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Summary 
 

 

The method of assigning labels to the nodes of an XML tree is called a node labeling 

(or numbering) scheme. Based on the labels only, both ordered and un-ordered 

queries can be processed without accessing the original XML file. The core issue for 

XML query is to efficiently determine the following four basic relationships: 

ancestor-descendant (A-D), parent-child (P-C), sibling and ordering relationships.  

The existing node labeling schemes, i.e. containment, prefix and prime 

number schemes, are not efficient to determine all the four basic relationships. For 

instance, the containment scheme is very inefficient to determine the sibling 

relationship; it needs to search the parent of a node, then decide whether another node 

is a child of this parent; the search of the parent needs a lot of parent-child 

relationship determinations which is very expensive. The prefix scheme is efficient to 

determine all the four basic relationships if the XML tree is shallow, however when 

the XML tree becomes deeper, the prefix scheme becomes not efficient because the 

labels of the prefix scheme become longer and the comparisons of node labels 

become expensive. The prime number scheme has very large label size and it employs 

the modular and division operations to determine the relationships which is expensive. 

Thus in this thesis, we firstly propose the P-Containment scheme which can determine 
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all the four basic relationships efficiently no matter what XML structure is. In 

addition, P-Containment is used to efficiently process the internal node updates and to 

completely avoid re-labeling. 

One more important point for the labeling scheme is to process updates when 

nodes are inserted into or deleted from the XML tree. All the existing node labeling 

schemes, i.e. containment, prefix and prime number schemes, have high update cost, 

therefore in this thesis we propose a novel Compact Dynamic Binary String (CDBS) 

encoding to encode the labels of different labeling schemes and based on CDBS 

encoding, updates can be efficiently processed. CDBS encoding has two important 

properties which form the foundations of this thesis: (1) CDBS compares codes based 

on the lexicographical order, and it supports that codes can be inserted between any 

two consecutive CDBS codes with the orders kept and without re-encoding the 

existing numbers; (2) CDBS is orthogonal to specific labeling schemes, e.g. 

containment, prefix and prime number schemes, thus it can be applied broadly to 

different labeling schemes or other applications to efficiently process the updates. 

Moreover, because the fixed size length field of CDBS will encounter the overflow 

problem, we improve CDBS to Compact Dynamic Quaternary String (CDQS) 

encoding. Though the label size of CDQS is larger and its update cost is larger, it can 

completely avoid re-labeling in XML updates no matter what labeling schemes XML 

data employs. 

We report the experimental results to show that CDBS and CDQS encodings 

are superior to previous approaches to process updates in terms of the number of 

nodes to re-label (none for CDQS) and the time for updating. When P-Containment 
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scheme is combined with CDBS (for intermittent updates and uniformly frequent 

updates) or CDQS (completely avoid re-labeling) encoding, both queries and updates 

can be efficiently processed. 
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Chapter 1 

Introduction 
 

Since the eXtensible Markup Language (XML) [10] emerged as a new standard for 

information representation and exchange on the Web, the problems of storing, 

indexing, querying and updating XML documents have been among the major issues 

of database research. In this thesis, we mainly research on how to improve the query 

efficiency of the existing labeling schemes for XML data, and more important we 

propose novel techniques to efficiently update XML data. 

In this chapter, we firstly introduce the background of XML related 

technologies in Section 1.1. Next in Section 1.2 we outline the objective of this thesis. 

The main contributions of this thesis are summarized in Section 1.3, and Section 1.4 

describes the whole organization of this thesis. 

1.1   Background 

In this section, we present XML related technologies. 
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1.1.1   XML 

The eXtensible Markup Language (XML) [10] is a representation language as well as 

an exchange language. As a representation language, XML was originally designed as 

a new document format for large-scale electronic publishing, which is derived from 

the Standard Generalized Markup Language (SGML). As an exchange language, 

XML has played and is now still playing an increasingly important role in the 

exchange of a wide variety of data on the Web. This is because XML can describe 

both structured and semi-structured data. In addition, XML is extensible, platform-

independent, and fully Unicode compliant. 

We use an example to illustrate what is an XML. 

 
Example 1.1 Figure 1.1 depicts a simple XML document. XML identifies data using 

tags, which are identifiers enclosed in angle brackets. Collectively, the tags are 

known as “markup”. XML document in Figure 1.1 starts with a prolog markup that 

identifies the document as an XML document that conforms to version 1.0 of XML 

specification and uses the 8-bit Unicode character encoding scheme. Next, there is 

one line of comments, which will be ignored by XML parsers. After that, 

“<doc>…</doc>” is an element, and it is the root of the document. Generally, each 

XML document has a single root element. In Figure 1.1, “<student__employee 

ID="HD1234567">…</student__employee>” is also an element. The “ID” in this 

element is an attribute and the “HD1234567” is the value of the attribute “ID”. 

Similarly “<name>John</name>” etc. are also elements, however they are nested in 

the “student_employee” element. “John” is the value or content of the element 

“name”. 
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Figure 1.1: An XML document example 
 
 

As the relationships between elements in an XML document are defined by 

nested structures, XML documents are often modeled as trees. 

1.1.2   XML Technologies 

XML support is being added to existing database management systems (DBMSs) and 

native XML systems are being developed both in industry and in academia. XBench 

[77] is a family of XML benchmarks which can capture diverse application domains 

in different XML DBMSs very well. To efficiently manipulate, structure, and 

transform XML, some XML related technologies are developed. They are: 

• XML schema languages. An XML schema language is used to describe the 

structure and content of an XML document. There are several schema 

languages existing for XML. Currently, XML DTD and XML Schema 

Definition Language [38] (XSD) from W3C are widely accepted. 

<?xml version=“1.0” encoding=“UTF-8” ?> 
<!-- An XML document about student_employee, courses and part_time --> 
 
<doc> 
    <student_employee ID="HD1234567"> 
       <name>John</name> 
       <contact_no>9876543</contact_no> 
       <course ID="CS4321"> 
            <name>database</name> 
       </course> 
       <part_time> 
            <position>programmer</position> 
       </part_time> 
    </student_employee> 
</doc> 
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• Tree model-based APIs. An XML document is represented as a tree of nodes 

with a tree model API. Typically, it loads an XML document in memory all at 

once. The dominant tree model API is the W3C Document Object Model 

(DOM) [37]. Developers can use the DOM for programmatic reading, 

manipulation and modification of an XML document. 

• Event-driven APIs. An event-driven API processes an XML document 

without storing much more than the context of the current node being 

processed in memory. The most popular event-driven API is the Simple API 

for XML (SAX) [36]. 

 
This thesis focuses on how to efficiently query and update XML data no 

matter XML data are schema oblivious or schema-conscious. SAX will be used in the 

implementation to parse XML file in XML query and update processing. 

1.1.3   XML Query 

In the definition of XML, one element is allowed to refer to another, therefore 

theoretically an XML is a graph. However for simplicity, most of the researches [1, 

23, 56, 64, 74, 80, 83] process queries over XML data that conform to an ordered 

tree-structured data model. With the tree model, data objects, e.g. elements, attributes, 

text data, etc., are modeled as the nodes of a tree, and relationships are modeled as the 

edges to connect the nodes of the tree. Without loss of generality, in this thesis, we 

also omit the references in XML, and all queries are based on the ordered tree-

structured representation of XML data. Figure 1.3 shows an ordered XML tree. 
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Figure 1.2: An ordered XML tree 
 
 

The growing number of XML documents on the Web has motivated the 

development of languages and index techniques to query XML data efficiently. 

Several query languages, such as XML-QL [25], XML-GL [14], Quilt [15], XPath [8], 

XQuery [9], and XTree [19], have been proposed to query XML and semi-structured 

data. These query languages express the structure of XML documents as linear paths 

or twig patterns. For example, the XPath query: 

 
/book[/title]//section[2]/preceding-sibling::section 

 
finds all the section nodes that are siblings of section[2] (section[2] means the second 

section) and these section sibling nodes should be before section[2] (“preceding-

sibling”). Meanwhile, section[2] should be a descendant of book (“//”). In addition, 

book should satisfy the restriction that it has a child title (“/”). 

No matter the query is a linear path or a twig pattern, the core operation for an 

XML query is to efficiently determine the ancestor-descendant (A-D), parent-child 

(P-C), sibling and ordering relationships. 

title 

book 

chapter preface author 

last_name first_name section section 
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To facilitate the determination of these relationships, two main index 

techniques are proposed, namely structural index and labeling (numbering) scheme. 

The structural index approaches, such as Dataguides [31, 59, 60], 1-index [61], 

2-index [61], A(k)-index [44], D(k)-index [65], M(k)-index [35], Index Fabric[24], 

F&B index[42], APEX [22] and Representative Objects [62], can help to traverse the 

hierarchy of XML, but this traversal is costly and the overhead of the traversal can be 

substantial if the path lengths are very long or unknown. As a result, such approaches 

can be fairly inefficient. 

On the other hand, the labeling scheme approaches, such as containment 

scheme [3, 26, 56, 80, 83], prefix scheme [23, 41, 50, 64, 70] and prime number 

scheme [74], require smaller storage space, yet they can efficiently determine the 

ancestor-descendant (A-D) etc. relationships between any two elements based on the 

labels only. Both the ordered and un-ordered queries can be processed without 

accessing the original XML file. In addition, the labeling schemes can be used to 

query XML no matter XML is schema oblivious or schema-conscious. In this thesis, 

we focus on the labeling schemes. 

1.1.4   XML Update 

In this section, we discuss XML updates based on the structural index technique and 

the labeling scheme technique.  

Structural index of XML data is not a schema predefined but only a structure 

summary from the original data. While the data could be changed gradually, the index 

should be updated accordingly to keep the consistence. [34, 43, 65, 79] are techniques 
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to update the structural index which iteratively split the nodes to make the index 

correct and merge all the nearby nodes to make the index size to be minimum without 

violation. The splitting and merging of nodes are costly, therefore the update of 

structural index is inefficient. 

As for the labeling schemes, if XML is dynamic, how to efficiently update the 

labels of the labeling schemes is now becoming an important research topic. [13, 23, 

28, 69, 70, 75] can process the updates (inserts or deletes nodes) efficiently if the 

order of XML elements is not taken into consideration. However as we know, the 

elements in XML are intrinsically ordered, which is referred to as the document order 

(the element sequence in XML), i.e. the preorder traversal of an XML tree. The 

relative order of two paragraphs in XML is important because the order may influence 

the semantics of XML, therefore the standard XML query languages (e.g., XPath[8] 

and XQuery [9]) require the output of queries to be in document order by default. In 

addition, XPath and XQuery include both ordered and un-ordered queries. The 

ordered query needs to determine the ordering relationship between two elements. 

Thus it is very important to maintain the document order when XML is updated; 

otherwise some semantics of XML will be lost and the ordered queries can not be 

answered. Hence it is very important to maintain the document order when XML is 

updated. 

1.2   Problem Statement and Motivation 

Though labeling schemes are more efficient than structural index in determining the 

four basic relationships in XML query, each labeling scheme is not efficient to 
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determine all the four basic relationships. For instance, the containment scheme is 

very inefficient to determine the sibling relationship; it needs to search the parent of a 

node, then decides whether another node is a child of this parent. The prefix scheme is 

very inefficient in determining all the four relationships if the XML tree is deep. The 

prime number scheme has large label size and it employs the modular and division 

operations to determine the relationships which is very expensive. Thus the first 

objective of this thesis is to propose a labeling scheme that can efficiently determine 

all the four basic relationships no matter what XML structure is. 

It is important to efficiently update the labels of the labeling schemes when 

XML is updated, and it is especially important to maintain the document order in 

XML updating. Some research [6, 23, 50, 52, 64, 68, 70, 74] has been done to 

maintain the document order in XML updating. However the update costs of these 

approaches are still high. Therefore the second and the most important objective of 

this thesis is to dramatically reduce the order-sensitive update cost; while completely 

avoid re-labeling in XML updates. 

Furthermore, none of the existing labeling schemes can process the internal 

node update efficiently. Therefore we also propose techniques to process the internal 

node update efficiently. 

1.3   Overview of Contributions 

To accomplish the above objectives, we propose techniques to improve the query 

efficiency as well as dramatically decrease the update cost. The main contributions of 

this thesis are summarized as follows: 
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• Firstly, we propose the P-Containment (P represents the “Parent_Start” value 

of a node) scheme. The P-Containment scheme can efficiently determine all 

the four basic relationships in XML queries, more important it can be used to 

efficiently process internal node updates and to completely avoid re-labeling. 

• Secondly, the most important contribution of this thesis is that we propose 

novel encoding approaches for encoding node labels which can process XML 

updates much more efficiently. The most important feature of Compact 

Dynamic Binary String (CDBS) encoding and Compact Dynamic Quaternary 

String (CDQS) encoding is that we compare the CDBS and CDQS codes 

based on the lexicographical order. We can always find a binary (or 

quaternary) string between any two consecutive CDBS (or CDQS) codes with 

the orders kept and without re-encoding or re-labeling the existing numbers or 

nodes. Meanwhile, CDBS and CDQS encodings are very compact. In addition 

the CDBS (or CDQS) encoding is orthogonal to specific labeling schemes, 

thus it can be applied broadly to different labeling schemes. 

• When P-Containment labeling scheme is combined together with our CDBS 

(or CDQS) encoding, both the queries and updates can be efficiently processed. 

• We conduct comprehensive experiments to demonstrate the benefits of our 

approaches over the previous approaches in processing both queries and 

updates. 
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1.4   Organization of Thesis 

To the end, we outline the organization of this thesis. The rest of this thesis is 

organized in 6 chapters. 

Chapter 2 reviews the research work that is closely related to this thesis. Three 

main labeling schemes, i.e. containment, prefix and prime labeling schemes, are 

presented in this chapter. Also we introduce different encodings to store the labels. 

Meanwhile the deficiencies of these labeling schemes and encoding approaches are 

analyzed. 

In Chapter 3, we propose the P-Containment (P represents the “Parent_Start” 

value of a node, and the “Parent_Start” value of a node is the “Start” value of its 

parent) scheme which makes the determination of sibling relationships much faster 

than the existing containment labeling scheme. Also P-Containment is faster than the 

existing containment scheme in determining the parent-child relationship. The P-

Containment scheme is also helpful to process the internal node updates (see Section 

4.4.2 of Chapter 4) and to completely avoid re-labeling (see Section 5.3 of Chapter 5). 

Chapter 4 to Chapter 6 are all about how to efficiently process XML updates. 

They are the most important contributions of this thesis. 

In Chapter 4, we illustrate that the most important feature of our approach is 

that we compare labels based on the lexicographical order; an algorithm that can 

insert a binary string between two binary strings with the orders kept is also proposed 

in this chapter which is the first foundation of this thesis. In this chapter, we also 

propose Compact Dynamic Binary String (CDBS) encoding and indicate that CDBS 

encoding can be applied broadly (the second foundation of this thesis) to different 
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labeling schemes. Based on the CDBS encoding, we also discuss how to process the 

leaf node updates, internal node updates, subtree updates, and uniformly and skewed 

updates for XML in this chapter. 

Chapter 5 thoroughly discusses that CDBS will encounter the overflow 

problem, therefore we further improve CDBS to CDQS. Though the label size of 

CDQS is larger than the label size of CDBS and the update cost of CDQS is a little 

higher, CDQS completely avoids re-labeling in order-sensitive updates. 

In Chapter 6, we describe how to control the increase in label size. Two 

techniques are discussed. The first one is that we designed an algorithm which can 

find the label with the smallest size between two labels in the update environment 

with both insertions and deletions, thus the label size will increase slow; meanwhile 

the orders can be maintained. The second one is that we discuss how to process the 

skewed insertion problem to control the increase of label size. 

Finally, Chapter 7 summarizes the contributions of this thesis and discusses 

the future works. 

All the works in this thesis have been published in international conferences 

and journals. The work in Chapter 3 has been published in [51]. The work in Chapter 

4 has been published in [48]. The work in Chapter 5 has been published in [50]1. The 

work in Section 6.1 of Chapter 6 has been published in [49], and the work in Section 

6.2 of Chapter 6 has been published in [52]. Also we summarize the update works in 

Chapters 4, 5 and 6 into [55] which has been accepted by VLDB Journal. 

                                                 
1 Note that in [50] we use the “QED” to represent the quaternary encoding. In this thesis, in order to 

make the name consistent with the CDBS in [48], we change the title “QED” to “CDQS”, but the 
contents of “QED” and “CDQS” are exactly the same. 



 

Chapter 2 

Background and Related Works 
 

Some labeling (numbering) schemes have been proposed for network routing [30], 

object programming [4, 26, 27, 73], knowledge representation systems [1], and 

recently XML search engines [3, 20, 23, 24, 41, 56, 64, 70, 74, 80, 83]. [21] further 

applies the labeling schemes to search the semantic web (see [11, 33, 47, 53, 54] for 

more details about the semantic web). 

In this thesis, we focus on XML queries based on labeling schemes. XML 

query can be expressed as linear paths [2, 29, 40, 82] or twig patterns [12, 17, 18, 57, 

58, 66, 81]. The next-of-kin (NoK) pattern matching in [82] can speed up the node-

selection step and reduce the join size significantly. Jiao et al. [40] evaluate the path 

queries with “not” predicates. Bruno et al. [9] propose a holistic approach which uses 

stacks to match twig patterns. Zhang et al. [81] propose the Blossom Tree to evaluate 

correlated paths in a FLWOR expression that can generate highly efficient query 

plans in different environments. 

The difference between path query and twig pattern query is not an emphasis 

of this thesis. Instead, we focus on improving the efficiency of labeling schemes 

which can facilitate both the path query and twig pattern query because both the path 

query and twig pattern query are based on labeling schemes. Also we focused on 
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updates based on labeling schemes. After updating, the labeling schemes still can 

efficiently support both the path query and twig pattern query. Also different 

encoding approaches are proposed to store the labels of the labeling schemes. 

The rest of this chapter is organized as follows. In Section 2.1, we introduce 

different labeling schemes to process XML queries. In Section 2.2, we introduce the 

encoding approaches which are used to encode the labels of labeling schemes in 

storing. We summarize this chapter in Section 2.3. 

2.1   Node Labeling Schemes 

The labeling scheme is used to label the nodes of an XML tree, and based on 

the labeling scheme, XML queries can be processed without accessing the original 

XML document. 

In this section, we survey three families of labeling (numbering) schemes, viz. 

containment [3, 26, 45, 46, 56, 80, 83], prefix [23, 41, 50, 64, 70], and prime [74]. 

2.1.1   Containment Labeling Scheme 

The containment labeling scheme was first suggested by Santoro and Khatib [67]. 

Yoshikawa and Amagasa [80] also proposed a variant of containment labeling 

scheme. To label an XML tree based on the containment scheme, different tree 

traversal methods (e.g. pre-and-postorder[26], extended preorder[56]) are used. 

 
(1) Dietz’s containment labeling scheme [26] uses tree traversal order to 

determine the ancestor-descendant relationship between any two nodes of an XML 
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tree. Figure 2.1 shows Dietz’s containment scheme. Each node is labeled with a pair 

of preorder and postorder numbers. For any two nodes u and v of an XML tree, u is an 

ancestor of v if and only if u occurs before v in the preorder traversal of the XML tree 

and after v in the postorder traversal. 

In the tree shown in Figure 2.1, node [1, 9] is an ancestor of node [4, 2], 

because node [1, 9] comes before node [4, 2] in the preorder (i.e., 1 < 4) and after 

node [4, 2] in the postorder (i.e., 9 > 2). An obvious benefit from this approach is that 

the ancestor-descendant relationship can be determined in constant time by examining 

the preorder and postorder numbers of tree nodes. 

 
(2) Li et al. [56] uses an extended preorder and a range of descendants. Every 

node is assigned two variables: “order” and “size”. These two variables represent an 

interval [order, order + size]. Figure 2.2 shows Li’s labeling scheme. For any two 

nodes u and v, u is an ancestor of v iff order(u) < order(v) < order(u) + size(u). 

In the tree shown in Figure 2.2, node [1, 150] is an ancestor of node [52, 10], 

because the order of node [1, 150] is 1 which is smaller than the order 52 of node [52, 

10], and 52 is smaller than order([1, 150]) + size([1, 150]) = 1 + 150 = 151. 

 
(3) Zhang et al. [83] use a labeling scheme in which every node is assigned 

three values: “start”, “end” and “level”. For any two nodes u and v, u is an ancestor of 

v iff u.start < v.start and v.end < u.end. Node u is a parent of node v iff u is an 

ancestor of v and v.level – u.level = 1. Node u is a sibling of node v iff the parent of 

node u is also a parent of node v. Node u is a preceding (following) node of node v iff 

u.start < (>) v.start. Example 2.1 is a concrete example to show how Zhang’s 

containment scheme works on determining the four basic relationships. 
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Figure 2.1: Dietz’s containment scheme using preorder and postorder 
 
 

 

Figure 2.2: Li’s containment scheme with order and interval size 
 
 

 

Figure 2.3: Zhang’s containment scheme 
 
 
Example 2.1 Figure 2.3 shows Zhang’s containment labeling scheme [83] based on 

the XML tree shown in Figure 1.2. The values near each node are the “start”, “end” 

and “level” values. 
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Ancestor-Descendant determination: “5,6,3” is a descendant of “1,18,1” 

because interval [5, 6] is contained in interval [1, 18]. 

Parent-Child determination: “5,6,3” is a child of “4,9,2” because interval [5, 

6] is contained in interval [4, 9], and the level of “5,6,3” minus the level of “4,9,2” is 

3 – 2 = 1. 

Sibling determination: To determine whether “7,8,3” is a sibling of “5,6,3”, 

the containment scheme needs to search the parent of “5,6,3” firstly, then decide 

whether “7,8,3” is a child of this parent. The search of the parent needs a lot of 

parent-child determinations which is very expensive. 

Ordering determination: “7,8,3” is before (a preceding node of) “13,14,3” in 

document order because the “start” of “7,8,3” is smaller than the “start” of 

“13,14,3” i.e. 7 < 13. 

 
[83] carries out a depth-first traversal of an XML tree (see Figure 2.3). It 

utilizes a counter which has an initialized value 1. The “start” of the interval for the 

root is 1, then from the root to leaves, the “start” of the interval for each node is the 

counter plus 1. When reaching a leaf node, the “end” of the interval is the current 

counter value plus 1. Based on the depth-first traversal, the “end” and “start” of the 

rest intervals can be determined. 

The labeling schemes shown in Figure 2.1, Figure 2.2 and Figure 2.3 all have 

the same property to determine the ancestor-descendant etc. relationships, that is, if 

the interval of node v is contained in the interval of node u, node u is an ancestor of 

node v, therefore they are all called containment schemes. There are some other 
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containment labeling schemes, and they all have the same property to determine the 

ancestor-descendant etc. relationships. Here we do not show them further. 

Dietz’s containment scheme is the early work which has not discussed how to 

process the parent-child and sibling relationships yet. Li’s containment scheme 

supports updates to some extent with the unused values; on the other hand, the unused 

values are a waste of numbers. Zhang’s containment scheme can determine different 

relationships. In the later parts of this thesis, we mainly focus on Zhang’s containment 

scheme (Figure 2.3) to represent the containment scheme if Dietz’s and Li’s 

containment schemes are not explicitly mentioned, and in fact our encoding 

approaches can be applied to all the other containment labeling schemes also. 

2.1.1.1   Deficiencies of the Containment Schemes on Queries 
In this section, we show what are the deficiencies of the containment schemes in 

determining the relationships in XML queries. 

It can be seen from Example 2.1 that it is very inefficient for the containment 

scheme to determine the sibling relationship; it needs to search the parent of one node 

and determine whether another node is the child of this parent, which needs a lot of 

parent-child determinations and is very costly. 

2.1.1.2   Deficiencies of the Containment Schemes on Updates 
Although the ancestor-descendant relationship can be determined in constant time by 

the containment scheme, the insertion of a node will lead to a re-labeling of all the 

ancestor nodes of this inserted node and all the nodes after this inserted node in 

document order (see Figures 2.1 and 2.3; more details can be found in Example 4.12 

of Chapter 4). This problem may be alleviated if the interval size is increased with 
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some values unused [56] (see Figure 2.2). However, large interval size wastes a lot of 

numbers which causes the increase of storage, while small interval size is easy to lead 

to re-labeling. 

To solve the re-labeling problem, in [6] Float-point values are used for the 

“start” and “end” of the intervals. It seems that Float-point solves the re-labeling 

problem [70]. But in practice, the Float-point values are represented in a computer 

with a fixed number of bits [6, 70]. As a result, at most 18 nodes can be inserted at a 

fixed place [6] since [6] uses the consecutive integer values at the initial labeling. 

Even if [6] uses values with large gaps, it still can not avoid re-labeling due to the 

float-point precision. No one has ever proposed using variable length encoding of real 

values to maintain orders since it is not convenient for variable length codes to 

execute the addition, division etc. operations. Therefore, using real values instead of 

integers only provides limited benefits for the label updating [70, 74]. In fact, the 

Float-point [6] is equivalent to the approach that leaves some values unused [56]. 

It should be noted that the re-labeling in the containment scheme is not only 

for maintaining the document order. If the XML tree is not re-labeled after a node is 

inserted, the containment scheme can not work correctly to determine the ancestor-

descendant, parent-child etc, relationships. Therefore it is very important to efficiently 

process the updates of labels in the containment labeling schemes. 

2.1.2   Prefix Labeling Scheme 

In the prefix labeling scheme, the label of a node is that its parent’s label (prefix) 

concatenates its own (self) label. Label(u) represents the label of node u, 
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prefix_label(u) represents the prefix label of node u (the label of the parent of node u), 

and self_label(u) represents the self_label of node u. The following discussions show 

how the prefix labeling scheme determines the four basic relationships, i.e. ancestor-

descendant, parent-child, sibling and ordering relationship, and Example 2.2 for the 

DeweyID prefix scheme [70] is a concrete example to show how the prefix schemes 

work on determining the four basic relationships. For any two nodes u and v, u is an 

ancestor of v iff label(u) is a substring of label(v), i.e. suppose the length of label(u) is 

L, then the first L number of symbols of label(v) are exactly the same as label(u). 

Node u is a parent of node v iff prefix_label(v) is equal to label(u). Node u is a sibling 

of node v if prefix_label(u) = prefix_label(v). Node u is a preceding (following) node 

of node v iff label(u) is smaller (larger) than label(v) when comparing label(u) and 

label(v) component by component from left to right (the component is separated by 

the delimiters; see Example 2.2 for what is a component). 

We will discuss three prefix labeling schemes, i.e. DeweyID, BinaryString and 

OrdPath, and outline their weak points. 

 
 

 

Figure 2.4: DeweyID prefix scheme 
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(1) DeweyID 

DeweyID [70] labels the nth child of a node with an integer n, and this n 

should be concatenated to the prefix (its parent’s label) and delimiter (e.g. “.”) to form 

the complete label of this child node. It should be noted that the label of the root of 

the XML tree is an empty string (for all the prefix labeling schemes). Figure 2.4 

shows DeweyID. 

 
Example 2.2 Based on DeweyID (see Figure 2.4), we show how the prefix schemes 

work on determining the four relationships in XML queries. 

Ancestor-Descendant determination: “2.1” is a descendant of the root 

because the empty string is a prefix substring of “2.1”. 

Parent-Child determination: “2.1” is a child of “2” because the prefix_label 

of “2.1” is “2” which is equal to label “2”. 

Sibling determination: “2.2” is a sibling of “2.1” because they have the same 

prefix_label “2”. 

Ordering determination: “2.1” is before “4.1” in document order because the 

“2” in “2.1” is smaller than the “4” in “4.1” i.e. we compare “2.1” and “4.1” from 

left to right to see the component in which labels is smaller. 

 
(2) Binary String 

Cohen et al. [23] use Binary Strings to label the nodes, called BinaryString in 

this thesis. Figure 2.5 shows the BinaryString prefix scheme. The root of the tree is 

labeled with an empty string. The first child of the root is labeled with “0”, the second 

child with “10”, the third with “110”, and the fourth with “1110” etc. Similarly for 
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any node u, the first child of u is labeled with label(u).“0”, the second child of u is 

labeled with label(u).“10”, and the ith child with label(u).“1i-10”. The determinations 

of the four basic relationships based on the BinaryString prefix scheme is similar to 

the determinations based on DeweyID prefix scheme (see Example 2.2). The 

deficiency of BinaryString is that its label size is too large. 

 
 

 

Figure 2.5: BinaryString prefix scheme 
 
 
 (3) OrdPath 

OrdPath [64] is similar to DeweyID, but it only uses the odd numbers at the 

initial labeling (see Figure 2.6). When an XML tree is updated, it uses the even 

number between two odd numbers to concatenate another odd number (see Example 

2.3 for details). OrdPath wastes half of the total numbers. The query performance of 

OrdPath is worse since it needs more time to decide the prefix levels based on the 

even and odd numbers. We use the following example to illustrate OrdPath. 

 
Example 2.3 Given three DeweyID labels “1”, “2” and “3”, we can easily know that 

they are siblings. In addition, given two DeweyID labels “2” and “2.1”, we can 

easily know that “2” is a parent of “2.1”. But for OrdPath (see Figure 2.6), its labels 
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are “1”, “3”, “5” etc.; when inserting a label between “1” and “3”, it uses the even 

number between “1” and “3” i.e. “2” to concatenate another odd number e.g. “1” 

(“1” has smaller size in OrdPath encodings; see Tables 2.2 and 2.3) as the label of 

this inserted node, i.e. the inserted label is “2.1”. In OrdPath, “2.1” is at the same 

level as “1”, 3” etc., i.e. “2.1” is a sibling of “1” and “3”. Furthermore, when 

inserting one more node between “1” and “2.1”, OrdPath uses “2.-1” as the inserted 

label. Moreover, when inserting one more node between “2.-1” and “2.1”, the 

inserted label will be “2.0.1”. The OrdPath labels “1”, “2.-1”, “2.0.1”, “2.1” and 

“3” are all siblings, but from these labels, they look at different levels. OrdPath needs 

more time to determine the sibling, parent-child etc. relationships in XML query 

processing. Thus OrdPath gets better update performance by decreasing the query 

performance. That is not what we expected. 

 
 

 

Figure 2.6: OrdPath prefix scheme 
 
 

2.1.2.1   Deficiencies of the Prefix Schemes on Queries 
In this section, we show the deficiency of the prefix scheme in XML queries. 
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From Example 2.2, we can see that the Prefix scheme can determine all the 

four basic relationships fast if the XML tree is shallow. However, it is very inefficient 

for the prefix scheme to determine all the four basic relationships if the XML tree is 

deep. For instance, to determine that “1.2.1.1.3.3.4.5” is a parent of 

“1.2.1.1.3.3.4.5.2”, the prefix scheme needs to compare 8 pairs of numbers. 

 
OrdPath also has the problem that the query performance will be decreased if 

the XML tree is deep. Besides this, OrdPath also has the following drawbacks in 

XML queries: 

(1) It wastes half of the total numbers compared to DeweyID (wastes the even 

numbers; even after insertion, it still wastes the even number, e.g. “2.0” between “2.-

1” and “2.1” will never be used after insertion), which will cause the storage 

increasing and accordingly the query performance decreasing. 

(2) It can be seen from Example 2.3 that “1”, “2.-1”, “2.0.1”, “2.1” and “3” are 

at the same level, i.e. they are siblings. OrdPath needs more time to determine this 

based on the even and odd numbers (the even number is not a level) which will 

decrease its query performance. 

2.1.2.2   Deficiencies of the Prefix Schemes on Updates 
Compared with the containment scheme, the prefix scheme (DeweyID and 

BinaryString) is dynamic to some extent. When a node is inserted into an XML tree, 

the prefix scheme can always put this node as the last sibling, then the existing nodes 

need not be re-labeled and we can determine the ancestor-descendant, parent-child 

and sibling relationships. However, the ordering relationship is not kept which may 
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break down the semantics of XML and make the order-sensitive queries 

unanswerable, i.e. some of the queries in XPath and XQuery can not be answered. 

To keep the document order, the DeweyID and BinaryString prefix schemes 

need to re-label the sibling nodes after the inserted node and the descendants of these 

siblings (more details can be found in Example 4.11 of Chapter 4). 

 
OrdPath can avoid re-labeling to some extent, but it greatly reduces the query 

performance (see Section 2.2.1) and its update cost is expensive. 

(1) To some extent, OrdPath [64] can keep the document order without re-

labeling the existing nodes. But because OrdPath stores the sizes of the labels to 

separate different labels, all the nodes should be re-labeled when the sizes of the 

labels overflow. We will further discuss the overflow problem in Example 5.1 of 

Chapter 5. 

(2) OrdPath needs the addition and division operations to calculate the even 

number between two odd numbers which is expensive in updating. It is also possible 

that OrdPath only uses the addition operation to get the even number, but if there are 

many deletions, the calculation of the even number based only on the addition 

operation is bias and the label size will increase fast. Even if there is only the addition 

operation, the addition operation is also expensive. 

2.1.3   Prime Labeling Scheme 

Wu et al. [74] proposed an approach to label XML trees with prime numbers (we use 

Prime to refer to this scheme). Figure 2.7 shows Prime, in which the number above 

each node is the document order, the label is at the right side of each node, and the 
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two numbers below each label are its parent_label and self_label. The root node is 

labeled with “1” (integer). Then based on a top-down approach, each node is given a 

unique prime number (self_label) and the label of each node is the product of its 

parent node’s label (parent_label) and its own self_label. 

 
Example 2.4 Prime uses a top-down approach to label the nodes (see Figure 2.7), i.e. 

label the root firstly, then all the child nodes of the root, then all the grandchild nodes, 

etc. The 0th node (the root node; 0th is the document order above the root node in 

Figure 2.7) is labeled with “1” (the right number). Then the 1st (the number above the 

node) node is labeled with “2” (the right number) which is the product of its 

parent_label “1” and its self_label, i.e. the prime number “2”. The 2nd node is 

labeled with “3” which is the product of its parent_label “1” and the next available 

prime number (self_label) 3. Similarly the rest child nodes of the root are labeled with 

“5” and “7”. Next Prime labels the grandchild nodes of the root. The 3rd (3rd is the 

document order above the node) node is labeled with “33” which is the product of its 

parent label “3” and the next available prime number (self_label) “11” (the prime 

number “7” has been used by the last child node of the root). Similarly the 4th , 7th 

and 8th nodes can be labeled. 

Although the document order of each node is explicitly shown in Figure 2.7, 

Prime does not store the document order. It uses the SC (Simultaneous Congruence) 

value in Chinese Remainder Theorem [7, 74] to decide the node order (see Appendix 

B for the calculation details of the SC value). 
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Figure 2.7: Prime scheme 
 
 
Example 2.5 The SC value for the 8 nodes (except the root) in Figure 2.7 is 8965025 

(see Appendix B for the SC calculation steps). That is to say, 8965025 mod 2 = 1 

(here 2 is the self_label and 1 is the document order), 8965025 mod 3 = 2, ···, 

8965025 mod 17 = 7, and 8965025 mod 19 = 8. Prime only needs to store this SC 

value and the self_labels rather than store the document order. 

 
Next we show how the prime labeling scheme determine the four basic 

relationship in XML query processing. For any two nodes u and v, u is an ancestor of 

v iff label(v) mod label(u) = 0. Node u is a parent of node v iff label(v)/self_label(v) = 

label(u). Node u is a sibling of node v iff label(u)/self_label(u) = 

label(v)/self_label(v). Prime uses the SC (Simultaneous Congruence) values to decide 

the document order, i.e. SC mod self_label = document order, then it compares the 

document orders of two nodes. Example 2.6 is a concrete example to show how Prime 

determines the four basic relationships in XML queries. 
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Example 2.6 See Figure 2.7 for the prime labeling scheme. 

Ancestor-Descendant determination: “33” is a descendant of the root because 

33 mod 1 = 0. 

Parent-Child determination: “33” (label(v)) is a child of “3” (label(u)) 

because label(v)/self_label(v) = 33/11 = 3 = label(u). 

Sibling determination: “33” (label(v))  is a sibling of “39” (label(u))  because 

label(u)/self_label(u) = 39/13 = 3 = 33/11 = label(v)/self_label(v). 

Ordering determination: label “39” is before (a preceding node of) label 

“119”. Prime determine the order in this way. The SC value is 8965025, and the 

self_labels of “39” and “119” are “13” and “17” respectively. The document order 

of label “39” is SC mod self_label = 8965025 mod 13 = 4, the document order of 

label “119” is SC mod self_label = 8965025 mod 17 = 7. 4 is smaller than 7, 

therefore label “39” is before label “119” in document order. 

 

Based on the SC value, Prime can solve the label update problem, which only 

needs to re-calculate the SC value [74]. 

 

Example 2.7 When a new sibling node is inserted before the 1st node (the inserted 

node is now the first child of the root), the next available prime number is 23, then the 

label of the new inserted node is 23 (1×23). This new inserted node now becomes to 

the 1st node (document order), and the orders of the nodes after this inserted node 

should all be added with 1 (the old orders are calculated based on the old SC value). 

Prime calculates the new SC value for the new ordering, which is 28364406 such that 

28364406 mod 23 = 1, 28364406 mod 2 = 2, 28364406 mod 3 = 3, ···, 28364406 mod 

17 = 8, and 28364406 mod 19 = 9. 
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Theoretically the single SC value is very good which avoids the node re-

labeling by only re-calculating the SC value. However in practice, the number of 

nodes in an XML tree can not be so small, thus the single SC value will be too large a 

number. Therefore Prime [74] calculates the SC values for every five (or other 

number) nodes. 

 
Example 2.8 The SC value for the first five (in document order) nodes in Figure 2.7 is 

3215 (3215 mod 2 = 1, ···, 3215 mod 5 = 5) and the SC value for the next three nodes 

is 160 (160 mod 7 = 6, 160 mod 17 = 7, and 160 mod 19 = 8). When inserting the 

new node, the SC value for the first five nodes is 6648 (6648 mod 23 = 1, ···, 6648 

mod 13 = 5) and the SC value for the rest four nodes is 161 (161 mod 5 = 6, ···, 161 

mod 19 = 9). 

 

2.1.3.1   Deficiencies of the Prime Scheme on Queries 
In this section, we show the deficiencies of the prime number labeling scheme in 

processing queries. 

The prime scheme skips a lot of integers to get the prime number, and the 

label of a child is the product of the next available prime number and its parent’s 

label, which both make the storage space for Prime labels very large. The large 

storage space requires more I/O time in XML query processing. 

Besides the query performance decreasing caused by the large storage space, 

Prime employs the modular and division operations to determine the ancestor-

descendant, parent-child, sibling and ordering relationships which are very expensive. 
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Therefore the query performance of the prime labeling scheme is very bad (see the 

experimental results in Section 4.5.2.2 of Chapter 4). 

2.1.3.2   Deficiencies of the Prime Scheme on Updates 
Although Prime is the only scheme which supports order-sensitive updates without 

any re-labeling of the existing nodes, it needs to re-calculate the SC values based on 

the new ordering of nodes. The SC values are very large numbers and the re-

calculation is much more time consuming than re-labeling. 

2.2   Encoding Approaches to Store the Labels of Labeling 
Schemes 

The labels in the labeling schemes should be stored as binary numbers or other 

encodings in a computer. In this section, we discuss different encodings for the labels 

to solve different problems in labeling schemes. 

2.2.1   Binary Number Encodings 

The labels of the containment schemes are integers and float-point values. In a 

computer, these values are stored as binary numbers, e.g. decimal number 5 will be 

stored as binary number 101. Also the labels in the prime number labeling scheme are 

stored as binary numbers in a computer. We will further compare the binary number 

encoding and with our dynamic binary string encoding in Chapter 4. Because the 

binary number encoding is trivial, here we do not discuss further about the binary 

number encodings. 
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2.2.2   UTF8 Encoding 

The UTF8 [78] encoding is used by the DeweyID prefix scheme to process the 

delimiters. As we know, DeweyID uses delimiter “.” to separate different components 

of a label, e.g. separate “2” and “1” in “2.1”. However, in practice, the delimiter “.” 

can not be stored together with the numbers, therefore DeweyID uses UTF8 [78] 

encoding to process the delimiters. 

In UTF8, a variable number of bytes are used to encode different integer 

values. If the integer value is smaller than 128=27, it is encoded with one byte 

0xxxxxxx where x represents the bits used for the integer value. If the integer value is 

between 27 and 211, it is encoded with 2 bytes 110xxxxx 10xxxxxx. See Table 2.1 for 

more details. To represent an entire Dewey path with UTF8, each component of the 

path is encoded in UTF8 and then concatenated together without the delimiter “.”. 

The indicator bits “0”, “110”, “1110”, etc in the first byte (see Table 2.1) determine 

how many bytes are used and separate different components. 

 
 

Table 2.1: UTF8 encoding 

Value Physical representation of self_label Number of bytes 
0 ≤ F<128 (27) 0xxxxxxx 1 

27 ≤ F<211 110xxxxx 10xxxxxx 2 
211 ≤ F<216 1110xxxx 10xxxxxx 10xxxxxx 3 
216 ≤ F<221 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 4 

221 ≤ F<226 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 
10xxxxxx 

5 

226 ≤ F<231 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 
10xxxxxx 10xxxxxx 

6 
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Example 2.9 Consider a DeweyID label “1.129”. Since “1” is less than 128, the 

UTF8 code of “1” will be “00000001”. Since 129 is larger than 27 and less than 211, 

the 11 bit binary encoding of 129 is “10000000001”; then the first five bits “10000” 

will be concatenated after “110”, and the rest six bits “000001” will be concatenated 

after “10” (see the third row (27 ≤ F<211 row) of Table 2.1). Thus the UTF8 code of 

129 is “11010000 10000001”. Finally, the DeweyID “1.129” will be 

“000000011101000010000001” in UTF8. Based on the indicators “0” and “110”, 

we know that the first component is stored with 1 byte, and the second component is 

stored with 2 bytes. In this way, DeweyID can separate different components without 

using the delimiter “.”. 

 
After processing the delimiters of DeweyID, we call it DeweyID(UTF8). 

2.2.3   OrdPath Encodings 

OrdPath [64] is a prefix labeling scheme which can be used to process updates. In 

addition, O’Neil et al. [64] also proposed two encoding approaches, called OrdPath1 

and OrdPath2, which are improvements of the UTF8 [78] encoding. The OrdPath 

encodings are also used to process the delimiters in the prefix labeling schemes, and 

they are more compact encodings than UTF8 [78]. 

Tables 2.2 and 2.3 show the two kinds of encodings of OrdPath, OrdPath1 and 

OrdPath2 (OrdPath2 is more compact). Both OrdPath1 and OrdPath2 codes have 

variable lengths. We use an example to show how OrdPath1 (Table 2.2) works. It is 

similar for OrdPath2 (Table 2.3). 
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Table 2.2: OrdPath1 encoding 

Indicator Number of bits Interval 
0000001 48 [-2.8x1014, -4.3x109] 
0000010 32 [-4.3x1014, -69977] 
0000011 16 [-69976, -4441] 
000010 12 [-4440, -345] 
000011 8 [-344, -89] 
00010 6 [-88, -25] 
00011 4 [-24, -9] 
001 3 [-8, -1] 
01 3 [0, 7] 
100 4 [8, 23] 
101 6 [24, 87] 
1100 8 [88, 343] 
1101 12 [344, 4439] 
11100 16 [4440, 69975] 
11101 32 [69976, 4.3x109] 
11110 48 [4.3x109, 2.8x1014] 

 
 

Table 2.3: OrdPath2 encoding 

Indicator Number of bits Interval 
000000001 20 [-1118485, -69910] 
00000001 16 [-69909, -4374] 
0000001 12 [-4373, -278] 
000001 8 [-277, -22] 
00001 4 [-21, -6] 
0001 2 [-5, -2] 
001 1 [-1, 0] 
01 0 [1, 1] 
10 1 [2, 3] 
110 2 [4, 7] 
1110 4 [8, 23] 
11110 8 [24, 279] 
111110 12 [280, 4375] 
1111110 16 [4376, 69911] 
11111110 20 [69912, 1118487] 

 
 
 
Example 2.10 Suppose that there is a label “1.19” for the OrdPath prefix labeling 

scheme. “1” falls in “[0,7]” (see the third column of Table 2.2), thus “1” should be 

stored with 3 bits (see the second column of Table 2.2) i.e. “001”, and the indicator 
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“01” (used to indicate that the code is stored with 3 bits; see the first column of 

Table 2.2) should be concatenated before “001”, i.e. the OrdPath1 code of “1” is 

“01001” (“01” is the indicator; “001” is the value for number 1 which is 

represented with 3 bits; see “01 3 [0,7]” line of Table 2.2). “19” falls in “[8,23]” 

(see the third column of Table 2.2), thus “19” should be stored with 4 bits (see the 

second column of Table 2.2). The four bits to store “19” should be “1011” 

corresponding to the number 11=19-8 (8 is the start of interval [8,23]). Note that the 

binary representation of “19” is “10011” which is 5 bits but not 4 bits. The complete 

OrdPath1 code for “19” is “1001011”. If OrdPath wants to get back number “19”, it 

needs to decode “1001011” to number “11” firstly then add the start “8” of interval 

[8,23]. With OrdPath encodings, the delimiters also need not be stored which is like 

UTF8. Though OrdPath is a more compact encoding than UTF8, its decoding time is 

larger. 

 
Though OrdPath1 and OrdPath2 encodings (see Tables 2.2 and 2.3) can 

decrease the label size compared to UTF8 encoding, it is slow for OrdPath1 and 

OrdPath2 to get back the numbers, e.g. to get back number 19, OrdPath1 should 

interpret the OrdPath1 code to 11 firstly, then add 8. This will influence both the 

query and update performance of the OrdPath prefix labeling scheme. 

2.2.4   Binary String and Quaternary String Encodings 

Cohen et al. [23] propose the BinaryString prefix labeling scheme. The binary string 

is also an encoding approach. There are only two symbols “0” and “1” in the binary 
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string and each symbol is stored with 1 bit. The size of the binary string encoding in 

[23] is very large. 

In this thesis, we also use the binary string encoding. Compared with the 

binary string encoding in [23], our binary string encoding is dynamic and compact, 

called Compact Dynamic Binary String, i.e. CDBS. 

In addition, we propose the quaternary string encoding which is a new 

encoding approach. There are four symbols in the quaternary string encoding, i.e. “0”, 

“1”, “2” and “3”, and each symbol is stored with two bits, i.e. “00”, “01”, “10” and 

“11”. Our quaternary encoding is also dynamic and compact, called Compact 

Dynamic Quaternary String, i.e. CDQS. 

2.3   Summary 

Towards the query performance, the existing containment labeling schemes can 

determine the ancestor-descendant, parent-child and ordering relationships very fast, 

but it is very inefficient in determining the sibling relationship. The prefix labeling 

schemes can determine all the four basic relationships in XML queries fast if the 

XML tree is shallow. However, if the XML tree is deep, the query performance based 

on the prefix labeling schemes will be greatly decreased. The query performance of 

Prime is very bad. Therefore the first objective of this thesis is to overcome the 

deficiencies of the existing labeling schemes such that query efficiencies can be 

improved. We propose the P-Containment scheme in Chapter 3 which can determine 

all the four basic relationships efficiently no matter what XML structure is. 
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Towards the update performance, although Prime supports order-sensitive 

updates without any re-labeling of the existing nodes, it needs to re-calculate the SC 

values based on the new ordering of nodes. The re-calculation is very time consuming. 

The main idea of other labeling schemes [6, 56] (except Prime) is to leave 

some unused values for the future insertions. When the unused values are used up 

later, they have to re-label the existing nodes, i.e. they can not completely avoid re-

labeling in XML updates. 

The DeweyID and BinaryString prefix schemes can not support the order-

sensitive updates. 

Though OrdPath [13] is dynamic to some extent to process the order-sensitive 

updates (will encounter the overflow problem; see Example 5.1), it needs to decode 

its codes and use the addition and division operations to calculate the even number 

between two odd numbers, which both make its update cost not so cheap. 

In addition, the better update performance of OrdPath does not come without a 

cost. It wastes a lot of even numbers which makes its label size larger, and it needs 

more time to determine the prefix levels based on the even and odd numbers in XML 

query processing. 

In this thesis, we propose a novel Compact Dynamic Binary String (CDBS) 

encoding (CDBS is completely different from the encoding in [23]; the only common 

point is that they both use binary strings). The size of CDBS is as small as the binary 

number encoding of consecutive decimal numbers. As we know, there is no unused 

values between two consecutive decimal numbers; that means CDBS is the most 

compact and it need not leave unused values for the future insertions, thus the query 
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performance will not be decreased. Yet CDBS supports that codes can be inserted 

between any two consecutive CDBS codes because the most important feature of 

CDBS encoding is that we compare codes based on the lexicographical order. This is 

the most important benefit of CDBS over the previous approaches. In addition, CDBS 

encoding can be applied broadly to different labeling schemes to process updates. 

Also CDBS does not decrease the query performance. Moreover, to solve the 

overflow problem of CDBS, i.e. the fixed size length field will overflow (see Example 

5.1 for the details about the overflow problem), we improve CDBS to a Compact 

Dynamic Quaternary String (CDQS) encoding which can completely avoid re-

labeling in XML updates. 

The comparisons between our approaches and the existing approaches on 

queries and updates are summarized in Tables 2.4 and 2.5 respectively. 

When P-Containment scheme and CDBS or CDQS encoding are combined 

together, both queries and updates can be processed efficiently. 

 
 
 

Table 2.4: Comparisons on queries 

Relationships Ancestor-
Descendant Parent-Child Sibling Ordering 

Containment 
Scheme Efficient Not very Efficient Very inefficient Efficient 

Prefix Scheme Not efficient if 
XML tree is deep 

Not efficient if 
XML tree is deep 

Not efficient if 
XML tree is deep 

Not efficient if 
XML tree is deep 

Prime Scheme Very inefficient Very inefficient Very inefficient Very inefficient 
P-Containment 

Scheme Efficient Efficient Efficient Efficient 
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Table 2.5: Comparisons on updates 

Schemes 
Method to 

process 
updates 

Descriptions 

Dietz’s [26] and 
Zhang’s [83] 
containment 

No Need to re-label all the ancestor nodes and all the nodes 
after the inserted node in document order 

Li’s [56] 
containment 

Leave 
unused 
values 

Need re-labeling when the unused values are used up 

Float-point [6] 
containment 

Use float 
point value 

Can not avoid re-labeling due to the float-point 
precision 

DeweyID [70] and 
BinaryString [23] 

prefix 
No Need to re-label the sibling nodes after the inserted node 

and all the descendants of the following siblings 

OrdPath [64] 
prefix 

Odd and 
even 

numbers 

Decrease the query efficiencies; update cost is high; can 
not completely avoid re-labeling due to the overflow 

problem 

Prime [74] SC values 
Need not re-label, but need to re-calculate the SC values 

which is very expensive; greatly decrease the query 
performance 

CDBS encoding Dynamic 
binary string 

Most compact, cheapest update cost; query performance 
is very good; can not completely avoid re-labeling due to 

the overflow problem. 

CDQS encoding 
Dynamic 

quaternary 
string 

Not as compact as CDBS, update cost not as cheap as 
CDBS, but can completely avoid re-labeling 

 
 

 



 

Chapter 3 

P-Containment Scheme 
 

This chapter introduces P-Containment which can improve query efficiency. 

From Chapter 2, we know that the structure of XML will influence the query 

efficiency of the prefix labeling scheme. However, the structure of XML will not 

influence the query efficiency of the containment scheme. The comparison of two 

containment labels is only related to the total number of nodes in an XML tree. Also 

we know that the prime number scheme is very inefficient to determine all four 

relationships. Therefore in this chapter, we propose the P-Containment scheme which 

is based on containment, hence it will not be influenced by the structure of XML, also 

P-Containment can remove the drawbacks of the containment scheme, i.e. P-

Containment can determine the sibling relationship and the other three relationships 

very efficiently. 

The rest of this chapter is organized as follows. In Section 3.1, we propose the 

P-Containment scheme which can determine the sibling relationship much faster than 

the existing containment labeling schemes [26, 56, 83], can determine the parent-

child relationship faster, and can determine the ancestor-descendant and ordering 

relationships as efficient as the existing containment schemes. We summarize this 

chapter in Section 3.2. 
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3.1   A Node Labeling Scheme: P-Containment Scheme 

We firstly illustrate what is P-Containment scheme. 

 
Rather than storing the “level” value in the existing containment scheme [83], P-

Containment scheme stores the “parent_start” value, which is the “start” value of the 

parent of this node. 

 
Example 3.1 Figure 3.1(a) shows the existing containment scheme [83]; it can be 

seen that the existing containment scheme stores the “level” value. Figure 3.1(b) 

shows P-Containment scheme. Different from the existing containment scheme shown 

in Figure 3.1(a), P-Containment stores the “parent_start” value rather than the 

“level” value. In Figure 3.1(b), the “4” in “5,6,4” is the “parent-start” value, and it 

is equal to the “start” value of its parent, i.e. the “4” in “4,9,1”.  

 
With the “parent_start”, we can determine the parent-child and sibling 

relationships faster. 

 
Property 3.1 For two different nodes u and v, node u is a parent of node v iff the 

“parent_start” value of node v is equal to the “start” value of node u based on P-

Containment. 

 
Property 3.2 For two different nodes u and v which are not the root of an XML tree, 

node u is a sibling of node v iff the “parent_start” value of node u is equal to the 

“parent_start” value of node v based on P-Containment. 
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(a) Zhang’s containment scheme 
 
 

 

(b) P-Containment scheme 
 

Figure 3.1: The existing containment scheme and P-Containment scheme 
 
 
 
Example 3.2 (Determine parent-child and sibling relationships based on P-

Containment scheme) Based on the P-Containment scheme shown in Figure 3.1(b), 

“4,9,1” is the parent of “5,6,4” because the “parent_start” value of “5,6,4” is 4 

which is equal to the “start” value of “4,9,1”. “5,6,4” is a sibling of “7,8,4” because 

their “parent_start” values are both equal to “4”. 

 
Example 3.3 (Comparison between the existing containment scheme [83] and P-

Containment scheme in determining the parent-child relationship) Based on the 

2,3,2 

1,18,1 

12,17,2 10,11,2 4,9,2 

7,8,3 5,6,3 15,16,3 13,14,3 

2,3,1 

1,18,- 

12,17,1 10,11,1 4,9,1 

7,8,4 5,6,4 15,16,12 13,14,12 
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existing containment scheme shown in Figure 3.1(a), “4,9,2” is the parent of “5,6,3” 

because 4 < 5, 6 < 9, and 3 – 2 = 1, i.e. the “start,end” interval of “5,6,3” should be 

contained in the “start,end” interval of “4,9,2”, and the “level” value of “5,6,3” 

minus the “level” value of “4,9,2” should be equal to 1. It can be seen that the 

existing containment scheme needs 3 comparisons to determine the parent-child 

relationship. In contrast, P-Containment scheme only needs 1 comparison, i.e. the 

“parent_start” of one node is equal to the “start” of another node, thus P-

Containment scheme is more efficient to determine the parent-child relationship. 

 
Example 3.4 (Comparison between the existing containment scheme [83] and P-

Containment scheme in determining the sibling relationship) To determine the 

sibling relationship between “5,6,3” and “7,8,3” in Figure 3.1(a), the existing 

containment scheme needs to search the parent of “5,6,3”, then decide whether 

“7,8,3” is the child of this parent. A lot of parent-child relationships should be 

determined in the searching of the parent of “5,6,3” which is very expensive. In 

contrast, P-Containment scheme only needs 1 comparison, i.e. the “parent_start” of 

one node is equal to the “parent_start” of another node, which is much cheaper.  

 
Therefore P-Containment scheme is more efficient to determine the parent-

child and sibling relationships. 

The following property shows that P-Containment scheme is still as efficient 

as the existing containment scheme to determine the ancestor-descendant and ordering 

relationships. 
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Property 3.3 P-Containment scheme determines the ancestor-descendant and 

ordering relationships in the same way as the existing containment labeling scheme. 

 
Example 3.5 (Determine ancetor-descendant and ordering relationship based on 

P-Containment scheme) Based on the P-Containment scheme shown in Figure 3.1(b), 

“5,6,4” is a descendant of “1,18,-” because 1 < 5 and 6 < 18. “7,8,4” is before 

“13,14,12” in document order because 7 < 13. The determinations of these two 

relationships based on P-Containment are in the same way as the existing 

containment scheme. 

 
Theorem 3.1 P-Containment scheme requires that the “start” value of each node 

should be unique. 

Proof: If the “start” of P-Containment is not unique, P-Containment may 

determine the parent-child etc. relationships wrongly since more than one nodes have 

the same “start” and the “parent_start” of one node may be equal to the “start”s of 

many nodes. Therefore the “start” value should be unique. 

 
To implement the P-Containment scheme, we only need to scan an XML tree 

once, then we can get the “start”, “end” and “parent_start” values for all the nodes. 

3.2   Summary 

In this chapter, we propose the P-Containment scheme which can determine the 

sibling relationship much faster than the existing containment scheme, determine the 
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parent-child relationship faster, and determine the ancestor-descendant and ordering 

relationships as efficient as the existing containment scheme. 

The P-Containment scheme is originally proposed by us to efficiently process 

the internal node updates (see Chapter 4); meanwhile we find that P-Containment can 

determine the sibling relationship much faster; hence we simply present the P-

Containment scheme in this chapter. Now we find that in [32], the idea about storing 

the parent value is mentioned though [32] does not explicitly indicate that in this way, 

the sibling relationship can be processed much faster. [32] mainly focuses on 

processing the ancestor, descendant, preceding and following relationships in a 

coordinate plane by traversing an XML tree in preorder and postorder. 

The novel and important contribution of this thesis is on processing of updates; 

see later chapters. The P-Containment scheme proposed here can be used to 

efficiently process internal node updates (see Chapter 4) and to completely avoid re-

labeling (see Chapter 5). No one has ever studied that the “parent_start” value can be 

used to efficiently process internal updates and completely avoid re-labeling. 

 



 

Chapter 4 

CDBS Encoding of Node Labels to 
Efficiently Process XML Updates 

 

To efficiently process XML updates, this chapter introduces a Compact Dynamic 

Binary String encoding, called CDBS. The features of this encoding are that (1) it 

supports order-sensitive insertions without re-encoding the existing binary string 

codes (dynamic), (2) it is as compact as the binary number encoding of consecutive 

numbers (most compact), and (3) it is orthogonal to specific labeling schemes, 

therefore it can be applied broadly to different labeling schemes to efficiently support 

XML updates. 

The rest of this chapter is organized as follows. Section 4.1 indicates that the 

most important feature of our approach is that we compare codes (labels) based on the 

lexicographical order, also an algorithm is given in this section which can insert a 

binary string between two lexicographically ordered binary strings. Section 4.2 

presents CDBS encoding which is very compact, yet it supports order-sensitive 

insertions efficiently. Section 4.3 discusses that CDBS encoding can be applied 

broadly to different labeling schemes. In Section 4.4, we discuss how to process XML 

updates based on CDBS encoding. Section 4.5 reports the experimental results. 

Finally, we summarize this chapter in Section 4.6. 
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4.1   Lexicographical Order for Binary Strings 

The most important feature of our approach is that we compare labels based on the 

lexicographical order rather than the numerical order. In this section, we firstly 

introduce the definition of lexicographical order for binary strings (each symbol of the 

binary string is stored with 1 bit) and then propose an algorithm that can always insert 

a binary string between two lexicographically ordered binary strings. This algorithm 

is the foundation of this thesis which guarantees that we can update XML without re-

labeling the existing nodes. 

 
Definition 4.1 (Lexicographical order  ) Given two binary strings SL and SR (SL 

represents the left binary string and SR represents the right binary string), SL is said to 

be lexicographically equal to SR iff they are exactly the same. SL is said to be 

lexicographically smaller than SR (SL   SR) iff 

(a) the lexicographical comparison of SL and SR is bit by bit from left to 

right. If the current bit of SL is 0 and the current bit of SR is 1, then SL   SR and stop 

the comparison, or 

(b) SL is a prefix of SR. 

 
Example 4.1 Given two binary strings “0011” and “01”, “0011”   “01” 

lexicographically because the comparison is from left to right, and the 2nd bit of 

“0011” is “0”, while the 2nd bit of “01” is “1”. Given two binary strings “01” and 

“0101”, “01”   “0101” lexicographically because “01” is a prefix of “0101”. 

 
 
 



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 46 

Algorithm 4.1: AssignMiddleBinaryString(SL, SR) 
Input: SL   SR; SL and SR are both ended with “1” 
Output SM (ended with 1) such that SL   SM   SR lexicographically 
 
Description: 
  1:  if size(SL) ≥  size(SR) then   //Case (a) 
  2:      SM = SL ⊕  “1”    //⊕  means concatenation  
  3:  else if size(SL) < size(SR) then   //Case (b) 
  4:      SM = SR with the last bit “1” changed to “01” 
  5:  end if 
  6:  return SM 

 
 

Next based on Algorithm 4.1, Theorem 4.1 and Example 4.2, we illustrate 

how to insert a binary string SM (SM represents the middle binary string) between two 

lexicographically ordered binary strings SL and SR (SL represents the left binary string 

and SR represents the right binary string) such that SL   SM   SR lexicographically. 

 
Theorem 4.1 Given any two binary strings SL and SR both of which end with “1” and 

SL   SR, we can always find a binary string SM  based on Algorithm 4.1 such that SL 

  SM   SR lexicographically. 

Proof: 

Case (a): If size(SL) ≥  size(SR), we process SM based on lines 1 and 2 in 

Algorithm 4.1, i.e. SM  = SL ⊕  “1”. 

(a1): SM is that SL concatenates one more “1”, thus SL is a prefix of SM. 

According to condition (b) in Definition 4.1, SL   SM  lexicographically. 

(a2): Since size(SL) ≥  size(SR) and SL   SR, condition (a) in Definition 4.1 

must be satisfied. That means there is a position; the bit of SL at this position is “0”, 

and the bit of SR at this position is “1”. Therefore when we concatenate one more “1” 
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after SL i.e. SM, SM is still smaller than SR lexicographically (the lexicographical 

comparison is from left to right), i.e. SM   SR. 

Based on (a1) and (a2), SL   SM   SR lexicographically when size(SL) ≥  

size(SR). 

Case (b): If size(SL) < size(SR), we process SM based on lines 3 and 4 in 

Algorithm 4.1, i.e. SM  = SR with the last bit “1” changed to “01”. 

(b1): If the first (size(SR)-1) bits of SR are larger than SL lexicographically, SL 

  SM because SM is the first (size(SR)-1) bits of SR ⊕  “01”. If the first (size(SR)-1) bits 

of SR are exactly the same as the SL, SL   SM because SM is SL ⊕  “01” (SL is the same 

as the first (size(SR)-1) bits of SR; SL is a prefix of SM). Note that the first (size(SR)-1) 

bits of SR can not be smaller than SL lexicographically, otherwise SL will be larger than 

SR lexicographically (conflict to the condition in Theorem 4.1). Therefore SL   SM. 

(b2): If we do not consider the last two bits “01” of SM and the last bit “1” of 

SR, SM is exactly the same as SR, and “01”   “1” lexicographically. Therefore SM   

SR. 

Based on (b1) and (b2), SL   SM   SR lexicographically when size(SL) < 

size(SR). 

Therefore Theorem 4.1 holds. 

 
Example 4.2 To insert a binary string between “0011” and “01”, the size of “0011” 

is 4 bits which is larger than the size 2 bits of “01”, therefore we directly concatenate 

one more “1” after “0011” (see lines 1 and 2 in Algorithm 4.1). The inserted binary 

string is “00111”, and “0011”   “00111”   “01” lexicographically. To insert a 

binary string between “01” and “0101”, the size of “01” is 2 bits which is smaller 



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 48 

than the size 4 bits of “0101”, therefore we change the last bit “1” of “0101” to 

“01”, i.e. the inserted binary string is “01001” (see lines 3 and 4 in Algorithm 4.1); 

obviously “01”   “01001”   “0101” lexicographically. 

 
Next we use an example to show why we require the last bit of the binary 

string to be “1”. 

 
Example 4.3 Suppose there are two binary strings “0” and “00”. “0”   “00” 

lexicographically because “0” is a prefix of “00” (see Definition 4.1), but we can not 

insert a binary string SM between “0” and “00” such that “0”   SM   “00”. 

Accordingly we require the binary strings to end with “1”. 

 
Algorithm 4.1 is the foundation of this thesis which can help to process 

updates efficiently. 

 
When the labeling scheme is a prefix scheme, based on Theorem 4.1, we can 

insert one label between two labels without re-labeling the existing nodes. When the 

labeling scheme is a containment scheme, we may need to insert the “start” and “end” 

two values at one place. The following Corollary 3.3 guarantees that two labels can 

be inserted between two labels without re-labeling. 

 
Lemma 4.2 The SM in Theorem 4.1 returned by Algorithm 4.1 ends with “1”. 

Proof: This is obvious when we check Algorithm 4.1. Lines 1 and 2 indicate 

that the end bit of SM  is “1” when size(SL) ≥  size(SR), and lines 3 and 4 indicate that 

the end bit of SM  is “1” when size(SL) < size(SR). The case at lines 1 and 2 and the 

case at lines 3 and 4 are complete, therefore SM  ends with “1”. 
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Corollary 4.3 Given any two binary strings SL and SR which are both ended with “1” 

and SL   SR, we can always find two binary strings SM1 and SM2 such that SL   SM1   

SM2   SR lexicographically. 

Proof: Based on Theorem 4.1, we can insert a binary string SM between SL and 

SR. Based on Lemma 4.2, we know that SM is also ended with “1”. Therefore based on 

Theorem 4.1, we can insert another binary string between SL and SM, or between SM 

and SR. Therefore Corollary 4.3 holds. 

 
We can further insert binary strings among SL, SM1, SM2 and SR. 

 
Theorem 4.1 and Corollary 4.3 guarantee that we have low update cost in 

XML updating. 

Algorithm 4.1 proposed in this thesis is dynamic and can be applied to any two 

ordered binary strings (ended with “1”) for insertions. On the other hand, to maintain 

the high query performance, we should not increase the label size when reducing the 

update cost. In Section 4.2 we further propose a Compact Dynamic Binary String 

encoding, called CDBS. All the codes (binary strings) of CDBS are ended with “1” 

and CDBS encoding is as compact as the existing binary number encoding of 

consecutive numbers (see Section 4.2). 

4.2   The Compact Dynamic Binary String Encoding (CDBS) 

In this section, we propose a Compact Dynamic Binary String encoding (CDBS), and 

based on Algorithm 4.1, CDBS supports updates efficiently. 
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Table 4.1: Binary and CDBS encodings 

Decimal number V-Binary V-CDBS F-Binary F-CDBS 
1 1  00001 00001 00001 
2 10  0001 00010 00010 
3 11  001 00011 00100 
4 100  0011 00100 00110 
5 101  01 00101 01000 
6 110  01001 00110 01001 
7 111  0101 00111 01010 
8 1000  011 01000 01100 
9 1001  0111 01001 01110 
10 1010  1 01010 10000 
11 1011  10001 01011 10001 
12 1100  1001 01100 10010 
13 1101  101 01101 10100 
14 1110  1011 01110 10110 
15 1111  11 01111 11000 
16 10000  1101 10000 11010 
17 10001 111 10001 11100 
18 10010 1111 10010 11110 

Total size (bits) 64 64 90 90 
 
 

We firstly use an example to illustrate how CDBS encodes a set of numbers, 

and use examples to simply analyze the total size of the CDBS codes. Next the formal 

encoding algorithm in Section 4.2.1 and the formal size analysis in Section 4.2.2 will 

be easier to understand. 

Table 4.1 shows the binary number encoding (V-Binary and F-Binary) and 

CDBS (V-CDBS and F-CDBS) encoding of 18 numbers. We choose 18 as an 

example because the total “start” and “end” values in Figure 2.3 are 18. In fact, CDBS 

can encode any number (not only 18; see the formal algorithm in Section 4.2.1). 

When encoding 18 decimal numbers in binary, they are shown in Column 2 

(V-Binary Column) of Table 4.1 which have Variable lengths, called V-Binary. For 

example, Binary number 101 is equal to decimal number 5. 
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Now let us discuss how to encode the 18 decimal numbers based on CDBS 

encoding. Column 3 (V-CDBS Column) of Table 4.1 shows CDBS, which is called 

V-CDBS because it is encoded with Variable length binary strings. The following 

steps show the details of how to get the V-CDBS codes (binary strings) and these 

steps are examples for the formal algorithm in Section 4.2.1. 

 
Step 1: In the encoding of the 18 numbers, we suppose that there is one more number 

before number 1, say number 0, and one more number after number 18, say number 

19. 

 
Step 2: We firstly encode the middle number with binary string “1”. The middle 

number is 10 where 10 is calculated in this way, 10 = round(0+(19–0)/2). The V-

CDBS code of number 10 is “1” (see Table 4.1). 

 
Step 3: Next we encode the middle number between 0 and 10, and between 10 and 19. 

The middle number between 0 and 10 is 5 (5=round(0+(10-0)/2)) and the middle 

number between 10 and 19 is 15 (15=round(10+(19-10)/2)). 

 
Step 4: To encode number 5, the code size of number 0 is 0 (the V-CDBS code of 

number 0 corresponding to SL in Algorithm 4.1 is empty now), and the code size of 

number 10 is 1 (the V-CDBS code of number 10 corresponding to SR in Algorithm 

4.1 is “1” now with size 1 bit). This is the Case (b) where size(SL) < size(SR) (see 

Algorithm 4.1). Thus based on lines 3 and 4 in Algorithm 4.1, the V-CDBS code of 

number 5 is “01” (“1” →  “01”). 
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Step 5: To encode number 15, the 10th code (SL) is “1” now with size 1 bit, and the 

19th code (SR) is empty now with size 0. This is the Case (a) where size(SL) ≥  

size(SR) (see Algorithm 4.1). Therefore based on lines 1 and 2 in Algorithm 4.1, the 

V-CDBS code of number 15 is “11” (“1” ⊕  “1” →  “11”). 

 
Step 6: Next we encode the middle numbers between 0 and 5, between 5 and 10, 

between 10 and 15, and between 15 and 19, which are numbers 3, 8, 13 and 17 

respectively. The encodings of these numbers are still based on Case (a) or Case (b) in 

Algorithm 4.1. 

 
In this way, all the numbers except 0 will be encoded because the round 

function will reach the larger value (divided by 2), and we need to discard the V-

CDBS code for number 19 since number 19 does not exist actually. 

There are two methods to make the encoding the most symmetric. 

(1) With Step 1, the total code size of V-CDBS is always equal to the total code 

size of V-Binary (without Step 1, but the other steps are the same, then their total sizes 

are not always equal). 

(2) If there is no Step 1, we should process the middle numbers in this way. 

Based on the number 1 and number 18, the middle number is number 10 

(10=round((1+18)/2)). Next we should calculate the middle numbers between number 

1 and number 9, and between number 11 and number 18, i.e. number 10 should not be 

used to calculate the middle numbers. In this way, the middle number between 

number 1 and number 9 is 5 (5=round((1+9)/2)), and the middle number between 

number 11 and number 18 is 15 (15=round((11+18)/2)). Next we calculate the middle 



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 53 

numbers between 1 and 4, between 6 and 9, between 11 and 14, between 16 and 18. 

Finally the code of number 1 is that we change the last bit “1” of the code of number 

2 to “01” since the round function will not reach number 1. 

Both of these two methods calculate the middle numbers in the most 

symmetric way. The larger size codes are used only after the smaller size codes are 

used up, therefore both of these two methods can guarantee that the total code size of 

V-CDBS is equal to the total code size of V-Binary. 

Also we can encode the decimal numbers 1-18 with Fixed length binary 

numbers, called F-Binary (see F-Binary Column of Table 4.1). Since 18 needs 5 bits 

to store, zero or more “0”s should be concatenated before each code of V-Binary. On 

the other hand, when representing CDBS using Fixed length, called F-CDBS, we 

concatenate “0”s after the V-CDBS codes (see F-CDBS Column of Table 4.1). 

With Step 1 to Step 6 above, the formal encoding algorithm in Section 4.2.1 

will be easier to understand, and with the following example illustrations for the total 

code size, the formal size analysis in Section 4.2.2 will be easier to understand. 

 
Example 4.4 It can be seen from Table 4.1 that V-Binary has one code “1” with size 

1 bit, two codes “10” and “11” with sizes 2 bits, four codes “100”, “101”, “110” 

and “111” with sizes 3 bits, etc., and the total size of V-Binary is 64 bits. Also we can 

see that V-CDBS has one code “1” with size 1 bit, two codes “01” and “11” with 

sizes 2 bits, four codes “001”, “011”, “101” and “111” with sizes 3 bits, etc., and 

the total size of V-CDBS is also 64 bits. This means that V-CDBS is as compact as the 

existing binary number encoding of consecutive numbers. It is similar for F-Binary 

and F-CDBS (they both have size 90 bits). 
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Example 4.5 Table 4.1 shows that V-Binary has smaller total code size than F-

Binary. However, we also need to store the length of each V-Binary code, the 

maximal length for a code is 5, e.g. the length of “10010” is 5. We need to store this 5 

using fixed length of bits (“101”; 3 bits). The lengths of other codes should also be 

stored using fixed length of bits (3 bits), therefore the total code size for V-Binary is 

3×18+64=118 bits which is larger than the bits required by F-Binary. It is similar 

for V-CDBS (118 bits) and F-CDBS (90 bits). 

 
In the later parts of this thesis, we mainly focus on V-CDBS to introduce the 

theorems and properties; these properties can be applied to F-CDBS also. 

4.2.1   CDBS Encoding Algorithm 

Because F-CDBS is that some “0”s are concatenated after the V-CDBS codes, we 

focus on V-CDBS to introduce the algorithm. 

Algorithm 4.2 is the V-CDBS encoding algorithm. We use the procedure V-

CDBS_SubEncoding to get all the codes of the numbers. Finally number 0 and 

number (TN+1) should be discarded since they do not exist actually. 

V-CDBS_SubEncoding is a recursive procedure, the input of which is an array 

codeArr, the left position “PL” and the right position “PR” in the array codeArr. This 

procedure assigns codeArr[PM] (corresponding to SM in Algorithm 4.1) using the 

AssignMiddleBinaryString algorithm (Algorithm 4.1), then it uses the new left and 

right positions to call the V-CDBS_SubEncoding procedure itself, until each (except 

the 0th) element of the array codeArr has a value. 
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Algorithm 4.2: V-CDBS Encoding (TN) 
Input: A positive integer TN 
Output: The V-CDBS codes for numbers 1 to TN  
 
Description: 
  1: suppose there is one more number before the first number,  
      called number 0, and one more number after the last number, 
      called number (TN+1) 
  2: Define an array codeArr[0,TN+1] //the size of codeArr is  
      //TN+2; each element of the codeArr is empty at the 
beginning 
  3: V-CDBS_SubEncoding(codeArr, 1, TN)  
  4: discard the 0th and (TN+1)th elements of the codeArr 
 
Procedure V-CDBS_SubEncoding (codeArr, PL, PR) 
/*V-CDBS_SubEncoding is a recursive procedure; codeArr is an 
array, PL is the left position, and PR is the right position*/ 
  1: PM = round((PL+PR)/2) 
  2: if PL+1<PR then 
  3:   codeArr[PM]= 
           assignMiddleBinaryString(codeArr[PL], codeArr[PR]) 
  4:   V-CDBS_SubEncoding(codeArr, PL, PM) 
  5:   V-CDBS_SubEncoding(codeArr, PM, PR) 
  6: end if 

 

 
 

 
Note that SL and SR in the input of Algorithm 4.1 can be empty when 

Algorithm 4.1 is called by V-CDBS_SubEncoding here. If SL and SR are both empty, 

their sizes are both equal to 0, and SM is “1” based on lines 1 and 2 in Algorithm 4.1. 

If SL is empty and SR is not empty, size(SL) < size(SR), and we process SM  based on 

lines 3 and 4 in Algorithm 4.1 (SM   SR). If SL is not empty and SR is empty, size(SL) 

> size(SR), and we process SM  based on lines 1 and 2 in Algorithm 4.1 (SL   SM). 

 
Given a positive integer TN, Algorithm 4.2 can encode all the numbers 

between 1 and TN with V-CDBS codes.  

The V-CDBS encoding is like the binary search. As we know, the binary 

search will not miss any values in the search, therefore Algorithm 4.2 can encode each 
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number without missing. This property is very important to guarantee that our 

approach can completely encode all the numbers. 

 
Lemma 4.4 All the V-CDBS codes are ended with “1”. 

Proof: Lemma 4.2 guarantees that Lemma 4.4 holds. 

 
Theorem 4.5 All the V-CDBS codes are lexicographically ordered. 

Proof: Algorithm 4.2 is about the insertion at different places, and Algorithm 

4.1 guarantees that all the insertions at different places are lexicographically ordered, 

and the total lexicographical order is also kept. 

 
Example 4.6 The V-CDBS codes in Table 4.1 are lexicographically ordered from top 

to bottom. 

 
Lemma 4.4 and Theorem 4.5 guarantee that the conditions in Theorem 4.1 and 

Corollary 4.3 are satisfied, therefore we can insert without re-labeling in updates 

based on V-CDBS. 

4.2.2   Size Analysis 

In this section, we analyze the sizes required by different encodings. 

 
V-Binary For V-Binary, one number (“1”; see Table 4.1) is stored with one bit, two 

numbers (“10” and “11”) are stored with 2 bits, four numbers (“100”, “101”, “110” 

and “111”) are stored with 3 bits, ···, therefore the total size of V-Binary is 

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn  



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 57 

12 1 +×= +nn         (4.1) 

(see Appendix C1 for how to get formula (4.1)) 

 
Suppose the total number of codes is N, which should be equal to 

12222 110 −=+⋅⋅⋅++ +nn . Thus formula (4.1) becomes to 

)1log()1log( ++−+ NNNN      (4.2) 

 
V-CDBS When considering V-CDBS, it has one code (“1”) stored with one bit, two 

codes (“01” and “11”) stored with two bits, four codes (“001”, “011”, “101” and 

“111”) stored with three bits, ···, therefore V-CDBS has the same code size as V-

Binary (see Formula (4.2)). 

 
In addition, since V-Binary and V-CDBS have variable lengths, we need to 

store the size of each code. A fixed-length number of bits are used to store the length 

of the codes. The maximal length for a code is )log(N . To store this length, the bits 

required are ))log(log(N , and the total bits required to store the lengths of all the 

variable codes are ))log(log(NN . When taking formula (4.2) into account, the total 

sizes of V-Binary and V-CDBS are both 

)1log())log(log()1log( ++−++ NNNNNN    (4.3) 

 
F-Binary To store N numbers with fixed lengths, the size required is 

)log(NN         (4.4) 

The length of the F-Binary code also needs to be stored, but needs to be stored 

only once, which needs size ))log(log(N . Therefore the total size for F-Binary is 
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))log(log()log( NNN +       (4.5) 

 
F-CDBS has the same total code size as formula (4.5). 

 
Note that for simplicity, we omit the ceiling functions on the log functions in 

all the formulas. 

 
Theorem 4.6 V-CDBS and F-CDBS are the most compact variable and fixed length 

binary string encodings which support updates efficiently. 

Proof: As we know, the V-Binary and F-Binary are encodings for the 

consecutive decimal numbers and there are no gaps between any two consecutive 

numbers, thus V-Binary and F-Binary are the most compact encodings. In addition, 

from the above size analysis, we know that V-CDBS and F-CDBS have the same total 

sizes as V-Binary and F-Binary respectively2. Furthermore, based on Lemma 4.4, 

Theorem 4.5 and Theorem 4.1, we can insert a binary string between any two 

consecutive V-CDBS or F-CDBS codes without re-encoding the existing numbers. 

Therefore, V-CDBS and F-CDBS are the most compact dynamic encodings. 

4.3   Applying CDBS to Different Labeling Schemes 

In this section, we mainly illustrate how V-CDBS can be applied to different labeling 

schemes. F-CDBS is similar since it is that some zeros are concatenated after the V-

CDBS codes. 

                                                 
2 We assume the consecutive numbers starting from 1. If the consecutive numbers start from 0, our 

approach can use “0” as one code in the encoding, then our approach still has the same size as Binary, 
but each time when we want to insert a code before “0”, we need to insert a code before the second 
code, and always put “0” as the first code. 
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We firstly describe a property which is the second foundation of this thesis 

(the first one is Algorithm 4.1). 

 

Property 4.1 V-CDBS is orthogonal to specific labeling schemes, thus it can be 

applied to different labeling schemes or other applications which need to maintain the 

order in updates. 

 
Property 4.1 states that V-CDBS can be broadly applied to different labeling 

schemes. 

 
When we replace the “start” and “end” values 1-18 of the containment scheme 

[83] (similar for other containment schemes [3, 26, 56, 80]) in Figure 2.3 with the V-

CDBS codes in Table 4.1 and based on the lexicographical comparison, a V-CDBS 

based containment labeling scheme is formed, called V-CDBS-Containment. 

 
Example 4.7 Figure 4.1 shows the V-CDBS-Containment scheme. The “start” and 

“end” values are replaced with V-CDBS codes. The “level” values are still the same 

as the decimal numbers in Figure 2.3 which can be used to calculate the “level” 

difference for the parent-child determination. Note that the decimal numbers are 

stored in binary numbers in the implementation. Based on the lexicographical order, 

we can compare the “start” and “end” values for the ancestor-descendant etc. 

determinations. V-CDBS-Containment has the same total label size as the existing 

containment scheme, therefore it will not decrease the query performance. More 

important, based on V-CDBS-Containment, we can process updates efficiently (see 

Section 4.4) 
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Figure 4.1: V-CDBS-Containment scheme 
 
 

Similarly, we can replace the decimal numbers in the prefix labeling scheme 

[70] (see Figure 2.4) with V-CDBS codes, then a V-CDBS based prefix labeling 

scheme is formed, called V-CDBS-Prefix. We use the following example to show V-

CDBS-Prefix. 

 
Example 4.8 From Figure 2.4, we can see that the root has 4 children. To encode 4 

numbers based on Algorithm 4.2, the V-CDBS codes will be “001”, “01”, “1” and 

“11”. Similarly if there are two siblings, their self_labels are “01” and “1” based on 

Algorithm 4.2. Figure 4.2 shows V-CDBS-Prefix scheme. 

 
 

 

Figure 4.2: V-CDBS-Prefix scheme (for Figure 2.4) 

0001,001,2 

00001,1111,1 

1001,111,2 1,10001,2 0011,0111,2 

0101,011,3 01,01001,3 11,1101,3 101,1011,3 

001 

 

11 1 01 

01.1 01.01 11.1 11.01 
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Similarly we can apply V-CDBS to the prime labeling scheme to record the 

document order rather than calculate the SC values (see Section 2.3 of Chapter 2 for 

the prime labeling scheme and the SC value calculation). Based on V-CDBS encoding, 

Prime can also maintain the orders with very cheap cost. However because Prime 

employs the modular and division operations to determine the ancestor-descendant etc. 

relationships, its query efficiency is quite bad (see Section 4.5.2.2 for experimental 

results). Thus we do not discuss in detail how V-CDBS is applied to Prime. 

For the containment and prime number scheme, we only need to know the 

total number of nodes of an XML tree, then we can replace the decimal numbers with 

CDBS encoding which is very efficient in initial labeling. However, for the prefix 

scheme, we need to know the number of siblings of each first child node. If the size of 

the XML tree is small, it is not a problem to get the number of siblings of a node, 

however if the size of the XML tree is very large, it will be slow to get the number of 

siblings for each first child node. 

It may be argued that V-CDBS only has the orders but does not have the exact 

position of each code, which is a deficiency when compared to the V-Binary codes. 

For example, from a V-Binary code “110”, we can immediately know that “110” 

corresponds to the decimal number 6. However, if we delete the V-Binary codes 

“100” and “101”, “110” is now not the 6th number but the 4th number in order. In this 

thesis, we focus on the dynamic XML data in which there are a lot of deletions and 

insertions, therefore V-Binary does NOT have merits over V-CDBS in processing the 

nth position label. V-Binary and V-CDBS both need to sort and get the position in the 

dynamic environment of XML data. 
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In addition, it is not the case that V-CDBS can not immediately get the exact 

position in the static environment of XML data. Based on an inverse processing of 

Algorithm 4.2, we can get the exact position of each V-CDBS code by calculations 

only (see Appendix D). However, if an XML tree is static, we can directly use V-

Binary rather than V-CDBS. If XML is dynamic, no encoding can calculate the 

positions immediately. 

4.4   Processing of XML Updates Based on Different Labeling 
Schemes Encoded with CDBS 

Based on CDBS, in this section, we discuss how to efficiently process different XML 

updates. Algorithm 4.1 is the foundation to efficiently process XML updates. Before 

we start the discussion of this section, we review the idea of Algorithm 4.1: given two 

lexicographically ordered binary strings ended with “1”, we can find a binary string 

lexicographically between the given two binary strings. If the size (bit number) of the 

left binary string is larger than or equal to the size of the right binary string, the 

inserted binary string is that we concatenate one more “1” at the end of the left binary 

string. If the size of the left binary string is smaller than the size of the right binary 

string, the inserted binary string is that we change the last bit “1” of the right binary 

string to “01”. In this way, the inserted binary string is lexicographically between the 

left binary string and the right binary string. 

Section 4.4.1 discusses how to process the leaf node updates. We discuss how 

to process the internal node updates in Section 4.4.2. When a subtree is inserted into 



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 63 

XML, Section 4.4.3 describes how to make the label size of the inserted subtree 

increase slowly. Section 4.4.4 discusses the uniformly and skewed insertions. 

4.4.1   Leaf Node Updates 

The deletion of a leaf node will not affect the relative orders of the nodes in XML, 

hence we mainly discuss how to process the insertions based on V-CDBS. 

In this section, we use examples to show how to process the leaf node 

insertion based on V-CDBS-Prefix (see Figure 4.2) and V-CDBS-Containment (see 

Figure 4.1). 

 
Example 4.9 If we want to insert a sibling node before “01.01” in Figure 4.3, the 

self_label of the inserted node is “001” (see lines 3 and 4 in Algorithm 4.1; the left 

binary string is empty and the right binary string is the self_label “01” of “01.01”); 

the complete label of the inserted node is “01.001”. Theorem 4.1 guarantees that we 

need not re-label the existing nodes but we can keep the orders. The insertions at 

other places also need not re-label the existing nodes. 

 
 

 

Figure 4.3: Leaf node insertions based on V-CDBS-Prefix scheme 

001 

 

11 1 01 

01.1 01.01 11.1 11.01 
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Figure 4.4: Leaf node insertions based on V-CDBS-Containment scheme 
 
 
Example 4.10 Similarly if we insert a sibling node before “01,01001,3” in Figure 4.4, 

we should insert two values (“start” and “end”) between the start of “0011,0111,2” 

i.e. “0011” and the start of “01,01001,3” i.e. “01”. Corollary 4.3 guarantees that we 

can insert two binary strings between “0011” and “01” with the orders kept. Based 

on Algorithm 4.1, the two inserted binary strings are “00111” and “001111”. The 

complete label of the inserted node is “00111,001111,3”. Obviously “0011”   

“00111”   “001111”   “01” lexicographically. We need not re-label the existing 

nodes, but we can keep the containment scheme working correctly to determine all the 

relationships. 

 

After insertion, we can further insert other nodes before the inserted node 

without re-labeling the existing nodes and with the orders kept. 

Next we use examples to show how inefficient the existing prefix [70] and 

containment [83] schemes process the updates. 

 
Example 4.11 If we want to insert a sibling node before “2.1” in Figure 4.5 based on 

the existing prefix scheme, the label of the inserted node is “2.1” and the existing 

0001,001,2 

00001,1111,1 

1001,111,2 1,10001,2 0011,0111,2 

0101,011,3 01,01001,3 11,1101,3 101,1011,3 
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“2.1” and “2.2” should be changed to “2.2” and “2.3”. If the existing “2.1” and 

“2.2” have descendants, the labels of these descendants should be changed also. 

 
 

 

Figure 4.5: Leaf node insertions based on the existing prefix scheme 
 
 

 

Figure 4.6: Leaf node insertions based on the existing containment scheme 
 
 
Example 4.12 If we want to insert a sibling node before “5,6,3” in Figure 4.6 based 

on the existing containment scheme, the label of the inserted node is “5,6,3” and the 

existing labels except “2,3,2” should all be changed. The end values of “1,18,1” and 

“4,9,2” should be added with 2; the new labels are “1,20,1” and “4,11,2”. The start 

and end values of all the other labels except the first three (in document order) should 

be added with 2; for instance, label “10,11,2” will be changed to “12,13,2”. It can be 

2,3,2 

1,18,1 

12,17,2 10,11,2 4,9,2 

7,8,3 5,6,3 15,16,3 13,14,3 

1 

 

4 3 2 

2.2 2.1 4.2 4.1 
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seen that the existing containment scheme needs to re-label many nodes when a node 

is inserted into the XML tree which is very inefficient. 

Prime needs to re-calculate the SC values in updates which is very expensive 

(see Section 4.5 for the experimental results). 

Sometimes Float-point [6] and OrdPath [64] also need not re-label the existing 

nodes. The update performance differences among Float-point, OrdPath and our 

approaches can be seen in Section 5.5.2 of Chapter 5. 

CDBS encoding can be applied to the P-Containment scheme introduced in 

Chapter 3 to efficiently process the leaf node updates also. 

4.4.2   Internal Node Updates 

In [74], the internal node update problem has been studied which shows that all the 

existing labeling schemes have expensive internal node update cost. 

When inserting an internal node, the existing containment scheme needs to re-

label all the nodes after this inserted node in document order (similar to Example 

4.12), all prefix schemes need to re-label the descendant nodes of the inserted node 

(the prefixes of all the descendants should be changed), and Prime also needs to re-

label all the descendant nodes with the new inserted label multiplying all the labels of 

the descendants, in addition Prime needs to re-calculate the SC values. 

Furthermore, when deleting an internal node from an XML tree, all the 

containment, prefix and prime labeling schemes should re-label all the descendant 

nodes. 
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That is to say, all the existing labeling schemes are not appropriate to process 

the internal node updates. When V-CDBS is applied to the existing containment 

scheme, V-CDBS-Containment can process the “start” and “end” values efficiently, 

but because the level values of all the descendants should be increased by 1, the 

update cost is not so cheap. Furthermore, when V-CDBS is applied to the existing 

prefix scheme, V-CDBS-Prefix can not process the internal node updates efficiently 

since the prefixes of all the descendants should be changed when an internal node is 

inserted into or deleted from an XML tree. This is the drawback of the existing 

labeling schemes, but not the drawback of CDBS encoding. 

Based on P-Containment scheme introduced in Chapter 3 and V-CDBS 

encoding, we can decrease internal node update cost. 

 
 

 

Figure 4.7: V-CDBS-P-Containment scheme 
 
 

We firstly review P-Containment scheme (see Figure 3.1(b)). In P-

Containment scheme, we store the “parent_start” value rather than the “level” value 

of the existing containment scheme. If two nodes have the same “parent_start” value, 

they are siblings. If the “start” value of one node is equal to the “parent_start” value 

00001,1111,- 

1001,111,00001 1,10001,00001 0011,0111,00001 0001,001,00001 

0101,011,0011 01,01001,0011 11,1101,1001 101,1011,1001 
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of another node, the first node is the parent of the second node. When we apply V-

CDBS encoding to P-Containment scheme, Figure 4.7 shows V-CDBS-P-

Containment scheme. 

The following Properties 4.2 and 4.3 show that V-CDBS-P-Containment has 

much cheaper internal node update cost. 

 
Property 4.2 Based on V-CDBS-P-Containment, when an internal node is inserted 

into an XML tree, the “parent_start” of the inserted internal node should refer to the 

“start” of the parent of this internal node, the “parent_start”s of the children of the 

inserted internal node should be modified to refer to the “start” of the inserted 

internal node, and the “parent_start”s of all the descendants of the inserted internal 

node except the children need not be changed. 

 

Example 4.13 Figure 4.8 shows that we insert an internal node “u” based on V-

CDBS-P-Containment scheme. The “start” of the inserted node “u” should be a 

binary string between the “start” of the root and the “start” of “0001,001,00001”, i.e. 

between “00001” and “0001”. Based on Algorithm 4.1, the “start” of node “u” will 

be “000011” (size(“00001”) > size(“0001”); “000011” = “00001” ⊕  “1”). 

Similarly the “end” of the inserted node “u” should be between the “end” of 

“1,10001,00001” and the “start” of “1001,111,00001”, i.e. between “10001” and 

“1001”. Based on Algorithm 4.1, the “end” of node “u” will be “100011” 

(size(“10001”) > size(“1001”); “100011” = “10001” ⊕  “1”). The “parent_start” 

value of the inserted node “u” should be equal to the “start” value of the root, i.e. 

“00001”. The “parent_start” values of “0001,001,00001”, “0011,0111,00001” and 

“1,10001,00001” should be modified to refer to the “start” value of node “u”, i.e. 
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change “00001” to “000011”. The “start”, “end” and “parent_start” values of the 

“01,01001,0011” and “0101,011,0011” (they are the descendant nodes of the 

children of node “u”) need not be changed. 

 
 

 

Figure 4.8: Internal node insertions based on V-CDBS-P-Containment scheme 
 
 
Theorem 4.7 The P-Containment shown in Figure 3.1(b) can not decrease the 

internal node insertion cost when the decimal numbers in Figure 3.1(b) are stored 

with V-Binary or F-Binary encodings. 

Proof: The “start” values of the descendants based on V-Binary and F-

Binary need to be changed when inserting an internal node, therefore if we use the 

“start” of the parent as the “parent_start” of the child, we still need to change the 

“parent_start” values. The insertion cost will not be decreased. 

 
Only V-CDBS-P-Containment (or F-CDBS-P-Containment) is efficient to 

process the internal node insertion. 

The following property shows that V-CDBS-P-Containment has cheaper 

internal node deletion cost. 
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Property 4.3 When an internal node is deleted from an XML tree, V-CDBS-P-

Containment only needs to modify the “parent_start” values of the child nodes of the 

deleted node to refer to the “start” value of the parent of the deleted node, but need 

not modify the “parent_start” values of the descendant nodes of these child nodes. 

Though internal node insertions and deletions do not happen so often in 

practice, the V-CDBS-P-Containment technique can help to reduce the internal node 

update cost if the internal node updates happen. In addition, the “parent_start” 

introduced in P-Containment scheme can help to determine the parent-child 

relationship, especially the sibling relationship very fast. Moreover, the “parent_start” 

is useful later in Chapter 5 to completely avoid re-labeling. 

It is not intuitive to improve the prime scheme to process the internal node 

updates efficiently since the labels of all the descendants need to be modified. It is 

easy to understand that the internal node updates for the existing containment and 

prefix schemes need to re-label all the descendant nodes of the inserted or deleted 

node, therefore we do not repeat how they process the internal node updates. Here we 

use an example to show how the prime scheme process the internal node updates. 

 

Figure 4.9: Internal node insertions based on the prime number scheme 
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Example 4.14 Figure 4.9 shows that we insert an internal node “u” based on the 

prime scheme. The next available prime number is 23, thus the label of node “u” is 

“23” (“1× 23”). The labels of all the descendant nodes of the inserted node “u” 

should be multiplied by the label “23” of node “u” (see Figure 4.9). Thus the internal 

node update cost based on Prime is very expensive. In addition to that, the orders of 

all the nodes after this inserted internal node should be added with 1 (see Figure 4.9), 

and Prime needs to re-calculate the SC values based on the new orders which is also 

very expensive. Therefore Prime can not process internal node updates efficiently. 

4.4.3   Subtree Updates 

The deletion of a subtree will not affect the relative orders of the rest nodes in XML, 

hence we mainly discuss how to process the insertion of a subtree based on V-CDBS. 

When a subtree is inserted into XML, we can process the insertion of this 

subtree as the insertion of nodes one by one. However, this kind of insertion will 

make the label size increase fast (see Section 4.4.4 for more details). That is not what 

we expected. We use the following method to process the insertion of a subtree. 

 
Example 4.15 Figure 4.10 shows that a subtree is inserted into the XML tree based 

on V-CDBS-Prefix. The label of the root of the subtree is an insertion between “01” 

and “1”. Based on Algorithm 4.1, the inserted label is “011” (see lines 1 and 2 of 

Algorithm 4.1; “011” = “01” ⊕  “1”). Based on Algorithm 4.2, the self_labels of the 

three child nodes of the subtree are “01”, “1” and “11”, and their complete labels 

are “011.01”, “011.1” and “011.11”. If the subtree is inserted node by node, their 

labels are “011”, “011.1”, “011.11” and “011.111” with larger total size. 
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Figure 4.10: Subtree insertion based on V-CDBS-Prefix scheme 
 
 
Example 4.16 Figure 4.11 shows that a subtree is inserted into the XML tree based 

on V-CDBS-P-Containment. For the subtree, we need to insert 8 binary strings (4 

nodes; 8 “start” and “end” values) between the V-CDBS codes “0111” (the “end” of 

“0011,0111,00001) and “1” (the “start” of “1,10001,00001”) in Figure 4.11. We use 

Algorithm 4.2 to process the insertion of the 8 binary strings, and “0111” and “1” 

can be thought as the V_CDBS codes for number 0 and number (TN+1)=(8+1)=9 in 

Algorithm 4.2. The middle number is the 5th number where 5= round(0+(9-0)/2). The 

SL is “0111” with size 4 bits, and the SR is “1” with size 1 bit, therefore according to 

lines 1 and 2 in Algorithm 4.1 (called by Algorithm 4.2), the V-CDBS code of the 5th 

number is “01111” (see lines 1 and 2 of Algorithm 4.1; “01111” = “0111” ⊕  “1”). 

Similarly we can insert the V-CDBS codes for the rest 7 numbers. Finally the V-CDBS 

codes for the 8 numbers are “01110001”, “0111001”, “011101”, “0111011”, 

“01111”, “0111101”, “011111” and “0111111”. They are lexicographically 

ordered between “0111” and “1”. The “start”, “end” and “parent_start” values of 

the four nodes of the inserted subtree are “01110001, 0111111, 00001”, “0111001, 

011101, 01110001”, “0111011, 01111, 01110001” and “0111101, 011111, 

01 001 

 

11 1 

01.1 01.01 11.1 11.01 
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01110001”. If the scheme is the existing containment scheme, it is not a problem to 

get the “level” value for each node of the inserted subtree compared with P-

Containment. 

 

 

Figure 4.11: Subtree insertion based on V-CDBS-P-Containment scheme 
 
 

In this way, the total label size of the inserted subtree is smaller than the size 

that we repeat the insertion node by node if not necessary (see Section 4.5.3.3 for the 

experimental results). 

The insertion of a subtree will make the existing containment and prefix 

schemes re-label the existing nodes, and because a subtree contains many nodes, it is 

easier to lead the Float-point [6] and OrdPath [64] to re-labeling. 

4.4.4   Uniformly and Skewed Frequent Updates 

The size analysis in Section 4.2.2 is based on the initial encoding. Algorithm 4.2 

shows that our encoding algorithm is step by step insertions of nodes evenly at 

different places. Therefore if a sequence of nodes are inserted randomly at different 

places of XML, the size analysis in Section 4.2.2 is still valid, and the query 

performance will not be decreased. 

0011,0111,00001 0001,001,00001 

00001,1111,- 

1001,111,00001 1,10001,00001 

0101,011,0011 01,01001,0011 11,1101,1001 101,1011,1001 



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 74 

For the case where nodes are always inserted at a fixed place (we call this kind 

of insertion skewed insertion) of XML, the size of V-CDBS increases fast. [23] 

proves that any deterministic labeling scheme which does not re-label nodes must in 

the worst case assign one label with size O(N). V-CDBS can not escape from this 

claim also, i.e. the label size of V-CDBS increases linearly in the worst case. O(N) is 

the upper bound of the size of V-CDBS. OrdPath [64] also has this skewed insertion 

problem. [68] uses B-tree to balance the update and lookup performance. 

[13] studies that the insertions in XML are often segments e.g. subtrees, and 

the insertion of single node seldom happens. As we can see from Section 4.4.3, the 

insertion of a subtree will not cause the label size increase fast. The above analysis 

also shows that CDBS at least work very well when the insertions are randomly at 

different places of XML. Even in the skewed insertion environment, CDBS still works 

the best to answer queries since we dramatically decrease the update time, and with 

the saved time, we can answer queries faster than other labeling schemes (other 

labeling schemes need re-labeling which needs a lot of time; see the experimental 

results in Section 4.5.3 of this chapter and in Section 5.5.2 of Chapter 5). 

4.5   Experimental Evaluation and Comparisons 

4.5.1   Experimental Setup 

The experimental setup here is used at all the experiments in this thesis whereas there 

are other special explanations. 
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We evaluate and compare the performance of different labeling schemes. The 

schemes containing a “CDBS” or “CDQS” are all schemes proposed in this thesis; all 

the others are prior schemes. The schemes with a “-Prefix” at the end of the scheme 

names are prefix schemes, and with a “-Containment” at the end of the scheme names 

are containment schemes. 

All the schemes are implemented in Java and all the experiments are carried 

out on a 3.0 GHz Pentium 4 processor with 1 GB RAM running Windows XP 

Professional. 

Table 4.2 shows the characteristics of the test datasets. D1 is from [63], D3 

and D4 are from [71], and all of them are real-world XML data. D2 is a benchmark 

generated by XMark [76]. We choose these datasets because they have different 

characteristics and they are widely used in different papers for XML performance 

study. We also test our approaches on other datasets from [63] and [71] and similar 

results are found; here we focus on D1-D4 to report all the experimental results in this 

thesis. 

 
 

Table 4.2: Test datasets 

Datasets Topics # of 
files 

Max/average 
fan-out for a 

file 

Max/average 
depth for a 

file 

Total # of 
nodes for 

each dataset 

Size 
(MB) 

D1 Shakespeare’s play 37 434/48 6/5 179689 7.53 
D2 XMark 1 25500/3242 12/6 1666315 82 
D3 Treebank 1 56384/1623 36/8 2437666 111 
D4 DBLP 1 328858/65930 6/3 3332130 127 
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4.5.2   Performance Study on Static XML Data 

From now on, we mainly study how the existing binary encoding and CDBS 

encodings (see Table 4.1 for different encodings) are applied to the existing 

containment and prefix labeling schemes to process the queries and updates. 

Static XML is not the emphasis of this thesis, thus we only compare the label 

size and query performance of different encodings in this section. 

4.5.2.1   Storage Requirement 
Figure 4.12(a) shows the label sizes of the existing containment, prefix and prime 

labeling schemes for the four datasets shown in Table 4.2. Prime [74] labeling scheme 

has larger label size than the containment and prefix schemes because it skips a lot of 

integer numbers to get the prime numbers and it uses the multiplications of the 

numbers for the labels which both make its label size very large. If the XML tree is 

deep (see the characteristics of different datasets in Table 4.2), the prefix scheme has 

larger label size than the containment scheme (see the label sizes for D2 and D3); if 

the XML tree is shallow, the prefix scheme has smaller label size than the 

containment scheme (see the label sizes for D4). 

Figure 4.12(b) is the comparison between the existing containment schemes 

and CDBS containment scheme. Float-point-Containment [6] has larger label size 

than other containment labeling schemes. V-CDBS-Containment has the same label 

size as V-Binary-Containment, and F-CDBS-Containment has the same label size as 

F-Binary-Containment. These show that V-CDBS and F-CDBS are the most compact 

variable and fixed length encodings. 
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When V-Binary, F-Binary, V-CDBS, and F-CDBS are applied to the P-

Containment scheme, V-CDBS-P-Containment still has the same label size as V-

Binary-P-Containment, and F-CDBS-P-Containment has the same size as F-Binary-P-

Containment. Here we do not show them in Figure 4.12(b). 
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(a) Label sizes of different schemes 
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(c) Label sizes of prefix schemes 

Figure 4.12: Label sizes of different labeling schemes 
 
 

For the prefix schemes, based on the size (length) of each code of V-CDBS 

(similar for F-CDBS), we can use the UTF8 [78] or OrdPath [64] encoding to process 

the delimiters. If we use UTF8 to process the delimiters, V-CDBS(UTF8)-Prefix has 

the same label size as DeweyID(UTF8)-Prefix. If we use OrdPath encodings to 

process the delimiters, V-CDBS(OrdPath)-Prefix has smaller label size than OrdPath-

Prefix since we do not waste the even numbers. The UTF8 and OrdPath encodings are 

existing techniques, In Section 5.2 of Chapter 5, we will show how to process the 

delimiters based on CDQS (see Example 5.6). It can be seen from Figure 4.12(c) that 

BinaryString-Prefix [23] has much larger label size than other prefix labeling 

schemes. Generally OrdPath1-Prefix and OrdPath2-Prefix have smaller label size than 

DeweyID(UTF8)-Prefix though OrdPath1-Prefix and OrdPath2-Prefix waste a lot of 

even numbers. This is because the encodings of OrdPath1 and OrdPath2 are more 

compact. However, though OrdPath has smaller label size, its query performance is 
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worse because it needs more time to decode its encodings and needs more time to 

determine the levels based on the odd and even numbers. 

4.5.2.2   Query Performance 
We test the query performance based on all XML files in the Shakespeare’s play 

dataset (D1) (see Table 4.2) and for a more sizeable data workload we scaled up 

(replicate) D1 10 times as described in [70]. The ordered and un-ordered queries and 

the number of nodes retrieved are shown in Table 4.3. 

 
 

Table 4.3: Test queries on the scaled D1 

Queries # of nodes 
Retrived 

Q1 /play/act[4] 370 
Q2 /play//personae[./title]/pgroup[.//grpdescr]/persona 2690 
Q3 /play/personae/persona[12]/preceding-sib ling::* 4240 
Q4 /play//act[2]/following::speaker 184060 
Q5 /play/act/scene/speech 309330 
Q6 /play//line 1078330 
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(b) Response time of containment schemes 
 
 

0

3000

6000

9000

12000

15000

Q1 Q2 Q3 Q4 Q5 Q6

Queries

Re
sp

on
se

 ti
m

e 
(m

s)

BinaryString-Prefix
DeweyID(UTF8)-Prefix
OrdPath1-Prefix
OrdPath2-Prefix
CDBS(UTF8)-Prefix
CDBS(OrdPath1)-Prefix
CDBS(OrdPath2)-Prefix

 

(c) Response time of prefix schemes 

Figure 4.13: Query performance of different labeling schemes 
 
 
 
 

Different structural join algorithms [5, 12, 13, 20, 39, 72] have been proposed 

to process XML queries. To do a fair comparison of different labeling schemes, in the 
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implementation, except the part which must be different, we use the same join method 

to test the queries for all the labeling schemes. Figure 4.13 shows the response time 

(CPU time + I/O time) of the 6 queries in Table 4.3. 

Figure 4.13(a) shows the response time of the containment, prefix and prime 

labeling schemes. Prime [74] has much larger response time because it has larger 

label size and it employs the modular and division operations to determine the 

ancestor-descendant, parent-child etc. relationships which are very expensive. We 

compare containment scheme and prefix scheme fairly. Note that it is unfair if prefix 

labels are stored as strings, but containment labels are stored as integers. 

Figure 4.13(b) shows the response time of different containment schemes. 

Float-point-Containment [6] has much larger response time due to its very large label 

size. Our CDBS-Containment (“V-” and “F-”) has smaller response time than Binary-

Containment (“V-” and “F-”) because our encodings can directly compare labels from 

left to right no matter the labels have variable lengths or fixed lengths, but V-Binary 

can not directly compare labels from left to right. 

Finally Figure 4.13(c) shows the response time of different prefix schemes. 

BinaryString-Prefix [23] has larger response time due to its larger label size on D1. 

Though OrdPath1-Prefix and OrdPath2-Prefix have smaller label size than 

DeweyID(UTF8)-Prefix, their query performance is worse than DeweyID(UTF8)-

Prefix because it is slow for them to decode the OrdPath1 and OrdPath2 codes and 

slow to separate the prefix levels (OrdPath2 even slower). CDBS(UTF8)-Prefix, 

CDBS(OrdPath1)-Prefix, CDBS(OrdPath2)-Prefix have the similar response time as 

DeweyID(UTF8)-Prefix, OrdPath1-Prefix and OrdPath2-Prefix respectively. 



Chapter 4   CDBS Encoding of Node Labels to Efficiently Process XML Updates 82 

4.5.3   Performance Study on Intermittent Updates in Dynamic XML 
Data 

Section 4.5.3.1 discusses how to process the leaf node updates. Section 4.5.3.2 is 

about the internal node updates. Section 4.5.3.3 describes the performance when a 

subtree is inserted into an XML tree. 

4.5.3.1   Leaf Node Updates 
The deletion of a leaf node will not require re-labeling of the existing nodes, therefore 

in this section we only compare the update performance when leaf nodes are inserted 

into XML. 

Same as [74], we select one XML file Hamlet in dataset D1 to test the update 

performance (it is similar for other XML files). Hamlet has 5 act elements. We test 

the following 5 cases (see Table 4.4 and Figure 4.14): inserting an act element before 

act[1], inserting an act element before act[2], ···, and inserting an act element before 

act[5]. 

Table 4.4 shows the number of nodes to re-label when applying different 

labeling schemes. V-Binary-Containment and F-Binary-Containment need to re-label 

many nodes (Hamlet has totally 6636 nodes) in the 5 cases. Though V-Binary-

Containment and F-Binary-Containment are very compact, they need to re-label the 

existing nodes when a node is inserted into XML. 

Also BinaryString-Prefix and DeweyID(UTF8)-Prefix need to re-label many 

nodes in the five insertion cases. It should be noted that V-Binary-Containment and F-

Binary-Containment have one more node than BinaryString-Prefix and 

DeweyID(UTF8)-Prefix to re-label because act elements are the children of the root 
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and the containment schemes need to re-label the root also (modify the “end” value of 

the root). 

 
 

Table 4.4: Number of nodes to re-label in leaf node updates 

Number of nodes to re-label (5 cases) Labeling schemes 1 2 3 4 5 
Float-point-Containment 0 0 0 0 0 
V-Binary-Containment 6596 5121 3932 2431 1300 
F-Binary-Containment  6596 5121 3932 2431 1300 
V-CDBS-Containment 0 0 0 0 0 
F-CDBS-Containment 0 0 0 0 0 

BinaryString-Prefix 6595 5120 3931 2430 1299 
DeweyID(UTF8)-Prefix 6595 5120 3931 2430 1299 

OrdPath1-Prefix 0 0 0 0 0 
OrdPath2-Prefix 0 0 0 0 0 

CDBS(UTF8)-Prefix 0 0 0 0 0 
CDBS(OrdPath1)-Prefix 0 0 0 0 0 
CDBS(OrdPath2)-Prefix 0 0 0 0 0 

Prime 1320 1025 787 487 261 
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Figure 4.14: Log2 of total time (CPU time + I/O time) for leaf node updates 
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For Prime, the number of SC values that are required to re-calculate is counted 

in Table 4.4. Because Prime uses each SC value for every five nodes [74], the number 

of SC values required to re-calculate is 1/5 of the number of nodes required by V-

Binary-Containment and F-Binary-Containment to re-label. Note that it is impossible 

to use a single SC value for all the nodes in the XML tree since the SC value will be 

too large a number. 

In the five cases, Float-point-Containment (less than 18 nodes at a single 

place), V-CDBS-Containment (without overflow; see Example 5.1 of Chapter 5 for 

the overflow problem), F-CDBS-Containment (without overflow), OrdPath1-Prefix 

(without overflow), OrdPath2-Prefix (without overflow), CDBS(UTF8)-Prefix 

(without overflow), CDBS(OrdPath1)-Prefix (without overflow), and 

CDBS(OrdPath2)-Prefix (without overflow) need not re-label any existing nodes. 

Compared with V-Binary-Containment and F-Binary-Containment, V-CDBS-

Containment and F-CDBS-Containment are also the most compact, yet they need not 

re-label the existing nodes in intermittent updates. 

Next we study the total time (CPU time + I/O time) for updates. Figure 4.14 

shows the LOG2 of the total leaf node update time (ms) (Y-axis). The total time 

required by Prime to re-calculate the SC values is much larger (at least 80 times; sum 

time of Case 1 to Case 5) than the time required by Binary-Containment (“V-” and 

“F-”) to re-label the nodes. Prime theoretically is a good scheme to process updates, 

but it is not practicable. The update time of BinaryString-Prefix [23] and 

DeweyID(UTF8) [70] is larger than the update time of Binary-Containment (“V-” and 

“F-”). In contrast, the total update time of V-CDBS-Containment, F-CDBS-
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Containment, CDBS(UTF8)-Prefix, CDBS(OrdPath1)-Prefix, and CDBS(OrdPath2)-

Prefix is 1/12 to 1/3 of the time of Binary-Containment. This is because these 

approaches need not re-label the existing nodes. 

It can be seen from Figure 4.14 that the update performance differences 

among Float-point, OrdPath and our approach are not very large though our approach 

is still better. This is because only several nodes are inserted into the XML tree and 

the main part of the update time of Float-point, OrdPath and our approach is the I/O 

time. When considering the CPU time only, our approach is much better than Float-

point and OrdPath. Their wide update differences can be seen in Section 5.5.2 of 

Chapter 5 where frequent insertions are executed. 

4.5.3.2   Internal Node Updates 
No matter an internal node is inserted into or deleted from an XML tree, the nodes 

should be re-labeled before the labeling schemes can work correctly to answer 

queries. Table 4.5 shows the number of nodes to re-label when inserting a node acts 

as the parent of the five act nodes of the Hamlet file and when deleting this internal 

node acts from the Hamlet file. 

It can be seen from Table 4.5 that all the labeling schemes except V-CDQS-P-

Containment and F-CDBS-P-Containment need to re-label many nodes in internal 

node updates. Though V-CDQS-P-Containment and F-CDBS-P-Containment also 

need to re-label the child nodes of the inserted or deleted node, it need not re-label the 

other descendant nodes of the inserted or deleted node. It only needs to re-label 5 

nodes which is much better than the other labeling schemes. 
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Table 4.5: Number of nodes to re-label for internal node updates 

Number of nodes to re-label Labeling schemes Insertion Deletion 
Float-point-Containment 6595 6595 
V-Binary-Containment 6596 6595 
F-Binary-Containment  6596 6595 
V-CDBS-Containment 6595 6595 
F-CDBS-Containment 6595 6595 

V-CDBS-P-Containment 5 5 
F-CDBS-P-Containment 5 5 

BinaryString-Prefix 6595 6595 
DeweyID(UTF8)-Prefix 6595 6595 

OrdPath1-Prefix 6595 6595 
OrdPath2-Prefix 6595 6595 

CDBS(UTF8)-Prefix 6595 6595 
CDBS(OrdPath1)-Prefix 6595 6595 
CDBS(OrdPath2)-Prefix 6595 6595 

Prime 6595 6595 
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Figure 4.15: Log2 of total time (CPU time + I/O time) for internal node updates 
 
 
 
 

Figure 4.15 shows the LOG2 of the total internal node update time (ms) (Y-

axis). For V-Binary-Containment and F-Binary-Containment, the deletion of an 
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internal node needs less update time than the insertion of an internal node, because the 

deletion only needs to modify the “level” values, but the insertion needs to modify the 

“start”, “end” and “level” values. 

V-CDBS-Containment and F-CDBS-Containment only need to modify the 

“level” values, but need not modify the “start” and “end” values even in insertions, 

therefore their insertion time is smaller. The update time of Float-point-Containment 

is larger because its label size is larger which needs more I/O time. In contrast, V-

CDBS-P-Containment and F-CDBS-P-Containment need much less update time 

because they need to re-label much less nodes (5 vs 6595 or 6596). 

All the prefix labeling schemes including CDBS encoding based prefix 

labeling schemes need to re-label all the descendant nodes when an internal node is 

inserted or deleted. 

When an internal node is updated, Prime needs to re-label all the descendant 

nodes of the inserted node. When an internal node is inserted, all the labels of the 

descendant nodes should multiply the label of the inserted node (see Example 4.14 

and Figure 4.9). When an internal node is deleted, all the labels of the descendant 

nodes should divide the label of the deleted node. In addition, Prime needs to re-

calculate the SC values to maintain the document order in insertions. Therefore the 

insertion time of Prime is much larger which can be seen from Figure 4.15. 

4.5.3.3   Subtree Updates 
In this section, we discuss how to insert a subtree. If we insert the nodes of the subtree 

one by one, the label size will increase fast. If we insert the nodes of the subtree based 

on the method introduced in Section 4.4.3, the label size increases slowly. 
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Figure 4.16: Label size increasing speed when inserting subtrees 
 
 

Figure 4.16 shows the label size increasing speed of these two methods when 

inserting subtrees with different number of nodes. It can be seen from Figure 4.16 that 

the label size based on the method introduced in Section 4.4.3 increases much slower 

than the method of insertions of subtrees node by node. 

 

4.5.4   Summary of Experimental Results 

Because skewed frequent updates are easy to lead to re-labeling, we propose another 

Quaternary String encoding approach in Chapter 5 which can completely avoid re-

labeling. We will compare the frequent update performance of different approaches in 

Section 5.5.2 of Chapter 5. 

If XML is static, CDBS encodings work quite well in considering either the 

storage or the query performance. CDBS encoding is as compact as the binary number 

encoding of consecutive numbers. 
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Towards the intermittent updates, CDBS based labeling schemes need not re-

label the existing nodes when a leaf node is inserted into an XML tree. CDBS-P-

Containment can process the internal node updates much more efficiently than other 

labeling schemes since it only needs to modify the labels of the children of the 

inserted or deleted internal node rather than all the descendants. When a subtree is 

inserted into XML, the experimental result shows that the method introduced in 

Section 4.4.3 will make the label size increase slowly. 

4.6   Summary 

In this chapter, we firstly illustrate that the most important feature of our approach is 

that we compare codes (labels) based on the lexicographical order. Based on the 

lexicographical order, we propose Algorithm 4.1 which can always insert a binary 

string between two lexicographically ordered binary strings ended with “1”. 

Algorithm 4.1 is the foundation of this thesis which can help to process XML updates 

efficiently. 

Furthermore, we describe CDBS encoding. CDBS is as compact as the binary 

number encoding of consecutive numbers; there are no gaps between any two 

consecutive numbers, therefore CDBS is the most compact. In addition, based on 

Algorithm 4.1, CDBS supports order-sensitive insertions between any two 

consecutive CDBS codes without re-encoding the existing numbers. 

We show that CDBS encoding is orthogonal to specific labeling schemes, thus 

it can be applied broadly to different labeling schemes. When CDBS is applied to 
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different labeling schemes, it will not increase the label size and will not decrease the 

query performance, and it supports updates efficiently. 

V-CDBS encoding can efficiently process the leaf node updates. We need not 

re-label the existing nodes when a leaf node is inserted into an XML tree. 

To efficiently process the internal node updates, we apply V-CDBS and F-

CDBS encodings to P-Containment scheme introduced in Chapter 3. Based on V-

CDBS-P-Containment and F-CDBS-P-Containment, we only need to modify the 

“parent_start” values of the children of the inserted or deleted internal node, but need 

not modify the “parent_start” values of the descendants of the children of the inserted 

or deleted internal node. This is cheaper than the existing containment, prefix and 

prime schemes since they need to re-label all the descendant nodes of the inserted or 

deleted internal node. Also it should be noted that only the P-Containment itself can 

not decrease the internal node update cost; the P-Containment scheme should be 

combined together with V-CDBS or F-CDBS encoding to efficiently process the 

internal node updates (see Theorem 4.7). 

We also discuss how to make the label size increase slowly if a subtree is 

inserted into XML. It is an insertion of all the binary strings between the left and right 

binary strings but not one by one insertions. 

Furthermore we discuss the uniform and skewed insertions. We will further 

discuss how to process the skewed insertion problem in Section 6.2 of Chapter 6. 

Finally we conduct experiments which show that the methods proposed in this 

chapter can efficiently process different updates; meanwhile the encodings proposed 

in this chapter is very compact. 



 

Chapter 5 

CDQS Encoding of Node Labels to 
Completely Avoid Re-labeling 

 

CDQS represents the Compact Dynamic Quaternary String encoding. 

The CDBS encoding proposed in Chapter 4 still can not completely avoid re-

labeling in XML updates. Here we use an example to show the reason. 

 

Example 5.1 The length of each V-CDBS code is stored with fixed length (e.g. 3; see 

Example 4.5). If many nodes are inserted into the XML tree, the size of the length field 

(e.g. 3) is not enough for the new labels, then we have to re-label all the existing 

nodes. Even if we increase the size of the length field to a larger number, it still can 

not completely avoid re-labeling, and it will waste the storage space. This is called 

the overflow problem in this thesis. Similarly F-CDBS (each code of F-CDBS is fixed 

length, therefore F-CDBS will encounter the overflow also) and OrdPath [64] will 

encounter the overflow problem also (O'Neil et al. do not mention this overflow 

problem in OrdPath [64]). 
 

To solve the overflow problem, we have the following observation. We 

observe that the size of V-CDBS is used only to separate different V-CDBS codes. 

After separation, we can directly compare the V-CDBS codes from left to right. 

Therefore to solve the overflow problem, the way is to find a separator which can 
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separate different V-CDBS codes; meanwhile this separator will not encounter the 

overflow problem. In binary string, there are only two symbols “0” and “1”; if we use 

“0” or “1” as the separator, only one symbol is left and CDBS will not be dynamic. 

Therefore we design a Compact Dynamic Quaternary String (CDQS) encoding which 

can help to completely avoid re-labeling in XML updates. 

The rest of this chapter is organized as follows. In Section 5.1 we describe 

CDQS encoding. Section 5.2 depicts how to apply CDQS to different labeling 

schemes. Based on CDQS, we discuss how to completely avoid re-labeling in XML 

updates in Section 5.3. We report the experimental results in Section 5.5. Finally we 

summarize this chapter in Section 5.6. 

5.1   The Compact Dynamic Quaternary String Encoding 
(CDQS) for Node Labels 

Four symbols “0”, “1”, “2” and “3” are used in the quaternary string and each symbol 

is stored with two bits, i.e. “00”, “01”, “10” and “11”. 

Now we illustrate our Compact Dynamic Quaternary String (CDQS) code): 

CDQS code is a special quaternary string; the “0” is used as the separator and only 

“1”, “2” and “3” are used in the CDQS code itself. 

Because we use “0” as the separator, it is not appropriate to concatenate “0”s 

for the fixed length CDQS, i.e. F-CDQS. In this thesis, when we talk about CDQS, it 

is equivalent to V-CDQS. 

Still based on the 18 numbers in Table 4.1, we use examples to show how 

CDQS works (see Table 5.1). 
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Table 5.1: CDQS encoding 

Decimal number CDQS 
1 112 
2 12 
3 122 
4 13 
5 132 
6 2 
7 212 
8 22 
9 222 

10 223 
11 23 
12 232 
13 3 
14 312 
15 32 
16 322 
17 33 
18 332 

Total size (bits) 88 
 
 
Step 1: In the encoding of the 18 numbers based on CDQS, we suppose there is one 

more number before number 1, say number 0, and one more number after number 18, 

say number 19. 

 
Step 2: The (1/3)th number is encoded with “2”, and the (2/3)th number is encoded 

with “3”. The (1/3)th number is number 6, which is calculated in this way, 6 = 

round(0+(19–0)/3). The (2/3)th number is number 13 (13 = round(0+(19–0)×2/3)). It 

can be seen from Table 5.1 that the CDQS code for number 6 is “2” and the CDQS 

code for number 13 is “3”. 

 
Step 3: The (1/3)th and (2/3)th numbers between number 0 and number 6 are number 2 

(2 = round(0+(6–0)/3)) and number 4 (4 = round(0+(6–0)×2/3)). The CDQS code of 

number 0 (SL) is now empty with size 0 bit and the CDQS code of number 6 (SR) is 
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now “2” with size 2 bits. This is Case (b) where size(SL) < size(SR). In this case, the 

(1/3)th code is that we change the last symbol “2” of SR to “12”, i.e. the code of 

number 2 is “12” (“2” →  “12”), and the (2/3)th code is that we change the last symbol 

“2” of SR to “13”, i.e. the code of number 4 is “13” (“2” →  “13”). Note that in the 

initial encoding, if size(SL) < size(SR), SR can only be ended with “2” (can not be 

ended with “3”). 

 
Step 4: The (1/3)th and (2/3)th numbers between numbers 6 and 13 are numbers 8 (8 = 

round(6+(13–6)/3)) and 11 (9 = round(6+(13–6)×2/3)). The CDQS code of number 6 

(SL) is “2” with size 2 bits and the code of number 13 (SR) is “3” with size 2 bits. This 

is Case (a) where size(SL) ≥  size(SR). In this case, the (1/3)th code is that we directly 

concatenate one more “2” after the SL, i.e. the code of number 8 is “22” (“2” ⊕  

“2”→“22”), and the (2/3)th code is that we directly concatenate one more “3” after 

the SL, i.e. the code of number 11 is “23” (“2” ⊕  “3” →  “23”). 

 
Step 5: The (1/3)th and (2/3)th numbers between numbers 13 and 19 are numbers 15 

(15 = round(13+(19–13)/3)) and 17 (17 = round(13+(19–13) × 2/3)). The code of 

number 13 (SL) is “3” with size 2 bits and the code of number 19 (SR) is empty now 

with size 0 bit. This is still Case (a). Therefore the CDQS code of number 15 is “32” 

(“3” ⊕  “2” →  “32”), and the code of number 17 is “33” (“3” ⊕  “3” →  “33”). 

 
In this way, all the numbers will be encoded with CDQS codes. Finally we 

need to discard the codes for numbers 0 and 19 since they do not exist actually. It 

should be noted that if the (2/3)th number exactly refers to the (1/3)th number, the code 
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for the (2/3)th number will not appear since this number has already been encoded 

with the (1/3)th code. Table 5.1 shows the CDQS codes for all the 18 numbers. 

5.1.1   CDQS Encoding Algorithm 

The formal algorithms of CDQS (Algorithms 5.1 and 5.2) are similar to the V-CDBS 

algorithms (Algorithms 4.1 and 4.2). The difference is that CDQS is based on the 

(1/3)th and (2/3)th positions rather the (1/2)th position in V-CDBS. The above Step 1 to 

Step 5 are illustrations of the formal algorithms (Algorithms 5.1 and 5.2) for CDQS. 

When we note that the quaternary strings “0”   “1”   “2”   “3” 

lexicographically, we have the following theorem 5.2. 

 
Lemma 5.1 All the CDQS codes are ended with either “2” or “3”. 

Proof: “1” can not appear at the end of a CDQS code (see Algorithms 5.1 and 

5.2, or see Step 1 to Step 5), thus Lemma 5.1 holds. 

 
Theorem 5.2 All the CDQS codes are lexicographically ordered. 

Proof: The CDQS algorithm guarantee that the (1/3)th and (2/3)th CDQS codes 

are lexicographically ordered between SL and SR. By recursively applying the 

encoding of the (1/3)th and (2/3)th CDQS codes, the global lexicographical order of all 

the CDQS codes are maintained. Therefore Theorem 5.2 holds. 

 
Example 5.2 The CDQS codes in Table 5.1 are lexicographically ordered from top to 

bottom, e.g. “112”   “12” lexicographically since the second symbol of “112” is 

“1” while the second symbol of “12” is “2”. 
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Algorithm 5.1: AssignOneThirdAndTwoThirdCodes(SL, SR) 
Input: SL   SR; SL and SR are ended with either “2” or “3” 
Output: SM1 and SM2 (ended with 1)such that SL   SM1   SM2    SR 
lexicographically. SM1 is the quaternary string at the (1/3)th position, and SM2 
is the quaternary string at the (2/3)th position. 
 
Description: 
  1: if SL and SR are both empty then 
  2:    SM1 = “2” 
  3:    SM2 = “3” 
  4: else 
  5:    if size(SL) ≥  size(SR) then 
  6:       SM1 = SL ⊕  “2” 
  7:       SM2 = SL ⊕  “3” 
  8:    else if size(SL) <  size(Right_Code) then 
  9:       Temp_Code = SR with the last symbol changed to “1” 
10:       SM1 = Temp_Code ⊕  “2” 
11:       SM2 = Temp_Code ⊕  “3” 

 
 

Algorithm 5.2: CDQS Encoding(TN) 
Input: A positive integer TN 
Output: The CDQS codes for numbers 1 to TN  
 
Description: 
  1: suppose there is one more number before the first number,  
      called number 0, and one more number after the last number, 
      called number (TN+1) 
  2: Define an array codeArr[0,TN+1] //the size of codeArr is  
      //TN+2; each element of the codeArr is empty at the beginning 
  3: CDQS_SubEncoding(codeArr, 1, TN)  
  4: discard the 0th and (TN+1)th elements of the codeArr 
 
Procedure CDQS_SubEncoding (codeArr, PL, PR) 
/*CDQS_SubEncoding is a recursive procedure; codeArr is an array, PL is 
the left position, and PR is the right position*/ 
  1: PM1 = PL+round((PR-PL)/3)           (PM1 is the (1/3)th position) 
  2: PM2 = PL+round((PR-PL)×2/3)      (PM2 is the (2/3)th position) 
  3: if PL ≠ PR then 
  4:    AssignOneThirdAndTwoThirdCodes(codeArr[PL], codeArr[PR]) 
  5:    if PM1 ≠  PL and PM1 ≠  PR then 
  6:       codeArr[PM1]= SM1     //returned by line 4 in CDQS_SubEncoding 
  7:    if PM2 ≠ PM1 and PM2 ≠  PR then 
  8:       codeArr[PM2]= SM2    //returned by line 4 in CDQS_SubEncoding 
  9:    if (PM1 ≠  PL and PM1 ≠  PR) or (PM2 ≠  PL and PM2 ≠  PR) then 
10:       CDQS_SubEncoding(codeArr, PL, PM1) 
11:       CDQS_SubEncoding(codeArr, PM1, PM2) 
12:       CDQS_SubEncoding(codeArr, PM2, PR) 
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CDQS is the most compact encoding with three symbols.  When there are only 

2 symbols “0” and “1”, we know that V-CDBS is the most compact from Theorem 

4.6. When we use three symbols “1”, “2” and “3”, the (1/3)th and (2/3)th positions can 

guarantee that CDQS is the most compact encoding with 3 symbols. Note that the 

symbol “0” is used as the separator. 

 
Example 5.3 It can be seen from Table 5.1 that the total size of CDQS is 88 bits, also 

we need to count the size of the separators (the separator “0” is stored with size 2 

bits). Therefore the size of CDQS is 2× 18+88=124 bits. Compared with the total size 

118 bits of V-CDBS (see Example 4.5 in Chapter 4), the total size of CDQS is a little 

larger. However, based on CDQS we can completely avoid re-labeling in XML 

updates. 

5.1.2   Size Analysis 

Below is the size analysis of CDQS. 

 
CDQS CDQS has two numbers 6 and 13 stored with size 1×2 bits, 6 numbers 2, 4, 8, 

11, 15 and 17 stored with size 2×2 bits, ···, therefore the total size of CDQS is: 

+×××+×××+××× )23()32()22()32()21()32( 210                                       

                                        )2)1(()32( ×+××+⋅⋅⋅ nn  (bits) 

13)12( 1 +×+= +nn        (5.1) 

(see Appendix C2 for how to get formula (5.1)) 
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Suppose the total number is N, which should be equal to 

13)32()32()32( 110 −=×+⋅⋅⋅+×+× +nn . Thus formula (5.1) becomes to 

)1(log2)1(log2 33 ++−+ NNNN      (5.2) 

 
When taking the separator (“0”) size NN 22 =×  into account, the total size of 

CDQS is: 

)1(log2)1(log2 33 ++++ NNNN      (5.3) 

 
Compared with the total size )1log())log(log()1log( ++−++ NNNNNN  of 

V-CDBS shown in Formula (4.3), the total size of CDQS is larger. When N=2, the 

size of CDQS is 2.90 times of that of V-CDBS; when ]49,3[∈N , the multiples are 

1.14 to 1.87; when ]100000000,50[∈N , the multiples are between 1.10 and 1.14. 

Thus the size of CDQS is a little larger than the size of V-CDBS. However, CDQS 

can completely avoid re-labeling (see Section 5.3 of this chapter). 

5.2   Applying CDQS to Different Labeling Schemes 

We can apply CDQS to different labeling schemes. For the containment scheme, since 

the “level” value will encounter the overflow problem, we only discuss how to apply 

CDQS to the P-Containment scheme (see Section 3.1 of Chapter 3 for the P-

Containment scheme). When replacing the decimal numbers 1-18 of the “start”, “end” 

and “parent_start” values of the P-Containment scheme in Figure 3.1(b) with CDQS 

codes in Table 5.1, a CDQS-P-Containment scheme is formed. Based on the separator 
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“0”, we can separate the “start”, “end” and “parent_start” values, and every three 

values form a group of “start, end, parent_start”. 

 
 

 

Figure 5.1: CDQS-P-Containment scheme 
 
 
Example 5.4 Figure 5.1 shows CDQS-P-Containment scheme. For the labels 

“112,332,-”, “12,122,112” and “13,222,112” of the first three nodes of the CDQS-P-

Containment scheme shown in Figure 5.1, we store them consecutively in the hard 

disk as “112033201201220112013022201120”. Based on the separator “0”, we can 

separate them as “112”, “332”, “12”, “122”, “112”, “13”, “222” and “112”, the 

first two are a group of “start, end” which is the label of the root. It should be noted 

that the root does not have the “parent_start” value. The next three are a group of 

“start, end, parent_start” which is the label of the next node after the root. The rest 

three are another group of “start, end, parent_start” which is the label of the third 

node. The labels for the 4th, 5th, etc. nodes can be similarly stored after the first three 

labels. Different from the V-CDBS codes which use the lengths to separate the 

“start”, “end” and “parent_start”, CDQS uses the separator “0” to separate the 

“start”, “end” and “parent_start” which will never encounter the overflow problem. 

12,122,112 

112,332,- 

232,33,112 223,23,112 13,222,112 

212,22,13 132,2,13 32,322,232 3,312,232 
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In this way, we can completely avoid re-labeling in XML updates. Note that in the 

implementation, each quaternary number is stored with two bits e.g. “2” is stored as 

“10” (two bits). 

 
 
 

 

Figure 5.2: CDQS-Prefix scheme 
 
 
 
Example 5.5 Figure 5.2 shows that we apply CDQS to the prefix scheme. The root 

has 4 children. To encode 4 numbers based on CDQS, the codes will be “12”, “2”, 

“3” and “32”. Similarly if there are two siblings, their self_labels are “2” and “3”. 

For the prefix scheme, the delimiter “.” can not be stored together with the 

numbers in the implementation to separate different components. We can use the 

UTF8 [78] encoding or OrdPath encoding [64] to process the delimiters for the V-

CDBS encoding.  

For CDQS encoding, we use the following approach to process the delimiters. 

We use one separator “0” as the delimiter to separate different components of a label 

(e.g. separate “2” and “3” in “2.3”; the separator “0” is equivalent to the “.” in Figure 

12 

 

32 3 2 

2.3 2.2 32.3 32.2 
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5.2), and use two consecutive separator “00” as the separator to separate different 

labels (e.g. separate “2.2” and “2.3”). 

 
Example 5.6 To store the first three labels “12”, “2” and “2.2” in Figure 5.2 (except 

the root which is empty), they are stored as “120020020200” in the hard disk. Based 

on the separator “00”, we can separate the three labels “12”, “2” and “202”, and if 

necessary, we can separate different components of a label, e.g. separate “2” and 

“2” in “202” based on the delimiter “0”. 

 
It may be asked why we choose “0” but rather than any other number “1”, “2” 

or “3” as the delimiter? It is because in this way, we can directly compare two labels 

symbol by symbol from left to right to determine the document order. See the 

following example for more details. 

 
Example 5.7 Suppose that there is one more sibling node inserted between “2” and 

“3” in Figure 5.2. Based on Algorithm 5.3 (in the next section; Section 5.3), the 

label of the inserted node is “22”. We know that “2.3” is before “22” (the label of 

the inserted node) in document order. “2.3” is stored as “203” with delimiter “0”. 

We can directly compare “203” and “22” from left to right to get the relative orders 

of these two labels. If we use any number of “1”, “2” or “3” as the delimiter, we can 

not directly compare the labels from left to right to get the document order. 
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5.3   Completely Avoiding Re-labeling in XML Updates 

Algorithm 5.3 shows how to insert a quaternary string between two CDQS codes (two 

quaternary strings). Algorithm 5.3 considers the case that there are only insertions 

which is similar to Algorithm 4.1. If there are only insertions and size(SL) < size(SR), 

then SR can only be ended with “2”. We use examples to show how Algorithm 5.3 

works. 

 
 

Algorithm 5.3: AssignInsertedQuaternaryString(SL, SR) 
Input: SL   SR; SL and SR are ended with either “2” or “3” 
Output SM such that SL   SM   SR lexicographically 
 
Description: 
  1:  if size(SL) > size(SR) then    
  2:     if the last symbol of SL is “2” then 
  3:        SM = SL with the last symbol changed from “2” to “3” 
  4:     else if the last symbol of SL is “3” then 
  5:      SM = SL ⊕  “2”    //⊕  means concatenation 
  6:     end if 
  7:  else if size(SL) == size(SR) then    
  8:      SM = SL ⊕  “2” 
  9:  else if size(SL) < size(SR) then    
10:      SM = SR with the last symbol “2” changed to “12” 
11:  end if 
12:  return SM 

 
 
 

 

Figure 5.3: Insertions based on CDQS-P-Containment scheme 

12,122,112 

112,332,- 

232,33,112 223,23,112 13,222,112 

212,22,13 132,2,13 32,322,232 3,312,232 
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Example 5.8 If we want to insert a sibling before “132,2,13” in Figure 5.3, the 

“start” and “end” of this inserted node should be lexicographically between the 

“start” of “13,222,112” and the “start” of “132,2,13”, i.e. between “13” and “132”. 

Based on Algorithm 5.3, we insert a quaternary string between “13” and “132”, then 

the “start” value of the inserted node is “1312” (see lines 9-10 of Algorithm 5.3). The 

“end” value of the inserted node is an insertion between the new “start” value 

“1312” and “132” (the “start” of “132,2,13”). The “end” value of the inserted node 

will be “1313” (see lines 1-3 of Algorithm 5.3). Obviously, “13”  “1312”   “1313” 

  “132” lexicographically. The “parent_start” value of the inserted node is “13” 

which is the “start” of its parent. CDQS will never encounter the overflow problem, 

therefore we need not re-label any existing nodes no matter how many nodes are 

inserted, but we can keep the containment scheme work correctly. 

 

Example 5.9 Similarly if we want to insert a sibling node before “202” in Figure 5.4 

(“202” is equivalent to the “2.2” in Figure 5.2), the self_label of the inserted node is 

“12” (see lines 9-10 in Algorithm 5.3; note that SL is empty); the complete label of the 

inserted node is “2012”. CDQS will never encounter the overflow problem, therefore 

we need not re-label any existing nodes based on the CDQS-Prefix scheme when 

nodes are inserted into an XML tree. 
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Figure 5.4: Insertions based on CDQS-Prefix scheme 
 
 
Theorem 5.3 Algorithm 5.3 guarantees that a quaternary string can be inserted 

between two consecutive CDQS codes with the orders kept and without re-encoding 

any existing numbers. 

Proof: When we check Algorithm 5.3, all the conditions can guarantee that SL 

  SM   SR lexicographically, therefore Theorem 5.3 holds. 

 
Corollary 5.4 Algorithm 5.3 guarantees that infinite number of quaternary strings 

can be inserted between any two consecutive CDQS codes. 

Proof: When recursively using Algorithm 5.3 for the insertions, Corollary 5.4 

holds. 

 
Theorem 5.5 CDQS can completely avoid the re-encoding of the existing numbers. 

Proof: We use “0” as the separator to separate different CDQS codes, and “0” 

will never encounter the overflow problem. Also Corollary 5.4 guarantees that infinite 

number of quaternary strings can be inserted between any two consecutive CDQS 

codes. Therefore Theorem 5.5 holds. 

12 

 

32 3 2 

203 202 3203 3202 
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Section 4.4.2 shows that we can efficiently process the internal node updates 

though we can not completely avoid re-labeling in internal node updates; this is the 

drawback of the existing labeling schemes, but not the drawback of CDQS encoding. 

5.4   Extensions of CDQS 

By further extending CDQS, we can use octal and hex string encodings to process 

updates, called CDOS and CDHS respectively. It can be seen from previous sections 

that CDQS waste 1/4 of numbers for the separator. If we use CDOS and CDHS 

encodings, only 1/8 and 1/16 of the total numbers are wasted. Thus the CDOS and 

CDHS encodings will be more compact when the total number is large. On the other 

hand, the separator sizes of CDOS and CDHS encodings are 3 bits and 4 bits 

respectively which makes CDOS and CDHS not as compact as expected. See Section 

5.5.3 for the experimental results and more details about CDOS and CDHS. 

5.5   Experimental Evaluation and Comparisons 

5.5.1   Performance Study on Static XML Data 

We firstly discuss the label size. Figure 5.5(a) shows that CDQS encoding is applied 

to the containment scheme. The label size of CDQS-Containment (equivalent to V-

CDQS-Containment; see the third paragraph of Section 5.1 of this chapter for more 

details) is a little larger (10% around) than the label size of V-CDBS-Containment 

because the separator “0” can not appear in the CDQS code itself which is a waste 

(see the formal size analysis in Section 5.1.2 of this chapter also). Though the label 
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size of CDQS-Containment is a little larger than the label size of V-CDBS-

Containment, CDQS-Containment can completely avoid re-labeling in XML updates. 
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(a) Label sizes of containment schemes 
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(b) Label sizes of prefix schemes 

Figure 5.5: Label sizes of different labeling schemes 
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(a) Response time of queries based on containment schemes 
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(b) Response time of queries based on prefix schemes 

Figure 5.6: Response time of different queries based on different labeling schemes 
 
 
 

Moreover, from Figure 5.5(b), we can see that CDQS-Prefix has the smallest 

label sizes in all the four datasets (D1-D4). CDQS-Prefix is the most compact 



Chapter 5   CDQS Encoding of Node Labels to Completely Avoid Re-labeling 108 

compared to the existing prefix labeling schemes, and CDQS-Prefix can completely 

avoid re-labeling in XML updates (except internal node updates). Note that we 

separate different labels of DeweyID(UTF8) and OrdPath based on their label sizes. 

In addition, Figure 5.6(a) shows that the response time of CDQS-Containment 

is a little larger than the response time of V-CDBS-Containment, and Figure 5.6(b) 

shows that CDQS-Prefix has smaller response time on different queries since it has 

the smaller label size. 

5.5.2   Performance Study on Frequent Updates in Dynamic XML 
Data 

When intermittent nodes are inserted into XML, V-Binary-Containment, F-Binary-

Containment, BinaryString-Prefix, DeweyID(UTF8)-Prefix and Prime have much 

larger update time, thus it will be a disaster for them to update XML with frequent 

and tiny insertions, which makes them impossible to answer any queries in either the 

uniformly frequent or skewed frequent insertion environment. In this section, we 

mainly compare the update performance between OrdPath-Prefix (OrdPath1-Prefix 

and OrdPath2-Prefix) and CDQS-Prefix, and between Float-point-Containment and 

CDQS-Containment. We compare CDQS with the existing labeling schemes because 

frequent updates are easy to lead to the overflow, and CDQS can completely avoid re-

labeling in XML updates (CDQS will not encounter the overflow problem). Section 

5.5.2.1 discusses the uniformly frequent insertions and Section 5.5.2.2 discusses the 

skewed frequent insertions. 
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5.5.2.1   Uniformly Frequent Updates 
In this section, we test the uniformly distributed frequent insertions, i.e the insertions 

are randomly at different places of XML. The Hamlet file has totally 6636 nodes. We 

insert 6635 nodes between every two consecutive nodes of the 6636 nodes. Based on 

the new file after insertion, we insert another 13270 nodes between any two 

consecutive nodes. We repeat this kind of insertion 6 times. After the 6th time 

insertion, the node number in the XML data is 424641 which is 63.99 times of the 

original node number. 

Figures 5.7(a) and 5.7(b) show the LOG2 of the total update time (ms) (Y-axis) 

of prefix schemes (OrdPath-Prefix [64] vs CDQS-Prefix) and containment schemes 

(Float-point-Containment [6] vs CDQS-Containment) respectively. In frequent 

updates, the main part of the total update time is the CPU time since we can read the 

file at one time and write back all the updates at different places to the hard disk at 

one time. Even in frequent writing back, our approach still can save a lot of update 

time because the label size of CDQS-Prefix is smaller than the label size of OrdPath-

Prefix and the label size of CDQS-Containment is smaller than the label size of Float-

point-Containment. 

Even if the overflow is not encountered, i.e. without re-labeling, the update 

time of OrdPath-Prefix is still at least 207 (218.8-11.1 = 27.7) times of that of CDQS-

Prefix (see Figure 5.7(a)). OrdPath needs to decode its codes [64] and needs the 

addition and division operations to get the numbers between two numbers which are 

both expensive. CDQS-Prefix only needs to modify the last 2 bits of the neighbor 

label to get the inserted label which is cheaper. 
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(a) OrdPath-Prefix (1&2) vs CDQS-Prefix 
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(b) Float-point-Containment vs CDQS-Containment 

Figure 5.7: Uniformly frequent updates 
 

Even if the overflow is not encountered (less than 18 nodes at a fixed place), 

i.e. without re-labeling, the update time of Float-point-Containment (need to insert 

two values “start” and “end”; the calculation is expensive) is still at least 548 (29.1) 

times of that of CDQS-Containment (see Figure 5.7(b)). 
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When there is overflow, the update time of OrdPath-Prefix and Float-point-

Containment is even larger. 

If we can increase the length field of V-CDBS code a little larger, the 

uniformly frequent updates will not be so easy to lead V-CDBS to re-labeling. In 

addition, because V-CDBS only needs to modify the last 1 bit of the neighbor label to 

get the inserted label, its update cost is smaller than the update cost of CDQS which 

needs to modify the last 2 bits of the neighbor label. Therefore V-CDBS can process 

the uniformly frequent updates more efficiently compared to CDQS if there is no 

overflow. Note that the update costs of OrdPath-Prefix and Float-point-Containment 

are much more expensive than V-CDBS and CDQS even if there is no overflow. 

5.5.2.2   Skewed Frequent Updates 
In this section, we test the case that the nodes are always inserted at a fixed place of 

the XML file Hamlet. The skewed insertion is easy to lead to the overflow, therefore 

V-CDBS is not appropriate to process the skewed insertion. In this section, we only 

compare CDQS encoding with the existing approaches. 

When nodes are always inserted at a fixed place, it is much easier to lead 

OrdPath-Prefix and Float-point-Containment to re-labeling. 

Figures 5.8(a) shows that the update time of OrdPath-Prefix is at least 1000 

times of that of CDQS-Prefix, and the update time of Float-point-Containment is at 

least 2000 times of that of CDQS-Containment in skewed insertions. Thus CDQS is 

much better than OrdPath and Float-point in processing skewed frequent updates. 
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(a) OrdPath-Prefix vs CDQS-Prefix 
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(b) Float-point_Containment vs CDQS-Containment 

Figure 5.8: Skewed frequent updates 
 
 

 

The very large update time and the larger label sizes make OrdPath-Prefix and 

Float-point-Containment unsuitable to answer queries in the frequent (uniformly and 
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skewed) insertion environment. This analysis together with the analysis in the first 

paragraph of Section 5.5.2.2 indicate that CDQS will work the best to answer queries 

in the frequent insertion environment even if we do not use any techniques to process 

the skewed insertion problem. Even so, we still propose some techniques to process 

the skewed insertion in Section 6.3.2. 

5.5.3   Performance Study on CDOS and CDHS 

When the total number is between 20 and 220, Figure 5.9 shows the sizes of CDQS, 

CDOS, and CDHS. In Figure 5.9, we suppose that there is one separator for each code. 

When the total number is smaller than or equal to 28, CDQS is the most compact; 

when the total number is between 210 and 220, CDOS is the most compact; and when 

the total number is larger than or equal to 216, CDHS has smaller size than CDQS. 

Though with the increasing of total number, the total size of CDOS and CDHS 

will be smaller than CDQS, the encoding time of CDOS and CDHS is averagely 2.1 

and 5.5 times of that of CDQS. That is to say, CDOS and CDHS are slower in 

encoding. 

That also shows that CDOS and CDHS have more expensive update costs than 

CDQS. CDQS only needs to modify the last 2 bits of the neighbor codes, while 

CDOS and CDHS need to modify the last 3 and 4 bits respectively. More important, 

CDQS only needs to consider the neighbor code that is ended with “2” or “3” besides 

the sizes of the neighbor codes, while CDOS and CDHS need to consider many more 

cases to make the label size increase logarithmically, thus the update cost of CDOS 

and CDHS are not cheap; otherwise the size of CDOS and CDHS will increase very 



Chapter 5   CDQS Encoding of Node Labels to Completely Avoid Re-labeling 114 

fast which makes the advantage of CDOS and CDHS not an advantage, i.e. not more 

compact than CDQS. 

In conclusion, CDBS and CDQS are the cheapest two approaches to process 

updates, as well their sizes are not large. 
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Figure 5.9: Label sizes of different labeling schemes 
 
 
 

5.6   Summary 

Because the CDBS encoding will encounter the overflow problem which can not 

completely avoid re-labeling in XML updates, we design the CDQS encoding in this 

Chapter. Four quaternary strings “0”, “1”, “2” and “3” are used in CDQS, and “0” is 

used as the separator. CDQS will never encounter the overflow problem, yet it 
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supports node insertions with the orders kept and without any re-labeling of the 

existing nodes. Therefore CDQS can completely avoid re-labeling in XML updates. 

Compared with V-CDBS, the total code size of CDQS is larger and the update 

cost is larger, i.e. modify the last 2 bits rather than the last 1 bit, but on the other hand, 

CDQS can completely avoid re-labeling in XML updates. 

In summary, V-CDBS is the most compact, and it can process the intermittent 

and uniformly frequent updates more efficiently if there is no overflow. On the other 

hand, CDQS can completely avoid re-labeling in XML updates. 

We conduct experiments which show that CDQS encoding can completely 

avoid re-labeling, and it is the only approach to process skewed frequent updates 

efficiently. 

 



 

Chapter 6 

Controlling the Increase in Label 
Size 

 

If there are only insertions, Algorithm 4.1 guarantees that the inserted binary string 

between two consecutive CDBS codes has the smallest size, and Algorithm 5.1 

guarantees that the two inserted quaternary strings between two consecutive CDQS 

codes have the smallest size. In real life, there are many applications which have only 

insertions but have no deletions. For example, the DBLP inserts the new publications 

everyday into its XML database, but it will not delete the previous data. The stock 

XML data also have only insertions but no deletions. 

On the other hand, if there are deletions, Algorithm 4.1 and Algorithm 5.1 can 

not guarantee that the inserted binary string has the smallest size. If we still use 

Algorithm 4.1 and Algorithm 5.1 to process updates with both insertions and 

deletions, the label size will increase not so slow. Thus we need to find new 

algorithms to control the label size increasing speed; meanwhile the new algorithms 

should also have the ability to keep the orders. Because CDBS is easier to understand, 

we introduce the new algorithms still based on CDBS. These algorithms can be easily 

extended for CDQS.  
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In Section 6.1, we use examples to show, in the update environment with both 

insertions and deletions, how to find the binary string with the smallest size between 

two binary strings and with the orders kept. Next in Section 6.2, we discuss a method 

to process the skewed insertion problem (see Section 4.4.4) though our approach 

works the best to answer queries in skewed insertion environment. The experimental 

results are reported in Section 6.3, and Section 6.4 summarizes this chapter. 

6.1   Finding the Codes with the Smallest Size between Two 
Codes 

Because the examples in this chapter will frequently refer to the V-CDBS codes in 

Table 4.1, we directly copy the V-CDBS codes in Table 4.1 to Table 6.1. Thus the V-

CDBS codes can be easily referred when reading the following examples. 

 
Table 6.1: V-CDBS encoding 

 V-CDBS 
1 00001 
2 0001 
3 001 
4 0011 
5 01 
6 01001 
7 0101 
8 011 
9 0111 

10 1 
11 10001 
12 1001 
13 101 
14 1011 
15 11 
16 1101 
17 111 
18 1111 
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We firstly use an example to show why Algorithm 4.1 can not guarantee that 

inserted binary string has the smallest size if there are deletions. 

 
Example 6.1 For the first three V-CDBS codes “00001”, “0001” and “001” in Table 

6.1, if we use Algorithm 4.1 to insert a binary string between “00001” and “0001”, 

the inserted binary string is “000011”. We can not find any other binary strings 

which are ended with “1”, are between “00001” and “0001” lexicographically, and 

have sizes smaller than or equal to 6 bits, i.e. the size of “000011”. That is to say, if 

there are only insertions, Algorithm 4.1 guarantees that the inserted binary string is 

always with the smallest size. On the other hand, if there are deletions also, Algorithm 

4.1 can not guarantee that the inserted binary string has the smallest size. Suppose 

that we delete the “0001” between “00001” (SL) and “001” (SR). Now if we want to 

insert a binary string between “00001” and “001”, the inserted binary is “000011” 

based on Algorithm 4.1. Obviously “000011” is not the binary string with the 

smallest size between “00001” and “001” because “0001” is between “00001” and 

“001” and its size is smaller than the size of “000011”. Therefore we design a new 

algorithm (Algorithm 6.1) to find the binary string with the smallest size between two 

binary strings in the update environment with both insertions and deletions. 

 
The main idea of Algorithm 6.1 is that we compare SL and SR bit by bit from 

left to right to find SM such that SM is ended with “1”, and SM has the smallest size in 

all the codes between SL and SR lexicographically. 
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Algorithm 6.1: AssignMiddleBinaryStringWithSmallestSize(SL, SR) 
Input: SL   SR; SL and SR are both ended with “1” 
Output SM such that SL   SM   SR lexicographically, and SM has the smallest size 
 
  1:  Case 1 SL is empty but SR is NOT empty, i.e. insert a code before the first code. 
  2:  denote the position of the firstly encountered “1” in SR as P   //there must be a “1” in SR 
  3:  ST = labeling(SR, 1, P)   //ST is the Temporarily inserted binary string 
  4:  if ST   SR lexicographically then    //Case 1(a) 
  5:     SM = ST  
  6:  else     //Case 1(b) 
  7:     SM  = labeling(SR, 1, P-1) ⊕  “01”   //change the firstly encountered “1” to “01” 
  8:  end if 
 

  9:  Case 2 SL is NOT empty but SR is empty, i.e. insert a code after the last code. 
10:  if all the bits of SL are “1” then    //Case 2(a) 
11:     SM  = SL ⊕  “1” 
12:  else     //Case 2(b) 
13:     denote the position of the firstly encountered “0” in SL as P 
14:     SM  = labeling(SL, 1, P-1) ⊕  “1”   //change the firstly encountered “0” to “1” 
15:  end if 
 

16:  Case 3 SL is a prefix of SR. Insert a code between two codes. 
17:  ST = labeling(SR, length(SL)+1, length(SR))    //ST is the Temporarily inserted binary  
                                                                  //string when removing SL from the left side of SR 
18:  denote the position of the firstly encountered “1” in ST as P   //there must be a “1” in ST 
19:  ST2 = labeling(ST, 1, P)   //ST2 is another Temporarily inserted binary string 
20:  if ST2   ST lexicographically then    //Case 3(a) 
21:     SM = SL ⊕  ST2 
22:  else     //Case 3(b) 
23:     SM  = SL ⊕  labeling(ST, 1, P-1) ⊕  “01”  //change the firstly encountered “1” to “01” 
24:  end if 
 

25:  Case 4 SL is not a prefix of SR. Insert a code between two codes. 
26:  denote the first difference position of SL and SR as P;  
27:  ST = labeling(SL, 1, P-1)    //ST is the Temporarily inserted binary before the first  
                  //different position in SL and SR, i.e. SL = ST ⊕  “0” ⊕  “***”, and SR = ST ⊕  “1”  
                  //⊕  “***”. Note that “***” is the rest binary string symbols. 
28:  if length(SR) > P then    //Case 4(a)    the P here is the P at line 26 
           SM = ST ⊕  “1” 
29:  else   //i.e. length(SR) = P; note that length(SR) can not be smaller than P 
30:     ST2 = labeling(SL, P+1, length(SL))    //ST2 is the Temporarily inserted binary string  
                                                                       //from position P+1 to the end position of SL 
31:     if all the bits of ST2 are “1” then    //Case 4(b) 
32:        SM  = SL ⊕  “0” ⊕  ST2 ⊕  “1” 
33:     else     //Case 4(c) 
34:        denote the position of the firstly encountered “0” in ST2 as P2 
35: :        SM  = ST ⊕  “0” ⊕  labeling(ST2, 1, P2-1) ⊕  “1” 
                                        //change the firstly encountered “0” in ST2 to “1” 
36:     end if 
37:  end if 
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Now we use some intuitive examples to illustrate the different cases in 

Algorithm 6.1. 

 
Case 1 in Algorithm 6.1 

Case 1 is used to insert a code before the first code. The following intuitive 

example shows how Case 1 works. 

 
Example 6.2 Case 1(a), suppose we delete the first three V-CDBS codes in Table 6.1, 

and want to insert a binary string before the current first code “0011”. The firstly 

encountered “1” in “0011” is at the third position; thus ST = “001”, and because ST 

  SR, SM = ST = “001”. “001” is the binary string with the smallest size which is 

smaller than “0011” lexicographically. Case 1(b): suppose we delete the first V-

CDBS code in Table 6.1 and want to insert a binary string before the current first 

code “0001”. The firstly encountered “1” in “0001” is at the fourth position; thus ST 

= “0001”, but because ST is not lexicographically smaller than SR, i.e. the first code 

“0001”, we have to change the last “1” in ST to “01” as the final inserted binary 

string, i.e. the SM = “00001” (“0001” →  “00001”). “00001” is the binary string 

with the smallest size which is smaller than “0001” lexicographically.  

 
(II) Case 2 in Algorithm 6.1 

Case 2 is used to insert a code after the last code. The following intuitive 

example shows how Case 2 works. 

 
Example 6.3 Case 2(a): suppose we delete the last V-CDBS code “1111” in Table 

6.1 and want to insert a binary string after the current last code “111”. Because all 
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the bits of “111” are “1”s, SM = SL ⊕  “1” = “1111”. It can be seen that “1111” is 

the binary string with the smallest size which is large than “111” lexicographically. 

Case 2(b): suppose we delete the 13th to 18th V-CDBS codes in Table 6.1, and want to 

insert a binary string after the current last code “1001”. We change the firstly 

encountered “0” to “1”. The firstly encountered “0” in “1001” is at the second bit; 

we change this “0” to “1”, and the inserted binary string is the first two bits of 

“1001” with “0” changed to “1”, i.e. SM = “11”. In this way, we guarantee that the 

inserted binary string is lexicographically larger than the last code and has the 

smallest size. 

 
(III) Case 3 in Algorithm 6.1 

Case 3 is used to insert a code between two codes. In Case 3, SL is a prefix of 

SR. The following intuitive example shows how Case 3 works. 

 
Example 6.4 Case 3(a): suppose we delete the two V-CDBS codes between “11” (SL) 

and “1111” (SR) in Table 6.1, and want to insert a new binary string between SL “11” 

and SR “1111”. “11”   “1111” lexicographically because “11” is a prefix of 

“1111”, therefore this is Case 3. ST = “11”, i.e. the last two bits of SR “1111”. The 

firstly encountered “1” in ST is at the first position; thus ST2 = “1” i.e. we assume that 

the temporarily inserted binary string is the first bit of “11”. ST2   ST, thus SM = SL 

⊕  ST2 = “11” ⊕  “1” = “111”. Obviously “111” is the binary string with the 

smallest size between “11” and “1111” lexicographically. Similarly Case 3(b) can be 

processed following the steps for Case 3(b) in Algorithm 6.1; here we do not repeat 

these steps in Algorithm 6.1. 
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(IV) Case 4 in Algorithm 6.1 

Case 4 is still used to insert a code between two codes. In Case 4, SL is not a 

prefix of SR. The following intuitive example shows how Case 4 works. 

 
Example 6.5 Case 4(c), suppose we delete the second code between the first code 

“00001” (SL) and the third code “001” (SR) in Table 6.1, and want to insert a binary 

string between SL “00001” and SR “001”. “00001”   “001” lexicographically 

because the third bit of “00001” is “0”, while the third bit of “001” is “1”, therefore 

this is Case 4. Because the first difference bit between “00001” and “001” is at 

position 3, thus ST = “00”. Because length(SR) = 3 which is not larger than the first 

difference position between SL and SR, ST2 = “01”, i.e. the last two bits of SL “00001”. 

Because not all the bits of ST2 are “1”s, this is Case 4(c). Finally SM = ST ⊕  “0” ⊕  

subString(ST2, 1, P2-1) ⊕  “1” = “00” ⊕  “0” ⊕  “” ⊕  “1” = “0001”. Obviously 

SM “0001” is lexicographically between “00001” and “001” and it has the smallest 

size, i.e. there are no any other binary strings which are ended with “1”, are 

lexicographically between “00001” and “001”, and have smaller or equal sizes as 

the inserted binary string “0001”. Similarly Case 4(a) and Case 4 (b) can be 

processed following the steps for Case 4(a) and Case 4(b) in Algorithm 6.1; here we 

do not repeat these steps in Algorithm 6.1. 

 
Though Cases 3 and 4 are both used to insert a code between two codes, their 

processing methods are different. 
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6.2   Handling Insertion Skew 

In this section, we introduce a method to process the skewed insertion problem 

presented in Section 4.4.4 of Chapter 4. Though the experimental results in Section 

5.5.2 of Chapter 5 shows that our encoding still works the best to answer queries in 

the skewed insertion environment because we dramatically decrease update time, here 

we further discuss one method to control the label size increasing speed in the skewed 

insertion environment.  

Still based on V-CDBS, we introduce the skewness processing method 

because V-CDBS is easier to understand. This skewness processing method can be 

easily extended for CDQS. 

 
Skewness Processing Method (SPM) Estimate (based on the characteristics of XML 

data or probing test) the number of nodes that will be inserted at the fixed place. 

Based on the estimated number, pre-calculate the labels, and assign these labels to the 

inserted nodes. 

 
Example 6.6 Suppose that there are 127 codes that are required to be inserted one by 

one before the first V-CDBS code “00001” (see Table 4.1), then each insertion 

requires that one more bit should be added for the new inserted code, i.e. the new 

code will be “000001”, “0000001”, “00000001” etc. Therefore the code size will 

increase fast; after inserting 127 codes, the total size for these 127 new codes will be 

(6 + 132) ×  127 / 2 = 8763. It can be seen that without any Skewness Processing 

Methods (SPM), the label size increases fast in the skewed insertion. On the other 

hand, if we employ the Skewness Processing Method (SPM), we can pre-calculate the 
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codes for the 127 inserted codes at the beginning. Note that we pre-calculate the 

codes now, and assign the codes to the inserted nodes only when they are really 

inserted. The (1/2)th number of the 127 numbers is encoded with “000001” (“00001” 

→  “000001”), the (1/4)th number of the 127 numbers is encoded with “0000001” 

(“000001” →  “0000001”), and the (3/4)th number of the 127 numbers is encoded 

with “0000011” (“000001” ⊕  “1” →  “0000011”). Similarly we can encode the 

(1/8)th, (3/8)th, (5/8)th and (7/8)th numbers of the 127 numbers. These steps are similar 

to the steps in Algorithm 4.2; the difference is that for this example, we know the most 

right code “00001”, but for Algorithm 4.2, both the most left and most right codes are 

empty at the beginning. In this way, the total size of the new inserted codes is 

)1log(4)1log( ++++× NNNN  = 127 × log(127+1)+4 × 127+ log(127+1) = 1404; 

here N is the total number of inserted codes; this formula is only appropriate for this 

insertion case. It can be seen that 1404 is smaller than 8763, therefore SPI can 

efficiently process the skewed insertion problem. 

 
The method in Examples 6.3 can be used for the skewed insertions at other 

places, and not restricted to the insertions before the first code. 

6.3   Experimental Evaluation 

In Section 6.3.1, we test Algorithm 6.1 which can find the smallest size binary string 

between two binary strings in the update environment with both insertions and 

deletions. In Section 6.3.2, we test the Skewness Processing Method (SPM). 
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6.3.1   Comparisons of Algorithm 4.1 and Algorithm 6.1 

We test the case that nodes are deleted and inserted at the odd positions of Hamlet file 

in Shakespeare’s play dataset (D1) (see Table 4.2); it is similar for other files in other 

datasets. After the deletions and insertions, we call this new Hamlet file Hamlet2, and 

this is case 1. Secondly we test that the nodes are deleted and inserted at the even 

positions of Hamlet2; we call this new Hamlet file Hamlet3, and this is case 2. 

Thirdly we test that the nodes are deleted and inserted at the odd positions of Hamlet3; 

we call this new Hamlet file Hamlet4, and this is case 3. We do the similar deletions 

and insertions till case 10. 

We compare the performance of Algorithm 4.1 and Algorithm 6.1 in the 

update environment with both insertions and deletions. Figure 6.1 shows that the label 

size of Algorithm 6.1 does not increase in all the 10 cases (since we can find the 

smallest labels, i.e. reuse the deleted labels in these 10 cases). On the other hand, the 

label size of Algorithm 4.1 increases linearly (for these 10 cases) which is fast. Note if 

there are only insertions (no deletions) at different places of XML, the label size of 

Algorithm 4.1 increases logarithmically but not linearly. 

The experimental results confirm that Algorithm 6.1 can efficiently control the 

increase of the label size. Meanwhile, Algorithm 6.1 can keep the document order 

without re-labeling also. 

Algorithm 6.1 is more appropriate to efficiently process the updates with both 

insertions and deletions, and Algorithm 4.1 is more appropriate for the updates with 

insertions only because the cost of Algorithm 4.1 is much smaller, i.e. it only needs to 

modify the last 1 bit of the neighbor code to get the inserted code. 
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Figure 6.1: Comparison of Algorithm 4.1 and Algorithm 6.1 for CDBS in the update 
environment with both insertions and deletions 

 
 

6.3.2   Processing the Skewed Insertion 

Now we test the skewness processing method introduced in Section 6.2. Based on the 

Hamlet file of dataset D1 in Table 4.2, we always insert nodes as the first child of the 

root. Figures 6.2 shows the LOG2 of the total label size (bits) (Y-axis). The X-axis of 

Figure 6.2 shows different number of inserted nodes at a fixed place; note that the 

Hamlet file originally has totally 6636 nodes. If there is no Skewness Processing 

Methods (NoSPM), it can be seen from Figure 6.2 that the label size increases very 

fast. When the Skewness Processing Method (SPM) (see Section 6.2 for the details) is 

applied to process the skewed insertion problem, the label size increases much slower; 

see Figure 6.2.  
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Figure 6.2: Processing of skewed insertions 
 
 

6.4   Summary 

If there are only insertions, Algorithm 4.1 can guarantee that the inserted binary string 

has the smallest size. If there are both insertions and deletions, Algorithm 4.1 can not 

guarantee that the inserted binary string has the smallest size. Therefore in this 

chapter, we firstly designed an algorithm (Algorithm 6.1) which can find the smallest 

size binary string between two binary strings. In this way, the label size will increase 

slowly. Accordingly we can keep XML query performance un-decreased. 

Furthermore, Algorithm 6.1 also supports order-sensitive insertions without re-

encoding the existing numbers. In summary, Algorithm 6.1 is more appropriate to 

efficiently process the updates with both insertions and deletions, and Algorithm 4.1 

is more appropriate for the updates with insertions only because the cost of Algorithm 
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4.1 is much smaller, i.e. it only needs to modify the last 1 bit of the labeling code to 

get the inserted code. 

In addition, to address the skewed insertion problem, we introduce the 

skewness processing method which can control the label size increasing speed even if 

the nodes are always inserted at a fixed place of XML. It should be noted that even if 

we do not use the skewness processing techniques, our approach still works the best 

to answer queries in the dynamic environment of XML data because our approach 

saves a lot of time in updating. 

The experimental results show that both Algorithm 6.1 in Section 6.1 and the 

skewness processing method in Section 6.2 can efficiently control the label size 

increasing speed. 

 



 

Chapter 7 

Conclusion 
 

In this chapter, we summarize the contributions of this thesis and discuss the future 

works. 

7.1   Summary of Contributions 

(1) P-Containment Scheme to Improve the Query Efficiency 

The core operations in XML query are determining the following four basic 

relationships, i.e. ancestor-descendant, parent-child, sibling and ordering 

relationships. The existing labeling schemes are not efficient to determine all the four 

relationships. Therefore we propose the P-Containment scheme which can determine 

all the four basic relationships efficiently no matter what the XML structure is. More 

important, the P-Containment scheme is used to efficiently process internal node 

updates and completely avoid re-labeling. 

 

(2) CDBS Encoding to Efficiently Process Updates 

One more important problem is how to efficiently process XML updates. The 

most important contribution of this thesis is that we propose novel techniques which 
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can efficiently process the updates. The most important feature of CDBS encoding is 

that our comparison is based on the lexicographical order. Based on the 

lexicographical order, we have the following theorem: given two lexicographically 

ordered binary strings which are both ended with “1”, we can always insert a binary 

string between the two given binary strings with the orders kept. We proposed the 

algorithm to insert binary strings between two ordered binary strings. This algorithm 

is the foundation of this thesis which supports that order-sensitive updates can be 

processed efficiently. Also CDBS encoding is the most compact, i.e. it is as compact 

as the binary number encoding of consecutive decimal numbers (there is no gap). The 

update cost of V-CDBS is the cheapest, i.e. it only needs to modify the last 1 bit of the 

neighbor code to get the inserted code. 

 

(3) CDQS Encoding to Completely Avoid Re-labeling 

On the other hand, CDBS uses the fixed size length field to separate different 

labels. The fixed size length field will encounter the overflow problem when a lot 

nodes are inserted into an XML tree. When the size overflows, all the nodes should be 

re-labeled. In order to solve the overflow problem, we propose the Compact Dynamic 

Quaternary String (CDQS) encoding. The idea of CDQS is that we use four symbols 

“0”, “1”, “2” and “3” for encodings, and each symbol is stored with 2 bits, i.e. “00”, 

“01”, “10” and “11”. The symbol “0” is used as the separator to separate different 

codes, and only “1”, “2” and “3” are used in the CDQS codes. Note that for P-

Containment scheme, we use “0” to separate the “start”, “end” and “parent_start”, and 

every three values form a group of “start, end, parent_start”. We do not use the 



Chapter 7   Conclusion 131 

“level” value because it will encounter the overflow problem. For the prefix scheme, 

we use “0” as the delimiter to separate different components of a label, and use “00” 

as the separator to separate different labels. Based on a similar idea of CDBS, CDQS 

also supports order-sensitive insertions. In addition, the separator “0” will never 

encounter the overflow problem, therefore CDQS can completely avoid re-labeling in 

XML leaf node updates. Note that we can not completely avoid re-labeling in internal 

node updates; this is the drawback of the existing labeling schemes, but not the 

drawback of our CDQS encoding. 

Compared to CDQS, CDBS is more compact, and the variable length CDBS, 

i.e. V-CDBS only needs to modify the last 1 bit of the neighbor label to get the 

inserted label, but it can not completely avoid re-labeling. CDQS needs to modify the 

last 2 bits of the neighbor label to get the inserted label, but it can completely avoid 

re-labeling. Therefore, if the updates are intermittent or uniformly frequent updates, 

CDBS can work well; if the updates are skewed frequent updates, only CDQS 

efficiently works. CDBS and CDQS encodings are orthogonal to specific labeling 

schemes, therefore they can be applied broadly to different labeling shemes, e.g. 

containment, prefix and prime schemes, to maintain the document order when XML is 

updated. 

 

(4) Combine P-Containment Scheme with CDBS or CDQS Encoding to 

Efficiently Process Both Queries and Updates 

When the P-Containment scheme proposed in this paper is combined with 

CDBS or CDQS encoding, both the queries and updates can be processed efficiently. 



Chapter 7   Conclusion 132 

Furthermore, the combination of P-Containment scheme and CDBS or CDQS 

encoding can help to efficiently process the internal node updates. CDBS-P-

Containment or CDQS-P-Containment scheme only needs to modify the 

“parent_start” values of the child nodes of the inserted or deleted nodes, but need not 

change any labels of the other descendants of the inserted or deleted node which is 

much cheaper compared with the existing labeling schemes. 

7.2   Future Works 

There are no labeling schemes and encoding approaches which completely avoid re-

labeling of nodes in internal node updates. Thus we need to consider how to solve this 

problem in the future. 

It can be seen from this thesis that even if we do not handle the skewed 

insertion problem, our approaches still work the best to answer queries in the frequent 

update environment of XML data because the update time of our approaches are 

much smaller. Also we propose a method to process the skewed insertion problem, 

but this skewness processing method has some restrictions, e.g. it should estimate the 

number of nodes to be inserted at a fixed place, while the estimation will not be so 

easy. By balancing the query and update performance [68] or by re-labeling some 

nodes, we can solve this skewed insertion problem better. In the future, we want to 

research whether there are approaches that can completely avoid re-labeling and 

meanwhile solve the skewed insertion problem efficiently, but seems that it is not so 

easy to solve this problem because seems that these two aspects contradict each other. 
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Appendix A: Meanings of Abbreviations 

Table A1 illustrates the meanings of the abbreviations used in this thesis. 

 
Table A1: Symbols to represent the existing labeling schemes 

Abbreviations Meaning 

V Represent Variable length encoding. If there is a V before an 
encoding name, it means that this encoding has variable length. 

F Represent Fixed length encoding. If there is an F before an 
encoding name, it means that this encoding has fixed length. 

P-Containment The P in P-Containment represents the “parent_start” value, and 
the “parent_start” value of a node is the “start” value of its parent. 

CDBS Compact Dynamic Binary String encoding 
CDQS Compact Dynamic Quaternary String encoding 

 
 



Appendices 134 

Appendix B: Calculation of the SC Value for Prime Scheme 

Chinese Remainder Theorem [7, 74] Let M = [m1, m2, ···, mk] and N = [n1, n2, ···, nk] 

be two lists of integers. If the Greatest Common Divisor GCD(m1, m2, ···, mk) = 1, the 

Simultaneous Congruence SC(M, N) = x satisfies that x mod m1 = n1, x mod m2 = 

n2, ···, x mod mk = nk, and there exists exactly one solution x between 0 and C, where 

∏
=

=
k

i
imC

1

. 

The Euler’s quotient function ))()/((
1

ii

k

i
i mnmCx φ××= ∑

=

 mod  C is used to 

calculate the x, where )( imφ  is the Euler’s totient function [7]. 

The following steps shows the calculation details: 

Calculate C firstly, ∏
=

=
k

i
imC

1

, then calculate ii mCm /' =  for each 

},,2,1{ ki ⋅⋅⋅∈ . Multiply 'm  1, 2, etc. times until 'm  mod im  = 1, },,2,1{ ki ⋅⋅⋅∈ . 

Finally ))'((
1

i

k

i
i nmx ×= ∑

=

 mod C . 

We use a concrete example to illustrate the calculations. 

 

Example A1 Suppose M = [2, 5, 7] and N = [1, 2, 3], then 

70752
1

=××== ∏
=

k

i
imC , and 352/70/' 11 === mCm , 145/70/' 22 === mCm , 

and 107/70/' 33 === mCm . Because 1'1×m  mod 1m  = 35 mod 2 = 1, the final 1'm  
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is equal to 35. Because 1'2 ×m  mod 2m  = 14 mod 5 ≠  1, 2'2 ×m  mod 2m  = 28 mod 5 

≠  1, and 3'2 ×m  mod 2m  = 42 mod 5 ≠  1, we have to multiply 2'm  4 times such that 

4'2×m  mod 2m  = 56 mod 5 = 1, then the final 2'm  is equal to 56. Finally the 1, 2, 3 

and 4 times of 3'm  mod 3m  ≠  1, hence we have to multiply 3'm  5 times such that 

5'3×m  mod 3m  = 50 mod 7 = 1, thus the final 3'm  is equal to 50. Therefore 

))'((
1

i

k

i
i nmx ×= ∑

=

 mod C  = )350256135( ×+×+×  mod 70 = 17, such that 17 mod 

M = N, i.e. 17 mod 2 =1, 17 mod 5 = 2, and 17 mod 7 = 3. 
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Appendix C: Size Calculations for V-CDBS and CDQS 

C1: Calculation of the Total Code Size for V-CDBS 

Calculation of 

)1(242322211 32 +×+⋅⋅⋅+×+×+×+× nn  

)1(242322212 3210 +×+⋅⋅⋅+×+×+×+×= nn  

)22212()2222( 21210 nnn ×+⋅⋅⋅+×+×++⋅⋅⋅+++=  

)22212(2)12( 1101 nnn ×+⋅⋅⋅+×+××+−= −+  

)1(22)1(22)22212(2)12( 1101 +××−+××+×+⋅⋅⋅+×+××+−= −+ nnn nnnn  

)1(22))1(22212(2)12( 101 +××−+×+⋅⋅⋅+×+××+−= + nn nnn  

 

Let )1(2322212 210 +×+⋅⋅⋅+×+×+×= nx n , then the above formula 

becomes: 

x  

)1(222)12( 1 +××−+−= + nx nn  

Therefore 12 1 +×= +nnx . 

C2: Calculation of the Total Code Size for CDQS 

Appendix C2 is similar to Appendix C1 which can be ignored from reading. 

Calculation of 

+×××+×××+××× )23()32()22()32()21()32( 210  
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                                                             )2)1(()32( ×+××+⋅⋅⋅ nn  

))1(333233(4 210 +×+⋅⋅⋅+×+×+×= nn  

We calculate )1(333233 210 +×+⋅⋅⋅+×+×+ nn  firstly, then we multiply the 

result 4 times. 

 

)1(333233 210 +×+⋅⋅⋅+×+×+ nn  

)32313()3333( 21210 nnn ×+⋅⋅⋅+×+×++⋅⋅⋅+++=  

)32313(32/)13( 1101 nnn ×+⋅⋅⋅+×+××+−= −+  

                                                             )1(33)1(33 +××−+××+⋅⋅⋅ nn nn  

)1(33))1(32313(32/)13( 101 +××−+×+⋅⋅⋅+×+××+−= + nn nnn  

 

Let )1(333233 210 +×+⋅⋅⋅+×+×+= nx n , then the above formula becomes: 

x  

)1(3332/)13( 1 +××−+−= + nx nn  

Therefore 4/13)4/12/( 1 +×+= +nnx , and we need to multiply x  four times 

to get the final result. Then the final result is: 13)12( 1 +×+ +nn  
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Appendix D: Calculation of the Positions Based on V-CDBS 

In this appendix, we show how to calculate the positions based on V-CDBS codes. 

We use the following example to show how to calculate the positions. 

 

Example A2 The V-CDBS code “01001” in Table 4.1 is corresponding to the 6th 

number. We show how to calculate this 6 based on the V-CDBS code “01001” and 

the total number 18 (see Table 4.1). The first bit “0” indicates that “01001” is belong 

to the first half, i.e. between 0 and 10 (10=0+round((19-0)/2)). The second bit “1” 

indicates that “01001” is belong to the second half of 0 and 10, i.e. between 5 

(5=0+round((10-0)/2)) and 10. The third bit “0” indicates that “01001” is belong to 

the first half of 5 and 10, i.e. between 5 and 8 (8=5+round((10-5)/2)). The fourth bit 

“0” indicates that “01001” is belong to the first half of 5 and 8, i.e. between 5 and 7 

(7=5+round((8-5)/2)). The fifth bit is the last bit and the last bit is always “1”. The 

number between 5 and 7 is only 6, therefore “01001” corresponds to number 6. In 

this way, the position of each V-CDBS code can be calculated based on the code itself 

and the total number. 

It is similar for the position calculation based on CDQS. 
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Appendix E: Publications During Ph.D. Period 

1 Changqing Li, Tok Wang Ling, and Min Hu. Efficient updates in dynamic 

XML: From Binary String to Quaternary String. Accepted by VLDB Journal, 

2006. 

2 Changqing Li, Tok Wang Ling, Min Hu. Efficient Processing of Updates in 

Dynamic XML Data. In Proc. of the 22nd International Conference on Data 

Engineering (ICDE), Apr. 2006. Best (Student) Paper Award List (One of the 

best two student papers; one of the best six papers). 

3 Changqing Li, Tok Wang Ling, Min Hu. Reuse or Never Reuse the Deleted 

Labels in XML Query Processing Based on Labeling Schemes. In Proc. of the 

11th International Conference on Database Systems for Advanced Applications 

(DASFAA), Apr. 2006. 

4 Changqing Li, Tok Wang Ling. QED: A Novel Quaternary Encoding to 

Completely Avoid Re-labeling in XML Updates. In Proc. of the 14th 

International Conference on Information and Knowledge Management (CIKM), 

Oct. 2005. Student Travel Award. 

5 Changqing Li, Tok Wang Ling, Jiaheng Lu, Tian Yu. On Reducing 

Redundancy and Improving Efficiency of XML Labeling Schemes. In Proc. of 

the 14th International Conference on Information and Knowledge Management 

(CIKM), Oct. 2005. (Poster paper). 
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6 Jiaheng Lu, Tok Wang Ling, Tian Yu, Changqing Li, Wei Ni. Efficient 

Processing of Ordered XML Twig Pattern. In Proc. of the 16th Database and 

Expert Systems Applications (DEXA), Aug. 2005. 

7 Changqing Li, Tok Wang Ling. An Improved Prefix Labeling Scheme: A 

Binary String Approach for Dynamic Ordered XML. In Proc. of the 10th 

International Conference on Database Systems for Advanced Applications 

(DASFAA), Apr. 2005. 

8 Changqing Li, Tok Wang Ling. From XML to Semantic Web. In Proc. of the 

10th International Conference on Database Systems for Advanced Applications 

(DASFAA), Apr. 2005. (Short paper). 

9 Changqing Li, Tok Wang Ling. OWL-Based Semantic Conflicts Detection and 

Resolution for Data Interoperability. In Proc. of the 23rd Int. Conf. on 

Conceptual Modeling (ER) Workshop LNCS3289, Nov. 2004. 

10 Changqing Li, Tok Wang Ling. A Basis for Semantic Web and e-Business: 

Efficient Organization of Ontology Languages and Ontologies. To appear as a 

Book Chapter of book Semantic Web Technologies and eBusiness. Publisher: 

IDEA GROUP INC. 701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-

1240, USA. 

 

Below are the publications when I was in China for the master degree in Peking 

University 

11 Changqing Li, Shiwei Tang, Hongyan Li. Using Associations to Mine the 
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Thick-Scale E-commerce Personalize Service Information. Journal of Computer 

Science, Jan. 2002. 

12 Changqing Li, Shiwei Tang, Hongyan Li. The Design of a Whole E-commerce 

System. Journal of Computer Science, Jun. 2001. 

13 Changqing Li, Wenbing Zhao, Shiwei Tang. A Personalized Service Protocol 

Based on HTTP. 11th Conference of Computer Networks and Data 

Communication in China. Oct. 2000. 
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