering determination: label “39” is before (a preceding node of) label

“119”. Prime determine the order in this way. The SC value is 8965025, and the

self_labels of “39” and “119” are “13” and “17” respectively. The document order

of label “39” is SC mod self_label = 8965025 mod 13 = 4, the document order of

label “119” is SC mod self_label = 8965025 mod 17 = 7. 4 is smaller than 7,

therefore label “39” is before label “119” in document order.

Based on the SC value, Prime can solve the label update problem, which only

needs to re-calculate the SC value [74].

Example 2.7 When a new sibling node is inserted before the 1st node (the inserted

node is now the first child of the root), the next available prime number is 23, then the

label of the new inserted node is 23 (1×23). This new inserted node now becomes to

the 1st node (document order), and the orders of the nodes after this inserted node

should all be added with 1 (the old orders are calculated based on the old SC value).

Prime calculates the new SC value for the new ordering, which is 28364406 such that

28364406 mod 23 = 1, 28364406 mod 2 = 2, 28364406 mod 3 = 3, ···, 28364406 mod

17 = 8, and 28364406 mod 19 = 9.

Chapter 2 Background and Related Works 28

Theoretically the single SC value is very good which avoids the node re-

labeling by only re-calculating the SC value. However in practice, the number of

nodes in an XML tree can not be so small, thus the single SC value will be too large a

number. Therefore Prime [74] calculates the SC values for every five (or other

number) nodes.

Example 2.8 The SC value for the first five (in document order) nodes in Figure 2.7 is

3215 (3215 mod 2 = 1, ···, 3215 mod 5 = 5) and the SC value for the next three nodes

is 160 (160 mod 7 = 6, 160 mod 17 = 7, and 160 mod 19 = 8). When inserting the

new node, the SC value for the first five nodes is 6648 (6648 mod 23 = 1, ···, 6648

mod 13 = 5) and the SC value for the rest four nodes is 161 (161 mod 5 = 6, ···, 161

mod 19 = 9).

2.1.3.1 Deficiencies of the Prime Scheme on Queries
In this section, we show the deficiencies of the prime number labeling scheme in

processing queries.

The prime scheme skips a lot of integers to get the prime number, and the

label of a child is the product of the next available prime number and its parent’s

label, which both make the storage space for Prime labels very large. The large

storage space requires more I/O time in XML query processing.

Besides the query performance decreasing caused by the large storage space,

Prime employs the modular and division operations to determine the ancestor-

descendant, parent-child, sibling and ordering relationships which are very expensive.

Chapter 2 Background and Related Works 29

Therefore the query performance of the prime labeling scheme is very bad (see the

experimental results in Section 4.5.2.2 of Chapter 4).

2.1.3.2 Deficiencies of the Prime Scheme on Updates
Although Prime is the only scheme which supports order-sensitive updates without

any re-labeling of the existing nodes, it needs to re-calculate the SC values based on

the new ordering of nodes. The SC values are very large numbers and the re-

calculation is much more time consuming than re-labeling.

2.2 Encoding Approaches to Store the Labels of Labeling
Schemes

The labels in the labeling schemes should be stored as binary numbers or other

encodings in a computer. In this section, we discuss different encodings for the labels

to solve different problems in labeling schemes.

2.2.1 Binary Number Encodings

The labels of the containment schemes are integers and float-point values. In a

computer, these values are stored as binary numbers, e.g. decimal number 5 will be

stored as binary number 101. Also the labels in the prime number labeling scheme are

stored as binary numbers in a computer. We will further compare the binary number

encoding and with our dynamic binary string encoding in Chapter 4. Because the

binary number encoding is trivial, here we do not discuss further about the binary

number encodings.

Chapter 2 Background and Related Works 30

2.2.2 UTF8 Encoding

The UTF8 [78] encoding is used by the DeweyID prefix scheme to process the

delimiters. As we know, DeweyID uses delimiter “.” to separate different components

of a label, e.g. separate “2” and “1” in “2.1”. However, in practice, the delimiter “.”

can not be stored together with the numbers, therefore DeweyID uses UTF8 [78]

encoding to process the delimiters.

In UTF8, a variable number of bytes are used to encode different integer

values. If the integer value is smaller than 128=27, it is encoded with one byte

0xxxxxxx where x represents the bits used for the integer value. If the integer value is

between 27 and 211, it is encoded with 2 bytes 110xxxxx 10xxxxxx. See Table 2.1 for

more details. To represent an entire Dewey path with UTF8, each component of the

path is encoded in UTF8 and then concatenated together without the delimiter “.”.

The indicator bits “0”, “110”, “1110”, etc in the first byte (see Table 2.1) determine

how many bytes are used and separate different components.

Table 2.1: UTF8 encoding

Value Physical representation of self_label Number of bytes
0 ≤ F<128 (27) 0xxxxxxx 1

27 ≤ F<211 110xxxxx 10xxxxxx 2
211 ≤ F<216 1110xxxx 10xxxxxx 10xxxxxx 3
216 ≤ F<221 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 4

221 ≤ F<226 111110xx 10xxxxxx 10xxxxxx 10xxxxxx
10xxxxxx

5

226 ≤ F<231 1111110x 10xxxxxx 10xxxxxx 10xxxxxx
10xxxxxx 10xxxxxx

6

Chapter 2 Background and Related Works 31

Example 2.9 Consider a DeweyID label “1.129”. Since “1” is less than 128, the

UTF8 code of “1” will be “00000001”. Since 129 is larger than 27 and less than 211,

the 11 bit binary encoding of 129 is “10000000001”; then the first five bits “10000”

will be concatenated after “110”, and the rest six bits “000001” will be concatenated

after “10” (see the third row (27 ≤ F<211 row) of Table 2.1). Thus the UTF8 code of

129 is “11010000 10000001”. Finally, the DeweyID “1.129” will be

“000000011101000010000001” in UTF8. Based on the indicators “0” and “110”,

we know that the first component is stored with 1 byte, and the second component is

stored with 2 bytes. In this way, DeweyID can separate different components without

using the delimiter “.”.

After processing the delimiters of DeweyID, we call it DeweyID(UTF8).

2.2.3 OrdPath Encodings

OrdPath [64] is a prefix labeling scheme which can be used to process updates. In

addition, O’Neil et al. [64] also proposed two encoding approaches, called OrdPath1

and OrdPath2, which are improvements of the UTF8 [78] encoding. The OrdPath

encodings are also used to process the delimiters in the prefix labeling schemes, and

they are more compact encodings than UTF8 [78].

Tables 2.2 and 2.3 show the two kinds of encodings of OrdPath, OrdPath1 and

OrdPath2 (OrdPath2 is more compact). Both OrdPath1 and OrdPath2 codes have

variable lengths. We use an example to show how OrdPath1 (Table 2.2) works. It is

similar for OrdPath2 (Table 2.3).

Chapter 2 Background and Related Works 32

Table 2.2: OrdPath1 encoding

Indicator Number of bits Interval
0000001 48 [-2.8x1014, -4.3x109]
0000010 32 [-4.3x1014, -69977]
0000011 16 [-69976, -4441]
000010 12 [-4440, -345]
000011 8 [-344, -89]
00010 6 [-88, -25]
00011 4 [-24, -9]
001 3 [-8, -1]
01 3 [0, 7]
100 4 [8, 23]
101 6 [24, 87]
1100 8 [88, 343]
1101 12 [344, 4439]
11100 16 [4440, 69975]
11101 32 [69976, 4.3x109]
11110 48 [4.3x109, 2.8x1014]

Table 2.3: OrdPath2 encoding

Indicator Number of bits Interval
000000001 20 [-1118485, -69910]
00000001 16 [-69909, -4374]
0000001 12 [-4373, -278]
000001 8 [-277, -22]
00001 4 [-21, -6]
0001 2 [-5, -2]
001 1 [-1, 0]
01 0 [1, 1]
10 1 [2, 3]
110 2 [4, 7]
1110 4 [8, 23]
11110 8 [24, 279]
111110 12 [280, 4375]
1111110 16 [4376, 69911]
11111110 20 [69912, 1118487]

Example 2.10 Suppose that there is a label “1.19” for the OrdPath prefix labeling

scheme. “1” falls in “[0,7]” (see the third column of Table 2.2), thus “1” should be

stored with 3 bits (see the second column of Table 2.2) i.e. “001”, and the indicator

Chapter 2 Background and Related Works 33

“01” (used to indicate that the code is stored with 3 bits; see the first column of

Table 2.2) should be concatenated before “001”, i.e. the OrdPath1 code of “1” is

“01001” (“01” is the indicator; “001” is the value for number 1 which is

represented with 3 bits; see “01 3 [0,7]” line of Table 2.2). “19” falls in “[8,23]”

(see the third column of Table 2.2), thus “19” should be stored with 4 bits (see the

second column of Table 2.2). The four bits to store “19” should be “1011”

corresponding to the number 11=19-8 (8 is the start of interval [8,23]). Note that the

binary representation of “19” is “10011” which is 5 bits but not 4 bits. The complete

OrdPath1 code for “19” is “1001011”. If OrdPath wants to get back number “19”, it

needs to decode “1001011” to number “11” firstly then add the start “8” of interval

[8,23]. With OrdPath encodings, the delimiters also need not be stored which is like

UTF8. Though OrdPath is a more compact encoding than UTF8, its decoding time is

larger.

Though OrdPath1 and OrdPath2 encodings (see Tables 2.2 and 2.3) can

decrease the label size compared to UTF8 encoding, it is slow for OrdPath1 and

OrdPath2 to get back the numbers, e.g. to get back number 19, OrdPath1 should

interpret the OrdPath1 code to 11 firstly, then add 8. This will influence both the

query and update performance of the OrdPath prefix labeling scheme.

2.2.4 Binary String and Quaternary String Encodings

Cohen et al. [23] propose the BinaryString prefix labeling scheme. The binary string

is also an encoding approach. There are only two symbols “0” and “1” in the binary

Chapter 2 Background and Related Works 34

string and each symbol is stored with 1 bit. The size of the binary string encoding in

[23] is very large.

In this thesis, we also use the binary string encoding. Compared with the

binary string encoding in [23], our binary string encoding is dynamic and compact,

called Compact Dynamic Binary String, i.e. CDBS.

In addition, we propose the quaternary string encoding which is a new

encoding approach. There are four symbols in the quaternary string encoding, i.e. “0”,

“1”, “2” and “3”, and each symbol is stored with two bits, i.e. “00”, “01”, “10” and

“11”. Our quaternary encoding is also dynamic and compact, called Compact

Dynamic Quaternary String, i.e. CDQS.

2.3 Summary

Towards the query performance, the existing containment labeling schemes can

determine the ancestor-descendant, parent-child and ordering relationships very fast,

but it is very inefficient in determining the sibling relationship. The prefix labeling

schemes can determine all the four basic relationships in XML queries fast if the

XML tree is shallow. However, if the XML tree is deep, the query performance based

on the prefix labeling schemes will be greatly decreased. The query performance of

Prime is very bad. Therefore the first objective of this thesis is to overcome the

deficiencies of the existing labeling schemes such that query efficiencies can be

improved. We propose the P-Containment scheme in Chapter 3 which can determine

all the four basic relationships efficiently no matter what XML structure is.

Chapter 2 Background and Related Works 35

Towards the update performance, although Prime supports order-sensitive

updates without any re-labeling of the existing nodes, it needs to re-calculate the SC

values based on the new ordering of nodes. The re-calculation is very time consuming.

The main idea of other labeling schemes [6, 56] (except Prime) is to leave

some unused values for the future insertions. When the unused values are used up

later, they have to re-label the existing nodes, i.e. they can not completely avoid re-

labeling in XML updates.

The DeweyID and BinaryString prefix schemes can not support the order-

sensitive updates.

Though OrdPath [13] is dynamic to some extent to process the order-sensitive

updates (will encounter the overflow problem; see Example 5.1), it needs to decode

its codes and use the addition and division operations to calculate the even number

between two odd numbers, which both make its update cost not so cheap.

In addition, the better update performance of OrdPath does not come without a

cost. It wastes a lot of even numbers which makes its label size larger, and it needs

more time to determine the prefix levels based on the even and odd numbers in XML

query processing.

In this thesis, we propose a novel Compact Dynamic Binary String (CDBS)

encoding (CDBS is completely different from the encoding in [23]; the only common

point is that they both use binary strings). The size of CDBS is as small as the binary

number encoding of consecutive decimal numbers. As we know, there is no unused

values between two consecutive decimal numbers; that means CDBS is the most

compact and it need not leave unused values for the future insertions, thus the query

Chapter 2 Background and Related Works 36

performance will not be decreased. Yet CDBS supports that codes can be inserted

between any two consecutive CDBS codes because the most important feature of

CDBS encoding is that we compare codes based on the lexicographical order. This is

the most important benefit of CDBS over the previous approaches. In addition, CDBS

encoding can be applied broadly to different labeling schemes to process updates.

Also CDBS does not decrease the query performance. Moreover, to solve the

overflow problem of CDBS, i.e. the fixed size length field will overflow (see Example

5.1 for the details about the overflow problem), we improve CDBS to a Compact

Dynamic Quaternary String (CDQS) encoding which can completely avoid re-

labeling in XML updates.

The comparisons between our approaches and the existing approaches on

queries and updates are summarized in Tables 2.4 and 2.5 respectively.

When P-Containment scheme and CDBS or CDQS encoding are combined

together, both queries and updates can be processed efficiently.

Table 2.4: Comparisons on queries

Relationships Ancestor-
Descendant Parent-Child Sibling Ordering

Containment
Scheme Efficient Not very Efficient Very inefficient Efficient

Prefix Scheme Not efficient if
XML tree is deep

Not efficient if
XML tree is deep

Not efficient if
XML tree is deep

Not efficient if
XML tree is deep

Prime Scheme Very inefficient Very inefficient Very inefficient Very inefficient
P-Containment

Scheme Efficient Efficient Efficient Efficient

Chapter 2 Background and Related Works 37

Table 2.5: Comparisons on updates

Schemes
Method to

process
updates

Descriptions

Dietz’s [26] and
Zhang’s [83]
containment

No Need to re-label all the ancestor nodes and all the nodes
after the inserted node in document order

Li’s [56]
containment

Leave
unused
values

Need re-labeling when the unused values are used up

Float-point [6]
containment

Use float
point value

Can not avoid re-labeling due to the float-point
precision

DeweyID [70] and
BinaryString [23]

prefix
No Need to re-label the sibling nodes after the inserted node

and all the descendants of the following siblings

OrdPath [64]
prefix

Odd and
even

numbers

Decrease the query efficiencies; update cost is high; can
not completely avoid re-labeling due to the overflow

problem

Prime [74] SC values
Need not re-label, but need to re-calculate the SC values

which is very expensive; greatly decrease the query
performance

CDBS encoding Dynamic
binary string

Most compact, cheapest update cost; query performance
is very good; can not completely avoid re-labeling due to

the overflow problem.

CDQS encoding
Dynamic

quaternary
string

Not as compact as CDBS, update cost not as cheap as
CDBS, but can completely avoid re-labeling

Chapter 3

P-Containment Scheme

This chapter introduces P-Containment which can improve query efficiency.

From Chapter 2, we know that the structure of XML will influence the query

efficiency of the prefix labeling scheme. However, the structure of XML will not

influence the query efficiency of the containment scheme. The comparison of two

containment labels is only related to the total number of nodes in an XML tree. Also

we know that the prime number scheme is very inefficient to determine all four

relationships. Therefore in this chapter, we propose the P-Containment scheme which

is based on containment, hence it will not be influenced by the structure of XML, also

P-Containment can remove the drawbacks of the containment scheme, i.e. P-

Containment can determine the sibling relationship and the other three relationships

very efficiently.

The rest of this chapter is organized as follows. In Section 3.1, we propose the

P-Containment scheme which can determine the sibling relationship much faster than

the existing containment labeling schemes [26, 56, 83], can determine the parent-

child relationship faster, and can determine the ancestor-descendant and ordering

relationships as efficient as the existing containment schemes. We summarize this

chapter in Section 3.2.

Chapter 3 P-Containment Scheme 39

3.1 A Node Labeling Scheme: P-Containment Scheme

We firstly illustrate what is P-Containment scheme.

Rather than storing the “level” value in the existing containment scheme [83], P-

Containment scheme stores the “parent_start” value, which is the “start” value of the

parent of this node.

Example 3.1 Figure 3.1(a) shows the existing containment scheme [83]; it can be

seen that the existing containment scheme stores the “level” value. Figure 3.1(b)

shows P-Containment scheme. Different from the existing containment scheme shown

in Figure 3.1(a), P-Containment stores the “parent_start” value rather than the

“level” value. In Figure 3.1(b), the “4” in “5,6,4” is the “parent-start” value, and it

is equal to the “start” value of its parent, i.e. the “4” in “4,9,1”.

With the “parent_start”, we can determine the parent-child and sibling

relationships faster.

Property 3.1 For two different nodes u and v, node u is a parent of node v iff the

“parent_start” value of node v is equal to the “start” value of node u based on P-

Containment.

Property 3.2 For two different nodes u and v which are not the root of an XML tree,

node u is a sibling of node v iff the “parent_start” value of node u is equal to the

“parent_start” value of node v based on P-Containment.

Chapter 3 P-Containment Scheme 40

(a) Zhang’s containment scheme

(b) P-Containment scheme

Figure 3.1: The existing containment scheme and P-Containment scheme

Example 3.2 (Determine parent-child and sibling relationships based on P-

Containment scheme) Based on the P-Containment scheme shown in Figure 3.1(b),

“4,9,1” is the parent of “5,6,4” because the “parent_start” value of “5,6,4” is 4

which is equal to the “start” value of “4,9,1”. “5,6,4” is a sibling of “7,8,4” because

their “parent_start” values are both equal to “4”.

Example 3.3 (Comparison between the existing containment scheme [83] and P-

Containment scheme in determining the parent-child relationship) Based on the

2,3,2

1,18,1

12,17,2 10,11,2 4,9,2

7,8,3 5,6,3 15,16,3 13,14,3

2,3,1

1,18,-

12,17,1 10,11,1 4,9,1

7,8,4 5,6,4 15,16,12 13,14,12

Chapter 3 P-Containment Scheme 41

existing containment scheme shown in Figure 3.1(a), “4,9,2” is the parent of “5,6,3”

because 4 < 5, 6 < 9, and 3 – 2 = 1, i.e. the “start,end” interval of “5,6,3” should be

contained in the “start,end” interval of “4,9,2”, and the “level” value of “5,6,3”

minus the “level” value of “4,9,2” should be equal to 1. It can be seen that the

existing containment scheme needs 3 comparisons to determine the parent-child

relationship. In contrast, P-Containment scheme only needs 1 comparison, i.e. the

“parent_start” of one node is equal to the “start” of another node, thus P-

Containment scheme is more efficient to determine the parent-child relationship.

Example 3.4 (Comparison between the existing containment scheme [83] and P-

Containment scheme in determining the sibling relationship) To determine the

sibling relationship between “5,6,3” and “7,8,3” in Figure 3.1(a), the existing

containment scheme needs to search the parent of “5,6,3”, then decide whether

“7,8,3” is the child of this parent. A lot of parent-child relationships should be

determined in the searching of the parent of “5,6,3” which is very expensive. In

contrast, P-Containment scheme only needs 1 comparison, i.e. the “parent_start” of

one node is equal to the “parent_start” of another node, which is much cheaper.

Therefore P-Containment scheme is more efficient to determine the parent-

child and sibling relationships.

The following property shows that P-Containment scheme is still as efficient

as the existing containment scheme to determine the ancestor-descendant and ordering

relationships.

Chapter 3 P-Containment Scheme 42

Property 3.3 P-Containment scheme determines the ancestor-descendant and

ordering relationships in the same way as the existing containment labeling scheme.

Example 3.5 (Determine ancetor-descendant and ordering relationship based on

P-Containment scheme) Based on the P-Containment scheme shown in Figure 3.1(b),

“5,6,4” is a descendant of “1,18,-” because 1 < 5 and 6 < 18. “7,8,4” is before

“13,14,12” in document order because 7 < 13. The determinations of these two

relationships based on P-Containment are in the same way as the existing

containment scheme.

Theorem 3.1 P-Containment scheme requires that the “start” value of each node

should be unique.

Proof: If the “start” of P-Containment is not unique, P-Containment may

determine the parent-child etc. relationships wrongly since more than one nodes have

the same “start” and the “parent_start” of one node may be equal to the “start”s of

many nodes. Therefore the “start” value should be unique.

To implement the P-Containment scheme, we only need to scan an XML tree

once, then we can get the “start”, “end” and “parent_start” values for all the nodes.

3.2 Summary

In this chapter, we propose the P-Containment scheme which can determine the

sibling relationship much faster than the existing containment scheme, determine the

Chapter 3 P-Containment Scheme 43

parent-child relationship faster, and determine the ancestor-descendant and ordering

relationships as efficient as the existing containment scheme.

The P-Containment scheme is originally proposed by us to efficiently process

the internal node updates (see Chapter 4); meanwhile we find that P-Containment can

determine the sibling relationship much faster; hence we simply present the P-

Containment scheme in this chapter. Now we find that in [32], the idea about storing

the parent value is mentioned though [32] does not explicitly indicate that in this way,

the sibling relationship can be processed much faster. [32] mainly focuses on

processing the ancestor, descendant, preceding and following relationships in a

coordinate plane by traversing an XML tree in preorder and postorder.

The novel and important contribution of this thesis is on processing of updates;

see later chapters. The P-Containment scheme proposed here can be used to

efficiently process internal node updates (see Chapter 4) and to completely avoid re-

labeling (see Chapter 5). No one has ever studied that the “parent_start” value can be

used to efficiently process internal updates and completely avoid re-labeling.

Chapter 4

CDBS Encoding of Node Labels to
Efficiently Process XML Updates

To efficiently process XML updates, this chapter introduces a Compact Dynamic

Binary String encoding, called CDBS. The features of this encoding are that (1) it

supports order-sensitive insertions without re-encoding the existing binary string

codes (dynamic), (2) it is as compact as the binary number encoding of consecutive

numbers (most compact), and (3) it is orthogonal to specific labeling schemes,

therefore it can be applied broadly to different labeling schemes to efficiently support

XML updates.

The rest of this chapter is organized as follows. Section 4.1 indicates that the

most important feature of our approach is that we compare codes (labels) based on the

lexicographical order, also an algorithm is given in this section which can insert a

binary string between two lexicographically ordered binary strings. Section 4.2

presents CDBS encoding which is very compact, yet it supports order-sensitive

insertions efficiently. Section 4.3 discusses that CDBS encoding can be applied

broadly to different labeling schemes. In Section 4.4, we discuss how to process XML

updates based on CDBS encoding. Section 4.5 reports the experimental results.

Finally, we summarize this chapter in Section 4.6.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 45

4.1 Lexicographical Order for Binary Strings

The most important feature of our approach is that we compare labels based on the

lexicographical order rather than the numerical order. In this section, we firstly

introduce the definition of lexicographical order for binary strings (each symbol of the

binary string is stored with 1 bit) and then propose an algorithm that can always insert

a binary string between two lexicographically ordered binary strings. This algorithm

is the foundation of this thesis which guarantees that we can update XML without re-

labeling the existing nodes.

Definition 4.1 (Lexicographical order) Given two binary strings SL and SR (SL

represents the left binary string and SR represents the right binary string), SL is said to

be lexicographically equal to SR iff they are exactly the same. SL is said to be

lexicographically smaller than SR (SL SR) iff

(a) the lexicographical comparison of SL and SR is bit by bit from left to

right. If the current bit of SL is 0 and the current bit of SR is 1, then SL SR and stop

the comparison, or

(b) SL is a prefix of SR.

Example 4.1 Given two binary strings “0011” and “01”, “0011” “01”

lexicographically because the comparison is from left to right, and the 2nd bit of

“0011” is “0”, while the 2nd bit of “01” is “1”. Given two binary strings “01” and

“0101”, “01” “0101” lexicographically because “01” is a prefix of “0101”.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 46

Algorithm 4.1: AssignMiddleBinaryString(SL, SR)
Input: SL SR; SL and SR are both ended with “1”
Output SM (ended with 1) such that SL SM SR lexicographically

Description:
 1: if size(SL) ≥ size(SR) then //Case (a)
 2: SM = SL ⊕ “1” //⊕ means concatenation
 3: else if size(SL) < size(SR) then //Case (b)
 4: SM = SR with the last bit “1” changed to “01”
 5: end if
 6: return SM

Next based on Algorithm 4.1, Theorem 4.1 and Example 4.2, we illustrate

how to insert a binary string SM (SM represents the middle binary string) between two

lexicographically ordered binary strings SL and SR (SL represents the left binary string

and SR represents the right binary string) such that SL SM SR lexicographically.

Theorem 4.1 Given any two binary strings SL and SR both of which end with “1” and

SL SR, we can always find a binary string SM based on Algorithm 4.1 such that SL

 SM SR lexicographically.

Proof:

Case (a): If size(SL) ≥ size(SR), we process SM based on lines 1 and 2 in

Algorithm 4.1, i.e. SM = SL ⊕ “1”.

(a1): SM is that SL concatenates one more “1”, thus SL is a prefix of SM.

According to condition (b) in Definition 4.1, SL SM lexicographically.

(a2): Since size(SL) ≥ size(SR) and SL SR, condition (a) in Definition 4.1

must be satisfied. That means there is a position; the bit of SL at this position is “0”,

and the bit of SR at this position is “1”. Therefore when we concatenate one more “1”

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 47

after SL i.e. SM, SM is still smaller than SR lexicographically (the lexicographical

comparison is from left to right), i.e. SM SR.

Based on (a1) and (a2), SL SM SR lexicographically when size(SL) ≥

size(SR).

Case (b): If size(SL) < size(SR), we process SM based on lines 3 and 4 in

Algorithm 4.1, i.e. SM = SR with the last bit “1” changed to “01”.

(b1): If the first (size(SR)-1) bits of SR are larger than SL lexicographically, SL

 SM because SM is the first (size(SR)-1) bits of SR ⊕ “01”. If the first (size(SR)-1) bits

of SR are exactly the same as the SL, SL SM because SM is SL ⊕ “01” (SL is the same

as the first (size(SR)-1) bits of SR; SL is a prefix of SM). Note that the first (size(SR)-1)

bits of SR can not be smaller than SL lexicographically, otherwise SL will be larger than

SR lexicographically (conflict to the condition in Theorem 4.1). Therefore SL SM.

(b2): If we do not consider the last two bits “01” of SM and the last bit “1” of

SR, SM is exactly the same as SR, and “01” “1” lexicographically. Therefore SM

SR.

Based on (b1) and (b2), SL SM SR lexicographically when size(SL) <

size(SR).

Therefore Theorem 4.1 holds.

Example 4.2 To insert a binary string between “0011” and “01”, the size of “0011”

is 4 bits which is larger than the size 2 bits of “01”, therefore we directly concatenate

one more “1” after “0011” (see lines 1 and 2 in Algorithm 4.1). The inserted binary

string is “00111”, and “0011” “00111” “01” lexicographically. To insert a

binary string between “01” and “0101”, the size of “01” is 2 bits which is smaller

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 48

than the size 4 bits of “0101”, therefore we change the last bit “1” of “0101” to

“01”, i.e. the inserted binary string is “01001” (see lines 3 and 4 in Algorithm 4.1);

obviously “01” “01001” “0101” lexicographically.

Next we use an example to show why we require the last bit of the binary

string to be “1”.

Example 4.3 Suppose there are two binary strings “0” and “00”. “0” “00”

lexicographically because “0” is a prefix of “00” (see Definition 4.1), but we can not

insert a binary string SM between “0” and “00” such that “0” SM “00”.

Accordingly we require the binary strings to end with “1”.

Algorithm 4.1 is the foundation of this thesis which can help to process

updates efficiently.

When the labeling scheme is a prefix scheme, based on Theorem 4.1, we can

insert one label between two labels without re-labeling the existing nodes. When the

labeling scheme is a containment scheme, we may need to insert the “start” and “end”

two values at one place. The following Corollary 3.3 guarantees that two labels can

be inserted between two labels without re-labeling.

Lemma 4.2 The SM in Theorem 4.1 returned by Algorithm 4.1 ends with “1”.

Proof: This is obvious when we check Algorithm 4.1. Lines 1 and 2 indicate

that the end bit of SM is “1” when size(SL) ≥ size(SR), and lines 3 and 4 indicate that

the end bit of SM is “1” when size(SL) < size(SR). The case at lines 1 and 2 and the

case at lines 3 and 4 are complete, therefore SM ends with “1”.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 49

Corollary 4.3 Given any two binary strings SL and SR which are both ended with “1”

and SL SR, we can always find two binary strings SM1 and SM2 such that SL SM1

SM2 SR lexicographically.

Proof: Based on Theorem 4.1, we can insert a binary string SM between SL and

SR. Based on Lemma 4.2, we know that SM is also ended with “1”. Therefore based on

Theorem 4.1, we can insert another binary string between SL and SM, or between SM

and SR. Therefore Corollary 4.3 holds.

We can further insert binary strings among SL, SM1, SM2 and SR.

Theorem 4.1 and Corollary 4.3 guarantee that we have low update cost in

XML updating.

Algorithm 4.1 proposed in this thesis is dynamic and can be applied to any two

ordered binary strings (ended with “1”) for insertions. On the other hand, to maintain

the high query performance, we should not increase the label size when reducing the

update cost. In Section 4.2 we further propose a Compact Dynamic Binary String

encoding, called CDBS. All the codes (binary strings) of CDBS are ended with “1”

and CDBS encoding is as compact as the existing binary number encoding of

consecutive numbers (see Section 4.2).

4.2 The Compact Dynamic Binary String Encoding (CDBS)

In this section, we propose a Compact Dynamic Binary String encoding (CDBS), and

based on Algorithm 4.1, CDBS supports updates efficiently.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 50

Table 4.1: Binary and CDBS encodings

Decimal number V-Binary V-CDBS F-Binary F-CDBS
1 1 00001 00001 00001
2 10 0001 00010 00010
3 11 001 00011 00100
4 100 0011 00100 00110
5 101 01 00101 01000
6 110 01001 00110 01001
7 111 0101 00111 01010
8 1000 011 01000 01100
9 1001 0111 01001 01110
10 1010 1 01010 10000
11 1011 10001 01011 10001
12 1100 1001 01100 10010
13 1101 101 01101 10100
14 1110 1011 01110 10110
15 1111 11 01111 11000
16 10000 1101 10000 11010
17 10001 111 10001 11100
18 10010 1111 10010 11110

Total size (bits) 64 64 90 90

We firstly use an example to illustrate how CDBS encodes a set of numbers,

and use examples to simply analyze the total size of the CDBS codes. Next the formal

encoding algorithm in Section 4.2.1 and the formal size analysis in Section 4.2.2 will

be easier to understand.

Table 4.1 shows the binary number encoding (V-Binary and F-Binary) and

CDBS (V-CDBS and F-CDBS) encoding of 18 numbers. We choose 18 as an

example because the total “start” and “end” values in Figure 2.3 are 18. In fact, CDBS

can encode any number (not only 18; see the formal algorithm in Section 4.2.1).

When encoding 18 decimal numbers in binary, they are shown in Column 2

(V-Binary Column) of Table 4.1 which have Variable lengths, called V-Binary. For

example, Binary number 101 is equal to decimal number 5.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 51

Now let us discuss how to encode the 18 decimal numbers based on CDBS

encoding. Column 3 (V-CDBS Column) of Table 4.1 shows CDBS, which is called

V-CDBS because it is encoded with Variable length binary strings. The following

steps show the details of how to get the V-CDBS codes (binary strings) and these

steps are examples for the formal algorithm in Section 4.2.1.

Step 1: In the encoding of the 18 numbers, we suppose that there is one more number

before number 1, say number 0, and one more number after number 18, say number

19.

Step 2: We firstly encode the middle number with binary string “1”. The middle

number is 10 where 10 is calculated in this way, 10 = round(0+(19–0)/2). The V-

CDBS code of number 10 is “1” (see Table 4.1).

Step 3: Next we encode the middle number between 0 and 10, and between 10 and 19.

The middle number between 0 and 10 is 5 (5=round(0+(10-0)/2)) and the middle

number between 10 and 19 is 15 (15=round(10+(19-10)/2)).

Step 4: To encode number 5, the code size of number 0 is 0 (the V-CDBS code of

number 0 corresponding to SL in Algorithm 4.1 is empty now), and the code size of

number 10 is 1 (the V-CDBS code of number 10 corresponding to SR in Algorithm

4.1 is “1” now with size 1 bit). This is the Case (b) where size(SL) < size(SR) (see

Algorithm 4.1). Thus based on lines 3 and 4 in Algorithm 4.1, the V-CDBS code of

number 5 is “01” (“1” → “01”).

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 52

Step 5: To encode number 15, the 10th code (SL) is “1” now with size 1 bit, and the

19th code (SR) is empty now with size 0. This is the Case (a) where size(SL) ≥

size(SR) (see Algorithm 4.1). Therefore based on lines 1 and 2 in Algorithm 4.1, the

V-CDBS code of number 15 is “11” (“1” ⊕ “1” → “11”).

Step 6: Next we encode the middle numbers between 0 and 5, between 5 and 10,

between 10 and 15, and between 15 and 19, which are numbers 3, 8, 13 and 17

respectively. The encodings of these numbers are still based on Case (a) or Case (b) in

Algorithm 4.1.

In this way, all the numbers except 0 will be encoded because the round

function will reach the larger value (divided by 2), and we need to discard the V-

CDBS code for number 19 since number 19 does not exist actually.

There are two methods to make the encoding the most symmetric.

(1) With Step 1, the total code size of V-CDBS is always equal to the total code

size of V-Binary (without Step 1, but the other steps are the same, then their total sizes

are not always equal).

(2) If there is no Step 1, we should process the middle numbers in this way.

Based on the number 1 and number 18, the middle number is number 10

(10=round((1+18)/2)). Next we should calculate the middle numbers between number

1 and number 9, and between number 11 and number 18, i.e. number 10 should not be

used to calculate the middle numbers. In this way, the middle number between

number 1 and number 9 is 5 (5=round((1+9)/2)), and the middle number between

number 11 and number 18 is 15 (15=round((11+18)/2)). Next we calculate the middle

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 53

numbers between 1 and 4, between 6 and 9, between 11 and 14, between 16 and 18.

Finally the code of number 1 is that we change the last bit “1” of the code of number

2 to “01” since the round function will not reach number 1.

Both of these two methods calculate the middle numbers in the most

symmetric way. The larger size codes are used only after the smaller size codes are

used up, therefore both of these two methods can guarantee that the total code size of

V-CDBS is equal to the total code size of V-Binary.

Also we can encode the decimal numbers 1-18 with Fixed length binary

numbers, called F-Binary (see F-Binary Column of Table 4.1). Since 18 needs 5 bits

to store, zero or more “0”s should be concatenated before each code of V-Binary. On

the other hand, when representing CDBS using Fixed length, called F-CDBS, we

concatenate “0”s after the V-CDBS codes (see F-CDBS Column of Table 4.1).

With Step 1 to Step 6 above, the formal encoding algorithm in Section 4.2.1

will be easier to understand, and with the following example illustrations for the total

code size, the formal size analysis in Section 4.2.2 will be easier to understand.

Example 4.4 It can be seen from Table 4.1 that V-Binary has one code “1” with size

1 bit, two codes “10” and “11” with sizes 2 bits, four codes “100”, “101”, “110”

and “111” with sizes 3 bits, etc., and the total size of V-Binary is 64 bits. Also we can

see that V-CDBS has one code “1” with size 1 bit, two codes “01” and “11” with

sizes 2 bits, four codes “001”, “011”, “101” and “111” with sizes 3 bits, etc., and

the total size of V-CDBS is also 64 bits. This means that V-CDBS is as compact as the

existing binary number encoding of consecutive numbers. It is similar for F-Binary

and F-CDBS (they both have size 90 bits).

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 54

Example 4.5 Table 4.1 shows that V-Binary has smaller total code size than F-

Binary. However, we also need to store the length of each V-Binary code, the

maximal length for a code is 5, e.g. the length of “10010” is 5. We need to store this 5

using fixed length of bits (“101”; 3 bits). The lengths of other codes should also be

stored using fixed length of bits (3 bits), therefore the total code size for V-Binary is

3×18+64=118 bits which is larger than the bits required by F-Binary. It is similar

for V-CDBS (118 bits) and F-CDBS (90 bits).

In the later parts of this thesis, we mainly focus on V-CDBS to introduce the

theorems and properties; these properties can be applied to F-CDBS also.

4.2.1 CDBS Encoding Algorithm

Because F-CDBS is that some “0”s are concatenated after the V-CDBS codes, we

focus on V-CDBS to introduce the algorithm.

Algorithm 4.2 is the V-CDBS encoding algorithm. We use the procedure V-

CDBS_SubEncoding to get all the codes of the numbers. Finally number 0 and

number (TN+1) should be discarded since they do not exist actually.

V-CDBS_SubEncoding is a recursive procedure, the input of which is an array

codeArr, the left position “PL” and the right position “PR” in the array codeArr. This

procedure assigns codeArr[PM] (corresponding to SM in Algorithm 4.1) using the

AssignMiddleBinaryString algorithm (Algorithm 4.1), then it uses the new left and

right positions to call the V-CDBS_SubEncoding procedure itself, until each (except

the 0th) element of the array codeArr has a value.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 55

Algorithm 4.2: V-CDBS Encoding (TN)
Input: A positive integer TN
Output: The V-CDBS codes for numbers 1 to TN

Description:
 1: suppose there is one more number before the first number,
 called number 0, and one more number after the last number,
 called number (TN+1)
 2: Define an array codeArr[0,TN+1] //the size of codeArr is
 //TN+2; each element of the codeArr is empty at the
beginning
 3: V-CDBS_SubEncoding(codeArr, 1, TN)
 4: discard the 0th and (TN+1)th elements of the codeArr

Procedure V-CDBS_SubEncoding (codeArr, PL, PR)
/*V-CDBS_SubEncoding is a recursive procedure; codeArr is an
array, PL is the left position, and PR is the right position*/
 1: PM = round((PL+PR)/2)
 2: if PL+1<PR then
 3: codeArr[PM]=
 assignMiddleBinaryString(codeArr[PL], codeArr[PR])
 4: V-CDBS_SubEncoding(codeArr, PL, PM)
 5: V-CDBS_SubEncoding(codeArr, PM, PR)
 6: end if

Note that SL and SR in the input of Algorithm 4.1 can be empty when

Algorithm 4.1 is called by V-CDBS_SubEncoding here. If SL and SR are both empty,

their sizes are both equal to 0, and SM is “1” based on lines 1 and 2 in Algorithm 4.1.

If SL is empty and SR is not empty, size(SL) < size(SR), and we process SM based on

lines 3 and 4 in Algorithm 4.1 (SM SR). If SL is not empty and SR is empty, size(SL)

> size(SR), and we process SM based on lines 1 and 2 in Algorithm 4.1 (SL SM).

Given a positive integer TN, Algorithm 4.2 can encode all the numbers

between 1 and TN with V-CDBS codes.

The V-CDBS encoding is like the binary search. As we know, the binary

search will not miss any values in the search, therefore Algorithm 4.2 can encode each

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 56

number without missing. This property is very important to guarantee that our

approach can completely encode all the numbers.

Lemma 4.4 All the V-CDBS codes are ended with “1”.

Proof: Lemma 4.2 guarantees that Lemma 4.4 holds.

Theorem 4.5 All the V-CDBS codes are lexicographically ordered.

Proof: Algorithm 4.2 is about the insertion at different places, and Algorithm

4.1 guarantees that all the insertions at different places are lexicographically ordered,

and the total lexicographical order is also kept.

Example 4.6 The V-CDBS codes in Table 4.1 are lexicographically ordered from top

to bottom.

Lemma 4.4 and Theorem 4.5 guarantee that the conditions in Theorem 4.1 and

Corollary 4.3 are satisfied, therefore we can insert without re-labeling in updates

based on V-CDBS.

4.2.2 Size Analysis

In this section, we analyze the sizes required by different encodings.

V-Binary For V-Binary, one number (“1”; see Table 4.1) is stored with one bit, two

numbers (“10” and “11”) are stored with 2 bits, four numbers (“100”, “101”, “110”

and “111”) are stored with 3 bits, ···, therefore the total size of V-Binary is

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 57

12 1 +×= +nn (4.1)

(see Appendix C1 for how to get formula (4.1))

Suppose the total number of codes is N, which should be equal to

12222 110 −=+⋅⋅⋅++ +nn . Thus formula (4.1) becomes to

)1log()1log(++−+ NNNN (4.2)

V-CDBS When considering V-CDBS, it has one code (“1”) stored with one bit, two

codes (“01” and “11”) stored with two bits, four codes (“001”, “011”, “101” and

“111”) stored with three bits, ···, therefore V-CDBS has the same code size as V-

Binary (see Formula (4.2)).

In addition, since V-Binary and V-CDBS have variable lengths, we need to

store the size of each code. A fixed-length number of bits are used to store the length

of the codes. The maximal length for a code is)log(N . To store this length, the bits

required are))log(log(N , and the total bits required to store the lengths of all the

variable codes are))log(log(NN . When taking formula (4.2) into account, the total

sizes of V-Binary and V-CDBS are both

)1log())log(log()1log(++−++ NNNNNN (4.3)

F-Binary To store N numbers with fixed lengths, the size required is

)log(NN (4.4)

The length of the F-Binary code also needs to be stored, but needs to be stored

only once, which needs size))log(log(N . Therefore the total size for F-Binary is

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 58

))log(log()log(NNN + (4.5)

F-CDBS has the same total code size as formula (4.5).

Note that for simplicity, we omit the ceiling functions on the log functions in

all the formulas.

Theorem 4.6 V-CDBS and F-CDBS are the most compact variable and fixed length

binary string encodings which support updates efficiently.

Proof: As we know, the V-Binary and F-Binary are encodings for the

consecutive decimal numbers and there are no gaps between any two consecutive

numbers, thus V-Binary and F-Binary are the most compact encodings. In addition,

from the above size analysis, we know that V-CDBS and F-CDBS have the same total

sizes as V-Binary and F-Binary respectively2. Furthermore, based on Lemma 4.4,

Theorem 4.5 and Theorem 4.1, we can insert a binary string between any two

consecutive V-CDBS or F-CDBS codes without re-encoding the existing numbers.

Therefore, V-CDBS and F-CDBS are the most compact dynamic encodings.

4.3 Applying CDBS to Different Labeling Schemes

In this section, we mainly illustrate how V-CDBS can be applied to different labeling

schemes. F-CDBS is similar since it is that some zeros are concatenated after the V-

CDBS codes.

2 We assume the consecutive numbers starting from 1. If the consecutive numbers start from 0, our

approach can use “0” as one code in the encoding, then our approach still has the same size as Binary,
but each time when we want to insert a code before “0”, we need to insert a code before the second
code, and always put “0” as the first code.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 59

We firstly describe a property which is the second foundation of this thesis

(the first one is Algorithm 4.1).

Property 4.1 V-CDBS is orthogonal to specific labeling schemes, thus it can be

applied to different labeling schemes or other applications which need to maintain the

order in updates.

Property 4.1 states that V-CDBS can be broadly applied to different labeling

schemes.

When we replace the “start” and “end” values 1-18 of the containment scheme

[83] (similar for other containment schemes [3, 26, 56, 80]) in Figure 2.3 with the V-

CDBS codes in Table 4.1 and based on the lexicographical comparison, a V-CDBS

based containment labeling scheme is formed, called V-CDBS-Containment.

Example 4.7 Figure 4.1 shows the V-CDBS-Containment scheme. The “start” and

“end” values are replaced with V-CDBS codes. The “level” values are still the same

as the decimal numbers in Figure 2.3 which can be used to calculate the “level”

difference for the parent-child determination. Note that the decimal numbers are

stored in binary numbers in the implementation. Based on the lexicographical order,

we can compare the “start” and “end” values for the ancestor-descendant etc.

determinations. V-CDBS-Containment has the same total label size as the existing

containment scheme, therefore it will not decrease the query performance. More

important, based on V-CDBS-Containment, we can process updates efficiently (see

Section 4.4)

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 60

Figure 4.1: V-CDBS-Containment scheme

Similarly, we can replace the decimal numbers in the prefix labeling scheme

[70] (see Figure 2.4) with V-CDBS codes, then a V-CDBS based prefix labeling

scheme is formed, called V-CDBS-Prefix. We use the following example to show V-

CDBS-Prefix.

Example 4.8 From Figure 2.4, we can see that the root has 4 children. To encode 4

numbers based on Algorithm 4.2, the V-CDBS codes will be “001”, “01”, “1” and

“11”. Similarly if there are two siblings, their self_labels are “01” and “1” based on

Algorithm 4.2. Figure 4.2 shows V-CDBS-Prefix scheme.

Figure 4.2: V-CDBS-Prefix scheme (for Figure 2.4)

0001,001,2

00001,1111,1

1001,111,2 1,10001,2 0011,0111,2

0101,011,3 01,01001,3 11,1101,3 101,1011,3

001

11 1 01

01.1 01.01 11.1 11.01

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 61

Similarly we can apply V-CDBS to the prime labeling scheme to record the

document order rather than calculate the SC values (see Section 2.3 of Chapter 2 for

the prime labeling scheme and the SC value calculation). Based on V-CDBS encoding,

Prime can also maintain the orders with very cheap cost. However because Prime

employs the modular and division operations to determine the ancestor-descendant etc.

relationships, its query efficiency is quite bad (see Section 4.5.2.2 for experimental

results). Thus we do not discuss in detail how V-CDBS is applied to Prime.

For the containment and prime number scheme, we only need to know the

total number of nodes of an XML tree, then we can replace the decimal numbers with

CDBS encoding which is very efficient in initial labeling. However, for the prefix

scheme, we need to know the number of siblings of each first child node. If the size of

the XML tree is small, it is not a problem to get the number of siblings of a node,

however if the size of the XML tree is very large, it will be slow to get the number of

siblings for each first child node.

It may be argued that V-CDBS only has the orders but does not have the exact

position of each code, which is a deficiency when compared to the V-Binary codes.

For example, from a V-Binary code “110”, we can immediately know that “110”

corresponds to the decimal number 6. However, if we delete the V-Binary codes

“100” and “101”, “110” is now not the 6th number but the 4th number in order. In this

thesis, we focus on the dynamic XML data in which there are a lot of deletions and

insertions, therefore V-Binary does NOT have merits over V-CDBS in processing the

nth position label. V-Binary and V-CDBS both need to sort and get the position in the

dynamic environment of XML data.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 62

In addition, it is not the case that V-CDBS can not immediately get the exact

position in the static environment of XML data. Based on an inverse processing of

Algorithm 4.2, we can get the exact position of each V-CDBS code by calculations

only (see Appendix D). However, if an XML tree is static, we can directly use V-

Binary rather than V-CDBS. If XML is dynamic, no encoding can calculate the

positions immediately.

4.4 Processing of XML Updates Based on Different Labeling
Schemes Encoded with CDBS

Based on CDBS, in this section, we discuss how to efficiently process different XML

updates. Algorithm 4.1 is the foundation to efficiently process XML updates. Before

we start the discussion of this section, we review the idea of Algorithm 4.1: given two

lexicographically ordered binary strings ended with “1”, we can find a binary string

lexicographically between the given two binary strings. If the size (bit number) of the

left binary string is larger than or equal to the size of the right binary string, the

inserted binary string is that we concatenate one more “1” at the end of the left binary

string. If the size of the left binary string is smaller than the size of the right binary

string, the inserted binary string is that we change the last bit “1” of the right binary

string to “01”. In this way, the inserted binary string is lexicographically between the

left binary string and the right binary string.

Section 4.4.1 discusses how to process the leaf node updates. We discuss how

to process the internal node updates in Section 4.4.2. When a subtree is inserted into

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 63

XML, Section 4.4.3 describes how to make the label size of the inserted subtree

increase slowly. Section 4.4.4 discusses the uniformly and skewed insertions.

4.4.1 Leaf Node Updates

The deletion of a leaf node will not affect the relative orders of the nodes in XML,

hence we mainly discuss how to process the insertions based on V-CDBS.

In this section, we use examples to show how to process the leaf node

insertion based on V-CDBS-Prefix (see Figure 4.2) and V-CDBS-Containment (see

Figure 4.1).

Example 4.9 If we want to insert a sibling node before “01.01” in Figure 4.3, the

self_label of the inserted node is “001” (see lines 3 and 4 in Algorithm 4.1; the left

binary string is empty and the right binary string is the self_label “01” of “01.01”);

the complete label of the inserted node is “01.001”. Theorem 4.1 guarantees that we

need not re-label the existing nodes but we can keep the orders. The insertions at

other places also need not re-label the existing nodes.

Figure 4.3: Leaf node insertions based on V-CDBS-Prefix scheme

001

11 1 01

01.1 01.01 11.1 11.01

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 64

Figure 4.4: Leaf node insertions based on V-CDBS-Containment scheme

Example 4.10 Similarly if we insert a sibling node before “01,01001,3” in Figure 4.4,

we should insert two values (“start” and “end”) between the start of “0011,0111,2”

i.e. “0011” and the start of “01,01001,3” i.e. “01”. Corollary 4.3 guarantees that we

can insert two binary strings between “0011” and “01” with the orders kept. Based

on Algorithm 4.1, the two inserted binary strings are “00111” and “001111”. The

complete label of the inserted node is “00111,001111,3”. Obviously “0011”

“00111” “001111” “01” lexicographically. We need not re-label the existing

nodes, but we can keep the containment scheme working correctly to determine all the

relationships.

After insertion, we can further insert other nodes before the inserted node

without re-labeling the existing nodes and with the orders kept.

Next we use examples to show how inefficient the existing prefix [70] and

containment [83] schemes process the updates.

Example 4.11 If we want to insert a sibling node before “2.1” in Figure 4.5 based on

the existing prefix scheme, the label of the inserted node is “2.1” and the existing

0001,001,2

00001,1111,1

1001,111,2 1,10001,2 0011,0111,2

0101,011,3 01,01001,3 11,1101,3 101,1011,3

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 65

“2.1” and “2.2” should be changed to “2.2” and “2.3”. If the existing “2.1” and

“2.2” have descendants, the labels of these descendants should be changed also.

Figure 4.5: Leaf node insertions based on the existing prefix scheme

Figure 4.6: Leaf node insertions based on the existing containment scheme

Example 4.12 If we want to insert a sibling node before “5,6,3” in Figure 4.6 based

on the existing containment scheme, the label of the inserted node is “5,6,3” and the

existing labels except “2,3,2” should all be changed. The end values of “1,18,1” and

“4,9,2” should be added with 2; the new labels are “1,20,1” and “4,11,2”. The start

and end values of all the other labels except the first three (in document order) should

be added with 2; for instance, label “10,11,2” will be changed to “12,13,2”. It can be

2,3,2

1,18,1

12,17,2 10,11,2 4,9,2

7,8,3 5,6,3 15,16,3 13,14,3

1

4 3 2

2.2 2.1 4.2 4.1

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 66

seen that the existing containment scheme needs to re-label many nodes when a node

is inserted into the XML tree which is very inefficient.

Prime needs to re-calculate the SC values in updates which is very expensive

(see Section 4.5 for the experimental results).

Sometimes Float-point [6] and OrdPath [64] also need not re-label the existing

nodes. The update performance differences among Float-point, OrdPath and our

approaches can be seen in Section 5.5.2 of Chapter 5.

CDBS encoding can be applied to the P-Containment scheme introduced in

Chapter 3 to efficiently process the leaf node updates also.

4.4.2 Internal Node Updates

In [74], the internal node update problem has been studied which shows that all the

existing labeling schemes have expensive internal node update cost.

When inserting an internal node, the existing containment scheme needs to re-

label all the nodes after this inserted node in document order (similar to Example

4.12), all prefix schemes need to re-label the descendant nodes of the inserted node

(the prefixes of all the descendants should be changed), and Prime also needs to re-

label all the descendant nodes with the new inserted label multiplying all the labels of

the descendants, in addition Prime needs to re-calculate the SC values.

Furthermore, when deleting an internal node from an XML tree, all the

containment, prefix and prime labeling schemes should re-label all the descendant

nodes.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 67

That is to say, all the existing labeling schemes are not appropriate to process

the internal node updates. When V-CDBS is applied to the existing containment

scheme, V-CDBS-Containment can process the “start” and “end” values efficiently,

but because the level values of all the descendants should be increased by 1, the

update cost is not so cheap. Furthermore, when V-CDBS is applied to the existing

prefix scheme, V-CDBS-Prefix can not process the internal node updates efficiently

since the prefixes of all the descendants should be changed when an internal node is

inserted into or deleted from an XML tree. This is the drawback of the existing

labeling schemes, but not the drawback of CDBS encoding.

Based on P-Containment scheme introduced in Chapter 3 and V-CDBS

encoding, we can decrease internal node update cost.

Figure 4.7: V-CDBS-P-Containment scheme

We firstly review P-Containment scheme (see Figure 3.1(b)). In P-

Containment scheme, we store the “parent_start” value rather than the “level” value

of the existing containment scheme. If two nodes have the same “parent_start” value,

they are siblings. If the “start” value of one node is equal to the “parent_start” value

00001,1111,-

1001,111,00001 1,10001,00001 0011,0111,00001 0001,001,00001

0101,011,0011 01,01001,0011 11,1101,1001 101,1011,1001

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 68

of another node, the first node is the parent of the second node. When we apply V-

CDBS encoding to P-Containment scheme, Figure 4.7 shows V-CDBS-P-

Containment scheme.

The following Properties 4.2 and 4.3 show that V-CDBS-P-Containment has

much cheaper internal node update cost.

Property 4.2 Based on V-CDBS-P-Containment, when an internal node is inserted

into an XML tree, the “parent_start” of the inserted internal node should refer to the

“start” of the parent of this internal node, the “parent_start”s of the children of the

inserted internal node should be modified to refer to the “start” of the inserted

internal node, and the “parent_start”s of all the descendants of the inserted internal

node except the children need not be changed.

Example 4.13 Figure 4.8 shows that we insert an internal node “u” based on V-

CDBS-P-Containment scheme. The “start” of the inserted node “u” should be a

binary string between the “start” of the root and the “start” of “0001,001,00001”, i.e.

between “00001” and “0001”. Based on Algorithm 4.1, the “start” of node “u” will

be “000011” (size(“00001”) > size(“0001”); “000011” = “00001” ⊕ “1”).

Similarly the “end” of the inserted node “u” should be between the “end” of

“1,10001,00001” and the “start” of “1001,111,00001”, i.e. between “10001” and

“1001”. Based on Algorithm 4.1, the “end” of node “u” will be “100011”

(size(“10001”) > size(“1001”); “100011” = “10001” ⊕ “1”). The “parent_start”

value of the inserted node “u” should be equal to the “start” value of the root, i.e.

“00001”. The “parent_start” values of “0001,001,00001”, “0011,0111,00001” and

“1,10001,00001” should be modified to refer to the “start” value of node “u”, i.e.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 69

change “00001” to “000011”. The “start”, “end” and “parent_start” values of the

“01,01001,0011” and “0101,011,0011” (they are the descendant nodes of the

children of node “u”) need not be changed.

Figure 4.8: Internal node insertions based on V-CDBS-P-Containment scheme

Theorem 4.7 The P-Containment shown in Figure 3.1(b) can not decrease the

internal node insertion cost when the decimal numbers in Figure 3.1(b) are stored

with V-Binary or F-Binary encodings.

Proof: The “start” values of the descendants based on V-Binary and F-

Binary need to be changed when inserting an internal node, therefore if we use the

“start” of the parent as the “parent_start” of the child, we still need to change the

“parent_start” values. The insertion cost will not be decreased.

Only V-CDBS-P-Containment (or F-CDBS-P-Containment) is efficient to

process the internal node insertion.

The following property shows that V-CDBS-P-Containment has cheaper

internal node deletion cost.

0001,001,00001

00001,1111,-

1001,111,00001 1,10001,00001 0011,0111,00001

0101,011,0011 01,01001,0011 11,1101,1001 101,1011,1001

u

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 70

Property 4.3 When an internal node is deleted from an XML tree, V-CDBS-P-

Containment only needs to modify the “parent_start” values of the child nodes of the

deleted node to refer to the “start” value of the parent of the deleted node, but need

not modify the “parent_start” values of the descendant nodes of these child nodes.

Though internal node insertions and deletions do not happen so often in

practice, the V-CDBS-P-Containment technique can help to reduce the internal node

update cost if the internal node updates happen. In addition, the “parent_start”

introduced in P-Containment scheme can help to determine the parent-child

relationship, especially the sibling relationship very fast. Moreover, the “parent_start”

is useful later in Chapter 5 to completely avoid re-labeling.

It is not intuitive to improve the prime scheme to process the internal node

updates efficiently since the labels of all the descendants need to be modified. It is

easy to understand that the internal node updates for the existing containment and

prefix schemes need to re-label all the descendant nodes of the inserted or deleted

node, therefore we do not repeat how they process the internal node updates. Here we

use an example to show how the prime scheme process the internal node updates.

Figure 4.9: Internal node insertions based on the prime number scheme

46

4 5

2 3 6 7

0
1

7 115 69

897 759

(23×1×2) (23×1×3)

(1×7)

(23×3×13)

(23×3×11)

8 9
133 119
(7×19)

(7×17)

u

(23×1×5)

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 71

Example 4.14 Figure 4.9 shows that we insert an internal node “u” based on the

prime scheme. The next available prime number is 23, thus the label of node “u” is

“23” (“1× 23”). The labels of all the descendant nodes of the inserted node “u”

should be multiplied by the label “23” of node “u” (see Figure 4.9). Thus the internal

node update cost based on Prime is very expensive. In addition to that, the orders of

all the nodes after this inserted internal node should be added with 1 (see Figure 4.9),

and Prime needs to re-calculate the SC values based on the new orders which is also

very expensive. Therefore Prime can not process internal node updates efficiently.

4.4.3 Subtree Updates

The deletion of a subtree will not affect the relative orders of the rest nodes in XML,

hence we mainly discuss how to process the insertion of a subtree based on V-CDBS.

When a subtree is inserted into XML, we can process the insertion of this

subtree as the insertion of nodes one by one. However, this kind of insertion will

make the label size increase fast (see Section 4.4.4 for more details). That is not what

we expected. We use the following method to process the insertion of a subtree.

Example 4.15 Figure 4.10 shows that a subtree is inserted into the XML tree based

on V-CDBS-Prefix. The label of the root of the subtree is an insertion between “01”

and “1”. Based on Algorithm 4.1, the inserted label is “011” (see lines 1 and 2 of

Algorithm 4.1; “011” = “01” ⊕ “1”). Based on Algorithm 4.2, the self_labels of the

three child nodes of the subtree are “01”, “1” and “11”, and their complete labels

are “011.01”, “011.1” and “011.11”. If the subtree is inserted node by node, their

labels are “011”, “011.1”, “011.11” and “011.111” with larger total size.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 72

Figure 4.10: Subtree insertion based on V-CDBS-Prefix scheme

Example 4.16 Figure 4.11 shows that a subtree is inserted into the XML tree based

on V-CDBS-P-Containment. For the subtree, we need to insert 8 binary strings (4

nodes; 8 “start” and “end” values) between the V-CDBS codes “0111” (the “end” of

“0011,0111,00001) and “1” (the “start” of “1,10001,00001”) in Figure 4.11. We use

Algorithm 4.2 to process the insertion of the 8 binary strings, and “0111” and “1”

can be thought as the V_CDBS codes for number 0 and number (TN+1)=(8+1)=9 in

Algorithm 4.2. The middle number is the 5th number where 5= round(0+(9-0)/2). The

SL is “0111” with size 4 bits, and the SR is “1” with size 1 bit, therefore according to

lines 1 and 2 in Algorithm 4.1 (called by Algorithm 4.2), the V-CDBS code of the 5th

number is “01111” (see lines 1 and 2 of Algorithm 4.1; “01111” = “0111” ⊕ “1”).

Similarly we can insert the V-CDBS codes for the rest 7 numbers. Finally the V-CDBS

codes for the 8 numbers are “01110001”, “0111001”, “011101”, “0111011”,

“01111”, “0111101”, “011111” and “0111111”. They are lexicographically

ordered between “0111” and “1”. The “start”, “end” and “parent_start” values of

the four nodes of the inserted subtree are “01110001, 0111111, 00001”, “0111001,

011101, 01110001”, “0111011, 01111, 01110001” and “0111101, 011111,

01 001

11 1

01.1 01.01 11.1 11.01

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 73

01110001”. If the scheme is the existing containment scheme, it is not a problem to

get the “level” value for each node of the inserted subtree compared with P-

Containment.

Figure 4.11: Subtree insertion based on V-CDBS-P-Containment scheme

In this way, the total label size of the inserted subtree is smaller than the size

that we repeat the insertion node by node if not necessary (see Section 4.5.3.3 for the

experimental results).

The insertion of a subtree will make the existing containment and prefix

schemes re-label the existing nodes, and because a subtree contains many nodes, it is

easier to lead the Float-point [6] and OrdPath [64] to re-labeling.

4.4.4 Uniformly and Skewed Frequent Updates

The size analysis in Section 4.2.2 is based on the initial encoding. Algorithm 4.2

shows that our encoding algorithm is step by step insertions of nodes evenly at

different places. Therefore if a sequence of nodes are inserted randomly at different

places of XML, the size analysis in Section 4.2.2 is still valid, and the query

performance will not be decreased.

0011,0111,00001 0001,001,00001

00001,1111,-

1001,111,00001 1,10001,00001

0101,011,0011 01,01001,0011 11,1101,1001 101,1011,1001

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 74

For the case where nodes are always inserted at a fixed place (we call this kind

of insertion skewed insertion) of XML, the size of V-CDBS increases fast. [23]

proves that any deterministic labeling scheme which does not re-label nodes must in

the worst case assign one label with size O(N). V-CDBS can not escape from this

claim also, i.e. the label size of V-CDBS increases linearly in the worst case. O(N) is

the upper bound of the size of V-CDBS. OrdPath [64] also has this skewed insertion

problem. [68] uses B-tree to balance the update and lookup performance.

[13] studies that the insertions in XML are often segments e.g. subtrees, and

the insertion of single node seldom happens. As we can see from Section 4.4.3, the

insertion of a subtree will not cause the label size increase fast. The above analysis

also shows that CDBS at least work very well when the insertions are randomly at

different places of XML. Even in the skewed insertion environment, CDBS still works

the best to answer queries since we dramatically decrease the update time, and with

the saved time, we can answer queries faster than other labeling schemes (other

labeling schemes need re-labeling which needs a lot of time; see the experimental

results in Section 4.5.3 of this chapter and in Section 5.5.2 of Chapter 5).

4.5 Experimental Evaluation and Comparisons

4.5.1 Experimental Setup

The experimental setup here is used at all the experiments in this thesis whereas there

are other special explanations.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 75

We evaluate and compare the performance of different labeling schemes. The

schemes containing a “CDBS” or “CDQS” are all schemes proposed in this thesis; all

the others are prior schemes. The schemes with a “-Prefix” at the end of the scheme

names are prefix schemes, and with a “-Containment” at the end of the scheme names

are containment schemes.

All the schemes are implemented in Java and all the experiments are carried

out on a 3.0 GHz Pentium 4 processor with 1 GB RAM running Windows XP

Professional.

Table 4.2 shows the characteristics of the test datasets. D1 is from [63], D3

and D4 are from [71], and all of them are real-world XML data. D2 is a benchmark

generated by XMark [76]. We choose these datasets because they have different

characteristics and they are widely used in different papers for XML performance

study. We also test our approaches on other datasets from [63] and [71] and similar

results are found; here we focus on D1-D4 to report all the experimental results in this

thesis.

Table 4.2: Test datasets

Datasets Topics # of
files

Max/average
fan-out for a

file

Max/average
depth for a

file

Total # of
nodes for

each dataset

Size
(MB)

D1 Shakespeare’s play 37 434/48 6/5 179689 7.53
D2 XMark 1 25500/3242 12/6 1666315 82
D3 Treebank 1 56384/1623 36/8 2437666 111
D4 DBLP 1 328858/65930 6/3 3332130 127

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 76

4.5.2 Performance Study on Static XML Data

From now on, we mainly study how the existing binary encoding and CDBS

encodings (see Table 4.1 for different encodings) are applied to the existing

containment and prefix labeling schemes to process the queries and updates.

Static XML is not the emphasis of this thesis, thus we only compare the label

size and query performance of different encodings in this section.

4.5.2.1 Storage Requirement
Figure 4.12(a) shows the label sizes of the existing containment, prefix and prime

labeling schemes for the four datasets shown in Table 4.2. Prime [74] labeling scheme

has larger label size than the containment and prefix schemes because it skips a lot of

integer numbers to get the prime numbers and it uses the multiplications of the

numbers for the labels which both make its label size very large. If the XML tree is

deep (see the characteristics of different datasets in Table 4.2), the prefix scheme has

larger label size than the containment scheme (see the label sizes for D2 and D3); if

the XML tree is shallow, the prefix scheme has smaller label size than the

containment scheme (see the label sizes for D4).

Figure 4.12(b) is the comparison between the existing containment schemes

and CDBS containment scheme. Float-point-Containment [6] has larger label size

than other containment labeling schemes. V-CDBS-Containment has the same label

size as V-Binary-Containment, and F-CDBS-Containment has the same label size as

F-Binary-Containment. These show that V-CDBS and F-CDBS are the most compact

variable and fixed length encodings.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 77

When V-Binary, F-Binary, V-CDBS, and F-CDBS are applied to the P-

Containment scheme, V-CDBS-P-Containment still has the same label size as V-

Binary-P-Containment, and F-CDBS-P-Containment has the same size as F-Binary-P-

Containment. Here we do not show them in Figure 4.12(b).

0

40

80

120

160

200

240

D1 D2 D3 D4

Datasets

To
ta

l l
ab

el
 s

iz
e

fo
r

ea
ch

 d
at

as
et

(1

,0
00

,0
00

 b
its

)

V-Binary-Containment
F-Binary-Containment
DeweyID(UTF8)-Prefix
Prime

(a) Label sizes of different schemes

437327

0

40

80

120

160

200

240

D1 D2 D3 D4

Datasets

To
ta

l l
ab

el
 s

iz
e

fo
r e

ac
h

da
ta

se
t

(1
,0

00
,0

00
 b

its
)

Float-point-Containment

V-Binary-Containment

F-Binary-Containment

V-CDBS-Containment

F-CDBS-Containment

(b) Label sizes of containment schemes

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 78

5610468871049

0

40

80

120

160

200

240

D1 D2 D3 D4

Datasets

To
ta

l l
ab

el
 s

iz
e

fo
r

ea
ch

 d
at

as
et

(1

,0
00

,0
00

 b
its

)

BinaryString-Prefix

DeweyID(UTF8)-Prefix

OrdPath1-Prefix

OrdPath2-Prefix

CDBS(UTF8)-Prefix

CDBS(OrdPath1)-
Prefix
CDBS(OrdPath2)-
Prefix

(c) Label sizes of prefix schemes

Figure 4.12: Label sizes of different labeling schemes

For the prefix schemes, based on the size (length) of each code of V-CDBS

(similar for F-CDBS), we can use the UTF8 [78] or OrdPath [64] encoding to process

the delimiters. If we use UTF8 to process the delimiters, V-CDBS(UTF8)-Prefix has

the same label size as DeweyID(UTF8)-Prefix. If we use OrdPath encodings to

process the delimiters, V-CDBS(OrdPath)-Prefix has smaller label size than OrdPath-

Prefix since we do not waste the even numbers. The UTF8 and OrdPath encodings are

existing techniques, In Section 5.2 of Chapter 5, we will show how to process the

delimiters based on CDQS (see Example 5.6). It can be seen from Figure 4.12(c) that

BinaryString-Prefix [23] has much larger label size than other prefix labeling

schemes. Generally OrdPath1-Prefix and OrdPath2-Prefix have smaller label size than

DeweyID(UTF8)-Prefix though OrdPath1-Prefix and OrdPath2-Prefix waste a lot of

even numbers. This is because the encodings of OrdPath1 and OrdPath2 are more

compact. However, though OrdPath has smaller label size, its query performance is

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 79

worse because it needs more time to decode its encodings and needs more time to

determine the levels based on the odd and even numbers.

4.5.2.2 Query Performance
We test the query performance based on all XML files in the Shakespeare’s play

dataset (D1) (see Table 4.2) and for a more sizeable data workload we scaled up

(replicate) D1 10 times as described in [70]. The ordered and un-ordered queries and

the number of nodes retrieved are shown in Table 4.3.

Table 4.3: Test queries on the scaled D1

Queries # of nodes
Retrived

Q1 /play/act[4] 370
Q2 /play//personae[./title]/pgroup[.//grpdescr]/persona 2690
Q3 /play/personae/persona[12]/preceding-sib ling::* 4240
Q4 /play//act[2]/following::speaker 184060
Q5 /play/act/scene/speech 309330
Q6 /play//line 1078330

5182428472

0

4000

8000

12000

16000

20000

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
sp

on
se

 ti
m

e
(m

s)

V-Binary-Containment
F-Binary-Containment
DeweyID(UTF8)-Prefix
Prime

(a) Response time of different schemes

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 80

54513 89818

0

4000

8000

12000

16000

20000

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
po

ns
e

tim
e

(m
s)

Float-point-Containment
V-Binary-Containment
F-Binary-Containment
V-CDBS-Containment
F-CDBS-Containment

(b) Response time of containment schemes

0

3000

6000

9000

12000

15000

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
sp

on
se

 ti
m

e
(m

s)

BinaryString-Prefix
DeweyID(UTF8)-Prefix
OrdPath1-Prefix
OrdPath2-Prefix
CDBS(UTF8)-Prefix
CDBS(OrdPath1)-Prefix
CDBS(OrdPath2)-Prefix

(c) Response time of prefix schemes

Figure 4.13: Query performance of different labeling schemes

Different structural join algorithms [5, 12, 13, 20, 39, 72] have been proposed

to process XML queries. To do a fair comparison of different labeling schemes, in the

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 81

implementation, except the part which must be different, we use the same join method

to test the queries for all the labeling schemes. Figure 4.13 shows the response time

(CPU time + I/O time) of the 6 queries in Table 4.3.

Figure 4.13(a) shows the response time of the containment, prefix and prime

labeling schemes. Prime [74] has much larger response time because it has larger

label size and it employs the modular and division operations to determine the

ancestor-descendant, parent-child etc. relationships which are very expensive. We

compare containment scheme and prefix scheme fairly. Note that it is unfair if prefix

labels are stored as strings, but containment labels are stored as integers.

Figure 4.13(b) shows the response time of different containment schemes.

Float-point-Containment [6] has much larger response time due to its very large label

size. Our CDBS-Containment (“V-” and “F-”) has smaller response time than Binary-

Containment (“V-” and “F-”) because our encodings can directly compare labels from

left to right no matter the labels have variable lengths or fixed lengths, but V-Binary

can not directly compare labels from left to right.

Finally Figure 4.13(c) shows the response time of different prefix schemes.

BinaryString-Prefix [23] has larger response time due to its larger label size on D1.

Though OrdPath1-Prefix and OrdPath2-Prefix have smaller label size than

DeweyID(UTF8)-Prefix, their query performance is worse than DeweyID(UTF8)-

Prefix because it is slow for them to decode the OrdPath1 and OrdPath2 codes and

slow to separate the prefix levels (OrdPath2 even slower). CDBS(UTF8)-Prefix,

CDBS(OrdPath1)-Prefix, CDBS(OrdPath2)-Prefix have the similar response time as

DeweyID(UTF8)-Prefix, OrdPath1-Prefix and OrdPath2-Prefix respectively.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 82

4.5.3 Performance Study on Intermittent Updates in Dynamic XML
Data

Section 4.5.3.1 discusses how to process the leaf node updates. Section 4.5.3.2 is

about the internal node updates. Section 4.5.3.3 describes the performance when a

subtree is inserted into an XML tree.

4.5.3.1 Leaf Node Updates
The deletion of a leaf node will not require re-labeling of the existing nodes, therefore

in this section we only compare the update performance when leaf nodes are inserted

into XML.

Same as [74], we select one XML file Hamlet in dataset D1 to test the update

performance (it is similar for other XML files). Hamlet has 5 act elements. We test

the following 5 cases (see Table 4.4 and Figure 4.14): inserting an act element before

act[1], inserting an act element before act[2], ···, and inserting an act element before

act[5].

Table 4.4 shows the number of nodes to re-label when applying different

labeling schemes. V-Binary-Containment and F-Binary-Containment need to re-label

many nodes (Hamlet has totally 6636 nodes) in the 5 cases. Though V-Binary-

Containment and F-Binary-Containment are very compact, they need to re-label the

existing nodes when a node is inserted into XML.

Also BinaryString-Prefix and DeweyID(UTF8)-Prefix need to re-label many

nodes in the five insertion cases. It should be noted that V-Binary-Containment and F-

Binary-Containment have one more node than BinaryString-Prefix and

DeweyID(UTF8)-Prefix to re-label because act elements are the children of the root

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 83

and the containment schemes need to re-label the root also (modify the “end” value of

the root).

Table 4.4: Number of nodes to re-label in leaf node updates

Number of nodes to re-label (5 cases) Labeling schemes 1 2 3 4 5
Float-point-Containment 0 0 0 0 0
V-Binary-Containment 6596 5121 3932 2431 1300
F-Binary-Containment 6596 5121 3932 2431 1300
V-CDBS-Containment 0 0 0 0 0
F-CDBS-Containment 0 0 0 0 0

BinaryString-Prefix 6595 5120 3931 2430 1299
DeweyID(UTF8)-Prefix 6595 5120 3931 2430 1299

OrdPath1-Prefix 0 0 0 0 0
OrdPath2-Prefix 0 0 0 0 0

CDBS(UTF8)-Prefix 0 0 0 0 0
CDBS(OrdPath1)-Prefix 0 0 0 0 0
CDBS(OrdPath2)-Prefix 0 0 0 0 0

Prime 1320 1025 787 487 261

4

8

12

16

20

1 2 3 4 5

Cases

Lo
g2

(T
ot

al
 u

pd
at

e
tim

e
(m

s)
) Float-point-Containment

V-Binary-Containment

F-Binary-Containment

V-CDBS-Containment

F-CDBS-Containment

BinaryString-Prefix

Dew eyID(UTF8)-Prefix

OrdPath1-Prefix

OrdPath2-Prefix

CDBS(UTF8)-Prefix

CDBS(OrdPath1)-Prefix

CDBS(OrdPath2)-Prefix

Prime

Figure 4.14: Log2 of total time (CPU time + I/O time) for leaf node updates

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 84

For Prime, the number of SC values that are required to re-calculate is counted

in Table 4.4. Because Prime uses each SC value for every five nodes [74], the number

of SC values required to re-calculate is 1/5 of the number of nodes required by V-

Binary-Containment and F-Binary-Containment to re-label. Note that it is impossible

to use a single SC value for all the nodes in the XML tree since the SC value will be

too large a number.

In the five cases, Float-point-Containment (less than 18 nodes at a single

place), V-CDBS-Containment (without overflow; see Example 5.1 of Chapter 5 for

the overflow problem), F-CDBS-Containment (without overflow), OrdPath1-Prefix

(without overflow), OrdPath2-Prefix (without overflow), CDBS(UTF8)-Prefix

(without overflow), CDBS(OrdPath1)-Prefix (without overflow), and

CDBS(OrdPath2)-Prefix (without overflow) need not re-label any existing nodes.

Compared with V-Binary-Containment and F-Binary-Containment, V-CDBS-

Containment and F-CDBS-Containment are also the most compact, yet they need not

re-label the existing nodes in intermittent updates.

Next we study the total time (CPU time + I/O time) for updates. Figure 4.14

shows the LOG2 of the total leaf node update time (ms) (Y-axis). The total time

required by Prime to re-calculate the SC values is much larger (at least 80 times; sum

time of Case 1 to Case 5) than the time required by Binary-Containment (“V-” and

“F-”) to re-label the nodes. Prime theoretically is a good scheme to process updates,

but it is not practicable. The update time of BinaryString-Prefix [23] and

DeweyID(UTF8) [70] is larger than the update time of Binary-Containment (“V-” and

“F-”). In contrast, the total update time of V-CDBS-Containment, F-CDBS-

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 85

Containment, CDBS(UTF8)-Prefix, CDBS(OrdPath1)-Prefix, and CDBS(OrdPath2)-

Prefix is 1/12 to 1/3 of the time of Binary-Containment. This is because these

approaches need not re-label the existing nodes.

It can be seen from Figure 4.14 that the update performance differences

among Float-point, OrdPath and our approach are not very large though our approach

is still better. This is because only several nodes are inserted into the XML tree and

the main part of the update time of Float-point, OrdPath and our approach is the I/O

time. When considering the CPU time only, our approach is much better than Float-

point and OrdPath. Their wide update differences can be seen in Section 5.5.2 of

Chapter 5 where frequent insertions are executed.

4.5.3.2 Internal Node Updates
No matter an internal node is inserted into or deleted from an XML tree, the nodes

should be re-labeled before the labeling schemes can work correctly to answer

queries. Table 4.5 shows the number of nodes to re-label when inserting a node acts

as the parent of the five act nodes of the Hamlet file and when deleting this internal

node acts from the Hamlet file.

It can be seen from Table 4.5 that all the labeling schemes except V-CDQS-P-

Containment and F-CDBS-P-Containment need to re-label many nodes in internal

node updates. Though V-CDQS-P-Containment and F-CDBS-P-Containment also

need to re-label the child nodes of the inserted or deleted node, it need not re-label the

other descendant nodes of the inserted or deleted node. It only needs to re-label 5

nodes which is much better than the other labeling schemes.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 86

Table 4.5: Number of nodes to re-label for internal node updates

Number of nodes to re-label Labeling schemes Insertion Deletion
Float-point-Containment 6595 6595
V-Binary-Containment 6596 6595
F-Binary-Containment 6596 6595
V-CDBS-Containment 6595 6595
F-CDBS-Containment 6595 6595

V-CDBS-P-Containment 5 5
F-CDBS-P-Containment 5 5

BinaryString-Prefix 6595 6595
DeweyID(UTF8)-Prefix 6595 6595

OrdPath1-Prefix 6595 6595
OrdPath2-Prefix 6595 6595

CDBS(UTF8)-Prefix 6595 6595
CDBS(OrdPath1)-Prefix 6595 6595
CDBS(OrdPath2)-Prefix 6595 6595

Prime 6595 6595

4

8

12

16

20

Insertion Deletion

Cases

Lo
g2

(T
ot

al
 u

pd
at

e
tim

e
(m

s)
)

Float-point-Containment
V-Binary-Containment
F-Binary-Containment

V-CDBS-Containment
F-CDBS-Containment
V-CDBS-P-Containment
F-CDBS-P-Containment
BinaryString-Prefix

Dew eyID(UTF8)-Prefix
OrdPath1-Prefix
OrdPath2-Prefix
CDBS(UTF8)-Prefix
CDBS(OrdPath1)-Prefix

CDBS(OrdPath2)-Prefix
Prime

Figure 4.15: Log2 of total time (CPU time + I/O time) for internal node updates

Figure 4.15 shows the LOG2 of the total internal node update time (ms) (Y-

axis). For V-Binary-Containment and F-Binary-Containment, the deletion of an

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 87

internal node needs less update time than the insertion of an internal node, because the

deletion only needs to modify the “level” values, but the insertion needs to modify the

“start”, “end” and “level” values.

V-CDBS-Containment and F-CDBS-Containment only need to modify the

“level” values, but need not modify the “start” and “end” values even in insertions,

therefore their insertion time is smaller. The update time of Float-point-Containment

is larger because its label size is larger which needs more I/O time. In contrast, V-

CDBS-P-Containment and F-CDBS-P-Containment need much less update time

because they need to re-label much less nodes (5 vs 6595 or 6596).

All the prefix labeling schemes including CDBS encoding based prefix

labeling schemes need to re-label all the descendant nodes when an internal node is

inserted or deleted.

When an internal node is updated, Prime needs to re-label all the descendant

nodes of the inserted node. When an internal node is inserted, all the labels of the

descendant nodes should multiply the label of the inserted node (see Example 4.14

and Figure 4.9). When an internal node is deleted, all the labels of the descendant

nodes should divide the label of the deleted node. In addition, Prime needs to re-

calculate the SC values to maintain the document order in insertions. Therefore the

insertion time of Prime is much larger which can be seen from Figure 4.15.

4.5.3.3 Subtree Updates
In this section, we discuss how to insert a subtree. If we insert the nodes of the subtree

one by one, the label size will increase fast. If we insert the nodes of the subtree based

on the method introduced in Section 4.4.3, the label size increases slowly.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200

Number of nodes in the inserted subtree

La
be

l s
iz

es
 (1

,0
00

,0
00

 b
its

)
Sequential insertion

Whole subtree insertion

Figure 4.16: Label size increasing speed when inserting subtrees

Figure 4.16 shows the label size increasing speed of these two methods when

inserting subtrees with different number of nodes. It can be seen from Figure 4.16 that

the label size based on the method introduced in Section 4.4.3 increases much slower

than the method of insertions of subtrees node by node.

4.5.4 Summary of Experimental Results

Because skewed frequent updates are easy to lead to re-labeling, we propose another

Quaternary String encoding approach in Chapter 5 which can completely avoid re-

labeling. We will compare the frequent update performance of different approaches in

Section 5.5.2 of Chapter 5.

If XML is static, CDBS encodings work quite well in considering either the

storage or the query performance. CDBS encoding is as compact as the binary number

encoding of consecutive numbers.

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 89

Towards the intermittent updates, CDBS based labeling schemes need not re-

label the existing nodes when a leaf node is inserted into an XML tree. CDBS-P-

Containment can process the internal node updates much more efficiently than other

labeling schemes since it only needs to modify the labels of the children of the

inserted or deleted internal node rather than all the descendants. When a subtree is

inserted into XML, the experimental result shows that the method introduced in

Section 4.4.3 will make the label size increase slowly.

4.6 Summary

In this chapter, we firstly illustrate that the most important feature of our approach is

that we compare codes (labels) based on the lexicographical order. Based on the

lexicographical order, we propose Algorithm 4.1 which can always insert a binary

string between two lexicographically ordered binary strings ended with “1”.

Algorithm 4.1 is the foundation of this thesis which can help to process XML updates

efficiently.

Furthermore, we describe CDBS encoding. CDBS is as compact as the binary

number encoding of consecutive numbers; there are no gaps between any two

consecutive numbers, therefore CDBS is the most compact. In addition, based on

Algorithm 4.1, CDBS supports order-sensitive insertions between any two

consecutive CDBS codes without re-encoding the existing numbers.

We show that CDBS encoding is orthogonal to specific labeling schemes, thus

it can be applied broadly to different labeling schemes. When CDBS is applied to

Chapter 4 CDBS Encoding of Node Labels to Efficiently Process XML Updates 90

different labeling schemes, it will not increase the label size and will not decrease the

query performance, and it supports updates efficiently.

V-CDBS encoding can efficiently process the leaf node updates. We need not

re-label the existing nodes when a leaf node is inserted into an XML tree.

To efficiently process the internal node updates, we apply V-CDBS and F-

CDBS encodings to P-Containment scheme introduced in Chapter 3. Based on V-

CDBS-P-Containment and F-CDBS-P-Containment, we only need to modify the

“parent_start” values of the children of the inserted or deleted internal node, but need

not modify the “parent_start” values of the descendants of the children of the inserted

or deleted internal node. This is cheaper than the existing containment, prefix and

prime schemes since they need to re-label all the descendant nodes of the inserted or

deleted internal node. Also it should be noted that only the P-Containment itself can

not decrease the internal node update cost; the P-Containment scheme should be

combined together with V-CDBS or F-CDBS encoding to efficiently process the

internal node updates (see Theorem 4.7).

We also discuss how to make the label size increase slowly if a subtree is

inserted into XML. It is an insertion of all the binary strings between the left and right

binary strings but not one by one insertions.

Furthermore we discuss the uniform and skewed insertions. We will further

discuss how to process the skewed insertion problem in Section 6.2 of Chapter 6.

Finally we conduct experiments which show that the methods proposed in this

chapter can efficiently process different updates; meanwhile the encodings proposed

in this chapter is very compact.

Chapter 5

CDQS Encoding of Node Labels to
Completely Avoid Re-labeling

CDQS represents the Compact Dynamic Quaternary String encoding.

The CDBS encoding proposed in Chapter 4 still can not completely avoid re-

labeling in XML updates. Here we use an example to show the reason.

Example 5.1 The length of each V-CDBS code is stored with fixed length (e.g. 3; see

Example 4.5). If many nodes are inserted into the XML tree, the size of the length field

(e.g. 3) is not enough for the new labels, then we have to re-label all the existing

nodes. Even if we increase the size of the length field to a larger number, it still can

not completely avoid re-labeling, and it will waste the storage space. This is called

the overflow problem in this thesis. Similarly F-CDBS (each code of F-CDBS is fixed

length, therefore F-CDBS will encounter the overflow also) and OrdPath [64] will

encounter the overflow problem also (O'Neil et al. do not mention this overflow

problem in OrdPath [64]).

To solve the overflow problem, we have the following observation. We

observe that the size of V-CDBS is used only to separate different V-CDBS codes.

After separation, we can directly compare the V-CDBS codes from left to right.

Therefore to solve the overflow problem, the way is to find a separator which can

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 92

separate different V-CDBS codes; meanwhile this separator will not encounter the

overflow problem. In binary string, there are only two symbols “0” and “1”; if we use

“0” or “1” as the separator, only one symbol is left and CDBS will not be dynamic.

Therefore we design a Compact Dynamic Quaternary String (CDQS) encoding which

can help to completely avoid re-labeling in XML updates.

The rest of this chapter is organized as follows. In Section 5.1 we describe

CDQS encoding. Section 5.2 depicts how to apply CDQS to different labeling

schemes. Based on CDQS, we discuss how to completely avoid re-labeling in XML

updates in Section 5.3. We report the experimental results in Section 5.5. Finally we

summarize this chapter in Section 5.6.

5.1 The Compact Dynamic Quaternary String Encoding
(CDQS) for Node Labels

Four symbols “0”, “1”, “2” and “3” are used in the quaternary string and each symbol

is stored with two bits, i.e. “00”, “01”, “10” and “11”.

Now we illustrate our Compact Dynamic Quaternary String (CDQS) code):

CDQS code is a special quaternary string; the “0” is used as the separator and only

“1”, “2” and “3” are used in the CDQS code itself.

Because we use “0” as the separator, it is not appropriate to concatenate “0”s

for the fixed length CDQS, i.e. F-CDQS. In this thesis, when we talk about CDQS, it

is equivalent to V-CDQS.

Still based on the 18 numbers in Table 4.1, we use examples to show how

CDQS works (see Table 5.1).

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 93

Table 5.1: CDQS encoding

Decimal number CDQS
1 112
2 12
3 122
4 13
5 132
6 2
7 212
8 22
9 222

10 223
11 23
12 232
13 3
14 312
15 32
16 322
17 33
18 332

Total size (bits) 88

Step 1: In the encoding of the 18 numbers based on CDQS, we suppose there is one

more number before number 1, say number 0, and one more number after number 18,

say number 19.

Step 2: The (1/3)th number is encoded with “2”, and the (2/3)th number is encoded

with “3”. The (1/3)th number is number 6, which is calculated in this way, 6 =

round(0+(19–0)/3). The (2/3)th number is number 13 (13 = round(0+(19–0)×2/3)). It

can be seen from Table 5.1 that the CDQS code for number 6 is “2” and the CDQS

code for number 13 is “3”.

Step 3: The (1/3)th and (2/3)th numbers between number 0 and number 6 are number 2

(2 = round(0+(6–0)/3)) and number 4 (4 = round(0+(6–0)×2/3)). The CDQS code of

number 0 (SL) is now empty with size 0 bit and the CDQS code of number 6 (SR) is

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 94

now “2” with size 2 bits. This is Case (b) where size(SL) < size(SR). In this case, the

(1/3)th code is that we change the last symbol “2” of SR to “12”, i.e. the code of

number 2 is “12” (“2” → “12”), and the (2/3)th code is that we change the last symbol

“2” of SR to “13”, i.e. the code of number 4 is “13” (“2” → “13”). Note that in the

initial encoding, if size(SL) < size(SR), SR can only be ended with “2” (can not be

ended with “3”).

Step 4: The (1/3)th and (2/3)th numbers between numbers 6 and 13 are numbers 8 (8 =

round(6+(13–6)/3)) and 11 (9 = round(6+(13–6)×2/3)). The CDQS code of number 6

(SL) is “2” with size 2 bits and the code of number 13 (SR) is “3” with size 2 bits. This

is Case (a) where size(SL) ≥ size(SR). In this case, the (1/3)th code is that we directly

concatenate one more “2” after the SL, i.e. the code of number 8 is “22” (“2” ⊕

“2”→“22”), and the (2/3)th code is that we directly concatenate one more “3” after

the SL, i.e. the code of number 11 is “23” (“2” ⊕ “3” → “23”).

Step 5: The (1/3)th and (2/3)th numbers between numbers 13 and 19 are numbers 15

(15 = round(13+(19–13)/3)) and 17 (17 = round(13+(19–13) × 2/3)). The code of

number 13 (SL) is “3” with size 2 bits and the code of number 19 (SR) is empty now

with size 0 bit. This is still Case (a). Therefore the CDQS code of number 15 is “32”

(“3” ⊕ “2” → “32”), and the code of number 17 is “33” (“3” ⊕ “3” → “33”).

In this way, all the numbers will be encoded with CDQS codes. Finally we

need to discard the codes for numbers 0 and 19 since they do not exist actually. It

should be noted that if the (2/3)th number exactly refers to the (1/3)th number, the code

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 95

for the (2/3)th number will not appear since this number has already been encoded

with the (1/3)th code. Table 5.1 shows the CDQS codes for all the 18 numbers.

5.1.1 CDQS Encoding Algorithm

The formal algorithms of CDQS (Algorithms 5.1 and 5.2) are similar to the V-CDBS

algorithms (Algorithms 4.1 and 4.2). The difference is that CDQS is based on the

(1/3)th and (2/3)th positions rather the (1/2)th position in V-CDBS. The above Step 1 to

Step 5 are illustrations of the formal algorithms (Algorithms 5.1 and 5.2) for CDQS.

When we note that the quaternary strings “0” “1” “2” “3”

lexicographically, we have the following theorem 5.2.

Lemma 5.1 All the CDQS codes are ended with either “2” or “3”.

Proof: “1” can not appear at the end of a CDQS code (see Algorithms 5.1 and

5.2, or see Step 1 to Step 5), thus Lemma 5.1 holds.

Theorem 5.2 All the CDQS codes are lexicographically ordered.

Proof: The CDQS algorithm guarantee that the (1/3)th and (2/3)th CDQS codes

are lexicographically ordered between SL and SR. By recursively applying the

encoding of the (1/3)th and (2/3)th CDQS codes, the global lexicographical order of all

the CDQS codes are maintained. Therefore Theorem 5.2 holds.

Example 5.2 The CDQS codes in Table 5.1 are lexicographically ordered from top to

bottom, e.g. “112” “12” lexicographically since the second symbol of “112” is

“1” while the second symbol of “12” is “2”.

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 96

Algorithm 5.1: AssignOneThirdAndTwoThirdCodes(SL, SR)
Input: SL SR; SL and SR are ended with either “2” or “3”
Output: SM1 and SM2 (ended with 1)such that SL SM1 SM2 SR
lexicographically. SM1 is the quaternary string at the (1/3)th position, and SM2
is the quaternary string at the (2/3)th position.

Description:
 1: if SL and SR are both empty then
 2: SM1 = “2”
 3: SM2 = “3”
 4: else
 5: if size(SL) ≥ size(SR) then
 6: SM1 = SL ⊕ “2”
 7: SM2 = SL ⊕ “3”
 8: else if size(SL) < size(Right_Code) then
 9: Temp_Code = SR with the last symbol changed to “1”
10: SM1 = Temp_Code ⊕ “2”
11: SM2 = Temp_Code ⊕ “3”

Algorithm 5.2: CDQS Encoding(TN)
Input: A positive integer TN
Output: The CDQS codes for numbers 1 to TN

Description:
 1: suppose there is one more number before the first number,
 called number 0, and one more number after the last number,
 called number (TN+1)
 2: Define an array codeArr[0,TN+1] //the size of codeArr is
 //TN+2; each element of the codeArr is empty at the beginning
 3: CDQS_SubEncoding(codeArr, 1, TN)
 4: discard the 0th and (TN+1)th elements of the codeArr

Procedure CDQS_SubEncoding (codeArr, PL, PR)
/*CDQS_SubEncoding is a recursive procedure; codeArr is an array, PL is
the left position, and PR is the right position*/
 1: PM1 = PL+round((PR-PL)/3) (PM1 is the (1/3)th position)
 2: PM2 = PL+round((PR-PL)×2/3) (PM2 is the (2/3)th position)
 3: if PL ≠ PR then
 4: AssignOneThirdAndTwoThirdCodes(codeArr[PL], codeArr[PR])
 5: if PM1 ≠ PL and PM1 ≠ PR then
 6: codeArr[PM1]= SM1 //returned by line 4 in CDQS_SubEncoding
 7: if PM2 ≠ PM1 and PM2 ≠ PR then
 8: codeArr[PM2]= SM2 //returned by line 4 in CDQS_SubEncoding
 9: if (PM1 ≠ PL and PM1 ≠ PR) or (PM2 ≠ PL and PM2 ≠ PR) then
10: CDQS_SubEncoding(codeArr, PL, PM1)
11: CDQS_SubEncoding(codeArr, PM1, PM2)
12: CDQS_SubEncoding(codeArr, PM2, PR)

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 97

CDQS is the most compact encoding with three symbols. When there are only

2 symbols “0” and “1”, we know that V-CDBS is the most compact from Theorem

4.6. When we use three symbols “1”, “2” and “3”, the (1/3)th and (2/3)th positions can

guarantee that CDQS is the most compact encoding with 3 symbols. Note that the

symbol “0” is used as the separator.

Example 5.3 It can be seen from Table 5.1 that the total size of CDQS is 88 bits, also

we need to count the size of the separators (the separator “0” is stored with size 2

bits). Therefore the size of CDQS is 2× 18+88=124 bits. Compared with the total size

118 bits of V-CDBS (see Example 4.5 in Chapter 4), the total size of CDQS is a little

larger. However, based on CDQS we can completely avoid re-labeling in XML

updates.

5.1.2 Size Analysis

Below is the size analysis of CDQS.

CDQS CDQS has two numbers 6 and 13 stored with size 1×2 bits, 6 numbers 2, 4, 8,

11, 15 and 17 stored with size 2×2 bits, ···, therefore the total size of CDQS is:

+×××+×××+×××)23()32()22()32()21()32(210

)2)1(()32(×+××+⋅⋅⋅ nn (bits)

13)12(1 +×+= +nn (5.1)

(see Appendix C2 for how to get formula (5.1))

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 98

Suppose the total number is N, which should be equal to

13)32()32()32(110 −=×+⋅⋅⋅+×+× +nn . Thus formula (5.1) becomes to

)1(log2)1(log2 33 ++−+ NNNN (5.2)

When taking the separator (“0”) size NN 22 =× into account, the total size of

CDQS is:

)1(log2)1(log2 33 ++++ NNNN (5.3)

Compared with the total size)1log())log(log()1log(++−++ NNNNNN of

V-CDBS shown in Formula (4.3), the total size of CDQS is larger. When N=2, the

size of CDQS is 2.90 times of that of V-CDBS; when]49,3[∈N , the multiples are

1.14 to 1.87; when]100000000,50[∈N , the multiples are between 1.10 and 1.14.

Thus the size of CDQS is a little larger than the size of V-CDBS. However, CDQS

can completely avoid re-labeling (see Section 5.3 of this chapter).

5.2 Applying CDQS to Different Labeling Schemes

We can apply CDQS to different labeling schemes. For the containment scheme, since

the “level” value will encounter the overflow problem, we only discuss how to apply

CDQS to the P-Containment scheme (see Section 3.1 of Chapter 3 for the P-

Containment scheme). When replacing the decimal numbers 1-18 of the “start”, “end”

and “parent_start” values of the P-Containment scheme in Figure 3.1(b) with CDQS

codes in Table 5.1, a CDQS-P-Containment scheme is formed. Based on the separator

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 99

“0”, we can separate the “start”, “end” and “parent_start” values, and every three

values form a group of “start, end, parent_start”.

Figure 5.1: CDQS-P-Containment scheme

Example 5.4 Figure 5.1 shows CDQS-P-Containment scheme. For the labels

“112,332,-”, “12,122,112” and “13,222,112” of the first three nodes of the CDQS-P-

Containment scheme shown in Figure 5.1, we store them consecutively in the hard

disk as “112033201201220112013022201120”. Based on the separator “0”, we can

separate them as “112”, “332”, “12”, “122”, “112”, “13”, “222” and “112”, the

first two are a group of “start, end” which is the label of the root. It should be noted

that the root does not have the “parent_start” value. The next three are a group of

“start, end, parent_start” which is the label of the next node after the root. The rest

three are another group of “start, end, parent_start” which is the label of the third

node. The labels for the 4th, 5th, etc. nodes can be similarly stored after the first three

labels. Different from the V-CDBS codes which use the lengths to separate the

“start”, “end” and “parent_start”, CDQS uses the separator “0” to separate the

“start”, “end” and “parent_start” which will never encounter the overflow problem.

12,122,112

112,332,-

232,33,112 223,23,112 13,222,112

212,22,13 132,2,13 32,322,232 3,312,232

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 100

In this way, we can completely avoid re-labeling in XML updates. Note that in the

implementation, each quaternary number is stored with two bits e.g. “2” is stored as

“10” (two bits).

Figure 5.2: CDQS-Prefix scheme

Example 5.5 Figure 5.2 shows that we apply CDQS to the prefix scheme. The root

has 4 children. To encode 4 numbers based on CDQS, the codes will be “12”, “2”,

“3” and “32”. Similarly if there are two siblings, their self_labels are “2” and “3”.

For the prefix scheme, the delimiter “.” can not be stored together with the

numbers in the implementation to separate different components. We can use the

UTF8 [78] encoding or OrdPath encoding [64] to process the delimiters for the V-

CDBS encoding.

For CDQS encoding, we use the following approach to process the delimiters.

We use one separator “0” as the delimiter to separate different components of a label

(e.g. separate “2” and “3” in “2.3”; the separator “0” is equivalent to the “.” in Figure

12

32 3 2

2.3 2.2 32.3 32.2

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 101

5.2), and use two consecutive separator “00” as the separator to separate different

labels (e.g. separate “2.2” and “2.3”).

Example 5.6 To store the first three labels “12”, “2” and “2.2” in Figure 5.2 (except

the root which is empty), they are stored as “120020020200” in the hard disk. Based

on the separator “00”, we can separate the three labels “12”, “2” and “202”, and if

necessary, we can separate different components of a label, e.g. separate “2” and

“2” in “202” based on the delimiter “0”.

It may be asked why we choose “0” but rather than any other number “1”, “2”

or “3” as the delimiter? It is because in this way, we can directly compare two labels

symbol by symbol from left to right to determine the document order. See the

following example for more details.

Example 5.7 Suppose that there is one more sibling node inserted between “2” and

“3” in Figure 5.2. Based on Algorithm 5.3 (in the next section; Section 5.3), the

label of the inserted node is “22”. We know that “2.3” is before “22” (the label of

the inserted node) in document order. “2.3” is stored as “203” with delimiter “0”.

We can directly compare “203” and “22” from left to right to get the relative orders

of these two labels. If we use any number of “1”, “2” or “3” as the delimiter, we can

not directly compare the labels from left to right to get the document order.

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 102

5.3 Completely Avoiding Re-labeling in XML Updates

Algorithm 5.3 shows how to insert a quaternary string between two CDQS codes (two

quaternary strings). Algorithm 5.3 considers the case that there are only insertions

which is similar to Algorithm 4.1. If there are only insertions and size(SL) < size(SR),

then SR can only be ended with “2”. We use examples to show how Algorithm 5.3

works.

Algorithm 5.3: AssignInsertedQuaternaryString(SL, SR)
Input: SL SR; SL and SR are ended with either “2” or “3”
Output SM such that SL SM SR lexicographically

Description:
 1: if size(SL) > size(SR) then
 2: if the last symbol of SL is “2” then
 3: SM = SL with the last symbol changed from “2” to “3”
 4: else if the last symbol of SL is “3” then
 5: SM = SL ⊕ “2” //⊕ means concatenation
 6: end if
 7: else if size(SL) == size(SR) then
 8: SM = SL ⊕ “2”
 9: else if size(SL) < size(SR) then
10: SM = SR with the last symbol “2” changed to “12”
11: end if
12: return SM

Figure 5.3: Insertions based on CDQS-P-Containment scheme

12,122,112

112,332,-

232,33,112 223,23,112 13,222,112

212,22,13 132,2,13 32,322,232 3,312,232

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 103

Example 5.8 If we want to insert a sibling before “132,2,13” in Figure 5.3, the

“start” and “end” of this inserted node should be lexicographically between the

“start” of “13,222,112” and the “start” of “132,2,13”, i.e. between “13” and “132”.

Based on Algorithm 5.3, we insert a quaternary string between “13” and “132”, then

the “start” value of the inserted node is “1312” (see lines 9-10 of Algorithm 5.3). The

“end” value of the inserted node is an insertion between the new “start” value

“1312” and “132” (the “start” of “132,2,13”). The “end” value of the inserted node

will be “1313” (see lines 1-3 of Algorithm 5.3). Obviously, “13” “1312” “1313”

 “132” lexicographically. The “parent_start” value of the inserted node is “13”

which is the “start” of its parent. CDQS will never encounter the overflow problem,

therefore we need not re-label any existing nodes no matter how many nodes are

inserted, but we can keep the containment scheme work correctly.

Example 5.9 Similarly if we want to insert a sibling node before “202” in Figure 5.4

(“202” is equivalent to the “2.2” in Figure 5.2), the self_label of the inserted node is

“12” (see lines 9-10 in Algorithm 5.3; note that SL is empty); the complete label of the

inserted node is “2012”. CDQS will never encounter the overflow problem, therefore

we need not re-label any existing nodes based on the CDQS-Prefix scheme when

nodes are inserted into an XML tree.

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 104

Figure 5.4: Insertions based on CDQS-Prefix scheme

Theorem 5.3 Algorithm 5.3 guarantees that a quaternary string can be inserted

between two consecutive CDQS codes with the orders kept and without re-encoding

any existing numbers.

Proof: When we check Algorithm 5.3, all the conditions can guarantee that SL

 SM SR lexicographically, therefore Theorem 5.3 holds.

Corollary 5.4 Algorithm 5.3 guarantees that infinite number of quaternary strings

can be inserted between any two consecutive CDQS codes.

Proof: When recursively using Algorithm 5.3 for the insertions, Corollary 5.4

holds.

Theorem 5.5 CDQS can completely avoid the re-encoding of the existing numbers.

Proof: We use “0” as the separator to separate different CDQS codes, and “0”

will never encounter the overflow problem. Also Corollary 5.4 guarantees that infinite

number of quaternary strings can be inserted between any two consecutive CDQS

codes. Therefore Theorem 5.5 holds.

12

32 3 2

203 202 3203 3202

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 105

Section 4.4.2 shows that we can efficiently process the internal node updates

though we can not completely avoid re-labeling in internal node updates; this is the

drawback of the existing labeling schemes, but not the drawback of CDQS encoding.

5.4 Extensions of CDQS

By further extending CDQS, we can use octal and hex string encodings to process

updates, called CDOS and CDHS respectively. It can be seen from previous sections

that CDQS waste 1/4 of numbers for the separator. If we use CDOS and CDHS

encodings, only 1/8 and 1/16 of the total numbers are wasted. Thus the CDOS and

CDHS encodings will be more compact when the total number is large. On the other

hand, the separator sizes of CDOS and CDHS encodings are 3 bits and 4 bits

respectively which makes CDOS and CDHS not as compact as expected. See Section

5.5.3 for the experimental results and more details about CDOS and CDHS.

5.5 Experimental Evaluation and Comparisons

5.5.1 Performance Study on Static XML Data

We firstly discuss the label size. Figure 5.5(a) shows that CDQS encoding is applied

to the containment scheme. The label size of CDQS-Containment (equivalent to V-

CDQS-Containment; see the third paragraph of Section 5.1 of this chapter for more

details) is a little larger (10% around) than the label size of V-CDBS-Containment

because the separator “0” can not appear in the CDQS code itself which is a waste

(see the formal size analysis in Section 5.1.2 of this chapter also). Though the label

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 106

size of CDQS-Containment is a little larger than the label size of V-CDBS-

Containment, CDQS-Containment can completely avoid re-labeling in XML updates.

437327

0

40

80

120

160

200

240

D1 D2 D3 D4

Datasets

To
ta

l l
ab

el
 s

iz
e

fo
r e

ac
h

da
ta

se
t

(1
,0

00
,0

00
 b

its
)

Float-point-Containment
V-Binary-Containment
F-Binary-Containment
V-CDBS-Containment
F-CDBS-Containment
CDQS-Containment

(a) Label sizes of containment schemes

5610468871049

0

40

80

120

160

200

240

D1 D2 D3 D4
Datasets

To
ta

l l
ab

el
 s

iz
e

fo
r

ea
ch

 d
at

as
et

(1

,0
00

,0
00

 b
its

) BinaryString-Prefix
DeweyID(UTF8)-Prefix
OrdPath1-Prefix
OrdPath2-Prefix
CDQS-Prefix

(b) Label sizes of prefix schemes

Figure 5.5: Label sizes of different labeling schemes

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 107

8981854513

0

4000

8000

12000

16000

20000

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
po

ns
e

tim
e

(m
s)

Float-point-Containment
V-Binary-Containment
F-Binary-Containment
V-CDBS-Containment
F-CDBS-Containment
CDQS-Containment

(a) Response time of queries based on containment schemes

0

3000

6000

9000

12000

15000

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
sp

on
se

 ti
m

e
(m

s)

BinaryString-Prefix
DeweyID(UTF8)-Prefix
OrdPath1-Prefix
OrdPath2-Prefix
CDQS-Prefix

(b) Response time of queries based on prefix schemes

Figure 5.6: Response time of different queries based on different labeling schemes

Moreover, from Figure 5.5(b), we can see that CDQS-Prefix has the smallest

label sizes in all the four datasets (D1-D4). CDQS-Prefix is the most compact

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 108

compared to the existing prefix labeling schemes, and CDQS-Prefix can completely

avoid re-labeling in XML updates (except internal node updates). Note that we

separate different labels of DeweyID(UTF8) and OrdPath based on their label sizes.

In addition, Figure 5.6(a) shows that the response time of CDQS-Containment

is a little larger than the response time of V-CDBS-Containment, and Figure 5.6(b)

shows that CDQS-Prefix has smaller response time on different queries since it has

the smaller label size.

5.5.2 Performance Study on Frequent Updates in Dynamic XML
Data

When intermittent nodes are inserted into XML, V-Binary-Containment, F-Binary-

Containment, BinaryString-Prefix, DeweyID(UTF8)-Prefix and Prime have much

larger update time, thus it will be a disaster for them to update XML with frequent

and tiny insertions, which makes them impossible to answer any queries in either the

uniformly frequent or skewed frequent insertion environment. In this section, we

mainly compare the update performance between OrdPath-Prefix (OrdPath1-Prefix

and OrdPath2-Prefix) and CDQS-Prefix, and between Float-point-Containment and

CDQS-Containment. We compare CDQS with the existing labeling schemes because

frequent updates are easy to lead to the overflow, and CDQS can completely avoid re-

labeling in XML updates (CDQS will not encounter the overflow problem). Section

5.5.2.1 discusses the uniformly frequent insertions and Section 5.5.2.2 discusses the

skewed frequent insertions.

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 109

5.5.2.1 Uniformly Frequent Updates
In this section, we test the uniformly distributed frequent insertions, i.e the insertions

are randomly at different places of XML. The Hamlet file has totally 6636 nodes. We

insert 6635 nodes between every two consecutive nodes of the 6636 nodes. Based on

the new file after insertion, we insert another 13270 nodes between any two

consecutive nodes. We repeat this kind of insertion 6 times. After the 6th time

insertion, the node number in the XML data is 424641 which is 63.99 times of the

original node number.

Figures 5.7(a) and 5.7(b) show the LOG2 of the total update time (ms) (Y-axis)

of prefix schemes (OrdPath-Prefix [64] vs CDQS-Prefix) and containment schemes

(Float-point-Containment [6] vs CDQS-Containment) respectively. In frequent

updates, the main part of the total update time is the CPU time since we can read the

file at one time and write back all the updates at different places to the hard disk at

one time. Even in frequent writing back, our approach still can save a lot of update

time because the label size of CDQS-Prefix is smaller than the label size of OrdPath-

Prefix and the label size of CDQS-Containment is smaller than the label size of Float-

point-Containment.

Even if the overflow is not encountered, i.e. without re-labeling, the update

time of OrdPath-Prefix is still at least 207 (218.8-11.1 = 27.7) times of that of CDQS-

Prefix (see Figure 5.7(a)). OrdPath needs to decode its codes [64] and needs the

addition and division operations to get the numbers between two numbers which are

both expensive. CDQS-Prefix only needs to modify the last 2 bits of the neighbor

label to get the inserted label which is cheaper.

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 110

6

8

10

12

14

16

18

20

0 150000 300000 450000

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

OrderPath1-Prefix
OrderPath2-Prefix
CDQS-Prefix

(a) OrdPath-Prefix (1&2) vs CDQS-Prefix

6
8

10
12
14
16
18
20
22
24

0 150000 300000 450000

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

Float-point-
Containment
CDQS-Containment

(b) Float-point-Containment vs CDQS-Containment

Figure 5.7: Uniformly frequent updates

Even if the overflow is not encountered (less than 18 nodes at a fixed place),

i.e. without re-labeling, the update time of Float-point-Containment (need to insert

two values “start” and “end”; the calculation is expensive) is still at least 548 (29.1)

times of that of CDQS-Containment (see Figure 5.7(b)).

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 111

When there is overflow, the update time of OrdPath-Prefix and Float-point-

Containment is even larger.

If we can increase the length field of V-CDBS code a little larger, the

uniformly frequent updates will not be so easy to lead V-CDBS to re-labeling. In

addition, because V-CDBS only needs to modify the last 1 bit of the neighbor label to

get the inserted label, its update cost is smaller than the update cost of CDQS which

needs to modify the last 2 bits of the neighbor label. Therefore V-CDBS can process

the uniformly frequent updates more efficiently compared to CDQS if there is no

overflow. Note that the update costs of OrdPath-Prefix and Float-point-Containment

are much more expensive than V-CDBS and CDQS even if there is no overflow.

5.5.2.2 Skewed Frequent Updates
In this section, we test the case that the nodes are always inserted at a fixed place of

the XML file Hamlet. The skewed insertion is easy to lead to the overflow, therefore

V-CDBS is not appropriate to process the skewed insertion. In this section, we only

compare CDQS encoding with the existing approaches.

When nodes are always inserted at a fixed place, it is much easier to lead

OrdPath-Prefix and Float-point-Containment to re-labeling.

Figures 5.8(a) shows that the update time of OrdPath-Prefix is at least 1000

times of that of CDQS-Prefix, and the update time of Float-point-Containment is at

least 2000 times of that of CDQS-Containment in skewed insertions. Thus CDQS is

much better than OrdPath and Float-point in processing skewed frequent updates.

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 112

3
4
5
6
7
8
9

10
11
12
13
14

0 50 100 150 200

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

OrdPath1-Prefix
OrdPath2-Prefix
CDQS-Prefix

(a) OrdPath-Prefix vs CDQS-Prefix

2
4
6
8

10
12
14
16
18
20

0 50 100 150 200

Number of nodes inserted

LO
G

2(
to

ta
l u

pd
at

e
tim

e
(m

s)
)

Float-point-
Containment
CDQS-
Containment

(b) Float-point_Containment vs CDQS-Containment

Figure 5.8: Skewed frequent updates

The very large update time and the larger label sizes make OrdPath-Prefix and

Float-point-Containment unsuitable to answer queries in the frequent (uniformly and

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 113

skewed) insertion environment. This analysis together with the analysis in the first

paragraph of Section 5.5.2.2 indicate that CDQS will work the best to answer queries

in the frequent insertion environment even if we do not use any techniques to process

the skewed insertion problem. Even so, we still propose some techniques to process

the skewed insertion in Section 6.3.2.

5.5.3 Performance Study on CDOS and CDHS

When the total number is between 20 and 220, Figure 5.9 shows the sizes of CDQS,

CDOS, and CDHS. In Figure 5.9, we suppose that there is one separator for each code.

When the total number is smaller than or equal to 28, CDQS is the most compact;

when the total number is between 210 and 220, CDOS is the most compact; and when

the total number is larger than or equal to 216, CDHS has smaller size than CDQS.

Though with the increasing of total number, the total size of CDOS and CDHS

will be smaller than CDQS, the encoding time of CDOS and CDHS is averagely 2.1

and 5.5 times of that of CDQS. That is to say, CDOS and CDHS are slower in

encoding.

That also shows that CDOS and CDHS have more expensive update costs than

CDQS. CDQS only needs to modify the last 2 bits of the neighbor codes, while

CDOS and CDHS need to modify the last 3 and 4 bits respectively. More important,

CDQS only needs to consider the neighbor code that is ended with “2” or “3” besides

the sizes of the neighbor codes, while CDOS and CDHS need to consider many more

cases to make the label size increase logarithmically, thus the update cost of CDOS

and CDHS are not cheap; otherwise the size of CDOS and CDHS will increase very

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 114

fast which makes the advantage of CDOS and CDHS not an advantage, i.e. not more

compact than CDQS.

In conclusion, CDBS and CDQS are the cheapest two approaches to process

updates, as well their sizes are not large.

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

LOG2(Total number)

LO
G

2(
To

ta
l s

iz
e

(b
its

))

CDQS
CDOS
CDHS

Figure 5.9: Label sizes of different labeling schemes

5.6 Summary

Because the CDBS encoding will encounter the overflow problem which can not

completely avoid re-labeling in XML updates, we design the CDQS encoding in this

Chapter. Four quaternary strings “0”, “1”, “2” and “3” are used in CDQS, and “0” is

used as the separator. CDQS will never encounter the overflow problem, yet it

Chapter 5 CDQS Encoding of Node Labels to Completely Avoid Re-labeling 115

supports node insertions with the orders kept and without any re-labeling of the

existing nodes. Therefore CDQS can completely avoid re-labeling in XML updates.

Compared with V-CDBS, the total code size of CDQS is larger and the update

cost is larger, i.e. modify the last 2 bits rather than the last 1 bit, but on the other hand,

CDQS can completely avoid re-labeling in XML updates.

In summary, V-CDBS is the most compact, and it can process the intermittent

and uniformly frequent updates more efficiently if there is no overflow. On the other

hand, CDQS can completely avoid re-labeling in XML updates.

We conduct experiments which show that CDQS encoding can completely

avoid re-labeling, and it is the only approach to process skewed frequent updates

efficiently.

Chapter 6

Controlling the Increase in Label
Size

If there are only insertions, Algorithm 4.1 guarantees that the inserted binary string

between two consecutive CDBS codes has the smallest size, and Algorithm 5.1

guarantees that the two inserted quaternary strings between two consecutive CDQS

codes have the smallest size. In real life, there are many applications which have only

insertions but have no deletions. For example, the DBLP inserts the new publications

everyday into its XML database, but it will not delete the previous data. The stock

XML data also have only insertions but no deletions.

On the other hand, if there are deletions, Algorithm 4.1 and Algorithm 5.1 can

not guarantee that the inserted binary string has the smallest size. If we still use

Algorithm 4.1 and Algorithm 5.1 to process updates with both insertions and

deletions, the label size will increase not so slow. Thus we need to find new

algorithms to control the label size increasing speed; meanwhile the new algorithms

should also have the ability to keep the orders. Because CDBS is easier to understand,

we introduce the new algorithms still based on CDBS. These algorithms can be easily

extended for CDQS.

Chapter 6 Controlling the Increase in Label Size 117

In Section 6.1, we use examples to show, in the update environment with both

insertions and deletions, how to find the binary string with the smallest size between

two binary strings and with the orders kept. Next in Section 6.2, we discuss a method

to process the skewed insertion problem (see Section 4.4.4) though our approach

works the best to answer queries in skewed insertion environment. The experimental

results are reported in Section 6.3, and Section 6.4 summarizes this chapter.

6.1 Finding the Codes with the Smallest Size between Two
Codes

Because the examples in this chapter will frequently refer to the V-CDBS codes in

Table 4.1, we directly copy the V-CDBS codes in Table 4.1 to Table 6.1. Thus the V-

CDBS codes can be easily referred when reading the following examples.

Table 6.1: V-CDBS encoding

 V-CDBS
1 00001
2 0001
3 001
4 0011
5 01
6 01001
7 0101
8 011
9 0111

10 1
11 10001
12 1001
13 101
14 1011
15 11
16 1101
17 111
18 1111

Chapter 6 Controlling the Increase in Label Size 118

We firstly use an example to show why Algorithm 4.1 can not guarantee that

inserted binary string has the smallest size if there are deletions.

Example 6.1 For the first three V-CDBS codes “00001”, “0001” and “001” in Table

6.1, if we use Algorithm 4.1 to insert a binary string between “00001” and “0001”,

the inserted binary string is “000011”. We can not find any other binary strings

which are ended with “1”, are between “00001” and “0001” lexicographically, and

have sizes smaller than or equal to 6 bits, i.e. the size of “000011”. That is to say, if

there are only insertions, Algorithm 4.1 guarantees that the inserted binary string is

always with the smallest size. On the other hand, if there are deletions also, Algorithm

4.1 can not guarantee that the inserted binary string has the smallest size. Suppose

that we delete the “0001” between “00001” (SL) and “001” (SR). Now if we want to

insert a binary string between “00001” and “001”, the inserted binary is “000011”

based on Algorithm 4.1. Obviously “000011” is not the binary string with the

smallest size between “00001” and “001” because “0001” is between “00001” and

“001” and its size is smaller than the size of “000011”. Therefore we design a new

algorithm (Algorithm 6.1) to find the binary string with the smallest size between two

binary strings in the update environment with both insertions and deletions.

The main idea of Algorithm 6.1 is that we compare SL and SR bit by bit from

left to right to find SM such that SM is ended with “1”, and SM has the smallest size in

all the codes between SL and SR lexicographically.

Chapter 6 Controlling the Increase in Label Size 119

Algorithm 6.1: AssignMiddleBinaryStringWithSmallestSize(SL, SR)
Input: SL SR; SL and SR are both ended with “1”
Output SM such that SL SM SR lexicographically, and SM has the smallest size

 1: Case 1 SL is empty but SR is NOT empty, i.e. insert a code before the first code.
 2: denote the position of the firstly encountered “1” in SR as P //there must be a “1” in SR
 3: ST = labeling(SR, 1, P) //ST is the Temporarily inserted binary string
 4: if ST SR lexicographically then //Case 1(a)
 5: SM = ST
 6: else //Case 1(b)
 7: SM = labeling(SR, 1, P-1) ⊕ “01” //change the firstly encountered “1” to “01”
 8: end if

 9: Case 2 SL is NOT empty but SR is empty, i.e. insert a code after the last code.
10: if all the bits of SL are “1” then //Case 2(a)
11: SM = SL ⊕ “1”
12: else //Case 2(b)
13: denote the position of the firstly encountered “0” in SL as P
14: SM = labeling(SL, 1, P-1) ⊕ “1” //change the firstly encountered “0” to “1”
15: end if

16: Case 3 SL is a prefix of SR. Insert a code between two codes.
17: ST = labeling(SR, length(SL)+1, length(SR)) //ST is the Temporarily inserted binary
 //string when removing SL from the left side of SR
18: denote the position of the firstly encountered “1” in ST as P //there must be a “1” in ST
19: ST2 = labeling(ST, 1, P) //ST2 is another Temporarily inserted binary string
20: if ST2 ST lexicographically then //Case 3(a)
21: SM = SL ⊕ ST2
22: else //Case 3(b)
23: SM = SL ⊕ labeling(ST, 1, P-1) ⊕ “01” //change the firstly encountered “1” to “01”
24: end if

25: Case 4 SL is not a prefix of SR. Insert a code between two codes.
26: denote the first difference position of SL and SR as P;
27: ST = labeling(SL, 1, P-1) //ST is the Temporarily inserted binary before the first
 //different position in SL and SR, i.e. SL = ST ⊕ “0” ⊕ “***”, and SR = ST ⊕ “1”
 //⊕ “***”. Note that “***” is the rest binary string symbols.
28: if length(SR) > P then //Case 4(a) the P here is the P at line 26
 SM = ST ⊕ “1”
29: else //i.e. length(SR) = P; note that length(SR) can not be smaller than P
30: ST2 = labeling(SL, P+1, length(SL)) //ST2 is the Temporarily inserted binary string
 //from position P+1 to the end position of SL
31: if all the bits of ST2 are “1” then //Case 4(b)
32: SM = SL ⊕ “0” ⊕ ST2 ⊕ “1”
33: else //Case 4(c)
34: denote the position of the firstly encountered “0” in ST2 as P2
35: : SM = ST ⊕ “0” ⊕ labeling(ST2, 1, P2-1) ⊕ “1”
 //change the firstly encountered “0” in ST2 to “1”
36: end if
37: end if

Chapter 6 Controlling the Increase in Label Size 120

Now we use some intuitive examples to illustrate the different cases in

Algorithm 6.1.

Case 1 in Algorithm 6.1

Case 1 is used to insert a code before the first code. The following intuitive

example shows how Case 1 works.

Example 6.2 Case 1(a), suppose we delete the first three V-CDBS codes in Table 6.1,

and want to insert a binary string before the current first code “0011”. The firstly

encountered “1” in “0011” is at the third position; thus ST = “001”, and because ST

 SR, SM = ST = “001”. “001” is the binary string with the smallest size which is

smaller than “0011” lexicographically. Case 1(b): suppose we delete the first V-

CDBS code in Table 6.1 and want to insert a binary string before the current first

code “0001”. The firstly encountered “1” in “0001” is at the fourth position; thus ST

= “0001”, but because ST is not lexicographically smaller than SR, i.e. the first code

“0001”, we have to change the last “1” in ST to “01” as the final inserted binary

string, i.e. the SM = “00001” (“0001” → “00001”). “00001” is the binary string

with the smallest size which is smaller than “0001” lexicographically.

(II) Case 2 in Algorithm 6.1

Case 2 is used to insert a code after the last code. The following intuitive

example shows how Case 2 works.

Example 6.3 Case 2(a): suppose we delete the last V-CDBS code “1111” in Table

6.1 and want to insert a binary string after the current last code “111”. Because all

Chapter 6 Controlling the Increase in Label Size 121

the bits of “111” are “1”s, SM = SL ⊕ “1” = “1111”. It can be seen that “1111” is

the binary string with the smallest size which is large than “111” lexicographically.

Case 2(b): suppose we delete the 13th to 18th V-CDBS codes in Table 6.1, and want to

insert a binary string after the current last code “1001”. We change the firstly

encountered “0” to “1”. The firstly encountered “0” in “1001” is at the second bit;

we change this “0” to “1”, and the inserted binary string is the first two bits of

“1001” with “0” changed to “1”, i.e. SM = “11”. In this way, we guarantee that the

inserted binary string is lexicographically larger than the last code and has the

smallest size.

(III) Case 3 in Algorithm 6.1

Case 3 is used to insert a code between two codes. In Case 3, SL is a prefix of

SR. The following intuitive example shows how Case 3 works.

Example 6.4 Case 3(a): suppose we delete the two V-CDBS codes between “11” (SL)

and “1111” (SR) in Table 6.1, and want to insert a new binary string between SL “11”

and SR “1111”. “11” “1111” lexicographically because “11” is a prefix of

“1111”, therefore this is Case 3. ST = “11”, i.e. the last two bits of SR “1111”. The

firstly encountered “1” in ST is at the first position; thus ST2 = “1” i.e. we assume that

the temporarily inserted binary string is the first bit of “11”. ST2 ST, thus SM = SL

⊕ ST2 = “11” ⊕ “1” = “111”. Obviously “111” is the binary string with the

smallest size between “11” and “1111” lexicographically. Similarly Case 3(b) can be

processed following the steps for Case 3(b) in Algorithm 6.1; here we do not repeat

these steps in Algorithm 6.1.

Chapter 6 Controlling the Increase in Label Size 122

(IV) Case 4 in Algorithm 6.1

Case 4 is still used to insert a code between two codes. In Case 4, SL is not a

prefix of SR. The following intuitive example shows how Case 4 works.

Example 6.5 Case 4(c), suppose we delete the second code between the first code

“00001” (SL) and the third code “001” (SR) in Table 6.1, and want to insert a binary

string between SL “00001” and SR “001”. “00001” “001” lexicographically

because the third bit of “00001” is “0”, while the third bit of “001” is “1”, therefore

this is Case 4. Because the first difference bit between “00001” and “001” is at

position 3, thus ST = “00”. Because length(SR) = 3 which is not larger than the first

difference position between SL and SR, ST2 = “01”, i.e. the last two bits of SL “00001”.

Because not all the bits of ST2 are “1”s, this is Case 4(c). Finally SM = ST ⊕ “0” ⊕

subString(ST2, 1, P2-1) ⊕ “1” = “00” ⊕ “0” ⊕ “” ⊕ “1” = “0001”. Obviously

SM “0001” is lexicographically between “00001” and “001” and it has the smallest

size, i.e. there are no any other binary strings which are ended with “1”, are

lexicographically between “00001” and “001”, and have smaller or equal sizes as

the inserted binary string “0001”. Similarly Case 4(a) and Case 4 (b) can be

processed following the steps for Case 4(a) and Case 4(b) in Algorithm 6.1; here we

do not repeat these steps in Algorithm 6.1.

Though Cases 3 and 4 are both used to insert a code between two codes, their

processing methods are different.

Chapter 6 Controlling the Increase in Label Size 123

6.2 Handling Insertion Skew

In this section, we introduce a method to process the skewed insertion problem

presented in Section 4.4.4 of Chapter 4. Though the experimental results in Section

5.5.2 of Chapter 5 shows that our encoding still works the best to answer queries in

the skewed insertion environment because we dramatically decrease update time, here

we further discuss one method to control the label size increasing speed in the skewed

insertion environment.

Still based on V-CDBS, we introduce the skewness processing method

because V-CDBS is easier to understand. This skewness processing method can be

easily extended for CDQS.

Skewness Processing Method (SPM) Estimate (based on the characteristics of XML

data or probing test) the number of nodes that will be inserted at the fixed place.

Based on the estimated number, pre-calculate the labels, and assign these labels to the

inserted nodes.

Example 6.6 Suppose that there are 127 codes that are required to be inserted one by

one before the first V-CDBS code “00001” (see Table 4.1), then each insertion

requires that one more bit should be added for the new inserted code, i.e. the new

code will be “000001”, “0000001”, “00000001” etc. Therefore the code size will

increase fast; after inserting 127 codes, the total size for these 127 new codes will be

(6 + 132) × 127 / 2 = 8763. It can be seen that without any Skewness Processing

Methods (SPM), the label size increases fast in the skewed insertion. On the other

hand, if we employ the Skewness Processing Method (SPM), we can pre-calculate the

Chapter 6 Controlling the Increase in Label Size 124

codes for the 127 inserted codes at the beginning. Note that we pre-calculate the

codes now, and assign the codes to the inserted nodes only when they are really

inserted. The (1/2)th number of the 127 numbers is encoded with “000001” (“00001”

→ “000001”), the (1/4)th number of the 127 numbers is encoded with “0000001”

(“000001” → “0000001”), and the (3/4)th number of the 127 numbers is encoded

with “0000011” (“000001” ⊕ “1” → “0000011”). Similarly we can encode the

(1/8)th, (3/8)th, (5/8)th and (7/8)th numbers of the 127 numbers. These steps are similar

to the steps in Algorithm 4.2; the difference is that for this example, we know the most

right code “00001”, but for Algorithm 4.2, both the most left and most right codes are

empty at the beginning. In this way, the total size of the new inserted codes is

)1log(4)1log(++++× NNNN = 127 × log(127+1)+4 × 127+ log(127+1) = 1404;

here N is the total number of inserted codes; this formula is only appropriate for this

insertion case. It can be seen that 1404 is smaller than 8763, therefore SPI can

efficiently process the skewed insertion problem.

The method in Examples 6.3 can be used for the skewed insertions at other

places, and not restricted to the insertions before the first code.

6.3 Experimental Evaluation

In Section 6.3.1, we test Algorithm 6.1 which can find the smallest size binary string

between two binary strings in the update environment with both insertions and

deletions. In Section 6.3.2, we test the Skewness Processing Method (SPM).

Chapter 6 Controlling the Increase in Label Size 125

6.3.1 Comparisons of Algorithm 4.1 and Algorithm 6.1

We test the case that nodes are deleted and inserted at the odd positions of Hamlet file

in Shakespeare’s play dataset (D1) (see Table 4.2); it is similar for other files in other

datasets. After the deletions and insertions, we call this new Hamlet file Hamlet2, and

this is case 1. Secondly we test that the nodes are deleted and inserted at the even

positions of Hamlet2; we call this new Hamlet file Hamlet3, and this is case 2.

Thirdly we test that the nodes are deleted and inserted at the odd positions of Hamlet3;

we call this new Hamlet file Hamlet4, and this is case 3. We do the similar deletions

and insertions till case 10.

We compare the performance of Algorithm 4.1 and Algorithm 6.1 in the

update environment with both insertions and deletions. Figure 6.1 shows that the label

size of Algorithm 6.1 does not increase in all the 10 cases (since we can find the

smallest labels, i.e. reuse the deleted labels in these 10 cases). On the other hand, the

label size of Algorithm 4.1 increases linearly (for these 10 cases) which is fast. Note if

there are only insertions (no deletions) at different places of XML, the label size of

Algorithm 4.1 increases logarithmically but not linearly.

The experimental results confirm that Algorithm 6.1 can efficiently control the

increase of the label size. Meanwhile, Algorithm 6.1 can keep the document order

without re-labeling also.

Algorithm 6.1 is more appropriate to efficiently process the updates with both

insertions and deletions, and Algorithm 4.1 is more appropriate for the updates with

insertions only because the cost of Algorithm 4.1 is much smaller, i.e. it only needs to

modify the last 1 bit of the neighbor code to get the inserted code.

Chapter 6 Controlling the Increase in Label Size 126

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

Deletion and insertion cases

La
be

l s
iz

e
(1

,0
00

,0
00

 b
its

)

Algorithm 4.1

Algorithm 6.1

Figure 6.1: Comparison of Algorithm 4.1 and Algorithm 6.1 for CDBS in the update
environment with both insertions and deletions

6.3.2 Processing the Skewed Insertion

Now we test the skewness processing method introduced in Section 6.2. Based on the

Hamlet file of dataset D1 in Table 4.2, we always insert nodes as the first child of the

root. Figures 6.2 shows the LOG2 of the total label size (bits) (Y-axis). The X-axis of

Figure 6.2 shows different number of inserted nodes at a fixed place; note that the

Hamlet file originally has totally 6636 nodes. If there is no Skewness Processing

Methods (NoSPM), it can be seen from Figure 6.2 that the label size increases very

fast. When the Skewness Processing Method (SPM) (see Section 6.2 for the details) is

applied to process the skewed insertion problem, the label size increases much slower;

see Figure 6.2.

Chapter 6 Controlling the Increase in Label Size 127

16

18

20

22

24

26

28

0 2500 5000 7500

Number of inserted nodes

LO
G

2(
To

ta
l l

ab
el

 s
iz

e
(b

its
))

NoSPM
SPM

Figure 6.2: Processing of skewed insertions

6.4 Summary

If there are only insertions, Algorithm 4.1 can guarantee that the inserted binary string

has the smallest size. If there are both insertions and deletions, Algorithm 4.1 can not

guarantee that the inserted binary string has the smallest size. Therefore in this

chapter, we firstly designed an algorithm (Algorithm 6.1) which can find the smallest

size binary string between two binary strings. In this way, the label size will increase

slowly. Accordingly we can keep XML query performance un-decreased.

Furthermore, Algorithm 6.1 also supports order-sensitive insertions without re-

encoding the existing numbers. In summary, Algorithm 6.1 is more appropriate to

efficiently process the updates with both insertions and deletions, and Algorithm 4.1

is more appropriate for the updates with insertions only because the cost of Algorithm

Chapter 6 Controlling the Increase in Label Size 128

4.1 is much smaller, i.e. it only needs to modify the last 1 bit of the labeling code to

get the inserted code.

In addition, to address the skewed insertion problem, we introduce the

skewness processing method which can control the label size increasing speed even if

the nodes are always inserted at a fixed place of XML. It should be noted that even if

we do not use the skewness processing techniques, our approach still works the best

to answer queries in the dynamic environment of XML data because our approach

saves a lot of time in updating.

The experimental results show that both Algorithm 6.1 in Section 6.1 and the

skewness processing method in Section 6.2 can efficiently control the label size

increasing speed.

Chapter 7

Conclusion

In this chapter, we summarize the contributions of this thesis and discuss the future

works.

7.1 Summary of Contributions

(1) P-Containment Scheme to Improve the Query Efficiency

The core operations in XML query are determining the following four basic

relationships, i.e. ancestor-descendant, parent-child, sibling and ordering

relationships. The existing labeling schemes are not efficient to determine all the four

relationships. Therefore we propose the P-Containment scheme which can determine

all the four basic relationships efficiently no matter what the XML structure is. More

important, the P-Containment scheme is used to efficiently process internal node

updates and completely avoid re-labeling.

(2) CDBS Encoding to Efficiently Process Updates

One more important problem is how to efficiently process XML updates. The

most important contribution of this thesis is that we propose novel techniques which

Chapter 7 Conclusion 130

can efficiently process the updates. The most important feature of CDBS encoding is

that our comparison is based on the lexicographical order. Based on the

lexicographical order, we have the following theorem: given two lexicographically

ordered binary strings which are both ended with “1”, we can always insert a binary

string between the two given binary strings with the orders kept. We proposed the

algorithm to insert binary strings between two ordered binary strings. This algorithm

is the foundation of this thesis which supports that order-sensitive updates can be

processed efficiently. Also CDBS encoding is the most compact, i.e. it is as compact

as the binary number encoding of consecutive decimal numbers (there is no gap). The

update cost of V-CDBS is the cheapest, i.e. it only needs to modify the last 1 bit of the

neighbor code to get the inserted code.

(3) CDQS Encoding to Completely Avoid Re-labeling

On the other hand, CDBS uses the fixed size length field to separate different

labels. The fixed size length field will encounter the overflow problem when a lot

nodes are inserted into an XML tree. When the size overflows, all the nodes should be

re-labeled. In order to solve the overflow problem, we propose the Compact Dynamic

Quaternary String (CDQS) encoding. The idea of CDQS is that we use four symbols

“0”, “1”, “2” and “3” for encodings, and each symbol is stored with 2 bits, i.e. “00”,

“01”, “10” and “11”. The symbol “0” is used as the separator to separate different

codes, and only “1”, “2” and “3” are used in the CDQS codes. Note that for P-

Containment scheme, we use “0” to separate the “start”, “end” and “parent_start”, and

every three values form a group of “start, end, parent_start”. We do not use the

Chapter 7 Conclusion 131

“level” value because it will encounter the overflow problem. For the prefix scheme,

we use “0” as the delimiter to separate different components of a label, and use “00”

as the separator to separate different labels. Based on a similar idea of CDBS, CDQS

also supports order-sensitive insertions. In addition, the separator “0” will never

encounter the overflow problem, therefore CDQS can completely avoid re-labeling in

XML leaf node updates. Note that we can not completely avoid re-labeling in internal

node updates; this is the drawback of the existing labeling schemes, but not the

drawback of our CDQS encoding.

Compared to CDQS, CDBS is more compact, and the variable length CDBS,

i.e. V-CDBS only needs to modify the last 1 bit of the neighbor label to get the

inserted label, but it can not completely avoid re-labeling. CDQS needs to modify the

last 2 bits of the neighbor label to get the inserted label, but it can completely avoid

re-labeling. Therefore, if the updates are intermittent or uniformly frequent updates,

CDBS can work well; if the updates are skewed frequent updates, only CDQS

efficiently works. CDBS and CDQS encodings are orthogonal to specific labeling

schemes, therefore they can be applied broadly to different labeling shemes, e.g.

containment, prefix and prime schemes, to maintain the document order when XML is

updated.

(4) Combine P-Containment Scheme with CDBS or CDQS Encoding to

Efficiently Process Both Queries and Updates

When the P-Containment scheme proposed in this paper is combined with

CDBS or CDQS encoding, both the queries and updates can be processed efficiently.

Chapter 7 Conclusion 132

Furthermore, the combination of P-Containment scheme and CDBS or CDQS

encoding can help to efficiently process the internal node updates. CDBS-P-

Containment or CDQS-P-Containment scheme only needs to modify the

“parent_start” values of the child nodes of the inserted or deleted nodes, but need not

change any labels of the other descendants of the inserted or deleted node which is

much cheaper compared with the existing labeling schemes.

7.2 Future Works

There are no labeling schemes and encoding approaches which completely avoid re-

labeling of nodes in internal node updates. Thus we need to consider how to solve this

problem in the future.

It can be seen from this thesis that even if we do not handle the skewed

insertion problem, our approaches still work the best to answer queries in the frequent

update environment of XML data because the update time of our approaches are

much smaller. Also we propose a method to process the skewed insertion problem,

but this skewness processing method has some restrictions, e.g. it should estimate the

number of nodes to be inserted at a fixed place, while the estimation will not be so

easy. By balancing the query and update performance [68] or by re-labeling some

nodes, we can solve this skewed insertion problem better. In the future, we want to

research whether there are approaches that can completely avoid re-labeling and

meanwhile solve the skewed insertion problem efficiently, but seems that it is not so

easy to solve this problem because seems that these two aspects contradict each other.

Appendices

Appendix A: Meanings of Abbreviations

Table A1 illustrates the meanings of the abbreviations used in this thesis.

Table A1: Symbols to represent the existing labeling schemes

Abbreviations Meaning

V Represent Variable length encoding. If there is a V before an
encoding name, it means that this encoding has variable length.

F Represent Fixed length encoding. If there is an F before an
encoding name, it means that this encoding has fixed length.

P-Containment The P in P-Containment represents the “parent_start” value, and
the “parent_start” value of a node is the “start” value of its parent.

CDBS Compact Dynamic Binary String encoding
CDQS Compact Dynamic Quaternary String encoding

Appendices 134

Appendix B: Calculation of the SC Value for Prime Scheme

Chinese Remainder Theorem [7, 74] Let M = [m1, m2, ···, mk] and N = [n1, n2, ···, nk]

be two lists of integers. If the Greatest Common Divisor GCD(m1, m2, ···, mk) = 1, the

Simultaneous Congruence SC(M, N) = x satisfies that x mod m1 = n1, x mod m2 =

n2, ···, x mod mk = nk, and there exists exactly one solution x between 0 and C, where

∏
=

=
k

i
imC

1

.

The Euler’s quotient function))()/((
1

ii

k

i
i mnmCx φ××= ∑

=

 mod C is used to

calculate the x, where)(imφ is the Euler’s totient function [7].

The following steps shows the calculation details:

Calculate C firstly, ∏
=

=
k

i
imC

1

, then calculate ii mCm /' = for each

},,2,1{ ki ⋅⋅⋅∈ . Multiply 'm 1, 2, etc. times until 'm mod im = 1, },,2,1{ ki ⋅⋅⋅∈ .

Finally))'((
1

i

k

i
i nmx ×= ∑

=

 mod C .

We use a concrete example to illustrate the calculations.

Example A1 Suppose M = [2, 5, 7] and N = [1, 2, 3], then

70752
1

=××== ∏
=

k

i
imC , and 352/70/' 11 === mCm , 145/70/' 22 === mCm ,

and 107/70/' 33 === mCm . Because 1'1×m mod 1m = 35 mod 2 = 1, the final 1'm

Appendices 135

is equal to 35. Because 1'2 ×m mod 2m = 14 mod 5 ≠ 1, 2'2 ×m mod 2m = 28 mod 5

≠ 1, and 3'2 ×m mod 2m = 42 mod 5 ≠ 1, we have to multiply 2'm 4 times such that

4'2×m mod 2m = 56 mod 5 = 1, then the final 2'm is equal to 56. Finally the 1, 2, 3

and 4 times of 3'm mod 3m ≠ 1, hence we have to multiply 3'm 5 times such that

5'3×m mod 3m = 50 mod 7 = 1, thus the final 3'm is equal to 50. Therefore

))'((
1

i

k

i
i nmx ×= ∑

=

 mod C =)350256135(×+×+× mod 70 = 17, such that 17 mod

M = N, i.e. 17 mod 2 =1, 17 mod 5 = 2, and 17 mod 7 = 3.

Appendices 136

Appendix C: Size Calculations for V-CDBS and CDQS

C1: Calculation of the Total Code Size for V-CDBS

Calculation of

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn

)1(242322212 3210 +×+⋅⋅⋅+×+×+×+×= nn

)22212()2222(21210 nnn ×+⋅⋅⋅+×+×++⋅⋅⋅+++=

)22212(2)12(1101 nnn ×+⋅⋅⋅+×+××+−= −+

)1(22)1(22)22212(2)12(1101 +××−+××+×+⋅⋅⋅+×+××+−= −+ nnn nnnn

)1(22))1(22212(2)12(101 +××−+×+⋅⋅⋅+×+××+−= + nn nnn

Let)1(2322212 210 +×+⋅⋅⋅+×+×+×= nx n , then the above formula

becomes:

x

)1(222)12(1 +××−+−= + nx nn

Therefore 12 1 +×= +nnx .

C2: Calculation of the Total Code Size for CDQS

Appendix C2 is similar to Appendix C1 which can be ignored from reading.

Calculation of

+×××+×××+×××)23()32()22()32()21()32(210

Appendices 137

)2)1(()32(×+××+⋅⋅⋅ nn

))1(333233(4 210 +×+⋅⋅⋅+×+×+×= nn

We calculate)1(333233 210 +×+⋅⋅⋅+×+×+ nn firstly, then we multiply the

result 4 times.

)1(333233 210 +×+⋅⋅⋅+×+×+ nn

)32313()3333(21210 nnn ×+⋅⋅⋅+×+×++⋅⋅⋅+++=

)32313(32/)13(1101 nnn ×+⋅⋅⋅+×+××+−= −+

)1(33)1(33 +××−+××+⋅⋅⋅ nn nn

)1(33))1(32313(32/)13(101 +××−+×+⋅⋅⋅+×+××+−= + nn nnn

Let)1(333233 210 +×+⋅⋅⋅+×+×+= nx n , then the above formula becomes:

x

)1(3332/)13(1 +××−+−= + nx nn

Therefore 4/13)4/12/(1 +×+= +nnx , and we need to multiply x four times

to get the final result. Then the final result is: 13)12(1 +×+ +nn

Appendices 138

Appendix D: Calculation of the Positions Based on V-CDBS

In this appendix, we show how to calculate the positions based on V-CDBS codes.

We use the following example to show how to calculate the positions.

Example A2 The V-CDBS code “01001” in Table 4.1 is corresponding to the 6th

number. We show how to calculate this 6 based on the V-CDBS code “01001” and

the total number 18 (see Table 4.1). The first bit “0” indicates that “01001” is belong

to the first half, i.e. between 0 and 10 (10=0+round((19-0)/2)). The second bit “1”

indicates that “01001” is belong to the second half of 0 and 10, i.e. between 5

(5=0+round((10-0)/2)) and 10. The third bit “0” indicates that “01001” is belong to

the first half of 5 and 10, i.e. between 5 and 8 (8=5+round((10-5)/2)). The fourth bit

“0” indicates that “01001” is belong to the first half of 5 and 8, i.e. between 5 and 7

(7=5+round((8-5)/2)). The fifth bit is the last bit and the last bit is always “1”. The

number between 5 and 7 is only 6, therefore “01001” corresponds to number 6. In

this way, the position of each V-CDBS code can be calculated based on the code itself

and the total number.

It is similar for the position calculation based on CDQS.

Appendices 139

Appendix E: Publications During Ph.D. Period

1 Changqing Li, Tok Wang Ling, and Min Hu. Efficient updates in dynamic

XML: From Binary String to Quaternary String. Accepted by VLDB Journal,

2006.

2 Changqing Li, Tok Wang Ling, Min Hu. Efficient Processing of Updates in

Dynamic XML Data. In Proc. of the 22nd International Conference on Data

Engineering (ICDE), Apr. 2006. Best (Student) Paper Award List (One of the

best two student papers; one of the best six papers).

3 Changqing Li, Tok Wang Ling, Min Hu. Reuse or Never Reuse the Deleted

Labels in XML Query Processing Based on Labeling Schemes. In Proc. of the

11th International Conference on Database Systems for Advanced Applications

(DASFAA), Apr. 2006.

4 Changqing Li, Tok Wang Ling. QED: A Novel Quaternary Encoding to

Completely Avoid Re-labeling in XML Updates. In Proc. of the 14th

International Conference on Information and Knowledge Management (CIKM),

Oct. 2005. Student Travel Award.

5 Changqing Li, Tok Wang Ling, Jiaheng Lu, Tian Yu. On Reducing

Redundancy and Improving Efficiency of XML Labeling Schemes. In Proc. of

the 14th International Conference on Information and Knowledge Management

(CIKM), Oct. 2005. (Poster paper).

Appendices 140

6 Jiaheng Lu, Tok Wang Ling, Tian Yu, Changqing Li, Wei Ni. Efficient

Processing of Ordered XML Twig Pattern. In Proc. of the 16th Database and

Expert Systems Applications (DEXA), Aug. 2005.

7 Changqing Li, Tok Wang Ling. An Improved Prefix Labeling Scheme: A

Binary String Approach for Dynamic Ordered XML. In Proc. of the 10th

International Conference on Database Systems for Advanced Applications

(DASFAA), Apr. 2005.

8 Changqing Li, Tok Wang Ling. From XML to Semantic Web. In Proc. of the

10th International Conference on Database Systems for Advanced Applications

(DASFAA), Apr. 2005. (Short paper).

9 Changqing Li, Tok Wang Ling. OWL-Based Semantic Conflicts Detection and

Resolution for Data Interoperability. In Proc. of the 23rd Int. Conf. on

Conceptual Modeling (ER) Workshop LNCS3289, Nov. 2004.

10 Changqing Li, Tok Wang Ling. A Basis for Semantic Web and e-Business:

Efficient Organization of Ontology Languages and Ontologies. To appear as a

Book Chapter of book Semantic Web Technologies and eBusiness. Publisher:

IDEA GROUP INC. 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-

1240, USA.

Below are the publications when I was in China for the master degree in Peking

University

11 Changqing Li, Shiwei Tang, Hongyan Li. Using Associations to Mine the

Appendices 141

Thick-Scale E-commerce Personalize Service Information. Journal of Computer

Science, Jan. 2002.

12 Changqing Li, Shiwei Tang, Hongyan Li. The Design of a Whole E-commerce

System. Journal of Computer Science, Jun. 2001.

13 Changqing Li, Wenbing Zhao, Shiwei Tang. A Personalized Service Protocol

Based on HTTP. 11th Conference of Computer Networks and Data

Communication in China. Oct. 2000.

Bibliography

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling schemes for ancestor

queries. In Proc. of the 12th annual ACM-SIAM Symp. on Discrete Algorithms

(SODA’01), pages 547-556, 2001.

[2] S. Abiteboul and V. Vianu. Regular path queries with constraints. In Proc. of

the 16th ACM Symp. on Principles of Database Systems (PODS’97), pages 122-

133, 1997.

[3] R. Agrawal, A. Borgida, and H.V. Jagadish. Efficient Management of

Transitive Relationships in Large Data and Knowledge Bases. In Proc. of the

ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’89), pages 253-

262, 1989.

[4] H. Ait-Kaci, R. Boyer, P. Lincoln, and R. Nasr. Efficient implementation of

lattice operations. ACM Trans. on Progr. Languages and Systems, 11(1):115-

146, 1989.

[5] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas, and D. Srivastava.

Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In

Proc. of the 18th Int. Conf. on Data Engineering (ICDE’02), pages 141-152,

2002.

Bibliography 143

[6] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A Robust Numbering

Scheme for XML Documents. In Proc. of the 19th Int. Conf. on Data

Engineering (ICDE’03), pages 705-707, 2003.

[7] J.A. Anderson and J.M. Bell. Number Theory with Application. Prentice-Hall,

New Jersey, 1997.

[8] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay, J. Robie, and

J. Simon. XML path language (XPath) 2.0. W3C working draft 04, Apr. 2005.

[9] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Simon.

XQuery 1.0: An XML Query Language. W3C working draft 04, Apr. 2005.

[10] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, and J.

Cowan. Extensible markup language (XML) 1.1. W3C recommendation, Feb.

2004.

[11] D. Brickley and R.V. Guha. Resource Description Framework Schema (RDFS)

Specification 1.0. W3C Recommendation, Feb. 2004.

[12] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: Optimal XML

pattern matching. In Proc. of the ACM SIGMOD Int. Conf. on Management of

Data (SIGMOD’02), pages 310-321, 2002.

[13] B. Catania, W.Q. Wang, B.C. Ooi, and X. Wang. Lazy XML Updates: Laziness

as a Virtue of Update and Structural Join Efficiency. In Proc. of the ACM

SIGMOD Int. Conf. on Management of Data (SIGMOD’05), 2005.

Bibliography 144

[14] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca.

XML-GL: A graphical language for querying and restructuring XML

documents. In Proc. of the 8th Int. World Wide Web Conf. (WWW’99), pages

93-109, 1999.

[15] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML query language for

heterogeneous data sources. In Int. Workshop on the Web and Databases

(WebDB’00), pages 53-62, 2000.

[16] E.C. Chang. Design and Analysis of Algorithms. Module CS3230 of

Department of Computer Science, National University of Singapore.

[17] Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting Holism in XML

Twig Pattern Matching using Structural Indexing Techniques. In Proc. of the

ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’05), 2005.

[18] Ting Chen, Tok Wang Ling, and Chee Yong Chan. Prefix Path Streaming: A

New Clustering Method for Optimal Holistic XML Twig Pattern Matching. In

Proc. of the 15th Int. Conf. on Very Large Data Bases (DEXA’04), pages 801-

810, 2004.

[19] Zhuo Chen, Tok Wang Ling, Mengchi Liu, and Gillian Dobbie. XTree for

Declarative XML Querying. In Proc. of the 9th Int. Conf. on Database Systems

for Advanced Applications (DASFAA’04), pages 100-112, 2004.

[20] S.-Y. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, and C. Zaniolo. Efficient

Structural Joins on Indexed XML Documents. In Proc. of the 28th Int. Conf. on

Very Large Data Bases (VLDB’02), pages 263-274, 2002.

Bibliography 145

[21] V. Christophides, D. Plexousakis, M. Scholl, and S. Tourtounis. On labeling

schemes for the semantic web. In Proc. of the 12th Int. World Wide Web Conf.

(WWW’03), pages 544-555, 2003.

[22] C. Chung, J. Min, and K. Shim. APEX: an adaptive path index for XML data. In

Proc. of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’02),

pages 121-132, 2002.

[23] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In Proc. of

the 21th ACM Symp. on Principles of Database Systems (PODS’02), pages 271-

281, 2002.

[24] B. Cooper, N. Sample, M.J. Franklin, G.R. Hjaltason, and M. Shadmon. A fast

index for semistructured data. In Proc. of the 27th Int. Conf. on Very Large

Data Bases (VLDB’01), pages 341-350, 2001.

[25] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query

language for XML. In Proc. of the 8th Int. World Wide Web Conf. (WWW’99),

pages 77-91, 1999.

[26] P.F. Dietz. Maintaining order in a linked list. In Proc. of the 14th Annual ACM

Symp. on Theory of Computing (STOC’82), pages 122–127, 1982.

[27] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In

Proc. of the 16th Annual ACM Symp. on Theory of Computing (STOC’87),

pages 365-372, 1987.

Bibliography 146

[28] M. Duong and Y. Zhang. A New Labeling Scheme for Dynamically Updating

XML Data. In Proc. of the 16th Australasian Database Conference (ADC’05),

pages 185-193, 2005.

[29] M. Fernandez and D. Suciu. Optimizing Regular Path Expressions Using Graph

Schemas. In Proc. of the 14th Int. Conf. on Data Engineering (ICDE’98), pages

14-23, 1998.

[30] C. Gavoille and D. Peleg. Compact and localized distributed data structures.

Journal of Distributed Computing, Special Issue for the Twenty Years of

Distributed Computing Research, 2003

[31] R. Goldman and J. Widom. DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases. In Proc. of the 23th Int. Conf. on

Very Large Data Bases (VLDB’97), pages 436-445, 1997.

[32] T. Grust. Accelerating XPath Location Steps. In Proc. of the ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD’02), pages 109-120, 2002.

[33] F.V. Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider,

and L.A. Stein. OWL Web Ontology Language Reference. W3C

Recommendation, 2004.

[34] H. He, J. Xie, J. Yang, and H. Yu. Asymmetric Batch Incremental View

Maintenance. In Proc. of the 21th Int. Conf. on Data Engineering (ICDE’05),

pages 106-117, 2005.

Bibliography 147

[35] H. He and J. Yang. Multiresolution Indexing of XML for Frequent Queries. In

Proc. of the 20th Int. Conf. on Data Engineering (ICDE’04), pages 683-694,

2004.

[36] http://www.saxproject.org/

[37] http://www.w3.org/DOM/

[38] http://www.w3.org/XML/Schema

[39] H. Jiang, H. Lu, W. Wang, and B.C. Ooi. XR-Tree: Indexing XML Data for

Efficient Structural Joins. In Proc. of the ACM SIGMOD Int. Conf. on

Management of Data (SIGMOD’03), pages 253-263, 2003.

[40] Enhua Jiao, Tok Wang Ling, and Chee Yong Chan. PathStack¬: A Holistic

Path Join Algorithm for Path Query with not-predicates on XML Data. In Proc.

of the 10th Int. Conf. on Database Systems for Advanced Applications

(DASFAA’05), pages 113-124, 2005.

[41] H. Kaplan, T. Milo, and R. Shabo. A comparison of labeling schemes for

ancestor queries. In Proc. of the 13th annual ACM-SIAM Symp. on Discrete

Algorithms (SODA’02), pages 954-963, 2002.

[42] R. Kaushik, P. Bohannon, J.F. Naughton, and H.F. Korth. Covering indexes for

branching path queries. In Proc. of the ACM SIGMOD Int. Conf. on

Management of Data (SIGMOD’02), pages 133-144, 2002.

Bibliography 148

[43] R. Kaushik, P. Bohannon, J.F. Naughton, and P. Shenoy. Updates for Structure

Indexes. In Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB’02),

pages 239-250, 2002.

[44] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting Local Similarity

for Indexing Paths in Graph-Structured Data. In Proc. of the 18th Int. Conf. on

Data Engineering (ICDE’02), pages 129-140, 2002.

[45] D.D. Kha, M. Yoshikawa, and S. Uemura. A Structural Numbering Data. In

Proc. of the 8th Int. Conf. on Extending Database Technology (EDBT’02)

Workshop LNCS2490, pages 91-108, 2002.

[46] D.D. Kha, M. Yoshikawa, and S. Uemura. An XML Indexing Structure with

Relative Region Coordinate. In Proc. of the 17th Int. Conf. on Data Engineering

(ICDE’01), pages 313-320, 2001.

[47] O. Lassila and R. Swick. Resource Description Framework (RDF) Model and

Syntax Specification. W3C Recommendation, Feb. 2004.

[48] Changqing Li, Tok Wang Ling, and Min Hu. Efficient Processing of Updates

in Dynamic XML Data. In Proc. of the 22nd Int. Conf. on Data Engineering

(ICDE’06), 2006. Best Paper Award List.

[49] Changqing Li, Tok Wang Ling, and Min Hu. Reuse or Never Reuse the

Deleted Labels in XML Query Processing Based on Labeling Schemes. In Proc.

of the 11th Int. Conf. on Database Systems for Advanced Applications

(DASFAA’06), pages 659-673, 2006.

Bibliography 149

[50] Changqing Li and Tok Wang Ling. QED: A Novel Quaternary Encoding to

Completely Avoid Re-labeling in XML Updates. In Proc. of the 14th Int. Conf.

on Information and Knowledge Management (CIKM’05), pages 501-508, 2005.

Student Travel Award.

[51] Changqing Li, Tok Wang Ling, Jiaheng Lu, and Tian Yu. On Reducing

Redundancy and Improving Efficiency of XML Labeling Schemes. In Proc. of

the 14th Int. Conf. on Information and Knowledge Management (CIKM’05),

pages 225-226, 2005. (Poster paper).

[52] Changqing Li and Tok Wang Ling. An Improved Prefix Labeling Scheme: A

Binary String Approach for Dynamic Ordered XML. In Proc. of the 10th Int.

Conf. on Database Systems for Advanced Applications (DASFAA’05), pages

125-137, 2005.

[53] Changqing Li and Tok Wang Ling. From XML to Semantic Web. In Proc. of

the 10th Int. Conf. on Database Systems for Advanced Applications

(DASFAA’05), pages 582-587, 2005. (Short paper).

[54] Changqing Li and Tok Wang Ling. OWL-Based Semantic Conflicts Detection

and Resolution for Data Interoperability. In Proc. of the 23rd Int. Conf. on

Conceptual Modeling (ER’04) Workshop LNCS3289, pages 266-277, Nov.

2004.

[55] Changqing Li, Tok Wang Ling, and Min Hu. Efficient updates in dynamic

XML: From Binary String to Quaternary String. Accepted by VLDB Journal,

2006.

Bibliography 150

[56] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path

Expressions. In Proc. of the 27th Int. Conf. on Very Large Data Bases

(VLDB’01), pages 361-370, 2001.

[57] Jiaheng Lu, Tok Wang Ling, Chee Yong Chan, and Ting Chen. From Region

Encoding To Extended Dewey: On Efficient Processing of XML Twig Pattern

Matching. In Proc. of the 31st Int. Conf. on Very Large Data Bases (VLDB’05),

pages 193-204, 2005.

[58] Jiaheng Lu, Tok Wang Ling, Tian Yu, Changqing Li, and Wei Ni. Efficient

Processing of Ordered XML Twig Pattern. To appear in Proc. of the 16th Int.

Conf. on Database and Expert Systems Applications (DEXA’05), pages 300-

309, 2005.

[59] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A

Database Management System for Semistructured Data. SIGMOD Record,

26(3): 54-66, 1997.

[60] J. McHugh and J. Widom. Query optimization for XML. In Proc. of the 25th

Int. Conf. on Very Large Data Bases (VLDB’99), pages 315-326, 1999.

[61] T. Milo and D. Suciu. Index Structures for Path Expressions. In Proc. of the 7th

Int. Conf. on Database Theory (ICDT’99), pages 277-295, 1999.

[62] S. Nestorov, J.D. Ullman, J.L. Wiener, and S.S. Chawathe. Representative

Objects: Concise Representations of Semistructured, Hierarchial Data. In Proc.

of the 13th Int. Conf. on Data Engineering (ICDE’97), pages 79-90, 1997.

Bibliography 151

[63] NIAGARA Experimental Data. Available at:

http://www.cs.wisc.edu/niagara/data.html

[64] P.E. O'Neil, E.J. O'Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury.

ORDPATHs: Insert-Friendly XML Node Labels. In Proc. of the ACM SIGMOD

Int. Conf. on Management of Data (SIGMOD’04), pages 903-908, 2004.

[65] C. Qun, A. Lim, and K.W. Ong. D(k)-Index: An Adaptive Structural Summary

for Graph-Structured Data. In Proc. of the ACM SIGMOD Int. Conf. on

Management of Data (SIGMOD’03), pages 134-144, 2003.

[66] P. Rao and B. Moon. PRIX: Indexing And Querying XML Using Prüfer

Sequences. In Proc. of the 20th Int. Conf. on Data Engineering (ICDE’04),

pages 288-300, 2004.

[67] N. Santoro and R. Khatib. Labeling and implict routing in networks. The

Computer J., 28:5-8, 1985.

[68] A. Silberstein, H. He, K. Yi, and J. Yang. BOXes: Efficient Maintenance of

Order-Based Labeling for Dynamic XML Data. In Proc. of the 21th Int. Conf.

on Data Engineering (ICDE’05), pages 285-296, 2005.

[69] I. Tatarinov, Z.G. Ives, A.Y. Halevy, and D.S. Weld. Updating XML. In Proc.

of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’01), 2001.

[70] I. Tatarinov, S. Viglas, K.S. Beyer, J. Shanmugasundaram, E.J. Shekita, and C.

Zhang. Storing and querying ordered XML using a relational database system.

In Proc. of the ACM SIGMOD Int. Conf. on Management of Data

(SIGMOD’02), pages 204-215, 2002.

Bibliography 152

[71] University of Washington XML Repository. Available at:

http://www.cs.washington.edu/research/xmldatasets/

[72] H. Wang, S. Park, W. Fan, and P.S. Yu. ViST: A Dynamic Index Method for

Querying XML Data by Tree Structures. In Proc. of the ACM SIGMOD Int.

Conf. on Management of Data (SIGMOD’03), pages 110-121, 2003.

[73] N. Wirth. Type extensions. ACM Trans. on Progr. Languages and Systems,

10(2):204-214, 1988

[74] X. Wu, M.L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dynamic

Ordered XML Trees. In Proc. of the 20th Int. Conf. on Data Engineering

(ICDE’04), pages 66-78, 2004.

[75] G. Xing and B. Tseng. Extendible range-based numbering scheme for xml

document. In Proc. of the Int. Conf. on Information Technology: Coding and

Computing (ITCC’04), pages 140-141, 2004.

[76] XMark — An XML Benchmark Project. Available at:

http://monetdb.cwi.nl/xml/downloads.html

[77] B.B. Yao, M.T. Özsu, and N. Khandelwal. XBench Benchmark and

Performance Testing of XML DBMSs. In Proc. of the 20th Int. Conf. on Data

Engineering (ICDE’04), pages 621-633, 2004.

[78] F. Yergeau. UTF8: A Transformation Format of ISO 10646. Request for

Comments (RFC) 2279, January 1998.

Bibliography 153

[79] K. Yi, H. He, I. Stanoi, and J. Yang. Incremental Maintenance of XML

Structural Indexes. In Proc. of the ACM SIGMOD Int. Conf. on Management of

Data (SIGMOD’04), pages 491-502, 2004.

[80] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based

approach to storage and retrieval of XML documents using relational databases.

ACM Trans. Internet Techn., 1(1): 110-141, 2001.

[81] N. Zhang, S. Agrawal, and M.T. Özsu. BlossomTree: Evaluating XPaths in

FLWOR Expressions. In Proc. of the 21st Int. Conf. on Data Engineering

(ICDE’05), pages 388-389, 2005.

[82] N. Zhang, V. Kacholia, and M.T. Özsu. A Succinct Physical Storage Scheme

for Efficient Evaluation of Path Queries in XML. In Proc. of the 20th Int. Conf.

on Data Engineering (ICDE’04), pages 54-65, 2004.

[83] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, and G. Lohman. On Supporting

Containment Queries in Relational Database Management Systems. In Proc. of

the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’01), pages

425-436, 2001.

