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Summary

Discovering the functionally important regions in the proteins is an important problem in
computational biology. Several different techniques have been used for this purpose.
Techniques based on the primary structure of the protein perform sequence comparison to
identify the functionally important regions. Sequence based techniques cannot be applied
for discovering these regions when the sequence similarity fall below a certain threshold.
Evolutionary techniques generate consensus sequences to identify the common ancestor
of the protein and use the consensus sequences to identify these regions. Structure based
techniques consists of many different approaches of using the structural information to
identify these regions. Some techniques use the physical properties of the protein
complexes while others use the molecular surface for this purpose. The limitations of the
structure based techniques are that they fail to use the structure of the active site for
identifying the functionally important regions. We present a new technique that uses the
structure of the active site for identifying these regions. The new technique explains the
binding of the proteins in terms of the structure of the active site.

The new technique is then applied to perform the functional classification of the proteins.
In contrast to other structural techniques that are available for functional classification the
presented technique explains the reason for functional classification in terms of the
structure of the active site. The new technique performs accurate classification of the
proteins when compared to the sequence and structure based techniques for the functional

classification.
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1 Introduction

1.1 Motivation
Classification of functionally related proteins shows similarities and differences in their

role and behavior during the cellular processes. Proteins with similar functions are
involved in the same kind of processes, giving scientists more details about the general
relationships that exist between different processes happening inside the cell. Since
proteins form the essential parts of the cell of all living organisms, understanding their
functions can ultimately lead the way to understand the overall structure and functions of

the cellular organelles.

Just like understanding the structure and functions of the cell requires the knowledge of
functions and structure of the protein, comprehending the structure and functions of the
protein requires the insights of primary, secondary and tertiary structural details as well
as the role a group or groups of residues play in determining the function of the protein.
Residues are the amino acids that a protein is made up of. These small groups of residues
that play an important role in forming either structural details or functional details of the
protein are called motifs. Discovering these motifs in different proteins provides insight
about their structure and functional details. Functional motifs are group of residues which
are directly related to the function of the protein, discovering them in different proteins
provides information about their functional linkage. Hence functional motifs can be

ultimately used for functional classification of proteins.

Functional classification of the proteins is an important problem in the area of

computational biology and it has numerous applications from drug discovery to



understanding the pathways in which proteins are involved. Motif based functional
classification can also be used to study the interactions of the protein at a more detailed
level. In addition, functional classification can be used to understand the role that the
structure of the protein plays in determining its function.

1.2 Thesis Contribution

In this thesis, a new structure based technique for discovering functional motifs of a
protein is presented. This technique is then utilized to perform structure based functional
classification of the protein. This technique presents the solution to the problem of

functionally classifying proteins when their structure is known.

Contrary to other structure based techniques that use the molecular surface for identifying
the functional motif; the presented technique uses the structural information of the active
/ interaction sites for this purpose. The main difference between the newly presented
technique and other structure based techniques that also use structural information of the
active sites is that instead of comparing the overall active site shape or structure of one
protein to another, the new technique finds the smaller parts (hence forth referred to as
“sub structure”) of active site which lie in structural proximity. Structural proximity is
defined in terms of specific Euclidean distance threshold between two points in the space.
Once these sub structures are detected from the active sites of protein, the technique
searches for these sub structures in the active sites of other proteins. These sub structures
are functionally important since they are making the active sites of the proteins and same
kind of sub structures can be found in the active sites of the proteins having similar

functions.



It should be noted that functional motif, functionally important region and sub structure
refer to the same thing and will be used interchangeably in the subsequent sections of this
thesis.

1.3 Organization of the thesis

In the initial section of the thesis, a brief introduction to the techniques of functional
motif discovery and general concepts about protein structures and functions are
discussed. A brief overview of the functional classification and its importance is also
provided. Chapter 2 covers the traditional techniques for functional motif discovery and
discusses their limitations. Chapter 3 discusses the new technique and its implementation
details. Although currently the technique is used for the discovery of protein functions, it
can be applied to lots of different applications that use the structural to functional
relationships. Chapter 4 discusses the results which have been achieved using the new
technique, it also covers a case study of the G-protein coupled receptors and compares
functional classification using bottom up clustering, top down clustering and the newly
presented technique. Chapter 5 covers some of these applications where the newly
developed technique might be useful in near future. Conclusion and references are also

provided in this last section.



2 Functional Motifs discovery and Functional Classification

2.1 Traditional Computational Techniques for Motif discovery
Researchers in functional genomics area have applied several different kinds of

computational techniques to identify the functional sites and to classify proteins based on
their functional linkage. We can broadly divide these computational techniques into three
major categories, namely Sequence based, Evolutionary relationship based and Structure

based.

Sequence based techniques are applied usually when no structural information is present.
Although the primary structure of the protein cannot give as much functional detail as the
secondary or tertiary structure of the protein, recurring patterns and directly or indirectly
related subsequences give some information about the functionally important regions of
the proteins. Recurring patterns are the smaller subsequences in the primary structure of
the proteins that occur repeatedly. A directly related pattern refers to a subsequence that
occurs only if another particular subsequence is present or absent. Similarly indirectly
related patterns refer to subsequence that is present when a group of related subsequences
are present or absent. The subsequences inside these groups may also be related to each

other through direct or indirect relationship.

Sequence based techniques normally use sequence alignments to detect functionally
important regions. In the situation where sequence alignment cannot be found, or when
the sequence alignments cannot give any particular information about functionally
important regions, evolutionary relationships between different proteins are searched. A

common ancestor protein can be used to infer functional linkage between two different



proteins. Structural based techniques for functional classification uses the structure
related characteristics like the type of domains a particular protein is made up of or a
particular patch of the molecular surface that resembles the surface of other protein of

known function.

Type of the technique Examples
Sequence Based Multiple Sequence Alignment (MSA) [4], Correlated
Mutations [5]
Evolutionary Evolution Trace Method [7], Phylogenetic Profiles [8]
relationship based
Structure based Geometric Hashing [11], Surface Patch Analysis [10], Fused
domains [9]

Table 1 Functional motifs discovery techniques

2.1.1 Sequence based Techniques
Traditionally sequence alignments have been used to identify the homologous sequences

[2]. Homologous sequences are derived from a common ancestor but are found in
different proteins. The concept of aligning sequence can be extended to multiple
sequences by aligning the sequences to the alignment information of two already aligned
sequences. Multiple Sequence alignments (MSA) of different proteins can be used to
discover the patterns that are conserved in them. In multiple sequence alignment
conserved residues are the ones that are present most frequently in the same position in
the alignment (with gaps allowed). Examples of conserved residue in multiple sequence
alignment are given below:

AATLTAL-

-ATLTGVM

LLTLTVVM




In the above MSA the conserved pattern is TLT since it is aligned at the same position of
all three proteins. Conserved patterns in multiple sequence alignment can infer the

functionally important regions of these proteins [3].

According to theory of co-evolution of proteins, if one protein mutates, other proteins
that interacts with this mutated protein have to undergo compensatory mutations in order
to sustain their functional linkage with this particular protein. Although multiple
sequence alignments provide information about the functionally important regions of the
proteins, it cannot provide information about the regions that might affect the
functionality of the protein by taking part in large number of interactions. Changes in
these kind of regions will initiate compensatory mutations in the interacting partners of
that particular protein. Residue Correlation Analysis (RCA) is proposed to study these
regions [4-5]. Residue correlation analysis consists of two main steps, during the first
step the pairs of residue positions are identified where mutations occur in coordinated
way. The second step uses these residue positions to identify the regions that are
involved in large number of interactions. An example illustrates the concept of

coordinated mutation is given below.

Consider the following multiple sequence alignment:

Before mutation | After mutation

LMSALPG LMDALPK

GMSATVG GMDATVK




Consider the position 3 (from left to right) and position 7; it is obvious that when the
residue at position 3 changes, residue at position 7 changes as well, which means that
they are related to each other. After finding the residue positions where coordinated
mutations are occurring, RCA tries to find out such a contagious set of these positions
that change in a coordinated fashion. A set of these contagious positions where mutations

occur in coordinated manner represents the functionally important region in the protein.

2.1.2 Evolutionary Relationships based techniques
Though multiple sequence alignments of the related proteins can give information about

the functionally important regions, inferring any functional information becomes less

possible when the sequence homology falls below 25% [6].

A functional interface of the proteins refers to the part of the tertiary structure of the
protein that interacts with the ligands or other proteins during complex formation.
Changing the structural details of this functional interface of the protein has severe
effects on the functionality of the proteins. The shape similarity of this interface provides
information about the similarity of the functions, while shape complementarity of two

functional interfaces of different proteins predicts their interactions.

As theory of co-evolution of proteins suggests that the proteins either have to maintain
their functional interface or have to undergo compensatory mutations, thus most of the

proteins are under constant evolutionary pressure to maintain their functional interfaces.



As a result the residues that are involved in defining the functional interfaces of the

proteins undergo fewer mutations than the other residues. [3]

Evolutionary based methods use ancestor linkage to determine the functionally important
regions. One such method is Evolutionary Trace (ET) method. Evolutionary trace
method uses the concept of coordinated mutations from theory of co-evolution of protein
to trace back the functionally important regions. In the absence of any structural and
functional information of the protein sequences, the evolutionary trace method partitions
the sequences into clusters according to their identity. After consensus sequence is
generated for every cluster and then these consensus sequences are aligned to trace their
evolution. In the case when a particular consensus sequence cannot be aligned with other
sequences, the mutations are considered specific to that particular cluster [7]. The step-
by-step details of the ET method are as follows:

Step 1: Partitioning of the Sequences according to their identity

LMSALPG VTRAGVM TFGAERSVL
LMSALVG VTRAGVT TFGAERSKL
LMSATVG VTRAGVV TFKAERSAL
LMVAGVG VTRAGTK TFGAVRSVL

Step 2: Generation of the Consensus Sequences for the above partitions
LM A G VTRAG_ TF_ A RS L

Step 3: Alignment of the Consensus Sequences

LM_A_ G
VTRAG_
TF A RS L

Step 4: Results of the alignment



The following observations can be made from the alignment of the consensus sequences:
Residue A is found at position 4 in most of the proteins.

Mutations at Position 3 (from left to right) and positions 5 and 6 are occurring in many
proteins. Mutations at these positions relate to functionally important region.

Mutation at position 7 is specific to particular cluster (cluster 2); it may or may not be

related to the functionally important region.

At one glance, it seems that both multiple sequence alignment and evolutionary trace
method are similar since both use sequence based representation for identification of
functionally important regions. The major difference between these two techniques is
that multiple sequence alignment technique performs sequence comparison on a given
protein whereas the evolutionary trace technique searches for common ancestor (i.e.
concensus sequence) by extracting those residues that are the same and reside at the same
position for all the sequences. These concensus sequences are then used for sequence

comparison to identify the functionally important regions.

Another technique that uses the evolutionary relationships between proteins to discover
functionally important regions is phylogenetic profiles. A phylogenetic profile is a string
with n entries (where n represent the number of genome present in the organism), if a
protein is transcribed by a particular genome, a value of 1 is given to that entry; otherwise
zero value is substituted [8]. The same phylogenetic profile of two homologous proteins

infers that they are functionally related to each other.



Gl G2 G3 G4 G5 G6 G7 G8
P1 1 1 1 0 0 1 1 0
P2 0 0 0 1 1 0 0 1
P3 1 1 1 0 0 1 1 0
P4 1 0 1 0 0 1 1 0
P5 1 1 1 0 0 0 0 0
P6 0 0 0 1 1 0 0 1
P7 1 1 1 0 0 0 0 0

Table 2 Phylogenetic Profiles of different proteins

In the above table P1, P2... P7 represents the different proteins while G1, G2... G8
represents different genomes. As highlighted in gray background, the phylogenetic
profiles of P1, P2 and P4 are similar and thus inferring a functional linkage among these

proteins.

2.1.3 Structure based Techniques
Few years back, determining the structure of the protein was a complex and tedious task,

but now due to the advancements in the techniques of X-ray crystallography and Nuclear
Magnetic Resonance (NMR) it has already become a routine task. As we know from
basic biochemistry that the structure of the protein has a direct relationship to its function,
so recently computational approaches have been devised to use the structural information

of the proteins for the discovery of functional motifs and their functional classification.

10




One of the famous techniques in this regard is the study of fused domains (i.e. domains
which exist separately in the other proteins but act as a single domain in other) in
proteins. Certain protein families contain fused domains, but these domains exist as stand
alone protein in some other protein families. These fused domain proteins are known as
composite proteins (also called fusion proteins) while the proteins that only contain part
of this fused domain are called component proteins. If the two component proteins of the
same composite protein exist, a functional linkage is predicted among the components.
Although the technique can be successfully applied to predict indirect functional linkage
(indirect refers to functional linkage in a same protein pathway) but fails to predict

functional relationships when physical interaction between two proteins are involved. [9].

Other structure based techniques uses the properties of the surface patches of the protein
complexes. A patch is defined as the central surface accessible residue with n nearest
surface accessible neighbors, where n is the number of the residues that are observed in
the interface. Some of the properties studied by these techniques include the solvation
potential, residue interface propensity and protrusion index. Solvation potential defines
the tendency of the amino acid type for salvation and is normally approximated by the
residues solvent access surface area (ASA). Residue interface propensity refers to the
fraction of solvent access surface area that an amino acid contribute to the functional
interface compared with the fraction of the access surface area it contributes to the
molecular surface. Protrusion index defines the absolute value of the extent to which the
residue protrudes from the surface of the protein. A detailed description of these

properties as been observed in different kind of protein complexes is given below [10].

11



Type of Complex Solvation Interface Access Surface | Protrusion
Potential Propensity | Area (ASA) Index
Homodimers Low Low No specific High
trend

Hetrodimers High High High No specific

trend
Enzyme-Inhibtor No specific No specific | High No specific
Complex trend trend trend
Antigen-Antibody No specific Low Highest Highest
Complex trend

Table 3 Tendencies of protein complexes based on physical properties

The above table explains the trends of different properties of the patches as observed in
the different types of complexes. In case where no specific trend is found, that is for some
complexes of the same type the value of the property is high and for some other
complexes is low. So the type of the properties found in a particular protein complex can
be used to get ideas about its function. The limitation of the above technique is that it can
only predict the type of the protein complex with some certainty but it cannot be applied

for functional motif discovery in the proteins [10].

A more detailed structural technique works by using the molecular surface comparisons,
if a patch of the surface in one protein is found similar to active site surface in another
protein, functional linkage is predicted. It uses geometric hashing on the molecular
surfaces in three steps, i.e. molecular surface representation, geometric hashing and
clustering and extension by reapplying the geometric hashing. In the initial stage of
geometric hashing, transformation invariant features (i.e. features that are not changed
due to transformation of a molecule surface) are extracted from the protein and saved in

the hash table. In the second stage the transformation invariant features are calculated for

12




the target protein and are used to access the hash table to find the possible instances of
the model. In the last stage of geometric hashing, similar transformations are clustered
based on the Euclidean distance between them. The limitation of this technique is that it
uses the molecular surfaces to search for active sites and functional similarities but it does
not take into account the structural information of the active sites [11].

2.2 Limitations of the traditional structure based techniques

Three different kinds of structure based techniques are discussed above, the first
technique which uses the composite and component proteins can not be used to discover
functional motif, the reason is that the technique generates much more false positive
results when applied to discover direct physical interaction between the proteins, however
the technique works fine for detecting the indirect functional interaction (e.g. two
proteins that exists in the same pathway) between different component proteins [9]. The
second technique that studies the physical properties of the surface patches is limited to
the prediction of type of the protein complex with some certainty [10]. Finally using
geometric hashing on the active site surfaces can be used to predict the functionally
important regions, but this technique does not consider the structural information of the

active sites for the detection of the functionally important regions [11].

2.3 Traditional techniques of functional classification

2.3.1 Bottom up Clustering using sequence similarity (ProtoMap)
Given a new protein sequence the most common approach to predict its function is based

on the pairwise comparisons with the sequences of known function. In the below
discussed method [21], the functional classification of the proteins is done based on

sequence similarities through the use of bottom up clustering of the protein sequence.

13



In this procedure the proteins are represented as weighted graph and their sequences are
the vertices. The weight of the edge between two sequences corresponds to their degree
of similarity. Blosum 50 and Blosum 62 are used as scoring matrices to measure the
degree of similarity between two sequences. Related proteins are identified by the
strongly connected sets of vertices in the graph. The process is repeated at varying
thresholds and the proteins are grouped together into classes and results into forming of a

tree that represents a hierarchical organization of all the proteins.

Figure 1 Bottom up clustering using sequence similarity

2.3.2 Top Down clustering of the proteins
The limitation of the bottom up clustering to classify protein is that only related proteins

TGDEKPVE

/N

TAFNKPVE TAFNKPFE TAFNKPFE TGDEKPVE TGDEKPF
E

TAFNKP_E

can be classified. During evolution non-hierarchical relationships are formed as a result
of domain shuffling in the proteins. Also non-hierarchical relationships provide more
detailed level insight for the functional classification of the proteins. Since the bottom up
clustering method is based on developing a graph to represent hierarchical relationships
only, it cannot use the non-hierarchical relationships for functional classification of the

proteins.

14



The top down clustering method begins by putting the proteins into common super family
and then splitting the super family into many sub families on the basis of similarity in the
sequence. In this way a hierarchical tree structure is obtained. Non-hierarchical
relationships are searched by discovering small identical regions among the families and
the tree like structure is modified into tree graph like structure in order to capture these

similarities at the partial domain level [22].

Figure 2 Top down clustering of the proteins for functional classification

TAFNKPEV
TAFNKPEF
TEDEGKEF
TEDEGKVE
TEDEGKEF
TAFNKPEV TEDEGKVE
TAFNKPEF
TEDEGKEF TEDEGKVE
TAFNKPEF TAFNKPEV

2.4 Limitations of the primary structure based functional classification
schemes

Since the above-mentioned techniques use the primary structure of the proteins for
functional classification, and primary structure only provides one-dimensional

information of the protein structure, they are not able to classify the remotely related

15



proteins (i.e. proteins that are different in their primary structure but similar in their three-
dimensional structure). The suggested technique in this thesis is based on three-
dimensional structure and can study the role of smallest substructures to larger
substructures inside the active site.

2.5 Structure based functional classification

As mentioned above the primary structure based techniques cannot perform functional
classification of the proteins efficiently, thus there is a need for three-dimensional
structure based classification. One such classification uses the microenvironment of the

active site for this purpose [24].

In this technique the active site is defined as a region within the protein molecule with a
surrounding neighborhood of 10A radius. The spatial distribution of user defined
properties like types of atoms, chemical groups, amino acids, secondary structure, charge,
polarity etc is calculated in this neighborhood of the active site. The microenvironment of
the active site is computed by dividing the volume of the site into concentric shell sub
volumes and then calculating the distribution of these properties within each of these sub
volumes. These distributions are calculated for both the active and non active sites, and
are saved in the places where the distributions of these properties differ significantly
between the active site and non active site. These properties are then used to predict the
binding tendency of the protein, thus predicting the function of the protein if the structure

is known.

16



2.6 Limitations of structure based functional classification
Although structure based functional classification can correctly classify the proteins that

are remotely related to each other in their primary structure, it has its own limitations.
The structure based technique that uses the microenvironment of the active site to predict
binding does not provide any sub structural details of the active site, thus not explaining
the reason of binding in terms of the active site. This limitation is overcome in the newly
propose technique as it explains the sub structure details of the active site and provides

insight to the binding in terms of active site structure.

17



3 Proposed Technique, Problem definition & Solution

As discussed earlier the existing structural technique does not utilize the structure of the
active site, so in this thesis, a new technique is proposed which utilizes the structural
information of the active sites to detect the functionally important regions.

Instead of comparing the overall structural information of the active sites, the technique
compares the small sub structures that are present in the active site. The rationale behind
comparing the small sub structures instead of comparing the overall active site is that
although during the course of evolution the active sites of the proteins may change, but as
the theory of co-evolution of the proteins suggest that the functionally important regions
are under evolutionary pressure to retain themselves, so although slight changes can
occur in the active sites of the proteins during the evolution but their detail sub structures

remain preserved.

3.1 Formal Definition of the problem
Hypothesis:

If two proteins have the similar sub structures in the active sites, then they will be having

the same functions. This hypothesis is constrained within the context of protein binding.

Formal Definition:

Formally the problem of finding sub structures from the active site can be defined as
follows:
Find all the possible sub structures containing three or more residues of the active site

that come in contact of any fragment of the ligand during the process of docking and lie

18



in structural proximity of each other. Use these sub structures to perform functional

classification of proteins.

Fragment Based Complex Construction technique breaks the ligand into multiple
fragments. During the process of docking (i.e. the process of attaching one molecule to
another), different fragments of the ligand come into the contact of different residues of
the active site on a protein. The ligands are then reconstructed in different ways and an
energy function for the ligand is calculated for each reconstruction. The reconstruction
that is giving the minimal energy function will be used as the experiment data for this

thesis.

Sub structure / functional motif is defined as part of a protein that consists of three or
more residues that come into contact of the ligand fragments and at the same time lie in

the structural proximity of each other.

Assumption: Protein classified manually based on literature reviews and further
supported by experimental methods are correct and will be used to verify against the
results obtained based on computational methods.

3.2 Solution

Ideally, the experiment should be conducted and verified using the fragment based
docking method. But since performing fragment based docking between different ligand
and proteins is a tedious task, a slightly different way is adopted for the rapid

implementation of the technique. Current implementation of the technique uses ligand-

19



protein complexes that are readily available and extracts the sub structures in the active

site from these complexes.

Protein Data Bank has been identified as the source where experiment data is extracted

from due to the following reasons:

1.

2.

It contains the ligand-protein complexes that exist in nature,

It provides the structural details of the protein and ligand-protein complexes,

It contains a huge collection of data that makes a good sample for this experiment,
Using the readily available structural details reduces the time of development of
this technique,

It also provides the experimentally verified information of the way a ligand can

dock onto the protein [1].

In order to obtain the information from Protein Data Bank (PDB), an application has been

implemented based on biopython PDB module. This application extracts the atomic

coordinates from the PDB flat file. Another application has also been implemented that

filters the PDB and extracts all the ligand-protein complexes. The active sites of ligand-

protein complexes are extracted via an interaction system. This interaction system

calculates the atomic distances between the molecules of proteins and ligands. The core

analysis is then performed on the results of active sites extracted. This is illustrated in the

following figure.

20



Protein Database
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Figure 3 Distribution of PDB and steps in extracting the active site

The implementation of the core analysis consists of 2 main stages. During the first stage,
protein complexes (i.e. proteins that have already been classified by nature) are analysed

to determine their sub structures. The second stage is to perform classification of a new

21



protein by comparing sub structures of its active sites to the sub structures obtained from

stage one of a classified protein.

3.2.1 ldentify Sub Structures for Classified Proteins
The first stage is further separated into 3 main steps. During the first step, the ligand-

protein interface is analyzed and the residues that are forming contact with ligand
fragments are extracted. In the second step, sub structures are extracted from the active
site. In the third step, the significant functional motifs for a particular ligand are

calculated. All of these steps are described in detail below.

Step 1: Analysis of Ligand Protein Contact

In order to find the residues coming in contact with the ligand, Ligand Protein Contact
(LPC) analysis is used. Ligand protein analysis calculates the contact surface area
between two atoms A and B by placing another atom of the VVan der Waals radius double
than the radius of A at the center of A. Now if this atom penetrates or touches the atom B
then atom B is considered in contact with atom A [17]. As illustrated in the following
figures, the one on the left shows that B comes in contact with A whereas the figure on

the right shows that B does not come in contact with A.

Figure 4 Ligand Protein Contact Analysis
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Ligand protein contact analysis is performed on all the protein complexes (16633) of the
protein database. These complexes contain 109139 ligands in total. An interaction system
is developed which performs the interactions of these 109139 ligands with 16633
complexes and store the contact atoms. These contact atoms are then used in the
extraction of sub structure from the active site.

For example in the case of RUB binding proteins, interactions are calculated between the
ligand RUB and the protein 9rub and the residues that come in contact with the ligand are
111A, 164B, 287B, 288B, 321B, 322B, 323B, 368B, 369B, 391B, 392B where these are
the residue numbers of the contacted atoms as specified by the PDB. Each of these

residue numbers corresponds to a residue, e.g. GLY, LY etc.

Step 2: Extraction of Sub Structures

Whenever a particular residue comes in contact with the ligand, information about that
particular residue and the residues that are in neighborhood and also come in contact with
the ligand is saved. In order to calculate the neighborhood, a Euclidean distance
threshold is used. A Euclidean distance threshold can hold the value from the range of 7-
12 A. Residues that come in neighborhood are defined as residues with Euclidean
distance threshold less than 8.5 A and 10 A are used for the experiment. According to
this theory, a graph is created that represents residues of the active site that are coming in

contact with the ligand and also are in neighborhood of each other.
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Figure 5 Sub structure graph

Figure 5 illustrates five residues that come in contact and are lying in the structural
proximity of 8.5 A or 10A. One such sub structure that can be extracted from these
residues is AVK. Other sub structures that can be extracted are AVG, VKT, KVG,
AVGK, GVKT, AVKT and AVCKT. These sub structures are obtained by forming
different combinations of the residues that are having edges drawn between them. Since
by definition, sub structure is part of a protein that consists of three or more residues that
come into contact, AV cannot be used as a sub structure even it has edges drawn between
the residues. It should also be noted that AVG and VAG or AGV refer to the same sub

structure.

Continuing from the example of RUB binding proteins given in the first stage, a sub
structure graph is created for the residues correspond to the residue numbers returned
from PDB. The sub structures that are extracted using the sub structure graph are given

as follows, where GLY, LYS etc represent residue, and “---” illustrates an edge
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connecting two residues that are having Euclidean distance threshold of equal or less than

8.5A.

GLY == GLY -~ GLY - GLY --- LYS --- PHE --- SER --- THR - THR

GLY --- GLY -~ GLY --- GLY --- LYS --- PHE --- THR --- THR --- TRP
GLY --- GLY -~ GLY --- LYS --- THR --- TRP
GLN --- GLY --- GLY --- GLY --- GLY --- PHE --- SER

Table 4 Sub-structures of RUB binding proteins

Step 3: Calculation of significant functional motifs for a ligand

During this step the statistically significant functional motifs are calculated for every
ligand. Motifs which are found common in most of the ligand binding classes are
removed, also only distinct motifs are used for the calculation. In order to understand the
significance of a particular set of functional motifs the criteria of confidence is applied.
Those motifs which are having the confidence of more then Y %(where Y can be 40%,

50% or 60%) for the particular ligand binding class are selected.

3.2.2 Functional Classification of Proteins
In the second stage, the significant sub structures / functional motifs that are calculated in

first stage for the classified proteins are applied to perform functional classification of the

unclassified proteins. This stage includes 3 steps, as described.

Stepl: Identification of Active Sites

Computed Atlas of Surface Topography of Proteins (CASTP) program is used to
determine all the active sites of an unclassified protein. For details on how CASTP

works, refer to [23].
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Step?2: Extraction of Sub structures

Similar to step 2 of first stage, every residue and residues that come in the neighbourhood
are used to form sub structure graph. Sub structures are then extracted by forming three
or more residues that come in the structural proximity. This is conducted for all the
active sites identified by CASTP.

Step3: Classification of Protein

For all the sub structures extracted in the active sites of the unclassified protein, they are
compared against existing sub structures (obtained through stage 1) of all protein
complexes. If the sub structures are found similar to X % of the sub structures of protein
complexes, then the protein is classified as having the same binding tendencies of those
protein complexes.

In order to determine the suitable value for the X % K fold cross validation procedure is
applied. The experiment conducted in this thesis uses the value of K =10. This means
that the sub structures data (training data) obtained is divided into 10 sets. 9 out of 10
sets of the data are used for training and remaining 1 set of data is used to calculate the
suitable value of the X%. This is repeatedly conducted for 10 times, each time rotating
9 sets of data for training and 1 set to calculate the value of the X%. The value found
suitable when the confidence value of 50% is used for the sub structure extraction and K
fold cross validation is applied for the matching % (i.e. X %) is 45 (i.e. if an unclassified
protein contains sub structure that found similar to more than 45% of the sub structures of
a protein complex then it is classified as having the same binding tendencies as those of
the protein complexes. As it is found that the classification of the proteins can be

performed better if the matching percentage is selected as 45%.
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Sub structures of unclassified protein are considered as matching to the sub structures of
protein complexes as long as the type and number of residues that made up the sub
structure tallies. The sequence of these residues does not have to be matched exactly.
E.g. “GLY --- GLY --- GLY --- LYS --- THR --- TRP” and “GLY --- LYS --- GLY --- THR --- GLY --
- TRP” are considered as matching sub structures because both sub structures are
composed of 3GLY, 1LYS, 1 THR and 1 TRP residues. Biologically these substructures
forms the same functional motif in the active site, so although the internal geometry of
the functional motif can be different from each other in terms of the residues, they still
form the same motif, as the similarity of the functional motif defines two motifs as

similar if their residue composition is similar [18].

Once all the matching sub structures of unclassified protein are identified, the protein is
classified according to those protein complexes that have matching sub structures.

The following provides a summary of the entire program in pseudo language:

Stage 1
FilterProteinComplexes

For each record of PDB

If Hetatm is found,
The record is a protein complex, and contains ligands
Save this protein record and its atomic details into a file
Save ligand and its atomic details into a file

ExtractActiveSites
For i=1 to n protein complexes
For j=1 to m ligands
Calculate atomic distance between protein complex i and ligand |
If distance is less than 1A,
Save active site information into a file
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ExtractSubStructures
For each active site file
For each residue of an active site
If Euclidean distance threshold of the residue is less than 8.5 A or 10 A
Add this residue to the sub structure graph
Extract sub structures from the graph by forming three or more residues
Calculate the confidence for motif
If Confidence >Y % (Y can take the values like 40%, 50%, 60% etc)
Save sub structures into a file

Stage 2
Given an unclassified protein, use CASTP to extract its active sites and save into a file

For each active site,
For each residue of an active site
If Euclidean distance threshold of the residue is less than 8.5 A or 10 A
Add this residue to the sub structure graph
Extract sub structures from the graph by forming three or more residues
Save sub structures into a file

Compare each sub structure in the file to sub structures obtained in stage 1
If the substructures match is more then 45%
Classify the protein similar to the ligand binding class

For Performing Multi-Class classification

Convert the Multi-Class classification problem into series of binary classification

problems

Process the binary classification problems and use voting to determine the class

membership of the unclassified protein
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4 Results & discussion

The experiment conducted in this thesis uses a sample of 16642 protein complexes and

runs through the three steps in stage 1 to extract a total of 16540 sub structures in active

sites. These sub structures can be categorized into 3531 classes of binding proteins. A

protein (that is not used in the experiment of stage 1) is selected for each binding protein

class from PDB to act as the “unclassified protein”. Procedures in stage 2 are conducted

on these unclassified proteins to determine the accuracy of protein classification

technique proposed in this thesis.

4.1 Biotin Binding Proteins

Biotin binding proteins are initially used to test the validation of the above mentioned

technique. For this purpose all the biotin binding proteins are extracted from protein data

base and the active sites of all the proteins are extracted. Distinct motifs are selected for

this purpose and their occurrence in the biotin binding protein is calculated. The

following table shows the percentage of occurrence for these motifs

Existence
percentage of
the Distinct
Motif in the
Functional Motif active site
LEU --- SER --- THR --- TRP 88.75
ASN --- ASP --- LEU --- SER 70.00
ALA --- ALA --- ASN_--- GLY --- TRP --- VAL 62.5
ALA --- ALA --- ASN --- SER --- THR --- TRP 62.5
ALA --- ALA --- ASN --- SER --- TRP 63.75
ALA --- LEU --- SER --- THR --- TRP 82.5
LEU --- SER --- THR --- TRP_--- TRP --- TRP 78.75
ASP --- THR --- TRP_--- TRP 71.25
ASP --- LEU --- THR --- TRP_--- TRP 76.25
ASN --- ASP --- LEU --- TRP --- TRP 66.25
ASN --- LEU --- SER --- SER --- TYR --- VAL 57.5
SER --- SER --- TYR 67.5
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Existence
percentage of
the Distinct
Motif in the

Functional Motif active site

ALA --- ASN --- GLY --- SER --- VAL 53.75

ALA --- ALA --- ASN ---GLY ---SER ---TRP --- VAL 55

Table 5 % of existence of distinct functional motifs in Biotin Binding active site

In order to better understand the significance of these functional motifs for biotin binding,
the existence of these functional motifs in non-biotin binding sites is also calculated. For
this purpose, the other active sites on the biotin binding proteins are checked. The active
sites are calculated using Computed Atlas of Surface Topography of Proteins (CASTP)
program [23]. The percentage when 730 non-biotin binding active sites are checked for

the occurrence of the above functional motif is given below:

Percentage of
Occurrence of
the Distinct
motif in other
Functional Motif active sites
LEU --- SER --- THR --- TRP 0.00
ASN --- ASP --- LEU --- SER 0.13
ALA --- ALA --- ASN --- GLY --- TRP --- VAL 0.00
ALA --- ALA --- ASN --- SER --- THR --- TRP 0.00
ALA --- ALA - ASN --- SER --- TRP 0.00
ALA --- LEU --- SER --- THR --- TRP 0.00
LEU --- SER --- THR --- TRP --- TRP --- TRP 0.00
ASP --- THR --- TRP --- TRP 0.13
ASP --- LEU --- THR --- TRP --- TRP 0.13
ASN --- ASP --- LEU --- TRP --- TRP 0.00
ASN --- LEU --- SER --- SER --- TYR --- VAL 0.00
SER --- SER --- TYR 0.13
ALA --- ASN --- GLY --- SER --- VAL 0.00
ALA --- ALA --- ASN --- GLY --- SER --- TRP --- VAL 0.00

Table 6 Existence of functional motifs in non-biotin binding active sites
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4.1.1 Precision and Recall results

In order to classify a given protein as biotin binding, the existence of the functional

motifs is checked in the active site. Precision and recall are calculated for this purpose.

The precision and recall for the 1swp when the confidence measure of 50% is applied and
the distance of 8.5A is used for the extraction of the sub structures from the active site.
Precision = 12/18 = 0.666

Recall = 12/16=0.75

When the confidence measure of 50% is applied and the distance of 10A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision = 14/20 = 0.70

Recall =14/19 =0.73

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 16/26 = 0.61

Recall = 16/20= 0.8

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 18/28 = 0.642

Recall = 18/24 = 0.75
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When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 10/14 = 0.71

Recall = 10/15 = 0.666

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 12/16 = 0.75

Recall =12/19 = 0.63

4.2 Retinal (RET) Binding proteins

Further validation of the classification is done by using retinal binding proteins. For this
purpose the distinct motifs are selected in the retinal binding active sites and their
percentage of existence is calculated. The percentage of occurrence of the distinct motif

in the active sites of the retinal binding protein is given as

Existence
percentage of

the Distinct

Motif in the

Functional Motif active site
LEU --- LYS --- THR --- THR 64.27
MET --- MET --- SER --- THR --- TRP 62.5
PRO --- TRP --- TRP --- TYR 67.50
ALA --- MET --- PRO --- TRP --- TYR 59.10
ALA --- ASP --- LYS --- TRP 57.95
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Existence
percentage of
the Distinct
Motif in the

Functional Motif active site

ALA --- ASP --- LEU --- LYS - THR 51.1

Table 7 % of existence of distinct functional motifs in Retinal Binding active site

In order to check that these functional motifs are responsible for retinal binding only, the
other 605 active sites of retinal binding proteins have been extracted using the CASTP
program and checked for the existence of these functional motifs. The percentage of

occurrence of these functional motifs is given below:

Percentage of
Occurrence of
the Distinct
motif in other
Functional Motif active sites
LEU --- LYS --- THR --- THR 0.00
MET --- MET --- SER --- THR --- TRP 0.00
PRO --- TRP --- TRP --- TYR 0.00
ALA --- MET --- PRO --- TRP --- TYR 0.00
ALA --- ASP - LYS --- TRP 0.00
ALA --- ASP - LEU - LYS --- THR 0.001

Table 8 Existence of functional motifs in non-retinal binding active sites

4.2.1 Precision and Recall results

In order to classify a given protein as biotin binding, the existence of the functional

motifs is checked in the active site. Precision and recall are calculated for this purpose.

When the confidence measure of 50% is applied and the distance of 8.5A is used to
extract the sub structures from the active site, the value of the precision and recall are

given as
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Precision=5/7=0.714

Recall =5/6 = 0.83

When the confidence measure of 50% is applied and the distance of 10A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision = 8/10 = 0.8

Recall = 8/12 =0.666

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision =7/11 =0.64

Recall = 7/8 = 0.875

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 10/13 = 0.77

Recall = 10/14 =0.72

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision =4/5=0.8
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Recall = 4/6 = 0.666

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 7/8 = 0.875

Recall = 7/11 = 0.64

4.3 Pyrroloquinoline Quinone (PQQ) binding proteins

PQQ binding proteins are also used for the validation of the classification method.
Distinct motifs are extracted from the active sites of the PQQ binding proteins and their

percentage of occurrence is calculated. The percentage of occurrence is given as

Existence
percentage of

the Distinct

Motif in the

Functional Motif active site
ARG --- GLU --- GLY --- VAL 69.56
ARG --- CYS --- GLU --- GLY --- THR --- VAL 69.56
ARG --- GLU --- THR --- VAL 69.56
ARG --- SER --- THR --- TRP --- VAL 60.86
CYS --- CYS --- GLY --- TRP --- VAL 52.17
ALA --- CYS --- GLU --- GLY --- SER --- THR 52.17
SER --- THR --- THR --- TRP 52.17

Table 9 % of existence of distinct functional motifs in PQQ Binding active site

In order to check that these functional motifs are responsible for PQQ binding only, the
other 1605 active sites of PQQ binding proteins have been extracted using the CASTP
program and checked for the existence of these functional motifs. The percentage of

occurrence of these functional motifs is given below:
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Percentage of
Occurrence of
the Distinct
motif in other
Functional Motif active sites
ARG --- GLU --- GLY --- VAL 0.00
ARG --- CYS --- GLU --- GLY --- THR --- VAL 0.00
ARG --- GLU --- THR --- VAL 0.001
ARG --- SER --- THR --- TRP --- VAL 0.001
CYS --- CYS --- GLY --- TRP --- VAL 0.00
ALA --- CYS --- GLU --- GLY --- SER --- THR 0.00
SER --- THR --- THR --- TRP 0.00

Table 10 Existence of functional motifs in non-PQQ binding active sites

4.3.1 Precision and Recall results

In order to classify a given protein as biotin binding, the existence of the functional

motifs is checked in the active site. Precision and recall are calculated for this purpose.

When the confidence measure of 50% is applied and the distance of 8.5A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision = 5/7 = 0.72

Recall =5/8 = 0.63

When the confidence measure of 50% is applied and the distance of 10A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision =7/ 11 = 0.64

Recall=7/10=0.7
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When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 5/8 = 0.63

Recall =6/8 = 0.75

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 9/15 = 0.6

Recall =9/12 =0.75

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision =4/5=0.8

Recall = 4/7 = 0.58

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 5/7 = 0.72

Recall =5/8 = 0.625
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4.4 Ornithine (ORN) binding proteins

ORN binding proteins are also used for the validation of the classification method. For

this purpose the distinct motifs are extracted from the active site of the ORN binding

proteins and their percentage is calculated. The percentage of the distinct motifs for the

ORN binding proteins is given as below

Existence
percentage of the

Distinct Motif in

Functional Motif the active site
ALA ---ASP --- GLU --- GLU --- SER --- VAL 52.94
ALA --- ASP --- GLU --- SER - VAL 52.94
ALA --- ASP --- GLU - LEU --- SER --- VAL 52.94
ASP --- LEU --- THR --- TYR 56.86
ASP --- HIS --- TYR 52.94
ASP --- LEU --- THR 58.82
ASP - LEU --- VAL 62.74
ASP --- HIS --- THR --- TYR 52.94

Table 11 % of existence of distinct functional motifs in ORN Binding active site

Although these functional motifs are responsible for ORN binding it might be possible

that these motifs generally appear in the other active site also and thus do not have

statistical significance for ORN binding, other 348 active sites of the ORN binding

proteins have been checked and the percentage of occurrence of these functional motif in

other active sites is given below:

Percentage of
Occurrence of the
Distinct motif in

Functional Motif other active sites
ALA ---ASP --- GLU --- GLU --- SER --- VAL 0.00
ALA --- ASP --- GLU --- SER - VAL 0.00
ALA --- ASP --- GLU --- LEU --- SER --- VAL 0.002
ASP --- LEU --- THR - TYR 0.00
ASP --- HIS --- TYR 0.00
ASP --- LEU --- THR 0.002
ASP --- LEU --- VAL 0.002
ASP --- HIS --- THR --- TYR 0.00
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Table 12 Existence of functional motifs in non-ORN binding active sites

4.4.1 Precision and Recall results

In order to classify a given protein as biotin binding, the existence of the functional

motifs is checked in the active site. Precision and recall are calculated for this purpose.

When the confidence measure of 50% is applied and the distance of 8.5A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision = 7/10 = 0.7

Recall =7/9=0.78

When the confidence measure of 50% is applied and the distance of 10A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision = 8/11 = 0.73

Recall = 8/10=10.8

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 8/12 = 0.67

Recall = 8/9 =0.89
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When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 12/18 = 0.67

Recall = 12/14 = 0.86

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 5/6 = 0.84

Recall =5/7 =0.71

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 6/8 = 0.75

Recall =6/8 =0.75

4.5 Xylose (XLS) binding proteins

XLS binding proteins are also used to validate the classification method. In order to use
the XLS binding proteins, distinct motifs are selected from the active sites. The
percentage of the distinct motif as found in the active site of the XLS binding proteins is

given as below
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Existence
percentage of the
Distinct Motif in
Functional Motif the active site
HIS --- THR --- TRP 65.55
ASP --- ASP --- GLU 63.5
GLU --- GLU --- HIS --- LYS --- TRP 75.33
ASP --- ASP --- GLU --- GLU --- HIS --- LYS 80
ASP --- GLU --- HIS --- LYS 70.5
ASP --- HIS --- TRP 63.33
ASP --- ASP --- GLU --- TRP 83.33
GLU --- LYS --- THR --- TRP 83.33
GLU --- GLU --- LYS --- TRP 83.33

Table 13 % of existence of distinct functional motifs in XLS binding active site

These functional motifs are then checked in non-XLS binding active sites formed by the

XLS binding proteins. The existence of the functional motif in these active sites is given

as below:
Percentage of
Occurrence of the
Distinct motifin
Functional Motif other active sites
HIS --- THR --- TRP 0.00
ASP --- ASP --- GLU 0.0008
GLU --- GLU --- HIS --- LYS --- TRP 0.00
ASP --- ASP --- GLU --- GLU --- HIS --- LYS 0.00
ASP --- GLU --- HIS --- LYS 0.00
ASP --- HIS --- TRP 0.0008
ASP --- ASP --- GLU --- TRP 0.00
GLU --- LYS --- THR --- TRP 0.0016
GLU --- GLU --- LYS --- TRP 0.00

Table 14 Existence of functional motifs in non-XLS binding active sites

45.1 Precision and Recall results

In order to classify a given protein as biotin binding, the existence of the functional

motifs is checked in the active site. Precision and recall are calculated for this purpose.
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When the confidence measure of 50% is applied and the distance of 8.5A is used to
extract the sub structures from t he active site, the value of the precision and recall are
given as

Precision = 8/10 = 0.8

Recall = 8/9 =0.88

When the confidence measure of 50% is applied and the distance of 10A is used to
extract the sub structures from the active site, the value of the precision and recall are
given as

Precision = 12/14 = 0.85

Recall =12/13 = 0.92

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 12/16 = 0.75

Recall =12 /13=0.92

When the confidence measure of 40% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 15/20 = 0.75

Recall = 15/16 = 0.94
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When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 8.5A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 6/7 = 0.85

Recall =6/8 =0.75

When the confidence measure of 60% is applied for the extraction of the sub structures
and the distance of 10A is used to calculate the neighborhood between the residues the
precision and the recall are given as

Precision = 7/8 = 0.875

Recall = 7/8=0.875

4.6 Multi-class Classification of the Proteins

Multi-class classification is inherently a complicated machine learning problem. As the
problem discussed in this thesis belongs to this category, further analysis and research is

done to successfully predict the class of an unclassified protein.

The most common way to solve the multi-class classification problem is to transform the
multi-class problem into series of binary class problems. The common technique tries to
find a classifier which can distinguish one class from all the rest of the classes. This
technique uses real value in order to determine the class membership. Though this
method is applied successfully in some of the machine learning problems it has the
limitations of the expressivity. Since this technique assumes that each class can be easily

separated from all the rest of the classes.

43



In case of the problem discussed in this thesis there are 3531 classes of proteins, so in
order to perform more accurate multi class classification, a more detailed and expressive
approach is used. The approach used to solve the current problem finds a classifier
between each pair of the classes and then applies voting scheme to determine the exact
class of the protein. This method essentially converts the multi-class classification
problem into series of binary classification problem without losing the expressivity.
Initially pair-wise binary classifiers are learned between the classes, then for a given
problem, the class is determined by calculating the results from these binary classifiers.
This is done by applying simple voting scheme. If majority of the binary classifiers
classifies the input to a particular class then the input is considered to belong to that

particular class[25].

An example with four classes is given below to further explain the concept. Consider
there are four classes, C1, C2, C3 and C4. So in order to classify an input, first the pair-
wise classifiers are learned. These include a classifier between C1 and C2, C1 and C3, C1
and C4. Similarly the classifiers for the other pair of the classes are learned. Consider an
input A is given to the set of these binary pair-wise classifiers. Every pair-wise classifier
will try to classify the input to one of the class. The output from these classifiers will then
be processed. If the input is classified to one particular class by the majority of the binary
classifiers then it will be taken as the original classification of the input. In case of the ties
between the classes, they will be resolved in the favor of the bigger class. The following

figure explains this process in detail
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In this case biotin binding proteins, retinal binding proteins, PQQ binding protein and

XLS binding proteins are selected. Correspondingly the unclassified proteins of the above

mentioned classes are selected and they are given as input to these classifiers which can

then classify them according to the class. The case for every unclassified in the particular

class is given below
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4.6.1.1 Classifying “1swp” as biotin binding protein

1swp is given as input to the set of the classifiers for classification. In this case the class
biotin receives the majority (i.e. 3) of the votes. So the protein 1swp is classified as biotin

binding protein.

4.6.1.2 Classifying “luaz” as retinal binding protein

luaz is given as input to the set of the classifiers for classification. In this case the class
retinal receives the majority (i.e. 3) of the votes. So the protein luaz is classified as

retinal binding protein.

4.6.1.3 Classifying “1flg” as PQQ binding protein

1flg is given as input to the set of the classifiers for classification. In this case the class
PQQ receives the majority (i.e. 3) of the votes. So the protein 1Ifg is classified as PQQ

binding protein.

4.6.1.4 Classifying “3xis” as xylose binding protein

3xis is given as input to the set of the classifiers for classification. In this case the class
xylose receives the majority (i.e. 3) of the votes. So the protein 3xis is classified as xylose

binding protein.

4.6.2 Case for 8 class classification

In this case BTN, RET, PQQ, XLS, ORN, 4MO, LVS and 9PP are selected to perform 8

class classification. For this purpose the following 28 classifiers are leant
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(BTN-PQQ classifier), (BTN-RET classifier), (BTN-XLS classifier), (BTN-ORN
classifier), (BTN-4MO classifier), (BTN-LVS classifier), (BTN-9PP classifier), (PQQ-
RET classifier), (PQQ-XLS classifier), (PQQ-ORN classifier), (PQQ-4MO classifier),
(PQQ-LVS classifier), (PQQ-9PP classifier), (RET-XLS classifier), (RET-ORN
classifier), (RET-4MO classifier), (RET-LVS classifier), (RET-9PP classifier), ( XLS-
ORN classifier), (XLS-4MO classifier), (XLS-LVS classifier), (XLS-9PP classifier),
(ORN-4MO classifier), (ORN-LVS classifier), (ORN-9PP classifier), (4MO-LVS

classifier) (4MO-9PP classifier) and (LVS-9PP classifier).

4.6.2.1 Classifying “1swp” as biotin binding protein

1swp is given as input to the set of the classifiers for classification. A voting table is
created and the votes for every class are calculated. The class which takes the most votes

will be selected as corresponding binding class. The voting table for the 1swp is given

below

Classifier | Selected Vote By Class

Type Class BTN | PQQ | RET | XLS | ORN | 4MO | LVS 9PP
BTN-RET | BTN 7 3 3 2 3 4 5 1

BTN-XLS | BTN

BTN-ORN | BTN

BTN-4MO | BTN

BTN-PQQ | BTN

BTN-LVS | BTN

BTN-9PP | BTN
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PQQ-RET [PQQ
PQQ-XLS | PQQ
PQQ-ORN | ORN
PQQ-4MO | 4MO
PQQ-LVS |LVS
PQQ-9PP | PQQ
RET-XLS | RET
RET-ORN | RET
RET-4MO | 4MO
RET-LVS | LVS
RET-9PP | RET
XLS-ORN | ORN
XLS-4MO | XLS
XLS-LVS | LVS
XLS-9PP | XLS
ORN-4MO | 4MO
ORN-LVS | ORN
ORN-9PP | 9PP

AMO-LVS | LVS
4MO-9PP | 4MO
LVS-9PP | LVS
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As it can be seen from the voting table that the class BTN is selected by most of the

classifiers (i.e. 7), so 1swp is classified as biotin binding protein.

4.6.2.2 Classifying “luaz” as retinal binding protein

luaz is given as input to the set of the classifiers for classification. The voting table for

the 1uaz is given below

Classifier | Selected Vote By Class

Type Class | BTN | PQQ | RET | XLS| ORN | 4MO | LVS | 9PP

BTN-RET | RET 4 3 6 2 3 4 3 3

BTN-XLS | BTN

BTN-ORN | BTN

BTN-4MO | 4MO

BTN-PQQ | PQQ

BTN-LVS | BTN

BTN-9PP | BTN

PQQ-RET |RET

PQQ-XLS | XLS

PQQ-ORN | PQQ

PQQ-4MO | 4MO

PQQ-LVS | LVS

PQQ-9PP | PQQ
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RET-XLS | RET
RET-ORN | RET
RET-4MO | 4MO
RET-LVS | RET
RET-9PP RET
XLS-ORN | ORN
XLS-4MO | XLS
XLS-LVS | LVS
XLS-9PP 9PP

ORN-4MO | ORN
ORN-LVS | ORN
ORN-9PP | 9PP

4MO-LVS | 4MO
4MO-9PP | 9PP

LVS-9PP LVS

As it can be seen from the voting table that the class RET is selected by most of the

classifiers (i.e. 6), so 1uaz is classified as retinal binding protein.

4.6.2.3 Classifying “1flg” as PQQ binding protein

1flg is given as input to the set of the classifiers for classification. The voting table for the

1flg is given below
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Classifier | Selected Vote By Class
Type Class BTN | PQQ | RET | XLS | ORN | 4MO | LVS 9PP
BTN-RET | RET 2 6 3 3 3 3 3 5
BTN-XLS | BTN

BTN-ORN | ORN

BTN-4MO | 4MO

BTN-PQQ | PQQ

BTN-LVS | BTN

BTN-9PP | 9PP

PQQ-RET |PQQ

PQQ-XLS |PQQ

PQQ-ORN | PQQ

PQQ-4MO | 4MO

PQQ-LVS |PQQ

PQQ-9PP | PQQ

RET-XLS | XLS

RET-ORN | RET

RET-4MO | RET

RET-LVS | LVS

RET-9PP 9PP

XLS-ORN | XLS

XLS-4MO | 4MO

XLS-LVS | XLS
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XLS-9PP 9PP
ORN-4MO | ORN
ORN-LVS | ORN
ORN-9PP | 9PP
4MO-LVS | LVS
4MO-9PP | 9PP
LVS-9PP LVS

As it can be seen from the voting table that the class PQQ is selected by most of the

classifiers (i.e. 6), so 1flg is classified as PQQ binding protein.

4.6.2.4 Classifying “3xis” as xylose binding protein

3xis is given as input to the set of the classifiers for classification. The voting table for the

3xis is given below

Classifier | Selected Vote By Class

Type Class BTN | PQQ | RET | XLS | ORN | 4MO | LVS 9PP
BTN-RET | BTN 4 3 2 7 3 3 3 3
BTN-XLS | XLS

BTN-ORN | BTN

BTN-4MO | BTN

BTN-PQQ | PQQ

BTN-LVS | BTN
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BTN-9PP | 9PP

PQQ-RET |PQQ
PQQ-XLS | XLS
PQQ-ORN | ORN
PQQ-4MO | 4MO
PQQ-LVS |LVS
PQQ-9PP | PQQ
RET-XLS | XLS
RET-ORN | ORN
RET-4MO | 4MO
RET-LVS |RET
RET-9PP | RET
XLS-ORN | XLS
XLS-4MO | XLS
XLS-LVS | XLS
XLS-9PP | XLS
ORN-4MO | ORN
ORN-LVS | LVS
ORN-9PP | 9PP

4AMO-LVS |4MO
4AMO-9PP | 9PP

LVS-9PP | LVS
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As it can be seen from the voting table that the class XLS is selected by most of the

classifiers (i.e. 7), so 3xis is classified as XLS binding protein.

4.6.2.5 Classifying “1vIf” as 4MO binding protein

1vif is given as input to the set of the classifiers for classification. The voting table for the

1vif is given below

Classifier | Selected Vote By Class

Type Class | BTN | PQQ RET | XLS | ORN |4MO |LVS |9PP
BTN-RET | BTN 4 3 2 4 3 5 4 3
BTN-XLS | XLS

BTN-ORN | BTN

BTN-4MO | BTN

BTN-PQQ | PQQ

BTN-LVS | BTN

BTN-9PP | 9PP

PQQ-RET | RET

PQQ-XLS | XLS

PQQ-ORN | PQQ

PQQ-4MO | 4MO

PQQ-LVS | LVS
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PQQ-9PP | PQQ
RET-XLS | RET
RET-ORN | ORN
RET-4MO | 4MO
RET-LVS | LVS
RET-9PP 9PP

XLS-ORN | XLS
XLS-4MO | 4MO
XLS-LVS | XLS
XLS-9PP 9PP

ORN-4MO | 4MO
ORN-LVS | ORN
ORN-9PP | ORN
4MO-LVS | LVS
4MO-9PP | 4AMO
LVS-9PP LVS

As it can be seen from the voting table that the class 4MO is selected by most of the

classifiers (i.e. 5), so 1vlf is classified as 4MO binding protein

4.6.2.6 Classifying “1kyi” as LVS binding protein

1kyi is given as input to the set of the classifiers for classification. The voting table for

the 1kyi is given below
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Classifier | Selected Vote By Class
Type Class BTN | PQQ | RET | XLS | ORN | 4MO | LVS 9PP
BTN-RET | BTN 4 3 4 4 1 3 7 2
BTN-XLS | XLS

BTN-ORN | BTN

BTN-4MO | BTN

BTN-PQQ | PQQ

BTN-LVS | LVS

BTN-9PP | BTN

PQQ-RET | RET

PQQ-XLS | PQQ

PQQ-ORN | PQQ

PQQ-4MO | 4MO

PQQ-LVS | LVS

PQQ-9PP | 9PP

RET-XLS | XLS

RET-ORN | RET

RET-4MO | RET

RET-LVS | LVS

RET-9PP RET

XLS-ORN | XLS

XLS-4MO | 4MO

XLS-LVS | LVS
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XLS-9PP XLS

ORN-4MO | ORN

ORN-LVS | LVS

ORN-9PP | 9PP

4MO-LVS | LVS

4MO-9PP | 4MO

LVS-9PP LVS

As it can be seen from the voting table that the class LVS is selected by most of the

classifiers (i.e. 7), so 1kyi is classified as LVS binding protein

4.6.2.7 Classifying “1lvu” as 9PP binding protein

1lvu is given as input to the set of the classifiers for classification. The voting table for

the 1lvu is given below

Classifier | Selected Vote By Class
Type Class | BTN | PQQ RET | XLS | ORN |4MO | LVS |9PP
BTN-RET | RET 2 2 4 3 4 3 4 6

BTN-XLS | BTN

BTN-ORN | ORN

BTN-4MO | BTN

BTN-PQQ | PQQ
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BTN-LVS |LVS
BTN-9PP | 9PP

PQQ-RET |RET
PQQ-XLS | XLS
PQQ-ORN | PQQ
PQQ-4MO | 4MO
PQQ-LVS |LVS
PQQ-9PP | 9PP

RET-XLS |RET
RET-ORN |RET
RET-4MO | 4MO
RET-LVS |LVS
RET-9PP | 9PP

XLS-ORN | ORN
XLS-4MO | XLS
XLS-LVS | XLS
XLS-9PP | 9PP

ORN-4MO | ORN
ORN-LVS | ORN
ORN-9PP | 9PP

AMO-LVS | 4MO
4AMO-9PP | 9PP

LVS-9PP [ LVS
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As it can be seen from the voting table that the class 9PP is selected by most of the

classifiers (i.e. 6), so 1lvu is classified as 9PP binding protein

4.6.2.8 Classifying “1cs0” as ORN binding protein

1cs0 is given as input to the set of the classifiers for classification. The voting table for

the 1c¢s0 is given below

Classifier | Selected Vote By Class

Type Class | BTN | PQQ | RET | XLS| ORN | 4MO | LVS | 9PP

BTN-RET | BTN 3 3 2 4 7 2 4 3

BTN-XLS | XLS

BTN-ORN | ORN

BTN-4MO | BTN

BTN-PQQ | BTN

BTN-LVS | LVS

BTN-9PP | 9PP

PQQ-RET |RET

PQQ-XLS | PQQ

PQQ-ORN | ORN

PQQ-4MO | PQQ
PQQ-LVS | PQQ
PQQ-9PP | 9PP

RET-XLS | XLS
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RET-ORN | ORN

RET-4MO | 4MO

RET-LVS | LVS

RET-9PP RET

XLS-ORN | ORN

XLS-4MO | 4MO

XLS-LVS | XLS

XLS-9PP | XLS

ORN-4MO | ORN

ORN-LVS | ORN

ORN-9PP | ORN

4MO-LVS | LVS

4MO-9PP | 9PP

LVS-9PP LVS

As it can be seen from the voting table that the class ORN is selected by most of the

classifiers (i.e. 7), so 1cs0 is classified as ORN binding protein

4.6.3 Case for 16 class classification

In this case 16 different classes are selected i.e. BTN, ORN, 4MO, LVS, 9PP, PQQ, XLS,
RET, 2GP, MGN, BOX, FLP, MTX, TDG, NTM and STY. For performing the
classification for 16 different classes 120 pair wise classifiers are learnt. The detail of

these classifiers is given below
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(BTN-ORN), (BTN-4MO), (BTN-LVS), (BTN-9PP), (BTN-PQQ), (BTN-XLS ), (BTN-
RET), (BTN-2GP), (BTN-MGN), (BTN-BOX), (BTN-FLP), (BTN-MTX), (BTN-TDG),
(BTN-NTM), (BTN-STY), (ORN-4MO), (ORN-LVS), (ORN-9PP), (ORN-PQQ), (ORN-
XLS), (ORN-RET), (ORN-2GP), (ORN-MGN), (ORN-BOX), (ORN-FLP), (ORN-
MTX),(ORN-TDG),(ORN-NTM),(ORN-STY),(4MO-LVS),(4MO-9PP),(4MO-

PQQ),(4MO-XLS),(4MO-RET),  (4MO-2GP), (4MO-MGN), (4MO-BOX),(4MO-
FLP),(4MO-MTX),(4MO-TDG),(4MO-NTM), (4MO-STY), (LVS-9PP), (LVS-PQQ),
(LVS-XLS),(LVS-RET),  (LVS-2GP),  (LVS-MGN),(LVS-BOX),(LVS-FLP),(LVS-
MTX),(LVS-NTM),(LVS-STY),(9PP-PQQ),(9PP-XLS),(9PP-RET), (9PP-2GP), (9PP-
MGN), (9PP-BOX), (9PP-FLP),(9PP-MTX), (9PP-TDG),(9PP-NTM),(9PP-STY), (PQQ-
XLS), (PQQ-RET), (PQQ-2GP), (PQQ-MGN), (PQQ-BOX), (PQQ-FLP), (PQQ-MTX),
(PQQ-TDG), (PQQ-NTM), (PQQ-STY), (XLS-RET), (XLS-2GP),(XLS-MGN),(XLS-
BOX), (XLS-FLP),(XLS-MTX), (XLS-TDG),(XLS-NTM),(XLS-STY), (2GP-MGN),
(2GP-BOX), (2GP-FLP), (2GP-MTX), (2GP-TDG), (2GP-NTM), (2GP-STY), (MGN-
BOX), (MGN-FLP), (MGN-MTX), (MGN-TDG), (MGN-NTM), (MGN-STY), (BOX-
FLP), (BOX-MTX), (BOX-TDG), (BOX-NTM), (BOX-STY), (FLP-MTX), (FLP-TDG),
(FLP-NTM), (FLP-STY), (MTX-TDG), (MTX-NTM), (MTX-STY), (TDG-NTM),

(TDG-STY) and (NTM-STY) classifier.

4.6.3.1 Classifying “lswp” as biotin binding protein

1swp is given as input to the set of the classifiers for classification. A voting table is
created and the votes for every class are calculated. The class which takes the most votes

will be selected as corresponding binding class. The voting table for the 1swp is given in
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Appendix B. As it can be seen from the voting table that the class BTN is selected by

most of the classifiers (i.e. 11) so 1swp is classified as biotin binding protein.

4.6.3.2 Classifying “luaz” as retinal binding protein

luaz is given as input to the set of the classifiers for classification. The voting table for
the 1luaz is given in Appendix B. As it can be seen from the voting table that the class
RET is selected by most of the classifiers (i.e.12), so 1uaz is classified as retinal binding

protein.

4.6.3.3 Classifying “1flg” as PQQ binding protein

1flg is given as input to the set of the classifiers for classification. The voting table for the
1flg is given in Appendix B. As it can be seen from the voting table that the class PQQ is

selected by most of the classifiers (i.e. 12), so 1flg is classified as PQQ binding protein.

4.6.3.4 Classifying “3xis” as XLS binding protein

3xis is given as input to the set of the classifiers for classification. The voting table for the
3xis is given in Appendix B. As it can be seen from the voting table that the class XLS is

selected by most of the classifiers (i.e. 11), so 3xis is classified as XLS binding protein.

4.6.3.5 Classifying “1vIf” as 4MO binding protein

1vif is given as input to the set of the classifiers for classification. The voting table for the
1vif is given in Appendix B. As it can be seen from the voting table that the class 4MO is

selected by most of the classifiers (i.e. 11), so 1vif is classified as 4MO binding protein.
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4.6.3.6 Classifying “1kyi” as LVS binding protein

1kyi is given as input to the set of the classifiers for classification. The voting table for
the 1kyi is given in Appendix B. As it can be seen from the voting table that the class
LVS is selected by most of the classifiers (i.e. 12), so 1kyi is classified as LVS binding

protein.

4.6.3.7 Classifying “1lvu” as 9PP binding protein

1lvu is given as input to the set of the classifiers for classification. The voting table for
the 1lvu is given in Appendix B. As it can be seen from the voting table that the class 9PP

is selected by most of the classifiers (i.e. 11), so 1lvu is classified as 9PP binding protein.

4.6.3.8 Classifying “1cs0” as ORN binding protein

1cs0 is given as input to the set of the classifiers for classification. The voting table for
the 1csO is given in Appendix B. As it can be seen from the voting table that the class
ORN is selected by most of the classifiers (i.e. 11), so 1cs0 is classified as ORN binding

protein.

4.6.3.9 Classifying “1bu4” as 2GP binding protein

1bu4 is given as input to the set of the classifiers for classification. The voting table for
the 1bu4 is given in Appendix B. As it can be seen from the voting table that the class
2GP is selected by most of the classifiers (i.e. 12), so 1bu4 is classified as 2GP binding

protein.

4.6.3.10 Classifying “1mro” as MGN binding protein
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1mro is given as input to the set of the classifiers for classification. The voting table for
the 1mro is given in Appendix B. As it can be seen from the voting table that the class
MGN is selected by most of the classifiers (i.e. 12), so 1mro is classified as MGN

binding protein.

4.6.3.11 Classifying “lais” as BOX binding protein

lais is given as input to the set of the classifiers for classification. The voting table for the
lais is given in Appendix B. As it can be seen from the voting table that the class BOX is

selected by most of the classifiers (i.e. 13), so lais is classified as BOX binding protein.

4.6.3.12 Classifying “1dvt” as FLP binding protein

1dvt is given as input to the set of the classifiers for classification. The voting table for
the 1dvt is given in Appendix B. As it can be seen from the voting table that the class
FLP is selected by most of the classifiers (i.e. 13), so 1ldvt is classified as FLP binding

protein.

4.6.3.13 Classifying “1ddr” as MTX binding protein

1ddr is given as input to the set of the classifiers for classification. The voting table for
the 1ddr is given in Appendix B. As it can be seen from the voting table that the class
MTX is selected by most of the classifiers (i.e. 14), so 1ddr is classified as MTX binding

protein.

4.6.3.14 Classifying “1gap” as NTM binding protein
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1qgap is given as input to the set of the classifiers for classification. The voting table for
the 1gap is given in Appendix B. As it can be seen from the voting table that the class
NTM is selected by most of the classifiers (i.e. 13), so 1qgap is classified as NTM binding

protein.

4.6.3.15 Classifying “1ghx” as STY binding protein

1ghx is given as input to the set of the classifiers for classification. The voting table for
the 1ghx is given in Appendix B. As it can be seen from the voting table that the class
NTM is selected by most of the classifiers (i.e. 14), so 1ghx is classified as NTM binding
protein while in reality 1ghx is STY binding protein. (1ghx cannot be classified by our

system correctly)

4.6.3.16 Classifying “1h5t” as TDG binding protein

1h5t is given as input to the set of the classifiers for classification. The voting table for
the 1h5t is given in Appendix B. As it can be seen from the voting table that the class
NTM and MTX are selected by most of the classifiers (i.e. 11), so 1h5t is classified as
NTM and MTX binding protein, while in reality 1h5t binds with TDG. (1h5t cannot be

classified by our system correctly).

4.6.4 Efficiency of the current method

Theoretically our multi class classification method converts the M-class problem into
M(M-1)/2 learning problems [26]. So in order to make a decision for classification
quadratic numbers of the classifiers should be checked. So this method works slower a bit
then other classification methods. The advantages of this method is that it is more

accurate then the other methods available, as discussed in detail in the below comparison
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with the other methods which also try to perform classification. The method maintain
high precision and recall when it is applied on the 2,4 and 8 classes. Although the
precision of the method is declined to 0.87 when 16 classes are considered, it is much
more better then the other methods like top down classification and bottom up
classification. A more detail comparison is considered below text using the G coupled

receptors.

4.7 Comparison of Classification Techniques using G-protein coupled
receptors

G-protein coupled receptors (GPCR) becomes part of research focus because of the
molecular mechanisms that are involved in the GPCR functions. Many techniques have
been devised to classify the GPCR proteins, e.g. top down clustering, bottom up
clustering, Gene-Ontology. Due to the lack of functional classification on other common
proteins across different techniques, GPCR proteins will be used as a case study for the

comparisons of these classification techniques with the technique presented in this thesis.

Gene-ontology is a non-computational classification technique. It does a thorough
review across literatures to devise a classification technique based on the properties of
proteins, as well as how they are classified by other literatures. For verification purpose
on the correctness of its classification, it further performs laboratory experiments to
determine the actual protein functions and thus its classification [27]. The classification
conducted by Gene-ontology will be used as the point of reference for comparisons of

correctness across the other three computational classification techniques, i.e. top down
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clustering, bottom up clustering and the presented technique. Precision and recall are

used as a measure for

4.7.1 Functional classification of class GPCRMGR
The following diagrams illustrate the functional classification of GPCRMGR class by

Gene-ontology, top down clustering, bottom up clustering and presented techniques. Due
to space limitations, the sequences of the proteins are not shown in the diagrams though
they are used for the classification of the proteins. Instead, their names are presented
base on the Swissprot format. The actual sequences of these proteins are given in the

appendix attached to the thesis.

CASR_BOVIN
CASR_HUMAN
CASR_RAT

Metabotropic
glutamate

group

MGR1_CAEEL,
MGR1_RAT,
MGR5_HUMAN,
MGR2_HUMAN,
MGR4_RAT,
MGR3_RAT,
MGR8_HUMAN,
MGRA HIIMAN pte

Figure 6 Functional classification of GPCRMGR by Gene-Ontology
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4.7.2 Precision and Recall results for functional classification of class

GPCRMGR (Experimental Results)

Type of Classification Precision Recall
Top Down Classification 1.0 1.0
2-Class Classification
Top Down Classification 0.5 1.0
4-Class Classification
Top Down Classification 0.25 1.0
8-Class Classification
Top Down Classification 0.2 1.0
16-Class Classification
Bottom up Classification 1.0 1.0
2-Class Classification
Bottom up Classification 0.5 1.0
4-Class Classification
Bottom up Classification 0.25 1.0
8-Class Classification

Bottom up Classification 0.125 1.0
16-Class Classification

Proposed Method 1.0 1.0
2 Class Classification

Proposed Method 1.0 1.0

4 Class Classification
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Proposed Method 1.0 1.0

8 Class Classification

Proposed Method 0.8 1.0

16 Class Classification

4.8 Advantages of the presented technique
The presented technique provides the details of the structures of the active site, which are

responsible for the binding. Since the technique is based on the structure, it can more
accurately perform the classification. Because the new technique only compares the sub
structures of the active site instead of calculcating the distributions of the properties in the
environment of the active site, it is more faster then other structure-based techniques.

4.9 Limitations of the newly presented technique

As the technique is based on structure, in the absence of structural information, no
classification can be performed by the technique. In this regards top down clustering and
bottom up clustering techniques are advantageous since they can perform classification
given only the sequence information though the classification performed by the new
structure based technique is more accurate and provide more insight to the functional

classification by explaining the sub structure of the active site in detail.
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5 Future Work

Currently the technique is used to study and analyze the active sites of the proteins and
extract the sub structures from this site for discovering the functional motifs. Future work
can be done in several aspects of the proteomics. This ranges from motif by motif
interaction, functionally important sub sequence discovery and applications in
visualization areas. Some details of the applications of the current techniques are given
below.

5.1 Sub Sequence patterns based Functional Motif discovery

Though advances in structural genomics can now approximate the structure of the protein
from its sequence (primary structure), currently these techniques are still in development.
A technique with 100% correct results for predicting the tertiary structure of the proteins

from the primary structure has yet not been achieved.

In this situation, often the primary structure is used to predict the functional properties of
the protein. As the current technique is developed using the information coming from the
tertiary structures, currently it is based on the experimental information of the proteins
complexes whose structure has already been revealed. So in order to use the technique for
the proteins whose tertiary structures has yet not been found, further research work will
be done to understand the relationships of these sub structures of the active site to the
primary structure of the proteins. Once the sub sequence patterns of these sub structures
are found, these sub sequences can be directly used to predict the functional motifs in the

proteins and to estimate the functions of the unknown proteins.
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5.2 Motif by Motif interaction of Proteins
Current studies of protein-protein interaction are done at the domain level. A domain

contains multiple structural and functional motifs. In order to study these interactions in
more details, a lower level of motif-by-motif interaction can be applied. Currently the
technique is using ligands-protein complexes for developing these sub structures, in
future the protein-protein complexes can be used to develop a motif-by-motif interaction

system.

5.3 Structural/Functional Visualizations bridging (Pathway
Characterization)

Currently the fields of morphological visualizations that deal with the structural
visualizations of the proteins and the physiological visualizations that deal with the
biochemical involvement of these proteins in the cellular pathways are two different
streams. The morphological visualizations are normally used by the biologists for
understanding the structural details of the proteins and their relationships with each other.
The physiological visualizations are normally used by the biochemists to study the

different chemical processes for the proteins.

Currently there is no interfacing between these two kinds of visualizations, so a
biochemist can either look on the functional side in terms of the chemical reactions of the
proteins or can see the morphological visualization in terms of protein structures. No
visualizations exist which can map the morphological visualizations to the physiological
visualizations. The sub structures of the active sites can be clustered according to their

functional properties. These clustered sub structure will then act as a bridge between
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these two kinds of visualizations. Further more these clustering can be done in multiple

layers, thus using these sub structures to represent different cellular pathways.

The basic idea of pathway characterization using these sub structures is given below.

Pathway Characterization

Physiological Morphological
Visualization 1 Visualization 4
Sub Structures of Sub Structures of
Active Sites Active Sites

Morphological Sub Structure I Physiological
Visualization 1 Clusters Visualization 4

m/ N\

Morphological Physiological Physiological Morphological
Visualization 2 Visualization 2 Visualization 3 Visualization 3

Sub Structures of
Active Sites
Sub Structures of
Active Sites

Figure 7 Pathway characterization by bridging physiological and morphological
visualization
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5.4 Conclusion
As theory of co-evolution of proteins says that evolutionary pressure is exerted on the

functionally important regions, the possibility that the sub structures inside the active
sites remain preserved is much more higher the preservation of the whole active site.
Biochemistry explains the importance of the tertiary structure of protein for the functional
identification and classification, although some aspects of tertiary structure have been
used for finding functionally important regions, the small sub structures of the active sites
have not been used previously to discover functional motifs. The technique presented in
this paper tries to utilize these sub structure inside the active sites to detect functionally
important regions in proteins. The advantage of using this technique for predicting the
functionally important regions in the proteins is that the technique uses experimental data
instead of putative interfaces to extract the substructures from the active site that are
functionally important. The technique is successfully applied to perform the functional
classification of proteins when the structure of the protein is given. The technique cannot
only be used for functional motif discovery but can also be utilized to other problems that

lie in the structures to functions relationships domain.
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Appendix A

CASR_BOVIN 1085 AA. EXTRACELLULAR CALCIUM-SENSING RECEPTOR
PRECURSOR (CASR) (PARATHYROID CELL CALCIUM-SENSING RECEPTOR).

MALYSCCWILLAFSTWCTSAYGPDQRAQKKGD I I LGGLFP IHFGVAVKDQDLKSRPESVECIRYNFRGFRWLQ
AMIFAIEEINSSPALLPNMTLGYRIFDTCNTVSKALEATLSFVAQNKIDSLNLDEFCNCSEHIPST IAVVGAT
GSGISTAVANLLGLFY IPQVSYASSSRLLSNKNQFKSFLRT IPNDEHQATAMAD I IEYFRWNWVGT IAADDDY
GRPGIEKFREEAEERDICIDFSEL1SQYSDEEKIQQVVEVIQNSTAKVIVVFSSGPDLEPLIKEIVRRNITGR
IWLASEAWASSSL IAMPEYFHVVGGT I GFGLKAGQ I PGFREFLQKVHPRKSVHNGFAKEFWEETFNCHLQEGA
KGPLPVDTFLRGHEEGGARLSNSPTAFRPLCTGEENISSVETPYMDYTHLRISYNVYLAVYSIAHALQDIYTC
IPGRGLFTNGSCAD I KKVEAWQVLKHLRHLNFTSNMGEQVTFDECGDLAGNYS 1 INWHLSPEDGS IVFKEVGY
YNVYAKKGERLF INDEKILWSGFSREVPFSNCSRDCLAGTRKGI IEGEPTCCFECVECPDGEYSDETDASACD
KCPDDFWSNENHTSCIAKEIEFLSWTEPFGIALTLFAVLGIFLTAFVLGVFIKFRNTPIVKATNRELSYLLLF
SLLCCFSSSLFFIGEPQDWTCRLRQPAFGISFVLCISCILVKTNRVLLVFEAKIPTSFHRKWWGLNLQFLLVF
LCTFMQIVICAIWLNTAPPSSYRNHELEDEI IFITCHEGSLMALGFLIGYTCLLAAICFFFAFKSRKLPENFN
EAKFITFSMLIFFIVWISFIPAYASTYGKFVSAVEVIAILAASFGLLACIFFENKVY I ILFKPSRNTIEEVRCS
TAAHAFKVAARATLRRSNVSRQRSSSLGGSTGSTPSSS 1 SSKSNSEDPFPQQQPKRQKQPQPLALSPHNAQQP
QPRPPSTPQPQPQSQQPPRCKQKVIFGSGTVTFSLSFDEPQKTAVAHRNSTHQTSLEAQKNNDALTKHQALLP
LQCGETDSELTSQETGLQGPVGEDHQLEMEDPEEMSPALVVSNSRSFVISGGGSTVTENMLRS

CASR_HUMAN 1078 AA. EXTRACELLULAR CALCIUM-SENSING RECEPTOR
PRECURSOR (CASR) (PARATHYROID CELL CALCIUM-SENSING RECEPTOR).

MAFYSCCWVLLALTWHTSAYGPDQRAQKKGD I I LGGLFP IHFGVAAKDQDLKSRPESVECIRYNFRGFRWLQA
MIFAIEEINSSPALLPNLTLGYRIFDTCNTVSKALEATLSFVAQNKIDSLNLDEFCNCSEHIPSTIAVVGATG
SGVSTAVANLLGLFY I1PQVSYASSSRLLSNKNQFKSFLRT IPNDEHQATAMAD I IEYFRWNWVGT IAADDDYG
RPGIEKFREEAEERDICIDFSEL 1SQYSDEEEIQHVVEVIQNSTAKVIVVFSSGPDLEPLIKEIVRRNITGKI
WLASEAWASSSL IAMPQYFHVVGGT I GFALKAGQ I PGFREFLKKVHPRKSVHNGFAKEFWEETFNCHLQEGAK
GPLPVDTFLRGHEESGDRFSNSSTAFRPLCTGDENISSVETPY IDYTHLRISYNVYLAVYSIAHALQDIYTCL
PGRGLFTNGSCAD I KKVEAWQVLKHLRHLNFTNNMGEQVTFDECGDLVGNYS 1 INWHLSPEDGSIVFKEVGYY
NVYAKKGERLF INEEKILWSGFSREVPFSNCSRDCLAGTRKGI IEGEPTCCFECVECPDGEYSDETDASACNK
CPDDFWSNENHTSCIAKEIEFLSWTEPFGIALTLFAVLGIFLTAFVLGVFIKFRNTPIVKATNRELSYLLLFS
LLCCFSSSLFFIGEPQDWTCRLRQPAFGISFVLCISCILVKTNRVLLVFEAKIPTSFHRKWWGLNLQFLLVFL
CTEMQIVICVIWLYTAPPSSYRNQELEDEI IFITCHEGSLMALGFLIGYTCLLAAICFFFAFKSRKLPENFNE
AKFITESMLIFFIVWISFIPAYASTYGKFVSAVEVIAILAASFGLLACIFFENKTY I ILFKPSRNTIEEVRCST
AAHAFKVAARATLRRSNVSRKRSSSLGGSTGSTPSSS I SSKSNSEDPFPQPERQKQQQPLALTQQEQQQQPLT
LPQQQRSQQQPRCKQKV IFGSGTVTFSLSFDEPQKNAMAHRNSTHONSLEAQKSSDTLTRHQPLLPLQCGETD
LDLTVQETGLQGPVGGDQRPEVEDPEELSPALVVSSSQSFVISGGGSTVTENVVNS

CASR_RAT 1079 AA. EXTRACELLULAR CALCIUM-SENSING RECEPTOR
PRECURSOR (CASR) (PARATHYROID CELL CALCIUM-SENSING RECEPTOR).

MASYSCCLALLALAWHSSAY GPDQRAQKKGDIILGGLFPIHFGVAAKDQDLKSRPESVECIRYNFRG
FRWLQAMIFAIEEINSSPSLLPNMTLGYRIFDTCNTVSKALEATLSFVAQNKIDSLNLDEFCNCSEHIPS
TIAVVGATGSGVSTAVANLLGLFYIPQVSYASSSRLLSNKNQYKSFLRTIPNDEHQATAMADIIEYFR
WNWVGTIAADDDYGRPGIEKFREEAEERDICIDFSELISQYSDEEEIQQVVEVIQNSTAKVIVVFSSGP
DLEPLIKEIVRRNITGRIWLASEAWASSSLIAMPEYFHVVGGTIGFGLKAGQIPGFREFLQKVHPRKSV
HNGFAKEFWEETFNCHLQEGAKGPLPVDTFVRSHEEGGNRLLNSSTAFRPLCTGDENINSVETPYMD
YEHLRISYNVYLAVYSIAHALQDIYTCLPGRGLFTNGSCADIKKVEAWQVLKHLRHLNFTNNMGEQ
VTFDECGDLVGNYSIINWHLSPEDGSIVFKEVGYYNVYAKKGERLFINEEKILWSGFSREVPFSNCSR
DCQAGTRKGIIEGEPTCCFECVECPDGEYSGETDASACDKCPDDFWSNENHTSCIAKEIEFLAWTEPF
GIALTLFAVLGIFLTAFVLGVFIKFRNTPIVKATNRELSYLLLFSLLCCFSSSLFFIGEPQDWTCRLRQP
AFGISFVLCISCILVKTNRVLLVFEAKIPTSFHRKWWGLNLQFLLVFLCTFMQILICHHIWLYTAPPSSYR



NHELEDEIFITCHEGSLMALGSLIGY TCLLAAICFFFAFKSRKLPENFNEAKFITFSMLIFFIVWISFIPA
YASTYGKFVSAVEVIAILAASFGLLACIFFNKVY IILFKPSRNTIEEVRSSTAAHAFKVAARATLRRPNI
SRKRSSSLGGSTGSIPSSSISSKSNSEDRFPQPERQKQQQPLSLTQQEQQQQPLTLHPQQQQQPQQPRC
KQKVIFGSGTVTFSLSFDEPQKNAMAHRNSMRQNSLEAQRSNDTLGRHQALLPLQCADADSEMTIQ
ETGLQGPMVGDHQPEMESSDEMSPALVMSTSRSFVISGGGSSVTENVLHS

MGR1_CAEEL 999 AA. PROBABLE METABOTROPIC GLUTAMATE RECEPTOR MGL-1.

MDKKWSLEQRWLHLLNQQFLDCLNHLFNHYRRLSTFQKPPS I IRHMFSVLALAIQILANVNVVAQTTEAVDLA
PPPKVRQIRIPGDILIGGVFPVHSKSLNGDEPCGE IAETRGVHRVEAMLYALDQ INSQNDFLRGYKLGALILD
SCSNPAYALNQSLDFVRDMIGSSEASDYVCLDGSDPNLKKQSQKKNVAAVVGGSYSSVSVQLANLLRLFRIAQ
VSPASTNADLSDKNRFEYFARTVPSDDYQAMAMVE IAVKFKWSYVSLVYSADEYGELGADAFKKEARKKGICI
ALEERIQNKKESFTES INNLVQKLQPEKNVGATVVVLFVGTEY IPDILRYTAERMKLTSGAKKR I IWLASESW
DRNNDKYTAGDNRLAAQGAIVLMLASQKVPSFEEYFMSLHPGTEAFERNKWLRELWQVKYKCEFDTPPGSTAS
RCED I1KQSTEGFNADDKVQFV IDAVYATAHGLQSMKQA ICPDDAIENHWI SRYSKQPE I CHAMQN IDGSDFYQ
NYLLKVNFTGKT ISIFSSFRLSPFSD 1VGKRFRFSPQGDGPASYT ILTYKPKSMDKKRRMTDDESSPSDYVEI
GHWSENNLT I'YEKNLWWDPDHTPVSVCSLPCK IGFRKQL IKDEQCCWACSKCEDYEYL INETHCVGCEQGWWP
TKDRKGCFDLSLSQLKYMRWRSMYSLVPTILAVFGIIATLFVIVVYVIYNETPVVKASGRELSY ILLISMIMC
YCMTFVLLSKPSAIVCAIKRTGIGFAFSCLYSAMFVKTNRIFRIFSTRSAQRPRFISP 1SQVVMTAMLAGVQL
I1GSLIWLSVVPPGWRHHYPTRDQVVLTCNVPDHHFLYSLAYDGFLIVLCTTYAVKTRKVPENFNETKFIGFSM
YTTCVVWLSWIFFFFGTGSDFQIQTSSLCISISMSANVALACIFSPKLWI I LFEKHKNVRKQEGESMLNKSSR
SLGNCSSRLCANSIDEPNQYTALLTDSTRRRSSRKTSQPTSTSSAHDTFL

MGR1_HUMAN 1194 AA. METABOTROPIC GLUTAMATE RECEPTOR 1
PRECURSOR.

MVGLLLFFFPAIFLEVSLLPRSPGRKVLLAGASSQRSVARMDGDV I 1 GALFSVHHQPPAEKVPERKCGE IREQ
YGIQRVEAMFHTLDKINADPVLLPNITLGSEIRDSCWHSSVALEQSIEFIRDSL1SIRDEKDGINRCLPDGQS
LPPGRTKKP IAGV I1GPGSSSVAIQVONLLQLFDIPQIAYSATSIDLSDKTLYKYFLRVVPSDTLQARAMLDIV
KRYNWTYVSAVHTEGNYGESGMDAFKELAAQEGLC IAHSDK1YSNAGEKSFDRLLRKLRERLPKARVVVCFCE
GMTVRGLLSAMRRLGVVGEFSL IGSDGWADRDEVIEGYEVEANGG I TIKLQSPEVRSFDDYFLKLRLDTNTRN
PWFPEFWQHRFQCRLPGHLLENPNFKRICTGNESLEENYVQDSKMGFV INATYAMAHGLQNMHHALCPGHVGL
CDAMKP IDGSKLLDFLIKSSFIGVSGEEVWFDEKGDAPGRYD IMNLQYTEANRYDYVHVGTWHEGVLNIDDYK
1QMNKSGVVRSVCSEPCLKGQ 1KV IRKGEVSCCWICTACKENEYVQDEFTCKACDLGWWPNADLTGCEP IPVR
YLEWSNIEPITAIAFSCLGILVTLFVTLIFVLYRDTPVVKSSSRELCY I ILAGIFLGYVCPFTLIAKPTTTSC
YLQRLLVGLSSAMCYSALVTKTNRIARILAGSKKKICTRKPRFMSAWAQVITASILISVQLTLVVTLIIMEPP
MPILSYPSIKEVYLICNTSNLGVVAPLGYNGLL IMSCTYYAFKTRNVPANFNEAKY TAFTMYTTCIH IWLAFVP
IYFGSNYKIITTCFAVSLSVTVALGCMFTPKMY 11 lAKPERNVRSAFTTSDVVRMHVGDGKLPCRSNTFLNIF
RRKKAGAGNANSNGKSVSWSEPGGGQVPKGQHMWHRLSVHVKTNETACNQTAVIKPLTKSYQGSGKSLTFSDT
STKTLYNVEEEEDAQP IRFSPPGSPSMVVHRRVPSAATTPPLPPHLTAEETPLFLAEPALPKGLPPPLQQQQQ
PPPQQKSLMDQLQGVVSNFSTAIPDFHAVLAGPGGPGNGLRSLYPPPPPPQHLQMLPLQLSTFGEELVSPPAD
DDDDSERFKLLQEYVYEHEREGNTEEDELEEEEEDLQAASKLTPDDSPALTPPSPFRDSVASGSSVPSSPVSE
SVLCTPPNVSYASVILRDYKQSSSTL

MGR1_RAT 1199 AA. METABOTROPIC GLUTAMATE RECEPTOR 1 PRECURSOR.

MVRLLLIFFPMIFLEMSILPRMPDRKVLLAGASSQRSVARMDGDV I 1 GALFSVHHQPPAEKVPERKCGE IREQ
YGIQRVEAMFHTLDKINADPVLLPNITLGSEIRDSCWHSSVALEQSIEFIRDSL1SIRDEKDGLNRCLPDGQT
LPPGRTKKPIAGVIGPGSSSVAIQVQNLLQLFDIPQIAYSATSIDLSDKTLYKYFLRVVPSDTLQARAMLD IV
KRYNWTYVSAVHTEGNYGESGMDAFKELAAQEGLCIAHSDKIYSNAGEKSFDRLLRKLRERLPKARVVVCFCE
GMTVRGLLSAMRRLGVVGEFSL IGSDGWADRDEV IEGYEVEANGGI T IKLQSPEVRSFDDYFLKLRLDTNTRN
PWFPEFWQHRFQCRLPGHLLENPNFKKVCTGNESLEENYVQDSKMGFV INATYAMAHGLQNMHHALCPGHVGL
CDAMKP IDGRKLLDFL IKSSFVGVSGEEVWFDEKGDAPGRYD IMNLQYTEANRYDYVHVGTWHEGVLNIDDYK
1QMNKSGMVRSVCSEPCLKGQ 1KV IRKGEVSCCWICTACKENEFVQDEFTCRACDLGWWPNAELTGCEP IPVR
YLEWSDIESIIAIAFSCLGILVTLFVTLIFVLYRDTPVVKSSSRELCY 1 ILAGIFLGYVCPFTLIAKPTTTSC
YLQRLLVGLSSAMCYSALVTKTNRIARILAGSKKKICTRKPRFMSAWAQV I TASILISVQLTLVVTLI IMEPP
MPILSYPSIKEVYLICNTSNLGVVAPVGYNGLL IMSCTYYAFKTRNVPANFNEAKY TAFTMYTTCI IWLAFVP



IYFGSNYKIITTCFAVSLSVTVALGCMFTPKMY 11 LAKPERNVRSAFTTSDVVRMHVGDGKLPCRSNTFLNIF
RRKKPGAGNANSNGKSVSWSEPGGRQAPKGQHVWQRLSVHVKTNETACNQTAVIKPLTKSYQGSGKSLTFSDA
STKTLYNVEEEDNTPSAHFSPPSSPSMVVHRRGPPVATTPPLPPHLTAEETPLFLADSV 1PKGLPPPLPQQQP
QQPPPQQPPQQPKSLMDQLQGVVTNFGSGIPDFHAVLAGPGTPGNSLRSLYPPPPPPQHLQMLPLHLSTFQEE
SISPPGEDIDDDSERFKLLQEFVYEREGNTEEDELEEEEDLPTASKLTPEDSPALTPPSPFRDSVASGSSVPS
SPVSESVLCTPPNVTYASVILRDYKQSSSTL

MGR2_HUMAN 872 AA. METABOTROPIC GLUTAMATE RECEPTOR 2 PRECURSOR.

MGSLLALLALLPLWGAVAEGPAKKVLTLEGDLVLGGLFPVHQKGGPAEDCGPVNEHRGIQRLEAMLFALDRIN
RDPHLLPGVRLGAHILDSCSKDTHALEQALDFVRASLSRGADGSRHICPDGSYATHGDAPTAITGVIGGSYSD
VSIQVANLLRLFQIPQISYASTSAKLSDKSRYDYFARTVPPDFFQAKAMAEILRFFNWTYVSTEASEGDYGET
GIEAFELEARARNICVATSEKVGRAMSRAAFEGVVRALLQKPSARVAVLFTRSEDARELLAASQRLNASFTWV
ASDGWGALESVVAGSEGAAEGAITIELASYP ISDFASYFQSLDPWNNSRNPWFREFWEQRFRCSFRQRDCAAH
SLRAVPFEQESKIMFVVNAVYAMAHALHNMHRALCPNTTRLCDAMRPVNGRRLYKDFVLNVKFDAPFRPADTH
NEVRFDRFGDGIGRYNIFTYLRAGSGRYRYQKVGYWAEGLTLDTSL IPWASPSAGPLAASRCSEPCLQNEVKS
VQPGEVCCWLCIPCQPYEYRLDEFTCADCGLGYWPNASLTGCFELPQEY IRWGDAWAVGPVTIACLGALATLF
VLGVFVRHNATPVVKASGRELCY ILLGGVFLCYCMTFIFIAKPSTAVCTLRRLGLGTAFSVCYSALLTKTNRI
ARIFGGAREGAQRPRF ISPASQVAICLAL 1SGQLL IVVAWLVVEAPGTGKETAPERREVVTLRCNHRDASMLG
SLAYNVLLIALCTLYAFNTRKCPENFNEAKFIGFTMYTTCH IWLALLPIFYVTSSDYRVQTTTMCVSVSLSGS
VVLGCLFAPKLHI ILFQPQKNVVSHRAPTSRFGSAAARASSSLGQGSGSQFVPTVCNGREVVDSTTSSL

MGR2_RAT 872 AA. METABOTROPIC GLUTAMATE RECEPTOR 2 PRECURSOR.

MESLLGFLALLLLWGAVAEGPAKKVLTLEGDLVLGGLFPVHQKGGPAEECGPVNEHRGIQRLEAMLFALDRIN
RDPHLLPGVRLGAHILDSCSKDTHALEQALDFVRASLSRGADGSRHICPDGSYATHSDAPTAVTGVIGGSYSD
VSIQVANLLRLFQIPQISYASTSAKLSDKSRYDYFARTVPPDFFQAKAMAEILRFFNWTYVSTVASEGDYGET
GIEAFELEARARNICVATSEKVGRAMSRAAFEGVVRALLQKPSARVAVLFTRSEDARELLAATQRLNASFTWYV
ASDGWGALESVVAGSERAAEGAITIELASYP ISDFASYFQSLDPWNNSRNPWFREFWEERFHCSFRQRDCAAH
SLRAVPFEQESKIMFVVNAVYAMAHALHNMHRALCPNTTHLCDAMRPVYNGRRLYKDFVLNVKFDAPFRPADTD
DEVRFDRFGDGIGRYNIFTYLRAGSGRYRYQKVGYWAEGLTLDTSFIPWASPSAGPLPASRCSEPCLQNEVKS
VQPGEVCCWLCIPCQPYEYRLDEFTCADCGLGYWPNASLTGCFELPQEY IRWGDAWAVGPVTIACLGALATLF
VLGVFVRHNATPVVKASGRELCY ILLGGVFLCYCMTFVFIAKPSTAVCTLRRLGLGTAFSVCYSALLTKTNRI
ARIFGGAREGAQRPRFISPASQVAICLAL 1SGQLL IVAAWLVVEAPGTGKETAPERREVVTLRCNHRDASMLG
SLAYNVLLIALCTLYAFKTRKCPENFNEAKFIGFTMYTTCI IWLAFLPIFYVTSSDYRVQTTTMCVSVSLSGS
VVLGCLFAPKLHI ILFQPQKNVVSHRAPTSRFGSAAPRASANLGQGSGSQFVPTVCNGREVVDSTTSSL

MGR3_HUMAN 877 AA. METABOTROPIC GLUTAMATE RECEPTOR 3 PRECURSOR.

MLTRLQVLTLALFSKGFLLSLGDHNFLRREIKIEGDLVLGGLFPINEKGTGTEECGR INEDRGIQRLEAMLFA
IDEINKDDYLLPGVKLGVHILDTCSRDTYALEQSLEFVRASLTKVDEAEYMCPDGSYAIQENIPLLIAGVIGG
SYSSVSIQVANLLRLFQIPQISYASTSAKLSDKSRYDYFARTVPPDFYQAKAMAEILRFFNWTYVSTVASEGD
YGETGIEAFEQEARLRNICIATAEKVGRSNIRKSYDSVIRELLQKPNARVVVLFMRSDDSREL IAAASRANAS
FTWVASDGWGAQES I IKGSEHVAYGAITLELASQPVRQFDRYFQSLNPYNNHRNPWFRDFWEQKFQCSLQNKR
NHRRVCDKHLAIDSSNYEQESK IMFVVNAVYAMAHALHKMQRTLCPNTTKLCDAMKILDGKKLYKDYLLKINF
TAPFNPNKDADS IVKFDTFGDGMGRYNVFNFQNVGGKYSYLKVGHWAETLSLDVNS IHWSRNSVPTSQCSDPC
APNEMKNMQPGDVCCWICIPCEPYEYLADEFTCMDCGSGQWPTADLTGCYDLPEDY IRWEDAWAIGPVTIACL
GFMCTCMVVTVFIKHNNTPLVKASGRELCY ILLFGVGLSYCMTFFFIAKPSPV ICALRRLGLGSSFAICYSAL
LTKTNCIARIFDGVKNGAQRPKFISPSSQVFICLGLILVQIVMVSVWL ILEAPGTRRYTLAEKRETVILKCNV
KDSSMLISLTYDVILVILCTVYAFKTRKCPENFNEAKFIGFTMYTTCI IWLAFLPIFYVTSSDYRVQTTTMCI
SVSLSGFVVLGCLFAPKVHI ILFQPQKNVVTHRLHLNRFSVSGTGTTYSQSSASTYVPTVCNGREVLDSTTSS
L

MGR3_RAT 879 AA. METABOTROPIC GLUTAMATE RECEPTOR 3 PRECURSOR.

MKMLTRLQILMLALFSKGFLLSLGDHNFMRRE IKIEGDLVLGGLFP INEKGTGTEECGRINEDRGIQRLEAML
FAIDEINKDNYLLPGVKLGVHILDTCSRDTYALEQSLEFVRASLTKVDEAEYMCPDGSYAIQENIPLLIAGVI



GGSYSSVSIQVANLLRLFQIPQISYASTSAKLSDKSRYDYFARTVPPDFYQAKAMAE ILRFFNWTYVSTVASE
GDYGETGIEAFEQEARLRNICIATAEKVGRSNIRKSYDSV IRELLQKPNARVVVLFMRSDDSREL 1AAANRVN
ASFTWVASDGWGAQES IVKGSEHVAYGAI TLELASHPVRQFDRYFQSLNPYNNHRNPWFRDFWEQKFQCSLQN
KRNHRQVCDKHLAIDSSNYEQESKIMFVVNAVYAMAHALHKMQRTLCPNTTKLCDAMKILDGKKLYKEYLLK
NFTAPFNPNKGADS IVKFDTFGDGMGRYNVFNLQQTGGKYSYLKVGHWAETLSLDVDS IHWSRNSVPTSQCSD
PCAPNEMKNMQPGDVCCWICIPCEPYEYLVDEFTCMDCGPGQWPTADLSGCYNLPEDY IKWEDAWAIGPVTIA
CLGFLCTCIVITVFIKHNNTPLVKASGRELCY ILLFGVSLSYCMTFFFIAKPSPVICALRRLGLGTSFAICYS
ALLTKTNCIARIFDGVKNGAQRPKFISPSSQVFICLGLILVQIVMVSVWLILETPGTRRYTLPEKRETVILKC
NVKDSSMLISLTYDVVLVILCTVYAFKTRKCPENFNEAKFIGFTMYTTCHI IWLAFLPIFYVTSSDYRVQTTTM
CISVSLSGFVVLGCLFAPKVHIVLFQPQKNVVTHRLHLNRFSVSGTATTYSQSSASTYVPTVCNGREVLDSTT
SSL

MGR4_HUMAN 912 AA. METABOTROPIC GLUTAMATE RECEPTOR 4 PRECURSOR.

MPGKRGLGWWWARLPLCLLLSLYGPWMPSSLGKPKGHPHMNSIRIDGD I TLGGLFPVHGRGSEGKPCGELKKE
KGIHRLEAMLFALDRINNDPDLLPNITLGARILDTCSRDTHALEQSLTFVQALIEKDGTEVRCGSGGPPIITK
PERVVGVIGASGSSVSIMVANILRLFKIPQISYASTAPDLSDNSRYDFFSRVVPSDTYQAQAMVD IVRALKWN
YVSTVASEGSYGESGVEAF 1QKSREDGGVCIAQSVKIPREPKAGEFDK I IRRLLETSNARAVI IFANEDDIRR
VLEAARRANQTGHFFWMGSDSWGSKIAPVLHLEEVAEGAVT I LPKRMSVRGFDRYFSSRTLDNNRRN IWFAEF
WEDNFHCKLSRHALKKGSHVKKCTNRER IGQDSAYEQEGKVQFV IDAVYAMGHALHAMHRDLCPGRVGLCPRM
DPVDGTQLLKY IRNVNFSGIAGNPVTFNENGDAPGRYD I YQYQLRNDSAEYKV IGSWTDHLHLR IERMHWPGS
GQQLPRSI1CSLPCQPGERKKTVKGMPCCWHCEPCTGYQYQVDRYTCKTCPYDMRPTENRTGCRPIP I IKLEWG
SPWAVLPLFLAVVGIAATLFVVITFVRYNDTP IVKASGRELSYVLLAGIFLCYATTFLMIAEPDLGTCSLRRI
FLGLGMSISYAALLTKTNRIYRIFEQGKRSVSAPRFISPASQLAITFSLISLQLLGICVWFVVDPSHSVVDFQ
DQRTLDPRFARGVLKCDISDLSLICLLGYSMLLMVTCTVYAIKTRGVPETFNEAKPIGFTMYTTCIVWLAFIP
IFFGTSQSADKLY IQTTTLTVSVSLSASVSLGMLYMPKVY I 1 LFHPEQNVPKRKRSLKAVVTAATMSNKFTQK
GNFRPNGEAKSELCENLEAPALATKQTYVTYTNHAI

MGR4_RAT 912 AA. METABOTROPIC GLUTAMATE RECEPTOR 4 PRECURSOR.

MSGKGGWAWWWARLPLCLLLSLYAPWVPSSLGKPKGHPHMNS IRIDGD I TLGGLFPVHGRGSEGKACGELKKE
KGIHRLEAMLFALDRINNDPDLLPNITLGARILDTCSRDTHALEQSLTFVQALIEKDGTEVRCGSGGPPIITK
PERVVGVIGASGSSVSIMVANILRLFKIPQISYASTAPDLSDNSRYDFFSRVVPSDTYQAQAMVD IVRALKWN
YVSTLASEGSYGESGVEAFI1QKSRENGGVCIAQSVKIPREPKTGEFDK I IKRLLETSNARGI I IFANEDDIRR
VLEAARRANQTGHFFWMGSDSWGSKSAPVLRLEEVAEGAVT I LPKRMSVRGFDRYFSSRTLDNNRRN IWFAEF
WEDNFHCKLSRHALKKGSHIKKCTNRER IGQDSAYEQEGKVQFV IDAVYAMGHALHAMHRDLCPGRVGLCPRM
DPVDGTQLLKY IRNVNFSGIAGNPVTFNENGDAPGRYDI'YQYQLRNGSAEYKV IGSWTDHLHLR IERMQWPGS
GQQLPRSI1CSLPCQPGERKKTVKGMACCWHCEPCTGYQYQVDRYTCKTCPYDMRPTENRTSCQP IP IVKLEWD
SPWAVLPLFLAVVGIAATLFVVVTFVRYNDTP IVKASGRELSYVLLAGIFLCYATTFLMIAEPDLGTCSLRRI
FLGLGMSISYAALLTKTNRIYRIFEQGKRSVSAPRFISPASQLAITFILISLQLLGICVWFVVDPSHSVVDFQ
DQRTLDPRFARGVLKCDISDLSLICLLGYSMLLMVTCTVYAIKTRGVPETFNEAKP IGFTMYTTCIVWLAFIP
IFFGTSQSADKLY IQTTTLTVSVSLSASVSLGMLYMPKVY 1 I LFHPEQNVPKRKRSLKAVVTAATMSNKFTQK
GNFRPNGEAKSELCENLETPALATKQTYVTYTNHAI

MGRS_HUMAN 1212 AA. METABOTROPIC GLUTAMATE RECEPTOR 5 PRECURSOR.

MVLLLILSVLLLKEDVRGSAQSSERRVVAHMPGDI 1 1 GALFSVHHQPTVDKVHERKCGAVREQYG IQRVEAML
HTLERINSDPTLLPNITLGCEIRDSCWHSAVALEQSIEF IRDSL I SSEEEEGLVRCVDGSSSSFRSKKP VGV
IGPGSSSVAIQVQNLLQLFNIPQIAYSATSMDLSDKTLFKYFMRVVPSDAQQARAMVD IVKRYNWTYVSAVHT
EGNYGESGMEAFKDMSAKEG ICIAHSYKTYSNAGEQSFDKLLKKLTSHLPKARVVACFCEGMTVRGLLMAMRR
LGLAGEFLLLGSDGWADRYDVTDGYQREAVGG I TIKLQSPDVKWFDDYYLKLRPETNHRNPWFQEFWQHRFQC
RLEGFPQENSKYNKTCNSSLTLKTHHVQDSKMGFV INATYSMAYGLHNMQMSLCPGYAGLCDAMKP IDGRKLL
ESLMKTNFTGVSGDT I LFDENGDSPGRYE IMNFKEMGKDYFDY INVGSWDNGELKMDDDEVWSKKSN I 1RSVC
SEPCEKGQIKVIRKGEVSCCWTCTPCKENEYVFDEYTCKACQLGSWPTDDLTGCDLIPVQYLRWGDPEP IAAV
VFACLGLLATLFVTVVFI1YRDTPVVKSSSRELCY 1 ILAGICLGYLCTFCLIAKPKQIYCYLQRIGIGLSPAM
SYSALVTKTNRIARILAGSKKKICTKKPRFMSACAQLVIAFILICIQLGI IVALFIMEPPDIMHDYPSIREVY
LICNTTNLGVVTPLGYNGLL ILSCTFYAFKTRNVPANFNEAKY TAFTMYTTCI IWLAFVPIYFGSNYKIITMC



FSVSLSATVALGCMFVPKVY I 1 LAKPERNVRSAFTTSTVVRMHVGDGKSSSAASRSSSLVNLWKRRGSSGETL
RYKDRRLAQHKSE I ECFTPKGSMGNGGRATMSSSNGKSVTWAQNEKSSRGQHLWQRLS IHINKKENPNQTAV I
KPFPKSTESRGLGAGAGAGGSAGGVGATGGAGCAGAGPGGPESPDAGPKALYDVAEAEEHFPAPARPRSPSPI
STLSHRAGSASRTDDDVPSLHSEPVARSSSSQGSLMEQISSVVTRFTANISELNSMMLSTAAPSPGVGAPLCS
SYLIPKEIQLPTTMTTFAEIQPLPAIEVTGGAQPAAGAQAAGDAARESPAAGPEAAAAKPDLEELVALTPPSP
FRDSVDSGSTTPNSPVSESALCIPSSPKYDTLIIRDYTQSSSSL

MGR5_RAT 1203 AA. METABOTROPIC GLUTAMATE RECEPTOR 5 PRECURSOR.

MVLLLILSVLLLKEDVRGSAQSSERRVVAHMPGDI 1 1 GALFSVHHQPTVDKVHERKCGAVREQYG IQRVEAML
HTLERINSDPTLLPNITLGCEIRDSCWHSAVALEQSIEFIRDSL 1SSEEEEGLVRCVDGSSSFRSKKPIVGVI
GPGSSSVAIQVONLLQLFNIPQUIAYSATSMDLSDKTLFKYFMRVVPSDAQQARAMVDIVKRYNWTYVSAVHTE
GNYGESGMEAFKDMSAKEGICIAHSYKITYSNAGEQSFDKLLKKLRSHLPKARVVACFCEGMTVRGLLMAMRRL
GLAGEFLLLGSDGWADRYDVTDGYQREAVGGITIKLQSPDVKWFDDYYLKLRPETNLRNPWFQEFWQHRFQCR
LEGFAQENSKYNKTCNSSLTLRTHHVQDSKMGFV INATYSMAYGLHNMQMSLCPGYAGLCDAMKP IDGRKLLD
SLMKTNFTGVSGDMILFDENGDSPGRYE IMNFKEMGKDYFDY INVGSWDNGELKMDDDEVWSKKNN I IRSVCS
EPCEKGQIKVIRKGEVSCCWTCTPCKENEYVFDEYTCKACQLGSWPTDDLTGCDL 1PVQYLRWGDPEP 1AAVV
FACLGLLATLFVTVIFI1YRDTPVVKSSSRELCY 1 ILAGICLGYLCTFCLIAKPKQIYCYLQRIGIGLSPAMS
YSALVTKTNRIARILAGSKKKICTKKPRFMSACAQLVIAFILICIQLGIIVALFIMEPPDIMHDYPSIREVYL
ICNTTNLGVVTPLGYNGLLILSCTFYAFKTRNVPANFNEAKY TAFTMYTTCI IWLAFVP1YFGSNYKI ITMCF
SVSLSATVALGCMFVPKVY I I LAKPERNVRSAFTTSTVVRMHVGDGKSSSAASRSSSLVNLWKRRGSSGETLR
YKDRRLAQHKSE I ECFTPKGSMGNGGRATMSSSNGKSVTWAQNEKSTRGQHLWQRLSVH INKKENPNQTAVIK
PFPKSTENRGPGAAAGGGSGPGVAGAGNAGCTATGGPEPPDAGPKALYDVAEAEESFPAAARPRSPSPISTLS
HLAGSAGRTDDDAPSLHSETAARSSSSQGSLMEQISSVVTRFTANISELNSMMLSTAATPGPPGTPICSSYLI
PKEIQLPTTMTTFAEIQPLPAIEVTGGAQGATGVSPAQETPTGAESAPGKPDLEELVALTPPSPFRDSVDSGS
TTPNSPVSESALCIPSSPKYDTLI IRDYTQSSSSL

MGR6_HUMAN 877 AA. METABOTROPIC GLUTAMATE RECEPTOR 6 PRECURSOR.

MARPRRAREPLLVALLPLAWLAQAGLARAAGSVRLAGGLTLGGLFPVHARGAAGRACGPLKKEQGVHRLEAML
YALDRVNADPELLPGVRLGARLLDTCSRDTYALEQALSFVQAL IRGRGDGDEVGVRCPGGVPPLRPAPPERVV
AVVGASASSVS IMVANVLRLFAIPQISYASTAPELSDSTRYDFFSRVVPPDSYQAQAMVD IVRALGWNYVSTL
ASEGNYGESGVEAFVQISREAGGVCIAQS IKIPREPKPGEFSKV IRRLMETPNARGI I IFANEDD IRRVLEAA
RQANLTGHFLWVGSDSWGAKTSP ILSLEDVAVGAITILPKRASIDGFDQYFMTRSLENNRRN IWFAEFWEENF
NCKLTSSGTQSDDSTRKCTGEERIGRDSTYEQEGKVQFV IDAVYAIAHALHSMHQALCPGHTGLCPAMEPTDG
RMLLQY IRAVRFNGSAGTPVMFNENGDAPGRYD IFQYQATNGSASSGGYQAVGQWAETLRLDVEALQWSGDPH
EVPSSLCSLPCGPGERKKMVKGVPCCWHCEACDGYRFQVDEFTCEACPGDMRPTPNHTGCRPTPVVRLSWSSP
WAAPPLLLAVLGIVATTTVVATFVRYNNTPIVRASGRELSYVLLTGIFLIYAITFLMVAEPGAAVCAARRLFL
GLGTTLSYSALLTKTNRIYRIFEQGKRSVTPPPFISPTSQLVITFSLTSLQVVGMIAWLGARPPHSVIDYEEQ
RTVDPEQARGVLKCDMSDLSLIGCLGYSLLLMVTCTVYAIKARGVPETFNEAKPIGFTMYTTCI IWLAFVPIF
FGTAQSAEKIYIQTTTLTVSLSLSASVSLGMLYVPKTYV ILFHPEQNVQKRKRSLKATSTVAAPPKGEDAEAH
K

MGR6_RAT 871 AA. METABOTROPIC GLUTAMATE RECEPTOR 6 PRECURSOR.

MGRLPVLLLWLAWWLSQAGIACGAGSVRLAGGLTLGGLFPVHARGAAGRACGALKKEQGVHRLEAMLYALDRV
NADPELLPGVRLGARLLDTCSRDTYALEQALSFVQAL IRGRGDGDEASVRCPGGVPPLRSAPPERVVAVVGAS
ASSVSIMVANVLRLFAIPQISYASTAPELSDSTRYDFFSRVVPPDSYQAQAMVD IVRALGWNYVSTLASEGNY
GESGVEAFVQISREAGGVCIAQS I KIPREPKPGEFHKVIRRLMETPNARG I 1 IFANEDD IRRVLEATRQANLT
GHFLWVGSDSWGSKISPILNLEEEAVGAITILPKRAS IDGFDQYFMTRSLENNRRN IWFAEFWEENFNCKLTS
SGGQSDDSTRKCTGEER IGQDSAYEQEGKVQFV IDAVYAIAHALHSMHQALCPGHTGLCPAMEPTDGRTLLHY
IRAVRFNGSAGTPVMFNENGDAPGRYD IFQYQATNGSASSGGYQAVGQWAEALRLDMEVLRWSGDPHEVPPSQ
CSLPCGPGERKKMVKGVPCCWHCEACDGYRFQVDEFTCEACPGDMRPTPNHTGCRPTPVVRLTWSSPWAALPL
LLAVLGIMATTTIMATFMRHNDTP IVRASGRELSYVLLTGIFLIYAITFLMVAEPCAAICAARRLLLGLGTTL
SYSALLTKTNRIYRIFEQGKRSVTPPPFISPTSQLVITFGLTSLQVVGV IAWLGAQPPHSVIDYEEQRTVDPE
QARGVLKCDMSDLSLIGCLGYSLLLMVTCTVYAIKARGVPETFNEAKP IGFTMYTTCIIWLAFVPIFFGTAQS
AEKTYIQTTTLTVSLSLSASVSLGMLYVPKTYVILFHPEQNVQKRKRSLKKTSTMAAPPQNENAEDAK



MGR7_HUMAN 915 AA. METABOTROPIC GLUTAMATE RECEPTOR 7 PRECURSOR.

MVQLRKLLRVLTLMKFPCCVLEVLLCALAAAARGQEMYAPHSIRIEGDVTLGGLFPVHAKGPSGVPCGD IKRE
NGIHRLEAMLYALDQINSDPNLLPNVTLGARILDTCSRDTYALEQSLTFVQALIQKDTSDVRCTNGEPPVFVK
PEKVVGV IGASGSSVS IMVANILRLFQIPQISYASTAPELSDDRRYDFFSRVVPPDSFQAQAMVD I VKALGWN
YVSTLASEGSYGEKGVESFTQISKEAGGLCIAQSVRIPQERKDRTIDFDRI1KQLLDTPNSRAVV IFANDEDI
KQILAAAKRADQVGHFLWVGSDSWGSKINPLHQHED IAEGAI T IQPKRATVEGFDAYFTSRTLENNRRNVWFA
EYWEENFNCKLT ISGSKKEDTDRKCTGQER IGKDSNYEQEGKVQFV I DAVYAMAHALHHMNKDLCADYRGVCP
EMEQAGGKKLLKY IRNVNFNGSAGTPVMFNKNGDAPGRYDIFQYQTTNTSNPGYRL IGQWTDELQLN IEDMQW
GKGVREIPASVCTLPCKPGQRKKTQKGTPCCWTCEPCDGYQYQFDEMTCQHCPYDQRPNENRTGCQDIP I IKL
EWHSPWAV IPVFLAMLGI IATIFVMATFIRYNDTPIVRASGRELSYVLLTGIFLCY 11 TFLMIAKPDVAVCSF
RRVFLGLGMCISYAALLTKTNRIYRIFEQGKKSVTAPRLISPTSQLAITSSLISVQLLGVFIWFGVDPPNITI
DYDEHKTMNPEQARGVLKCDITDLQIICSLGYSILLMVTCTVYAIKTRGVPENFNEAKPIGFTMYTTCIVWLA
FIPIFFGTAQSAEKLY IQTTTLTISMNLSASVALGMLYMPKVY I I FHPELNVQKRKRSFKAVVTAATMSSRL
SHKPSDRPNGEAKTELCENVDPNSPAAKKKYVSYNNLVI

MGR7_RAT 915 AA. METABOTROPIC GLUTAMATE RECEPTOR 7 PRECURSOR.

MVQLGKLLRVLTLMKFPCCVLEVLLCVLAAAARGQEMYAPHSIRIEGDVTLGGLFPVHAKGPSGVPCGD IKRE
NGIHRLEAMLYALDQINSDPNLLPNVTLGARILDTCSRDTYALEQSLTFVQALIQKDTSDVRCTNGEPPVFVK
PEKVVGV IGASGSSVS IMVANILRLFQIPQISYASTAPELSDDRRYDFFSRVVPPDSFQAQAMVD I'VKALGWN
YVSTLASEGSYGEKGVESFTQISKEAGGLCIAQSVRIPQERKDRT IDFDR I IKQLLDTPNSRAVVIFANDEDI
KQILAAAKRADQVGHFLWVGSDSWGSKINPLHQHED TAEGAITIQPKRATVEGFDAYFTSRTLENNRRNVWFA
EYWEENFNCKLT ISGSKKEDTDRKCTGQER IGKDSNYEQEGKVQFV IDAVYAMAHALHHMNKDLCADYRGVCP
EMEQAGGKKLLKY IRHVNFNGSAGTPVMFNKNGDAPGRYDIFQYQTTNTTNPGYRL IGQWTDELQLN IEDMQW
GKGVREIPSSVCTLPCKPGQRKKTQKGTPCCWTCEPCDGYQYQFDEMTCQHCPYDQRPNENRTGCQNIP I IKL
EWHSPWAVIPVFLAMLGI TAT IFVMATFIRYNDTPIVRASGRELSYVLLTGIFLCY I ITFLMIAKPDVAVCSF
RRVFLGLGMCISYAALLTKTNRIYRIFEQGKKSVTAPRLISPTSQLAITSSLISVQLLGVFIWFGVDPPNITI
DYDEHKTMNPEQARGVLKCDITDLQIICSLGYSILLMVTCTVYAIKTRGVPENFNEAKPIGFTMYTTCIVWLA
FIPIFFGTAQSAEKLY IQTTTLTISMNLSASVALGMLYMPKVY I I FHPELNVQKRKRSFKAVVTAATMSSRL
SHKPSDRPNGEAKTELCENVDPNSPAAKKKYVSYNNLVI

MGR8_HUMAN 908 AA. METABOTROPIC GLUTAMATE RECEPTOR 8 PRECURSOR.

MVCEGKRSASCPCFFLLTAKFYWILTMMQRTHSQEYAHSIRVDGD I I LGGLFPVHAKGERGVPCGELKKEKGI
HRLEAMLYAIDQINKDPDLLSNITLGVRILDTCSRDTYALEQSLTFVQAL IEKDASDVKCANGDPP IFTKPDK
1SGVIGAAASSVSIMVANITLRLFKIPQISYASTAPELSDNTRYDFFSRVVPPDSYQAQAMVDIVTALGWNYVS
TLASEGNYGESGVEAFTQISREIGGVCIAQSQKIPREPRPGEFEKI IKRLLETPNARAVIMFANEDDIRRILE
AAKKLNQSGHFLWIGSDSWGSKIAPVYQQEEIAEGAVT I LPKRAS IDGFDRYFRSRTLANNRRNVWFAEFWEE
NFGCKLGSHGKRNSHIKKCTGLERIARDSSYEQEGKVQFV IDAVYSMAYALHNMHKDLCPGY IGLCPRMSTID
GKELLGY IRAVNFNGSAGTPVTFNENGDAPGRYDIFQYQITNKSTEYKV IGHWTNQLHLKVEDMQWAHREHTH
PASVCSLPCKPGERKKTVKGVPCCWHCERCEGYNYQVDELSCELCPLDQRPNMNRTGCQL 1P I 1 KLEWHSPWA
VVPVFVAILGIIATTFVIVTFVRYNDTPIVRASGRELSYVLLTGIFLCYSITFLMIAAPDT 1 ICSFRRVFLGL
GMCFSYAALLTKTNRIHRIFEQGKKSVTAPKFISPASQLVITFSLISVQLLGVFVWFVVDPPHITIDYGEQRT
LDPEKARGVLKCDISDLSLICSLGYSILLMVTCTVYANKTRGVPETFNEAKPIGFTMYTTCIIWLAFIPIFFG
TAQSAEKMY IQTTTLTVSMSLSASVSLGMLYMPKVY I 1 l FHPEQNVQKRKRSFKAVVTAATMQSKL 1QKGNDR
PNGEVKSELCESLETNTSSTKTTY1SYSNHSI

MGR8_MOUSE 908 AA. METABOTROPIC GLUTAMATE RECEPTOR 8 PRECURSOR.

MVCEGKRSTSCPCFFLLTAKFYWILTMMQRTHSQEYAHSIRLDGD I I LGGLFPVHAKGERGVPCGDLKKEKGI
HRLEAMLYAIDQTNKDPDLLSNITLGVRILDTCSRDTYALEQSLTFVQAL IEKDASDVKCANGDPP IFTKPDK
1SGVIGAAASSVSIMVANILRLFKIPQISYASTAPELSDNTRYDFFSRVVPPDSYQAQAMVDIVTALGWNYVS
TLASEGNYGESGVEAFTQISREIGGVCIAQSQKIPREPRPGEFEKI IKRLLETPNARAVIMFANEDDIRGILE
AAKKLNQSGHFLWIGSDSWGSKIAPVYQQEEIAEGAVT ILPKRAS IDGFDRYFRSRTLANNRRNVWFAEFSEG
NFGCKSGSHGKRNSHIKKCTGLERIARDSSYEQEGKVQFV IDAVYSMAYALHNMHKELCPGY IGLCPRMVTID
GKELLGY IRAVNFNGSAGTPVTFNENGDAPGRYDIFQYQINNKSTEYKI IGHWTNQLHLKVEDMQWANREHTH



PASVCSLPCKPGERKKTVKGVPCCWHCGRCEGYNYQVDELSCELCPLDQRPNINRTGCQRIP I IKLEWHSPWA
VVPVLIAILGIIATTFVIVTFVRYNDTPIVRASGRELSYVLLTGIFLCYSITFLMIAAPDT I ICSFRRIFLGL
GMCFSYAALLTKTNRIHRIFEQGKKSVTAPKFISPASQLVITFSLISVQLLGVFVWFVVDPPHTIIDYGEQRT
LDPENARGVLKCDISDLSLICSLGYSILLMVTCTVYAIKTRGVPETFNEAKPIGFTMYTTCIHIWLAFIPIFFG
TAQSAEKMY 1QTTTLTVSMSLSASVSLGMLYMPKVY I 1 l FHPEQNVQKRKRSFKAVVTAATMQSKL 1QKGNDR
PNGEVKSELCESLETNTSSTKTTY1SYSDHSI

MGR8_RAT 908 AA. METABOTROPIC GLUTAMATE RECEPTOR 8 PRECURSOR.

MVCEGKRLASCPCFFLLTAKFYWILTMMQRTHSQEYAHSIRVDGDIILGGLFPVHAKGERGVPCGEL
KKEKGIHRLEAMLYAIDQINKDPDLLSNITLGVRILDTCSRDTYALEQSLTFVQALIEKDASDVKCAN
GDPPIFTKPDKISGVIGAAASSVSIMVANILRLFKIPQISYASTAPELSDNTRYDFFSRVVPPDSYQAQA
MVDIVTALGWNYVSTLASEGNYGESGVEAFTQISREIGGVCIAQSQKIPREPRPGEFEKIIKRLLETPN
ARAVIMFANEDDIRRILEAAKKLNQSGHFLWIGSDSWGSKIAPVYQQEEIAEGAVTILPKRASIDGFD
RYFRSRTLANNRRNVWFAEFWEENFGCKLGSHGKRNSHIKKCTGLERIARDSSYEQEGKVQFVIDA
VYSMAYALHNMHKERCPGYIGLCPRMVTIDGKELLGYIRAVNFNGSAGTPVTFNENGDAPGRYDIF
QYQINNKSTEYKIGHWTNQLHLKVEDMQWANREHTHPASVCSLPCKPGERKKTVKGVPCCWHCE
RCEGYNYQVDELSCELCPLDQRPNINRTGCQRIPIKLEWHSPWAVVPVFIAILGIATTFVIVTFVRYN
DTPIVRASGRELSYVLLTGIFLCYSITFLMIAAPDTIICSFRRIFLGLGMCFSYAALLTKTNRIHRIFEQG
KKSVTAPKFISPASQLVITFSLISVQLLGVFVWFVVDPPHTIIDY GEQRTLDPENARGVLKCDISDLSLI
CSLGYSILLMVTCTVYAIKTRGVPETFNEAKPIGFTMYTTCHWLAFIPIFFGTAQSAEKMYIQTTTLTV
SMSLSASVSLGMLYMPKVY HIFHPEQNVQKRKRSFKAVVTAATMQSKLIQKGNDRPNGEVKSELCE
SLETNTSSTKTTYISYSNHSI



Appendix B (16 Class Classification)

1. Classifying “lswp” as biotin binding protein

Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN ORN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP FLP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP BTN 9PP-TDG TDG
5 BTN-PQQ BTN 9PP-NTM 9PP
6 BTN-XLS BTN 9PP-STY STY
7 BTN-RET BTN PQQ-XLS PQQ
8 BTN-2GP BTN PQQ-RET PQQ
9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BTN PQQ-MGN MGN
11 BTN-FLP BTN PQQ-BOX BOX
12 BTN-MTX BTN PQQ-FLP FLP
13 BTN-TDG BTN PQQ-MTX PQQ
14 BTN-NTM NTM PQQ-TDG PQQ
15 BTN-STY BTN PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET RET




18 ORN-9PP ORN XLS-2GP XLS
19 ORN-PQQ ORN XLS-MGN XLS
20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP 2GP XLS-MTX XLS
23 ORN-MGN MGN XLS-TDG TDG
24 ORN-BOX ORN XLS-NTM NTM
25 ORN-FLP FLP XLS-STY XLS
26 ORN-MTX MTX RET-2GP RET
27 ORN-TDG ORN RET-MGN RET
28 ORN-NTM NTM RET-BOX BOX
29 ORN-STY ORN RET-FLP FLP
30 4MO-LVS 4MO RET-MTX RET
31 4MO-9PP 9PP RET-TDG TDG
32 4MO-PQQ PQQ RET-NTM NTM
33 4MO-XLS XLS RET-STY RET
34 4AMO-RET 4MO 2GP-MGN 2GP
35 4MO-2GP 2GP 2GP-BOX 2GP
36 4MO-MGN MGN 2GP-FLP FLP
37 4MO-BOX BOX 2GP-MTX MTX
38 4MO-FLP FLP 2GP-TDG TDG
39 AMO-MTX MTX 2GP-NTM NTM
40 4AMO-TDG 4MO 2GP-STY STY




Type of Class Selected Type of Class Selected
Classifier Classifier
41 AMO-NTM 4MO MGN-BOX MGN
42 AMO-STY 4MO MGN-MTX MTX
43 LVS-9PP 9PP MGN-FLP FLP
44 LVS-PQQ LVS MGN-TDG TDG
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET RET MGN-STY MGN
47 LVS-2GP 2GP BOX-FLP BOX
48 LVS-MGN LVS BOX-MTX BOX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP FLP BOX-NTM BOX
51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG TDG FLP-MTX MTX
53 LVS-NTM LVS FLP-TDG TDG
o4 LVS-STY LVS FLP-NTM NTM
95 9PP-PQQ PQQ FLP-STY STY
56 9PP-XLS XLS MTX-TDG TDG
S7 9PP-RET 9PP MTX-NTM MTX
58 9PP-2GP 9PP MTX-STY MTX
59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY STY TDG-STY STY




The corresponding voting table for the classes is given as

Class Votes Class Votes
BTN 11 MGN 7
ORN 7 BOX 8
4MO 5 FLP 9
9PP 6 LVS 8
PQQ 7 MTX 9
XLS 7 TDG 9
RET 7 NTM 8
2GP 6 STY 6
2. Classifying “luaz” as retinal binding protein
Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP 9PP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG TDG
) BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS BTN 9PP-STY 9PP
7 BTN-RET RET PQQ-XLS PQQ




8 BTN-2GP 2GP PQQ-RET RET
9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BOX PQQ-MGN MGN
11 BTN-FLP FLP PQQ-BOX BOX
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG TDG PQQ-MTX MTX
14 BTN-NTM BTN PQQ-TDG PQQ
15 BTN-STY BTN PQQ-NTM NTM
16 ORN-4MO 4AMO PQQ-STY PQQ
17 ORN-LVS ORN XLS-RET XLS
18 ORN-9PP ORN XLS-2GP 2GP
19 ORN-PQQ PQQ XLS-MGN XLS
20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG TDG
24 ORN-BOX BOX XLS-NTM XLS
25 ORN-FLP ORN XLS-STY XLS
26 ORN-MTX MTX RET-2GP RET
27 ORN-TDG TDG RET-MGN RET
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY ORN RET-FLP FLP
30 AMO-LVS LVS RET-MTX RET




31 4AMO-9PP AMO RET-TDG RET
32 4AMO-PQQ AMO RET-NTM RET
33 AMO-XLS XLS RET-STY STY
34 AMO-RET RET 2GP-MGN 2GP
35 4AMO-2GP 2GP 2GP-BOX BOX
36 4AMO-MGN 4MO 2GP-FLP FLP
37 4AMO-BOX AMO 2GP-MTX 2GP
38 AMO-FLP FLP 2GP-TDG 2GP
39 AMO-MTX MTX 2GP-NTM 2GP
40 AMO-TDG TDG 2GP-STY 2GP
11 AMO-NTM AMO MGN-BOX MGN
42 AMO-STY STY MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP MGN
44 LVS-PQQ PQQ MGN-TDG MGN
45 LVS-XLS XLS MGN-NTM NTM
46 LVS-RET RET MGN-STY MGN
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN MGN BOX-MTX BOX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP LVS BOX-NTM NTM
51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG TDG FLP-MTX FLP
53 LVS-NTM LVS FLP-TDG FLP




o4 LVS-STY STY FLP-NTM NTM
95 9PP-PQQ PQQ FLP-STY STY
56 9PP-XLS 9PP MTX-TDG TDG
S7 9PP-RET RET MTX-NTM NTM
58 9PP-2GP 9PP MTX-STY STY
59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY STY TDG-STY STY
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 5 MGN 8
ORN 6 BOX 8
4MO 6 FLP 8
9PP 6 LVS 7
PQO 7 MTX 8
XLS 7 TDG 8
RET 12 NTM 7
2GP 9 STY 8




3. Classifying “1flg” as PQQ binding protein

Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP FLP
3 BTN-LVS BTN 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG TDG
5 BTN-PQQ PQQ 9PP-NTM 9PP
6 BTN-XLS BTN 9PP-STY 9PP
7 BTN-RET BTN PQQ-XLS PQQ
8 BTN-2GP 2GP PQQ-RET RET
9 BTN-MGN BTN PQQ-2GP PQQ
10 BTN-BOX BTN PQQ-MGN MGN
11 BTN-FLP FLP PQQ-BOX PQQ
12 BTN-MTX BTN PQQ-FLP PQQ
13 BTN-TDG BTN PQQ-MTX PQQ
14 BTN-NTM NTM PQQ-TDG TDG
15 BTN-STY STY PQQ-NTM PQQ
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS ORN XLS-RET RET




18 ORN-9PP 9PP XLS-2GP XLS
19 ORN-PQQ PQQ XLS-MGN XLS
20 ORN-XLS XLS XLS-BOX XLS
21 ORN-RET ORN XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN MGN XLS-TDG XLS
24 ORN-BOX BOX XLS-NTM XLS
25 ORN-FLP ORN XLS-STY XLS
26 ORN-MTX ORN RET-2GP 2GP
27 ORN-TDG TDG RET-MGN MGN
28 ORN-NTM ORN RET-BOX RET
29 ORN-STY STY RET-FLP RET
30 4MO-LVS LVS RET-MTX MTX
31 4MO-9PP 4MO RET-TDG TDG
32 4MO-PQQ PQQ RET-NTM RET
33 4MO-XLS 4MO RET-STY STY
34 AMO-RET RET 2GP-MGN MGN
35 4MO-2GP 2GP 2GP-BOX BOX
36 4MO-MGN 4MO 2GP-FLP 2GP
37 4MO-BOX BOX 2GP-MTX MTX
38 4AMO-FLP 4MO 2GP-TDG 2GP
39 AMO-MTX 4MO 2GP-NTM 2GP
40 4AMO-TDG TDG 2GP-STY STY




11 AMO-NTM AMO MGN-BOX MGN
42 AMO-STY STY MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP MGN
44 LVS-PQQ PQQ MGN-TDG MGN
45 LVS-XLS XLS MGN-NTM NTM
46 LVS-RET RET MGN-STY MGN
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN LVS BOX-MTX BOX
49 LVS-BOX BOX BOX-TDG TDG
50 LVS-FLP LVS BOX-NTM BOX
51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG LVS FLP-MTX FLP
53 LVS-NTM NTM FLP-TDG FLP
54 LVS-STY STY FLP-NTM FLP
55 9PP-PQQ PQQ FLP-STY STY
56 9PP-XLS 9PP MTX-TDG MTX
57 9PP-RET RET MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY STY
59 9PP-MGN 9PP TDG-NTM NTM
60 NTM-STY NTM TDG-STY TDG

The corresponding voting table for the classes is given as




Class Votes Class Votes
BTN 9 MGN 8
ORN 7 BOX 7
4MO 6 FLP 6
9PP 7 LVS 6
PQQ 12 MTX 8
XLS 8 TDG 7
RET 8 NTM 5
2GP 7 STY 9
4. Classifying “3xis” as XLS binding protein
Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP 9PP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG TDG
5 BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS BTN 9PP-STY 9PP
7 BTN-RET BTN PQQ-XLS XLS
8 BTN-2GP BTN PQQ-RET PQQ




9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BTN PQQ-MGN PQQ
11 BTN-FLP FLP PQQ-BOX PQQ
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG BTN PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG TDG
15 BTN-STY STY PQQ-NTM PQQ
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP XLS
19 ORN-PQQ PQQ XLS-MGN MGN
20 ORN-XLS XLS XLS-BOX XLS
21 ORN-RET ORN XLS-FLP XLS
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN MGN XLS-TDG TDG
24 ORN-BOX BOX XLS-NTM XLS
25 ORN-FLP FLP XLS-STY XLS
26 ORN-MTX ORN RET-2GP 2GP
27 ORN-TDG ORN RET-MGN RET
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY ORN RET-FLP FLP
30 AMO-LVS LVS RET-MTX MTX
31 AMO-9PP AMO RET-TDG RET




32 4MO-PQQ PQQ RET-NTM NTM
33 4MO-XLS XLS RET-STY STY
34 4AMO-RET 4MO 2GP-MGN MGN
35 4MO-2GP 4MO 2GP-BOX 2GP
36 4MO-MGN 4MO 2GP-FLP FLP
37 4MO-BOX BOX 2GP-MTX MTX
38 4AMO-FLP 4MO 2GP-TDG 2GP
39 AMO-MTX MTX 2GP-NTM 2GP
40 4AMO-TDG 4MO 2GP-STY 2GP
41 4AMO-NTM NTM MGN-BOX MGN
42 4AMO-STY STY MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP MGN
44 LVS-PQQ LVS MGN-TDG TDG
45 LVS-XLS XLS MGN-NTM MGN
46 LVS-RET RET MGN-STY STY
47 LVS-2GP LVS BOX-FLP FLP
48 LVS-MGN LVS BOX-MTX MTX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP FLP BOX-NTM BOX
51 LVS-MTX MTX BOX-STY BOX
52 LVS-TDG TDG FLP-MTX FLP
53 LVS-NTM NTM FLP-TDG FLP
54 LVS-STY STY FLP-NTM NTM




95 9PP-PQQ 9PP FLP-STY STY
56 9PP-XLS XLS MTX-TDG TDG
S7 9PP-RET RET MTX-NTM NTM
58 9PP-2GP 2GP MTX-STY STY
59 9PP-MGN MGN TDG-NTM NTM
60 NTM-STY STY TDG-STY STY
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 7 MGN 8
ORN 6 BOX 5
4MO 6 FLP 9
9PP 6 LVS 8
PQQ 8 MTX 10
XLS 11 TDG 6
RET 5) NTM 9
2GP 7 STY 9
5. Classifying “1vIf” as 4MO binding protein
Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN ORN 9PP-BOX 9PP




2 BTN-4MO AMO 9PP-FLP FLP
3 BTN-LVS BTN 9PP-MTX MTX
4 BTN-9PP BTN 9PP-TDG 9PP
5 BTN-PQQ BTN 9PP-NTM NTM
6 BTN-XLS XLS 9PP-STY STY
7 BTN-RET RET PQQ-XLS PQQ
8 BTN-2GP BTN PQQ-RET PQQ
9 BTN-MGN BTN PQQ-2GP 2GP
10 BTN-BOX BOX PQQ-MGN MGN
11 BTN-FLP FLP PQQ-BOX BOX
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG TDG PQQ-MTX PQQ
14 BTN-NTM BTN PQQ-TDG TDG
15 BTN-STY BTN PQQ-NTM NTM
16 ORN-4MO AMO PQQ-STY PQQ
17 ORN-LVS ORN XLS-RET RET
18 ORN-9PP 9PP XLS-2GP 2GP
19 ORN-PQQ ORN XLS-MGN XLS
20 ORN-XLS ORN XLS-BOX XLS
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP 2GP XLS-MTX XLS
23 ORN-MGN ORN XLS-TDG TDG
24 ORN-BOX BOX XLS-NTM NTM




25 ORN-FLP ORN XLS-STY STY
26 ORN-MTX MTX RET-2GP RET
27 ORN-TDG TDG RET-MGN MGN
28 ORN-NTM NTM RET-BOX BOX
29 ORN-STY STY RET-FLP FLP
30 4MO-LVS LVS RET-MTX MTX
31 4MO-9PP 4MO RET-TDG RET
32 4AMO-PQQ 4MO RET-NTM RET
33 4MO-XLS 4MO RET-STY STY
34 4AMO-RET RET 2GP-MGN MGN
35 4MO-2GP 4MO 2GP-BOX 2GP
36 4MO-MGN MGN 2GP-FLP FLP
37 4MO-BOX 4MO 2GP-MTX MTX
38 4MO-FLP 4MO 2GP-TDG 2GP
39 4AMO-MTX MTX 2GP-NTM NTM
40 4AMO-TDG 4MO 2GP-STY STY
41 AMO-NTM 4MO MGN-BOX MGN
42 4AMO-STY 4MO MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP FLP
44 LVS-PQQ LVS MGN-TDG TDG
45 LVS-XLS XLS MGN-NTM MGN
46 LVS-RET LVS MGN-STY MGN
47 LVS-2GP 2GP BOX-FLP BOX




48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP FLP BOX-NTM BOX
51 LVS-MTX LVS BOX-STY BOX
52 LVS-TDG TDG FLP-MTX MTX
53 LVS-NTM LVS FLP-TDG FLP
54 LVS-STY LVS FLP-NTM NTM
55 9PP-PQQ 9PP FLP-STY STY
56 9PP-XLS XLS MTX-TDG TDG
57 O9PP-RET 9PP MTX-NTM NTM
58 9PP-2GP 2GP MTX-STY MTX
59 9PP-MGN MGN TDG-NTM NTM
60 NTM-STY STY TDG-STY STY
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 7 MGN 9
ORN 6 BOX 8
4MO 11 FLP 9
9PP 5 LVS 8
PQQ 4 MTX 10
XLS 6 TDG 7




RET NTM 8
2GP STY 8
6. Classifying “1kyi” as LVS binding protein
Type of Class Selected Type of Classifier Class
Classifier Selected

1 BTN-ORN BTN 9PP-BOX BOX
2 BTN-4MO 4MO 9PP-FLP 9PP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP BTN 9PP-TDG 9PP
5 BTN-PQQ PQQ 9PP-NTM 9PP
6 BTN-XLS XLS 9PP-STY STY
7 BTN-RET RET PQQ-XLS XLS
8 BTN-2GP BTN PQQ-RET RET
9 BTN-MGN MGN PQQ-2GP PQQ
10 BTN-BOX BOX PQQ-MGN PQQ
11 BTN-FLP BTN PQQ-BOX BOX
12 BTN-MTX BTN PQQ-FLP PQQ
13 BTN-TDG TDG PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG TDG
15 BTN-STY STY PQQ-NTM PQQ




16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET XLS
18 ORN-9PP ORN XLS-2GP 2GP
19 ORN-PQQ PQQ XLS-MGN MGN
20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET ORN XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX XLS
23 ORN-MGN ORN XLS-TDG XLS
24 ORN-BOX BOX XLS-NTM XLS
25 ORN-FLP FLP XLS-STY STY
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG ORN RET-MGN MGN
28 ORN-NTM ORN RET-BOX RET
29 ORN-STY ORN RET-FLP RET
30 AMO-LVS LVS RET-MTX RET
31 4MO-9PP AMO RET-TDG TDG
32 4AMO-PQQ PQQ RET-NTM NTM
33 AMO-XLS XLS RET-STY RET
34 AMO-RET 4AMO 2GP-MGN 2GP
35 4AMO-2GP 2GP 2GP-BOX 2GP
36 4AMO-MGN MGN 2GP-FLP FLP
37 4AMO-BOX BOX 2GP-MTX MTX
38 AMO-FLP FLP 2GP-TDG 2GP




39 AMO-MTX MTX 2GP-NTM NTM
40 AMO-TDG AMO 2GP-STY STY
41 AMO-NTM NTM MGN-BOX MGN
42 AMO-STY STY MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP FLP
44 LVS-PQQ PQQ MGN-TDG TDG
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET LVS MGN-STY MGN
47 LVS-2GP LVS BOX-FLP FLP
48 LVS-MGN MGN BOX-MTX BOX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP LVS BOX-NTM BOX
51 LVS-MTX LVS BOX-STY STY
52 LVS-TDG LVS FLP-MTX FLP
53 LVS-NTM LVS FLP-TDG FLP
54 LVS-STY STY FLP-NTM NTM
55 9PP-PQQ 9PP FLP-STY STY
56 9PP-XLS XLS MTX-TDG MTX
57 9PP-RET RET MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY STY
59 9PP-MGN MGN TDG-NTM NTM
60 NTM-STY NTM TDG-STY TDG




The corresponding voting table for the classes is given as

Class Votes Class Votes
BTN 5 MGN 8
ORN 9 BOX 9
4MO 4 FLP 8
9PP 4 LVS 12
PQQ 9 MTX 7
XLS 9 TDG 5
RET 8 NTM 8
2GP 6 STY 9
7. Classifying “1lvu” as 9PP binding protein
Type of Class Selected Type of Classifier | Class Selected
Classifier
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP 9PP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG 9PP
5} BTN-PQQ PQQ 9PP-NTM 9PP
6 BTN-XLS XLS 9PP-STY 9PP
7 BTN-RET RET PQQ-XLS XLS




8 BTN-2GP 2GP PQQ-RET RET
9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BOX PQQ-MGN MGN
11 BTN-FLP BTN PQQ-BOX BOX
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG BTN PQQ-MTX MTX
14 BTN-NTM BTN PQQ-TDG PQQ
15 BTN-STY STY PQQ-NTM PQQ
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP XLS
19 ORN-PQQ PQQ XLS-MGN MGN
20 ORN-XLS ORN XLS-BOX BOX
21 ORN-RET ORN XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX XLS
23 ORN-MGN MGN XLS-TDG XLS
24 ORN-BOX ORN XLS-NTM NTM
25 ORN-FLP ORN XLS-STY STY
26 ORN-MTX MTX RET-2GP RET
27 ORN-TDG TDG RET-MGN MGN
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY STY RET-FLP RET
30 AMO-LVS LVS RET-MTX MTX




31 4MO-9PP AMO RET-TDG TDG
32 4AMO-PQQ AMO RET-NTM NTM
33 AMO-XLS XLS RET-STY RET
34 AMO-RET RET 2GP-MGN 2GP
35 4MO-2GP 4AMO 2GP-BOX 2GP
36 4AMO-MGN MGN 2GP-FLP 2GP
37 4AMO-BOX AMO 2GP-MTX 2GP
38 AMO-FLP AMO 2GP-TDG TDG
39 AMO-MTX MTX 2GP-NTM NTM
40 AMO-TDG TDG 2GP-STY 2GP
41 AMO-NTM AMO MGN-BOX MGN
42 AMO-STY STY MGN-MTX MGN
43 LVS-9PP 9PP MGN-FLP FLP
44 LVS-PQQ PQQ MGN-TDG TDG
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET RET MGN-STY STY
47 LVS-2GP 2GP BOX-FLP FLP
48 LVS-MGN MGN BOX-MTX BOX
49 LVS-BOX BOX BOX-TDG BOX
50 LVS-FLP FLP BOX-NTM NTM
51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG TDG FLP-MTX MTX
53 LVS-NTM NTM FLP-TDG FLP




o4 LVS-STY STY FLP-NTM FLP
95 9PP-PQQ 9PP FLP-STY STY
56 9PP-XLS 9PP MTX-TDG TDG
57 9PP-RET RET MTX-NTM NTM
58 9PP-2GP 9PP MTX-STY MTX
59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY NTM TDG-STY STY
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 5 MGN 10
ORN 6 BOX 6
4MO 6 FLP 7
9PP 11 LVS 4
PQQ 6 MTX 9
XLS 7 TDG 8
RET 9 NTM 9
2GP 8 STY 9




8. Classifying “1cs0” as ORN binding protein

Type of Classifier Class Selected Type of Classifier Class
Selected

1 BTN-ORN ORN 9PP-BOX 9PP
2 BTN-4MO BTN OPP-FLP FLP
3 BTN-LVS BTN 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG 9PP
5 BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS BTN 9PP-STY STY
7 BTN-RET BTN PQQ-XLS XLS
8 BTN-2GP 2GP PQQ-RET RET
9 BTN-MGN MGN PQQ-2GP PQQ
10 BTN-BOX BTN PQQ-MGN MGN
11 BTN-FLP BTN PQQ-BOX PQQ
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG BTN PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG PQQ
15 BTN-STY BTN PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS ORN XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP 2GP
19 ORN-PQQ ORN XLS-MGN MGN




20 ORN-XLS ORN XLS-BOX BOX
21 ORN-RET RET XLS-FLP XLS
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG TDG
24 ORN-BOX ORN XLS-NTM XLS
25 ORN-FLP ORN XLS-STY XLS
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG TDG RET-MGN MGN
28 ORN-NTM ORN RET-BOX RET
29 ORN-STY STY RET-FLP FLP
30 AMO-LVS LVS RET-MTX MTX
31 4MO-9PP AMO RET-TDG RET
32 AMO-PQQ PQQ RET-NTM NTM
33 AMO-XLS AMO RET-STY RET
34 AMO-RET RET 2GP-MGN MGN
35 4AMO-2GP 2GP 2GP-BOX 2GP
36 4AMO-MGN 4AMO 2GP-FLP FLP
37 4AMO-BOX 4MO 2GP-MTX 2GP
38 4AMO-FLP FLP 2GP-TDG TDG
39 AMO-MTX MTX 2GP-NTM 2GP
40 AMO-TDG AMO 2GP-STY 2GP
11 AMO-NTM AMO MGN-BOX BOX
42 AMO-STY STY MGN-MTX MTX




43 LVS-9PP LVS MGN-FLP FLP

44 LVS-PQQ LVS MGN-TDG MGN
45 LVS-XLS XLS MGN-NTM MGN
46 LVS-RET RET MGN-STY STY
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX BOX BOX-TDG BOX
50 LVS-FLP FLP BOX-NTM BOX
51 LVS-MTX LVS BOX-STY STY
52 LVS-TDG LVS FLP-MTX FLP

53 LVS-NTM NTM FLP-TDG TDG
54 LVS-STY LVS FLP-NTM FLP

55 9PP-PQQ PQQ FLP-STY FLP

56 9PP-XLS 9PP MTX-TDG MTX
57 9PP-RET 9PP MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY STY
59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY NTM TDG-STY STY

The corresponding voting table for the classes is given as

Class Votes Class Votes
BTN 8 MGN 9
ORN 11 BOX 6




4MO 6 FLP 10
9PP 6 LVS 7
PQQ 7 MTX 10
XLS 6 TDG 5
RET 8 NTM 6
2GP 8 STY 7
9. Classifying “1bu4” as 2GP binding protein
Type of Class Selected Type of Class
Classifier Classifier Selected
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO 4MO 9PP-FLP FLP
3 BTN-LVS BTN 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG 9PP
5 BTN-PQQ BTN 9PP-NTM NTM
6 BTN-XLS XLS 9PP-STY 9PP
7 BTN-RET BTN PQQ-XLS XLS
8 BTN-2GP 2GP PQQ-RET PQQ
9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BOX PQQ-MGN PQQ
11 BTN-FLP BTN PQQ-BOX PQQ
12 BTN-MTX BTN PQQ-FLP FLP




13 BTN-TDG TDG PQQ-MTX MTX
14 BTN-NTM BTN PQQ-TDG PQQ
15 BTN-STY STY PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP 2GP
19 ORN-PQQ ORN XLS-MGN XLS
20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET ORN XLS-FLP FLP
22 ORN-2GP 2GP XLS-MTX XLS
23 ORN-MGN MGN XLS-TDG TDG
24 ORN-BOX BOX XLS-NTM XLS
25 ORN-FLP ORN XLS-STY XLS
26 ORN-MTX ORN RET-2GP 2GP
27 ORN-TDG ORN RET-MGN MGN
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY STY RET-FLP RET
30 AMO-LVS 4AMO RET-MTX MTX
31 4MO-9PP 9PP RET-TDG RET
32 AMO-PQQ AMO RET-NTM NTM
33 AMO-XLS XLS RET-STY RET
34 AMO-RET RET 2GP-MGN 2GP
35 4AMO-2GP 2GP 2GP-BOX 2GP




36 4AMO-MGN AMO 2GP-FLP FLP
37 AMO-BOX AMO 2GP-MTX 2GP
38 AMO-FLP FLP 2GP-TDG 2GP
39 AMO-MTX 4AMO 2GP-NTM NTM
40 4AMO-TDG 4AMO 2GP-STY 2GP
41 4AMO-NTM 4MO MGN-BOX BOX
42 AMO-STY STY MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP MGN
44 LVS-PQQ PQQ MGN-TDG MGN
45 LVS-XLS XLS MGN-NTM NTM
46 LVS-RET RET MGN-STY MGN
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX BOX BOX-TDG BOX
50 LVS-FLP LVS BOX-NTM BOX
51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG LVS FLP-MTX FLP
53 LVS-NTM LVS FLP-TDG TDG
54 LVS-STY LVS FLP-NTM FLP
55 9PP-PQQ 9PP FLP-STY STY
56 9PP-XLS XLS MTX-TDG MTX
57 9PP-RET RET MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY STY




59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY NTM TDG-STY TDG
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 7 MGN 8
ORN 6 BOX 8
4MO 8 FLP 7
9PP 7 LVS 7
PQQ 6 MTX 8
XLS 11 TDG 5
RET 7 NTM 7
2GP 12 STY 6

10. Classifying “1mro” as MGN binding protein

Type of Class Selected | Type of Classifier | Class Selected
Classifier
1 BTN-ORN BTN 9PP-BOX BOX
2 BTN-4MO 4MO 9PP-FLP FLP
3 BTN-LVS BTN 9PP-MTX MTX
4 BTN-9PP BTN 9PP-TDG 9PP




5 BTN-PQQ PQQ 9PP-NTM 9PP
6 BTN-XLS XLS 9PP-STY STY
7 BTN-RET BTN PQQ-XLS XLS
8 BTN-2GP BTN PQQ-RET PQQ
9 BTN-MGN MGN PQQ-2GP PQQ
10 BTN-BOX BTN PQQ-MGN MGN
11 BTN-FLP FLP PQQ-BOX BOX
12 BTN-MTX BTN PQQ-FLP FLP
13 BTN-TDG BTN PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG PQQ
15 BTN-STY STY PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY STY
17 ORN-LVS LVS XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP 2GP
19 ORN-PQQ PQQ XLS-MGN MGN
20 ORN-XLS ORN XLS-BOX BOX
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP 2GP XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG XLS
24 ORN-BOX BOX XLS-NTM NTM
25 ORN-FLP ORN XLS-STY XLS
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG ORN RET-MGN MGN




28 ORN-NTM ORN RET-BOX BOX
29 ORN-STY STY RET-FLP RET
30 4AMO-LVS 4AMO RET-MTX MTX
31 4AMO-9PP 4AMO RET-TDG TDG
32 4AMO-PQQ PQQ RET-NTM RET
33 4AMO-XLS 4AMO RET-STY STY
34 AMO-RET RET 2GP-MGN MGN
35 4AMO-2GP 2GP 2GP-BOX BOX
36 4AMO-MGN MGN 2GP-FLP 2GP
37 4AMO-BOX AMO 2GP-MTX 2GP
38 AMO-FLP FLP 2GP-TDG TDG
39 AMO-MTX MTX 2GP-NTM 2GP
40 AMO-TDG TDG 2GP-STY 2GP
41 AMO-NTM AMO MGN-BOX MGN
42 4AMO-STY AMO MGN-MTX MGN
43 LVS-9PP LVS MGN-FLP FLP
44 LVS-PQQ LVS MGN-TDG MGN
45 LVS-XLS XLS MGN-NTM MGN
46 LVS-RET RET MGN-STY STY
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX BOX BOX-TDG TDG
50 LVS-FLP FLP BOX-NTM BOX




51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG TDG FLP-MTX FLP
53 LVS-NTM LVS FLP-TDG TDG
54 LVS-STY LVS FLP-NTM FLP
55 9PP-PQQ 9PP FLP-STY FLP
56 9PP-XLS XLS MTX-TDG TDG
S7 9PP-RET 9PP MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY MTX
59 9PP-MGN MGN TDG-NTM NTM
60 NTM-STY NTM TDG-STY TDG
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 8 MGN 12
ORN 7 BOX 9
4MO 7 FLP 10
9PP 5 LVS 6
PQQ 6 MTX 8
XLS 7 TDG 8
RET 6 NTM 5
2GP 9 STY 7




11. Classifying “lais” as BOX binding protein

Type of Class Type of Class
Classifier Selected Classifier Selected

1 BTN-ORN BTN 9PP-BOX BOX
2 BTN-4MO BTN OPP-FLP 9PP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG 9PP
5 BTN-PQQ PQQ 9PP-NTM oPP
6 BTN-XLS XLS 9PP-STY 9PP
7 BTN-RET BTN PQQ-XLS PQQ
8 BTN-2GP BTN PQQ-RET RET
9 BTN-MGN BTN PQQ-2GP PQQ
10 BTN-BOX BOX PQQ-MGN PQQ
11 BTN-FLP FLP PQQ-BOX BOX
12 BTN-MTX BTN PQQ-FLP FLP
13 BTN-TDG TDG PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG PQQ
15 BTN-STY BTN PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS ORN XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP XLS
19 ORN-PQQ ORN XLS-MGN MGN




20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET ORN XLS-FLP FLP
22 ORN-2GP 2GP XLS-MTX XLS
23 ORN-MGN ORN XLS-TDG TDG
24 ORN-BOX BOX XLS-NTM NTM
25 ORN-FLP FLP XLS-STY XLS
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG TDG RET-MGN MGN
28 ORN-NTM NTM RET-BOX BOX
29 ORN-STY ORN RET-FLP RET
30 4MO-LVS LVS RET-MTX MTX
31 4MO-9PP 4MO RET-TDG RET
32 4MO-PQQ 4MO RET-NTM RET
33 4MO-XLS XLS RET-STY STY
34 AMO-RET RET 2GP-MGN 2GP
35 4MO-2GP 2GP 2GP-BOX BOX
36 4MO-MGN MGN 2GP-FLP FLP
37 4MO-BOX BOX 2GP-MTX MTX
38 4MO-FLP 4MO 2GP-TDG TDG
39 4MO-MTX 4MO 2GP-NTM 2GP
40 AMO-TDG 4MO 2GP-STY 2GP
41 4MO-NTM NTM MGN-BOX BOX
42 4AMO-STY STY MGN-MTX MTX




43 LVS-9PP 9PP MGN-FLP MGN
44 LVS-PQQ LVS MGN-TDG TDG
45 LVS-XLS XLS MGN-NTM NTM
46 LVS-RET RET MGN-STY MGN
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN LVS BOX-MTX MTX
49 LVS-BOX BOX BOX-TDG TDG
50 LVS-FLP LVS BOX-NTM BOX
o1 LVS-MTX MTX BOX-STY BOX
52 LVS-TDG LVS FLP-MTX FLP
53 LVS-NTM LVS FLP-TDG TDG
54 LVS-STY STY FLP-NTM FLP
95 9PP-PQQ 9PP FLP-STY STY
56 9PP-XLS XLS MTX-TDG MTX
o7 9PP-RET RET MTX-NTM NTM
58 9PP-2GP 9PP MTX-STY STY
59 9PP-MGN 9PP TDG-NTM TDG
60 NTM-STY NTM TDG-STY STY
The corresponding voting table for the classes is given as

Class Votes Class Votes

BTN 7 MGN 5

ORN 7 BOX 13




4MO 5 FLP 7

9PP 9 LVS 9

PQQ 6 MTX 8

XLS 9 TDG 8

RET 8 NTM 8

2GP 5 STY 6

12. Classifying “1dvt” as FLP binding protein
Type of Class Type of Classifier Class Selected
Classifier Selected

1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP FLP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP 9PP 9PP-TDG TDG
5 BTN-PQQ PQQ 9PP-NTM 9PP
6 BTN-XLS BTN 9PP-STY 9PP
7 BTN-RET BTN PQQ-XLS XLS
8 BTN-2GP 2GP PQQ-RET PQQ
9 BTN-MGN MGN PQQ-2GP PQQ
10 BTN-BOX BTN PQQ-MGN MGN
11 BTN-FLP FLP PQQ-BOX PQQ
12 BTN-MTX MTX PQQ-FLP FLP




13 BTN-TDG BTN PQQ-MTX MTX
14 BTN-NTM BTN PQQ-TDG TDG
15 BTN-STY STY PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET RET
18 ORN-9PP ORN XLS-2GP XLS
19 ORN-PQQ PQQ XLS-MGN XLS
20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET ORN XLS-FLP FLP
22 ORN-2GP 2GP XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG XLS
24 ORN-BOX ORN XLS-NTM XLS
25 ORN-FLP FLP XLS-STY XLS
26 ORN-MTX MTX RET-2GP 2GP
27 ORN-TDG ORN RET-MGN MGN
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY ORN RET-FLP FLP
30 4AMO-LVS LVS RET-MTX RET
31 4MO-9PP 4AMO RET-TDG TDG
32 AMO-PQQ AMO RET-NTM NTM
33 AMO-XLS XLS RET-STY RET
34 AMO-RET RET 2GP-MGN 2GP
35 AMO-2GP AMO 2GP-BOX 2GP




36 4AMO-MGN 4AMO 2GP-FLP FLP
37 4AMO-BOX BOX 2GP-MTX MTX
38 4AMO-FLP FLP 2GP-TDG 2GP
39 AMO-MTX 4AMO 2GP-NTM 2GP
40 4MO-TDG TDG 2GP-STY STY
41 4AMO-NTM 4MO MGN-BOX BOX
42 AMO-STY STY MGN-MTX MTX
43 LVS-9PP 9PP MGN-FLP MGN
44 LVS-PQQ PQQ MGN-TDG TDG
45 LVS-XLS XLS MGN-NTM NTM
46 LVS-RET RET MGN-STY STY
47 LVS-2GP LVS BOX-FLP FLP
48 LVS-MGN LVS BOX-MTX BOX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP LVS BOX-NTM BOX
51 LVS-MTX MTX BOX-STY BOX
52 LVS-TDG TDG FLP-MTX FLP
53 LVS-NTM NTM FLP-TDG FLP
54 LVS-STY STY FLP-NTM FLP
55 9PP-PQQ PQQ FLP-STY FLP
56 9PP-XLS 9PP MTX-TDG TDG
57 9PP-RET RET MTX-NTM NTM
58 9PP-2GP 2GP MTX-STY STY




59 9PP-MGN 9pPP TDG-NTM TDG
60 NTM-STY NTM TDG-STY STY
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 7 MGN 4
ORN 7 BOX 7
4MO 6 FLP 13
9PP 7 LVS 7
PQQ 8 MTX 8
XLS 9 TDG 8
RET 7 NTM 7
2GP 8 STY 7
13. Classifying “1ddr” as MTX binding protein
Type of Classifier Class Type of Class Selected
Selected Classifier
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP 9PP




3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP BTN 9PP-TDG TDG
5 BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS BTN 9PP-STY STY
7 BTN-RET RET PQQ-XLS PQQ
8 BTN-2GP BTN PQQ-RET RET
9 BTN-MGN BTN PQQ-2GP PQQ
10 BTN-BOX BOX PQQ-MGN MGN
11 BTN-FLP BTN PQQ-BOX BOX
12 BTN-MTX MTX PQQ-FLP PQQ
13 BTN-TDG BTN PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG PQQ
15 BTN-STY STY PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY STY
17 ORN-LVS LVS XLS-RET RET
18 ORN-9PP 9PP XLS-2GP 2GP
19 ORN-PQQ ORN XLS-MGN MGN
20 ORN-XLS ORN XLS-BOX BOX
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG XLS
24 ORN-BOX ORN XLS-NTM XLS
25 ORN-FLP FLP XLS-STY XLS




26 ORN-MTX MTX RET-2GP RET
27 ORN-TDG TDG RET-MGN RET
28 ORN-NTM ORN RET-BOX BOX
29 ORN-STY ORN RET-FLP RET
30 AMO-LVS LVS RET-MTX MTX
31 4MO-9PP 4AMO RET-TDG TDG
32 4AMO-PQQ AMO RET-NTM NTM
33 AMO-XLS XLS RET-STY STY
34 AMO-RET RET 2GP-MGN 2GP
35 4AMO-2GP 2GP 2GP-BOX 2GP
36 4AMO-MGN MGN 2GP-FLP 2GP
37 4AMO-BOX BOX 2GP-MTX MTX
38 AMO-FLP FLP 2GP-TDG TDG
39 AMO-MTX MTX 2GP-NTM NTM
40 AMO-TDG AMO 2GP-STY STY
41 AMO-NTM NTM MGN-BOX MGN
42 AMO-STY AMO MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP FLP
44 LVS-PQQ PQQ MGN-TDG TDG
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET RET MGN-STY STY
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN LVS BOX-MTX MTX




49 LVS-BOX BOX BOX-TDG BOX
50 LVS-FLP LVS BOX-NTM BOX
51 LVS-MTX MTX BOX-STY STY
52 LVS-TDG LVS FLP-MTX MTX
53 LVS-NTM LVS FLP-TDG FLP
54 LVS-STY STY FLP-NTM FLP
55 9PP-PQQ PQQ FLP-STY FLP
56 9PP-XLS 9PP MTX-TDG MTX
57 9PP-RET RET MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY STY
59 9PP-MGN MGN TDG-NTM NTM
60 NTM-STY STY TDG-STY TDG
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 8 MGN 5
ORN 8 BOX 9
4MO 4 FLP 7
9PP 4 LVS 10
PQQ 7 MTX 14
XLS 4 TDG 6
RET 10 NTM 8




2GP 6 STY 10
14. Classifying “1qgap” as NTM binding protein
Type of Class Selected Type of Class
Classifier Classifier Selected

1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP FLP
3 BTN-LVS LVS 9PP-MTX MTX
4 BTN-9PP BTN 9PP-TDG 9PP
5 BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS XLS 9PP-STY 9PP
7 BTN-RET BTN PQQ-XLS XLS
8 BTN-2GP BTN PQQ-RET PQQ
9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BOX PQQ-MGN MGN
11 BTN-FLP BTN PQQ-BOX PQQ
12 BTN-MTX BTN PQQ-FLP PQQ
13 BTN-TDG TDG PQQ-MTX PQQ
14 BTN-NTM NTM PQQ-TDG TDG
15 BTN-STY BTN PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS ORN XLS-RET RET




18 ORN-9PP 9PP XLS-2GP XLS
19 ORN-PQQ PQQ XLS-MGN XLS
20 ORN-XLS ORN XLS-BOX BOX
21 ORN-RET RET XLS-FLP XLS
22 ORN-2GP 2GP XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG XLS
24 ORN-BOX ORN XLS-NTM NTM
25 ORN-FLP FLP XLS-STY XLS
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG ORN RET-MGN RET
28 ORN-NTM NTM RET-BOX BOX
29 ORN-STY STY RET-FLP FLP
30 4MO-LVS 4MO RET-MTX MTX
31 4MO-9PP 4MO RET-TDG RET
32 4MO-PQQ 4MO RET-NTM RET
33 4AMO-XLS XLS RET-STY STY
34 4AMO-RET RET 2GP-MGN MGN
35 4MO-2GP 2GP 2GP-BOX BOX
36 4MO-MGN MGN 2GP-FLP FLP
37 4MO-BOX BOX 2GP-MTX 2GP
38 4MO-FLP FLP 2GP-TDG 2GP
39 4AMO-MTX 4MO 2GP-NTM NTM
40 4AMO-TDG 4MO 2GP-STY STY




41 AMO-NTM NTM MGN-BOX BOX
42 4AMO-STY AMO MGN-MTX MTX
43 LVS-9PP LVS MGN-FLP MGN
44 LVS-PQQ PQQ MGN-TDG MGN
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET LVS MGN-STY STY
47 LVS-2GP LVS BOX-FLP BOX
48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX LVS BOX-TDG BOX
50 LVS-FLP FLP BOX-NTM NTM
51 LVS-MTX MTX BOX-STY BOX
52 LVS-TDG TDG FLP-MTX FLP
53 LVS-NTM NTM FLP-TDG FLP
54 LVS-STY STY FLP-NTM NTM
55 9PP-PQQ 9PP FLP-STY FLP
56 9PP-XLS XLS MTX-TDG MTX
57 9PP-RET RET MTX-NTM NTM
58 9PP-2GP 9PP MTX-STY STY
59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY NTM TDG-STY STY

The corresponding voting table for the classes is given as




Class Votes Class Votes
BTN 8 MGN 8
ORN 7 BOX 9
4MO 6 FLP 9
9PP 6 LVS 6
PQQ 8 MTX 7
XLS 9 TDG 4
RET 8 NTM 13
2GP 5 STY 7
15. Classifying “1ghx” as STY binding protein
Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN BTN 9PP-BOX BOX
2 BTN-4MO BTN 9PP-FLP FLP
3 BTN-LVS LVS 9PP-MTX 9PP
4 BTN-9PP 9PP 9PP-TDG 9PP
5 BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS BTN 9PP-STY 9PP
7 BTN-RET RET PQQ-XLS PQQ
8 BTN-2GP BTN PQQ-RET RET




9 BTN-MGN MGN PQQ-2GP PQQ
10 BTN-BOX BTN PQQ-MGN MGN
11 BTN-FLP BTN PQQ-BOX PQQ
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG TDG PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG PQQ
15 BTN-STY STY PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY STY
17 ORN-LVS LVS XLS-RET RET
18 ORN-9PP ORN XLS-2GP XLS
19 ORN-PQQ ORN XLS-MGN MGN
20 ORN-XLS XLS XLS-BOX BOX
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN ORN XLS-TDG XLS
24 ORN-BOX BOX XLS-NTM NTM
25 ORN-FLP ORN XLS-STY XLS
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG TDG RET-MGN RET
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY ORN RET-FLP FLP
30 4MO-LVS LVS RET-MTX MTX
31 4MO-9PP 4MO RET-TDG TDG




32 4MO-PQQ PQQ RET-NTM NTM
33 4MO-XLS 4MO RET-STY RET
34 AMO-RET RET 2GP-MGN MGN
35 4MO-2GP 4MO 2GP-BOX BOX
36 4MO-MGN 4MO 2GP-FLP 2GP
37 4MO-BOX BOX 2GP-MTX MTX
38 4MO-FLP 4MO 2GP-TDG TDG
39 4MO-MTX MTX 2GP-NTM NTM
40 AMO-TDG 4MO 2GP-STY STY
41 4AMO-NTM NTM MGN-BOX BOX
42 4AMO-STY 4MO MGN-MTX MGN
43 LVS-9PP LVS MGN-FLP FLP
44 LVS-PQQ PQQ MGN-TDG TDG
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET LVS MGN-STY STY
47 LVS-2GP 2GP BOX-FLP BOX
48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX LVS BOX-TDG TDG
50 LVS-FLP FLP BOX-NTM NTM
o1 LVS-MTX LVS BOX-STY BOX
52 LVS-TDG TDG FLP-MTX MTX
53 LVS-NTM NTM FLP-TDG FLP
54 LVS-STY LVS FLP-NTM NTM




55 9PP-PQQ PQQ FLP-STY FLP
56 9PP-XLS 9PP MTX-TDG TDG
S7 9PP-RET RET MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY MTX
59 9PP-MGN MGN TDG-NTM NTM
60 NTM-STY NTM TDG-STY STY
The corresponding voting table for the classes is given as
Class Votes Class Votes
BTN 6 MGN 7
ORN 8 BOX 8
4MO 7 FLP 8
9PP 5 LVS 9
PQQ 8 MTX 10
XLS 4 TDG 8
RET 10 NTM 14
2GP 3 STY 5




16. Classifying “1h5t” as TDG binding protein

Type of Class Selected Type of Class Selected
Classifier Classifier
1 BTN-ORN BTN 9PP-BOX 9PP
2 BTN-4MO BTN 9PP-FLP FLP
3 BTN-LVS LVS 9PP-MTX 9PP
4 BTN-9PP BTN 9PP-TDG TDG
5} BTN-PQQ PQQ 9PP-NTM NTM
6 BTN-XLS BTN 9PP-STY STY
7 BTN-RET RET PQQ-XLS PQQ
8 BTN-2GP BTN PQQ-RET RET
9 BTN-MGN MGN PQQ-2GP 2GP
10 BTN-BOX BTN PQQ-MGN PQQ
11 BTN-FLP BTN PQQ-BOX PQQ
12 BTN-MTX MTX PQQ-FLP FLP
13 BTN-TDG TDG PQQ-MTX MTX
14 BTN-NTM NTM PQQ-TDG TDG
15 BTN-STY STY PQQ-NTM NTM
16 ORN-4MO ORN PQQ-STY PQQ
17 ORN-LVS LVS XLS-RET XLS
18 ORN-9PP 9PP XLS-2GP XLS




19 ORN-PQQ ORN XLS-MGN XLS
20 ORN-XLS ORN XLS-BOX BOX
21 ORN-RET RET XLS-FLP FLP
22 ORN-2GP ORN XLS-MTX MTX
23 ORN-MGN MGN XLS-TDG TDG
24 ORN-BOX ORN XLS-NTM NTM
25 ORN-FLP FLP XLS-STY STY
26 ORN-MTX ORN RET-2GP RET
27 ORN-TDG ORN RET-MGN RET
28 ORN-NTM NTM RET-BOX RET
29 ORN-STY ORN RET-FLP FLP
30 4MO-LVS 4MO RET-MTX MTX
31 4MO-9PP 9PP RET-TDG TDG
32 4MO-PQQ 4MO RET-NTM NTM
33 4MO-XLS 4MO RET-STY RET
34 4AMO-RET RET 2GP-MGN 2GP
35 4MO-2GP 4MO 2GP-BOX 2GP
36 4MO-MGN MGN 2GP-FLP FLP
37 4MO-BOX 4MO 2GP-MTX MTX
38 4MO-FLP FLP 2GP-TDG 2GP
39 4AMO-MTX MTX 2GP-NTM NTM
40 4AMO-TDG 4MO 2GP-STY STY
41 AMO-NTM NTM MGN-BOX BOX




42 4AMO-STY STY MGN-MTX MGN
43 LVS-9PP LVS MGN-FLP FLP
44 LVS-PQQ PQQ MGN-TDG TDG
45 LVS-XLS LVS MGN-NTM NTM
46 LVS-RET RET MGN-STY STY
47 LVS-2GP LVS BOX-FLP FLP
48 LVS-MGN MGN BOX-MTX MTX
49 LVS-BOX LVS BOX-TDG TDG
50 LVS-FLP LVS BOX-NTM BOX
51 LVS-MTX MTX BOX-STY BOX
52 LVS-TDG LVS FLP-MTX MTX
53 LVS-NTM NTM FLP-TDG TDG
54 LVS-STY LVS FLP-NTM NTM
55 9PP-PQQ PQQ FLP-STY FLP
56 9PP-XLS 9PP MTX-TDG MTX
57 9PP-RET RET MTX-NTM MTX
58 9PP-2GP 2GP MTX-STY STY
59 9PP-MGN MGN TDG-NTM TDG
60 NTM-STY STY TDG-STY TDG

The corresponding voting table for the classes is given as




Class Votes Class Votes
BTN 7 MGN 6
ORN 8 BOX 4
4MO 6 FLP 10
9PP 5 LVS 9
PQQ 7 MTX 11
XLS 3 TDG 10
RET 10 NTM 11
2GP 5 STY 8




