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Summary

In this thesis, dynamic modeling of rotational/translational flexible link robots are

studied. Subsequently, controller design and experimental evaluations of the model

are investigated.

For the simulations and controller design, both the Assumed Modes Method (AMM)

and the Finite Element Method (FEM) are investigated for completeness. For both

the methods, it is shown that different dynamic models (linear or nonlinear) can

be obtained through different representations of the position of the flexible link.

By generalizing the modeling of single link robot, the modeling of a n-link robot

is presented. From the simulation results of the proposed controller utilizing the

single link models and the multi-link model, it is shown that all the derived models

are able to provide reasonably good approximations to the original flexible robot

system.

In this thesis, The main contributions lie in:

• New property of the system is found. In a flexible link robot, by assuming that

payload mass and payload inertia is sufficiently small, the inertia matrix has

negative off-diagonal components in its first column. In controller design, the
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new property leads to a prior knowledge of the sign of the items that control

input is affine to. It is essential in solving the adaptive control problem for

unknown parameter system.

• Based on the simple model derived in the modeling part, an adaptive control

using neural networks is proposed. The main idea is to regroup the system

into two reduced order system based on singular perturbation theory. How-

ever, for an unknown parameter system, the equilibrium trajectory of the fast

system is unavailable for controller design. By using the essential properties

of the system, the adaptive law is constructed by regarding it as a constant in

the fast time scale. Simulations are carried out to evaluate the effectiveness

of the controller.

• To cater for interaction with the environment, a constrained robot control

is proposed. Based on singular perturbation theory, a composite strategy is

carried out by using a slow control design for the rigid part and a fast control

for stabilizing the flexible part. Simulations are conducted for a planar two

link flexible robot in contact with a compliant surface. It is shown that the

proposed controller can guarantee the regulation of contact force and tracking

of end-point to the desired trajectories.
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Chapter 1

Introduction

1.1 Background and Motivation

Conventional rigid-link robots have been widely used in industrial automations.

However, to obtain high accuracy in the end-point position control of these robots,

the weight to payload ratio of the robots must be high, and the operation speed is

normally quite slow. At the same time, large power supply and thus considerable

energy consumption is inevitable to operate these heavy-weight robots. These

drawbacks greatly limit the applications of these robots in the fields where high

speed, high accuracy and low energy consumption are required.

Flexible link robots with a number of potential advantages, such as faster opera-

tion, low energy consumption, and higher load-carrying capacity for the amount
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1.1 Background and Motivation
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Figure 1.1: A two-flexible-link robot

of energy expended stemming from the use of light-weight flexible link manipula-

tors, have received much attention. However, compared to rigid robot, structural

flexibility causes many difficulties in modeling the manipulator dynamics and guar-

anteeing stable and efficient motion of the end-effector. For a rigid link robot, the

position of the payload, i.e., the variable to be controlled, is determined by the joint

angles which are defined in certain coordinate systems. The joint angles can be

directly controlled by motors, and thus the number of the variables to be controlled

is equal to the number of the control inputs. For flexible link robots, the flexible

links will undergo deformation in motion due to the flexibility of the link. Taking

the first link as an example (Figure 1.1), one can see that a point on this link has

a deviation d from the undeformed position, and therefore the motion of the point,

related to d, is not completely determined by the joint angle θ1. A further conclu-

sion can be made that one needs an infinite number of d’s to describe the motion

of the whole link. In other words, the control objective becomes more challenging

since the number of the variables to be controlled is much more than that of the
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1.2 Previous Work

control inputs [1].

On the other hand, a number of conventional linear as well as nonlinear techniques

have been developed in recent years to address the problem of controlling single

link manipulators. However, a frequently encountered problem in industrial appli-

cations, such as polishing, inserting, fastening, etc., is to control a robot in contact

with a surface. This typical constrained motion task often requires a multi-link

flexible robot, due to the reduction in degrees of freedom in the system. More

importantly, unlike the free motion robot, the control of constrained robot has an

additional and more difficult objective, i.e., the regulation of the contact force to

the desired set-point.

1.2 Previous Work

Lightweight manipulators offer many challenges in comparison to rigid manipu-

lators. Energy consumption is smaller, so the payload to arm weight ration can

be increased and fast movements can be achieved. Due to these characteristics,

this class of manipulators is specially suitable for a number of nonconventional

robotic applications. Thus, the importance of having an accurate model that can

adequately describe the dynamics of the manipulator is obvious.

The original dynamics of a flexible link robot is governed by coupled Partial Differ-

ential Equations (PDEs) and Ordinary Differential Equations (ODEs), and thus is

3



1.2 Previous Work

a distributed-parameter system possessing an infinite dimensionality [2–4]. Since

the infinite dimensionality is the most difficult thing to handle in controller design,

the original dynamics is, reduced to finite dimensional models using either the As-

sumed Modes Method (AMM) or the Finite Element Method (FEM) by making

some acceptable assumptions.

In AMM, the elastic deflection of a flexible link is represented by an infinite number

of separable modes [5, 6]. Only the first few low frequency modes are dominant in

the robot system, thus, the modes are truncated to a finite dimension models.

There are two types in AMM: constrained modes and unconstrained modes

• In the constrained mode method, it is generally obtained by assuming that

there is no joint acceleration and solving the Euler-Bernoulli beam equation

under certain types of boundary conditions. Different types of boundary con-

ditions may result in different type of modes shape functions. Two frequently

used ones are the clamped-free and pinned-free boundary condition. In [7,8],

the models with these two type of boundary conditions are used in controller

design. It is found that the pinned-free is more accurate than clamped free

with a relative small hub inertia [9, 10].

• In the unconstrained mode method, the models are decouped for each mode

[6]. The mode-shape functions are rigorously formulated and dependent on

the control input, thus, the analytic form of the model may be difficult to

4



1.2 Previous Work

obtain.

In AMM, the concept of natural frequencies are explicit. However, the assumed

harmonic modes do not have any physical meanings.

The FEM modeling of flexible link robots (and associated controller design) can be

found in [11–16]. In this method, the flexible link is divided into a finite number

of elements. The link’s elastic deformation is represented in the form of a linear

combination of admissible functions and generalized coordinates. There are many

kinds of admissible function which meets certain nodes boundary conditions [17].

Most commonly used admissible functions is the B-spline function that is intro-

duced in [18, 19]. The alternative choice is to use the solutions of the differential

equation which governs the static bending of the considered beam [17]. In FEM,

all the generalized coordinates are physically meaningful, however, the concepts of

natural frequencies are not explicit.

Although the explicit models have been derived for the case of a one link flexible

arm, its simplicity prevents thorough understanding of the full nonlinear inter-

actions between rigid and flexible components of arm dynamics. Thus, various

formalism have been proposed for dynamic modeling of multi-link arms [20, 21].

In [22], a dynamic model of multi-link flexible robot arms, limiting to the case

of planar manipulators with no torsional effects is derived. The model is derived

by the Lagrangian technique in conjunction with the AMM. Links are modeled as

5



1.2 Previous Work

Euler-bernoulli beams satisfying proper clamped-mass boundary conditions. Some

models of constrained flexible robots are developed in [23,24], and a solution algo-

rithm is presented for the closed loop inverse kinematics (CLIK) problem [25, 26].

It is formulated in differential terms by deriving a suitable Jacobian that relates

the joint and deflection rates to the tip rate [27,28].

From a modeling standpoint, the scenario is complicated by the presence of addi-

tional deflection variables, compared to the case of rigid manipulators, where the

joint variables are sufficient to describe the system configuration. On the other

hand, from a control standpoint, it is desired to reduce link deflections, but the

trouble is that there are more control variables than control inputs.

In view of the above difficulties, the most effective control strategies for flexible link

arms have been developed at the joint level, such as linear control [29], optimal

control [30], sliding mode control [31], direct strain feedback control [3], inverse

dynamics methods, and energy-based control [32, 33], have been studied based on

a truncated model obtained from either the FEM or AMM [1]. An effective control

method for flexible link robots is the singular perturbation method [34–36]. Based

on singular perturbation theory, the rigid motion (joints motion) and the vibration

of the flexible links are decoupled and generate a composite control law [34]. This

method is attractive because it make used of the two time-scale nature of the system

dynamics. In particular, by selecting the fast states to be the elastic forces and their

time derivatives, and slow states to be that of the equivalent rigid manipulator,

6



1.2 Previous Work

a linear stabilizer (fast control) is designed to stabilize the fast subsystem around

the equilibrium trajectory defined by the slow subsystem under the effect of the

slow control [35,36] , and a nonlinear controller is used to make the slow dynamics

track the desired trajectories. In [35], a singular perturbation model for the case of

multi-link manipulators is introduced which follows a similar approach in terms of

modeling as that introduced in [37] for the case of flexible joint manipulators. The

singular perturbation approach is also considered in [38,39]. A comparison is made

experimentally between some of these methods in [36]. On the other hand, several

researchers use the integral manifold approach introduced in [40] to control the

flexible link manipulator [41, 42]. In [41], a linear model of the single flexible link

manipulator is considered. A nonlinear model of a two link flexible manipulators

is used in [42]. In this approach, new fast and slow outputs are defined and the

original tracking problem is reduced to track the slow output and stabilized the

fast dynamics.

However, all of these works are based on the exact knowledge about the nonlinear

functions or the bounds of uncertainties. Such a priori knowledge may be difficult

to obtain in practice. To overcome the limitation, the approximation capabilities

of neural networks have been utilized to approximate the nonlinear characteristics

of the systems. The introduction of neural networks can remove the need for the

tedious dynamic modeling and the error prone process in obtaining the regres-

sion matrix. In recent literature, there have been many neural network controls

7



1.2 Previous Work

proposed for robot arm [43–45]. On the other hand, in a series of work [46–48],

the control of the slow subsystem is designed and analyzed based on fuzzy logic

algorithm to handle uncertainties.

In fact, the tasks of industrial robots may be divided into two categories. The

first category is the so-called free motion task, and the second category, involves

interactions between the robot end-effector and the environment. Many robot

applications in manufacturing encounter some kind of contact between the end-

effector and the environment, as the robot moves along a prescribed trajectory.

Therefore, constrained robots have become a useful mathematical method to model

the physical and dynamic effects of a robot when it is engaged in contact tasks.

Unlike free motion control, where the only control objective is trajectory tracking or

set-point regulation, the control of a constrained robot has an additional difficulty

in controlling the constrained force.

During interaction with the environment, it is required to consider both force con-

trol and position control. While several control methods exist for the rigid robot

manipulators, only few works addressed the control problem of flexible link robots.

A hybrid position and force control approach is proposed in [18,19,49,50]. A non-

linear decoupling method was considered in [51], and the application of computed-

torque controller for constrained robots was carried out in [52]. All the existing

methods are dependent on the exact cancellation of the robot dynamics to achieve

the desired results.

8



1.3 Work in the Thesis

1.3 Work in the Thesis

In this thesis, dynamic modeling and control are investigated for flexible link robots.

It is organized as follows.

Chapter 2 reviews the two existing modeling methods: AMM and FEM. Although

some of the proposed control strategies in this thesis require no knowledge or only a

partial knowledge about the system dynamics, the analytical model of the system is

still needed for the purpose of simulation and controller design. In single link cases,

it is shown that different dynamic models (linear or nonlinear) can be obtained

through different representations of the position of the flexible link. In addition,

some properties are discovered in this chapter, which is essential in solving an open

control problem in the following control design.

In Chapter 3, the problem of control design based on singular perturbation theory

is considered. Under the assumption of large link stiffness, the original system is

regrouped into two subsystems: fast system for flexible dynamics and slow system

for rigid dynamics. Then, both the Proportional Integral and Differential (PID)

control for the known system and the adaptive neural control for the unknown

system are explored. The main difficulty comes from the fast controller design

for the unknown system, which requires a priori knowledge of the equilibrium ζ̄.

By investigating the dynamic model, some critical properties of inertia matrix

M are found. Using these properties, a fast subcontroller is designed based on

9



1.3 Work in the Thesis

η2. In addition, ζ̄ is considered as a constant in the boundary layer [53]. Model

based and neural network based adaptive subcontrollers are proposed for the fast

unknown dynamics by updating the estimation of ζ̄ in the fast feedback loop. The

controllers ensure that the system asymptotically converge to a bounded invariant

set. Furthermore, due to the existence of internal structural damping in a flexible

link in practice, the flexible robot tends to stop vibrating and finally stop at the

under-formed position. Consequently, the controller approaches cannot hold at a

nonzero constant, which implies that tip regulation is achieved.

Chapter 4 discusses modeling methodology and force control scheme of constrained

flexible manipulators. A two time scale manipulators is proposed, based on the

arguments developed for rigid robots in contact with compliant environments. In

contrast with unconstrained manipulator, the hybrid control scheme, in which force

and position are considered separately, controls both force and position in the full

space. In order to cancel out the effects of the static torques acting on the rigid part

of the manipulator dynamics, a new control input u is introduced. Then, by using

similar arguments in [24], a singular perturbation control is designed to guarantee

the force regulation and position tracking. The fast stabilizer is constructed to

control the dynamics related to link flexibility. The control laws are tested in

simulation on a two-link planar constrained manipulator.

Finally, Chapter 5 gives the conclusion of the thesis and makes suggestions for

future work.

10



Chapter 2

Modeling of Flexible Structures

2.1 Introduction

Several of the control strategies for flexible link robots described in the remainder

of this thesis rely on an accurate dynamic model of the system. For the purpose

of controller design and simulations, the modeling methods AMM and FEM are

reviewed in this chapter. Creating a dynamic model that accounts for link flexibility

adds additional challenges beyond the standard rigid link robot dynamics. The

most apparent complexity arises due to the additional degree-of-freedom (DOF)

associated with link deformations. Although in theory this adds an infinite number

of DOF, in practice only a finite number are used to generate a model that is

sufficiently accurate for predictive simulation and control design. For multilink

flexible robots, the models based on AMM can be found in [22], and the multilink

11



2.2 Modeling of a Single-Link Flexible Robot

model based on FEM is proposed in this chapter.

2.2 Modeling of a Single-Link Flexible Robot

In this section, we discuss several dynamic modeling approaches for a single-link

flexible robot. The Assumed Modes Method (AMM) and the Finite Element

Method (FEM) are introduced in detail.

In the AMM modeling, the elastic deflection of the beam is represented by, theo-

retically an infinite number of separable modes, but practically only finite number

of modes with comparatively low frequencies are considered as they are generally

dominant in the system’s dynamic behaviour. The method of arc approximation

is used to represent the position of the flexible link, which leads to a linear time

invariant model.

In the FEM modeling, the flexible link is divided into a finite number of elements.

The generalized coordinates of the system are the displacements and rotations of

the dividing nodes [17] with respect to a reference local frame. The position of

the flexible beam is represented by a Cartesian vector, and the resulting model

is nonlinear. The arc approximation of the position in this case is also briefly

discussed.

For convenience, we make following assumption [1]:

12



2.2 Modeling of a Single-Link Flexible Robot

Assumption 2.1: The flexible link of the robot, with uniform density and flexural

rigidity, is an Euler-Bernoulli beam.

Assumption 2.2: The deflection of the flexible link is small compared to the length

of the link.

Assumption 2.3: The payload attached to the free tip of the flexible robot is a

concentrated mass.

Assumption 2.4: The base end of the robot is clamped to the rotor of a motor.

Assumption 2.5: The effects of any kinds of damping are neglected.

Assumption 2.6: The flexible robot only operates in the horizontal plane.

Some basic notations are listed below:

L: the length of the flexible beam;

EI: the uniform flexural rigidity of the flexible beam;

ρ: the uniform mass per unit length of the flexible beam;

Mt: the concentrated mass tip payload;

Ih: the hub inertia;

τ(t): the torque applied by the motor at the base;

θ(t): the joint rotation angle;

13



2.2 Modeling of a Single-Link Flexible Robot

y(x, t): the elastic deflection measured from the undeformed beam;

p(x, t): arc approximation of the position of a point on the beam;

~r: the position vector of a point on the beam in the fixed frame XOY ; and

~r∗: the position vector ~r represented in the local frame xOy.

2.2.1 AMM modeling

In this section, we review the dynamic model of a single-link flexible robot as

shown in Figure 2.1 by using the AMM. The method used is the constrained modes

method. The modes shape functions are obtained by solving the Euler-Bernoulli’s

beam equation. The boundary conditions of the Euler-Bernoulli’s beam equation

are of clamped-free type by selecting the local reference frame in such a way, i.e., the

horizontal axis is always tangent to the flexible beam at the base. Such a selection

of reference frame also means that its horizontal axis is actually the position of

the undeformed beam, and represents the rigid (joint) motion of the flexible robot.

The position of the flexible beam is represented in the ways of arc approximation,

which lead to a linear time-invariant model.

14



2.2 Modeling of a Single-Link Flexible Robot
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Figure 2.1: AMM modeling of a flexible robot

Arc Approximation

In the AMM modeling with constrained modes, the elastic vibration of the flexible

beam is generally assumed to be of the form

y(x, t) =
∞

∑

i=1

φi(x)qi(t)

where φi(x) are, the modes shape functions or the eigen-functions and will be

defined later, and qi(t) are the generalized coordinates. Each qi(t) corresponds to

a DOF of the system.

It is well known that the first several modes (corresponding to lower frequencies) are

dominant in describing the system dynamics. The infinite series can be truncated

into a finite one, i.e.,

y(x, t) =
N

∑

i=1

φi(x)qi(t), 0≤x≤L (2.1)

where N is the number of the modes which are taken into consideration.

15



2.2 Modeling of a Single-Link Flexible Robot

In order to use the Euler-Lagrange’s equations to obtain the dynamic equations of

the system, we need to calculate the kinetic energy and the potential energy of the

system. Since the elastic deflection y(x, t) is assumed to be small, the arc p(x, t) as

shown in Figure 2.1 is used to approximate the position of a point on the flexible

beam.

Solution of the Euler-Bernoulli’s Beam Equation

Under the assumption of small deflection, y(x, t) is considered small and the posi-

tion of a point on the flexible beam can be approximated by

p(x, t) = xθ(t) + y(x, t) (2.2)

which is frequently used in the literature, e.g. in [8, 9], and others. From now on,

the space variable 0≤x≤L holds for all the time unless otherwise stated.

The total kinetic energy Ek can be calculated by

Ek = Ekm + Ekb + Ekp

=
1

2
Ihθ̇

2 +
ρ

2

∫ L

0

ṗ2(x, t)dx +
1

2
Mtṗ

2(L, t) (2.3)

where

Ekm =
1

2
Ihθ̇

2, Ekb =
ρ

2

∫ L

0

ṗ2(x, t)dx, Ekp =
1

2
Mtṗ

2(L, t)

are the kinetic energies of the motor, the flexible beam and the tip payload, respec-

tively. From the assumptions stated at the beginning of this chapter, the potential
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energy of the system only comes from the bending strain energy of the flexible

beam, i.e.,

Ep =
1

2
EI

∫ L

0

[

∂2p(x, t)

∂x2

]2

dx

=
1

2
EI

∫ L

0

[

∂2y(x, t)

∂x2

]2

dx

=
EI

2

∫ L

0

[y
′′

(x, t)]2dx (2.4)

where the primes denote the derivatives with respect to time and space, respec-

tively. Let W = τ(t)θ(t). According to the extended Hamilton’s Principle:

∫ tf

to

δ(Ek − Ep + W )dt = 0 (2.5)

where to < t < tf is the operating interval and δ is the variational derivative [54],

and substituting (2.3) and (2.4) into (2.5), we obtain the following system dynamics:

(Ih +
1

3
ρL3)θ̈(t) + ρ

∫ L

0

xÿ(x, t)dx + MtL[Lθ̈(t) + ÿ(L, t)] = τ (2.6)

ρ[xθ̈(t) + ÿ(x, t)] = −EIy
′′′′

(x, t) (2.7)

(2.6) is an ordinary differential equation (ODE) representing the moment balance

at the base end of the robot, and (2.7) is the partial differential equation (PDE)

describing the vibration of the flexible link. The corresponding boundary conditions

are given by the following set of equations:

y(0, t) = 0 (2.8)

y
′

(0, t) = 0 (2.9)

y
′′

(L, t) = 0 (2.10)
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EIy
′′′

(L, t) = Mt[Lθ̈(t) + ÿ(L, t)] (2.11)

(2.8) and (2.9) hold because the reference frame xOy is selected such that the axis

Ox is tangent to the beam at the base. The third boundary condition, (2.10) comes

directly from the zero value of the bending moment at the tip (note the tip payload

is a concentrated mass), and the fourth one, (2.11) is actually the motion equation

of the tip payload Mt.

In the constrained modes method, θ̈ = 0 is assumed, and the dynamic equation

(2.7) reduces to the Euler-Bernoulli’s beam equation:

ρÿ(x, t) = −EIy
′′′′

(x, t) (2.12)

and the corresponding boundary conditions (2.8)-(2.11) becomes

y(0, t) = 0 (2.13)

y
′

(0, t) = 0 (2.14)

y
′′

(L, t) = 0 (2.15)

EIy
′′′

(L, t) = Mtÿ(L, t) (2.16)

From the method of separating variables [55], we assume that the solution of (2.12)

is of the form

y(x, t) = Φ(x)Q(t)

Substituting this solution into (2.12) yields

Φ
′′′′

Φ
· EI

ρ
= −Q̈

Q
(2.17)
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Since the left hand side of (2.17) is only dependent on x and the right hand side

is a purely time-varying function, it is obvious that both sides must be constant.

If we denote the constant by k, we can obtain two ordinary differential equations,

namely,

Q̈(t) + kQ(t) = 0 (2.18)

Φ
′′′′

(x) =
ρ

EI
kΦ(x) (2.19)

and the boundary conditions (2.13)-(2.16) are reduced to

Φ(0) = 0 (2.20)

Φ
′

(0) = 0 (2.21)

Φ
′′

(L) = 0 (2.22)

Φ
′′′

(L) = −Mt

EI
kΦ(L) (2.23)

Thus, the associated boundary value problem is to find the solutions of (2.19) under

(2.20)-(2.23). The solutions are generally called the eigen-functions/modes shape

functions of the system. Clearly, Q(t) and Φ(x) of (2.18) and (2.19) should be such

that y(x, t) = Φ(x)Q(t) satisfies the boundary conditions in (2.13)-(2.16). In [9],

the time dependent function Q(t) is assumed to be harmonic with frequency ω and

thus k = ω2. However, this assumption is not necessary, as it is shown that the

solution of (2.19) is trivial when k ≤ 0 [1].
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Finally, let k be a positive number given by k = ω2, equation (2.19) can be re-

written as

Φ
′′′′

(x) = (
β

L
)4Φ(x) (2.24)

Considering (2.30), the general solution of (2.24) is of the form

Φ(x) = C1 cos
βx

L
+ C2 cosh

βx

L
+ C3 sin

βx

L
+ C4 sinh

βx

L
(2.25)

From the boundary conditions (2.20)-(2.23), we have the set of equations































































C1 + C2 = 0

C3 + C4 = 0

−C1 cos β + C2 cosh β − C3 sin β + C4 sinh β = 0

C1(sin β + Mtβ

ρL
cos β) + C2(sinh β + Mtβ

ρL
cosh β)

+ C3(
Mtβ

ρL
sin β − cos β) + C4(cosh β + Mtβ

ρL
sinh β) = 0

(2.26)

To obtain nontrivial solutions, the determinant of the coefficient matrix of (2.26)

must be zero, i.e.,

1 + cosh β cos β +
Mtβ

ρL
(sinh β cos β − cosh β sin β) = 0 (2.27)

which may be satisfied by an infinite number of β. Note that only positive values

of β are used.

The boundary value problem in this case is proposed in [1]. For completeness, it

is re-written as

Φ
′′′′

(x) = (
β

L
)4Φ(x) (2.28)
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













































Φ(0) = 0

Φ
′

(0) = 0

Φ
′′

(L) = 0

Φ
′′′

(L) + Mt

EI
ω2Φ(L) = 0

(2.29)

where β/L is given by

(β

L

)4

=
ρ

EI
ω2. (2.30)

We have shown that the general solution of (2.28) is given by (2.25). Consider the

first two equations in (2.26), we have

Φ(x) = C2

[

cosh
βx

L
− cos

βx

L

]

+ C4

[

sinh
βx

L
− sin

βx

L

]

and from the third equation in (2.26), Φ(x) can be further written as

Φ(x) = C2

[

cosh
βx

L
− cos

βx

L
− γ

(

sinh
βx

L
− sin

βx

L

)]

(2.31)

where

γ =
cosh β + cos β

sinh β + sin β
(2.32)

Thus, the solution of the boundary value problem (2.28)-(2.29) is given by (2.31),

in which β should satisfy (2.27).

Since θ̈ = 0 is assumed (constrained modes), the Euler-Bernoulli’s beam vibration

system (2.12)-(2.16) is conservative, which can be solved if the initial conditions

are specified. We hereby assumed that the initial moment is t = 0, and let the

initial profiles of the system be given by

y(x, 0) = Y0(x) (2.33)
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ẏ(x, 0) = Y0d(x) (2.34)

Letting 0 < β1 < β2 < · · · < ∞ be the infinite number of positive solutions

of (2.27), we can obtain an infinite number of solutions of the boundary value

problem

φi(x) = Aiφ̄i(x)

= Ai

[

cosh
βix

L
− cos

βix

L
− γi

(

sinh
βix

L
− sin

βix

L

)]

(2.35)

i = 1, 2, · · ·

where γi is calculated by (2.32) with corresponding βi, and constants Ai’s are to

be determined later.

The time dependent function Q(t), from (2.18), is now governed by the following

equation

Q̈(t) + ω2Q(t) = 0 (2.36)

which indicates that Q(t) is harmonic with frequency ω. For the infinite number

of βi’s, we have, from (2.30), an infinite number of corresponding frequencies

ωi =
β2

i

L2

√

EI

ρ
(2.37)

Generally ωi is called the natural frequency of the mode qi(t). It follows that an

infinite number of solutions of (2.36) exist

qi(t) = Bi cos ωit + Di sin ωit (2.38)

where Bi and Di are constants to be determined from the initial conditions later.
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Note that (2.12) is linear and homogeneous, from the Superposition or Linearity

Principle (i.e., Theorem 1 in [55]), a solution y(x, t) can be given by

y(x, t) =
∞

∑

i=1

φi(x)qi(t) (2.39)

By introducing the following orthogonal conditions [1]

ρ

∫ L

0

φiφjdx + Mtφi(L)φj(L) =















0 i 6=j

ρ i = j

(2.40)

EI

∫ L

0

φ
′′

i φ
′′

j dx =















0 i 6=j

ω2
i ρ i = j

(2.41)

it can be easily to determine Ai, Bi and Di [1].

Ai =

[

1
∫ L

0
φ̄2

i (x)dx + Mt

ρ
φ̄2

i (L)

]
1

2

(2.42)

Bi =

∫ L

0

Y0(x)φi(x)dx +
Mt

ρ
Y0(L)φi(L) (2.43)

Di =
1

ωi

[
∫ L

0

Y0d(x)φi(x)dx +
Mt

ρ
Y0d(L)φi(L)

]

(2.44)

Moreover, from
∫ L

0
φ̄2

i (x)dx = L (φ̄i(x) is given in (2.35)) when Mt = 0 [56] [8], Ai

can be simplified to

Ai =















√
L/L, when Mt = 0

1/
[

L + ρL2

Mtβ
2

i

(1+cosh βi cos βi

sinh βi+sin βi
)2

]
1

2

when Mt > 0

(2.45)

It should be noted that the solution y(x, t) obtained above is only valid for the

conservative Euler-Bernoulli beam vibration system. For the original system (2.6)-

(2.11) which is driven by the motor torque τ and thus nonconservative, the solution
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(2.39) is invalid. However, in the AMM modeling with constrained modes, the

flexible vibration of the nonconservative system is also assumed to be of the form

(2.39), except that qi(t)’s are not given by (2.38) but dependent on the control

torque τ and are called the generalized coordinates of the system.

From (2.2), we have

ṗ(x, t) = xθ̇(t) + ẏ(x, t)

which leads to

ṗ2(x, t) = x2θ̇2(t) + 2xθ̇(t)ẏ(x, t) + ẏ2(x, t)

then considering (2.1) and the orthogonal condition in (2.40), we have the following

equations

∫ L

0
x2θ̇2(t)dx = 1

3
L3θ̇2(t)

∫ L

0
ẏ2(x, t)dx =

∑N

i=1 q̇2
i (t)

[

1 − Mt

ρ
φ2

i (L)
]

+ 2
∑N

i,j=1 i6=j q̇iq̇j

[

−Mt

ρ
φi(L)φj(L)

]

∫ L

0
2xθ̇ẏdx =

∑N

i=1 2θ̇q̇i

∫ L

0
xφi(x)dx

ṗ2(L, t) = L2θ̇2 + 2L
∑N

i=1 θ̇q̇iφi(L) +
∑N

i=1 q̇2
i φ

2
i (L) + 2

∑N

i,j=1 i6=j q̇iq̇jφi(L)φi(L)

(2.46)

Substituting the equations in (2.46) into (2.3) and defining the generalized coordi-

nates vector as

Q := [θ q1 q2 · · · qN ]T∈RN+1 (2.47)

we can re-write the kinetic energy Ek into the following compact form

Ek =
1

2
Q̇T MAQ̇ (2.48)
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where MA∈R(N+1)×(N+1) is the symmetric and positive definite inertia matrix of

the system which is given by

MA =

































Ih + Ib + Ip m1
A m2

A · · · mN
A

m1
A σ1

A m12
A · · · m1N

A

m2
A m12

A σ2
A · · · m2N

A

...
...

...
...

mN
A m1N

A m2N
A · · · σN

A

































(2.49)

The elements of MA are defined as

Ib = 1
3
ρL3 (moment of inertia of the rigid motion w.r.t the base joint)

Ip = MtL
2 (moment of inertia of the tip payload w.r.t. the base joint)

σi
A = ρ

[

1 − Mt

ρ
φ2

i (L)
]

+ Mtφ
2
i (L) = ρ

mij
A = ρ

[

−Mt

ρ
φi(L)φj(L)

]

+ Mtφi(L)φj(L) = 0

mi
A = ρ

∫ L

0
xφi(x)dx + MtLφi(L)

(i, j = 1, 2, · · · , N, i 6=j in mij
A)

Property 2.1: If Mt = 0, the definition of MA can be modified here.
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MA =

































Ih + Ib + Ip m1 m2 · · · mn

m1 σ1 0 · · · 0

m2 0 σ2 · · · 0

...
...

...
...

mn 0 0 · · · σn

































(2.50)

where Ib = 1
3
ρL3, Ip = 0 (as Mt = 0), σi = ρ, mi = ρ

∫ L

0
xφi(x)dx and (i, j =

1, 2, · · · , N, i 6=j in mi,j). The determinant of the coefficient matrix (2.27) can be

rewritten as

1 + cosh β cos β = 0 (2.51)

With the help of the symbolic calculation software MAPLE, we obtain that

mi = ρ

∫ L

0

xφi(x)dx (2.52)

= ρL2

∫ 1

0

x

L
φi(

x

L
)d(

x

L
)

Noting the definition of φi in (2.31), we have

mi =
ρL2

2βi sinh βi + 2βi sin βi

[

4 cosh βi + 4 cos βi + eβ
i sinh βi (2.53)

− cosh βie
−βi + eβi sin βi − 2 − 2 cosh βi cos βi − e−βi sinh βi − cos βie

βi

−e−βi sin βi − cos βie
−βi − 2 sin βi sinh βi − cosh βie

β
i

]

=
ρL2

2βi sinh βi + 2βi sin βi

[

4 cosh βi + 4 cos βi − cosh βie
−βi + eβi sin βi

−3 − 2 cosh βi cos βi − e−βi sinh βi − cos βie
βi − e−βi sin βi
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− cos βie
−βi − 2 sin βi sinh βi

]

=
ρL2

2βi sinh βi + 2βi sin βi

[

4 cosh βi + 4 cos βi − cosh βie
−βi + eβi sin βi

−1 − e−βi sinh βi − cos βie
βi − e−βi sin βi − cos βie

−βi

−2 sin βi sinh βi

]

=
ρL21

2βi sinh βi + 2βi sin βi

[

4 cosh βi + 4 cos βi − cosh βie
−βi − 1

− cos βie
βi − e−βi sinh βi − cos βie

−βi

]

=
ρL2

2βi sinh βi + 2βi sin βi

[

4 cosh βi + 4 cos βi − cosh βie
−βi

+1 − e−βi sinh βi

]

=
ρL2

2βi sinh βi + 2βi sin βi

[

4 cosh βi + 4 cos βi

]

=
2ρL2(cosh βi + cos βi)

βi(sinh βi + sin βi)
> 0

This property is critical in the following discussion of controller design.

Substituting (2.1) into (2.4), the potential energy of the system can be calculated

by

Ep =
1

2
EI

∫ L

0

[

∂2y(x, t)

∂x2

]2

dx

=
1

2
EI

[

N
∑

i=1

q2
i

∫ L

0

φ
′′

i

2
dx + 2

N
∑

i,j=1 i6=j

qiqj

∫ L

0

φ
′′

i φ
′′

j dx

]

(2.54)

Recalling the orthogonal condition (2.41) and using (2.47), (2.54) can also be writ-

ten into a compact form as

Ep =
1

2

N
∑

i=1

q2
i ω

2
i ρ

=
1

2
QT KAQ (2.55)
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where KA, the stiffness matrix of the system, is given by

KA = diag[0 ω2
1ρ ω2

2ρ · · · ω2
Nρ]∈R(N+1)×(N+1) (2.56)

By substituting equations (2.48) and (2.55) into the Euler-Lagrange’s equations

d

dt

(

∂(Ek − Ep)

∂Q̇

)

− ∂(Ek − Ep)

∂Q
= T =

























τ(t)

0

...

0

























(2.57)

we obtain the dynamic equation of the system as

MAQ̈ + KAQ = T (2.58)

where T∈RN+1 denotes the generalized external force vector. From (2.48) and

(2.55), one can see that both the inertia matrix MA and the stiffness matrix KA are

constant matrices. It follows that the dynamic equation (2.58) is linear and time-

invariant. This result actually comes from the arc approximation of the position

of the beam by p(x, t), which itself can be taken as a linearization process of the

system dynamics. Such a linear model of the single-link flexible robot system is

experimentally tested in [57], and it is shown there that the vibration frequencies

obtained from the frequency response of the linear model is quite close to the

experimental results.

Considering that a large amount of well-developed control theories concerned with

a state-space model of the system, it is desirable to transform the dynamic equation
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(2.58) into state-space form. Defining the following state vector

X := [QT Q̇T ]T

= [θ q1 q2 · · · qN θ̇ q̇1 q̇2 · · · q̇N ]T∈R2N+2 (2.59)

We have the corresponding linear state-space model,

Ẋ =









0 I

−M−1
A KA 0









X +









0

M−1
A









T (2.60)

It should be pointed out that if the position of the beam is represented by the

arc approximation, the linearity of the model will not be affected by the selection

of different types of boundary conditions (which corresponds to different reference

local frames in Figure 2.1). For example, in [9], a different linear model is obtained

by using the pinned-free boundary conditions. Some research work has been carried

out on the controller design based on these linear models, and the results, either

numerical or experimental, are quite satisfactory [29], [9] and [58].

2.2.2 FEM modeling

In this section, we will introduce the FEM modeling of the single-link flexible robot

system. In this method, the flexible beam is divided into a finite number of elements

by some nodes, at which the characteristics (node variables) of the bending beam

are assumed to be known, and the bending information at other points on the

beam are then mathematically fitted by the node variables. The fitting functions
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(or the admissible functions) here are selected to be the solutions of the differential

equation which governs the static bending of the considered beam [17], though

other choices, such as the B-spline functions [18], can also be used.

The parameters of the flexible beam, the motor and the tip payload are defined in

the previous section. The system and the associated coordinates system are shown

in Figure 2.2.
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Figure 2.2: FEM modeling of a flexible robot.

For simplicity, the flexible beam is divided into a finite number, N , of elements with

the same length l = L/N . The fixed base frame, as in Figure 2.1, is still denoted by

XOY , however the local reference coordinate system is a little more complicated.

There are totally N local reference frames, one for each of the N elements, i.e.,

frame xiOiyi is the reference frame for the ith element. All these N reference frames

are in the same direction as frame x1O1y1 (whose origin, O1, coincides with the
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base origin, O) which rotates with the hub. Obviously, the local frame x1O1y1 is

actually the reference frame xOy in Figure 2.1. The vector ~Oi in Figure 2.2 denote

the position vector of the origin of frame xiOiyi with respect to the base frame

XOY , and ~ri is the position vector of the ith element with respect to the base

frame XOY . From Figure 2.2, one may also note that the elastic deflection of the

beam is represented with respect to the corresponding local frame, i.e., yi(xi, t) is

the elastic deflection of a point in the ith element measured in its own local frame

xiOiyi.

It should be pointed out that the beam’s position here can also be expressed in

either the arc approximation or the vector representation. However, only the latter

is considered in this section. For the FEM modeling with arc approximation of

beam’s position, interested readers can refer to [13], in which it is shown that the

arc approximation also leads to a linear time-invariant model. In the following

section, we will show that the vector representation leads to a nonlinear model of

the system.

Vector Representation

In this subsection, we would like to re-derive the dynamic model of the single-link

flexible robot system with the position of a point on the beam being represented

by the vector ~r as shown in Figure 2.1.
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Noting that ~r denote the position vector of a point on the beam with respect to the

fixed based frame XOY , and ~r∗ with respect to the local frame xOy, using some

basic knowledge of geometry, we have

~r = Tr~r
∗

= Tr









x

y(x, t)









(2.61)

where Tr is the orthogonal transformation function between the two considered

frames given by

Tr =









cos θ(t) − sin θ(t)

sin θ(t) cos θ(t)









(2.62)

which satisfies

T−1
r = T T

r (2.63)

From some basic geometry knowledge, we have

~Oi =









(i − 1)l cos θ(t)

(i − 1)l sin θ(t)









(2.64)

~ri = ~Oi + Tr









xi

yi(xi, t)









(2.65)

(i = 1, 2, · · · , N)

where Tr in (2.62) is the orthogonal rotational transformation matrix between

frames XOY and xiOiyi. Combining equations (2.64) and (2.65) yields

~̇ri = ~̇Oi + Ṫr









xi

yi(xi, t)









+ Tr









ẋi

ẏi(xi, t)








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= Tr









0

(i − 1)lθ̇









+ Tr









−yiθ̇

xiθ̇ + ẏi









= Tr









−yiθ̇

[(i − 1)l + xi] θ̇ + ẏi









= Tr
~WF (2.66)

where

~WF =









−yiθ̇

[(i − 1)l + xi] θ̇ + ẏi









Solution of the Differential Equation Governing Static Bending of the

Beam

Let us consider the ith element detailed in Figure 2.2. For the nodes through which

we divide the beam into elements, each of them undergoes both translational and

rotational displacements at the same time (axial displacement is neglected). Let

q2i−1 and q2i+1 be the displacements of two nodes of the ith element and q2i and

q2i+2 be the two rotations, then q2i−1, q2i+1, q2i and q2i+2 are the node variables

through which the characteristics of other points in element i will be fitted.

Since there is a total of N elements, the number of node variable, q, is 2N + 2,

i.e., q1, q2, · · ·, q2N+2. We can represent the elastic deflection in the ith element,
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yi(xi, t), by

yi(xi, t) =
4

∑

j=1

ψj(xi)q2(i−1)+j(t) (2.67)

(i = 1, 2, · · · , N and 0 < xi < l)

where ψj(xi) are the admissible functions. Because each qi corresponds to one

DOF of the system, the variables q1 to q2N+2 are actually the system’s generalized

coordinates. From Figure 2.2, we can obtain the boundary conditions with respect

to the two nodes of the element [17]














































yi(0, t) = q2i−1(t)

∂yi(xi,t)
∂xi

|xi=0= q2i(t)

yi(l, t) = q2i+1(t)

∂yi(xi,t)
∂xi

|xi=l= q2i+2(t)

(2.68)

Substituting (2.67) into (2.68) gives the boundary conditions of admissible func-

tions ψj(xi), j = 1, 2, 3, 4

ψj(0) =















1 j = 1

0 otherwise

(2.69)

ψj(l) =















1 j = 3

0 otherwise

(2.70)

dψj(x)

dx
|x=0 =















1 j = 2

0 otherwise

(2.71)

dψj(x)

dx
|x=l =















1 j = 4

0 otherwise

(2.72)
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We shall assume that the admissible functions ψj(x), j = 1, 2, 3, 4, are given by

the solution of the differential equation which governs the static bending of the

beam subject to the above boundary conditions. That is, if we let ψ(x) be the

static elastic deflection, we have the differential equation of static bending of the

beam [17]

ψ
′′′′

(x) = 0, 0 < x < l

The general solution of this differential equation has the form

ψ(x) = c1x
3 + c2x

2 + c3x + c4

Using boundary conditions (2.69)-(2.72), the four admissible functions can be ob-

tained














































ψ1(x) = 1 − 3x2

l2
+ 2x3

l3

ψ2(x) = x − 2x2

l
+ x3

l2

ψ3(x) = 3x2

l2
− 2x3

l3

ψ4(x) = −x2

l
+ x3

l2

In order to use the Euler-Lagrange’s Equations, we need to obtain the total kinetic

energy and the total potential energy of the system. Let Eki and Epi be the kinetic

energy and the potential energy of the ith element, and Ekp and Ekm be the kinetic

energy of the point mass tip payload and the kinetic energy of the motor, and we

have

Eki =
1

2
ρ

∫ l

0

{

~̇ri

}T {

~̇ri

}

dxi

Epi =
1

2
EI

∫ l

0

[

∂2yi

∂x2
i

]T [

∂2yi

∂x2
i

]

dxi

35



2.2 Modeling of a Single-Link Flexible Robot

Ekp =
1

2
Mt

{

~̇ri |i=N, xi=l

}T {

~̇ri |i=N, xi=l

}

Ekm =
1

2
Ihθ̇

2

From (2.66), Eki can be calculated by

Eki =
1

2
ρ

∫ l

0

{

~̇ri

}T {

~̇ri

}

dxi

=
1

2
ρ

∫ l

0

~W T
F T T

r Tr
~WF dxi

=
1

2
ρ

∫ l

0

~W T
F

~WF dxi

=
1

2
ρ

∫ l

0

{

y2
i θ̇

2 + [(i − 1)l + xi]
2 θ̇2 + ẏi

2 + 2 [(i − 1)l + xi] θ̇ẏi

}

dxi(2.73)

Recalling (2.67), (2.73) can be reduced to a compact form

Eki =
1

2
Q̇T

i MFiQ̇i (2.74)

where, Qi = [θ q2i−1 q2i q2i+1 q2i+2]
T is the generalized coordinates vector of the

ith element, and MFi∈R5×5 is the symmetric and positive definite mass matrix

corresponding to the ith element. For clarity, we define the following quantities

mj
F i = ρ

∫ l

0
[(i − 1)l + xi] ψj(xi)dxi j = 1, 2, 3, 4

mjk
F i = ρ

∫ l

0
ψj(xi)ψk(xi)dxi j, k = 1, 2, 3, 4, j 6= k

σj
F i = ρ

∫ l

0
ψ2

j (xi)dxi j = 1, 2, 3, 4

and let di be the coefficient of the item associated with θ̇2 in the Eki expression,

we have

di = ρ

∫ l

0

[(i − 1)l + xi]
2 dxi
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+ [q2i−1 q2i q2i+1 q2i+2]

























σ1
Fi m12

Fi m13
Fi m14

Fi

m12
Fi σ2

Fi m23
Fi m24

Fi

m13
Fi m23

Fi σ3
Fi m34

Fi

m14
Fi m24

Fi m34
Fi σ4

Fi

















































q2i−1

q2i

q2i+1

q2i+2

























> 0 (2.75)

then the mass matrix MFi is given by

MFi =

































di m1
Fi m2

Fi m3
Fi m4

Fi

m1
Fi σ1

Fi m12
Fi m13

Fi m14
Fi

m2
Fi m12

Fi σ2
Fi m23

Fi m24
Fi

m3
Fi m13

Fi m23
Fi σ3

Fi m34
Fi

m4
Fi m14

Fi m24
Fi m34

Fi σ4
Fi

































(2.76)

It should be pointed out that (i) σj
F i and mjk

F i are the same for all the elements

because they are independent of i; (ii) di > 0 because MFi is positive definite.

Similarly using (2.66) for Ekp, we have

Ekp =
1

2
Mt

{

W T
F WF

}

|i=N, xi=l

=
1

2
Q̇N

T
MFpQ̇N

where MFp∈R5×5 is the symmetric positive definite mass matrix of the tip payload,
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which has the form

MFp =

































dp m1
Fp m2

Fp m3
Fp m4

Fp

m1
Fp σ1

Fp m12
Fp m13

Fp m14
Fp

m2
Fp m12

Fp σ2
Fp m23

Fp m24
Fp

m3
Fp m13

Fp m23
Fp σ3

Fp m34
Fp

m4
Fp m14

Fp m24
Fp m34

Fp σ4
Fp

































with elements being defined by

mj
Fp = LMtψj(x) |x=l j = 1, 2, 3, 4

mjk
Fp = Mtψj(x)ψk(x) |x=l j, k = 1, 2, 3, 4, j 6=k

σj
Fp = Mtψ

2
j (x) |x=l j = 1, 2, 3, 4

dp = MtL
2 + [q2N−1 q2N q2N+1 q2N+2]

























σ1
Fp m12

Fp m13
Fp m14

Fp

m12
Fp σ2

Fp m23
Fp m24

Fp

m13
Fp m23

Fp σ3
Fp m34

Fp

m14
Fp m24

Fp m34
Fp σ4

Fp

















































q2N−1

q2N

q2N+1

q2N+2

























Recalling the boundary conditions in (2.69)-(2.72), dp and MFp can be further

simplified as

dp = MtL
2 + Mtq

2
2N+1 > 0 (2.77)
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MFp =

































dp 0 0 MtL 0

0 0 0 0 0

0 0 0 0 0

MtL 0 0 Mt 0

0 0 0 0 0

































Now, the total kinetic energy Ek is given by

Ek =
N

∑

i=1

Eki + Ekp + Ekm

=
1

2

N
∑

i=1

Q̇T
i MFiQ̇i +

1

2
Q̇T

NMFpQ̇N +
1

2
Ihθ̇2 (2.78)

The potential energy of the ith element Epi is given by

Epi =
1

2
EI

∫ l

0

[

∂2ri

∂x2
i

]T [

∂2ri

∂x2
i

]

dxi

=
1

2
EI

∫ l

0

[

∂2yi

∂x2
i

]2

dxi (2.79)

which, by using (2.65), (2.67) and noting the orthogonality of the transfer matrix

Tr, can be written into the following compact form

Epi =
1

2
QT

i KFiQi (2.80)

where KFi∈R5×5 is the stiffness matrix of the ith element. For clarity, let us define

the following notations

kj
F i = EI

∫ l

0
ψ

′′

j

2
(xi)dxi j = 1, 2, 3, 4

kjn
F i = EI

∫ l

0
ψ

′′

j (xi)ψ
′′

n(xi)dxi j, n = 1, 2, 3, 4, j 6= n
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then KFi can be expressed as

KFi =

































0 0 0 0 0

0 k1
Fi k12

Fi k13
Fi k14

Fi

0 k12
Fi k2

Fi k23
Fi k24

Fi

0 k13
Fi k23

Fi k3
Fi k34

Fi

0 k14
Fi k24

Fi k34
Fi k4

Fi

































(2.81)

It should be noted that all KFi are the same because kj
F i and kjn

F i are actually

independent of i. Thus the total potential energy of the system is

Ep =
N

∑

i=1

Epi

=
1

2

N
∑

i=1

QT
i KFiQi (2.82)

In the derivation above, we introduce 2N + 2 generalized coordinates q1, q2, · · ·,

q2N+2 and θ to calculate the kinetic energy and the potential energy of the sys-

tem,however, we should note that the flexible beam is clamped onto the rotor of

the motor at the base such that the base displacement and rotation are zeros for

all time, i.e. q1 = q2 = 0. Thus the kinetic energy and the potential energy of the

first element can be modified to

Ek1 =
1

2
Q̇

′

1

T

M
′

F1Q̇
′

1

Ep1 =
1

2
Q

′

1

T
K

′

F1Q
′

1

where

Q
′

1 = [θ q3 q4]
T
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M
′

F1 =

















d1 m3
F1 m4

F1

m3
F1 σ3

F1 m34
F1

m4
F1 m34

F1 σ4
F1

















K
′

F1 =

















0 0 0

0 k3
F1 k34

F1

0 k34
F1 k4

F1

















For simplicity, we shall drop the primes, i.e., Q1 = Q
′

1, MF1 = M
′

F1 and KF1 = K
′

F1,

here after.

Up till now, the kinetic energy and the potential energy of the system are respec-

tively derived from the N local generalized coordinates vector Qi. In order to

obtain the dynamic model of the system, we need to transform the above results

into a global generalized coordinate system. This is done as follows.

Introduce a vector Q∈R2N+1 as

Q = [θ q3 q4 · · · q2N+2]
T

= [η1 η2 · · · η2N+1]
T (2.83)

and a series of matrices Hi (i = 1, 2, · · · , N), with H1 being defined as

H1 =

















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

















∈ R3×(2N+1)

and Hi = [hj,k]∈R5×(2N+1) (i = 2, 3, · · · , N), in which all the elements are zeros
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except for h1,1, h2,2i−2, h3,2i−1, h4,2i and h5,2i+1 being equal to 1. It is easy to check

that

Qi = HiQ (2.84)

Defining two matrices

M̃Fi = HT
i MFiHi ∈ R(2N+1)×(2N+1)

K̃Fi = HT
i KFiHi ∈ R(2N+1)×(2N+1)

and substituting (2.84) into (2.74) and (2.80) give

Eki =
1

2
Q̇T M̃FiQ̇

Epi =
1

2
QT K̃FiQ

The same generalization procedure can also be carried out on Ekp and Ekm by

introducing the following two matrices

M̃Fp = HT
NMFpHN ∈ R(2N+1)×(2N+1)

M̃Fm =

























Ih 0 · · · 0

0

... 0

0

























∈ R(2N+1)×(2N+1) (2.85)

then we have

Ekp =
1

2
Q̇T M̃FpQ̇

Ekm =
1

2
Q̇T M̃FmQ̇
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Thus, the total kinetic energy and the potential energy of the system are given by

Ek =
N

∑

i=1

Eki + Ekp + Ekm

=
1

2
Q̇T

[

M̃Fp + M̃Fm +
N

∑

i=1

M̃Fi

]

Q̇

=
1

2
Q̇T MF Q̇ (2.86)

Ep =
N

∑

i=1

Epi

=
1

2
QT

[

N
∑

i=1

K̃Fi

]

Q

=
1

2
QT KF Q (2.87)

where the symmetric positive definite mass matrix MF and the stiffness matrix KF

are defined by

MF = M̃Fp + M̃Fm +
N

∑

i=1

M̃Fi (2.88)

KF =
N

∑

i=1

K̃Fi (2.89)

Since the first element of MF is a function of generalized coordinates though other

elements are all constants, it will be seen that the resulting model is nonlinear.

Substituting (2.86) and (2.87) into the Euler-Lagrange’s Equations (2.57), we arrive

at the dynamic model

MF (Q)Q̈ + CF (Q, Q̇)Q̇ + KF Q = T (2.90)

where the generalized external force vector T = [τ(t) 0 · · · 0]T∈R(2N+1)×1 and the
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matrix CF = [ckj], j, k = 1, 2, · · · , 2N + 1 is calculated by

ckj =
2N+1
∑

i=1

1

2

(

∂mF−kj

∂ηi

+
∂mF−ki

∂ηj

− ∂mF−ij

∂ηk

)

η̇i (2.91)

in which mF−ij denote the ijth element of MF and ηi’s are the system generalized

coordinates defined in (2.83). Further defining the state vector X = [QT Q̇T ]T , we

can obtain the state-space model of the system,

Ẋ =









0 I

−M−1
F KF −M−1

F CF









X +









0

M−1
F









T (2.92)

As we have stated above, only the first element of MF is inconstant, which, from

(2.88), is given by

mF−11 = dp + Ih +
N

∑

i=1

di (2.93)

with dp > 0 and di > 0 being defined in (2.77) and (2.75).

2.3 Modeling of Multi-link Flexible Robots

For a multi-link flexible robot, most existing models are based on AMM [22]. In this

section, we derive the dynamic model of a multilink flexible robot based on FEM.

The geometry of the robot is shown in Figure 2.3. In total, 2N frames are used

to describe the system, i.e., XjOjYj and xjOjyj, j = 1, 2, · · ·, N . Frame X1O1Y1

is the fixed base frame. Other frames are all local reference frames attached to

the corresponding motors, specifically axis OjXj (j = 2, 3, · · ·, N) is defined as the

tangent to the end tip of link j − 1, and axis Ojxj (j = 1, 2, · · ·, N) is tangent to
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2.3 Modeling of Multi-link Flexible Robots

link j at its base. The angular position of the jth link is denoted by θj measured

in frame XjOjYj. θj is actually the angular difference between frames xjOjyj and

XjOjYj.

Motor 1

Link 1

Link N

Payload

θ1

Motor 2

θ2

O1

O2

ON

Motor 3

Y1

X1

x1

y1

x2

y2

X

Y

2

2

Link 2

Motor N XN

N

xN

y
Y

N

θN

Figure 2.3: Geometry of the multi-link flexible robot

The multilink system geometry changes into the form shown in Figure 2.4, and

those of the j-th link are detailed in Figure 2.5. The following notations are used

throughout this section, unless otherwise stated.

(x0, y0): reference coordinates;

(xj, yj): local coordinates of frame xjOjyj that is attached to the j-th link;

(xi,j, yi,j): local coordinates of frame xi,jOi,jyi,jthat is attached to the i-th

element of the j-th link;
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Figure 2.4: Structure of multilink flexible robot

θj: rigid angle at the j-th hub;

φjt: rotational displacement at the tip of the j-th link;

qj,2i−1, qj,2i+1: linear displacement at the two nodes of the element i of the

j-th link;

qj,2i, qj,2i+2: rotational displacement at the two nodes of the element i of

the j-th link;

rj,i: vector from Oj to point P in reference coordinates;
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Figure 2.5: Structure of the j-th link

rj,t: position vector of Oj from Oj−1 in reference coordinates;

sj,i: position vector of P from O;

sj: position vector of Oj from O;

oj,i: vector from Oj to Oj,i in reference coordinates;

EI: the uniform flexural rigidity of the flexible beam;

ρ: the uniform mass per unit length of the flexible beam;

Mt: the concentrated mass tip payload;

Ihj: the hub inertia of the j-th link;

τ(t)j: the torque applied by the motor at the base;

47



2.3 Modeling of Multi-link Flexible Robots

∗j,i be the i-th element of the j-th link, unless otherwise state.

According to the FEM, without loss of generality, we assume that the beam is

divided into n parts of same length l = L/n. Recalling the structure of each

element (Figure 2.2), let qj,2i−1 and qj,2i+1 be the displacements of two nodes, while

qj,2i and qj,2i+2 are the two rotations. Similarly, the elastic deflection in the j, i

element yj,i can be represented by a weighted sum qj,2i−1, qj,2i, qj,2i+1 and qj,2i+2,

and is given by

yj,i(xj,i, t) =
4

∑

k=1

ψk(xj,i)qj,2(i−1)+k(t) (2.94)

(j = 1, 2, · · · , N i = 1, 2, · · · , n and 0 < xj,i < l)

In accordance with the boundary conditions, say, yj,i(0, t) = qj,2i−1(t),
∂yj,i(xj,i,t)

∂xj,i
|xj,i=0=

qj,2i(t), yj,i(l, t) = qj,2i+1(t),
∂yj,i(xj,i,t)

∂xj,i
|xj,i=l= qj,2i+2(t) , the weights can be chosen

as 3rd order polynomials, i.e.,

Ψ(xj,i) =

























1 − 3x2

j,i

l2
+

2x3

j,i

l3

xj,i −
2x2

j,i

l
+

x3

j,i

l2

3x2

j,i

l2
− 2x3

j,i

l3

−x2

j,i

l
+

x3

j,i

l2

























,

For the j-th link, the position of P on the i-th element is

sj,i = sj + rj,i (2.95)
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From Figure 2.5, we know

rj,i = oj,i + Tj

















xj,i

yj,i(xj,i, t)

0

















(2.96)

(i = 1, 2, · · · , n)

It should be noted that the local coordinates (xj, yj) is now rotated by an angle

of (αj−1 =
∑j−1

k=1(θk + φk,t) + θj) about the z-axis from the reference coordinates.

This means that the transformation matrix which expressed the global coordinates

in terms of the local coordinates of the j-th link is given by

Tj(αj−1) =

















cos αj−1 − sin αj−1 0

sin αj−1 cos αj−1 0

0 0 1

















(2.97)

oj,i =

















(i − 1)l cos αj−1

(i − 1)l sin αj−1

0

















(2.98)

where Tj in (2.97) is the orthogonal rotational transformation matrix between

frames XjOjYj and xj,ioj,iyj,i. Combining equations (2.98), (2.96) yields

ṙj,i = ȯj,i + Ṫj

















xj,i

yj,i(xj,i, t)

0

















+ Tj

















ẋj,i

ẏj,i(xj,i, t)

0
















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= Tj

















0

(i − 1)lα̇j−1

0

















+ Tj

















−yj,iα̇j−1

xj,i ˙αj−1 + ˙yj,i

0

















= Tj

















−yj,iα̇j−1

[(i − 1)l + xj,i] α̇j−1 + ẏj,i

0

















= TjTj,iqj,i (2.99)

where

Tj,i =

















−yj,i −yj,i −yj,i 0

[(i − 1)l + xj,i] [(i − 1)l + xj,i] [(i − 1)l + xj,i] Ψ(xj,i)

0 0 0 0

















and

q̇j,i = [θ̇1 φ̇1,t θ̇2 φ̇2,i · · · θj q̇j,1 q̇j,2 q̇j,3 q̇j,4]
T (2.100)

Now, let us reconsider equation (2.95). Recalling (2.99), its derivative can be given

by

ṡj,i = ṡj + ṙj,i (2.101)

=

j−1
∑

k=1

ṙk,t + ṙj,i

We need to obtain the kinetic energy, potential energy and virtual work of each

link, in order to apply Lagrange-Euler equations. Let Ek,j,i and Ep,j,i be the kinetic

energy and the potential energy of the ith element of j-th link, and Ekpj and Ekmj
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be the kinetic energy of the point mass tip payload and the kinetic energy of the

motor, and we have

Ek,j,i =
1

2
ρ

∫ l

0

{ṡj,i}T {ṡj,i} dxj,i

Ep,j,i =
1

2
EjIj

∫ l

0

[

∂2yj,i

∂x2
j,i

]T [

∂2yj,i

∂x2
j,i

]

dxj,i

Ekp =
1

2
Mtṡ

T
N ṡN

Ekmj =
1

2
Ihj θ̇j

2

From (2.101), Ek,j,i can be calculated by

Ek,j,i =
1

2
ρ

∫ l

0

{ṡj,i}T {ṡj,i} dxj,i

=
1

2
ρ

∫ l

0

[

(

j−1
∑

k=1

ṙk,t)
T (

j−1
∑

k=1

ṙk,t) + ṙT
j,iṙj,i + ṙT

j,i

j−1
∑

k=1

ṙk,t + (

j−1
∑

k=1

ṙk,t)
T ṙj,i

]

dxj,i

=
1

2
Q̇T

j,iṀj,iQ̇
T
j,i (2.102)

where Qj,i = [θ1 QT
1,t θ2 QT

2,t · · · θj qj,2i−1 qj,2i qj,2i+1 qj,2i+2]
T is the generalized

coordinates, with Qj,t = [qj,2n−1 qj,2n qj,2n+1 qj,2n+2]
T , and Mj,i is obtained by

collecting together all the terms corresponding to the degree of freedom of Qj,i.

Similarly, for Ek,j,p, we have

Ekp =
1

2
Mt {ṡj}T {ṡj}

=
1

2
Q̇T

NMpQ̇N

The potential energy of the i-th element Ep,j,i is given by

Epi =
1

2
EI

∫ l

0

[

∂2sj,i

∂x2
j,i

]T [

∂2sj,i

∂x2
j,i

]

dxj,i

=
1

2
QT

j,iKj,iQj,i (2.103)
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where Kj,i is the stiffness matrix. Similarly, the base displacement and rotation

are zero, i.e. qj,1 = qj,2 = 0, j = 1, 2 . . . N . Now, we need to transform the result

of the kinetic energy and the potential energy to a global generalized coordinate

system. Introduce a vector Q ∈ RN(2n+3) as

Q = [θ1 q1,3 q1,4 · · · q1,2n+2 · · · θN qN,3 · · · qN,2n+2]
T

=
[

η1 η2 · · · ηN(2n+1)

]T
(2.104)

and Hj,i ∈ R5N×N(2n+1)(j = 1, 2, · · · , N and i = 1, 2, · · · , n) is defined as

Hj,i =

















Hvec
t

Hi

Hvec
o

















where

Hvec
t =

















Ht

· · ·

Ht

















∈ R5j×N(2n+1)

and

Hvec
o =

















Ho

· · ·

Ho

















∈ R5(N−j)×N(2n+1)
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with

Ht =

































1 0 · · · 0 0 0 0

0 0 · · · 1 0 0 0

0 0 · · · 0 1 0 0

0 0 · · · 0 0 1 0

0 0 · · · 0 0 0 1

































∈ R5×N(2n+1),

and

Ho = [0] ∈ R5×N(2n+1)

and H1 is define as

H1 =

















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

















∈ R3×N(2n+1)

and Hi ∈ R5N×(2N+1), with all the elements are zeros except for h1,1 = h2,2i−2 =

h3,2i−1 = h4,2i = h5,2i+1 = 1. Thus, it is easy to see that

Qj,i = Hj,iQ (2.105)

Defining two matrices

M̃j,i = HT
j,iMj,iHj,i (2.106)

K̃j,i = HT
j,iKj,iHj,i (2.107)

and we have

Ek,j,i =
1

2
QT

j,iM̃j,iQj,i (2.108)

Ep,j,i =
1

2
QT

j,iK̃j,iQj,i (2.109)
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and the same procedure are carried out for Ekp and Ekmj, with

M̃p = HT
N,nMpHN,n (2.110)

M̃m =

























Mm1 0 · · · 0

0 Mm2

...
. . .

0 MmN

























∈ R(2N+1)×(2N+1) (2.111)

where

Mmj =

























Ih 0 · · · 0

0

... 0

0

























, j = 1, 2, . . . , N,

Ekp and Ekmj are given by

Ekp =
1

2
QT

j,iM̃pQj,i (2.112)

Ekm =
1

2
QT

j,iM̃mQj,i (2.113)

Then, the total kinetic energy Ek and potential energy Ep are given by

Ek =
N

∑

i=1

n
∑

i=1

Ek,j,i + Ekp + Ekm (2.114)

=
1

2
Q̇T

[

N
∑

i=1

n
∑

i=1

M̃j,i + M̃p + M̃m

]

Q̇

=
1

2
Q̇TMQ̇

Ep =
N

∑

j=1

n
∑

i=1

Ep,j,i (2.115)

=
1

2
QT

[

N
∑

j=1

n
∑

i=1

Kj,i

]

Q
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where the symmetric positive definite mass matrix M and the stiffness matrix K

are defined by

M =
N

∑

i=1

n
∑

i=1

M̃j,i + M̃p + M̃m (2.116)

K =
N

∑

j=1

n
∑

i=1

Kj,i (2.117)

Substituting (2.114) and (2.115) into the Euler-Lafrange’s Equations, we have the

dynamic model

M(Q)Q̈ + C(Q, Q̇)Q̇ + KQ = T (2.118)

where the matrix C = [ckj], k, j = 1, 2, . . . , N ∗ (2n + 1) is calculated by

ckj =
2N+1
∑

i=1

1

2

(

∂mkj

∂ηi

+
∂mki

∂ηj

− ∂mij

∂ηk

)

η̇i (2.119)

in which mij denote the ijth element of M and ηi’s are the system generalized

coordinates (2.104), and the force vector T = [τ1 0 τ2 0 . . . τN 0]. Further defining

the state vector X = [QT Q̇T ]T , we can obtain the state-space model of the system,

Ẋ =









0 I

−M−1K −M−1C









X +









0

M−1









T (2.120)

2.4 Summary

In this chapter the foundation is developed for subsequent flexible robot control

system design and analysis. A new property that is essential to controller design is

discovered. Fundamental concepts for modeling flexible links and several methods
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are presented for obtaining approximate mode shapes for beams and beam-like

structures. A detail explanation is given for the extension of the existing methods

to multilink applications. Both AMM and FEM develop dynamic models that are

incorporated into the controller design and simulations in the proceeding chapter.
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Chapter 3

Control Design Based on Singular

Perturbation

3.1 Introduction

Light weight manipulators offer many challenges in comparison with rigid robot

manipulators. Energy consumption is smaller than other types of manipulators, so

that the payload-to-arm weight ratio can be increased as well as faster movements

can be achieved. Because of their characteristics, this class of manipulators are

especially suitable for a number of nonconventional robotic applications. Various

approaches such as linear control [29], optimal control [30], sliding mode control

[31], direct strain feedback control [3], inverse dynamics methods, and energy-based

control [32] have been studied based on a truncated model obtained form either
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the FEM or AMM [1].

Singular perturbation theory has been a convenient tool for reduced order modeling

[59,60]. The two-time scale model of the flexible link robot has been derived in [35].

According to singular perturbation theory [61], the whole system can be modeled as

two reduced order subsystems by decoupling the fast variables and slow variables.

In order to achieve the tracking control of flexible robots, the problem is often

converted into composite control problem: (i) tracking control of the joint motion,

and (ii) suppression of the elastic vibrations of the flexible links. The attractive

feature of this strategy is that the slow control can be designed based on the well-

established control schemes for rigid body manipulators, [25, 62, 63]. However, all

of these work are based on the exact knowledge about the nonlinear functions or

the bounds of uncertainties. If fact, such a priori knowledge may be difficult to

obtain in practice. To overcome the limitation, the approximation capabilities of

neural networks have been utilized to approximate the nonlinear characteristics of

the systems. The introduction of neural networks can remove the need for tedious

dynamic modeling of the system and the possibility of errors when obtaining the

regression matrix. In recent literature, there are many neural network controls

proposed for robot arm [43–45]. On the other hand, in a series of work [46–48],

the control of the slow subsystem is designed and analyzed based on fuzzy logic

algorithm to treat uncertainty.

However, for fast subsystem the adaptive control problem is open to question. Due
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to the unknown parameters, the design difficulties mainly come from the fact that

the fast state η1 = z1 − ζ̄ are unmeasurable, and only η2 is available for the control

design. In order to avoid this problem, the tracking control for smart material

robot is proposed in [64]. The active vibration control is achieved using smart

material voltage, which turns out to be independent of the unknown dynamics.

In this paper, we shall show a rigorous approach to position tracking control of a

flexible link robot. By investigating the dynamic model, some critical properties

of inertia matrix M are found. Using this properties, a fast subcontrol is designed

based on η2. In addition, ζ̄ can be considered as a constant in the boundary

layer [53]. Neural network based adaptive subcontrollers are proposed for the fast

unknown dynamics by updating the estimation of ζ̄ in the fast feedback loop. The

controllers ensure that the system asymptotically converge to a bounded invariant

set. Furthermore, due to the existence of internal structural damping in a flexible

link in practice, the flexible robot must tend to stop vibrating and finally be static

at the undeformed position. Consequently, the controller approaches cannot hold

at a nonzero constant, which implies the tip regulation is achieved.

The paper is organized as follows. In Section 2, the problems of NN approxima-

tion is briefly introduced. The singular perturbed model of flexible link robot is

presented in Section 3. In Section 4, adaptive NN composite controller design is

presented for the slow unknown dynamics, and an adaptive controllers are designed

for the fast unknown dynamics. Numerical simulations are given in Section 5 to
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3.2 Singular Perturbed Flexible Link Robot

show the effectiveness of the proposed methods.

3.2 Singular Perturbed Flexible Link Robot

Following from Chapter 2, the dynamic equation of the motion for an n DOF

manipulator with up to n flexible links can be written in the following form:

M(q)









q̈r

q̈f









+ C(q)









q̇r

q̇r









+ K









qr

qf









= T (3.1)

where

1. q = [qT
r qT

f ] ∈ Rn, n = nf + nr, with qr ∈ Rnr the vector of the rigid

variables and qf ∈ Rnf the vector of the flexible variables;

2. M(q) ∈ Rn×n is the symmetric positive definite inertia matrix;

3. C(q, q̇)q̇ ∈ Rn represents the Coriolis and Centrifugal forces;

4. K = diag[0 k1 k2 · · · knf
]T is the constant matrix of the flexible link materials

robot, with ki = ωiρ, i = 1, nf ;

5. T the vector of joint control torques.

Exploiting the natural time-scale separation between the faster flexible mode dy-

namics and the slower desired rigid mode dynamics, we use singular perturbation

theory to formulate a boundary layer correction that stabilizes non-minimum phase
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3.2 Singular Perturbed Flexible Link Robot

internal dynamics. Dynamic equation (3.1) can be partitioned as








Mrr Mrf

Mfr Mff

















q̈r

q̈f









+









Hr

Hf









+









0

Kffqf









=









τ

0









(3.2)

where

Hr = Crrq̇r + Crf q̇f

Hf = Cfrq̇r + Cff q̇f

It should be noted that Ṁ − 2C is skew-symmetric as in the rigid robot case.

Correspondingly, Ṁrr − 2Crr is also skew-symmetric. Since inertia matrix M is

positive definite, its inverse exists and is denoted by D as

M−1 = D =









Drr Drf

Dfr Dff









(3.3)

where

Drr = (Mrr − MrfM
−1
ff Mfr)

−1 (3.4)

Drf = −M−1
rr Mrf (Mff − MfrM

−1
rr Mrf )

−1 (3.5)

Dfr = −M−1
ff Mfr(Mrr − MrfM

−1
ff Mfr)

−1 (3.6)

Dff = (Mff − MfrM
−1
rr Mrf )

−1 (3.7)

Equation (3.1) then becomes

q̈r = −DrrHr − DrfHf − DrfKqf + Drru (3.8)

q̈f = −DfrHr − DffHf − DffKqf + Dfru (3.9)
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3.2 Singular Perturbed Flexible Link Robot

Assume that the orders of magnitude of the ki are comparable. Introducing an

appropriate scale factor k such that

K = kK̃ (3.10)

The following new variables can be defined as

ζ := kK̃qf (3.11)

Define ǫ2 := 1/k, equation (3.8) can be modified as

q̈r = −Drr(qr, ǫ
2ζ)Hr(qr, q̇r, ǫ

2ζ, ǫ2ζ̇) − Drf (qr, ǫ
2ζ)Hf (qr, q̇r, ǫ

2ζ, ǫ2ζ̇)

−Drf (qr, ǫ
2ζ)ζ + Drr(qr, ǫ

2ζ)τ (3.12)

ǫ2ζ̈ = −Dfr(qr, ǫ
2ζ)Hr(qr, q̇r, ǫ

2ζ, ǫ2ζ̇) − Dff (qr, ǫ
2ζ)Hf (qr, q̇r, ǫ

2ζ, ǫ2ζ̇)

−Dff (qr, ǫ
2ζ)ζ + Dfr(qr, ǫ

2ζ)τ (3.13)

which is a singularly perturbed model of the flexible arm. Notice that all the

quantities on the right side of (3.12) have been conveniently scaled by K̃. The slow

subsystem is formally obtained by setting ǫ = 0, and solving for ζ. Then, we have

ζ̄ = D−1
ff (q̄r, 0)[−Dfr(q̄r, 0)Hr(q̄r, ˙̄qr, 0, 0) + Dfr(q̄r, 0)τ̄ ] − Hf (q̄r, 0) (3.14)

where the upbar is used to indicate that the system is considered with ǫ = 0.

Substitute (3.14) into (3.12) with ǫ = 0, we obtain

¨̄qr = [Drr(q̄r,0) − Drf (q̄r,0)D−1
ff (q̄r,0)Dfr(q̄r,0)][−Hr(q̄r, ˙̄qr,0,0) + τ̄ ] (3.15)
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3.2 Singular Perturbed Flexible Link Robot

Utilizing the definition of matrix D, yields

Drr(q̄r,0) − Drf (q̄r,0)D−1
ff (q̄r,0)Dfr(q̄r,0) = M−1

rr (q̄r) (3.16)

Choosing x1 = qr, x2 = q̇r, and z1 = ζ, z2 = ǫζ̇ gives the state-space form of the

system (3.12)

ẋ1 = x2 (3.17)

ẋ2 = −Drr(x1, ǫ
2z1)Hr(x1,x2, ǫ

2z1, ǫz2)

−Drf (x1, ǫ
2z1)Hf (x1,x2, ǫ

2z1, ǫz2)

−Drf (x1, ǫ
2z1)z1 + Drr(x1, ǫ

2z1)τ

ǫż1 = z2

ǫż2 = −Dfr(x1, ǫ
2z1)Hr(x1,x2, ǫ

2z1, ǫz2)

−Dff (x1, ǫ
2z1)Hf (x1,x2, ǫ

2z1, ǫz2)

−Dff (x1, ǫ
2z1)z1 + Dfr(x1, ǫ

2z1)τ

At this point, singular perturbation theory requires that the slow subsystem and the

fast subsystem be identified. The slow subsystem is formally obtained by setting

ǫ = 0, i.e., the rigid model of the arm obtained above through use of ζ̄ in (3.14):

˙̄x1 = x̄2 (3.18)

˙̄x2 = M−1
rr (x̄1)[−Hr(x̄1, x̄2) + τ̄ ]
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3.2 Singular Perturbed Flexible Link Robot

To derive the fast subsystem, we introduce the fast time scale τ = t/ǫ. Then it can

be recognized that the system (3.17) in the fast time scale becomes

ẋ1 = x2 (3.19)

ẋ2 = −Drr(x1, ǫ
2(η1 + ζ̄))Hr(x1,x2, ǫ

2(η1 + ζ̄), ǫη2)

−Drf (x1, ǫ
2(η1 + ζ̄))Hf (x1,x2, ǫ

2(η1 + ζ̄), ǫη2)

−Drf (x1, ǫ
2(η1 + ζ̄))(η1 + ζ̄) + Drr(x1, ǫ

2(η1 + ζ̄))τ

η̇1 = η2

ǫη̇2 = −Dfr(x1, ǫ
2(η1 + ζ̄))Hr(x1,x2, ǫ

2(η1 + ζ̄), ǫη2)

−Dff (x1, ǫ
2(η1 + ζ̄))Hf (x1,x2, ǫ

2(η1 + ζ̄), ǫη2)

−Dff (x1, ǫ
2(η1 + ζ̄))(η1 + ζ̄) + Dfr(x1, ǫ

2(η1 + ζ̄))τ

where the new fast variables η1 and η2 are defined as

η1 = z1 − ζ̄ = z1 − z̄1, η2 = z2 (3.20)

Setting ǫ = 0 gives dx1

dτ
= dx2

dτ
= 0; i.e., x1 and x2 are constant on the boundary layer.

Furthermore, it can be recognized that Hf (x1,x2,0,0) = 0 and Hr(x1,x2,0,0) =

0, since, by definition, those terms are representative of products of the components

of x1 and x2 with the components of ǫ2z1 and ǫz2. Therefore, the fast subsystem

can be found to be

dη1

dτ
= η2 (3.21)

dη2

dτ
= −Dff (x̄1, 0)η1 + Dfr(x̄1, 0)τf

which is a linear system parameterized in the slow variable x̄1 and τf = τ − τ̄ .
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3.3 Composite Control for Known System

In this section, we shall investigate the problem of adaptive control for a flexible

robot. As shown in the previous section, using the singular perturbation theory, the

full system can be modeled as two subsystems: fast dynamics and slow dynamics.

Thus, a composite control strategy can be carried out. Singular perturbed model

of the system is derived which allows the controller design be split for two reduced-

order subsystems. The main control objective is to let the rigid motion qr track a

desired trajectory qd and at the same time provide active damping to the flexible

motion of the flexible links. The design of a feedback control of the full system

can be split into two separate designs of feedback controls τ̄ and τf for the two

reduced-order systems

τ = τ̄(x̄1, x̄2) + τf (x1, η1, η2) (3.22)

with the constraint that uf (x̄1,0,0) = 0 such that uf is inactive along the solution

of η̄, which is an equalibrium trajectory of (3.19).

3.3.1 Slow Subcontroller

As far as the slow control is concerned all the well-established control techniques

developed for rigid manipulators can be applied. We generalize the slow subsystem

to strict feedback form as

ẋ1 = x2 (3.23)
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3.3 Composite Control for Known System

ẋ2 = F2(x1,x2) + G2(x1,x2)τ̄

Choose the virtual control α as

α = ẋd − k1(x1 − xd), k1 > 0. (3.24)

Consider the Lyapunov candidate

V =
1

2
zT

1 z1 +
1

2
zT

2 z2 (3.25)

where z1 = x1 − xd, z2 = x2 − α. Its derivative is given by

V̇ = zT
1 ż1 + zT

2 ż2 (3.26)

= zT
1 (z2 − k1z1) + zT

2 (F2(x1,x2) + G2(x1,x2)τ̄)

Thus, we can obtain

τ̄ = G−1
2 (−F2(x1,x2) − z1 − k2z2), k2 > 0 (3.27)

which gives

V̇ = −k1z
T
1 z1 − k2z

T
2 z2 ≤ 0 (3.28)

Since V̇ ≤ 0, it follows from LaSalle-Yoshizawa theorem that the equilibrium z =

[z1 z2]
T = 0 is globally asymptotically stable [65]. Note that τ̄ and α are both

smooth functions and satisfy τ̄(0, 0) = 0 and α(0, 0) = 0. Thus, we can conclude

that z = 0 is globally asymptotically stable, i.e., x1 → xd as t → ∞.
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3.3.2 Fast Subcontroller

It might be observed that the strategy of adaptively controlling the system by just

neglecting the flexible dynamics and considering z1 and z2 as a disturbance to the

system is likely to fail, since no assumption on the boundedness of the disturbance

can be made. Singular perturbation theory requires that the boundary layer system

be uniformly stable along the equalibrium trajectory ζ̄. This can be accomplished

if the pair

A =









0 I

−Dff 0









, B =









0

Dfr









(3.29)

is uniformly stabilizable for any slow trajectory x̄1(t).

The fast state feedback control of the type

τf (x̄1, η1, η2) = Kf1η1 + Kf2η2 (3.30)

stabilize the boundary (3.21) to η1 = 0 and η2 = 0. The fast subcontroller can

be designed as an optimal control for the boundary layer. The performance index

will be a function of the slow state variables. Since the main purpose in flexible

manipulator control is to damp the deflections at steady state as fast as possible,

the feedback gain matrices can be designed also on the basis that the final joint

configuration, provided that under that particular choice of η1 and η2 will go un-

stable along the slow trajectory. In this way the solution of a Riccati equation for

each joint configuration can be avoided. Under the above conditions, Tikhonov’s

theorem, a fundamental result in singular perturbation theory, ensures that the
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state vectors of the full system can be approximated by

x1 = x̄1 + O(ǫ) (3.31)

x2 = x̄2 + O(ǫ) (3.32)

z1 = ζ̄1 + η1 + O(ǫ) (3.33)

z2 = η2 + O(ǫ) (3.34)

Under the slow control (3.27), x1, x2. The fast control (3.27) will derive η1, η2 to

zero. The goal of following a reference model for the joint variable and stabilizing

the deflections around the equlibrium trajectory, naturally set up by the rigid

system under the slow control, is achieved by an O(ǫ) approximation. This is the

typical result of a singular perturbation approach.

Remark 3.1 When the system model is known, then all the states can be used to

design the fast subsystem. Then the subsystem can be written as

dη

dτ
= Aη + Bτf (3.35)

where z = [zT
1 zT

2 ]T and

A =









0 I

−Dff (q̄r,0) 0









, B =









0

Dfr(q̄r, 0)









(3.36)

and τf = τ − τ̄ , some control strategies such as LQR can be carried out to design

the fast control law τf .

However, in case of an unknown system model, i.e., the matrix M in (3.1) is

unknown. It is clear from both (3.14) and (3.20), the unknown equalibrium ζ̄ will
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lead to the unmeasurement of state η1. It is also important to note that η2 = dη1

dτ
=

dz1

dτ
, in which the unknown ζ̄ does not appear. Thus, only state z2 (η2) is expected

to be employed in the design of fast control τf .

3.3.3 Simulation Studies

To illustrate the proposed strategy, a planar single-link flexible manipulator is

considered. The following parameters are set up for the link and a payload is

assumed to be placed at the manipulator tip:

ρ = 0.1kg/m (link uniform density)

l = 1.0m (link length)

m = 0.1kg (link mass)

Ih = 3.0kgm2 (hub inertia)

Ib = 0.033kgm2 (rigid inertia)

EI = 5.0Nm2 (flexural link rigidity)

The desired trajectory for rigid joint angle is expressed as a Hermite polynomial

of the fifth degree in t with continuous bounded position, velocity and bounded

acceleration. The general expression for the desired position trajectory is:

qd(t, td) = q0 + (6.0
t5

t5d
− 15

t4

t4d
+ 10.0

t3

t3d
)(qf − q0) (3.37)

td represents the time that the desired arm trajectory reaches the desired final

position qf starting from the desired initial position q0. In this paper, q0 = 0.0,

qf = 1.0 and td = 2.0 seconds.
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Figure 3.1: Joint angle trajectory.
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Figure 3.2: Tip deflections.
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Figure 3.3: Torque control.

The slow system can be chosen as the linear model following control

τ̄ = M11[q̈d + kv(q̇d − q̇r) + kp(qd − qr)] (3.38)

where kp and kv are to be selected so as to maintain the time scale separation

between the slow and the fast subsystem. This corresponds to kp = 11.0 and

kv = 10.0. On the other hand, the fast control can be chosen according to the pole

placement technique for linear systems. Consider kpf = (5 3) and kvf = (3 5). The

simulation results are shown in Figures 3.1 through 3.3.
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3.4 Control Design for Unknown Single Link System

In this section, we shall investigate the problem of adaptive control for a flexible

robot. As shown in the previous section, using the singular perturbation theory, the

full system can be modeled as two subsystems: fast dynamics and slow dynamics.

Thus, a composite control strategy can be carried out. Singular perturbed model of

the system is derived which allow the controller design be split into two separated

controller design for the two reduced-order subsystems. The main control objective

is to let the rigid motion qr track a desired trajectory qd and at the same time

provide active damping to the flexible motion of the flexible links. The design of

a feedback control for the full system can be split into two separate designs of

feedback controls τ̄ and τf for the two reduced-order systems

τ = τ̄(x̄1, x̄2) + τf (x1, η1, η2) (3.39)

with the constraint that τf (x̄1,0,0) = 0 such that τf is inactive along the solution

of η̄, which is an equalibrium trajectory of (3.19).

3.4.1 Neural Network Structure

Neural networks (NN) have been widely used in modeling and control of nonlinear

systems because of their proficiency in nonlinear function approximation, learning

and fault tolerance. The feasibility of applying NNs to dynamic system control

has been demonstrated in many studies [66–69]. In control engineering, a NN
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is usually used to generate input/output maps using the property that a multi-

layer NN can approximate any function, under mild assumptions, with any desired

accuracy. There are two distinct problems in function approximation, namely, the

representation problem of choosing the best approximating function f̂(ψ, x) and the

learning problem of finding the training method to obtain the optimal parameters

ψ∗.

The adaptive NN portion of the proposed controller utilizes controller parame-

terization techniques coupled with methods of direct adaptive control. Thus, the

architecture of the NNs has to be chosen such that it can be linearly parameter-

ized (representation problem) and direct adaptive laws can be used to update the

parameters of the networks on-line (learning problem).

It has been demonstrated in [70] that a linear superposition of Gaussian RBFs

results in an optimal mean square approximation to an unknown function which

is infinitely differentiable and whose values are specified at a finite set of points in

Rn. Furthermore, it has been proven [71] that any continuous function, not nec-

essarily infinitely smooth, can be uniformly approximated by a linear combination

of Gaussian RBFs.

The RBF network is most suitable for this application. The Gaussian RBF neural

network is a particular network architecture [71] utilizing k numbers of Gaussian

radial basis functions (activation functions), ai(q), with input variables q ∈ Rn,

variance σ2 ∈ R and the centers vector c = (c1, ..., cn)T ∈ Rn. For any given
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function, y = f(q), it is known that it can be approximated by the Gaussian RBF

neural network expressed as

y = WTa(q) + ǫ (3.40)

ai(q) = exp(−‖q − c‖2

σ2
) = exp(−(q − c)T (q − c)

σ2
) (3.41)

where WT = [wij], a = [a1 a2 ... ak]
T and y ∈ Rn and ǫ is the NN reconstruction

error.

Let I0 be the set of integers, and Wij,Xij(q) ∈ Rnij , nij ∈ I0, i = 1, ..., n, j =

1, ..., k. The product WT
ijXij can be taken as a network emulator for the ijth

element, dij(q), of matrix D(q) ∈ Rn×k, with Wij and Xij(q) the weight and basis

function vectors respectively. Define Wi and WT
i as

Wi =

























Wi1

Wi2

...

Wik

























∈ Rmi , WT
i = [WT

i1 WT
i2 ... WT

ik]

in the conventional way for comparison, where mi =
∑k

j=1 nij. Now, let us intro-

duce the definition of GL vectors and matrices, denoted by {∗} [68]. A GL row

vector {Wi} and its transpose {Wi}T are defined as:

{Wi} = {Wi1 Wi2 ... Wik}, {Wi}T = {WT
i1 WT

i2 ... WT
ik}
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The definition for GL matrices is accordingly defined as below

{W} :=































{W1}

...

{Wn}































=































W11 ... W1k

... ... ...

Wn1 ... Wnk































The transpose of a GL matrix is defined as

{W}T :=































WT
11 ... WT

1k

... ... ...

WT
n1 ... WT

nk































(3.42)

It can be seen that the transpose of a GL matrix also transposes its elementary

vectors locally. Should any confusion arise in the text, [∗] is used to denote an

ordinary matrix, and {∗} for a GL matrix explicitly.

The corresponding GL operator, denoted by “•” is defined as below:

D0(q) =
[

{W}T • {X(q)}
]

:=

















WT
11X11 WT

12X12 ... WT
1kX1k

... ... ... ...

WT
n1Xn1 WT

n2Xn2 ... WT
nkXnk

















∈ Rn×k

Therefore, a matrix network emulator can be conveniently expressed as a GL prod-

uct of two GL matrices as shown above.

75



3.4 Control Design for Unknown Single Link System

3.4.2 Neural Network Control of Slow Subsystem

Given a desired trajectory qd(t) ∈ R
1 which is twice differentiable for the slow part

of the flexible link dynamics, the tracking error is

e = qd − q̄r (3.43)

q̇v = q̇d + Λe (3.44)

r = q̇v − ˙̄qr = ė + λe (3.45)

where Λ is a symmetric positive definite matrix. The asymptotic behavior of e

and ė can be established from that of the new tracking measure r based on the

following lemma.

Lemma 3.1: Let e(t) = h ∗ r, where h = L−1(H(s)) and H(s) is an n× n strictly

proper, exponentially stable transfer function. Then r ∈ L2
n =⇒ e ∈ L2

n ∩ L∞
n ,

ė ∈ L2
n, e is continuous and e → 0 as t → ∞. If, in addition, r → 0 as t → ∞,

then ė → 0 [72].

The slow subsystem (3.15) can be modified into a standard form as

Drr(q̄r)¨̄qr + Crr(q̄r, ˙̄qr) ˙̄qr = τ̄ (3.46)

It can be seen that dij(q̄r) and gi(q̄r) are functions of q̄r only and infinite differen-

tiable, thus static NNs are sufficient to emulate the Drr(q̄r) matrix. On the other

hand, cij(q̄r, ˙̄qr) are function of q̄r and ˙̄qr, and infinitely differentiable, thus dynamic

NNs are needed to emulate the Crr(q̄r, ˙̄qr) matrix. Suppose dij(q̄r) and cij(q̄r, ˙̄qr)
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can be approximated as

dij(q̄r) = ψT
ijξij(q̄r) + ǫDij (3.47)

cij(q̄r, ˙̄qr) = αT
ijωij(q̄r, ˙̄qr) + ǫCij (3.48)

where ψij, αij are the weight vectors; ξij(q̄r), ωij(q̄r, ˙̄qr) are Gaussian RBFs; and

ǫDij, ǫCij are the NN reconstruction errors respectively.

Using the notation for“Gl” matrix and operator, the function emulators (3.47)-

(3.48) can be collectively expressed as

Drr(q̄r) = [{Ψ}T • {Ξ}] + ED (3.49)

Crr(q̄r, ˙̄qr) = [{A}T • {Ω}] + EC (3.50)

where ([{Ψ}, {Ξ}) and ([{A}, {Ω}) are the desired parameters and basis function

pairs of the NN emulation of Drr(q̄r) and Crr(q̄r, ˙̄qr) respectively; and ED and EC

are the collective NN reconstruction errors.

Let (∗̂) be the estimate of (∗) and the estimation error given as (∗̃) = (∗)−(∗̂). Sup-

pose D̂rr(q̄r) and Ĉrr(q̄r, ˙̄qr) are estimates of Drr(q̄r) and Crr(q̄r, ˙̄qr) respectively,

defined by

D̂rr(q̄r) = [{Ψ̂}T • {Ξ}] + ED (3.51)

Ĉrr(q̄r, ˙̄qr) = [{Â}T • {Ω}] + EC (3.52)

From Equation (3.45), ˙̄qr = q̇v − r and q̈v − ṙ, thus

Drr(q̄r)q̈r + Crr(q̄r, ˙̄qr) ˙̄qr = [{Ψ}T • {Ξ}]q̈v + [{A}T • {Ω}]q̇v (3.53)
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+E − Drr(q̄r) − Crr(q̄r, ˙̄qr)r

where E = EDq̈v + EC q̇v. To control the slow subsystem, consider the general

controller of the form

τ̄ = D̂rr(q̄r)¨̄qr + Ĉrr(q̄r, ˙̄qr)q̇v + Kpr + Kssgn(r) (3.54)

= [{Ψ̂}T • {Ξ}]¨̄qr + [{Â}T • {Ω}]q̇v + Kpr + Kssgn(r)

where Kp and Ks ≥ ||E|| for robust closed-loop stability. Substituting (3.53) into

(3.54) yields the error equation

Drr(q̄r)ṙ + Crr(q̄r, ˙̄qr)r + Kpr + Kssgn(r)

= [{Ψ̃}T • {Ξ}]¨̄qr + [{Ã}T • {Ω}]q̇v + E

(3.55)

The stability properties of the closed loop system (3.55) are stated in the following

proposition.

Proposition 3.1: For a closed-loop system given in (3.55), asymptotic stability,

i.e., r → 0 as t → ∞, is achieved if Kp > 0, Ks ≥ ||E|| and the parameter

adaptation laws are given by

˙̂
ψi = Γi • {ξi}q̈vri (3.56)

˙̂αi = Wi • {ωi}q̇vri

where Γi and Wi are dimensional compatible symmetric positive definite matrices,

then ψ̂i and α̂i ∈ L∞; and e ∈ L2
n ∩ L∞

n ; ė ∈ L2
n, e is continuous and e, ė → 0 as

t → ∞. Proof: Omitting the arguments again for brevity, choose the non-negative
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function V as

2V = rT D̄rrr +
nr

∑

i=1

ψ̃T
i Γiψ̃i +

nr
∑

i=1

α̃T
i Wiα̃i (3.57)

Its time derivative along (3.55) is

V̇ = rT [D̄rrṙ + C̄rrr] +
nr

∑

i=1

ψ̃T
i Γi

˙̃ψi +
nr

∑

i=1

α̃T
i Wi

˙̃αi (3.58)

which exploits the slow-symmetric property of ˙̄Drr − 2C̄rr. Substituting the error

equation (3.55) into (3.58), we obtain

V̇ = −rTKpr + rTE − rTKssgn(r) (3.59)

rT [{ψ̃}T • {Ξ}]q̈v + rT [{Ã}T • {Ω}]q̇v

+
nr

∑

i=1

ψ̃T
i Γi

˙̃ψi +
nr

∑

i=1

α̃T
i Wi

˙̃αi

By noting that

rT [{ψ̃}T • {Ξ}]q̈v =
nr

∑

i=1

{ψ̃i}T • {ξi}q̈vri (3.60)

rT [{Ã}T • {Ω}]q̇v =
nr

∑

i=1

{α̃i}T • {ωi}q̇vri

Equation (3.58) becomes

V̇ = −rTKpr + rTE − rTKssgn(r) (3.61)

+
nr
∑

i=1

{ψ̃i}T • {ξi}q̈vri +
nr

∑

i=1

{α̃i}T • {ωi}q̇vri

+
nr
∑

i=1

ψ̃T
i Γi

˙̃ψi +
nr

∑

i=1

α̃T
i Wi

˙̃αi

Since ψi and αi are bounded constants which implies that ˙̃ψi = − ˆ̃ψi, ˙̃αi = −ˆ̃αi;

and substituting the adaptation laws into (3.61) yields

V̇ = −rTKpr + rT E − rTKssgn(r) ≤ −rTKpr (3.62)
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when Ks ≥ ||E||. Hence, V is a Lyapunov function and

λmin(Kp)

∫

=t
0 rT rdτ ≤

∫ t

0

rTKprdτ ≤ V (0) (3.63)

Since V (0) and λmin(Kp) are positive constants, it follows that r ∈ L2
nr

. Conse-

quently from Lemma 3.4.2, e ∈ L2
nr

∩ L∞
nr

; e is continuous and e → 0 as t → ∞;

and ė ∈ L2
nr

. Since V̇ ≤ −rTKpr ≤ 0, it follows that 0 ≤ V ≤ V (0), ∀t ≥ 0.

Hence, V (t) ∈ L∞ implies that
∫ t

0
rdτ , ψ̃i and α̃i ∈ L∞

nr
, i.e., ψ̂i and α̂i ∈ L∞

nr
. By

noting that r ∈ L2
nr

; qrd, q̇rd, q̈rd ∈ L∞
n ; and {Ξ}, {Ω} are bounded basis functions,

it can be concluded from (3.55) that ė ∈ L∞
n , which implies that r is uniformly

continuous. Finally, the proof is complete using the implication: r is uniformly

continuous and r ∈ L2
nr

⇒ r → 0 as t → ∞ ⇒ ė → 0

3.4.3 Stabilizing the Fast Subsystem

The fast subsystem must be uniformly stable along the equilibrium trajectory ζ̄.

Following from Section 3.2, the subsystem can be written as

dη

dτ
= Aη + Bτf (3.64)

where η = [ηT
1 ηT

2 ]T and

A =









0 I

−Dff (q̄r,0) 0









, B =









0

Dfr(q̄r, 0)









80



3.4 Control Design for Unknown Single Link System

with Dfr and Dff defined in equations (3.6) and (3.7), respectively. It is easy to

verify that Dff is a positive definite matrix according to its definition. As for Dfr,

let us rewrite it here

Dfr = −M−1
ff Mfr(Mrr − MrfM

−1
ff Mfr)

−1 (3.65)

= −M−1
ff MfrDrr

Property 3.1: Following Property 2.1, For all positive βi, mi will be positive. It

should be also noted that M−1
ff = diag[1

ρ
, · · · , 1

ρ
] ∈ Rnf×nf and Drr > 0, which lead

to that the items of Dfr, di
fr < 0, i = 1, 2, . . . , nf .

As has been stated in Remark 3.1, only η2 is available for the fast controller design,

due to the unmeasurement of ζ̄. In this Subsection, we will present three methods

for the fast controller design. In the first part, only η2 are used for the controller

design of the fast subsystem. In the second and third part, a neural network based

controls are presented, respectively, by estimating the unknown equilibrium ζ̄.

η2 Based Design

For the fast subsystem (3.64), consider the general form of controller τf

τf = [c1 c2 · · · cn]

























η21

η22

...

η2n

























(3.66)
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where ci, i = 1, 2 . . . , n are controller parameters. The stability of the closed loop

system are stated in the following proposition.

Proposition 3.2: The solution of the system (3.64) with controller (3.66) ap-

proaches a bounded invariant set M as t goes to ∞, if ci < 0, i = 1, 2 . . . , n.

Proof: Consider the non-negative scalar function V as

V =
1

2
ηT

1 Dffη1 +
1

2
ηT

2 η2 (3.67)

Computing the time derivative of the above equation, yields

dV

dτ
= ηT

1 Dffη2 − ηT
2 Dffη1 + ηT

2 Dfrτf (3.68)

= ηT
2 Dfrτf

where Dfr ∈ Rn×1 is a unknown vector, τf is a scalar. Substituting the fast

controller (3.66) gives

dV

dτ
= [η21 η22 · · · η2n]

























d1
fr

d2
fr

...

dn
fr

























[c1 c2 · · · cn]

























η21

η22

...

η2n

























(3.69)

= ηT
2 ∆η2
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where

∆ =

























d1
frc1 d1

frc2 · · · d1
frcn

d2
frc1 d2

frc2 · · · d2
frcn

...

dn
frc1 dn

frc2 · · · dn
frcn

























(3.70)

It is easy to find that Rank(∆) = 1 thus ∆ can be modified as

∆ = PT

























λ 0 · · · 0

0 0 · · · 0

...
...

. . . 0

0 0 · · · 0

























P (3.71)

where λ is the only nonzero eigenvalue, P is a square matrix consisting of eigen-

vectors. Thus, the characteristic equation of ∆ is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ − d1
frc1 −d1

frc2 · · · −d1
frcn

−d2
frc1 λ − d2

frc2 · · · −d2
frcn

...

−dn
frc1 dn

frc2 · · · λ − dn
frcn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λn + pλn−1 = 0 (3.72)

where p =
∑n

i=1 cid
i
fr.

Follow from Property 3.1, we know di
fr < 0, it is clear that for all ci > 0, i =

1, 2 . . . , n, λ = p < 0, and ∆ is a negative semi-definite matrix. We can readily

obtain that

dV

dτ
≤ 0 (3.73)
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it follows from LaSalle’s theorem [73], the solution of the closed loop system will

converge to a bounded invariant set M .

Model Free Adaptive Control Design

In time scale τ , ζ̄ can be a unknown constant. Such that, we are able to design

an adaptive controller for the fast subsystem with an update law in fast feedback

loop. To control the fast subsystem, consider the general controller of the form

τf = −C1η̂1 − C2η2 (3.74)

where η̂1 is the estimate of η1, ci
1 > 0, ci

2 > 0, C1 ∈ R1×n and C2 ∈ R1×n.

Property 3.2: Note that

η1 = z1 − ζ̄ , (3.75)

where z1 can be measurable, while ζ̄ cannot due to the system uncertainty. Since ζ̄

is slow time-varying variable, in the boundary layer system it can be approximated

as a constant parameter. If the estimate of η1 is denoted by η̂1, then

η̂1 = z1 − ˆ̄ζ, (3.76)

where ˆ̄ζ is the estimate of ζ̄. It is also easy to see that

η̃1 = ˜̄ζ. (3.77)

From the proof of Proposition 3.2, we know that it is easy to choose C1 which

provides DfrC1 ∈ Rnf×nf be a negative semi definite matrix. Substituting (3.74)

84



3.4 Control Design for Unknown Single Link System

into (3.55) yields the closed loop system

dη1

dτ
= η2 (3.78)

dη2

dτ
= −Dffη1 + Dfr(C1η̂1 + C2η2)

The stability of the closed-loop system are stated in the following proposition.

Proposition 3.3: The closed-loop system given in (3.78) is asymptotically ap-

proaches a bounded invariant set M as t goes to ∞, if Ks ≥ ||C1E||, and the

parameter adaptation laws are given by

dη̂1

dτ
=

d(z1 − ˆ̄ζ)

dτ
= Γη2 (3.79)

Proof: Let us rewrite the fast subsystem as

dη1

dτ
= η2 (3.80)

dη2

dτ
= −Dffη1 + Dfrτf

As has been proved in Proposition 3.2, all the items in Dfr are positive definite.

Consider the non-negative scalar function V as

V =
1

2
ηT

1 (Dff − DfrC1)η1 +
1

2
ηT

2 η2 +
1

2
˜̄ζ

T

(−DfrC1)Γ
−1˜̄ζ (3.81)

Computing the time derivative of V , it becomes

dV

dτ
= ηT

1 (Dff − DfrC1)
dη1

dτ
+ ηT

2

dη2

dτ
+ ˜̄ζ

T

(−DfrC1)Γ
−1 dζ̂

dτ
(3.82)

= ηT
2 (−Dffη1 − DfrC1η̂1 − DfrC2η2)

+ηT
1 (Dff − DfrC1)η2 + ˜̄ζ

T

(−DfrC1)Γ
−1 dζ̂

dτ

= ηT
2 DfrC1η̃1 − ηT

2 DfrC2η2 + ˜̄ζ
T

(−DfrC1)Γ
−1 ˙̄̂

ζ
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Noting that η̃1 = ˜̄ζ , (3.82) can be modified as

dV

dτ
= ηT

2 (DfrC1)
˜̄ζ − ηT

2 DfrC2η2 + ˜̄ζ
T

(−DfrC1)Γ
−1 dζ̂

dτ
(3.83)

Substituting (3.79) into (3.83), we have

dV

dτ
= −ηT

2 DfrC2η2. (3.84)

Following from proof of Proposition 3.2, we know that ci
2 > 0, i = 1, 2, . . . n guar-

antee that dV
dτ

≤ 0, i.e., the fast system will converge to an invariant set M asymp-

totically.

Neural Network Based Adaptive Control Design

As discussed in Section 3.4.2, a dynamic neural network is used to emulate the

inertia matrix D and Coriolis matrix C. In this section, we use a neural network

to estimate the unknown constant ζ̄. Following from Remark 3.1, the control design

cannot be carried out by using the states η1. The estimates of ζ̄ is obtained by

replacing the true GL weight vectors {Wζ} by its estimates {Ŵζ}, i.e.

ˆ̄ζ = [{Ŵζ}T • {Ξζ}] (3.85)

then,

ζ̄ = [{Ŵζ}T • {Ξζ}] + E (3.86)

where E ∈ Rn×1 is the collective NN reconstruction errors. Let (∗̃) = (∗̂)− (∗). To

control the fast subsystem, consider the general controller of the form

τf = −C1η̂1 − C2η2 − Kssgn(η2) (3.87)
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where ci
1 > 0, ci

2 > 0, C1 ∈ R1×n and C2 ∈ R1×n, and Ks ≥ ||C1E|| for robust

closed-loop stability. Substituting (3.87) into (3.55) yields the closed loop system

dη1

dτ
= η2 (3.88)

dη1

dτ
= −Dffη1 − Dfr[C1η̂1 + C2η2 + Kssgn(η2)]

The stability of the closed-loop system are stated in the following proposition.

Proposition 3.4: The closed-loop system given in (3.88) is asymptotically ap-

proaches a bounded invariant set M as t goes to ∞, if Ks ≥ ||C1E||, and the

parameter adaptation laws is given by

dŴi
ζ

dτ
= −Γζi • {ξi

ζ}
n

∑

j=1

(ηj
2) (3.89)

Proof: Let us rewrite the fast subsystem as

dη1

dτ
= η2 (3.90)

dη2

dτ
= −Dffη1 + Dfrτf

As has been proved in Proposition 3.2, all the items in Dfr are positive definite.

Consider the non-negative scalar function V as

V =
1

2
ηT

1 (Dff − DfrC1)η1 +
1

2
ηT

2 η2 +
1

2

n
∑

i=1

W̃T
ζi(−DfrC1)Γ

−1
ζi W̃ζi (3.91)

Computing the time derivative of V , it becomes

dV

dτ
= ηT

1 (Dff − DfrC1)
dη1

dτ
+ ηT

2

dη2

dτ
+

n
∑

i=1

W̃T
ζi(−DfrC1)Γ

−1
ζi

dŴζi

dτ
(3.92)

= ηT
2 (−Dffη1 − DfrC1η̂1 − DfrC2η2 − DfrKssgn(η2))
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ηT
1 (Dff − DfrC1)η2 +

n
∑

i=1

W̃T
ζi(−DfrC1)Γ

−1
ζi

dŴζi

dτ

= ηT
2 DfrC1η̃1 − ηT

2 DfrC2η2 +
n

∑

i=1

W̃T
ζi(−DfrC1)Γ

−1
ζi

dŴζi

dτ
− ηT

2 DfrKssgn(η2)

Noting that η̃1 = ˜̄ζ = [{W̃ζ}T • {Ξζ}] − E , (3.92) can be modified as

dV

dτ
= ηT

2 (DfrC1){[{W̃ζ}T • {Ξζ}] − E} − ηT
2 DfrC2η2 (3.93)

+
n

∑

i=1

W̃T
ζi(−DfrC1)Γ

−1
ζi

dŴζi

dτ
− ηT

2 DfrKssgn(η2)

= ηT
2 (DfrC1)[{W̃ζ}T • {Ξζ}] − ηT

2 (DfrC1)E − ηT
2 DfrC2η2

+
n

∑

i=1

W̃T
ζi(−DfrC1)Γ

−1
ζi

dŴζi

dτ
− ηT

2 DfrKssgn(η2)

Noting that

ηT
2 (DfrC1)[{W̃ζ}T • {Ξζ}] =

n
∑

i=1

{W̃ζi}T • {ξi
ζ}

n
∑

j=1

(ηj
2d

j
fr

n
∑

k=1

ck
1) (3.94)

and substituting (3.89) into (3.93), we have

dV

dτ
= −ηT

2 DfrC1E − ηT
2 DfrC2η2 − ηT

2 DfrKssgn(η2) ≤ −ηT
2 DfrC2η2, (3.95)

when Ks ≥ ||C1E||. Following from proof of Proposition 3.2, we know if ci
2 > 0,

i = 1, 2, . . . n, then dV
dτ

≤ 0, i.e., the fast system will converge to an invariant set

M asymptotically.

Note that only the closed-loop stability is claimed in Propositions 3.2-3.4. To prove

the asymptotic stability is difficult due to the infinite dimensionality of the system.

This means the robot may stop before reaching the final position and thus the

regulation will fail. However, we shall show in the following that practically the
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flexible robot can only possibly stop at the final position qf = 0 without vibrating.

Consider the general form controller (3.66). Assume that it stops at a position

qr = α (hence q̇r = 0) with α 6=0, thus there is no energy input to the system since

q̇r = 0. Due to the existence of internal structural damping in a flexible link in

practice, the flexible robot must tend to stop vibrating and finally be static at the

undeformed position. Consequently, the controller in (3.66) approaches a nonzero

constant and thus qr = α cannot hold. The only possibility is that the flexible link

is at the final position qr≡0 without vibrating, which implies the tip regulation is

achieved.

Although the explanation of the practical asymptotic behaviour of the system above

is reasonable, it cannot be taken as a rigorous mathematical proof. Indeed, for any

damped traditional truncated-model obtained by either AMM or FEM (the effect

of internal structural damping has been modeled as a positive definite damping

matrix), the controller can be easily shown to be asymptotically stable using the

LaSalle’s Theorem, since the system in this case has been reduced to a finite di-

mensional one.

3.4.4 Simulation Studies

To verify the effectiveness of the proposed method, numerical simulations are car-

ried out for a single-link flexible materials robot operating in the horizontal plane.
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3.4 Control Design for Unknown Single Link System

The flexible link robot is simulated using a 2 modes dynamic model with the fol-

lowing parameters. A fourth-order Runge-Kutta program with adaptive-step-size

is used to numerically solve the ODEs [68]. The sampling interval is set to 0.001s.

ρ = 0.1kg/m (link uniform density)

l = 1.0m (link length)

m = 0.1kg (link mass)

Ih = 3.0kgm2 (hub inertia)

Ib = 0.033kgm2 (rigid inertia)

EI = 5.0Nm2 (flexural link rigidity)

The desired trajectory for the rigid joint angle is expressed as a Hermite polynomial

of the fifth degree in t with continuous bounded position, velocity and bounded

acceleration. The general expression for the desired position trajectory is:

qd(t, td) = q0 + (6.0
t5

t5d
− 15

t4

t4d
+ 10.0

t3

t3d
)(qf − q0) (3.96)

td represents the time that the desired arm trajectory reaches the desired final

position qf starting from the desired initial position q0. In this paper, q0 = 0.0,

qf = 1.0 and td = 2.0 seconds.

Figures 3.4-3.6 shows the simulation result without estimating ζ̄, and Figures 3.7-

3.10 show the result of the design by estimating ζ̄. Figures 3.4 and 3.7 present

the joint angle trajectory under control (3.66) and (3.74), respectively. It can be

seen that the controller with estimating ζ̄ gives better performance whereas η2
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3.4 Control Design for Unknown Single Link System

based control made the joint angle oscillate about the desired trajectory. From

Figures 3.5 and 3.8, It indicates that tip deflections of flexible robot under control

(3.74) converge faster than those under (3.66). For completeness and clarity in

presentation, other signals in the closed-loop are included. Figures 3.6 and 3.10

show the bounded joint control torque signals under both controllers, while Figure

3.9 shows the estimation of ζ̄.
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Figure 3.4: Joint angle trajectory.

The most important trajectories are those of tip position. The tip is required

to track the desired trajectory fast with small residual vibration to improve the

positioning accuracy. Under the assumption of small deflection, the tip position of

the robot can be approximated by

pt = Lθ(t) + y(L, t) (3.97)
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3.5 Summary

where pt is the tip position, y(L, t) is the tip deflection of the flexible robot and

the angular position should be represented in radians instead of degrees. The tip

positions under different controllers are depicted in Figure 3.11.

In fact, different tracking performance can be achieved by adjusting parameter

adaptation gains and other factors, such as the size of the networks. Because

neural networks are used to approximate system’s functions, the requirements on

the initial knowledge of the system is greatly reduced.

3.5 Summary

Since η1 is unmeasurable, the adaptive control for unknown flexible robot remains

open. In this chapter, an adaptive neural network control problem for flexible link

robot is studied based on the singular perturbation theory. By using the critical

properties of M, a controller for fast subsystem is proposed. It is proven that the

fast controller can guarantee the boundedness of flexible part, and stabilize the

state at the origin by its internal structure damping. Then an adaptive neural

network controller is developed to control the slow system. By using the composite

controller combining the slow and fast controller, it seems that the fast variables

are asymptotically stable, while adaptive trackings are achieved for slow variables.

Simulations have been carried out to illustrate the performance of the controller

designed by the proposed methods.
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Figure 3.6: Torque control.
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Figure 3.10: Control action.
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Chapter 4

Force/Position Control of Flexible

Link Robots

The problem of controlling force and position of a multi-link flexible link manipu-

lator with constraint is studied in this chapter. The control for a known parameter

multilink system in contact with environment are considered. The model has been

developed in Section 2.2. Using singular perturbation theory, a slow subsystem

associated with rigid dynamics and a fast subsystem associated with flexible dy-

namics are identified. Consequently, a composite control strategy is applied. It

consists of a force and position control for the slow subsystem and a stabilizing

control for the fast subsystem. Simulations are presented for a two-link manipula-

tor to demonstrate the performance of the proposed controller.
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4.1 Introduction

4.1 Introduction

The tasks of industrial robots may be divided into two categories. The first is the

so-called free motion task, and the second category, however, involves interactions

between the robot end-effector and the environment. Many robot applications in

manufacturing involve some kind of contact between the end-effector and the envi-

ronment, as the robot moves along a prescribed trajectory. Therefore, constrained

robots have become a useful mathematical method to model the physical and dy-

namic effects of a robot when it is engaged in one of the contact tasks. Unlike

free motion control, where the only control objective is trajectory tracking or set-

point regulation, the control of a constrained robot has an additional difficulty in

controlling the constrained force.

In the case of interaction with the environment, it is required to consider both

force control and position control. While several control methods exist for the

rigid robot manipulators, only few works addressed on flexible link robot. A hy-

brid position and force control approach is proposed in [18, 49, 50]. A nonlinear

decoupling method is considered in [51], and the application of computed-torque

controller for constrained robots is carried out in [52]. Adaptive control dealing

with parameter uncertainties are proposed in [74, 75], while the same problem is

solved by using sliding mode control [76, 77]. All the existing methods depend on

the exact cancellation of the robot dynamics to achieve.
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4.2 Dynamical Model and Properties

On the other hand, when the link stiffness is large, the two-time scale model of

the flexible manipulator can be derived [35], which consists of a slow subsystem for

rigid motion and a fast subsystem for flexible motion. Thus, a composite strategy

can be carried out with the slow control designing for the rigid part and fast control

stabilizing the flexible part. Several papers considered the free motion task based

on singular perturbation theory [18, 35, 42, 64, 78], but the postion/force control of

constrained flexible link robot remains open.

In this chapter, a two time scale position and force control for flexible manipula-

tors is proposed. A composite control is designed for known parameter multi-link

flexible manipulator system.

The chapter is organized as follows. Section 4.2 reviews the dynamic model of

constrained robots and its properties; A two time scale force and position control

with known parameters is presented in Section 4.3; Section 4.4 contains simulations

to show the effectiveness of the proposed control; and conclusion and summary are

given in Section 4.5.

4.2 Dynamical Model and Properties

Consider the multi-link flexible manipulator, as sketched in Figure 4.1. The rigid

motion is described by the joint angles θi, while yi(xi) denotes the transversal

deflection of link i at xi with 0 ≤ xi ≤ li, being li the link length.
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Figure 4.1: Two link flexible manipulator.

The finite dimensional model can be obtained by AMM. From Section 2.2, the

direct kinematics equation expressing the position vector p of the manipulator

tip point as a vector qr = [θ1, · · · , θn]T ∈ Rn×1 of the joint variable and the vector

qf = [q1,1 · · · q1,N1
· · · qn,1 · · · qn,Nn

]T ∈ RN×1 of the deflection variable can be written

in the form [22]

p = k(qr,qf ) (4.1)

where N =
∑n

i=1 Ni, with Ni being the number of modes considered to express

the deflection of link i, and φ(qr,qf ) is twice continuously differentiable [52]. From

(4.1), the differential kinematics equation expressing the tip velocity ṗ as a function
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4.2 Dynamical Model and Properties

of q̇r and q̇f is

ṗ = J ′T
qr

(qr,qf )q̇r + J ′T
qf

(qr,qf )q̇f , (4.2)

where J ′T
qr

=
∂φ(qr,qf )

∂qr
and J ′T

qf
=

∂φ(qr,qf )

∂qf

The above kinematics description is at the basis of the dynamic modeling of the

flexible manipulator using the Lagrange approach that requires computation of

kinetic and potential energy [20,22].

Consider now the situation when the manipulator tip is in contact with a holonomic

and frictionless infinitely stiff surface the constraint imposed by the surface can be

described by the differential scalar function

φ(p) = φ(k(qr,qf )) = 0, (4.3)

where the direct kinematics equation (4.1) has been used to express the constraint

in terms of joint and deflection variable. Also, it is assumed that the manipulator

tip is always in contact with the surface. In static situation, the deflection can be

shown to satisfy the equation

fqf
= Kffqf = J ′T

qf
(qr,qf )Jφλ (4.4)

where Kff is the link stiffness matrix

Kff = diag(k1,1, · · · , k1,N1
, · · · , kn,1, · · · , kn,Nn

) (4.5)

with ki,j defining in (2.56). Also in (4.4), J ′
qf

is the Jacobian appearing in (4.2), Jφ

is the gradient of the constraint space with respect to the two coordinates of the
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4.2 Dynamical Model and Properties

manipulator position, i.e.

Jφ =

(

∂φ

∂p

)T

(4.6)

and λ ∈ Rm is a generalized Lagrangian multiplier relating to the magnitude of

the constraint force [52]. Constraint force, fqr
, can then be expressed by

fqr
= JT

qr
(qr,qf )λ ∈ Rm×n (4.7)

fqf
= JT

qf
(qr,qf )λ ∈ Rm×N , (4.8)

where Jqr
= J ′

qr
Jφ, Jqf

= J ′
qf

Jφ, and m is the dimension of the constraint surface

and it is assumed that m < n.

By the virtual work principle, the vector f of the force exerted by the manipulator

on the environment performing work on p has to be related to the (N × 1) vector

JT
qr

λ of joint torques performing work on qr and the (n × 1) vector JT
qf

qf of the

elastic reaction force performing work on qf .

A finite-dimensional Lagrangian dynamic model of the planar manipulator in con-

tact with the environment can then be obtained in terms of the N + n generalized

coordinates qr, qf in the form [22,28]:









Mrr Mrf

Mfr Mff

















q̈r

q̈f









+









Hr

Hf









+









0

Kffqf









=









τ

0









+









JT
qr

λ

JT
qf

λ









(4.9)

where

Hr = Crrq̇r + Crf q̇f
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4.2 Dynamical Model and Properties

Hf = Cfrq̇r + Cff q̇f

and Mrr, Mfr, Mrf , Mff are the blocks of the inertia matrix M , which is sym-

metric and positive definite, Crr, Cfr, Crf , Cff represents the components of the

vector of Coriolis and centrifugal forces, Kff is the diagonal and positive definite

link stiffness matrix, and τ is the vector if the input joint torques.

Due to the m-dimension constraint, m degrees of freedom of the robot are lost.

Partitioning the link position vector q to q1 ∈ Rn+N−m and q2 ∈ Rm, we have

q = [q1T q2T ]T (4.10)

and accordingly, the Jacobian J(q) is decomposed as

J(q) = [J1(q) J2(q)] (4.11)

with

J1(q) =
∂φ(q)

∂q1
∈ Rm×(n+N−m)

J2(q) =
∂φ(q)

∂q2
∈ Rm×m

As stated in [79], it is possible to have a partition such that J−1
2 (q) and

q̇ = L(q)q̇1, L(q) =









In+N−m×n+N−m

−J−1
2 (q)J1(q)









(4.12)

where I is an identity matrix.

With the partition of the link position vector in equation (4.10), the position of

the robot can be uniquely determined by q1. The original dynamical model in
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4.2 Dynamical Model and Properties

equations (4.9) is transformed to

M1
rq̈

1
r + H1

rq̇
1
r = τ + JT

qr
λ (4.13)

M1
f q̈

1
f + H1

f q̇
1
f + Kffq

1
f = τ + JT

qf
λ (4.14)

where

M1(q) = M(q)L(q) ∈ Rn+N×m

C1(q, q̇) = M(q)L̇(q) + C(q, q̇)L(q) ∈ Rn+N×m

Define Ml(q) = LT (q)M1(q) ∈ Rm×m, Cl(q, q̇) = LT (q)C1(q, q̇) ∈ Rm×m. It can

be proven that the dynamic models (4.13) and 4.14 have the following properties.

Property 4.1 LT (q)JT (q) = 0.

Property 4.2 M, C, M1, C1, Ml, Cl, L(q), L̇(q), and J(q) are uniformly

bounded and continuous if q and q̇ are uniformly bounded and continuous;

M and Ml are symmetric positive definite (s.p.d).

Property 4.3 Ṁ(q) − 2C(q, q̇) and Ṁl(q) − 2Cl(q, q̇) are skew-symmetric

if C(q, q̇) is in the Christoffel form, i.e., xT
1 (Ṁ(q) − 2C(q, q̇))x1 = 0,

xT
2 (Ṁl(q) − 2Cl(q, q̇))x2 = 0, ∀x1 ∈ Rn and x2 ∈ Rn−m.

For the controller design, the following assumptions are made for these terms:

Assumption 4.1 qr(t), q̇r(t), qf (t), q̇f (t) and λ(t) are all measurable.
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4.3 Two-time Scale Control

Assumption 4.2 The desired link position (qrd(t)) and the constraint force (λd(t))

and their derivatives are bounded and continuously differentiable.

4.3 Two-time Scale Control

When the link stiffness is large, it is reasonable to expect that the dynamics related

to link flexibility is much faster than the dynamics associated with the rigid motion

of the manipulator so that the system naturally exhibits a two-time scale dynamic

behaviour in terms of rigid and flexible variables. this feature can be conveniently

exploited for control design. For convenience, define D as

D = M−1 =









Drr Drf

Dfr Dff









(4.15)

where

Drr = (Mrr − MrfM
−1
ff Mfr)

−1 (4.16)

Drf = −M−1
rr Mrf (Mff − MfrM

−1
rr Mrf )

−1 (4.17)

Dfr = −M−1
ff Mfr(Mrr − MrfM

−1
ff Mfr)

−1 (4.18)

Dff = (Mff − MfrM
−1
rr Mrf )

−1 (4.19)

If Assumption 4.1 hold, the vector of joint torques can be conveniently chosen as

τ = Jqr
λ + u (4.20)
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4.3 Two-time Scale Control

in order to cancel out the effects of the static torques acting on the rigid part of

the manipulator dynamics, where the vector u is a new control input.

System (4.9) then becomes

q̈r = −Drr(qr,qf )Hr(qr, q̇r,qf , q̇f ) − Drf (qr,qf )Hf (qr, q̇r,qf , q̇f )

−Drf (qr,qf )(Kffqf − JT
qf

λ) + Drr(qr,qf )u (4.21)

q̈f = −Dfr(qr,qf )Hr(qr, q̇r,qf , q̇f ) − Dff (qr,qf )Hf (qr, q̇r,qf , q̇f )

−Dff (qr,qf )(Kffqf − JT
qf

λ) + Dfr(qr,qf )u (4.22)

The time scale separation between the slow and fast dynamics can be determined

by defining the singular perturbation parameter ǫ. Assume that the orders of

magnitude of the ki,j in (4.5) are comparable. Introducing an appropriate scale

factor k such that

Kff = kK̃ff (4.23)

The following new variables can be defined as

ζ := kK̃ffqf (4.24)

Define ǫ2 := 1/k, equation (4.21) can be modified as

q̈r = −Drr(qr, ǫ
2ζ)Hr(qr, q̇r, ǫ

2ζ, ǫ2ζ̇) − Drf (qr, ǫ
2ζ)Hf (qr, q̇r, ǫ

2ζ, ǫ2ζ̇)

−Drf (qr, ǫ
2ζ)(ζ − JT

qf
λ) + Drr(qr, ǫ

2ζ)u (4.25)

ǫ2ζ̈ = −Dfr(qr, ǫ
2ζ)Hr(qr, q̇r, ǫ

2ζ, ǫ2ζ̇) − Dff (qr, ǫ
2ζ)Hf (qr, q̇r, ǫ

2ζ, ǫ2ζ̇)

−Dff (qr, ǫ
2ζ)(ζ − JT

qf
λ) + Dfr(qr, ǫ

2ζ)u (4.26)
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4.3 Two-time Scale Control

The system is now decomposed in a slow and a fast subsystems by using singular

perturbation theory. This leads to a composite control strategy for the null system

based on separate control designs for the two reduced order subsystems.

Formally, setting ǫ = 0 and solving for ζ in (4.26), we obtain

ζ̄ = −D−1
ff (q̄r, 0)[Dfr(q̄r, 0)Hr(q̄r, ˙̄qr, 0) + Dff (q̄r, 0)Hf (q̄r, ˙̄qr, 0) (4.27)

+Dff (q̄r, 0)JT
qf

λ + Dfr(q̄r, 0)us]

where the overbars are used to indicate that the system with ǫ = 0. The state

variable ζ̄ corresponds to a static elastic deformation for the slow time scale.

Substituting Eq. (4.27) into Eq. (4.25) with ǫ = 0 and using the relations

Mrr = (Drr − DrfD
−1
ff Dfr)

−1, yields the slow subsystem which is equivalent to

the dynamic equation of the rigid manipulators [18].

Mrr(q̄r, 0)¨̄qr + Hr(q̄r, ˙̄qr, 0) = us (4.28)

Let us define

x1 = qr, x2 = q̇r, z1 = ǫζ, z2 = ǫ2ζ̇ (4.29)

The full system (4.25) and (4.26) can be rewritten as

ẋ1 = x2 (4.30)

ẋ2 = −Drr(x1, ǫ
2z1)Hr(x1,x2, ǫ

2z1, ǫz2) − Drf (x1, ǫ
2z1)Hf (x1,x2, ǫ

2z1, ǫz2)

−Drf (x1, ǫ
2z1)z1 + Drr(x1, ǫ

2z1)u + Dff (q̄r, 0)JT
qf

λ
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ż1 = z2 (4.31)

ǫż2 = −Dfr(x1, ǫ
2z1)Hr(x1,x2, ǫ

2z1, ǫz2) − Dff (x1, ǫ
2z1)Hf (x1,x2, ǫ

2z1, ǫz2)

−Dff (x1, ǫ
2z1)z1 + Dfr(x1, ǫ

2z1)u + Dff (q̄r, 0)JT
qf

λ

To derive the fast subsystem, we introduce the fast time scale τ = t/ǫ, and the new

variables

η1 = z1 − ζ̄ , η2 = z2,uf = u − us (4.32)

Using equations (4.32) and (4.30), the joint angles can be represented as

dx1

dτ
= ǫx2 (4.33)

dx2

dτ
= −ǫDrrHr − ǫDrfHf − ǫDrf (η + ζ̄) + ǫDrru + ǫDffJ

T
qf

λ

From equation (4.33) we can find that ǫ → 0 ⇒ dx1

dτ
= 0, dx2

dτ
= 0 ⇒ x1 = constant,

x2 = constant and the slow variable x1 and x2 are constant in the fast subsystem.

Using (4.27) (4.31) and (4.32)gives the fast subsystem

dη1

dτ
= η2 (4.34)

dη2

dτ
= −Dff (x̄1)η1 + Dfr(x̄1)uf .

4.3.1 Slow Control

In order to design the slow control for the rigid nonlinear system (4.28), we derive

the slow dynamics with respect to the tip position. Differentiating Eq. (4.2), which

contains the tip velocity, it gives the tip acceleration

p̈ = Jqr
q̈r + Jqf

q̈f + J̇qr
q̇r + J̇qf

q̇f . (4.35)
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4.3 Two-time Scale Control

Thus, the corresponding slow subsystem is

p̈s = J̄qr
M−1

rr (us − H̄r) + ¯̇Jqr
q̇r. (4.36)

The slow dynamic models (4.28) and (4.35) enjoy the same properties of the rigid

dynamic model [23], hence the control strategies developed for rigid link can be

adopted here. For the tracking of a time varying position pd on the contact plane,

an inverse dynamics parallel control scheme can be adopted for the slow system [24].

Then, we have the following theorem.

Theorem 4.1: The quasi-steady-state dynamic system (4.30) is exponentially sta-

ble given the following slow-time scale control law:

us = M̄rrJ̄qr
(äs − h̄) + H̄r (4.37)

where

as = p̈r + kd(ṗr − ps) + kp(pr − ps) (4.38)

with pr = pd + pc is the desired position, and pc is the solution of the differential

equation

kap̈c + kvṗc = λd − λs (4.39)

being kp, kd, kv, and ka > 0 suitable feedback gains.

Proof: Substituting (4.37) with (4.38) into (4.36), it gives

p̈s = p̈r + kd(ṗr − ps) + kp(pr − ps) (4.40)
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4.3 Two-time Scale Control

Define e = pr − ps, we have

ë + kdė + kpe = 0 (4.41)

Since pd,t = pr,t, where ∗t is the projection of ∗ on vector t (Figure 4.2), it can be

found that

ët + kdėt + kpet = 0 (4.42)

which implies that the tracking of the tip position to desired value pd at the pro-

jection along the surface is achieved, for any choice of kd and kp > 0.

On the other hand, a better insight into the behavior of the system during the

interaction can be achieve by considering a model of the compliant environment.

To this purpose, a planar surface of regular, which is locally a good approximation

to surfaces of regular curvature (Figure 4.2), and the model of the contact force is

given by

λ = kennT (p − po) (4.43)

where po represents the position of any point on the underformed plane and ke > 0

is the contact stiffness coefficient. For the purpose of this work, it is assumed that

the same equation can be established in terms of the slow variables. Such a model

shows that the contact force is normal to the plane, and thus a null force error

can be obtained only if the desired force λd is aligned with n. In addition, null

position errors can be obtained only on the contact plane while the component of

the position along n has to accommodate the force requirement specified by λd [27].
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Figure 4.2: Scheme of contact plane and equilibrium position.

Projecting (4.39) along n gives

kap̈c,n + kvṗc,n = δλn (4.44)

assuming that the component of pd is along vector n is constant, we project ps and

ṗs on the normal to the contact plane gives

ṗe,n = ṗc,n (4.45)

p̈e,n = p̈c,n (4.46)

where ∗n is the projection of ∗ on vector n.
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4.3 Two-time Scale Control

In view of the model (4.43), we have

ps − pd + pd − po = (kennT )−1λ (4.47)

Projecting (4.47) on n, we have

ep,n = k−1
n (eλ,n − λd,n − pd,n + po,n) (4.48)

where ep = ps − pd and eλ = λ − λd. Then, substituting (4.45) and (4.46) into

(4.39) and using (4.48) with constant pd,n, λd,n and po,n yields

kak
−1
n ëλ + kvk

−1
n ėλ = eλ (4.49)

which implies that regulation of the contact force to the desired value along the

constrained task direction is achieved, for any choice of ka and kv > 0.

By using the similar arguments developed in [24] for rigid manipulators, it can be

easily shown that the control law (4.37), (4.38), (4.39) ensures regulation of the

contact force to the desired set-point λd and tracking the time-varying component

of the desired position on the contact plane (I−nnT )pd, where n is the unit vector

along the normal to the plane.

4.3.2 Fast Controller

The fast subsystem can be rewritten as

dη

dτ
= A(x̄)η + B(x̄)uf (4.50)
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4.3 Two-time Scale Control

where η = [η1 η2]
T , A =









O I

−Dff (x̄) O









, B =









O

Dfr(x̄)









System (4.50) is a marginally stable linear slowly time varying system that can be

stabilized to the equilibrium manifold by a proper choice of the control input uf ,

A reasonable way to achieve this goal is to design a state space control law of the

form

uf = K1η1 + K2η2 (4.51)

where matrices K1 and K2 can be determined based on classical pole placement.

4.3.3 Composite Controller

Combining the slow control law (4.37) and the fast control law (4.51), it gives the

input torque

u = us + uf , (4.52)

which achieves the dynamics hybrid position/froce control of the flexible manipula-

tor. A scheme of the composite controller is shown in Figure 4.3.3. Following from

Tikhonov’s theorem, a fundamental result in the singular perturbation theory, the

state vectors of the full system can be approximated as

x1 = x̄1 + O(ǫ) x2 = x̄2 + O(ǫ)

z1 = ζ̄ + η1 + O(ǫ) x1 = η2 + O(ǫ)
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Figure 4.3: Block diagram of composite controller

4.4 Simulation

To test the proposed method, a two link (n=2) flexible arm which is rotate by two

motors in a horizontal plane (Figure 4.4) with two assumed mode (N1 = N2 =2)

for each link is considered. For completeness, the components of M, H and K are

detailed in Appendix [22]. Assume that the contact surface is

φ = x − 0.5 = 0, (4.53)

and the desired tip position pd = [xd yd]
T m move along the following trajectory on

the constraint surface defined by

xd(t) = 0.5 (4.54)

yd(t) = 1.2t5 − 3t4 + 2t3

Apparently, the normal vector in (4.43) is n = [1 0]T ; a point of the underformed

plane is po = [0.3 0]T m and the contact stiffness is ke = 20 N/m. The manipulator

is initially placed with the tip in contact with the underformed plane in the position
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4.4 Simulation

p(0) = [0.18 0]T m, and the desired force is taken from zero to the value λd = [2 0]T N.

The following parameters are set up for the links and placement of a payload is

X


Y


O


n


Figure 4.4: Manipulator configurations

assumed to be at the manipulator tip:

ρ1 = ρ2 = 1.0kg/m (link uniform density)

l1 = l2 = 0.5m (link length)

d1 = d2 = 0.25m (link center of mass)

m1 = m2 = 0.5kg (link mass)

Ih1 = Ih2 = 3.0kgm2 (hub inertia)

Ib1 = Ib2 = 0.51kgm2 (rigid inertia)

EI1 = EI2 = 10Nm2 (flexural link rigidity)

mt = 0.1kg (payload mass)

In the simulation study, the slow controller (4.37) has been used in the composite

control law (4.52). The actual force f and position p are used in the controller in

lieu of the corresponding slow variables. The slow control gains have been set to

kp = 25 and kd = 10, ka = 1.73, kv = 3.19, and the fast control gains have been set
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Figure 4.5: Contact force

to K1 = [2.198 0.281 10.231 − 7.121]T and K2 = [6.112 − 12.930 3.884 1.582]T .

The simulation result are shown in Figures 4.5-4.11.

Figures 4.5 and 4.6 indicate the trajectories of the contact force and the position

errors of respectively. The joint angles qr1, qr2 and link deflections qf11, qf12, qf21,

qf22 are shown in Figures 4.7-4.10. The joint torque u is reported in Figure 4.11.
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Figure 4.7: 1st joint angle
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Figure 4.8: 2nd joint angle

0        5 10 15
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time (s)

(r
ad

) First mode

Second mode
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4.5 Summary

4.5 Summary

The problem of force and position control for the flexible robots has been investi-

gated. By using singular perturbation theory, the original system is regrouped into

two subsystems, based on the assumption of large link stiffness. A slow subsystem

represents the dynamics of rigid part and a fast subsystem describes the dynamics

of flexible part. A force and position parallel control, which is developed for rigid

link manipulators, has been applied for the control of the slow rigid dynamics.

The fast control is designed by the classical pole placement. Simulations show the

effectiveness of the proposed method.
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Chapter 5

Conclusions and Further Research

5.1 Conclusions

The work presented in this thesis basically consists of two parts: the dynamic

modeling part (Chapter 2) and the controller design part (Chapter 3-4).

In Chapter 2, the modeling of flexible robot manipulators is studied. First, by

using Lagrange’s equations of motion, a closed-form dynamics model, where link

deflection is described in terms of assumed modes, is obtained. Subsequently, by

using FEM, the flexible beam is divided into a finite number of elements, and the

link’s elastic deformation is represented in the form of a linear combination of ad-

missible functions and generalized coordinates. Although the model obtained from

AMM and FEM can both be used in the design of the controller, the generalized

coordinates in the FEM model are more physically meaningful than those in the
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5.1 Conclusions

AMM model. Therefore, a multi-link model is developed using the results from

FEM. All of the models described in Chapter 2 are used throughout the controller

design part.

In Chapter 3, the FEM model is separated into two subsystems based on singular

perturbation theory, under the assumption of large link stiffness. Then, an adaptive

neural network controller is developed for the unknown systems. The unknown

equilibrium ζ̄ is considered as a constant in the boundary layer, so that an adaptive

law can be designed for the fast subsystem. It is noted that the fast variables are

asymptotically stable, while adaptive trackings are achieved for slow variables.

It is found that the proposed controller can achieve better tracking performance

compared with the existing PID methods.

Chapter 4 is dedicated to the position/force control for a constrained flexible multi-

link robot. The constrained robot model and its properties are briefly reviewed.

By cancelling out the effects of the static torques acting on the rigid part of the

manipulator dynamics, a new control input is introduced. By using singular per-

turbation theory, under the assumption of large link stiffness, the system is split

into two subsystems. Assuming that all the states measurement are available, a

composite control is proposed. It has been proven that the controller guarantees

the regulation of the contact force and the tracking of the tip position to the desired

trajectories. A simulation study has confirmed the effectiveness of the proposed

approach.
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5.2 Further Research

5.2 Further Research

There are still many investigations that can be carried out to extend the work in

this thesis. For example,

• Design of the observer to measure the unknown ζ̄ for fast control design.

As discussed in Chapter 3, the equilibrium cannot be measured directly for a

unknown system, although full states measurement are available. In Chapter

3, some critical properties of the single link model have been found, and

by using this, the fast stabilizer is developed without a priori knowledge.

However, for multi-link robots, this property may not hold. One possible

method to solve the problem is to design an adaptive observer. By cementing

enough strain gauge foils on flexible link, it may be possible to measure the

movements.

• Adaptive control of position/force control constrained robots with unknown

parameters.

All the existing methods are dependent on the exact cancellation of the robot

dynamics to achieve the desired result. However, in real application, the

exact robot model may not be available to control, i.e., the exact cancellation

of the dynamics may not be feasible. The system uncertainty affects the

dynamics parameters. The tracking control performance and the accuracy

of constrained force are therefore subject to the variance of the systems.
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5.2 Further Research

Further research should be dedicated into the adaptive control problem for

the unknown or partially unknown multi-link flexible robots. The effects of

the force signals on the stability of the overall closed loop system should be

further investigated.

123



Bibliography

Bibliography

[1] G. Zhu, Modelling and Control of Flexible Robots. Ph.D Thesis, National

University of Singapore, 1997.

[2] V. A. Spector and H. Flashner, “Modeling and design implications of non-

collocated control in flexible systems,” ASME Journal of Dynamic Systems,

Measurement and Control, vol. 112, pp. 186–193, 1990.

[3] Z. H. Luo, “Direct strain feedback control of flexible robot arms: new theo-

retical and experimental results,” IEEE Transactions on Automatic Control,

vol. 38, no. 11, pp. 1610–1622, 1993.

[4] J. J. Shifman, “Lyapunov functions and the control of euler-bernoulli beam,”

International Journal of Control, vol. 57, pp. 971–992, 1993.

[5] W. Book, “Modelling, design, and control of flexible manipulator arms: a

tutorial review,” in Proc. 29th Conf. Decision & Control, (Honolulu, Hawaii),

pp. 500–506, Dec., 1990 1990.

[6] H. Kanoh, S. Tzafestas, H. G. Lee, and J. Kalat, “Modelling and control of

flexible robot arms,” in Proc. 25th Conf. Decision & Control, (Athens, Greece),

pp. 1866–1870, Dec 1986.

124



Bibliography

[7] V. V. Korolov and Y. H. Chen, “Robust control of a flexible manipulator arm,”

in Proc. 1988 IEEE Int. Conf. Robotics and Auto., (Philadelphia, PA, USA),

pp. 159–164, Apr 1988.

[8] Y. Sakawa, F. Matsuno, and S. Fukushima, “Modeling and feedback control

of a flexible arm,” J. of Robotic Systems, vol. 2, no. 4, pp. 453–472, 1985.

[9] H. Krishnan, Bounded Input Discrete-Time Control of a Single-Link Flexi-

ble Beam. University of Waterloo: Master Thesis, Department of Electrical

Engineering, 1988.

[10] F. Bellezza, L. Lanari, and G. Ulivi, “Exact modeling of the flexible slewing

link,” in Proc. 1990 IEEE Int. Conf. Robotics and Automation, (Cincinnati,

OH, USA), pp. 734–739, May 1990.

[11] E. Bayo, “A finite element approach to control the end-point motion of a

single-link flexible robot,” J. of Robotics Systems, vol. 4, no. 1, pp. 63–75,

1987.

[12] P. B. Usoro, R. Nadira, and S. S. Mahil, “A finite element/lagrange approach

to modeling lightweight flexible manipulators,” Trans. ASME, J. Dyn. Syst.,

Meas., Contr., vol. 108, no. 3, pp. 198–205, 1986.

[13] C. Menq and J. Chen, “Dynamic modeling and payload-adaptive control

of a flexible manipulator,” in Proc. 1988 IEEE Int. Conf. Rob. and Auto.,

(Philadelphia, PA, USA), pp. 488–493, April 1988.

125



Bibliography

[14] S. S. Ge, T. H. Lee, and G. Zhu, “A nonlinear feedback controller for a single-

link flexible manipulator based on a finite element model,” Journal of Robotic

Systems, vol. 14, no. 3, pp. 165–178, 1997.

[15] S. Ge, T. Lee, and G. Zhu, “Robust nonlinear feedback control of a one-link

flexible robot with cone-bounded uncertainties,” in Proc. of 4th Int. Conf. on

Control, Automation, Robotics and Vision, (Singapore), pp. 534–538, 1996.

[16] S. Ge, T. Lee, and G. Zhu, “Two-phase regulation of a single-link flexible

robot,” in Proc. Asian Control Conference (ASCC’97), vol. 3, (Seuol), pp. 355–

358, July 22-25 1997.

[17] L. Meirovitch, Elements of Vibration Analysis. New York: McGraw-Hill, Inc.,

1975.

[18] F. Matsuno and K. Yamamoto, “Dynamic hybrid position/force control of a

two degree-of-freedom flexible manipulator,” J. Robotic Systems, vol. 11, no. 5,

pp. 355–366, 1994.

[19] F. Marsuno, “Force control of flexible manipulators,” in Adavanced Studies of

Flexible Robotic Manipulators, no. 1, pp. 129–188, 2003.

[20] W. J. Book, “Recursive lagrangian dynamics of flexible manipulator arms,”

Int. J. Robotics Res., vol. 3, pp. 87–101, 1984.

[21] R. P. Judd and D. R. Falkenburg, “Dynamics of nonrigid articulated robot

linkages,” IEEE Trans. Automatic Contr., vol. 30, pp. 499–502, 1985.

126



Bibliography

[22] A. D. Luca and B. Siciliano, “Closed-form dynamic model of planar multilin

lightweight robots,” IEEE Trans. Systems, Man, and Cybernetics, vol. 21,

pp. 826–839, 1991.

[23] C. C. de Wit, B. Siciliano, and G. Bastin, Theory of Robot Control. London,

New York: Springer, 1996.

[24] B. S. L. Villani, Robot force control. Boston, MA: Kluwer Academics Publish-

ers, 1999.

[25] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipulators.

New York: McGraw-Hill, Inc., 1996.

[26] B. Siciliano, “A closed-loop inverse kinematics scheme for on-line joint based

robot control,” Robotica, vol. 8, pp. 231–243, 1990.

[27] B. Siciliano, “Closed-loop inverse kinematics algorithm for constrained flexi-

ble manipulators under gravity,” IEEE Trans. on Automatic Control, vol. 39,

pp. 647–652, 1994.

[28] B. Siciliano, “Closed-loop inverse kinematics algorithm for constrained flexi-

ble manipulators under gravity,” Journal of Robotic Systems, vol. 16, no. 6,

pp. 353–362, 1999.

[29] R. H. J. Cannon and E. Schmitz, “Initial experiments on the end-point control

of a flexible robot,” Int. J. Robotics Res., vol. 3, no. 3, pp. 62–75, 1984.

127



Bibliography

[30] A. Arakawa, T. Fukuda, and F. Hara, “H∞ control of a flexible robotics arm

(effec of parameter uncertainties on stability),” in IEEE/RSJ Int. Workshop

on Intelligent Robots and Systems IROS’91, (Osaka, Japan), pp. 959–964, 3-5,

Nov. 1991.

[31] Y. P. Chen and K. S. Yeung, “Regulation of a one-link flexible robot arm using

sliding -mode technique,” Int. J. Control, vol. 49, pp. 1965–1978, 1989.

[32] S. S. Ge, T. H. Lee, and G. Zhu, “Energy-based robust controller design for

multi-link flexible robots,” Mechatronics, vol. 6, no. 7, pp. 779–798, 1996.

[33] S. S. Ge, “Energy based control of flexible link robots,” in Adavanced Studies

of Flexible Robotic Manipulators, pp. 71–104, 2003.
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Appendix A

Entries of Matrices M, C and K

Used in Chapter 4

Since two link with two assumed mode for each link model is investigated in Section

4.4, thus the inertia matrix M and the Coriolis vector can be assumed as

M =


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






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







































H1

H2

H3

H4

H5

H6
























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






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(A.1)
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and the stiffness matrix K is of form

K = diag{0, 0, ω2
11m1, ω

2
12m1, ω

2
21m2, ω

2
22m2} (A.2)

The components of M and H can be expressed as

M11 = m111 + m112 cos qr2 + (m113(t11qf11 + t12qf12) + m114(t21qf21 + t22qf22)) sin qr2

M12 = (m123(t11qf11 + t12qf12) + m124(t21qf21 + t22qf22)) sin qr2

+m121 + m122 cos qr2

M13 = m131 + m132 cos qr2 + (m133(t21qf21 + t22qf22) + m134qf12) sin qr2

M14 = m141 + m142 cos qr2 + (m143(t21qf21 + t22qf22) + m144qf11) sin qr2

M15 = m151 + m152 cos qr2 + m153(t11qf11 + t12qf12) sin qr2

M16 = m161 + m162 cos qr2 + m163(t11qf11 + t12qf12) sin qr2

M21 = 0

M22 = m221

M23 = (m233(t21qf21 + t22qf22) + m234(t31qf11 + t32qf12)) sin qr2

+m231 + m232 cos qr2

M24 = (m243(t21qf21 + t22qf22) + m244(t31qf11 + t32qf12)) sin qr2

+m241 + m242 cos qr2

M25 = m251

M26 = m261

M31 = M32 = 0

M33 = m331 + m332 cos qr2 + m333(t21qf21 + t22qf22) sin qr2

M34 = m341 + m342 cos qr2 + m343(t21qf21 + t22qf22) sin qr2
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M35 = m351 + m352 cos qr2 + m353(t31qf11 + t32qf12) sin qr2

M36 = m361 + m362 cos qr2 + m363(t31qf11 + t32qf12) sin qr2

M41 = M42 = M43 = 0

M44 = m441 + m442 cos qr2 + m443(t21qf21 + t22qf22) sin qr2

M45 = m451 + m452 cos qr2 + m453(t31qf11 + t32qf12) sin qr2

M46 = m461 + m462 cos qr2 + m463(t31qf11 + t32qf12) sin qr2

M51 = M52 = M53 = M54 = 0

M55 = m551

M56 = m561

M61 = M62 = M63 = M64 = M65 = 0

M66 = m661

H1 = [(h101q̇r2 + h102q̇f11 + h103q̇f12 + h104q̇f21 + h105q̇f22)q̇r1

+(h106q̇r2 + h107q̇f11 + h108q̇f12 + h109q̇f21 + h110q̇f22)q̇r2

+(h111q̇f21 + h112q̇f22)q̇f11 + (h113q̇f21 + h114q̇f22)q̇f12] sin qr2

+[(h115q̇r1 + h116q̇r2 + h117q̇f21 + h118q̇f22)(t11qf11 + t12qf12)

+(h119q̇r1 + h120q̇r2 + h121q̇f11 + h122q̇f12)(t21qf21 + t22qf22)

+h123qf12q̇f11 + h124qf11q̇f12]q̇r2 cos qr2
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H2 = (h201q̇r1 + h202q̇f11 + h203q̇f12)q̇r1 sin qr2

+{[(h204q̇r1 + h205q̇f21 + h206q̇f22(t11qf11 + t12qf12)

+(h207q̇r1 + h208q̇f21 + h209q̇f22(t21qf21 + t22qf22) + h210qf12q̇f11

+h211qf11q̇f12]q̇r1 + [(h212q̇f11 + h213q̇f12)(t21qf21 + t22qf22)

+(h214q̇f21 + h215q̇f22)(t31qf11 + t32qf12)]q̇f11 + [h216q̇f12(t21qf21 + t22qf22)

+(h217q̇f21 + h218q̇f22)(t31qf11 + t32qf12)]q̇f12} cos qr2

H3 = [(h301q̇r1 + h302q̇r2 + h303q̇f12 + h304q̇f21 + h305q̇f22)q̇r1

+[(h306q̇r2 + h307q̇f11 + h308q̇f12 + h309q̇f21 + h310q̇f22)q̇r2

+(h311q̇f21 + h312q̇f22)q̇f11 + (h313q̇f21 + h314q̇f22)q̇f12] sin qr2

+[(h315q̇r1 + h316q̇r2 + h317q̇f11 + h318q̇f12)(t21qf21 + t22qf22)

+(h319q̇r2 + h320q̇f21 + h321q̇f22)(t31qf31 + t32qf12) + h322qf12q̇r1]q̇r2 cos qr2

H4 = [(h401q̇r1 + h402q̇r2 + h403q̇f12 + h404q̇f21 + h405q̇f22)q̇r1

+[(h406q̇r2 + h407q̇f11 + h408q̇f12 + h409q̇f21 + h410q̇f22)q̇r2

+(h411q̇f21 + h412q̇f22)q̇f11 + (h413q̇f21 + h414q̇f22)q̇f12] sin qr2

+[(h415q̇r1 + h416q̇r2 + h417q̇f11 + h418q̇f12)(t21qf21 + t22qf22)

+(h419q̇r2 + h420q̇f21 + h421q̇f22)(t31qf11 + t32qf12) + h422qf12q̇r1]q̇r2 cos qr2

H5 = (h501q̇r1 + h502q̇f11 + h503q̇f12)q̇r1 sin qr2 + [h504(t11qf11 + t12qf12)q̇r1

+(h505q̇f11 + h506q̇f12)(t31qf11 + t32qf12)]q̇r2 cos qr2

H6 = (h601q̇r1 + h602q̇f11 + h603q̇f12)q̇r1 sin qr2 + [h604(t11qf11 + t12qf12)q̇r1

+(h605q̇f11 + h606q̇f12)(t31qf11 + t32qf12)]q̇r2 cos qr2
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where

m111 = Ih1 + Ib1 + Ih2 + Ib2 + Ip + m2l
2
2 + mt(l

2
1 + l22)

m112 = 2(m2d2 + mtl2)l1

m113 = 2(m2d2 + mtl2)

m114 = −2l1

m121 = Ih2 + Ib2 + Ip + mtl
2
2

m122 = (m2d2 + mtl2)l1

m123 = (m2d2 + mtl2)

m124 = −l1

m131 = ω11 + (Ih2 + Ib2 + Ip + mtl
2
2)φ

′
11,e + (m2 + mt)l1φ11,e

m132 = (m2d2 + mtl2)(φ11,e + φ′
11,el1)

m133 = −(φ11,e + φ′
11,el1)

m134 = −(m2d2 + mtl2)ψ2

m141 = ω12 + (Ih2 + Ib2 + Ip + mtl
2
2)φ

′
12,e + (m2 + mt)l1φ12,e

m142 = (m2d2 + mtl2)(φ12,e + φ′
12,el1)

m143 = −(φ12,e + φ′
12,el1)

m144 = −(m2d2 + mtl2)ψ1

m151 = ω21 + Ipφ
′
21,e + mtl2φ21,e

m152 = (v21 + mtφ21,e)l1

m153 = v21 + mtφ21,e

m161 = ω22 + Ipφ
′
22,e + mtl2φ22,e
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m221 = Ih2 + Ib2 + Ip + mtl
2
2 m231 = (Ih2 + Ib2 + Ip + mtl

2
2)φ

′
11,e

m232 = (m2d2 + mtl2)φ22,e m233 = −φ11,e

m234 = −(m2d2 + mtl2)φ11,e m241 = (Ih2 + Ib2 + Ip + mtl
2
2)φ12,e

m242 = (m2d2 + mtl2)φ12,e m243 = −φ12,e

m244 = −(m2d2 + mtl2)φ12,e m251 = ω21 + Ipφ
′
21,e + mtl2φ21,e

m261 = ω22 + Ipφ
′
22,e + mtl2φ22,e m331 = m1

m332 = 2(m2d2 + mtl2)φ11,eφ
′
11,e m333 = −2φ11,e + φ′

11,e

m341 = 0 m342 = (m2d2 + mtl2)

(φ11,eφ
′
12,e + φ12,eφ

′
11,e)

m343 = −(φ11,eφ
′
12,e + φ12,eφ

′
11,e) m351 = (ω21 + Ipφ

′
21,e + mtl2φ21,e)φ

′
11,e

m352 = (v21 + mtφ21,e)φ11,e m353 = −(v21 + mtφ21,e)φ11,e

m361 = (ω22 + Ipφ
′
22,e + mtl2φ22,e)φ

′
11,e m362 = (v22 + mtφ22,e)φ11,e

m363 = −(v22 + mtφ22,e)φ11,e m441 = m1

m442 = 2(m2d2 + mtl2)φ12,eφ
′
12,e m443 = −2φ12,eφ

′
12,e

m451 = (ω21 + Ipφ
′
21,e + mtl2φ21,e)φ

′
12,e m452 = (v21 + mtφ21,e)φ12,e

m453 = −(v21 + mtφ21,e)φ12,e m461 = (ω22 + Ipφ
′
22,e + mtl2φ22,e)φ

′
12,e

m462 = (v22 + mtφ22,e)φ12,e m463 = −(v22 + mtφ22,e)φ12,e

m551 = m2 m562 = 0

m661 = m2

h101 = −2(m2d2 + mtl2)l1 h102 = 2(m2d2 + mtl2)(φ11,e − l1φ
′
11,e)

h103 = 2(m2d2 + mtl2)(φ12,e − l1φ
′
12,e) h104 = −2(v21 + mtφ21,e)l1

h105 = −2(v22 + mtφ22,e)l1 h106 = −2(m2d2 + mtl2)l1
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h107 = −(m2d2 + mtl2)l1φ
′
11,e h108 = −(m2d2 + mtl2)l1φ

′
12,e

h109 = −2(v21 + mtφ21,e)l1 h110 = −2(v22 + mtφ22,e)l1

h111 = −2(v21 + mtφ21,e)l1φ
′
11,e h112 = −2(v22 + mtφ22,e)l1φ

′
11,e

h113 = −2(v21 + mtφ21,e)l1φ
′
12,e h114 = −2(v22 + mtφ22,e)l1φ

′
12,e

h115 = 2(m2d2 + mtl2) h116 = m2d2 + mtl2

h117 = −(v21 + mtφ21,e) h118 = −(v22 + mtφ22,e)

h119 = −2l1 h120 = −l1

h121 = −(φ11,e + l1φ
′
11,e) h122 = −(φ12,e + l1φ

′
12,e)

h123 = −(m2d2 + mtl2)ψ2 h124 = −(m2d2 + mtl2)ψ1

h201 = (m2d2 + mtl2)l1 h202 = 2(m2d2 + mtl2)φ11,e

h203 = 2(m2d2 + mtl2)φ12,e h204 = −(m2d2 + mtl2)

h205 = −(v21 + mtφ21,e) h206 = −(v22 + mtφ22,e)

h207 = l1 h208 = φ11,e + l1φ
′
11,e

h209 = φ12,e + l1φ
′
12,e h210 = (m2d2 + mtl2)ψ2

h211 = (m2d2 + mtl2)ψ1 h212 = φ11,eφ
′
11,e

h213 = φ11,eφ
′
12,e + φ12,eφ

′
11,e h214 = (v21 + mtφ21,e)φ11,e

h215 = (v22 + mtφ22,e)φ11,e h216 = φ12,eφ
′
12,e

h217 = (v21 + mtφ21,e)φ12,e h218 = (v22 + mtφ22,e)φ12,e

h301 = 2(m2d2 + mtl2)(φ11,e − l1φ
′
11,e) h302 = −2(m2d2 + mtl2)φ11,e

h303 = 2(m2d2 + mtl2)ψ1 h304 = −2(v21 + mtφ21,e)φ11,e

h305 = −2(v22 + mtφ22,e)φ11,e h306 = (m2d2 + mtl2)φ11,e

h307 = −2(m2d2 + mtl2)φ11,eφ
′
11,e h308 = −2(m2d2 + mtl2)φ11,eφ

′
12,e
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h309 = −2(v21 + mtφ21,e)φ11,e h310 = −2(v22 + mtφ22,e)φ11,e

h311 = −2(v21 + mtφ21,e)φ11,eφ
′
11,e h312 = −2(v22 + mtφ22,e)φ11,eφ

′
11,e

h313 = −2(v21 + mtφ21,e)φ11,eφ
′
12,e h314 = −2(v22 + mtφ22,e)φ11,eφ

′
12,e

h315 = −(φ11,e + l1φ
′
11,e) h316 = −φ11,e

h317 = −2φ11,eφ
′
12,e h318 = −(φ11,eφ

′
12,e + φ12,eφ

′
11,e)

h319 = −(m2d2 + mtl2)φ11,e h320 = −(v21 + mtφ21,e)φ11,e

h321 = −(v22 + mtφ22,e)φ11,e h322 = −(m2d2 + mtl2)ψ2

h401 = −(m2d2 + mtl2)(φ12,e − l1φ
′
12,e) h402 = −2(m2d2 + mtl2)φ12,e

h403 = 2(m2d2 + mtl2)ψ2 h404 = −2(v21 + mtφ21,e)φ12,e

h405 = −2(v22 + mtφ22,e)φ12,e h406 = −(m2d2 + mtl2)φ12,e

h407 = −2(m2d2 + mtl2)φ12,eφ
′
11,e h408 = −2(m2d2 + mtl2)φ12,eφ

′
12,e

h409 = −2(v21 + mtφ21,e)φ12,e h410 = −2(v22 + mtφ22,e)φ12,e

h411 = −2(v21 + mtφ21,e)φ12,eφ
′
11,e h412 = −2(v22 + mtφ22,e)φ12,eφ

′
12,e

h413 = −2(v21 + mtφ21,e)φ12,eφ
′
11,e h414 = −2(v22 + mtφ22,e)φ12,eφ

′
12,e

h415 = −(φ12,e + l1φ
′
12,e) h416 = −φ12,e

h417 = −(φ11,eφ
′
12,e + φ12,eφ

′
11,e) h418 = −2φ12,eφ

′
12,e

h419 = −(m2d2 + mtl2)φ12,e h420 = −(v21 + mtφ21,e)φ12,e

h421 = −(v22 + mtφ22,e)φ12,e h422 = −(m2d2 + mtl2)ψ1

h501 = (v21 + mtφ21,e)l1 h502 = 2(v21 + mtφ21,e)φ11,e

h503 = 2(v21 + mtφ21,e)φ12,e h504 = v21 + mtφ21,e

h505 = −(v21 + mtφ21,e)φ11,e h506 = −(v21 + mtφ21,e)φ12,e

h601 = (v22 + mtφ22,e)l1 h602 = 2(v22 + mtφ22,e)φ11,e
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with

h603 = 2(v22 + mtφ22,e)φ12,e h604 = v22 + mtφ22,e

h605 = −(v22 + mtφ22,e)φ11,e h606 = −(v22 + mtφ22,e)φ12,e

t11 = φ11,e − l1φ
′
11,e t12 = φ12,e − l1φ

′
12,e

t21 = v21 + mtφ21,e t22 = v22 + mtφ22,e

t31 = φ′
11,e t32 = φ′

12,e

φij,e = φij(xi)|xi=li φ′
ij,e = φ′

ij(xi)|xi=li

ψ1 = φ12,eφ
′
11,e − φ11,eφ

′
12,e ψ2 = φ11,eφ

′
12,e − φ12,eφ

′
11,e.
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