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SUMMARY

We propose a hybrid wired-wireless network that comprises a wireless ad hoc net-

work combined with the fixed wired network with the latter forming a high-speed inter-

connected backbone. This hybrid network has a lot of potential economic applications.

Routing is critical to achieve good performance in such a hybrid network environment.

Previous research has not taken advantage of other research works on the routing proto-

cols using location information. Here, we propose two different location-aided routing

protocols, namely the Location-Aided On-Demand (LAOD) routing protocol, and the

Link-Connectivity-Prediction-Based Location-Aided Routing (LLR) protocol, both of

which make use of location information but in different ways. We also propose a gate-

way discovery algorithm to build theK-hopsubnets around the gateways (GWs), which

is fundamental to our proposed routing protocols. Simulation results using Network

Simulator (NS2) show that our proposed routing protocols achieve better routing per-

formance than the topology-based routing protocols, particularly Ad-hoc On Demand

Distance Vector Routing (AODV).

Furthermore, a Hello message adjustment algorithm incorporated with LLR is also

proposed. By dynamically adjusting the Hello message broadcasting interval with re-

spect to the node mobility, the routing performance improves and power consumption

is reduced. The simulation results demonstrate the routing performance improvement

in terms of the packet delivery ratio (PDR), the end-to-end delay and as well as the

overhead in the network.
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CHAPTER I

INTRODUCTION

1.1 Hybrid Network

A hybrid wired-wireless network is defined to be a heterogenous hierarchical network

that contains both mobile hosts (MHs) and access points (APs). MHs, or mobile nodes

(MNs) can communicate with other MNs, which can be multiple hops away. APs,

or gateways (GWs), or base stations (BSs), are nodes with both wireless and wired

interface, e.g. Internet connectivity. GWs give MNs access to other MNs or fixed hosts

(FHs) of the wired network. An example of such a network system is shown in Figure

1.1. In Figure 1.1, MN1 can reach MN4 in ad hoc mode, while MN1 can also reach

MN7 despite the fact that they cannot communicate in ad hoc mode.

The hybrid network, as described above, can be considered as a wireless mobile

ad hoc network (MANET) [1, 2] incorporated with wired backbone network connec-

tivity. Thus it has dynamic network topology due to the fact that MNs change their

physical locations by moving around, although the GWs are at fixed locations. By in-

corporating MANET with a wired network, typically Internet, the "range" of an GW

can be extended to multiple hops away to allow for greater connectivity and provide

connectivity outside the ad hoc network. For example, in Figure 1.1, the service of

GW1 can be extended to MN3 and MN4 as opposed to just MN1 and MN2. Further-

more, when a MANET is incorporated, not all communication between MNs has to go

through the GW, since the incorporated ad hoc network allows MNs to communicate

directly without going through the GWs. This may ease the burden placed on the GWs,

as economical consideration to have only a few GWs with a large number of MNs in

such a hybrid network can be achieved.
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Figure 1.1: An example of hybrid wired-wireless network

Such a hybrid network has a lot of potential commercial applications. One possible

useful application is an inter-vehicle hybrid network [3, 4, 5]. Vehicles in the network

form an ad hoc network in order to share information between them. At the same time,

passengers in vehicles can access the Internet through the connections between nearby

vehicles and GWs, which are pre-placed and deployed along the roads. For example,

you can communicate with other people in vehicles near to yours by chatting or playing

interactive games, while at the same time you can check your email through the Internet.

1.2 Motivation

Routing in such a hybrid network is a challenging task since the network topology

changes frequently due to the movements of the MNs. The communication in this

hybrid network environment can be categorized into two scenarios: (1) routing between
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a fixed host (FH) within a wired network and an ad hoc MN and (2) routing between two

peer-to-peer ad hoc MNs under the same GW or different GWs. The first scenario is also

referred to as Internet connectivity. Several methods for achieving Internet connectivity

have been proposed [6, 7]. In this thesis, a simple but efficient gateway discovery

algorithm is presented to provide and maintain connectivity between the MNs and the

GWs. However, since the focus here is on the peer-to-peer communication between

MNs, which is the second scenario stated above, communication between FHs and

MNs are not studied.

The existence of GWs makes the routing between two ad hoc MNs complicated.

The routing path between two ad hoc MNs can be categorized into two types: Wireless

Routing path (WR) and Wireless-cum-Wired Routing path (WWR). As shown in Figure

1.1, a WR path is a wireless multi-hop path directly from source to destination within

an ad hoc network (e.g. MN1-MN3-MN4), while a WWR path is a wireless multi-hop

path from source to destination via GWs (e.g. MN1-GW1-GW2-MN6-MN7).

Research effort has been carried out on such hybrid networks [8, 9] and most use

traditional reactive routing protocols like Ad-hoc On Demand Distance Vector Routing

(AODV) [10] for multi-hop peer-to-peer communication between MNs. However, those

research works do not take advantage of the research that has been done in routing pro-

tocols [11, 12, 13] which make use of location information. Motivated by these research

works on pure ad hoc network environments, it is worth studying routing performance

for multi-hop peer-to-peer communications between MNs complemented with the ad-

ditional location information in this hybrid network environment. One simple way to

do the routing in this hybrid network is to use the GWs as the default route. This means

that all communications between MNs has to go through the GWs. But routing this

way may increase the burden placed on the GWs. Therefore, one of our concerns in the

routing protocol design is to minimize the use of resources such as the GWs and wired

network.
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1.3 Assumptions

In this thesis, we assume that all MNs know their own location through Global Position-

ing System (GPS) devices [14, 15], or other means. The location here is represented in

2D Cartesian coordinate plane for simplicity. We further assume there is an appropriate

working MAC layer under the designed routing protocol. The widely used IEEE 802.11

wireless network MAC [16] is adopted. The wired backbone network, where the GWs

are interconnected with one another, is assumed to have a flat architecture. We consider

the wired backbone network as one big virtual node. Any data packet going into one

GW should seamlessly traverse through the wired network and arrive at a destination

GW. Finally, we assume each MN or GW has a unique address. The addressing issue

in such a hybrid wired-wireless network is already addressed in many research works

[6, 7]. We believe that these works can be incorporated into our works in the future.

1.4 Contributions

The main contributions of this thesis are:

- A simple but efficient gateway discovery algorithm is presented. This gateway

discovery algorithm works in conjunction with the routing protocol to provide

local connectivity between GWs and their serving MNs.

- Location-Aided On-Demand (LAOD) routing protocol [17] is presented and sim-

ulation results show that this approach improve routing performance, in terms of

packet delivery. However, LAOD has longer end-to-end delay and larger over-

head. These pitfalls of LAOD make us move on to design another routing pro-

tocol which has better routing performance. The result is the proposed Link-

Connectivity-Prediction-Based Location-Aided Routing (LLR) protocol.

- Link-Connectivity-Prediction-Based Location-Aided Routing (LLR) protocol [18]
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is presented and simulation results demonstrate that this approach improves rout-

ing performance in terms of packet delivery, end-to-end delay and overhead. Fur-

thermore, a Hello message adjustment algorithm is presented, which is incorpo-

rated with the LLR protocol to further improve routing performance and reduce

power consumption.

1.5 Organization

The remainder of the thesis is organized as follows. Chapter 2 reviews relevant back-

ground information and related works. Chapter 3 presents the gateway discovery al-

gorithm, which works as a fundamental element for the proposed routing protocols.

Chapter 4 presents a simple location-aware routing protocol, LAOD, which is an on-

demand routing protocol incorporated with greedy packet forwarding scheme. Chapter

5 presents another location-aware routing protocol, LLR, which is specially designed

for the hybrid network environment. Chapter 6 presents simulation results and perfor-

mance evaluations. Finally Chapter 7 delivers some concluding remarks and directions

for future work.
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CHAPTER II

BACKGROUND AND RELATED WORKS

Research efforts have been carried out on such hybrid networks [3, 4, 5, 8, 9, 19, 20]

and most use the reactive routing protocols like Ad-hoc On Demand Distance Vec-

tor Routing (AODV) [10] for multi-hop peer-to-peer communication between MNs.

However, those research works do not take advantage of findings in routing protocols

[12, 13, 21, 22, 23, 24] which make use of location information. Motivated by these re-

search works on pure ad-hoc network environments, it is worth studying routing perfor-

mance for multi-hop communications between MNs complemented with the additional

location information in this hybrid network environment.

In this chapter, first, the hybrid network environment is described in detail. Next,

a general overview of the routing protocols in wireless ad-hoc network is presented.

After that, the link connectivity prediction algorithm is introduced, which is used to

calculate the Link Expiration Time (LET) between two neighbors by using the location

information.

2.1 Hybrid Wired-wireless Network Environment

With the advances in the wireless communication and the mobile computing technol-

ogy, the wireless multi-hop network is expected to play an important role in modern per-

sonal ubiquitous communication system. The wireless multi-hop network, also known

as ad hoc network or wireless mobile ad hoc network (MANET) [1, 2], enables the

spontaneous establishment of communications between personal mobile communica-

tion systems (e.g. mobile phones, personal digital assistants, personal laptops), inde-

pendent of pre-existing network infrastructure. Compared to the "conventional" wire-

less cellular systems, such as Global System for Mobile Communications (GSM) [25],



CHAPTER 2. BACKGROUND AND RELATED WORKS 7

the ad hoc network offers simple management and deployment, especially in applica-

tions where information must be distributed quickly and is only relevant in the area

around the sender.

However, for many applications, it is desired that a self-organizing ad hoc network

is somehow connected to a wired backbone network. For example, in a vehicular envi-

ronment, there are someinfo stations[26], which are pre-placed along the roads and at

the city entrances, to inform vehicle drivers and passengers, in a drive-by fashion, about

nearby restaurants, the current traffic situation, cultural events, etc. A wired backbone

network is formed among theseinfo stationsto share, maintain and update information

on them. With ad hoc networking capabilities, vehicles in the transmission range of

theseinfo stationscould then forward the information in a multi-hop fashion to other

vehicles that have no direct wireless link to theinfo stations. Another example, vehi-

cle drivers and passengers may want to access the Internet through the access points

deployed along the roads. However, their vehicles may not be in the direct wireless

transmission range of those access points. Thus, their communications with the ac-

cess point need to go through multiple hops with other vehicles serving as intermediate

nodes. With ad hoc networking capabilities, the vehicle drivers and passengers are thus

able to get connected to the Internet. Therefore, the hybrid wired-wireless network is

required for applications where it is necessary to provide connectivity both inside and

outside the ad hoc network.

The hybrid wired-wireless network [8, 7, 27, 28, 29, 30] is a heterogenous hierar-

chical network for general purpose wide-area communication. There are two types of

nodes in the hybrid wired-wireless network: gateways (GWs) and mobile nodes (MNs).

GWs are nodes pre-placed throughout the network area. The GWs form the interface

between the high-speed wired backbone and the wireless ad hoc network of the hybrid

wired-wireless network. They improve ad hoc network routing scalability and provide

the wired-network connectivity. MNs are nodes which can be moving freely. Each GW

serves the MNs within a topological subnet around the GW. The coverage of the GW
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is determined not by the wireless transmission range of the GW but by a distance in

wireless hops from it. Therefore, MNs are able to access the FHs in the wired network

through the GWs even if they are multiple hops away from the GWs. At the same time,

MNs can communicate with other MNs, which can be multiple hops away, through the

ad hoc mode.

The benefits of such a hybrid wired-wireless network are numerous. The use of

ad hoc network routing contributes to the robustness and adaptiveness of the system

relative to the traditional wireless network, like GSM, because the ad hoc routing pro-

tocol is able to adapt to changes in the network topology and MN failures, as well as

route around congested areas of the network. In addition, compared to the traditional

wireless network, a hybrid network will have smaller number of GWs and due to the

multi-hop routing capability of the ad hoc network, placement of the fixed GWs is sig-

nificantly simplified over traditional architectures such as the cellular system. The exact

placement, which requires topographical surveys, is not necessary. Furthermore, a lot

of potential commercial applications can make use of such a hybrid wired-wireless net-

work architecture. For example, the inter-vehicle hybrid network [3, 4, 5, 31] looks very

promising to be the next "big thing" in communication networks. One typical usage of

such an inter-vehicle hybrid network is in driver assistance: in case of accidents on the

road, the vehicles that are involved in the accidents can send a notification message to

the neighboring vehicles. Therefore, information of such accidents can be conveyed to

other vehicles that might run into the accident.

Different kinds of wired backbone networks are proposed to be inter-connected with

ad hoc wireless networks, in particular, the mobile cellular network and the Internet.

There have been several proposals [32, 33, 34] for a hybrid cellular and ad hoc

networking infrastructure in which MNs within a cell use ad hoc network routing to

reach the GWs, which are responsible for the cell. These proposals focus on the design

and performance of the hybrid network within a single GW. However, they do not dis-

cuss the routing mechanisms for roaming between different cells. For example, Hsieh
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et al. [32] proposed a system for enhancing a cellular network with the wireless ad

hoc network, in which MNs use ad hoc routing to reach the GWs along multiple hops

and switch to cellular operation when the bandwidth available in the ad hoc mode is

lower than that achievable in the cellular mode. In the proposal, the traditional cellular

protocols are used instead of ad hoc routing protocols.

A number of approaches [8, 9, 30] have been proposed for connecting a wireless

ad hoc network to the Internet. For example, Jetcheva et al. [9] described a hybrid

network architecture connecting an ad hoc network running an extension of Dynamic

Source Routing protocol (DSR). Their approach allows for roaming of MNs between

different ad hoc network clouds and the Internet, and uses sub-netting to distinguish

between MNs in different ad hoc network clouds. Their approach also emphasizes on

on-demand routing within the ad hoc network. However, their approach does not make

use of location information, which is obtainable through the GPS system. In this thesis,

on the other hand, we assume that the MNs are equipped with GPS systems and location

information is thus available.

2.2 Routing in Wireless Ad-hoc Network Environment

For multi-hop peer-to-peer wireless ad-hoc communication, there are already plenty

of works on routing protocol design [10, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45].

They can be categorized into two approaches [35]:topology-based routingprotocols

andposition-based routingprotocols.

2.2.1 Topology-based Routing Protocols

Topology-based routingprotocols use only the information about the network topol-

ogy to perform packet forwarding. They can be further divided intoproactive routing,

reactive routing, andhybrid routingprotocols.

- Proactive routingprotocols, such as OLSR [36], DSDV [37], CGSR [38] and so

on, normally employ classical routing strategies such as distance-vector algorithm
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or link-state algorithm. Nodes in the network maintain routing information about

all the available paths in the network even if these paths are not currently used.

Therefore, these protocols require each node in the network to maintain one or

more routing-related tables and consistent, up-to-date routing information need

to be available in the network. It is obvious that they are not suitable in networks

with a large number of nodes, because the overhead will occupy more and more

bandwidth as the number of participating nodes increases. It may reach such

a point that the network is flooded with only the control packets with no real

communication taking place.

- Reactive routingprotocols, such as AODV [10], DSR [39], TORA [40], and so

on, are source-initiated on-demand routing protocols. They do not require nodes

to maintain routing information, at least not for long intervals. They create routes

only when requested by the source node. The routes are first discovered, and

then maintained if necessary. Therefore, the routing process is normally divided

into two phases,route discoveryandroute maintenance. Although reactive pro-

tocols perform better in some aspects than proactive routing protocols, they still

have some limitations. First, due to the on-demand characteristic, the route to the

destination is searched before data communication starts. This leads to a delay

for the first packet to be transmitted by the source. Second, in theroute discov-

ery process, it normally uses flooding to find the route to the destination. This

may cause huge network traffic if the destination is far away from the source. Fi-

nally, although only the currently used route is tracked by theroute maintenance

process, it still generates significant amount of communication overhead if the

network topology changes frequently.

As mentioned above, many reactive routing protocols have been proposed in the

literature. Here, we are going to describe one of the protocols that have been stan-

dardized by the IETF, the Ad-hoc On Demand Distance Vector (AODV), which
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is used as the reference in our comparative simulation study.

AODV The AODV [10] routing protocol establishes routes only when the routing

path is required. A source node wishing to communicate with a destination node

initializes a route discovery process by broadcasting a Route Request (RREQ)

message. The RREQ sets up a temporary reverse path to the source node. This

temporary reverse path is used later. Only the destination node or an intermedi-

ate node with an up-to-date route to the destination can generate a Route Reply

(RREP) message, which is sent back to the source node along the temporary re-

verse path. As the RREP travels along the reverse path, it sets up the forwarding

path to the destination node. Upon receiving the RREP, the source node can be-

gin sending data using the forwarding path set up by the RREP message. To

avoid processing old control messages, each broadcasting message is uniquely

identified by a <source, broadcast_id> tuple. Furthermore, destination sequence

numbers are also used to determine the freshness of routes.

AODV provides good connectivity within the wireless network while reducing

the overhead cost when the network is idle. It requires the MNs to store only the

routes that are needed, and is scalable to large populations of MNs. Furthermore,

the loop-free routes are achieved by use of the destination sequence numbers.

- Hybrid routingprotocols, such as ZRP [41], LANMAR [42], HSR [43] and so on,

try to achieve better performance by combining both the proactive and reactive

routing protocols. These hybrid protocols may use locally proactive routing and

globally reactive routing. Although research results shows that hybrid protocols

perform better than any single proactive or reactive routing protocol mentioned

above, the complexity of hybrid protocols is the main limitation. The cost of

increasing complexity in this kind of protocol makes it doubtful to employ when

the complexity outweigh the slight performance gain. Furthermore, position-

based routing protocols may outperform hybrid routing protocols.
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2.2.2 Position-based Routing Protocols

Position-based routingprotocols [13, 21, 22, 23, 46, 47, 48, 49] make use of location

information to forward data packets. They require information about the location of

the participating nodes to be available. Location information is obtained via a location

service. Location service provides a source node with the current location information

of the destination node. More details on location service can be found in [11, 50, 51, 52,

53]. In these position-based routing protocols, each node maintains a location table that

records the location of all other nodes and the time at which that location information

is received. The source node then uses this information to improve efficiency in the

transmission of packets. A review of some of these protocols is available in [11]. Most

research results on the position-based routing protocols show that usage of location

information significantly improves routing performance.

As mentioned above, many position-based routing protocols have been proposed in

the literature. Here, we only describe two of the most well-known schemes, namely, the

greedy packet forwarding mechanismand thelocation-aided routing protocol(LAR).

These two schemes are very closely related to our routing protocol design in the later

sections.

2.2.2.1 Greedy Packet Forwarding Mechanism

In the Greedy packet forwarding [11] mechanism, the source node will firstly choose a

local optimal next-hop node based on the knowledge of the location information of the

destination node and neighbor nodes. The selected next-hop node is normally the node

which lies closer to the destination node than the source node. Then, the data packet will

be forwarded to the desired intermediate node with the destination location information

included. The receiving node repeats the next-hop selection, till the destination node is

reached. One example of greedy packet forwarding is shown in Figure 2.1, where the

source node is MN_S, while destination node is MN_D. MN_S has three neighbors,

MN1, MN2, and MN3. As can be seen in Figure 2.1, MN3 is the node, which is closest
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Figure 2.1: An example of greedy packet forwarding in wireless ad hoc network

to MN_D in terms of geographical distance. Therefore, MN_S will select MN3 as the

next-hop to MN_D and forward data packets to MN3. Then, MN3 repeats the selection

procedure and forwards data packets to MN4. This process continues till MN_D is

reached.

But this routing protocol suffers one big problem, the so-calledLocal Maximum

problem [11], especially in a sparse network. In Figure 2.2, MN_S has a transmis-

sion ranger, which has center at MN_S, as shown by the dashed circle. Node MN_D

is distanceR away from Node MN_S. As can be observed from Figure 2.2, there is

a valid routing path (MN_S-MN1-MN2-MN3-MN4-MN_D). The problem occurs be-

cause MN_S is closer to MN_D than any of its neighbor nodes. Therefore, by only

using the forwarding technique stated above, greedy packet forwarding fails, because

no other neighbor, except itself, is closer to the destination. In this case, it has reached

theLocal Maximum.

Although the greedy packet forwarding mechanism has theLocal Maximumprob-

lem, it is still a simple but efficient forwarding technique, especially in a dense network.

It only requires the location information of the destination node and the location infor-

mation of the forwarding node’s neighbors to deliver data packets to the destination.
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Figure 2.2: An example ofLocal Maximumproblem

Therefore, with the location service present to provide frequently updated location in-

formation, the MNs neither have to store routing tables nor need to transmit control

messages to keep the routing table up-to-date.

2.2.2.2 Location-Aided Routing Protocol (LAR)

LAR [13] is an on-demand routing protocol. It tries to search for a path from the source

to the destination by flooding RREQ packets, similar to AODV [10]. But it uses the

location information to restrict the flooding area of the RREQs. In LAR, before the

route discovery phase, the source node defines a circular area, calledexpected zone, in

which the destination may be located. The position and size of the circle is decided

with the following information:

• The destination location known to source

• The time instant when the destination is located at that position

• The average moving speed of the destination



CHAPTER 2. BACKGROUND AND RELATED WORKS 15

Figure 2.3: An example of LAR Scheme 1

Then the source node needs to define arequest zone. Only the MNs inside such

an area propagate the RREQ. Two ways of defining therequest zoneare proposed in

[13]. In Scheme 1, the smallest rectangular area that includes theexpected zoneand

the source is therequest zone. This information is attached to the RREQ by the source

and the RREQ is sent out. When an MN receives this packet, it checks whether it is

inside therequest zoneand continues to relay the packet only if it is. Figure 2.3 shows

an example. In this example, MN_S is the source node, and MN_D is the destination

node. MN_S has two neighbors: MN1 and MN2. From Figure 2.3, it is obvious that

MN1 is inside therequest zone, while MN2 is outside therequest zone. Therefore,

MN1 will re-broadcast the RREQ from MN_S while MN2 will drop it instead.

In Scheme 2, the source node calculates the distance between the destination and

itself. This distance, along with the destination location known to the source, is in-

cluded in the RREQ and sent to the neighbors. When the MN receives this packet, it

computes its distance to the destination, and continues to relay the packet only if its
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Figure 2.4: An example of Link Expiration Time (LET)

distance to the destination is less than or equal to the distance indicated by the packet.

When forwarding the packet, the MN updates the distance field with its distance to the

destination.

As can be observed, LAR is very simple to implement. It helps to reduce the over-

head with the available location information. However, LAR uses the location informa-

tion only to set up the routing path in an efficient way. The data packets are routed with

a location-independent protocol. That means just like normal on-demand routing pro-

tocols, the MNs still have to store routing tables and need to transmit control messages

to keep the routing tables up-to-date.

2.3 Link Connectivity Prediction Scheme

Su et al. [12] proposed to calculate the Link Expiration Time (LET) between two neigh-

bors using location information. As shown in Figure 2.4, assume two nodesi and j are

within the transmission ranger of each other. Let (xi , yi) be the coordinate of nodei and

(x j , y j ) be that of nodej. Also letvi andv j be the speeds andθi andθ j be the moving

directions of nodesi and j, respectively. Then, the amount of time the two nodes will

stay connected is predicted by:

LET =
−(ab+cd)+

√
(a2 +c2)r2− (ad−bc)2

(a2 +c2)
(2.1)
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where:

a = vi cosθi−v j cosθ j (2.2)

b = xi−x j (2.3)

c = vi sinθi−v j sinθ j (2.4)

d = yi−y j (2.5)

This prediction scheme gives a quantitative estimated measurement of how long the

two nodes will stay connected. The LET can then be applied to routing protocols as a

metric for each link, and this metric can be utilized to anticipate when the routing path

is going to break and action need be taken before it happens.
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CHAPTER III

GATEWAY DISCOVERY ALGORITHM

Figure 3.1: An example ofK-hopsubnet (K=2)

3.1 Introduction

In the hybrid network, as shown in Figure 3.1, the communication between the nodes

is established through wireless multi-hop paths within an ad hoc subnet or across a

wireless-wired-wireless hybrid network if the source MN and destination MN are lo-

cated in different ad hoc subnets. The GWs provide the interface between the wireless

ad hoc subnets to the wired backbone network. Therefore upon initialization, a MN
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should discover the existence of at least one GW within its reach. A few possible GWs

could be selected by the MN to get connected to the Internet. However, we restrict our

MNs in the proposed algorithm to select only one GW for the wired network connection

purpose.

Our focus here is not about how the GWs in the wired backbone communicate with

one another. Any data packet arriving at one GW is assumed to seamlessly traverse the

wired backbone to an appropriate GW in order to reach the destination MN. Therefore,

the GWs together with the wired backbone network are considered as one big virtual

node. This assumption, as stated in Section 1.3 of Chapter 1, makes our research model

less complicated.

In this chapter, we describe thegateway discovery algorithm, which is used to serve

the purposes described above. First, we present theK-hopsubnet concept.

3.2 K-hop Subnet

A K-hopsubnet is a wireless subnet centred about a GW where MNs inside the subnet

are at mostK hops away from this particular GW. An example ofK-hop subnets is

shown in Figure 3.1. In Figure 3.1, withK equal to two, MN1, MN2, and MN3 form

the2-hopsubnet of GW1, while nodes MN4, MN5, and MN6 form the2-hopsubnet of

GW2. Note that in Figure 3.1, MN7 can be under2-hopsubnet of GW1 , or GW2 , or

both GW1 and GW2, since it is two hops away from both GW1 and GW2. The choice

of selection depends on certain metrics (e.g. hop count, physical distance, load of GW,

or combinations of these criteria). By using thegateway discovery algorithmdescribed

later, MN7 here can only choose one GW, either GW1 or GW2, to register with.

The formation of theK-hopsubnet is essential in our routing protocol design. Inside

theK-hopsubnet, the GW proactively maintains the connectivity between itself and the

MNs. In order to form such aK-hopsubnet, a simple but efficientgateway discovery

algorithm is described in the following subsection.



CHAPTER 3. GATEWAY DISCOVERY ALGORITHM 20

3.3 Gateway Discovery Algorithm

Thegateway discovery algorithmis used to form theK-hopsubnets around the GWs.

After forming theK-hopsubnets, connectivity between the GWs and the MNs is main-

tained. In other words, the local connectivity between each GW and its serving MNs

is achieved. As shown in Table 3.1, each GW keeps track of an MN’s address, MN’s

current location information, and the next-hop to this particular MN. At the same time,

each MN in the hybrid network keeps track of the GW’s address, geographical location

information, the next-hop to this GW, and the number of hops away from this particu-

lar GW, as shown in Table 3.2. By using thegateway discovery algorithm, each MN

should know how to reach its current registered GW, and the GW should know how to

reach its serving MNs. Furthermore, the location information of MNs is collected and

maintained at the GWs, which is then used later by the routing protocols, which will be

described later in Chapter 4 and Chapter 5. The proposedgateway discovery algorithm

consists of a gateway selection mechanism and a location update mechanism.

Table 3.1: Information kept by GW about its serving MNs
Information Field Description
MN’s address The unique address of the MN
MN’s location information The location coordinate, speed and direction
Routing information to the MN The next-hop to this particular MN

Table 3.2: Information kept by MN about its registered GW
Information Field Description
GW’s address The unique address of the GW
GW’s location information The location coordinate
Routing information to the GW The next-hop to this particular GW
Hop counts to the GW The number of hops away from this particular GW

3.3.1 Gateway Selection Mechanism

Each GW periodically broadcasts Gateway Advertisement (GWAD) messages. The

GWAD message contains the address of the originating GW, the location information
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of the originating GW, and the maximum number of hops it can propagate (equals toK).

Thus the GWAD message is only propagated up toK hops away from the originating

GW. The advertising interval of the GW must be chosen with care so that the network

is not flooded unnecessarily many times. When a MN receives a GWAD message, it

updates its routing table for the GW and responds with a Gateway Acknowledgement

(GWACK) message only under three conditions: (a) First, if a MN is not registered with

any other GW yet, it attempts to join theK-hopsubnet of the originating GW by issuing

a GWACK message; (b) The MN will also attempt to join theK-hop subnet from the

GW with which it currently registers; (c) If a MN receives a GWAD message which

originated from a GW different from its currently registered GW, a MN compares the

hop count, and/or geographical distance from the GWs and selects which GW should be

its current registered GW based on the rules stated in the following. Firstly, the number

of hops away from GWs is compared, and the one with the smallest hop count is chosen.

In case when the number of hops away from a GW is equal, the geographical distance

away from the GW is calculated and the one with shortest distance is chosen. By this

means, only one GW, which is closest to the MN, will be chosen to be registered with by

the MN. Upon receiving the GWACK message, the new registered GW is responsible

to inform the previous GW about the change and the previous GW will not maintain the

information of this particular MN any more.

One thing to mention is that each GWAD message has a uniquebroadcasting ID,

which is to prevent duplicate broadcast messages. When a MN receives a GWAD mes-

sage, it first checks to determine whether the GWAD message with the sameoriginator

addressandbroadcasting IDalready has been received previously. This means each

MN needs to maintain a history table about the GWAD messages, which contain the

pairs ofGW addressandbroadcasting ID. If after checking, the MN finds that such

a GWAD message has not been received, the GWAD message is rebroadcast if the

GWAD message has not already propagated up toK hops yet. Otherwise, if such a
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GWAD message has been received, the newly received GWAD message will be dis-

carded. Furthermore, the serving area of the GW must overlap to ensure that each MN

can receive advertisements from at least one particular GW. This means that either theK

value should be large enough or there must be more than enough GWs in the network.

This proactive advertisement approach has one noticeable disadvantage, which is

that the broadcast message is flooded through the local subnet periodically. This is a

very costly operation, since limited resources in the wireless medium, such as band-

width, will be used often. However, since only the local subnet is flooded, the periodic

broadcasting of advertisement messages is acceptable with a carefully chosen interval.

Furthermore, the proactive advertisement provides periodic link connectivity updates to

the GW. This helps the MNs to be updated with relatively up-to-date routing informa-

tion about its current registered GW.

3.3.2 Location Update Mechanism

In order to keep the routing and location information up-to-date at the GWs, a MN em-

ploys a periodic updating mechanism. A MN periodically sends out location update

messages to its current registered GW. This location update message contains the cur-

rent location information about the MN, which is unicasted towards the MN’s current

registered GW. Upon receiving the location update message, the GW will update its

routing table and location information table about this MN.

In order to avoid potential problems, each MN needs to maintain not only the routing

information to the current registered GW but also all the routing information to other

GWs, which it has received through the GWAD message. Therefore, a MN can forward

the location update message for other downstream MNs even if the destination of the

location update message is not the current registered GW of the forwarding MN.
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3.4 Conclusion

In this chapter, agateway discovery algorithmhas been presented. This algorithm is

designed to partition a large wireless network domain into a number of smaller subnets

(probably up-to a few hops away from the GW) with localized connectivity between the

GW and MNs inside the subnet. Simulation results shown later in Chapter 6 prove this

algorithm works fine with the associated routing protocols in the hybrid wired-wireless

network.
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CHAPTER IV

LAOD ROUTING PROTOCOL

4.1 Introduction

Location-Aided On-Demand (LAOD) routing protocol is designed to provide wireless

multiple-hop paths, which can be wireless routing paths or wireless-cum-wired routing

paths. The LAOD routing protocol aims to achieve better routing performance with the

help of geographical location information in a hybrid wired-wireless network environ-

ment. A key concern of our routing protocol design is how to utilize the GWs without

congesting them with excessive communication.

LAOD consists of two separate phases: (a) WR route discovery phase; and (b)

Route maintenance phase. LAOD tries to combine on-demand routing with the greedy

packet forwarding mechanism to achieve a more scalable routing protocol. LAOD uses

the greedy packet forwarding mechanism when the destination location information is

available. Here, the choice of the greedy packet forwarding mechanism is because of

its simplicity and efficiency in a dense network. With thegateway discovery algorithm,

information about the MNs is collected and stored at the GWs, as described in Chapter

3. This is then utilized by LAOD in the following manner, which is described in detail

below.

4.2 WR Route Discovery

A source MN always tries to find the local routing path by initializing the local route

discovery, which is called the WR route discovery process. This aims to find a WR path

(which is explained in Chapter 1) when a source MN and a destination MN are in the

same subnet, or are close to each other.
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Whenever a source MN has data packets to send, it first checks its routing table

to determine whether it has a current route to that destination MN. If none exists, it

initiates the route discovery process similar to that of AODV. But unlike AODV, the

RREQ message is broadcasted only to MNs in the region within a few hops away from

the source MN instead of the whole network. This region should include the current

registered GW of the source MN. This can be done by specifying the Time-To-Live

(TTL) of the RREQ message to be the number of hops from the current registered

GW of the source MN. This means the RREQ message can propagate at mostK hops

away, since the MN must be inside theK-hopsubnet of one particular GW. There are a

few possible cases that the RREP message can be generated in response to the RREQ

message. Then, the source MN makes the routing decision according to where the

RREP message is from and what kind of information it contains, as shown in Figure

4.1:

• If the RREP message is from the destination or an intermediate MN with an up-to-

date route to the destination, the source MN sends data packets using the returned

routing information. In this case, the RREP message sets up the forwarding route

from the source to the destination in a similar style as AODV, then data packets

are forwarded along the forwarding route. The RREP message also contains the

location information of the destination, which will not be used, since we are not

using the greedy packet forwarding mechanism in this case.

• If the RREP message is from the GW with the location information of the desti-

nation node, which means the destination is within the same subnet as the source,

packets are sent towards the destination by the greedy packet forwarding mecha-

nism. In this case, with the location information of the destination, the next-hop

selection is based on the greedy packet forwarding mechanism described in Chap-

ter 2. The data packets using the greedy packet forwarding mechanism will be

marked in the packet header to indicate it is forwarded by the using greedy packet
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Figure 4.1: LAOD route selection flow chart for MN
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forwarding mechanism.

• If the RREP message is from the GW but without any location information, or no

reply is received for the RREQ message, the source MN sends the data packets

towards its current registered GW with the destination address embedded. In

this case, the WWR path (which is explained in Chapter 1) is used. The source

MN forwards the data packets towards the current registered GW by using the

route obtained during thegateway discovery algorithm. Here we assume GWs

exchange information of MNs under them. Therefore, after the data packets reach

the desired GW, the GW checks for the destination , then continues to forward

the data packets towards the destination accordingly.

If there are both RREP messages from the destination or an intermediate node with

an up-to-date route to the destination, and the RREP messages from GWs, the source

MN prefers the first case of RREP message, which is the RREP messages from the

destination or an intermediate node with an up-to-date route to the destination.

An intermediate MN follows the routing decision made by the source MN. When-

ever an intermediate MN fails to find a next-hop, due to a broken route or theLocal

Maximumproblem, it will send the data packets towards its current registered GW as a

last resort, since the GW might be able to find an alternative route to the destination. If

this still fails, it broadcast a route error message (RERR) to its neighbors.

4.3 Route Maintenance

After the routing path has been set up, it needs to be maintained during data communi-

cation. The data packets are delivered to the destination by one of the following mech-

anisms in LAOD, namely,Normal Route Forwarding, Greedy Packet Forwardingand

Gateway Packet Forwarding. The route maintenance of these three different forwarding

mechanisms are different processes, as shown below:

• Normal Route Forwarding, which uses a route obtained by the RREP message
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from the destination or an intermediate node with an up-to-date route to the desti-

nation. The maintenance of such a route is similar to AODV. When a MN detects

that a route to a neighbor is no longer valid, it will remove the routing entry re-

lated with the neighbor and send a link failure message to other neighbors that

are actively using the route, informing them that this route is not valid any more.

The MNs that receive this message will repeat this procedure. This message will

eventually be received by the affected source MN. The source MN can choose

to either stop sending data packets or request a new route by sending out a new

RREQ message.

• Greedy Packet Forwarding, which uses the destination location information. In

this case, the routing path from the source to the destination is based on the hop-

by-hop local optimal selection. Each intermediate MN forwards data packets only

based on the location knowledge of the destination node and its neighbors. The

location of a neighbor is obtained through the Hello message, which is periodi-

cally broadcasted. The location of the destination is forwarded together with the

data packets from the source MN. The source MN obtains the location informa-

tion of the destination during the WR route discovery process described above.

Therefore only the destination location information needs to be updated at the

source MN to keep the route up-to-date. The updating of the destination location

information at the source MN is by the destination, which sends out its current

location periodically through the reverse path from the destination to the source.

• Gateway Packet Forwarding, which uses a route via the GW. In other words, a

WWR path is used. As described earlier in Chapter 3, WWR paths are main-

tained by thegateway discovery algorithm. The gateway discovery algorithm

provides frequent route updates between the MNs and the GWs by exchanging

gateway advertisement messages, gateway acknowledgement messagesandloca-

tion update messages. The freshness of a WWR path depends on how frequently
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these messages are exchanged. Once the data packets reach the GW from the

MN through the WWR path, they will be passed to the appropriate GW which is

responsible for the particular destination MN, as we assume the interconnected

GWs are a big virtual node as explained in Section 1.3 of Chapter 1.

4.4 Conclusion

LAOD aims to achieve better routing performance than AODV for multiple-hop com-

munications between MNs with the help of location information. The performance eval-

uation and comparison has been done through simulations in Chapter 6, which shows

that LAOD achieves higher packet delivery at the expense of longer average end-to-end

delay and higher overhead. These pitfalls of LAOD make us move on to design another

routing protocol which can achieve better routing performance than LAOD. The result is

the proposed Link-Connectivity-Prediction-Based Location-Aided Routing (LLR) pro-

tocol, which is presented in Chapter 5.
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CHAPTER V

LLR ROUTING PROTOCOL

5.1 Introduction

As mentioned in Chapter 4, LAOD achieves higher packet delivery at the expense of

longer average end-to-end delay and higher overhead compared to AODV. These are

not satisfactory results. Therefore, we revamp our design into a new routing proto-

col, which is called the Link-Connectivity-Prediction-Based Location-Aided Routing

(LLR) protocol. LLR aims to achieve better routing performance, like shorter average

end-to-end delay, than LAOD.

LLR essentially consists of three separate phases: (a) WR route discovery phase;

(b) Route maintenance phase; and (c) Route soft-handoff phase. A source MN always

tries to find the local routing path by initializing local route discovery, which is called

the WR route discovery process. This aims to find a WR path when the source MN and

the destination MN are in the same subnet, or are close to each other. If no WR path

is found, the source MN uses the WWR path by forwarding the data packet towards

its currently registered GW, since the MN maintains connectivity with its currently

registered GW through thegateway discovery algorithmdescribed in Chapter 3. After

the routing path has been set up, it needs to be maintained. The detailed algorithm is

explained below.

5.2 WR Route Discovery

Whenever a source MN has data packets to send, it first checks its routing table to deter-

mine whether it has a current route to that destination MN. If none exists, it initiates the

route discovery process similar to that of AODV. But unlike AODV, the RREQ message
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is broadcasted only to MNs in the region within a few hops away from the source MN

instead of the whole network, which is the region within the current registered GW of

the source MN. This can be done by specifying the Time-To-Live (TTL) of the RREQ

message to be the number of hops away from the current registered GW of the source

MN. This means the RREQ message can propagate at mostK hops away, since the MN

is inside theK-hopsubnet of the GW. The reverse route is set up by the RREQ message,

same as in AODV. A RREP message can be generated by the destination MN, or inter-

mediate neighbors with an up-to-date route to the destination. The WR path from the

source to the destination is then set up as the RREP message travels back to the source.

Upon receiving the RREP message, the source MN starts sending data packets along

the WR path. If the source MN receives no RREP message, the WWR path is used. The

WWR path is always available since each MN establishes and maintains a route towards

its current registered GW during thegateway discovery process. When the WWR path

is used, the MN sends data packets towards its current registered GW and sets a flag

for that destination MN in the routing table to indicate it is using the WWR path. Each

data packet is then embedded with the address of the destination. After the data packets

reach the destination GW, the destination GW checks its routing table for the next-hop

node towards the destination MN and sends out the data packets accordingly. As we

assume the interconnected GWs are a big virtual node as explained in Section 1.3 of

Chapter 1, the GW node always knows which other GW node to send the data packet

to. If the WR path is found, the source MN always prefers the WR path over the WWR

path. During the connection, the source MN appends the following information to each

data packet: (a) its current location information; and (b) a flag indicating whether it is

the WWR path or the WR path.

5.3 Route Maintenance

As explained earlier, there are two possible routing paths: (a) a WR path, which is the

shorter routing path without going through a GW and (b) a WWR path, which is the



CHAPTER 5. LLR ROUTING PROTOCOL 32

longer routing path via GWs. The maintenance of these two different paths is performed

by different processes. At times, the movements of the source MN and the destination

MN may request switching from WR path to WWR path or vice versa, in order to

achieve better routing performance. This will be discussed later.

5.3.1 WWR Maintenance

WWR paths are maintained by thegateway discovery algorithm. The gateway dis-

covery algorithmprovides frequent route updates between the MNs and the GWs by

exchanginggateway advertisement messages, gateway acknowledgement messagesand

location update messages. The freshness of a WWR path depends on how frequently

these messages are exchanged.

5.3.2 WR Maintenance

Before the WR maintenance process is presented, we would like to introduce some ter-

minology which will be used in the subsequent discussion: the Route Expiration Time

(RET), which is the minimum LET along the path from the source to the destination.

As shown in Figure 5.1, the RET of path from MN_S to MN_D is the minimum LET

among the LETs along the path (MN_S-MN1-MN2-MN_D).

Figure 5.1: An example of Route Expiration Time (RET)

Another term used in the subsequent discussion is thecritical time, Tc, given by:

Tc = RET−Td (5.1)

whereTd is the delay experienced by the latest packet which has arrived along the route.
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During the duration of a WR connection, intermediate MNs keep updating the RET

to each data packet based on the LET, enabling the destination MN to receive the RET

prediction together with the latest source MN related information from each data packet.

When the destination MN determines that the route is about to expire, at thiscritical

time instant (Eqn 5.1), it computes both theexpected zoneandrequest zoneusing the

latest source MN related information from the last data packet received, in a similar

manner as LAR. It then attaches the information to a specific RREQ message, which

is called SRREQ message, and then broadcasts the SRREQ message. The purpose of

broadcasting the SRREQ message is to make sure that the source MN can receive such

a message at a minimum network cost. If we depend only on the reverse path, which

is obtained during the route discovery process from the RREP message, the SRREQ

message may not reach the source MN, because the reverse path may be out-dated and

invalid when the forwarding path is about to expire. Only the source MN can reply to

this SRREQ message, which also contains the current RET. The receiving intermediate

MN first checks whether it is inside therequest zoneand only MNs within therequest

zonecan forward the SRREQ message. The MN then checks the LET of the last link

that SRREQ message is received from and if the LET is less than or equal to RET

embedded in the SRREQ message, the SSREQ message is dropped instead of being

forwarded. Eventually, the source MN should receive one or more SRREQ messages.

If there are alternative routes with better RET, the source MN chooses the best route on

which to re-route the data packets based on the information contained in the SRREQ

message (e.g. number of hops, destination sequence number, etc). After that, the source

MN starts sending data packets along the new route.

5.3.3 Route Soft-Handoff

Here, we refer to route soft-handoff as either switching from WWR to WR or vice versa.

It is sometimes necessary to do such a route handoff in order to achieve better routing

performance. For example, when both the source MN and the destination MN move
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into the same subnet while the communication between them is still going through the

GWs, it can be better to switch from WWR to WR.

A new metric is used to decide whether to do the route soft-handoff. The metric,

calledpercentage metricis calculated by summing the percentage improvement in both

the number of hop counts and RET. Let us assume two possible routing paths between

the source and the destination are present. Letnh1 be the hop count of route1 andnh2

be that of route2. Also, letRET1 andRET2 be the route expiration time of route1 and

route2 respectively. Then, the percentage improvement of route1 over route2,∆12 is

obtained as follows:

∆nh =−nh1−nh2
nh1

∗100% (5.2)

∆RET =
RET1−RET2

RET1
∗100% (5.3)

∆12 = ∆nh+∆RET (5.4)

One example is shown in Figure 5.2. As can be seen, for route1,nh1 = 4hops, for

Figure 5.2: An example of route soft-handoff withperformance metriccalculation

route2,nh2 = 2hops. Let us assumeRET1 = 5seconds, RET2 = 4seconds. From
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the equations presented above,∆nh=-(4-2)/4=-50%,∆RET = (5−4)/5=20%. Then, the

percentage metric, ∆12 = -30%, which means route2 is better than route1 in terms of the

combination of number of hop count and RET. This is reasonable since route2 is two

hops shorter than route1 with only one second RET shorter than route1. Therefore, by

using thepercentage metric, route2 should be used.

Thegateway discovery algorithmkeeps GWs aware of where the source and desti-

nation MNs are, and which GWs they are currently registered with. When the source

or destination MN registers with a new GW, the GW helps the destination MN initial-

ize the handoff process by providing the destination MN with the routing information

of the WWR path. The selection of the routing path then depends on thepercentage

metric. There are two possible scenarios, either switch from WWR to WR or from WR

to WWR:

Figure 5.3: Messages exchange sequence during the WWR to WR handoff process
when destination node moves under the same gateway as source node

WWR to WR When the source node and the destination node are under the same

GW but still using the WWR path, the GW informs the destination node about that.
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Figure 5.4: Messages exchange sequence during the WWR to WR handoff process
when source node moves under the same gateway as source node

Figure 5.5: Messages exchange sequence during the WR to WWR handoff process
when destination node moves under different gateway as source node
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Then, the destination node calculates both theexpected zoneandrequest zonefor the

source node. After that, it attaches such information to a SRREQ message and broad-

casts out. After the source node receives the SRREQ message, it determines the best

routing path on which to route the data packets based on thepercentage metricdescribed

above. Then the source starts sending data packets along the new WR path, only if the

WR path is better in terms of thepercentage metric. Figure 5.3 shows the message ex-

change sequence during the handoff process when the destination node moves under the

same GW as the source node, while Figure 5.4 shows the case when the source node

moves under the same GW as the destination node. Thegateway handoff messages

between GWs are not shown.

Figure 5.6: Messages exchange sequence during the WR to WWR handoff process
when source node moves under different gateway as source node

WR to WWR When the source node and the destination node are under different

GWs but still using the WR path, the GW calculates the hop count and RET of the
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WWR path between the source node and the destination node. Then it informs the des-

tination about these two parameters of the WWR path. After receiving the message with

these two parameters, the destination node calculates thepercentage metric, and then

determines the best route to use. If the WWR path is better in terms of thepercentage

metric, the destination node informs the GW and the GW will then inform the source

node. After that, the source node starts sending data packets along the WWR path.

Figure 5.5 shows the message exchange sequence during the handoff process when the

destination node moves under a different GW from the source node, while Figure 5.6

shows the case when the source node moves under a different GW from the destination

node. The gateway handoff messages between GWs are not shown.

5.3.4 Hello Message Adjustment Algorithm

In LLR, each MN needs to periodically broadcast Hello messages to maintain the neigh-

bor connectivity, just like AODV [10]. However, usage of Hello messages contributes

to the overhead and affects the routing performance. Motivated by the research work

in [54], we incorporated a Hello message adjustment algorithm into LLR, in order to

further improve the routing performance. The purpose of this algorithm is to try to

carry more data traffic on the network, (i.e. increase the network throughput) while still

achieving similar routing performance compared with the one without the Hello mes-

sage adjustment algorithm. At the same time, by reducing the broadcasting of Hello

messages, we can save power consumption for the entire network. Here, the Hello

packets are considered as overhead. There are two reasons to do that. First, we want

to control the Hello packets to include some extra information, like location informa-

tion, from the routing layer. Next, we want to have transparency on the MAC layer,

i.e. we do not want our routing protocols, namely LAOD and LLR, to be limited by

certain services from a particular MAC layer, likelink layer notification. Furthermore,

RFC 3561for AODV [55] states that Hello messages can be used to determine the local

connectivity. This can be thought as a cross-layer optimization. Therefore, the Hello
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packets are considered as overhead.

The usage of Hello messages, which are being periodically broadcasted one-hop

away by MNs, increases the network overhead. They contend with data packets and

other important routing messages (like RREQ and RREP) for bandwidth. This may

lead to high incidence of collision of packets, which in turn causes MAC backoff or

even worse, packet drops. Therefore, it results in routing performance degradation, e.g.

packet delivery ratio (PDR) reduction and end-to-end delay increase. However, as men-

tioned above, the Hello message is necessary to provide the local connectivity, and it

cannot be eliminated completely. As such, it is worth studying how to adjust the broad-

casting of Hello messages while it is still sufficient to provide local connectivity without

degrading the overall routing performance, or even improving routing performance.

The Hello message adjustment algorithm varies the frequency of broadcasts of Hello

messages from each MN, according to the relative mobility of MN’s neighbors and MN

moving speed. Figure 5.7 shows the pseudo-code for the Hello message adjustment

algorithm, which also shows the definitions of theRelativeMobParaand theAbsolute-

MobPara. During the initiation of each Hello message, each MN checks theRelative-

MobParaand theAbsoluteMobPara. TheRelativeMobParais related to the percentage

of neighbors’ link change, while theAbsoluteMobParais related to the moving speed

of the MN. In summary, we vary the time interval of sending the Hello message with re-

spect to the mobility of the MN: (a) When there is low relative mobility, we increase the

Hello message sending interval, and vice versa; (b) When there is low absolute mobility,

we further increase the Hello message sending interval, and vice versa. The reasons are:

(a) When there are fewer relative node movements, the network is more stable, since

there are fewer link breakages. Thus, the frequency of sending Hello messages should

be reduced. On the other hand, when there are more neighbors changing, or more link

breakages, the network is less stable. As such, the frequency of sending Hello messages

at this time should be increased; (b) The slower the MN moves, the more stable the net-

work is likely to become. Hence, the frequency of sending Hello messages should be



CHAPTER 5. LLR ROUTING PROTOCOL 40

Figure 5.7: Pseudo code of the Hello message adjustment algorithm

slightly reduced. On the other hand, the faster the MN moves, the more likely link status

will change, and this means the network is likely to become less stable. Therefore, the

frequency of sending Hello messages should be slightly increased. This is especially

true when each MN can be considered as an individual entity.

5.4 Conclusion

LLR makes use of location information to predict link connectivity and restrict broad-

casting of control messages so that more packets can be delivered to their destination

successfully. In our comparative simulation study with LAOD and AODV, as shown
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later in Chapter 6, LLR achieves higher packet delivery ratio, less overhead and less

end-to-end delay compared to LAOD and AODV.
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CHAPTER VI

SIMULATION RESULTS

In this chapter we present our simulation studies. All the simulations were done using

the Network Simulator (NS2) [56]. Two different mobility models are used to evaluate

the performance, namelyManhattan Gridmobility model andGraph-basedmobility

model. The choice of these two mobility models are because we are interested to sim-

ulate a large vehicular bus network, which means the MNs in our simulations are buses

that move by following some paths instead of totally random movements. These two

models, which will be described later, provide what we need as the bus network. We

compared the routing performance by varying two controlled input parameters as shown

below:

1. The mobility of the MNs, i.e. the mean speed of the MNs in the network. This is

to analyze the effect of mobility speed on the routing protocols.

2. The load of the network, i.e. the number of source and destination pairs in the net-

work, or the number of Constant Bit Rate (CBR) connections. This is to analyze

the effect of data traffic on the routing protocols.

One thing that we like to explain a bit more is about the range of the mean speed

of the MNs, which is from1m/s to 20m/s. This is realistic as movement of buses in

city area, especially in a very crowded area or downtown area, like the Orchard Road

area or central business district of Singapore. The bus probably moves very slowly at

an average speed around10km/hour to 20km/hour (2.78m/s to 5.56m/s). It represents

the repeated stop-and-go traffic pattern in modern urban environment [57].

In order to have a clearer view of performance, three different sets of simulations

are run and demonstrated, which are listed below:
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Simulations Set I The performance comparison between AODV, LAOD [17] and LLR

[18] without the Hello message adjustment.

Simulations Set II The performance comparison between LLR and its variants of Hello

message adjustment schemes.

Simulations Set III The performance under very high network data loading compari-

son between AODV, LAOD, LLR and LLR with Hello message adjustment scheme.

All simulations use Constant Bit Rate (CBR) traffic flows with sources and destinations

chosen randomly. Each CBR flow sends data with packet size of 512 bytes. The IEEE

802.11 Medium Access Control (MAC) protocol is used and both GWs and MNs have

the same transmission range of 250m. In all simulations, the number of nodes is fixed

at 150. Each simulation lasts for 900 seconds of simulation time. Table 6.1 shows the

key parameters in all the simulations.

Table 6.1: Key Parameters used during simulations
Parameter Value
Data traffic Constant Bit Rate(CBR)
Packet Rate 4 packets/s (Simulation Set I & II)

10 packets/s (Simulation Set III)
Packet Size 512 bytes
Transmitter Range 250 m
Number of MNs 150
Simulation Time 900 s

We choose to use only CBR data traffic in our simulations. There are three reasons

for that decision. Firstly, CBR data traffic does not require us to model the variance

of the data rate. It simplifies the communication model. Next, CBR data traffic has

persistent flow information within each particular data stream. It is easy to manipulate

the routing information in both the GWs and the MNs. Lastly, the applications we

consider during our research are those with tight QoS requirements and multimedia

traffic, which normally have continuous and constant data flows from the source to the

destination.
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The following metrics are used to evaluate the performance of the protocols:

• Packet Delivery Ratio (PDR): The fraction of data packets sent that are success-

fully delivered to their destination.

• End-to-End Delay: The average time interval between a data packet sent by a

source and its arrival at its destination. End-to-End delay is only measured for

packets that are successfully delivered to their destinations.

• Overhead: The total number of control/routing packets transmitted, including all

types of control messages, like Hello packets, as well as other control packets like

RREQ, RREP, RERR, GWAD and GWACK, except the data message. It can be

considered as the aggregate of control/routing packets.

• Normalized Overhead: The total number of control/routing packets transmitted

per data packet delivered at the destination. Each hop-wise transmission of a

control/routing packet is counted as one transmission.

• Hello Overhead: The number of the Hello packets transmitted during the simu-

lation.

Each scenario is also run with different seed numbers and the measurements are

averaged out to minimize any arbitrary randomness. A convergence factor of 5% is

used for all the simulations. In other words, the following conditions apply for all

results we obtained:

∆PDR =
|PDR(t +10)−PDR(t)|

PDR(t)
∗100%< 5% (6.1)

∆EtE =
|EtE(t +10)−EtE(t)|

EtE(t)
∗100%< 5% (6.2)

∆OH =
|OH(t +10)−OH(t)|

OH(t)
∗100%< 5% (6.3)

In Eqn 6.1,PDR(t) denotes the packet delivery ratio (PDR) at timet andPDR(t +

10) denotes the PDR at timet +10, i.e. a time interval of10s. From this equation, we
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obtain the convergence factor of PDR for the simulations we ran. All our simulation

results of PDR are converged at less than 5%, after starting up. Similarly, from Eqn

6.2 and 6.3, the same convergence factor applies to both the end-to-end delay and the

overhead.

6.1 Mobility Models

Two simulation mobility models are used here, namely,Manhattan Gridmobility model

andGraph-basedmobility model. TheManhattan Gridmobility model is more struc-

tured with less variability compared to theGraph-basedmobility model. The purpose

of using these two mobility models is to see the impact of randomness of GW place-

ment. Next we discuss these two mobility models in detail below.

6.1.1 Manhattan Grid Mobility Model

Figure 6.1: TheManhattan Gridmobility model graph used in the simulations

The Manhattan Gridmobility model is also known as theCity Sectionmobility
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model. In this mobility model, the simulation area is a grid-like street network that

represents a section of a city where the network exists [58]. The streets and speed

limits on the streets are based on the type of city being simulated. For example, the

streets may form a grid in the downtown area of the city with a high-speed highway

near the border of the simulation area to represent a loop around the city. Each MN

begins the simulation at a defined point on some street. An MN then randomly chooses

a destination, also represented by a point on some street. The movement algorithm from

the current position to the new destination locates a path corresponding to the shortest

travel time between the two points. Upon reaching the destination, the MN pauses for

a specified time and then randomly chooses another destination (i.e., a point on some

street) and repeats the process.

Figure 6.1 shows an example of such a city graph, which is used later in the simu-

lations. The graph contains 6X6 grid in 1600m by 1600m square area. Although this is

unrealistic in the real world with such a small area, it is reasonable in simulation time.

It is very difficult for us to collect, maintain and analyze the simulation data from a

network with a very large size under some limited computing resource.

6.1.2 Graph-based Mobility Model

The Graph-Basedmobility model [59], tries to provide a more realistic movement

model by reflecting the spatial constraints in the real world. In this model, the graph

is used to model the movement constraints imposed by the infrastructure of the real

world. Theverticesof the graph represents locations that the MNs might visit and the

edgesmodel the connections between these locations, e.g. streets or train connections.

The graph is assumed to be connected, i.e. there is a path from any vertex to any other

vertices in the graph. Each MN is initialized at a random vertex in the graph and moves

towards another vertex, which is selected randomly as its destination. The MN always

moves to the destination on the shortest possible path. After the MN reaches its desti-

nation, it pauses for a randomly selected period and then randomly picks out another
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Figure 6.2: The city area graph used in the simulations

destination from other vertices for the next movement.

Compared to theManhattan Gridmobility model, thisGraph-basedmobility model

is more realistic since cities are not likely to be in a grid form in reality.

An example of graph mobility model is shown in Figure 6.2, which is used later in

simulations. The graph contains 54 vertices representing significant locations and 59

edges representing road segments interconnecting them, covering an area of approxi-

mately 2500m by 1800m. The network size is a bit small. However, it is big enough for

simulation purpose to yield some reasonable results.

6.2 Simulations Set I

Both theManhattan GridandGraph-basedmobility models are used here. Besides the

key simulation parameters shown in Table 6.1, other parameters used in the simulation

are listed in Table 6.2:
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Table 6.2: Parameters used during simulation set I
Parameter Value Explanation
Number of GWs 4 The location of GWs are shown in

the Figure 6.1 and Figure 6.2 accordingly
Advertisement Zone 6 hops The size ofK-hopsubnet, i.e.K=6
Advertisement Period 5 s The period of sending gateway advertisement

message by GW is 5s, refer to Chapter 3
Periodic Update Interval 5 s The period of sending location update

message by MN is 5s, refer to Chapter 3
Hello Beacon Interval 1 s The period of sending neighbor Hello message

by MN is 1s
Max Pause Time 20 s The maximum time interval the MN will stay

after reaching the destination but before
heading towards the new destination

6.2.1 Simulation Results and Discussion (Manhattan Grid mobility model)

6.2.1.1 Varying Speed of MNs

Using theManhattan Gridmobility model, the results are obtained by varying the mean

speed of MNs from 1m/s to 20 m/s (i.e., the mobility of MNs), with the number of CBR

connections fixed at 20. The network traffic load of 20 CBR connections is considered

as medium loading for the network. We try to vary only one network parameter at one

time. Therefore, once we vary the mean speed of MNs, we will fix all other network

parameters, like network load (i.e. number of CBR connections).

Figure 6.3 shows the normalized overhead, while Figure 6.4 shows the actual num-

ber of control packets transmitted. Overhead here includes all the control messages used

during the simulations. These are thegateway discovery algorithm’s control messages

and routing control messages.Gateway discovery algorithm’s control messages con-

sist of gateway advertisement message(GWAD), gateway acknowledgement message

(GWACK), andlocation update message. Routing control messages consist ofroute re-

quest message(RREQ),route reply message(RREP),route error message(RERR) and

Hello beacon message. All three protocols show more overhead as node speed increases

because more route breaks occur, invoking route recovery procedures. However, LLR

has the lowest overhead, in general, because the number of control messages during
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route recovery is reduced by limiting the broadcasting to a smaller region. Compared to

AODV, LLR has achieved around10%improvement at lower speed and15%improve-

ment at higher speed. On the other hand, LAOD has the highest actual overhead. The

reason is that LAOD does not restrict the broadcasting of those route control messages

when route recovery process is performed, unlike LLR. In the route maintenance pro-

cess (Section 4.3 of Chapter 4), those source MNs which use normal route forwarding

broadcast the RREQ messages in order to re-discover the path to the destination MNs.

This broadcasting of the RREQ message is omni-directional, unlike the SSREQ mes-

sage (Section 5.3.2 of Chapter 5), which is only broadcasted inside a particular area.

Therefore, LAOD has much more overhead than LLR. On the other hand, LAOD has

some extragateway discovery algorithmcontrol messages, which AODV does not have.

Therefore, LAOD is the worst among the three protocols in terms of overall overhead,

although AODV has created more routing control messages (e.g. RREQ and RREP) in

general.

Figure 6.3: Normalized Overhead between LLR, LAOD and AODV usingManhattan
Grid mobility model with different mobility speed
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Figure 6.4: Overhead between LLR, LAOD and AODV usingManhattan Gridmobil-
ity model with different mobility speed

Figure 6.5: End-to-End Delay between LLR, LAOD and AODV usingManhattan Grid
mobility model with different mobility speed
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Figure 6.6: Scenario when greedy packet forwarding fails but gateway packet forward-
ing succeeds in LAOD

As shown in Figure 6.5, LLR outperforms the other two routing protocols in terms

of end-to-end delay. Both AODV and LAOD have longer route (re)discovery latency

after route breaks during which data packets are buffered while waiting for the new

route to be constructed. LLR uses link connectivity prediction to perform rerouting

prior to route disconnection, thus reducing the route (re)discovery latency. Compared

to AODV, LLR has achieved around15% improvement at lower speed and40% im-

provement at higher speed. Surprisingly, LAOD has the worst end-to-end delay. This

is because the scenario described below can easily happen in the network simulation,

as shown in Figure 6.6. When the data packets, which are forwarded by the greedy

packet forwarding mechanism from MN_S to MN_D fail at MN2 due to theLocal

Maximumproblem, LAOD then tries to resolve this problem by forwarding the data

packets via the GW from MN2. Some of these data packets do reach the destina-

tion node eventually. However, these data packets suffer longer delay. As shown
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in Figure 6.6, LAOD forwards data packets along the path MN_S-MN1-MN2-MN1-

GW-MN1-MN3-MN4-MN_D, while AODV forwards data packets following the path

MN_S-MN1-MN3-MN4-MN_D. Therefore, data packets delivered by LAOD travel al-

most twice the number of hops than those by AODV and thus incur extra delay.

Figure 6.5 also shows the delay variance/jitter of the end-to-end delay. Here the

delay jitter is the standard deviation of the end-to-end delays experienced by the data

packets between a source MN and a destination MN. As it can be seen, LAOD is again

the worst one with around7% variance, while both AODV and LLR are around5%.

The delay jitter does not show any significant difference between these three protocols.

Figure 6.7: Packet Delivery Ratio (PDR) between LLR, LAOD and AODV usingMan-
hattan Gridmobility model with different mobility speed

The packet delivery ratio (PDR) performance is shown in Figure 6.7. It is observed

that fewer data packets are delivered as speed increases, which is expected. As MNs
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move faster, link connectivity changes more often and more control messages are broad-

casted to make adjustments to the network topology change, contributing further to col-

lisions, congestion, contention, and packet drops. LLR is least affected by mobility,

since it limits the broadcasting of control messages for route discovery during the route

recovery process. Besides reducing collisions, congestion, contention and packet drops

with less broadcasting of control messages, LLR avoids route disconnection by using

link connectivity prediction to perform rerouting prior to route disconnection. This

helps to reduce packet drops too, since packets are more likely to be dropped during

route disconnection due to buffer overflows, timeouts and other reasons. Compared to

AODV, LLR has achieved around2% improvement at lower speed and10%improve-

ment at higher speed. LAOD also performs slightly better than AODV. This is because

LAOD uses the greedy packet forwarding mechanism as an alternative way to forward

the data packets, which helps to deliver more data packets to the destination.

6.2.1.2 Varying Number of CBR Connections

The results are obtained by varying the number of CBR connections in the network

from 10 to 50, with the mean speed of the MNs fixed at 20 m/s.

Figures 6.8-6.10 show the performance comparison between AODV, LAOD and

LLR by varying the network traffic loads in theManhattan Gridmobility model. We

see, like before, LLR is the best protocol among these three routing protocols with

highest PDR, lowest overhead, and lowest end-to-end delay. LAOD also achieves an

improvement on PDR compared with AODV, but as before, at the expense of higher

overhead and longer end-to-end delay. We can observer that LLR achieves around2%

improvement in PDR at lower speed and10%improvement at higher speed compared

to AODV. In terms of end-to-end delay, LLR is around18%better at lower speed and

22%at higher speed than AODV. LLR also achieves around3% improvement at lower

speed and6% improvement at high speed on overhead compared to AODV. However,

the performance of these three routing protocols degrade when the data traffic in the
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network increases. Under heavy traffic loads (more than 30 data connections in the net-

work), the overall performance deteriorates rapidly (all routing protocols deliver below

50% data packets, and end-to-end delay is around 10 times than light traffic loads). This

is due to the excessive contention of the limited bandwidth in the network, leading to

more collisions, more packets being lost and higher probability of congestion. Figure

6.10 also shows the delay variance/jitter of the end-to-end delay. As it can be seen,

LAOD is again the worst one with around5% variance, while both AODV and LLR

are around4%. This is consistent with the results we got by using theManhattan Grid

mobility model with varying speed.

Figure 6.8: Packet Delivery Ratio (PDR) between LLR, LAOD and AODV usingMan-
hattan Gridmobility model with different number of CBR connections
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Figure 6.9: Overhead between LLR, LAOD and AODV usingManhattan Gridmobil-
ity model with different number of CBR connections

Figure 6.10: End-to-End Delay between LLR, LAOD and AODV usingManhattan
Grid mobility model with different number of CBR connections
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6.2.2 Simulation Results and Discussion (Graph-basedmobility model)

6.2.2.1 Varying Speed of MNs

The Graph-basedmobility model is used and the results are obtained by varying the

mean speed of MNs from 1m/s to 20 m/s (i.e., the mobility of MNs), with the number

of CBR connections fixed at 20. This means the network load for this set of simulations

is fixed at 20 CBR connections, which is considered as medium loading for the network.

Figure 6.11: Packet Delivery Ratio (PDR) between LLR, LAOD and AODV using
Graph-basedmobility model with different mobility speed
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Figures 6.11-6.14 show the performance in theGraph-basedmobility model with

varying speed. Like the case ofManhattan Gridmobility model, there are marked

improvements by LLR in PDR, end-to-end delay, and the routing control packets being

transmitted in the network. LAOD also achieves improvement on PDR compared with

AODV, but at the expense of higher overhead and end-to-end delay. The reason is the

same as that inManhattan Gridmobility model.

In Figure 6.13, it can be observed that AODV and LAOD perform similarly at 10 m/s

and above. At faster MN speeds, there are more route changes, which results in more

overhead for both AODV and LAOD. However, the rate at which overhead in LAOD

increases is a bit faster than that of AODV. This is due to the frequent occurrences of

theLocal Maximumproblem, which is partly overcome when we revamped our design

and developed LLR.

Figure 6.12: End-to-End Delay between LLR, LAOD and AODV usingGraph-based
mobility model with different mobility speed
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Figure 6.13: Normalized Overhead between LLR, LAOD and AODV usingGraph-
basedmobility model with different mobility speed

Figure 6.14: Overhead between LLR, LAOD and AODV usingGraph-basedmobility
model with different mobility speed
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6.2.2.2 Varying Number of CBR Connections

Here, the results are obtained by varying number of CBR connections in the network

from 10 to 50, with the mean speed of the MNs fixed at 20 m/s.

Figures 6.15-6.17 show the performance in theGraph-basedmobility model with

varying traffic loads. We see that, like before, the same trend as those which were ob-

tained earlier usingManhattan Gridmobility model with varying traffic loads. LLR is

the best among the three routing protocols with highest PDR, lowest overhead, and low-

est end-to-end delay. LAOD also achieves improvement on PDR compared to AODV,

but at the expense of higher overhead and end-to-end delay.

Figure 6.15: Packet Delivery Ratio (PDR) between LLR, LAOD and AODV using
Graph-basedmobility model with different number of CBR connections
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Figure 6.16: Overhead between LLR, LAOD and AODV usingGraph-basedmobility
model with different number of CBR connections

Figure 6.17: End-to-End Delay between LLR, LAOD and AODV usingGraph-based
mobility model with different number of CBR connections
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6.2.2.3 Summary

From the results of Simulation Set I, we can observe the similarity of the results using

the two mobility models, namelyGraph-basedandManhattan Gridmobility model.

The trends of the results (e.g. PDR, overhead, end-to-end delay, and delay jitter) are

almost exactly the same. This is probably because of our simulation parameter settings.

Therefore, we only present the simulation results usingGraph-basedmobility model

in the following sections, since the simulation results we have usingManhattan Grid

mobility model are consistent with the ones usingGraph-basedmobility model.

6.3 Simulations Set II

In this section, the performances of LLR and its various Hello message adjustment

schemes are examined. Listed below are some parameter settings that we use in the

simulations:

• LOW_PERCENTAGE_THRESH=20%

• HIGH_PERCENTAGE_THRESH=50%

• LOW_SPEED_THRESH=5m/s

• HIGH_SPEED_THRESH=15m/s

• LOW_ABSOLUTE_MOBILITY_FRAC=1.05

• HIGH_ABSOLUTE_MOBILITY_FRAC=0.95

Three different Hello message adjustment schemes with different relative mobility ad-

justment parameter are studied here, which are shown in Table 6.3.

Table 6.3: Different Hello message adjustment schemes’ settings
Parameter Hello I Hello II Hello III
LOW_RELATIVE_MOBILITY_FRAC 1.25 1.50 1.75
HIGH_RELATIVE_MOBILITY_FRAC 0.75 0.50 0.25
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Only Graph-basedmobility models is used here. Besides the key simulation pa-

rameters, as shown in Table 6.1, other simulations parameters are listed in Table 6.4:

Table 6.4: Parameters used during simulation set II
Parameter Value Explanation
Max Pause Time 20 s The maximum time interval the MN will stay

after reaching the destination but before
heading towards the new destination

Number of GWs 4 The location of GWs are shown in the Figure 6.2
Advertisement Zone 6 hops The size ofK-hopsubnet, i.e.K=6
Advertisement Period 5 s The period of sending gateway advertisement

message by GW is 5s, refer to Chapter 3
Periodical Update Interval 5 s The period of sending location update

message by MN is 5s, refer to Chapter 3

The purpose of the Hello message adjustment algorithm is to investigate how to ef-

fectively increase data traffic into the network, (i.e. increase the network throughput),

and achieve similar routing performance compared to the one without the Hello message

adjustment algorithm. However, the network density affects the Hello message adjust-

ment. Furthermore, the nature of the MN mobility model, which has close correlation

between MNs, also affects the Hello message adjustment. In our simulations, the MNs

in the network always have sufficient neighbors, in a slowly-changing neighborhood.

The simulation results in this section are consistent with these in Section 6.2. However,

we are interested to investigate the performance of different Hello message adjustment

schemes, particularly in their ability to save power consumption for the whole network

as the result of reduced packet transmissions, which is demonstrated later.

6.3.1 Simulation Results and Discussion (Graph-basedmobility model)

6.3.1.1 Varying Speed of MNs

TheGraph-basedmobility model is used here. The results are obtained by varying the

mean speed of MNs from 1m/s to 20 m/s (i.e., the mobility of MNs), with the number

of CBR connections fixed at 20, which is considered as medium load for the network.

Figure 6.18 shows a significantly lower number of Hello packet transmissions in
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Figure 6.18: Hello Overhead comparison between LLR and its variants of Hello mes-
sage adjustment schemes usingGraph-basedmobility model with different mobility
speed

Figure 6.19: Overhead comparison between LLR and its variants of Hello message
adjustment schemes usingGraph-basedmobility model with different mobility speed
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Figure 6.20: Packet Delivery Ratio (PDR) comparison between LLR and its variants of
Hello message adjustment schemes usingGraph-basedmobility model with different
mobility speed

the network by the different Hello message adjustment schemes. Compared to LLR,

LLR (HelloI) broadcasts around 80% of Hello messages, LLR (HelloII) broadcasts

around 70% of Hello messages, and LLR (HelloIII) only broadcasts around 60% of

Hello messages at all speeds. The effect of reduced Hello packet broadcasting is shown

in Figure 6.19, which shows the reduction on the overhead in the network for the dif-

ferent Hello adjustment message schemes. This causes less contention for bandwidth

with data packets and important routing control packets like RREQ and RREP, which in

turn, helps to reduce the probability of packet collision and leads to less MAC backoff

time. Therefore, the PDR increases as shown in Figure 6.20, while end-to-end delay

reduces also drops as shown in Figure 6.21.

The reduction in Hello message transmissions helps to achieve quite significant

power saving for the entire network. Let us assume each control packet is sent by con-

suming exactly the same power. This is reasonable since RREQ, RREP, Hello message

and so on are very small packet with similar size. Figure 6.22 shows the percentage
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Figure 6.21: End-to-End Delay comparison between LLR and its variants of Hello
message adjustment schemes usingGraph-basedmobility model with different mobil-
ity speed

Figure 6.22: Percentage of Power Saving comparison between variants of Hello mes-
sage adjustment schemes usingGraph-basedmobility model with different mobility
speed
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power consumption saving of different Hello message adjustment schemes with respect

to the original LLR. As we can observe, all the Hello message adjustment schemes

achieve more than4% power consumption saving for the whole network. LLR (Hel-

loIII) is the best, which achieves around16% power saving for lower speed and12%

for higher speed. This is quite a significant improvement by simply adjust the broad-

castings of the Hello message with respect to the network conditions, especially when

the network is very large.

6.3.1.2 Varying Number of CBR Connections

Here, the results are obtained by varying the number of CBR connections in the network

from 10 to 50, with the mean speed of the MNs fixed at 20 m/s.

Similar to pervious results, Figures 6.23-6.26 show that the routing performances

of different Hello message adjustment schemes are better than the original one with-

out it. Similar to previous results, Figure 6.26 shows a significantly lower number of

Hello packet transmission in the network resulting from the different Hello message

adjustment schemes. The effect of reduced Hello packet broadcasting results in an im-

provement of routing performance in terms of reduced routing control packets as shown

in Figure 6.25, increased PDR as shown in Figure 6.23, and reduced end-to-end delay,

as shown in Figure 6.24. Although, the improvements on PDR and end-to-end delay

are not very significant, the reduction in the overhead means that more data traffic can

be supported by the network. Furthermore, under heavy traffic loads, the overall rout-

ing performance are degraded for all schemes. As we can observe, only around40%

data packets are delivered to the destination at50 data connections compared to75%

at 10 data connections, which is around50%decrement. The end-to-end delay is more

than10 times at50 data connections than that at10 data connections. This is due to

the excessive contention of the bandwidth in the network. Hence, the need to reduce

unnecessary broadcasting of Hello packets is even more important at high data loads in

the network.
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Figure 6.23: Packet Delivery Ratio (PDR) comparison between LLR and its variants of
Hello message adjustment schemes usingGraph-basedmobility model with different
number of CBR connections

Figure 6.24: End-to-End Delay comparison between LLR and its variants of Hello
message adjustment schemes usingGraph-basedmobility model with different number
of CBR connections
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Figure 6.25: Overhead comparison between LLR and its variants of Hello message
adjustment schemes usingGraph-basedmobility model with different number of CBR
connections

Figure 6.26: Hello Overhead comparison between LLR and its variants of Hello mes-
sage adjustment schemes usingGraph-basedmobility model with different number of
CBR connections
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6.3.2 Simulation Results and Discussion for Different Relative Mobility Thresh-
old Settings

In our simulations and discussions for the Hello message adjustment schemes of Section

6.3.1, we fix the relative mobility threshold, which areHIGH_PERCENTAGE_THRESH=50%

andLOW_PERCENTAGE_THRESH=20%. The choice of an appropriate pair of thresh-

old setting is dependent on network conditions like mobility pattern, network traffic

load, and so on. We therefore carry out some simulation studies on them to get the op-

timal values of these two threshold settings for our specific network model. We choose

to use the Hello message adjustment scheme with:

• HIGH_RELATIVE_MOBILITY_FRAC=0.50

• LOW_RELATIVE_MOBILITY_FRAC=1.50

The simulations are run using theGraph-basedmobility model with different num-

ber of CBR connections. We vary the high and low relative mobility threshold settings

to obtain different combinations, as shown in Table 6.5.

Table 6.5: Different combinations of high and low relative mobility threshold settings
using in the simulations

Combinations HIGH_ LOW_
PERCENTAGE_ PERCENTAGE_
THRESH THRESH

Threshold (H>50%, L<20%) 50% 20%
Threshold (H>50%, L<0%) 50% 0%
Threshold (H>50%, L<10%) 50% 10%
Threshold (H>50%, L<30%) 50% 30%
Threshold (H>50%, L<50%) 50% 50%
Threshold (H>20%, L<20%) 20% 20%
Threshold (H>40%, L<20%) 40% 20%
Threshold (H>70%, L<20%) 70% 20%
Threshold (H>100%, L<20%) 100% 20%

From the simulation results shown in Figures 6.27-6.29, it can be observed that

results fromThreshold (H>50%, L<30%), Threshold (H>50%, L<50%), Threshold

(H>20%, L<20%) ,Threshold (H>40%, L<20%), andThreshold (H>70%, L<20%)
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are identical with result fromThreshold (H>50%, L<20%). In other words, only set-

tings with Threshold (H>50%, L<0%), Threshold (H>50%, L<10%), andThreshold

(H>100%, L<20%)are different fromThreshold (H>50%, L<20%). This is because

during the simulations, most of the MNs have less than 20% of neighbors changing

across consecutive time instance. The typical value observed during the simulations is

0%. In other words, the network scenarios used are quite stable with minimal abrupt

changes of MNs’ speed or moving direction. Thus, the neighboring MNs of a particular

MN remain the same for quite a long period.

The results fromThreshold (H>100%, L<20%)is only slightly different fromThresh-

old (H>50%, L<20%). We observe in the simulations that the MNs do not have more

than 20% of neighbors changing except at the start of the simulation, when they are just

starting to know their neighbors after the Hello message broadcasting begins. We also

observe some MNs have 100% changing in the middle of the simulations. This is be-

cause these are previously isolated MNs, which move out and get connected with others

sometime during the simulation. However, these are very rare cases. Therefore, there

is only a slight difference fromThreshold (H>100%, L<20%)andThreshold (H>50%,

L<20%).

It can be seen that the results for different settings are very close, withThreshold

(H>50%, L<20%)having highest PDR, lowest end-to-end delay and lowest number of

Hello packet transmission. Therefore, it can be said thatThreshold (H>50%, L<20%)

is the optimal setting. However, this optimal setting is only applied to these network

scenarios we used. For other network scenarios, this may not be true.
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Figure 6.27: Packet Delivery Ratio (PDR) comparison between different relative mo-
bility threshold settings of Hello message adjustment scheme usingGraph-basedmo-
bility model with different number of CBR connections

Figure 6.28: End-to-End Delay comparison between different relative mobility thresh-
old settings of Hello message adjustment scheme usingGraph-basedmobility model
with different number of CBR connections



CHAPTER 6. SIMULATION RESULTS 72

Figure 6.29: Hello Overhead comparison between different relative mobility threshold
settings of Hello message adjustment scheme usingGraph-basedmobility model with
different number of CBR connections

6.4 Simulations Set III

In this section, we demonstrate the routing performance of AODV, LAOD, LLR and

LLR(Hello III) under very high network data traffic loads.

In our previous simulations, the results show that our routing protocols work fine

under medium data traffic loads in the network. We would like to see how the proto-

cols perform under very high data traffic loads in the network. AODV is used as the

reference for comparison. Both LAOD and LLR are used to evaluate the routing perfor-

mance. Furthermore, we also use one of the Hello message adjustment schemes, namely

LLR(Hello III), which has the lowest overhead. The parameter setting of LLR(Hello

III) is the same as in Simulation Set II of Section 6.3.

We still use CBR as the data traffic loads in the network. Each CBR flow sends data

at 10 packets per second with packet size of 512 bytes. In the simulations, the number

of CBR flows in the network varies from 100 to 140, with the number of MNs fixed
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at 150. In other words, there are always at least two-thirds of MNs generating 40.96

kbps data traffic in the network. TheGraph-basedmobility model and the same graph

as shown in Figure 6.2 are used in the simulations. In summary, the simulation settings

are shown in Table 6.6 below.

Table 6.6: Parameters used in the study of very high data traffic loads
Parameter Value
Data traffic Constant Bit Rate(CBR)
Packet Rate 10 packets/s
Packet Size 512 bytes
Number of CBRs from 100 to 140
Mobility Model Graph-basedmobility model, as shown in Figure 6.2
Number of MNs 150
Simulation Time 900 s

Figures 6.30-6.32 shows the results obtained from simulations. As can be seen,

under heavy data traffic loads, the routing performances of all the routing protocols

are very bad. None of them achieve more than 2% of PDR, as shown in Figure 6.30.

This is due to the excessive bandwidth contention in the network. This leads to ex-

tremely high number of collisions, low throughput and low PDR. This is also the cause

of the extremely long end-to-end delay, as shown in Figure 6.31. Compared to the rest,

LLR(Hello III) has the best routing performance among them, which is because of the

reduction in the unnecessary overhead, the Hello messages, as shown in Figure 6.32.

By reducing the Hello messages in the network, the control traffic is reduced, as shown

in Figure 6.33. This helps to reduce a bit of contention for the bandwidth with the data

packets and helps to achieve a bit better overall utilization of the network resources.
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Figure 6.30: Packet Delivery Ratio (PDR) comparison between AODV, LAOD, LLR
and LLR(Hello III) usingGraph-basedmobility model with very high network data
loadings

Figure 6.31: End-to-End Delay comparison between AODV, LAOD, LLR and
LLR(Hello III) using Graph-basedmobility model with very high network data load-
ings
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Figure 6.32: Hello Overhead comparison between AODV, LAOD, LLR and LLR(Hello
III) using Graph-basedmobility model with very high network data loadings

Figure 6.33: Overhead comparison between AODV, LAOD, LLR and LLR(Hello III)
usingGraph-basedmobility model with very high network data loadings
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6.5 Summary

In this chapter, we present our simulation results in three different sets. In Simulations

Set I, we compared the routing performance between AODV, LAOD and LLR. LLR has

overall best routing performance among the three routing protocols, with the highest

PDR, the shortest end-to-end delay and the lowest overhead, especially at high mobility

speed. In Simulations Set II, we showed that we are able to further improve rout-

ing performance and reduce power consumption, by dynamically adjusting the Hello

broadcasting interval with respect to the network topology. In Simulations Set III, we

demonstrated the performance under very high network data loading comparison be-

tween AODV, LAOD, LLR and LLR (Hello III). It can be observed from the results

that LLR (Hello III) is best among the four routing protocols under such a heavy loaded

network.

Compared to AODV, the performance improvement of LLR is quite significant, es-

pecially at high mobility speed. We usually can observe that LLR achieves around10%

more PDR,15%less end-to-end delay, and5%less overhead at the mean speed around

20m/s.

We also found that the performance of proposed routing protocols are not very sen-

sitive to mobility models under our simulation parameter settings. As we can see from

the simulation results in Simulations Set I, the trends of results by usingManhattan

Grid andGraph-basedmobility model are very similar.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Two location-aided routing protocols, namely Location-Aided On-Demand (LAOD)

routing protocol and Link-Connectivity-Prediction-Based Location-Aided Routing (LLR)

protocol, together with the supporting gateway discovery algorithm are presented. Both

of these two routing protocols make use of location information to achieve better rout-

ing performance. We use simulation to verify the correctness of LAOD and LLR and

compared with AODV, which does not use location information.

In our simulation study, compared to AODV, we find that LAOD has achieved

higher packet delivery ratio (PDR) (i.e. more data packets are delivered) at the expense

of longer end-to-end delay and more overhead. By incorporating the greedy packet

forwarding mechanism into the on-demand routing protocol, LAOD is able to deliver

slightly more data packets to the destination. However, LAOD does not provide any re-

covery technique when the greedy packet forwarding mechanism encounters theLocal

Maximumproblem. This causes LAOD to have longer end-to-end delay. Furthermore,

LAOD needs to use more control messages in order to work properly, which causes it

to have more overhead. Therefore, the design of LAOD needs to be reconsidered. For

example, a recovery technique should be provided when the greedy packet forwarding

mechanism fails.

We also find that LLR has overall best routing performance among AODV, LAOD

and LLR. From the simulation results, LLR has the highest PDR, the shortest end-to-

end delay and the lowest overhead among these three routing protocols. By using the

location information to predict link connectivity, LLR reduces the route (re)discovery
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latency by performing rerouting prior to route disconnections. This helps to reduce end-

to-end delay. LLR also tries to restrict the broadcasting of the control messages during

route recovery, which helps to reduce overhead. Furthermore, LLR tries to use shorter

and more stable routing path, switching between the WR and the WWR accordingly.

Consequently, these lead to lower network congestion, lower bandwidth contention be-

tween control messages and data packets, lower packet loss ratio and higher PDR. All

these are crucial performance metrics in the hybrid network environment.

Furthermore, a Hello message adjustment algorithm incorporated with LLR has

been proposed. By dynamically adjusting the Hello broadcasting interval with respect

to the network topology, we are able to further improve routing performance and reduce

power consumption. In general, the mobility of a MN is characterized by the rate of

change of neighbor MNs and its moving speed. By varying the Hello message interval

with respect to the mobility of MN, unnecessary broadcasting of Hello messages can be

reduced. This has a number of desirable side effects, which includes less contention for

bandwidth with the data packets that leads to higher PDR, decreased end-to-end delay

and reduction of overhead. Furthermore, the simulation results have also shown that the

power consumption decreased significantly as less transmissions of Hello messages.

We also demonstrated that our design is flexible enough to work under different

mobility models such as theManhattan Gridmobility model and theGraph-basedmo-

bility model. The simulation results from the two mobility models show similar trends.

In summary, we have shown that location-aided routing is likely to be an appropriate

method for routing in hybrid wired-wireless networks. The routing performance can

be further improved by tuning certain system parameters, e.g. the Hello broadcasting

interval.

7.2 Future Work

While the work in this thesis only focuses on some issues in peer-to-peer communica-

tions between MNs in the hybrid network environment, there are a few more issues that
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can be addressed:

1. The gateway discovery algorithm presented here, uses a proactive mechanism

to provide subnet connectivity. As explained in Chapter 3, this is not a very

good method since a lot of control messages are generated. A better way to

provide subnet connectivity is required in order to reduce the overall overhead in

the network.

2. The design of LAOD should be reconsidered. From the simulation results ob-

tained, it is obvious that using only the greedy packet forwarding mechanism is

not good enough. One possible way to amend LAOD is to add some alternative

recovery techniques when the greedy packet forwarding mechanism fails.

3. In LLR, the percentage metricis used to measure the routing path quality. The

current design is to give equal priority/percentage to boththe number of hop

countsandRET. It will be interesting to study how the priority/percentage can

be changed under different network data traffic types. For example, if the net-

work data loads are real-time streams, the end-to-end delay is the most important

metric to be considered. In this case,the number of hop countsmay be assigned

higher priority/percentage because smaller hop count means less distance that

data packets have to travel, which means less end-to-end delay is incurred.

4. Only peer-to-peer communications between MNs is studied here. The routing

performance between peer-to-peer communications together with communica-

tions between fixed host (FH) of wired network and an ad hoc MN will be chal-

lenging yet meaningful work. This will lead to an overall performance overview

on the hybrid network environment.

5. The addressing issue is another challenging yet meaningful research to work on.

One way is to use IPv6 in the hybrid network. If this is the case, how mobility

management integrates with IPv6 in the hybrid network architecture is a key issue
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to be studied. Some research studies [7, 27] have already been carried out in the

area.

6. The two-dimension (2D) location information is assumed here for simplicity. But

in reality, the three-dimension (3D) location information is more suitable as the

physical location of the object. Furthermore, the accuracy of the positioning sys-

tem may affect the routing performance dramatically. These should be further

studied.

7. The Hello message adjustment algorithm demonstrates that it is possible to achieve

network performance improvement by dynamically tuning certain network pa-

rameters. Currently we use the mobility of MNs as the tuning parameter. There

are some other network parameters, which can be used as the tuning parameter,

like network size, traffic characteristic, traffic patterns, etc. It will be interesting

to study the effect by dynamically adjusting these different network parameters.
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