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Summary

In this thesis, we present a maximum entropy approach to Chinese word seg-

mentation. Besides using features derived from gold-standard word-segmented

training data, we also used an external dictionary and additional training

corpora of different segmentation standards to further improve segmentation

accuracy. The selection of useful additional training data is modeled as ex-

ample selection from noisy data. Using these techniques, our word segmenter

achieved state-of-the-art accuracy. We participated in the Second Interna-

tional Chinese Word Segmentation Bakeoff organized by SIGHAN, and evalu-

ated our word segmenter on all four test corpora in the open track. Among 52

entries in the open track, our word segmenter achieved the highest F measure

on 3 of the 4 test corpora, and the second highest F measure on the fourth

test corpus.
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Chapter 1

Introduction

1.1 The Chinese Word Segmentation Problem

The fact that Chinese texts come in an unsegmented form causes problems for

applications which require the input text to be segmented into words. Before

we can carry out more complex Natural Language Processing (NLP) tasks like

machine translation and text-to-speech synthesis, Chinese word segmentation

is a necessary first step. Even though a Chinese text is made up of words,

the word boundaries are not explicitly marked in Chinese. A Chinese text is

written as a continuous string of characters without any intervening space, and

words are not demarcated. Each character can be a word by itself, or can be

part of a larger word which is made up of two or more characters. To illustrate,

consider the Chinese character “z” (grass) which can be a single word. It can

also be the second character in a two character word “éz” (sloppy, untidy),

or the first character in the word “z�” (trifle, insignificant). To determine

where the word boundary should be placed for a word, we need to consider

the surrounding context.

Furthermore, the interpretation of a sentence also changes when a text is
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segmented in different ways. Consider the following example:

“·t§=ocÜ}��”1

This sentence could essentially translate into two correct though different

interpretations under two different segmentations although (a) is more likely

given the context:

a) “· t §= o c Ü}� �”

I went to the supermarket to buy fresh broccoli.

b) “· t §= o cÜ} � �”

I went to the supermarket to buy New Zealand flowers.

Therefore, producing an accurate word segmenter is important, since the

meaning of a sentence can change as a result of assigning a different segmen-

tation. However, Chinese word segmentation is not a trivial task as a result

of the segmentation ambiguity of characters. The surrounding context of a

character is particularly important in determining the correct segmentation.

Another major challenge in Chinese word segmentation is the correct seg-

mentation of unknown, out-of-vocabulary (OOV) words. Though the number

of characters in the Chinese language is relatively constant, this is not true for

words. New out-of-vocabulary words cause significant accuracy degradation in

Chinese word segmentation. In the first SIGHAN International Chinese Word

Segmentation Bakeoff (Sproat and Emerson, 2003), results of the participants

in the closed category strongly indicate that OOV words have a strong impact

on the segmentation accuracy. Accuracy on a test corpus like the AS test

corpus which has a low OOV rate of 2.2% was significantly higher than the

1Adapted from Teahan et al. (2000)
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other test corpora, such as CTB which has a high 18.1% OOV rate. Therefore

effectively identifying new words is important in achieving a high word seg-

mentation accuracy. But it is not possible to provide dictionaries or training

corpora that include all words since new words appear constantly. This could

be due to new person names (a new Chinese name may be formed by a different

combination of Chinese characters), new technical terms, or transliterations

of new English terms. Moreover, dictionaries do not provide the necessary

context for a word, and as we have previously seen, the same sequence of

characters can have different segmentations based on the context.

1.2 Applications of Chinese Word Segmenta-

tion

Chinese word segmentation is a necessary pre-requisite for many NLP tasks.

Characters by themselves can appear with different meanings in different con-

text, and it is only in word-segmented form that a sentence can be meaningful

enough to be processed by computer systems for various NLP tasks like ma-

chine translation, named entity recognition, and speech-to-text synthesis. We

present a few key areas in which word segmentation is required as a pre-

processing task.

1.2.1 Machine Translation

Machine translation relies on the concept of a “word”. In order to correctly

translate a Chinese sentence into English, the Chinese sentence has to be cor-

rectly segmented into words first before translation. It is only with correct

and accurate word segmentation that a sentence can have a correct transla-
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tion. A wrong translation can be intolerable since each translation can convey

drastically different meaning.

1.2.2 Digital Library Systems

Chinese word segmentation forms an important component of a Chinese digi-

tal library system. With the huge amount of text that is present in a digital

library, full-text indexing is almost a must for any digital library system. Tech-

niques based on full-text indexing were developed using languages like English

in which word boundaries are given. If text indexing was built from characters

rather than words, then searches will suffer from the problem of low precision,

with many irrelevant documents being returned, since characters can be used

in many different contexts different from that of the intended query. Similarly,

in information retrieval systems, the relevance of a document to a query relies

on term frequency of words. A document is ranked higher if it contains more

occurrences of the query terms. The relationship between the frequency of

a word and a character that appears within the word is weak. Hence with-

out word segmentation, the precision of a search will be lower since relevant

documents would be less likely to be ranked high in the search. For exam-

ple, the component characters “ z” and “ Æ”of the word “ zÆ”(grassland)

can appear in many different words such as “Æu”(original), “zò”(straw

mat), and “Æá”(forgive), which have different meanings from the compo-

nent characters. A study conducted by Broglio et al. (1996) concludes that

the performance of an unsegmented character based query is about 10% lower

than that of the corresponding segmented query. An accurate word segmenter

would therefore help the many applications in digital library systems such as

text retrieval, text summarization and document clustering.
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1.3 Contributions

In this thesis, we present a machine learning approach for accurate Chinese

word segmentation. Our basic approach is based on maximum entropy mod-

eling. Through the introduction of appropriate and useful features, we sought

to create a flexible and accurate segmenter that is able to segment Chinese

text accurately according to the required segmentation standard. In order to

deal with the OOV problem, we also sought to incorporate additional dic-

tionary features based on an external word list, and to use extra training

data annotated in other word segmentation standards. Corpora of different

segmentation standards are able to provide a rich source of knowledge, with

the necessary context features. Effectively, we are pooling the relevant and

useful knowledge resources across corpora of different segmentation standards

for use in training a word segmenter. In this thesis, we selected the relevant

extra training samples by removing the potentially noisy, wrongly segmented

characters. As far as we know, this is the first work in Chinese word segmen-

tation that attempts to incorporate useful extra training data from different

segmentation standards for use in training a segmenter automatically.

We carried out comprehensive experiments on all 8 datasets from the First

and Second International Chinese Word Segmentation Bakeoff and obtained

state-of-the-art results on all 8 datasets. In general, the use of an external

dictionary and corpora of different segmentation standards to supplement the

existing training data have provided consistent improvements over the use of

just basic features.
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1.4 Organization of the Thesis

The structure of this thesis is as follows: In Chapter 2, we review Chinese

word segmentation research. Chapter 3 provides some basic theory of max-

imum entropy modeling and two parameter estimation algorithms: GIS and

LBFGS. In Chapter 4, we describe our basic word segmentation method and

the basic set of features we employed. Then in Chapter 5, we address the prob-

lem of OOV words through two proposed methods: use of dictionary features,

and selection of extra training data from corpora of different segmentation

standards. In Chapter 6, we provide a comprehensive evaluation of the per-

formance of our word segmenter when tested on the first and second SIGHAN

bakeoff datasets. We conclude in Chapter 7 and suggest some possible future

work.
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Chapter 2

Approaches to Chinese Word

Segmentation

In this chapter, we review related research on Chinese word segmentation.

Popular methods include dictionary-based methods, statistics based methods,

and their combination. We also review the machine learning, corpus-based

approach to Chinese word segmentation, a popular approach in recent times.

Though there was not as much morphological research on Chinese com-

pared to English morphological work, Chinese morphological research is now

gaining a higher level of interest from the research community, with the avail-

ability of data and the growth of the Chinese language as one of the most

commonly used online languages on the Internet. Most of the Chinese word

segmentation systems reported previously can generally be classified into three

main approaches:

1) Dictionary-based methods, with some grammar rules to resolve ambi-

guities.

2) Statistics based methods, using statistical counts of characters in a train-

ing corpus to estimate probability;

7



3) Combination of both

2.1 Dictionary-Based Methods

Dictionary-based approaches (Chen and Liu, 1992; Cheng et al., 2003) involve

the use of a machine-readable dictionary (word list) independent of the test set,

and grammer rules to deal with segmentation ambiguities. The most common

method to deal with ambiguities in word segmentation in this approach is

the maximum matching algorithm. Different variants of the algorithm exist,

the most basic one being the “greedy” version, which finds the longest word

(from the dictionary) starting from a character and then continuing on with

the next character till the whole sentence is processed. For example, given

that the words “À” (east), “Ü” (west), and “ÀÜ” (thing) are found in the

dictionary, the greedy algorithm will choose “ÀÜ” as the word if it encounters

a sequence of characters “ÀÜ” in the sentence. Though simple, it has been

empirically found to be able to achieve over 90% segmentation accuracy if

the dictionary is large. However in reality, no dictionary is complete with all

possible words and it would probably be unrealistic to apply a pure dictionary-

based method for segmentation. The strength of a dictionary-based approach

lies in its simplicity and efficiency. But with computing resources being able

to handle more computationally intensive work required for machine-learning,

corpus-based approach, the trend is now moving towards machine-learning

approaches.
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2.2 Statistics-Based Methods

Statistical approaches include that from Sproat and Shih (1990). Their ap-

proach focuses on two-character words and uses the mutual information of two

adjacent characters to decide if they should form a word. Adjacent charac-

ters in a sentence with the largest mutual information above a set threshold

would be grouped together as a word. Another statistical approach of Dai et

al. (1999) also considers two-character words. In their work, they explored

different notions of frequency of bigrams and characters, including relative

frequency, weighted document frequency, and document frequency. In their

work, they found contextual information to be one of the most useful features

in determining a word boundary. Like the dictionary based approach, the

statistics-based approach is simple and efficient, but accuracy wise, it is not

as high as a machine learning, corpus based approach.

2.3 Hybrid Methods

Hybrid approaches combine the use of dictionary and statistical information

for word segmentation. Compared with purely statistical approaches, hybrid

approaches have the guidance of a dictionary and as a result they generally

outperform statistical approaches in terms of segmentation accuracy. As an ex-

ample, Sproat et al. (1997) introduce a hybrid based approach. They view Chi-

nese word segmentation as a stochastic transduction problem, and introduce a

zeroth-order language model for Chinese word segmentation, and finding the

lowest summed unigram cost in their model. Each word in the dictionary is

represented as a sequence of arcs, each labeled with a Chinese character and

its Chinese pinyin syllables, starting from an initial state and terminated by
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a weighted arc labeled with an empty string ε and a part-of-speech tag. The

weight represents the estimated cost of the word, and the best segmentation is

taken to be the path that has the cheapest cost for the sequence of characters

in the sentence.

2.4 Supervised Machine Learning Methods

More recent and more successful studies in the field would involve some form of

supervised machine learning approaches (Luo, 2003; Ng and Low, 2004; Peng

et al., 2004; Xue and Shen, 2003). Luo (2003), Xue and Shen (2003), and Ng

and Low (2004) make use of a maximum entropy (ME) modeling approach

to perform Chinese word segmentation. In their work, four possible classes

(or tags) were used for each character to denote the relative position of the

character within a word: one tag for a character that begins a word, and is

followed by another character; another tag for a character that occurs in the

middle of a word; another tag for a character that ends a word; and another

tag for a character that occurs as a single-character word. This is similar to

using chunk-based tags as classes in base noun-phrase chunking (Erik et al.,

2000). Peng et al. (2004) applied Conditional Random Fields(CRFs) modeling

for Chinese word segmentation and like the above mentioned works, made

use of the character context features and external dictionary in segmentation.

However, Peng et al. (2004) only used two possible classes (or tags) to denote

if a character starts a word or ends a word, and also included a separate

OOV detection phase to detect OOV words in the test data.The success of

the ME model largely depends on selecting the appropriate features to aid in

classification. For the Chinese word segmentation task, common features like

single characters, combination of adjacent characters were used.

10



Goh et al. (2004) introduced a combined dictionary-based approach with

machine-learning in their word segmenter. Like Xue and Shen (2003), each

character is assigned one of four possible word boundary tags. In their pro-

posed method, the forward maximal matching (FMM) algorithm and backward

maximal matching (BMM) algorithm are first applied to the unsegmented text.

Both algorithms match the longest word (from the dictionary) starting from a

character (the two algorithms differ in which end of the sentence is the starting

character and the direction of movement). Based on the results of the FMM

and BMM algorithm and the context of the characters, a Support Vector Ma-

chine (SVM) classifier is then used to reassign the word boundaries. SVMs

classify data by mapping it into a high dimensional space and constructing a

maximum margin hyperplane to separate the classes in the space. Another

related work is that from Gao et al. (2004) who approached the Chinese word

segmentation problem using linear models and Transformation-Based Learn-

ing (TBL). Gao et al. (2004) used a large MSR corpus, comprising of about 20

million words as their main training data source to train their segmenter. Then

standard adaptation is conducted by a TBL postprocessor which performs a

set of transformation on the output of the original segmenter in order to obtain

the new segmentation standard required. Supervised learning approaches like

maximum entropy and SVM allow the flexibility of incorporating contextual

information as features in the modeling process. In the supervised learning

approach, useful and important features need to be identified for the task. The

supervised machine learning approach has been found to give high accuracy,

and in the recent second SIGHAN bakeoff, top systems in the open and closed

category such as (Asahara et al., 2005; Low et al., 2005; Tseng et al., 2005)

have all successfully adopted a machine learning approach to Chinese word

11



segmentation.

12



Chapter 3

Basic System overview

In this chapter, we present our basic approach to the Chinese word segmen-

tation problem and introduce maximum entropy (ME) modeling as our main

modeling technique to solving the Chinese word segmentation problem. We

also briefly review two popular parameter estimation algorithms for maxi-

mum entropy, Generalized Iterative Scaling (GIS) and metric variable methods

(LBFGS).

3.1 Supervised, Corpus-Based Approach

Our work follows a machine-learning, corpus-based approach. In this ap-

proach, we make use of a training set which is a large set of training examples,

annotated with the correct classes for which we are interested in finding. With

this large annotated training material, we extract the relevant features for each

training example, and form the relevant training vectors. We would then use

these training feature vectors to train a classifier, which would be able to pre-

dict the class when given a new test example. Thus, once training has been

done with a correctly hand annotated corpus, the task would then be to find

13



the most probable class to assign to each testing example. To summarize, this

supervised machine-learning, corpus based approach consists of three main

processes: feature extraction, classifier training, and classifier prediction for

a test example. The general process is shown in Figure 3.1. The choice and

quality of the training corpus and the training algorithm, plus the features

chosen for a particular task has a big influence on the accuracy of the classi-

fier. The training corpus used for our work comes from the official SIGHAN

bakeoffs, all with varying quantity and vocabulary coverage. For the classifier

training algorithm, we chose GIS or LBFGS as the main algorithm for training

the maximum entropy classifier. Maximum entropy modeling has been suc-

cessfully applied in many NLP applications with great success.
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Figure 3.1: General Overview of a Machine-Learning, Corpus-Based Approach
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3.2 Maximum Entropy Modeling

Chinese word segmentation can be formulated as a statistical classification

problem, in which the task is to estimate the “class c” occurring with the

highest probability given a “history h” (context). The training corpus usually

contains information which suggests the relation between “class c” and “his-

tory h”, but never enough to specify p(c|h) for all possible (c, h) pairs. The

principle of maximum entropy states that in making inferences in the presence

of partial information, in order not to make arbitrary assumptions which are

not warranted, the probability distribution function has to have the maximum

entropy. In this thesis, our word segmenter is built using a maximum entropy

framework. The maximum entropy framework has been successfully applied

in many NLP tasks (Chieu and Ng, 2002; Ratnaparkhi, 1996; Xue and Shen,

2003), achieving high accuracy when compared with other machine learning

approaches. It is based on maximizing the entropy of a distribution subject

to the constraints derived from the training data, which link aspects of what

we observe with an outcome class that we wish to predict. The probability

distribution has the form (Pietra et al., 1997):

P (c|h) = 1
Z(h)

∏k
j=1 α

fj(h,c)
j

where c is the outcome class, h is the history (context) observed, Z(h) is a nor-

malization constant, fj(h, c) ∈ {0, 1} , and αj is a “weight” corresponding to

feature fj . There exist a number of algorithms for estimating the parameters

of ME models, including iterative scaling, gradient ascent, conjugate gradient,

and variable metric methods. One of the more commonly used algorithms is

the standard Generalized Iterative Scaling (GIS) (Darroch and Ratcliff, 1972)

method, which improves the estimation of the parameters at each iteration.

15



However, some recently published results (Malouf, 2002) have suggested that

the limited memory variable metric algorithm (LBFGS) is better than the

GIS algorithm in estimating the maximum entropy model’s parameters for

the NLP tasks they have tested on. We conducted a series of experiments to

compare the accuracy obtained from these two different parameter estimation

algorithms. Based on our findings on the Chinese word segmentation task

using bakeoff 1 and 2 data, we found LBFGS to perform slightly better than

GIS, though LBFGS requires more iterations to converge and longer training

time for this task. Our final word segmenter was built using LBFGS as the

parameter estimation algorithm.

Figure 3.2 shows a system overview of how we conduct training and testing

using the maximum entropy approach.

 
 Labeled Training 

Corpus
  


Feature
  Extraction
  


Training
  


MaxEnt Model 
  


Testing
  


Figure 3.2: Basic System Overview

3.2.1 Parameter Estimation Algorithms

Our presentation of the parameter estimation algorithms follows that of (Wal-

lach, 2002).
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Generalized Iterative Scaling

Generalized iterative scaling seeks to improve the log-likelihood of the train-

ing data in an incremental manner. Recall that in the maximum entropy

framework, we have a classification model p(y|x, Θ), parameterized by Θ =

(λ1, λ2, . . . , λk). During each iteration, GIS constructs a lower bound function

to the original log-likelihood function and maximizes it instead.

There exists a particularly simple and analytic solution which solves the

auxiliary maximization problem. The parameters obtained from the maxi-

mization are guaranteed to improve the original log-likelihood function. There

is however one complication for GIS: to ensure that the updates result in

monotonic increase in the log-likelihood function, GIS constrains the feature

set such that for each event in the training data, D(x) = C, where C is a

constant and D(x) is defined as the sum of the active features in the event x:

D(x) = Σk
i=1fi(x)

To satisfy the constraint usually requires the addition of a global correction

feature fl(x) , where l = k + 1, such that fl(x) = C − Σk
i=1fi(x) . In general,

adding new features can affect the model. However, this new correction feature

is completely dependent on the other features currently in the feature set.

Thus, it adds no new information, and therefore places no new constraints on

the model. As a result, the resulting model is unchanged by the addition of

the correction feature. However, the rate of convergence of the GIS algorithm

is dependent on the magnitude of the constant C: the step size is inversely

proportional to the constant C, which implies that the smaller the magnitude

of C, the bigger the step size, and the faster the convergence.
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Variable Metric Methods (LBFGS)

Malouf (2002) compared the performances of a number of parameter estima-

tion algorithms for the maximum entropy model on a few NLP problems.

Malouf (2002) observed that iterative scaling algorithms performed poorly in

comparison to first and quasi-second order optimization methods for the NLP

problem sets he considered. His conclusion was that a limited memory variable

metric algorithm (LBFGS) performed better than the other algorithms on the

NLP tasks he considered.

First order methods rely on using the gradient vector G(Θ) to repeatedly

provide estimates of the parameters towards the stationary point at which the

gradient is zero and the function value is optimal. Second order optimization

techniques, such as Newton’s method, improve over first order techniques by

using both the gradient and the change in gradient (second order derivatives)

when calculating the parameter updates.

The general second-order update rule is calculated from the second-order

Taylor series approximation the log-likelihood function, given by:

L(Θ + ∆) ≈ L(Θ) + ∆T G(Θ) + 1
2
∆T H(Θ)∆

where H(Θ) is the matrix containing second order partial derivatives of the

log-likelihood function with respect to Θ, or the Hessian matrix. Optimizing

the above approximation function results in the update rule:

∆k+1 = H−1(Θk)G(Θk)

Variable-metric methods are a form of quasi-second-order technique, sim-

ilar to Newton’s method, but rather than explicitly calculating the inverse

Hessian matrix, at each iteration, variable-metric methods use the gradient

to update and approximate the inverse Hessian matrix and achieves improved

convergence rate over first-order methods.
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Chapter 4

Our Basic Chinese Word

Segmenter

In this chapter, we present the basic set of features, and the character nor-

malization technique we employed for our Chinese word segmenter. Also, we

describe the segmentation algorithm we used, which is based on dynamic pro-

gramming. The segmentation algorithm outputs a sequence of admissible tags

for a Chinese sentence. This is required since during the testing phase, the

maximum entropy classifier treats each character as one distinct test exam-

ple and assigns it a probability for each possible class without considering its

neighboring class tags.

4.1 Chinese Word Segmenter

The Chinese word segmenter we built is similar to the maximum entropy word

segmenter we employed in our previous work (Ng and Low, 2004). Our word

segmenter uses a maximum entropy framework and is trained on manually

segmented sentences. It classifies each Chinese character given the features
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derived from its surrounding context. Each character can be assigned one of 4

possible boundary tags: “b” for a character that begins a word and is followed

by another character, “m” for a character that occurs in the middle of a word,

“e” for a character that ends a word, and “s” for a character that occurs as

a single-character word. For example, given the following sentence in (i), the

tags assigned to the individual characters will be as follows in (ii). (iii) shows

the English translation of the example sentence.

(i)c�ö �V ½ ÒÒ

(ii) b m e b e s b e

(iii) Xinhua Agency reporter Chen Taiming

The basic features of our word segmenter are similar to those used in our

previous work (Ng and Low, 2004):

(a) Cn(n = −2,−1, 0, 1, 2)

(b) CnCn+1(n = −2,−1, 0, 1)

(c) C−1C1

(d) Pu(C0)

(e) T (C−2)T (C−1)T (C0)T (C1)T (C2)

In the above feature templates, Ci refers to a Chinese character. Templates

(a) – (c) refer to a context of five characters (the current character and two

characters to its left and right). C0 denotes the current character, Cn(C−n) de-

notes the character n positions to the right (left) of the current character. For

example, given the character sequence “c�öð®”, when considering the
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character C0 “ö”, C−2 denotes “c”, C1C2 denotes “ð®”, etc. The punctua-

tion feature, Pu(C0), checks whether C0 is a punctuation symbol (such as “?”,

“–”, “,”). This is useful since certain punctuation symbols such as “,” are good

delimiters for a word. For the type feature (e), four type classes are defined:

numbers belong to class 1, characters denoting dates (“�”, “Û”, “#”, the

Chinese characters for “day”, “month”, “year”, respectively) belong to class

2, English letters belong to class 3, and other characters belong to class 4. For

example, when considering the character “#” in the character sequence “Ê

�#SR”, the feature T (C−2) . . . T (C2) = 11243 will be set to 1 (“Ê” is the

Chinese character for “9” and “�” is the Chinese character for “0”). In the

Chinese word segmentation problem, these four defined character types tend

to have a certain word formation pattern according to the particular word

segmentation standard. For example, in segmentation standards such as the

Chinese Treebank (CTB) standard, dates have the word formation pattern

“number day/month/year” (e.g., “�Û”(January), “���”(20th) are two

separate words).

Besides these basic features, we also made use of character normalization.

We note that characters like punctuation symbols and Arabic digits have differ-

ent character codes in the ASCII, GB, and BIG5 encoding standard, although

they mean the same thing. For example, comma “,” is represented as the hex-

adecimal value 0x2c in ASCII, but as the hexadecimal value 0xa3ac in GB. In

our segmenter, these different character codes are normalized and replaced by

the corresponding character code in ASCII. Also, all Arabic digits are replaced

by the ASCII digit “0” to denote any digit. Incorporating character normal-

ization enables our segmenter to be more robust against the use of different

encodings to represent the same character. In the absence of character nor-
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malization, the word segmenter built would be unable to differentiate between

the same characters which are represented with different character codes in

the training corpus and the test set.

4.2 Segmentation Algorithm

If we were to just assign each character the boundary tag with the highest

probability, it is possible that the classifier produces a sequence of invalid tags

(e.g. “m” followed by “s”). To eliminate such possibilities, we implemented

a dynamic programming algorithm which considers only valid boundary tag

sequences given an input string. The probability of a boundary tag assignment

t1 . . . tn , given a character sequence C1 . . . Cn , is defined as follows:

P (t1 . . . tn|c1 . . . cn) =
∏n

i=1 P (ti|h(ci))

where P (ti|h(ci)) is determined by the maximum entropy classifier, and c1 . . . cn

is the input character sequence. The program tags one sentence at a time and

works in a dynamic programming fashion. At each character position i, the

algorithm considers each next word candidate ending at position i and consist-

ing of K characters in length (K = 1, . . . , 20 in our experiments). (We restrict

the length of a word to 20 characters due to performance considerations and

due to the fact that Chinese words very rarely exceed such a length.) To ex-

tend the boundary tag assignment to the next word W with K characters, the

first character of W is assigned boundary tag “b”, the last character of W is

assigned tag “e”, and the intervening characters are assigned tag “m” (if W

consists of only one character, then it is assigned the tag “s”).
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The pseudocode for the segmentation algorithm using dynamic programming

follows that of (Russell and Norvig, 2003) and is given as follows:

function segment(sentence)

/* initialize variables */

n ← length(sentence)

words← empty array of length n + 1

best ← array of length n + 1, initially 0

best[0] ← 1.0

/* Form and evaluate probability of each candidate word sequence, each

word is up to length M . M=20 in our implementation*/

for i = 1 to n do

for j = i down to 1 do

word← sentence[j : i]

wLen ← length(word)

if wLen > M then

break;

end if

if P[word] × best[i - wLen] > best[i] then

best[i] ← P[word] × best[i - wLen]

words[i] ← word

end if

end for

end for
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/*get best valid word sequence */

i ← n

while i >0 do

push words[i]+“ ” onto front of sequence

i ← i - length(words[i])

end while

return sequence

end function
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Chapter 5

Handling the OOV problem

A major difficulty faced by a Chinese word segmenter is the presence of out-

of-vocabulary (OOV) words. Segmenting a text with many OOV words tends

to result in lower accuracy. We address the problem of OOV words in two

ways: using an external dictionary containing a list of predefined words, and

using additional training corpora of different segmentation standard

5.1 External Dictionary

The easiest way to obtain new words is through word lists, or lexicons, which

are readily available on the Internet. The challenge for us therefore is to opti-

mally combine the knowledge from both sources: whenever we are presented

with a sequence of characters, we could base our prediction on the output of

the original maximum entropy classifier which is trained on word-segmented

corpus, or by looking up the word in an external lexicon. When we find a

match in the lexicon, it suggests that the character sequence under question

is a word in some context. However, in the current sentence in which the

character sequence appears, this may or may not be the case. Moreover, the
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dictionary words may have been formed according to another segmentation

standard. We incorporate knowledge of the external lexicon as additional fea-

tures in our maximum entropy classifier.

We used an online dictionary from Peking University downloadable from

the Internet2, consisting of about 108,000 words of length one to four char-

acters. If there is some sequence of neighboring characters around C0 in the

sentence that matches a word in this dictionary, then we greedily choose the

longest such matching word W in the dictionary. Let t0 be the boundary tag

of C0 in W , and C1(C−1) be the character immediately following (preceding)

C0 in the sentence. We then add the following features derived from the dic-

tionary:

(f) Cnt0(n = −1, 0, 1)

For example, consider the sentence “c�öð®. . . ”. When processing the

current character C0 “�”, we will attempt to match the following candidate

sequences “�”, “c�”, “�ö”, “c�ö”, “�öð”, “c�öð”, and “�ö

ð®” against existing words in our dictionary. Suppose both “�ö” and “c

�ö” are found in the dictionary. Then the longest matching word W chosen

is “c�ö”, t0 is m, C−1 is “c”, and C1 is “ö”.

5.2 Additional Training Corpora

The presence of different standards in word segmentation limits the amount

of training corpora available for the community, due to different organizations

2http://ccl.pku.edu.cn/doubtfire/Course/Chinese%20Information%20Processing/Source Code/

Chapter 8/Lexicon full 2000.zip
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preparing training corpora in different segmentation standards. Indeed, if the

segmentation standards were the same, there would be no lack of training data,

implying that the OOV problem would be significantly reduced. If we could ac-

tually incorporate additional training data from other segmentation standards

through some methods, we could actually build up a large corpus of training

data, and help reduce the OOV problem in Chinese word segmentation.

This extra training data could be thought as a slightly noisy training cor-

pus which contains a certain percentage of corrupted noisy data with wrong

segmentation tags assigned for some of the characters. Naively adding all

the additional data into the base training set would corrupt the training set

with noise, and may reduce the overall predictive accuracy (see Section 6.2.3

for some initial experiments detailing the effect of naively adding additional

data of a different segmentation standard). Thus the key problem to using

such additional standard set is the need to clean the data set and select only

the noise free extra training samples from the additional training data. The

method we use to select the relevant extra training data is derived from a tech-

nique proposed by (Brodley and Friedl, 1999). Brodley and Friedl (1999) have

illustrated that for class noise levels of less than 40%, removing mislabeled

instances from the training data can result in higher predictive accuracy rel-

ative to classification accuracies achieved without cleaning the training data.

Noise elimination is motivated by techniques for removing outliers in regres-

sion analysis. Outliers are data instances that do not follow the same model

as the rest of the data and appear as though they belong to a different data

distribution.

The general procedure makes use of a set of classifiers formed from part

of the training data to test whether instances in the remaining part of the
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training data are mislabeled and can be briefly described as follows: Assume

a noisy training set, with noisy training instances distributed in the training

data. Perform n-fold cross validation on the training data. Apply m learning

algorithms (known as filter algorithms) to train each train portion of the 10

fold cross validation. Then m resulting classifiers are used to tag each test

instance in each testing portion of the respective 10 fold cross validation. If

the instance is not tagged correctly, it is considered mislabeled. There are

two main variants of the noise elimination procedure. One way would be to

use a single algorithm as filter, while the other would be to use an ensemble

of filters. In the case of the ensemble filters technique, majority voting or

consensus voting can be applied. In majority voting, an instance is classified

as mislabeled if a majority of the filters classify the instance as mislabeled. In

the case of consensus voting, an instance is considered mislabeled only if all

filters classify it as being mislabeled. These mislabeled instances are removed

and the final filtered training set is used to train the final classifier. Figure 5.1

shows the general procedure of noise elimination.
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Figure 5.1: General Procedure for noise elimination

We adopt the approach of using the single algorithm filter. The same

learning algorithm is used to build both the filter and the final classifier. Our
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problem is simplified in that the base set of training data can be assumed to

be noise-free (i.e., with negligible errors). Thus we could use the original train-

ing data to build our filter (base segmenter), without worrying that our base

segmenter is corrupted with noisy samples. The additional training corpus of

a different segmentation standard, consisting of noisy samples, is then filtered

through our base segmenter to remove the outliers, which we take to be the

noisy training samples. Finally, the extra non-noisy training samples and the

original training data are combined into a large data set used to train the final

classifier.

One practical concern in applying the above technique to obtain extra

training data is that the examples selected could be extremely large in number

if we are using a large amount of training data gathered from many sources.

This could potentially increase the time to train the final classifier. Thus,

it would only be sensible if we select the most useful subset from this large

extra training set of different segmentation standards, and use it to supplement

the existing training corpus. This is based on the concept of active leaning.

Active learning acquires labeled data incrementally, using the model learned

so far to select the more helpful additional training examples for labeling and

training the model. When successful, active learning allows us to reduce the

number of training instances required to induce an accurate training model

for classification.

The general process of active learning is as follows: We assume that we

have a pool L of labeled samples and another pool UL of unlabeled samples.

For active leaning, a classifier is first trained on an initial pool L of labeled

examples. Next, each candidate sample from the unlabeled pool UL is consid-

ered for the labeling process in each phase until some predefined condition is

29



met. The candidate example is assigned an effectiveness score ESi, reflecting

how useful the sample would be if it is to be incorporated into the training

set. Candidate examples above a certain predetermined threshold and deemed

most useful are then labeled (e.g. by a human expert) and incorporated into

the training set L for subsequent classifier retraining at each phase. Owing to

computational constraints, usually a set of candidate samples (instead of only

one candidate sample) is considered during each phase, and a limit of y most

useful samples may be selected during each phase for retraining purposes.

For efficiency reasons, in our implementation, we select all the new training

samples with assigned probability (by the maximum entropy classifier) below a

certain probability threshold in one single step, instead of incremental selection

with retraining at each phase. Extra training samples predicted with a high

confidence are considered to be very similar to the original training samples,

and therefore less useful to be incorporated since the original training data

set already has very similar training samples. Also, no relabeling by human

experts is done. We just assume that the additional selected training examples

are correctly labeled and all noisy data has been filtered during the noise

elimination process. Thus the entire selection process is completely automatic,

with no need for human intervention or additional manual work.

The main steps in our proposed scheme in selecting the extra training data

are depicted in Figure 5.2. Specifically, the steps taken are:

1. Perform training with maximum entropy modeling using the original

training corpus D0 annotated in a given segmentation standard.

2. Use the trained word segmenter to segment another corpus Di annotated

in a different segmentation standard.

3. Suppose a Chinese character C in Di is assigned a boundary tag t by
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the word segmenter with probability p. If t is identical to the boundary

tag of C in the gold-standard annotated corpus Di, and p is less than

some threshold θ, then C (with its surrounding context in Di) is used as

additional training data.

4. Add all such characters C as additional training data to the original

training corpus D0, and train a new word segmenter using the enlarged

training data.

5. Evaluate the accuracy of the new word segmenter on the same test data

annotated in the original segmentation standard of D0.

For the tests on bakeoff 2 data, when training a word segmenter on a

particular training corpus, the additional training corpora are all the three

corpora in the other segmentation standards. For example, when training a

word segmenter for the AS corpus, the additional training corpora are CITYU,

MSR, and PKU. Similarly for our tests on bakeoff 1 data, when training a word

segmenter on a particular training corpus, the additional training corpora are

all the three corpora in the other segmentation standards present in the bakeoff

1 data set. The necessary character encoding conversion between GB and

BIG5 is performed, and the probability threshold θ is set to 0.8 for our final

segmenter. In Section 6.2.4, we will present empirical results indicating that

setting θ to a higher value does not further improve segmentation accuracy,

but would instead increase the training set size and incur longer training time.
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Figure 5.2: Selection of extra data for retraining
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Chapter 6

Experiments on SIGHAN

Datasets

In this chapter, we present the results of experiments we conducted using the

8 datasets from the First and Second International Chinese Word Segmenta-

tion Bakeoff. The experiments we conducted include using the basic features

presented in Section 4.1, the basic+dict features presented in Section 5.1, and

evaluating the effect of adding noise-filtered additional training corpora to

supplement the original training data (example selection) presented in Section

5.2.

6.1 SIGHAN Chinese Word Segmentation Bake-

off

Prior to the organization of SIGHAN’s First International Chinese Word Seg-

mentation Bakeoff (Sproat and Emerson, 2003), comparison of different ap-

proaches to Chinese word segmentation across systems was difficult due to

the lack of standardized test sets. Many word segmentation standards exist,
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including five different segmentation standards (Academia Sinica (AS), Hong

Kong City University (CITYU), UPenn Chinese Treebank (CTB), Microsoft

Research (MSR), and Peking University (PKU)) that were utilized in the two

bakeoffs. Since many papers were based on their own training and test sets, it

was hard to draw a conclusion as to which method was truly superior and also

if it would perform equally well on another corpus of a different segmentation

standard. In order to enable a clear comparison between our segmenter and

the others presented in other recent Chinese word segmentation research, the

experiments we conducted for our Chinese word segmenter are all based on

the datasets obtained from the First and Second International Chinese Word

Segmentation Bakeoff (Sproat and Emerson, 2003; Emerson, 2005).

The first SIGHAN bakeoff provided corpora of four different standards,

detailed in Table 6.1. The second SIGHAN bakeoff provided another new

corpus from MSR, together with 3 of the standards already used in bakeoff

1. Details of the bakeoff 2 corpora are provided in Table 6.2. The SIGHAN

bakeoff allowed participants to participate in the open or closed track. In the

open track, participants could use external knowledge sources to supplement

the training corpus, while the closed track allowed participants to use only the

individual training corpus to train their segmenter.

Corpus Encoding #Train Words #Test Words Test OOV

AS Big 5 5.8M 12K 0.022

CITYU Big 5 240K 35K 0.071

CTB EUC-CN 250K 40K 0.181

(GB 2312-80)

PKU GBK 1.1M 17K 0.069

Table 6.1: SIGHAN Bakeoff 1 Data
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Corpus Encoding #Train Words #Test Words Test OOV

AS Big 5 Plus 5.45M 122K 0.043

CITYU BIG 5/HKSCS 1.46M 41K 0.074

MSR CP936 2.37M 107K 0.026

PKU CP936 1.1M 104K 0.058

Table 6.2: SIGHAN Bakeoff 2 Data

Results from the participants of the SIGHAN bakeoff 1 indicated that no

one participant performed consistently better than all others. From the results

of the closed category, it was noted that out-of-vocabulary (OOV) words had

a significant impact on the accuracy. The CTB closed track, with the test

corpus containing an OOV of 18.1% reported the lowest accuracy in general,

with the best system reporting an accuracy of 88.1%. On the other hand, the

AS corpus, with a OOV of only 2.2%, had a high accuracy of 96.1% from the

top team.

6.2 Experimental Results

We carried out our experiments on the SIGHAN bakeoff 1 and 2 training

and test sets. We evaluated our segmenter on all the 4 corpora for bakeoff 1:

Academia Sinica (AS), City University of Hong Kong (CITYU), Chinese Tree-

bank (CTB), and Peking University (PKU) for the open category. We repeated

the experiments for all the 4 corpora in bakeoff 2: AS, CITYU, Microsoft Re-

search (MSR), and PKU. The Java-based opennlp maximum entropy package

v2.1.0 from sourceforge3 was employed as the GIS version, while another C++

Maximum Entropy package (v20041229) from Le Zhang of Edinburgh Univer-

3http://maxent.sourceforge.net/
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sity 4 was employed as the LBFGS version. Training was done with a feature

cutoff of 2 (except for the AS corpus in bakeoff 1 and 2, in which we applied

cutoff 3) and 100 iterations for the GIS version, while Gaussian prior variance

of 2.5 and 1000 iterations were selected for the LBFGS version. The usual

three measures: recall, precision, and F-measure are used to evaluate the ac-

curacy of our word segmenter. To define the three measures, we use the follow

definitions:

N Number of words occurring in the gold hand-segmented text

c Number of words correctly identified by the word segmenter

n Number of words identified by the word segmenter

The measures: recall, precision, and F-measure are defined as:

recall = c
N

precision = c
n

F −measure = 2×precision×recall
precision+recall

The above word segmentation recall (R), precision (P), and F-measure are

then measured using the official scorer used in the SIGHAN bakeoff (Sproat

and Emerson, 2003; Emerson, 2005).

For all the tabulated results in the following tables, Version V1 used only

the basic features (Section 4.1); Version V2 used the basic features and ad-

ditional features derived from our external dictionary (Section 5.1); Version

V3 used the basic features plus additional training corpora (Section 5.2); and

Version V4 is the version combining basic features, external dictionary, and

additional training corpora.

4http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
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6.2.1 Basic Features and Use of External Dictionary

We carried out a series of experiments using bakeoff 1 and 2 data to test the

effectiveness of our word segmenter. Table 6.3 and Table 6.4 give the results

of word segmentation using the basic features described in Section 4.1 and

dictionary features described in Section 5.1 for bakeoff 1 and 2 respectively.

Corpus GIS V1 GIS V2 LBFGS V1 LBFGS V2

AS 0.967 0.968 0.969 0.970

CITYU 0.940 0.959 0.945 0.960

CTB 0.861 0.893 0.869 0.900

PKU 0.954 0.967 0.953 0.967

Table 6.3: V1 and V2 bakeoff 1 word segmentation accuracy (F-measure) for

GIS and LBFGS parameter estimation algorithm

Corpus GIS V1 GIS V2 LBFGS V1 LBFGS V2

AS 0.950 0.953 0.954 0.955

CITYU 0.948 0.958 0.954 0.962

MSR 0.960 0.969 0.965 0.972

PKU 0.948 0.966 0.950 0.967

Table 6.4: V1 and V2 bakeoff 2 word segmentation accuracy (F-measure) for

GIS and LBFGS parameter estimation algorithm

While the training time and the number of iterations required for LBFGS

parameter estimation algorithm is more than those for GIS, overall accuracy

indicates that LBFGS is a slightly better parameter estimation algorithm for

the Chinese word segmentation task. For all the above runs, LBFGS param-

eter estimation algorithm has obtained a higher F-measure than GIS on the

same test sets. Also, the use of dictionary consistently improves segmentation
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accuracy.

6.2.2 Usefulness of the Additional Training Corpora

Additional training corpora of different segmentation standards can provide

useful training samples and context features to supplement the original train-

ing corpus, but in order for them to be useful, there must be some form of

similarity in segmentation standards for both corpora, so that useful samples

can be selected from the additional training corpus. Although different seg-

mentation standards exist in Chinese word segmentation, we note that many

words will still be segmented in the same way. For example, consider the word

“�O”(happy), the meaning of the word would be lost if this word was sepa-

rated into two words, so the different segmentation standards will still segment

such words in the same way.

As a gauge to estimate the usefulness of training corpora of different seg-

mentation standards, we carried out the following procedure:

1. Perform training with maximum entropy modeling using a particular

training corpus A.

2. Use the trained word segmenter to segment the other 3 testing data sets

B,C,D (of different segmentation standards) for the respective bakeoff.

3. Measure the accuracy of the segmented test data sets B, C, D, against

their corresponding gold standard annotation.

The accuracy of the segmented test data provides a gauge of the useful-

ness of training corpora of different segmentation standards. Table 6.5 and

Table 6.6 show the results of our experiments on bakeoff 1 and bakeoff 2 data.

To enable quicker experiments with shorter training time, experiments were
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conducted using basic features and GIS parameter estimation algorithm for

ME modeling. In Table 6.5 for example, table entry with row AS and column

CTB refers to the F-measure obtained on CTB test set by using a segmenter

trained with AS training set. The results indicate that even if a corpus of a

different segmentation standard is used to train the segmenter, over 80% in

F-measure can still be obtained. Thus we can see that the additional training

corpora contain useful information that can aid in word segmentation.

Train Corpus AS CITYU CTB PKU

AS 0.967 0.889 0.912 0.856

CITYU 0.874 0.940 0.846 0.822

CTB 0.866 0.848 0.861 0.834

PKU 0.877 0.862 0.847 0.954

Table 6.5: Word segmentation accuracy (F-measure) on bakeoff 1 test data

obtained using training data of a different segmentation standard

Train Corpus AS CITYU MSR PKU

AS 0.950 0.884 0.829 0.877

CITYU 0.892 0.948 0.831 0.881

MSR 0.831 0.811 0.960 0.851

PKU 0.847 0.856 0.859 0.948

Table 6.6: Word segmentation accuracy (F-measure) on bakeoff test 2 data

obtained using training data of a different segmentation standard

6.2.3 Naive Use of Additional Training Corpora

Based on the tests carried out in 6.2.2, we can see that corpora of different seg-

mentation standard can still provide useful information in word segmentation.
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As a first try to test the effect of just adding additional training corpora of

different segmentation standard to supplement the original training data, we

first implemented a naive retraining scheme. In this naive retraining scheme,

we just added all the training corpora of the other segmentation standards

to the original training corpus and tested the performance of the training on

the whole training set, using the ME approach with the basic feature set. For

this set of experiments, we just conducted it using GIS parameter estimation

algorithm to enable quicker experiments. Results are shown in Table 6.7 for

bakeoff 1 data and Table 6.8 for bakeoff 2 data. In Table 6.7 for example,

table entry AS+CTB refers to the F-measure obtained on AS test set by using

the segmenter trained with original AS training set and supplemented with

CTB training corpus. Table entry AS+AS refers to the F-measure obtained

on AS test set using segmenter trained with the original AS training data.

As shown from the results, except for CTB (which does benefit from using

additional training corpus), such a naive approach usually results in a drop in

F-measure for the other 3 corpora. Naively adding training data from differ-

ent standards ultimately results in too much noise due to the incorporation of

wrongly segmented words in training data as a consequence of different word

segmentation standards and results in a drop in accuracy. This demonstrates

the necessity of filtering out the noisy data of the additional training corpora

using the noise elimination method we introduced in Section 5.2.

6.2.4 Usefulness of Example Selection

As part of our experiments to determine the usefulness of example selection,

we carried out experiments using bakeoff 1 and 2 data with different thresholds

to determine the usefulness of selecting additional training corpora of different
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Corpus +AS +CITYU +CTB +PKU

AS 0.967 0.968 0.967 0.965

CITYU 0.919 0.940 0.933 0.921

CTB 0.919 0.878 0.861 0.862

PKU 0.936 0.951 0.949 0.954

Table 6.7: Word segmentation accuracy (F-measure) for bakeoff 1 data ob-

tained from adding additional training data from another corpus of a different

segmentation standard, with the GIS parameter estimation algorithm. Note

that the original results without retraining are obtained from the center diag-

onal (AS+AS for example)

Corpus +AS +CITYU +MSR +PKU

AS 0.950 0.949 0.937 0.948

CITYU 0.932 0.948 0.892 0.935

MSR 0.930 0.946 0.960 0.937

PKU 0.928 0.934 0.883 0.948

Table 6.8: Word segmentation accuracy (F-measure) for bakeoff 2 data ob-

tained from adding additional training data from another corpus of a different

segmentation standard, with the GIS parameter estimation algorithm

segmentation standards when applied to both the basic and basic+dict set

of features. Table 6.9 and Table 6.10 (for version V3) detail the results of

word segmentation with example selection at different thresholds with basic

features for bakeoff 1 and 2 respectively, while Table 6.11 and Table 6.12

give the accuracy of word segmentation with example selection at different

thresholds using the basic+dict features for bakeoff 1 and 2 respectively.

Our results indicate that using a higher probability threshold than 0.8 does

not really help in improving accuracy, but instead just incur extra training

time and memory. Thus with a large supply of additional data, it would not
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be realistic to just use all the extra training data procured. Instead using a

threshold of 0.8 suffices.

Also our proposed method to make use of example selection works best for

a small corpus like CTB with a small training data set and high OOV test

set. The additional training data incorporated helps to achieve a significant

increase in accuracy.

Corpus 0.5 0.6 0.7 0.8 0.9

AS 0.969 0.970 0.969 0.970 0.969

CITYU 0.954 0.955 0.955 0.955 0.954

CTB 0.913 0.915 0.918 0.917 0.915

PKU 0.957 0.957 0.958 0.958 0.957

Table 6.9: Bakeoff 1 V3 word segmentation accuracy (F-measure) at different

threshold settings for LBFGS parameter estimation algorithm

Corpus 0.5 0.6 0.7 0.8 0.9

AS 0.954 0.954 0.956 0.956 0.956

CITYU 0.960 0.961 0.961 0.961 0.961

MSR 0.965 0.965 0.965 0.965 0.965

PKU 0.954 0.954 0.955 0.956 0.956

Table 6.10: Bakeoff 2 V3 word segmentation accuracy (F-measure) at different

threshold settings for LBFGS parameter estimation algorithm

6.2.5 Overall Summary of our Word Segmenter Results

Finally, we present the overall summary performance of our various implemen-

tations with bakeoff 1 and 2 training and test datasets using LBFGS parameter

estimation algorithm for ME modeling. Tables 6.13 and 6.14 show the sum-
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Corpus 0.5 0.6 0.7 0.8 0.9

AS 0.971 0.971 0.971 0.971 0.970

CITYU 0.963 0.963 0.964 0.963 0.964

CTB 0.923 0.923 0.925 0.924 0.924

PKU 0.968 0.968 0.969 0.969 0.970

Table 6.11: Bakeoff 1 V4 word segmentation accuracy (F-measure) at different

threshold settings for LBFGS parameter estimation algorithm

Corpus 0.5 0.6 0.7 0.8 0.9

AS 0.956 0.956 0.956 0.956 0.956

CITYU 0.963 0.963 0.964 0.964 0.964

MSR 0.971 0.971 0.971 0.971 0.971

PKU 0.968 0.969 0.969 0.969 0.969

Table 6.12: Bakeoff 2 V4 word segmentation accuracy (F-measure) at different

threshold setting for LBFGS parameter estimation algorithm

mary of our results for the different feature implementations we tested on.

Also for bakeoff 1, we show the open category results of 2 other systems (Gao

et al., 2004; Peng et al., 2004), in which we also perform better than in terms

of F-measure. Table 6.15 and 6.16 show the detailed V4 results for bakeoff

1 and 2 respectively. Finally, Figures 6.1 and 6.2 show our V4 LBFGS seg-

mentation accuracy results when compared with other participants of bakeoff

1 and bakeoff 2 respectively. Due to space constraint, the accuracy figures for

bakeoff 2 detailed in Figure 6.2 only shows participants who obtained above

the baseline accuracy using maximal matching. In our official participation

results in bakeoff 2, our word segmenter achieved the highest F-measure for
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AS, CITYU, and PKU and the second highest for MSR. Our official bakeoff

2 results are not included in the below figures. Our V4 LBFGS F-measures

are either the same or better than our word segmenter’s F-measure in the

SIGHAN bakeoff 2 participation.

Corpus LBFGS LBFGS LBFGS LBFGS Best Gao et al. Peng et al.

V1 V2 V3 V4 SIGHAN (2004) (2004)

AS 0.969 0.970 0.970 0.971 0.961 0.958 0.957

CITYU 0.945 0.960 0.955 0.963 0.956 0.954 0.946

CTB 0.869 0.900 0.917 0.924 0.912 0.904 0.894

PKU 0.953 0.967 0.958 0.969 0.959 0.955 0.946

Table 6.13: Summary of bakeoff 1 word segmentation accuracy (F-measure)

for LBFGS parameter estimation algorithm. Note that the 0.961 for AS is for

closed category since the open category achieved a lower F-measure than the

closed category in the official bakeoff 1 results

Corpus LBFGS V1 LBFGS V2 LBFGS V3 LBFGS V4 Best SIGHAN

AS 0.954 0.955 0.956 0.956 0.956(Ours)

CITYU 0.954 0.962 0.961 0.964 0.962(Ours)

MSR 0.965 0.972 0.965 0.971 0.972

PKU 0.950 0.967 0.956 0.969 0.969(Ours)

Table 6.14: Summary of bakeoff 2 word segmentation accuracy (F-measure)

for LBFGS parameter estimation algorithm
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Corpus R P F ROOV RIV

AS 0.971 0.970 0.971 0.744 0.976

CITYU 0.966 0.960 0.963 0.850 0.975

CTB 0.924 0.923 0.924 0.812 0.949

PKU 0.971 0.968 0.969 0.846 0.980

Table 6.15: Our final V4 detailed bakeoff 1 F-measure results

Corpus R P F ROOV RIV

AS 0.962 0.951 0.956 0.694 0.974

CITYU 0.967 0.960 0.964 0.840 0.977

MSR 0.971 0.970 0.971 0.752 0.977

PKU 0.967 0.970 0.969 0.846 0.975

Table 6.16: Our final V4 detailed bakeoff 2 F-measure results
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Figure 6.1: Our final V4 word segmenter F-measure when compared with other

bakeoff 1 participants in the open category. Note that the highest F-measure

obtained for AS was in closed category at 0.961, but still lower than our best

result
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Figure 6.2: Our final V4 word segmenter F-measure when compared with other

bakeoff 2 participants in the open category
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Chapter 7

Discussions and Conclusions

7.1 Conclusions

Using a maximum entropy approach, our Chinese word segmenter achieves

state-of-the-art accuracy, when evaluated on all the corpora in the open track

of the First and Second International Chinese Word Segmentation Bakeoff. In

the Open category of the Second International Chinese Word Segmentation

Bakeoff in which we officially participated in, our word segmenter’s accuracy

ranked top in three corpora (AS, CITYU, and PKU), and second in one corpus

(MSR). In order to handle the OOV problem, we managed to come up with

two general methods to handle OOV words. The methods we introduced are

general enough to work for all the test corpora we tested on, yet simple to

implement.

An external dictionary is used to add three simple features, Cnt0(n =

−1, 0, 1) to the original set of features. These features are not designed based

on or tuned to any segmentation standard. Overall, it works well for all the

different corpora we tested.

We also used additional training corpora of different segmentation stan-
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dards to supplement the original given training data set. By a process of noise

filtering and active sampling, we are able to obtain useful extra training data

to supplement the original training data. Corpora of different segmentation

standards are readily available, and by using our proposed method, we can

effectively pool many different knowledge resources for the word segmentation

task. From our experiments, this method is shown to work especially well for

the CTB corpus, a small training data set with an observed high OOV in the

test set.

7.2 Recommendations for Future Work

A further investigation of the effectiveness of different supervised learning ap-

proaches for the Chinese word segmentation task could be performed. In

this thesis, we only compared the differences in performance between GIS and

LBFGS parameter estimation algorithms within the maximum entropy model-

ing framework. Within Chinese word segmentation, we have researchers adopt-

ing different learning algorithms such as Conditional Random Fields(CRFs)

(Tseng et al., 2005), Perceptron Learning (Li et al., 2005) for the same task.

A more conclusive comparison of the different supervised learning approaches

for the Chinese word segmentation task could be conducted as an extension

to the work we presented.

Our proposed use of additional training corpora to supplement existing

training data for the Chinese word segmentation task has been shown to work

generally well for all the experiments we performed on the Chinese word seg-

mentation task. Another possible area we could work on would be to extend

this method of acquiring additional training data to other tasks such as Part-

of-speech (POS) tagging and Named Entity Recognition (NER) for Chinese.
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However, due to different POS tags and NER tags used in different resources,

there is a need to try to unify them in some way for this method to work.

The data available for the above mentioned tasks is significantly lesser than

what is available for the Chinese word segmentation task, thus the usefulness

of acquiring extra data may be even greater if we can successfully extend it to

these tasks.
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