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Summary 

Optimal timing and investment strategies are critical in markets when project demand is 

uncertain. When the two projects are developed jointly by the developer, positive 

interactive effects can be created by integrating the two projects to collectively enhance 

the values of the two projects. The synergetic effects of two projects are known as 

portfolio effects, in this context, which refer to the spill-over benefits generated by the 

second project when two projects located in close proximity enjoy positive externality. 

The spill-over effects may include higher revenue or lower cost for the second 

development project vis-à-vis the case when the two projects are developed as an 

integrated project. In contrary, the completion of one project may also create negative 

externality on the neighboring project owned by another developer, if the two competing 

developers engage in “unfriendly” and “combating” development strategies. 

 

Our study aims to develop a real options model to examine multi-project interactive 

effects on developer’s development timing strategies. The model will also evaluate how 

investment strategies change under different market situation and for different project 

type, either homogeneous or heterogeneous. We first set up a deterministic framework 

under the constant demand and cost functions to examine the portfolio effects of multiple 

projects and investment strategies under different market conditions. Then we extend to a 

stochastic framework with one developer who has development options on two different 

but contiguous land parcels, the developer will have the options to develop the two 

projects simultaneously or sequentially, and to develop the two land parcels into two 



 vii 

homogeneous or heterogeneous projects. The model evaluates whether the developer will 

make simultaneous development or sequential development under different market 

situations, and how the portfolio effects will impact the optimal development timing of 

the second project. Besides the close-form solution, we also use Least Square Monte 

Carlo Simulation to compare the different scenarios when the two projects have positive 

or negative correlation.  

 

We find that the positive interactive effects between the projects will push the developer 

to trigger the development options on the two projects earlier. The developer will make 

simultaneous development, if the portfolio effects are strong enough to offset the 

opportunity costs of not waiting for one more period. In other words, the portfolio effects 

lower the trigger value of investment for the second project. He will otherwise be better 

off by delaying the development of the second project, which results in a sequential 

development process. On the other side, the positive correlation of two projects makes the 

developer to defer the second project because the portfolio is more sensitive with the 

future uncertainty. Also, developer will make different investment strategies under 

different demand conditions. The developer will abort the project when the demand is 

weak, and choose to develop single project when the demand curve is steep, while in a 

market with flat demand curve, he will prefer to invest in the both projects.
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Chapter 1 Introduction 

1.1 Background 

The traditional investment rules of the discounted-cash-flow (DCF) approach, such as 

net-present-value (NPV), are widely used to evaluating feasibility of investment projects on 

the assumption that investment is perfectly reversible. However, investment decision in the 

real world is irreversible, and the DCF valuation may underestimate the investment value of a 

project. The DCF model is also limited in its ability to capture the management flexibility, 

where decision can be revised in time of economic uncertainty. In the real market, new 

information will arrive over time, and uncertainty about the market condition as well as the 

interaction between different participants will change in time. Management flexibility is thus 

very important, which is analogous to financial options. A financial option is a derivative 

security that gives the option holder a right to buy or sell an asset at a pre-specified price in a 

pre-determined future date. Black and Scholes (1973) developed the first financial option 

pricing model in 1973, which has led to significant revolution in financial economic research 

with a flourish of research on different aspects of option pricing theory. 

 

The financial option theory was subsequently extended to capital budgeting in investment 

making decision. Using the same analogy of the financial options, the opportunities to acquire 

real assets are called “real options”. The real options approach can be used to conceptualize 

and quantify the option values for flexible management and strategic interactions. There are 

different kinds of real options, such as option to defer, option to alter operating scale (e.g. to 

expand; to contract; to shut down and restart), option to abandon, option to switch use and 
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time-to-build option in a sequential investment. In the sequential option model, the option 

holder can choose the optimal timing to exercise a series of options when new information 

comes in stages. Researchers like Titman (1985), McDonald and Siegel (1986), William 

(1993) and Grenadier (1996) have developed real options models for valuing options 

quantitatively. Our idea in this thesis was developed on the Majd and Pindyck (1987) 

sequential option framework, which allowed stopping and restarting of a real estate project 

during the construction process. 

 

To model investment decisions and quantify real options, two techniques are usually used: 

dynamic programming and contingent claims analysis. Dynamic programming breaks a whole 

sequence of decisions into two components: the immediate decision and a valuation function 

of all subsequent decisions, and solves it backward. Contingent claims consider an investment 

project as a stream of costs and benefits that vary through time and depend on the uncertainty 

events. Although the two methods have their own advantages and disadvantages, there is no 

fundamental difference between the two under the risk-neutral assumption. 

 

The early real options papers analyzed each option in isolation, although some of them 

derived analytic closed-form solutions. Pricing real options in isolation lacks practical value 

since real-life projects are more complex with a collection of different real options. The 

interactive effect between options makes the value of a collection of options to be more 

valuable than the sum of individual options. The option on option, i.e. compound embedded 

option, makes the pricing of the options more complex and difficult. An early example of 
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pricing multiple options was proposed by Brennan and Schwartz (1985), who combined 

values of options to shut down a mine and abandon it for its salvage value. 

 

Our story begins with the following scenario. When a developer has two projects located in 

close proximity, interactive effects between the projects will have significant impact on the 

investment decision. When the two projects are developed jointly by the developer, positive 

interactive effects, i.e. positive externality or portfolio effects, can be achieved by integrating 

the two projects collectively. The portfolio effects may include higher revenue or lower cost 

for the second development project vis-à-vis the case when the two projects are developed as 

an integrated project. On the contrary, the completion of one project may also create negative 

externality on the neighboring project owned by another developer, if the two competing 

developers engage in “unfriendly” and “combating” development strategies. 

 

Interactive effects between two projects increase the collective profits of the two projects. 

Demand uncertainty makes the development strategies more complex and increases the 

timing option value. In this thesis, the optimal development timing strategy will be firstly 

discussed in a deterministic framework, in which the demand function will be fixed without 

impact of economic shocks. After that, the fixed demand assumption will be relaxed to 

incorporate economic shocks in a stochastic model. The model evaluates simultaneous 

development or sequential development strategies of the developer under different market 

situations, and how portfolio effects are created through interaction of the two projects, and 

how these effects affect the optimal development timing of projects. The model is further 
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extended in a game theoretic option framework by allowing the demand functions of the two 

projects to follow different stochastic processes with drift. 

�

1.2 Motivation of the Study 

Differentiating two identical projects with respective options to wait to develop, these two 

projects, if held by one developer and both located in close proximity, will have some 

interactive effects which will bring price premiums or cost savings for the two projects when 

considered as a whole. Instead of maximizing the value of each single project held by 

different developers, the single developer will maximize the collective value of the two 

projects. To achieve this object, the developer should decide: 

1) When to develop the first project and the second one?  

2) Which strategies will he choose: simultaneous development or sequential 

development?  

3) Since the positive externality will bring the developer extra profit, will it impact on 

the optimal development timing?  

4) Will developer defer or expedite investment in the projects?  

 

Market structure and economic situation will also impact the investment strategy of 

developers. In a boom market, the developer will prefer to invest in a project early, while in a 

down market, he will wait till the market has recovered. The market demand curve will 

restrict the quantity and price of products. How will the developer change the investment 

strategy under different market situations? 
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Compared to the prevailing researches on real options and investment strategy, this study 

hopes to examine the interactive effect of multiple projects on the optimal development 

timing strategy. The objectives of this study are as follows: 

a) To examine multi-project interactive effects on developer’s investment and development 

strategies in a deterministic framework; 

b) To examine development timing strategies under different market conditions in a 

deterministic framework; 

c) To explore the development options of a single developer on two different but contiguous 

land parcels in a stochastic framework. 

d) To examine the portfolio effect on the optimal development timing of projects in a 

stochastic framework. 

e) To analyze the complex real options problem by allowing the demand functions of the 

two projects to follow different stochastic processes with drift and numerically analyze 

the interactive effects between the two projects. 

 

1.3 Scope of Research 

This study assumes that in a monopoly market a developer holds two projects with options to 

wait to develop, and prices of projects depend on both economic shocks and demand elasticity. 

The developer is risk-neutral and rational, and he wants to maximize the collective profit of 

the two projects. The risk-neutral assumption implies that the option values are independent 

of individual's risk preference. The same valuation will be obtained independent of risk, 

perception of investors. Given this assumption, calculations of risk premiums for investment 
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options can be determined without the need to determine the actual discount rate of investors. 

Investor will be compensated at risk-free rate of return when no arbitrage is possible in the 

market. To simplify this problem, a further assumption is that the cost of project is constant. 

In order to capture the interactive effect, we introduce an identical interactive effect multiplier 

for the first project �12 and the second project �21, after the completion of the first project.  

 

The deterministic part of this study uses an improved DCF model to compute the profits at 

different development timing and discusses the relationships between development strategy 

and market conditions. The stochastic part of this study assumes that the demand shock 

follows a Geometric Brownian Motion process and uses a two-stage option model to 

construct the development timing for the two projects. The sensitivity analysis is performed 

for a range inputs for the interactive effect multiplier. 

 

The numerical analysis integrates optimal strategies of the developer into a game option 

framework by allowing the demand functions of the two projects to follow different stochastic 

processes with drift. The optimal development timing option values are simulated using the 

Least Square Monte Carlo Simulation based on pre-defined stochastic paths. Considering 

both statistical effect and computing speed, we choose 150 stages and 1000 paths in the 

simulation for the two projects. 

 

1.4 Hypothesis 

To examine the interactive effects of multiple projects on optimal development timing 
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strategy, we propose theoretical development timing models both in a deterministic 

framework and a stochastic framework, and extend them to game-theoretic framework. 

Furthermore, we numerically test the interactive effect on the development timing in a range 

of parameters that are representative of the actual market. The basic concept framework is 

shown as Figure 1.1. 

Figure 1.1 Conceptual framework for interactive effect of multiple-projects 

The following hypotheses are proposed in this study:  

a) The developer will prefer a simultaneous development strategy in a boom market, and 

prefer a sequential development strategy in a down market. 

b) The positive interactive effect will make the developer to invest in the first project earlier. 

c) The positive interactive effect will also impact on the development timing of second 

project, and the project will be developed earlier under the same market condition. 

d) Market demand curve, investment cost and volatility will also impact the development 

timing, after incorporating the interactive effects. 

e) The correlation of the two projects will also impact the development timing on the risk 

and return consideration. 

 

 

Project 1 Project 2 

Invest in the first 
project  

Invest in the second 
project  

V1-I1, Interactive effect �12 V2-I2, Interactive effect �21 

[0, T1] [T1, T2] 
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1.5 Research Design and Methodology 

The structure of our research design is shown in Figure 1.2. 

 

Figure 1.2 Research design of this study 

We firstly build a multi-project investment strategy model with interactive effect in a 

deterministic framework. This part sets a basic optimal development timing model with only 

one developer, who will develop two homogenous projects. We further extend the model to 

incorporate two heterogeneous projects. We use the optimization of non-linear programming 

method and propose different investment strategies under different market conditions. 

 

Secondly, based on the preliminary results in the deterministic framework, we develop a 

two-stage optimal development timing option model in a stochastic framework. A contingent 

claim analysis is used here and the two projects are assumed to be impacted by the same 

economic shock. We get the analytic solution in an Ordinary Differential Equation (ODE) and 

evaluate whether the developer will make simultaneous development or sequential 

development under different market situations, and how the portfolio effect will impact the 

optimal development timing of the two projects. 

 

Hypotheses of interactive effect on multi-project 
development timing strategy 

Deterministic framework Stochastic framework 

Homogenous 
projects 

Heterogeneous 
projects 

Price impacted by 
the same stochastic 
process 

Price impacted by two 
different stochastic 
processes 
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The third part of the study extends the stochastic framework into a complex game option 

model by allowing the demand functions of the two projects to follow different stochastic 

processes with drift. We derive a Partial Differential Equation (PDE) model, and perform 

numerical analysis using the Least Square Monte Carlo Simulation.  

 

1.5.1 Optimization of non-linear programming 

In the deterministic part, an improved Discount Cash Flow (DCF) model is used and we 

maximize the collective profits of both projects subject to some conditions. This is a 

non-linear programming model, since the objective function is the aggregation of DCF from 

the two projects after they are developed, which is a non-linear differential function, subject 

to two linear conditions that the development timing is greater than zero. This two 

dimensional problem has two independent variables: the development timing of project 1 and 

project 2. 

 

The difficulty in the model is to find the "Global Optimum". The "Local Optimum" in the 

non-linear problem is a spurious solution that merely satisfies the requirements on the 

derivatives of the functions, and it should be eliminated. We compute the first derivatives of 

the objective function and reach the point (t1*, t2*) where the first derivatives are equal to 0. 

Our problem becomes easy because we prove that our objective function is decreasing 

monotonously before t1* and increasing monotonously after t1* for all t2, and at the same time 

the objective function is decreasing monotonously before t2* and increasing monotonously 

after t2* for all t1. 
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1.5.2 Stochastic Calculus and Ito Lemma 

In the stochastic framework, we build a two-stage real option model to examine the 

interactive effects of the two projects. The basic assumption is that the price of the project is 

affected by economic shock, which follows a Geometric Brownian Motion process. The 

equation of Geometric Brownian Motion (Dixit & Pindyck, 1994) is given as: 

dzxdtxdx ⋅⋅+⋅⋅= σµ                                                   (1.1) 

where � is called the drift parameter and � is the variance parameter, both of which are 

constant. Any change in z, dz in a time interval dt, satisfies the following conditions:  

1. The relationship between dz and dt is given by 

dtdz tε=  

where tε  is a variable which follows a standard normal distribution. 

2. The random variable tε  is serially uncorrelated; therefore the values of dz for any two 

different time intervals are independent. 

So 0)( =dzε  and dtdzdz == )()( 2εν  

 

We use Ito’s lemma to integrate the stochastic calculus. It is easier to explain by using a 

Taylor series expansion. Considering a function F(x, t) that is at least twice differentiable in x 

and in t, the Ito’s lemma gives the differential dF as 

2
2

2

)(
2
1

dx
x
F

dx
x
F

dt
t
F

dF
∂
∂+

∂
∂+

∂
∂=                                       (1.2) 

Combine Equation (1.1) and (1.2), we get Equation (1.3):  

dz
x
F

Fdt
x
F

F
x
F

F
t
F

dF
∂
∂+

∂
∂+

∂
∂+

∂
∂= σσµ ]

2
1

[
2

2
22                          (1.3) 
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Under the risk-neutral assumption, we could use the stochastic calculus to construct the 

option model. Two kinds of boundary conditions are considered in this model: 

value-matching condition and smooth-pasting condition. 

1) Value-matching condition matches the values of the unknown function F(x, t) to those 

of the known termination payoff function ),( txΩ . 

)),(()),(( ** ttxttxF Ω=       for all t. 

2) Smooth-pasting condition requires not only the values but also the derivatives or 

slopes of the two functions to match at the boundary. 

)),(()),(( *
x

*
x ttxttxF Ω=     for all t. 

 

1.5.3 Dynamic Programming 

There are two kinds of mathematical techniques employed to model investment decisions 

under uncertainty, one is contingent claims analysis and the other is dynamic programming. 

Contingent claims analysis has its roots in financial economics, where an implicit value of 

investment opportunity is computed by relating it to other assets that are traded as market 

price. In our study, it is assumed that the developer is risk-neutral, and the dynamic 

programming is used in the numerical analysis in the third part of our study. 

 

The basic idea of dynamic programming technique is to divide the decision sequence into two 

parts, the immediate period and the whole continuation periods. Suppose that the current stage 

is t and the state is Xt. Let us denote the expected net present value of the project cash flows 

by Ft (Xt) when we make all decisions optimally from this stage onwards. When we choose 
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the control variables ut, it gives an immediate profit flow ),( ttt µπ X . At the next stage (t+1), 

the state variable will be Xt+1. Optimal decisions thereafter will yield Ft+1 (Xt+1). This is a 

random variable from the perspective of period t, so we must take its expected 

value )]([ 1t1tt ++ XFε , which is called the continuation value. Discounting back to period t, Ft 

(Xt) is the maximal sum of the immediate payoff and the continuation value: 

�
�
�

�
�
�

+
+= ++ )]([

1
1

),(max)( 1t1ttttttt
t

XFXXF ε
ρ

µπ
µ

                           (1.4) 

The idea behind the decomposition is formally stated in Bellman’s Principle of Optimality 

(Trigeorgis, 1996). Advances in computing have made the backward calculation usable and 

the numerical simulation in the Chapter 6 is based on this method. 

 

1.5.4 Least Square Monte Carlo Simulation 

In complex real option problems, it is hardly possible to get a closed-form solution. Some 

methods are proposed for real option pricing. The finite difference method dealing directly 

with PDEs is difficult to implement when it meets an interdependent multiple option problem. 

Although the binomial lattice is very flexible for capital pricing problems with many 

embedded options, it suffers the curse of dimensionality. Monte Carlo simulation is a 

powerful and suitable numerical technique for real options for a long time ever since it was 

first proposed by Boyle (1977). Unfortunately the traditional Monte Carlo simulation is a 

forward-looking technique, while dynamic programming applies backward recursion. So in 

this study we use an improved algorithm, the Least Square Monte Carlo simulation proposed 

by Longstaff and Schwartz (2001), in solving the optimal development timing problems. This 

improved algorithm is based on the traditional Monte Carlo simulation and uses the least 
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squares linear regression technique to determine the optimal stopping time in the problem. 

 

In the simulation, we decompose the continual investment problem into discrete process 

consisting of many small steps. Firstly, we generate two stochastic variables, the impact of 

economic shocks on project 1 and project 2, which follow a Geometric Brownian Motion 

process in a finite time T. 

])
2
1

[(exp)()( 11
2
1111 ξσσ ⋅∆⋅+∆⋅−⋅=∆+ ttutYttY                    (1.5) 

])
2
1

[(exp)()( 22
2
2222 ξσσ ⋅∆⋅+∆⋅−⋅=∆+ ttutYttY                   (1.6) 

11 z=ξ  

2
212 1 ρρξ −+= zz  

where u1, u2 are the growth rate of the impact of economic shocks on project 1 and project 2 

respectively; �1 and �2 are the standard deviation of impact of economic shock on project 1 

and project 2; z1 and z2 are two standard normal distribution variables with mean 0 and 

variance 1; and � is the correlation parameter. 

 

The simulation begins from the terminal stage and goes backward. We will exercise the option 

if it is in the money at stage T. Then we will move backward to the stage T-1. Based on the 

information at this stage, we could compute immediately the exercise value and the expected 

cash flow for continuation. We compare these two values and exercise the option if the 

immediate exercise option is more valuable. Since the immediate exercise value is easy to 

compute, the key point is to compute the expected cash flow for continuation. Because of the 

stochastic process of the economic shock, the cash flow for continuation follows a random 
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distribution. In this method the expected project value is computed by regressing the 

subsequent cash flows on a set of basic functions of recent state variable. Using the same 

technique, we go on to compute stage T-2, T-3… etc. until the beginning stage. 

 

This approach is path-dependent and it uses 1000 paths in this study to avoid the random 

factor of the result. To simplify this problem, we use the ordinary least squares to estimate the 

conditional expected function. We choose two polynomials, Y1, Y1
2, Y2, and Y2

2 as the basis 

functions. Considering the computing speed, we set the limitation of 1000 paths; alternatively 

we could use parallel computation. 

 

1.6 Software Used 

For the sensitivity analysis and the Monte Carlo Simulation, MATLAB 6.5 released by The 

MathWorks, Inc. is used, which is a powerful software on mathematics and scientific 

computing, especially for matrix. For the statistics, Microsoft Excel 2002 released by 

Microsoft Corporation is used, which is user-friendly and helpful for data process and 

statistics. 

 

1.7 Organization of the Study 

The study consists of six chapters. Chapter 1 gives a brief introduction and objective of the 

study. Chapter 2 covers the literature review, which sets up the background for this study. The 

next three chapters are written as three separate but related papers1, and the last chapter is the 

                                                        
1 The first one is accepted and presented at the Cambridge-Maastricht Symposium 2005. 
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conclusion and extensions for future research. 

 

Chapter 1 sets up the background of real option theory, time-to-build theory and multi-project 

interactive effect. It introduces the motivation of our study, research questions, research 

objectives, research scope, hypothesis, research design and methodology. 

 

Chapter 2 reviews the prevailing literatures on real option theory, time-to-build strategy, as 

well as investment strategy. It also provides literature review on externality and neighborhood 

effect. Selected literatures on game theory are also mentioned. 

 

Chapter 3 develops a deterministic model to examine multi-project interactive effects on 

developer’s investment and development strategies. Firstly, we build up a basic optimal 

development timing model with only one developer, who will develop two homogenous 

projects. We further extend this model to incorporate heterogeneous projects. We evaluate 

how investment strategies would change under different market situations and for different 

project types, either homogeneous or heterogeneous. 

 

Chapter 4 develops a two-stage real option framework with one developer who has 

development options on two different, but contiguous land parcels. The model evaluates 

whether the developer will make simultaneous development or sequential development under 

different market situations, and how the portfolio effect will impact the optimal development 

timing of the projects. 
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Chapter 5 extends the model into a game-theoretic option model and solves the complex 

problem. With two stochastic variables, there are two PDEs with boundary conditions. After 

that we use the Least Squares Monte Carlo Approach proposed by Longstaff and Schwartz 

(2001) to simulate the complex multi-option problem. 

 

Chapter 6 summarizes the main findings of this study and conclusions. We also point out 

some limitation and extensions for future research. 
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Chapter 2 Literature Review 

2.1 Standard Investment Analyses and Uncertainty 

Investment strategy includes not only decisions of whether to invest in a project, it would also 

include decisions on how much to invest and when to invest. The “how much” question is 

concerned with capital allocation, whereas “when” is a question of investment timing. Other 

strategies such as entry, exit, acquisition, competition, and cooperation, are considered 

together with the characteristics of different industries. The net present value criterions are 

accepted methodology for evaluating the feasibility of an investment decision. 

 

Taggart (1991) reviewed various approaches to calculate the discount rates used in the 

standard NPV model. Three different methods were used to value firms and other assets, 

which included adjusted present value, adjusted discounted rate and flow to equity method. 

She also analyzed these three methods and how they could lead to identical valuation 

considering corporate and personal tax. 

 

Myer & Ruback (1992) derived a simple but robust rule for calculating a discount rate for a 

risky asset in the NPV framework. The rule treated all projects as combinations of two assets: 

Treasury bills and the market portfolio. The discount rate can be treated as a weighted average 

of the after tax risk-free interest rate and the expected rate of return on a portfolio of risky 

securities. The weight on the portfolio's return was the risk of cash flow relative to the 

portfolio. 
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The traditional NPV rule has a problem with fixed discount rate, when applied to pricing 

property in real markets that are uncertain. It failed to take into consideration the future 

demand uncertainty, supply uncertainty and microeconomic variance. The naïve NPV method 

can not accommodate management flexibility and future uncertainty in the analysis. 

Researchers have attempted to expand the NPV framework by incorporating growth 

opportunity into future cash flows in the standard NPV to capture future uncertainties. 

 

Nygard, Mai and Razaire (1999) proposed a new discounted cash flow method with a range 

of values over a probability curve. This approach overcomes the shortcoming of the 

traditional single-point valuation. They set up probability distributions within a range of the 

lowest and the highest possible values. A simulation program is then run hundreds of times to 

derive many values in short time. They constructed a curve using the range of possible 

appraised values simulated in the earlier stage. 

 

Mallinson & French (2000) indicated that uncertainty was usual and a real phenomenon. The 

source of uncertainty can be identified in the valuation process. They identified various 

sources of uncertainty which included liquidity, depth of market, intrinsic uncertainty of the 

asset, and dynamic of market.  

 

O'Brien (2003) developed a simple and flexible discounted cash flow formula for valuation 

based on the traditional DCF model. The model included some fundamental drivers of a 

firm’s growth opportunities. The formulation of an asset's value was the sum of two present 
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values. The first was the present value of the expected future earnings stream generated by the 

assets, while the second was the present value of growth opportunities. The formula assumed 

the expected growth rate and the expected convergence of their ROE to the firm's cost of 

equity were constant, which avoided the need to estimate a “continuing value” over an 

unknown horizon. 

 

French & Gabrielli (2005) discussed various ways in which uncertainty can be incorporated 

into the DCF model. The paper utilized a probability-based valuation model by recognizing 

that input variables and their corresponding probability distributions. These input 

uncertainties would translate into an output uncertainty figure. The results showed that the 

central tendency of this distribution was very close to the single point estimate of the static 

model. The upside and downside risk could help to understand the uncertainty. 

 

Besides the adjusted DCF models as discussed above, another approach to investment 

uncertainty - real options theory, has been an effective and efficient method in property 

pricing. Howell & Axel J. Jägle (1998) did a survey on 82 experienced managers from various 

functions, business levels, and industries; and they obtained high levels of agreement on 

various statements with respects to the application of the real options model. 

 

2.2 Real Options Theory 

2.2.1 Real Options Concept and Theory Development 

After Black and Scholes (1973) classical paper on the financial option pricing method, 
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researchers have been able to extend the pricing model to capital budgeting analysis in 

investment decision. The real options concept is widely applied to value growth options in 

real assets and investment projects.  

 

Titman (1985) was the first to apply the model of Black and Scholes (1973) to determine the 

explicit value of a vacant land in a city centre. The paper presented a simple two-state model 

to determine the optimal time to develop a vacant land on the assumptions that the future 

price of the building units and the size of the building to be constructed were uncertain. The 

assumptions were further relaxed to allow unit price and cost to be specified at each date and 

each state. Illustrated with a numerical example, the analysis demonstrated that over a range 

of possible building size in the future, the timing option is valuable to the land owner. The 

value of the timing option increases in the future price uncertainty. 

 

Brennan and Schwartz (1985) used a continuous stochastic model to value natural resource 

projects and derived the optimal policies for developing, managing and abandoning them. 

Compared with the valuation method under certainty such as DCF model, the approach 

replicated a self-financing portfolio under the assumption that the convenience yield was a 

function of the output price given that the interesting rate was fixed. It provided optimal 

policies for managing the natural resource and made empirical prediction. Some model 

specific limitations included the resource was homogeneous and of a known amount, the cost 

was known and interest rate was fixed.  
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Dixit (1989) modeled a firm’s entry and exit decisions when the output price followed a 

Brownian motion process. It was a model of single firm decision, not including the externality. 

The analysis indicated that the reason for hysteresis that the entry trigger exceeded the 

variable cost plus the interest, in the entry decision, while the exit trigger was less than the 

variable cost minus the interest in the exit decision. Some extensions such as kinds of 

uncertainty, scale of output, scale of the project, and risk aversion, can be made. 

 

Williams (1991) confirmed Titman (1985)’s results and expanded the model to analyze the 

effects of an option to abandon a project. He used an analytic model with two stochastic 

variables, namely development cost and project value, in the problem. Williams (1993) valued 

the real options under conditions of finite elasticity of demand, finite capacities of developers, 

limited supply of options, and the degree of concentration among developers. In the model, 

the option was the undeveloped property, while the underlying asset was the developed asset. 

The heterogeneous characteristics of real options were discussed in the paper, which include 

time to build, stochastic cost of construction, controlled quantity or density development and 

the option to abandon developed or under developed property. The model gave the 

equilibrium of an optimal exercise policy for developers and estimated the values of both 

developed and underdeveloped assets. 

 

Extensive literature on the optimal irreversible investment strategy of a solitary firm was 

found since Pindyck (1991). Leahy (1993) addressed the relationships between the myopic 

firm and competitive equilibrium. His paper divided firms into two types. One could correctly 
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anticipate the strategies of other firms in the market, which would interact with prices and 

exogenous shocks. The second type of firms ignored the effect of other firms on the price 

process, and they were called myopic firms. Results showed that the two types of firms were 

identical in prices that triggered investment in a setting with homogeneous, 

constant-returns-to-scale firms, linear costs of investment, and downward sloping demand, 

although the optimization problems of these two firms were different. The intuition was that 

competition reduced the value of actual and potential capital, at the same time, trade-off 

between the two firms was unaffected.  

 

Sing (2002) used a one-factor contingent claim model to demonstrate the optimal 

development timing strategy and examine the irreversibility implications. While McDonald & 

Siegel (1986) assumed the project value was exogenous. They used numerical analysis to 

examine the effect of rent yield, risk-free interest rate, and volatility. The results showed that 

the value of option to wait to invest increased correspondingly to increases in future return 

uncertainty. The high option value reduced current investments in a highly volatile market.  

 

After the development of single option model, researcher found the results were sometimes 

different from what had been observed in the actual market, where investment decisions 

involved multiple real options which were interdependent. The interactions of complex 

options depend on the type and the order of the option involved. Literature on how to divide 

the multiple options into separate ones, and how to include the interactive effect were 

abundant (Cortaza & Schwartz (1993); Panayi & Trigeogis (1998); Damodanra (2000)).  
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Herath and Park (2002) developed a compound-option model to value a multi-stage project, 

where each investment opportunity derived revenues from different markets but with common 

technological resource. A binomial lattice method was used because it was more flexible to 

analyze the complex real option, which could overcome the shortcoming of standard option 

pricing model that only considered one source of uncertainty. The model considered multiple 

underlying variables and multiple source of uncertainty. The paper illustrated the underlying 

asset volatility of each investment opportunity by developing return distributions using Monte 

Carlo Simulation.   

 

Gamba (2003) developed a new approach based on Monte Carlo simulation for valuing a 

wide range of capital budgeting problems with many embedded real options. It divided the 

complex option into three kinds: sum of independent options, options on options, and 

mutually exclusive options. Firstly, the paper decomposed a complex real option problem 

with many options into a set of simple options, taking into account interaction and 

interdependence of the embedded real options. Then it used the Least Square Monte Carlo 

Simulation by Longstaff and Schwartz (2001) to implement the decomposition approach. 

 

Some applications of real options in other industry such as R&D, patents and software 

development were also proposed (Cortazar & Schwartz (1993); Myers (1996); Damodaran 

(2000)). Miltersen and Schwartz (2004) developed a model to analyze patent-protected R&D 

investment projects, when there was competition in the development and marketing. Each of 

the duopolists had to take into account not only the factors affecting its own decisions, but 
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also the factors affecting the decisions of the other duopolist. 

 

2.2.2 Empirical Research on Real Option 

Along with development of theoretic real options modeling, empirical tests of option pricing 

methods are lacking. Restricted by the unavailability of data in actual markets, there are only 

few empirical researches on real option among several countries, most of which are done in 

developed real estate markets. 

 

Quigg (1993) was one of the first to empirically estimate the premium for the option of 

waiting to develop using data from 2,700 land sales in Seattle in US. She found a mean option 

premium of 6% of the theoretic land value and proposed that option model had more power 

over and above the intrinsic value for predicting transaction prices. She also estimated the 

standard deviation of property prices, which ranged from 18% to 28% per year. 

 

Sing & Patel (2001) modified Quigg’s methodology and applied it to estimate the premium 

for the option of waiting to develop based on a sample of 2,286 property transactions in the 

UK over a 14-year sample period from 1984 to 1997. Based on a one-factor contingent claim 

valuation model, they found that average premiums for the timing options were 28.78% for 

office sector, 25.75% for industrial sector and 16.06% for retail sector. 

 

Yamazaki (2001) examined the uncertainty in land prices based on 4,368 land price data in 

Japan from 1985 through 2000. Both cross-sectional and time-series variables including two 

uncertainty variables were arithmetically combined and the OLS method was conducted. The 
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results from the option-based models favored the application of the real option theory in land 

prices. The total uncertainty with respect to built asset return had a substantial effect on 

increasing land prices, which implied that an increase in uncertainty led to an increase in land 

prices. 

 

Bulan, Mayer, and Somerville (2002) examined 1,214 condominium developments in 

Vancouver, Canada between 1979 and 1998 to identify the extent to which uncertainty 

delayed investment. The empirical result showed that a one-standard deviation increase in the 

return volatility reduced the hazard rate of investment by 13%, which was equivalent to a 9% 

decline in real prices. They indicated that idiosyncratic and systematic risks led developers to 

delay new real estate investments, but the increases in the number of potential competitors 

located near a project reduced the negative relationship between idiosyncratic risk and 

development, which supported the hypothesis that competition erodes option values.  

 

2.3 Time to Build 

Time to build is an important factor in a real estate venture, which involves optimal timing 

strategy. In the optimal stopping rule, the objective is to maximize the expected profit of a 

firm or a project by including embedded options. Several researchers focus on modeling the 

real options and analyze the optimal investment timing. 

 

McDonald & Siegel (1986) studied the optimal timing of investment in an irreversible project, 

where both the benefits and the investment cost followed continuous stochastic processes. 
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Their paper built an investment option model that assumed a stochastic cost function. From 

the basic model, they derived optimal stopping rule and explicit formula for the value of the 

option to wait to invest for a risk-averse investor. Besides the analytic solutions, their 

simulation results showed that the option value was significant and it was better to wait until 

the benefit from the project was twice of the cost given reasonable parameters. Although the 

modeling was plausible, the paper confirmed the option value and proposed optimal 

investment timing. 

 

Mayd & Pindyck (1987) used the contingent claims analysis to derive optimal decision rules 

of irreversible investment under uncertainty with a maximal rate of investment. Its basic idea 

was that investment decision was sequential and the construction process could be flexibly 

adjusted to wait for new information, so that there was an option value to postpone an 

irreversible investment. They considered the sequential investment as a compound option and 

built a two-stage option model. Because of the complexity of the model, they gave numerical 

analysis and the results presented high sensitivity to the perceived risk. 

 

The earlier literature was developed on a single firm’s perspective without considering the 

market competition. Trigeorgis (1991) used the option-based valuation to determine the 

optimal time to invest, when the timing and value of the opportunity may be affected by 

competition. Incorporating both optimal timing and competition, he built the model of 

deferrable investment opportunity with anticipated competitive arrivals. The model is 

analogous to an American call option with known dividends. The paper presented five 
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scenarios: (i) Exercise Immediately and Pre-empt Competition, (ii) Exercise Immediately and 

Competition Enters, (iii) Proprietary Option but No Competition, (iv) Wait and Competition 

Enters, (v) Exercise Just Before tj and Pre-empt Subsequent Competitors, and the 

relationships between them were discussed. The numerical results suggested that management 

may be justified in investing relatively early when the anticipated competitive loss was large 

and anticipated competitive entry was frequent.  

 

Pindyck (1991) reviewed some basic models of irreversible investment to illustrate the option 

value of investment opportunity and surveyed recent applications of this methodology. He 

proposed that investment was irreversible because of industry or firm specific and lemon 

effect, so it was better to model this like a financial option by option pricing or dynamic 

programming than the traditional NPV. He used a simple two-period example, and made 

sensitivity analysis using various parameters. Then he used the continuous-time model 

examined by McDonald & Siegel (1986) to value the option and choose the investment 

decision timing. Extensions in cost functions, sequential investment and capacity choice and 

their policy implications could be examined. 

 

Capozza & Li (1994) extended the real option model of durable-capital-investment decisions 

(McDonald & Siegel (1986)) to include intensity and analyze land-use decision. They 

provided an optimal-stopping framework to model the decision, which included 

land-redevelopment decisions and capital-replacement decisions, when intensity was a 

variable. The results showed that developed property value not only contained irreversible 
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premium, but also an intensive premium. Development timing was affected by growth rate, 

uncertainty, output elasticity and interest rate. 

 

Milne & Whalley (2000) expanded the time to build model by Majd & Pindyck (1987), which 

omitted an optimality condition: the marginal benefit to investing should equal to the 

marginal cost at the trigger time. They revealed that the time to build reduced the effects of 

increased project value volatility, compared to the standard real option models where 

investment was instantaneous. They suggested that when the time to build was long and the 

opportunity cost was high, the naive NPV calculation was an adequate guide for the initial 

decision to begin investment even for high levels of uncertainty. Milne & Whalley (2001) 

solved two models of time to build. One was that production cannot be suspended once 

started and the second was with costless suspension of production.  

 

Sing (2001) recast the land development problems of Williams (1991) and Quigg (1993) by 

addressing the effects of scale elasticity of unit rental and unit construction cost in a real 

estate project. He built an option model with two different diseconomies of scale constraints 

on rental and cost variables. The comparative statistics simulated positive relationships 

between the option premium of waiting to develop and the volatilities of the unit rental and 

unit construction cost. Sing (2002b) made a time to build option model consisting of a 

stochastic rate of completion and a stochastic net project payoff in a sequential construction 

process of a large scale construction project. The results of the sensitivity analysis showed 

that the trigger payoff value increased positively with increases in cash flow volatility, input 
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cost uncertainty, excess asset return per unit risk and maximum rate of investment. However, 

it had a negative relationship with the rental yield. 

 

2.4 Game Theory 

The real option model on a single project omits the interaction between projects and market 

competition. In recent years, researchers begin to adopt the game theory with real options to 

explore the interactive strategies between developers under different market structure. 

 

Grenadier (1996) used strategic option exercise games to understand real estate development. 

He developed an equilibrium framework of symmetric duopoly using stochastic 

stopping-time game. Two building owners leased their existing properties in a local market, 

and each held the option to develop a new building. The exercise of development option by 

one owner would affect the values of both options. The first to build would pay the 

construction earlier, but benefit without competition. The other developer would see the value 

of existing building affected. If the follower exercised the development option, the leader 

would lose monopoly. The model described the interaction between the leader and the 

follower under different market condition and explained the building booms even in a 

declining market. 

 

Grenadier (1999) analyzed strategic exercise equilibrium under asymmetric information over 

the underlying option parameters. He formulated a model of option exercise policies and 

information revelation with private signals and indicated strategy exercise patterns in realistic 
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economic settings. With diffuse and imperfect information, equilibrium exercise timing would 

always deviate from the full-information optimum. Those with informative signals would 

exercise the earliest, which would be earlier than the optimal timing. Market observers may 

take action of overbuilding in real estate development. The model was also extended to 

include both information and payoff externalities. 

 

Grenadier & Wang (2005) provided a model of optimal investment timing under conditions of 

principal-agency conflicts and asymmetric information. The principal-agent model 

decomposed the underlying option to invest into two components: a manager’s option and an 

owner’s option, which existed concurrently with hidden action and hidden information. 

Owners would design contracts to encourage managers to extend effort and truthfully reveal 

their private information. On the other hand, managers would take the opportunity to enhance 

their management in investment decisions, such that they would undertake actions and make 

decisions to enhance their personal utility or reputation instead of the owner’s. The results 

showed that the investment behavior differed significantly from that of the first-best 

no-agency solution. In particular, greater inertia occurred in investment, because manager 

would have a more valuable option to wait than the owner. 

 

Ong, Cheng, Boon and Sing (2003) present economic experiments in oligopolistic 

environment when there was an option to market pre-completed units to examine how 

developers priced their properties. The basic experimental design was to group the players 

into two: developers and investors. Developers acquired land, developed and sold the 
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completed and homogeneous property units to investors and the objective of developers was 

to maximize profits. The results indicated that developer relied heavily on some forecasts of 

market price and competitor actions were important considerations in pricing decisions. The 

experiments further revealed that aggressive pricing strategies were not necessarily the most 

profitable. 

 

2.5 Externality and Neighborhood Effect 

Because of the heterogeneity of property, property pricing varies location externality. The 

interaction between projects may affect the developer’s investment decision and development 

timing. An externality exists in economics when a decision creates costs or benefits to 

individuals or groups other than the person who makes the decision. Externalities are also 

called “neighborhood effects” or “spill-over”. The classic example of a negative externality is 

pollution, which is generated by some productive enterprises, and affects others. An example 

of a positive externality is purchasing a car of a certain model increases demand and thus 

availability for mechanics who know that kind of car, which in turn improves the situation for 

others to own that car model.  

 

Kauko (2003) used the combination of qualitative and quantitative methods to develop 

analytic hierarchy process instead of the single hedonic model. He firstly reviewed the 

traditional hedonic model technology and extended to the flexible regression and spatial 

model, and then proposed the hierarchical structure to demonstrate an improvement of the 

demand analysis. The results indicated that location externality was one of the important 
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factors.  

Hilber (2005) used the American Housing Survey to examine the importance of neighborhood 

externality for the homeownership rates in cities. Potential owners would like to think about 

changing neighborhood amenity risk when they made investment decision. He built a model 

to measure the externality risk after controlling for housing type, numerous location and 

household specific characteristics. The empirical results showed that neighborhood externality 

risk significantly reduced the probability of a housing unit owner-occupied. 

 

Liebowitz & Margolis (1995) suggested that network externalities may not be the source of 

risks causing market failure and the importance of externality may be overstated. They 

defined the network externalities as the concept that a product's value to a consumer changed 

along with the number of users of the product changes. This paper considered two kinds of 

externalities, direct and indirect effect, and proposed to include the new technology in the 

externality model.  

 

Caplin & Leahy (1998) developed a search theory with information externalities and used it 

to explain the rapid recession of the Sixth Avenue in the 1990’s. Their paper modeled the 

vacant building on Sixth Avenue as options for alternative use with information spill over. 

Owners waited for the development of others to get more information, which would help the 

sequential decision making. Based on the simple model, they got solution and discussed the 

effect of market structure and search technology. 
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Dong (2003) examined whether the neighborhood externalities would influence optimal 

development strategies in a competitive markets. She sets up models in a deterministic and a 

stochastic framework, and extended the two players into N players. The paper found that high 

positive externality would make the project to be developed earlier than in the case with low 

externality.  

 

Deng (2004) incorporated both inter-temporal externality and “public good” externality to 

explore the relationships between market structure and urban institutions. His paper 

developed a two-period model, which analyzed four institution settings: bundle rental, 

separate rental, bundle sale and separate sale, and he found that the inter-temporal externality 

was important in land use.  

 

2.6 Summary 

This chapter reviewed the traditional investment strategy using NPV rules and the types of 

uncertainty faced in actual investments. Literature on real option, time to build option and 

game theory was also reviewed. Researches on the externality in real estate market were 

covered. From the prevailing literature, we find that researches on multiple options, which are 

interdependent and the externality of projects on investment strategy were lacking. In the 

following chapters, our study will incorporate the inter-project externality and explore the 

complex interdependent options that one developer faces when making investment strategy in 

a monopoly market. 
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Chapter 3 Multi-Projects Interactive Effects and 

Investment Strategy in Deterministic 

Framework 

 

3.1 Introduction 

In typical studies of investment strategies in property market, such as enter and exit decisions, 

a common assumption is that a developer only has one land parcel, and he will decide 

whether to develop the land according to the NPV rule, or choose an optimal development 

time as proposed by the real option theory. After Black and Scholes (1973) theory on financial 

option pricing, researchers have extended it to capital pricing in investment decision making. 

Real options theory has been widely accepted and applied to value growth option in real 

assets and investment projects. The real option concept is related to future uncertainty and 

used to determine the optimal investment timing strategy. Titman (1985) applied a binomial 

discrete time real option valuation model for pricing vacant land in a city center. He showed 

that the owner would delay building when price of developed property is uncertain in the 

future. Williams (1993) valued the real options under conditions of finite elasticity of demand, 

finite capacities of developers, limited supply of options and the ownership. He determined 

the equilibrium of optimal exercise strategies for developers and calculated the values of both 

developed and underdeveloped assets under uncertainty. Dixit (1989) modeled a firm’s entry 

and exit decisions when the output price followed a random walk process. His model consists 

only of a single project, and the externality effects found in a multiple-projects case was not 

considered. Some papers integrated game theory, ownership structure, and equilibrium market 
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assumptions into real option models. Grenadier (1996) developed a strategic equilibrium 

option exercise game model to describe the interaction between a leader and a follower under 

different market conditions. He focused on the timing of real estate development under 

different market conditions, i.e. competitive or oligopolistic assumptions. 

 

The earlier studies are developed on the assumption that there exists only a single project 

owned by a single developer. The decision will be complicated when a developer possesses 

two or more vacant developable lands at any one time. He will not only have to make sure 

that limited resource is optimally allocated among different real estate projects, but also to 

evaluate possible project interactive effects when development timing strategy, either to 

develop projects concurrently or sequentially, is considered. The market structure will also 

affect the behavior of the developer. Developers with different market power will take 

different strategies, which means that one developer’s strategy will affect others and vice 

versa. In the real property market, a developer often has more than one land waiting to be 

developed at the same time or sequentially over different time periods. In a case involving 

two projects located in close proximity, positive interactive effects can be created either when 

they are developed jointly and simultaneously by a single developer as an integrated project, 

or they are developed sequentially as two independent but complimentary projects. The 

positive externality or synergetic benefits spilled-over from one project to another project will 

collectively enhance the values of the two projects. Similarly, if two adjacent projects were 

developed by two competing developers, who have no obligation to engage in “friendly” and 

synergetic development strategies, negative externality can be created as a result of 
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non-cooperative strategies by the two developers. The completion of a neighboring project 

owned and developed by competing developer, will diminish project payoffs and increase the 

running costs for both developers in long run. 

 

To examine the interactive effect of multiple projects and developer’s behavior on investment 

strategies, this chapter attempts to set up a theoretic framework to find when is the optimal 

time to develop lands and how much to invest, given that a developer has more than one 

developable land. To begin with a simple scenario, we develop a deterministic model to 

examine the multi-projects interactive effects on developer’s investment and development 

strategies. The model will also evaluate how investment strategies change under different 

market situations and for different project types, either homogeneous or heterogeneous. Under 

the constant demand and cost functions, portfolio effects of multiple projects are examined. 

The portfolio effects, in this context, refer to the spill-over benefits generated by the second 

project when two projects located in close proximity enjoy positive externality. The spill-over 

effects include higher revenue or lower cost accrued to the second development project 

vis-à-vis the case when the two projects are developed as if they are independent or by two 

independent developers.  

 

This study examines the externalities between different projects from the perspective of a 

single developer, and how the portfolio effect is on the developer’s investment strategy. 

Portfolio effects mean the intra/inter project externality where the developer will get spill over 

profit from projects in proximity sites as a result of economics of scale. In a monopolistic 
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market, developers could also adjust their pricing strategies to increase profit via an increase 

in the quantity of projects. In addition, scale effects of multiple projects can reduce the total 

costs, which include financing cost, material cost, and construction cost. 

 

In this chapter, we set a basic optimal development timing strategy model with only one 

developer, who will develop two projects in a deterministic framework. We explore how the 

portfolio effect will affect the developer’s investment strategy. We make some basic 

assumptions. Firstly, we assume there is only one developer in a monopolistic market setting. 

The developer can choose a quantity at a given price such that he maximizes the profits of the 

two projects collectively. These two projects are identical. Secondly, we assume a 

deterministic demand and a deterministic cost function, which will be further relaxed in 

Chapter 4. The identical project assumption is then extended to include heterogeneous 

projects for the purposes of analyzing the portfolio effect. In the deterministic demand and 

cost framework, some intuitive results are derived. We found that the developer will abort the 

projects when the demand is weak, and he would choose to develop a single project when the 

demand curve is steep. In a market with flat demand curve, it will be optimal for the 

developer to develop the two projects simultaneously. The positive portfolio effects shorten 

the time to wait to develop for the two projects, and the developer will prefer to undertake the 

two projects simultaneously. 

 

This chapter is organized as follows. Section 3.1 provides a general background of investment 

strategy, real option theory, and economics externality. Section 3.2 specifies the multi-projects 
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investment strategy model in a deterministic framework with necessary assumptions. Section 

3.3 and Section 3.4 analyze the investment strategies when one developer has two projects 

without and with portfolio effects. Section 3.5 concludes the findings with implications for 

investment strategies under different market situations. 

 

3.2 Model Specification 

In a simple deterministic framework, we assume that a developer has two projects at time t. 

The two projects are labeled project 1 and project 2 respectively, [i = (1, 2)]. Given that a unit 

project operating cost of ki, and a unit project revenue of ri, the unit project payoff upon 

completion at time ti can be estimated as [fi = ri – ki].  t1 and t2 respectively represent the 

development commencement time for project 1 and project 2. The two projects are assumed 

to have the same completion time of δ, and for simplification of the derivation, the time to 

build is reduced zero (δ=0). This completion time assumption could be relaxed to allow δ>0, 

and the optimal development time will then have a lead time of δ in the projects, and the 

optimal exercising time will not be significantly changed. The interactive effects between two 

projects is denoted by θ , where ijθ  denotes the positive externality spilled-over to project i 

upon the completion of project j. The developer is assumed to be risk-neutral. The portfolio 

return for the two projects expected by the developer is assumed to be a constant risk-adjusted 

rate of ρ, which reflect a systematic risk premium of [ρ - r], where r is the risk-free rate of 

return. 

 

The scale of projects is measured in term of gross built-up areas of the property, qi, and for N 
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number of projects completed at time t, the total quantity can be computed as [ �
=

=
N

i
it qQ

1

]. 

Assume that supply of new real estate space can be quickly absorbed by in a perfectly elastic 

market in equilibrium; the gross revenue for a project can be written as a demand function as 

follows:  

[ )(.. tii QDqyR = ]              (3.1) 

where y is systematic demand shocks, and D(Qt) is an inverse differentiable demand function, 

which decreases in the aggregate real estate space at time t, Qt, such that [D’(Qt) < 0]. 

 

In a deterministic market with no systematic shocks to demand for new space, [y = 1], the 

gross project values for projects 1 and 2, where the project completion time is given as [t1 < 

t2]2, can be written as follows, 
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We assume that the developer will firstly invest in the project 1 and then invest in project 2. 

All the results will be the same when projects 1 and 2 are identical and symmetric, and the 

assumptions are unchanged.  

 

On the cost side, the unit operation cost, ki, is defined as a differentiable function of the 

production inputs, which include material and labor, and the aggregate quantity of the inputs 

                                                        
2  The time-to-build is assumed to be zero, which implies that the project can be built instantly 

upon exercising the option to develop, an assumption that is consistent with the real options 
literature (Williams, 1991; Quigg, 1993; Sing, 2001). 
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is denoted as S(QM). When projects commence either sequentially, or simultaneously, demand 

for input resources increases the unit cost of project at a positive and increasing rate, such that 

the first differential condition is positive, [S’(QM) > 0]. In addition, we also assume that the 

unit operation cost ki is fixed at the initial time period. The cumulative cost functions for 

projects 1 and 2 over the entire project lifespan, which has an infinite tenure, can be 

respectively written as follows: 
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⋅⋅−⋅⋅=
1

)(exp)( 11 t M dttrqQSK               (3.4) 

�
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⋅⋅−⋅⋅=
2

)(exp)( 22 t M dttrqQSK               (3.5) 

Based on the above assumption, the unit operation cost ki is only fixed at time zero, and the 

cost may increase or decrease following the QM function. For a portfolio of N projects, the 

project payoffs will be computed as the summation of the net present values of the N projects 

at completion ti. The objective function for the developer, who owns the N-project portfolio, 

can be written as follows: 

 �
=

⋅−−−=
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i
iiiit trCKRF

1

)exp().(           (3.6) 

where Ci is the construction costs (inclusive of land cost) for project i, and the cumulative 

construction costs are given as [ �
=

=
N

i
iCC

1

]. If the two projects were developed 

simultaneously at time, [ti = t1 =t2 = 0], the project payoffs for the projects is simply given as, 

 )()()( 212211 CCKRKRF +−−+−=          (3.7) 

 

3.3 Investment Strategies for Independent Projects 

In this section, we assume the two projects are independent, but identical. Let us define that 
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the project quantity equals to q1 and q2. There are no portfolio or interactive effects in this 

section, which means that 012 =θ , 021 =θ . Under the assumption that one developer has 

two homogenous and identical projects, when he makes a decision to invest, he has the 

following options, either to: 

1. develop only one project 

2. develop two projects simultaneously 

3. develop two projects sequentially 

4. wait until future market uncertainty is low 

3.3.1 Single Project Development 

If the developer invests in only one project, we assume that the developer invests in project 1. 

In equilibrium, the aggregate demand quantity is represented by Q, and the new supply from 

the project will add to aggregate demand incrementally, [Q + ∆i] at time ti, where [∆1 = q1] at 

time t1, and [∆2 = q1+q2] at time t2. Based on the above assumptions, we could get the profit 

of the single project development, as denoted by Fsig: 

Ctr
r

qQS
t

qQD
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                (3.8) 

The profit from the single project development is the present value of the total perpetual 

income from all units supplied (discounted at the growth rate) minus total perpetual operation 

costs encountered during the infinite life of the investment and the construction cost. 

To get the optimal payoff, we take the F.O.C 0
1

=
∂

∂
t

Fsig  

r
QS

QD

t M

−

∆+

=
ρ

)(
)(

ln 1

*
1     (Local Minimum) 



 42 

Fs reaches the minimum at t1
*, because when *-

11 tt → , 0
1

<
∂

∂
t

Fsig , and 

when +→ *
11 tt , 0

1

>
∂

∂
t

Fsig . It implies that Fsig decreases as t1 increases on the left side of t1
*, 

and on the opposite side, Fsig increases as t1 increases on the right side of t1
*. When +∞→t , 

CFsig −→ , the developer will decide whether to invest in t=0. The condition of the 

developer’s investment decision at t = 0 is 0>sigF .  

The method is consistent with the conventional literature on real options. The project is 

evaluated by its discounted cash flows and is triggered based on the rule that the NPV is 

positive. In our model, demand shock is a stochastic process, and uncertainty in the decision 

making process is added in the model. The volatility created by the demand shocks implies 

that the timing to wait becomes significant to the investors. 

 

Proposition 3.1 

The profit of single project will decrease first, and then increase under the deterministic 

demand market as the time goes. So the developer will determine whether to invest 

immediately. 

If the developer has one project, under the market situation 

Cq
r
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1

1 ]
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ρ

 

He will develop the single project when t = 0, and get the profit 
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r
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ρ
 

Otherwise, the developer will abort the project. 
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3.3.2  Simultaneous Development Strategy 

If the developer would like to invest in two projects simultaneously, it equals to invest in one 

large project since the two projects are homogenous and identical. We assume that the 

developer invests in project 1 and project 2 simultaneously. Based on the above assumptions, 

we could derive the collective profit of both projects denoted as Fsim as follows: 
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To obtain the optimal payoff, we take the F.O.C 0
1

sim =
∂
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Like in the single development case, Fsim decreases as t1 increases to the left of t1
*, and on the 

opposite side, Fsim increases as t1 increases to the right of t1
*. When +∞→t , CF −→sim . 

The collective profit of the simultaneous development of two projects will change as the 

development timing changes, the shape of which is similar to the single development case. 

The developer should decide whether to invest in the two project at t=0. The condition of the 

developer’s investment decision at t=0 is 0sim >F . 

 

Proposition 3.2 

The collective profit of two projects developed simultaneously will decrease first, and then 

increase under the deterministic demand market. If the investment time is infinite, the 

collective profit will be close to -2C. So the developer will determine whether to invest in the 

two projects immediately. That is to say, two homogenous projects developed simultaneously 
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are indifferent from a single project of which the quantity is the sum of two projects. 

If the developer have two projects, under the market situation 
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He will develop the two projects simultaneously at t=0, and get the collective profit 
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Otherwise, the developer will abort the both projects. 

 

3.3.3  Sequential Development Strategy 

In the third development option, when the developer invests in two projects sequentially. 

Although the two projects are homogenous and identical, we assume that the developer 

invests in project 1 at t1 and then in project 2 at t2. According to the assumptions above, we 

could get the collective profit of both projects, denoted as Fseq. 
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To optimize payoff, we take the F. O. C 0
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t1
*<t2

* is not a necessary outcome. t1
* is a time at which the profit of project 1 is minimum, 

whereas t2
* is the time at which the profit of project 2 is minimum. Both t1

* and t2
* are not the 

optimal development time, and therefore, the condition t1
*<t2

* is not binding. 

Provided that t2 is fixed, Fseq reaches the minimum at t1
*, because when *-

11 tt → , 0
1

seq <
∂

∂
t

F
, 

and when +→ *
11 tt , 0

1

seq >
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∂
t

F
. It implies that Fseq decreases as t1 increases to the left of t1

*, 

and on the opposite side, Fseq increases as t1 increases to the right of t1
*. When +∞→1t , 

CF −→seq . For project 2, F reaches the minimum at t2
*, because when *-

22 tt → , 0
2

seq <
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F
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and when +→ *
22 tt , 0

2

seq >
∂
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F
. It implies that Fseq decreases as t2 increases to the left of t2

*, 

and on the opposite side, Fseq increases as t2 increases to the right of t2
*. When +∞→2t , 

CF 2seq −→ . The developer should decide whether to invest in the projects at t=0. The 

situation will turn up to be the same as the development of both projects simultaneously at 

t=0 

Proposition 3.3 

If both projects are homogenous and identical under the deterministic market scenario, the 

developer will develop both projects simultaneously, instead of sequentially. The suboptimal 

strategy may be adopted for reasons other than profit maximization. The developer may be 

limited by capital or manpower resources to simultaneously develop both projects, or he will 

prefer to hold the development option of one project for future consideration.  
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3.3.4 Comparison of the Strategies between a Single Project 

Development and a Simultaneous Development 

Compared to development of both projects simultaneously, the sequential development is not 

a less optimal strategy, if the developer has two independent projects given the assumptions 

above. Under the objective of maximizing the collective profit of the developer, we should 

compare the profit according to the two different strategies as follows, single project 

development and simultaneous development. 

 

The profit of developing a single project at t=0 is given in equation (8), while the profit of 

developing both projects simultaneously at t=0 is given in equation (9) 

If the profit of simultaneous development is larger than the single development, sigsim FF > , 

the market condition is: 
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If the above is not true, then the profit of simultaneous development is smaller than the single 

development.  

 

Proposition 3.4 

If one developer has two homogeneous and identical projects for development, the profit will 

decrease first, and then increase in time under the deterministic demand market. But if the 

investment time is infinite, the profit will be negative. So the developer will make investment 

decision at time zero. 

If under the market situation that simultaneous development strategy gives more profit, and 
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the profit is positive as follows 
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the developer will develop both projects simultaneously at t=0.  

However, when 
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the developer will develop only a single project at t=0. Otherwise, the developer will abort 

the projects. 

The decision to develop one or both projects depends on the market situation as represented 

by the demand curve. When the slope of demand curve is very steep, the developer will prefer 

to develop only one project at a time, otherwise, he will prefer to develop both projects 

simultaneously. 

 

3.4 Investment Strategy with Portfolio Effects 

3.4.1 Basic Model 

The earlier deterministic models are extended to incorporate portfolio effects, so that 

the opportunity cost of suboptimal waiting in the sequential options can be analyzed 

on the assumption that the two projects are inter-dependent. Project 1 and project 2 are 

different in quantity, such that different revenue, cost, and different profit function are defined. 
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We introduce the externality effect, as denoted by �, to the model. The value of �ij measures 

the strength of the interactive effects from project j to project i. We assume that the 

developer invests in project 1 first and then followed by project 2. The sequence of 

development of project 1 and project 2 is inter-changeable, and the result is just the opposite. 

Based on the above assumptions, the profits for project 1 and project 2, and their collective 

profit, are given below as F1, F2, and F respectively: 
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By taking the first order derivations of Equations (3.13) with respect to the interactive factor, 

�ij, the incremental effects by integrating the two projects as a portfolio can be represented as 

follows: 
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where [i = (1, 2)]; the externality effects are only created upon the completion of the second 

project at t2. 
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Proposition 3.5: 

In the presence of positive externality effects, a single developer who possesses development 

options on two contiguous land parcels could optimize the project payoffs by integrating the 

two projects, such that there are positive spill-over effects from one project to another project, 

whether the two projects are developed simultaneously or sequentially. The incremental 

project payoff created on project i as a result of positive externality effects from project j is 

dependent on the scale of the development i, the market structure and also the risk-adjusted 

rate of return (Equation 3.14). 

 

As one developer holds the two projects, he hopes to maximize the collective profit of the two 

projects, and the optimal payoff can be derived by taking F.O.C, 0
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The minimum point is similar to that in section 3.3. Provided that t2 is fixed, F reaches the 

minimum at t1
*. F decreases as t1 increases to the left of t1

*, and on the opposite side, F 

increases as t1 increases to the right of t1
*. When +∞→1t , CF 2−→ . Given that t1 is 

fixed, F reaches the minimum at t2
*. F decreases as t2 increases to the left of t2

*, and on the 

opposite side, F increases as t2 increases to the right of t2
*. When +∞→2t , CF 2−→ . 

 

To explore how fast the profit increases or decreases as the time goes, we compute S.O.C, 
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Figure 3.1 below shows that the changes in collective profit of both projects with respects to 

changes in the development timing. Given that t2 is fixed, F decreases as t1 increases to the 

left of t1
*, but at a decreasing rate. Then, between t1

* and t1
’, F increases as t1 increases, and at 

an increasing rate. On the right side of the t1
’, F increases as t1 increases, but at a decreasing 

rate. F’s changes in t2, and the rate of change is similar to that in t1. Given that t1 is fixed, F 

decreases as t2 increases to the left of t2
*, but at a decreasing rate. Between the t2

* and t2
’, F 

increases as t2 increases, and at an increasing rate. On the right side of the t2
’, F increases as t2 

increases, but at a decreasing rate.  

�

 
Figure 3.1 Collective profit of projects changes as the investment time changes 

Given that t2 is fixed and t1>t1
*, F increases as t1 increases and +∞→1t , CF 2−→ . 

Project 1 will not be developed after t1
*. F however decreases as t1 shifts to the left of t1

*, such 

that the development decision will be made at t=0. The change of F in t2 is similar to that in t1, 

so the developer will make his decision at t=0. 
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If F>0 at t=0, the developer will invest in project 1 at t=0. Otherwise, the developer will 

abort both projects. Considering project 2 after the investment in project 1, the developer will 

invest in the following project at t=0 if F>0 at t=0. The market condition is given as below: 
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Proposition 3.6 

If the revenue is large enough, that is  
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The developer will invest in both projects simultaneously at time t=0.  

The construction cost, construction period, and market demand will affect the optimal 

development time. The shorter the construction period is, and the lower the construction cost 

is, the higher will be the probability of immediately development. Obviously, the developer 

will prefer to develop the projects in an upward increasing market when it can obtain higher 

revenues. 

 

3.4.2 Investment Strategies 

Based on the model above, we compare the strategies of a single project development and a 

simultaneous development.  

Given the following market demand condition: 
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the developer makes simultaneous development at t=0, and he will get the following 
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collective profit:  
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When the developer only develops project 1 at t=0, the profit is given below 
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When the developer only develops project 2 at t=0, the profit is given below 
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If 1FF >  and 2FF >  the developer will choose the simultaneous development strategy. 

Simultaneous development strategy is better than development of Project 1 alone, if the 

following condition is complied with: 1FF >  
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The simultaneous development strategy is better than developing Project 2 alone, if the 

following condition is satisfied: 2FF >  
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Otherwise, the developer will choose to develop only a single project.  

 

The developer will invest in project 1, if 21 FF > . Project 1 has a higher payoff than Project 2 

under the following condition: 
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If we exchange the subscript 1 for 2, the results will be the opposite. 
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Proposition 3.6 

The developer will invest in both projects simultaneously at t=0 if it satisfies all three 

conditions below: 

Market Condition of Simultaneous Development: 
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Simultaneous development is better than Project 1 under the following condition: 
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Simultaneous Development is better than Project 2 if and only if : 
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The developer will invest in project 1 at t=0 if it satisfies all three conditions below. 

Market Condition for Single Development of Project 1is give as: 
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The simultaneous development strategy is worse than Project 1 under the following condition: 
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Project 1 is better than Project 2 if and only if: 
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3.4.3 Effects of Market Demand Elasticity 

Equation (3.14) indicates that the incremental portfolio value created by inter-project 
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externalities is a function of the inverse market demand. Let [g(Q)= dF/d�ij]. By taking the 

first order derivation of g(Q) with respect to the aggregate demand, Q, the effects of demand 

elasticity on value associated with positive externalities can be explained as follows: 
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Proposition 3.7: 

If the two projects are of homogenous type, the shift along the same market demand curve, 

[D1(Q)], will change the demand elasticity of the project. The externality effects on the project 

payoffs will be affected by different market demand condition. In a weak market (point A), 

where quantity of demand is small, the externality effects on project payoff will be greater 

compared to a boom market (point B) where demand elasticity is relatively flatter (see Figure 

3.2). 

 

Lemma 1: 

For two heterogeneous projects represented by two different market demand curves, [D1(Q), 

D2(Q)] the effects of inter-project externality in a portfolio with projects having steeper 

demand curve (point B) will be larger than those projects with demand elasticity represented 

by point C (see Figure 3.2). 
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Figure 3.2: Effects of Market Demand Elasticity on Project Externalities 

Given that the demand elasticity is negative, the effects of inter-project externality in a 

portfolio will be larger for projects having steep demand curve compared to those with flat 

demand curve. Price decreases at a faster rate in a steep demand curve. The developer will 

prefer simultaneous development in a flat demand curve to that with a steep demand curve. 

 

3.4.4 Market-Induced Externality Effects  

In the project payoff functions in Equation (3.13), inter-project externality effects are 

represented by a non-negative exogenous variable, [�ij � 0]. An alternative way to represent 

the project interactive effects is through market adjustment that is endogenous to the demand 

curve. If the two projects could be well integrated to maximize positive externality benefits, 

project payoffs are enhanced collectively, which is represented by an upward shift in the 
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demand curve from point A to point B (Figure 3.3). 

F(Q)

Q

Aggregate Demand

Pr
oj

ec
t  

Pa
yo

ff
s

D1(Q, t1)

D2(Q, t2)

A

B

D1’(Q) = D2’(Q)

Q+∆1 Q+∆2

FA(Q)

FB(Q)

 
Figure 3.3: Structural Shift in Market Curve with Externality Effects 

The developer’s decision to invest in either one project or both projects depends on the 

project profits in the two strategies. Construction cost, construction period, market demand, 

and the portfolio effect � will affect the development strategy. The lower the construction cost 

is, the higher is the probability of simultaneous development. Developer will prefer to invest 

in an upward market where he can increase project revenues. The larger is the portfolio effect, 

the higher will be the probability of simultaneous development. Figure 3.3 describes the 

portfolio effect. D1 is the demand curve when the developer makes the decision to invest in 

the first project. After investing in the second project, the demand curve shifts from D1 to D2 

because of the interactive effect of multi-project. This positive externality effect increases 

developer’s revenue to FB(Q), compared to the revenue at FA(Q) under the demand curve D1. 
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In the portfolio effects, the developer is assumed to maximize the portfolio values by creating 

positive externalities between the two projects. If the externality is negative, the model’s 

assumptions will be changed, and the collective benefits would not be maximized. This will 

not be in line with the objective of a profit maximizing developers. However, the negative 

externality case could be extended in a case involving two competing developers, who would 

try to pre-empt the competitor through exercising the options earlier. The interactive effects 

between the two competing developers in a game theoretical framework are not within the 

scope of this study. 

 

3.5 Implications and Conclusion 

A developer’s investment decision is affected by the demand elasticity in the market. In a 

deterministic framework, we assume the project cost is constant, and the demand curve will 

not change unless new project enters the market. Under the strict assumptions of independent 

projects, it is obviously that the developer will make the investment decision according to the 

market demand at the beginning. If the demand is low and the revenue from the project is not 

enough to cover the cost, the developer will abort the projects and wait for the market to 

recover. In a boom market, the developer will not give up the opportunity to develop. If the 

demand curve is steep, which means that when the demand quantity increases, the price will 

decrease very quickly, the developer will choose to only develop single project and keep the 

second investment opportunity until the market expands further. If the demand curve is flat, 

the developer will choose to develop the projects simultaneously to maximize his profit. In 

the deterministic framework, all information is known, and the value of option to wait is 
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negligible in the market. The developer will give up the sequential development, which is less 

optimal compared to the simultaneous development strategy. 

 

When we expand the model to include heterogeneous projects with portfolio effect, the basic 

model propositions remain unchanged. In a boom market, the developer will choose a single 

project development when the demand curve is steep, and develop both projects 

simultaneously when the demand curve is flat. The selection of project 1 or project 2 depends 

on which one could bring him a higher profit. Another important factor affecting the decision 

is multi-projects externality. The developer will prefer to invest in both projects 

simultaneously, if there is a high multi-projects externality. Positive externality reflects 

benefits as cost saving, sharing of management overheads and price overspills are obtained. 

For the same reason in the homogenous model, the developer will give up the sequential 

development option under the deterministic framework. 

 

One of the testable hypotheses that can be developed is to examine development strategies in 

large projects that are undertaken in phases. If positive externalities are created, we should 

expect prices of subsequent phases of development to decrease, such that the developer can 

preempt other competitors from entering a competitive market. However, if a market is tightly 

controlled by only few large developers with monopolist power, he may maximize their 

profits by levying externality premiums on existing tenants that are benefited from spill-over 

effects from development in the later phases. It would also be challenging to observe the 

development strategies adopted by developers who own development options on multiple 
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projects in a portfolio at any one time, whether they would pursue simultaneous strategies for 

projects that establish positive externalities, and defer projects that are mutually exclusive and 

independent. 

 

Table 3.1 summarizes different strategies under different market situations for projects with 

and without portfolio effect in the deterministic framework. 

 

 single Simultaneous  Sequential  Abort 
Without 
Portfolio 
Effect 

Boom market 
Steep demand curve 

Boom market 
flat demand curve 

Instead by  
simultaneous 

Low market 

With Portfolio 
Effect 

Boom market 
Steep demand curve 
Low externality 

Boom market 
flat demand curve 
High externality 

Instead by  
simultaneous 

Low market 

Table 3.1 Strategies of development with and without portfolio effect 

 

As the real demand is not deterministic, the demand changes as time goes. One extension is 

that we could consider the stochastic demand. We could assume the demand is in a Brownian 

motion Process (as in Grenadier 1996). This will be explored in the next chapter. The cost of 

project changes over times, and is not constant. We will also think about the effect of 

stochastic cost function. Another extension is that we could expand two projects into n 

projects case, so that the multi-projects externality can be analyzed. The third extension is that 

we could consider the competitive strategies in a game theoretic framework, if two developers 

have two portfolios. 
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Chapter 4 Inter-Project Externality in Optimal 

Development Timing Strategies in Stochastic 

Framework 

 

4.1 Introduction 

There are two investment decisions faced by investors, one is the capital allocation, and the 

other is the investment timing. In the option timing literature, researchers build a real options 

model to find the optimal development timing in an uncertain future. McDonald & Siegel 

(1986) studied the optimal timing of investment of an irreversible project under the 

assumptions that project payoff and investment cost follow continuous time stochastic 

processes. Majd & Pindyck (1987) used a contingent claims analysis to derive optimal 

decision rules for irreversible investments under uncertainty. Milne & Whalley (2001) solved 

two models of time to build, one where production cannot be suspended once started, and 

another with costless suspension of production. They used numerical method to analyze the 

dynamics of work-in-progress.  

 

The previous literature assumes a single project and the value of one project is determined at 

a local maximum point. In the actual property market, however, a developer always manages 

more than one project at any one time, these projects are located close to each other, and they 

share common resources, such that there exist interactive effects between the two projects. 

When developer makes a decision, he always maximizes the profit of the company, instead of 
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the projects, which is a global maximum. Our study attempts to find the optimal timing to 

invest in projects, if one developer has more than one project waiting to be developed. We 

explore a case of multi-projects owned by the same developer and focus on the externalities 

between different projects. We consider how the portfolio effect will affect a developer’s 

decision on optimal development timing. Will the developer expedite or defer the 

development when future is uncertain?  

 

Portfolio effect means the intra/inters project externality, which will create spill-over benefits 

to a developer of the projects through economies of scale. Developers could use pricing and 

quantity strategies to maximize profits for projects under different market conditions: 

competitive, monopoly or duopoly. The multiple-projects externalities can also reduce the 

total costs, which include financing cost, material cost, and construction cost. 

 

In a stochastic framework, the real demand market changes over time. We could assume that 

the demand follows a geometric Brownian motion process (as in Grenadier (1996)). For 

simplification of model, we assume that the cost of project is constant. We set up a stochastic 

framework with one developer who has development options on two different but contiguous 

land parcels, and the developer will have the options to develop the two projects 

simultaneously or sequentially. The two land parcels can be developed either as a 

homogeneous or two heterogeneous projects. In our model, we explore how the portfolio 

effect will affect the developer’s optimal development timing decision, while the demand 
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follows a stochastic process. We try to maximize the collective profit of the two projects 

owned by the developer when the embedded timing option value is valuable.  

 

The model evaluates whether the developer will make simultaneous development or 

sequential development under different market situation, and how the portfolio effect will 

impact the optimal development timing of the two projects. The positive interactive effects 

between the projects will push the developer to trigger the development options on the two 

projects earlier. The developer will make simultaneous development, if the portfolio effect is 

strong enough to offset the opportunity costs of not waiting for one more period. In other 

words, the portfolio effect lowers the trigger threshold value of investment for the second 

project. He will otherwise be better off by delaying the development of the second project, 

which results in a sequential development process. Next, we would also evaluate the 

development strategies of the developer under different market demand conditions. The 

developer will choose to develop a single project when the demand curve is steep, while in a 

market with flat demand curve, he will prefer to invest in both projects. 

 

We then extend the model by including two developers, each develops the land separately. 

This model allows us to analyze negative externality effects, in which both developers will 

undertake non-cooperative strategies, and the completion of one project will “destroy” and 

reduce the value of the competing project. The negative externality is expected on the 

neighboring projects, when the competing developer pre-empts his competitor by exercising 
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the development option earlier. We will compare different timing strategies from co-operative 

development by two developers to separate development by two developers. Other extensions 

we will think about include the effect of stochastic cost function and to expand two projects 

into N projects where multi-projects externalities are considered. The third extension in the 

model involves integrating sub-game optimal strategies of the developer in a real options 

framework by allowing the demand functions for the two projects to follow different 

stochastic processes with drift. Compared to the earlier findings in Grenadier (1996), who 

assumes only one stochastic demand process for the project in his model, the results of this 

proposed model will shed new lights on how optimal strategies of one developer will be 

changed under different game dynamic scenario and different demand conditions. This 

extension will be discussed in the following Chapter 5. 

 

This section is organized as follows. Section 4.1 provides a general background of real option 

theory, project externality and game theory. Section 4.2 specifies the multi-projects optimal 

development timing model and also assumptions. Section 4.3 and Section 4.4 give the 

analytical solutions of the model and the numerical results. Section 4.5 shows the comparative 

statistics and sensitivity analysis. The last Section includes conclusion and future extensions. 

 

4.2 Stochastic Model Specification 

In the stochastic framework, we start with one developer, who has two projects, project 1 and 

project 2. We track the development time by denoting ti [i = (1, 2)]. We also assume that the 
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construction time for a project is δ = 0. To consider the portfolio effect of the two projects, 

an interactive factor on project i from project j, θ ij, is included. As in the traditional model, 

we assume that the developer is risk-neutral. We use the inverse demand function, denoted as 

D(Qt). On the other side, the construction cost and management cost are constant, Ii [i = (1, 

2)]. r stands for risk-free rate, and � is the required return rate. 

 

After the completion of a project, we could get future cash flows denoted by iP . We use α , 

which means the comparable advantage, to differentiate the two projects. We assume 

21 αα > , that is project 1 has more comparable advantage than project 2. The price will be 

impacted by the exogenous economic shocks denoted by y: 

)(iit tt QDyP ⋅⋅= α        [i = (1, 2)]                                       (4.1) 

The economic shock y is exogenous and follows a Geometric Brownian Motion Process as 

follows  

dzydtydy ⋅⋅+⋅⋅= σµ                                                   (4.2) 

µ  is the instantaneous expected growth rate 

σ  is the instantaneous standard deviation 

dz  is increment of stand Wiener Process 

From Equation (4.1) and (4.2), we could derive the price as a Geometric Brownian Motion 

Process, as follows 

dzPdtPdP ⋅⋅+⋅⋅= σµ                                                 (4.3) 

There will be portfolio effect from project j on project i, denoted as ( ij1 θ+ ). The revenue 
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functions for project 1 and project 2 are given as follows:  

��
∞

⋅⋅−⋅+⋅⋅+⋅⋅−⋅⋅=
2
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)(exp)1()(exp 1211111 t t

t

t t dttqPdttqPR ρθρ               (4.4) 

�
∞

⋅⋅−⋅+⋅⋅=
2

)(exp)1( 21222 t t dttqPR ρθ                                     (4.5) 

 

At first, the developer has two projects waiting for investment, and he has options to invest in 

project 1 and project 2. The completion of project 1 will have portfolio effect on project 2, 

such that the portfolio effect will impact on the development timing of project 2. This means 

that there are embedded options in the decision of investment in project 1, because of the 

portfolio effect. We could consider the problem as a two-stage real option valuation. At the 

first stage, we will decide the development timing of project 1, and then at the second stage, 

we make the decision of investment in project 2. We will use the back-forward method to 

solve the problem. 

 
Figure 4.1 Two-stage options 

After investment in Project 1, the total value of option of investment in project 2 is denoted 

by G2(Y), where the developer will receive the future cash flow P1 per time under the 

assumption of risk neutrality. 

The Ordinary Differential Equation is derived as follows: 

0)()()Y(
2
1

211
'
2

''
2

22 =−∆+++ rGYQDYYGGY αµσ                          (4.6) 

We define the boundary conditions: value matching, smooth pasting and initial condition, as 
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follows: 
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Before the investment in Project 1, the total value of option of the developer is denoted as 

G1(Y). The developer has the option to invest in project 1 and project 2, and these two projects 

have portfolio effect, which reflects the embedded option value. G1(Y) is the total option, 

which can be defined in the Ordinary Differential Equation below:  

0)()(
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1

1
'
1

''
1

22 =−+ rGYYGYGY µσ                                     (4.10) 

The boundary conditions, which include value matching, smooth pasting and initial condition, 

are defined below: 
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4.3 Solution for Optimal Development Timing 
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Using the backward method, we first solve the Equation (4.6) subject to the boundary 

conditions of (4.7) and (4.8) and the initial condition of (4.9). 

The general solution is given below: 

YHYAYAYG 1212
21)( ++= ββ                                         (4.14) 
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)( 11
1
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                                                  (4.15) 

where � is the root of fundamental quadratic equation given below: 

0)
2
1

(
2
1 222 =−−− rβµσβσ                                          (4.16) 

1
2

)
2
1

(
2
1

2
2

221 >+−+−=
σσ

µ
σ
µβ r

 

0
2

)
2
1

(
2
1

2
2

222 <+−−−=
σσ

µ
σ
µβ r

 

According to initial condition (4.9), when 0)(  0, 2 →→ YGY , we could omit the second 

component of Equation (4.14) 

So YHYAYG 112
1)( += β                                              (4.17) 

Substituting into boundary conditions (4.7) and (4.8)  
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After we get the option value of G2(Y), we solve backward to obtain the solution for Equation 

(4.10) subject to the boundary conditions of (4.11) and (4.12) and the initial condition of 
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(4.13). 

Equation (4.10) is the homogenous equation and the general solution is given as follows: 

21
211 )( ββ YBYBYG +=                                                 (4.20) 

According to initial condition (4.13), when 0)(  0, 1 →→ YGY , we could omit the second 

component of equation (4.20) 

So 1
11 )( βYBYG =  

Substituting into boundary conditions (4.11) and (4.12), 
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Now we get the trigger value of project 1 and project 2. As soon as the economic shock 

increases to *
1Y , the developer will invest in the project 1 and make the development of 

project 2 if the economic shock increases to *
2Y . 

 

Proposition 4.1 

The developer will invest in project 1 as soon as the economic shock increases to *
1Y  and 

make the investment in project 2 once the economic shock increases to *
2Y . The trigger time 

is defined by Equations (4.21) and (4.18). 

 

4.4 Results Analysis 

4.4.1 Initial Results 

Let’s compare *
1Y & *

2Y  and consider different investment strategies. If *
2

*
1 YY < , which 
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means the trigger time of the first project is lower than the second, the developer will choose 

a sequential development strategy. To simplify, we assume 21 II =  here. 

Under the condition )()]1()1([)(4 221212111 ∆++++>∆+ QDQD θαθαα        (4.22) 

The developer will choose a sequential development strategy.  

 

Otherwise, if *
2

*
1 YY ≥ , the developer will choose a simultaneous development strategy. In 

other words, if the portfolio effect is large, the developer will move the development of 

project 2 earlier in a simultaneous development strategy.  

On the other hands, the demand curve will also impact the development decision. If the 

demand curve is steep, the developer will wait for a longer time and make a sequential 

development.  

 

Proposition 4.2  

Under the condition: )()]1()1([)(4 221212111 ∆++++>∆+ QDQD θαθαα  

The developer will choose a sequential development strategy. Otherwise, the developer will 

choose a simultaneous development strategy. Portfolio effect, if it is large, will make the 

developer invest in project 2 earlier. The demand curve also impacts the development decision. 

If the demand curve is steep, the developer will wait for a longer time and make a sequential 

development. If it is flat, the developer will choose a simultaneous development strategy. 

 

Now we relax the assumption that I1=I2. Under the condition that 
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)()]1()1([)(4 221212111 ∆++++>∆+ QDQD θαθαα  

If I1>I2, the trigger time Y1
* will be close to Y2

*. That means that larger investment cost in 

project 1 compared to project 2 will shorten the waiting time of investment in project 2. 

Otherwise, I1<I2, the trigger time Y1
* will be far away from Y2

*. In that situation, developer 

will wait more time for the investment in project 2. 

On the other side, under the condition that 

)()]1()1([)(4 221212111 ∆++++<∆+ QDQD θαθαα  

if I1>I2, the developer will make simultaneous development. On the other hand, if I1<I2, the 

trigger time Y1
* will be close to Y2

*. Developer will wait to invest in project 2, if I1 is smaller 

than I2. One explanation is that the decision maker is exposed to higher risk when the scale of 

investment increases. However, the enlarged scale of investment will bring more positive 

portfolio effects. 

 

Proposition 4.3 

The investment costs for project 1 and project 2 will impact the trigger time of the two 

heterogeneous projects. If investment cost of project 1 is large, the time to wait for the 

investment in project 2 is shortened. The developer will prefer to develop simultaneously. 

Otherwise, if the investment cost of project 2 is larger, the developer will wait for longer time 

before making investment in project 2. 
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4.4.2 Effects of Externality and Demand Elasticity 

From Equation (4.21), the trigger value for investing in project 1 depends only on the inverse 

demand curve, and comparable advantage of project 1. It has no relationship with the 

portfolio effects on project 1 and project 2. 

Proposition 4.4 

Although the portfolio effect makes developer invest in the project 1 earlier, the magnitude of 

portfolio effect will not impact the trigger value of project 1. However, the magnitude of the 

portfolio effect will impact the development timing of project 2. 

 

By taking the first order derivations of Equations (4.21) and (4.18) with respect to the 

interactive factor, �ij, the effects on development timing by integrating the two projects as a 

portfolio can be represented as follows: 
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where [i = (1, 2)]. There is no externality on project 1 when the trigger time is Y1
*. The 

externality effects are only created upon the completion of the second project at t2. The 

interactive effect makes the development of the second project to take place earlier. 

 

Let [g(Q)= dY2
*/d�ij]. By taking the first order derivation of g(Q) with respect to the 

aggregate demand, Q, the effects of demand elasticity on trigger time given positive 

externalities can be explained as follows: 
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Proposition 4.5 

Shift along the demand curve will change the demand elasticity. The negative effect from a 

portfolio on the trigger time of the second project will also be affected by the demand 

condition. In a weak market where the market elasticity is high, the portfolio effect on the 

trigger time of the second project is larger, compared to a boom market with high quantity of 

products. 

 

4.4.3 Model for Independent Development 

In a base case, where two developers have identical project, no portfolio effects exist. Then 

we can compare the difference for cases with and without portfolio effects. 

The option value of project 1, F1(Y) is given in the Ordinary Differential Equation 

0)()(
2
1

1
'

1
''

1
22 =−+ rFYYFYFY µσ                                     (4.25) 

Subject to the following boundary conditions and initial condition: 
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The option value of project 2, F2(Y) is defined in the following Ordinary Differential Equation 
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where the boundary conditions and initial condition are given below: 
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The model for independent development is a one-stage option model while in the previous 

sections the model for two projects is a two-stage option model. The boundary conditions 

defined for both settings are therefore different. 

The solution for Equation (4.25) can be solved subject to the Boundary conditions (4.26), 

(4.27), and initial condition (4.28): 
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Substituting into Equations (4.26) and (4.27) 
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The solution of Equation (4.29) is obtained subject to the boundary conditions (4.30) and 

(4.31), and the initial condition (4.32): 
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Compare the Equations (4.21) and (4.33), we could determine the portfolio effects that push 

the developer to make investment of project 1 earlier. 

By comparing Equations (4.18) and (4.34), the decision of whether the portfolio effect will 
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push the developer to make investment of project 2 earlier or defer the second investment of 

project 2 depends on the demand curve and the magnitude of portfolio effects. 

Under the condition: )(2)()()1( 1122122121 ∆+>∆++∆++ QDQDQD αθαθα  

if the portfolio effect is large, investment in project 2 will take place earlier. The developer 

will prefer to invest in project 2, when the demand curve is flat. 

 

Proposition 4.6 

The portfolio effect will push the developer to make investment in project 1 earlier. Whether 

the portfolio effect will push the developer to make investment in project 2 earlier or defer the 

second investment of project 2 depends on the demand curve and the magnitude of portfolio 

effect. If the portfolio effect is large, the investment in project 2 will occur earlier. The 

developer will prefer to invest in project 2 when the demand curve is flat. Under the condition: 

)(2)()()1( 1122122121 ∆+>∆++∆++ QDQDQD αθαθα , the developer will make 

investment of project 2 earlier. 

. 

4.5 Comparative Static and Sensitive Analysis 

In the last section, we derive the optimal investment timing and option values under various 

assumptions. With reasonable parameters for input variables, such as demand function, risk 

free return, growth rate, standard deviation, investment cost and comparable advantage of the 

two projects, sensitive analyses under different market conditions are conducted to derive 

comparative statistics. 

a) Initial Assumptions 
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� )( 1∆+QD  and )( 2∆+QD  are inverse demand functions. The elasticity of the 

demand curve is analyzed. A flat demand curve is defined as 100)( 1 =∆+QD  and 

80)( 2 =∆+QD . On the other hands, a steep demand curve is assumed to take the 

following values: 100)( 1 =∆+QD  and 05)( 2 =∆+QD . The flat demand curve is 

used in the base case scenario. 

� r is the risk free return, we assume r=10% 

� µ is the instantaneous expected growth rate, we assume µ =4% 

� σ is the instantaneous standard deviation, we assume σ =20% 

� The investment capital I1 and I2, both we assume 1 unit 

� α  means the comparable advantage. We assume 8.0,1 21 == αα  

b) Results from the models 
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Under the initial assumptions, we will simulate investment trigger value of project 2 when the 

portfolio effect changes. In Figure 4.2, we show that when the portfolio effect on project 1 



 76 

and project 2 changes from 0 to 1, with each incremental step of 0.02, the trigger value of 

development timing of project changes continuously. One significant point is that there is a 

linear section, around which the trigger value increases to a positive infinite or decreases 

down to a negative infinite. The points are found around the node that (θ12) is 0.4 and (θ21) is 

0.4.We divide the graph into two parts. One is when the portfolio effect is small, when both 

θ12 and θ21 are from 0 to 0.35. The other is when the portfolio effect is quite large, both θ12 

and θ21 are from 0.45 to 1.5. The details are found in Figure 4.3 and Figure 4.4. 

 
Figure 4.2 Trigger value changing as the θθθθ12 and θθθθ21 from 0 to 1 

Figure 4.3 Trigger value changing as the θθθθ12 and θθθθ21 from 0 to 0.35 
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In Figure 4.3, as θ12 and θ21 increase from 0 to 0.35, by a step of 0.01, the trigger value of 

development timing is always negative and drops into negative infinite when both θ12 and θ21 

are closed to 0.35. In this scenario when the portfolio effect is weak, the trigger value of 

development of project 2 is negative, which implies that the profit of project 2 is less than the 

profit decreasing in project 1. In that situation, the developer will defer the investment in 

project 2 infinitely. 

 

 
Figure 4.4 Trigger value changing as the θθθθ12 and θθθθ21 from 0.45 to 1.5 

In Figure 4.4, when θ12 and θ21 change from 0.45 to 1.5, by a step of 0.02 each, the situation is 

the opposite of that in Figure 4.3. The trigger value of development timing is always positive 

and decreases as the θ12 increases, and also decreases as θ21 increases. It is close to a positive 

infinite when both θ12 and θ21 are close to 0.45. In this scenario, when the portfolio effect is 

strong, the trigger value of development of project 2 is positive, but decreases as the portfolio 

effect grows. In this situation, the developer will make the investment of project 2 as soon as 

the economic shock exceeds the trigger value. The stronger the portfolio effect is, the lower is 

the trigger value. 
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Proposition 4.7 

The portfolio effect will impact the trigger value of development timing of project 2. When the 

portfolio effect is small, the developer will abort the development of project 2, because the 

profit of project 2 will be less than the losses that will be suffered by project 1. On the other 

hand, when the portfolio effect is large, the developer will make investment in the project 2 as 

soon as the economic shock exceeds the trigger value. If the magnitude of portfolio effect is 

large, the trigger value is lower. In other words, the large portfolio effect will make the 

developer to invest in project 2 earlier. The decision on project 2 depends on the trade-off 

between profit from project2 and losses in project 1. 

 

In the above scenario, we assume a flat demand curve and examine changes in trigger timing 

value as the interactive effect changes. In the following scenario, we change the flat demand 

curve into a steep demand curve. A flat demand curve means the price will decrease at a lower 

rate as the quantity increases. While with a steep demand curve, 100)( 1 =∆+QD  and 

05)( 2 =∆+QD , the price is expected to decrease at a faster rate as the quantity increases. 

All the other parameters are the same as the above scenario. r=10%, µ =4%, σ =20%, 

I1=I2=1, 8.0,1 21 == αα  

 

In Figure 4.5, θ12 and θ21 changes from 0 to 1, and each step is 0.05. The trigger value for 

investment in project 2 is always negative, which means that the profit from project 2 is not 

sufficient to compensate the decline in profit in project 1. The developer will not invest in 
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project 2. 

 

Figure 4.5 Trigger value of investment in project 2 under steep demand curve 

 

Proposition 4.8 

Under a steep demand curve, the developer will abort the development of project 2 because 

the profit from project will not be sufficient to compensation the loss in profit in project 1. The 

developer will defer the second project under a steep demand curve. 

 

Comparable advantage is another important parameter that will impact the investment trigger 

values. By changing the comparable advantage: 21 αα and , we would explore the changes 

in trigger value of project 1 and project 2. The trigger value for development of project 1 will 

decrease as the comparable advantage 1α  increases. In other words, the developer will 
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invest in project 1 earlier, if project 1 has larger comparable advantage.  

 

Figure 6.5 and Figure 6.6 show the trigger values for investment in project 2. All the 

assumptions are the same as the basic scenario, except for 2α . r=10%, µ =4%, σ =20%, 

I1=I2=1, and 11 =α . We assume a flat demand curve. In Figure 6.5, 8.02 =α , while in 

Figure 4.6, 12 =α . θ12 and θ21 change from 0.45 to 1.5, by 0.02 in each step. It is obvious 

that the trigger value for investment in project 2 is lower, when the comparable advantage of 

project 2 is high. 

 

Figure 4.6 Trigger value of project 2 as the comparable advantage of project 2 is low 
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Figure 4.7 Trigger value of project 2 as the comparable advantage of project 2 is high 

 

Proposition 4.9 

The trigger value for development in project 1 will decrease as the comparable advantage 

1α  increases. In other words, the developer will invest in project 1 earlier, if project 1 has 

higher comparable advantage. The trigger value for development of project 2 will also 

change along with 21 αα and , although the shape of graph remains unchanged. The 

comparable advantage will impact the decision to invest in the project 2. The larger the 

comparable advantage of project 2, the lower is the trigger value. The developer will invest in 

the project 2 earlier, if the project 2 has a higher comparable advantage. 
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4.6 Conclusion 

Previous papers such as Majd & Pindyck (1987), Pindyck (1993) on “time to build options” 

explored the price uncertainty, cost uncertainty, construction delay, and project suspension 

and built option model on a single project. This study explores the interactive effect between 

different projects owned by the same developer. The portfolio effect between projects will 

bring spill-over effects on price and cost saving, which will also impact the development 

timing of different projects. This study presented the portfolio effect between projects by 

deriving the global optimization in the model. 

 

We build an option model, which integrates the future demand uncertainty, market structure 

and portfolio effect between projects, to examine the optimal timing of development decision. 

We assume there are two projects waiting for development, and the real option model is 

developed as a two-stage option model. We use the backward process to solve the problem, 

and find that the portfolio effect will impact the optimal development timing of the two 

projects. The developer will make simultaneous development when the portfolio effect is 

large and he will prefer a sequential development strategy, when the portfolio effect is weak.  

 

By using reasonable parameters for input variables in the model, comparative statistics and 

sensitivity analysis are conducted. The portfolio effect will make the investment in project 1 

to happen earlier. The portfolio effect will also push the developer to make investment in 

project 2 to take place earlier, or to defer investment in project 2 depending on the demand 
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curve and the portfolio effect. As the portfolio effect increases the price by 40%, the 

development of project 2 will be considered under the assumed parameters. Increases in the 

portfolio effect will lower the trigger value of investment in project 2. The developer will 

prefer to invest in project 2, when the demand curve is flat. Lastly, the comparable advantage 

of a project will also have significant effects on optimal development timing. A project with 

higher comparable advantage will be developed earlier by the developer.  

 

The above models exclude the cost uncertainty, and it only assumes that the price is impacted 

by an economics shock, which follows a Geometric Brownian Motion Process. There are 

several extensions to be made in the future research. One is that we could consider the cost 

uncertainty, which is more practical though it makes the model more complex. Another 

extension is that we will consider the price interactive effect between two projects. In this 

section, we assume that the two projects are impacted by the same economic shock and the 

same price. We may further explore different price impact on the two projects that are driven 

by the same economic shock. The proposed extensions will be explored in the next chapter. 
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Chapter 5 Multi-Project Optimal Timing Strategy Using 

Least Square Monte Carlo Simulation 

�

5.1 Introduction 

In the last chapter, we set up a stochastic framework of one developer with two projects, in 

which the decision to develop is impacted by an exogenous economic shock. The economic 

shock follows a Geometric Brownian Motion Process. In a market with heterogeneous 

product types, the prices are different because of different location, quality, infrastructure and 

neighborhood. Some projects are more risky and impacted more seriously by the economic 

shock than others. In this chapter, we allow different economic shocks to affect the two 

projects. We assume that one project has a higher growth rate and a higher volatility, while 

another has a relatively lower growth rate and lower volatility. We assume that the economic 

shocks on the two projects follow two different Geometric Brownian Motion Processes, 

although these two processes may be correlated. 

 

In our model, one developer has two heterogeneous projects, and he will decide when to 

invest in the two projects so as to maximize the collective profits. In our basic model, the 

complex problem is solved as a sequential option problem. The developer will invest in one 

project, and then in the second project. At first, the developer has the option to invest in the 

two projects. After the completion of the first project, the developer only has the option to 

invest in the second projects. It is a two-stage option problem as in models in chapter 4. Given 
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the same input assumptions, the trigger value of project with a high growth rate is relatively 

lower. The developer will first invest in the project with a high growth rate and high volatility, 

followed by the project with a low growth rate and a low volatility.  

 

In a two-stage real option model with two stochastic variables, there are two PDE equations 

with different boundary conditions that include value matching and smooth pasting conditions. 

There are three numerical algorithms commonly used to price options: lattice method that 

uses the binomial tree (firstly proposed by the Cox, Ross and Rubinstein (1979)), finite 

difference method that is the traditional PDE solution method (first introduced by Brennan 

and Schwartz (1977)), and Monte Carlo Simulation methods (introduced by Boyle (1977)). 

Binomial tree is useful for a discrete option model, but it has disadvantage when applied to a 

model with high dimensional state variables. Although the finite difference method could be 

used to solve the PDEs in our model, the process is complex and computationally intensive. 

The Monte Carlo simulation method is used in this study to solve the option timing problem.  

 

Boyle (1977) firstly used the Monte Carlo simulation as a numerical method to obtain 

solutions for option valuation problems. She simulated the process generating returns on the 

underlying asset and derived the option value. The early Monte Carlo simulation is a 

forward-looking technique, while the dynamic programming is backward recursive process. 

Many approaches have been proposed to match simulation and dynamic programming, and 

one well-accepted approach is the Least Squares Monte Carlo Approach proposed by  
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Longstaff and Schwartz (2001), which was used to estimate the American option price. This 

approach used the least square method to estimate the conditional expected payoff of the 

option holder for continuation. The option holder would exercise the option, if the payoff of 

immediately exercising was higher than the conditional expected payoff. It was 

path-dependent and could be applicable in a multifactor situation. However, there are still 

problems with the technique, such as efficiency of LS method, choice of basic function, and 

computation speed. 

 

The Monte Carlo simulation method has been expanded from pricing financial option to real 

options. Gamba (2003) used the Monte Carlo simulation to value a wide range of capital 

budgeting problems with embedded real options that depend on state variables and a related 

valuation algorithm. The valuation approach decomposed a complex real option problem with 

multiple options into a set of simple options taking into account interaction and 

interdependence of the embedded real options. The Longstaff and Schwartz (2001) least 

square Monte Carlo simulation method was used and it was extended to the decomposition 

process. We adopt the method proposed by Gamba (2003) and use the algorithm based on 

Least Squares Monte Carlo Approach by Longstaff and Schwartz (2001) to solve the complex 

multi-option problem.  

�

Based on the Least Square Monte Carlo simulation technique, we simulate the basic scenarios 

by changing the correlation between economic impacts on project 1 and project 2, from a 

negative to a positive range. The distribution of the exercise time for project 1 is a normal 
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distribution for the range of correlation between the two projects. The exercise time is longer 

when the correlation is positive. The developer will wait for new information when the two 

projects are positively correlated. The distribution of the exercise time for project 2 is a 

discrete process with a flat distribution. The exercise time for project 2 becomes significant 

when the correlation changes from a negative to a positive value. When the developer has a 

portfolio of projects with positive correlations, he is more sensitivity to the market volatility 

and will be more careful when making investment decisions. The developer will defer 

development, especially the second project, when the portfolio’s correlation is positive. If the 

two projects have positive interactive effects, the exercise time for project 1 will be earlier, 

while the exercise time of project 2 will be much earlier. On the contrary, when two identical 

projects are owned by two independent developers, the developer will wait for the action of 

the other developer and defer the decision on his project. When the two projects are owned by 

a single developer, the portfolio effect will likely to encourage an earlier development for the 

projects. 

�

This chapter is organized as follows. Section 5.1 gives a general background of the case with 

heterogeneous property, real option timing problem, and the Monte Carlo Simulation 

techniques. Section 5.2 specifies the multi-option investment timing model with two 

heterogeneous projects and decomposes the options into a sequential two-stage option 

problem. Section 5.3 discusses the solutions for the multi-option problem and introduces the 

Least Square Monte Carlo Simulation Method. Section 5.4 analyzes the investment timing 

results in a case where one developer owns two heterogeneous projects, using Least Square 
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Monte Carlo Simulation Method. Section 5.5 concludes the findings with extensions for 

further studies. 

�

5.2 Interactive effect of Heterogeneous Projects on Development 

Timing Strategy Model 

In the proposed stochastic framework, we assume that there is a single developer, who has 

two projects, project 1 and project 2, waiting for development. The development time is 

denoted by ti [i = (1, 2)]. We assume that the time to build is zero, δ = 0. These two projects 

are heterogeneous, and they are driven by different economic shocks that follow different 

stochastic processes. We assume that the developer is risk-neutral. As denoted below, r stands 

for risk-free rate and � is for the return required discount rate. 

 

We use the inverse demand function, denoted by D(Qt), to determine the underlying asset 

prices. The prices for project 1 and project 2 are different, because they are heterogonous 

products that are driven by two different Geometric Brownian Motion processes. We assume 

that the two projects will generate after the completion future cash flows as denoted by iP . 

We use two different economic shocks to differentiate the two projects. Prices of the two 

projects are defined as a function of different economic shocks, yi, as follows:  

)(i ti QDyP ⋅=         [i = (1, 2)]                                     (5.1) 

The economic shocks on different projects, yi, are exogenous and follow two different 

Geometric Brownian motion processes given below: 
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dzydtydy ⋅⋅+⋅⋅= iiiii σµ                                           (5.2) 

iµ is the instantaneous expected growth rate  

iσ is the instantaneous standard deviation 

dz is increment of stand Wiener Process 

From Equation (5.1) and (5.2), we could derive the prices for project 1 and project 2, which 

also follow the following Geometric Brownian Process: 

dzPdtPdP ⋅⋅+⋅⋅= iiiii σµ                                          (5.3) 

The construction cost is assumed to be constant, and the construction cost is denoted by I i [i = 

(1, 2)]. The revenue of project 1 as denoted by R1, consists of two parts: one is before the 

investment in project 2, and the second part is after the investment in project 2, where 

interactive effects are considered. The revenue for project 2 as denoted by R2, is also impacted 

by the interactive effect. The costs for project 1 and project 2 are computed on a constant unit 

cost. 
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At the beginning, the developer has the development options for two projects. After the 

investment in project 1, the developer has only one option to invest in project 2. The 

completion of project 1 will have interactive effects on both project 1 and project 2, such that 

the portfolio effect will impact the development timing of project 2. We will use �ij for the 

interactive effect. We could consider the problem as a two-stage real option valuation (see 

Figure 5.1). In the first stage, we will decide the development timing for project 1, and then at 
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the second stage, we make the investment decision for project 2. The backward method is 

used to solve the problem. 

 
Figure 5.1 Two-stage options 

After the completion of project 1, the developer will receive the future cash flow P1 per unit 

time under the risk neutral assumption. After investing in Project 1, the option value for 

project 2 as denoted by F(Y1, Y2), can be computed using the following Partial Differential 

Equation:  
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Subject to the following boundary condition: value matching, smooth pasting and initial 
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Before investing in project 1, the total option value of the developer is denoted by G(Y1,Y2). 

The developer has the options to either invest in project 1 or project 2, and these two projects 



 91 

have interactive effects. G (Y1, Y2) is determined in the following Partial Differential 

Equation: 
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Subject to the boundary condition: value matching, smooth pasting and initial condition: 

1
#

2
#

1
#

1
1#

2
#

1 ),(
)(

),( IYYFY
ur

QD
YYG −+

−
∆+=                               (5.12)  

),(
)(

),( #
2

#
1

1#
2

#
1 11

YYF
ur

QD
YYG YY +

−
∆+=                                   (5.13) 

),(),( #
2

#
1

#
2

#
1 22

YYFYYG YY =                                              (5.14) 

0)0,0( =G                                                            (5.15)    

 

5.3 Least Square Monte Carlo Simulation 

The boundary conditions are non-homogenous; therefore, it is difficult to reduce the Partial 

Differential Equation to an Ordinary Differential Equation. The closed form analytical 

solution is not available. We will use the Monte Carlo Simulation to derive the numerical 

solution. Based on the Least Square Monte Carlo Simulation proposed by Longstaff and 

Schwartz (2001), we decompose the complex option into a collection of simple options. Our 

model is an option on option problem. As a developer owns two heterogeneous projects, the 

following options are available: 

Option to invest in project 1: the payoff until maturity as if the option exists in isolation is 
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given as �1(t,V1t) = max {V1t − I1, 0}, where the project value is denoted by V1 and the cost 

outlay is denoted by I1. The maturity of the option is T1 years. F1 denotes the option value. 

Option to invest in project 2: the payoff until maturity is defined as �2 (t, V2t) = max {V2t − 

I2, 0} with the collective project value V2 and a capital expenditure I2. The maturity is T2 years, 

and the option value is F2. 

Since the interactive effect depends on the completion of the first project, the payoff for the 

first project is given as max {V1t − I1 + F2 (t, Vt), 0}. Although the second option can be 

exercised in an interval [0, T2], the time interval for the second option is from the time the 

first option is exercised (a stopping time) to T2. A graphical representation of the problem is 

shown in Figure 5.2. 

Figure 5.2 Option problem representations 

The value F1 depends on F2, and both are American options. The option algorithm could be 

represented by the following formula.  
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Based on the above option algorithm, we use Matlab 6.5.0 to do the numerical simulation. 

Two projects, project 1 with a high growth rate, a high volatility and a high investment cost, 

F1 F2 

Option to invest in 
the first project  

Option to invest in 
the second project  

Max {V1t − I1 + F2 (t, Vt), 0} max {V2t − I2, 0} 

[0, T1] [0, T2] 
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while project 2 with a low growth rate, a low volatility and a low investment cost.  

 

We set assumptions for the basic parameters. The life of the real options in our development 

case is limited by the development timing that is permitted for a project, i.e. the project must 

be developed in n years. The infinite life case though is a more generalized case, which 

however, will not change the results significantly. In our simulation, the maturity of 

development option for project 1, T1 is 150, and the maturity of development option for 

project 2, T2 is 150. To keep the assumption that the developer would invest in project 1 first 

and then project 2, we would examine the results and make adjustment after the simulation. 

With a time interval of 1 per period, a total 150 stages will be generated in the simulation 

process. Since the algorithm is path dependent, 5000 paths are generated. For project 1, the 

growth rate is 4%, the volatility is 20%, whereas for project 2, the growth rate is 2% and the 

volatility is 10%. The investment cost for project 1 is 5000, and for project 2 is 2000. The 

inverse demand curve is set at 100 if one project was developed, and it decreases to 80 when 

two projects were developed. The initial parameter for economic shocks on project 1 and 

project 2 is set at 1. The shocks on project 1 and project 2 will follow two different Geometric 

Brownian Motion Processes, and the correlation between two is given by �. We will change 

the value of � to explore different correlations of two shocks covering a positive, a negative 

and a zero value, on the option value. The interactive effect on project 1 is �12 and on project 

2 is �21. We would examine how the development timing changes with respects to changes in 

interactive effects. 
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Firstly, we generate economic shock on project 1 and project 2 using the following Geometric 

Brownian Motion Processes denoted by Y1 and Y2.  
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�1, and �2 are the growth rate for project 1 and project 2. �1 and �2 are the volatility for  

project 1 and project 2. z1 and z2 are Winer Processes. 

 

The decision making rule for project 2 is defined as: 
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The decision making rule for project 1 is defined as: 
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Using the backward algorithms at each stage, we compare the payoff for immediately 

exercising the options, and the conditional expected payoff for deferring the exercise decision. 

To get the expected payoff, we regress the discounted future cash flow on the economic 

shocks in the recent stage: Y1, Y2, Y1
2, and Y2

2. Repeating the process from the last stage to the 

first stage, we could get the exercise time for project 1 and project 2. 
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Two projects are either developed sequentially or simultaneously. If the exercise time t1 is 

larger than t2, we would adjust the investment timing and option value according to the 

following rules. If the collective value of the two projects is larger than zero at t2, we exercise 

the two options simultaneously at t2. It implies that the developer will make investment early 

because of the positive interactive effect. If the collective value of two projects at t2 is less 

than zero but the option value of project 2 is positive at t1, we choose to exercise both projects 

at t1. Otherwise we will abort the project 2 at t2. 

�

5.4 Analysis of Results 

According to the above assumptions, we use the least square Monte-Carlo (LSMC) algorithm 

to simulate the basic scenario when the correlations between the economic shocks on project 

1 and project 2 are negative, zero and positive. First, by generating the economic shocks on 

project 1, the following assumptions are made: the growth rate u1 is 0.04, the standard 

deviation sd1 is 0.2, the decision time T is 150 periods, and the total path is 5000. Similarly, 

when generating the economic shock on project 2, the following assumptions are made: the 

growth rate u2 is 0.02, the standard deviation sd2 is 0.1, the correlation between impact on 

project 1 and project 2 is -0.6. The inverse demand curve when one project in the market is 

100, while two projects in the market, it changes to 80. The investment cost for project 1 I1 is 

5000, and the cost for project 2 I2 is 2000. The interactive effect on project 1, �12 = 0, and on 

project 2, �21 = 0. We could see the distributions of exercise time of project 1 and project 2 in 

Figure 5.3 and Figure 5.4.  
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Figure 5.3 The exercise time of project 1 when correlation is -0.6 

 

 

Figure 5.4 The exercise time of project 2 when correlation is -0.6 

By setting the correlation between project 1 and project 2 at zero, the distributions of exercise 

times for project 1 and project 2 are shown in Figure 5.5 and 5.6. 
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Figure 5.5 The exercise time of project 1 when correlation is 0 

 

 

Figure 5.6 The exercise time of project 2 when correlation is 0 

When the correlation between shocks on project 1 and project 2 increases to 0.6, the 

distributions of exercise time of project 1 and project 2 are shown in Figure 5.7 and Figure 

5.8. 
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Figure 5.7 The exercise time of project 1 when correlation is 0.6 

 
Figure 5.8 The exercise time of project 2 when correlation is 0.6 

Figure 5.9 summarizes the frequency of exercise time of project 1 when the correlations 

between shocks on project 1 and project 2 are positive, zero and negative. Table 5.1 shows the 

basic comparative static, the option values, the average exercise time, and the median exercise 

time for project 1 and project 2. From the results, it seems like the correlations between 

shocks on project 1 and project 2 have no influence on the distribution of exercise times of 

project 1, which follows a normal distribution. When the correlation changes from negative to 
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positive, the average and the median exercise time will increase. It implies that when the 

shocks on two projects are positively correlated, the portfolio effects are more critical and the 

developer will wait for more information before making the investment decision. One 

significant implication is that when the correlation changes from negative to positive, the 

developer will likely to wait until the end of the option period. The option value for project 1 

is higher if the correlation between the shocks on the two projects changes from negative to 

positive, which means that the embedded option is more valuable if two projects have positive 

correlations. 

�=-0.6 �=0 �=0.6 
Option Value of Project 1 231.6 233.5 233.8 
Option Value of Project 2 11.5 11.7 7.3 
Average Exercise Time of project 1 50 55 60 
Average Exercise Time of project 2 104 105 109 
Median Exercise Time of project 1 44 46 46 
Median Exercise Time of project 2 97 107 118 

Table 5.1 Statistic of option value and exercise time of project 1 and project 2 

The distribution of exercise time for project 2 is discrete and flat when the correlation 

between the shocks on the two projects is positive. It looks like a uniform distribution from 40 

to 120. When the correlation changes from negative to positive, the average and the median 

exercise time for project 2 increase. It implies that the developer will wait for longer time for 

new information before making his investment decision, when he has a portfolio with positive 

correlations. The option value of project 2 is small compared to the option value of project 1.  
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Figure 5.9 Frequency of exercise time of project 1 

By keeping the correlation of shocks for project 1 and project2 at 0.6, and we set the 

interactive effect on project 1 and project 2, �12 is 0.3, and �21 is 0.3. The distributions of 

exercise times for project 1 and project 2 are shown in Figure 5.10 and 5.11. The average 

exercise time of project 1 is 54 and the median exercise time is 46. The distribution shows 

that the developer will likely make an early development decision. The average exercise time 

of project 2 is 71 and the median exercise time is 54. The exercise time of project 2 is much 

earlier than that in the base case scenario. The distribution looks like a normal distribution 

rather than a flat uniform distribution. The possibility of waiting until the end of decision time 

decreases for project 2. The present option value of project 1 is 161.6 while the present option 

value of project 2 is 61.5. Compared the two option values with that in the base case scenario, 

the option value of project 1 decreases and the option value of project 2 increases, which is 

due to the positive interactive effect. In conclusion, the positive interactive effect will impact 

on the development of project 1, but the impact on the development option for project 2 is 
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larger. 

 

Figure 5.10 The exercise time of project 1 with positive interactive effect 

 
Figure 5.11 The exercise time of project 2 with positive interactive effect 

If two projects are developed by two independent developers, they will make the investment 

decision separately by only considering the maximization of the value of a single project. 

Based on a correlation of 0.6 and assuming a sequential development option, where the 

developer will develop the project 1 with a higher growth rate, and a higher volatility, and 

then followed by project 2. The distributions of exercise times for project 1 and project 2 are 

flat, as shown in Figures 5.12 and 5.13. The average exercise time of project 1 is 100 and the 
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average exercise time of project 2 is 114. At a possibility of 50%, the developer will wait until 

the end of decision time for project 1 and project 2. Compared to the case where the two 

projects are owned by the same developer, the development timing is longer. The option value 

of project 1 is 400 and the option value of project 2 is 18.4. The volatility and future risk is 

larger when the two projects are owned by two independent developers, and thus both option 

values for project 1 and project 2 will increase. Both developers will wait longer time for new 

information before making their investment decisions.  
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Figure 5.12 The exercise time of project 1 when independent development 
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Figure 5.13 The exercise time of project 2 when independent development 
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Obviously, if one developer has two projects instead of separate developments, he will 

maximize the collective profit of both projects. Because of the embedded options and 

interactive effect, the developer will invest in the first project much earlier. The investment 

decision for project 2 depends on the interactive effect and the market volatility. He will 

invest in project 2 earlier in a boom market, when the two projects have positive interactive 

effect, whereas he will wait in a down market. 

 

5.5 Conclusion 

In the past literature on real options, the optimal development timing problem is analyzed on 

the basic of a single project. In an actual market, developers will have a portfolio of projects 

that have interactive effects between projects. They want to maximize the collective profit of 

the portfolio instead of a single project. The interactive effect between the projects impacts 

the development timing when the developer makes his investment decision. Heterogeneity is 

unique in real estate products, which can be differentiated by location and asset types, and 

they are also affected by different economic shocks. This chapter differentiates the two 

projects by different economic shocks through two pricing processes. We also consider the 

correlation between the prices of two projects and discuss whether the development timing 

changes with the different correlations. These two projects by the same developer may have 

some portfolio effect and we examine how the positive interactive effect impacts the 

development timing of the two projects. We also compare the results with the case when the 

two projects are owned by two independent developers.  



 104 

We use the Least Square Monte Carlo Simulation to numerically determine the options values 

and optimal timing of development under different portfolio scenarios. When the two projects 

have positive correlations, the portfolio is more sensitive to the market volatility. The 

developer would likely defer the development, especially the second project, when these two 

projects have positive correlations. The option value is higher when the two projects have 

positive correlations. The portfolio effect makes the developer, who has more market power, 

to invest early in the property market. In our model, the preemptive strategies where 

developers will interact with each other will not be modeled. The first mover advantage as 

suggested will require a more complex game theoretical option framework, and it is not 

within the scope of the current study. In our case, developers wait for the market recovery 

because the profit is negative in the recent market condition. The option to wait is valuable 

because of the market uncertainty. 

 

The option on option problem is complex. The price of project includes not only the intrinsic 

value, but also embedded option values. These options depend on the market volatility and 

future uncertainty. This chapter tries to decompose the interdependent options into a group of 

simple options, and uses a two-stage sequential option model to solve the problem. In this 

chapter, we use the improved Monte Carlo Simulation to estimate the option values given the 

assumptions of the initial parameters and paths. Following Grenadier (1996), we could use the 

game theory framework to discuss the interactive strategy of two developers in the future 

research. 
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Chapter 6   Conclusion and Extension 

�

6.1 Summary of Main Findings 

This study develops a real option model to examine multi-project interactive effects on 

developer’s development timing strategies. The proposed model also evaluates how 

investment strategies change under different market situation and for different project type, 

either homogeneous or heterogeneous. When the two projects are developed jointly by the 

developer, positive interactive effects can be created by integrating the two projects to 

collectively enhance the values of the two projects. If the projects are developed by two 

competing developers, development strategy may be adopted such that the completion of one 

project may create negative externality on the neighboring project owned by another 

developer. The correlation between the two heterogeneous projects also impacts the 

development timing. 

 

We first derive the development timing strategies under different market situation in a 

deterministic framework, where one developer has two projects on conditions that both the 

demand and the cost are constant. We find that the developer will abort the project when the 

demand is weak, and he will choose to develop a single project when the demand curve is 

steep. In a market with a flat demand curve, it will be economically optimal for the developer 

to develop the two projects simultaneously. The positive portfolio effects shorten the time to 

wait to develop for the two projects, and the developer will prefer to undertake the two 

projects simultaneously. Follow the objectives (a) and (b) in Chapter 1, the findings 
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correspond to our hypothesis (a), (b) and (c) in Chapter 1. The positive interactive effect 

pushes the developer to make early development of both project 1 and project 2. As in the 

actual market, developer would likely to adjust strategies in respond to the market situation. 

 

We extended the models in a stochastic framework with one developer, who has development 

options on two different but contiguous land parcels. The developer will have the options to 

develop the two projects simultaneously or sequentially, and to develop the two land parcels 

into two homogeneous or heterogeneous projects. We build a two-stage sequential option 

model and sensitive analyses were conducted on the model. The positive interactive effects 

between the projects will push the developer to trigger the development options on the two 

projects earlier. The developer will make simultaneous development, if the portfolio effect is 

strong enough to offset the opportunity costs of not waiting for one more period. In other 

words, the portfolio effect lowers the trigger value of investment for the second project. The 

developer will otherwise be better off by delaying the development of the second project, 

which results in a sequential development process. We also evaluate the development 

strategies of the developer under different market demand conditions. The developer will 

choose to develop a single project when the demand curve is steep, while in a market with a 

flat demand curve, he will prefer to invest in the both projects. The sensitive results show that 

as the portfolio effect increases the price by 40%, the development of project 2 will be 

considered under the assumed parameters. Interactive effect, demand curve, as well as the 

comparable advantage of the two projects will impact the development timing. All the 

findings are in line with the objectives (c) and (d) and hypotheses (a), (b), (c) and (d) in 
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Chapter 1. 

 

We further extended the model to integrate the sub-game optimal strategies in a real options 

framework by allowing the demand functions for the two projects to follow different 

stochastic processes with drift. This assumption fit well to the model with heterogeneity in 

property types. Because of the complexity of the options model, we use the Least Square 

Monte Carlo Simulation proposed by Longstaff &Schwartz (2001) to solve the optimal timing 

option values. The numerical results show that positive correlations between the economic 

shocks on project 1 and project 2 will defer the development, especially for the second project. 

As the risk of portfolio increases with positive correlations, the portfolio will be more 

sensitive when the future uncertainty increases. The positive interactive effects will kick-start 

the development of both projects earlier. Compared with the case of two projects developed 

by a single developer, the results show that the developer, who has a portfolio of two projects, 

has more market power and would invest in the projects earlier. This part accomplishes the 

objective (e) and confirms the hypotheses (b), (c), (d) and (e) in Chapter 1.  

 

6.2 Contribution of the Study 

The real options theory was developed and extended from the financial option theory of Black 

& Scholes (1973). Past real options models explore the embedded option in the development 

and provide useful pricing framework for properties with embedded options. These option 

models were always developed from the perspective of a single project. In the actual property 

market, however, one developer always manages a portfolio consisting of two or more 
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projects at the same time or develops the projects in a sequential process. These projects are 

not identical, they have interactive effects, which increase revenue, or save cost or reduce 

management resource. From the perspective of a developer, he would like to maximize the 

collective profit, and the portfolio effect impacts the development timing strategies. Our study, 

hinging on the special angle from developer’s decision making, explores how the 

multi-project interactive effect impacts development timing strategies. We fill up the gap by 

examining the portfolio effects between multiple projects and their effects on developer’s 

investment timing strategies. 

 

Market volatility and future uncertainty are the sources of real option. Developers always 

make different strategies under different market situation. They would like to make 

investment in a boom market and defer the investment when the market is down. One 

phenomenon pointed out by Grenadier (1996) is that over-investment occurs even when the 

property market is declining. Our study also explores how the developer adjusts his 

investment timing strategies when he faces different market conditions. We differentiate the 

demand market by different curvature of demand functions. We also discuss the correlations 

between the economic impacts on the two projects. The relationship of the two projects would 

affect the risk of the portfolio, and the developer is more sensitive with the market volatility 

when the two projects have positive correlations. The positive interactive effect of the two 

projects is the main driver of the developer’s optimal timing strategy. In a declining property 

market, the interactive effect will shorten the developer’s option to wait to invest, which could 

be one of the reasons for in an over-investment phenomenon. 
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Our study begins with a simple framework which assumes that both demand and cost are 

constant. We then build the option timing model in a stochastic framework when one 

developer has two projects, whose prices are impacted by the same economic shocks. We 

decompose the complex options model into a two-stage option model and solve the ODE to 

get a close-form solution. We also do sensitivity analysis to explore the factors such as 

demand curve, comparable advantage and interactive effect and their effects on development 

timing option premiums. In the end, we extend the model into a game theoretic framework, in 

which the economic shocks impact on two projects that follow two different Brownian motion 

processes. The option on option model becomes more complex and we solve the PDE 

numerically using the Least Square Monte Carlo Simulation proposed by Longstaff & 

Schwartz (2001). Our research design is from deterministic to stochastic, and combines both 

analytic and numerical methods to test various hypotheses. 

 

6.3 Limitation and Recommendation 

One of the limitations of our study is the assumption of a constant cost. When we focus on the 

stochastic demand, we assume that the project cost is unchanged. While in the actual market, 

the material cost, construction cost and management cost may always vary over time. 

Minimizing the cost of a project is an important part of the developer’s business goal in profit 

maximization. As the stochastic demand, we could assume that the unit cost of project follows 

a Geometric Brownian Motion process. The interaction between stochastic demand and 

stochastic cost makes the investment decision more complex. We could consider the ratio of 

revenue per cost in the model. Several studies have considered the stochastic cost function 
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(William (1991), Sing (2001)). In the future research, we could include the stochastic cost to 

better reflect the actual market condition. 

 

In our study, both the deterministic or stochastic models are developed on the premise of a 

monopoly market with only one developer. The monopolistic property market is uncommon, 

and the markets can be better modeled as a duopoly or a competitive market. Market structure 

is one of the interesting factors which would impact the investment decision. We could extend 

the model into a duopoly market, with two developers, which have their own portfolios. 

These two developers would consider not only their own investment decision but also the 

impact from their rival’s behavior. The interaction between the two developers would affect 

both developer’s investment behaviors and development decisions. We could follow 

Grenadier (1996) to extend the model in a game-theoretic duopoly framework, where the two 

developers have their own portfolios and discuss the developer’s behavior with interaction. 

 

In our study, the portfolio consists of only two projects of either homogenous or 

heterogeneous types. We could extend the two projects into a n-project case, which may 

increase the complexity of the interactive effects. We could adjust the model to explore 

n-project portfolio effect on developer’s decision making.  

 

As the model in Chapter 5, when the two projects follow two different stochastic price 

processes, and there are no analytical solutions for the PDEs. Instead, we use the Monte Carlo 

Simulation technique to derive at the optimal solutions. In the simulation process, the initial 
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parameters and the paths of the simulation would have significant impact on the results. In the 

future we could increase the simulation path using the parallel computation to reduce the 

processing time. The choice of basic regression function as well as the least square regression 

could also be improved.  
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Appendix 

 

GenerateShock1.m 

 
clc 
clear all 
disp(['Now Input the Required Parameters as following:']); 
disp(['                ']); 
 
%Determine the points of time, T1, T2, ti% 
t0=input('  Real Option Start Time ='); 
disp(['              ']); 
T1=input('  The Decision Time Length of project1 is (Quarter) '); 
disp(['              ']); 
T2=input('  The Decision Time Length of project2 are (Quarter) '); 
disp(['              ']); 
ti=input('  Interval Time ='); 
disp(['              ']); 
t=t0:ti:T; 
 
%Get other parameters from keyboard% 
Y0=input('  Market uniform economic shock at the Start Time ='); 
disp(['              ']); 
 
u1=input('  The expected growth rate of economic shock on project1 is '); 
disp(['              ']); 
 
sd1=input('  the standard deviation of the economic shock on project1 is '); 
disp(['              ']); 
 
%Determine the number of normally distributed random variables need to be generated% 
m=length(t); 
disp(['The number of intervals is ', num2str(m)]); 
disp(['              ']); 
disp(['  --------Simulation Started.  Please Wait a While for Results--------']); 
 
np=input('  Please input the number of paths needed  '); 
 
cput=cputime; 
tic; 
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err=randn(np,m-1); 
     
for inp=1:np 

Y1(inp,1)=Y0; 
for j=2:m 
Y1(inp,j)=Y1(inp,j-1)*exp((u1*ti-sd1^2/2)+err(inp,j-1)*sd1); 
end 

end 
 
disp(['---------economic shock on project1 path simulating accomplished----------']); 
disp(['           ']); 
 
cput=cputime-cput; 
disp(['  The CPU time for the above computation is', num2str(cput)]); 
disp(['    ']); 
 
save EconomicShock1 
 
 

GenerateShock2.m 

 
clear all 
load EconomicShock1 
 
%Start Generate the Path of project2 
err1=randn(np,m-1); 
corr=input('  Please input the correlation of the project1 and project2 '); 
errcon=err.*corr+err1.*(1-corr^2)^0.5; 
disp(['  The correlated random error has been generated ']); 
disp(['        ']); 
 
u2=input('  The expected growth rate of economic shock on project2 is '); 
disp(['              ']); 
 
sd2=input('  the standard deviation of the economic shock on project2 is '); 
disp(['              ']); 
 
disp(['  The correlated random error has been generated ']); 
disp(['        ']); 
 
concput=cputime; 
tic; 
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for inp=1:np 
    Y2(inp,1)=Y0; 
   for j=2:m 
    Y2(inp,j)=Y2(inp,j-1)*exp((u2*ti-sd2^2/2)+errcon(inp,j-1)*sd2); 

end 
end 
 
disp(['---------path simulating accomplished----------']); 
disp(['           ']); 
 
concput=cputime-concput; 
disp(['  The CPU time for the above computation is', num2str(concput)]); 
disp(['    ']); 
 
save EconomicShock2 
 
 

ComputeOption.m 

 
clear all 
load EconomicShock2 
%define risk free rate, discount rate, demand curve and investment cost% 
rfrate=0.1; 
demand1=100; 
demand2=80; 
I1=5000; 
I2=2000; 
sida1=input('  the interactive effect on project1 is '); 
disp(['              ']); 
sida2=input('  the interactive effect on project2 is '); 
disp(['              ']); 
 
%computer initial payoff of project 1 and 2% 
payoff2=Y1.*(1+sida1)*demand2/(rfrate-u1)-Y1.*demand1/(rfrate-u1)+Y2.*(1+sida2)*dema
nd2/(rfrate-u2)-I2; 
payoff1=Y1.*demand1/(rfrate-u1)-I1; 
 
disp(['   -----------current task "paths of payoff" accomplished----------']); 
disp(['    ']); 
 
%start to compute the present option value and generate exercise node 
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lgthpf=length(payoff2(1,:)); 
 
%compute the last stage of payoff1 and payoff2% 
for i=1:np 
      if payoff2(i,lgthpf)<0 
            payoff2(i,lgthpf)=0; 
      else           
      end 
      payoff1(i,lgthpf)=payoff1(i,lgthpf)+payoff2(i,lgthpf) 
      if payoff1(i,lgthpf)<0 
          payoff1(i,lgthpf)=0; 
      else           
      end 
end 
 
%computer the whole stage of payoff1 and payoff2% 
for j=1:lgthpf-1 
    clear payoff1x1 payoff1x2 payoff1X payoff1y payoff1yh a nobe 
    nr=0; 
    for i=1:np 
        if payoff2(i,lgthpf-j)<=0 
            payoff2(i,lgthpf-j)=0; 
        else 
            nr=nr+1; 
            payoff1y(nr,1)=0; 
            for k=lgthpf-j+1:lgthpf 
            if payoff2(i,k)>0 
            payoff1y(nr,1)=payoff2(i,k)/(1+rfrate)^(k-lgthpf+j); 
            end 
            end 
            payoff1x1(nr,1)=Y1(i,lgthpf-j); 
            payoff1x2(nr,1)=Y2(i,lgthpf-j); 
            nobe(1,nr)=i; 
        end 
    end 
    %less than 0, then 0, otherwise discount the further payoff into now% 
    %stage for payoff2% 
     
 if nr>0 
       payoff1X=[ones(size(payoff1x1)) payoff1x1 payoff1x2 payoff1x1.^2 payoff1x2.^2]; 
       a=payoff1X\payoff1y; 
     
    for iyh=1:nr 
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payoff1yh(iyh,1)=a(1,1)+a(2,1)*payoff1x1(iyh,1)+a(3,1)*payoff1x2(iyh,1)+a(4,1)*payoff1x1
(iyh,1).^2+a(5,1)*payoff1x2(iyh,1).^2; 
         
        if payoff1yh(iyh,1)>payoff2(nobe(1,iyh),lgthpf-j) 
            payoff2(nobe(1,iyh),lgthpf-j)=0; 
        else 
            for nj=0:j-1 
                payoff2(nobe(1,iyh),lgthpf-nj)=0; 
            end 
        end 
    end 
 end 
 % regression, if >0, now stage payoff=0 otherwise future stage=0% 
  
  %computer payoff1, <0, then=0, otherwise, discount further stage% 
  clear payoff1x1 payoff1x2 payoff1X payoff1y payoff1yh a nobe 
  nr=0; 
    for i=1:np 
        for k=lgthpf-j:lgthpf 
            if payoff2(i,k)>0 
            payoff1(i,lgthpf-j)=payoff1(i,lgthpf-j)+payoff2(i,k)/(1+rfrate)^(k-lgthpf+j); 
            else 
            end 
        end 
        if payoff1(i,lgthpf-j)<=0 
            payoff1(i,lgthpf-j)=0; 
        else 
            nr=nr+1; 
            payoff1y(nr,1)=0; 
            for k=lgthpf-j+1:lgthpf 
            if payoff1(i,k)>0 
            payoff1y(nr,1)=payoff1(i,k)/(1+rfrate)^(k-lgthpf+j); 
            end 
            end 
            payoff1x1(nr,1)=Y1(i,lgthpf-j); 
            payoff1x2(nr,1)=Y2(i,lgthpf-j); 
            nobe(1,nr)=i; 
        end 
    end 
     
  %regression, if >0, now stage payoff=0 otherwise future stage=0% 
  if nr>0 
        payoff1X=[ones(size(payoff1x1)) payoff1x1 payoff1x2 payoff1x1.^2 
payoff1x2.^2]; 
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        a=payoff1X\payoff1y; 
     
    for iyh=1:nr 
        
payoff1yh(iyh,1)=a(1,1)+a(2,1)*payoff1x1(iyh,1)+a(3,1)*payoff1x2(iyh,1)+a(4,1)*payoff1x1
(iyh,1).^2+a(5,1)*payoff1x2(iyh,1).^2; 
        if payoff1yh(iyh,1)>payoff1(nobe(1,iyh),lgthpf-j) 
            payoff1(nobe(1,iyh),lgthpf-j)=0; 
        else 
            for nj=0:j-1 
                payoff1(nobe(1,iyh),lgthpf-nj)=0; 
            end 
        end 
    end 
  end 
 
end 
 
  disp(['--------The matrix of option value has been generated---------']); 
  disp(['    ']); 
  disp(['  >>>> Now start to compute the present value of the option value <<<< ']); 
  disp(['    ']); 
   
for i=1:np 
    nobe1(i,1)=lgthpf+1; 
    nobe2(i,1)=lgthpf+1; 
end 
 
cumwrong=0 
 
for i=1:np 
   for j=1:lgthpf 
       if payoff1(i,j)>0 
       nobe1(i,1)=j; 
       end 
       if payoff2(i,j)>0 
       nobe2(i,1)=j; 
       end 
   end 
   if nobe1(i,1)>nobe2(i,1) 
       wrong(i,1)=1; 
       cumwrong=cumwrong+1; 
       sumpayoff2=payoff2(i,nobe2(i,1))+Y1(i,nobe2(i,1))*demand1/(rfrate-u1)-I1; 
       if sumpayoff2>0 
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          if nobe1(i,1)<lgthpf+1 
          payoff1(i,nobe1(i,1))=0; 
          end 
          payoff1(i,nobe2(i,1))=Y1(i,nobe2(i,1))*demand1/(rfrate-u1)-I1; 
          nobe1(i,1)=nobe2(i,1); 
      else  
          if 
nobe1(i,1)<(lgthpf+1)&(Y1(i,nobe1(i,1))*(demand2-demand1)/(rfrate-u1)+Y2(i,nobe1(i,1))*
demand2/(rfrate-u2)-I2>0) 
              payoff2(i,nobe2(i,1))=0; 
              
payoff2(i,nobe1(i,1))=Y1(i,nobe1(i,1))*(demand2-demand1)/(rfrate-u1)+Y2(i,nobe1(i,1))*de
mand2/(rfrate-u2)-I2; 
              nobe2(i,1)=nobe1(i,1); 
          else 
              payoff2(i,nobe2(i,1))=0; 
              nobe2(i,1)=lgthpf+1; 
          end 
                  
      end 
   end 
              
end 
 
undevelop1=0 
undevelop2=0 
for i=1:np 
    if nobe1(i,1)==lgthpf+1 
        nobe1(i,1)=0; 
        undevelop1=undevelop1+1; 
    end 
    if nobe2(i,1)==lgthpf+1 
        nobe2(i,1)=0; 
        undevelop2=undevelop2+1; 
    end 
end 
 
  sumprev1=0; 
  sumprev2=0;    
  for i=1:np 
      cumprev1=0; 
      cumprev2=0;     
      for j=1:lgthpf 
         cumprev2=cumprev2+payoff2(i,j)/(1+rfrate)^(j-1); 
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         cumprev1=cumprev1+payoff1(i,j)/(1+rfrate)^(j-1); 
      end 
      prev2(i,1)=cumprev2; 
      prev1(i,1)=cumprev1; 
      sumprev2=sumprev2+prev2(i,1); 
      sumprev1=sumprev1+prev1(i,1); 
  end 
   
avprev2=sumprev2/np; 
avprev1=sumprev1/np; 
disp(['  The present option value of project 1 is ',num2str(avprev1)]); 
disp(['  The present option value of project 2 is ',num2str(avprev2)]); 
disp(['     ']); 
 
  sumexe1=0; 
  sumexe2=0; 
  np1=np; 
  np2=np; 
  for i=1:np 
      if nobe2(i,1)==0 
         np2=np2-1; 
      end 
      if nobe1(i,1)==0 
         np1=np1-1; 
      end 
      sumexe2=sumexe2+nobe2(i,1); 
      sumexe1=sumexe1+nobe1(i,1); 
  end 
   
avexe2=sumexe2/np2; 
avexe1=sumexe1/np1; 
disp(['  The exercise time of project 1 is ',num2str(avexe1)]); 
disp(['  The exercise time of project 2 is ',num2str(avexe2)]); 
disp(['     ']); 
disp(['     ']); 
 
save OptionValue 
 
 

IndependentOption.m 

 
clear all 
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load EconomicShock2 
%define risk free rate, discount rate, demand curve and investment cost% 
rfrate=0.1; 
demand1=100; 
demand2=80; 
I1=5000; 
I2=2000; 
%computer initial payoff of project 1 and 2% 
Spayoff2=Y2.*demand2/(rfrate-u2)-I2; 
Spayoff1=Y1.*demand1/(rfrate-u1)-I1; 
 
disp(['   -----------current task "paths of payoff" accomplished----------']); 
disp(['    ']); 
 
%start to compute the present option value and generate exercise node 
lgthpf=length(Spayoff2(1,:)); 
 
%compute the last stage of payoff1 and payoff2% 
for i=1:np 
      if Spayoff2(i,lgthpf)<0 
          Spayoff2(i,lgthpf)=0; 
      else           
      end 
      if Spayoff1(i,lgthpf)<0 
          Spayoff1(i,lgthpf)=0; 
      else           
      end 
end 
 
%computer the whole stage of payoff1 and payoff2% 
for j=1:lgthpf-1 
clear payoff1x1 payoff1x2 payoff1X payoff2X payoff1y1 payoff1y2 payoff1yh1 payoff1yh2 
a1 a2 nobex1 nobex2 
    nr1=0; 
    nr2=0; 
    for i=1:np 
        if Spayoff1(i,lgthpf-j)<=0 
            Spayoff1(i,lgthpf-j)=0; 
        else 
            nr1=nr1+1; 
            payoff1y1(nr1,1)=0; 
            for k=lgthpf-j+1:lgthpf 
            if Spayoff1(i,k)>0 
            payoff1y1(nr1,1)=Spayoff1(i,k)/(1+rfrate)^(k-lgthpf+j); 
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            end  
            end 
            payoff1x1(nr1,1)=Y1(i,lgthpf-j); 
            nobex1(1,nr1)=i; 
        end 
        if Spayoff2(i,lgthpf-j)<=0 
            Spayoff2(i,lgthpf-j)=0; 
        else 
            nr2=nr2+1; 
            payoff1y2(nr2,1)=0; 
            for k=lgthpf-j+1:lgthpf 
            if Spayoff2(i,k)>0 
            payoff1y2(nr2,1)=Spayoff2(i,k)/(1+rfrate)^(k-lgthpf+j); 
            end 
            end 
            payoff1x2(nr2,1)=Y2(i,lgthpf-j); 
            nobex2(1,nr2)=i; 
        end      
      
    end 
    %less than 0, then 0, otherwise discount the further payoff into now% 
    %stage for payoff2% 
     
 if nr1>0 
        payoff1X=[ones(size(payoff1x1)) payoff1x1 payoff1x1.^2]; 
        a1=payoff1X\payoff1y1; 
 end 
  
 if nr2>0 
        payoff2X=[ones(size(payoff1x2)) payoff1x2 payoff1x2.^2]; 
        a2=payoff2X\payoff1y2; 
 end    
     
    for iyh=1:nr1 
        payoff1yh1(iyh,1)=a1(1,1)+a1(2,1)*payoff1x1(iyh,1)+a1(3,1)*payoff1x1(iyh,1)^2; 
         
        if payoff1yh1(iyh,1)>Spayoff1(nobex1(1,iyh),lgthpf-j) 
            Spayoff1(nobex1(1,iyh),lgthpf-j)=0; 
        else 
            for nj=0:j-1 
                Spayoff1(nobex1(1,iyh),lgthpf-nj)=0; 
            end 
        end 
    end 
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    for iyh=1:nr2 
        payoff1yh2(iyh,1)=a2(1,1)+a2(2,1)*payoff1x2(iyh,1)+a2(3,1)*payoff1x2(iyh,1)^2; 
         
        if payoff1yh2(iyh,1)>Spayoff2(nobex2(1,iyh),lgthpf-j) 
            Spayoff2(nobex2(1,iyh),lgthpf-j)=0; 
        else 
            for nj=0:j-1 
                Spayoff2(nobex2(1,iyh),lgthpf-nj)=0; 
            end 
        end 
    end 
     
end 
 
for i=1:np 
    nobe1(i,1)=lgthpf+1; 
    nobe2(i,1)=lgthpf+1; 
end 
 
cumwrong=0 
sumprev1=0; 
sumprev2=0;  
undevelop1=0 
undevelop2=0 
sumexe1=0; 
sumexe2=0; 
 
for i=1:np 
   for j=1:lgthpf 
       if Spayoff1(i,j)>0 
       nobe1(i,1)=j; 
       end 
       if Spayoff2(i,j)>0 
       nobe2(i,1)=j; 
       end 
   end 
 
    if nobe1(i,1)>nobe2(i,1) 
       wrong(i,1)=1; 
       cumwrong=cumwrong+1; 
       nobe1(i,1)=lgthpf+1; 
       nobe2(i,1)=lgthpf+1; 
   end 
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   if nobe1(i,1)==lgthpf+1 
          undevelop1=undevelop1+1; 
       else 
          prev1(i,1)=Spayoff1(i,nobe1(i,1))/(1+rfrate)^(nobe1(i,1)-1) 
          sumprev1=sumprev1+prev1(i,1); 
          sumexe1=sumexe1+1; 
   end 
 
   if nobe2(i,1)==lgthpf+1 
          undevelop2=undevelop2+1; 
       else 
          prev2(i,1)=Spayoff2(i,nobe2(i,1))/(1+rfrate)^(nobe2(i,1)-1) 
          sumprev2=sumprev2+prev2(i,1); 
          sumexe2=sumexe2+1;     
   end 
    
end 
 
avprev2=sumprev2/sumexe1; 
avprev1=sumprev1/sumexe2; 
disp(['  The present option value of project 1 is ',num2str(avprev1)]); 
disp(['  The present option value of project 2 is ',num2str(avprev2)]); 
disp(['     ']); 
 
%regression, if >0, now stage payoff=0 otherwise future stage=0% 
 
save IndepOptionValue 
 
 


