
ROBUST CONTROLLABILITY OF

TEMPORAL CONSTRAINT NETWORK

WITH UNCERTAINTY

LI JIA

NATIONAL UNIVERSITY OF SINGAPORE

· 2006 ·

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ROBUST CONTROLLABILITY OF

TEMPORAL CONSTRAINT NETWORK

WITH UNCERTAINTY

LI JIA

(B.Sc.(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF COMPUTER

SCIENCE DEPARTMENT OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

· 2006 ·

Acknowledgements

I would like to express my gratitude to all those who helped me and supported

me to complete this one-year journey. I want to thank Dr Lau Hoong Chuin

and Dr Roland Yap for guiding me towards the correct direction, and giving

me inspirational ideas along the way. I would also thank Dr Melvyn Sim and

Thomas Ou for their valuable comments. Lastly but not less importantly, I

would like to give heartfelt thanks to my dear friends who gave me every bit

of joy and encouragement for the past one whole year.

i

Contents

1 Introduction 1

2 Background on Temporal Networks 5

2.1 Models of Temporal Network 6

2.1.1 Qualitative Temporal Networks 6

2.1.2 Quantitative Temporal Networks 7

2.2 Simple Temporal Network with Uncertainty 8

2.3 Controllabilities and Their Complexities 10

2.4 Probabilistic Controllability 15

3 Robust Optimization In Stochastic Programming 17

3.1 Robust Optimization Technique 17

3.2 Applying Robust Optimization To Solve Stochastic Problem . 19

4 Affine Linear Policy for STNU 23

4.1 Affine Linear Policy To Solve Dynamic Controllability 26

4.1.1 Determine the Dependency set 27

ii

4.1.2 Determine the Execution Policy 29

4.1.3 Deterministic Dynamic Execution 30

4.2 Affine Linear Policy To Solve Weak Controllability 35

5 Robust Controllability 38

5.1 Robust Temporal Constraint Network 39

5.1.1 RTCN Model . 39

5.1.2 Robust Controllability 40

5.1.3 Measurement of ε . 41

5.2 Solving Robust Controllability Problem with Affine Linear

Policy . 42

5.2.1 Framework of Algorithm 42

5.2.2 Applying Robust Optimization Approach to Solve Our

Problem . 44

5.3 Further Enhancement . 51

5.3.1 Enhancement in Execution Policy 51

5.3.2 Enhancement In εij Allocation 55

6 Experimental Result 57

6.1 Experimental Setup . 57

6.2 Experiment One . 65

6.3 Experiment Two . 68

6.4 Experiment Three . 71

iii

7 Conclusion 73

iv

Summary

Temporal constraint networks with uncertainty are embedded in many schedul-

ing problems. The fundamental problem is to decide whether such network

can be executed under different uncertainty scenarios. Few works in the lit-

erature raise the question of probabilistic dynamic execution. In this thesis,

we propose the Robust Temporal Constraint Network (RTCN) model where

durations of uncertain activities are represented by random variables. We

wish to know the Robust Controllability problem whether such a network

can be executed dynamically with failure probability less than or equals to

a given 0 ≤ ε ≤ 1. If so, how one might find a feasible schedule on the fly

as the uncertainty variables are revealed dynamically. We present a compu-

tationally tractable and efficient approach to solve the RTCN controllability

problem. Experimentally, we will examine how the failure probability ε is

affected by several properties of RTCN, and how the failure probability of

robust controllability differs from that of a weaker form of controllability. We

will also propose some enhancements to improve the result.

Keywords:

Uncertainty, Temporal Constraint Network, Robust Optimization

Implementation Software and Hardware:

Pentium 4 3.0GHz, 1GB DDR2 RAM, Windows XP, MatLab 7,

MOSEK 3

v

List of Figures

1.1 An example of Simple Temporal Network 2

2.1 Relation among Strong, Dynamic and Weak Controllabilities . 12

4.1 An example of Temporal Network with Uncertainty 24

5.1 Determining the Dependency of An Executable Timepoint . . 52

6.1 The Workflow of Experiment 59

6.2 The Grid . 61

6.3 Plot of Experiment 1 . 67

6.4 Plot of Experiment 2 . 70

vi

Chapter 1

Introduction

Reasoning about temporal constraint is a very important topic in Artificial

Intelligence. Several formalisms and corresponding algorithms have been cre-

ated to model temporal constraints in a planning system. Their applications

could be found in areas like project scheduling [1], diagnosis and temporal

database [2], multimedia authoring systems [3] and more. Simple Temporal

Network (STN) is one of such formalism where relations between events are

expressed in numerical constraints with the form l ≤ Tx −Ty ≤ u. Tx and Ty

represent start event and end event of an activity. l and u are positive real

numbers. This constraint specifies that the time the activity takes is no less

than l units and no more than u units. Every activity of STN is specified

with such an interval [l, u]. Figure.1.1 is an example of STN where there

are 17 edges, each of which represents an activity and is associated with an

interval, and 10 nodes, each of which represents the start or end event of an

1

Figure 1.1: An example of Simple Temporal Network

activity. Formalism like STN is able to answer the plan consistency problem.

A plan is consistent if there exists an assignment to all the timepoints of the

STN such that no constraint is violated. Thus STN helps temporal system

designers to construct valid plans.

Although studies on STN have been fruitful, it is still limited in repre-

senting some realistic event types. The STN formalism is assuming all events

are controllable by the system designer and thus he could assign any desired

value to the events to execute the plan. However, in real-world domain, some

events are uncontrollable by the system designer. Instead, their time is de-

cided outside the planning system such as by Nature. For example, suppose

we have a shipment activity. The end event of this activity is the time the

shipment arrives. The system designer is unable to decide the exact time as

2

it is subject to status of the Nature like weather condition. Simple Tempo-

ral Network with Uncertainty (STNU) is coined to overcome this drawback.

This new formalism is able to model two kinds of activities. The first kind is

controllable activities as in STN, and the second kind is contingent activities

whose durations are uncertain.

STNU plays a much more significant role than STN. In many applications

the durations of contingent activities are only known after their occurrence

but decision must be made when to execute the set of executable timepoints.

This uncertainty in the timing implicitly creates many possible scenarios and

plan of this kind will be executed without knowledge of the exact scenario

in advance. For this family of applications, system designers have to execute

the plan dynamically. The STNU is said to be dynamically controllable if

it can be executed incrementally as the duration of contingent activities are

revealed gradually. The formal definition will be introduced in later part,

but essentially a dynamically controllable network must survive all possible

scenarios. This requirement is too conservative and could be hard to meet in

practice. This concern in conservativeness motivates us to define a new level

of controllability which could both inherit the property of dynamic controlla-

bility to describe the dynamic execution and meanwhile measures the level of

conservativeness.

The new controllability we propose in this thesis is called robust control-

lability. It is associated with a given value ε which we call failure probability.

A network with uncertainty is robust controllable if it can be executed dy-

3

namically with probability at least 1 − ε. We will model the contingent

activities with some probability distribution. The resulted network model

is given the new name Robust Temporal Constraint Network (RTCN) upon

which robust controllability will be formally defined. The resulted problem is

a stochastic problem which traditional method is inefficient to solve. We will

apply a recent and promising technique named robust optimization approach

to solve the robust Controllability problem. Furthermore, the technique of-

fers the flexibility to adjust the degree of conservativeness in guaranteeing

controllability.

This report is organized as follows: Beginning of Chapter 2 gives back-

ground knowledge on types of temporal network models where we emphasize

the model STNU, in Addition, Chapter 2 introduces three levels of control-

labilities defined on STNU as well as their respective complexity. Chapter 3

explains Robust Optimization technique which is related to solving the prob-

lem of this thesis. Chapter 4 presents results on solving Dynamic and Weak

controllabilities with Affine Linear Policy. Chapter 5 is the main part of our

thesis where we define the Robust Controllability problem, present a solu-

tion approach, and give some enhancements. Chapter 6 gives experimental

results, and we conclude this report with Chapter 7.

4

Chapter 2

Background on Temporal

Networks

This chapter will give necessary background knowledge on Temporal Net-

works. The first section will introduce two categories of Temporal Network

models namely Qualitative Temporal Network and Quantitative Temporal

Network. The network models discussed in this thesis (STN, STNU and

RTCN coming later) all belong to the latter category. The second section

and third section will define STNU and various controllabilities respectively.

STNU provides the context to define three levels of controllabilities, one of

which is the basis to propose our robust controllability problem.

5

2.1 Models of Temporal Network

Temporal Networks have been widely used to solve problems in many fields

[1, 2, 3]. These problems commonly involve a set of activities and certain

temporal relations in between. Temporal Network models are created to

systematically study temporal problems. Categorized by the representation,

we have two kinds of network models: qualitative temporal network model

and quantitative temporal network model.

2.1.1 Qualitative Temporal Networks

For problems where relations between activities are described by chronologi-

cal ordering not in numerical form, qualitative temporal network is sufficient

for the representation. There are two kinds of qualitative temporal networks

represented in Interval Algebra (IA) [5] and Point Algebra (PA) [6] respec-

tively. In IA based model, the basic elements are intervals and constraints

are the relations of paired intervals. This model allows disjunctive relations

which is chosen from the set {before, meets, overlaps, starts, during, finishes,

equal}. In PA based model, basic elements are timepoints and constraints are

the ordering of paired timepoints. Each constraint is one element from the

set {=, >, <,≤,≥ �=}. Both models can be described as a constraint graph,

and thus classic constraint propagation algorithms such as path consistency

can be applied to check graph consistency. However, qualitative networks

are limited in its power to deal with metric information. Quantitative net-

6

works overcome this deficiency and provide a convenient formalism to deal

with numerical information like the durations of events. Next section will

introduce quantitative network models.

2.1.2 Quantitative Temporal Networks

Different from qualitative counterpart, quantitative temporal network, as its

name suggests, models problems where relations between activities are quan-

tified in numbers. The concept of quantitative temporal network is first pro-

posed by Rina [4] and has the name Temporal Constraint Satisfaction Prob-

lem (TCSP) . In this framework, variables represent timepoints and temporal

information are represented by a set of unary and binary constraints.

Definition 1. A Temporal Constraint Satisfaction Problem (TCSP) involves

a set of variables, X1, . . . , Xn, having continuous domains; each variable rep-

resents a timepoint. Each Constraint is represented by a set of intervals

{I1, . . . , Ik} = {[a1, b1], . . . , [ak, bk]}.
A unary constraint Ti restricts the domain of variable xi to the given set of

intervals; that is, it represents the disjunction (a1 ≤ x1 ≤ b1) ∨ · · · ∨ (ak ≤
xk ≤ bk).

A binary constraint Tij constraints the permissible values for the distance

xj − xi; it represents the disjunction (a1 ≤ xj − xi ≤ b1) ∨ · · · ∨ (ak ≤
xj − xi ≤ bk).

TCSP is very expressive not only because it enables metric information

7

but also allows disjunctive relations among time points. However, the advan-

tage in expressiveness is at the cost of high computational cost. For example

checking consistency for TCSP is NP-hard. A restricted yet reasonably ex-

pressive and computationally tractable version of TCSP is Simple Temporal

Network(STN) 1 presented in the same paper [4].

STN is a subclass of TCSP where disjunctive relations do not exist. In

such a network, each edge is labelled by an interval [aij , bij], which represents

the constraint aij ≤ Xj − Xi ≤ bij . Thus solving consistency problem of

STN amounts to solving a set of linear inequalities possibly with well-known

mathematical methods. Alternatively, the structure of STN problem allows

more efficient polynomial algorithm which is based on the property that STN

is consistent if and only if no negative cycle is contained in the distance graph

which can be derived from the original.

2.2 Simple Temporal Network with Uncer-

tainty

Although STN is capable of modelling certain temporal problems, Vidal and

Fragier [12] found the deficiency of STN in representing some realistic appli-

cations. A STN is consistent as long as there is a set of valid assignment to

1It is called Simple Temporal Problem in the original paper, and Simple Temporal
Network in some other papers. We adopt the latter name to emphasize it is a network
formalism and to keep name consistency with names of other formalisms in the report

8

all the timepoints. This requires system designer to have full-control of all

the events. However, in many real applications, the duration of some event is

out of control of the system designers. For example, a system requires when

a signal indicates emergency, one must deal with the dangerous situation

within 20 minutes. One can control the process of treating emergency but

he himself cannot control the happening of emergency. Different from the

set of controllable edges, duration of certain kind of edges is decided by “ex-

ternal world”. We call this set of edges as contingent edges whose durations

can only be measured after execution. To distinguish from contingent edges,

we give the term controllable edges to the rest edges whose durations are

controlled by system designer. Simple Temporal Network with Uncertainty

(STNU) [12] is invented to deal with contingent activities.

Definition 2. The Simple Temporal Network with Uncertainty (STNU) is a

connected and acyclic graph Γ. It is labelled by a four-tuple Γ = 〈VX ,VO, ER, ET ,〉
where

VX : Set of nodes representing executable timepoints

VO: Set of nodes representing observable timepoints

ER: Set of controllable edges. The duration of each edge must fall between a

given interval.

ET : Set of contingent edges. The duration of each edge is a uncertain value,

and can be any number in a given interval.

Although both controllable and contingent edge are associated with a

given interval, they differ in the way that system designer could choose the

9

assignment of a controllable edge while he cannot choose the assignment of

a contingent edge. The nodes are related to the edges in the way that each

contingent edge is ended with an observable timepoint. Since the duration

of contingent edge is controlled outside the planning system, the time of

observable timepoint is uncertain but we assume it could be observed and

the planning system knows the valid range of the duration of the contingent

edge. Without loss of generality, we require no two contingent edges in the

graph to share the same observable timepoint (or else the network is appar-

ently inconsistent in too many situations) so contingent edge and observable

timepoint are in one-to-one correspondence.

2.3 Controllabilities and Their Complexities

This section is going to bring up the definition and detailed illustration of

controllabilities. Although controllability is originally defined with respect to

the model STNU [12], it applies to any temporal network with uncertainty

models as long as their definitions comply with that of STNU.

Refer to Definition 2., as the duration of contingent edges can take any

value from a continuous interval and we assume the durations of contin-

gent edges vary independently, there are infinitely many combinations of

durations to consider. If we call the network assigned with each such com-

bination an instance, there will be infinitely many instances to consider in

terms of network consistency. Thus consistency is redefined as Controlla-

10

bility in temporal networks with uncertainty. A network is controllable if

each instance is consistent and the property of the consistent solution for

each instance determines the level of controllability. There are three levels

of controllability, namely Strong, Weak, and Dynamic controllability. Each

level of controllability plays a role in its respective application area. Before

giving the definition of respective controllability, several terms are explained

first.

A scenario ω is an assignment of valid durations to all the contingent

edges.

A current scenario ω≺t is an assignment of observed durations to all the

contingent edges occurred up to current time t.

A future scenario ω�t is an assignment of possible durations to all the

contingent edges not yet observed at time t.

An instance γω of a STNU is a temporal network constructed from the

original STNU by assigning each contingent edge with the corresponding

duration in ω.

A sequence S = {si : i ∈ VX} where si is an assignment to executable

timepoint i is a solution of instance γω if it satisfies all the temporal con-

straints of γω.

A partial assignment S≺t = {si : i ∈ VX∩ i ≺ t} at time t is an assignment

to all the executable timepoints occurred up to time t.

Definition 3. The three levels of controllabilities are defined as:

A STNU is strongly controllable iff ∃ a single sequence S such that ∀

11

Figure 2.1: Relation among Strong, Dynamic and Weak Controllabilities

scenario ω, S is a solution of instance γω.

A STNU is weakly controllable iff ∀ scenario ω, ∃ a sequence S(ω) such

that S(ω) is a solution of instance γω.

A STNU is dynamically controllable iff at any arbitrary time t, ∀ future

scenario ω�t, the current partial assignment S≺t can be extended to a full

sequence S such that S is a solution for instance γ(ω≺t∪ω�t).

The relation between three levels of controllability is that strong control-

lability implies dynamic controllability and dynamic controllability implies

weak controllability. Thus the set of strongly controllable networks is in-

cluded in the set of the dynamically controllable networks which in turn

is included in the set of weakly controllable networks described by a Venn

Diagram 2.1, Strong controllability is the most rigorous, it is relevant in

applications where contingent events can not be observed exactly or a full

12

solution must be fixed beforehand. Weak controllability is least demanding,

it is relevant in applications where contingent events are observable before

execution and there is time to calculate a corresponding solution beforehand.

In many realistic applications however, contingent events are only observable

after it happens because such events are controlled by external world as in

the definition. If the network is strongly controllable with a solution S, the

agent can use S to execute the plan no matter how long the contingent events

take. But for more generous purpose, these applications need an execution

policy to produce a growing solution according to the subsequent revelation

of contingent events. In a word, dynamic controllability is a desirable prop-

erty to describe whether a STNU could be executed incrementally as the

uncertainty is revealed along time. This property is most useful and is the

one this thesis focus on.

Vidal and Fargier have discussed the complexity of checking strong con-

trollability and weak controllability [12]. Following result is quoted from the

paper stated.

Property 1. Checking strong controllability is polynomial.

Sketch of proof: The problem of deciding strong controllability of a STNU

can be represented by means of a classical STN such that the STNU is

strongly controllable iff the STN is consistent in the classical sense. The idea

is to consider the relation between tasks in the worst case, assuming that a

contingent duration di ∈ [li, ui] is equal to ui in any constraint of the form

x − y > di and equal to li in any constraint of the form x − y < di. Hence,

13

since determining whether a STN is consistent is a polynomial problem, so

is it for deciding strong controllability.

Conjecture 1. Checking weak controllability is Co-Np-complete

Proof: The Co-problem of checking weak controllability is: is there a

scenario ω such that γω is an inconsistent instance? Since checking that a

STN is inconsistent is a polynomial problem, this co-problem belongs to NP.

Hence, weak controllability belongs to Co-Np. The difficulty of the problem

(Co-Np-complete) remains to be proven.

Besides above conjecture, they propose the following property:

Property 2. a STNU is weakly controllable iff for any ωbnd ∈ {l1, u1}× . . .×
{lG, uG}, γωbnd is a consistent temporal network.

This property suggests an enumeration algorithm in which all the tem-

poral networks constructed by combination of boundary values are checked.

The complexity is exponential to the number of contingent edges. Alterna-

tively, a tree searching algorithm with search space pruning simplifies the

average complexity. A new branch is created as we choose a contingent edge

to assign lower bound value and upper bound value. At each tree node,

some procedures will check consistency of the current partial tree to decide

whether stop searching. Because if one subtree fails the set of corresponding

network instances fail. The detailed algorithm is described in [12].

Dynamic controllability is previously believed to be complicated, however

a recent work by Morris and Muscettola [9] proposed a polynomial method

14

which is a constraint satisfaction algorithm. It utilizes a ternary structure to

tighten the intervals on each edge until either inconsistency rises or no more

intervals to be tightened which indicates dynamic controllability. The set of

intervals in the latter case is a minimum form of network equivalent to the

original network. The execution of a dynamically controllable network will

be based on the reduced network produced by their constraint satisfaction

algorithm.

2.4 Probabilistic Controllability

Tsamardinos [7] first proposes the problem of probabilistic execution of tem-

poral plans with uncertainty. This first work deals with the probabilistic

counterpart of strong controllability. It is regarding the probability a single

solution survives all possible execution. A more interesting work is regarding

probabilistic counterpart of dynamic controllability [8]. In that paper, the

authors deal with two problems.

The first problem is to access the probability of a plan being legally

executed under an execution policy by bounding the probability from above

and below. The upper bound can be used to reject a plan which falls below

a given threshold, while a lower bound can be used to accept a plan if it is

satisfiable and computation of lower bound also gives a guidance on how to

execute the plan although it is not dynamically controllable. The authors

propose two methods namely binary search for loosest bounds and iterative

15

tightening to solve this problem. But both of them are heuristic methods,

and the authors have list flaws associated with the two methods in their

paper.

The second problem they deal with is to maximize the probability of

satisfying all the execution constraints given that the contingent durations

follow uniform distribution. Their method is based on Morris’ algorithm

[9] but they impose restrictions on the original algorithm under a particular

condition, thus in a strict sense they are maximizing a lower bound probabil-

ity. Despite of the deficiency of the solutions, the authors provide insights in

both reasoning and methodology regarding probabilistic treatment of tem-

poral networks.

16

Chapter 3

Robust Optimization In

Stochastic Programming

3.1 Robust Optimization Technique

Probably the first work to bring Robust Optimization to light is work by

Soyster [16] in 1973, however, it is not until the 90s have people brought up

interest to this research area again. The classical way to deal with optimiza-

tion problems usually assumes deterministic data. For example, in a shortest

path problem the weight of each edge is a deterministic value. However, in

real life, the data of many applications is not known exactly when a decision

needs to be made. Robust Optimization is essentially used to hedge decision

against data uncertainty. Most influential works in this area are from the

following researchers: Bel-Tal & Nemirovski [17, 18, 19] , Kouvelis & Yu [20],

17

El-Ghaoui [24, 25] and Bertsimas & Sim [21, 22, 23]. The common goal of

these people’s works is to find a reliable solution that remains safe when there

are data perturbations. They differ in the way to model data uncertainty

and solve the problem. For example, data presented in Kouvelis & Yu’s work

[20] is modelled as discrete scenarios, while most of the other works consider

uncertainty data set in the form of ellipsoidal or intersection of ellipsoidal

sets.

Two important issues in Robust Optimization are conservativeness and

computational tractability. On one hand, a robust solution is acceptable

for many possible data realizations even for the worst-case instance; on the

other hand, some realizations might be so improbable that dwelling on them

could result in unnecessarily pessimistic decisions. In other words, a too

conservative solution could often deteriorate the objective value. This is why

the degree of conservativeness is an important issue. Works by Bel-Tal &

Nemirovski [17, 18, 19] and Bertsimas & Sim [21, 22, 23] address the control

of conservativeness by providing an adjustable probability guarantee of the

feasibility of the solution subject to the size of the uncertainty data set U .

The bigger the size of U , the more scenarios are taken care of, thus the safer

is the solution. Meanwhile, due to the large-scale nature of optimization

problems, the time complexity of the robust counterpart is generally worse

than that of the nominal problem. It is possible that under certain data

assumptions, a polynomially solvable problem (such as Minimum Spanning

Tree) has a NP-hard robust counterpart (see Kouvelis & Yu’s book [20]).

18

Under Bel-Tal & Nemirovski’s model [19], the robust counterpart of a Linear

Program with ellipsoidal uncertain set becomes a continuous Conic Quadratic

Problem which is polynomially solvable. One of Bertsimas & Sim’s work

[21, 22] could even preserve the computational tractability of the nominal

problem.

3.2 Applying Robust Optimization To Solve

Stochastic Problem

We first consider an uncertain linear constraint,

ã′x ≥ b̃ (3.1)

in which the vectors ã and b̃
′
are subjected to random perturbation as follows,

(ã, b̃) = (a0, b0) +
N∑

j=1

(Δaj , Δbj)z̃j

where (a0, b0) are the nominal value of the data, (Δaj, Δbj), j ∈ {1 : N} is

the direction of data perturbation. z̃j is the primitive uncertainty which has

mean zero and support in [−zj, zj], zj, zj > 0.

We are interested in finding feasible solution X(ε) such that x ∈ X(ε) is

19

feasible to the linear constraint 3.1 with probability at least 1 − ε,

X(ε) = {x : P (ã′x ≥ b̃) ≥ 1 − ε}, (3.2)

The parameter ε varies the conservatism of the solution. The traditional

way to solve this kind of linear stochastic problem often requires the use

of non-linear optimization which can be computationally challenging. [14]

proposes to solve a tractable “robust counterpart” problem to obtain the

robust feasible solution as follows,

Xr(Ω) = {x : ã′x ≥ b̃ ∀(ã, b̃) ∈ UΩ} (3.3)

where UΩ is a compact uncertainty set and the parameter Ω, referred to as

the budget of uncertainty, varies the size of the uncertainty set radially from

the central point UΩ=0 = (a0, b0) to UΩw which is the smallest uncertainty

set satisfying P ((ã, b̃) ∈ UΩw) = 1. If we consider the worst case budget Ωw,

it is equivalent to consider full range of uncertain data (ã, b̃) which leads

to a very conservative approximation of X(ε). To derive a less conservative

approximation, one needs an appropriate choice of the budget of uncertainty

Ω.

The design of uncertainty set UΩ depends on knowledge of probability dis-

tribution. [14] introduces forward deviation and backward deviation which

takes into account asymmetric data distribution to model the primitive un-

20

certainty variables. The uncertainty set is designed as,

UΩ = {(a, b) : ∃v, w ∈ RN , (a, b) = (a0, b0) +
∑N

j=1 (Δaj , Δbj)(vj − wj),

‖P−1v + Q−1w‖ ≤ Ω,−z ≤ v − w ≤ z, w, v ≥ 0}
(3.4)

where P = diag(p1, . . . , pN),Q = diag(q1, . . . , qN) with pj , qj > 0, j ∈ 1 : N .

Here pj is the forward deviation for each primitive random variable zj , and

qj is the backward deviation for each primitive random variable zj. The

definition of forward and backward deviation will be explained later. With

this uncertainty data settting, the “robust counterpart” of 3.3 is proved to

be equivalent to,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃u, r, s ∈ �N , h ∈ �
a0′x + Ωh + r′z̄ + s′z ≤ b0

‖u‖ ≤ h

uj ≥ pj(Δaj′x − Δbj − rj + sj) ∀j ∈ {1, . . . , N},
uj ≥ −qj(Δaj′x − Δbj − rj + sj) ∀j ∈ {1, . . . , N},
u, r, s ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

which is a Conic Quadratic Program (CQP) solvable in polynomial time.

Furthermore, if there exists a solution, then it satisfies the condition

P (ã′x ≤ b̃) ≥ 1 − ε

We remains to explain the definition of forward and backward deviation.

21

Forward and Backward Deviation, p. q. Let z̃ be a random variable

with zero mean and Mz̃(s) = E(exp(sz̃)) be its moment generating function.

They define the set of values associated with forward deviations of z̃ as

follows,

P(z̃) =

{
α : α ≥ 0, Mz̃

(
φ

α

)
≤ exp

(
φ2

2

)
, ∀φ ≥ 0

}
. (3.6)

Likewise, for backward deviations, they define the following set,

Q(z̃) =

{
α : α ≥ 0, Mz̃

(−φ

α

)
≤ exp

(
φ2

2

)
, ∀φ ≥ 0

}
. (3.7)

Furthermore P(c) = Q(c) = �+ for any constant c.

For known distributions, we define the forward deviation of z̃ as p∗z̃ =

inf P(z̃) and the backward deviation as q∗z̃ = inf Q(z̃). [14] show that these

values are no less than the standard deviation. Interestingly, under normal

distribution, these values coincide with the standard deviation.

Although for most distributions we may not be able to obtain close form

solutions of p∗ and q∗, we can still approve their values numerically through

simulation method provided by the authors. For instance, if z̃ is uniformly

distributed over [−1, 1], we can determine numerically that p = q = 0.58

(This thesis will give a proof in later part that p∗ and q∗ equals to standard

deviation in case of uniform distribution).

22

Chapter 4

Affine Linear Policy for STNU

It is already mentioned in Section 2.3 that there is an existing algorithm

to check dynamic controllability using constraint satisfaction algorithm, and

checking weak controllability remains a difficult problem due to the conjec-

ture on its complexity. Here we are going to propose an Affine Linear policy

to check dynamic and weak controllability uniformly and using mathematical

programming technique provides a basis to study robust controllability later.

To ease the explanation, this chapter will be based on a concrete example

of STNU. In Fig.4.1, there are five edges and five timepoints in this network.

Among them, two are contingent edges represented by dotted lines. Time-

point 1, 3, 5 are executable timepoints whose values are to be determined.

Suppose the starting time (the value of timepoints 1) is always 0. Let t3, t5

be decision variables representing the value of executable timepoints 3, 5 re-

spectively. Let z1, z2 be random variables representing the duration of the

23

Figure 4.1: An example of Temporal Network with Uncertainty

two contingent edges ended with timepoint 2, 4 respectively. Then we have

the expressions for the two observable timepoints: t2 = z1 and t4 = t3 + z2.

To obtain an controllable network, we want to ensure for every network in-

stance the constraints on the three controllable edges 2 → 3, 4 → 5, 1 → 5

are satisfied, which could be described by an inequality system 4.1. Before

we illustrate the Affine Linear policy on dynamic and weak controllability

with this example, we show this network is not strongly controllable.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 ≤ t3 − t2 ≤ 20

20 ≤ t5 − t4 ≤ 30

55 ≤ t5 ≤ 65

(4.1)

Strong controllability requires a fixed assignment to the set of executable

timepoints to fit all possible network instances created by combining different

values of contingent edges. Inequalities (4.2) is formulated directly according

to the definition, inequalities (4.3) is obtained by replacing t2 = z1 and

24

t4 = t3 + z2. Inequalities (4.4) and (4.5) are subsequent reductions of (4.3).

∃t3, t5 ∀z1, z2 ∈ [10, 20] × [0, 15]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10 ≤ t3 − t2 ≤ 20

20 ≤ t5 − t4 ≤ 30

55 ≤ t5 ≤ 65

(4.2)

⇒

∃t3, t5 ∀z1, z2 ∈ [10, 20] × [0, 15]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

15 ≤ t3 − z1 ≤ 25

20 ≤ t5 − t3 − z2 ≤ 30

60 ≤ t5 ≤ 70

(4.3)

⇒

∃t3, t4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{t3 − z1} ≥ 15

max{t3 − z1} ≤ 25

min{t5 − t3 − z2} ≥ 20

max{t5 − t3 − z2} ≤ 30

t5 ≥ 60

t5 ≤ 70

(4.4)

⇒

25

∃t3, t4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t3 − 20 ≥ 15

t3 − 10 ≤ 25

t5 − t3 − 15 ≥ 20

t5 − t3 ≤ 30

t5 ≥ 60

t5 ≤ 70

(4.5)

The above inequality system has an empty solution space. Thus we con-

clude that the network is not strongly controllable.

4.1 Affine Linear Policy To Solve Dynamic

Controllability

Dynamic controllability says at any time, a current partial solution can al-

ways be extended to a full solution no matter what is the uncertain situation

yet to come. What’s more, the partial solution depends only on the values

of previous contingent edges but not on those after. This implies for each

executable timepoint vi, there is actually a set of information the decision

when to execute vi should depend on. We call this set a dependency set

Di for vi, which consists of the set of random variables related to previous

contingent edges with respect to vi. For example, D3 = {z1}, D5 = {z1, z2}.
Having a dependency set for each executable timepoint is not enough to

execute it. System designers need guidance to determine when to execute

26

each point vi. We will call this guidance the policy throughout this report.

A policy can be expressed in terms of a function whose input are random

variables indicating durations of previous contingent edges with respect to vi

and whose output is the time of vi. More formally, we have

fi : Di → ti (4.6)

For example, we could regard t3 and t5 as functions f3(z1) and f5(z1, z2)

respectively. The formulation taking into consideration the constraints in

4.1 is as following:

∀z1, z2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

15 ≤ f3(z1) − z1 ≤ 25

20 ≤ f5(z1, z2) − f3(z1) − z2 ≤ 30

60 ≤ f5(z1, z2) ≤ 70

(4.7)

The following part will illustrate how to solve dynamic controllability of our

example step by step. But before that, there is a need to discuss how to

obtain D(vi) and very importantly, to discuss a reasonable representation of

policy used in this thesis.

4.1.1 Determine the Dependency set

The dependency set in the example is explicitly obtained by hand. For more

complicated networks, we need a systematic way to find the dependency set

for each executable timepoint. This essentially requires us to know which

27

are the observable timepoints trigged before a given executable timepoint

as the information of those timepoints trigged after is not available yet to

decide the assignment of the executable timepoint. This requirement needs

the knowledge of the relation between every pair of observable and executable

timepoints. However, since not every observable timepoint and executable

timepoint are linked in the original network, the relation between them is

absent. It is desirable to derive these relations from the already knowns.

Furthermore, we want the lower and upper bound to be as tight as possible

in order to obtain a more accurate relation. There is one algorithm to fit our

purpose well, which is the one used by Dechter [4] to determine the minimum

network. Although their algorithm applies to STN and is used for different

purpose, the result of the algorithm is to obtain the tightest relation for every

pair of timepoints based on the original interval of each edge and is what we

need.

Recall that a STN is a graph where each edge (i, j) is labelled by an

interval [lij , uij]. In Dechter’s work [4], they associate an STN G = (V, E)

with a directed edge-weighted graph Gd = (V, Ed), called distance graph. It

has the same node set as G, and each edge, (i, j) is labelled by a weight aij ,

representing the inequality tj − ti ≤ aij . For each edge (i, j) with [lij , uij]

in G, the corresponding edges in Gd is edge (i, j) labelled with uij and edge

(j, i) labelled with −lij (The weight of an edge in distance graph could thus

be negative). Because lij ≤ tj − ti ≤ uij is equivalent to tj − ti ≤ uij

and ti − tj ≤ −lij , G and Gd are equivalent fundamentally. Now suppose

28

we run an all-pair shortest-path algorithm on the distance graph Gd and

let dij denote the shortest distance for each edge (i, j). Then an important

corollary given by Dechter [4] is: given a consistent STN, G, the equivalent

STN, M, each of whose edge (i, j) is associated with [−dji, dij] is the minimal

network representation of G. A minimum network is the most economical

representation of original STN whose intervals can not be tightened any

more.

After running this algorithm, we associate each pair of observable time-

point vi and executable timepoint vj with an interval [u, w] where u = −dji

and w = dij. The value of u and w could be of any sign because the weight

of an edge in the distance graph could be either positive or negative. Thus

if we examine the relation u ≤ vj − vi ≤ w, we have following cases,

(1)If u ≥ 0, we have vj − vi ≥ 0. It means observable timepoint vi never

happens after executable timepoint vj. Thus zi ∈ Dj .

(2)If w ≤ 0, we have vj − vi ≤ 0. It means executable timepoint vj never

happens after observable timepoint vi. Thus zi /∈ Dj .

(3)If u < 0 ∩ w > 0, the chronological ordering of vi and vj is not clear.

We assume zi /∈ Dj for this case.

4.1.2 Determine the Execution Policy

We have formulated the dynamic controllability problem of our example,

but we have not determined the function representing the policy described

as 4.6. Unfortunately, finding such policy is generally difficult. The size of

29

the policy space is potentially infinite as the underlying distribution of its

parameter (input random variable of the function) is continuous. Hence, to

make computation efficient, one needs to place further restriction on the class

of policies. Here we restrict the policy fi(Di) to be affine dependent on the

elements of set Di as shown in equation 4.8.

ti = fi(Di) = x0 +
∑

i

xiz̃i z̃i ∈ Di (4.8)

In above expression, xi denotes the decision variables in our model. Note

that although the assumption of affine linear function is somewhat restrictive,

finding a feasible policy within this space is still a non-trivial problem.

4.1.3 Deterministic Dynamic Execution

According to our Affine Linear policy, we have the expression t3 = x1 +x2 ·z1

and t5 = x3 + x4 · z1 + x5 · z2, replace them into the formula 4.7, we have:

∀z1, z2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

15 ≤ x1 + (x2 − 1) · z1 ≤ 25

20 ≤ x3 − x1 + (x4 − x2) · z1 + (x5 − 1) · z2 ≤ 30

60 ≤ x3 + x4 · z1 + x5 · z2 ≤ 70

(4.9)

The above inequality system requires each constraint to be consistent

for any z1, z2 value. Actually, as long as each constraint is consistent for

all combinations of upper and lower bound values of the random variables,

the problem 4.9 is consistent too. However, trying all combinations could

30

potentially suffer from exponential complexity. Next we will apply a series

of transformation to solve above inequalities efficiently.

Let z̄i denotes the median of each zi, and Δzi denotes the difference

between boundary value and mean of each zi. So z̄i = (ži + ẑi)/2 and

Δzi = ẑi − z̄i. The transformation of previous inequality system is:

∀z1, z2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

15 ≤ x1 + (x2 − 1) · z̄1 + (x2 − 1) · (z1 − z̄1)

x1 + (x2 − 1) · z̄1 + (x2 − 1) · (z1 − z̄1) ≤ 25

20 ≤ x3 − x1 + (x4 − x2) · z̄1 + (x5 − 1) · z̄2 + (x4 − x2) · (z1 − z̄1) + (x5 − 1) · (z2 − z̄2)

x3 − x1 + (x4 − x2) · z̄1 + (x5 − 1) · z̄2 + (x4 − x2) · (z1 − z̄1) + (x5 − 1) · (z2 − z̄2) ≤ 30

60 ≤ x3 + x4 · z̄1 + x5 · z̄2 + x4 · (z1 − z̄1) + x5 · (z2 − z̄2)

x3 + x4 · z̄1 + x5 · z̄2 + x4 · (z1 − z̄1) + x5 · (z2 − z̄2) ≤ 70

(4.10)

⇒

31

∀z1z2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{x1 + (x2 − 1) · z̄1 + (x2 − 1) · (z1 − z̄1)} ≥ 15

max{x1 + (x2 − 1) · z̄1 + (x2 − 1) · (z1 − z̄1)} ≤ 25

min{x3 − x1 + (x4 − x2) · z̄1 + (x5 − 1) · z2 + (x4 − x2) · (z1 − z̄1) + (x5 − 1) · (z2 − z̄2)} ≥ 20

max{x3 − x1 + (x4 − x2) · z̄1 + (x5 − 1) · z2 + (x4 − x2) · (z1 − z̄1) + (x5 − 1) · (z2 − z̄2)} ≤ 30

min{x3 + x4 · z̄1 + x5 · z̄2 + x4 · (z1 − z̄1) + x5 · (z2 − z̄2)} ≥ 60

max{x3 + x4 · z̄1 + x5 · z̄2 + x4 · (z1 − z̄1) + x5 · (z2 − z̄2)} ≤ 70

(4.11)

⇒
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + (x2 − 1) · z̄1 − |x2 − 1| · Δz1 ≥ 15

x1 + (x2 − 1) · z̄1 + |x2 − 1| · Δz1 ≤ 25

(x3 − x1) + (x4 − x2) · z̄1 + (x5 − 1) · z̄2 − |x4 − x2| · Δz1 − |x5 − 1| · Δz2 ≥ 20

(x3 − x1) + (x4 − x2) · z̄1 + (x5 − 1) · z̄2 + |x4 − x2| · Δz1 + |x5 − 1| · Δz2 ≤ 30

x3 + x4 · z̄1 + x5 · z̄2 − |x4| · Δz1 − |x5| · Δz2 ≥ 60

x3 + x4 · z̄1 + x5 · z̄2 + |x4| · Δz1 + |x5| · Δz2 ≤ 70

(4.12)

32

Replacing z̄i, Δzi with numerical value, we get:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 15 · (x2 − 1) − 5 · |x2 − 1| ≥ 15

x1 + 15 · (x2 − 1) + 5 · |x2 − 1| ≤ 25

(x3 − x1) + 15 · (x4 − x2) + 7.5 · (x5 − 1) − 5 · |x4 − x2| − 7.5 · |x5 − 1| ≥ 20

(x3 − x1) + 15 · (x4 − x2) + 7.5 · (x5 − 1) + 5 · |x4 − x2| + 7.5 · |x5 − 1| ≤ 30

x3 + 15 · x4 + 7.5 · x5 − 5 · |x4| − 7.5 · |x5| ≥ 60

x3 + 15 · x4 + 7.5 · x5 + 5 · |x4| + 7.5 · |x5| ≤ 70

(4.13)

The above is a linear inequality system with absolute terms. It can be

observed that the absolute terms could all be moved to left-hand side of ≤,

this enables a transformation to pure linear inequalities. Take |A|+|B| ≤ c as

an example, we could add two more variables x, y to form the new inequalities

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x + y ≤ c

−x ≤ A ≤ x

−y ≤ B ≤ y

(4.14)

33

Applying this technique, we can transform (4.13) to following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 15 · (x2 − 1) − 5 · y1 ≥ 15

x1 + 15 · (x2 − 1) + 5 · y1 ≤ 25

(x3 − x1) + 15 · (x4 − x2) + 7.5 · (x5 − 1) − 5 · y2 − 7.5 · y3 ≥ 20

(x3 − x1) + 15 · (x4 − x2) + 7.5 · (x5 − 1) + 5 · y2 + 7.5 · y3 ≤ 30

x3 + 15 · x4 + 7.5 · x5 − 5 · y4 − 7.5 · y5 ≥ 60

x3 + 15 · x4 + 7.5 · x5 + 5 · y4 + 7.5 · y5 ≤ 70

−y1 ≤ x2 − 1 ≤ y1

−y2 ≤ x4 − x2 ≤ y2

−y3 ≤ x5 − 1 ≤ y3

−y4 ≤ x4 ≤ y4

−y5 ≤ x5 ≤ y5

(4.15)

The above system can now be solved by any LP solver. It turns out to

be consistent which means the network is dynamically controllable. Recall

that in previous section, we concluded the network is not strongly control-

lable. This example approves strong controllability is a stricter criterion than

34

dynamic controllability. One possible solution is as following,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 25

x2 = 1
2

x3 = 571
2

x4 = 1
4

x5 = 1
2

(4.16)

For this method, we have essentially replaced absolute terms with new

variables and add two inequalities per absolute term to the inequality system.

The number of variables in original formula and that of the transformed

formula are both in order of O(|VX | · |VO|), while the number of constraints

are in order of O(|ER|) and O(|VO| · |ER|) respectively. With the fact that the

number of observable timepoints are practically small, our transformation

does not degenerate the computation complexity largely.

4.2 Affine Linear Policy To Solve Weak Con-

trollability

Weak controllability says for each possible instance of temporal network there

exists a consistent assignment. The formulation of weak controllability is

very similar to that of strong controllability, except the position of universal

and existential quantifiers. We already know t2 = z1 and t4 = t3 + z2, the

35

formulation is:

∀z1, z2 ∈ [10, 20] × [0, 15] ∃t3, t5

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

15 ≤ t3 − z1 ≤ 25

20 ≤ t5 − t3 − z2 ≤ 30

60 ≤ t5 ≤ 70

(4.17)

Property 2 mentioned in Section 2.3 suggests inequality system (4.17) is

equivalent to the following:

∀z1, z2 ∈ {10, 20}×{0, 15} ∃t3, t5

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

15 ≤ t3 − z1 ≤ 25

20 ≤ t5 − t3 − z2 ≤ 30

60 ≤ t5 ≤ 70

(4.18)

This can be done by solving 22 = 4 independent instances of inequality sys-

tems. Each system may have its own solution to t3, t5, but unless all the

inequality systems have nonempty solutions, the network is not weakly con-

trollable. Notice that solving weak controllability by above inequality system

has exponential complexity. We could simplify the problem if we assume some

dependency between time of executable timepoints and the duration of con-

tingent edges. Similar to the affine linear dependency discussed in previous

section on dynamic controllability, we could assume t3 = x1 +x2 ∗ z1 +x3 ∗ z2

and t5 = x4 + x5 ∗ z1 + x6 ∗ z2, then the formulation 4.18 becomes 4.19. Note

that each timepoint depends on all contingent edges instead of only those in

36

its dependency set for dynamic controllability case.

∀z1, z2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

15 ≤ x1 + (x2 − 1) · z1 + x3 · z2 ≤ 25

20 ≤ x4 − x1 + (x5 − x2) · z1 + (x6 − x3 − 1) · z2 ≤ 30

60 ≤ x4 + x5 · z1 + x6 · z2 ≤ 70

(4.19)

To solve this inequality system, we would apply a series of transformation

to convert it to a linear program. The transformation is very similar to the

one we applied in previous section to solve dynamic controllability, thus it

is omitted. One possible solution is shown below. The example is weakly

controllable as predicted because it is already known to be dynamically con-

trollable.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 25

x2 = 1
2

x3 = 0

x4 = 55

x5 = 1
2

x6 = 1
3

(4.20)

Besides the successful usage in this chapter, affine linear policy will pro-

vide a suitable formulation to obtain solutions for robust controllability to

be presented in the next chapter. We will further compare the behavior of

weak controllability and dynamic controllability with Affine Linear policy in

probabilistic context.

37

Chapter 5

Robust Controllability

Although dynamic controllability is a desirable property to designers of tem-

poral system, it is too conservative and it provides no further information

when a network is not dynamically controllable. In practice, system designers

may rather accept a high quality network which is not dynamically control-

lable but survives most of the possible scenarios, or in our terminology, is

consistent in most instances. Here the quality of the network can be mea-

sured with a probability P(ξ|t(ξ) ∈ sol(ξ), ξ ∈ Ξ) which is the probability of

successfully executed instances. Here Ξ is the set of all possible instances;

t(ξ) is the solution produced by execution policy t under instance ξ; sol(ξ)

is the set of all valid solutions under instance ξ; t(ξ) ∈ sol(ξ) says the policy

executes successfully for the given instance.

In this thesis, the duration of each contingent edge will be modelled by a

random variable z̃i with some probability distribution and bounded by [li, ui].

38

We make the assumption that z̃i is independent from each other.

5.1 Robust Temporal Constraint Network

The following part will formally define our problem started by describing the

network model Robust Controllability is defined on.

5.1.1 RTCN Model

Definition 4. A Robust Temporal Constraint Network is represented by a

5-tuple R = 〈VX ,VO, ER, ET , ε〉
VX : Set of nodes representing executable timepoints

VO: Set of nodes representing observable timepoints

ER: Set of controllable edges where each edge represents the following tempo-

ral constraint:

lij ≤ Vj − Vi ≤ uij, ∀(i, j) ∈ ER (5.1)

ET : Set of contingent edges whose durations are represented by the following

function:

Vj − Vi = d̃ij, ∀(i, j) ∈ ET , Vj ∈ VO (5.2)

ε: failure probability of temporal constraint violation

Our proposed model is a kind of temporal network with uncertainty as

defined in beginning of Chapter 3. Each contingent edge is ended with an

observable timepoint, whose value is not decided by the system designer.

39

The set of end nodes of each contingent edge constitutes the set of observable

timepoints. While the set of all other nodes forms the executable timepoints

and their times must be determined by the system designer. Note that

each observable timepoint is associated with a unique contingent edge, since

two contingent edges ending with the same observable timepoint will always

cause network inconsistency. We model the duration of each contingent edge

(i, j) with a random variable d̃ij. It is assumed that we know the mean and

variance values of these random variables, but not the actual probability

distributions. Without loss of generality, we specify d̃ij = tij(1 + z̃ij) where

tij is a constant and z̃ij is a primitive random variable with zero mean and

bounded by [−1, 1].

5.1.2 Robust Controllability

This section will define Robust Controllability with respect to RTCN model

just described. As mentioned above, each contingent edge is associated with a

random variable which takes value from a bounded interval, therefore there

are infinitely many scenarios due to the variety on contingent edges. As

Mentioned in Section 2.3, an instance refers to a particular STN where every

random variable is instantiated to a fixed value. A schedule refers to an as-

signment of the executable timepoints {V1 = t1, . . . , Vn = tn}. As mentioned

in Section 4.1, an execution policy specifies how a schedule can be incremen-

tally generated over time as the durations of contingent edges become known.

More specifically, it outputs the decision of the time to execute each Vi ∈ VX

40

according to information on known contingent edges. We denote the decision

for each Vi as Vi(z̃).

Definition 5. A RTCN R is said to be robust controllable iff at any time,

the probability an execution policy produces a schedule satisfying all the con-

straints in ER is at least 1 − ε.

The RTCN Feasibility problem is defined as: given an RTCN, determine

whether it is robust controllable. This problem is equivalently stated as the

problem of finding a robust policy such that a feasible schedule can be derived

from the policy with probability 1 − ε over the set of all network instances.

The RTCN Optimization problem is to find a policy that optimizes a given

objective function while preserving robust controllability. In this paper, we

focus on the feasibility problem.

5.1.3 Measurement of ε

Note that the RTCN problem is a core problem underlying many real-world

planning and scheduling problems. For example, in robust scheduling, one

is concerned with minimizing the total makespan of the machines where

job arrivals or processing times are uncertain. The value of ε defines the

robustness of the RTCN in the sense that the smaller the value of ε the more

robust the network will be against uncertain temporal constraint violation.

However, certain RTCN may not be robust controllable when its constraints

are too tight. In such cases, system designers may decide to take more risk of

41

temporal constraint violation by increasing ε to obtain a robust controllable

RTCN.

5.2 Solving Robust Controllability Problem

with Affine Linear Policy

Previous section has defined the Robust Controllability problem, the math

formulation will be given in this chapter as well as how to solve the problem

with an efficient technique from a published paper [14]. This section will

begin with a framework to solve Robust Controllability problem followed by

detailed explanations including how the original formulation is transformed

to an efficient solvable counterpart and resolving the parameters needed in

the solution process.

5.2.1 Framework of Algorithm

A framework of algorithm is given below:

Step 1 Decide the tightest bound [li, ui] of every edge in the network.

This is determined by propagating bounds of adjacent edges. Algorithm to

apply is a modified all-pair shortest-path algorithm.

Step 2 Decide the dependency set for each executable timepoint ti. For-

42

mulate the affine linear expression for ti based on the dependency set.

Step 3 Set up the inequality system based on the constraint of each con-

trollable edge.

Step 4 Decide separate chance constraint εi, forward and backward devi-

ation for each random variable.

Step 5 Apply robust optimization approach to transform the above in-

equality system to its counterpart and solve it. If there exists a solution the

plan is satisfiable, otherwise we drop the plan.

Step 1 is used for two purposes. On one hand, a tightened interval for each

edge is obtained. All values outside the interval will fail the plan. On another

hand, it provides a basis to find the set of contingent edges each executable

timepoint depends on in step 2. Step 2 is already explained in Section 4.1.1.

Step 3 is straightforward. Step 4 is to set up additional parameters used

to solve the problem from already known parameters. Step 5 is the most

important step. Here we adopt work by Chen [14] to solve the problem

formulated by step 3. As explained in Section 3.2, their method transforms

original problem to a robust counterpart which is efficient to solve. The next

section will first give the formulation of the original problem as well as its

counterpart.

43

5.2.2 Applying Robust Optimization Approach to Solve

Our Problem

In the RTCN Feasibility problem, we are interested to know whether the

probability that a temporal constraint network being controllable is at least

1− ε over all instances. Recall we have an Affine Linear policy to determine

the time of each executable timepoint i which we denote as Vi(z̃). The

network is consistent if the constraint on every controllable edge is satisfied:

lij ≤ Vj(z̃) − Vi(z̃) ≤ uij ∀(i, j) ∈ E (5.3)

The robust feasibility problem is equivalent to determine whether there

exists a policy V (z̃) such that all constraints are satisfied:

P

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vj(z̃) − Vi(z̃) ≥ lij

∀(i, j) ∈ E
Vj(z̃) − Vi(z̃) ≤ uij

∀(i, j) ∈ E

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≥ 1 − ε. (5.4)

We can view ε as the upper bound probability that at least one of the

temporal constraints specified in 5.3 is violated. In other words, it defines the

desired level of conservativeness we allow for temporal constraint violations.

Note that when ε = 0, the set of feasible schedules are the ones which satisfy

5.3 under the worst case scenario. As we increases ε, we are in fact increasing

44

the size of the set of feasible robust schedules.

Notice that equation 5.4 is a probabilistic constraint problem. Particularly

it is in joint chance constraint form. But solving a joint chance constraint

program in above form by traditional stochastic programming method is

rather complicated which involves non-linear optimization. Instead we re-

course to the technique proposed by Chen et. al [14] which fits our model

well. Throughout this report, we associate the symbol ´with any variables

related to lower bound, and`with any variables related to upper bound

Proposition 1. For any έij and ὲij, ∀(i, j) ∈ ER such that

∑
(i,j)∈ER

έij +
∑

(i,j)∈ER

ὲij ≤ ε (5.5)

if there exists measurable functions Vi(z̃) for every node i satisfying

P(Vj(z̃) − Vi(z̃) ≥ lij) ≥ 1 − έij ∀(i, j) ∈ ER

P(Vj(z̃) − Vi(z̃) ≤ uij) ≥ 1 − ὲij ∀(i, j) ∈ ER

the probability the RTCN is dynamically controllable is at least 1 − ε.

Proof: For any realization z of z̃, the policy produces a consistent solution

if and only if the following is satisfied:

Vj(z̃) − Vi(z̃) ≥ lij ∀(i, j) ∈ ER

Vj(z̃) − Vi(z̃) ≤ uij ∀(i, j) ∈ ER

we have

P (RTCN is dynamically controllable)

= P (
⋂

∀(i,j)∈ER
(Vj(z̃) − Vi(z̃) ≥ lij ∩ Vj(z̃) − Vi(z̃) ≤ uij))

45

= 1 − P
(⋃

∀(i,j)∈ER
(Vj(z̃) − Vi(z̃) < lij ∪ Vj(z̃) − Vi(z̃) > uij)

)
≥ 1−

(∑
∀(i,j)∈ER

P (Vj(z̃) − Vi(z̃) < lij) +
∑

∀(i,j)∈ER
P (Vj(z̃) − Vi(z̃) > uij)

)
≥ 1 −

(∑
∀(i,j)∈ER

έij +
∑

∀(i,j)∈ER
ὲij

)
≥ 1 − ε

The first ≥ follows from Bonferroni’s Inequality. By assigning each con-

straint a probability bound, we are actually solving a separate constraint

program to approximate joint chance constraint program.

Expression 3.5 has presented the robust counterpart of a linear constraint.

For a given RTCN with |ER| number of controllable edges, there will be

2|ER| linear constraints, each of which is converted to a set of inequalities as

specified in 3.5. For a given edge (i, j), we choose Ώij =
√−2 ln έij as the

uncertainty budget for the linear constraint associated with its lower bound,

and Ὼij =
√−2 ln ὲij as the uncertainty budget for its upper bound, then

a sufficient condition for RTCN feasibility is to find whether there exists a

linear decision rule, parameterized by

V 0, . . . , V N ,

46

that satisfy the following

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V 0, . . . , V N :

∃ h́, h̀ ∈ �|ER|, v́kl, v̀ij, ŕij, r̀ij, śij, s̀ij ∈ �|ET | ∀(i, j) ∈ ER
V 0

j − V 0
i + Ώij ∗ h́ij + ŕij ′z̄ + śij ′z ≤ −lij

∀(i, j) ∈ ER
v́ij

kl ≥ pkl(V
kl
j − V kl

i − ŕij
kl + śij

kl)

∀(k, l) ∈ ET , (i, j) ∈ ER
v́ij

kl ≥ −qkl(V
kl
j − V kl

i − ŕij
kl + śij

kl)

∀(k, l) ∈ ET , (i, j) ∈ ER
‖v́ij‖2 ≤ h́ij

∀(i, j) ∈ ER
V 0

j − V 0
i + Ὼij ∗ h̀ij + r̀ij ′z̄ + s̀ij ′z ≤ uij

∀(i, j) ∈ ER
v̀ij

kl ≥ pkl(V
kl
j − V kl

i − r̀ij
kl + s̀ij

kl)

∀(k, l) ∈ ET , (i, j) ∈ ER
v̀ij

kl ≥ −qkl(V
kl
j − V kl

i − r̀ij
kl + s̀ij

kl)

∀(k, l) ∈ ET , (i, j) ∈ ER
‖v̀ij‖2 ≤ h̀ij

∀(i, j) ∈ ER
ŕij, r̀ij , śij , s̀ij ≥ 0 ∀(i, j) ∈ ER

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.6)

is feasible. In above inequality system, V 0, . . . , V N , are the decision variables

which determine the policy. h́, h̀, v́kl, v̀ij, ŕij, r̀ij, śij, s̀ij are auxiliary variables

47

from Expression 3.5.

Deciding έij, ὲij, p and q

έij , ὲij, p and q are the parameters used in 5.6, this section will explain how

to get the value of these parameters.

We have presented the conditions for έij and ὲij to satisfy in expression

5.5. On another hand, The value of έij and ὲij take direct effect on the

uncertainty budget Ώij and Ὼij . One way to determine each έij and ὲij is

through an optimization problem that minimize total budget of uncertainties

as presented in [14], because the less is the budget, the smaller is the size of

the uncertainty set, and thus the easier for each constraint to be satisfied.

min
∑

(i,j)∈E Ώij +
∑

(i,j)∈E Ὼij

s.t.
∑

(i,j)∈E έij +
∑

(i,j)∈E ὲij ≤ ε
(5.7)

where Ώij =
√−2ln έij and Ὼij =

√−2ln ὲij Solving above optimization

problem get έij = ὲij = ε
2|ER| .

Previous section has presented definition of forward deviation set, back-

ward deviation set (see expression 3.6 and 3.7). Forward deviation is defined

as p∗ = inf P(z̃) and backward deviation is defined as q∗ = inf Q(z̃). For

some distributions like normal distribution, the authors derived the value of

p∗ and q∗ analytically. Their values coincide with standard deviation, i.e.,

p∗ = q∗ = σ. When the random variables are bounded by an interval, the

distribution of the random variable becomes a truncated version, and the

48

p∗ and q∗ are hard to derive analytically. However, the authors provide a

method to determine an approximated deviation denoted as p and q numer-

ically by simulation. In this way, the distribution allowed is in wide range as

long as we are able to obtain a sufficient sample for simulation. In this thesis,

we assume normal distribution for all the random variables. In the experi-

ment part we apply the provided simulation method to obtain the p and q

value for truncated normal distribution. The procedures are similar to apply

for other distributions commonly used to model temporal parameters such

as uniform distribution and poisson distribution. For uniform distribution

we discovered the p∗ and q∗ value also coincide with the standard deviation.

As the authors only derived p and q by simulation for uniform distribution,

we show the steps of mathematical deduction below.

As the uniform distribution is a symmetric distribution, its backward

deviation q∗ is the same as its forward deviation p∗. Let’s assume we have

a random variable z̃ with uniform distribution between [-1,1], the following

will illustrate p∗ = σ =
√

(1
3
). The moment generating function for z̃ is

M(t) =

⎧⎪⎨
⎪⎩

etb−eta

t(b−a)
t �= 0

1 t = 0
(5.8)

To find P (z̃), one needs to find the set of α such that Mz̃−E(z̃)

(
φ
α

) ≤

49

exp(φ2

2
). We have the following sequence:

e
φ
α − e−

φ
α

2φ
α

≤ e
φ2

α (5.9)

⇒
α(e

φ
α − e−

φ
α) ≤ 2φe

φ2

α (5.10)

Apply Taylor’s expansion ⇒

α

((
1 +

φ

α
+

(φ
α
)2

2!
+

(φ
α
)3

3!
+ M1

)
−
(

1 − φ

α
+

(φ
α
)2

2!
− (φ

α
)3

3!
+ M2

))
≤ 2φe

φ2

α

(5.11)

M1, M2 are terms with high order exponent, and their difference is approxi-

mately 0. ⇒
α

(
2
φ

α
+ 2

(φ
α
)3

3!

)
≤ 2φe

φ2

α (5.12)

⇒
α ≥ φ√

6
(
e

φ2

2 − 1
) (5.13)

The above inequality must be valid for all φ. In order to find p∗ = inf(α),

one needs to find the maximum of right hand side first. Let f(x) = x�
6

�
e

x2
2 −1

�

where x > 0, the maximum is achieved at f ′(x) = 0

f ′(x) =
1√
6

(
e

φ2

2 − 1

)− 3
2
[(

e
φ2

2 − 1

)
− 1

2
x2e

x2

2

]
= 0 (5.14)

50

⇒ (
e

φ2

2 − 1

)
− 1

2
x2e

x2

2 = 0 (5.15)

⇒
1 − x2

2
= e−

x2

2 (5.16)

By plotting the graph of both sides, we observe there is only one inter-

section at x = 0 Thus max f(x) = limx→0f(x). Because limx→0f
2(x) =

limx→0
x2

6

�
e

x2
2 −1

� = 1
3
, thus p∗ = max f(x) =

√
1
3

which is the same as its

standard deviation.

5.3 Further Enhancement

This section is going to present two refinements to improve the results. The

first one is regarding the network, a more refined execution policy will be

proposed to deal with a special case. The second is regarding the solution

process, a heuristic to allocate failure probability among constraints will de-

crease the total failure probability.

5.3.1 Enhancement in Execution Policy

In section 4.1.1, we have illustrated how to find dependency set for each

executable timepoint. This section will refine the previous by dealing with

a special case specifically. Consider a pair of observable timepoint C and

executable timepoint B depicted in Fig.5.3.1 where (A, C) is the contingent

51

Figure 5.1: Determining the Dependency of An Executable Timepoint

edge associated with C:

Suppose [u, v] is the constraint between B and C. We have described

three possibilities in Section 4.1.1 and will mention them briefly again here.

When u ≥ 0, it means B precedes C, C is not included in the dependency

set. When v ≤ 0, it means B follows C, C is added to the dependency set.

However for some of the derived edges (those not existed in original network)

it is possible that u < 0 and v > 0. Let z̃ be the random variable representing

the duration of contingent edge A → C. Previously we would exclude z̃ from

the dependency set of B and the expressions we have while formulating the

problem is

u ≤ tC − tB ≤ v

z̃ /∈ DB

(5.17)

Morris and Vidal [9] has analyzed this special case, and discovered the rule

if activity on A → C has not happened within y − v time units, B must also

wait till y − v units expires with respect to timepoint A. Otherwise suppose

B is executed before y− v units with respect to A, when the duration of the

activity on (A, C) takes the upper bound y, TC − TB will be larger than v

and violates the constraint on B → C.

52

Here y − v serves as a breakpoint. We have the following refined policy

to the special case when u < 0 and v > 0:

when z̃ < y − v u ≤ tC − tB ≤ 0

z̃ ∈ DB

when z̃ ≥ y − v tB − tA ≥ y − v

u ≤ tC − tB ≤ v

z̃ /∈ DB

(5.18)

The refined policy says the system allows an observation time within y−v

units. On one hand if activity on A → C happens during the observation

period, z̃ is added to dependency set DB to allow more execution flexibility

and the upper bound on B → C is modified to 0 because system waits for

event C to happen before deciding value of B. On another hand, if activity

on A → C happens after the observation period, we are unable to know the

relation between B and C. Thus we simply exclude z̃ from dependency set

DB and reserve the constraint on B → C.

Having this new policy would result in larger feasible set because it utilize

a rule without which, the constraint in equation 5.17 may fail to be satisfied.

An concrete example will help to explain. Here we consider dynamic control-

lability instead of robust controllability. For one reason, it is more explicit

to verify the effects of refined policy. For another, if the policy enables larger

feasibility set for non-probabilistic case, it intuitively does the same to the

probabilistic case. To simply the problem, we consider only a part of some

53

network as in Fig. 5.3.1 and assume A is the origin of time. Suppose the

duration of contingent activity on A → C is within [3, 8], and the derived

constraint on B → C is [−1, 2]. According to equation 5.17, we have

−1 ≤ z̃ − xB ≤ 2 ∀z̃ ∈ [3, 8] (5.19)

Apparently, above inequality system has no solution. Applying the refined

policy in 5.18, we have:

when z̃ < 8 − 2 −1 ≤ z̃ − (x1 + x2z̃) ≤ 0

when z̃ ≥ 8 − 2 xB − 0 ≥ 8 − 2

−1 ≤ z̃ − xB ≤ 2

(5.20)

Note timepoint B has different expressions subject to value of z̃. It is

x1 +x2z̃ is when z̃ < y− v and xB otherwise. A solution for above system is:

x1 = 2, x2 = 2/3, xB = 6. It means If activity on A → C happens before 6

time units, we use the expression 2 + 2/3 · z̃ to decide time of B. Otherwise,

we simply execute B at time 6.

In this example the refined policy works better than the original policy

which ignores the special case where the derived1 constraint between a con-

tingent timepoint and executable timepoint has negative lower bound and

positive upper bound. The executable timepoint in such cases will have two

expressions, each of which is associated with different intervals of the contin-

1Note that the constraint is derived as any original lower and upper bound representing
the duration of activities must be positive.

54

gent edge. While formulating the robust controllability problem, we could

replace each original constraint involving the executable timepoint with two

sets of constraints as listed in 5.18. Then we remove the condition “when” as

in 5.18 by two random variables each representing one of the divided intervals

of the original random variable.

5.3.2 Enhancement In εij Allocation

With our solution approach, a RTCN with given failure probability ε is robust

infeasible if it fails to satisfy the expression 5.21. However, as our solution

approach is not exact, the network may be actually robust feasible with the

given ε failure probability especially when the result by replacing given ε of

the network with a slightly larger value is feasible. There is a possibility to

refine the procedure of allocating εij to gain an improved result. Notice that

we are using εij to represent both έij and ὲij as they are treated equally.

According to section 5.3.2, the failure probability ε is divided equally

among each constraint in order to gain a minimum total budget (Larger bud-

get means larger coverage or more stringent attention). However, intuitively

if the inequality system is not feasible, it is normally caused by violation on

a subset of the constraints. If we could unload excessive budget from those

easily violated constraint and transfer it to those less easily violated ones,

the system may become consistent. This section is to improve the solution

approach by assigning unequal εi to different constraints by some heuristics.

Observe the constraint on each of the controllable edge:

55

P ({lij ≤ Vj(z̃) − Vi(z̃) ≤ uij}) ≥ 1 − εij ∀(i, j) ∈ ER. (5.21)

It seems reasonable to assume that constraints with wider interval tend

to have bigger probability P in above expression, or in another word, the

constraints with larger uij − lij value are more possible to be satisfied. Thus

we develop following heuristic:

Suppose a network is not robust feasible with failure probability ε but fea-

sible with a slightly larger failure probability ε′ given that we have allocated

equal ε′ij to each controllable edge (i, j). Now we sort the lengths of intervals

of controllable edges lenij = uij − lij by decreasing order. The higher is the

rank lenij in the sorted list (nearer to the front of the list), the more possible

the constraint on the corresponding edge is satisfiable, and the less likely

the infeasibility is caused by this constraint. Thus we choose to increase the

Ω′
ij (the larger Ω′

ij , the smaller ε′ij) value by a suitable predefined amount

(for example 0.2) until it causes violation again. We repeat this process by

trying the edges on the sorted list sequentially. If at any stage, the accumu-

lated failure probability decreases to the original ε, we are done. Notice that

edges with higher rank not necessarily sustain larger budget than edges with

lower rank. The reason behind sorting the interval list is to reach given ε

more quickly because intuitively larger lenij value implies a support of higher

budget.

56

Chapter 6

Experimental Result

Although temporal network has been studied for years, we are surprised

to find there is little experiment result in the published papers. We have

to generate and design our own experiments rather than compare with any

benchmarks. For this thesis, we will perform three groups of experiments.

The first two groups are intended to test how failure probabilities are af-

fected by the property of the network and by the controllability requirement,

the last is the proposed improvements. Before discussion of each individ-

ual experiment, there is a need to describe the workflow of the experiment

commonly shared by each experiment of this report.

6.1 Experimental Setup

The workflow could be depicted as Fig 6.1 including three main modules:

57

(1) RTCN generation,

(2) Problem construction,

(3) Problem solution.

The figure shows each module has its own functions which are shown in

the graph too together with their inputs and outputs. For each experiment,

the three modules will be run sequentially. First we generate RTCN according

to the required parameters. The second module will subsequently work on

the generated RTCN to construct formulation of the Robust Controllability

problem . The solver in the last module will then resolve the problem based

on the output of an interface which translates the problem to an accepted

form by the solver. The following part will explain each module with an

emphasis on RTCN generation module rather than the implementation issues

on constructing and solving the problem.

RTCN Generation

The first module includes three main functions: T imeNetManager,

Assign Contingency and SIMUL. T imeNetManager is the main function

and is based on the algorithm of a software tool named T imeNetManager

described in the work [15]. T imeNetManager is able to build temporal

networks by using a set of parameters {n, α, β, D, Si, Sa, U} which controls

the network structure. The output {V, E , l, u} of T imeNetManager is a

connected and acyclic graph where each edge of the graph is bounded by a

randomly generated interval. Since T imeNetManager does not specify con-

58

Figure 6.1: The Workflow of Experiment

59

tingent edges as it was originally used to generate random STN, we need the

second function Assign Contingency to specify the set of contingent edges

controlled by some parameter. The parameter we use is called contingency

density and denoted as C. It equals to the ratio between the number of

contingent edges and the number of edges of the network. After running

this function, the set of contingent edges and observable timepoints are de-

cided. The last function SIMUL is to generate vectors p, q, z1, z2 for the

set of contingent edges. As said earlier in the report, the forward and back-

ward deviation could be approximated numerically by a simulation function

described by the authors of [14]. The input of the simulation function is

a statistic sample of the values between an interval. As we assume normal

distribution in this thesis, we could generate such samples easily using em-

bedded functions of MatLab. The Mean of the normal distribution is the

average of the lower bound and upper bound, the variance is decided by

dividing the length of the interval by a parameter λ. There is a need to

briefly explain the first function as it is quite complicated. More details can

be found in the original paper [15].

The algorithm of T imeNetManager controls four main graph’s charac-

teristics:

(1) the number of nodes n,

(2) the edges density D,

(3) the network topology and

(4) the temporal flexibility.

60

Figure 6.2: The Grid

The first two characteristics determine the number of nodes and the num-

ber of edges of the graph. The last two characteristics determine the arrange-

ment of the nodes and edges. In order to control the last two characteristics,

T imeNetManager use a reference structure called grid (see Fig.6.2). It is

a matrix of points with discrete dimensions T × P , where the horizontal di-

mension represents the time and the vertical one represents a quantity called

degree of parallelism which represents the maximum number of contempora-

neous timepoints in the same time period. The basic idea is to randomly map

the set of timepoints on the set of grid points, in this way the timepoints

are positioned and the distance between girds along horizontal dimension

determines the average time between timepoints.

The algorithm takes as input the parameters n, α, β, D, Si, Sa, U . These

parameters all together determine the required characteristics of a temporal

61

network.

α = P/T is called the grid ratio.

β = P · T/n is the ratio between the number of the grid points and the

number of nodes, and is called the grid density.

Si and Sa are two real and nonnegative slack parameters controlling the

amplitude of the intervals.

U is the number of temporal units per grid interval.

The generation process can be divided in three main phases: initialization,

tree generation and graph completion. During initialization phase the random

mapping is realized between the set of nodes and the set of points in the grid.

In order to guarantee the connectivity of the output graph, a tree is created

by tree generation phase. Meanwhile, the intervals are also generated based

on the distance between two nodes in the grid and the two parameters Si, Sa.

In the last phase namely graph completion, other edges together with the

associated intervals are added to the graph until edge density D is reached.

Problem Construction

The previous module has generated the RTCN we needed. The Construct

Problem module will formulate the Robust Controllability problem based

on the data of the generated RTCN. The first function T ighten Interval is

to tighten the interval and generate the dependency set for each executable

timepoint. The algorithm to apply is all-pair shortest-path algorithm ex-

plained in Section 4.1.1. The next function Formul Prob will formulate the

62

problem by defining the executable timepoints with affine linear policy and

expressing the constraints on the controllable edges as inequalities. The last

function Robust Counterpart will then construct the robust counterpart of

the inequalities.

Problem Solution

The robust counterpart of our formulation is a Second-Order Cone Program

(SOCP) [26] which is polynomially solvable by any SOCP solver. The solver

we used in the last module is a powerful tool called MOSEK [27]. It provides

interface to MatLab and is quite efficient. However, the input of MOSEK is

limited to matrix form. An interface is needed between Problem construction

and Problem solution module to transform our robust counterpart program

to MOSEK-format.

Before moving on to the discussion of each experiment, several issues

shared by the experiments need to be raised in advance. Firstly the number

of nodes used in all the experiments are n = 10, and edge density D = 0.5,

which means roughly 22 edges and 44 constraints. The generated network is

of moderate size. Secondly and importantly, the problem previously proposed

is a robust feasibility problem, which means given a parameter ε, one is

to decide whether the network is dynamically controllable with probability

1 − ε. Thus if a network is robust controllable with ε = 5%, it is also robust

controllable with ε = 10% but not vice versa. In the experiment, we will use

binary search to obtain the smallest ε for a given network for experimental

63

purpose. We denote this smallest ε for robust controllability as εDC as it is

regarding dynamic controllability. We will call the smallest failure probability

ε a network is weakly controllable as εWC . The algorithm used to obtain εDC

is stated in procedure 1 which utilizes binary search to speed up the searching

process.

Procedure 1 Calculate εDC by binary search

1: flag = true
2: ε = ε0

3: while flag do
4: while the network is robust controllable with ε do
5: ε = ε/2
6: end while
7: ε1 = ε;
8: while the network is not robust controllable with ε do
9: ε = ε1 + ε/2

10: end while
11: if (2 ∗ ε1 − ε < threshold) then
12: flag=false
13: end if
14: end while

The basic idea is to halve previous ε if the network is feasible and increase

the last unfeasible ε1 by half of previous ε if the network is infeasible until

it is feasible again and the obtained ε is satisfiable which means the differ-

ence between the current feasible ε and the last unfeasible ε1 is less than a

threshold.

64

6.2 Experiment One

Apparently, many factors could affect εDC such as n the number of nodes,

m the number of edges, C the contingent density, the network topology, the

amplitude of the interval associated with each edge and N the distribution of

the contingent edge duration. Each of the above factors is able to affect εDC

individually or through combinations by various degree. We are not going to

test all the effects but instead we are more interested to see the effect of C the

contingent density and N the distribution of the contingent edge duration

as these two are unique to temporal network with uncertainty. Testing C

is straightforward while testing the distribution of random variables have

several possibilities. For example, we could test normal distribution versus

uniform distribution, we could also test how varying λ changes the εDC . We

choose to test the latter as λ is directly linked to the forward and backward

deviation in our solution approach. Recall λ is used to produce standard

deviation σ = (u − μ)/λ where u is the upper bound and μ is the mean.

σ is subsequently used to generate forward and backward deviation. To

have a reasonably large worst case budget Ωω, we choose three values for λ:

10, 12, 14. The testing procedure is stated in procedure 2: Testing procedure

for Experiment One

In this experiment, we are using the same network sample generated by

T imeNetManager (line 1 of procedure 2) which means we fix the number

of nodes, edges, and the lower and upper bound of each edge but select

65

Procedure 2 Testing procedure for Experiment One

1: Generate a random network with n = 10, |ED| = 0.5
2: for C = 0.1, 0.2, 0.3, 0.4 do
3: for i = 1 : 10 do
4: Determine the set for contingent edges Et

5: for λ = λ1, λ2, λ3 do
6: Generate the set of parameters for Et

7: Calculate εDC for current network
8: ε(i)C

λ = εDC

9: end for
10: end for
11: εC

λ = average(ε(1 : 10)C
λ)

12: end for

certain edges to be contingent edges for each experiment instance. To be

more detailed, we choose different numbers of contingent edges determined

by the C values, and for each C value we vary the selection of contingent

edges. Line 5 to line 9 is assigning different deviation parameters to the

generated network instance. Line 11 then calculates the average εDC of 10

network instances for each contingent density C.

The result is plotted by Fig.6.3. There are two observations. Firstly,

by fixing C, the larger the λ value, the less the failure probability εDC .

This is because larger λ value means smaller standard deviation or smaller

p, q values, and it in turn means random data is more concentrated to the

middle of the interval. For a fixed network instance 1, the feasible interval

for each contingent edge is fixed. The more the data is concentrated, the

larger budget we allow. Thus larger λ results in a larger probability the

1Here fixed network means the number of nodes, edges, lower and upper bound for
both controllable and contingent edges are fixed

66

Figure 6.3: Plot of Experiment 1

67

network is dynamically controllable. Secondly, by fixed λ value, εDC increases

as contingent density C increase, this says the more number of contingent

edges, the smaller the probability a network is dynamically controllable. It

is quite straightforward because more contingent edges directly means more

network dynamic is required.

6.3 Experiment Two

This second experiment will study the relation between probabilistic dynamic

controllability (robust controllability) and probabilistic weak controllability.

It is already proved that dynamic controllability is more strict than weak

controllability but the relation between the two in probabilistic context is

not clear yet up to this point. To be more specific, this experiment is going

to examine the relation between εWC and εDC given a temporal network.

Intuitively the relation between the two controllabilities still holds in

probabilistic context. In another word, the probability a network is dy-

namically controllable is less than the probability the network is weakly

controllable. Indeed it can be proved. As stated in beginning of Chap-

ter 4, the probability a temporal network is dynamically controllable is

PDC = P(ξ|t(ξ) ∈ sol(ξ), ξ ∈ Ξ). Here Ξ is the set of possible network in-

stances and ξ is a single instance. t(ξ) is the output of execution policy.

The probability it is weakly controllable is PWC = P(ξ|sol(ξ) �= φ, ξ ∈ Ξ).

Suppose t(ξ) is a valid solution for network instance ξ (t(ξ) ∈ sol(ξ)), thus

68

sol(ξ) �= φ. The set {ξ|t(ξ) ∈ sol(ξ), ξ ∈ Ξ} ⊂ {ξ|sol(ξ) �= φ, ξ ∈ Ξ}, which

means PDC ≤ PWC or εDC ≥ εWC.

The proof above is about the relation between the optimal failure prob-

abilities of two controllabilities. However, as the solution approach applied

here produces an approximation to the optimal failure probability, the εDC

and εWC could deviate from the optimal value by an unknown amount. If the

ε value obtained by the solution approach is not tight enough, the property

may not be shown at all. We will do experiment to test εDC − εWC on the

same temporal network. We generate four groups of RTCN whose contingent

densities are 0.1, 0.2, 0.3, 0.4 respectively. For each group of RTCN, we will

generate k samples and compare the average εDC and εWC values. Details

are described in Procedure 3: Testing procedure for Experiment Two

Procedure 3 Testing procedure for Experiment Two

1: for C = 0.1, 0.2, 0.3, 0.4 do
2: for i = 1 : 10 do
3: Generate a random network with n = 10, |ED| = 0.5
4: Determine parameters for contingent edges Et

5: Calculate εDC and εWC of current network
6: end for
7: Calculate average of εDC and εWC of 10 rounds
8: end for

The result is plotted by the Fig.6.4. From the experiment plot, we can

see clearly εDC > εWC which complies with the property we have proved, and

shows that the ε produced by our solution approach is reasonable. Another

discovery is as the contingent density D increases, the difference εDC − εWC

is enlarged. This shows εDC changes more rapidly in terms of the amplitude

69

Figure 6.4: Plot of Experiment 2

70

of its value. This result complies with intuition too. When there is only one

contingent edge, the probabilities of being dynamically controllable and being

weakly controllable are both small. When the contingent edges increase to

a certain number, the network may become hardly dynamically controllable

while still weakly controllable in many scenarios as weak controllability is

less strict than dynamically controllable. Thus the jump on εDC is larger

than εWC .

6.4 Experiment Three

For this experiment, we examine the improvement effect of allocating un-

equal εij by the heuristic introduced in section 5.3.2. Again instead of robust

feasibility problem, we examine how εDC could be decreased by using our

heuristics. We will first randomly generate a network instance, and calculate

εDC by binary search. For an exhausted search, we could try to decrease

εij for every edge which does not need the sorting procedure. Further more,

since the constraints are independent from each other. We could test the fea-

sibility of the robust counterpart of each particular constraint alone instead

of checking the feasibility of the whole problem each time we decrease the

budget of a constraint. However, for large networks and when the runtime

is an important issue, reaching a durable ε quickly is desirable. Thus we

apply the sorted list heuristic here because the edges on top of the lists have

biggest potential to stand smaller failure probability. To control time, we

71

use a parameter η to limit the number of runs. The steps are described in

Procedure 4: Testing procedure for Experiment Three.

Procedure 4 Testing procedure for Experiment Three

1: Generate a random network with n = 10, |ED| = 0.5, C = 0.2
2: Calculate εDC

3: Sort lenij = uij − lij into a list lst by decreasing order
4: turn = 1, edge = lst.head()
5: while turn ≤ η do
6: while edge is not last member of lst do
7: while εij > 0 do
8: εij = εij − unit
9: Check feasibility with εij

10: if infeasible then
11: εij = εij + unit
12: break
13: end if
14: end while
15: edge = lst.next()
16: end while
17: end while
18: Calculate ε′DC =

∑
(i,j)∈ER

εij

The number of η limits the number of runs, and in turns affect the amount

of failure probability we are able to decrease. Meanwhile we could also in-

crease unit value to allow faster decrement of failure probability. In this

experiment η is set to 10 and η is set to 0.2. The outcome of the experiment

is like following: εDC value before with unequal εij is 0.2111, the obtained

decreased ε′DC is 0.1897. This preliminary result suggests our heuristic seems

to be effective.

72

Chapter 7

Conclusion

Temporal network with uncertainty is a useful formalism to model important

and practical problem in real-world scheduling and planning system. As it

is often the case that the durations of some activities are not known exactly

until they take place, it is not clear how to execute the scheduling/planning

system in advance. Instead, the decisions are built incrementally as the du-

rations of uncertain activities are gradually revealed. Previous literature has

used the notation of dynamic controllability to describe whether a temporal

network with uncertainty could be built in this way successfully.

In this thesis, we introduce the notation of probabilistic dynamic execu-

tion. We presented a Robust Temporal Constraint Network RTCN where the

durations of uncertain activities are modelled by random variables with some

probability distribution. Given a RTCN with an acceptable failure proba-

bility ε, we check if the probability an execution policy produces a schedule

73

satisfying all the temporal constraints of RTCN is at least 1 − ε. To obtain

a computational tractable problem, we assume an Affine Linear policy in

which the time of every executable event is linearly dependent on the dura-

tions of some relevant uncertain activities. To solve the problem, we apply a

recent promising technique called Robust Optimization which is able to solve

certain Stochastic Programs efficiently. As the size of uncertainty budget

controls the value of failure probability, this technique also enable the ad-

justment of degree of conservativeness in guaranteeing controllability. Lastly,

we propose some refinements on both the policy and the solution approach

to improve the result.

Experimentally, we first show that as the number of contingent activities

increases, or as the distribution of the durations of contingent activities be-

comes more deviated, the chance the scheduling/planning can be executed

dynamically decreases, or as presented in Fig 6.3 the failure probability in-

creases. We also show that for a given temporal network, the probability

it is dynamically controllable is less than the probability it is weakly con-

trollable, or presented in Fig 6.4 the failure probability of being dynamically

controllable (εDC) is more than that of being weakly controllable (εWC). Fur-

thermore, as the number of contingent edges increases, the ratio between the

two, εDC/εWC , seems to increase in exponential order as the former increases

much faster than the latter in Fig 6.4.

For future work, we could explore more execution policy options and

further improve the solution approach by proposing more heuristics.

74

Bibliography

[1] A Cesta, A Oddi, SF Smith, A constraint-based method for project

scheduling with time windows, Journal of Heuristics, vol 8(1): 109-136

(2002)

[2] Brusoni, V., Console, L., Pernici, B., and Terenziani, P., LaTeR: a Gen-

eral Purpose Manager of Temporal Information, LNCS, vol 869: 255-264

(1994)

[3] Jourdan, M., Layäıda, N., Sbry-Ismail, L., Time Representation and

Management in MADEUS: an Authoring Environment for Multimedia

Documents, Multimedia Computing and Networking:68-79 (1997)

[4] Dechter Rina, Itay Meiri, Judea Pearl), Temporal Constraint Networks,

Artificial Intelligence 49: 61-95 (1991

[5] J.F. Allen (1983), Towards a General Theory of Action and Time, Com-

mun. ACM 26(11):832-843.

75

[6] M. Vilain and H. Kautz, Constraint Propagation Algorithms for Tem-

poral Reasoning, AAAI-1986: 377-382 (1986)

[7] Ioannis Tsamardinos, A Probabilistic Approach to Robust Execution of

Temporal Plans with Uncertainty, SETN 2002: 97-108 (2002)

[8] Ioannis Tsamardinos, Martha E. Pollack, Sailesh Ramakrishnan, Assess-

ing the Probability of Legal Execution of Plans with Temporal Uncer-

tainty, ICAPS-03 Workshop on Planning under Uncertainty and Incom-

plete Information (2002)

[9] Paul Morris, Thierry Vidal, Dynamic Control Of Plans With Temporal

Uncertainty, IJCAI 2001: 494-502 (2001)

[10] Paul Morris, Nicola Muscettola, Temporal Dynamic Controllability Re-

visited, AAAI-05: 1193-1198 (2005)

[11] Paul Morris, Nicola Muscettola, Execution of Temporal Plans with Un-

certainty, AAAI/IAAI, 2000: 491 - 496 (2000)

[12] Thierry Vidal, Helene Fragier, Controllability Characterization and

Checking in Contingent Temporal Constraint Networks. KR2000:559-

570 (2000)

[13] Thierry Vidal, Helene Fragier, Handling Contingency in Temporal Con-

straint Networks: from Consistency to Controllabilities, J. Exp. Theor.

Artif. Intell. 11(1): 23-45 (1999)

76

[14] X Chen, M Sim, P Sun (2005), A Robust Optimization Perspective to

Stochastic Models. Submitted to Operations Research, June 2005

[15] Amedeo Cesta, Angelo Oddi, Angelo Susi, TimeNetManager - A Soft-

ware Tool for Generating Random Temporal Networks. Lecture Notes

In Computer Science Vol. 1792: 143 - 154 (1999)

[16] Soyster, A.L., Convex Programming With Set-inclusive Constraints and

Applications to Inexact Linear Programming, Oper. Res., 21:1154-1157

(1073)

[17] Ben-Tal, A., Nemirovski, A., Robust Convex Optimization. Math. Oper.

Res.,23: 769-805 (1998)

[18] Ben-Tal, A., Nemirovski, A., Robust Solutions to Uncertain Programs.

oper. Res. Let., 25: 1-13 (1999)

[19] Ben-Tal, A., Nemirovski, A., Robust Solutions of Linear Programming

Problems Contaminated with Uncertain Data. Math. Progr., 88: 411-424

(2000)

[20] P. Kouvelis, G. Yu, Robust Discrete Optimization and its Applications,

Kluwer Academic Publishers, 1997.

[21] Bertsimas, D., Sim, M., Robust Discrete Optimization and Network

Flows. Math. Progr., 98: 49-71 (2003)

77

[22] Bertsimas, D., Sim, M., Price of Robustness. Oper. Res., 52(1): 35-53

(2004)

[23] Bertsimas, D., Sim, M., Robust Linear Optimization Under General

Norms. oper. Res. Let., 32: 510-516 (2004)

[24] El-Ghaoui, Lebret, H., Robust Solutions to Least-square Problems to

uncertain Data Matrices. SIAM J. Matrix Anal. Appl., 18: 1035-1064

(1997)

[25] El-Ghaoui, L. Oustry, F., Lebret, H., Robust Solutions to Uncertain

Semidefinite Programs. SIAM J. Optim., 9: 33-52. (1998)

[26] F Alizadeh, D Goldfarb , Second-order Cone Programming. Mathemat-

ical Programming 95(1): 3-51

[27] http://www.mosek.com/

78

