

PROGRESSIVE TRANSMISSION

AND RENDERING OF
FOVEATED VOLUME DATA

CHEN CHEN

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Name: Chen Chen

Degree: Master of Computer Science

Dept: School Of Computing

Thesis Title: Progressive Transmission and Rendering of Foveated Volume Data

Abstract

With development of biotechnology and medical techniques, large scale volume data

sets that cannot be achieved in local hard disk are produced for research purpose. In

this project, I surveyed on various volume rendering schemes including two steps,

data preprocessing and fast volume rendering algorithm, which compress and extract

required data for rendering. Two progressive transmission/rendering schemes using

wavelet foveation are implemented and compared in this project, Region-Based and

Coarse-To-Finer. Region-Based scheme transmits and renders the fovea requested by

the user on the client site at highest resolution first, and iteratively expands the fovea

layer by layer towards the peripheral. While Coarse-To-Finer gives a rough preview

image at low resolution in a short time at the client site and progressively refines the

fovea from peripheral to the fovea center.

Keywords:

Volume Rendering, Progressive rendering, Wavelet Foveation

PROGRESSIVE TRANSMISSION AND

RENDERING OF FOVEATED VOLUME DATA

CHEN CHEN
(B.Comp(Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

I

Acknowledgement

I would like to thank my project supervisor, Dr. Huang zhiyong. He

guides me through the whole project.

I also would like to thank Dr. Chang Ee-Chien, and Yu Hang(Ph.D.

candidate). They gave me some good suggestions.

II

Contents

1 Introduction 1

 1.1 Motivation . 1

 1.2 Wavelet Foveated Volume 1

 1.3 Remote Progressive Transmission and Rendering 2

 1.4 Contribution . 3

 1.5 Outline . 4

2 Literature Survey 5

2.1 Data Preprocessing . 5

 2.1.1 Various Methods . 6

 2.1.2 Comparison . 9

2.2 Fast Rendering Algorithms . 10

 2.2.1 Various Methods . 12

 2.2.2 Comparison . 14

2.3 Parallel-Programming . 15

3 Proposed Algorithm 17

3.1 Scheme Overview . 17

3.2 Data Preprocessing . 18

 3.2.1 Data Comparison . 18

 3.2.2 Derive foveated volume in wavelet domain 24

3.3 Progressive Transmission . 26

3.4 Rendering Algorithm . 30

 3.4.1 Rendering Equation 30

 3.4.2 Progressive Rendering with orthogonal viewing direction 33

III

 3.4.3 Rendering Foveated Volume using shear-warp factor-
 ization with non-orthogonal viewing direction 37

4 Comparison and Experiment Result of Two Schemes 39

5 Conclusion 46

6 Future Work 48

IV

Summary

With development of biotechnology and medical techniques, large scale

volume data sets that cannot be achieved in local hard disk are produced

for research purpose. In this project, I surveyed on various volume rendering

schemes including two steps, data preprocessing and fast volume rendering

algorithm, which compress and extract required data for rendering. Two

progressive transmission/rendering schemes using wavelet foveation are im-

plemented and compared in this project, Region-Based and Coarse-To-Fine.

Region-Based scheme transmits and renders the fovea requested by the user

on the client site at highest resolution first, and iteratively expands the fovea

layer by layer towards the peripheral. While Coarse-To-Fine gives a rough

preview image at low resolution in a short time at the client site and pro-

gressively refines the fovea from peripheral to the fovea center.

V

List of Figures

1 Illustration of wavelet transformation 20

2 Wavelet Transform of a (8k)2
 * blk_sz data set 23

3 Quad-tree of data set in Figure 2 24

4 Extraction of the foveated data in wavelet domain 26

5 Wavelet Foveated Image . 29

6 4 iterations of progressive transmission method 1 31

7 2 iterations of progressive transmission method 2 31

8 Image Composition . 35

9 Volume being transformed to sheared object space 38

10 Rendering Result of Direct Rendering 40

11 4 Iterations of Progressive Rendering Scheme 1: Region-Based.Fovea
 at (100,105,75) 41

12 4 Iterations of Progressive Rendering Scheme 2: Coarse-To-Fine. Fovea
 at (100,105,75) . 42

13 4 Iterations of Progressive Rendering Scheme 1: Region-Based.Fovea
 at (80,150,100) . 44

14 4 Iterations of Progressive Rendering Scheme 2: Coarse-To-Fine. Fovea
 at (80,150,100) . 45

VI

List of Tables

1 Comparison of various data proprocessing methods (more ‘√’ means

higher compression rate and '-' means not applicable) 11

2 Comparison of various rendering schemes (more ‘★’means more
 accurate rendering, and more ‘◇’ means the memory cost is more
 expensive) . 15

3 Experiment Results of two progressive rendering scheme for human
 head . 40

4 Experiment Results of two progressive rendering scheme for human
 dummy . 46

1

1 Introduction

1.1 Motivation

Modern scanners such as CT and MRI provide detail cross-sections of objects

at a very high resolution. These data sets occupy huge amount of memory

space ranges from several hundreds of megabytes to about one hundred giga-

bytes. Some super computer centers maintain large data repositories whose

data sets will be accessed through networks and rendered in real time for

researchers around the world to collaborate in their research.

The network speed is usually too slow compared with the large size of the

scientific data sets. Lossy compression schemes are proposed by researchers

to reduce the size of volume data. Another design issue is priority selection.

Data will be reordered with priority. The importance of each voxel can be

decided either by the client’s current view direction or manually specified a

region of interest(ROI) by the viewer.

1.2 Wavelet Foveated Volume

Wavelet transform is reported to be the best compression scheme among all,

which makes use of the coherence in the data set. A large portion(up to 90%)

of the coefficients will be zero after wavelet transform. However, the data

size is still too large after wavelet compression if the user wants to access

the data interactively. A foveated volume is a non-uniform sampled volume

2

whose resolution is highest at the fovea(a user specified ROI), but falls off as

the distance with the fovea increases. The space variant of our visual system

suggests that if one’s gaze point is fixed on the fovea, he cannot distinguish

the foveated image from the original one. Transform the original volume set

into a foveated volume will tremendously reduce the size of the data set. It

can also be regarded as a priority selection scheme.

1.3 Remote Progressive Transmission and Rendering

Coefficients in wavelet foveated volume are transmitted and rendered pro-

gressively at client site according to their priority. There are two ways of

progressive transmission according to the way they assign the priority. One

is Region-Based, that is, the priority of an coefficient will be inversely pro-

portional to its distance to the center fovea. The center fovea will have

the highest priority thus will be transmitted and rendered first at client site

with highest resolution. The user at the client site will see a small portion

of the volume which he/she is most interested at, it will then be expanded

iteratively until the whole foveated volume is received. The other is Coarse-

To-Fine algorithm. Higher priority will be assigned to lower level of details.

The average coefficients will have the highest priority. According to this pol-

icy, a rough average volume will be transmitted and rendered first. More

detail coefficients will arrive successively to refine the fovea from peripheral

to center. The center fovea will be received and refined last. Each of these

two methods have its good and bad points. In our successive sections, we

3

will describe it in more details.

1.4 Contribution

In this project, we implemented a server-client volume rendering system. 3D

data sets are stored in server site. Suppose the client wants to view a volume

data V , he sends a request of region-of-interest(ROI), which is represented

as ROI = {(x, y, z), d}. (x, y, z) is the coordinate of the center of the fovea

in spatial domain, and d represents the size of the fovea to be d ∗ d ∗ d. The

input of the server part will be CW , which is the blockwisely compressed

wavelet form of volume data V , and ROI = {(x, y, z), d}, which is received

from the client site. The output of the server site will be a wavelet foveated

volume extracted from CW named FW . Data blocks of FW will be progres-

sively transmitted and rendered at the client site, so that the client can see

an intermediate rendering result without waiting for the whole volume to

arrive. More detail coefficients will arrive in success to refine the rendering

result.

The rendering time of the rendering algorithm required depends only on

the size of selected data. Progressive rendering algorithm will have the same

final rendering result with normal rendering. We have implemented two

transmission/rendering schemes. The results are compared and reported. It

shows that the proposed framework can achieve the goal of fast rendering on

a client-server system.

4

1.5 Outline

In Section 2, previous work in two main related research fields are surveyed,

compression scheme and volume rendering algorithm. We discuss what are

the good and bad points of these various methods. In Section 3, we proposed

a server-client progressive rendering algorithm. In Section 4, performance

statistics and image quality comparisons of two schemes are reported. Fi-

nally, we talk about future work and conclude in section 5 and 6.

5

2 Literature Survey

The huge amount of data is the most significant problem both in data trans-

mission and volume rendering. To achieve fast volume rendering in a server-

client approach, two steps are included: data preprocessing, which includes

data compression and data extraction, and fast rendering.

2.1 Data Preprocessing

In order to transmit data efficiently through a low/medium network and load

the huge data into the core memory of system, it is compulsory to preprocess

the huge volume data into smaller size. The intuitive method is data com-

pression.

A good compression scheme can be judged from many factors: encod-

ing/decoding speed, random access, compression rate and visual quality.

The well known vector quantization is time consuming to produce an op-

timal codebook and generates low quality image with high compression rate.

Huffman encoding is a prefix-free variable-length code, but produces low

compression ratio and low decoding speed. Comparing with these traditional

compression schemes, wavelet-based compression provides good visual qual-

ity with high compression rate. Many researchers employed wavelet trans-

form in their compression scheme in volume rendering algorithm.

Wavelet-based compression schemes vary from each other, but they usu-

ally contain four steps: wavelet transformation, normalization, thresholding,

6

and encoding. First, transform the data into wavelet domain. Normalization

is to normalize all coefficients to the interval [0,1]. Thresholding step discards

those coefficients that are smaller than a certain threshold value. Encoding

is to encode the data using some coding schemes like run-length or Huffman.

After data compression, the data is small enough to be loaded into the

core memory of the current system. However, in a server-client volume ren-

dering system, it is still too large for transmission through the network, whose

speed is usually tens of KB per second. Long time will be taken before all

data reach the client site. Data extraction is employed further to extract the

most important data and transfer with priority for fast rendering.

2.1.1 Various Methods

P. Lacroute et al. [16] is a scheme performed in spatial domain. They en-

code the data set in the scanline order from front to back using run-length

encoding. The encoded data consists of two types of runs, transparent and

non-transparent, defined by a user-specified threshold.

R. Grosso et al. [21] shows that obtaining the value of a wavelet coef-

ficient from the compressed data is one of the most time consuming steps

during the whole rendering process. Thus, they develop a data structure

which is faster than the traditional sequential encoding of the coefficients,

which is a sparse 3D array. The seven wavelet components corresponds to

a level are independently saved and compressed in a sparse 3D array. After

the normal process: normalization, thresholding and quantization, all coeffi-

7

cients corresponding to the z direction, i.e. for an index triple (i, j, k), those

coefficients corresponding to the k index, are run-length encoded, eliminat-

ing all zero entries. A table lookup, which corresponds to i, j position of a

3D array, is used to store the address of each run-length encoded array. In

addition, caching of the last k index is also used to accelerate the access speed.

I. Ihm et al. [6] proposes a scheme named zerobit, which achieves both

fast random access and good compression ratio to the wavelet-compressed

data. Because of the usual spatial coherence in the volume data, more than

90% of the coefficients are zero after performing Haar wavelet transformation

and thresholding. This implies that zero coefficients will appear in thick

chunks. Making use of this property, I. Ihm et al. divides the volume data

into unit blocks of size 16X16X16 and then into cells of size 4X4X4. Three

data structures are used here, cell tag table, significant map and byte stream.

Cell tag table will tag with zero for those cells with all zero coefficients, and

with positive index which point to the significant map for those cells that

contains at least one non-zero coefficient. Significant map contains a bit map

list which 0 and 1 corresponds to zero and non-zero coefficients respectively

and an offset value in the byte stream for a cell.

Using the cell tag table and significant map, zero coefficients, which oc-

cupy more than 90% of the volume data, are compressed and can be returned

in one or two memory access. Byte stream only stores those non-zero coeffi-

cients and will only be accessed when a non-zero coefficient is requested.

Kim, T. et al.[9] divides the volume into 8X8X8 block and perform generic

8

wavelet compression involves normalization, thresholding and run-length en-

coding. The different is, they assign higher error threshold for higher fre-

quency levels and the coefficients are run-length encoded according to the

reconstruction sequence from coarser to finer level. The entire encoding data

contains a block index table and a run-length table. Block index table con-

tains the average value of a block and a pointer to the index of its detail

coefficients of the block in the run-length table.

In contrast with the above schemes, the later ones are view-dependent

schemes which extract the most important data from the whole data set de-

pending on the view direction, distance or user interest.

S. Guthe et al. [22] uses a blockwise hierarchical compression scheme. As

the above schemes do, divide the volumes into cubic blocks of (2k)3, then

apply wavelet transform to obtain 8 blocks of k3 voxels. Group 8 adjacent

low pass filtered blocks to again get a block of (2k)3 voxels. Repeat this

procedure until a single block is left. The resulting data structure is an oc-

tree. Each node, except the leaf nodes has 8 child nodes whose resolution

is twice as high as that of a parent node. Only the root node has the low-

pass filtered block. Other nodes only contain 7 detail coefficient blocks. For

reconstruction of a child node, one must reconstruct its parent node first.

An importance value is assigned to each node during the compression, which

equals the L2 error of its subtree compared with the original data divides

by the depth of the nearest voxel in the node. Those nodes with larger L2

error and smaller distance will be rendered first. The data in each node is

encoded using run-length encoding combined with a fixed Huffman encoder.

9

The compression rate for run-length Huffman coding at a lossless setting is

10-15%.

A. Norton et al. [1] is also a blockwise compression scheme and the im-

portance of a subcube depends on its visibility, that is, the view point and

the data’s opacity. Those subcubes with importance value larger than a

threshold T will be regarded as frontal cubes and will be extracted. The

server will automatically decide the coefficient threshold C such that the

client can download the set of selected coefficients in less than one second.

This threshold value is stored in the server repository to refine the client

repository progressively according to the threshold value. The importance

threshold T will be decreased by a factor of 0.7 when the frontal subcubes’

compression rate reaches a target ratio, 0.1 for Haar wavelet. The image

resulting from the compressed data will converge to the image that results

from uncompressed data when importance threshold reaches 0. This algo-

rithm is responsive since when the view point changes, there will be a few

seconds’ delay until the requested data available.

2.1.2 Comparison

Accessing the compressed data is the most time-consuming procedure. R.

Grosso et al. [21] try to make some improvement in random access, so they

indexed the i, j coordinate of the voxel. However, this scheme only works

when the major axis is z, and gives low access and reconstruction rate when

the major axis is x or y. Moreover, they ignore the coherence of data in 3D

10

and cannot achieve best compression rate. I. Ihm et al. [6] used a zerobit

scheme to conquer this problem. Their scheme achieves random access while

sacrificing some of the compression rate, since two successive coefficients with

same value are redundantly stored. Kim, T. et al.[9] achieve random accessi-

bility and high compression rate, but each cube are run-length coded, which

gives lower reconstruction speed comparing with I. Ihm et al. [6].

Different with the above schemes, some schemes extracts important parts

of the data set for future rendering to save transmission and memory cost.

S. Guthe et al. [22] use an octree structure to store data in multi-resolution.

In order to save the reconstruction time, recent used blocks will be stored

in cache. A. Norton et al. [1] use almost the same structure as S. Guthe

et al.[22] do. The different is that they transmit the subcubes progressively

and define importance value of each voxel differently. A threshold value is

associated with each subcube to facilitate progressive refinement. The server

will decide the threshold so that the amount of data can be transmitted

through the low/average bandwidth network in less than one second.

2.2 Fast Rendering Algorithms

There are four techniques that are particular popular in volume rendering:

raycasting, splatting, shear-warp and texture-mapping hardware-based ap-

proaches [15]. Raycasting and splatting gives better image quality while has

lower rendering speed as contrast to shear-warp and texture-mapping. Ray-

casting is to cast a ray for each image pixel into the volume and accumulate

11

Methods Wavelet- Output Data Access Compression Reconstruction Progressive

Based Mode Rate of Single Voxel Refinement

Lacroute NO a list of sequential - - NO

et al. [16] voxel scanline

R.Grosso YES whole random access XX O(n) NO

et al. [21] data set on i,j index

Ihm YES whole random access XX O(1) NO

et al.[6] data set

Kim YES whole random access XXX O(1) NO

et al.[9] data set

Guthe YES significant hierarchical XXX O(logn) NO

et al. [22] and near cubes

Norton YES visible coefficients hierarchical XX O(logn) YES

et al.[1] of frontal cubes

Table 1: Comparison of various data proprocessing methods (more ’ X’
means higher compression rate and ’-’ means not applicable)

the sample value along the ray by resampling. In contrast with ray casting,

a feed backward method, splatting, which is first proposed by Westover [11],

is a feed forward algorithm calculating the footprint which is the weight of

the voxel contributing to its neighboring pixel. Both methods have been

combined with wavelet transform in order to reduce the size of volume data

to fit into core memory [12] [13].

Texture-mapping is a hardware based method which is very fast but gives

lower image quality. When the data set is too large that the texture is hard

to be loaded totally into texture memory, texture swap will occur and render-

ing speed will reduce dramatically. Shear-warp [16] is the fastest software-

based algorithm and gives similar image quality with raycasting and splat-

ting. However, when the magnification is high, significant aliasing is present.

For fast volume rendering, we focus on the later two algorithms: texture-

12

mapping and shear-warp below.

2.2.1 Various Methods

Texture-map has two approaches, 2D texture-mapping and 3D texture-mapping.

P. Pinnamaneni et al. [17][18] uses 2D texture mapping in their algorithm.

They use three sets of perpendicular 2-D cross-sections, which are mapped

onto polygonal 2-D planes. Each pixel in a cross-section is assigned a trans-

parency α value. The transparency transfer function will determines the

appearance of the 3-D reconstruction. It can be a simulated X-ray view or

normal images. The rendered image will first be displayed in a coarser res-

olution and being refined later when more data are received. The accuracy

of the image depends on the number of slices. Simple duplication or inter-

polation will be used when rendering lower resolution cross-sections. This

algorithm is suitable for preview images and web-based rendering.

The algorithm is later extended into 3D texture-mapping in [19]. The

voxel array is interpreted as a 3D texture defined in 3D space and the three-

dimensional data is loaded as texture block into the texture buffer. A parallel

stack of polygon planes that are orthogonal to the screen are used for tex-

ture mapping. Each polygon plane vertex is associated with texture value

by trilinearly interpolation.

Guthe et al. [22] uses 3D texture-mapping rendering algorithm in his

scheme. 3D texture is created and loaded onto the graphics hardware. Then

viewplane aligned slices will be tiled in a back to front order. Texture-

13

mapping always has the problem when the data set is too large and can-

not be loaded into the texture memory. Guthe solves this problem by using

multi-resolution rendering. The resolution of a cube is proportional to its im-

portance value. Since an octree wavelet compression scheme is used, Guthe

adds a cache to store decompressed higher level nodes which will be used

frequently, so that the renderer doesn’t need to decompress the node from

the tree’s root node everytime.

P. Lacroute et al.[16] proposed a software-based fast rendering algorithm

shear-warp factorization. Shear-warp factorization has the property that

rows of voxels in the volume are aligned with rows of pixels in the intermediate

image. This property has some good points: 1. only simple translation and

re-sampling is needed. 2. Every voxel in the same slice has the same re-

sampling weight.

Philippe Lacroute and Marc Levoy develop volume rendering algorithm

based on shear-warp factorization in the space domain which take advan-

tage of this property. They use run-length encoding of the voxel scanline

which contains two types of runs, transparent and non-transparent. The in-

termediate image also uses run-length encoding which contains opaque and

non-opaque pixels. All these transparent, non-transparent, opaque and non-

opaque are decided using user-specified thresholds. The intermediate im-

age is computed on the fly during rendering. Those transparent voxels and

voxels that are occluded by the opaque intermediate pixels will be skipped

when computing intermediate image. The run-length encoding of voxels saves

much space since 70-95% of the voxels are transparent. The skip of those

14

transparent voxel and opaque pixels will accelerate the rendering process.

The algorithm provides quite good compression rate, decoding, encoding

speed and visual quality. However, it doesn’t allow quick random access,

which might be a weak point.

Using this rendering technique, the resulting image will be more like we

see through our eye rather than a x-ray image.

J. P. Schulze et al. [7] gives a formal proof for the correctness of shear-

warp algorithm and extends the algorithm to perspective view. H.Yu [4]

proposed a rotation algorithm approximated by shear-warp factorization.

Kim et al.[9] proposed a scheme combined wavelet transformation with

shear-warp factorization. The voxel slices’ density value from the wavelet co-

efficients are reconstructed on the fly and transparent voxels lines are skipped

during rendering. The renderer will start from the first non-transparent voxel

line in each slice. Because wavelet transformation is employed, the space re-

quired is smaller than P. Lacroute’s scheme.

2.2.2 Comparison

From Table 2, we can see, 2D texture-mapping is slower than 3D texture-

mapping algorithms by a factor of 3. However, it requires less memory space

since the texture slices don’t need to be loaded into the texture memory in

one time. Texture-map algorithms are generally faster than shear-warp al-

gorithms but gives lower image quality. It can be improved by using more

15

Method Output Output Rendering Rendering Memory

Resolution Quality Algorithm Speed Cost

Pinnamaneni Uniform F 2D 3 ∗ n(slice) ¦¦
et al. [17] texture-map ∗n(voxel in slice)

Pinnamaneni Uniform FF 3D n(slice) ¦ ¦ ¦
et al. [19] texture-map ∗n(voxelinslice)

Guthe Multi- FF 3D n(slice) ¦
et al. [22] resolution texture-map ∗n(voxelinslice)
Lacroute Uniform FFF Shear-warp n(voxel)− ¦ ¦ ¦
et al. [16] n(transparent)

Kim Uniform FFF Shear-warp n(voxel) ¦¦
et al.[9] −n(transparent)

Table 2: Comparison of various rendering schemes (more F means more
accurate rendering, and more ¦ means the memory cost is more expensive)

texture slices, but rendering speed is inverse proportional with the number

of texture slices used. 3D Texture-mapping is fast but when dataset is very

large and cannot be loaded into the texture memory, swaps will occur and

rendering speed will decrease. Guthe et al. [22] solve this problem by using

multi-resolution display. Important voxels are displayed in higher resolution

while less significant and farer voxels are displayed in lower resolution.

2.3 parallel-programming

Another approach to accelerate rendering process is parallel programming.

The basic idea is to divide the process into separate jobs with equal com-

plexity, distribute to processors respectively and finally combine the results

of each processor.

P. Schroder et al. [20] finds that by setting the ray distance along x-axis

16

and y-axis to be 1, and tiling the volume accordingly, all rays will enter voxels

at the same voxel local coordinates. The volume can be divided into sets of

voxels with equal size and each set corresponds to one ray. Voxels in each

set tile perfectly without holes or overlaps. This reveals the possibility for

parallel programming. We can assume there are as many processors as there

are rays entering at the front most face and each processor holds a accumu-

lated integral and a volume data set.

K. Sano et al. [10] proposed an parallel algorithm for shear-warp factor-

ization. The basic idea is to divide the volume into subvolumes with equal

number of opaque voxels along the major axis. Each processor will be in

charge of one subvolume and finally composite the subvolume image to ob-

tain the final result.

17

3 Proposed Algorithm

3.1 Scheme overview

This scheme aimed at web-based fast rendering of foveated volume which

contains usual three steps: data preprocessing, progressive transmission and

progressive volume rendering.

Volume data is first transformed to wavelet form and divided into 8X8

blocks, each block is encoded using RLE(run-length encoding)in server site.

Experiments shows that volume data will be compressed up to 1/10 of the

original size after this operation. Blockwise structure is employed in order

to enable efficient data compression as well as convenient communication

between server and client. When a client request is received, a compressed

foveated volume is extracted. A foveated volume has highest resolution at the

fovea while the resolution falls off when the distance with the fovea increases.

We use wavelet foveation to approximate foveation operator. For an original

data set with size 10243 and fovea size 483, the wavelet foveated volume will

have approximately 243 ∗ 36 = 497664 coefficients, which is reduced by a

factor of 2,000 comparing with the original size. Details of wavelet transform

and extraction of foveated volume will be described in subsection 3.2.1 and

3.2.2.

Data is then progressively transmitted in sequence. Data blocks of the

wavelet foveated volume are reordered according to its priority. Two prior-

ity assignment schemes will associate with two transmission and rendering

18

schemes. One is Region-Based and the other is Coarse-To-Fine. Two trans-

mission scheme and their reordering of the data blocks will be discussed in

detail in section 3.3.

To be consistent with progressive data transmission, progressive rendering

algorithm is employed. In Region-Based scheme, the volume are displayed

on client site layer by layer from fovea toward the peripheral. The fovea area

will be rendered in high resolution using data received earlier and in each

successive step, one immediate outer layer is displayed in half resolution

of its inner layer. In Coarse-To-Fine scheme, the client will first show a

rough average image of the volume and iteratively refines the fovea area.

Two progressive rendering algorithms and an efficient rendering equation are

described in section 3.4.1 and 3.4.2 respectively. A fast rendering algorithm,

wavelet shear-warp factorization, discussed in section 3.4.3, is used in our

scheme to accelerate rendering of non-orthogonal viewing direction.

3.2 Data Preprocessing

3.2.1 Data Compression

Volume data sets usually range from several hundreds of megabytes to about

one hundred gigabytes which is hard to be load into main memory. Further-

more, in a server-client paradigm, the network speed is usually quite low,

about tens of KB per second. For a data set with size 10243 and fovea size

483 in spatial domain, the required data is larger than 1M whose waiting

time is too long in a low/medium speed network. Data compression is an

19

intuitive method to solve this ”large data size” problem. Haar wavelet is

computational simple and has a good correspondence with octree that en-

ables easy data searching and reconstruction. After Haar wavelet transform,

we apply RLE(run-length encoding) on the wavelet volume block by block,

which shows a good compression result.

Haar Wavelet Transform We will illustrate it in 2D case first. Let I be

an image of size 2N × 2N . Four images can be generated from I after one

pass of Haar wavelet transform, where

I00(i, j) =
I(2i, 2j) + I(2i + 1, 2j) + I(2i, 2j + 1) + I(2i + 1, 2j + 1)

4

I10(i, j) = I(2i + 1, 2j)

I01(i, j) = I(2i, 2j + 1)

I11(i, j) = I(2i + 1, 2j + 1)

fori, j = 0 . . . 2N−1 − 1

As illustrated in figure 1, Image I00 is an average image of image I with half

resolution. The rest three images are called detail images. We recursively

perform this process on the average image of each iteration until the average

image has only 1 pixel or reaches some pre-defined resolution. The result will

be the wavelet representation of the original image I.

This procedure is invertible. Using the following equation, we can get

20

dc

A B

C D
I

I I

I I

00 10

01 11

(a+b+c+d)/4

b

d

c

ba

Figure 1: Illustration of wavelet transformation

back the original values of image I.

a = 4A−B − C −D

b = B

c = C

d = D

This is the basic idea of wavelet transform. In this project, we apply

similar wavelet transform to 3D volume data. The transfer operation we

used can be described using the following equations:

A = a + b + c + d + e + f + g + h

B = a− b

C = a− c

D = a− d

21

. . .

This operation is also invertible by applying the following equations:

a =
A + B + C + D + E + F + G + H

8

b = a−B

c = a− C

d = a−D

. . .

a,b,c,d,e,f,g,h are the eight adjacent voxels in the 3D volume data. In

our operator, we are taking the sum instead of average is to avoid arithmatic

division, so that the transformation can be performed more efficiently. A vol-

ume data will normally have large smooth area. Intensity of adjacent voxels

are highly correlated. Taking difference between adjacent voxels results in

small values including many successive zeros in detailed images, which can

be compressed greatly.

Blockwise hierarchical compression scheme In the server site, we use

a blockwise hierarchical compression scheme similar with S. Guthe et al [22].

Divide the volumes into blocks of (2k)3, then apply generic Haar wavelet

transform on it to get 8 blocks of size k3. One of them will be average block,

the other 7 are detail blocks. Group 8 adjacent average blocks again to obtain

a block of size (2k)3. Repeat this procedure until the size of the average im-

age reaches m. These m blocks are the low pass filtered volume of the whole

22

volume data. The value of k has a tradeoff between compression rate and

date redundancy during transmission. Since the block will be regarded as

a unit during data transmission. Large k value will cause data redundancy

since we will transmit more data than we actually needed. Small k value

usually gives low compression rate. In our case, k will be 8 and m will be 16.

Each block in the average image corresponds to an octree. Each node in

the octree, except the leaf nodes and root node, consists of 7 detail blocks of

size k3, totally 7 ∗ k3 coefficients and has 8 child nodes. The leaf nodes only

have 7 detail blocks without child nodes. The root node has an additional

average block, besides the 7 detail blocks and 8 child nodes. The root node

gives a very rough approximation of one portion of the data set and the res-

olution can be increased by a factor of 2 by going downwards to the a child

node. We can illustrate it using a 2D example. However, 3D case is very

similar with 2D case.

Give a 2D data set of size (8k)2 ∗ blk sz, repeat the procedure described

previously 2 times and obtain 4 average blocks marked as A00,A01,A10 and

A11(figure 2). Each of them associates with a quad-tree (figure 3). Take A00

as example, the coefficients marked in grey color are all the component nodes

in quad-tree of A00. Local coordinate in a level v corresponds with 3 blocks:

HL, LH and HH, which are the 3 components of node(v,i,j) in the quad-tree.

Four child nodes of this node (v,i,j) in level v+1 can be simply identified by

(2i,2j), (2i,2j+1), (2i+1,2j) and (2i+1,2j+1), which forms a pointless quad-

tree.

23

L0 L1 L2

A00 A01 HL00 HL01 HL00 HL01 HL02 HL03

A10 A11 HL10 HL11 HL10 HL11 HL12 HL13

LH00 LH01 HH00 HH01 HL20 HL21 HL22 HL23

LH10 LH11 HH10 HH11 HL30 HL31 HL32 HL33

LH00 LH01 LH02 LH03 HH00 HH01 HH02 HH03

LH10 LH11 LH12 LH13 HH10 HH11 HH12 HH13

LH20 LH21 LH22 LH23 HH20 HH21 HH22 HH23

LH30 LH31 LH32 LH33 HH30 HH31 HH32 HH33

Figure 2: Wavelet Transform of a (8k)2 ∗ blk sz data set

3D case is almost the same with 2D, the only difference is each node will

have 7 component nodes: LLH, LHL, LHH, HLL, HLH, HHL and HHH, and

each node has 8 child nodes.

After wavelet volume are divided into data blocks. RLE(run-length en-

coding) is performed on it block by block in order of front to back, top to

bottom and left to right. The compressed block is a list of value(v) and

length(l) pairs. Value(v) is the integer value of a coefficients, and length(l)

is the number of successive integers with this same value. During decoding,

we simply get the (v,l) pair one by one in order, and fill l v’s into the data

sequence each time.

24

A00

HH00LH00HL00

1,1 0,1 0,0 1,0

0,0

Figure 3: Quad-tree of data set in Figure 2

Take an example, given a data list L=1,1,1,1,0,0,5,0,0,0,0,0,0,0,0. The

run-length encoded data R will be (1,4),(0,2),(5,1),(0,8).

3.2.2 Derive foveated volume in wavelet domain

We have a wavelet volume W after wavelet transform. Suppose the client

wants to view a volume data V, he gives a request of ROI which is repre-

sented as the center of the fovea, that is, ROI(x,y,z) and the size of the ROI

r3. The inputs of the server part are W, which is the wavelet representation

of V, and ROI{(x, y, z), r3}, our task is to compute Wf from W, when a

client request is received.

We call the lowest resolution image in the wavelet representation W as

layer 0 image, and the second lowest resolution image as layer 1 image and so

on. layer 0 is actually the average image of W, and layer i image can be ob-

25

tained by performing inverse wavelet transformation to layer i-1 with the cor-

responding detailed coefficients(corresponding detailed coefficients are layer

i details). The highest resolution image in W is denoted as layer max layer.

In general, the volume data is of size W*H*D, and the number of layers is

log2
W
m

, log2
H
m

and log2
D
m

respectively (assuming W, H and D are multiples

of m and m is power of 2). In case the volume data V is cubic with size of

N3(N is power of 2), and the wavelet transform is processed until the average

image has size m3, max layer = log2
N
m

.

Wf is extracted from W. It consists of all voxels that are needed for re-

constructing ROIi, where ROIi is the region of interest in the ith layer of

W. The center of ROIi is (b x
2max layer−i c), b y

2max layer−i c, b z
2max layer−i c) and the

size of ROIi is r3.

For convenience of calculation, the boundary of ROIi can be defined as

begini.x = (x/2(max layer−i) − s/2)
⊕

(0XFFFE) (1)

begini.y = (y/2(max layer−i) − s/2)
⊕

(0XFFFE) (2)

begini.z = (z/2(max layer−i) − s/2)
⊕

(0XFFFE) (3)

endi.x = (x/2(max layer−i) + s/2)
⊕

(0XFFFE)− 1 (4)

endi.y = (y/2(max layer−i) + s/2)
⊕

(0XFFFE)− 1 (5)

endi.z = (z/2(max layer−i) + s/2)
⊕

(0XFFFE)− 1 (6)

begini.x, begini.y, begini.z, endi.x, endi.y, endi.z ∈ [0,minlen ∗ 2i − 1]

26

Figure 4: Extraction of the foveated data in wavelet domain

Figure 4 gives an 2D example of ROI={(9,9),6} for a 16*16 image, where

m=1, that is, the average image size is 12. In this example, max layer =

log216 = 4. Take layer 3 as an example, ROI3 = {(4, 4), 6}, pixels in layer 3

image with coordinate (i,j), i, j ∈ [2, 7] are in ROI3. In order to reconstruct

ROI3, layer 3 details with coordinate (i,j), i, j ∈ [1, 3] are needed.

Figure 4(b) represents the reconstructed foveated image.

3.3 Progressive Transmission

Given a data set with size 10243, fovea size 483 and let the size of average im-

age to be 163. The wavelet form of this data set will have log2(1024\16) = 6

layers. Fovea size in wavelet domain will be 243 and each layer has 7 passes.

The wavelet foveated volume will have approximately 243∗(5∗7+1) = 497664

27

coefficients, the inner most layer has only 1 average image instead of 7 de-

tailed images. Even though blocks are run-length encoded and compressed,

the size of data to be sent is still quite large. In a low \medium speed net-

work, the user needs to wait for a few seconds before all of the data needed

reaches the client site. Progressive transmission is to re-order the coefficients

such that more important coefficients will be regarded as high priority and

being sent first. These coefficients can be rendered in the client site sepa-

rately with other data. Less important coefficients will be sent progressively,

step by step, to refine the result image.

There are two ways of progressive transmission in wavelet volume ren-

dering scheme. One is to transmit a rough average image first and refine

the fovea from outer ROIi+1 to inner ROIi using detail coefficients. The

other is to transmit a full resolution ROImax layer first, and expand the fovea

area from ROImax layer−1 to ROI0 with decreasing resolution until the full

foveated volume is transmitted. We will explain the two methods in detail

and illustrate using examples.

The first method is intuitive to implement. We just send the wavelet

foveated volume data from inner layer to outer layer progressively. Coeffi-

cients in each layer should be wrapped as an atomic package.

The basic idea of the second method is to send all data blocks for con-

structing ROIi in each iteration. At the first iteration, boundary of ROImax layer

will be computed and data blocks in layer max layer− 1 that contain coeffi-

28

cients for ROImax layer will be added into the data queue. All parent blocks

of these blocks will also be added into the data queue. A block is regarded

as a parent block of another block if it’s a parent node of that block in the

oc-tree they belong to. The index of the data block will be added into the

data list when it is added into the data queue. In iteration i, boundary of

ROImax layer−i+1 will be computed. Data blocks in layer max layer− i that

contain coefficients for ROImax layer−i+1 and all parent blocks of these blocks

will be added into the data queue if that block does not exist in the data

list. Repeat this procedure until coefficients of ROI0 are added into the data

queue. If the data list doesn’t contain all data blocks in average image after

above procedure, append the remaining average blocks into the data queue.

Let’s illustrate the procedure using a 2D example. Given a 2D image with

size 128 ∗ 128, where m=16, k=8 and ROI=(86,86),45. The average image

has size 16 ∗ 16, which contains 4 data blocks, the fovea centered at coordi-

nate (86,86) with size (45,45). In this example, max layer = log2(128/16) =

log28 = 3.

Take ROI2 as an example, ROI2 = {(b x
2max layer−i c), b y

2max layer−i c), d} =

{(b86
22 c), b86

22 c), 45} = {(43, 43), 45}.

begini.x = (43− 45/2)
⊕

(0XFFFE) = 20

begini.y = (43− 45/2)
⊕

(0XFFFE) = 20

endi.x = (43 + 45/2)
⊕

(0XFFFE)− 1 = 63

29

Figure 5: Wavelet Foveated Image

endi.y = (43 + 45/2)
⊕

(0XFFFE)− 1 = 63

begini.x, begini.y, endi.x, endi.y ∈ [0, 63]

Pixels in layer 2 image with coordinate (i,j), i, j ∈ [20, 63] are in ROI2. In

order to reconstruct ROI2, layer 2 details with local coordinates (i,j), i, j ∈
[10, 31] are needed, represented as block index (blki, blkj), blki, blkj ∈ [1, 3].

Similarly,

ROI3 = {(86, 86), 45} = [64, 107], level 3 details: (blki, blkj), blki, blkj ∈ [4, 6]

ROI2 = {(43, 43), 45} = [20, 63], level 2 details: (blki, blkj), blki, blkj ∈ [1, 3]

ROI1 = {(21, 21), 45} = [0, 31], level 1 details: (blki, blkj), blki, blkj ∈ [0, 1]

ROI0 = {(10, 10), 45} = [0, 15], average blocks: (blki, blkj), blki, blkj ∈ [0, 1]

Figure 5 draws out this wavelet foveated image, each circle represents one

data block with size 8 ∗ 8. Circles in black are data blocks that belongs to

30

ROIi, i ∈ [0, 3].

Figure 6 and 7 shows the procedure of the first and second transmission

methods, separately. Black circles represents data blocks being sent in each

step. In method 2, there are only 2 steps rather than 4. That is because we

use a blockwise structure, each block is regarded as an atomic unit. During

each iteration, we may send more data than there is actually needed to

reconstruct ROIi. Thus, detail coordinates needed in step 3 and 4 have been

sent in previous steps as redundant data.

3.4 Rendering Algorithm

3.4.1 Rendering Equation

In context of direct volume rendering, each element of the volume data is

called a voxel and is assigned a density value. Light shoots into the volume,

during traverse through the volume, the light is emitted and absorbed by the

voxels. The finial intensity result reaches the viewer will be defined as

I(t1, t2) =

∫ t2

t1

q(t)e−
R t

t1 α(s)dsdt

where t1 and t2 are the starting and ending point of the viewing ray. q(t)

and α(s) are intensity and opacity function respectively.

For convenience computation, this continuous rendering function can be

reduced to discrete form with the assumption that for a certain segment i,

31

Step 1 Step 2

Step 3 Step 4

Figure 6: 4 iterations of progressive transmission method 1.

Step 1 Step 2

Figure 7: 2 iterations of progressive transmission method 2.

32

the intensity function and opacity function remains constant, qi and αi. We

assume that each voxel represents a segment. The outer integral of the above

formula can be replaced by a Eulerian sum over accumulated opacity.

I =
n∑

k=0

qkαk

k−1∏
i=0

(1− αi)

In our work, the foveated volume has various resolution instead of uniform

resolution. Thus, we need to render subvolumes that contain more than one

segment(voxel) whose voxels share the same intensity value q and opacity

value α. An optimized formula can be used to save computational time

when rendering such subvolumes.

Isubvolume =
n∑

i=1

qα

i−1∏
j=1

(1− α) =
n∑

i=1

qα(1− α)i−1

n is the number of voxels of the subvolume that share the same intensity and

opacity value.

For two subvolumes Sa and Sb with size na and nb. Voxels in Sa and Sb

have intensity and opacity value qa and αb, respectively. Sa is in front of Sb,

that is, Sa is ”over” Sb. The intensity of Sa,Sb and Sfinal can be defined as:

ISa =
na∑
i=1

qaαa(1− αa)
i−1

ISb
=

nb∑
i=1

qbαb(1− αb)
i−1

Ifinal = ISa + (1− αa)
na ∗ ISb

33

3.4.2 Progressive Rendering with orthogonal viewing direction

An intuitive way to get a rendering image is to wait for all coefficients ar-

riving at the client site, reconstruct Vf and implement a direct rendering

on it. However, this method is time and resource consuming. Sometimes,

it’s even impossible due to the limitation of client resource. Our goal is to

avoid reconstruction of Vf and renders the volume data that are progressively

transmitted to the client site iteration by iteration. During each iteration,

we compute and store some of the rendering attributes for each ray as a

one-value data item to avoid multiple process.

To be consistent with the two progressive transmission methods, there

are also two ways of rendering. One is from pheripheral to center, that is

from coarse to fine resolution. The other is a region-based method which

processed in a reverse order.

Rendering Algorithm 1: Region-Based

• Partial Volume reconstruction

In server-client rendering system, data are transmitted to the client site

layer by layer. Thus, we need to reconstruct a partial volume and give

the user an intermediate rendering result when some part of the data

are received. We will describe given a boundary of the volume data in

spatial domain, how to pick wavelet coordinates from a whole wavelet

volume and reconstruct the volume in general.

34

Given a starting and ending coordinate (beginx, beginy, beginz) and

(endx, endy, endz) of a volume and a desired resolution scale 2k(as a

power of 2). We need to determine its wavelet coefficients in each layer

and reconstruct the original volume data at a desired resolution.

Define average image and inner most layer to be layer 0 and outer most

layer, that is, the desired resolution layer, to be layer l.

Wavelet coefficients at layer i is from (beginx/2
(l−i), beginy/2

(l−i), beginy/2
(l−i))

to (endx/2
(l−i), endy/2

(l−i), endz/2
(l−i)). Reconstruction starts from the

average image and the inner most detail coefficients until desired reso-

lution is reached.

• Progressive Rendering

Given a mask with Mask size=(s,s,s), Mask center=(x,y,z), num layer=L

and min length=minlen.

The boundary of each ROIi are consistent with the definition in trans-

mission part. In first iteration, the center fovea is reconstructed and

rendered using partial volume reconstruction, which is described in

previous section. In a later iteration i, 6 sub-volumes: top, bottom,

left, right, front and back are separately reconstructed at a resolution

scale 2i−1, rendered using standard rendering algorithm and combine

the rendered result to previous rendering image.

35

Figure 8: Image Composition

• Image composition

Top, bottom, left and right rendering images obtained in each iteration

are simply added to the previous rendering image at their right posi-

tion, while front and back image needs image composition. For each

rendering result, the system obtains both density value and alpha value

of each pixel. An over operator is performed on front, inner and back

image, that is, (front) over (inner) over (back).

over operator can be performed pixel by pixel. Given image pixel

A(da, αa) and B(db, αb). Resulting pixel is C(dc, αc).

C = (A)over(B)

dc = αada + (1− αa) ∗ db

36

Rendering Algorithm 2: Coarse to Fine

Definition of ROI0 to ROImax layer are exactly as described in algorithm 1.

We start the rendering procedure from ROI0, which is the average block

to the inner most layer ROImax layer. Each layer, exclude the inner most

layer ROImax layer, can be divided into seven parts, denoted as, Top, Bot-

tom, Left, Right, Front, Back and Center. The Center part is actually the

average information for the inner layer and will be kept for the next iteration.

Take layer i ROIi as an example, which is constructed by the Center part

of ROIi−1 and level i detail coefficents. It is divided into seven parts, and

rendered using a slightly modified rendering equation, which is described in

the previous section. In ROIi, the number of voxels each voxel represent

is 2max layer−i, so the rendering equation for each voxel in ROIi should be

I =
∑2max layer−i

i=1 qα(1− α)i−1.

Seven parts will be rendered seperately and integrated. The center part Ci

and the rendering result of Front and Back, RFi and RBi part will be taken

down for next iteration. Ci is the average pass for iteration i + 1, and the

rendering result of iteration i + 1, Ri+1 will be combined with RFi and RBi

using the following equation to refine the rendering result of iteration i.

R = (RFi + (1− alphaRFi) ∗Ri+1) + (1− alphaRFi ∗ alphaRi+1) ∗RBi

Repeat this procedure until the inner most layer is reached.

37

3.4.3 Rendering Foveated Volume using shear-warp factorization

with non-orthogonal viewing direction

When viewing from a non-orthogonal direction, the volume transformation

can be simplified by transform each slice to an intermediate coordinate sys-

tem, sheared object space, for which there is a very simple mapping from

the object coordinate system and allows efficient projection. Then warp the

intermediate image to the image plane to produce the final result.

Given a viewing direction θ, adjacent voxel slice distance b and adjacent

pixel distance d, the rotation can be approximated by shifting each slice to

the right by a distance of l = b ∗ tan θ. To ensure the pixel distance in the

resulting image is still d after shearing, the ray distance in the sheared object

coordinate should be m = d/ cos θ (Figure 9). After shearing, re-sampling by

interpolation should be performed to get the voxel density value along the

viewing ray.

In our scheme, we use wavelet shear-warp factorization. The difference

with the above shearp-warp algorithm is we perform it in the wavelet do-

main instead of spatial domain. Factorization of the low sub-band LLLi

coefficients in fovea area in each level will approximate that of the whole

volume. As mentioned above, coefficients in fovea area of all levels is approx-

imately 2000 times smaller than the original volume data size, thus wavelet

shear-warp avoids tedious shearing of the whole data set and tremendously

reduces the computational complexity. After shearing of wavelet coefficients,

38

d

Image

Viewing Rays

Plane

m

d
Plane
Image

Slices
Volume

Figure 9: Volume being transformed to sheared object space

they will be input to the algorithm mentioned in orthogonal rendering and

produce an intermediate image by normal projection. Warp function will

then be executed on the intermediate image to produce the final image.

39

4 Comparison and Experiment Result of Two

Schemes

In our experiment, we use cross-section of human head as our example.

The size of the volume data is 2563, size of the average image is 163, thus

max layer = log2(256/16) = 4. Wavelet volume W is divided into blocks of

size 83. Given mask center = {100, 105, 75} and mask size = {50, 50, 50},
we will compare in each iteration, the result image, data amount being trans-

mitted and time of two schemes. DCj and BIj represents the index range of

detail coefficients and data blocks of ROIi at layer j of wavelet volume W .

ROI4: DC3x = [38, 63],DC3y = [40, 65],DC3z = [24, 49]

BI3x = [4, 7],BI3y = [5, 8],BI3z = [3, 6]

ROI3: DC2x = [12, 35],DC2y = [14, 37],DC2z = [6, 29]

BI2x = [1, 4],BI2y = [1, 4],BI2z = [0, 3]

ROI2: DC1x = [0, 23],DC1y = [0, 23], DC1z = [0, 19]

BI1x = [0, 2],BI1y = [0, 2],BI1z = [0, 2]

ROI1: DC0x = [0, 15], DC0y = [0, 15], DC0z = [0, 15]

BI0x = [0, 1],BI0y = [0, 1],BI0z = [0, 1]

Figure 10 gives a full rendering result for this volume data. Four snap-

shots in Figure 11 shows the four iterations for scheme 1: Region-Based and

Figure 12 shows the four iterations for scheme 2 Coarse-To-Fine. The exper-

iment shows that, in the first Region-Based algorithm (Figure 11), the client

can see his most interested region-of-interest(ROI)specified by himself at the

40

Experiment Result

Data Amount Image Transmit/Render Time
Iteration Scheme 1 618 BLKs Figure11(a) 0.381/0.0472 sec
I Scheme 2 64 BLKs Figure12(a) 0.1468/0.047 sec

Iteration Scheme 1 436 BLKs Figure11(b) 0.125/0.0154 sec
II Scheme 2 189 BLKs Figure12(b) 0.1154/0.0222 sec

Iteration Scheme 1 95 BLKs Figure11(c) 0.0938/0.0156
III Scheme 2 448 BLKs Figure12(c) 0.1404/0.0156 sec

Iteration Scheme 1 0 BLKs Figure11(d) 0.0/0.0 sec
IV Scheme 2 448 BLKs Figure12(d) 0.1092/0.0158 sec

Summary Scheme 1 1149 BLKs – 0.5998/0.0782 sec
Scheme 2 1149 BLKs – 0.5118/0.1006 sec

Table 3: Experiment Results of two progressive rendering scheme for human
head

Figure 10: Rendering Result of Direct Rendering

41

(a) (b)

(c) (d)

Figure 11: 4 Iterations of Progressive Rendering Scheme 1: Region-
Based.Fovea at (100,105,75)

42

(a) (b)

(c) (d)

Figure 12: 4 Iterations of Progressive Rendering Scheme 2: Coarse-To-Fine.
Fovea at (100,105,75)

43

first iteration. The client will have to wait for more than two times of the

time (0.5118 second comparing to 0.381 second) for the inner most ROI to

arrive in second algorithm: Coarse-To-Fine, which is not desirable. Further-

more, region-based rendering algorithm can give a clearer rendering result

of ROI. In Coarse-to-Fine algorithm(Figure 12), we can see that low reso-

lution details arrive first and high resolution inner layer arrives later. Thus

its clarity will be interfered by low resolution coefficients. The user cannot

have a clear view of his most interested ROI even when all detail coefficients

have been received. However, the client waits less time for the first rendering

result to be displayed at the client site in Coarse-To-Fine algorithm, 0.1468

second comparing to 0.381 second.

Another example we take here is cross-section of human dummy with size

2563. Size of the average image is 163, max layer = 4. Given mask center =

80, 150, 100 and mask size = 50, 50, 50.

ROI4: DC3x = [28, 51],DC3y = [62, 85],DC3z = [38, 61]

BI3x = [3, 6],BI3y = [7, 10],BI3z = [4, 7]

ROI3: DC2x = [8, 31],DC2y = [24, 47],DC2z = [22, 35]

BI2x = [1, 3],BI2y = [3, 5],BI2z = [2, 4]

ROI2: DC1x = [0, 21],DC1y = [6, 29], DC1z = [0, 23]

BI1x = [0, 2],BI1y = [0, 3],BI1z = [0, 2]

ROI1: DC0x = [0, 15], DC0y = [0, 15], DC0z = [0, 15]

BI0x = [0, 1],BI0y = [0, 1],BI0z = [0, 1]

44

(a) (b)

(c) (d)

Figure 13: 4 Iterations of Progressive Rendering Scheme 1: Region-
Based.(Fovea at 80.150,100)

45

(a) (b)

(c) (d)

Figure 14: 4 Iterations of Progressive Rendering Scheme 2: Coarse-To-Fine.
Fovea at(80.150,100)

46

Experiment Result

Data Amount Image Transmit/Render Time
Iteration Scheme 1 618 BLKs Figure13(a) 0.372/0.0441 sec
I Scheme 2 64 BLKs Figure14(a) 0.1470/0.045 sec

Iteration Scheme 1 107 BLKs Figure13(b) 0.052/0.0113 sec
II Scheme 2 252 BLKs Figure14(b) 0.2041/0.0126 sec

Iteration Scheme 1 228 BLKs Figure13(c) 0.1242/0.0158
III Scheme 2 189 BLKs Figure14(c) 0.1012/0.0125 sec

Iteration Scheme 1 0 BLKs Figure13(d) 0.0/0.0 sec
IV Scheme 2 448 BLKs Figure14(d) 0.0861/0.0230 sec

Summary Scheme 1 953 BLKs – 0.5482/0.0712 sec
Scheme 2 953 BLKs – 0.5384/0.0931 sec

Table 4: Experiment Results of two progressive rendering scheme for human
dummy

5 Conclusion

The wavelet-based rendering scheme proposed in this paper aimed at web-

based accessing to large scale volume data stored on server repository and

multi-resolution progressive rendering on client site.

There are two progressive modes, Region-Based and Coarse-To-Fine. In

the first mode, the user on the client site may see the fovea area first and the

image will expand iteratively towards the peripheral. In the second mode,

the user can immediately sees a preview image before all detail coefficients

are received and pixels in the image will be progressively refined depend on

the distance to the user specified fovea. Two progressive transmission and

rendering scheme are defined for these two modes. Coarse-To-Fine is com-

monly used in progressive transmission. We proposed Region-Based scheme,

which will transmit and render the most interest part of the volume data to

47

the user at the client site. Both two schemes are compared by both result

image and their transmission/process time. Region-Based algorithm has a

better view of the fovea at the first sight, while Coarse-To-Fine has shorter

waiting time to view the first preview image.

Run-length Encode is used for wavelet compression in both scheme. BLOCK

is a convenient unit for both simple communication between server and client

and efficient compression of the data.

Wavelet shear-warp factorization is used to accelerate rendering of a non-

orthogonal viewing direction which avoids shearing of the whole data set and

shears only the fovea instead.

48

6 Future Work

In our project, when dealing with some large data sets, tremendously large

memory are required, since we import the whole data set into the memory at

one time when doing wavelet transformation and data extraction. Solution

for this problem is to cut the volume data sets that exceeding a certain size

into several smaller data sets and build a location map to indicate the ac-

tual position of each small data segments. Because of the locality of wavelet

transformation, doing wavelet transform for each data segment separately

is possible. When a client request is received, the system can refer to the

the exact part of the data according to the location map and the coordinate

given by client instead of loading the whole data set.

On the client site, higher level-of-detail coefficients are highly reusable,

even fovea stated by the user can have significant overlap between each other.

Thus, those frequently used BLOCKS can be cached to avoid redundant data

transmission in successive client requests.

i

References

[1] A. Norton and A. Rockwood, Enabling View-dependent Progressive Vol-

ume Visualization on the Grid. IEEE Computer Graphics and Applica-

tions, 2003

[2] E.C. Chang, S.Mallat, and C. Yap. Wavelet foveation. Journal of Applied

and Computational Harmonic Analysis, pages 312-336. 2000

[3] G.R. Thoma, L.R. Long, Compressing and transmitting visible human

images. Journal Multimedia, IEEE , Volume: 4 , Issue: 2 , Pages:36 - 45,

April-June 1997

[4] H.Yu, V.T. Nguyen and E.C. Chang Rotation Of Foveated Image In the

Wavelet Domain

[5] H. Yu and E.C. Chang, Fast Rendering of Rotated Volume Data Using

Wavelet Foveation and Shear-warp Factorization.

[6] I. Ihm and S. Park. Wavelet-based 3D compression scheme for very large

volume data. Computer Graphics Forum, pages 3-5, 1999

[7] J. P. Schulze, R. Niemeier and U. Lang. The Perspective Shear-Warp

Algorithm in A Virtual Environment. Proceedings of the conference on

Visualization ’01, San Diego, California pages 207-214, 2001

[8] J. Schermann, J. L. Barron, and I. Gargantini. 3D foveated visualization

on the web. Proc. Of SPIE on Internet Imaging: Electronic Imaging,

pages 349-360, 2001

ii

[9] Kim, T., Shin, Y. An Efficient Wavelet-Based Compression Method

for Volume Rendering. Proceedings. 7th Pacific Conference: Computer

Graphics and Applications. Pages 147 - 156, 5-7 Oct. 1999

[10] K. Sano, H. Kitajima, H. Kobayashi and T. Nakamura, Parallel process-

ing of the shear-warp factorization with the binary-swap method on

a distributed-memory multiprocessor system. Proceedings of the IEEE

symposium on Parallel rendering, Phoenix, Arizona, United States,

Pages: 87 - ff. 1997

[11] L. Westover. Footprint Evaluation for Volume Rendering. Proceedings

of the 17th annual conference on Computer graphics and interactive tech-

niques. Pages 367-376. 1990

[12] M.A. Westenberg and Jos B.T.M. Roerdink, X-Ray Volume Rendering

by Hierarchical Wavelet Splatting. International Conference on Pattern

Recognition (ICPR’00)-Volume 3, Barcelona, Spain, September 03 - 08,

2000

[13] M. Gross, L. Lippert, R. Dittrich, and S. H?ring. Two methods for

wavelet-based volume rendering. Technical Report 247, ETH-Zrich, 1996

[14] M. Levoy and R. Whitaker. Gaze-directed volume rendering. In Proceed-

ings of the 1990 symposium on Interactive 3D graphics, pages 217-223.

ACM Press, 1990.

[15] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis A practical

Evaluation of Popular Volume Rendering Algorithms. Proceedings of the

2000 IEEE symposium on Volume visualization. Pages 81-90 2000

iii

[16] P. Lacroute and M. Levoy, Fast Volume Rendering Using a Shear-Warp

Factorization of the Viewing Transformation. Proceeding. SIGGRAPH

’94, Orlando, Florida, pages 451-458. July, 1994

[17] P. Pinnamaneni, S. Saladi, J. Meyer, 3D Haar Wavelet Transformation

and Texture-Based 3D Reconstruction of Biomedical Data Sets. Visual-

ization, Imaging and Image Processing (VIIP 2001), The International

Association of Science and Technology for Development (IASTED), Mar-

bella, Spain, ACTA Press, pages 389 - 394, Sept. 3 - 5, 2001

[18] P. Pinnamaneni, S. Saladi, J. Meyer, Remote transformation and local

3D reconstruction and visualization of biomedical data sets in Java3D.

Journal Visualization and Data Analysis, Proc. SPIE Vol. 4665, p. 44-54,

2002

[19] P. Pinnamaneni, Wavelet-Based Volume Rendering. Ph.D thesis 2003

[20] P. Schroder and G. Stoll, Data Parallel Volume Rendring as Line Draw-

ing. Proceedings of the 1992 workshop on Volume visualization. Boston,

Massachusetts, United States Pages 25-32. 1992

[21] R. Grosso and T. Ertl and J. Aschoff, Efficient Data Structures for Vol-

ume Rendering of Wavelet-Compressed Data. The 4th International Con-

ference in Central Europe on Computer Graphics and Visualization’96

(WSCG96) February 12.- 16., 1996

[22] S. Guthe, M. Wand, J.s Gonser and W. Straber, Interactive Rendering

of Large Volume Data Sets. Proceeding IEEE Visualization 2002, IEEE

CS Press, pages 53-60. 2002

